
 

 

 

INVESTIGATION OF INTERACTIONS IMPACTING GENETIC PARAMETER 

ESTIMATION AND GENETIC MERIT PREDICTIONS IN BEEF CATTLE 

 

A Dissertation 

by 

JOSE SEBASTIAN DELGADILLO LIBERONA  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Andy D. Herring 

Co-Chair of Committee,   David G. Riley 

Committee Members, James O. Sanders 

 Clare A. Gill 

 Luis O. Tedeschi 

Head of Department, G. Cliff Lamb 

 

August 2019 

Major Subject: Animal Breeding 

Copyright 2019 José Sebastián Delgadillo Liberona



 

ii 

 

ABSTRACT 

 

Increase in world population constantly raises the global demand for food. To 

respond to this demand, livestock systems require to constantly increase their production 

and/or efficiency. Improvement of beef production can be achieved using genetic and 

non-genetic strategies, however only with genetic improvement is possible to achieve 

accumulative improvements across time. Genetic improvement can be achieved by 

selection or crossbreeding. However, outcomes from both alternatives can be influenced 

by interactions between genotype and environmental factors, as well as between additive 

and non-additive genetic components. 

This study evaluated three different interactions that could be acting on genetic 

merit predictions and parameter estimations in different cattle populations. First, the 

interaction between sire and progeny sex was evaluated for pre and post weaning 

weights and for intramuscular fat in Droughtmaster cattle (Bos indicus-Bos taurus 

composite breed). Sire by progeny sex interaction was significant for weight at 

ultrasound measurement (post weaning trait), indicating that it may be possible to 

achieve different rates of improvement across progeny sex, with intact males having the 

larger potential for improving this trait. Second, interaction between animals’ additive 

and non-additive genetic components on birth weight and weaning weight was evaluated 

across different crossbreed scenarios involving Nellore and Angus influenced parents. 

The interaction was significant for both traits; thus, it may be possible to select sires 

given a specific type of cross, and to improve progeny performance due to achieving a 
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better combined effect between additive and non-additive genetic effects. Third, 

interaction between animals’ additive genetic component and environments across a 

gradient of longitude or latitude coordinates within continental United States of America 

was evaluated for intramuscular fat in Hereford cattle. Results indicated large additive 

genetic variance and heritability differences across longitude or latitude coordinates, 

when evaluated at across-regions or within-region levels. 

Results from this study support that genotype-environment interactions, as well 

as interaction between additive and non-additive genetic effects could introduce bias in 

genetic improvement programs if they are not accounted for in prediction equations. 

Further research is needed to corroborate findings from this study, in addition to further 

improve modeling strategies for these interactions in genetic prediction models.  
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CHAPTER I                                                                                             

INTRODUCTION AND LITERATURE REVIEW 

 

1.1. World Demand for Livestock Products 

The world population is increasing, as is world food demand and corresponding 

production. The growth rate of global food production has been faster than the rate of 

population growth, which should make it possible to satisfy the food consumption needs. 

This has not occurred for many reasons, especially due to poverty around the world. It 

has been estimated that the human population could reach 9.15 billion by 2050 

(Alexandratos and Bruinsma, 2012). This will challenge agricultural systems to produce 

food at rates to satisfy global increases in demand. 

The increase in population and wealth in developed countries has been associated 

with increases in per capita food consumption and increased consumption of livestock 

products (Alexandratos and Bruinsma, 2012). This can also be observed in developing 

countries, but the increase in consumption of livestock products will probably not be as 

strong as what occurred in western developed countries (Alexandratos and Bruinsma, 

2012). The estimated increase in population will result in increasing global demand for 

livestock products worldwide. 

Cattle production for beef and milk is highly variable regarding production 

environments, cultural history, market expectations, and political importance. Total 

world beef and veal production reached 62,878,000 MT of carcass weight equivalent by 

2018. The top contributors to this production were the United States, Brazil, the 
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European Union, China, and India (Table 1.1), and these had the largest numbers of 

animals (Table 1.2). 

Table 1.1. Beef and veal production in the top 5 countries or groups of countries 

(1,000 MT carcass weight equivalent) 

 Year 

Country 2015 2016 2017 2018 
2019 

April 

United States 10,817 11,507 11,943 12,253 12,440 

Brazil 9,425 9,284 9,550 9,900 10,200 

European Union 7,684 7,880 7,869 8,030 7,820 

China 6,169 6,169 6,346 6,440 6,575 

India 4,100 4,200 4,250 4,300 4,340 

Global total 59,179 59,659 60,651 62,193 62,593 

USDA, 2019. 

 

Table 1.2. Cattle inventory in the top 5 countries or groups of countries (1,000 

head basis) 

 Year 

Country 2015 2016 2017 2018 
2019 

April 

India 301,100 302,600 303,600 305,000 306,400 

Brazil 213,035 219,180 226,045 232,350 238,158 

China 90,073 90,558 88,345 90,387 90,000 

United States 89,143 91,918 93,705 94,298 94,760 

European Union 88,406 89,152 89,152 88,819 87,508 

Global total 969,259 978,770 984,528 996,361 1,002,722 

USDA, 2019. 

 

1.2. Classification of Cattle Breeds 

Domesticated cattle breeds used in productive systems belong to the genus Bos, 

and either to the sub-species Bos taurus or Bos indicus. Breed characteristics from these 

two sub-species result in differing efficiency for unique production environments and, 

market expectations. Bos taurus breeds are the non-humped breeds that originated from 
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Middle East domestication events (Herring, 2014). Many breeds from this group are 

characterized by favorable carcass attributes such as increased marbling, tenderness, and 

meat yield, and improved weight-based production in temperate climates (Prado et al., 

2008). Bos indicus (Zebu) breeds have their origin in Asia. Bos indicus cattle have a 

characteristic hump in the shoulder region. Bos indicus cattle have increased parasite and 

disease resistance, as well as higher heat tolerance, and are well-adapted to production in 

tropical and subtropical climates (Sanders, 1980; Turner, 1980; Jonsson, 2006; Prado et 

al., 2008; Herring, 2014). 

Breeds investigated in this study include Angus, Droughtmaster, Hereford, and 

Nellore. Angus is a British breed (Bos taurus) developed in the Aberdeen and Angus 

Counties of Scotland; Angus cattle were imported to the United States in 1873 

(American Angus Association, 2019). Hereford is a British breed (Bos taurus) developed 

in Herefordshire England, and were imported into the United States in 1817 (American 

Hereford Association, 2019). Droughtmaster is a stabilized composite developed in 

Australia and is 50% Shorthorn and 50% Brahman (Droughtmaster Stud Breeders 

Society, 2019). Shorthorn is a British breed (Bos taurus) developed in England and was 

distributed to many English colonies, among them American colonies in 1783 

(Shorthorn Beef, 2019), and Australian colonies in 1800 (American Shorthorn 

Association, 2019). Brahman is a Bos indicus composite developed in the United States 

from four Asian Bos indicus breeds (Sanders, 1980). Nellore is one of these foundation 

breeds used to develop American Brahman; it is from the Ongole region of India 
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(Sanders, 1980) and it the predominant breed in Brazil (Oklahoma State University, 

2019). 

1.3. Improvement for Economically Relevant Traits 

Genetic improvements in efficiency and productivity of beef cattle operations 

have followed two fundamental approaches, selection and crossbreeding (Herring, 

2014). Selection, based on performance records and pedigree relationships, has been 

very efficient for improving traits with moderate to high heritability, such as growth and 

carcass traits (Falconer and Mackay, 1996; Herring, 2014). The use of genomic assisted 

selection (Meuwissen et al., 2001) incorporates high-density single nucleotide 

polymorphism genotypes into genetic prediction equations.  This may result in increased 

accuracy of genetic merit predictions in comparison to that obtained using classic 

quantitative methodology with pedigree; this may permit selection of sires at younger 

ages (Schaeffer, 2006; Garrick, 2011). 

The genetic improvement for traits with low heritability, such as reproduction 

and other fitness-related traits, has been associated with lower genetic gain per 

generation (Falconer and Mackay, 1996). Fitness-related traits may have negative 

correlations to at least some production traits, and therefore genetic improvement 

programs that do not incorporate these relationships into selection objectives may be 

indirectly selecting against them (Goddard, 2009). High selection intensity for 

production traits has been associated with inbreeding depression of fitness-traits in 

livestock populations (Goddard, 2009). Crossbreeding can be an effective alternative to 

improve these traits in commercial (non-purebred) herds by increasing the 
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heterozygosity of animals for benefits of direct and maternal hybrid vigor (Falconer and 

Mackay, 1996; Herring, 2014).  

1.4. Hybrid Vigor Benefits and Concerns 

Different domestication events led to the formation of the Bos indicus and Bos 

taurus breeds and provide the basis of their large genetic divergence (MacHugh et al., 

1997). Crossing of breeds from these two cattle groups has been widely used due to 

large hybrid vigor (heterosis) effects in many economically relevant beef industry traits 

(Cartwright, 1980; Franke, 1980; Riley et al., 2007). Increased female fertility and 

longevity have been among the most important traits valued in Bos indicus x Bos taurus 

animals (Cartwright, 1980; Franke, 1980; Turner, 1980; Koger, 1980; Olson et al., 1990; 

Riley et al., 2001). 

The effects of hybrid vigor are not equally beneficial for all traits. Heterosis for 

birth weight can be detrimental; higher weights are associated with a higher incidence of 

dystocia, which in turn can negatively impact dam and calf health, or even risk the 

survival of both (Dillon et al., 2015).  

Intensive genetic selection can lead to reduction in genetic variability within a 

population; consequently, heritability and improvement by selection for traits under 

intensive selection is low (Falconer and Mackay, 1996). The use of crossbreeding may 

improve low heritability traits in progeny due to hybrid vigor effects. 

1.5. Reciprocal Cross Differences for Growth and Carcass-Related Traits 

The increase in birth weight, due to what some have previously considered being 

hybrid vigor, has shown to be unequal depending on the type of cross between Bos 
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indicus and Bos taurus as sire or dam breeds (description of crosses will indicate sire 

breed first followed by dam breed). Cartwright et al. (1964) evaluated birth weight 

differences between Brahman (Bos indicus) and Hereford (Bos taurus) reciprocal crosses 

(Brahman x Hereford dams and Hereford x Brahman). Cartwright et al. (1964) were the 

first to report higher birth weights of calves produced by Brahman sires and Hereford 

dams (37.8 kg) than calves produced by the reciprocal cross (29.1 kg). Other authors 

have found the same trend when evaluating other crosses of Bos taurus and Bos indicus 

breeds (Paschal et al., 1991; Chase et al., 2000; Holloway et al., 2002). This inheritance 

has been reported in studies evaluating Bos indicus-Bos taurus crossbred animals when 

the sire had a higher amount of Bos indicus in its genetic composition in relation to the 

amount of Bos indicus in the dam (Cartwright et al., 1964; Amen et al., 2007a). 

Another unexplained characteristic of Bos indicus x Bos taurus crosses has been 

sexual dimorphism for birth weight: male calves produced by Bos indicus sires and Bos 

taurus dams had much larger birth weights than female calves (Cartwright et al., 1964). 

This sex difference is much greater than what is observed for calves out of the reciprocal 

cross (Bos taurus x Bos indicus), and those of Bos taurus x Bos taurus or Bos indicus x 

Bos indicus crosses (Long and Gregory, 1974; Thallman et al., 1993; Holloway et al., 

2002; Riley et al., 2007; Bazzi, 2011; Fuad et al., 2014; Dillon et al., 2015). Thallman et 

al. (1993) first identified differences in birth weight between embryo transfer Brahman x 

Simmental (Bos taurus) calves that were twice as large between males and females as 

compared to Simmental x Brahman calves. Riley et al. (2007) evaluated crosses 

involving Angus, Romosinuano (tropically adapted Bos taurus) and Brahman, and found 
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Brahman x Angus calves expressed the greatest sexual dimorphism (males 5.7 kg 

heavier) in comparison to Brahman x Brahman (2.5 kg), Angus x Angus (1.8 kg), Angus 

x Brahman calves (-0.8 kg, with females heavier), Romosinuano x Angus calves (2.2 

kg), and Angus x Romosinuano calves (1.7 kg). Brahman x Simmental male calves were 

5 kg heavier at birth than female calves; Simmental x Brahman male calves only 0.7 kg 

heavier than females (Dillon et al., 2015). The sex difference in birth weight of Bos 

indicus x Bos taurus calves is much higher than that reported for Bos indicus breeds such 

as purebred Sistani (1.9 kg; Bazzi, 2011) and purebred Kedah-Kelantan cattle (0.77 kg; 

Fuad et al., 2014). 

Reciprocal cross differences have been observed for weaning weight. Thallman 

et al. (1993) reported that Brahman x Simmental calves were x 23.7 kg heavier at 

weaning than Simmental x Brahman calves. Amen et al. (2007a) used information from 

backcrosses between F₁ Angus x Bos indicus (Brahman or Nellore) sires and dams to 

Angus, and Bos indicus animals, in order to assess the reciprocal backcross effects on 

weaning weight. Backcross animals whose sire had a greater percentage of Bos indicus 

in comparison to the dam (F₁-Angus and Bos indicus-F₁ animals) tended to be about 10 

kg heavier at weaning (Amen et al., 2007a). 

Sexual dimorphism differences for weaning weight have been observed in Bos 

indicus x Bos taurus. Studies using Brahman x Romosinuano (Bos taurus criollo breed), 

and Brahman x Angus reciprocal crosses indicated that sex difference (males – females) 

in Brahman-sired crosses was higher than the reciprocal crosses. These calf sex 

differences were 17.3 kg for Brahman x Romosinuano, 6.3 kg for Romosinuano x 
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Brahman, 17.4 kg for Brahman x Angus, and 11.2 kg for Angus x Brahman (Riley et al., 

2007). 

Other traits of Bos indicus x Bos taurus reciprocal crosses and backcrosses may 

have similar patterns of means as those for birth weight. Brown et al. (1993) reported 

yearling weights 18.7 kg heavier in Brahman x Angus calves than in Angus x Brahman 

calves. Amen et al. (2007b) found that carcasses in backcross animals whose sire had a 

greater percentage of Bos indicus in comparison to the dam (F₁-Angus and Bos indicus-

F₁ animals) than the reciprocal crosses (Angus-F₁ and F₁-Bos indicus animals) tended to 

be heavier. F₁-Angus had carcasses that were 7.5 kg heavier than those of Angus- F₁, and 

Bos indicus-F₁ steers had carcasses 18.1 kg heavier than those of F₁-Bos indicus steers; 

however, these differences were not statistically significant. No similar trend was 

observed between reciprocal backcrosses for longissimus muscle area, intramuscular fat, 

and tenderness (Amen et al., 2007b). 

1.6. Potential Parental Effects Over Reciprocal Crosses Differences 

Differences observed between Bos indicus x Bos taurus reciprocal crosses were 

originally thought to be a consequence of maternal effects and were documented in 

natural service calves where the genetic dam also provided the uterine environment for 

the calf. However, research in embryo transfer calves has shown that the same patterns 

of reciprocal differences exist for birth weight (Thallman et al., 1993; Amen et al., 

2007a; Dillon et al., 2015). 

The inheritance of some growth-related traits in Bos indicus x Bos taurus 

reciprocal crosses does not follow the classical Mendelian pattern (Thallman et al., 



 

9 

 

2014), where the expectation would be to have a similar phenotypic expression for these 

traits in animals sharing the same breed proportions in their genetic composition and 

subjected to similar environmental effects. Among the possible explanations for 

phenotypic differences observed between heterozygotes with an equal genetic 

contribution from both paternal breeds, is the hypothesis of differential expression of 

alleles depending inheritance from the male or female parent, a phenomenon known as 

parent-of-origin effect (Loschiavo et al., 2007; Vrana, 2007). This type of differential 

allele expression may be caused by genomic imprinting, where epigenetic modifications 

in DNA can trigger the complete or partial silencing of specific alleles (Reik and Walter, 

2001; Li, 2002; Vrana, 2007; Shorter et al., 2012). In many situations the maternal 

genotype is confounded with progeny genotype, and it is difficult to distinguish maternal 

effects from parent-of-origin effects. 

It has been observed in different livestock species that the main traits reported 

being under parent-of-origin control, through genomic imprinting, have been those 

associated with growth, development and behavior (Reik et al., 2003; Kim et al., 2007; 

Vrana, 2007), with  results consistent with the observed differences in growth-related 

traits between Bos indicus x Bos taurus reciprocal crosses (Imumorin et al., 2011). 

Clearly, parental breed composition has an impact over both phenotype and 

genotype of animals. A novel paradigm may be needed to examine the effect of different 

combinations of parental breeds involving Bos taurus and/or Bos indicus breeds on the 

additive genetic component of progeny. Such a novel approach could prove useful as 

information for selecting parents for use in specific crosses. 
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1.7. Genotype-Environment Interactions 

The efficiency and profitability of a beef cattle operation are influenced by 

inheritance and by many non-genetic factors, such as feeding strategies, input costs, and 

various physical environmental conditions. The biological type, breed, family, or 

genotypes may interact with the production environment (Herring, 2014). Animals from 

the same breed, but reared under different environments could have differential 

expression of their genetic potential, leading to differences in their phenotypic 

performance (Butts et al., 1971; Souza et al., 2005). It may be beneficial to predict 

genetic merit for economically important traits relative to specific environments, 

especially when the genetic resources may be utilized in widely different environments. 

Genotype-environment interactions can be of two forms: a change in scale across 

environments, or as a change in rank of animal phenotypes in different environments 

(Falconer and Mackay, 1996). Change in scale refers to an increase or reduction of the 

performance differences between genetic types when evaluated across 2 or more 

environments; the change in ranking indicates that some animals may outperform others 

in one environment but will underperform others in another environment. When 

considering genotype-environment interactions in the literature, “genotype” may refer to 

any non-environmental factor such as species, breed, family, or actual genomic 

genotype, and “environment” may indicate any non-genetic factor such as geographical 

location, or management aspects such as grazing system or parasite control.  

Burns et al. (1979) reported genotype-environment interactions in Hereford cattle 

for birth weight, pre-weaning gain, estimated 205 d weight, body length, body condition 
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score, and annual production per cow. In that study Hereford cattle that had been in 

Florida and Montana for several generations, cattle from both groups were exchanged 

and both groups were evaluated in both locations. Hayes et al. (2016) supported the 

usefulness of incorporating genotype-environment interactions into livestock genetic 

evaluations, where genotypes could be evaluated as cattle subspecies (Bos indicus vs. 

Bos taurus), breeds, individual animals, or genotypes based on single nucleotide 

polymorphisms, and environments could be assessed as a variety of variables, either 

categorical (country, farming system, tropical vs. temperate climate, etc.) or continuous 

(temperature, humidity, altitude, average production level, average disease level, etc.). 

