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 ABSTRACT 

 

Transfer RNAs (tRNAs) are primeval molecules ubiquitous to all domains of life. The 

interactions between aminoacyl-tRNAs (aa-tRNAs) and actively translating ribosomes 

are critical components to the central dogma of biology as they are directly involved in 

the transformation of genetic code into protein. It is generally believed that this limited 

interaction is the extent of cooperation between tRNAs and protein-coding transcripts, 

however, recent findings suggest this relationship is much more complex. Using robust 

computational methods, we identify intact tRNA genes that intersect 79 protein-coding 

genes, 30 long intergenic non-coding RNA genes (lincRNA), and 11 antisense genes, 

among other gene types. A tRNA sequence that overlaps the interval of another gene is 

likely to solicit fundamental aspects of tRNA biology to the overlapped gene where they 

are otherwise not expected. Here, we present the hypothesis that when the interval of a 

tRNA gene is found to overlap the interval of another gene, the tRNA gene will 

introduce regulatory mechanisms that affect both the transcription and translation of the 

overlapped gene by various processes normally associated with tRNA biology. 

Furthermore, we describe an uneven distribution of tRNA genes in the human genome 

that reveals an acute concentration of tRNA genes that cluster with regions related to 

nucleosome assembly and the major histocompatibility complex (MHC). Our findings 

highlight the possibility that overlapping tRNA genes play a role in the transcriptional 

and post-transcriptional regulation of overlapped genes and these overlaps affect 

previously undescribed mechanisms of transcriptional and translational regulation. 
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Moreover, the identified clustering of tRNA genes with regions associated with 

nucleosome assembly and the MHC suggests tRNA biology may facilitate necessary 

processes to histone organization and adaptive immunology. 
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NOMENCLATURE 
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1. INTRODUCTION: A BRIEF HISTORY OF tRNAs 

 

Transfer RNAs (tRNAs) are primeval molecules ubiquitous to all domains of life. 

Francis Crick first hypothesized their existence in the 1950s when he postulated the need 

for an intermediary in the transformation of nucleic acid sequence to amino acid 

sequence (Crick, F. HC., 1958). Concurrent work in cell-free protein synthesis utilized 

immobilized enzymes that were found to attach radiolabeled amino acids to unknown 

RNA molecules. These labeled amino acids were later shown to have been incorporated 

into the polypeptide sequence of proteins (Hoagland, M. B., et al. 1956, 1957, 1958). 

Initially, these unknown RNA acceptor molecules were termed soluble RNA (sRNA) by 

Hoagland and colleagues because they were observed to be independent of the insoluble 

enzyme fraction. It was sRNA, which is now known as tRNA, that satisfied Crick’s 

intermediary hypothesis just a year prior. 

 

tRNA was subsequently confirmed as the adapter between DNA and protein and was 

independently discovered by several different groups within approximately two years of 

each other (Hoagland, M. B., et al. 1956, 1957, 1958; Ogata, K., et al. 1957; Holley, R. 

W. 1957). A period of robust research throughout the 1960-70s contributed to the 

illumination of tRNA’s distinct molecular structure that, in turn, allowed researchers to 

ascribe functional regions, the most consequential of which was perhaps the anticodon. 

The nucleotide sequence contained therein enabled researchers to capitalize on the 

adapter quality of tRNAs in techniques used to unlock the genetic code. Today, ongoing 
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research continues to connect tRNAs to a diverse array of unorthodox processes that 

often reveal characteristics of tRNA biology that are both surprising and unexpected. 

 

Canonically, tRNAs act as the obligatory liaison between an amino acid residue and an 

elongating polypeptide. Under normal conditions, aminoacyl-tRNA (aa-tRNA) 

synthetase will ‘charge’ cytosolic tRNA molecules by attaching the cognate amino acid 

onto the 3’-CCA tail of the respective tRNA molecule. aa-tRNAs will then deliver the 

coupled amino acid to an actively translating ribosome where it will be integrated into a 

growing polypeptide; however, research continues to implicate tRNAs in a wide range of 

non-canonical biological functions. For example, aa-tRNA transferases can use a tRNA 

charged with a primary destabilizing amino acid (pro-N degrons) to target specific 

peptides by transferring the destabilizing amino acid moiety to the N-terminus of an 

aberrant peptide (Mogk, A., et al. 2007). This helps to eradicate particular proteins in a 

cellular environment by circumventing the typical function of lysosomes and vacuoles 

that work to degrade proteins in a non-specific manner. Additionally, tRNAs were 

discovered to be principal components in the lateral transmission of epigenetic 

information (Chen, et al. 2016). Small pieces of tRNA molecules, termed tRNA-derived 

fragments (tRFs; discussed below), were found to be transmitted to offspring in the head 

of sperm cells of mice. These offspring were shown to exhibit physiological 

characteristics reflective of the paternal experimental environment in lieu of their own 

controlled environment (Chen, et al. 2016). This study implicates tRNAs, the parental 

molecules required in the production of tRFs, as an intergenerational signaling 
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mechanism that can affect developmental processes. Modern molecular techniques and 

increasing computational power have allowed researchers to generate a broadening 

catalog of disparate functionality connecting tRNA to mechanisms that far surpass the 

dutiful service of amino acid delivery. Here, we aim to add to this growing repertoire by 

uncovering additional properties of tRNA biology through the implementation of 

computational methods.  

 

Our analysis is focused on four key aspects of tRNA biology; tRNA population 

dynamics, the genomic organization of tRNA genes, the transcriptional processes of 

tRNA, and the post-transcriptional modifications and structure of tRNA molecules. 

Using the most recent sequencing data, we provide evidence to suggest a subset of these 

key aspects are implicated in an otherwise undescribed approach to the transcriptional 

and translational regulation of certain protein coding genes. Furthermore, our findings 

demonstrate an acute clustering of tRNA genes within separate regions of the human 

genome associated with nucleosome assembly and adaptive immunology. A clear 

indication of conservation amongst a wide primate clade indicates a strong selective 

pressure to maintain this distinct distributive property. 

 

tRNA molecules, as we understand them, are likely the direct descendants of pre-biotic 

chemistry that preceded life as we know it. There are certain characteristics of tRNA 

biology that are better understood within the context of this ancient nature. Accordingly, 
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this work begins with a short review of the tRNA origin story, and how life has evolved 

to be completely dependent on their existence. 

 

1.1. RNA World First 

 

The quantitative characterization of life is an impossibly complex interface between 

physics, chemistry, and biology. Abiogenesis necessarily requires a physical and 

chemical description, but our current understanding of protein-based life lacks a 

comprehensive and cohesive quantitative explanation. The pervasive complex chemical 

interactions between DNA, RNA, and protein we observe in even the simplest of 

organisms begs the question, which one of these molecules came first? The intricacies of 

protein-based life coded in DNA are generally believed to be far too complex to have 

arisen without a preceding period of simpler, precursor molecules. This preclusion 

illuminate’s RNA as the likely progenitor, notwithstanding some unknown or otherwise 

undiscovered precursor.  

 

The RNA world first hypothesis is an elegant, albeit imperfect, estimation of how life as 

we know it may have arisen. The main ideas presented therein forwards the argument 

that it was RNA that preceded DNA and protein. Although several critical gaps in our 

scientific understanding of the pre-biotic chemistry responsible for the origin of life 

remain, current research in this field indicates the emergence of RNA, not DNA or 

protein, from the primordial soup (Sutherland, J. D., 2016). The myriad of naturalistic 



 

5 

 

processes and chemical modifications necessary to produce the monomers required for 

an RNA polymer are beyond the scope of this thesis but remains an active area of 

research. There are several excellent articles that summarize the progress and identify 

the weaknesses of this leading hypothesis and our current understanding (see Joyce, G. 

F., 2002; Bernhardt, H. S., et al. 2012; Kua, J., et al. 2011; Orgel, L. E., 2004). 

Moreover, credible and justifiable objections to an RNA dominated world have been 

raised and previously addressed, so we will not dwell on the points here (for a review of 

the main criticisms and rebuttals, see Bernhardt, H. S., 2012). For the purpose of this 

thesis, we necessarily assume that environmental conditions are compatible with the 

processes required for the generation of an initial RNA polymer. To better understand 

the origin of tRNA, and subsequently interpret our findings within this context, we must 

first peer into the pre-biotic RNA world to gain some insight into the ancestral deeds of 

the earliest RNA molecules and how they have maintained biological relevance 

throughout billions of years of evolution. 

 

1.1.1. Self-replicating RNA 

 

A fledgling planet Earth sustained chemical and physical processes that primed the early 

environment for an initial RNA oligonucleotide. To be sure, this process was 

remarkable, but how does an unlikely molecule initiate the transformation from an RNA 

dominated world to a DNA/protein dominated world? In a presumed hostile environment 

devoid of either DNA or protein, the most probable answer requires an RNA molecule 
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with the inherent ability to self-replicate. We know that certain RNA molecules are 

capable of protein independent self-replication and they have been observed to assemble 

themselves within thermostable protocells in the presence of single-strand amphiphiles 

(Lincoln, T. A., et al. 2009; Mansy, S. S., et al. 2008). Indeed, the surest way for any 

molecule to persist is by sustaining a rate of replication that is greater than that of 

degradation and by maintaining the replicative process at a high degree of accuracy. 

Interestingly, due to the intrinsic differential fidelity of molecular replication, a 

primordial RNA molecular playground ripe with self-replicating RNAs was quite 

possibly the womb from which Darwinian evolution was born. The imposition of 

selective pressures would facilitate the optimization of replication and allow populations 

of these RNAs to adapt to changing environmental conditions. 

