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ABSTRACT

Software-Defined Networking (SDN) is a new networking paradigm that centralizes the control

logic from the data plane. Benefits from its centralized control plane (or SDN Controller), SDN

intends to provide two key innovations, i.e., holistic network visibility and flexible network pro-

grammability, and thus to enable innovative network application scenarios ranging from campus

network innovation to cloud network virtualization and data center network optimization. Unfor-

tunately, the security issues and limitations of those two innovations are rarely explored, which put

SDN-based infrastructures at risk.

In this thesis, we conduct in-depth security analysis upon SDN-provisioned network visibility

and programmability. As a result, we locate several security issues and limitations that may impede

current SDN to achieve its goals. First, network visibility depends on a reliable topology manage-

ment service. However, we find that existing topology management services in SDN are vulnerable

to network topology poisoning attacks, which thereby misleads topology-dependent services and

applications. Second, programmability enables the concurrent execution of multiple apps/modules

in SDN to efficiently process network events. However, we find that the concurrency of SDN is

vulnerable to harmful race conditions, which can be exploited by state manipulation attacks and

cause serious security and reliability issues. Finally, the current SDN visibility and programma-

bility only cover network flow-level information, which is far from enough to secure the entire

infrastructure in today’s enterprise/cloud systems. It is because most of the recent cyber attacks

involve many system-level malicious activities to attack system resources (e.g., a file hijacking by

ransomware).

To tackle these problems, we propose new security solutions to significantly enhance exist-

ing SDN on its visibility and programmability with three major components, i.e., TOPOGUARD,

CONGUARD, and SYSFLOW. TOPOGUARD works as a security extension on the SDN controller

that secures the topology management by providing light-weighted, automatic, and real-time de-

tection of topology poison attacks. CONGUARD works as a dynamic framework to effectively

ii



detect and exploit those harmful race conditions in SDN controllers. SYSFLOW works as a unified

programmable security framework to facilitate the enforcement of diverse security intents to secure

both network and system resources by abstracting system level activities and security capabilities.

We believe our experience and lessons are of great benefit to design and implement more secure

SDN architecture.
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1. INTRODUCTION

Modern networks, e.g., enterprise networks or data center networks, are posing more enor-

mous management challenges due to their expanding size and complexity. In addition to best-

effort packet forwarding, operators require to enforce more and more various network applica-

tions/services/protocols for different administrative requirements, including, but not limited to,

elastic traffic routing, network virtualization, access control, and intrusion detection. However,

legacy networking paradigms can hardly capture the pace to innovate new network applications,

services, and protocols for two primary reasons: first, it is challenging to acquire a holistic net-

work view and make effective network-wide decisions in legacy networking paradigms because

the control plane resides in distributed and heterogeneous network devices, e.g., switches, router,

and firewalls; second, it requires tedious and error-prone manual efforts to configure each device to

enforce desired network-wide intents since the control plane is tightly coupled with the dedicated

and proprietary data plane devices.

Recently, Software-Defined Networking (SDN) has emerged as a novel networking paradigm

to innovate the ossified network infrastructure fundamentally. By decoupling the control logic from

the data plane, SDN provides a logically centralized control plane (or SDN controller), the general

data plane packet-processing model, and standard communication protocols, e.g., OpenFlow [1],

to simplify the enforcement of various network management tasks. Upon the controller, SDN

intends to achieve two key innovations, i.e., flexible network programmability and holistic network

visibility, and thus to support operators to program innovative applications for different network

management scenarios, such as traffic engineering to data center virtualization, fine-grained access

control.

Flexible Network Programmability. Instead of individually configuring control logic into

heterogeneous and vendor-specific data plane devices, SDN introduces a centralized control plane

to management unified data plane devices with a general packet processing abstraction, i.e., “Match-

Action” paradigm. By abstracting the control logic into the centralized control plane, SDN pro-
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vides a strong innovation to enable developers to flexibly program network applications with dif-

ferent functionalities. The innovation is similar to smart-phone platforms (e.g., Android [2] and

iOS [3]) that allow software engineers to develop mobile applications with flexible and creative

functionalities. In order to empower this innovation, several network programming languages and

frameworks in the SDN control plane have been proposed so far to further simplify the develop-

ment of novel network functionalities, such as general-purpose SDN controllers [4, 5, 6, 7, 8] and

domain-specific programming languages [9, 10, 11, 12, 13].

Holistic Network Visibility. In an SDN network, all data plane devices are managed by the

centralized control plane via various control messages, such as flow rule modification messages

and data plane configuration messages. The control plane can collect network status information

from each data plane device by sending statistics query messages. Therefore, an SDN application

running on the control plane naturally has the holistic visibility of all connected data plane devices.

Based on holistic visibility, SDN can facilitate its applications to effectively and efficiently enforce

custom network functions/algorithms. The innovation of holistic network visibility is highlighted

in many applications, including, but not limited to efficient routing [14, 15, 16, 17], network-wide

monitoring [18, 19, 20, 21], and security [22, 23, 24].

Despite the innovative benefits, the security issues and limitations of SDN-provisioned vis-

ibility and programmability are rarely investigated, which may threaten modern infrastructures,

e.g., enterprise or cloud, that adopt SDN techniques. Motivated by the fact, in this thesis, we

first perform in-depth security analysis on the network visibility and programmability provided by

SDN. Consequently, we present three security issues and limitations (as detailed in Section 1.1)

including: first, vulnerable topology management services in SDN significantly undermine net-

work visibility; second, harmful race conditions seriously hazard SDN-provisioned network pro-

grammability; and third, the lack of system security visibility and programmability substantially

limits SDN’s adoption to ensure the security of modern cloud/enterprise infrastructures. To tackle

the security issues and limitations, we propose our solutions (as detailed in Section 1.2) to fortify

SDN with three goals: 1) enhance the security of network visibility provided by SDN; 2) enhance
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the security of network programmability provided by SDN; and 3) enhance system security visi-

bility and programmability to SDN.

1.1 Security Analysis on Network Visibility and Programmability in SDN

In this thesis, we perform in-depth security analysis upon network visibility and programma-

bility provided by SDN in three aspects: first, we aim to investigate if the holistic network visibility

provided by SDN is reliable; second, we want to examine if the flexible network programmabil-

ity provided by SDN is secure; third, we intend to investigate if SDN-provisioned visibility and

programmability are enough to address emerging security threats in modern infrastructures, e.g.,

cloud or enterprise. As a result, we locate three previously unknown or under-explored security

issues and limitations as follows.

Firstly, network visibility in SDN depends on a reliable topology management service. How-

ever, from a systematic security analysis, we uncover new security loopholes existing in current

topology management services, i.e., Host Tracking Service and Link Discovery Service, in SDN

controllers. For the Host Track Service, there have few security restrictions on host migration. For

the Link Discovery Service, it leverages Link Layer Discovery Protocol (LLDP) messages to dis-

cover switch links. However, the LLDP can be falsified or relayed in SDN networks. Furthermore,

we introduce two Network Topology Poisoning Attacks, i.e., Host Location Hijacking Attack and

Link Fabrication Attack. Upon the exploitation of the Host Tracking Service, an attacker can hijack

the location of a network server to phish its service subscribers. By poisoning the Link Discovery

Service, an adversary can inject falsified links (via fake LLDP injections or host-relayed LLDP) to

create a black-hole route or launch a man-in-the-middle attack to eavesdrop/manipulate messages

in the network. More details about the security issue of network visibility in SDN is covered in

Chapter 2.

Secondly, network programmability in SDN enables application developers with the concurrent

programming model to efficiently process network events in the large-volume and asynchronous

nature. Based on systematic study on concurrency programming model in widely-used SDN con-

trollers, we find that network programmability in SDN is vulnerable to concurrency vulnerabilities,
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i.e., harmful race conditions, which can be exploited by the attackers to cause the denial of services

(e.g., controller crash, core service disruption) and privacy leakage, etc. Based on the harmful race

conditions, we present a new attack, namely State Manipulation Attack, against the security and

reliability of the SDN control plane. We note that this attack is closely tied to the unique SDN

semantics, which makes all popular SDN controllers (e.g., Floodlight [25], ONOS [26], and Open-

Daylight [27]) vulnerable. We discuss more details about such vulnerabilities against network

programmability in Chapter 3.

Finally, the current SDN-provisioned visibility and programmability only cover network flow

level information, which is far from enough to secure the entire infrastructure in today’s enter-

prise/cloud systems. The reason lies in that emerging cyber attacks tend to leverage elusive multi-

stage attack strategies that involve many system-level malicious activities. Unfortunately, in many

cases, existing SDN techniques fail to capture and prevent such advanced attacks due to it lacks

system-level security visibility and programmability. For example, an SDN-based firewall can

hardly prevent outgoing traffic associated with data ex-filtration attack if the leaked sensitive data

is encrypted by the attacker. More details about confined visibility and programming in SDN is

discussed in Chapter 4.

1.2 Solution Overview

As shown in Figure 1.1, in this thesis, we aim to provide a framework to significantly enhance

the security of existing SDN on its innovative visibility and programmability with three key com-

ponents, i.e., TOPOGUARD [28], CONGUARD [29] and SYSFLOW. TOPOGUARD is to enhance

the security of network visibility by providing light-weighted, automatic, and real-time detection

of network falsification attempts, i.e., topology poisoning attacks. CONGUARD is to enhance the

security of network programmability in SDN by providing a dynamic race detection framework to

detect and eliminate harmful race conditions. SYSFLOW is to enhance the SDN control plane with

system security visibility and programmability to fortify modern cloud/enterprise infrastructures.

We describe each component in detail as follows.

Firstly, to secure SDN-provisioned network visibility, we carefully analyze various possible

4



TopoGuard: Enhancing Security of Network Visibility

ConGuard: Enhancing Security of Network Programmability

SysFlow: Providing System Security Visibility and Programmability

Security-enhanced SDN Control Plane

Control Plane

Data Plane

Host HostNetwork

Routing 
Apps

Load Balancing
Apps

Monitoring
Apps

Security 
Apps

…

Figure 1.1: The overview of my thesis work

countermeasure strategies against topology poisoning attacks in SDN (i.e., host location hijack-

ing attacks and link fabrication attacks). Based on the countermeasure analysis, we present TO-

POGUARD, as a security extension on the SDN controller, to secure the topology management by

providing light-weighted, automatic, and real-time detection of topology poison attacks. On the

one hand, TOPOGUARD proposes to detect link fabrication attacks in two aspects: first, it utilizes

a keyed-hash message authentication code (HMAC) as an authenticator during link discovery pro-

cedure to discover fake LLDP injections; second, it pinpoints host-relayed LLDP messages by

leveraging behavior analysis to check the role of switch ports during LLDP propagation. On the

other hand, TOPOGUARD proposes to detect host location hijacking attacks by verifying the legit-

imacy of Host Migration in with both pre-condition and post-condition. The pre-condition lies in

5



a port disconnection signal before a host migration happens. The post-condition is that the target

host is not reachable in the previous location after a host migration happens. As shown in Chapter

2, the results show that TOPOGUARD is effective to defend against topology poisoning attacks by

adding only minor overhead.

Secondly, to secure network programmability provided by SDN from harmful race conditions,

we leverage race detection techniques to detect and patch those serious concurrency vulnerabilities

in SDN control plane before their exploitation by attackers. In this work, we propose a dynamic

framework, called CONGUARD, to effectively detect and validate those harmful race conditions in

SDN controllers. In particular, we solve two research challenges in CONGUARD. First, detecting

race conditions in the SDN control plane is generally undecidable due to lack of accurate modeling

of the SDN semantics. Second, deciding if a race condition is harmful or not is difficult since they

may be non-deterministic that only occur in rare scenarios with the specific input and schedule.

To address the first challenge, we present a novel concurrency model of the SDN control plane

in the form of happens-before semantics. Based on the SDN unique concurrency model, we can

effectively locate race operations based on dynamic analysis. To address the second challenge,

we develop a technique called adversarial state racing to detect harmful race conditions in the

SDN control plane. Because there is no pre-defined order between the two race operations, we can

hence actively control the scheduler (e.g., by inserting delays) to run an adversarial schedule, which

forces one operation to execute after another. If we observe an erroneous state (e.g., an exception

or a crash) in the adversarial schedule, we have found a harmful race condition. As shown in

Chapter 3, CONGUARD effectively locates 15 harmful race conditions in the SDN control plane.

Based on the discovery, we assist the developer in patching most of them.

Thirdly, to secure modern infrastructure from emerging advanced attacks, we propose to en-

hance SDN with system security visibility and programmability. For this purpose, we face two

research questions. First, can we model system activities and security capabilities tightly coupled

with low-level running system and hardware related details? Second, with the unified abstraction,

can we provide an SDN-compatible framework to effectively and efficiently enforce holistic sys-
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tem visibility and flexible programmability? To answer the first question, we introduce a novel

flow-based model, namely system flow, to abstract system activities. Based on the system flow

model, we introduce system flow rules that can be used to represent system security intents. To

answer the second question, upon the flow-based system security abstraction, we propose a novel

framework, namely SYSFLOW, to provide system security visibility and programmability. To be

compatible with SDN, SYSFLOW embraces a two-layer design including SYSFLOW Data Plane

and SYSFLOW Controller. The SYSFLOW Data Plane automatically enforces system flow rules

to enable fine-grained responsive security actions, and dynamically update security intents (in the

form of system flow rules) according to the change of contexts. The logically centralized SYS-

FLOW Controller acquires holistic visibility of security contexts from installed system flow rules

in host systems and provides a unified programming abstraction to facilitate the flexible implemen-

tation and deployment of diverse SYSFLOW security intents based on system flows, even across

the entire infrastructure. As shown in Chapter 4, SYSFLOW can effectively help SDN to defend

against advanced cyber attacks with a minor performance overhead.

In all, we combine the three components into a generalized framework, which can serve as

a robust framework to secure SDN architecture. The framework first leverages the functionality

of TOPOGUARD component to inspect control messages from the network data plane (e.g., SDN

switches), to detect and block spoofing attacks against network visibility, i.e., topology poisoning

attempts. We consider this component can be extended to defend against more network-side at-

tacks against the SDN control plane. Moreover, the framework utilizes CONGUARD component to

instrument the SDN controller and its applications to generate execution traces and detect vulner-

abilities, i.e., harmful race conditions, in an offline manner. The identified vulnerabilities can help

developers to secure the SDN programmability by offline patching or online virtual patching. We

can also extend this component to pinpoint and vet more vulnerable/malicious SDN applications.

Besides, the framework uses SYSFLOW to extend a unified data plane into host systems and thus

enhance SDN applications with system visibility and programmability to fortify modern infrastruc-

tures, e.g., cloud or enterprise. This component provides us more insights to abstract/complement
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SDN with more security capabilities from other systems/components, e.g., virtual machines or

containers. We will discuss more about the integration and extension of our proposed components

in Chapter 5.

We organize the remainder of this thesis as follows. The following three chapters, Chapter 2, 3,

4, present the background, motivation, research problems, design, implementation, and evaluation

results of the TOPOGUARD, CONGUARD, SYSFLOW, respectively. Moreover, in Chapter 5, we

discuss our learned lessons and a generalized secure SDN architecture by integrating and extending

of our proposed solutions. Finally, Chapter 6 concludes the entire thesis work and provides future

work for this thesis.
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2. TOPOGUARD: ENHANCING SECURITY OF NETWORK VISIBILITY IN SDN*

2.1 Introduction

Software-Defined Networking (SDN) has emerged as a new network paradigm to innovate the

ossified network infrastructure by separating the control plane from the data plane (e.g., switches),

as well as providing holistic network visibility. With the centralized holistic network visibility,

many application scenarios have been studied and deployed since then, ranging from campus net-

work innovation to cloud network virtualization and data center network optimization. However,

the security of network visibility provided by SDN controllers is under-explored, which leaves a

great room for adversaries to attack SDN networks.

In this thesis, we study the security of SDN-provisioned network visibility in terms of network

topology management services/modules of the mainstream SDN controllers. As a fundamental

building block for network visibility, the topology information is adopted to most controller core

services and upper-layer apps, e.g., those related to packet routing, mobility tracking, network

virtualization, and optimization. From the study, we identify several new vulnerabilities that an

attacker can exploit to poison the network topology information in SDN networks. If such funda-

mental network topology information is poisoned, all the dependent network services will become

immediately affected, causing catastrophic problems. For example, the routing services/apps in-

side the SDN controller can be manipulated to incur a black hole route or man-in-the-middle

attack. In particular, we uncover new security loopholes existing in current Host Tracking Service

and Link Discovery Service in SDN controllers. Furthermore, We introduce two Network Topol-

ogy Poisoning Attacks, i.e., Host Location Hijacking Attack and Link Fabrication Attack. Upon

the exploitation of the Host Tracking Service, an attacker can hijack the location of a network

*Reprinted with permission from “Poisoning Network Visibility in Software-Defined Networks: New Attacks and
Countermeasures” by Lei Xu, Sunmin Hong, Haopei Wang and Guofei Gu, In Proceedings of 22nd Annual Network 
Distributed System Security Symposium, 8-11 February 2015, San Diego, CA, USA, Copyright 2015 Internet Society.
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server to phish its service subscribers. By poisoning the Link Discovery Service, an adversary can

inject falsified links to create a black-hole route or launch a man-in-the-middle attack to eaves-

drop/manipulate messages in the network. Our new attacks share some similarities in spirit to

traditional spoofing attacks in legacy networks (e.g., ARP Poisoning Attack), however with sig-

nificant differences in exploiting unique SDN vulnerabilities. According to our study, all major

open source SDN controllers in the market (i.e., Floodlight, OpenIRIS, OpenDayLight, Beacon,

Maestro, NOX, POX, and Ryu) are affected.

In order to mitigate such attacks, we investigate possible defense strategies. We note that it is

difficult to simply use static configuration to solve the problem (similar to using static ARP entry

for hosts or the port security feature for switches to address ARP poisoning attacks) because it

requires tedious and error-prone manual effort and is not suitable for handling network dynamics,

which is a valuable innovation of SDN. To better balance the security and usability, in this work, we

propose TOPOGUARD, a new security extension to the existing OpenFlow controllers to provide

automatic and real-time detection of network topology exploitation. By utilizing SDN-specific

features, TOPOGUARD checks precondition and postcondition to verify the legitimacy of host

migration and switch port property to prevent the Host Location Hijacking Attack and the Link

Fabrication Attack.

To summarize, the contributions of this work include the following:

• We perform the first security analysis on the network visibility provided by SDN/OpenFlow

Topology Management Service. In particular, we have discovered new vulnerabilities in the

Device Tracking Service and Link Discovery Service in eight mainstream SDN/OpenFlow

controllers.

• We propose Network Topology Poisoning Attacks to exploit the vulnerabilities we have

found. Topology Poisoning Attacks can significantly infect the fundamental network visibil-

ity provided by SDN and cause serious security issues for upper services. We demonstrate

the feasibility of those attacks both in the Mininet emulation environment and a hardware

SDN testbed.
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• We investigate the defense space and propose automatic mitigation approaches against Net-

work Topology Poisoning Attacks, along with a prototype defense system, TOPOGUARD,

to greatly enhance the security of the network visibility of SDN. Our evaluation shows that

TOPOGUARD imposes only a negligible performance overhead.

2.2 Background and Security Analysis

In this section, we provide an introduction to basic operations in SDN/OpenFlow. Then, we

present security analysis on network visibility provided in the existing SDN controllers. Finally,

we introduce two novel attack vectors against network visibility as a motivation for TOPOGUARD

to enhance the security of network visibility in SDN.