Genetic variation within breed subpopulations reared in unique environments 

may have small to large differences depending upon the specific environment descriptor 

(Hayes et al., 2016). As an example, heritability for stayability (defined as cows having a 

calf at age 4 given they had a calf at age 2) in Red Angus ranged from 0.10 to 0.57 when 

evaluated across 9 regions defined by temperature and humidity indices within the 

United States (Fennewald et al., 2018). Distinct levels of genetic variation in different 

environments may lead to imprecise estimates of breeding values if predictions fail to 

account for the genotype-environment interaction. 

1.8. Modeling of Genotype-Environment Interactions in Genetic Evaluations 

Different modeling strategies have been used to account for genotype-

environment interactions in livestock species. Those include the use of environmental 

groups such as country of origin (Wiggans and Van Vleck, 1978; Carabano et al., 1989; 

Stanton et al., 1991;  De Mattos et al., 2000), herds across countries (Peterson, 1988; 
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Charagu and Peterson, 1998; Mwansa and Peterson, 1998), feed strategies (Brown et al., 

1997; Cromie et al, 1998), or production levels (McDaniel and Corley, 1967). This 

approach makes it possible to identify scaling effects across environments, as well as 

potential changes in rankings of sires across environments (Falconer and Mackay, 1996).  

The environment may be described as a continuous variable than as a categorical 

variable (Hayes et al., 2016). Random regression procedures are a different alternative to 

account for genotype-environment interactions in prediction models.  Random 

regressions are also known as reaction norms.  In such analyses, animal phenotype (or 

the additive genetic component of phenotypes) are regressed on a random covariate that 

represents an environmental gradient (Schaeffer, 2004; Bryant et al., 2005; Kolmodin et 

al., 2002). This procedure models these interactions, and may result in greater levels of 

precision for parameter estimates and genetic merit predictions (Cardoso et al., 2012; 

Kang et al., 2016).  

The selection of appropriate random covariates is critical to obtain meaningful 

results in genetic parameter estimation and predictions of breeding values when using 

random regression. Two main random covariate categories have been reported in the 

literature: 1) deviations from the mean productive performance for a particular trait in a 

given environment (Falconer and Mackay, 1996; Kolmodin et al., 2002), and 2) 

continuous variables associated with environment descriptors that follow a gradient, 

such as temperature, humidity, rainfall, feed level, among others (Hammami et al., 2009; 

Hayes et al., 2016). 
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Kolmodin et al., (2002) identified the presence of genotype-environment 

interactions for protein production and days open in dairy cows, using random regression 

methodology and 4 Nordic dairy cattle breeds. When traits were regressed on deviations 

from herd-year averages across different countries, re-ranking of sires occurred, 

especially between the extreme environments (herd-year average ± 2.5 SD; Kolmodin et 

al., 2002). Pégolo et al. (2009) identified genotype-environment interactions for 450 d 

weight in Brazilian Nellore cattle, using standardized deviations from contemporary 

groups averages as the environmental variable. The latter experiment showed how re-

ranking of sires not only could be observed when genotype-environment interactions are 

evaluated between countries, but also within the country (Pégolo et al., 2009).  

Genotype-environment interactions have been investigated in the form of sire-

environment interactions. Among these interactions, sire-sex interactions were 

investigated for growth and carcass traits in Hereford (Koger and Knox, 1945; Pahnish 

et al., 1961; Thrift et al., 1970), Polled Hereford (Wilson et al., 1969), Angus (Tanner et 

al., 1970), Simmental (Buchanan and Nielsen, 1979; Garrick et al., 1989) and Maine-

Anjou (Buchanan and Nielsen, 1979). Significant sire-sex interactions were reported for 

birth weight and weaning weight in Simmental and Maine-Anjou (Buchanan and 

Nielsen, 1979) and in Simmental-influenced cattle (Garrick et al., 1989). Garrick et al. 

(1989) reported significant sire-sex interactions for post weaning gain in Simmental-

influenced cattle. Sire-sex interactions are not included in most genetic evaluations, 

probably due to predominantly negative results and/or due to their modest practical 

effects (Notter et al., 1992). 
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Since genotype-environment interactions can affect many traits related to 

productivity and profitability of cattle operations and that favorable genes in some 

environments may not be equally beneficial in others (Via et al., 1995), it is important to 

identify “plastic” and “robust” genotypes among sires. A “plastic” genotype is one that 

corresponds to highly variable phenotypes across environments. “Robust” genotypes 

consistently result in phenotypes that have low variability across environments (De Jong 

et al., 2002). Selection of sires with robust genotypes would make it possible to increase 

the frequency of genes associated to adaptability across environments. Identification of 

plastic sires and the environments where their daughters will best perform would be of 

high value for beef producers. 

1.9. Additive by Non-Additive Genetic Interactions 

Improvement of economically relevant traits in beef cattle has followed two 

strategies, selection and crossbreeding (Herring, 2014). Selection is based on the ability 

of animals to transmit favorable genes into their progeny (Falconer and Mackay, 1996; 

Herring, 2014). Crossbreeding between different cattle breeds make it possible to realize 

benefits from hybrid vigor in progeny and dams (Cartwright, 1970; Falconer and 

Mackay, 1996; Herring, 2014). 

Non-additive genetic effects have been widely studied for beef and dairy cattle; 

however, interactions between non-additive genetic effects and additive genetic effects 

has been limited to evaluate sire combining ability, in order to control inbreeding in a 

population (Allaire and Henderson, 1965; Henderson, 1989; DeStefano and Hoeschele, 

1992). Crossbreeding is a widely used improvement strategy in many parts of the world. 
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Parameterization and characterization of its potential interaction with the additive 

genetic component may represent a new way of thinking in genetic improvement. 

1.10. Summary 

 Different sources of variation influence phenotypic performance in beef cattle 

with either short- or long-term consequences. The interactions of genotype and 

environmental descriptors, and genotypes with parental breed crossbreeding may 

influence animal phenotype. 

Genetic merit prediction equations incorporate relevant environmental factors, as 

well as non-additive genetic descriptors when crossbreed populations are evaluated in 

order to make accurate and useful predictions. Such interactions have not been 

considered within current livestock genetic prediction efforts. The use of categorical 

variables, random regression procedures, or a combination of both may help to improve 

genetic merit predictions and parameter estimation. 
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CHAPTER II                                                                                           

INVESTIGATION OF SIRE BY PROGENY SEX INTERACTIONS FOR GROWTH-

RELATED TRAITS AND INTRAMUSCULAR FAT IN DROUGHTMASTER 

CATTLE 

 

2.1. Introduction 

Productivity and profitability of beef cattle operations are influenced by several 

factors, some of which are more directly associated with genetics, and others are more 

related to non-genetic or environmental effects (Falconer and Mackay, 1996).  

Crossbreeding between Bos taurus and Bos indicus breeds has been widely used 

in beef cattle operations to achieve large hybrid vigor (heterosis) effects in many 

economically relevant traits, due to the large genetic divergence between these two cattle 

subspecies (MacHugh et al., 1997). Droughtmaster is an example of a composite Bos 

taurus-Bos indicus breed (50% Shorthorn and 50% Brahman), which has its origin in 

northern Queensland, Australia. This tropically adapted breed is suitable to perform 

under the climate conditions of northern Australia (Droughtmaster Stud Breeders 

Society, 2019). 

Some environmental factors may interact directly with animal genotype, 

modulating its expression and the phenotypic performance of economically relevant 

traits (Burns et al., 1979; Hayes et al., 2016; Fennewald et al., 2017). Some sires are 

used as breeders in widely different environments, and these genotype-environment 
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interactions may introduce bias for expected progeny performance (Butts et al., 1971; 

Souza et al., 2005). 

From the late 1970s to mid 1990s genotype-environment interactions were 

investigated primarily as sire additive genetic merit with herd effects and/or region 

effects. Tess et al. (1979) found significant interaction effects between sire and herd 

within regions in the USA for weaning weight in Simmental cattle, and a near significant 

interaction between sire and region. Similarly, Bertrand et al. (1985) identified a 

significant interaction between sire and herd, as well as interaction between sires and 

regions within the USA for weaning weight using Polled Hereford records. Similar 

results were also identified in Australian Angus cattle, where significant sire by herd 

interactions were found for weaning weight (Notter et al., 1992). 

Interactions between sire and year have also been described for weaning weight 

in Simmental cattle. The inclusion of this interaction in the prediction equation reduced 

the additive genetic covariance between the direct and maternal genetic component by 

62%, reducing the magnitude of the genetic correlation between these components (Lee 

and Pollak, 1997). 

Previously, from the mid-1940s to late 1980s, researchers investigated the effect 

of sire by sex interaction on growth and carcass traits in Hereford (Koger and Knox, 

1945; Pahnish et al., 1961; Thrift et al., 1970), Polled Hereford (Wilson et al., 1969), 

Angus (Tanner et al., 1970), Simmental (Buchanan and Nielsen, 1979; Garrick et al., 

1989) and Maine-Anjou (Buchanan and Nielsen, 1979) cattle in the USA. Sire-sex 

interaction was mostly found to be not significant in these studies, with exception for 
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birth weight and weaning weight in American Simmental and American Maine-Anjou 

(Buchanan and Nielsen, 1979), as well as in Simmental-influenced cattle (Garrick et al., 

1989). Additionally, Garrick et al. (1989) identified significant sire-sex interaction for 

post weaning gain in Simmental-influenced cattle. 

Since 1990 the scientific community stopped researching sire-sex interaction in 

cattle, as studies shown predominant non-significant results or modest practical effects 

for this interaction (Notter et al., 1992).  

Many assume that genetic prediction comparisons among sires should be the 

same in purebred and in crossbred progeny. Composite breeds that are based on Bos 

taurus-Bos indicus crossbred foundations may useful to evaluate for potential sire 

interactions. 

In Droughtmaster cattle, sire-sex interactions are a potential influence that could 

introduce bias in genetic merit predictions if they exist but are not considered in 

prediction equations. Assessment of the presence of sire-sex interactions for growth and 

carcass traits within this composite breed could help identify robust sires whose progeny 

could perform better for a given trait in all sex categories (Via and Lande, 1985; 

Agrawal, 2001; De Jong et al., 2002).  

The objective of this study was to assess the presence of sire-sex interactions for 

weights at branding, weaning, and ultrasound scan, as well as for intramuscular fat in 

Droughtmaster heifers, steers and intact males. Single trait models and all potential 

bivariate model alternatives between these 4 traits (6 in total) were evaluated using 2 

different modeling strategies: 1) modeling the random effect of sire within progeny sex 
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category, and, 2) modeling a linear random regression of sire genotype on progeny sex 

category. 

2.2. Materials and Methods 

2.2.1. Records 

Weight traits and ultrasound measurements of carcass quality were obtained from 

a single Australian Droughtmaster operation across 4 years (2009 to 2012). Weights 

were recorded at branding (BRW; average age 125 d), weaning (WW; average age of 

200 d), and at time of ultrasound measurement (ULW; average age of 546 d). Ultrasound 

measurement under evaluation was intramuscular fat percentage (IMF; recorded at an 

average age of 550 d). Records with complete information about season of birth, 

contemporary group, age at measurement, and sex type were kept in the database. 

Records considered unreasonable biologically were removed. Records greater than 4 SD 

above or below the mean were considered outliers and removed. The total number of 

records in the edited data for branding weight, weaning weight, weight at ultrasound 

measurement, and intramuscular fat were 1,876, 1,352, 1,770, and 1,794, respectively. 

The pedigree used for the analyses included information from 3,344 animals, with a total 

of 53 sires represented. 

2.2.2. Statistical Analyses 

Two set of analyses were performed to assess the potential interaction between 

sire and progeny sex category. The first set of analysis modeled sex as a categorical 

variable with 2 levels for BRW and WW analyses (females and intact males), and 3 

levels for ULW and IMF analyses (females, steers, and intact males). All males not 
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selected as bulls were castrated after weaning. In the second set of analyses, sex was 

modeled as a continuous variable (linear covariate): values of 1 and 2 were assigned to 

females and intact males, respectively, in BRW and WW analyses; values of 1, 2, and 3 

were assigned to females, steers, and intact males, respectively, for ULW and IMF 

analyses. The total number of records per sex category is indicated in Table 2.1. 

Table 2.1. Number of records by sex category for analysis of branding weight, 

weaning weight, weight at ultrasound measurement, and intramuscular fat 

 Sex category 

 Female Steer Intact male 

Branding weight 884 -- 1,032 

Weaning weight 884 -- 1,032 

Weight at ultrasound 

measurement 

884 411 621 

Intramuscular fat 884 411 621 

 

For each set of analyses (sex as categorical variable or as linear covariate), 

single-trait models were assessed for each trait as well as each possible bivariate model 

(6 in total). Fixed effects in models corresponded to season of birth (categorical), 

contemporary group (categorical), age in days at measurement (covariate), and sex 

(categorical or as linear covariate). 

Random components for BRW and WW models corresponded to maternal 

additive genetic effect, and the interaction between sire and progeny sex category or the 

a linear random regression of sire on progeny sex category (first order Legendre 

polynomial), depending if sex was used as categorical variable or as linear covariate in 

the fixed component of the models, respectively. For ULW and IMF analyses, the 
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random component was as described for BRW and WW but without including maternal 

additive genetic effects. 

2.2.2.1. Single-Trait Models with Sex as Categorical Variable 

The single-trait models for BRW and WW using sex as categorical variable 

followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y was a vector of BRW or WW records, β was the vector of estimated fixed 

effects, u was the vector of random additive genetic effects for sires within each level of 

sex in the model, c was the vector of additive genetic effects of the dam, e was the vector 

of residuals, and X, Z, and W were incidence matrices relating observations in y to values 

in β, u, and c vectors, respectively. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows: 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] = [

𝐺𝐹 𝐺𝐹𝑀 0 0
𝐺𝐹𝑀 𝐺𝑀 0 0
0 0 𝐶 0
0 0 0 𝑅

] 

in which 𝐺𝐹 = 𝐴𝜎𝑎𝐹
2  , 𝐺𝑀 = 𝐴𝜎𝑎𝑀

2 , 𝐺𝐹𝑀 = 𝐴𝜎(𝑎𝐹,𝑎𝑀) , where A was the numerator 

relationship matrix constructed with the pedigree information, 𝜎𝑎𝐹
2  is the additive genetic 

variance for sires when progeny is female, 𝜎𝑎𝑀
2  is the additive genetic variance for sires 

when progeny is intact male, and 𝜎(𝑎𝐹,𝑎𝑀) is the additive genetic covariance between 

sires when progeny is female and when progeny is intact male; 𝐶 = 𝐴𝜎𝑐
2, where 𝜎𝑐

2 is 

the additive genetic variance for dams; 𝑅 = 𝐼𝜎𝑒
2, and 𝜎𝑒

2 is the residual variance. 
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The single-trait models for ULW and IMF using sex as categorical variable 

followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where y was a vector of ULW or IMF records, β was the vector of estimated fixed 

effects, u was the vector of random additive genetic effects for sires within each level of 

sex in the model, e was the vector of residuals, and X and Z were incidence matrices 

relating observations in y to values in β, and u. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follow: 

𝑉𝑎𝑟 [
𝑢
𝑒
] = [

𝐺𝐹 𝐺𝐹𝑆 𝐺𝐹𝑀 0
𝐺𝐹𝑆 𝐺𝑆 𝐺𝑆𝑀 0
𝐺𝐹𝑀 𝐺𝑆𝑀 𝐺𝑀 0
0 0 0 𝑅

] 

in which components as described previously in addition to 𝐺𝑆 = 𝐴𝜎𝑎𝑆
2 , 𝐺𝐹𝑆 =

𝐴𝜎(𝑎𝐹,𝑎𝑆) , and 𝐺𝑆𝑀 = 𝐴𝜎(𝑎𝑆,𝑎𝑀) , where  𝜎𝑎𝑆
2  is the additive genetic variance for sires 

when progeny is steer, 𝜎(𝑎𝐹,𝑎𝑆)  is the additive genetic covariance between sires when 

progeny is female and when progeny is steer, and 𝜎(𝑎𝑆,𝑎𝑀)  is the additive genetic 

covariance between sires when progeny is steer and when progeny is intact male. 
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2.2.2.2. Bivariate Models with Sex as Categorical Variable 

Bivariate models using sex as categorical variable and including BRW and WW 

followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y corresponded to the vector of BRW and WW records; 𝛽 was the vector of fixed 

effects for BRW and WW; 𝑢 was the vector of sire additive genetic effects for BRW and 

WW; 𝑐 was the vector of maternal additive genetic effects for BRW and WW; 𝑒 was the 

vector of residual effects for BRW and WW records; 𝑋, 𝑍, 𝑊 are incidence matrices 

relating BRW and WW values in y to corresponding effects in 𝛽, 𝑢, and 𝑐. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented):
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𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] =

[
 
 
 
 
 
 
 
 

𝐺𝐵𝑅𝑊𝐹
       

𝐺𝐵𝑅𝑊(𝐹,𝑀)
𝐺𝐵𝑅𝑊𝑀

      

𝐺(𝐵𝑅𝑊𝐹,𝑊𝑊𝐹) 𝐺(𝐵𝑅𝑊𝑀,𝑊𝑊𝐹) 𝐺𝑊𝑊𝐹
     

𝐺(𝐵𝑅𝑊𝐹,𝑊𝑊𝑀) 𝐺(𝐵𝑅𝑊𝑀,𝑊𝑊𝑀) 𝐺𝑊𝑊(𝐹,𝑀)
𝐺𝑊𝑊𝑀

    

0 0 0 0 𝐶𝐵𝑅𝑊    
0 0 0 0 𝐶(𝐵𝑅𝑊,𝑊𝑊) 𝐶𝑊𝑊   

0 0 0 0 0 0 𝑅𝐵𝑅𝑊  
0 0 0 0 0 0 𝑅(𝐵𝑅𝑊,𝑊𝑊) 𝑅𝑊𝑊]
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where BRW and WW subscripts indicate branding weight and weaning weight variance 

and covariance components. Components 𝐺, 𝐶, and 𝑅 were described previously, and 

now are included in covariances as well. 

Bivariate models using sex as categorical variable and including BRW or WW 

(V1) with either ULW or IMF (V2) followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y corresponded to the vector of V1 and V2 records; 𝛽 was the vector of fixed 

effects for V1 and V2; 𝑢 was the vector of sire additive genetic effects for V1 and V2; 𝑐 

was the vector of maternal additive genetic effects for V1; 𝑒 was the vector of residual 

effects for V1 and V2 records; 𝑋, 𝑍, 𝑊 were incidence matrices relating V1 and V2 

values in y to corresponding effects in 𝛽, 𝑢, and 𝑐. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented): 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] =

[
 
 
 
 
 
 
 
 

𝐺𝑉1𝐹
       

𝐺𝑉1(𝐹,𝑀)
𝐺𝑉1𝑀

      

𝐺(𝑉1𝐹,𝑉2𝐹) 𝐺(𝑉1𝑀,𝑉2𝐹) 𝐺𝑉2𝐹
     

𝐺(𝑉1𝐹,𝑉2𝑆) 𝐺(𝑉1𝑀,𝑉2𝑆) 𝐺𝑉2(𝐹,𝑆)
𝐺𝑉2𝑆

    

𝐺(𝑉1𝐹,𝑉2𝑀) 𝐺(𝑉1𝑀,𝑉2𝑀) 𝐺𝑉2(𝐹,𝑀)
𝐺𝑉2(𝑆,𝑀)

𝐺𝑉2𝑀
   

0 0 0 0 0 𝐶𝑉1   
0 0 0 0 0 0 𝑅𝑉1  
0 0 0 0 0 0 𝑅(𝑉1,𝑉2) 𝑅𝑉2]
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where V1 and V2 subscripts indicate branding weight or weaning weight and weight at 

ultrasound measurement or intramuscular fat variance and covariance components, 

respectively. 𝐺, 𝐶, and 𝑅 as described previously, with the addition of covariances 

within 𝐺, and 𝑅 components. 