 

In an RNA dominated world, changing environmental conditions like pH, temperature, 

and cation concentrations (i.e., Mg2+) can act to degrade single-stranded RNA molecules 

(Larralde, R., et al. 1995; Szostak, J. W., et al. 2012). Modern-day mRNAs overcome 

degradative forces for a finite period of time through the enzymatic modifications that 

add a 5’ cap and 3’ poly-A tail to the molecule. Methylation patterns and secondary 

structures also help to ensure the longevity of mRNAs in a cellular environment. In a 

pre-protein world, the former modifications were not available, although, single-stranded 

RNA molecules can assume a stable secondary structure in the absence of proteins when 

their sequence allows for Watson-Crick complementary base pairing. Not only can a 

secondary structure increase the resilience of an RNA molecule, but it is necessary to 
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facilitate a molecular conformation that engenders the ability to accurately self-replicate 

(Johnston, W. K., et al. 2001). Characteristics like secondary structure and copying 

fidelity are excellent fodder for the omnipotent surveillance of natural selection. As 

such, selective pressures would likely lead to a population of molecules with increased 

structural integrity and accurate replicative capabilities. Molecules undergoing selection 

for these types of properties would indubitably persist and their proliferation would be 

certain among other RNAs in Earth’s early molecular laboratory. This is compatible with 

the belief that RNAs flourished in the budding global ecosystem and it provides some 

insight into the ancient nature of tRNA. 

 

1.1.2. The Genomic Tag Hypothesis 

 

Deliberate and consistent self-replication is dependent on a stable initiation signal. The 

genomic tag hypothesis (GTH) describes certain characteristics that were likely critical 

factors in the persistence and proliferation of ancient RNA genomes. According to the 

GTH, a stem-loop structure on the 3’-terminus of RNA molecules not only acted as an 

initiation site for replication, but it also helped protect the molecules from degradation. 

In fact, a similar stem-loop structure was naturally developed by RNA molecules 

undergoing an in vitro evolution experiment to optimize self-replication (Lincoln, T. A., 

et al. 2009). In addition to a stem-loop structure, an important component of the GTH 

states that a CCA sequence added to the 3’-terminus by a catalytic RNA (ribozyme) 

facilitates the initiation of replication and acts as a rudimentary telomere (Weiner, A. M., 
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1987; Maizels, N., et al. 1999). Characteristics like these (3’ stem-loop secondary 

structure and a CCA terminal sequence) not only provide an initiation site for replication 

but help the molecule evade deterioration as well. A sub-population of RNA molecules 

that can assume a stable secondary confirmation and contain a replication enhancing 

genomic tag will have a selective advantage to those that do not and will thus move 

towards the maintenance and optimization of these properties. 

 

RNA replicase requires the evolutionarily optimized stem-loop 3’ terminal structure as a 

guide for RNA synthesis. Models proposed by Weiner suggest an adventitious affinity 

between the active site of RNA replicases and certain amino acids (Weiner, A. M., 

1987). This association makes it likely that amino acids were added to the 3’ terminus of 

early RNA genomes that had a genomic tag and thus endowed them with a replicative 

advantage (Maziels, N., et al. 1999). This ensures the persistence of 3’ aminoacylation 

and marks the likely origin of an RNA intermediate. The subsequent co-evolution of 

decoding DNA into protein during the transition from RNA to DNA based genomes 

would develop this intermediary into the tRNA molecules we are familiar with today. 

The ancient nature of tRNA is reflected in nuances of these primordial characteristics 

and may continue to play a currently undescribed role in many vital biological processes. 
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1.2. The Origin of tRNA 

 

Self-replication is a major tenet of the early RNA world. Models proposed by Di Giulio, 

and Dick and Schamel both indicate RNA precursor polymers with the intrinsic ability to 

copy itself as the originators of modern tRNAs (Appendix A Figure 1A-E; Di Giulio, M. 

G., 1992; Dick, T. P., et al. 1995). According to this model, a precursor molecule with 

the attributes required for self-replication will not only generate copies of itself, but in 

the process will sometimes generate erroneous copies that contain an additional 3’-run-

off sequence (Appendix A Figures 1A and 1B). The subsequent duplex formation of 

these complimentary stem-loop structured molecules results in a coaxial double stem-

loop structure (Appendix A Figure 1C). As a side note, it is also possible for two 

independent stem-loop molecules to duplex as well (i.e., those that have complementary 

base pairs but have not been copied from the other). In either case, when a duplex is 

formed with one of the molecules that contains a run-off sequence, the model predicts 

the 3’ end of the run-off will be ligated to the 5’ end of the original stem-loop structure 

and then self-excised (Appendix A Figure 1D). This is a similar process observed in 

modern tRNA molecules that contain an intron and it is consistent with some Archaean 

organisms that have been observed to ligate two tRNA halves that are transcribed from 

various genomic loci (van Tol, H., et al. 1989; Weber, U., et al. 1996; Riepe, A., et al. 

1999; Randau, L., et al. 2005A and 2005B; Fujishima, K., et al. 2009). Following the 

ligation of complex stem-loop structures and the excision of an extraneous run-off 
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sequence, the resultant molecule displays the basic secondary structure of modern tRNA 

and consists of the antecedent functional regions (Appendix A Figure 1E). 

 

1.3. The Anatomy of tRNA 

 

The anatomical features of tRNA provide compelling evidence to suggest the earliest 

self-replicating RNAs are indeed the progenitors of tRNA. The crystal structure of tRNA 

indicated two perpendicular coaxial stacks that have been subsequently termed the “top 

half” and “bottom half” (Appendix A Figure 2A; Quigley, G. J., et al. 1976; Maizels, N., 

et al. 1999). The top half includes the 3’-amino acid attachment site and the T-arm, and 

the bottom half includes the anti-codon and D-arms. Conspicuous similarities emerge 

when comparing the top half of modern tRNAs to characteristics of early RNA genomes 

as described by the GTH. For example, the top half of tRNAs retain both a 3’-terminal 

stem-loop (the TψC loop of modern tRNA) and are enzymatically modified with the 

addition of a non-templated 3’-CCA sequence. These characteristics are not shared with 

the bottom half and therefore provide some evidence to suggest the top half is likely the 

more ancestral portion. Additionally, the top half of tRNA interacts almost exclusively 

with the large ribosomal subunit during protein elongation (Samaha, R. R., 1995; Green, 

R., 1998; Thompson, J., et al. 2001; Green, R., et al. 1997). This is the site of peptide 

synthesis which is generally understood to be more ancestral than decoding; a process 

that occurs in the small ribosomal subunit (Bokov, K., 2009). These conclusions are 

consistent with phylogenetic analysis based on molecular structure, as well as 
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thermodynamic and mechanical features that also suggest the top half of tRNA is the 

most ancient (Sun, F., et al. 2008A and 2009A). Taken together, several independent 

lines of evidence suggest the top half of tRNA is, in the least, more ancestral-like with  

respect to the bottom half. Thus, the top half of tRNA is the likely descendent of an 

initial self-replicating RNA molecule. 

 

The potential of the top half of tRNA to retain the ancestral enzymatic activity is what 

we are most interested in as it may help to explain observations presented later in this 

work. For example, tRNA molecules undergo several post-transcriptional modifications 

(discussed in detail later), but a potentially consequential modification worth mentioning  

here is the splicing of a tRNA molecule at the anticodon loop by the ribonuclease 

angiogenin. This results in two tRNA halves; the 5’-half and the 3’-half (distinct from 

the top and bottom halves). The 3’-half is of particular interest because it retains both a 

stem-loop structure and the 3’-CCA terminal sequence similar to ancient self-replicating 

RNA molecules. The 3’-CCA terminal sequence is not present in the 5’-half. Given the 

proposed ancestry of tRNA, if 3’-halves retain enzymatic activity, we can reasonably 

implicate them in critical biological processes that have, to our knowledge, not been 

previously described. 

 

Broadly defined, genes are sequences of nucleotides that code for some function and are 

under some form of regulation. For the purpose of this thesis, we will be using the term 

‘gene’ to describe any principal feature defined as such by the respective database from 
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which the feature is included. For example, Gencode.v28 defines protein coding genes 

based on annotations from Ensembl or Havana, or both (Appendix B Table 1). A 

genomic region annotated as a protein coding gene can also code for a variety of 

transcripts known as alternative transcripts or isoforms. The number of isoforms 

transcribed from the genic region can vary widely and do not necessarily have the same 

function as the primary gene (i.e., isoforms may code for a different functioning protein 

or not code for protein at all). Throughout this thesis, when we refer to a ‘gene,’ we are 

referring to the genomic interval in which the primary sequence of the feature exists. 

Writ large, we will not consider isoforms that derive from these defined regions as 

separate from the primary gene interval unless otherwise noted. Furthermore, gene types 

are highly variant and are primarily defined by their observed, or putative function 

(Appendix B Table 1). For an exhaustive list of gene types in the human genome 

(GRCh38.p12), as defined by Ensembl and Havana, see Supplemental 1 Table 1.1 

                                                

1 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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2. TRNA BIOLOGY 

 

tRNA biology is an incredibly broad and encompassing subject that aims to describe the 

complexities that manifest at the interface of tRNA mechanisms and genetic code. Given 

the enormous scope of the subject matter contained therein, we will necessarily narrow 

our focus to just a few of the most fundamental characteristics of tRNA biology and how 

they are both biologically relevant and support the hypotheses forwarded later in this 

thesis.  

 

This chapter begins with a qualitative characterization of the dynamic nature of tRNA 

populations as a response element to environmental stimuli and a driver of variant cell 

state conditions (i.e., proliferation or disease state). We then evaluate the genomic 

organization of tRNA genes in humans and reveal an evident uneven distribution. Later 

in this work we highlight some of the functional consequences of this observed genomic 

distribution and expand our analysis to discuss an evident conservation. Finally, we 

review the transcriptional processes of tRNA genes along with the many post-

transcriptional modifications tRNA transcripts are subject to. Many of these 

modifications are implicated in the structural integrity of mature tRNA molecules and 

are critically important to translational efficiency. Juxtaposed to this, other modifications 

deliberately degenerate tRNA molecules into small fragments that can act to stifle 

translation. 
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2.1. tRNA Population Dynamics 

 

Under normal conditions, the translational needs of a given cell type are accommodated, 

in part, by the sufficient availability of tRNAs. However, the regulation of tRNA 

molecules in a cellular environment is dynamic. tRNA populations can respond to 

environmental stimuli, act as a marker for certain diseases, and affect the fate of a given 

cell type. 