2.2.1 Background on Basic SDN Operations

Software-Defined Networking (SDN) is a new programmable network framework that decou-

ples the control plane from the data plane. An SDN application in the control plane generates

complex network functions such as computing a routing path, monitoring network behavior, and

managing network access control. The data plane handles hardware-level network packet process-

ing based on high-level policies from the control plane. SDN enables users to design and distribute

innovative flow handling and network control algorithms conveniently and add much more intelli-

gence and flexibility to the control plane. We can implement new control functions or protocols just

as writing a normal application (analogous to writing an app for smartphone/Android OS). Open-

Flow, as a leading reference implementation of SDN, defines the communication protocol between

the control plane and the data plane. An OpenFlow switch must establish a TCP connection (with

an option of TLS/SSL) to the OpenFlow controller before exchanging symmetric/asynchronous

OpenFlow messages. When a new packet comes into an OpenFlow switch, the switch checks if

the packet matches any existing flow rules. If so, the switch will process the packet based on the

matching rule with the highest priority. Otherwise, the switch sends a Packet-In OpenFlow mes-

sage to the OpenFlow controller to ask for proper actions according to network policies specified

in the SDN apps. Once the specific decision is made, the OpenFlow controller either issues a
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Packet-Out message for the one-time packet processing or instructs the OpenFlow switch to install

new flow rules by sending a Flow-Mod message. In addition, whenever any change on a switch

port is detected, a Port-Status OpenFlow message must be sent to the controller.

2.2.2 Security Analysis on Network Visibility in SDN

Different from legacy networks, topology management is unique in SDN networks due to the

newly added, logically centralized network controller. In order to facilitate network management

and programmability, the SDN controller maintains topology information and provides such net-

work visibility to upper services/apps, as shown in Figure 2.1. More importantly, not only all

controllers use the same topology discovery mechanism, but also both core controller components

and SDN applications are tightly coupled with the topology information. The more OpenFlow

applications are developed, the more critical dependencies would affect the whole components in

the controller.

Generally, in an SDN/OpenFlow network, topology management includes three parts: (1)

switch discovery, (2) host discovery, (3) internal link (i.e., switch-to-switch link) discovery. The

switch discovery does not require any additional protocol since when an OpenFlow switch estab-

lishes a connection to the OpenFlow controller, the switch information should be stored in the

OpenFlow controller for future management. When a switch receives any packet from a host, and

it does not match any flow entry in the flow table, a Packet-In message encapsulating the packet is

sent to the OpenFlow controller. The OpenFlow controller then learns the information about the

host and its location (i.e., the corresponding attached switch port) from the message. For internal

link discovery, the OpenFlow controller herein utilizes OpenFlow Discovery Protocol (OFDP). In

this work, we mainly focus on the Host Tracking Service and Link Discovery Service inside the

OpenFlow controller.

Host Tracking Service. Inside an OpenFlow controller, Host Profile is maintained to track

the location of a host. There are significant advantages to Host Tracking. For example, in a data

center, it is tedious and error-prone to manually maintain the locations of virtual machines due

to their frequent migration. Also, as demonstrated in [30], the OpenFlow controller with host
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Figure 2.1: Service dependencies among layered controller components

location tracking can provide seamless handoff among different access points. In this regard, the

Host Tracking Service (HTS) in the controller is to provide an easy way to guarantee flexible

network dynamics by dynamically probing Packet-In messages and updating Host Profiles.

Let us take a close look at how an OpenFlow controller tracks the dynamics of host devices. In

an OpenFlow network, the OpenFlow controller reactively listens to Packet-In messages to main-

tain Host Profile. During this procedure, the OpenFlow controller mainly handles two relevant host

events (i.e., JOIN and MOVE). The scenario for the first event is that, when the OpenFlow con-

troller fails to locate an existing Host Profile according to the information from incoming Packet-In

messages, it creates a new Host Profile. In such a case, the controller assumes a new host joins the

network. The second scenario occurs when the OpenFlow controller successfully locates a Host

Profile but finds mismatched location information between the Host Profile and Packet-In mes-

sages. In the case, it assumes the host has moved to a new location and then updates the location
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information inside the corresponding Host Profile.

Table 2.1 shows Host Tracking Services in current OpenFlow controller platforms. In order

to handle host mobility, the existing OpenFLow controllers maintain a profile for each host. In

detail, the Host Profile includes: (1) MAC address, (2) IP address, and (3) Location information

(i.e., the DPID and the port number of the attached switch as well as the last seen timestamp).

Normally, a Host Profile is indexed by the MAC address. Floodlight, for example, indexes the

Host Profile with MAC address and VLAN ID. Beacon and the old version of Host Tracking

Service in OpenDayLight support both MAC address and IP address as the index.

Vulnerabilities in Host Tracking Service. Host Tracking Service in the OpenFlow controllers

maintains Host Profile for each end host to track network mobility. As long as hosts (or virtual ma-

chines) migrate, HTS can quickly react to such event. In particular, HTS recognizes the motion

of hosts by monitoring Packet-In messages. Once being aware that a particular host migrates to a

new location, i.e., DPID or ingress Port ID is different from the corresponding entry of the Host

Profile, HTS updates Host Profile and optionally raises a HOST_MOVE event to its subscriber

services. However, such an update mechanism is vulnerable due to the ignorance of authentica-

tion. In order to investigate security issues when HTS updates Host Profile, we manually analyze

the source code of HTS in current mainstream OpenFlow controllers. Our study shows that ex-

isting OpenFlow controllers have few security restrictions on host location update. For instance,

Floodlight and the old version of OpenDayLight controller provides an empty-shell API, called

isEntityAllowed, which accepts every host location update rather than blocking possible spoofing

attacks. The POX controller throws a warning if the observed time for device migration is less

than a minimum expected time (60 seconds by default). However, we assume that such simple

verification is easy to bypass if the adversary recognizes this feature in advance. The lack of con-

sideration on security provides an opportunity for an adversary to tamper host location information

by simply impersonating the target host. What is worse, all OpenFlow controllers have a routing

module that utilizes the host location information to make the packet forwarding decision. That is,

if an adversary can tamper the location information, he/she has the potential to hijack the traffic
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Figure 2.2: Link discovery procedure in OpenFlow networks

towards the host.

Table 2.1: Topology management services

Controller Platform Link Discovery Service TLVs Host Tracking Service Host Profile
Ryu switches.py DPID, Port ID, TTL host_tracker.py MAC, IP, Location

Maestro DiscoveryApp.java DPID, Port ID, TTL LocationManagementApp.java MAC, Location
NOX discovery.py DPID, Port ID, TTL hosttracker.cc MAC, Location
POX discovery.py DPID, Port ID, TTL, System Description host_tracker.py MAC, IP, Location

Floodlight LinkDiscoveryManager.java DPID, Port ID, TTL, System Description DeviceManagerImpl.java MAC, VLAN ID, IP, Location
OpenDayLight DiscoveryService.java DPID, Port ID, TTL, System Description DeviceManagerImpl.java MAC, VLAN ID, IP, Location

OpenIRIS OFMLinkDiscovery.java DPID, Port ID, TTL, System Description OFMDeviceManager.java MAC, VLAN ID, IP, Location
Beacon TopologyImpl.java DPID, Port ID, TTL, Full Version of DPID DeviceManagerImpl.java MAC, VLAN ID, IP, Location

Link Discovery Service. To dynamically discover topology, the Link Discovery Service (LDS)

inside SDN controllers uses Open Flow Discovery Protocol (OFDP), which refers to LLDP (Link

Layer Discovery Protocol) packets to detect internal links between switches.

Figure 2.2 depicts the link discovery procedure in an OpenFlow network. Note that here we

illustrate only a unidirectional link discovery for simplicity (the discovery of the opposite link is

performed in a similar fashion). Initially, the OpenFlow controller sends out Packet-Out messages

to Switch X with the payload of a controller-specific LLDP packet. The payload of the LLDP

15



packet contains DPID and the output port of Switch X. Upon receiving the LLDP packet, Switch X

advertises it to all other ports in a broadcast manner. Typically, in an OpenFlow network, this kind

of broadcast is achieved by iterative transmissions of one LLDP packet to each broadcast-enabled

port of a switch. Then, the next-hop Switch Y, driven by its firmware or under explicit instructions

of the attached OpenFlow controller, reports the incoming LLDP packet to the controller with the

ingress Port ID and DPID of Switch Y via a Packet-In message. When receiving the Packet-In

message from Switch Y, the OpenFlow controller can detect a unidirectional link from Switch X to

Switch Y. Table 2.1 shows link discovery components in existing OpenFlow controller platforms.

We find that all of these controllers embrace the internal link discovery procedure as we describe

above.

In addition to the internal link discovery, some OpenFlow controller implementations, e.g.,

Floodlight and OpenIRIS, also propose a scheme to detect multi-hop links, which refers to links

traverse across a Non-OpenFlow island. In order to detect such links, Floodlight leverages BDDP

packets(i.e., a broadcast version of LLDP packets with a broadcast destination MAC address) to

overcome unpredictable forwarding behaviors of Non-OpenFlow switches.

Vulnerabilities in Link Discovery Service. To build the entire network topology and handle

dynamics of a network, OpenFlow adopts OFDP for topology management. Typically, OpenFlow

controllers utilize LLDP packets to discover links among OpenFlow switches. However, there

exist security flaws during the link discovery procedure.

The LDS in OpenFlow controllers is subject to two invariants: 1) The integrity/origin of LLDP

packets must be ensured during the Link Discovery procedure; 2) The propagation path of LLDP

packets can only contain OpenFlow-enabled switches. Unfortunately, those two security invari-

ants are poorly enforced in the current instantiations of OpenFlow controllers. In our study, we

find that the syntax of LLDP packets varies among different OpenFlow controller platforms. For

example, POX and Floodlight use an integer variable to represent the port number of a remote

switch, whereas the form of the port number in OpenDayLight is the ASCII value of characters.

In addition, some OpenFlow controllers add extra TLVs (Type-Length-Values), e.g., system de-
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scription, to enrich the semantics of LLDP packets. The controller-uniqueness of LLDP packets to

some extent protects the LLDP “origin invariant.” However, we argue that it is not enough when

taking into account the open source nature of OpenFlow controllers and simple semantics of LLDP.

Also, the Floodlight controller adds an origin authenticator as an extra TLV of LLDP packets to

verify the origin of LLDP packets. However, the authenticator keeps unchanged after the setup of

Floodlight controllers, which allows an adversary to violate the origin property. More seriously,

we find that there are no mechanisms in current OpenFlow controllers to ensure the integrity of

LLDP packets.

In our study, we also find some OpenFlow controllers, e.g., Floodlight and OpenDaylight,

provide an API suppressLinkDiscovery to block LLDP propagation to particular ports connected

to hosts. This kind of method is similar to the BPDU Guard security feature in legacy Ethernet

switches, which prevents BPDU frames from sending to those ports enabled with the PortFast

feature (i.e., manual configuration of switch ports connected to hosts). However, depending only

on static port settings is not enough for diverse OpenFlow network environments, varying from

a home network to an enterprise or cloud/data-center network and from stationary networks to

mobile networks.

In order to deceive the LDS, an adversary can violate the “integrity/origin invariant” and “path

invariant” of LLDP packets. In particular, the adversary originates falsified LLDP packets or

simply relays LLDP packets between two switches to fabricate a non-existing internal link. At first

glance, it does not seem practical to inject arbitrary packets into the network from hosts or virtual

machines because they are usually isolated by specific mechanisms, e.g., VLAN and Firewall.

However, it appears feasible for hosts and virtual machines to inject or relay LLDP packets in

OpenFlow networks. The OpenFlow networks allow LLDP packets to be sent outside all switch

ports to track internal links between switches dynamically. Thus, the current design of OpenFlow

controllers accepts LLDP packets from each switch port, even though it is connected to a host,

which leaves a room for an adversary to inject fake internal links on compromised hosts or virtual

machines.
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2.2.3 Novel Attacks against the Network Visibility in SDN

In this part, we present two novel attack vectors against network visibility in SDN by exploiting

vulnerabilities in Topology Management Services.

Threat Model. We assume an adversary possesses one or more compromised hosts or virtual

machines (e.g., through malware infection) in the SDN/OpenFlow network and has the read and

write privilege on packets in the operating system.2 Note that, in this work, we assume the trans-

mission of OpenFlow messages via the control channel can be properly protected by SSL/TLS.

Experimental Environment. Furthermore, we demonstrate the SDN-specific Network Topol-

ogy Poisoning Attacks both in Mininet 2.0 [31] and a physical environment (with hardware Open-

Flow switches). Mininet 2.0 is widely used for emulating an OpenFlow network environment. Our

hardware testbed includes several OpenFlow-enabled hardware: TP-LINK(TL-WR1043ND) and

LINKSYS(WRT54G) which run OpenWRT firmware with an OpenFlow extension and PCs with

Intel Core2 Quad processor and 2GB memory.

Host Location Hijacking Attack. Here, we propose an attacking strategy where the adversary

crafts packets with the same identifier of the target host. Once receiving the spoofed packet, the

OpenFlow controller will be tricked to believe that the target host moves to a new location, which

actually is the attacker’s location. As a result, future traffic to the target is hijacked by the adversary.

Next, we introduce a practical example of harvesting web clients by exploiting the vulnerability in

HTS, as shown in Figure 2.3.

In order to conduct a Web Clients Harvesting Attack, we first need to retrieve the identifier

of the target. From Table 2.1, we find that the host identifier varies among MAC address, VLAN

ID, and IP address depending on the platform and version of OpenFlow controllers. It is trivial

to know the IP address if we have already chosen an attacking target. Besides, the VLAN ID is

normally unused during the update procedure of Host Profile. On the other hand, as MAC address

is regarded as the (or part of) identifier for hosts in most OpenFlow controllers (except for Ryu),

we can use ARP request packets to probe the MAC address of our target. Note that such a simple

2In the extreme case, the adversary can be an insider.
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Figure 2.3: Attacker impersonates a specific web server to phish users

probe method is feasible because the OpenFlow network does not change the source MAC address

during packet transmission.

In addition, one difficulty to successfully exploit HTS lies in that the adversary needs to race

with the target host because any traffic initiated from the target host can correct host location

information in the controller. To overcome the non-determinism of such situation, we could set

our target as a server. This is because a server normally runs in a passive mode, i.e., it opens a

specific port(s) and waits for remote connections from clients.

In this thesis, we launched a Host Location Hijacking Attack in our experimental environment.

We chose Floodlight (master) as the OpenFlow controller, atop which the Host Tracking Service

and Shortest Path Routing Service are enabled by default. We deployed an Apache2 [32] web

server with IP address “10.0.0.100” and several hosts in our customized OpenFlow topology. The

reachability test is shown in Figure 2.4(a), that is, before we launch the Host Location Hijacking

Attack, clients can visit the genuine web server with our assigned IP address. Upon a compromised

host, we also run a Web service and send ARP request to probe the corresponding MAC address of

“10.0.0.100”. We then use Scapy [33] to periodically inject fake packets in the name of our target
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(a) Connected to Genuine Server (b) Hijacked by Malicious Server

Figure 2.4: Web impersonation attack

(the genuine web server “10.0.0.100”). After that, we find the new coming client attempting to

visit the web server “10.0.0.100" is directed to the malicious server, as shown in Figure 2.4(b).

Link Fabrication Attack. In this part, we show how an adversary can fabricate a link into the

network topology to threaten normal network activities in two ways, i.e., Fake LLDP Injection and

LLDP Relay.

Firstly, an adversary can generate fake LLDP packets into an OpenFlow network to announce

bogus internal links between two switches. By monitoring the traffic from OpenFlow switches, the

adversary can obtain the genuine LLDP packet. Afterward, he/she can violate the origin invariant

of an LLDP packet, while OpenFlow controllers leverage specific syntax and extra TLVs for verifi-

cation. Due to the open source nature of most OpenFlow controllers, the adversary, can find out the

reference LLDP syntax. Although the source code of OpenFlow controllers could be veiled and

a network administrator could customize the source code, it is also available to decode the LLDP

packets by using differential tools. Moreover, as described above, the weak authenticator of LLDP

packets imposed by several OpenFlow controllers can be bypassed. As long as the adversary ac-

quires the genuine LLDP packet along with its syntax, he/she can modify the specific contents of

the LLDP packet, e.g., the DPID field or the port number field, and launch the Link Fabrication

Attack. In order to circumvent the possible anomalous traffic detection, the adversary could tune

the LLDP injecting rate to the LLDP sending rate monitored from the OpenFlow controller.

Instead of injecting forged LLDP packets, a stronger adversary can also fabricate internal links

in a relay fashion (without packet modification). That is, when receiving an LLDP packet from
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Figure 2.5: Link fabrication in an LLDP relay manner

one target switch, the adversary repeats it to another target switch without any modification. In

the case, the adversary constructs a fake topology view to the OpenFlow controller as if there is

an internal link between those two target switches. This kind of fake link injection incurs future

attack possibilities which we will describe more in detail as follows.

Here, we discuss two ways to build a communication channel to relay LLDP packets, i.e., by

physical links and by a tunnel. An intuitive relay method is that an adversary sets up physical

links (e.g., cable or wireless) between two switches. If this is not feasible, the adversary can

use another more feasible approach, which relays LLDP packets by reusing the existing OpenFlow

network infrastructure as illustrated in Figure 2.5. Particularly, the dotted line is the communication

channel between two users in the view of an OpenFlow controller, whereas the dashed line is the

actual traffic route. To successfully launch an LLDP relay attack, the adversary first needs to
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find a suitable relay host(s), which can be achieved by a connection test. Another thing we need

to note is that some OpenFlow controllers, e.g., Floodlight and POX, disable the Host Tracking

Service on internal link switch ports, which hinders the deployment of the LLDP relay channel.

However, we cannot ignore the tunnel-based LLDP relay attack on those controllers in a hybrid

network scenario (i.e., a network contains both OpenFlow islands and Non-OpenFlow islands), as

the OpenFlow controller can hardly stop Host Tracking Service on the Multi-hop link ports (i.e.,

switch port outgoing to another Non-OpenFlow switch).

Next, we illustrate two attack possibilities on the top of Link Fabrication Attack, i.e., Denial of

Service attack and man-in-the-middle attack.

Aggregation

Ingress

Smallest DPID

Second Smallest DPID Target Switch

User

(a) The chosen switch has the second smallest DPID

Aggregation

Ingress

Second Smallest DPID

Smallest DPID Target Switch

User

(b) The chosen switch has the smallest DPID

Figure 2.6: Denial of service attack

Denial of Service Attack. To prevent a broadcast storm and save energy, OpenFlow controllers

provide Spanning Tree Service. When any topology update occurs, Spanning Tree Service is

triggered to block those redundant ports. However, this capability can be leveraged by an adversary

to launch a Denial of Service attack. In particular, by injecting a fake link into existing topology,

the adversary can borrow the knife of Spanning Tree Service to “kill” normal switch ports.

One challenge to launch this type of attack is the non-deterministic characteristics of Spanning

Tree Calculation after fake link injection. We note that the Spanning Tree Algorithm always ex-
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cludes the link that connects the largest DPID switches. Hence, we introduce an attack strategy

tailored to a practical scenario, where an adversary possesses several compromised hosts connected

to ingress switches. By listening to LLDP packets, the adversary can acquire the DPIDs of two

ingress switches. Then, the adversary controls the compromised host which connects to the ingress

switch with a lower DPID and injects a fake LLDP to announce a link with the target switch. As a

result, there may be two consequences: if the DPID of the aggregation switch is smaller than that

of our chosen switch, the adversary could shut down an arbitrary port of the target switch, as shown

in Figure 2.6(a); otherwise, if the chosen switch has the smallest DPID, the link between the target

switch and the aggregation switch is excluded from the spanning tree and also the corresponding

ports are blocked, as shown in Figure 2.6(b).

We demonstrated a Denial of Service attack in our experimental environment. We chose POX

as the OpenFlow controller, enabling routing module (l2_learning.py), link discovery module (dis-

covery.py) and spanning tree module (spanning_tree.py). Note that the action for non-spanning-

tree ports was configured as Port_Down. Then, we deployed a FatTree-like topology, where we

controlled two hosts connecting to two sibling ingress switches. We ran Wireshark with the Open-

Flow Dissector extension [34], which helps to parse OpenFlow messages, and dumped the Packet-

Out messages with the payload of LLDP packets. We also ran an attacking script to craft fake

LLDP packets based on the dumped genuine LLDP packets and injected them to the switch with

the smaller DPID. As a result, we noticed that the users who are connected to our target switch

port could not access the network resource anymore.