Bivariate models using sex as categorical variable and including ULW and IMF 

followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where y corresponded to the vector of ULW and IMF records; 𝛽 was the vector of fixed 

effects for ULW and IMF; 𝑢 was the vector of sire additive genetic effects for ULW and 

IMF; 𝑒 was the vector of residual effects for ULW and IMF records; 𝑋 and 𝑍 are 

incidence matrices relating ULW and IMF values in y to corresponding effects in 𝛽, and 

𝑢. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented):
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𝑉𝑎𝑟 [
𝑢
𝑒
] =

[
 
 
 
 
 
 
 
 
 

𝐺𝑈𝐿𝑊𝐹
       

𝐺𝑈𝐿𝑊(𝐹,𝑆)
𝐺𝑈𝐿𝑊𝑆

      

𝐺𝑈𝐿𝑊(𝐹,𝑀)
𝐺𝑈𝐿𝑊(𝑆,𝑀)

𝐺𝑈𝐿𝑊𝑀
     

𝐺(𝑈𝐿𝑊𝐹,𝐼𝑀𝐹𝐹) 𝐺(𝑈𝐿𝑊𝑆,𝐼𝑀𝐹𝐹) 𝐺(𝑈𝐿𝑊𝑀,𝐼𝑀𝐹𝐹) 𝐺𝐼𝑀𝐹𝐹
    

𝐺(𝑈𝐿𝑊𝐹,𝐼𝑀𝐹𝑆) 𝐺(𝑈𝐿𝑊𝑆,𝐼𝑀𝐹𝑆) 𝐺(𝑈𝐿𝑊𝑀,𝐼𝑀𝐹𝑆) 𝐺𝐼𝑀𝐹(𝐹,𝑆)
𝐺𝐼𝑀𝐹𝑆

   

𝐺(𝑈𝐿𝑊𝐹,𝐼𝑀𝐹𝑀) 𝐺(𝑈𝐿𝑊𝑆,𝐼𝑀𝐹𝑀) 𝐺(𝑈𝐿𝑊𝑀,𝐼𝑀𝐹𝑀) 𝐺𝐼𝑀𝐹(𝐹,𝑀)
𝐺𝐼𝑀𝐹(𝑆,𝑀)

𝐺𝐼𝑀𝐹𝑀
  

0 0 0 0 0 0 𝑅𝑈𝐿𝑊  
0 0 0 0 0 0 𝑅(𝑈𝐿𝑊,𝐼𝑀𝐹) 𝑅𝐼𝑀𝐹]
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where ULW and IMF subscripts indicate weight at ultrasound measurement and 

intramuscular fat variance and covariance components, respectively. 𝐺 and 𝑅 as matrices 

and covariance components described previously. 

2.2.2.3. Single-Trait Models with Sex as Random Linear Covariate 

The single-trait models for BRW and WW using a random linear regression to 

model sex followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y was a vector of BRW or WW records, u was the vector of random regression 

coefficients for sire additive genetic effects, and β, c, e, X, Z, and W as described for 

BRW and WW models using sex as categorical variable. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follow: 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] = [

𝐴 ⊗ 𝐺 0 0
0 𝐶 0
0 0 𝑅

] 

where G was the covariance matrix of additive genetic regression coefficients with order 

2 (intercept and linear random regression coefficient), and A, C and R as described 

previously for BRW and WW models. The G matrix used in the linear random 

regression models included the estimation of the variances and covariances of the 

intercept and the regression coefficient. 
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The single-trait models for ULW and IMF using sex as linear covariate followed 

the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where y was a vector of ULW or IMF records, u, β, e, X, and Z as described previously 

for BRW and WW models using sex as linear covariate. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follow: 

𝑉𝑎𝑟 [
𝑢
𝑒
] = [

𝐴 ⊗ 𝐺 0
0 𝑅

] 

where G, A, and R as described for BRW and WW models using sex as linear covariate. 

2.2.2.4. Bivariate Models with Sex as Random Linear Covariate 

Bivariate model using sex as random linear covariate and including BRW and 

WW followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y corresponded to the vector of BRW and WW records; 𝛽 was the vector of fixed 

effects for BRW and WW; 𝑢 was the vector of random regression coefficients for sire 

additive genetic effects; 𝑐 was the vector of maternal additive genetic effects for BRW 

and WW; 𝑒 was the vector of residual effects for BRW and WW records. As before, X, 

Z, and W were incidence matrices relating BRW and WW values in y to corresponding 

effects in 𝛽, 𝑢, and 𝑐. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented): 
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𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] =

[
 
 
 
 
 
 
 
 
 

𝐺𝐵𝑅𝑊𝛽0
       

𝐺𝐵𝑅𝑊(𝛽0,𝛽1)
𝐺𝐵𝑅𝑊𝛽1

      

𝐺(𝐵𝑅𝑊𝛽0
,𝑊𝑊𝛽0

) 𝐺(𝐵𝑅𝑊𝛽1
,𝑊𝑊𝛽0

) 𝐺𝑊𝑊𝛽0
     

𝐺(𝐵𝑅𝑊𝛽0
,𝑊𝑊𝛽1

) 𝐺(𝐵𝑅𝑊𝛽1
,𝑊𝑊𝛽1

) 𝐺𝑊𝑊(𝛽0,𝛽1)
𝐺𝑊𝑊𝛽1

    

0 0 0 0 𝐶𝐵𝑅𝑊    
0 0 0 0 𝐶(𝐵𝑅𝑊,𝑊𝑊) 𝐶𝑊𝑊   

0 0 0 0 0 0 𝑅𝐵𝑅𝑊  
0 0 0 0 0 0 𝑅(𝐵𝑅𝑊,𝑊𝑊) 𝑅𝑊𝑊]
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where BRW and WW subscripts indicate branding weight and weaning weight variance 

and covariance components, respectively. 𝐺, 𝐶, and 𝑅 as described previously, with the 

addition of covariances within 𝐺, 𝐶, and 𝑅 components. Subscripts β₀ and β₁ indicate 

variance and covariance components associated to random intercept and to linear 

random regression coefficient, respectively. 

Bivariate models using sex as random linear covariate and including BRW or 

WW (V1) with either ULW or IMF (V2) followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y corresponded to the vector of V1 and V2 records; 𝛽 is the vector of fixed effects 

for V1 and V2; 𝑢 was the vector of random regression coefficients for sire additive 

genetic effects; 𝑐 was the vector of maternal additive genetic effects for V1; 𝑒 is the 

vector of residual effects for V1 and V2 records; 𝑋, 𝑍, 𝑊 are incidence matrices relating 

V1 and V2 values in y to corresponding effects in 𝛽, 𝑢, and 𝑐. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented): 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] =

[
 
 
 
 
 
 
 

𝐺𝑉1𝛽0
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,𝑉2𝛽0

) 𝐺𝑉2𝛽0
    

𝐺(𝑉1𝛽0
,𝑉2𝛽1

) 𝐺(𝑉1𝛽1
,𝑉2𝛽1

) 𝐺𝑉2(𝛽0,𝛽1)
𝐺𝑉2𝛽1

   

0 0 0 0 𝐶𝑉1   
0 0 0 0 0 𝑅𝑉1  
0 0 0 0 0 𝑅(𝑉1,𝑉2) 𝑅𝑉2]
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where V1 and V2 subscripts indicate branding weight or weaning weight and weight at 

ultrasound measurement or intramuscular fat variance and covariance components, 

respectively, and all other terms as previously described. 

Bivariate models using sex as random linear covariate and including ULW and 

IMF followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where y correspond to the vector of ULW and IMF records; 𝛽 was the vector of fixed 

effects for ULW and IMF; 𝑢 was the vector of random regression coefficients for sire 

additive genetic effects; 𝑒 was the vector of residual effects for ULW and IMF 

records; 𝑋, and 𝑍 are incidence matrices relating ULW and IMF values in y to 

corresponding effects in 𝛽, and 𝑢. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follows (matrix is symmetric; only diagonal 

elements on lower triangle of covariance terms presented): 

𝑉𝑎𝑟 [
𝑢
𝑒
] =

[
 
 
 
 
 
 

𝐺𝑈𝐿𝑊𝛽0
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𝐺(𝑈𝐿𝑊𝛽0
,𝐼𝑀𝐹𝛽0

) 𝐺(𝑈𝐿𝑊𝛽1
,𝐼𝑀𝐹𝛽0

) 𝐺𝐼𝑀𝐹𝛽0
   

𝐺(𝑈𝐿𝑊𝛽0
,𝐼𝑀𝐹𝛽1

) 𝐺(𝑈𝐿𝑊𝛽1
,𝐼𝑀𝐹𝛽1

) 𝐺𝐼𝑀𝐹(𝛽0,𝛽1)
𝐺𝐼𝑀𝐹𝛽1

  

0 0 0 0 𝑅𝑈𝐿𝑊  
0 0 0 0 𝑅(𝑈𝐿𝑊,𝐼𝑀𝐹) 𝑅𝐼𝑀𝐹]
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where subscripts indicate ULW and IMF variance and covariance components, 

respectively, and additional terms as previously described. 

2.2.2.5. Animal Models  

In addition to the single-trait and bivariate models, two animal models were 

evaluated for each trait; first, using sex as a fixed categorical variable, and then with sex 

as fixed linear covariate. 

Models for BRW and WW had the following form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y was the vector of BRW or WW records; 𝛽 was the vector of fixed effects; 𝑢 was 

a vector animal breeding values; 𝑐 was the vector of maternal additive genetic effects; e 

was the vector of residual effects; X, Z, and W were incidence matrices relating BRW or 

WW values in y to corresponding effects in 𝛽, 𝑢, and 𝑐. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follow: 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] = [

𝐺 0 0
𝑐𝑜𝑣(𝐺,𝐶) 𝐶 0

0 0 𝑅

] 

in which 𝐺 = 𝐴𝜎𝑎
2 , 𝐶 = 𝐴𝜎𝑐

2, 𝑐𝑜𝑣(𝐺,𝐶) = 𝐴𝜎(𝑎,𝑐) , where A was the numerator 

relationship matrix constructed with the pedigree information, 𝜎𝑎
2 was the animal 

additive genetic variance, 𝜎𝑐
2 was the maternal additive genetic variance, and 𝜎(𝑎,𝑐) was 

the additive genetic covariance between the animal and maternal additive genetic effects; 

𝑅 = 𝐼𝜎𝑒
2, and 𝜎𝑒

2 was the residual variance. 
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Models for ULW and IMF had the following form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where y was the vector of ULW or IMF records; 𝛽, 𝑢, e, X, and Z as described for BRW 

and WW animal models. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as follow: 

𝑉𝑎𝑟 [
𝑢
𝑒
] = [

𝐺 0
0 𝑅

] 

in which 𝐺 and R as described for BRW and WW animal models. 

2.2.2.6. Analytical Tools 

Analyses were performed using ASReml (Gilmour et al., 2009). Additionally, 

sire variance proportion (proportion of the phenotypic variance explained by the sire 

additive genetic variance), Pearson correlation coefficients between sire effects across 

sex categories, and corresponding SE were calculated directly using ASReml. Variance 

component estimates from the linear random regression of sire on progeny sex were used 

to plot gradients of sire variance proportions for each trait (Schaeffer, 2016) in single-

trait and bivariate models. 

2.2.2.7. Likelihood-Ratio Tests 

Likelihood-ratio tests were conducted between final single-trait or bivariate 

models and reduced model counterparts to determine if sire-sex interaction was 

significant to incorporate in the models (P < 0.05). Random components in reduced 

models included the additive genetic effect of the sire (for BRW, WW, ULW and IMF 
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related models), and the additive genetic effect of the dam (for BRW and WW related 

models).  

2.3. Results 

2.3.1. Analyses Using Sex as Categorical Variable 

2.3.1.1. Branding Weight Models 

Preliminary analyses for the single trait model indicated that season of birth was 

not significant (P = 0.08) and, therefore, it was not kept in final models of any kind. 

Fixed effects included in the final models for BRW were contemporary group, age at 

measurement, and sex (categorical). Sire variance by sex as proportions of the 

phenotypic variance for BRW from single-trait model and bivariate models are presented 

in Table 2.2. These were similar in magnitude for each sex and model. 

Table 2.2. Sire variance proportion (Sh²) estimates for branding weight across 

models1 using sex as categorical variable 

 Models 

Parameter Single-trait BRW-WW BRW-ULW BRW-IMF 

Sh² Female2 0.06 ± 0.02 0.07 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 

Sh² Intact male 0.06 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 

Sh² RM 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sire variance proportion when progeny is female, intact male, or estimated with the reduced model 

(RM; sire and maternal additive effects as unique random components); for reference, heritability 

estimated from animal model was 0.26 ± 0.08. 
 

Correlations between sire effects across sex categories for single-trait model and 

bivariate models are presented in Table 2.3. Across models, high correlations were 

obtained between sire effects when progeny is female and when progeny is intact male, 

ranging from 0.95 to 0.99. 
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Table 2.3. Pearson correlation coefficients between sire effects within females and 

intact males (r F-M) for branding weight across models 

 Models1 

Parameter Single-trait BRW-WW BRW-ULW BRW-IMF 

r F-M 0.95 ± 0.14 0.99 ± 0.12 0.96 ± 0.10 0.98 ± 0.11 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits 

 

2.3.1.2. Weaning Weight Models 

Preliminary analyses for the single trait model indicated that season of birth was 

not significant (P = 0.20) and was removed from the final models. Fixed effects in the 

final models for WW were contemporary group, age at measurement, and sex 

(categorical). 

Sire variance proportion estimates for WW from single-trait model and bivariate 

models are presented in Table 2.4. Across models, sire variance proportions had similar 

values within females, and within intact males; additionally, sire variance proportions 

across models were similar, with sire variance proportion from the reduced models 

showing a slightly larger range across models (0.08 to 0.11). 

Table 2.4. Sire variance proportion (Sh²) estimates for weaning weight across 

models using sex as categorical variable 

 Models1 

Parameter Single-trait BRW-WW WW-ULW WW-IMF 

Sh² Female2 0.06 ± 0.02 0.08 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 

Sh² Male 0.06 ± 0.02 0.09 ± 0.03 0.09 ± 0.03 0.07 ± 0.03 

Sh² RM 0.08 ± 0.03 0.10 ± 0.03 0.11 ± 0.03 0.08 ± 0.03 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sire variance proportion when progeny is female, intact male, or estimated with the reduced model 

(RM; sire and maternal additive effects as unique random components); for reference, heritability 

estimated from animal model was 0.29 ± 0.10. 
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Correlations between sire effects across sex categories for single-trait model and 

bivariate models were unity in all analyses (Table 2.5). 

Table 2.5. Pearson correlation coefficients between sire effects within 

females and intact males (r F-M) for weaning weight across models 

 Models1 

Parameter Single-trait BRW-WW WW-ULW WW-IMF 

r F-M 1 ± 0.17 1 ± 0.08 1 ± 0.07 1 ± 0.14 
1Models with labels for two traits separated by a hyphen indicate bivariate model between 

those traits. 
 

2.3.1.3. Weight at Ultrasound Measurement Models 

Preliminary analysis for the single-trait model indicated that season of birth, 

contemporary group, age at measurement, and sex (categorical) were significant (P < 

0.01) and, therefore, they were kept in the final analyses for the animal model, single-

trait model, and bivariate models including ULW. 

Sire variance proportion estimates for ULW from single-trait model and bivariate 

models are presented in Table 2.6. Across models, the largest estimates of sire variance 

proportion were obtained within intact males, with the smallest estimates within steers, 

and with intermediate values within females. Sire variance proportions across models 

were similar, except for sire variance proportion within intact males, which ranged from 

0.14 to 0.21 across models. 
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Table 2.6. Sire variance proportion (Sh²) estimates for weight at ultrasound 

measurement across models using sex as categorical variable 

 Models1 

Parameter Single trait BRW-ULW WW-ULW ULW-IMF 

Sh² Female2 0.07 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 

Sh² Steer 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 

Sh² Intact male 0.14 ± 0.04 0.21 ± 0.04 0.18 ± 0.03 0.15 ± 0.04 

Sh² RM 0.12 ± 0.03 0.12 ± 0.03 0.12 ± 0.03 0.12 ± 0.03 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sire variance proportion when progeny is female, steer, intact male, or estimated with the reduced 

model (RM; sire effect as sole random component); for reference, heritability estimated from animal 

model was 0.40 ± 0.07. 
 

Correlations between sire effects across sex categories for single-trait model and 

bivariate models indicated essentially complete correspondence (Table 2.7), regardless 

of the model or analysis. 

Table 2.7. Pearson correlation coefficients between sire effects within females and 

steers (r F-S), within females and intact males (r F-M), and within steers and intact 

males (r S-M) for weight at ultrasound measurement across models 

 Models1 

Parameter Single-trait BRW-ULW WW-ULW ULW-IMF 

r F-S 0.97 ± 0.25 0.98 ± 0.18 0.98 ± 0.18 0.99 ± 0.21 

r F-M 0.98 ± 0.12 0.98 ± 0.07 0.98 ± 0.07 0.99 ± 0.11 

r S-M 0.97 ± 0.27 0.98 ± 0.18 0.98 ± 0.16 0.98 ± 0.23 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 

  

2.3.1.4. Intramuscular Fat Models 

Preliminary analyses for the single trait model indicated that season of birth, 

contemporary group, age at measurement, and sex (categorical) were significant (P < 

0.01) and, therefore, they were included in the final models of all analyses of IMF. 

Sire variance proportion estimates for IMF from single-trait model and bivariate 

models are presented in Table 2.8. Across models, sire variance proportions had similar 
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values within females, steers, and intact males, with sire variance proportions within 

intact males being slightly lower than the rest. Estimated sire variance proportions were 

similar or the same across models. 

Table 2.8. Sire variance proportion (Sh²) estimates for intramuscular fat across 

models using sex as categorical variable 

 Models1 

Parameter Single-trait BRW-IMF WW-IMF ULW-IMF 

Sh² Female2 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 

Sh² Steer 0.06 ± 0.02 0.07 ± 0.03 0.06 ± 0.02 0.07 ± 0.02 

Sh² Intact male 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 

Sh² RM 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sire variance proportion when progeny is female, steer, intact male, or estimated with the reduced 

model (RM; sire effect as sole random component); for reference, heritability estimated from animal 

model was 0.25 ± 0.06. 
 