 

Prokaryotes and eukaryotes often encounter common environmental stressors like 

nutrient starvation or hypoxia. Bacterial cells experiencing amino acid starvation can use 

uncharged tRNAs as effector molecules in a pathway that impedes translation while 

simultaneously promoting the transcription of genes related to amino acid synthesis 

(Haseltine, W. A., et al. 1973; Sy, J., et al. 1973; Ross, W., et al. 2013). In contrast, yeast 

cells under nutrient starvation conditions will limit cytosolic translation by enacting 

mechanisms that facilitate the shuttling of tRNA molecules into the nucleus where they 

are unable to deliver amino acids to the translational machinery (Whitney, M. L., et al. 

2007). Given the divergent evolutionary trajectory of prokaryotes and eukaryotes, it is 

not surprising that they have evolved diverse strategies to overcome similar 

environmental stressors, but it is, at least interesting that each have developed coping 

mechanisms that implement the manipulation of tRNA populations. 
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Multicellular organisms have variant tissue types that require a distinctive protein 

constituency. Evidence of modulating tRNA expression to accommodate the amino acid 

needs of a given cell type is presented by a strong correlation between the expression of 

tRNA genes and the translational needs of a given cell type or cell fate (i.e., 

differentiation or proliferation) (Dittmar, K. A., et al. 2006; Gingold, H., et al. 2014). 

When the regulatory mechanisms that control tRNA populations break down, the 

consequences can be deadly. For example, a positive association between excessive 

tRNA expression and codon usage was demonstrated when looking at genes involved in 

the development and growth of tumors in human breast cancer cell lines (Pavon-Eternod, 

M., et al. 2009). This suggests cellular tRNA abundance can both be a driver and a 

marker of certain breast cancers (Pavon-Eternod, M., et al. 2009). Adversely, when a 

tRNA species is erroneously down regulated, the translation of transcripts coding for the 

amino acid specific to that tRNA will be delayed. If these transcripts code for proteins 

that are necessary to critical cellular processes, the consequences of delayed translation 

can be detrimental to a cell. 

 

Translational efficiency can be modulated by tRNAs through the regulation of cognate 

aminoacyl tRNA (aa-tRNA) synthetase transcripts. aa-tRNA synthetases are the 

enzymes responsible for charging tRNA molecules with their cognate amino acid. Gram-

positive bacteria can use uncharged tRNAs to regulate the expression of aa-tRNA 

synthetase genes through interactions between the uncharged tRNA and the 5' 

untranslated region (5' UTR) of the aa-tRNA synthetase transcript (Nelson, A. R., et al. 
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2006). This interaction acts as a control on the expression of specific aa-tRNA 

synthetases due to the anticodon specificity of this interaction. In a situation in which 

there is an overabundance of a certain tRNA species, the uncharged tRNAs of this 

species will bind the aa-tRNA synthetase transcript that codes for the enzyme 

responsible for charging it. Conversely, when the abundance of a certain tRNA species is 

low, there will be less uncharged tRNAs available to bind to its respective aa-tRNA 

synthetase transcript. As a result, the translation of this transcript is more likely to occur 

and the subsequent charging of the low abundance tRNA molecules will commence. To 

our knowledge, this type of translational control is not observed in eukaryotes, although 

in humans, a component of a multi aa-tRNA synthetase complex has been shown to 

associate with other proteins to silence the translation of ceruloplasmin transcripts by 

associating with the 3’ UTR (Sampath, P., et al. 2004). Regardless, the regulation and 

manipulation of tRNA populations in both prokaryotes and eukaryotes is not only a 

critical environmental response mechanism, but it also plays an important role in cell 

state, cell differentiation, and translational efficiency. 

 

2.2. Genomic Organization of tRNAs 

 

A fundamental characteristic in genetics, with respect to genomic structure and 

organization, is the distribution of genes in a given genome. Prokaryotes often cluster 

co-expressed genes into operons that usually produce interacting proteins (Dandekar, T., 

et al. 1998). Linking genes that code for interacting proteins will likely facilitate the 
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simultaneous expression of each gene and help to ensure the physical interactions of the 

resultant proteins. Thus, there is a selective advantage in the maintenance of linkage 

disequilibrium when the interaction of the encoded proteins is necessary. In Eukaryotes, 

however, operons are not widely utilized, and the null expectation is that genes are 

evenly distributed throughout the genome. With the exception of housekeeping genes 

(e.g., typical constitutive genes related to expression, metabolism, cell surface, etc.), 

little clustering is observed in the human genome, although this does not preclude tissue-

specific clustering (Lercher, M. J., et al. 2002). It is probable then, that any apparent 

clustering of genes in the human genome indicates fundamental cellular processes and 

evolutionarily conservation. 

 

Karyology is the study of whole sets of chromosomes and works to organize them by 

pairs (in diploid organisms) and length, or by the location of the centromere if more than 

one pair of chromosomes are the same length. The somatic chromosomes in humans are 

numbered following this convention. For example, the longest somatic chromosome in 

humans is named chromosome 1. The remaining somatic chromosomes are numbered 

sequentially by decreasing length, with a couple modest exceptions. Chromosome 11 is 

about 1.3 million nucleotides longer than chromosome 10, chromosome 20 is about 5.8 

million nucleotides longer than chromosome 19, and chromosome 22 is about 4.1 

million nucleotides longer than chromosome 21 (Appendix B Table 2). The sex 

chromosomes are not numbered in the same manner as somatic chromosomes. Instead, 
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the sex chromosomes are differentiated from the somatic chromosomes by lettering 

rather than numbering. In humans, the sex chromosomes are named X and Y. 

 

In the haplotype of eukaryotes where n > 2, we expect to see a greater abundance of 

genes located in the longer chromosomes rather than the shorter chromosomes because 

of the greater potential to code for genes in the longer chromosomes. In general, there 

does tend to be more total genes in the longer chromosomes compared to the shorter 

chromosomes, however, this pattern is not observed with tRNA genes (Appendix B 

Table 2). As expected, chromosome 1 has the most tRNA genes (149), but chromosomes 

2, 3, 4, and 5 all have less tRNA genes than other, much shorter chromosomes 

(Appendix B Table 2). For example, chromosome 4 has only 2 tRNA genes whereas 

chromosome 17 has 41 despite being 107 million nucleotides shorter (Appendix B Table 

2). 

 

2.3. tRNA Transcription 

 

In Eukaryotes, RNA polymerase III (RNA-pol III) transcribes various types of small 

RNAs including tRNAs. There are three types of promoters recognized by RNA-pol III. 

Types-1 and -2 have intragenic promoter elements and do not contain a TATA box 

whereas type-3 promoters can have distal and proximal sequence elements upstream of 

the transcription start site (TSS) and do contain a TATA box. RNA-pol III genes have a 

terminal poly-T sequence that facilitates the termination of transcription. 
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tRNA genes have a type-2 promoter. There are two intragenic promoter elements called 

the A- and B-box (Appendix A Figure 2B; Schramm, L., et al. 2002; Galli, G., et al. 

1981; Hofstetter, H., et al. 1981; Sharp, S., et al. 1981; Allison, D. S., et al. 1983). 

Sequence conservation of the A- and B-box elements amongst tRNA genes has been 

repeatedly observed, although the spacing between them can be variant. The 

conservation of these regions is most likely because they form the functional D- and 

TψC-loops of mature tRNAs (Appendix A Figure 2A; Schramm, L., et al. 2002). In 

humans, the transcription of tRNA genes begins when the six-subunit transcription 

factor TFIIIC binds to the A- and B-box intragenic promoter region (Dumay-Odelot, H., 

et al. 2007). Once bound, the three-subunit TFIIIB is subsequently recruited (Lassar, A. 

B., et al. 1983; Bieker, J. J., et al. 1985; Setzer, D. R., et al. 1985). When TFIIIC and 

TFIIIB are complexed, the 17-subunit RNA-pol III is enlisted, mainly through protein-

protein interactions with TFIIIB and possibly TFIIIC. (Dumay-Odelot, H., et al. 2007; 

Schramm, L., et al. 2002). After RNA-pol III is bound, the assembly of the elongation 

complex is complete and transcription of the tRNA gene will proceed. 

 

Two independent processes are required to complete the transcription of tRNA genes. 

The first step occurs when the RNA-pol III complex stalls on the poly-T termination 

sequence. The elongation complex becomes enzymatically inoperative and begins to 

backtrack. Embedded secondary structures in the body of the tRNA transcript act to 

dissociate the elongation complex from the template (Nielsen, S., et al. 2013). There are, 

however, exceptions to this process. 
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RNA-pol III has been shown to read-through many tRNA poly-T terminators (Turowski, 

T., et al. 2013). Rather than stalling and backtracking, RNA-pol III will sometimes 

continue transcribing through the poly-T sequence generating long 3' extended 

transcripts. Various mechanisms have been implicated in the generation of RNA-pol III 

read-through transcripts, for example, mutations that disrupt the poly-T sequence 

(Schramm, L., et al. 2002). Moreover, NF1 polypeptides are a family of proteins that can 

associate with the TFIIIC1 fraction of the RNA-pol III elongation complex and can play 

a role in the termination of transcription by binding specificity in a region downstream 

of the poly-T sequence (Schramm, L., et al. 2002). Mutations in either the NF1 

polypeptide or the sequence recognized by them, can also result in read-through 

transcripts (Schramm, L., et al. 2002). 

 

2.4. tRNA Structure and Modifications 

 

The structure of tRNA is essential for proper function during the canonical process of 

translation. The primary structure of a processed tRNA transcript is a relatively short 

length of approximately 76-90 nucleotides (Appendix A Figure 2B; Sharp, S. J., et al. 

1985).  Differences in lengths are due to a variable region between the anticodon and 

TψC loops, while some tRNAs, like tRNASer, tRNALeu, and tRNASel, which is the 

longest, have an extra arm between these loops (Appendix A Figure 2A; Itoh, Y., et al. 

2013). tRNAs have a distinct cloverleaf secondary structure with discrete functional 

regions that include the 5’ phosphate group, D-loop, anticodon loop, TψC loop, and the 
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acceptor stem (Appendix A Figure 2A). Conserved and semi-conserved residues in the 

D- and TψC-loops facilitate the functional tertiary L-shape structure necessary for the 

integration and conformational plasticity when interacting with the ribosomal A, P, and 

E sites during the elongation process of translation (Giegé, R., 2008). tRNA molecules 

undergo an extensive post-transcriptional modification regime to ensure proper function 

during the many molecular interactions encountered during aminoacylation and 

translation (Agris, P. F., et al. 2007; Helm, M., 2006). These modifications to are not 

only necessary to ensure a stable molecular conformation, but they also expand the 

cognate amino acid repertoire and help maintain the structural integrity of the molecule 

as well. 