2.3 Countermeasure Analysis

2.3.1 Static Defense Strategies

To defeat the proposed Network Topology Poisoning Attacks in SDN networks, we can have

two major types of defense strategies: static or dynamic. The static solution is to manually config-

ure/manage the host location and link information beforehand (e.g., assign a host identifier such as

a MAC address to a specific switch port), and then manually verify and modify whenever there are
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changes (new addition or removal). However, this defense is obviously not attractive as the manual

management is tedious, error-prone and not scalable in practice. In particular, it is not suitable for

SDN networks, in which dynamics could be common and the scalability is important. Thus, in the

following sections, we mainly focus on discussing dynamic defense strategies, as briefly summa-

rized in Table 2.3. We will further introduce our proposed new defense system, TOPOGUARD, and

evaluate its effectiveness and performance in the later section.

Table 2.2: Defense capabilities

Host Migration Comparative Feasibility Integirty/Origin Invariant of LLDP Path Invariant of LLDP

Authentication Yes Low Yes No

Verification Yes High No Yes

2.3.2 Dynamic Defense Strategies against Host Location Hijack

The problem of Host Location Hijacking lies in that OpenFlow controllers fail to verify the

host identifier when the location of a host is updated. To tackle this issue, we discuss two possible

mitigation methods which can secure HTS in OpenFlow controllers as well as dynamically track

network mobility.

Authenticate Host Entity. A cryptographic solution to this problem is to authenticate a host by

adding additional public-key infrastructure. In particular, when a host needs to change its location,

it encodes the new location information into an unused field of packet (e.g., VLAN ID or ToS) with

the encryption using its private key. This solution seems decent to prevent malicious host profile

falsification because it is not practical for an adversary to acquire the private key of the target host.

However, there are several restrictions that make it hard to be feasible in practice. First, it begets

additional storage overhead for keeping public keys in the OpenFlow controller side as well as

computation overhead for handling each Packet-In message. The management of all keys of hosts

and the dynamic addition/removal also bring a lot of overhead and cost. Moreover, this method
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requires to modify the implementation of every host, which is tedious and difficult in practical

deployment.

Verify the Legitimacy of Host Migration. Another lightweight solution we propose is to

verify the conditions of host migration. The idea is based on our two observations. First, the

precondition of a host migration is that the OpenFlow controller must receive a Port_Down signal

before the host migration finishes. Second, the postcondition of a host migration is that the host

entity is unreachable in the previous location after the completion of the host migration. Conse-

quently, based on this cause-and-effect relation, we can verify the legitimacy of the host migration

by checking the precondition and postcondition. This method also adds performance overhead for

Packet-In message processing, but compared to Host Entity Authentication, it is lighter and more

feasible. In this work, we adopt this verification approach to secure the host migration.

2.3.3 Dynamic Defense Strategies against Link Fabrication

As mentioned earlier, the root causes of the Link Fabrication attack can be summarized as:

1) The integrity/origin of an LLDP packet can be violated during the link discovery procedure in

OpenFlow networks; 2) The compromised hosts can involve in the LLDP propagation path. To fix

those security omissions, we propose two approaches that can secure the Link Discovery procedure

without the burden of manual effort.

Authentication for LLDP packets. The first security omission exploited by an adversary is

that the OpenFlow controller fails to verify the integrity of LLDP packets. Also, the adversary

can defeat the verification of the origin in current OpenFlow controllers as long as he/she is able

to receive LLDP packets from the connected switch. One solution to this problem is to add extra

authenticator TLVs in the LLDP packet. Especially, we can add a controller-signed TLV into the

LLDP packet and check the signature when receiving the LLDP packets. The signature TLV is

calculated over the semantics of the LLDP packet (i.e., DPID and Port number). In this case, the

adversary can hardly manipulate the LLDP packets. However, this approach suffers from the fact

that it fails to defend against the Link Fabrication attack in an LLDP relay/tunneling manner.

Verification for Switch Port Property. Another security invariant of the OpenFlow link dis-
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covery procedure is that no hosts can participate in the LLDP propagation. An idea to mitigate the

relay-based Link Fabrication is to check if any host resides inside the LLDP propagation, e.g., we

can add some extra logic to track the traffic coming from each switch port to decide which device is

connected to the port. If OpenFlow controllers detect host-generated traffic (e.g., DNS) from a spe-

cific switch port, we set the Device Type of that port as HOST. Otherwise, we assign those switch

ports as SWITCH when LLDP packets are received from those ports. In OpenFlow networks,

those two categories are mutually exclusive because LLDP can only transmit on switch internal

link ports and ports connected to the OpenFlow controller 3. One assumption of this method lies

in that the compromised machine is not an actual switch thus will generate regular host-generated

traffic (e.g., ARP, DNS). This assumption is reasonable and it holds in most cases in practice.

While a powerful adversary could theoretically disable all host-generated traffic in compromised

hosts or virtual machines, it could also make the machine somewhat non-functional, at least for

some normal networking activities/operations, and such non-functional anomaly could be easily

noticed by the normal machine user, thus expose the existence of the adversary.

Finally, we note that in the case the adversary mutes all host-generated traffic, our aforemen-

tioned switch port property verification may not work. From the controller perspective, the attack-

ing host can act just as a part of a cable, which is very difficult to discover by layer 2 or layer 3

security mechanisms. We could resort to verify some physical layer characteristics (e.g., [35]) to

differentiate whether the attached device hardware is a switch or a machine, which is out of the

scope of this work.

2.4 System Design

In this section, we detail the design and implementation of a new security extension for the

OpenFlow controller, called TOPOGUARD, to protect the SDN network visibility from Network

Topology Poisoning Attacks. TOPOGUARD is certainly not perfect. Our goal is to provide an

automatic tool that (i) has a good balance between usability and security, and (ii) can be easily

3In this work, we consider the control channel of OpenFlow networks could be properly under the protection of
SSL/TLS.
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Figure 2.7: The architecture of TOPOGUARD

integrated into current mainstream OpenFlow controllers for immediate protection.

2.4.1 System Architecture

The basic idea of TOPOGUARD is to secure OpenFlow controllers by fixing security omissions

as described in the previous section. In TOPOGUARD, we design Topology Update Checker to

automatically validate the update of network topology, which is dependent on the information

provided by Port Manager and Host Tracker.

Figure 2.7 illustrates the architecture of our defense system. The Topology Update Checker

verifies the legitimacy of a host migration, the integrity/origin of an LLDP packet and switch port

property once detecting a topology update. Specifically, the Port Manager surveils OpenFlow

messages to track dynamics of switch ports, which are stored in the Port Property. Afterwards, the

Port Property is used to reason about the trustworthiness of a topology update. The Host Prober

module is to test the liveness of the host in the specific location of the OpenFlow network, which

also provides forensics to judge the host migration.
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Figure 2.8: The transition graph of device type

2.4.2 System Components

Port Property Management. In order to reason about the validness of a topology update, we

profile extra properties for each switch port in an OpenFlow controller. These properties include:

Device Type, Host List and SHUT_DOWN_FLAG. The Device Type depicts which type of device

a particular switch port connects to. The value could be ANY, SWITCH and HOST. As illustrated

in Figure 2.8, The initial value of Device Type is ANY, which will turn to SWITCH or HOST

based on following traffic. When Port Manager receives LLDP packets from a switch port with

Device Type of ANY, it changes its type to SWITCH. Similarly, the Device Type of the switch

port is set to HOST when Port Manager receives any first-hop host traffic, i.e., the host identity

of the traffic is detected by the OpenFlow controller for the first time. In contrast, the HOST and

SWITCH port are set back to ANY when receiving a Port_Down signal indicated in Port-Status

messages. If Port Manager detects an LLDP packet from a HOST port or a first-hop host packet

from a SWITCH port, it raises an attack alert and notifies Topology Update Checker to prevent the

relevant topology update. The intuition behind this defense approach is that an LLDP packet is

only designed to traverse through switch internal link ports in the data plane.

One challenge in port property management is how to decide the Device Type of a port as

HOST. An intuitive solution in the OpenFlow networks is to monitor Packet-In messages from the

switch port to detect host-generated traffic (e.g., ARP and DNS). After detecting host-generated
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traffic, we consider the port is connected to a host and change its Device Type as HOST. However,

in our study, we find that different OpenFlow switches may issue multiple replicas of Packet-In

messages for a specific host flow, i.e., the OpenFlow controller would receive host traffic from

switch internal link ports. It could be due to the race condition scenario or specialized packet

processing logic of OpenFlow controller applications. To solve this problem, we keep tracking the

first-hop host traffic. Especially, we maintain Host List in the Port Property for each switch port,

which contains host entities (in the form of a MAC address). When receiving Packet-In messages,

the Port Manager locates the host entity in the existing Host List of Port Property. if the host entity

is not found, the traffic is regarded as first-hop traffic and the source MAC address is recorded in the

Host List of Port Property of the ingress switch port. Also, we need to handle network dynamics

such as the Set-Field action in the OpenFlow flow rule, because any modification of the source

MAC address during packet transmission can cause misclassification of first-hop traffic. For this,

we also maintain a host-MAC alias map when we observe some flow rule modifying the source

MAC address.

Another purpose of keeping Host List is to verify the trustworthiness of a host migration. The

precondition for a host migration is that the OpenFlow controller receives a Port_Down signal

before the host migration finishes. At this point, we set SHUT_DOWN_FLAG for hosts in the Host

List of a switch port once detecting the port is down. The SHUT_DOWN_FLAG can be disabled

when Port Manager receives correlated host traffic from the port. Furthermore, we can validate the

SHUT_DOWN_FLAG inside Host List for the verification of the host migration.

Host Prober. As the counterpart to checking the precondition of a host migration, we can

also leverage Host Prober to verify the postcondition, i.e., the host is unreachable in the previous

location after the host migration completes. To achieve this, the Host Prober issues a host probing

packet, e.g., ICMP Echo Request, to the former location of the host and waits for a response

within a reasonable timeout. The Host Prober sends out a Packet-Out message with the payload

of a crafted ICMP packet and outputs it to a specific switch port. In order to ensure the successful

delivery of the response, the Host Prober also installs a flow rule to direct the ICMP response back
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to the OpenFlow controller. Also, to lower the overhead, in the current implementation, we set the

response timeout as 1 second.

Topology Update Verification. The Topology Update Checker verifies the correctness of a

topology update including a host migration and a new link discovery. When a host migration is

detected, the checker references Port Property to check the precondition and instructs Host Prober

to validate the postcondition. We note that the time overhead of checking the postcondition would

be much higher than that of checking the precondition. In order to reduce the overall overhead,

we can adopt a roll-back technique in Host Migration verification. That is, the Topology Update

Checker updates a host location if the precondition is passed (SHUT_DOWN_FLAG for that host

is enabled in Port Property of the former location) without waiting for the result of Host Prober.

However, if the response of Host Prober indicates a malicious host migration, the Topology Update

Checker withdraws the previous update and raises an attack alert. In this case, the time overhead

for verifying the host migration only counts on validating the precondition.

The Topology Update Checker also verifies the link discovery. The first task is to ensure the

LLDP integrity/origin. For this sake, we place a signature TLV into an LLDP packet, which is a

cryptographic hash value of a DPID and Port number. As soon as a new link is discovered, the

Topology Update Checker conducts extra verification logic for the signed hash TLV. Then, the

Topology Update Checker detects if the host lies on the path of the LLDP propagation. This task

is achieved by checking the Device Type of switch ports of the new link. As a result, any internal

link update involved in the HOST port will be denied and trigger an attack alert.

2.5 Evaluation

We evaluated a prototype implementation of TOPOGUARD to examine its effectiveness and

performance.

2.5.1 Prototype Implementation

We have developed a prototype implementation of TOPOGUARD on the master version of

Floodlight. The Topology Update Checker, including Port Manager and Host Prober, works as
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a Floodlight service and is approximately 700 lines of Java code. The Topology Update Checker

implements IDeviceListener and ILinkDiscoveryListener to monitor an update event of the topol-

ogy instance inside Floodlight controller, while the Port Manager implements IOFSwitchListener

and IOFMessageListener to initiate and maintain Port Property for each switch port.

To ensure the origin and integrity of an LLDP packet, we also use a keyed-hash message

authentication code (HMAC) as an optional TLV for LLDP packets. In particular, we utilize

javax.crypto package and select SHA-256 as the hash function along with controller’s secret key.

This adds about 130 lines of code in Java.

2.5.2 Effectiveness

We first measured the effectiveness of our implementation against the Network Topology Poi-

soning Attacks discussed in Section 2.2.3. Our experiment is conducted in the OpenFlow network

environment including the Floodlight controller with TOPOGUARD. We launched aforementioned

Network Topology Poisoning attacks in the environment and testified the reactions of the fortified

Floodlight controller by observing the console output.

Detecting Host Location Hijacking. An adversary can spoof the identity of a target host to

hijack its location information inside OpenFlow controllers. Note that we assume the target host is

not compromised by the adversary. With TOPOGUARD, the falsified host migration can be detected

due to dissatisfaction of the precondition and the postcondition. That is, the Floodlight controller

fails to receive a Port_Down message before receiving a host move event as shown in the first line

in the red pane of Figure 2.9, and it succeeds in probing the target host in the previous location

after receiving the host move event, as shown in the second line in the red pane of Figure 2.9.

Preventing Link Fabrication. An adversary can also falsify LLDP packets to fabricate non-

existing links between switches. Under the radar of TOPOGUARD, the attempts to exploit the poor

origin check and the omitted integrity assurance of the LLDP packets can be efficiently prevented.

To ensure network dynamics, we do not manually block the LLDP packets on switch ports, i.e.,

the adversary is allowed to receive LLDP packets. However, once either a DPID or Port ID is

manipulated by the adversary, the fortified LLDP handler can detect it and fire an alert. Note that
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Figure 2.9: The detection of Host Location Hijacking attack

Table 2.3: HMAC overhead on the Floodlight controller

Link Discovery Snippet Impact of TOPOGUARD (Percentage) Controller Overall Cost

LLDP Construction(First time with computing HMAC) 0.431ms(80.4%) 0.536ms

LLDP Construction 0.005ms(2.92%) 0.171ms

LLDP Verification 0.005ms(1.64%) 0.304ms

we disable the port property verification while checking the integrity of LLDP packets because this

LLDP falsification is also launched inside the data plane.

For another way of link fabrication, the adversary utilizes compromised hosts to relay LLDP

packets between two target switches. When the compromised hosts start relaying LLDP packets,

TOPOGUARD detects the violation of Device Type of particular ports, as shown in the red pane of

Figure 2.10.

2.5.3 Performance Overhead

We further evaluated the performance of TOPOGUARD on Floodlight about the overhead over

normal packet processing. In this experiment, we leverage Java System.nanoTime API to measure
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Figure 2.10: The detection of Link Fabrication Attack

the running time of program snippets, which provides a precision of 1 nanosecond. Note that the

measurement is conducted after all modules of the Floodlight controller are completely booted.

The performance penalty imposed by TOPOGUARD mainly comes from the Link Discov-

ery Module and the Packet-In message processing. Table 2.3 shows the average delay for TO-

POGUARD added to the Floodlight controller on link discovery snippets, i.e., different functional

blocks of Link Discovery Module. For the first round of the LLDP packets construction, the

average overhead of TOPOGUARD is 0.431 ms, which accounts for 80.4% of overall LLDP con-

struction time. However, we note that the following cost of TOPOGUARD imposed on the LLDP

construction is much lower, which is about 0.005 ms and only accounts for 2.92% of overall LLDP

construction time. The significant discrepancies stem from our implementation strategy because

TOPOGUARD computes the HMAC value once and cache the computation result for the future con-

struction and verification of LLDP packets. The strategy also lowers the impact of TOPOGUARD

on the verification phase of LLDP packets, which is only about 0.005 ms. On the other hand, the

Port Manager incurs a delay over the normal packets processing because it sits in the earlier stage

in the OpenFlow message processing pipeline of the Floodlight controller than the Shortest Path
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Routing Service and the Link Discovery Service. Accordingly, we also measure the time that the

Port Manager spends on handling LLDP packets and host-generated packets. The result shows

the average delay is 0.02 ms for the LLDP packets processing in the Link Discovery Service and

0.032 ms for the normal packets processing in the Shortest Path Routing Service. From the above

result, we conclude that the impact of TOPOGUARD is negligible on the normal operation of Link

Discovery Service of the Floodlight controller.

2.6 Related Work

In this section, we investigate security research in the SDN domain and related network visi-

bility poisoning attacks in legacy networks.

Security Research for SDN networks. Several verification approaches are often used to de-

bug and check network invariants. VeriFlow [36] presents a layer between the control plane and

the data plane that monitors network state updates and verifies the violations of invariants dynami-

cally at real time. NetPlumber [37] introduces a realtime network-wide policy checking tool using

Header Space Analysis (HSA). NICE [38] uses model checking and symbolic execution to find net-

work software bugs in OpenFlow applications. SOFT [39] introduces an approach for testing the

interoperability of OpenFlow switches with reference implementations. [40] designs and presents

the first machine-verified SDN controller based on NetCore [41]. A previous work introduced a

verification tool that took the software program of a data plane as input and checked target prop-

erties [42]. These verification solutions only verify the logic correctness of the control plane and

data plane, however fail to locate the network topology exploitations discussed in this work. One

insight behind Network Topology Poisoning Attacks stems from the centralized network visibility

that OpenFlow Controller offers to lessen onerous network management tasks. Unfortunately, our

study in this work shows that this function could be exploited if not carefully designed, thereby

incurring serious security threats.

To date, the security issues of SDN have been being widely discussed in both academia and in-

dustry. FortNox [43] introduces a SDN tunneling attack and presents two mechanisms, role-based

authorization and security constraint enforcement, to solve corresponding security challenges. OF-
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Table 2.4: Comparison between Host Location Hijacking and ARP Cache Poisoning

Attack Requirement OpenFlow Host Location Hijacking ARP Cache Poisoning

Attacker Location Restriction Anywhere within the target’s OpenFlow domain Stay within the same broadcast domain with the target

Target Visibility MAC Address and IP Address Only IP Address

Attack Avenue OpenFlow Host Location Hijacking ARP Cache Poisoning

Falsified Packet Type Almost every kind of packets Only ARP packet

Attack Result OpenFlow Host Location Hijacking ARP Cache Poisoning

Hijack the Target Location Yes Yes

Table 2.5: Comparison between Link Fabrication and previous counterparts

Attack Requirement OFDP Link Fabrication STP Mangling OSPF Link Fabrication OLSR Wormhole

Compromising Routers/Switches No No Yes No

Defeating Neighbor Authentication No No Yes No

Attack Avenue OFDP Link Fabrication STP Mangling OSPF Link Fabrication OLSR Wormhole

Falsify Control Message Yes Yes Yes No

Relay Control Message Yes No Yes Yes

Attack Result OFDP Link Fabrication STP Mangling OSPF Link Fabrication OLSR Wormhole

Injecting False Link into Topology Yes No Yes Yes

Affected Service All Topology-Based Services STP Routing Routing

RHM [44] proposes OpenFlow Random Host Mutation to dynamically mutates IP addresses of

hosts inside an LAN network. FRESCO [11] introduces an OpenFlow security application devel-

opment framework which provides modular composable security services for application develop-

ers. SDN Scanner [45] and Avant-Guard [46] show a new attack (which is called data-to-control

plane saturation attack) against SDN networks and provide solutions to prevent such attacks. Dif-

ferent from the previous work, this work is the first one to study the network topology visibility

exploitation in the SDN network. Concurrently, SPHINX [47] proposes a unified approach to

use network flow graphs to detect attacks that violate those learned flow graphs/modules. Differ-

ent from their work, this work deeply investigates the vulnerabilities causing Network Topology

Poisoning Attacks, as well as a low-overhead real-time defensive solution.