Correlations between sire effects across sex categories for single-trait model and 

bivariate models are presented in Table 2.9. Across models, high correlations were 

obtained between sire effects when progeny is female and when progeny is steer, 

ranging from 0.88 to 0.91. On the other hand, correlations between sire effects when 

progeny is female and when progeny is intact male were small, ranging from 0.32 to 

0.40. Intermediate values were obtained for correlations between sire effects when 

progeny is steer and when progeny is intact male, with a range of 0.68 to 0.71. 
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Table 2.9. Pearson correlation coefficients between sire effects within females and 

steers (r F-S), within females and intact males, and within steer and intact male for 

intramuscular fat across models 

 Models1 

Parameter Single-trait BRW-IMF WW-IMF ULW-IMF 

r F-S 0.91 ± 0.17 0.89 ± 0.19 0.88 ± 0.19 0.90 ± 0.18 

r F-M 0.40 ± 0.33 0.37 ± 0.34 0.32 ± 0.34 0.39 ± 0.33 

r S-M 0.71 ± 0.31 0.70 ± 0.31 0.68 ± 0.31 0.71 ± 0.30 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 

 

2.3.1.5. Likelihood-Ratio Tests 

Results from likelihood-ratio tests between models including sire-sex interaction 

and equivalent models without the interaction are presented in Table 2.10. Results 

indicated that sire-sex interaction was significant for BRW-ULW (P < 0.01) and for 

WW-ULW (P = 0.01) bivariate models. 

Table 2.10. Likelihood-ratio tests between full1 and reduced2 models using sex as 

categorical variable. 

 Log-Likelihood  

Models Full model Reduced model P-value 

Branding weight -6,229.29 -6,229.03   1 

Weaning weight -4,679.09 -4,679.01   1 

Weight at ultrasound measurement -6,872.24 -6,876.48 0.13 

Intramuscular fat -550.42 -554.62 0.14 

BRW-WW3 -10,110.20 -10,109.70   1 

BRW-ULW -12,842.13 -12,858.49 < 0.01 

BRW-IMF -6,776.75 -6,782.78 0.44 

WW-ULW -11,237.50 -11,250.10 0.01 

WW-IMF -5,226.56 -5,233.53 0.30 

ULW-IMF -7,417.67 -7,428.16 0.28 
1With sire-sex interaction in the random component of the model 
2Without sire-sex interaction in the random component of the model 
3Bivariate models between branding weight and weaning weight (BRW-WW), branding weight and 

weight at ultrasound measurement (BRW-ULW), branding weight and intramuscular fat (BRW-IMF), 

weaning weight and weight at ultrasound measurement (WW-ULW), weaning weight and intramuscular 

fat (WW-IMF), weight at ultrasound measurement and intramuscular fat (ULW-IMF). 
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2.3.2. Analyses Using Sex as Random Linear Covariate 

2.3.2.1. Branding Weight Models 

Preliminary analyses for the single-trait model indicated that season of birth was 

not significant (P = 0.09); therefore, fixed effects in final BRW related models were 

contemporary group, age at measurement, and sex (linear fixed regression). 

Variance and covariance estimates for analyses of BRW are presented in Table 

2.11. Estimates of variance for linear random regression coefficient were small in single-

trait and BRW-ULW analyses, and practically zero in BRW-WW and BRW-IMF 

analyses. Sire variance proportion estimates across the gradient of sex categories for 

analyses of BRW using single-trait and BRW-ULW models are presented in Figure 2.1, 

as well as sire variance proportion estimate from the corresponding reduced model 

analysis (without sire-sex interaction, just sire and maternal additive effects as random 

components). No slope was detected for analyses of BRW using BRW-WW and BRW-

IMF models. Estimates for sire variance as a proportion of phenotypic variance from the 

different analyses of BRW are presented in Table 2.12. 
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Table 2.11. Estimates of variance from linear random regression analyses of 

branding weight1 

 Intercept Linear Maternal additive  Residual 

Single-trait      

Intercept 54.01 ± 18.00    

Linear -1.55 ± 3.97 1.10 ± 1.57   

Maternal additive   87.88 ± 11.70  

Residual    234.59 ± 10.41 

BRW-WW     

Intercept 23.66 ± 8.86    

Linear -3.64 x 10-10 ± 0 3.07 x 10-8 ± 0   

Maternal additive   92.66 ± 11.71  

Residual    237.50 ± 10.32 

BRW-ULW     

Intercept 61.63 ± 19.88    

Linear 3.30 ± 3.93 1.35 ± 1.40   

Maternal additive   42.14 ± 7.55  

Residual    274.23 ± 11.18 

BRW-IMF     

Intercept 55.06 ± 18.41    

Linear -1.62 x 10-11 ± 0 3.41 x 10-7± 0   

Maternal additive   87.73 ± 11.65  

Residual    234.79 ± 10.34 

1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances of 

maternal additive effects and residual with other terms were assumed to be 0. 
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A B 

  
Figure 2.1. Sire variance proportions for branding weight from linear random regression models (Sh² Full model; dashed lines indicate ± 1 SE) and 

sire variance proportion estimates from equivalent models without random sire-sex interaction (Sh² Reduced model). A: single-trait model; B: 

branding weight-weight at ultrasound measurement bivariate model; Sex “1”: female; Sex “2”: intact male. 
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Table 2.12. Sire variance proportion (Sh²) estimates from linear random 

regression models across branding weight models 

 Model1 

Parameter Single-trait BRW-WW BRW-ULW BRW-IMF 

Sh² Range2 0.07 – 0.09 0.03 0.08 – 0.11 0.08 

Sh² for females 0.09 0.03 0.08 0.08 

Sh² for intact males 0.07 0.03 0.11 0.08 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sole values indicate constant value across progeny sex categories. 

 

2.3.2.2. Weaning Weight Models 

Single-trait model analysis indicated that season of birth was not significant (P = 

0.22), thus, it was removed from the final analyses for the animal model, single-trait 

model, and bivariate models including WW. Fixed effects used in the final analyses were 

contemporary group, age at measurement, and sex (linear fixed covariate). 

Estimates of variance for the linear random regression coefficient were zero or 

close to zero in single-trait, BRW-WW, and WW-IMF analyses of WW (Table 2.13). 

Gradient of sire variance proportion estimates for WW from WW-ULW model, and sire 

variance proportion estimate from the corresponding reduced model analysis (no random 

sire-sex interaction, just sire and maternal additive genetic effects) are presented in 

Figure 2.2. Additionally, estimates for sire variance proportions across models for WW 

are presented in Table 2.14. 
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Table 2.13. Estimates of variance from linear random regression analyses of 

weaning weight1 

 β0 β1 Maternal additive  Residual 

Single-trait      

β0 78.16 ± 29.06     

β1 1.30 x 10-3± 0  9.94 x 10-8 ± 0    

Maternal additive   185.47 ± 22.05  

Residual    275.10 ± 15.48  

BRW-WW     

β0 43.56 ± 15.50    

β1 1.57 x 10-11 ± 0  3.97 x 10-10 ± 0   

Maternal additive   197.37 ± 21.06  

Residual    289.93 ± 14.72  

WW-ULW     

β0 87.39 ± 29.03    

β1 10.70 ± 5.66 5.87 ± 3.35   

Maternal additive   96.90 ± 12.68  

Residual    338.56 ± 16.33 

WW-IMF     

β0 75.91 ± 28.33    

β1 1.57 x 10-11 ± 0 0.99 ± 2.10   

Maternal additive   182.99 ± 21.94  

Residual    275.29 ± 15.63 

1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances of 

maternal additive effects and residual with other terms were assumed to be 0. 
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Figure 2.2. Sire variance proportion estimates for weaning weight from WW-ULW linear random 

regression model (Sh² Full model; dashed lines indicate ± 1 SE) and sire variance proportion estimates 

from equivalent model without random sire-sex interaction (Sh² Reduced model). Sex “1”: female; Sex 

“2”: intact male. 
 

Table 2.14. Sire variance proportion (Sh²) estimates from linear random 

regression models across weaning weight models 

 Model1 

Parameter Single-trait BRW-WW WW-ULW WW-IMF 

Sh² Range2 0.08 0.07 0.07 – 0.14 0.08 

Sh² for female 0.08 0.07 0.07 0.08 

Sh² for intact male 0.08 0.07 0.14 0.08 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sole values indicate constant value across progeny sex categories. 
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2.3.2.3. Weight at Ultrasound Measurement Models 

Significant fixed effects from single-trait model analysis were season of birth (P 

= 0.015), contemporary group (P < 0.001), age at measurement (P < 0.001), and sex 

(linear fixed covariate; P < 0.001), therefore, they were kept in the final analyses for the 

animal model, single-trait model, and bivariate models including ULW. 

Analyses of ULW estimated variances for linear random regression coefficients 

different than zero for single-trait, BRW-ULW, WW-ULW, and ULW-IMF models 

(Table 2.15). Sire variance proportion estimates for ULW across the gradient of sex 

categories as well as sire variance proportion estimates from the corresponding reduced 

model analyses are presented in Figure 2.3. Estimates for sire variance proportion across 

models for ULW are presented in Table 2.16. 
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Table 2.15. Estimates of variance from linear random regression analyses of 

weight at ultrasound measurement1 

 β0 β1 Residual 

Single-trait     

β0 444.34 ± 130.69   

β1 126.39 ± 48.43 65.79 ± 25.60  

Residual   1043.21 ± 36.34  

BRW-ULW    

β0 516.67 ± 146.78   

β1 156.37 ± 51.61 66.28 ± 24.19  

Residual   1058.69 ± 36.84 

WW-ULW    

β0 352.91 ± 103.80   

β1 78.52 ± 30.08 43.08 ± 15.78  

Residual   1063.86 ± 37.00 

ULW-IMF    

β0 442.02 ± 129.25    

β1 123.95 ± 47.13  64.59 ± 24.75   

Residual   1042.49 ± 36.27 

1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances of 

residual with other terms were assumed to be 0. 
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A B 

  
C D 

  
Figure 2.3. Sire variance proportion estimates for weight at ultrasound measurement from linear random regression models (Sh² Full model; dashed 

lines indicate ± 1 SE) and sire variance proportion estimates from equivalent models without random sire-sex interaction (Sh² Reduced model). A: 

Single-trait model; B: branding weight-weight at ultrasound measurement bivariate model; C: weaning weight-weight at ultrasound measurement 

bivariate model; D: weight at ultrasound measurement-intramuscular fat bivariate model; Sex “1”: female; Sex “2”: steer; Sex “3”: intact male. 
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Table 2.16. Sire variance proportion (Sh²) estimates from linear random regression 

models across weight at ultrasound models 

 Model1 

Parameter Single-trait BRW-ULW WW-ULW ULW-IMF 

Sh² Range2 0.09 – 0.34 0.08 – 0.37  0.09 – 0.26 0.09 – 0.34 

Sh² for female 0.09 0.08 0.09 0.09 

Sh² for steer 0.17 0.19 0.14 0.17 

Sh² for intact male 0.34 0.37 0.26 0.34 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 
2Sole values indicates constant value across progeny sex categories. 

 

2.3.2.4. Intramuscular Fat Models 

Preliminary analyses for the single-trait model indicated that season of birth, 

contemporary group, age at measurement, and sex (linear fixed covariate) were 

appropriate components (P < 0.001) for final IMF models analysis. 

Variance estimates for linear random regression coefficients of IMF analyses 

were practically zero (Table 2.17). The trajectories of sire variance as a proportion of 

phenotypic variance across the numerical “gradient” of sex deviated only slightly from a 

slope of 0 (Figure 2.4). Estimates for sire variance proportions of phenotypic variance 

from the various analyses of IMF are presented in Table 2.18. 
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Table 2.17. Estimates of variance from linear random regression analyses of 

intramuscular fat1 

 β0 β1 Residual 

Single-trait     

β0 0.09 ± 0.03    

β1 -0.01 ± 0.01  0.01 ± 0.01   

Residual   0.62 ± 0.02 

BRW-IMF    

β0 0.09 ± 0.03   

β1 -0.01 ± 0.01 0.01 ± 0.01  

Residual   0.62 ± 0.02 

WW-IMF    

β0 0.09 ± 0.03   

β1 -0.01 ± 0.01 0.01 ± 0.01  

Residual   0.61 ± 0.02 

ULW-IMF    

β0 0.10 ± 0.03   

β1 -0.01 ± 0.01 0.01 ± 0.01  

Residual   0.61 ± 0.02 

1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances of 

residual with other terms were assumed to be 0. 



63 

 

A B 

  
C D 

  
Figure 2.4. Sire variance proportion estimates for intramuscular fat from linear random regression models (Sh² Full model; dashed lines indicate ± 1 

SE) and sire variance proportion estimates from equivalent models without random sire-sex interaction (Sh² Reduced model). A: Single-trait model; 

B: branding weight-intramuscular fat bivariate model; C: weaning weight- intramuscular fat bivariate model; D: weight at ultrasound measurement-

intramuscular fat bivariate model; Sex “1”: female; Sex “2”: steer; Sex “3”: intact male. 
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Table 2.18. Sire variance proportion (Sh²) estimates from linear random 

regression models across intramuscular fat models 

 Model1 

Parameter Single-trait BRW-IMF WW-IMF ULW-IMF 

Sh² Range 0.06 – 0.09 0.06 – 0.09 0.06 – 0.10 0.07 – 0.11 

Sh² for female 0.09 0.09 0.10 0.11 

Sh² for steer 0.07 0.07 0.07 0.08 

Sh² for intact male 0.07 0.07 0.07 0.08 
1Models with labels for two traits separated by a hyphen indicate bivariate model between those traits. 

 

2.3.2.5. Likelihood-Ratio Tests 

Results from likelihood-ratio tests between models including sire-sex interaction 

(as a linear random regression), and equivalent models without the interaction are 

presented in Table 2.19. Results indicated that the linear random regression of sire on 

progeny sex categories was significant for ULW single-trait model (P < 0.01), and for 

BRW-ULW (P < 0.01) and ULW-IMF (P < 0.01) bivariate models. 

Table 2.19. Likelihood-ratio tests between full1 and reduced2 models using sex as 

linear covariate 

 Log-Likelihood  

Models Full model Reduced model P-value 

Branding weight   -6,230.51   -6,229.92    1 

Weaning weight   -4,679.90   -4,679.90    1 

Weight at ultrasound measurement   -6,995.73   -7,009.43 < 0.01 

Intramuscular fat      -551.74      -554.61    0.06 

BRW-WW3 -10,136.20 -10,111.50    1 

BRW-ULW -12,933.23 -12,954.65 < 0.01 

BRW-IMF   -6,781.31   -6,783.94    0.15 

WW-ULW -11,339.50 -11,342.10    0.27 

WW-IMF   -5,227.79   -5,234.50    0.06 

ULW-IMF   -7,542.02   -7,562.86 < 0.01 
1With sire-sex interaction in the random component of the model (linear random regression).  
2Without sire-sex interaction in the random component of the model.  
3Bivariate models between branding weight and weaning weight (BRW-WW), branding weight and 

weight at ultrasound measurement (BRW-ULW), branding weight and intramuscular fat (BRW-IMF), 

weaning weight and weight at ultrasound measurement (WW-ULW), weaning weight and intramuscular 

fat (WW-IMF), weight at ultrasound measurement and intramuscular fat (ULW-IMF). 
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2.4. Discussion 

The investigation of genotype by environment interactions can be affected by 

different factors, including how the environment is modeled in prediction equations and 

how boundaries between environments are defined (Fikse et al., 2003). 

To date, sire-sex interactions have not been sufficiently influential for genetic 

merit predictions when evaluated for weaning weight in different cattle breeds (Koger 

and Knox, 1945; Pahnish et al., 1961; Wilson et al., 1969; Tanner et al., 1970; Thrift et 

al., 1970). There may not be compelling reasons to include significant sire-sex 

interactions in genetic evaluation of growth traits in cattle because they have not been 

practically influential on predictions (Notter et al., 1992). 

The present study evaluated two alternative strategies to model sex as an 

environmental descriptor and to assess its effect as an interaction with the additive 

genetic component of sires in Australian Droughtmaster cattle. Bivariate models were 

included in these analyses to assess the influence of covariances between trait 

components, and whether their inclusion could improve either the detection of sire-sex 

interactions or to support the lack of relevance of this interaction for a given trait. 

The inclusion of sex as a fixed categorical variable and modeling sire additive 

effect within sex category resulted in similar estimates for sire variance proportions (of 

phenotypic variance) across sexes within analyses of BRW (Table 2.2), WW (Table 2.4), 

and IMF (Table 2.8). This suggests that this parameterization of these effects had little 

impact on analyses of these traits. Analyses of ULW indicated differences in sire 

variance proportion estimates across sex categories in single-trait and bivariate models. 
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The highest sire variance proportion estimate for this trait was for sire within intact 

males, and the lowest within steers, with sire variance proportion within females being 

an intermediate value between estimates within intact males and steers (Table 2.6). 

However, none were particularly strong, likely as a consequence of numbers of records. 

Likelihood-ratio tests indicated that the interaction between sire and sex category 

was significant for BRW-ULW and WW-ULW models (Table 2.10), but not for any of 

the corresponding single-trait models. Considering sire variance proportion estimates, as 

well as estimates of linear regression coefficient variance for traits within these bivariate 

models, is possible to infer that the interaction within the ULW part of the bivariate 

models was the responsible of giving the whole model a better fit for the data in 

comparison to the equivalent model without the interaction (reduced model). Results 

from this study indicate that there is not an important sire-sex interaction effect acting on 

animal weights measured earlier in life; however, it may be that this interaction has a 

significant effect over weights measured later in life, at least in these Droughtmaster 

cattle. This would be consistent with results of Garrick et al. (1989), in which 

Simmental-sired females had higher heritability than males for post weaning gain, 

although there were substantial modeling differences between the present study and that 

of Garrick et al. (1989). 

The larger sire variance proportion estimates for ULW within intact male 

progeny may suggest that selection may be improved if genetic evaluation was 

conducted within sex. Conclusions about WW analyses in the present study were 

consistent with others (Koger and Knox, 1945; Pahnish et al., 1961; Wilson et al., 1969; 



 

67 

 

Tanner et al., 1970; Thrift et al., 1970). Exceptions appeared to be results from 

Buchanan and Nielsen (1979) and Garrick et al. (1989), in which where a significant 

interaction between sire and sex was found in Simmental and Maine-Anjou cattle, and 

Simmental influenced cattle, respectively. Additionally, both of those groups reported 

significant sire-sex interaction for birth weight. However, there have not been additional 

studies evaluating the effect of sire-sex interactions on weights measured close to birth 

or weights measured after weaning; thus, further research is needed to validate findings 

in this study, especially considering the number of records available for analyses and the 

complexity of the models.  