 

At the time of this writing, 111 post-transcriptional RNA modifications have been 

identified (Agris, P., et al. 2019). Of these, at least 92 modifications (~83%) have been 

shown to occur in tRNAs and are initiated soon after transcription. (Agris, P., et al. 

2019). The modification processes transform the transcript from a precursor tRNA (pre-

tRNA) to a mature tRNA beginning with the removal of the 5’ leader and 3’ trailer 

sequences by RNase P and RNase Z respectively (Phizicky, E. M., et al. 2010; Frank, D. 

N., et al. 1998; Maraia, R. J., et al. 2011). An untemplated CCA sequence is then 

enzymatically added to the 3’ end by a nucleotidyl transferase protein. This conserved 

sequence addition is required for the aminoacylation of tRNA by aa-tRNA synthetase 

and is the final step of the maturation process. The matured tRNA molecule is escorted 

out of the nucleus and into the cytoplasm where it will undergo, on average, 13 
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additional modifications (Maraia, R. J., et al. 2011). Amongst tRNA molecules, position 

34 of the anticodon stem loop (ASL) is the most frequently modified base. This is 

known as the wobble position because the modifications here allow for differing species 

of tRNA molecules to deliver the same amino acid residue to alternate codons. These 

modified tRNAs are known as isoacceptors and account for the degeneracy of the 

genetic code by enabling different codon-anticodon specificity for the same amino acid. 

Furthermore, the modification of anticodon nucleosides can induce codon bias by 

altering the affinities to cognate-codons. Thus, mRNAs enriched with favored codons 

are preferentially expressed. This implicates tRNA modifications in the regulation of 

gene expression (Duechler, M., et al. 2016). Nearly all other modifications to tRNA 

molecules are structural in nature, and along with secondary and tertiary contacts, 

engender tRNA with a robust stability seldom observed in any other RNA molecule 

(Gebetsberger, J., et al. 2013). Paradoxically, there is an additional set of modifications 

that have an entirely opposite effect. 

 

tRNA derived fragments (tRFs) are small pieces of tRNA molecules that are known to 

be consistently and deliberately produced. Advancements in extraction and high-

throughput sequencing technologies lead to the discovery of short RNAs (< 40 nt) that 

fueled a wave of interest focused on characterizing these populations of short, non-

coding sequences. For a long time, tRFs were regarded as random products of 

degradation and were literally washed away, however, an increasing body of research 

implicates them in specific biological processes and demonstrates they are as ubiquitous 
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as their tRNA progenitors and their biogenesis is separate from miRNA (Kumar, P., et 

al. 2014). The modification of tRNA molecules into tRFs is a relatively recent area of 

study but has already amassed a profusion of literature. There are several properties of 

tRFs that are relevant to this thesis, but the topic is much too broad to cover with any due 

justice here (for excellent reviews on tRFs see; Kumar, P., et al. 2014; Fu Y., et al. 2015; 

Keam. S., et al, 2015). 

 

tRNA biology is an immense topic that covers a wide breadth of relevancy. The scope of 

our discussion is limited to four fundamental aspects that include tRNA population 

dynamics, genomic organization, transcription and translation, and the structure and 

modification of tRNA. The regulatory pathways of tRNA populations continue to 

illuminate the role tRNAs have in critical non-canonical functions that are continuously 

being discovered with unprecedented resolution. For example, specialized tRNAs can 

act as primers during reverse transcription and, specific to prokaryotes, aa-tRNAs 

capable of ribosome independent peptide formation were found to be involved in the 

biosynthesis of peptidoglycan, as well as antibiotics and resistance pathways (Marquet, 

R., et al. 1995; Mak, J., et al. 1997; Sheppard, J., et al. 2013). Here, we provide evidence 

to suggest the distribution of tRNA genes in the human genome is non-random and 

implicated in transcriptional and post-transcriptional processes that affect the expression 

of certain genes. Furthermore, we hypothesize that the uneven distribution of tRNA 

genes in the human genome is related to genomic structure and adaptive immunology. 
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The experimental validation of each tRNA gene in a given genome is often beyond the 

practical limitations of research laboratories. An easier way to characterize genomic 

tRNAs is to implement well established software programs designed explicitly for this 

purpose. tRNAscan-SE is putatively the most popular tRNA prediction program and is 

both efficient and accurate (Pavesi, A., et al. 1994). It identifies putative tRNA genes by 

searching a sequence query with a tRNA model that has been trained on known tRNAs 

specific to phylogenetic groupings (i.e., mammals, Archaea, or Bacteria). It also allows 

the user to customize output options tailored for specific purposes. For instance, 

tRNAscan-SE can be configured to generate output files in BED format, allowing the 

user to visualize the predicted tRNAs in a genome browser. tRNAscan-SE can also 

output FASTA files that can be used to align and analyze the sequences of predicted 

tRNAs. General output files summarize the scan and include key information and 

statistics on each predicted tRNA sequence. 

 

Following a relatively permissive first-pass scan, tRNAscan-SE performs a more 

stringent second-pass that predicts the secondary structure of tRNA by the 

implementation of Infernal v1.1; a covariance model search engine that will score DNA 

sequence based on the consensus of sequence alignment and secondary structure 

(Nawrocki, E. P., et al. 2013). Pragmatically, Infernal scores > 50 indicate robust tRNA 

genes that are likely to assume the canonical cloverleaf secondary structure and thus are 

assumed to participate in translation. Moreover, tRNAscan-SE will typically define 

some tRNA predictions as pseudogenes. The program considers these sequences atypical 
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variants in which the secondary structure lacks the usual conserved features found in 

typical tRNAs. These variants are not known to function in translation, however, their 

participation in non-canonical functions have been observed (Rogers, T. E., et al. 2012). 

 

tRNAscan-SE has been in use for over two decades and has built a reputation for 

accuracy and reliability, however, like any algorithm, it has its limits. tRNAscan-SE is 

unable to identify tRNA sequences that are split within a genome. The discovery of 

archaeon Nanoarchaeum equitans in 2005 and Caldivirga maquilingensis in 2009 

highlight this challenge as they each contain tRNA isoacceptors that are products of two 

independently transcribed sequences that are subsequently ligated (Randau, L., et al. 

2005A and 2005B; Fujishima, K., et al. 2009). As such, any such occurrences of split 

tRNAs have not been identified in our analysis and will not be considered in our 

conclusions. 

 

The pervasiveness of tRNAs amongst all living things should not be underappreciated. 

They are the likely derivatives of Earth’s earliest molecules and preceded life as we 

know it. Whether tRNAs are destined to deliver an amino acid to a ribosome or 

participate in a non-canonical pathway, we are persistently reminded that our 

comprehensive understanding of this ancient and dynamic molecule is incomplete and 

there is likely much more to uncover. 
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3. METHODS 

 

tRNA genes were predicted using tRNAscanSE-2.0 on the FASTA file of each 

respective taxa (Pavesi, A. et al. 1994). The FASTA file corresponding to the human 

genome was downloaded from the Gencode database (GRCh38.p12; Gencode.v28). The 

FASTA files corresponding to the five other primates analyzed here were downloaded 

from the Ensembl database Release 95 via FTP and correspond to the following 

assemblies; bonobo (panpan.1), chimp (Pan tro 3.0), gorilla (gorGor4), orangutan 

(PPYG2), and macaque (Mmul 8.0.1). The FASTA files that correspond to the model 

organisms analyzed here were downloaded from the Ensembl database Release 95 via 

FTP and correspond to the following assemblies; mouse (GRCm38), fruit fly (BDGP6), 

and nematode (WBcel235). For each implementation of tRNAscan-SE, any tRNA genes 

that were called from the sequences of contigs or scaffolding included in the FASTA 

files were not included in our analysis. The output tRNA gene intervals do not include 

the 5’ leader or 3’ trailing sequences. The intervals used in our analysis range from the 

5’ phosphorus to the 3’ terminus of the processed tRNA transcript. For those tRNAs that 

have a retained intron, the intronic sequence is included in the interval. 

 

To determine whether or not tRNA genes intersect the interval of features annotated as 

genes, all of the entries defined as ‘gene’ in the third column of the GFF3 file were 
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extracted and converted to a BED file (Appendix B, Supplemental 1 s.1 and s.2).2 This 

eliminated redundant intersect counts that would result in overlapping transcripts of 

some genes. Two BED files, one containing all features annotated as a gene and the 

other is the output BED file from tRNAscan-SE-2.0, were loaded to Reveille; Texas 

A&M’s implementation of the Galaxy software framework. In Reveille, dataset 1 was 

the BED file with all the features annotated as ‘gene,’ and dataset 2 was the BED file 

with all of the tRNA genes predicted by tRNAscan-SE. To identify any possible 

intersections of predicted tRNA genes with regions annotated as genes, the Join tool 

(v.1.0.0) was used to return only the overlapping intervals (inner join). The output of this 

operation was grouped by name (column 4) using the Group tool (v.2.1.0) and a count 

function was added. This step allows us to consolidate into a single line instances in 

which more than one tRNA gene intersect a unique feature annotated as a gene. It also 

provides a summation of these intersects to indicate possible redundancy. This file was 

then joined side by side with the dataset 1 BED file using the name column from each 

(column 4 from dataset 1 and column 1 from dataset 4). This was performed using the 

Join Two Datasets tool (v.2.0.1). The columns from this output were then reordered 

using the Cut (reorder) tool (v.1.0.2) to conform to the format specifications of a BED 

file. The resultant BED file was then loaded into IGV (2.3.82) for visual inspection of 

the reported intersections. Intersect analysis was independently repeated with equivalent 

                                                

2 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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genomic files from the RefSeq and Ensembl databases in an effort to eliminate false 

positives. 