Related Poisoning Attacks in Legacy Networks. One notorious counterpart to the Host Lo-
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cation Hijacking Attack is the ARP Cache Poisoning attack in Ethernet networks. That is, an

adversary sends forged ARP messages to associate the IP address of the target host with the MAC

address of a malicious host. By doing so, the adversary can hijack the entity of the target host,

which is normally a gateway. However, the ARP Cache Poisoning attack has several differences

from the Host Location Hijacking Attack as shown in Table 2.4. First, the attacking scope of the

ARP Cache Poisoning is limited to a broadcast domain, i.e., the adversary must stay within the

same broadcast domain with its target. By contrast, the adversary can launch the Host Location

Hijacking Attack at any location of an OpenFlow network. Second, in addition to ARP reply pack-

ets, the Host Location Hijacking Attack can leverage almost all kinds of packets, e.g., ICMP echo,

UDP and TCP, to usurp the location of the target host. In this point, the Host Location Hijacking

Attack can be concealed in normal traffic to sidestep NIDS (Network Intrusion Detection Systems).

Also from the defense perspective, the traditional mitigation strategies for ARP Cache Poisoning,

such as the static ARP entry, may not be appropriate to apply directly to the SDN network since

its static configuration undermines the dynamics handling capability of the OpenFlow network,

e.g., tracking host migration between various OpenFlow access points [30]. To defend against the

Host Location Hijacking Attack along with tracking network dynamics, in this work, we leverage

OpenFlow specific capabilities to dynamically verify the host migration.

As illustrated in Table 2.5, an attack in legacy networks similar to the spirit of the Link Fab-

rication Attack is the STP Mangling (a.k.a, BPDU Falsification) attack [48], i.e., an adversary

falsifies BPDUs with the smallest bridge ID to preempt the root of Spanning Tree. After faking

the root, the adversary has potential to elaborate a Denial of Service or man-in-the-middle attack.

However, the STP Mangling attack only disrupts the running of STP rather than injecting a fake

link into network topology to poison the entire network operation. Also, some prior work about

the exploitation of the view of network topology focus on only link-state routing protocols. Jones

et al. [49] outline vulnerabilities of the design of OSPF and discuss the possible exploitations.

Nakibly et al. [50] introduce two attacks to persistently falsify the topology of an OSPF network,

which also incurs denial of service, eavesdropping and man-in-the-middle attacks. Such attacks
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are launched by compromising the router entity or obtaining the pre-shared keys for the authen-

tication of router. However, the Link Fabrication Attack in this work can be launched from the

hosts residing in the data plane. Apart from a wired network, The link-state routing protocols in

Mobile Ad Hoc networks, e.g., Optimized Link State Routing Protocol (OLSR), also incur similar

security challenges. As mentioned in [51], an adversary can falsify links into OLSR topology by

generating TC (or HNA) messages. Similar to OSPF Link Fabrication, OLSR Link Fabrication

requires compromised routing entities, which is not required in our attacks. Another attack avenue

in OLSR is the Wormhole attack [52, 53], which artificially creates wormholes in OLSR networks

by recording traffic in one location and replaying it in another location. The OLSR Wormhole

attack is only launched in a relay/replay manner. In contrast, our Link Injection attack can also

be launched by falsifying the LLDP packets. In all, Table 2.5 summarizes the differences of those

attack from the Link Fabrication Attack proposed in this work.

2.7 Discussion

Our attacks mainly focus on the data plane communication channel, i.e., an adversary can

launch Link Fabrication Attack or Host Location Hijacking Attack on the top of compromised

hosts. In fact, the security of OpenFlow control plane is also a security concern. As discussed in

[54], most OpenFlow controllers and switch vendors lack full implementation of SSL/TLS. Seizing

this security deficiency, an adversary can also launch man-in-the-middle attacks to manipulate

control traffic between the controller and switches. We think that the message authentication can

be extended to all OpenFlow messages to mitigate potential message falsification.

The fact that the OpenFlow controller handles all the layer 2 protocols on behalf of switches

in OpenFlow networks leaves a room for other potential vulnerabilities from which the traditional

network switches do not suffer. For instance, a new kind of Denial of Service attack [46], targeting

at the Packet-In message handler, may saturate the control channel of OpenFlow as well as overload

OpenFlow controllers. In order to systematically investigate the potential security issues, designing

a new security fuzzer for SDN (controllers) may help us find more vulnerabilities, which is our

future work.
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2.8 Conclusion of This Work

In this work, we propose new SDN-specific attack vectors, Host Location Hijacking Attack and

Link Fabrication Attack, which seriously challenge the core advantage of SDN, i.e., network-wide

visibility. We demonstrate that the attacks can effectively poison the network topology information,

thereby misleading the controller’s core services and applications. We also systematically investi-

gate the solution space and then present TOPOGUARD, a new security extension to the OpenFlow

controllers, which provides automatic and real-time detection of Network Topology Poisoning At-

tacks. Finally, our prototype implementation shows a simple yet effective and efficient defense

against the Network Topology Poisoning Attacks. In addition, we also released our prototype tool

to help fix these vulnerabilities in widely used SDN controllers. This work contributes to enhance

the security of network visibility in SDN.
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3. CONGUARD: ENHANCING SECURITY OF CONCURRENT PROGRAMMING IN SDN*

3.1 Introduction

Software-Defined Networking (SDN) is rapidly changing the networking industry through a

new paradigm of network programming, in which a logically centralized, programmable control

plane, i.e., the brain, manages a collection of physical devices (i.e., the data plane). By separating

data and control planes, SDN enables a wide range of new innovative applications from traffic

engineering to data center virtualization, fine-grained access control, and so on [55].

Despite the popularity, unfortunately, SDN has also changed the attack surface of traditional

networks. The network programmability provided by SDN controller introduces a list of network

states such as host profile, switch liveness, link status, etc. By referencing proper network states,

SDN controllers can enforce various network policies, such as end-to-end routing, network mon-

itoring, and flow balancing. However, referencing network states is under the risk of introducing

concurrency vulnerabilities because external network events can concurrently update the internal

network states.

In this work, we study the security of SDN-provisioned network programmability in terms of

concurrency programming model in widely-used SDN controllers. From the study, we find that

network programmability in SDN is vulnerable to concurrency vulnerabilities, i.e., harmful race

conditions, which can be exploited by the attackers to cause denial of services (e.g., controller

crash, core service disruption) and privacy leakage, etc. Based on the harmful race conditions, we

present a new attack, namely state manipulation attack, against the security and reliability of the

SDN control plane. We note that this attack is closely tied to the unique SDN semantics, which

makes all popular SDN controllers (e.g., Floodlight [25], ONOS [26], and OpenDaylight [27])

*Reprinted with permission from “Attacking the Brain: Races in the SDN Control Plane” by Lei Xu, Jeff Huang,
Sungmin Hong, Jialong Zhang and Guofei Gu, in Proceedings of the 26th USENIX Security Symposium, August
16-18, Vancouver, BC, Canada.
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vulnerable.

In order to prevent harmful race conditions in SDN programs, this work aims to leverage the

debugging technique to proactively locate and eliminate them before their exploitation by attackers.

To achieve this, we face the following problems:

• First, how to locate race conditions in the SDN controller source code?

• Second, how to decide if a race condition is harmful or not?

For the first problem, the key challenge lies in that detecting race conditions in a program

is generally undecidable. Although many data race detectors have been developed for different

domains [56, 57, 58, 59, 60, 61], there is no existing tool to detect race conditions in the SDN

controllers. We note that race conditions are different from data races but are a more general

phenomenon; while data races concern whether accesses to shared variables are properly synchro-

nized or not, race conditions concern about the memory effect of high-level races, regardless of

synchronizations. Moreover, in SDN controllers there are many domain-specific happens-before

rules. These rules must be properly modeled in a race detector; otherwise, a large number of false

alarms will be reported. Therefore, conventional data race detectors are inadequate to find race

conditions in SDN controllers.

To address the second problem, we develop a technique called adversarial state racing to

detect harmful race conditions in the SDN control plane. Our key observation is that harmful race

conditions are commonly rooted by two conflicting operations upon shared network states that are

not commutative, i.e., mutating the scheduling order of them leads to a different state though the

two operations can be well-synchronized (e.g., by using locks). Because there is no pre-defined

order between the two conflicting operations, we can hence actively control the scheduler (e.g.,

by inserting delays) to run an adversarial schedule, which forces one operation to execute after

another. If we observe an erroneous state (e.g., an exception or a crash) in the adversarial schedule,

we have found a harmful race condition.

In this work, we have designed and implemented a framework called CONGUARD for detecting
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harmful race conditions in the SDN control plane, and we have evaluated it on three mainstream

open-source SDN controllers – Floodlight, ONOS, and OpenDaylight, with 34 applications in total.

CONGUARD found 15 previously unknown harmful race conditions in these SDN controllers. We

show that these harmful race conditions can incur serious reliability issues and remote attacks to the

whole SDN network. Some attacks can be mounted by compromised hosts/virtual machines within

the network, and some of them are possible if the SDN network uses in-band control messages2

even when those messages are protected by SSL/TLS.

We highlight our key contributions as follows:

• We present a new attack on SDN networks by exploiting the harmful race conditions in the

SDN control plane, which can greatly harzard network programmability in SDN.

• We design CONGUARD, a novel framework to pinpoint and manifest harmful race conditions

in SDN controllers. We present a causality model that captures the domain-specific happens-

before rules of SDN, which significantly increases the precision of race detection in the SDN

control plane.

• We present an extensive evaluation of CONGUARD on three mainstream SDN controllers.

CONGUARD has uncovered 15 previously unknown vulnerabilities that can result in both

security and reliability issues. All these vulnerabilities were confirmed by the developers.

We have already assisted the developers to patch 12 of them.

3.2 Background and Security Analysis

3.2.1 Background

The heart of SDN is a logically centralized control plane (i.e., SDN controllers) that is separated

from the data plane (i.e., SDN switches). The programmable SDN controllers allow the network

administrators to perform holistic management tasks, e.g., load-balancing, network visualization,

2There are two deployment options for SDN/OpenFlow networks, i.e., out-of-band option and in-band option. The
out-of-band option requires a separated physical network for control traffic. In contrast, the in-band option allows
OpenFlow switches also forward the SDN control traffic, which is a more convenient and cost-efficient way for large
area networks [1, 62].
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Figure 3.1: The abstraction model of the SDN control plane .

and access control. OpenFlow [1] is the dominant communication protocol between the SDN

control plane and the data plane.

The SDN control plane embraces a concurrent modular programming model.

As shown in Figure 3.1, the SDN control plane embeds various modules (also known as appli-

cations) to enforce various network management policies, e.g., traffic engineering, virtualization,

and access control. An SDN application manages a set of network states and provides service

functions for other applications to reference the managed network states. For example, an access

control application can install access control rules to all activated switches by querying the switch

state from a switch manager application in the SDN controller. Also, each application operates

in an event-driven fashion that implements handlers to process its corresponding events. It will
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Table 3.1: Common network events in SDN controllers.

Entity Events
HOST JOIN, LEAVE
SWITCH JOIN, LEAVE

Network PORT UP, DOWN
LINK UP, DOWN
OFP PACKET_IN, OFP_PORT_STATUS, etc

Admin REST HOST_CONFIG, CREATE_VIP, etc

update its managed network states when it receives corresponding network events.

Also, some applications, namely service applications, in the SDN control plane paraphrase

external network events (i.e., OpenFlow messages) to its own internal network events and dispatch

them to other applications’ event handlers. For example, when a switch manager application rec-

ognizes that a new OpenFlow-enabled switch3 has joined the network, it issues a SWITCH_JOIN

event to all corresponding handlers for policy enforcement. In addition, a network administrator

can configure the SDN controller via REST APIs, which we call administrative events in the work.

Table 3.1 shows several network-related events and administrative events in the SDN control

plane. In this work, we focus on these network events because they are commonly supported in

all SDN controllers and they can be purposely generated by remote adversaries to exploit the race

condition vulnerabilities.

We also note that certain events form implicit causal relationships. For example, a SWITCH_LEAVE

event can implicitly trigger corresponding LINK_DOWN and HOST_LEAVE events. These implicit

causal relationships must be captured to reason about race conditions in the SDN control plane.

We present a comprehensive model of such causal relationships in Section 3.3.1.

3.2.2 Running Example of Harmful Race Conditions

Consider a real example of harmful race conditions we discovered in the Floodlight controller

in Figure 3.2. When the controller receives a SWITCH_JOIN event, it updates a network state

variable (i.e., switches) to store the profile of the joining switch. Shortly, the LinkDiscoveryMan-
3Without specific description, all term “switch” in this work refer to OpenFlow-enabled switch.
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switchAdded(){
1: this.switches.put(dpid, sw);
}

…
switchStatusChanged(){
2: addUpdateToQueue(update);
}

run(){
5: update = updates.take();
6: update.dispatch();
}

…
Dispatch(){
7: listener.switchActivated();
}

addUpdatetoQeueue(update){
3: this.updates.put(update);
}

switchActivated(){
8: sw=switchService.getSwitch(dpid);
9: sw.getEnabledPortNumber();
}

getSwitch(dpid){
10: return this.switches.get(dpid);
}

Controller

LinkDiscoveryManager

OFSwitchManager

Controller

OFSwitchManager

switchDisconnected(){
4: this.switches.remove(dpid);
} OFSwitchManager

NIO thread
(Switch Connection)

Main Thread
(Loopper)

Race Condition !

SWITCH_JOIN

SWITCH_LEAVE

Event
dispatching

Event
dispatching

NPE

Figure 3.2: A harmful race condition in Floodlight v1.1.

ager application fetches the activated switch information from switches to discover links between

switches. However, a SWITCH_LEAVE event can concurrently remove the profile of the activated

switch in switches. If the operation at line 4 is executed before that at line 8, it will trigger a Null-

Pointer Exception (NPE) when the null switch object is dereferenced at line 9, which leads to the

crash of the thread and eventually causes Denial-of-Service (DoS) attacks on the controller.

The root cause of this vulnerability is a logic flaw in the implementation of Floodlight that

permits a harmful race condition. In the SDN control plane, race conditions are common due

to a massive number of network events on the shared network states. To meet the performance

requirement, the event handlers in the SDN controller may run in parallel, which allows race

conditions on the shared network states. By design, all such race conditions should be benign

since they are protected by mutual exclusion synchronizations and do not break the consistency
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of the network states. However, in practice, many of these race conditions become harmful races

because it is difficult for the SDN developers to avoid logic flaws such as the one in Figure 3.2.

3.2.3 Threat Model

We consider two scenarios: non-adversarial and adversarial. In a non-adversarial case, a harm-

ful race condition in the SDN control plane can happen rarely under normal network operation

by asynchronous events as listed in Table 3.1. In contrast, in an adversarial case, the adversary

could identify the harmful race conditions in the SDN controller source code and externally trigger

them by controlling compromised hosts or virtual machines (e.g., via malware infection) with the

system privilege to control network interfaces.

We do not assume that the adversary can compromise SDN controllers or switches, and we do

not assume the adversary can compromise SDN applications or protocols. That is, we consider

operating systems of SDN controllers and switches are well protected from the adversary, and

the control channels between SDN controllers and SDN switches, as well as administrative man-

agement channels between administrators and SDN controllers, e.g., REST APIs, can be properly

protected by SSL/TLS, which is particularly important when the SDN network is configured to use

in-band control messages. Some of our attacks are possible even when the network is configured

to use out-of-band control messages. For those attacks that assume in-band control messages, we

assume control messages are properly protected by SSL/TLS.

Adversarial Event Generation. Host-related events (HOST_JOIN, HOST_LEAVE, and

OFP_PACKET_IN) can be easily generated by an attacker from a compromised host or virtual

machine without any knowledge about the switch. More specifically, to generate HOST_JOIN

and HOST_LEAVE events, the attacker can simply enable/disable the network interface linked to

a switch. The attacker can also send out crafted packets with randomized IP and MAC addresses

to force a table miss in the switch’s flow table4, which can trigger OFP_PACKET_IN events.

Switch port events (i.e., PORT_UP and PORT_DOWN) can also be indirectly generated by network

4An OpenFlow switch reports all packets to the SDN control plane if those packets do not hit its existing flow rule
table.
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interface manipulation (up and down) from a connected compromised host by using interface con-

figuration tools, e.g., ifconfig.

In addition, an attacker can generate switch-dedicated events (i.e., SWITCH_JOIN and

SWITCH_LEAVE) atop an in-band deployment of SDN networks. Even control messages are well

protected by SSL/TLS, the attacker could still find important communication information (e.g.,

TCP header fields and types of control messages) between an SDN controller and switches by

utilizing legacy techniques such as TCP/IP header analysis, size-based classification (given fixed

size of control messages), etc. Then, the attacker may launch TCP session reset attacks [63] or

drop control messages to disrupt the connection to generate SWITCH_LEAVE, thereby incurring

SWITCH_JOIN subsequently. For example, as shown in Figure 3.3, we can use TCP reset to

generate a SWITCH_LEAVE event in the Floodlight controller.

19:51:05.691 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #11] Disconnecting switch
[00:00:00:00:00:00:00:01 from 192.168.1.102:59537] due to IO Error: Connection reset by peer
19:51:05.692 WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.
19:51:05.692 INFO [n.f.c.i.OFChannelHandler:New I/O worker #11] [[00:00:00:00:00:00:00:01 from
192.168.1.102:59537]] Disconnected connection

Figure 3.3: Switch leave event generated by TCP resets.

3.2.4 Exploitation of Harmful Race Conditions

To launch the attack, an adversary, who has no control of the SDN controller except sending

external network events, first needs to figure out what external events to trigger a harmful race

condition. For example, in Figure 3.2, a SWITCH_JOIN event can trigger a reference on the

switch state and SWITCH_LEAVE event can trigger an update on the switch state. In addition, the

attacker needs to trigger a “bad” schedule that can expose the harmful race condition. For example,

a schedule in which the update on the switch state happens before the dereference.

Trigger Correlation. Since SDN controllers define different handler functions to process vari-
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ous network events, we first statically analyze the program to extract a map from external events to

their corresponding handler functions. Then, for each operation in a potentially harmful race con-

dition, we backtrack the control flow graph from the operation to correlate the operation with the

external event. In particular, we consider that a trigger event is correlated to a state reference oper-

ation and an update event is correlated to a state update operation. Moreover, we resolve potential

contextual relations between trigger event and state update event by inspecting input parameters

of state operations. For example, to exploit the vulnerability in Figure 3.2, the dpid of the update

event SWITCH_LEAVE should be consistent with that of the trigger event SWITCH_JOIN.

Exploitation. In general, hitting a specific schedule that manifests harmful races is difficult

because the space of all possible schedules is huge. Nevertheless, in SDN networks, an attacker

can explore several effective ways to increase the chance of hitting an erroneous schedule.

First, we come up with a basic attack strategy, i.e., an attacker can repeat a proper sequence

of crafted events (including ordered <trigger event, update event>). The trigger events will push

the SDN controller to reference the state while the update events will modify the state. Hence,

there are two resulting scenarios: 1) if the update event can update the network state before the

reference happens, the exploitation succeeds; 2) if the update event falls behind the reference

operation, a harmful race condition will not be triggered. In addition to injecting ordered attack

event sequences, an attacker can probe the signals from SDN controllers to infer the attack results

which can also benefit next-round exploitations. For example, in Figure 3.2, if the update event

is late, we can observe the SDN controller send out LLDP packets to all enabled ports of the

activated switch. The attacker can hence tune the timing interval between trigger event and update

event to enhance the exploitability. Several other kinds of feedback information such as responses

from service IP address and DHCP response/offer messages can also be utilized by the attacker to

increase the success rate of the exploitations.

Moreover, an attacker can tactically increase the probability of success by selecting a larger

vulnerable window [64] for a specific exploitation. The vulnerable window is the timing window

that a concurrency vulnerability may occur. For some vulnerabilities, we found that their vulner-
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able windows are subject to network conditions, e.g., the size of network topology or network

round-trip latency. For example, as the harmful race condition in Figure 3.6, the attacker can

launch the attack when the network delay is high. In such a case, an attacker can first utilize probe

testing to pick up an advantageous condition to launch the attack.

Here, we discuss two attack cases exploiting harmful race conditions we detected in the Load-

Balancer application of the Floodlight controller and DHCPRelay application of the ONOS con-

troller.

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

5

SWITCH
LEAVE

Floodlight
(LoadBalancer)

Control Plane

Data Plane

Figure 3.4: Attacking the Floodlight LoadBalancer application.