Additive genetic correlations between sire effects across sex categories indicated 

large positive correspondence in BRW (Table 2.3), WW (Table 2.5), and ULW (Table 

2.7) analyses (r ≥ 0.95). According to Robertson (1959), any correlation over 0.8 would 

indicate a non-significant interaction from a biological point of view. Thus, the impact of 

sire-sex interaction on these traits should be low (Hayes et al., 2003) or not existent, and, 

genetic improvement for these traits would not be unique within sex category (Yamada, 

1962). Results from IMF analyses identified lower positive additive correlations (Table 

2.9), suggesting that there may be traits for which the breeding merit of a sire would 

depend on progeny sex. This may indicate that phenotypic plasticity (phenotypic 

differences across environments due to genotype-environment interactions; De Jong et 

al., 2002) across sex categories for IMF would be higher than for BRW, WW, and ULW. 

Nevertheless, SE in correlations analyses were very large for each trait across models. 

This may be a consequence of a combined effect between the number of records used for 
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each analysis and the number of variance components incorporated in each model, 

especially for models including ULW and IMF where 3 extra (co)variance components 

were estimated in comparison to BRW and WW models.  

The use of sex as an environmental gradient for a linear random regression of 

sire effects on sex category is a nonconventional method of assessment. Results from 

analyses of BRW, WW, and IMF indicated that this method was not useful or necessary. 

Analyses of ULW suggested differential sire merit by sex, particularly for intact males 

as compared with that of females. However, this is all interpreted in a relatively small 

data set context, and the model is complex. 

Weight at ultrasound measurement seems to be the sole trait in this study that 

may benefit the most from incorporating sire-sex interaction in the models as linear 

random regression. This methodology may help to identify sires which genetic merit 

could further improve ULW, especially in intact males; however, larger databases are 

needed to validate findings from this study.   

2.5. Conclusion 

Analyses which included random sire-sex interactions as sire effects nested in 

sex categories or as linear random regressions provided similar evidence. Weight at 

ultrasound measurement was the only trait in which either method seemed feasible.  

Results suggest that there may be a larger potential for improvement of ULW in intact 

males; however, these results are very subject to low numbers of individuals overall and 

especially for females. 
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CHAPTER III                                                                                                   

MODELING OF GENETIC COMPONENTS FOR BIRTH WEIGHT AND WEANING 

WEIGHT ACROSS DIFFERENT PARENTAL INFLUENCES OF NELLORE AND 

ANGUS THROUGH RANDOM REGRESSIONS 

 

3.1. Introduction 

Genetic improvement for economically relevant traits in beef cattle operations 

has followed two strategies, selection and crossbreeding (Herring, 2014). The 

development of genetic merit prediction equations made possible to select animals to be 

parents based on their ability to transmit favorable genes into their progeny (Falconer 

and Mackay, 1996; Herring, 2014). The use of crossbreeding between different cattle 

breeds combines complementary strengths from those breeds and takes advantage of 

direct and maternal hybrid vigor (heterosis) for a variety of important traits (Cartwright, 

1970; Falconer and Mackay, 1996; Herring, 2014). 

These two improvement approaches are often evaluated through separate genetic 

evaluations. Genetic merit predictions accounting simultaneously for non-additive 

genetic effects and interactions between additive and non-additive effects have mainly 

been directed to assess sires combining ability to reduce inbreeding in a population 

(Allaire and Henderson, 1965; Henderson, 1989; DeStefano and Hoeschele, 1992). 

However, non-additive genetic effects due to crossbreeding and their interaction with 

additive effects have not been introduced into prediction equations. Consequently, 

genetic merit predictions for specific sires may not provide the expected outcomes in 
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progeny from different crossbreeding scenarios, where different non-additive effects 

may be influential. 

Bos indicus and Bos taurus breeds were developed though different 

domestication events, which has produced large genetic divergence between these 

subspecies (MacHugh et al., 1997). This genetic divergence has been widely used to the 

benefit of beef cattle operations due to the large hybrid vigor achieved when Bos indicus 

and Bos taurus breeds are crossed (Cartwright, 1980; Franke, 1980; Riley et al., 2007). 

Bos indicus and Bos taurus breeds have complementary attributes that can be blended in 

crossbred animals, making them more or less efficient depending on the production 

environment, and relative market expectations (Sanders, 1980; Turner, 1980; Jonsson, 

2006; Prado et al., 2008; Herring, 2014). 

Bos indicus x Bos taurus reciprocal crosses express differences in birth and 

weaning weights, where calves produced by Bos indicus sires and Bos taurus dams are 

much heavier than calves produced by Bos taurus sires and Bos indicus dams at birth 

and weaning (Cartwright et al., 1964; Thallman et al., 1993; Chase et al., 2000; 

Holloway et al., 2002). These reciprocal crosses differences also have been identified 

when breeding Bos indicus-Bos taurus crossbred animals, when the proportion of Bos 

indicus in the sire is larger than in the dam (Cartwright et al., 1964; Amen et al., 2007). 

Therefore, in addition to the “regular” non-additive genetic effects affecting 

crossbred populations (i.e., dominance or epistatic effects; Falconer and Mackay, 1996) 

there may be additional non-additive effects, such as parent-of-origin effects, affecting 
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progeny performance depending on the reciprocal cross type between parental breeds 

(Loschiavo et al., 2007; Vrana, 2007). 

The objective of this study was to evaluate the interaction between additive and 

non-additive genetic effects and its potential contribution for selecting breeding animals 

according to specific crossbreeding scenarios. The interaction was evaluated in a mixed 

population of Nellore (Bos indicus), Angus (Bos taurus), and Nellore-Angus crossbred 

animals using random regression methodology. 

3.2. Materials and Methods 

3.2.1. Records 

Birth weight and weaning weight records were obtained from the Texas A&M 

AgriLife Research Center at McGregor, TX, and from Texas A&M University Beef 

Cattle Systems Research Unit near College Station. Calves with records were out of 

crosses involving either Nellore or Angus sires and dams, or crossbred parents with 

Nellore and Angus in their genetic composition. Records for birth weight and weaning 

weight had complete information about calf year of birth, dam age, sex, and sire and 

dam breeds; additionally, records for weaning weight also included information about 

age at weaning. For both traits, records considered to be biologically unreasonable 

values were removed. Records greater or less than 4 SD relative to the mean were 

considered outliers and removed. After editing, a total of 5,591 and 4,721 records were 

available for birth weight and weaning weight analyzes, respectively. Pedigree 

information for 11,900 animals was available. 
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Frequency tables for birth weight and weaning weight records by year of birth, 

sex, dam age, sire breed and dam breed are presented in Tables 3.1, 3.2, 3.3, and 3.4. 

Table 3.1. Birth weight and weaning weight records by birth year 

 Birth weight Weaning weight 

Year Count Frequency Count Frequency 

2000 147 2.63 136 2.88 

2001 199 3.56 157 3.33 

2002 283 5.06 233 4.94 

2003 294 5.26 221 4.68 

2004 300 5.37 244 5.17 

2005 291 5.20 239 5.06 

2006 342 6.12 300 6.35 

2007 345 6.17 297 6.29 

2008 237 4.24 205 4.34 

2009 335 5.99 309 6.55 

2010 171 3.06 136 2.88 

2011 380 6.80 275 5.83 

2012 490 8.76 432 9.15 

2013 583 10.43 529 11.21 

2014 510 9.12 434 9.19 

2015 684 12.23 574 12.16 

 

Table 3.2. Birth weight and weaning weight records by calf sex and dam age 

 Birth weight Weaning weight 

Calf sex  Count Frequency Count Frequency 

Female 2,976 53.23 2,626 55.62 

Male 2,615 46.77 2,095 44.38 

     

Dam age (yr)  Count Frequency Count Frequency 

2 990 17.71 816 17.28 

3 1,009 18.05 910 19.28 

4 804 14.38 696 14.74 

5 to 10 2,326 41.60 1,909 40.44 

≥ 11 462 8.26 390 8.26 
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Table 3.3. Birth weight and weaning weight records by sire breed 

 Birth weight Weaning weight 

Sire breed1 Count Frequency Count Frequency 

Angus (An) 3,188 57.02 2,725 57.72 

Nellore (Ne) 199 3.56 166 3.52 

AnNe2 1,582 28.30 1,332 28.21 

3⁄4 An-1⁄4 Ne 409 7.32 297 6.29 

5⁄8 An-3⁄8 Ne 213 3.81 201 4.26 

1Numbers represent the contribution of each breed to the sire breed. 
2F1 An-Ne, F1 Ne-An, F2 Ne-An, or F3 Ne-An. 

 

 

Table 3.4. Birth weight and weaning weight records by dam breed  

 Birth weight Weaning weight 

Dam breed1 Count Frequency Count Frequency 

Angus (An) 1,393 24.92 1,201 25.44 

Nellore (Ne) 348 6.22 296 6.27 

AnNe2 2,972 53.16 2,469 52.30 

13⁄16 An-3⁄16 Ne (G1)3 42 0.75 32 0.68 

13⁄16 An-3⁄16 Ne (G2)4 19 0.34 10 0.21 

29⁄32 An-3⁄32 Ne 10 0.18 8 0.17 

3⁄4 An-1⁄4 Ne 201 3.60 164 3.47 

5⁄8 An-3⁄8 Ne (G1) 457 8.17 411 8.71 

5⁄8 An-3⁄8 Ne (G2) 149 2.66 130 2.75 
1Numbers represent the contribution of each breed to the dam breed. 

2F1 An-Ne, F1 Ne-An, F2 Ne-An, or F3 Ne-An. 

3First generation cross. 
3Second generation cross. 
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The proportion of Nellore in the sire (sire-Ne) and dam (dam-Ne), and the 

difference between sire-Ne and dam-Ne (△Ne) were calculated for each calf, in both 

databases, using the parental breed composition information. The difference △Ne was 

adjusted by adding one unit to the respective value in order to keep the parameter space 

for this variable from 0 to 2 inclusive (i.e., values of 0 correspond to Angus bulls crossed 

to Nellore dams; values of 1 correspond to bulls and dams with and equal Nellore 

percentage in their genetic composition, and values of 2 correspond to Nellore bulls 

crossed to Angus dams). These values were used as explanatory variables in analyses; 

example values for common crosses in these data are shown in Table 3.5. Frequency 

tables for all combinations of sire and dam breeds in birth weight and weaning weight 

databases, and corresponding △Ne are presented in Table 3.6. 

Table 3.5. Examples to determine △Ne coefficients from sire and dam 

combinations 

Sire breed1 Dam breed1 Sire-Ne Dam-Ne 

Difference 

(sire - dam) Ne 

Coefficient 

(△Ne) 

Angus (An) Nellore (Ne) 0 1 –1 0 

An 1⁄2 An-1⁄2 Ne 0 0.50 –0.50 0.5 

1⁄2 An-1⁄2 Ne 1⁄2 An-1⁄2 Ne 0.50 0.50   0 1 

5⁄8 An-3⁄8 Ne 5⁄8 An-3⁄8 Ne 0.38 0.38   0 1 

1⁄2 An-1⁄2 Ne 3⁄4 An-1⁄4 Ne 0.50 0.25   0.25 1.25 

Ne An 1 0   1 2 

1Numbers represent the contribution of each breed to the sire or dam breed. 
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Table 3.6. Birth weight and weaning records by type of parental cross and 

corresponding △Ne coefficients 

 

  Birth weight Weaning weight  

Sire breed1 Dam breed1 Count Frequency Count Frequency △Ne 

Angus (An) Nellore (Ne)  230 4.11 193 4.09 0 

An AnNe2  1,022 18.28 877 18.58 0.50 

An 5⁄8 An-3⁄8 Ne (G1)3 241 4.31 207 4.39 0.63 

An 5⁄8 An-3⁄8 Ne (G2)4 143 2.56 125 2.65 0.63 

An 3⁄4 An-1⁄4 Ne  169 3.02 135 2.86 0.75 

3⁄4 An-1⁄4 Ne AnNe  409 7.32 297 6.29 0.75 

An 13⁄16 An-3⁄16 Ne (G1) 42 0.75 32 0.68 0.81 

An 13⁄16 An-3⁄16 Ne (G2) 19 0.34 10 0.21 0.81 

An 29⁄32 An-3⁄32 Ne  10 0.18 8 0.17 0.91 

An An  1,312 23.47 1,138 24.11 1 

Ne Ne  118 2.11 103 2.18 1 

AnNe AnNe  1,541 27.56 1,295 27.43 1 

5⁄8 An-3⁄8 Ne (G1) 5⁄8 An-3⁄8 Ne (G1) 207 3.70 196 4.15 1 

5⁄8 An-3⁄8 Ne (G1) 5⁄8 An-3⁄8 Ne (G2) 6 0.11 5 0.11 1 

AnNe 5⁄8 An-3⁄8 Ne (G1) 9 0.16 8 0.17 1.13 

AnNe 3⁄4 An-1⁄4 Ne  32 0.57 29 0.61 1.25 

Ne An  81 1.45 63 1.33 2 
1Numbers represent the contribution of each breed to the sire or dam breed. 
2F1 An-Ne, F1 Ne-An, F2 Ne-An, or F3 Ne-An. 
3First generation cross. 
4Second generation cross. 

 

 

3.2.2. Statistical Analyses 

3.2.2.1. Principal Component Analysis 

Principal component analyses were used to evaluate associations between 

variables within birth weight and weaning weight data. Potential correlated variables 

within birth weight database were birth weight, sire-Ne, and dam-Ne. Weaning weight 

database, variables investigated in principal component analyses included weaning 

weight, birth weight, weaning age, sire-Ne, and dam-Ne.  Associations among variables 
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within each group were evaluated by estimating correlations between them and the first 

2 principal components. Observations were plotted using their weighted value for the 

first 2 principal components. Clusters among observations were evaluated according to 

calf sex, birth year, and dam age. 

3.2.2.2. Prediction Models 

Two set of genetic merit prediction models were evaluated for birth weight and 

weaning. Linear random regression models (first order Legendre polynomials) were 

evaluated, where the additive genetic component of animals was modeled across a 

gradient corresponding to the parameter space for △Ne. Higher order Legendre 

polynomials were not evaluated, as the estimation of a larger number of variance and 

covariance components would be too demanding given the current databases. Traditional 

animal models were evaluated for each trait for comparison to the linear random 

regression results. 

Fixed effects in linear random regression models and animal models for birth 

weight and weaning weight included birth year (categorical; ranging from 2000 to 2015), 

dam age (categorical; ages were considered individually from 2 to 4 years, ages ranging 

from 5 to 10 years were grouped together, as well as ages greater than 11 years), sex 

(categorical; females and males), and △Ne (linear fixed covariate). Age in days (linear 

fixed covariate) was also included in analyses of weaning weight. 

Random effects in linear random regression models for birth weight and weaning 

weight were the linear random regression of animal additive genetic effects on △Ne, 

maternal additive genetic effect (as a single variance), and maternal permanent 
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environment effect (as a single variance). Random effects in the traditional animal 

models included additive genetic, maternal additive genetic, and maternal permanent 

environment effects. 

Random regression models followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑚 + 𝑄𝑐 + 𝑒 

where y was a vector of birth weight or weaning weight records, β was the vector of 

estimated fixed effects, u was the vector of random regression coefficients for animal 

additive genetic effects, c was the vector of additive genetic effects of the dam, p was the 

vector of maternal permanent environment effects, e was the vector of residuals, and X, 

Z, W, and Q were incidence matrices relating observations in y to values in β, u, m, and 

c, respectively. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as: 

𝑉𝑎𝑟 [

𝑢
𝑚
𝑐
𝑒

] = [

𝐴 ⊗ 𝐺 0 0 0
0 𝑀 0 0
0 0 𝐶 0
0 0 0 𝑅

] 

where A was the numerator relationship matrix constructed from the pedigree 

information, and G was the covariance matrix of additive genetic regression coefficients 

with order 2 (intercept and linear random regression coefficient); 𝑀 = 𝐴𝜎𝑚
2 , where 𝜎𝑚

2  is 

the additive genetic variance for dams; 𝐶 = 𝐼𝜎𝑖
2, where 𝜎𝑖

2 is the variance of maternal 

permanent effects;  𝑅 = 𝐼𝜎𝑒
2, and 𝜎𝑒

2 is the residual variance. 

Animal models followed the form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑚 + 𝑄𝑐 + 𝑒 
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where y was a vector of birth weight or weaning weight records, u was the vector of 

animals’ predicted breeding values; β, m, c, e, X, Z, W, and Q were the same as described 

for the random regression models. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure as: 

𝑉𝑎𝑟 [

𝑢
𝑚
𝑐
𝑒

] = [

𝐺 0 0 0
0 𝑀 0 0
0 0 𝐶 0
0 0 0 𝑅

] 

in which 𝐺 = 𝐴𝜎𝑎
2, 𝜎𝑎

2 was the animal additive genetic variance, and A, M, C and R were 

as described for the random regression models. No additive genetic covariance between 

direct and maternal effects was included in birth weight or weaning weight animal 

models in order to obtain results comparable to those of linear random regression 

models. 

3.2.2.3. Likelihood-Ratio Tests 

Likelihood-ratio tests were conducted between linear random regression models 

and corresponding animal models in order to assess which model had the better fit for 

birth weight and weaning weight analyses. This is possible because the traditional 

animal model may be thought of as a random regression model of order 0 (intercept 

only) and therefore the models are nested. 

3.2.2.4. Analytical Tools 

Principal component analyses were conducted using R project (R Core Team, 

2018). Analyses for linear random regression as well as for animal models were 

conducted using ASReml (Gilmour et al., 2009). Heritability estimates and 
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corresponding SE of animal models were calculated directly with ASReml. Gradients of 

heritability estimates for birth weight and weaning weight across the parameter space 

△Ne were estimated using variance component estimates (Schaeffer, 2016). 

3.3. Results  

3.3.1. Principal Component Analyses 

 Eigenvectors and the most important principal components from analyses of birth 

and weaning weight databases are presented in Tables 3.7 and 3.8, respectively. 

Table 3.7. Principal component analysis eigenvectors and descriptors for birth 

weight database  
PC11 PC2 PC3 

Birth weight       0.02 0.95 -0.33 

Sire-Ne2 -0.71 0.24 0.67 

Dam-Ne3 -0.71 -0.22 -0.67 

Standard deviation     1.17 1.02 0.76 

Proportion of variance 0.46 0.35 0.19 

Cumulative proportion  0.46 0.81 1 

1First, second, or third principal component.  
2Proportion of Nellore in sire. 
3Proportion of Nellore in dam.  