 

In order to visualize the linear distribution of tRNA genes in the human genome, the 

sequence length of each chromosome was calculated from the FASTA file using the 

Biostrings package (v.2.48.0) in RStudio (v.1.1.383; R v.3.5.1; Appendix B, 

Supplemental 1 s.3).3 To generate an ordinal vector of tRNA gene positions for the 

human genome, 1 was subtracted from the start position of each tRNA gene in 

chromosome 1 and divided by the length of the genome. For chromosome 2, the length 

of chromosome 1 was added to the start position of each tRNA gene, 1 was subtracted 

from the start position of each tRNA gene and divided by the length of the genome. This 

was repeated for the remaining chromosomes such that the sum of the preceding 

chromosome lengths was added to the start position of each tRNA gene in the respective 

chromosome, 1 was subtracted from the start position of each tRNA gene in a respective 

chromosome and the length of the genome was divided out. A histogram of the resultant 

ordinal vector was plotted. The same logic was followed when plotting the tRNA gene 

distribution for chromosomes 1 and 6 in humans and primates and when plotting tRNA 

loci in different MHC assemblies. 

 

                                                

3 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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Protein coding genes within the regions of human chromosomes 1 and 6 in which the 

density of tRNA genes was highest (chr1:143,486,629-150,098,821 and 

chr6:26,240,093-29,022,932 respectively) were extracted using the BioMart server 

(Appendix B, Supplemental 1 s.4).4 The parameters used identified 171 unique 

UniProtKB IDs within the region of chromosome 1 and 153 IDs within the region of 

chromosome 6. These UniProtKB IDs were compiled into a list and submitted to the 

Panther Classification System web server for a statistical overrepresentation test 

(Appendix B, Supplemental 1 s.5; Mi H., et al. 2016).5 All parameters were set to default 

settings and the Annotation Data Set was set to ‘PANTHER GO-Slim Biological 

Process.’ To control for gene density and statistical enrichment, chromosomes 1 and 6 

were split into intervals containing 171 and 153 protein coding genes respectively. These 

two values correspond to the number of protein coding genes within the intervals of 

chromosomes 1 and 6 that have the densest tRNA gene clusters (see above). These 

intervals were sorted randomly and the first three were selected and piped through the 

analysis workflow described above (Appendix B, Supplemental 1 s.6).6 

                                                

4 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
5 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
6 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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4. COMPUTATIONAL CHARACTERIZATION OF tRNA 

 

Our implementation of tRNAscan-SE 2.0.0 has predicted 636 total tRNA genes in the 

human genome (HGRCh38.p12; Gencode.v28). Of these, 107 are classified by the 

program as pseudogenes and 189 have an Infernal v1.1 score of < 50. Just less than 3% 

of the predicted pseudogenes have an Infernal score >50, indicating the likelihood that 

greater than 97% of pseudogenes do not function in translation or assume the distinct 

cloverleaf secondary structure, although, they may participate in non-canonical 

pathways as previously observed. Eliminating pseudogenes and those predictions which 

have an Infernal scores < 50 results in the most conservative estimate of predictions 

totaling 445 tRNA genes in the human genome. Taken together, when the secondary 

structure of tRNA is implicated in proposed functionality, pseudogenes will not be 

included in our analysis, however, we do include them in our overall analysis with 

respect to genomic distribution and abundance due to the implication of their 

involvement in non-canonical biological pathways. 

 

We compared the predictions made by tRNAscan-SE to data mined from several 

databases that identify tRNA genes in the human genome. Those reported here indicate a 

similar amount of tRNA genes with the exception of tRNAdb (Appendix B Table 3). 

UCSC, tRNAscan-SE (the database), and tRFdb report an average of 625 tRNA genes 

while tRNAdb reports well below this average at 359 tRNA genes. It is unclear why 

tRNAdb reports 266 less tRNA genes than the average of the other three databases, 
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although the server hosting the data for tRNAdb does not indicate the date of the latest 

update and the most recent article describing tRNAdb was published over ten years ago 

(Jühling, Frank, et al., 2008). 

 

In addition to comparing tRNAscan-SE results to the tRNA genes reported in these 

databases, we utilized another popular tRNA search program called Aragorn (Laslett, D., 

et al., 2004). Our implementation of Aragorn predicts just over 30% more tRNA genes 

than tRNAscan-SE (Appendix B Table 3). A paired t-test indicates a significant 

difference between the number of tRNA sequences predicted by tRNAscan-SE and 

Aragorn (p = 2.1e-9), although the per chromosome abundance patterns are very similar, 

(Supplemental 1 Figure 1).7 Aragorn employs a heuristic algorithm to predict tRNA 

secondary structure which is more efficient and runs faster than the more stringent 

covariance modeler used by tRNAscan-SE. As a result, Aragorn is less constrained than 

tRNAscan-SE and is likely to predict more tRNA sequences than tRNAscan-SE. For our 

purposes, using the more conservative set of tRNA gene predictions as output from 

tRNAscan-SE increases our confidence that the inferences we make are less likely to be 

based on false positives. 

 

 

 

                                                

7 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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4.1. Genomic Distribution of tRNA Genes 

 

When considering the manner in which genes are distributed throughout a given 

genome, the null expectation is an even distribution. Accordingly, longer chromosomes 

are predicted to contain more genes than shorter chromosomes. We tested this prediction 

by first plotting the correlation between all genes and chromosome length in the human 

genome. We observe a moderate positive correlation (r2=0.57) indicating the longer 

chromosomes generally contain more genes than the shorter chromosomes (Appendix A 

Figure 3A).  

 

Next, we plotted the correlation between the number of tRNA genes per chromosome 

and chromosome length. We found this correlation to be very weak in comparison 

(r2=0.19). This suggests, with respect to tRNA genes, the longer chromosomes do not 

necessarily contain more tRNA genes than the shorter chromosomes (Appendix A 

Figure 3B). Our linear model indicates chromosomes 1 and 6 as the two statistical 

outliers driving the correlation coefficient down with respect to the distribution of tRNA 

genes in the human genome. Clustering of tRNA genes in these chromosomes has been 

previously described and is further analyzed in Chapter 4.2 (Mungall, A. J., et al. 2003). 

 

In order to visualize the genomic distribution of tRNA genes in the human genome, we 

generated an ordinal vector of start positions for each predicted tRNA gene and plotted a 

histogram in which each chromosome is a unique bin color (Appendix A Figure 4). 
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Confirming the indications of the linear model, we can see a clear enrichment of tRNA 

genes in chromosomes 1 and 6 with the most noticeable concentration occurring in 

chromosome 6. 

 

There are 149 tRNA genes in chromosome 1 and 188 tRNA genes in chromosome 6. To 

put these counts into perspective, chromosome 17 has the next most abundant tRNA 

gene count of 41. A closer look at the distribution of tRNA genes in chromosome 1 

reveals a dense cluster within a region of about 6,600kb (chr1:143,486,629-

150,098,821). There are 66 tRNA genes within this region. Comparatively, there is a 

cluster of 165 tRNA genes in chromosome 6 within a region spanning just over 2,700kb 

(chr6:26,240,093-29,022,932). There are nearly 3 times the number of tRNA genes in 

chromosome 6 that are grouped within a region that is about 2.5 times smaller than 

chromosome 1. These dense clusters indicate an uneven distribution of tRNA genes in 

the human genome. 

  

In an effort to determine if the observed clustering of tRNA genes is evolutionarily 

conserved, we broadened our analysis to include three popular and well annotated model 

organisms; mouse (Mus musculus), fruit fly (Drosophila melanogaster), and nematode 

(Caenorhabditis elegans). Amongst these genomes, we did not find an acute 

concentration of tRNA genes in a particular chromosome that approaches the magnitude 

observed in the humans (Appendix A Figure 5). The dense concentrations of tRNA 

genes appears to be unique to humans. Below, we perform the same distributive analysis 
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on a select primate clade, but first, we perform a more resolute examination of human 

chromosomes 1 and 6 within the region of this apparent tRNA gene enrichment. 

 

4.1.1. Clustering of tRNA Genes and Genes Associated with Nucleosome Assembly 

and Adaptive Immunology 

 

The eukaryotic nucleosome is a stretch of DNA (~147 bp) that is coiled around a spool-

like protein octamer called histone. The assembly of nucleosomes is essential to the 

overall stability of the genome and is intimately involved in the regulation of gene 

expression; however, the regulatory pathways remain unresolved (Ransom, M., et al. 

2010; Groth, A., et al. 2007). The dynamic nature of nucleosomes is revealed by the 

transient associative fluctuations of DNA from the nucleosome core that frequently shift 

between loose and tight associations (Polach, K. J., et al. 1995; Anderson, J. D., et al. 

2000). These oscillations allow just enough time for high affinity DNA binding factors 

to bind and impedes those factors with a lower affinity (Polach, K. J., et al. 1995; 

Anderson, J. D., et al. 2000). The histone components of nucleosomes provide a 

substantial framework for epigenetic markers as they are subjected to several types of 

modifications (i.e., acetylation, methylation, phosphorylation) that carry an enormous 

regulatory potential. For example, the acetylation of a histone tail will alter the affinity 

of DNA to the nucleosome core such that the bonds between the two are relaxed and 

transcription factors can bind.  
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The region of human chromosome 1 in which the tRNA gene density is highest also 

harbors a statistical overrepresentation of gene ontology terms related to the biological 

processes of nucleosome assembly, protein folding, and peptidyl-amino acid 

modification (Appendix B Table 4). The overrepresentation of these gene ontology 

terms does not necessarily mean there are interactions between the genes associated with 

the ontology terms and the proximate tRNA genes, although, based on previous 

observations, gene clustering can facilitate the coordinated transcription and interaction 

of gene products (Thompson, M., et al. 2003). For example, we know that aa-tRNA 

transferases can transfer amino acids from charged tRNAs to the N-terminus of a 

peptide, but to our knowledge, the addition of an amino acid onto histone tails mediated 

by charged tRNAs is not known (Mogk, A., et al. 2007). The tRNA-mediated addition of 

amino acids onto histone tails would engender the nucleosome core with additional 

material that can be further modified, thus imposing an additional, and yet undescribed, 

regulatory mechanism. We expect to see this kind of tRNA-mediated histone modulation 

throughout the genome, however, the clustering of tRNA genes and histone genes 

observed here may facilitate this type of interaction. 