Stealing Privacy Information Figure 3.4 shows the workflow of the Floodlight LoadBal-

ancer application. 1© A client sends out a service request packet with the virtual IP address
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(10.10.10.10) of server. 2© Switch 1 issues an OFP_PACKET_IN event to Floodlight controller to

report a table-miss packet. 3© The OFP_PACKET_IN handler selects a service replica (10.0.0.4)

to process the request and installs inbound flow rules in each switch along the route from the client

to the replica. Besides, for routing and privacy purposes, an extra flow rule is installed into switch

1 to convert the destination IP address of packets from virtual IP address (10.10.10.10) to physical

IP address of the replica (10.0.0.4). 4© The OFP_PACKET_IN handler also installs outbound

flow rules from the service replica to the client and restores the virtual IP address on Switch 1 (i.e.,

from 10.0.0.4 to 10.10.10.10). 5© As a result, the client can successfully communicate with the

server replica.

We found a harmful race condition in this application, i.e., a concurrent SWITCH_LEAVE

event from any switch along the routing path can trigger an internal exception of the Floodlight

controller and further violate the policy enforcement from step 3© to step 4©. If that happens, no

source IP address conversion rule (from 10.10.10.10 to 10.0.0.4) will be installed in switch 1. As

a result, the sensitive physical IP address information is disclosed to the client which sent requests

to the public service.

In order to exploit the harmful race condition remotely, we set up an experiment, as shown in

Figure 3.4 in Mininet [31]. To launch the attack, we periodically injected OFP_PACKET_IN and

SWITCH_LEAVE events. In particular, we updated the source IP address of a host and sent out

ICMP echo requests (with the destination IP address of the public service 10.10.10.10) into the net-

work to trigger the OFP_PACKET_IN messages. We also reset the TCP session between switch

2 and the Floodlight controller to generate SWITCH_LEAVE. As long as observing an ICMP echo

reply whose source IP address is the physical replica (10.0.0.4), we consider the exploitation suc-

ceeds. Consequently, we successfully sniffed the physical IP address of the service replica after

injecting tens of SWITCH_LEAVE events, as shown in Figure 3.5 below.

Disrupting Packet Processing Service. In order to provide a DHCP service in different

subnets, the DHCPRelay application in the ONOS controller relays DHCP messages between

DHCP clients and the DHCP server. However, due to a harmful race condition, a conflicting
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Figure 3.5: Privacy leakage in the Floodlight LoadBalancer application.

HOST_LEAVE event can manipulate the internal state of the host, which may result in an unex-

pected exception and further disrupt the packet processing service when the DHCPRelay appli-

cation relays DHCP response/offer messages to the sender, as illustrated in Figure 3.6. The root

cause of this vulnerability lies in that the host state variable referenced by DHCPRelay application

can be nullified by a HOST_LEAVE event.

We set up an attack experiment in Mininet (with 500ms delay link between the DHCP server

and its connected switch), where we injected ordered attack event sequences, i.e., <OFP_PACKET_IN, 

HOST_LEAVE>. In detail, we controlled a host to send out a DHCP request (to generate OFP_PACKET_IN)

and turn off the network interface (to inject a HOST_LEAVE event) immediately after the trans-

mission of the DHCP request. As a result, the harmful race condition is triggered by injecting

an attack event sequence, which actually disrupts the packet processing service (as shown in

Figure 3.7) to dispatch the incoming packets to OFP_PACKET_IN event handlers of SDN con-

troller/applications. The exploitation possibility of such harmful race condition is comparatively

high for a remote attacker since its vulnerable window is subject to round-trip delay between the
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Figure 3.6: Attacking the ONOS DHCPRelay application.

ONOS controller and the DHCP server. In this case, a tactical attacker can even pick up a network

congestion timing to increase the success ratio of the exploitation.

WARN | ew I/O worker #2 | PacketManager | 76 org.onosproject.onos core net 1.7.2.SNAPSHOT | Packet
processor org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor
@6018f73a threw an exceptionjava.lang.NullPointerException
at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.sendReply(DhcpRelay.java:391)
[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]
at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.processDhcpPacket(DhcpRelay.java:333)
[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]

Figure 3.7: Service disruption in the ONOS DHCPRelay application.
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3.2.5 Research Challenges

In order to prevent harmful race conditions in SDN programs, we aim to leverage the debug-

ging technique to locate and eliminate them before their exploitation by attackers proactively. To

locate harmful race conditions, our basic idea is to use dynamic analysis to first detect a superset

of potentially harmful race conditions, and then use adversarial state racing to manifest those real

harmful ones. More specifically, given a target SDN controller, we first analyze its dynamic be-

havior (by generating network events as inputs to it and then tracing the execution) to detect race

conditions consisting of two race operations on a shared network state. These two operations may

or may not have a common lock protecting them, but there should not be any predefined order

causality between them. Then, for each pair of such operations, we re-run the SDN controller but

force it to follow an erroneous schedule to check if a race condition is harmful or not.

In this step, there are two major challenges:

• First, how to avoid reporting a myriad of race warnings that are in fact false alarms? Lack

of accurate modeling of the SDN semantics can significantly impede the precision of race

detection. For example, in Figure 3.2, without reasoning the causality order between line

3 and line 5 for the internal event dispatching, the state update operation at line 1 and state

reference at line 10 will be reported as a false positive.

• Second, how to manifest and verify harmful race conditions? Witnessing/reproducing con-

currency errors is infamously difficult since they may be non-deterministic that only occur

in rare scenarios with the special input and schedule. For example, the vulnerability in Fig-

ure 3.2 is triggered when the write operation on the state variable switches (e.g., triggered by

the SWITCH_JOIN event) occurs before the read operation of the state variable (e.g., caused

by the SWITCH_JOIN event). In addition, the runtime context of the two state operations

must be consistent, e.g., the value of dpid at lines 4 and 10 must be equal.

To address the first challenge, we develop an execution model of the SDN control plane that

formulates happens-before semantics in the SDN domain, which can help us greatly reduce false
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positives. For the second challenge, we develop an adversarial testing approach with a context-

aware and deterministic scheduling technique, called Active Scheduling, to verify and manifest

harmful race conditions.

3.3 System Design

In this section, we present our framework, CONGUARD, for detecting and validating the race

condition vulnerabilities in SDN controllers. CONGUARD contains two main phases: (i) locating

race conditions in the controller source code by utilizing dynamic analysis , (ii) pinpointing harmful

race conditions from located race operations by using adversarial state racing.

3.3.1 Modeling the SDN Control Plane

Generally, an execution of an SDN controller corresponds to a sequence of operations per-

formed by threads on a collection of state objects. For detecting races, we would like to develop a

model such that it captures all the critical operations inside the SDN control plane (as an execution

trace) and their causality relationships in any execution of the SDN controller (as happens-before

relations). Different from general multi-thread programs, there are a number of distinct types of

operations and domain-specific causality rules in the SDN control plane.

Execution Trace: First, we model an execution of the SDN control plane as a sequence of

operations as listed following:

• read(T,V): reads variable V in thread T.

• write(T,V): writes variable V in thread T.

• init(A): initializes the functions of application A in the SDN control plane.

• terminate(A): terminates the functions of application A in the SDN control plane.

• dispatch(E): issues event E.

• receive(H,E): receives event E by event handler H.

• schedule(TA): instantiates a singleton task TA.

• end(TA): terminates a singleton task TA.
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Happens-Before Causality: In this work, we utilize happens-before relations [65] to model

the concurrency semantics of the SDN controller. A happens-before relation is a transitively closed

binary relation to represent order causality between two operations, as denoted by ≺ in this work.

That is, α ≺ β means operation α happens before operation β. Moreover, we utilize α <τ β

to denote that operation α occurs before operation β in an execution trace τ . As illustrated in

Figure 3.8, we list happens-before relations we derive in the SDN context by studying implemen-

tations of SDN controllers and OpenFlow switch specification [66]. For simplicity, we do not list

those happens-before rules widely used in traditional thread-based programs, e.g., program order

rules and fork/join rules. Instead, we elaborate some happens-before rules mostly unique to the

SDN control plane as listed in Figure 3.8, which we intend to expand over time.

Application Life Cycle. We define two happens-before rules to model the life cycle of an

SDN application. First, an application must be initialized before it can handle any network event;

second, all event handling operations in an application must happen before the deactivation of the

application.

Event Dispatching. For each network event (as shown in Table 3.1), we consider dispatching

of the event must happen before the receipt of the event in various event handlers.

Sequential Event Handling. Moreover, most SDN controllers (e.g., OpenDaylight, ONOS,

Floodlight, Pox, Ryu, etc.) handle network events sequentially, i.e., at any time an event can only

be processed in a single event handler. Hence, we deduce that the receipt of a specific event for

different handler functions should follow their orders in the observed execution trace.

Switch Event Dispatching. Before issuing SWITCH_JOIN event, the SDN control plane

must receive an OFP_FEATURES_REPLY event that includes important information of the joining

switch, e.g., Datapath ID.

Port Event Dispatching. The SDN control plane monitors OFP_PORT_STATUS OpenFlow

messages to detect the addition and deletion of switch ports in the data plane. Consequently, the

corresponding PortManager application dispatches PORT_UP or PORT_DOWN events to inform

other applications.
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Implicit Host Leave or Link Down. In the SDN control plane, we also monitor implicit

causalities between events, i.e., a PORT_DOWN or SWITCH_LEAVE event may implicitly indicate

a HOST_LEAVE or LINK_DOWN event.

Singleton Task. We note that a specific singleton task can only be instantiated once at a time.

In order to avoid non-determinism of thread scheduling (especially in a thread pool), we define one

happens-before relation to model the causality order that the last completion of a specific singleton

task happens before the next schedule of the task.

3.3.2 Detecting Race State Operations

Our algorithm for detecting race state operations upon shared network state variables is based

on the happens-before rules constructed in the previous section. Given an observed execution trace

τ of an SDN controller, we construct happens-before relations ≺ between each pair of operations

listed in the execution model in Section 3.3.1. For each pair of memory access operations, i.e.,

(α, β), on the same state variable, we report (α, β) as a race state operation, if it meets two condi-

tions: 1) either α or β updates the state variable; 2) α 6≺ β and β 6≺ α.

Taking the raw execution trace as input, we first conduct an effective preprocessing step to

filter out redundant operations in the trace. Specifically, we remove those operations on thread-

local or immutable data, since we only need to reason about conflicting operations on shared state

variables. We also perform a duplication checking to prune duplicated write and read operations.

In SDN, an event handler can repeatedly process identical network events, which produces a large

number of duplicated events in the trace. Removing such redundant events significantly improves

the efficiency of race condition detection.

We note that standard vector-clock based techniques [59] for computing happens-before rela-

tion is difficult to scale to the SDN domain, which typically contains a large number of network

events and threads. Instead, we develop a graph-based algorithm [67, 60] that constructs a directed

acyclic graph (DAG) from the preprocessed trace to detect commutative races. In the DAG, nodes

denote operations, and edges denote happens-before relations between them. The rationale is that

the problem of checking happens-before can be converted to a graph reachability problem. To fa-
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Application Life Cycle
α ∈ init(A) β .app id = A.app id

α ≺ β
α.app id = A.app id β ∈ terminate(A)

α ≺ β
Event Dispatching

α ∈ dispatch(E) β ∈ receive(H,E)
α ≺ β

Sequential Event Handling
α = receive(H1,E) β = receive(H2,E) α <τ β

α ≺ β
Switch Event Dispatching

α = receive(H,E1) β = dispatch(E2)
E1.type = OFP_FEATURES_REPLY E2.type = SWITCH_JOIN

E1.switch id = E2.switch id
α ≺ β

Port Event Dispatching
α = (H,E1) β = dispatch(E2)

E1.type = OFP_PORT_STATUS E2.type = PORT_UP
E1.port id = E2.port id E1.reason = OFPPR_ADD

α ≺ β
α = (H,E1) β = dispatch(E2)

E1.type = OFP_PORT_STATUS E2.type = PORT_DOWN
E1.port id = E2.port id E1.reason = OFPPR_DELETE

α ≺ β
Explicit Link Down and Host Leave

α = (H,E1) β = dispatch(E2) E1.port id = E2.port id
E1.type = PORT_DOWN E1.type = {LINK_DOWN,HOST_LEAVE}

E1.port id = E2.port id
α ≺ β

α = (H,E1) β = dispatch(E2) E1.switch id = E2.switch id
E1.type = SWITCH_LEAVE E1.type = {LINK_DOWN,HOST_LEAVE}

α ≺ β
Singleton Task

α = end(TA) β = schedule(TA) α <τ β
α ≺ β

Figure 3.8: Happens-before rules in the SDN control plane.

cilitate race detection, we group operations by their accessed state variable. We can then pinpoint

race operations by checking if there is a path between each pair of conflicting nodes in the DAG.
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Specifically, if a write node and a read node are from the same group, and there is no path between

them, we report they are race operations.

3.3.3 Adversarial State Racing

Verifying a potentially harmful race condition is a challenging problem because it can only be

triggered in a specific execution branch of the SDN controller under a certain schedule of opera-

tions. An intuitive approach is to instrument control logic to force an erroneous execution order,

e.g., the state update executes before the state reference. However, we find such strawman ap-

proach introduces non-determinism due to two reasons. First, SDN applications may reference

the same network state variable in different program branches. Second, inconsistent input param-

eters of the library methods upon a state variable may impede the verification, e.g., scheduling

switches.remove(sw1) before switches.get(sw2) will not lead to a harmful race condition. To ad-

dress the first problem, we propose to explore all possible program branches to the reference op-

eration upon the state variable and verify all of them at runtime deterministically. To address the

second problem, we check the consistency of parameters for library methods upon the same state

variable.

Active Scheduling. Taking a potentially harmful race condition as input, our active scheduling

technique re-executes the program to force two operations (like operations in line 4 and line 10 in

Figure 3.2) to follow a specific erroneous order, as shown in Figure 3.9. To force the deterministic

schedule in a certain control branch (and external triggers), we put an exclusive waypoint (a check

point in the code) to differentiate it with other branches. In addition to utilizing the waypoint to

ensure execution context, we also add four atomic control points (P1, P2, P3, and P4) and one flag

(F1) to enforce the deterministic scheduling between the state reference operation and the state

update operation with consistent runtime information.

More specifically, we place P1 ahead of Operation 1, P2 ahead of Operation 2, P3 after Op-

eration 1 and P4 after Operation 2. The active scheduling works as follows: In P1, if the corre-

sponding waypoint is marked (which means the branch under test is covered), we pause Thread a

by using a blocking method and save the runtime parameter value if necessary (e.g., the dpid of

57



Thread a Thread b

Operation 1
(State Reference)

Operation 2
(State Update)

P1 P2

P4P3

pause

WP 1 WP 2 WP N

Branch 1 Branch 2 Branch N

……
SDN

Controller

Figure 3.9: The workflow of Active Scheduling Scheme.

switches.getSwitch(dpid) in Figure 3.2). When Thread b enters P2, we set flag F1 if two conditions

are satisfied: (1) Thread a is blocked; (2) the runtime value for Operation 2 is equal to runtime

value of Operation 1. In P4, we unblock Thread a if flag F1 is set.

3.4 System Implementation

We have implemented and tested it on three mainstream SDN controllers, including Flood-

light [25], ONOS [26] and OpenDaylight [27].

Input Generation: To inject network events, we introduce an SDN control plane specific input

generator in our framework. We utilize Mininet 2.2 [31], an SDN network simulator, to mock an

SDN testbed. Mininet can generate all the network events as shown in Table 3.1. In addition, we

create test scripts to send REST requests as another source of inputs to the SDN controller.

Instrumentation: We use the ASM [68] bytecode rewriting framework to instrument and analyze

SDN controllers at the Java bytecode level. For each event in the execution trace, we assign a

global incremental number as its identifier, a location ID to store its source code context (i.e.,

58



class name and line number), and a thread ID. At runtime, the execution traces and contextual

metadata are stored in a database (H2 [69]). Since we focus on locating harmful race conditions

in the SDN controller source code, we exclude external packages in third-party libraries from the

instrumentation. In addition, to improve performance, we only instrument those network state

variables with reference data types and exclude primitive types (e.g., int, bool) because typically

only reference types are involved in harmful race conditions.

We log memory accesses (e.g., putfield and getfield) upon objects and class fields as well as

their values as metadata. We note that the SDN control plane embraces heterogeneous storages

for network state including third party libraries such as java.util.HashMap. Failing to resolve

those storage methods (e.g., remove() and get()) would lead to missing of potential vulnerabilities.

Hence, we map those library method invocation operations as write or read operations upon the

state object. For example, we consider switches.remove(dpid) is a write operation on switches.

We locate two kinds of event dispatching manners in SDN controllers, i.e., queue-based and

observer-based. For queue-based rules, we record write and read operations upon global event

queues as dispatch and receive operations. In contrast, for observer-based scheme, we log the

invocations of event handler functions with the context of application name as receive operations

upon the event.

We track schedule and end task operations by monitoring the life-cycle of run() method for

singleton tasks. We log application life-cycle operations (i.e., init and terminate) by monitoring

application-related callback methods (as listed in Table 3.2) with the identifier of the name of the

class.

Table 3.2: Initialization and destroy methods of SDN controllers.

Controller Init Methods Destroy Methods
Floodlight init(), startup() –

ONOS activate() deactivate()
OpenDaylight init() destroy()
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Active Scheduling: We implement active scheduling as a service module in the SDN controller

that provides functions such as atomic control points (i.e., P1-P4) and waypoints. In order to cover

all potential branches to trigger the bug, we statically generate the call graph of the tested controller.

For each race state operations, we backtrack all paths (i.e., sequences of calling methods) to reach

the state reference operation. For each path, we choose the method as the waypoint if it is: (1)

nearest to the use operation in the call graph and (2) not listed in any other path. Taking the

location of race state operations and all its corresponding waypoints as input, we instrument the

SDN controller to invoke methods of the active scheduling service module.

3.5 Evaluation

In this section, we present our evaluation results of on the three mainstream open-source SDN

controllers with 34 applications as listed in Table 3.3. We hosted all the tested SDN controllers

on a machine running GNU/Linux Ubuntu 14.04 LTS with dual-core 3.00 GHz CPU and 8 GB

memory.

3.5.1 Detection Results

Table 3.4 summarizes our race detection results in Floodlight 1.1 and 1.2, ONOS 1.2 and

OpenDaylight 0.1.7. In total, our tool found 153 race conditions on 22 network state variables

in Floodlight 1.1, 184 race conditions on 35 variables in Floodlight 1.2, 221 race conditions on

26 variables in OpenDaylight, and 13 race conditions on 5 variables in ONOS. The numbers of

detected race operations and network state variables in ONOS are much smaller than those of the

other two controllers, because ONOS uses a centralized data storage to manage the network states.

In addition, our results show that our offline trace analysis is highly effective and efficient. The

preprocessing step reduces the size of traces (by removing redundant events) by more than 87%.

For all the three controllers, the offline analysis was able to finish in less than two minutes.