 

Table 3.8. Principal component analysis eigenvectors and descriptors for weaning 

weight database  
PC11 PC2 PC3 PC4 PC5 

Birth weight       0.13 -0.51 0.70 -0.07 -0.47 

Weaning weight       0.42 -0.63 -0.13 -0.15 0.62 

Sire-Ne2 -0.49 -0.43 -0.11 0.75 0.05 

Dam-Ne3  -0.46 -0.38 -0.46 -0.57 -0.32 

Weaning age   0.60 -0.10 -0.51 0.29 -0.53 

Standard deviation     1.25 1.19 1.03 0.78 0.57 

Proportion of variance 0.31 0.28 0.21 0.12 0.07 

Cumulative proportion  0.31 0.60 0.81 0.93 1 

1First, second, or third principal component. 
2Proportion of Nellore in sire. 
3Proportion of Nellore in dam. 
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In analysis of birth weight database, the first 2 principal components explained 

81% of the joint variability associated with birth weight, sire-Ne, and dam-Ne. For 

analysis of weaning weight database, the first 2 principal components explained 60% of 

the joint variability between weaning weight, birth weight, weaning age, sire-Ne, and 

dam-Ne. 

Correlations between evaluated variables and the first 2 principal components are 

presented in Table 3.9 and Table 3.10 for analysis of birth weight and weaning weight 

databases, respectively. For birth weight database analysis, results indicate that higher 

values for the first principal component are associated with lower sire-Ne and dam-Ne 

values. Larger values for the second principal component were associated with greater 

birth weight and sire-Ne, and with lower dam-Ne values. For analysis of weaning weight 

database, results indicated that higher values for the first principal component were 

associated with greater weaning weights, birth weights, and weaning ages, and with 

lower sire-Ne and dam-Ne. Lower values for the second principal component were 

associated with greater weaning weight, birth weight, sire-Ne, and dam-Ne. 

Table 3.9. Principal components correlations for birth weight analysis 
 

PC11 PC21 

Birth weight           0.02 0.97 

Sire-Ne2 -0.82 0.25 

Dam-Ne3 -0.83 -0.23 

1First or second principal component. 
2Proportion of Nellore in sire. 
3Proportion of Nellore in dam. 
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Table 3.10. Principal components correlations for weaning weight analysis 
 

PC11 PC21 

Birth weight 0.17 -0.61 

Weaning weight 0.52 -0.76 

Sire-Ne2 -0.62 -0.52 

Dam-Ne3 -0.58 -0.45 

Weaning Age 0.75 -0.12 

1First or second principal component.  
2Proportion of Nellore in sire. 
3Proportion of Nellore in dam. 

 

Cluster analyses for birth weight database by sex (Figure 3.1), birth year (Figure 

3.3), and dam age (Figure 3.5) indicated no clusters for observations distributed 

according the first and second principal components. For weaning weight database, 

cluster analyses by sex (Figure 3.2), birth year (Figure 3.4), and dam age (Figure 3.6) 

also did not determine any clear clusters between observations. 
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Figure 3.1. Clusters by sex category for observations distributed accordengly to the first 2 principal 

components from birth weight database analysis. PC1: first principal component; PC2: second principal 

component. The X and Y axis represent standardized values for observations weighted according to 

PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in PC1 and PC2 

were birth weight, sire-Ne, and dam-Ne. 
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Figure 3.2. Clusters by sex category for observations distributed accordengly to the first 2 principal 

components from weaning weight database analysis. PC1: first principal component; PC2: second 

principal component. The X and Y axis represent standardized values for observations weighted 

according to PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in 

PC1 and PC2 were birth weight, weaning weight, weaning age, sire-Ne, and dam-Ne. 
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Figure 3.3. Clusters by birth year for observations distributed accordengly to the first 2 principal 

components from birth weight database analysis. PC1: first principal component; PC2: second principal 

component. The X and Y axis represent standardized values for observations weighted according to 

PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in PC1 and PC2 

were birth weight, sire-Ne, and dam-Ne. 
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Figure 3.4. Clusters by birth year for observations distributed accordengly to the first 2 principal 

components from weaning weight database analysis. PC1: first principal component; PC2: second 

principal component. The X and Y axis represent standardized values for observations weighted 

according to PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in 

PC1 and PC2 were birth weight, weaning weight, weaning age, sire-Ne, and dam-Ne. 
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Figure 3.5. Clusters by dam age for observations distributed accordengly to the first 2 principal 

components from birth weight database analysis. PC1: first principal component; PC2: second principal 

component. The X and Y axis represent standardized values for observations weighted according to 

PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in PC1 and PC2 

were birth weight, sire-Ne, and dam-Ne. 
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Figure 3.6. Clusters by dam age for observations distributed accordengly to the first 2 principal 

components from weaning weight database analysis. PC1: first principal component; PC2: second 

principal component. The X and Y axis represent standardized values for observations weighted 

according to PC1 and PC2, respectively, and centered around a mean equal 0. Variables weighted in 

PC1 and PC2 were birth weight, weaning weight, weaning age, sire-Ne, and dam-Ne. 
 

3.3.2. Prediction Models 

3.3.2.1. Fixed Effects 

Year of birth, dam age, sex, and the linear regression of birth weight on △Ne 

were significant (P < 0.01) in both linear random regression and animal models for birth 

weight analyses. Similarly, year of birth, dam age, sex, linear regression of weaning 

weight on weaning age, and linear regression of weaning weight on △Ne were 

significant (P < 0.01) for both linear random regression and animal models for weaning 

weight analyses. 
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3.3.2.2. Random Effects 

The relevance of including the maternal permanent environment effect in linear 

random regression analyses for birth weight and weaning weight was evaluated with a 

likelihood-ratio tests (comparing models with and without the effect). Maternal 

permanent environment was significant in linear random regression models for birth 

weight and weaning weight (P < 0.01); therefore, it was kept in the final analyses for the 

linear random regression models. Maternal permanent environment effect was also kept 

in animal models for birth weight and weaning weight analyses in order to compare 

them to linear random regression models through likelihood-ratio tests. Variance 

component estimates for birth weight and weaning weight analyses are presented in 

Table 3.11 and Table 3.12, respectively. 
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Table 3.11. Estimates of variance from birth weight analyses1 

Linear random regression model 

 β0
2 β1

3 MG4 MPE5 Res6 

β0 164.00 ± 15.68     

β1 46.90 ± 8.80 52.77 ± 12.44    

MG   1.76 ± 3.38   

MPE    5.58 ± 2.69  

Res     55.02 ± 5.64 

 

Animal model 

 DG7 MG MPE Res  

DG 66.38 ± 7.24     

MG  2.30 ± 3.48    

MPE   5.91 ± 2.75   

Res    64.35 ± 5.48  

1Variances are on diagonal and in bold type, and covariances are below that diagonal. Covariances not 

specified were assumed to be 0.  
2Random intercept.  
3Random linear regression coefficient. 
4Maternal additive genetic.  
5Maternal permanent environment.  
6Residual.  
7Direct additive genetic. 
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Table 3.12. Estimates of variance from weaning weight analyses1 

Linear random regression model 

 β0
2 β1

3 MG4 MPE5 Res6 

β0 2,332.17 ± 388.70     

β1    852.88 ± 157.94 856.39 ± 219.03    

MG   409.85 ± 147.43   

MPE    807.94 ± 123.92  

Residual     917.91 ± 142.09 

      

Animal model 

 DG⁷ MG MPE Res  

DG 1,062.96 ± 180.16     

MG  372.00 ± 141.44    

MPE   726.93 ± 117.44   

Res    985.13 ± 134.58  

1Variances are on diagonal and in bold type. Covariances not specified were assumed to be 0.  
2Random intercept.  
3Random linear regression coefficient.  
4Maternal additive genetic.  
5Maternal permanent environment.  
6Residual.  
7Direct additive genetic. 

 

3.3.2.3. Heritability Estimates for Birth Weight and Weaning Weight 

Heritability estimates from the animal model as well as proportions of 

phenotypic variance explained by maternal additive genetic variance, and by maternal 

permanent environment are presented in Table 3.13 for birth weight and weaning 

weight. 

Table 3.13. Proportions of phenotypic variance explained by direct additive 

genetic (h²), maternal additive genetic (m²), and maternal permanent 

environment (c²) for birth weight and weaning weight 
 Birth weight Weaning weight 

h² 0.48 ± 0.05 0.34 ± 0.06 

m² 0.02 ± 0.03 0.12 ± 0.04 

c² 0.04 ± 0.02 0.23 ± 0.04 
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Heritability estimates from the random regression model ranged from 0.5 to 0.8 

for birth weight (Figure 3.7). The smallest estimates were observed for △Ne values near 

0.49 (i.e., dam with 49% more Nellore in her breed composition than the sire), and 

largest estimates were associated to △Ne values of 2 (i.e., Nellore sires to Angus dams). 

 
Figure 3.7. Heritability estimates for birth weight from linear random regression model (purple line; 

dashed lines indicate ± 1 SE) and from animal model (blue line). 
 

Heritability estimates from the random regression model ranged from 0.26 to 

0.65 (Figure 3.8) for weaning weight. The smallest estimates were observed near △Ne 

values of 0.42 (i.e., dam with 42% more Nellore in her breed composition than the sire), 



 

96 

 

and largest estimates were associated with △Ne values of 2, which correspond to 

Nellore x Angus cross (sire breed listed first, followed by dam breed). 

 
Figure 3.8. Heritability estimates for weaning weight from linear random regression model (purple line; 

dashed lines indicate ± 1 SE) and from animal model (blue line). 

 

3.3.2.4. Likelihood-Ratio Test 

Comparing linear random regression models to corresponding animal models 

through likelihood-ratio tests determined that the linear random regression of animal 

additive genetic effects on △Ne was relevant for analyses of birth weight (P < 0.01) and 

weaning weight (P < 0.01). 
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3.4. Discussion 

Exploratory analyses though principal components made it possible to identify 

relationships between observations within birth weight and weaning weight databases, 

and to assess how continuous variables in those databases were explaining variability 

across observations. 

The first and second principal components explained 46% and 35% of the total 

variability in birth weight database, respectively. The first principal component was 

negatively influenced by sire-Ne and dam-Ne, with no practical association to birth 

weight (Table 3.7). The second principal component was highly and positively 

associated with birth weight and had a lower association to sire-Ne and dam-Ne, which 

were weighted similarly but with a positive association with sire-Ne and a negative 

association with dam-Ne (Table 3.7). Overall, the 46% of data variation explained by the 

first principal component was mainly associated with changes in sire-Ne and dam-Ne, 

where lower values of sire-Ne and dam-Ne were associated to higher values for the first 

principal component. The 35% of variation explained by the second principal component 

was highly influenced by birth weight; however, besides heavier weights at birth, a 

greater sire-Ne and a lower dam-Ne were also associated to increase the values of the 

second principal component, but in a lower degree. 

Results from principal component analysis using weaning weight database 

indicated that the first and second principal components explained 31% and 28% of data 

variability, respectively (Table 3.8). The variability explained by these two principal 

components results were lower than the one explained by the 2 first principal 
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components from principal component analysis of birth weight database; however, sire-

Ne and dam-Ne had also a high correlation with the first principal component in 

comparison to the other variables in the analysis (Table 3.10). Additionally, birth weight 

had a low positive correlation to the first principal component, just as it was observed for 

principal component analysis using birth weight data. The variable with the greatest (and 

positive) correlation to the first principal component was weaning age. The second 

principal component was negatively correlated to all the variables in the analysis, with 

the greatest negative correlations associated to weight variables (birth weight and 

weaning weight), followed by sire-Ne and dam-Ne, and with the lowest correlation 

associated to weaning age. Thus, variability explained by the first and second principal 

components were lowly influenced by birth weight and weaning age, respectively. 

Principal component analyses for birth weight and weaning weight databases 

agreed in identifying important associations between sire-Ne and dam-Ne to the 

respective first principal components, meaning that an important part of the variability 

across observations was influenced by these variables. Observations distributed with 

respect to the first two principal components of analyses of birth weight and weaning 

weight databases did not show a clear cluster pattern by calf sex (Figure 3.1 and Figure 

3.2, respectively), calf birth year (Figure 3.3 and Figure 3.4, respectively), and dam age 

(Figure 3.5 and Figure 3.6, respectively). This means that highly or lowly weighted 

observations across the first and second principal component from both analyses were 

not dependent on these classification variables. However, some observations distributed 

across the first two principal components seems to depart from rest, as can be observe in 
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the left lower corner of Figures 3.2 to 3.8. This may indicate that a different source of 

variation could be responsible of this potential cluster pattern. 

The influence of sire-Ne and dam-Ne with on the variability of databases 

designed specifically for birth weight and weaning weight analyses is interesting 

considering what has been described in the literature. Experiments involving 

crossbreeding between Bos indicus-Bos taurus crossbred animals have showed that 

higher birth weights were observed when the amount of Bos indicus in the sire was 

greater than the amount of Bos indicus in the dam (Cartwright et al., 1964; Amen et al., 

2007); similar results were found for weaning weight in backcrosses between  F₁ Angus 

x Bos indicus (Brahman or Nellore) sires and dams to Angus or Bos indicus animals, 

where Angus-Bos indicus x Angus calves, and Bos indicus x Angus-Bos indicus calves 

were heavier at weaning than Angus x Angus-Bos indicus calves, and Angus-Bos indicus 

x Bos indicus calves (Amen et al., 2007). 

Principal component analyses findings supported the potential inclusion of sire-

Ne and dam-Ne for birth weight and weaning weight genetic predictions. Moreover, to 

incorporate them into prediction equations as genotype by parental cross type interaction 

could have a high practical relevance to operations using Nellore-Angus (and other Bos 

indicus-Bos taurus) crossbred animals.  

Random regression was utilized to model genotype-parental cross type 

information into prediction equations. As such, genetic merit can be predicted across a 

gradient of continuous values, such as sire-Ne and dam-Ne. However, in order to 

minimize parametrization, a variable was created combining the information from sire-
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Ne and dam-Ne (△Ne). This is a novel approach to assessment of mating systems; the 

additive genetic component could be affected depending on specific types of parental 

breed combinations. This is of major importance for breeders of specific types of 

crosses. 

Heritability estimates for birth weight from the linear random regression model 

had a large range: 0.5 to 0.8 (Figure 3.7); the largest values are very large relative to 

most other reported estimates for this trait. Estimates of heritability for birth weight from 

mostly traditional animal models ranged from 0.22 to 0.70 for Angus cattle (0.22, Elzo 

and Wakeman, 1998; 0.29, Cardoso et al., 2001; 0.27, Trus and Wilton, 1988; 0.41, 

Alenda and Martin, 1987; 0.42, Brown et al., 1990, and Johnson et al., 1992; 0.45, Rasali 

et al., 2005; 0.51, Alenda and Martin, 1987; 0.51, Rasali et al., 2005; 0.70, Knights et al., 

1984), and from 0.10 to 0.33 in Nellore cattle (0.10, 0.14, 0.21 and 0.33, Nobre et al., 

2003; 0.28 and 0.32, Albuquerque and Meyer, 2001; 0.29, Eler et al., 1995). The largest 

estimates from the current study were observed for high values of the “environmental” 

gradient, which represents a high proportion of Nellore in sires and a low proportion of 

Nellore in dams—this is “contextual heritability” with respect to genetic background, 

and may represent a unique quantitative modeling opportunity for a clearly non-

Mendelian mode of inheritance above the effects of heterosis (Thallman et al., 1993; 

Thallman et al., 2014). This random regression parameterization likely encompasses 

both the non-additive genetic effects as well as the non-Mendelian inheritance.   

The range of estimates of heritability for weaning weight from random regression 

analyses was larger (0.26 to 0.65; Figure 3.8), although the highest values were not as 
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large. Reported estimates of heritability for weaning weight were similar (0.19, Shepard 

et al., 1996; 0.20, 0.21 and 0.32 Dodenhoff et al., 1999; 0.21 and 0.30, Alenda and 

Martin, 1987; 0.25, Elzo and Wakeman, 1998; 0.30 and 0.40 Schaeffer and Wilton, 

1981; 0.46, Knights et al., 1984; 0.53, Kaps et al., 1999; 0.63, Brown et al., 1990; 0.63, 

Johnson et al., 1992; 0.70, Rasali et al., 2005), but the largest values from the current 

random regression analysis were higher than estimates reported for Nellore cattle (0.14, 

Eler et al., 1995; 0.15, 0.23 and 0.26, Magnabosco et al., 2000; 0.26, 0.28, and 0.33, 

Ribeiro et al., 2006). 

Modeling the genotype of animals across a gradient associated with parental 

breed composition information implies an interaction between the additive genetic 

component of animals with non-additive genetic effects associated to specific △Ne from 

different parental combinations. These non-additive genetic effects could correspond to 

either dominance effects, epistatic effects, parent-of-origin effects, or combinations 

among these (Falconer and Mackay, 1996; Loschiavo et al., 2007; Vrana, 2007). 

Heritability estimates in this study should be interpreted as a contextual parameter, that 

is, the specific △Ne associated to parental cross types, and the corresponding average 

non-additive effects acting on birth weight and weaning weight phenotypic values. 

Results from the linear random regression model for birth weight indicated that 

the greatest estimate of heritability (h² = 0.8; Figure 3.7) was associated with F1 calves 

with Nellore sires and Angus dams (△Ne = 2). Heritability estimated for calves out of 

the reciprocal cross (Angus x Nellore; △Ne = 0), was somewhat smaller (0.56). 

Heritability estimated from both Nellore x Angus reciprocal crosses were higher than 
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heritability estimated using the animal model (h² = 0.48 ± 0.05). Furthermore, across the 

gradient of △Ne values, all heritability estimates were higher than the estimated value 

from the animal model, probably due to relocation of part of the residual variance 

associated to non-additive effects into the random regression (co)variance components. 

The minimum estimate of heritability (h² = 0.5) was obtained for △Ne of 0.5, which is 

associated to crosses where dams have 50% more Nellore content in their breed 

composition than sires, such as Angus x 1⁄2 Angus-1⁄2 Nellore cross. Estimates of 

heritability for crosses with △Ne of 1.5 (Nellore content in sires 50% higher than in 

dams; e.g., 1⁄2 Angus-1⁄2 Nellore x Angus cross) had an intermediate value of 0.69. Thus, 

heritability estimates were greater for crosses where the sire had a higher amount of 

Nellore than the dam, and as such may be accommodating dominance variation 

(heterosis) and non-Mendelian variation. 

The trajectory of the weaning weight heritability gradient from random 

regression analyses was similar to that from the birth weight analysis. The highest 

heritability estimate (h² = 0.65) was obtained at △Ne of 2 (Nellore x Angus cross), and 

the smallest estimate (h² = 0.26) was around △Ne of 0.5 (Angus x 1⁄2 Angus-1⁄2 Nellore 

cross; Figure 3.8). Heritability estimate for △Ne equal 2 (Nellore x Angus cross) was 

almost twice as large as for △Ne equal 0 (Angus x Nellore cross) (0.65 vs. 0.31). 