 

The region of chromosome 6 in which we observe a dense cluster of tRNA genes also 

overlaps with statistically overrepresented gene ontology terms associated with 

nucleosome assembly as well as adaptive immunology (Appendix B Table 4). A sub-

cluster of tRNA genes in this region overlaps with a relatively small portion of the major 



 

36 

 

histocompatibility complex (MHC; Supplemental 1 Figure 2).8 The MHC is a collection 

of genes that code for proteins responsible for binding and presenting epitopes on the 

cell surface for T-cell recognition. The presentation of the epitope is necessary for 

lymphocytes to differentiate between self and non-self. The clustering of tRNA genes 

and MHC genes observed here was recently and independently corroborated by Tao Pan 

(Pan, T., 2018). 

 

MHC genes are considered to be the most polymorphic of all genes and are only found 

in the jawed vertebrates. There are three gene classes associated with the MHC. Class I 

molecules present peptide fragments that come from either the nucleus or from the 

cytoplasm and are present on all nucleated cells and platelets. Class II molecules present 

peptide fragments from vesicles within the cell and are derived from cytosolic or 

extracellular proteins. Class III MHC molecules do not present epitopes; however, they 

are involved with facilitating the efficiency of immune response as well as cellular stress 

response. The area of the MHC in which we observe a cluster of tRNA genes is 

populated exclusively by Class I genes (Vandiedonck, C., 2009). 

 

A high level of allelic polymorphism is repeatedly observed in the MHC region and 

indicates the struggle for pathogens to evade detection and the adaptive immune 

system’s ability to surveil and identify those threats (Beck, S., et al. 2000; Trowsdale, J., 

                                                

8 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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et al. 2013; Bernatchez, L., et al. 2003; Spurgin, L. G., et al. 2010). Interestingly, in an 

apparent attempt to ensure heterozygosity at the MHC locus, research has shown a 

correlation with odor preference and mate choice amongst human individuals with MHC 

loci dissimilar to one another (Wedekind, C., et al. 1995; Yamazaki, K., et al. 1976 and 

1979; Ober, C., et al. 1997). We are not aware of any described mechanism that is 

responsible for the maintenance of allelic polymorphism at this locus that implicates the 

proximity to tRNA genes, although, the sexual selective pressure to maintain 

heterozygosity at the MHC region highlights the selective proclivity to make certain this 

area remains inordinately variant. 

 

The genomic intervals that contain the tRNA gene clusters for chromosomes 1 and 6 

contain 171 and 153 protein coding genes respectively. In an effort to determine if the 

proximate localization of the previously described tRNA gene clusters with genes 

associated with nucleosome assembly and adaptive immunology are unique to these 

intervals or are found throughout each respective chromosome, three random intervals 

were generated and analyzed for gene ontology enrichment (see Methods). All but one 

of these random intervals did not show a statistical overrepresentation of gene ontology 

terms related to nucleosome assembly or adaptive immunology for either chromosome. 

The single exception was a randomly generated interval (chr6:29,555,515-31,446,973) 

that happens to map to a region within the MHC. In this case, the statistical 

overrepresentation of gene ontology terms related to adaptive immunology is expected. 

Interestingly, this random interval is just over 500,000 nucleotides to the 3’ boundary of 
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the tRNA gene cluster within the MHC. This region has statistically overrepresented 

gene ontology terms related to the positive regulation of immune response (88.9-fold 

enrichment; p=2.2e-7; FDR=4.0e-4) whereas the interval that contains the tRNA gene 

cluster 5’ to this random interval has a 99.9-fold enrichment for T cell receptor signaling 

pathway gene ontology terms (Appendix B Table 4). It is unclear whether or not there is 

a functional relationship between tRNA biology and T cell receptor signaling pathways 

that is not utilized for the positive regulation of immune response. What is clear, 

however, is the observation that a significant enrichment of gene ontology terms related 

to nucleosome assembly and adaptive immunology share a proximate distribution with 

dense tRNA gene clusters in chromosomes 1 (i.e., nucleosome assembly) and 6 (i.e., 

nucleosome assembly and adaptive immunology). 

 

The polymorphic nature of the MHC has made the assembly of this region very difficult. 

Both NCBI (release 109) and Ensembl (release 95) highlight this region in their 

respective genome browser application with assembly exceptions. A tRNAscan-SE run 

on each exception revealed a cluster of tRNA genes immediately downstream of the 

MHC 5’ boundary. There is a remarkable conservation of tRNA gene order and species 

type between each assembly exception and the reference despite the high polymorphism 

of the MHC region (Appendix A Figure 6). The assembly exceptions vary in length with 

SSTO being the longest (4,929,268 nt) and DBB being the shortest (4,604,810 nt), 

however, the area in which we observe this dense cluster of tRNA genes is consistently 

assembled between exceptions. It is possible that this cluster of tRNA genes is part of a 
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linkage group that remains intact regardless of the tendency to induce variation within 

this region. The coevolution of this tRNA gene cluster and class I MHC genes would 

facilitate linkage and imply co-dependency or interaction with the gene products therein. 

We have been unable to identify any reports that describe an interaction between tRNA 

genes and MHC genes or any proposed functionality of maintaining a dense cluster of 

tRNA genes within this region. This will be the focus of future work. 

 

4.2. Alignment of Genomic Blocks 

 

The Ensembl synteny analysis tool (release 95) was implemented to systematically test 

chromosomes 1 and 6 (chromosome 4 in the macaque) of a select primate clade against 

human chromosomes 1 and 6 (Zerbino, D. R., et al. 2018). In all comparisons, the 

aligned genomic blocks indicate a high degree of shared synteny, although chromosome 

6 (chromosome 4 in macaque) consistently displays a more uniform alignment than 

chromosome 1 (Supplemental 1 Figures 3A-J).9 This provides evidence to suggest that 

amongst these primates, chromosome 6 may be under stronger selection than 

chromosome 1. Synteny amongst a relatively recent diverged monophyletic group is not 

surprising and tells us little about the larger evolutionary history specific to tRNA gene 

distribution. Therefore, a slightly deeper phylogenetic analysis was performed in an 

effort to provide further insight into this distribution. 

                                                

9 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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We repeated our analysis using the genomes of the cat (Felis catus), dog (Canis 

familiaris), mouse (Mus musculus), and zebra fish (Danio rerio; Zerbino, D. R., et al. 

2018). The nematode and fruit fly genomes were unavailable for this release of the 

Ensembl synteny tool. The tRNA gene cluster in human chromosome 1 appears to share 

aligned genomic blocks with the genomes of cats and dogs, although there appear to be 

no blocks shared with the mouse or zebra fish genomes in this region (Supplemental 1 

Figures 4A-D).10 On the other hand, the tRNA gene cluster in human chromosome 6 

appears to share aligned genomic blocks with the cat, dog, and mouse genomes, 

however, there does not appear to be shared blocks with the zebra fish genome in this 

region (Supplemental 1 Figures 4E-H).11 Although, Sültmann and colleagues did 

identify a region of conserved synteny between human chromosome 6 and a linkage 

group that includes 27 loci associated with MHC genes of the zebra fish (Sültmann, H., 

et al. 2000). At the time, this was the largest conserved synteny between mammals and 

fishes. 

 

Taken together, the dense clusters of tRNA genes in human chromosomes 1 and 6 have a 

higher degree of synteny with chromosome 6 than there is with chromosome 1. Both 

chromosome 1 and 6 are enriched with GO terms associated with nucleosome assembly 

(FDR = 4.8e-2 and 1.2e-15 respectively), but chromosome 6 is also enriched with GO 

terms associated with adaptive immunology (Appendix B Table 4; FDR = 3.4e-8). The 

                                                

10 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
11 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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FDR for each set of GO terms associated with chromosome 6 is orders of magnitude 

lower than chromosome 1, and we observe a striking level of similarity with respect to 

tRNA gene distribution and species type within the boundary of the MHC in 

chromosome 6 (Appendix A Figure 6). These independent lines of evidence suggest 

human chromosome 6 is experiencing a more stringent evolutionary constraint compared 

to chromosome 1. It is unclear exactly where in the ancestry of jawed vertebrates the 

clustering of nucleosome assembly and adaptive immunology genes within the 

immediate proximity to tRNA genes occurred. The degree of synteny we observe in 

these regions makes it more probable than not that this association was beneficial and 

thus conferred some selective advantage. However, there is always the possibility that 

this association is by chance, or selectively neutral, however, if there was no functional 

relationship between these gene types, we would not expect to see the degree of synteny 

or conservation we have demonstrated. 

 

The utilization of computational methods to characterize and compare the genomic 

distribution of tRNA genes amongst taxa is portable, quick, robust, and cost effective. 

Our implementation of tRNAscan-SE allowed us to predict and plot the distribution of 

tRNA genes in a wide variety of taxa that would have been well beyond the limitations 

of experimental validation. Furthermore, our comparative approach revealed a 

distributive pattern of tRNA genes that appears to be both highly conserved and 

biologically relevant. Specifically, the regions of dense tRNA gene clustering we 

identified in human chromosomes 1 and 6 overlap with genes associated with 
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nucleosome assembly and the MHC respectively. These overlapping regions share 

aligned genomic blocks most notably amongst mammals and to a lesser degree in fish 

suggesting an evolutionarily conserved condition. This implies functionality, and as we 

discussed previously, gene clustering often reflects gene interaction. We hypothesize 

that there are some aspects of tRNA biology that are being exploited in the mechanisms 

of nucleosome assembly and adaptive immunology. 

 

4.2.1. Conservation of tRNA Genomic Distribution 

 

Our genome wide visualization of tRNA gene distribution was repeated to include the 

genomes of a select group of our closest ancestors. The genomes of bonobo (Pan 

paniscus), chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo 

abelii), and macaque (Macaca mulatta) were scanned for the presence of tRNA genes 

and totaled per chromosome. The macaque is an Old World monkey and serves as the 

outgroup for this primate clade. Among the apes, tRNA genes share a near identical 

distribution pattern in an apparent evolutionarily conserved condition (Appendix A 

Figure 7). We find the same tRNA gene enrichment in chromosomes 1 and 6 among the 

apes, although the bonobo is slightly different in that there does not appear to be a 

significant enrichment in chromosome 1. Unlike the apes, the macaque exhibits an 

enrichment of tRNA genes on chromosomes 1 and 4 instead of chromosomes 1 and 6. 