To evaluate the effectiveness of the SDN domain-specific happens-before rules, we compared

the following two configurations on running race detection of with Floodlight version 1.1: (1)

enforces only thread-based happens-before rules; (2) enforces both thread-based and SDN-specific
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Table 3.3: Tested SDN applications

Controller Application Name Location

Floodlight

Switch Manager net.floodlightcontroller.core.internal

Link Manager net.floodlightcontroller.linkdiscovery

Host Manager net.floodlightcontroller.devicemanager

Topology Manager net.floodlightcontroller.topology

Forwarding net.floodlightcontroller.forwarding

LoadBalancer net.floodlightcontroller.loadbalancer

Firewall net.floodlightcontroller.firewall

DHCP Server net.floodlightcontroller.dhcpserver

AccessControlList net.floodlightcontroller.accesscontrollist

Static Route Pusher net.floodlightcontroller.staticflowentry

Statistics net.floodlightcontroller.statistics

OpenDaylight

Switch Manager org.opendaylight.controller.switchmanager

Statistics Manager org.opendaylight.controller.statisticsmanager

Topology Manager org.opendaylight.controller.topologymanager

ForwardingRulesManager org.opendaylight.controller.forwardingrulesmanager

HostTracker org.opendaylight.controller.hosttracker

ArpHandler org.opendaylight.controller.arphandler

LoadBalancerService org.opendaylight.controller.samples.loadbalancer

SimpleForwardingImpl org.opendaylight.controller.samples.simpleforwarding

Static Routing org.opendaylight.controller.forwarding.staticrouting

ONOS

OpenFlow Controller org.onosproject.openflow.controller.impl

Switch Manager org.onosproject.store.device.impl

Host Manager org.onosproject.store.host.impl

Packet Manager org.onosproject.store.packet.impl

Link Manager org.onosproject.store.link.impl

ProxyArp org.onosproject.proxyarp

ReactiveForwarding org.onosproject.fwd

HostMobility org.onosproject.mobility

SegmentRouting org.onosproject.segmentrouting

ACL org.onosproject.acl

DHCP org.onosproject.dhcp

DHCPRelay org.onosproject.dhcprelay

FaultManagement org.onosproject.faultmanagement

FlowAnalyzer org.onosproject.flowanalyzer

rules. Our results show that adopting SDN-specific happens-before rules reduces 105 reported

race conditions in total (153 vs 258). We manually inspected all those race condition warnings

filtered by SDN-specific rules and found that all of them are false positives. We expect that the

happens-before rules formulated in this work greatly complement existing thread-based rules for
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Table 3.4: Overall race detection results.

1 2 3 4 5 6 7 8
SDN Controller Trace Processing Race Detection Results
Name Version #RT #OT RE OTATime #Races #RSVs

Floodlight 1.1 234,517 8,063 96.6% 43s 153 22
1.2 410,128 52,271 87.2% 101s 184 35

OpenDaylight 0.1.7 47,855 3,752 92.1% 5s 221 26
ONOS 1.2 69,214 1,292 98.1% 5s 13 5

conducting more precise concurrency defect detection in SDN controllers.

3.5.2 Comparing With Existing Techniques

To evaluate the effectiveness of our approach for identifying harmful race conditions, we also

compared with an SDN-specific race detector, SDNRacer [56], and a state-of-the-art general dy-

namic race detector, RV-Predict (version 1.7) [58].

Comparing with SDNRacer. SDNRacer is a dynamic race detector that also locates concur-

rency violations in SDN networks. Because SDNRacer can also work on the Floodlight controller,

we directly compared their results with ours. In a single-switch topology, SDNRacer reported 2,

281 data races. However, we find that none of those data races are relevant to our detected harm-

ful race conditions. The reason lies in that SDNRacer only models memory operations in SDN

switches but ignores internal state operations in SDN controllers. In this sense, we consider our

new detection solution is orthogonal and complementary to SDNRacer.

Comparing with RV-Predict. RV-Predict is the state-of-the-art general-purpose data race

detector that achieves maximal detection capability based on a program trace but does not consider

harmful race conditions, and does not have SDN-specific causality rules. We evaluated RV-Predict

as a Java agent for Floodlight v1.1 with our implemented network event generator and REST test

scripts. We found that RV-Predict reported a total of 29 data races. However, none of them was

harmful and none of them was related to harmful race conditions5. The reason is that all those

harmful race conditions are caused by well-synchronized operations in Java concurrent libraries,

5 We manually backtracked the call graph information for every data race reported by RV-Predict and checked if it
could lead to harmful race conditions.
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which are not data races.

3.5.3 Runtime Performance

We evaluated the runtime performance of for trace collection using Cbench [70], an SDN con-

troller performance benchmark. We use Cbench to generate a sequence of OFP_PACKET_IN

events and test the delay. To remove network latency, we locate Cbench in the same physical ma-

chine with SDN controllers and range testbed from 2 switches to 16 switches. Our results show

that incurs about 30X, 10X and 8X latency overhead for Floodlight, ONOS and OpenDaylight, re-

spectively. The network functionalities can work properly and the instrumentation does not affect

the collection of execution traces. The performance overhead mainly comes from instrumentation

sites that frequently write event traces into the database. Although apparently 8X-30X latency

is not small, we note that our tool is for offline bug/vulnerability finding purpose in the develop-

ment and testing phase instead of online use in the actual operation phase. Thus, the overhead is

acceptable as long as the tool can effectively find true bugs/vulnerabilities.

10:30:58.430 ERROR [n.f.c.i.Controller:main] Exception in controller updates loop
java.lang.NullPointerException: null
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.generateLLDPMessage(L
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.sendDiscoveryMessage(
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.discover(LinkDiscoveryM
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.processNewPort(LinkDis
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.switchActivated(LinkDisc
at net.floodlightcontroller.core.internal.OFSwitchManager$SwitchUpdate.dispatch(OFSwitchMa

Figure 3.10: A harmful race condition causes the Floodlight controller out of service.

3.5.4 Impact Analysis of the Detected Vulnerabilities

By utilizing adversarial testing, we identified 15 concurrency bugs/vulnerabilities caused by

harmful race conditions including 10, 2, 3 in Floodlight, ONOS and OpenDaylight, respectively.

Furthermore, we conduct an impact analysis for those vulnerabilities, as shown in Table 3.5. We
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Table 3.5: Summary of uncovered harmful race conditions.

Controller Application Bug# Correlated Attack Event Pairs Impact Vector
<trigger event, update event> #1 #2 #3 #4

Link 1∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   
Discovery 2∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   
Manager 3∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   

Flood- DHCPServer 4∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>  
light 5∗ <OFP_PACKET_IN, SWITCH_LEAVE>    

6∗ <OFP_PACKET_IN, SWITCH_LEAVE>    
Load 7† <OFP_PACKET_IN, REST_REQUEST>    

Balancer 8† <OFP_PACKET_IN, REST_REQUEST>    
9† <OFP_PACKET_IN, REST_REQUEST>   

Statistics 10† <REST_REQUEST, SWITCH_LEAVE>  
ONOS SegmentRouting 11 <OFP_PACKET_IN, HOST_LEAVE>    

DHCPRelay 12 <OFP_PACKET_IN, HOST_LEAVE>    
OpenDay- Host 13† <REST_REQUEST, HOST_LEAVE>  

light Tracker 14 <HOST_JOIN, HOST_LEAVE>  
Web UI 15†∗ <REST_REQUEST, SWITCH_LEAVE>  

∗ exploitable if the network is configured with in-band control, or if the adversary has access to the out-of-band network
† exploitable if the adversary can send authenticated administrative events (REST APIs) to the controller

22:33:28.298 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #12]
Error while processing message from switch [00:00:00:00:00:00:00:01 from 192.168.1.102:5281
state net.floodlightcontroller.core.internal.OFChannelHandler$CompleteState@32250656
java.lang.NullPointerException: null
at net.floodlightcontroller.loadbalancer.LoadBalancer.processPacketIn(LoadBalancer.java:234) ~
…
at java.lang.Thread.run(Thread.java:745) [na:1.7.0_79]22:33:28.299
WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.

Figure 3.11: A harmful race condition in Floodlight causes disconnection of a switch.

note that a single harmful race condition can have multiple impacts depending on different program

branches/schedules and contexts.

Impact #1: System Crash. In Floodlight, we found 4 serious crash bugs, in which three

of them (Bug-1, Bug-2 and Bug-3) are in the LinkDiscoveryManager application and one of

them (Bug-4) is in DHCPSwitchServer application. We manifested such vulnerabilities by active
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Error while processing message from switch org.onosproject.driver.handshaker.DefaultSwitchHandshaker
[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]state ACTIVE
java.lang.NullPointerException
….

at org.onosproject.segmentrouting.ArpHandler.processPacketIn(ArpHandler.java:84)
….
Switch disconnected callback for sw:org.onosproject.driver.handshaker.DefaultSwitchHandshaker
[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]. Cleaning up ...
org.onosproject.driver.handshaker.DefaultSwitchHandshaker [/192.168.1.102:42140
DPID[00:00:00:00:00:00:00:01]]: removal called
Device of:0000000000000001 disconnected from this node

Figure 3.12: A harmful race condition in ONOS causes disconnection of a switch.

scheduling (as shown in Figure 3.10) and found that the main thread of Floodlight controller was

unexpectedly terminated.

Impact #2: Switch Connection Disruption. We found 7 bugs (Bug-5, Bug-6, Bug-7, Bug-8,

Bug-9, Bug-11 and Bug-12) that could cause the SDN controller to actively close the connection to

an online switch. Figure 3.11 and Figure 3.12 show stack traces reproducing this issue in Floodlight

and ONOS controllers. The connection disruption is a serious issue in SDN domain since: (1)

by default, the victim switch may downgrade to traditional Non-OpenFlow enabled switch and

then traffic can go through it without controller’s inspection; (2) an SDN controller may send

instructions to clear the flow table of the victim switch when the controller recognizes a connection

attempt from the switch6. As a result, security-related rules may also be purged.

Impact #3: Service Disruption. We also found several bugs that could interrupt the enforce-

ment of services inside the SDN control plane, which may lead to serious logic bugs that hazard

the whole SDN network.

In Floodlight, we found 3 bugs (Bug-1, Bug-2, and Bug-3) in the LinkDiscoveryManager

application that can violate the operation of link discovery procedure. Moreover, we found 1 bug

(Bug-10) in the Statistics application that disrupts the processing of REST requests. In addition,

we located 5 such bugs in the OFP_PACKET_IN handler of LoadBalancer application. Bug-5
6This is an optional feature specified in OpenFlow protocol to prevent residual flow rule problem. However, we

find that this feature could be enabled in most of SDN controllers.
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and Bug-6 could cause a logic flaw that leaks the physical IP address of the public server’s replica.

Bug-7, Bug-8 and Bug-9 could disrupt the handling of OFP_PACKET_IN events.

In ONOS, we found two such bugs (Bug-11 and Bug-12). The bug Bug-11 is in the Segmen-

tRouting application that can disable the proxy ARP service and lead to the temporary block of

end-to-end communication on a specific host. Similarly, the bug Bug-12 is in the DHCPRelay

application that will disable the DHCP relay service to send out DHCP reply to its clients.

In OpenDaylight, we found two such bugs. One (Bug-13) is in the HostTracker application,

which could deny the REST API requests for creating a static host for a known host. The other

(Bug-15) could affect the functionality of a Web UI application.

Impact #4: Service Chain Interference. We found several bugs that could violate the network

visibility among various applications and could block applications from receiving their subscribed

network events. In Floodlight, we found 5 such bugs (Bug-5, Bug-6, Bug-7, Bug-8 and Bug-9)

in the LoadBalancer application that could break the service chain for OFP_PACKET_IN event

handlers. Similarly, we found 1 bug (Bug-14) in OpenDaylight, i.e., a concurrent HOST_LEAVE

event can break the host event handling chain.

3.6 Related Work

TOCTTOU vulnerabilities and attacks. One infamous category of concurrency vulnerabili-

ties is TOCTTOU (Time of Check to Time of Use) vulnerabilities widely identified in file systems,

which allow attackers to violate access control checks due to non-atomicity between the check and

the use on the system resources [71, 72, 73]. In this work, we study harmful race conditions in

SDN networks, i.e., harmful race conditions upon shared network state variables triggered by ex-

ternal network events. In contrast to TOCTTOU vulnerabilities, a harmful race condition detected

in this work is a more general type of concurrency errors which does not necessarily include a

check operation upon race state variables.

Race Detectors. To date, researchers have developed numerous race detectors for general

thread-based programs [74, 59, 58] and domain-specific programs in web and Android [75, 60,

61, 76]. However, these existing detectors do not work well for harmful race conditions discussed

66



in this work because (1) harmful race condition vulnerabilities are not necessary data races as

discussed earlier (in many cases they are not), (2) these detectors lack SDN concurrency semantics.

In the SDN domain, SDNRacer [57, 56] proposes to detect concurrency violations in the data

plane of SDN networks while treating the SDN control plane as a blackbox. SDNRacer utilizes

happens-before relations to model SDN data plane and commutative specification to locate data

plane commutative violations. Attendre [77] extends OpenFlow protocol to mitigate three kinds

of data plane race conditions to facilitate packet forwarding and model checking. However, SD-

NRacer and Attendre are exclusively effective in the SDN data plane and fail to solve concurrency

flaws in the SDN control plane, which has different semantics. In this sense, our work is com-

plementary to those work in effectively locating unknown concurrency flaws in the SDN control

plane.

Active Testing Techniques. Our active scheduling technique is inspired by the schools of

active testing techniques for software testing [78, 79], which actively control thread schedules to

expose certain concurrency bugs such as data races and deadlocks. Differently, our technique is

specialized for the SDN controllers.

Verification and Debugging Research in SDN. Anteater [80] presents a static analysis ap-

proach to debug SDN data plane by translating network invariant verification to the boolean sat-

isfiability problem. NICE [38] complements model checking with symbolic execution to locate

operation bugs inside SDN controller applications. Vericon [81] develops a system to verify if an

SDN program is correct to user-specified admissible network topologies and desired network-wide

invariants. OFRewind [82] proposes to reproduce SDN operation errors by utilizing record-and-

replay technique. SOFT [39] complements symbolic execution with cross checking to test inter-

operability of SDN switches. STS [83] leverages delta debugging algorithm to derive minimal

causal sequence for SDN controller operation bugs, which can facilitate network troubleshoot-

ing and root-cause analysis. Veriflow [36] proposes a shim layer between the SDN controller and

switches to check network invariants. NetPlumber [37] introduces Header Space Analysis to verify

network-wide invariant at real-time. None of the above verification tools are designed to precisely
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pinpoint concurrency flaws inside SDN control plane, which is the focus of this work.

Security Research in SDN. Recently, there are many studies investigating security issues in

SDNs. Ropke and Holz propose that attackers can utilize rootkit techniques to subvert SDN con-

trollers [84]. DELTA [85] presents a fuzzing-based penetration testing framework to find unknown

attacks in SDN controllers. TopoGuard [28] pinpoints two new attack vectors against SDN control

plane that can poison network visibility and mislead further network operation, as well as proposes

mitigation approaches to fortify SDN control plane. In contrast to existing threats, in this work we

study a new threat to the SDN, i.e., harmful race conditions in the SDN control plane.

To fortify SDN networks, AvantGuard [46] and FloodGuard [86] propose schemes to de-

fend against unique Denial-of-Service attacks inside SDN networks. FortNOX [43] and SE-

FloodLight [87] propose several security extensions to prevent malicious applications from vio-

lating security policies enforced in the data plane. SPHINX [47] presents a novel model represen-

tation, called flow-graph, to detect several network attacks against SDN networks. Rosemary [88]

and [89] propose sandbox strategies to protect SDN control plane from malicious applications.

Although some of those work could isolate some impacts introduced by the harmful race condi-

tions, such as system crash, they are not designed to detect those concurrency flaws as we have

illustrated in this work.

3.7 Limitations and Discussion

Testing Coverage. As a common drawback of dynamic analysis techniques [90], the race

detection part of cannot cover all execution paths. Thus, may not cover all harmful race condi-

tions due to its dynamic nature. Instead, it focuses on locating the vulnerabilities more accurately

given an execution trace. Also, our SDN-specific input generator is designed to cover essential

and remote-attacker-accessible SDN events as much as possible to pinpoint concurrency vulnera-

bilities in the SDN control plane. To increase the code coverage, in our future work, we plan to

complement with other coverage-based techniques such as symbolic execution [91, 92].

Supporting More Controllers and Other Event-driven Systems. The current implemen-

tations of are targeting Java-based mainstream SDN controllers such as Floodlight, ONOS and
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Opendaylight, which are widely adopted in both academia and industry. In fact, our technical prin-

ciples and approaches are generic because the design of is based on the abstracted semantics of the

SDN control plane. In that sense, we can easily port to other SDN controllers. We consider this

work as a starting point for the security research on the concurrency issues inside the SDN control

plane. In the future, we plan to extend our platform to other SDN controllers.

In addition to the SDN control plane and its applications, we note that harmful race conditions

may occur in other multi-threaded event-driven systems, such as Web and Android applications.

At high level, our approach is generic to those systems because our basic principle is to locate

harmful race conditions from commutative races. In order to adapt our approach to other systems,

one needs to feed with precise domain-specific models (like happens-before rules discussed in

Section 3.3.1) and proper design of Active Scheduling.

Misuses of SDN Control Plane Northbound Interfaces (NBIs). An application may provide

service functions to other applications for referencing its managed state (e.g., Switch Manager

application provides switch state by the service function getSwitch()). If the state variable is subject

to race state operations, an SDN application may misuse service functions (which are also known

as NBIs) to reference network state variables from other applications. In this work, we have studied

the concurrency violations introduced by specific misuses of those NBIs. However, verification and

sanitization of more generalized uses of SDN control plane NBIs are still challenging issues. We

plan to study these problems in future work.

3.8 Conclusion of This Work

In this work, we conduct systematic study on the concurrent programming model in SDN.

From the study, We present a new attack on SDN networks that leverages harmful race conditions

in the SDN control plane to crash SDN controllers, disrupt core services, steal privacy informa-

tion, etc. We develop a dynamic framework including a set of novel techniques for detecting and

validating harmful race conditions. Our tool has found 15 previously unknown vulnerabilities

in three mainstream SDN controllers. This work contributes to enhance the security of network

programmability in SDN.
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4. SYSFLOW: PROVIDING SYSTEM SECURITY VISIBILITY AND

PROGRAMMABILITY IN SDN

4.1 Introduction

With holistic network visibility and flexible programmability, security participators tend to

use SDN to implement and deploy innovative security applications. Not only in academic en-

vironments, but also in real-world production networks, SDN, particularly its popular realization

OpenFlow, has been increasingly employed with many security application scenarios ranging from

network access control to network intrusion detection and network moving target defenses.

However, to archive stealthy and elusiveness, more and more emerging cyber attack campaigns

tend to leverage “low-and-slow” multi-stage attack patterns, which only leave small footprints on

each affected system in a short interval. Unfortunately, in many cases, existing SDN techniques fall

short in detecting and preventing such advanced attacks due to it lacks system-level security visibil-

ity and programmability. For example, an SDN-based firewall can hardly prevent outgoing traffic

associated with data ex-filtration attack if the leaked sensitive data is encrypted by the attacker. To

this end, this work presents the design and implementation details of our project called SYSFLOW

that provides system security visibility and programmability to SDN architecture. The goal of this

work is to allow users to write security applications to detect, prevent and response cyber attacks

in an enterprise/cloud infrastructure with unified security visibility and programmability in both

network-level and system-level. To achieve the goal, we face the following challenges:

• First, can we provide a unified abstraction to model system activities and security capabilities

tightly coupled with low-level details, e.g., operation systems and hardware?

• Second, with the unified abstraction, can we provide an SDN-compatible framework to ef-

fectively and efficiently enforce holistic visibility and flexible programmability?

To address the first challenge, we introduce a general system activity abstraction over existing

system security capabilities. In particular, we introduce a flow-based model, namely system flow,
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to abstract system activities. A system flow consists of 3 tuples (source, destination, and operation)

to generically and formally reason about the state of diverse system activities. Moreover, based

on the system flow model, we introduce system flow rules that can be used to represent system

security intents. The key insight of a system flow rule is to complement expressive defensive

actions to system flows, which can embrace a “Match-Action” paradigm. For example, a system

flow rule can be used to enforce a cyber deception intent by specifying a system flow to match

open attempts from suspicious processes to a sensitive file and conduct redirect action to steer the

matched system flow to a decoy file for further deception/analysis.

To address the second challenge, upon the flow-based system security abstraction, we propose

a novel framework, namely SYSFLOW, to enable system security visibility and programmability

by enforcing flow-level security control of host system activities at run-time.

In order to integrate with SDN, SYSFLOW also embraces a two-layer architecture, including

two major parts, SYSFLOW Data Plane, and SYSFLOW Controller. At the low level, the SYSFLOW

Data Plane automatically enforces system flow rules to enable fine-grained responsive security ac-

tions, and dynamically update security intents (in the form of system flow rules) according to the

change of contexts. At the high level, the logically centralized SYSFLOW Controller acquires a

holistic view of security contexts from the low-level abstraction of host systems and provides a

unified programming abstraction to facilitate the flexible implementation and deployment of di-

verse SYSFLOW security applications based on system flows, even across the entire infrastructure.