Estimates of heritability for weaning weight were larger than the estimated value from 

the animal model (0.34 ± 0.06) for values of △Ne larger than 0.94 (e.g., Angus x Angus, 

Nellore x Nellore, 1⁄2 Angus-1⁄2 Nellore x 1⁄2 Angus-1⁄2 Nellore, 1⁄2 Angus-1⁄2 Nellore x 5⁄8 

Angus-3⁄8 Nellore, and Nellore x Angus crosses). This may indicate that estimates from 
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animal models could be biased because the model is not accounting for heterosis 

effectively. 

Prediction models for birth weight and weaning weight incorporate covariance 

estimates between direct and maternal additive genetics effects when the dataset is large 

enough to estimate all the covariance components; however, this covariance was not 

included in the present study for linear random regression models because the extra 

number of covariances would make the models too complicated for the current birth 

weight and weaning weight databases. Consequently, this covariance was also not 

included in animal models in order to make these models comparable to the linear 

random regression models though likelihood ratio tests. Likelihood-ratio tests 

determined that the linear random regression model for birth weight and weaning weight 

had a better fit for the data in comparison to the respective animal model. 

It was not possible to identify is the non-additive effects acting over the 

phenotypic expression of birth weight and weaning weight corresponded to dominance, 

epistasis, or parent-of-origin effects; however, these results represent a novel approach 

with potential application for cattle operations based on crossbreeding strategies. Results 

from random regression analyses indicated that it may be possible to select sires that can 

increase progeny birth weight and weaning weight at different rates in the context of the 

type of cross, due to different average non-additive genetic effects interacting with sire’s 

additive genetic component across different cross types. Much of US beef production is 

based on crossbreeding strategies. Those strategies mostly involve consideration of 

relative sire genetic merit only in a purebred context. 
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This novel approach may offer prediction advantages in Bos indicus-Bos taurus 

crosses, as the non-Mendelian inheritance of birth weight in those crosses (Cartwright et 

al., 1964; Paschal et al., 1991; Chase et al., 2000; Holloway et al., 2002) has enormous 

economic consequences. Selection methodology is needed in such crosses to reduce the 

negative impacts of birth weight increase and thereby reduce incidence of dystocia, 

preventing its negative impacts on calf health, and survival of both calf and dam (Dillon 

et al., 2015). This approach might be beneficial for crosses involving crossbred animals 

where the sire has a larger proportion of Bos indicus in his breed composition than the 

dam, as larger birth weight has also been identified for calves out of this type of crosses 

in comparison to progeny from the respective reciprocal cross (Cartwright et al., 1964; 

Amen et al., 2007). Extensions of this methodology to sex-specific predictions may 

permit selection of Bos indicus sires that sire male progeny with “safe” birth weights 

when the sires are used in a Bos indicus x Bos taurus crossbreeding scenario. 

Additional work is required to refine modeling of parental breed composition in 

the models to resolve some potential confounding effects from different cross types that 

can lead to equal △Ne values, such as Angus x Angus, Nellore x Nellore, and 1⁄2 Angus-

1⁄2 Nellore x 1⁄2 Angus-1⁄2 Nellore crosses (△Ne = 1) or as 3⁄4 Angus-1⁄4 Nellore x 1⁄2 Angus-

1⁄2 Nellore and Angus x 3⁄4 Angus-1⁄4 Nellore crosses (△Ne = 0.75). This represents the 

first attempt to characterize cattle genetic variance within a context for parental breed 

combination gradients through random regression. Results of these analyses could 

benefit cattle operations already realizing the benefits of both additive and non-additive 

genetic effects on birth weight and weaning weight through production of various Bos 
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indicus-Bos taurus crosses and could aid in genetic prediction for first generation crosses 

in Bos indicus-Bos taurus composite populations. 

3.5. Conclusion 

 This study evaluated a novel strategy to model interactions between additive and 

non-additive genetic effects in genetic merit predictions equations for birth weight and 

weaning weight on a population involving Nellore and Angus influenced parents. There 

may be potential to select sires (or dams) based on their genetic merit predicted for 

specific crossbreeding scenarios. Therefore, improvement of progeny phenotypic 

performance for birth weight and weaning weight could be optimized for different type 

of parental crosses. However, current modeling strategy needs to consider additional 

features to remove confounding effects for some types of parental crosses, and to 

account for potential sex dimorphism effects on genetic merit predictions across crosses. 
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CHAPTER IV                                                                                                      

RANDOM REGRESSION OF HEREFORD PERCENTAGE INTRAMUSCULAR FAT 

ON GEOGRAPHICAL COORDINATES 

 

4.1. Introduction 

Genetic merit is likely contextual, and it may be beneficial to predict genetic 

merit for economically important traits across environments. Burns et al. (1979) revealed 

genotype-environment interactions (G x E) in Hereford cattle for birth weight, pre-

weaning gain, estimated 205 d weight, body length, body condition score, and annual 

production per cow. Hayes et al. (2016) supported the usefulness of incorporating G x E 

into livestock genetic evaluations, and Fennewald et al. (2017) identified G x E for 

stayability in different regions within the United States (US) for Red Angus. Genetic 

variation within breed subpopulations reared in different environments has shown to 

impact heritability (Blackburn et al., 2017), and can lead to over- or underestimate 

breeding values if predictions across subpopulations are done without accounting for 

environment. Notter et al. (1992), Hayes et al. (2016), and MacNeil et al. (2017) support 

the use of G x E in beef cattle genetic evaluation. However, G x E has not been 

employed in US National Cattle Evaluation. Not accounting for G x E could lower the 

rate of genetic change for traits. The American Hereford Association has records to 

account for G x E in genetic merit predictions. Among relevant traits fit for this analysis 

strategy, intramuscular fat (IMF) impacts beef quality, and its improvement in post-natal 
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life via nutrition is governed by the genetic potential of the breed (Pethick et al., 2004; 

Hocquette et al., 2010). 

Random regression procedures make it possible to model G x E and attain a 

greater level of precision for parameter estimates and genetic merit predictions (Cardoso 

et al., 2012). Accounting for ecozone would help producers select sires more fit to the 

environment in their operations. The objective of this study was to estimate genetic 

parameters for IMF in American Hereford cattle using random regressions across 

latitude or longitude coordinates within the continental US and to evaluate estimates 

differences. 

4.2. Materials and Methods 

4.2.1. Records 

Records were provided by the American Hereford Association. Using open 

source databases (http://federalgovernmentzipcodes.us/), longitude and latitude 

coordinates were obtained for each IMF record using the U.S. Postal Service zip code of 

the ranch listed as the breeder. Contemporary groups were defined by the American 

Hereford Association, combining information related to herd, sex, management group, 

and birth date of the animals.  Records without an associated zip code or with no 

contemporary group assignment were removed. Records greater than the mean +4 SD or 

less than the mean –4 SD were considered outliers and removed. After editing, the final 

data included 169,440 IMF records. The pedigree included 227,902 animals and 9 

generations.  
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4.2.2. Statistical Analyses 

Analysis assessed the benefits of using linear or quadratic random regressions of 

IMF on latitude or longitude coordinates versus traditional animal models in genetic 

parameters estimation, accounting for US as a unique geographic location. Additionally, 

linear random regressions were evaluated subdividing the US into 2 and 4 regions, in 

order to identify the impact of an increase in geographical subdivision of the country 

over genetic parameters estimation. 

The animal model followed this form: 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑊𝑐 + 𝑒 

where y was a vector of IMF records, 𝛽 was a vector of estimated fixed effects for a 

linear regression on longitude or latitude coordinate, u was a vector of random additive 

genetic effects, c was a vector of random contemporary group effects, e was a vector of 

residuals, and X, Z, and W were incidence matrices relating observations in y to values in 

β, u, and c. 

Expectation for the components in the random vector were equal to vectors of 0, 

with variance-covariance structure: 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] = [

𝐺 0 0
0 𝐶 0
0 0 𝑅

] 

in which 𝐺 = 𝐴𝜎𝑎
2, where A was the numerator relationship matrix constructed with the 

pedigree information, and 𝜎𝑎
2 is the additive genetic variance; 𝐶 = 𝐼𝜎𝑐

2, where I is an 

identity matrix and 𝜎𝑐
2 the contemporary group variance; 𝑅 = 𝐼𝜎𝑒

2, and 𝜎𝑒
2 is the residual 

variance. 
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The linear and quadratic random regression models followed the general form: 

𝑦 = 𝑋𝛽 + 𝑄𝑢 + 𝑊𝑐 + 𝑒 

in which y, β, c, and e vectors were as described for the animal model, and u was a 

vector of random regression coefficients for additive genetic effects. X and W were 

incidence matrices as described for the animal model, and Q was the design matrix 

containing the longitude or latitude coordinates as covariates, and relates the IMF 

records in y to the additive genetic random regression coefficients in u.  The number of 

columns in the Q matrix is equal to the order of the random regression (2 or 3 for the 

linear and quadratic random regressions, respectively). Expectation of the random 

vectors were a vector of 0. The variance-covariance structure was: 

𝑉𝑎𝑟 [
𝑢
𝑐
𝑒
] = [

𝐴 ⊗ 𝐺 0 0
0 𝐶 0
0 0 𝑅

] 

where A was the numerator relationship matrix, G the covariance matrix of additive 

genetic regression coefficients with an order equal to the polynomial modeled; C and R 

were matrices as described for the animal model. The G matrix used in the random 

regression models included the estimation of the variances and covariances of the 

intercept and the regression coefficients. 

Models for analyses of regionally-subdivided data included a linear random 

regression of IMF on longitude or latitude coordinates unique by region (i.e., one linear 

random regression per each region in the model). Analyses of data subdivided into two 

regions included unique random regressions within North and South (longitude; Figure 

4.1) or West and East (latitude; Figure 4.3) regions. Analyses of data divided into 4 
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regions included random regressions within North 1, North 2, South 1, and South 2 

(longitude; Figure 4.2) and West 1, West 2, East 1 and East 2 (latitude; Figure 4.4) 

regions.  Regional boundaries were designated at specific longitudes or latitudes which 

were chosen to evaluate an overall even land territory across regions, and to keep similar 

numbers of records in each region. The North and South regions were delineated at 40°N 

latitude, with 94,188 and 75,252 records, respectively (Figure 4.1). The boundary 

between West and East regions was set at 99°W longitude, with 84,340 and 85,100 

records, respectively (Figure 4.3). Boundaries for analyses of random regression on 

longitude within 4 regions were set at 44.46°N (between North 1 and North 2), 40°N 

(between North 2 and South 1), and 36.46°N (between South 1 and South 2). 

Corresponding numbers of records were 42,403, 51,785, 42,927, and 32,325 for the 

North 1, North 2, South 1, and South 2 regions, respectively (Figure 4.2). The regional 

boundaries for random regression on latitude were set at 104.55°W (between West 1 and 

West 2), 99°W (between West 2 and East 1), and 92.22°W longitude (between East 1 

and East 2), with 47,151, 37,949, 46,427, and 37,913 records represented in the West 1, 

West 2, East 1 and East 2 regions, respectively (Figure 4.4). 
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Figure 4.1. Regional subdivision of the US into North and South regions. Dashed line indicates 

boundary between North and South regions at 40° N. The value for “n” represents the number of IMF 

records within a region. 
 

 

 
Figure 4.2. Regional subdivision of the US into North 1, North 2, South 1 and South 2 regions. Dashed 

lines from north to south indicate boundary between North 1 and North 2, North 2 and South 1, South 1 

and South 2 regions at 44.46° N, 40° N, and 36.46° N, respectively. The value for “n” represents the 

number of IMF records within a region. 
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Figure 4.3. Regional subdivision of the US into West and East regions. Dashed line indicates boundary 

between West and East regions at 99° W. The value for “n” represents the number of IMF records 

within a region. 

 

 

 
Figure 4.4. Regional subdivision of the US into West 1, West 2, East 1 and East 2 regions. Dashed 

lines from north to south indicate boundary between West 1 and West 2, West 2 and East 1, East 1 and 

East 2 regions at 104.55° W, 99° W, and 92.22° W, respectively. The value for “n” represents the 

number of IMF records within a region. 
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The analyses of unique random regressions per region were the same as the first 

set of random regression models with the same expectations for first and second 

moments. They differed in that Q is the incidence matrix containing the longitude or 

latitude coordinates covariate nested within regions and relates the IMF records in y to 

the additive genetic random regression coefficients in u for each region in the model. 

The number of columns in the Q matrix was associated with the order of the random 

regression amplified by the number of modeled regions (four for the 2-region 

subdivision, and eight for 4-region subdivision).  The strategy for G matrix estimation 

was to first estimate variances of coefficients with all other covariances fixed at 0, and 

then incrementally add covariance components for estimation while holding previously 

estimated parameters constant; various analyses were attempted varying the set of 

parameters held constant. Analyses were repeated as necessary with estimation of 

previously fixed components.  Non-estimable covariance components were fixed to zero 

and all other parameters were simultaneously estimated in final models. For analyses 

with two regions modeled, the G matrix included the estimation of variances for the 

intercept and the linear regression coefficient from both regions, as well as all 

covariance components between intercepts and linear regression coefficients from those 

two regions. In analyses with four regions the G matrix included the variances for 

intercepts and linear regression coefficients from each region, as well as the covariance 

between the intercept and the linear regression coefficient within each region. Estimation 

of other covariance components in the G matrix were prioritized in this order: 1) 

covariances between each pair of linear regression coefficients across regions, 2) 
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covariances between each pair of intercept coefficients across regions, 3) all other 

covariances. 

Likelihood-ratio tests were conducted for analyses of the data without regional 

subdivisions. Differences in the structure of the analyses using the 2-region and 4-region 

models did not permit statistical comparison. Analyses were conducted using ASReml 

(Gilmour et al., 2009), and the Texas A&M University High Performance Research 

Computing Service. 

From random regression analyses gradients of heritability for IMF across 

longitude or latitude coordinates were estimated using variance component estimates 

(Schaeffer, 2016). 

4.3. Results 

4.3.1. Fixed Effects 

 The fixed effect of linear regression of IMF on latitude coordinates was 

significant (P < 0.001) with latitude as covariate. The corresponding fixed regression on 

longitude coordinates was significant only in the quadratic random regression model 

analysis. Nevertheless, the fixed linear regression was kept in the animal and linear 

random regression models that utilized longitude as covariate to permit likelihood-ratio 

tests. 

The fixed effect of region, as well as the linear random regression of IMF on 

latitude nested within region were significant (P < 0.001) when data was subdivided in 

either 2 or 4 regions. When longitude was used as covariate in the model, the previous 

effects were only significant (P < 0.001) when data was subdivided in 4 regions. 
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 These effects were kept in random regression analyses regardless of significance 

in order to facilitate model comparison. 

4.3.2. Across-Region Random Regression 

Results from the likelihood ratio test between each pair of the three continental 

US models (animal model, linear random regression model, and quadratic random 

regression model), using either latitude or longitude coordinates as covariate, indicated 

that the quadratic random regression model has the better fit for these data (P < 0.001). 

Heritability estimated using the animal model with either latitude or longitude 

coordinates as covariate was low (0.19 ± 0.004). Variances estimated for linear and 

quadratic random regression coefficients (latitude as a covariate) are shown in Table 4.1 

and Table 4.2, respectively. 

Table 4.1. Estimates of variance from linear random regression analyses1 

 Contemporary 

group 
Intercept Linear Residual 

Latitude covariate     

Contemporary group 0.38 ± 0.004    

Intercept  0.25 ± 0.006 
  

Linear  0.04 ± 0.002 0.02 ± 0.003 
 

Residual    0.23 ± 0.002 

Longitude covariate     

Contemporary group 0.37 ± 0.004    

Intercept  0.25 ± 0.006   

Linear  0.00 ± 0.003 0.09 ± 0.005  

Residual    0.24 ± 0.002 
1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances 

of contemporary group and residual with other terms were assumed to be 0. 
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Table 4.2. Estimates of variance from quadratic random regression 

analyses1 

 Contemporary 

group 
Intercept Linear Quadratic Residual 

Latitude covariate      

Contemporary group 0.38 ± 0.004   
 

 

Intercept  0.20 ± 0.008 
 

 
 

Linear  0.05 ± 0.002 0.04 ± 0.006  
 

Quadratic  –0.02 ± 0.003 0.00 ± 0.003 0.01 ± 0.004 
 

Residual     0.23 ± 0.002 

Longitude covariate      

Contemporary group 0.37 ± 0.004     

Intercept  0.26 ± 0.010    

Linear  0.01 ± 0.003 0.05 ± 0.009   

Quadratic  0.02 ± 0.005 –0.02 ± 0.003 0.03 ± 0.004  

Residual     0.23 ± 0.002 
1Variances are on diagonal and in bold type. Covariances are below that diagonal. Covariances 

of contemporary group and residual with other terms were assumed to be 0. 
 

For analyses of latitude, heritability estimated with linear and quadratic random 

regression parameters resulted in similar ranges (0.08 to 0.27, linear; 0.12 to 0.27, 

quadratic). Plotted estimates of heritability from linear random regression on latitude 

appeared to increase from South to North (Figure 4.5). Estimates produced from the 

quadratic random regression were lower in southern latitudes, but higher in middle 

latitudes. 
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Figure 4.5. Estimates of heritability for IMF from the animal model, linear and quadratic random 

regression (RR) of IMF on latitude (dashed lines indicate ± 1 SE). 

 

The variances estimated for the random regression coefficients using longitude as 

a covariate are shown in Table 4.1 and Table 4.2. These yielded estimates of heritability 

ranging from 0.17 to 0.30 (linear random regression only), and from 0.17 to 0.37 using 

the quadratic random regression (Figure 4.6). The curve of plotted estimates of 

heritability from the analysis that included only a linear random regression was fairly 

symmetric and positively parabolic, generally smooth, and indicated greater estimates of 

heritability at the two extremes of longitudinal coordinates (farthest West, and farthest 

East), with a minimum heritability in the middle of the regression. The curve of 

heritability estimates from analyses with a quadratic random regression was asymmetric, 
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with a single inflection less centered and positioned closer to the West than for the linear 

random regression (Figure 4.6). 

 
Figure 4.6. Estimates of heritability for IMF from the animal model, linear and quadratic random 

regression of IMF (RR) on longitude (dashed lines indicate ± 1 SE). 
 

4.3.3. Unique Random Regressions by Region 

Regions within the continental US present a range of environmental differences 

(Blackburn et al., 2017). Random regressions as used in the present study may be more 

appropriate to consider as unique to regions. This was done as an attempt to model 

North-South and East-West environmental changes simultaneously. 

The continental US was subdivided into two major regions (North and South or 

West and East for latitude or longitude coordinates as covariate, respectively), with an 
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overall similar number of records and territory size covered. This approach made it 

possible to estimate variances for random intercepts and random regression linear 

coefficients and covariance components in analyses with latitude coordinates as was 

covariate (Table 4.3) and longitude coordinates as covariate (Table 4.4). 