The conservation of tRNA gene enrichment is especially poignant in chromosome 6 of 
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the apes as they all exhibit an abundance of tRNA genes orders of magnitude higher than 

the rest of the chromosomes in their respective genomes. Furthermore, it appears that  

chromosome 4 in the macaque is more similar to chromosome 6 in the apes, with respect 

to tRNA gene abundance. To facilitate a more resolute comparison in an attempt to 

better understand this evident distributive conservation, we narrowed our comparative 

approach to include only chromosomes 1 and 6 in the apes, and chromosomes 1 and 4 in 

the macaque. 

 

There is a general similarity of tRNA gene distribution with respect to species type in 

chromosome 1 of the primates (Appendix A Figure 8). The orangutan seems to be the 

exception and appears to have a more unique distribution amongst the others, especially 

around the 0.6 region. The clustering of tRNA genes in human chromosome 1 discussed 

previously is clearly visible around the 0.6 region. Dense clustering of tRNA genes in 

chromosome 1 is evident and shared with the gorilla and macaque but is located just 

upstream of the human cluster. However, the distribution of tRNA genes in chromosome 

6 (chromosome 4 in macaque) amongst the primates demonstrates a remarkable 

similarity throughout. Just like chromosome 1, the clustering of tRNA genes is clear, but 

occurs around the 0.16 region. Unlike chromosome 1, the apparent correlation of the 

cluster amongst these primates is much more stringent in chromosome 6. 

 

The synteny observed earlier among these primates is reflected by the similarity of 

tRNA gene distribution in chromosomes 1 and 6 (chromosome 4 in macaque) and  
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implies strong evolutionary conservation. Interestingly, primates share an almost 

duplicate MHC class 1 architecture with humans suggesting the observed colocalization 

of tRNA genes and class I MHC associated genes is adaptive (Kelley, J., et al. 2005). 

Accordingly, this region is likely under strong selective pressure. This implies a 

selective advantage in having a colocalization of tRNA genes and class I MHC genes. 

Whatever the fitness effect this association has will be an additional area of future 

research. 
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5. THE INTERSECTION OF tRNA GENES AND VARIOUS OTHER GENES 

 

For the most part, genes fall into two large categories; coding or non-coding. Coding 

genes are translated into protein whereas non-coding genes are not. Biologists often use 

gene models as an abstraction to graphically illustrate the boundaries and functional 

regions that define coding or non-coding genes. A typical gene model indicates the 

directionality of a given gene and includes features like the transcription start site (TSS) 

as well as exonic and intronic regions (Appendix A Figure 9). They are typically used in 

genome browsers because they make it easy to visualize and interpret the genetic 

structure of a given genomic region. Additionally, gene models are used to demonstrate 

the overlapping features of a given region, for example, transcript isoforms, sense 

antisense (SAS) gene pairs, and sense overlapping genes. 

 

Due to the double helix structure of DNA, both the sense and antisense strands have the 

potential for harboring sequences that code for genes. Moreover, the anti-parallel nature 

of these strands introduces the probability that the intervals of genes on one strand (i.e., 

the sense strand) overlap with the intervals of genes on the other strand (i.e., the 

antisense strand). In fact, overlapping features in the human genome are more 

widespread than previously thought and are estimated to account for about 25% of all 

known transcripts (Yelin, R., et al. 2003; Wood, E. J., et al. 2013). Based on September 

2004 Ensembl data, Makalowska and colleagues analyzed the human genome for 

overlapping features and found about 13% of genes occur in 1766 overlaps 



 

46 

 

(Makalowska, I., et al. 2005). The manner in which genes overlap often provide some 

insight into whether or not there is a relationship with the gene products. 

 

In general, SAS loci can produce transcripts that remain independent of one another, or 

conversely, they can produce two transcripts that have some interaction with one 

another. Protein coding antisense transcripts have a wide range of biological functions; 

however, non-coding antisense transcripts often have a more regulatory role (Kelley, R. 

L., et al. 2000). For example, an antisense noncoding transcript will have a 

complementary sequence to the sense coding transcript. The annealing of these two 

transcripts is an effective recruitment signal to the ribonuclease Dicer which will excise 

small interfering RNAs (siRNAs) from the double stranded RNA (dsRNA) inducing 

gene silencing by RNA interference (Bass, B. L., 2000; Zamore, P. D., 2002). The 

results of our intersect analysis (discussed below) provide evidence to suggest this 

mechanism of gene regulation may be elicited by certain genes. 

 

Orthologous SAS loci are not well conserved. There are genetic structural differences in 

these regions that may have played a role in phenotypic differentiation between humans 

and mice (Wood, E. J., 2013). The non-conserved regions where SAS pairs exist could 

also impose a differential regulatory regime on overlapping protein coding genes that 

can facilitate the establishment of variant evolutionary trajectories (Wood, E. J., 2013). 

Thus, the regulatory implications of overlapping genes can have serious downstream 

consequences and should not be underestimated.  



 

47 

 

5.1. The Intersect Hypothesis 

 

An intersect analysis was performed on the human genome to determine whether there 

are any loci in which the intervals of tRNA genes overlap with the intervals of other 

gene types (see Methods). We have identified four possible ways tRNA genes can 

intersect the intervals of other genes, in either orientation, for a possibility of eight 

configurations (Appendix A Figure 10): (i) sense or antisense 5’ UTR, (ii) sense or 

antisense 3’ UTR, (iii) sense or antisense coding exon, and (iv) sense or antisense intron. 

Of course, the boundaries of these features are completely arbitrary with respect to how 

a tRNA gene interval may overlap a given feature. For example, the interval of a tRNA 

gene may overlap the terminal boundary of a 3’ UTR and extend into intergenic space. 

The possible biological implications of tRNA genes overlapping these regions depends 

on the region, and the orientation of the intersecting tRNA gene and will be discussed 

below. 

 
A tRNA gene that overlaps the 5’ UTR of a protein coding gene in the sense orientation 

with respect to the protein coding gene has the potential to affect the protein coding gene 

at the DNA and RNA level (Appendix A Figure 10 1A). For example, certain 

mechanisms of transcriptional silencing do not necessarily preclude the transcription of 

an overlapping tRNA gene. If the RNA-pol III complex is still able to bind and 

transcribe the overlapping tRNA gene, read-through transcription of the tRNA gene 

could generate transcripts from within the interval of the silenced protein coding gene. If 

the protein coding gene is not transcriptionally silenced and the RNA-pol III complex is 
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stalled on the overlapping tRNA sequence, the RNA-pol II machinery will be 

mechanically prevented from assembling on the 5’ UTR. The precedent for this type of 

promoter competition has been established in prokaryotes and has been observed in 

eukaryotes as well (Wang, P., et al. 1998; Hirschman, J. E., et al. 1988). If the RNA-pol 

II machinery is not impeded and transcription of the protein coding gene proceeds 

normally, a tRNA-like structure embedded in the 5’ UTR of the protein coding transcript 

is likely to recruit modification enzymes normally associated with tRNA molecules that 

can act to splice or otherwise reinforce the embedded secondary structure. These 

processes will affect translational efficiency by either truncating the 5’ UTR or by 

reinforcing a secondary structure within the 5’ UTR that prevents or otherwise disturbs 

the assembly of the translational machinery. Furthermore, the secondary structure of an 

embedded tRNA sequence within a transcript wields an exposed anticodon sequence that 

could bind with a cognate codon within the body of the transcript. This complementary 

pairing would cause the transcript to fold in on itself in such a manner that could 

facilitate the formation of an additional secondary structure that will likely affect the 

translational efficiency of the transcript. 

 

A tRNA gene that overlaps the 5’ UTR of a protein coding gene in the antisense 

orientation with respect to the protein coding gene could still affect the protein coding 

gene at the level of DNA and RNA, although the reverse complement of a tRNA 

sequence is unlikely to assume the same cloverleaf structure we expect to see in sense 

overlapping tRNAs (Appendix A Figure 10 1B; data not shown). Therefore, in this 
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scenario, we do not anticipate the recruitment of tRNA modifying enzymes to the 

overlapping region of the protein coding transcript. If there is transcriptional silencing of 

the protein coding gene and there is nothing preventing the assembly of the RNA-pol III 

complex, the transcription of an antisense overlapping tRNA is possible and could be a 

source of transcripts that are complementary to the 5’ UTR of the protein coding 

transcript. If silencing of the protein coding gene is reversed, a population of RNAs that 

are complementary to the 5’ UTR of the protein coding transcript could impose 

translational regulation. Furthermore, any RNA-pol III read-through product would 

generate a transcript that is mostly upstream from the sense TSS and outside of the 

defined genic interval. However, it will still have a portion of sequence that is 

complementary to the 5’ UTR of the sense transcript and could also impose regulatory 

processes on the protein coding gene transcript. If the protein coding gene is not 

silenced, the RNA-pol II transcriptional complex may preclude the assembly or 

transcriptional processes of the RNA-pol III complex in the manner just previously 

described. 

 

A tRNA gene that overlaps the 3’ UTR of a protein coding gene in the sense orientation 

with respect to the protein coding gene has the potential to affect the protein coding gene 

at the level of DNA and RNA similar to the mechanisms proposed above (Appendix A 

Figure 10 2A). If the protein coding gene is transcriptionally silenced in such a way that 

does not prevent the assembly of the RNA-pol III complex, then the overlapping tRNA 

gene can be transcribed normally. RNA-pol III could also generate a read-through 
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transcript that would extend beyond the 3’ terminus of the protein coding gene region. If 

the protein coding gene is not transcriptionally silenced, transcriptional interference is 

unlikely unless the RNA-pol III complex is stalled on the tRNA sequence. This could 

prematurely disassociate the RNA-pol II complex resulting in a truncated protein coding 

transcript. A tRNA sequence embedded in the 3’ UTR can affect translational efficiency 

by the same mechanisms proposed above. 