Based on SYSFLOW, security administrators can easily extend the functions of SDN with many

novel types of network/system security applications, such as file reflector, cross-host context-aware

access control, programmable micro-segmentation, and cross-layer data leakage defense, on top of

SYSFLOW Controller.

The key contributions of this work are summarized as follows:

• We introduce a unified programming abstraction with a novel data plane model for host sys-

tems, namely system flow, which can facilitate the specification and enforcement of system

security intents.
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• We design and implement SYSFLOW, a framework to enable SDN controller to enforce

unified security intents with system security visibility and programmability.

• Our extensive evaluations show that SYSFLOW is useful to enable SDN to write various

types of known/new system security applications with a minor performance overhead.

4.2 Problem Statement

Figure 4.1: A stepping-stone data exfiltration attack.

4.2.1 Motivating Example

Figure 4.1 exhibits an abstracted multiple-stage APT attack as reported by TrapX [93]. At

stage 0, the attacker lures hostA to install and run a malicious executable by using a drive-by-

download attack. At stage 1, the infected hostA contacts and compromises another vulnerable

server that has the privilege to upload data to the remote server (outside the internal network).

At stage 2, the infected hostB can launch a data ex-filtration attack via the vulnerable server in a

stepping stone way. In the example, a security system can hardly decide which outgoing session

is associated with data leakage if it only focuses on the view of the vulnerable server. The reason
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Figure 4.2: Syntax of system flow rule.

lies in that the vulnerable server will legitimately upload data to remote cloud service for archive

purpose. In the example, an SDN-based security application may fail to prevent such data leakage

since it can hardly decide which outgoing session is associated with data leakage if it only focuses

on the view of the network traffic. The reason lies in that the vulnerable server will legitimately

upload data to remote cloud service for archive purpose.

4.2.2 System Security Abstraction

In this work, we adopt a general concept of system events, which are regarded as interactions

between programs/processes and resources. Inspired by programmable networks [1], SYSFLOW

introduces system flow rules to model system security capabilities upon a sequence of system

events.

The system flow rule is formally defined by the syntax in Figure 4.2. System flow rules are

used to capture system security intents, which include match, action, priority.
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Match. A match is a predicate to match a sequence of system events that have the same

attributes, i.e., source, destination or type. The source of a system flow is an identifier for the

initiator of the flow, which is an identifier of a system application. The destination of a system flow

is an identifier for the receiver of the flow, which is an identifier of system resources, such as files,

memories, etc. The type of system flow is used to classify the different interactions between system

applications and resources, e.g., writing a file. Note that, a system flow can be used to represent an

exact system event or a group of system events with the same pattern by using a wildcard notation

(*). For example, a system flow can be specified as {src : ∗, dst : file1, type : file_op_write}

to match system events representing any process writes to file1.

Action. A system flow rule uses a list of primitive actions to specify how the system events

should be processed. The intuitive primitive actions are allow and deny, which are used to enforce

explicit access control upon matched system events. Moreover, isolation is used to isolate com-

munications (e.g., IPC) between two different processes. quarantine aims to constraint a specific

process under a fine-grained resource context. Also, log can be used to record system events for

further analysis, e.g., digital forensics. encode is to push contextual tag into outgoing network

packets, and decode is to check the contextual tag from incoming network packets, which can be

used to enforce cross-host information flow tracking. Furthermore, redirect aims to change the sys-

tem flow to a new location, which is helpful to enforce a deception-based defense. Besides, alert

Table 4.1: Security actions defined in SYSFLOW.

Name Descriptions
Allow permit matched system events pass through
Deny prevent matched system events pass through
Encode push contextual tag into outgoing packets
Decode check contextual tag from incoming packets
Redirect redirect matched system events to a new destination
Isolation isolate a process from other processes
Quarantine restrict a process under a specific running context
Alert send alerts to administrators
Log log matched events based on conditions
Message pop up a prompting window to notify the host user.
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and message are proposed to notify administrators or host users of suspicious/abnormal events.

We note that the defined security actions are basic security primitives that we abstract from many

existing system security applications. In addition, a system flow can also use external primitive

action that is customized by a security application developer.

Priority. An integer-based priority is used to disambiguate rules with overlapping patterns. If

a system event matches multiple system flow rules, only the highest-priority rule is applied. In this

case, the priority can be used to explicitly specify the matching order to resolve potential conflicts

from a set of system flow rules.

System Flow Rule Example. The system flow rule can be used to enforce a wide vari-

ety of basic security intents. For example, a system flow rule “src: proc_2, dst: mem_1, type:

mem_allocation, priority:0, actions: report” can be used to report to the controller about memory

allocation events from a specific process to a specific memory location for further analysis. An-

other system flow rule “src: *, dst: file_1, type: file_open, priority:0, actions: block” can be used

to disallow any open operations on a specific file.

4.2.3 System Overview

As illustrated in Figure 4.3, SYSFLOW embraces a two-layered programmable design that in-

cludes two major parts, SYSFLOW Data Plane and SYSFLOW Controller .

The SYSFLOW Data Plane runs in a target host system. The SYSFLOW Data Plane Daemon

resides in the user space of the system that is used to intercept communications between the SYS-

FLOW Controller and the Flow Table Manager in the kernel. It talks with the SYSFLOW Controller

by using the SYSFLOW control messages and interacts with the Flow Table Manager to manipu-

late flow tables accordingly. The Event Generator abstracts low-level system activities to generate

system events and further inputs those system events to the Flow Table Manager. The Flow Ta-

ble Manager maintains system flow rules (in a flow table) to match system events and trigger the

Action Scheduler to enforce corresponding actions to control system activities.

The SYSFLOW Controller works as a logically centralized control and management nexus that

provides interfaces to SDN controller to collect context information from all host systems running
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Figure 4.3: SYSFLOW components.

the SYSFLOW Data Plane and install system flow rules accordingly. The controller provides a uni-

fied high-level programming abstraction to facilitate SDN controller with system security visibility

and programmability.

Figure 4.4 illustrates a typical workflow of SYSFLOW. The security applications can update

system flow rules into the SYSFLOW Data Plane via control channels (e.g., SYSFLOW Controller

and SYSFLOW Data Plane Daemon). The system flow rules are further used by the Flow Table

Manager to match system events abstracted from low-level system activities. If a system event

matches any system flow rule, the Action Scheduler will execute security actions specified in

matched flow rules, which conduct a security control upon system activities. Also, some matched

system flow rules will issue flow reports to send context information to security applications (as
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Figure 4.4: SYSFLOW workflow.

their requests). Then, those security applications may install responsive flow rules in the SYSFLOW

Data Plane.

4.2.4 Threat Model

Similar to prior system security approaches [94, 95, 96, 97, 98], we first assume that the kernel,

in which the SYSFLOW Data Plane is running, the communication channels, and the server running

the SYSFLOW Controller are trusted computing base (TCB). We consider that an adversary may

attempt to compromise the availability or privacy of the system resources protected by SYSFLOW.

In the case, the adversary (in the user space), for instance, may install malware/ransomware, exploit

running processes, or launch denial-of-service (DoS) attacks.

In addition, we make the following assumptions. First, attacks will happen only after the

initiation of the SYSFLOW Data Plane and the SYSFLOW Controller. Second, attacks based on
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hardware Trojans/Rootkits and side/covert channels of shared system resources are out of the scope

of the work. Third, SYSFLOW can leverage state-of-the-art integrity-checking mechanisms [99,

100, 101, 102, 103] to determine if there are any compromises against SYSFLOW components,

especially the SYSFLOW Data Plane Daemon in the user space.

4.3 SYSFLOW Data Plane Design

In this section, we detail our design for the SYSFLOW Data Plane. First, the SYSFLOW Data

Plane abstracts system details to enable unified system security programmability. Also, the SYS-

FLOW Data Plane leverages an efficient system flow rule management scheme to facilitate dynamic

security intent update at run-time.

Generating System Events. The Event Generator component in SYSFLOW Data Plane is used

to monitor and control system-level activities (e.g., system calls) in the OS kernel by bridging the

semantic gaps between different implementations (e.g., types and versions) of operating systems.

Some examples of system events are listed in Table 4.3. In particular, Event Generator consists

of hooks for critical operations to generated various system events. The Event Generator further

inputs system events to Flow Table Manager to reference system flow rules in the flow table and

enforce corresponding security actions.

Resolving Resource Identifier. In many cases, the security application developers encounter

semantic gaps for system objects, i.e., they can hardly specify the identifier of system objects.

For example, a security application developer may not know the identifiers (i.e., UUID and inode

number) of tax files in the file system of the victim host when they want to write security apps

to prevent the ex-filtration attacks. Instead, they may be aware of the file name and possibly the

path. In order to bridge the semantic gap, Flow Table Manager enables an identifier binding and

resolution service for system objects.

At run-time, the Flow Table Manager maintains the profile table for system objects (as shown

in Table 4.2). For example, Flow Table Manager will keep the executable program name of a

process in addition to the process identifier. When receiving the requests to update flow rules that

include attributes of system objects instead of the identifiers, the Flow Table Manager will refer to
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Table 4.2: Example system object attributes.

System Object Example Profile
Process pid, ppid, pname, stime, etime, etc
File uuid, inode number, fname, path, etc
Socket uuid, inode number, local/remote addr/port, etc

the profile table to retrieve the identifier of the system object. We note that, in some cases, the map

from the attributes of a system object to its identifier is not unique. For example, the name of an

executable program may map to multiple running processes. In the case, we will install flow rules

for each of them. Besides, the binding service will also monitor the change of the mapping from

non-identifier profiles to the identifier (e.g., from name to UUID and inode number for a file) at

run-time and update the inductive flow rule accordingly.

4.3.1 Efficient Flow Rule Management

The low-level security intents of SYSFLOW are embedded in a table of system flow rules, called

SYSFLOW flow table. We note that the flow rule in SYSFLOW flow table can have two types of

match patterns, i.e., exact match and wildcard match. In order to support both of them, an intuitive

solution for SYSFLOW flow table is to use a bit-wise classification, i.e., we compare the incoming

system events with all system flow rules in the table bit by bit. However, in such a solution, the

time complexity for flow table lookups and updates is O(R), in which R is the number of system

flow rules resided in a running system. As a result, security intent enforcement will incur a high

latency in the data plane.

In order to support an efficient flow table update and query, we adopt Tuple Space Search (TSS)

classification algorithm [104]. The key insight of TSS classification is to realize a flow table as a

set of hash tables (here, the hash table is referred to as tuple). In order to classify each flow table,

we use a 3-bit mask to specify the range of each tuple. The value of “1” in the bit of the mask

means the matching field of the tuple and the value of “0” denotes ignoring (wildcard) field. For

example, “111” means the flow rule needs all exact match for the system event and “110” means

the flow rule only matches source and destination objects (and ignores the operation code). In
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each hash table, it stores the hashed key for each specific system flow rule with the same mask.

Based on the TSS algorithm, Flow Table Manager can provide an efficient flow table management,

e.g., flow rule update/lookup, with time complexity of O(1). 1 We detail the system flow table

management algorithms as follows.

Flow Table Update. As shown in Algorithm 1, the Flow Table Manager first computes the

hash value from the flow pattern and its mask value (line 2). If the SYSFLOW Controller requests

to insert a new flow rule in the flow table, the manager will locate a specific hash table associated

with the mask value of the flow rule (line 3). If no match hash table is found, it will add a new

hash table into the flow table (lines 4-5). Alternatively, it will further search if there is a duplicated

flow pattern in the matched flow table (line 7). If duplication is found, it will update the existing

flow rule in the flow table (lines 12-13) instead of inserting a new one (line 9). Otherwise, if the

controller instructs to remove a flow rule, the manager will delete corresponding elements in the

hash table (line 17).

Algorithm 1 SYSFLOW Flow Table Update
Require: FR : the SYSFLOW flow rule, M : the mask of the flow rule, C : the command of the flow rule, FT : flow

table in the data plane
1: hash = compute_masked_hash(FR.match, M )
2: if C == FlowRuleAdd then
3: hash_table = T .hash_tables.get(M )
4: if hash_table == NULL then
5: T .hash_tables.put(M , hash_table)
6: end if
7: if hash_table.contains(hash) == false then
8: /*insert a new flow rule*/
9: hash_table.add(hash, FR)

10: else
11: /*update the existing flow rule*/
12: hash_table.remove(hash)
13: hash_table.add(hash, FR)
14: end if
15: else
16: /*remove an existing flow rule*/
17: hash_table.remove(hash)
18: end if
19: return FT

1The flow rule lookup with TSS needs T hashed memory accesses, where T is a constant value (i.e., 3 in this work)
of the number of tuples. The flow rule update with TSS needs 1 hashed memory accesses.
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Algorithm 2 SYSFLOW Flow Table Lookup
Require: E : the system event, FT : flow table in the data plane
Ensure: FRs: the matched flow rules with the highest priority for the system event
1: FRs = {}
2: max_priority = MIN_VALUE;
3: for (mask,hash_table) in T .hash_tables do
4: /*detect all matched flow rules based on the system event*/
5: match = extract_flow_match(E)
6: hash = compute_masked_hash(match, mask)
7: if hash_table.contains(hash) == true then
8: flow_rule = hash_table.get(hash)
9: if flow_rule.priority > max_priority then

10: max_priority = flow_rule.priority
11: /*remove all located flow rules with a lower priority*/
12: FRs.removeall()
13: FRs.add(flow_rule)
14: else if max_priority == flow_rule.priority then
15: FRs.add(flow_rule)
16: end if
17: end if
18: end for
19: return FRs

Flow Table Query. A flow table lookup algorithm is provided in Algorithm 2. When a system

event arrives, the SYSFLOW Data Plane will iterate all hash tables in the SYSFLOW flow table

to find matching flow rules: It first extracts the flow pattern from the system event (line 3) and

computes the hash value based on the extracted pattern and the mask value of the hash table (line

4). Then, the manager searches the hash value from the flow table. Once finding a matching rule,

it will check the priority of the flow rule with previously added one and store those rules with

the highest priority (lines 9-15). If Flow Table Manager cannot find any matching flow rule, the

manager will return an empty flow rule set and enforce a default action (i.e., deny or accept) which

is pre-configured by the administrator. Note that, the flow table query procedure does not resolve

the conflicts at run-time, i.e., it assumes that there are no conflicting actions from multiple detected

flow rules based on a specific system event.
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4.4 SYSFLOW Controller Design

The SYSFLOW Controller provides a high-level programming framework to facilitate the SDN

controllers with system visibility and programmability based on the model of system flow rules. In

this section, we will first describe the run-time development environment provided by SYSFLOW

Controller that can help security developers to compose different system security intents. Next,

we discuss how SYSFLOW Controller can provide global visibility of system contexts for security

applications.

4.4.1 SYSFLOW Development Environment

High-level Data Types. Instead of reasoning about the low-level identifiers of system objects,

we provide a higher-level abstraction to facilitate security application developers to enforce their

security intents. For example, the developers can specify a file with its attributes e.g., name and

path for a file. Then, SYSFLOW Data Plane will leverage Identifier Binding and Resolution service

to resolve the identifier of system objects at run-time.

SYSFLOW Controller APIs. The SYSFLOW Controller provides several system-flow-related

SYSFLOW APIs, e.g., installSysFlowRule, revokeSysFlowRule, and handleSysFlowReport, to en-

able the development of security applications. The installSysFlowRule is to instruct the SYSFLOW

controller to install a system flow rule into a host system running SYSFLOW Data Plane. The

revokeSysFlowRule is to instruct the SYSFLOW controller to revoke an installed system flow rule

in a host system running SYSFLOW Data Plane. The handleSysFlowReport allows SYSFLOW ap-

plications to process system flow rule reports to extract contexts of host systems. Moreover, the

SYSFLOW Controller also provides other callback functions, e.g., timer-based callbacks or object-

change callbacks, to ease the development of SYSFLOW applications.

4.4.2 Global Visibility

By design, SYSFLOW Controller also envisions security contexts (collected from SYSFLOW

Data Plane) to enforce system security intents among multiple systems in an infrastructure. A

security application can collect system contexts by registering flow report handler functions in
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SYSFLOW Controller to process flow status reports from installed monitoring flow rules in a target

system. We discuss several types of security contexts supported in SYSFLOW as follows. We

consider security contexts from system events, which abstract states, attributes, and interactions

between processes and system resources in a host system. For example, a process connected to a

socket (whose remote IP address is associated in a blacklist) can be used as a security context to

allow security application to block such a process to visit user-specified sensitive files.

Cross-Host Context Sharing. Furthermore, SYSFLOW enables cross-host visibility to allow

dynamic re-configurations of security intents. In particular, SYSFLOW supports two types of cross-

host context sharing, i.e., reactive controller updating and proactive packet tagging. In a reactive

updating manner, a security application leverage SYSFLOW Controller to install multiple monitor-

ing flow rules in various systems, register flow reports to acquire system contexts from different

host systems, and optionally update response flow rules based on monitored contexts. In a proac-

tive packet tagging manner, a security application can proactively install flow rules to leverage

encode and decode security actions to encapsulate system-level contexts to the tags of outgoing

packets and enforce different security actions based on tags.

4.5 SYSFLOW Implementation

A prototype of SYSFLOW Controller has been implemented in Java 2 and built upon Java

Non-Blocking IO (NIO) API to achieve high event processing throughput. Currently, SYSFLOW

security apps can be developed in Java as well and instantiated as a module of the SYSFLOW

Controller. We have implemented a prototype of SYSFLOW Data Plane on top of Linux in C. SYS-

FLOW captures a list of system events based on Linux Security Modules (LSM) framework [105].

Table 4.3 lists some hooks in the Linux kernel used to generate system events in the SYSFLOW

kernel plugin module. To enable file permission access control, SYSFLOW can generate three

different system events, corresponding to opening, reading, and writing a file, respectively. The

file_ioctl event is designed to allow SYSFLOW capture manipulations of the underlying device

parameters. The system events relevant to inode operations provide SYSFLOW with the visibility of

2We note that the implementation of SYSFLOW Controller is programming language agnostic.
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Table 4.3: Linux kernel hooks for system events

LSM hook System event
inode_permission file_open
file_permission file_read, file_write

file_ioctl file_ioctl
dentry_open dentry_open
inode_create inode_create
inode_mknod dev_inode_create
inode_symlink symlink_create
inode_mkdir dir_create
inode_link file_create

inode_unlink file_remove
inode_rmdir dir_remove

socket_recvmsg socket_read
socket_sock_rcv_skb

socket_sendmsg socket_write

any creation, removal, and modification of the underlying file system data structures. The file_open

event can be generated through the inode_permission hook. The file_read and file_write events

can be generated through the file_permission hook. The socket system events are implemented

to enable fine-grained control over various socket behaviors. It provides more than ten hooks to

control socket behaviors. We will extend the supported system events over time.

We next discuss the implementation of built-in security actions in SYSFLOW (listed in Ta-

ble 4.1). The allow and deny directives allow and deny, respectively, certain operations, including

open, read, and write a file. These two directives can be easily enforced through the file_permission

or inode_permission hooks. The quarantine and isolation directives are used to set up a group of

system flow rules with allow and deny actions. The redirect directive is intended for redirecting

operations to another object. For example one can redirect the "open file" operation to a decoy file

so that a process will open the decoy file instead of the original file. However, the enforcement of

redirect action is quite challenging due to only relying on the existing hooks of LSM. We there-

fore determine to place an additional hook to handle the redirect action. Since a process in the

user space manipulates a file through a file descriptor, we place a hook (fd_bind) before the file

descriptor is bound to a specific inode. By invoking the fd_bind hook, one can enforce the redi-
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rect action via replacing the inode of the original file with the inode of any other files according

to the security intents. The encode directive is for tagging the outgoing packets, and we can get

the tagging information from the incoming packets by decode directive. One challenge to imple-

ment encode and decode is to associate process identifiers with their outgoing packets, since the

retrieval of packet instance in LSM hooks and the retrieval of process identifiers in NetFilter hooks

are not deterministic. Hence, we embed two new hooks in LSM from Linux kernel functions (i.e.,

ip_queue_xmit() for encode and ip_rcv() for decode), which can help correlate process identifiers

with their outgoing packets. Then, the encode and decode leverage packet tags (using IP TOS filed

in outgoing or incoming packets) to exchange contexts cross multiple hosts. The alert directive is

implemented as flow rule status report messages that notify security administrators. The log direc-

tive is implemented to write to a system log file, “/var/log/messages”, in Linux, and other system

log files for other operating systems.