Table 4.3. Linear random regression (co)variance components estimates for IMF 

on latitude in 2 regions1, 2 
 𝛽0 East 𝛽1 East 𝛽0 West 𝛽1 West 

𝛽0 East 0.27 ± 0.007 0.77 ± 0.076 0.91 ± 0.031 0.37 ± 0.081 

𝛽1 East 0.06 ± 0.004 0.03 ± 0.005 0.62 ± 0.115 0.41 ± 0.215 

𝛽0 West 0.22 ± 0.009 0.05 ± 0.008 0.22 ± 0.008 0.34 ± 0.065 

𝛽1 West 0.04 ± 0.009 0.01 ± 0.007 0.03 ± 0.004 0.04 ± 0.007 
1Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation 

coefficients are above. 
2Data were divided into West and East regions at 99° W longitude. 

 

Table 4.4. Linear random regression (co)variance components estimates for IMF 

on longitude in 2 regions1, 2 

 𝛽0 North 𝛽1 North 𝛽0 South 𝛽1 South 

𝛽0 North 0.32 ± 0.008 0.32 ± 0.020 0.78 ± 0.038 0.18 ± 0.085 

𝛽1 North 0.07 ± 0.007 0.17 ± 0.011 0.06 ± 0.070 0.11 ± 0.148 

𝛽0 South 0.20 ± 0.011 0.01 ± 0.013 0.21 ± 0.006 –0.03 ± 0.027 

𝛽1 South 0.03 ± 0.016 0.02 ± 0.020 –0.01 ± 0.004 0.11 ± 0.008 
1Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation 

coefficients are above. 
2Data were divided into North and South regions at 40° N latitude. 

 

Increasing the order of the random regression to a quadratic polynomial 

(intercept, linear, and quadratic) was never accomplished when data were divided into 

regions due to computational limitations of ASReml when the additional covariances 

were included in the model, preventing convergence of parameter estimates. Variance of 

intercepts were similar in magnitude in random regressions of IMF on latitude or 

longitude; however, the variances of the linear random regression coefficients on 
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longitude (Table 4.4) were from two to five times larger than those from regression on 

latitude (Table 4.3). Correspondence of random regression coefficients (latitude) was 

positive and large, as correlations of those components ranged from 0.34 to 0.91 (Table 

4.3); much lower correspondence of random regression coefficients (longitude) is shown 

in Table 4.4. As an exception, the correlation of intercept coefficients for the North and 

South regions was large (r = 0.78 ± 0.04). 

Random regression of IMF on latitude resulted in estimation of only variances of 

regression coefficients and within-region covariances of coefficients (Table 4.5). 

Intercept variances were similar in the central regions (West 2 and East 1) and between 

one half and two thirds of the magnitude of those on the extremes (West 1 and East 2).  

The West 1 region (furthest West) differed substantially from the other regions as the 

variance estimates of the linear regression coefficient was two to three times larger than 

all other regional variances of that coefficient. The West 1 region had a negative genetic 

correlation between the intercept and linear regression coefficients; all other regions 

were large and positive. 

A larger number of parameters were estimated in analyses of random regression 

on longitude in 4 regions (Table 4.6). Variances estimated for the intercept and linear 

regression terms were largest in the Northernmost region (North 1) and progressively 

smaller in each region to the South, which was similar to the pattern of variances from 

analyses of data in 2 regions (Table 4.4). Within-region correlations between the 

intercept and linear terms were large and positive in both North regions, but of low 

magnitude in both South regions, and that in the Southernmost region (South 2) was 
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negative (Table 4.4). Across-region correlations between the linear regression coefficient 

terms were large and positive for North 1 with North 2 and South 1 with South 2. That 

for North 2 with South 1 (these are adjacent regions) was less than half the magnitude. 

Correlations of linear regression coefficients of North 1 with South 1 and North 2 with 

South 2 did not differ from 0. The correlation between linear regression coefficients 

from the extreme regions (North 1 with South 2) was large and negative. 

Random regression analyses of subdivided data indicated reasonably similar 

estimates of heritability for IMF at Northern latitudes (Figures 4.7 and 4.8). However, at 

Southern latitudes, modeling distinct random regressions in the Western US resulted in 

much higher estimates of heritability in the westernmost region (West 1; Figure 4.7). 
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Table 4.5. Linear random regression (co)variance components estimates for IMF on latitude in 4 regions1, 2, 3 

 𝛽0 East 1 𝛽1 East 1 𝛽0 East 2 𝛽1 East 2 𝛽0 West 1 𝛽1 West 1 𝛽0 West 2 𝛽1 West 2 

𝛽0 East 1 0.24 ± 0.008 0.49 ± 0.078       

𝛽1 East 1 0.04 ± 0.004 0.03 ± 0.008       

𝛽0 East 2   0.37 ± 0.010 0.92 ± 0.072     

𝛽1 East 2   0.15 ± 0.008 0.07 ± 0.014     

𝛽0 West 1     0.35 ± 0.015 –0.31 ± 0.044   

𝛽1 West 1     –0.07 ± 0.015 0.14 ± 0.020   

𝛽0 West 2       0.19 ± 0.009 0.64 ± 0.126 

𝛽1 West 2       0.04 ± 0.004 0.03 ± 0.008 

1Absence of a value indicates that estimation of this parameter was not accomplished and was fixed to 0.  
2Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation coefficients are above. 
3Lower numbers indicate regions further West. Boundaries separating the four regions were 104.55° W (between West 1 and West 2), 99° W (between 

West 2 and East 1), and 92.22° W (between East 1 and East 2). 

 

 

 



 

129 

 

Table 4.6. Linear random regression (co)variance components estimates for IMF on longitude in 4 regions1, 2, 3 

 𝛽0 North 1 𝛽1 North 1 𝛽0 North 2 𝛽1 North 2 𝛽0 South 1 𝛽1 South 1 𝛽0 South 2 𝛽1 South 2 

𝛽0 North 1 0.42 ± 0.014 0.46 ± 0.033       

𝛽1 North 1 0.17 ± 0.022 0.33 ± 0.033  0.54 ± 0.094  0.02 ± 0.147  –0.63 ± 0.167 

𝛽0 North 2   0.30 ± 0.008 0.49 ± 0.022     

𝛽1 North 2  0.13 ± 0.022 0.11 ± 0.007 0.16 ± 0.013  0.21 ± 0.143  –0.11 ± 0.202 

𝛽0 South 1     0.25 ± 0.008 0.13 ± 0.030   

𝛽1 South 1  0.01 ± 0.033  0.03 ± 0.022 0.02 ± 0.006 0.15 ± 0.010  0.49 ± 0.202 

𝛽0 South 2       0.16 ± 0.008 –0.11 ± 0.057 

𝛽1 South 2  –0.10 ± 0.029  –0.01 ± 0.023  0.05 ± 0.023 -0.01 ± 0.007 0.08 ± 0.016 

1Absence of a value indicates that estimation of this parameter was not accomplished and was fixed to 0.  
2Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation coefficients are above. 
3Lower numbers indicate regions further North. Boundaries separating the four regions were 44.46° N (between North 1 and North 2), 40° N (between 

North 2 and South 1), and 36.46° N (between South 1 and South 2). 
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Figure 4.7. Estimates of heritability from linear random regression of IMF on latitude within the West 

region (data divided into West and East regions at 99° W), and within West 1 (furthest West subregion 

with boundary at 104.55° W) and West 2 regions (dashed lines indicate ± 1 SE). 
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Figure 4.8. Estimates of heritability from linear random regression of IMF on latitude within the East 

region (data divided into West and East regions at 99° W), and within East 1 (furthest West subregion 

with boundary at 92.22° W) and East 2 regions (dashed lines indicate ± 1 SE). 
 

Heritability estimates determined within the East and West regions ranged from 

0.09 to 0.32, and 0.14 to 0.27, respectively. Heritability estimates in the West 1 and 

West 2 regions ranged from 0.21 to 0.46 and 0.09 to 0.26, respectively. Heritability 

estimates in the East 1 and East 2 regions ranged from 0.13 to 0.29 and 0.05 to 0.48, 

respectively. The curves of estimates of heritability obtained for the West, West 1, and 

West 2 regions differed in shape as well as in minimum and maximum values (Figure 

4.7); particularly the curve obtained within the West 1 region, which had a shape more 

similar to a parabola in comparison to curves from the West and West 2 regions, which 
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appear linear. The minimum heritability value within the West 1 region was nearer to the 

center of the latitude coordinates evaluated (41° N), unlike the minimum value 

determined within the West, and West 2 regions, which was closer to the farther South 

coordinate (32.9 and 26.9° N, respectively). 

Random regression analyses of data subdivided into 2 regions resulted in patterns 

of heritability of somewhat greater estimates in the Northern region (Figure 4.9), 

especially at the easternmost longitudes. Those estimates ranged from 0.19 to 0.47 and 

0.15 to 0.31, for the Northern and Southern regions, respectively (Figures 4.9 and 4.10).  

Analyses of data subdivided into 4 regions resulted in again larger estimates of 

heritability for IMF in eastern longitudes, especially in the northernmost region (North 

1); or in other words, successively lower estimates in each region southward. Those 

estimates ranged from 0.22 to 0.63 (North 1; Figure 4.9), from 0.16 to 0.50 (North 2; 

Figure 4.9), from 0.17 to 0.40 (South 1; Figure 4.10) and from 0.12 to 0.28 (South 2; 

Figure 4.10). 
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Figure 4.9. Estimates of heritability from linear random regression of IMF on longitude within the 

North region (data divided into North and South regions at 40° N), and within North 1 (furthest North 

subregion with boundary at 44.46° N) and North 2 regions (dashed lines indicate ± 1 SE). 
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Figure 4.10. Estimates of heritability from linear random regression of IMF on longitude within the 

South region (data divided into North and South regions at 40° N), and within South 1 (furthest North 

subregion with boundary at 36.46° N) and South 2 regions (dashed lines indicate ± 1 SE). 
 

The change in heritability estimates across longitude coordinates was similar in 

trajectory, where from West to East the heritability exhibited a decrease in value, 

achieving a minimum at longitude coordinates 104, 105, and 108° W for the North, 

North 1, and North 2 regions, respectively. With decreasing longitude (moving 

eastward), heritability estimates increased until achieving a maximum value at 71° W for 

North, North 1, and North 2 regions (Figure 4.9). Heritability estimates across longitude 

coordinates also decreased in the South, South 1 and South 2 regions (Figure 4.10); but 

reach a minimum value near the center of the evaluated longitude coordinates, and 
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higher values at the extremes of the respective curves. Differences at the extreme 

covariate values were less pronounced in the South (Figure 4.10) than those in Northern 

regions. 

4.4. Discussion 

Random regression methodology may provide an effective way to model the 

geographic-environmental complex. Likelihood ratio tests across models with data not 

subdivided into regions, using either latitude or longitude, indicated that the quadratic 

random regression better fit the data in comparison to the linear random regression and 

animal model. However, the variance components’ estimates from the quadratic random 

regression model were low in comparison to estimates from the linear random regression 

using either latitude or longitude. Additionally, the extremes of the heritability curves 

estimated across latitude or longitude have larger standard errors when a quadratic 

random regression is modeled in comparison to the linear random regression. All this 

considered, maybe the use of a quadratic random regression is not necessarily the best 

alternative to model IMF with the current database, and more accurate estimations could 

be done using the linear random regression.  

Heritability estimates using random regression of IMF on latitude coordinates 

(both linear and quadratic regressions) were greater in the northern and lower in the 

farthest South latitudes of the US. Random regression of IMF on longitude coordinates 

yielded heritability estimates that were lowest in the middle section of the country, and 

largest in the far west. Evaluation of linear random regression within four rather than 

two regions did not substantially impact the shapes of heritability curves from regions or 
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subdivided regions; but the minimum and maximum values for IMF heritability were 

influenced. In contrast, more restricted region size influenced the rate of change in the 

estimates of heritability across latitudes, especially in the western half of the country. In 

those analyses the maximum estimate of heritability in the furthest east region of 0.48 

was noticeably greater than the other east subdivided region (0.32) and the overall (not 

subdivided) east region (0.29). The maximum estimate of heritability in the coastal west 

region was larger than the inland west region and the overall west region (0.46, 0.27, and 

0.26, respectively), and this was the case for the minimum estimates of heritability in 

those same regions (0.21 vs 0.14 and 0.09 respectively). Results from random regression 

analyses on longitude and latitude jointly suggest that the greater heritability for IMF can 

be found in the coastal areas of the northern US, and the lowest values are found in the 

central south. 

The range of IMF heritability estimated with the random regression models was 

similar to results out of traditional (not random regression) analysis (0.26 to 0.42) in 

Hereford cattle (0.26; Moser, 2006; 0.42; Su et al., 2017), suggesting that results are 

representative of the Hereford population in the US. 

This current work suggests that the environment where animals were evaluated 

may impact the additive genetic estimates. Sire or other genetic components as an 

interaction with environment may merit inclusion in genetic evaluation (Bertrand et al., 

1985; Bertrand et al., 1987). Genotype-environment interactions also have been studied 

for birth weight and weaning weight in Red Angus cattle using random regressions that 

evaluated sire’s progeny within regions that differed in temperature and humidity indices 
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(Fennewald et al., 2017). Those authors concluded that genotype-environment 

interactions, although present, did not influence the rank of sire predictions of genetic 

merit for those traits. 

There were substantially different regional heritability estimates (not random 

regression) for Red Angus birth weight (0.00 and 0.46, in the area near the Gulf Coast 

and the Upper Great Plains, respectively) and weaning weight (0.05 and 0.41, Gulf Coast 

and desert subregions; Fennewald et al., 2017). 

The use of either longitude or latitude coordinates as an environmental gradient 

is a proxy for a combination of ambient and nutrition conditions. Those appeared to be 

most severe when considering covariance (of coefficients) differences from North to 

South and would at first consideration suggest differences in environment temperature or 

in forage species which are being consumed by the cattle. However, the large differences 

in estimates of variances from West to East were noteworthy, especially differences 

between the farther West region and the rest of the regions. Whether modeled through 

linear or quadratic random regressions, estimates of heritability (without modeling 

region) were lower in latitudes farther south (Figure 4.5). Linear random regressions on 

latitude (Figures 4.3 and 4.4) supported this with an exception of in the far West (West 

1; Figure 4.7) in which estimates of heritability at lower latitudes were higher. North to 

South differences were also evident in the random regressions on longitude. Estimates of 

heritability were lower in the central (90 to 110º longitude) United States as indicated by 

either linear or quadratic random regression results (Figure 4.6). Random regression 

analysis within regions (linear random regression only) produced similar results (Figures 
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4.5 and 4.6) except that heritability estimates were much higher in the lowest longitudes 

of all regions, but especially the furthest North (Figure 4.9). Estimated correlation 

coefficients from random regression within regions supported positive correspondence 

of East-West regions in comparison to those from the North and South regions (0.41 vs. 

0.11). This appropriately suggests greater difference between the environmental factors 

from northern and southern sections of the country. Adjacent regions often had positive 

correlations, and regions farther apart had negative correlations which became more 

negative with distance; that for the Northernmost and Southernmost was –0.63. 

These results show the feasibility of using random regressions to account for 

genotype-environment interactions in genetic merit predictions with Hereford cattle. 

Furthermore, the use of this type of strategy would make it possible to select sires based 

on their location-specific genetic merit instead of an overall average across the country. 

This would lead to a more efficient genetic improvement of IMF, where the potential 

improvement per generation will depend on the genetic variability within specific 

geographic locations. 

4.5. Conclusion 

Considering the findings out of this project, the use of random regressions 

represents a promising modeling strategy to be considered by the American Hereford 

Association. Its use has the potential of providing producers with a better tool to select 

sires according to the specific environments where their operations are located. 

Nevertheless, further studies are needed in order to assess this methodology in additional 

economically relevant traits for this breed. 
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CHAPTER V                                                                                             

CONCLUSIONS 

 

Production and profitability in beef cattle operations are under the control of 

genetic and non-genetic factors, as well as interactions between them. Genetic sources of 

variation can be associated to breed type, as well as to genetic improvement strategies. 

On one hand, purebred cattle operations base their genetic improvement on selection, 

where animals’ genetic merit for a set of relevant traits will determine which animals 

will be used as breeders. On the other hand, operations based on crossbreed animals base 

the improvement of the system on transmitting ability of animals as well as on the 

combining ability between breeds. Furthermore, crossbreed operations benefit from non-

additive genetic effects by harvesting direct and/or maternal hybrid vigor. 

Non-genetic factors affecting a cattle operation can have different origins, some 

of them are associated to the market and to the demand for specific products, and others 

associated to environmental conditions, such as temperature, humidity, feed resources, 

and level of productivity within a herd, among others. Moreover, some environmental 

descriptors can modulate the expression of the genetic potential of an animal, leading to 

changes in scale or ranking between animals’ genetic merit when evaluated under 

different environments. 

Additionally, interactions between genetics effects can also impact the 

performance of beef cattle when crossbreed populations are evaluated. These 

interactions are based on the association between additive and non-additive genetic 
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effects, where non-additive effects could correspond to dominance, epistasis, or even 

parent-of-origin effects. 

In this study, interactions influencing genetic merit predictions and parameter 

estimation for growth- and carcass-related traits in beef cattle were evaluated using three 

different approaches. First, two modeling strategies were used to evaluate the effect of 

sire by progeny sex interaction on pre weaning and post weaning weight traits and 

intramuscular fat in Droughtmaster cattle. Both strategies indicated that improvement for 

weight at an average age of 546 d may be achieved at different rates across progeny sex 

categories, with intact males having the larger potential for improvement. Sire by sex 

interactions were not influential for weights measured earlier in life and intramuscular 

fat. Number of records for these analyses were small considering the complexity of the 

models and, thus, results may be subject to variation; however, the evaluated models 

may provide a good alternative to incorporate sire by sex interactions in prediction 

equations if larger databases are available. 

Second, the interaction effect between animals’ additive genetic component and 

non-additive genetic component on birth weight and weaning weight was evaluated 

across different crossbreed scenarios involving Nellore and Angus influenced parents. 

Results indicated that under specific type of crosses it may be possible to select sires that 

would improve birth weight and weaning weight at a higher rate than others. Therefore, 

the selection of sires (and dams) could be done more precisely according to the type of 

cross in which they will be used. Nevertheless, the proposed method requires additional 
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features to remove confounding effects between some parental crosses, as well as to 

account for potential sex effects on genetic predictions across different parental crosses. 

Third, the interaction between additive genetic component and environments 

across longitude and latitude coordinates within the United States of America was 

evaluated for intramuscular fat in Hereford cattle. Results indicated that there was 

substantial additive genetic variance and heritability differences across the environment 

gradients determined by within-region longitude or latitude coordinates. Therefore, it 

may be possible to select sires that would increase the genetic gain for intramuscular fat 

on specific geographical environments, defined by latitude and longitude coordinates 

within the continental US. 

Finally, the study of potential interactions affecting genetic merit predictions and 

parameter estimations is important for the beef industry, and to account for these 

interactions in genetic evaluations would provide more precise information to producers 

to select breeders according to the reality of their operations and, therefore, to increase 

the potential of the beef industry to respond to the increasing demand for food in the 

world. 

 

 

 

 

 

 