4.6 Evaluation

In this section, we first showcase the effectiveness of SYSFLOW to enable SDN to defend

against advanced cyber attacks with system-level visibility and programmability. We then present

our experimental results from measuring the performance of SYSFLOW on its overhead that im-

poses on normal system-level operations, the efficiency of dynamic flow control, and the scalability

of SYSFLOW Controller. In our experiments, we hosted the SYSFLOW Controller and the SYS-

FLOW Data Plane on machines running GNU/Linux Ubuntu 12.04 with dual-core CPU and 8 GB

memory.

4.6.1 Use Case: Cross-Layer Data Leakage Prevention

In addition, we show that how SYSFLOW can benefit SDN (as illustrated in Figure 4.5) to

write hybrid security applications to prevent advanced cyber attacks we mentioned in motivating

example. We note that such security application enforces cross-layer data leakage prevention by

using both system flows and network flows. The security app installs system flow rules into the

victim host and other hosts in an infrastructure (¬). For the victim host, the SYSFLOW Controller
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installs a system flow rule to track the system-level information flow from the sensitive file to any

processes. If an access to a sensitive file is observed, a report is sent to the SYSFLOW controller

(). When the controller receives the report message from the victim’s flow rule, it will reactively

install a tracking flow rule to encode a tag for all outgoing traffic from the process that accesses the

sensitive file (®). Since the SYSFLOW Controller has already installed flow rules on other hosts

to instruct SYSFLOW Data Plane to report any observation of tagged packets received from the

socket (¯ and ±), when the SYSFLOW Controller receives the report from SYSFLOW Data Plane,

it responsively installs flow rules to propagate the tag for outgoing traffic (° and ²). Moreover,

the administrator can improve the efficiency for tag propagation by placing the logic of report

event handler into the SYSFLOW Data Plane as a SYSFLOW external security function, which can

mitigate the communication overhead between the SYSFLOW Controller and the SYSFLOW Data

Plane during the installation of tag-propagation flow rules. Furthermore, the app defends against

data leakage attacks by using SDN controller to filter tagged traffic at the broader of the infrastruc-

ture. In this use case, we note that the system-level visibility and programmability can effectively

facilitate SDN to enforce more advanced defensive solutions against emerging infrastructure-wide

cyber attacks.

4.6.2 Performance Measurement on SYSFLOW Data Plane

In this section, we present our experimental results from evaluating the performance of SYS-

FLOW Data Plane for micro-benchmark tests, macro-benchmark tests, and scalability tests. In

the following evaluations, we leverage baseline to refer to systems running an unmodified Linux

kernel.

Micro-Benchmark results. We used LMBench [106] to evaluate the run-time performance

of system calls, file operations, memory latencies, and socket I/O throughput. Table 4.4 depicts

the comparison between the baseline and SYSFLOW with 1000 system flow rules. The file op-

erations include read, write, open/close, delete, and create. Our evaluation results indicate that

SYSFLOW mainly impacts the file operations. But for system calls, memory latencies, and socket

I/O, SYSFLOW only introduces negligible overhead.
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Figure 4.5: High-level idea of how infrastructure-wide data leakage investigation is realized via
SYSFLOW.

Table 4.4: Micro-benchmark results for SYSFLOW Data Plane.

System Operation Baseline SysFlow
Latency of system operations in µs (smaller is better)

file read 0.319 0.467 (+46.5%)
file write 1.844 2.103 (+14.1%)

file open/close 1.069 1.295 (+21.1%)
file create (0k) 6.159 6.625 (+7.6%)
file create (10k) 53.917 64.613 (+19.5%)
file delete (0k) 5.178 5.402 (+4.3%)
file delete (10k) 18.019 20.5154 (+13.9%)

syscall 0.054 0.054 (+1.4%)
mmap latency 9.803 9.826 (+0.2%)
pipe latency 6.591 6.616 (+0.4%)

Socket throughput pps (larger is better)
socket I/O 885 883 (-0.22%)

Macro-Benchmark Results. We also tested SYSFLOW Data Plane with macro-benchmarks

including web server performance, file transmission performance, and database online transaction
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Table 4.5: Macro-benchmark results for SYSFLOW Data Plane.

Type Baseline SysFlow
Web Server (Nginx) Performance

10K total requests with 500 concurrent connections
Requests per second 3,533 3,502 (-1.0%)

Time per request (ms) 141 143 (+1.4%)
File Transfer (wget) Performance for 1 GB file

Time to Complete (s) 21.8 21.9 (+0.4%)
Throughput (MB/s) 48.0 47.7 (-0.6%)

Database (MySQL) Performance with 1M records
Transactions per second 540.6 538.6 (-0.4%)

processing performance. In all of those tests, we run the SYSFLOW Data Plane in both server

side and client side with 1000 system flow rules. For the web server performance, we used a

host running ApacheBench [107] to test the performance of a Nginx server by sending 10,000

requests with 500 concurrent connections. To test the file transmission performance, we used wget

benchmark [108] in a host to test the transmission of a 1 GB file from a server. For the database

performance, we used sysbench [109] to test a database server with 1 million records. The results

(Table 4.5) show the SYSFLOW Data Plane introduces negligible overhead on the operations of

real-world applications even across different hosts.

Scalability with Flow Rules Moreover, we tested the scalability of SYSFLOW Data Plane

using different numbers of system flow rules. Figures 4.6, 4.7, and 4.8 depict the cumulative

distribution function (CDF) of the performance of three most frequently used operations, file read,

file write, and socket I/O. We increased the number of system flow rules from 1000 up to 5000 in

our experiments. For file operations and socket operations, SYSFLOW can scale well. The number

of system flow rules does not make a significant difference to the performance since the system

flow table is implemented through a hash table. The socket I/O operation scales almost the same

as the number of system flow rules increases.

In addition, we tested the memory overhead introduced by the SYSFLOW Data Plane through

the top Linux command with different numbers of system flow rules. The result shows the memory

usage is about 400 KB for 1000 flow rules and it grows linearly with the number of system flow
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rules inserted. Hence, the SYSFLOW Data Plane is scalable to contain system flow rules for various

system security intents.
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Figure 4.6: CDF of the latency of read operation with various numbers of system flow rules in-
stalled.

4.6.3 Efficiency of Dynamic Reconfiguration

Latency for flow rule update. First, we tested the latency of data plane for updating system

flow rules proactively. Our controller is deployed in our university local network. We measured

the flow rule update delay from the SYSFLOW controller to the flow rule table in the data plane

by using a test app to send out flow modification messages. The result shows the average latency

of such a proactive flow rule update is totally 10.52 milliseconds, in which the event transmission

latency from the SYSFLOW Controller to the SYSFLOW Data Plane is about 9.60 milliseconds.

From the result, we observed that the main factor to affect flow updates is the network latency,

not the flow rule installation or matching. In this case, deploying the SYSFLOW Controller and

the SYSFLOW Data Plane in a low latency network [110] may further improve the efficiency of

dynamic flow control.
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Figure 4.7: CDF of latency of write operation with various numbers of system flow rules installed.

Sensitivity of flow rule update to residual flow rules. We added a test code snippet in the

SYSFLOW Data Plane Daemon that leverages the gettimeofday API with microsecond timestamp

to measure the latency of inserting/updating/deleting 1000 flow rules cumulatively (from 1000 flow

rules to 5000 flow rules). We repeated the measurement five times for each case. Figure 4.9 shows

the average latencies for the Flow Table Manager to handle flow rule modification messages. We

could observe that the Flow Table Manager can efficiently handle all types of flow rule modification

messages, e.g., the average latency is around 2 ms for inserting 1000 flow rules when there exist

1000 flow rules. Thus, the time of inserting rules is almost negligible. We also observed that the

residual flow rules do not have negative effects on the flow rule modifications since the latencies

for different scenarios are in a constant trend. As a conclusion, the design and implementation of

the Flow Table Manager can support a rapid reconfiguration for high-level security intents.

4.6.4 Controller Scalability

We tested the event processing throughput of a single SYSFLOW controller. Our test generator

sent flow rule status report messages to the controller as fast as possible. The SYSFLOW controller

(assigned with 4 GB RAM) run a stateful app that installs a new flow-mod message once receiving
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Figure 4.8: CDF of Socket I/O throughput with different numbers of system flow rules installed.

a flow report. In this case, we increased the number of generators and measured the observed

output throughput of flow mod messages. The result shows the SYSFLOW controller (and its

applications) can handle around 12,000 events every second. In this case, suppose that a SYSFLOW

Data Plane generates 5 event per second (in the context of [111]), current implementation of a

single SYSFLOW Controller (even on a low-end machine) can support around 2,400 host systems

running SYSFLOW Data Plane.

4.7 Related Work

Recently, there are a couple of work propose to implement diverse security applications upon

SDN due to its holistic network visibility and flexible network programmability. For example,

SPHINX [47] and Veriflow [36] propose to leverage SDN techniques to detect network traffic

anomalies. Also, some prior work [112, 22, 113] propose to defend against DDoS attacks by using

the power of SDN. Moreover, moving target defense systems [44, 114] are proposed in SDN to de-

lay or prevent attacks on a system. Furthermore, many work [115, 116, 117] introduce SDN-based

cyber deception schemes to deploy honeypot/honeynet to lure attack traffic and investigate their at-

tack patterns. In addition, FRESCO [11] presents an SDN-based security application development
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Figure 4.9: Composition of system flow rules.

framework to compose network security services by using a scripting language.

However, all of those work can only used to detect and defend network attacks since SDN only

covers network-level visibility and programmability. In contrast, in this work, SYSFLOW aims

to enable SDN to detect more advanced attacks (e.g., involving malicious activities inside host

systems) by providing system-level visibility and programmability.

4.8 Conclusion of This Work

In this work, we have presented SYSFLOW, a novel system security development framework

to facilitate SDN with flow-level security control of host system activities at run time. SYSFLOW

abstracts low-level system activities into a flow-based abstraction, provides dynamic flow-level

control at run time, and offers unified programmability to users to specify their security intents ef-

fectively. The evaluation results show that SYSFLOW is useful to extend SDN to develop advanced

security apps with system-level visibility and programmability and only introduces acceptable run-

time overhead.
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5. LESSONS LEARNED AND SECURE SDN ARCHITECTURE

5.1 Lessons Learned

As we have highlighted earlier regarding under-explored security issues on SDN innovative 

features (i.e., network visibility and programmability), in-depth security analysis helps us to design 

new security solutions. From the success of our findings, and proposed defensive insights, we have 

learned the following meaningful lessons:

For the security analysis on SDN infrastructure, we should pay attention to both design 

and implementation flaws. Our located security issues in SDN lie in two aspects, i.e., design flaws 

and implementation flaws. However, both of them can cause serious security and reliability issues 

to most SDN controllers. On the one hand, most of the existing SDN controllers and switch vendors 

follow a particular design convention for handling topology management. Since the first reference 

SDN controller implementation (i.e., NOX [118]), almost all the implementations implicitly follow 

its design, including OpenFlow Discovery Protocol (OFDP) and Host Tracking Service. This may 

be a root cause for explaining that all the controllers expose similar vulnerabilities in terms of 

topology management. On the other hand, harmful race conditions are rooted in implementation 

defects of SDN applications. However, it is extremely difficult, if not impossible, for developers to 

write bug-free SDN applications, especially in a concurrent programming model. Not to mention, 

SDN controllers embrace modular design, in which different groups of developers contributes 

to parts of the same function but lacks proper communications. In this sense, to secure SDN 

architecture, our security analysis should cover both its design and implementation aspects.

Our in-depth security analysis of SDN innovations could be an effective way to defend 

against SDN unique threats. In this thesis, we note that existing solutions can hardly address 

our located SDN security issues. The insight lies in that our located security vulnerabilities are 

unique to SDN innovations, i.e., holistic network visibility and flexible network programmability, 

which are rarely explored before (e.g., security omissions in newly introduced OFDP) and have
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different natures with threats in other systems (e.g., harmful race conditions in the SDN control

plane). By understanding those security threats via in-depth security analysis, we can effectively

design detection solutions to locate those malicious activities (e.g., network poisoning attacks) and

vulnerabilities (e.g., harmful race conditions) in SDN.

Our reported security issues and their mitigation schemes can stimulate more attentions

and considerations to secure SDN architecture. In this thesis, we detect two categories of se-

curity threats against SDN architecture, i.e., topology poisoning attacks and harmful race con-

ditions. Once we locate them, we proactively report their details and potential security advi-

sories to victim SDN communities/vendors and Common Vulnerabilities and Exposures (CVE)

authority. We received four CVE entries for our reported vulnerabilities, i.e., CVE-2015-1610,

CVE-2015-1611, CVE-2015-1612, and CVE-2015-6569. We also note that our reports and pa-

per publications [28, 29] draw many attentions from both academia and the SDN industries to put

more security considerations to enhance the security of network visibility and programmability in

SDN, such as [119, 120, 121, 122, 123, 124, 125]. As a result, to date, most of active-maintained

SDN controllers are patched against our reported security issues. For example, the mainstream

SDN controllers, i.e., Floodlight, ONOS, and OpenDaylight, have currently included our pro-

posed HMAC-based authentication scheme to prevent fake-LLDP-based topology poisoning at-

tacks. Also, Floodlight and ONOS controllers are correctly patched for 12 harmful race conditions

as detected by our CONGUARD framework.

A unified control plane with global visibility and programmability can benefit the security

of the whole infrastructure. Nowadays, more and more cyber attacks have emerged to threaten

modern infrastructures, e.g., cloud or enterprise. As a novel programmable network paradigm,

SDN enables many merits to defend against emerging attacks, e.g., agile network security intent

programming, network-wide threat detection, and dynamic threat responses. Even with centralized

control of network devices, SDN still lacks entire infrastructure-wide security capabilities, e.g.,

in host systems. In this thesis, we present SYSFLOW to enhance system security visibility and

programmability to the SDN control plane, which showcases many innovative security benefits,
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e.g., effective detection of stepping-stone data ex-filtration attacks. We consider such a successful

experience can also motivate us to unify more security capabilities from other systems/components

in modern infrastructures, such as virtual machines, containers, and host network stacks.

5.2 Implications on Secure SDN Architecture

Figure 5.1 exhibits a generalized secure SDN architecture by integrating and extending our

proposed three components, i.e., TOPOGUARD, CONGUARD, and SYSFLOW.

Figure 5.1: SDN security research framework.

First, the framework leverages the TOPOGUARD component to secure the network visibility

in SDN. In particular, TOPOGUARD inspects control messages from data plane devices. Then, it

adopts behavior analysis to detect and block those malicious messages related to topology poi-

soning attacks. In addition to mitigating topology poisoning attacks, this security component can

be abstracted into a general threat detection engine to defend against more known and unknown

network-side attacks against the SDN control plane. That is, we can feed SDN control messages to

a detection engine, including known attack signature/pattern matching module or a machine learn-

ing based analytic module, to detect malicious/anomalous activities. Our successful experience
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in the design and implementation of TOPOGUARD can help to develop such general network-side

threat detection engine in the SDN control plane.

Moreover, the framework utilizes CONGUARD component to fortify network programmability

by detecting and patching harmful race conditions. In particular, CONGUARD instruments the

SDN controller and its applications to generate dynamic traces as an execution model. Based on

the execution model, it further detects harmful race conditions in an offline manner. Then, the

located vulnerabilities can guide developers or administrators to secure the SDN control plane

by using online or offline patching. CONGUARD exhibits a general dynamic bug/vulnerability

detection procedure in the SDN control plane. That is, we can reuse the instrumentation module to

log critical operations into the execution trace and utilize detection module to automatically locate

more different vulnerabilities, such as API misuses, data leakage, permission squatting, in either

online or offline manner.

Besides, the SYSFLOW component can help the framework to protect modern infrastructures,

e.g., cloud or enterprise, from emerging cyber attacks involving malicious system activities. In par-

ticular, SYSFLOW introduces a unified data plane agent in host systems and thus provide system

security visibility and programmability to applications in SDN. Based on the insight of design-

ing SYSFLOW, we can complement more security capabilities from other systems/components to

the SDN control plane. For example, we can extend SDN with security functionality from vir-

tual machines via introspection-based techniques [126, 127] to enable more fine-grained control

on virtualized environments, e.g., cloud. Also, we can abstract the security capabilities from pro-

grammable host network stacks into the SDN control plane to provide unified packet processing

logic for novel security applications.
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6. CONCLUSION AND FUTURE WORK

Software-defined n etworking ( SDN) t echnology h as f undamentally c hange n etwork infras-

tructures by providing two key innovations, i.e., holistic network visibility and flexible network 

programmability. Unfortunately, the security issues and limitations of those SDN-provided in-

novations is under-explored, which may impede the adoption of SDN to innovate programmable 

services in an infrastructure, e.g., enterprise or cloud. Motivated by the fact, we perform in-depth 

security analysis upon network visibility and programmability provided by SDN locate several se-

curity issues and limitations. First, we systematically study the security of SDN-provisioned net-

work visibility stemmed from network topology management services/modules. From the study, 

we find several unknown security loopholes, which can incur severe topology poisoning attacks. 

Second, we conduct a systematic study on the network programmability provided by SDN. From 

the study, we notice that the concurrent programming model in SDN is vulnerable to harmful race 

conditions, which can further be exploited remotely to cause serious security and reliability issues 

in SDN. Third, the current SDN visibility and programmability only cover network-level infor-

mation, which is far from enough to secure the entire infrastructure in today’s enterprise/cloud 

systems. The reason lies in that existing SDN techniques fall short in detecting and preventing 

advanced cyber attacks involved in system-level malicious activities.

To mitigate those security issues, we present three solutions to enhance the security of the 

visibility and programmability provided by SDN. First, to mitigate topology poisoning attacks, 

we investigate possible defense strategies and present a new security extension on the SDN con-

troller, called TOPOGUARD, that secures the topology management by providing light-weighted, 

automatic and real-time detection of topology poison attacks. Second, to prevent harmful race 

conditions in network programmability, we design and implement a dynamic framework, called 

CONGUARD, to effectively detect and validate those harmful race conditions in SDN controllers. 

By proactively locating and patching those concurrency vulnerabilities, this thesis can enhance 

the security of network programmability in SDN. Third, we introduce a novel flow-based model,
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system flow, to abstract system activities and security capabilities. Upon the system flow model,

we design and implement SYSFLOW, a framework to enable SDN controllers to effectively and

efficiently enforce unified security intents with system security visibility and programmability.

In our future work, we plan to continue our research to make the SDN more secure and protect

networked resources from emerging advanced attacks. We will conduct more security analyses on

SDN architecture to detect and eliminate more vulnerabilities. For example, an SDN application

may misuse service functions (which are also known as NBIs) to reference network state variables

from other applications. However, verification and sanitization of more generalized uses of SDN

control plane NBIs are still challenging issues. We plan to study these problems in future work.

Moreover, we plan to leverage widely-used security analysis approaches, such as static/dynamic

program analysis techniques, penetration testing techniques, and fuzzing testing techniques.

In the meantime, we plan to extend TOPOGUARD to support more SDN controllers. Also, we

will complement CONGUARD with coverage-based techniques to increase its code coverage, such

as symbolic execution [128, 129].

We will extend SYSFLOW in several aspects. First, we plan to extend SYSFLOW with a better

programming abstraction, e.g., a domain-specific language (DSL), to support unified programma-

bility between network flow model and system flow model and to hide tedious programming-

language-related implementation details to a compiler and run-time system. Second, we plan to

extend SYSFLOW to support more operating systems, e.g., Windows and Mac OS, and system

events. Third, we plan to present more security designs to prevent attacks against SYSFLOW

framework itself.
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