 

A tRNA gene that overlaps the 3’ UTR of a protein coding gene in the antisense 

orientation with respect to the protein coding gene has the potential to affect the 

intersected gene by similar mechanisms described above (Appendix A Figure 10 2B). If 

the protein coding gene is transcriptionally silenced and does not prevent the RNA-pol 

III complex from assembling, the tRNA gene can be transcribed normally. Read-through 

transcripts would also complement the 3’ UTR and any transcribed exons of the silenced 

protein coding gene and may be available to bind to the protein coding transcript if it is 

unsilenced therefore affecting translational efficiency. As mentioned above, we do not 

expect an overlapping tRNA sequence that is antisense with respect to the protein coding 

gene to assume a tRNA-like secondary structure within the protein coding transcript. 

Accordingly, the modification enzymes associated with tRNA molecules are not 

expected to be recruited. If the protein coding gene is not transcriptionally silent, we do 

not expect the respective RNA-pol complexes to preclude the assemblies of one another 

because of the distance separating them. However, there is still a possibility that the two 
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complexes interfere with one another as they could both be convergently and 

simultaneously transcribing. 

 

A tRNA gene that overlaps the intronic region of a protein coding gene in either the 

sense or antisense orientation can potentially affect the protein coding gene by similar 

mechanisms described above (Appendix A Figure 10 4A and 4B). If the protein coding 

gene is transcriptionally silenced and the assembly of the RNA-pol III complex is not 

impeded, the overlapping tRNA gene can be transcribed. When the intersecting tRNA 

gene is in the sense orientation with respect to the protein coding gene, read-through 

transcription could generate alternative transcripts from the intronic genic region. These 

transcripts may be a novel source of RNA-pol II gene transcript variants that are 

typically produced by alternative splicing. If the tRNA is in the antisense orientation, 

any read-through transcripts will be complementary to the intronic region of the protein 

coding transcript and may interfere with the processes of splicing. If the protein coding 

gene is not transcriptionally silenced, overlapping tRNA genes that are both sense and 

antisense could cause transcriptional interference with either the assembly or active 

transcription of the respective polymerase complexes as described above. Furthermore, 

tRNA genes that overlap intronic regions in the sense orientation will likely form a 

tRNA-like structure. If the recruitment and subsequent modifications, in this case 

splicing, occur prior to the excision of the intron, the translation of the protein will not 

occur. 
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As described earlier, tRNA transcripts undergo several post-transcriptional 

modifications. When considering the overlap of tRNA genes and other gene types, there 

are two modifications in particular that are most consequential to gene regulation; those 

that reinforce the distinctive clover-leaf secondary structure of a tRNA transcript and 

those that splice a tRNA transcript into tRFs. The former is most relevant when 

overlapping regions are exonic (Appendix A Figure 10 3A and 3B). The normal process 

of splicing an mRNA will eliminate any intronic region from the primary transcript 

regardless if a tRNA gene has intersected it or not. We are unaware of any described 

mechanism that implicates a tRNA or a tRNA-like structure within an intronic region 

that is responsible for, or otherwise related to, the facilitation of splicing, although this 

does not preclude the possibility. Furthermore, an intersecting tRNA sequence in the 

sense orientation with respect to the excised intronic sequence is likely to engender the 

intronic sequence with a tRNA-like secondary structure that could help avoid a hasty 

degradation and may be involved in some other yet discovered biological function. 

 

The recruitment of modification enzymes to regions in which tRNA genes overlap 

protein coding genes introduces fundamental aspects of tRNA biology to mRNA 

biology. For example, a tRNA-like structure in a protein coding transcript, either intronic 

or exonic, could be subject to splicing by angiogenin or RNase P. This would effectively 

cut the protein coding transcript short, thus inhibiting complete translation (Appendix A 

Figure 11A). Of course, in the intronic case, the splicing would have to occur before the 

excision of the intron. 
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The recruitment of modification enzymes to a tRNA-like structure within the 5’ UTR of 

a protein coding transcript may act to inhibit translation by also being spliced, or by the 

fortification of the structure which could cause physical obstruction of the elongation 

complex (Appendix A Figure 11B). To our knowledge, the interaction between enzymes 

known to modify tRNA and RNA-pol II transcripts has not been explored and may be a 

novel mechanism of translational regulation. 

 

In general, when tRNA genes overlap protein coding genes, there are two fundamental 

implications we are interested in exploring: (i) the regulation of transcription and 

translation of the protein coding gene, and (ii) read-through transcription that generates 

RNA polymers that are complementary to protein coding transcripts. Transcriptomic  

data was not analyzed as part of this thesis, so we have yet to validate the regulatory 

implications of tRNA genes that may overlap protein coding genes, however, with the 

implementation of the IGV genome browser (Version 2.3.82 (130)), we are able to 

visually validate overlapping regions. Regardless, experimental validation is preferred, 

however it is beyond the scope of this thesis but will be the focus of future work. 

 

5.2. Intersect Analysis 

 

When analyzing the human genome for the intersection of protein coding and tRNA 

genes, we considered the overlap between a tRNA gene and the entire protein coding 

gene interval. The complete interval of a protein coding gene contains non-coding exons, 
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exons, and introns (Appendix A Figure 12). At the time of writing, Gencode.v28 has 

identified 19,901 features in the human genome annotated as protein coding genes 

(GRCh.38.p12). tRNAscan-SE predicted a total of 636 tRNA genes which accounts for 

just over 3% of the genes between these two gene types (i.e., protein coding and tRNA). 

tRNA genes have an average sequence length of 77 nucleotides, and protein coding 

genes have an average length of 66,577 nucleotides (Piovesan, A., et al. 2016). The 

lengths of tRNAs used in this analysis include the distance between the 5’ phosphorus 

group and the 3’ terminus of a processed tRNA transcript (i.e., this does not include the 

5’ leader or 3’ trailing sequences). We calculated the haplotype sequence of the human 

genome to be 3,031,042,417 nucleotides in length. If there are 19,901 protein coding 

genes with an average sequence length of 66,577 nucleotides each, then, on average, the 

total length of protein coding gene intervals in the human genome is (19,901*66,577) = 

1.3e9 nucleotides. This represents about 44% of the length of the genome. If there are 

636 tRNA genes with an average length of 77 nucleotides, then, on average, the total 

length of tRNA genes is (636*77) = 4.9e4. This represents about 0.0016% of the length 

of the human genome. The probability then that the sequences of a tRNA gene and 

protein coding gene of average length overlap at any given locus in the human genome, 

assuming both gene types are evenly distributed, is 0.0007%. Despite this low 

probability, we have identified intact tRNA genes that overlap 79 protein-coding genes, 

as well as 30 long-intergenic non-coding RNAs (lincRNAs) and 11 antisense genes 

amongst others (Appendix B Table 5). These overlaps are not mutually exclusive. For 

example, in the situation in which the interval of a tRNA gene overlaps the interval of an 
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antisense gene, by definition, the same tRNA gene interval is simultaneously 

overlapping the sense gene as well. If this sense gene happens to be a protein coding 

gene, then the tRNA gene interval is found to overlap both the protein coding and 

antisense genes. The values reported in Table 5 does not make this distinction and only 

reports individual counts for each gene type overlap. For a comprehensive summary of 

simultaneous overlaps, see Supplemental 2.12 

 

Protein coding genes are sequences of DNA that contain all of the structural units of a 

gene (i.e., non-coding exons, exon, introns, promoter, enhancer, and terminator) and has 

an open reading frame (ORF). The transcript of a protein coding gene is post-

transcriptionally modified by the addition of a 5’ cap, 3’ poly-A sequence, and the 

removal of intronic regions. The resultant mature mRNA contains two non-coding exons 

(5’ and 3’ UTRs) and a series of triplet DNA sequences called codons that code for 

specific amino acids. We identified tRNA genes that overlap 79 protein coding genes 

(Appendix B Table 5). 

 

Processed transcripts do not contain an ORF and are divided into three main categories; 

long non-coding RNAs (lncRNAs), pseudogenes, and genes designated to be 

experimentally confirmed (TEC). In addition to the 79 protein coding genes, our analysis 

                                                

12 https://etd.tamu.edu/submit/22476/file/171940/ancillary_table.xlsx 
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has identified 59 other occurrences in which a tRNA gene was found to overlap defined 

genomic intervals and they all fall within these three classes of processed transcripts. 

lncRNAs are processed transcripts that exceed 200 nucleotides in length and are not 

known to be translated into protein. Many sub-categories of lncRNAs have been defined, 

but we will limit our discussion to those indicated in our analysis. For example, sense 

overlapping, sense intronic, antisense, and lincRNAs are all types of lncRNAs. Sense 

overlapping genes can generate a long non-coding transcript that contain coding genes 

within its intron while sense intronic genes can generate long non-coding transcripts 

from an intron of coding genes but does not overlap an exon. We have identified tRNA 

genes that intersect 2 sense overlapping genes and 2 sense intronic genes (Appendix B 

Table 5). Antisense genes produce processed transcripts that overlap the genomic region 

of a protein coding gene on the opposite strand. lincRNAs (lincRNAs) are defined the 

same way as lncRNAs except they do not overlap the intervals of protein coding genes 

(Ransohoff, J. D., et al. 2018). We have identified tRNA genes that overlap the regions 

of 30 lincRNA genes and 11 antisense genes (Appendix B Table 5). Bi-directional 

promoters are regions within the promoter of protein coding genes but facilitate the 

transcription lncRNAs from the opposite strand. We have identified tRNA genes that 

overlap 2 bi-directional promoters. 

 

Pseudogenes are similar to protein coding genes, but they contain a frameshift or 

aberrant stop codon that disrupts the ORF. There are two types of pseudogenes indicated 

in our analysis; unprocessed and polymorphic. Unprocessed pseudogenes are typically 
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produced by gene duplication but the transcripts and not completely processed and still 

contain intronic regions. Polymorphic pseudogenes arise by SNP or indels and the gene 

is usually translated among the individuals in a population that do not have these 

mutations. We have identified tRNA genes that overlap the regions of 8 unprocessed 

pseudogenes and 1 polymorphic pseudogene (Appendix B Table 5). 

 

Lastly, TEC is a designation for transcripts that appear to be protein coding but need 

experimental validation. Our analysis has identified a tRNA gene that overlaps a single 

region identified as TEC. We have also identified tRNA genes overlapping the regions 

of 2 unclassified processed transcripts (Appendix B Table 5). These are transcripts that 

cannot be placed into existing designations. 

 

According to our predictions, overlapping tRNA genes have the potential to introduce 

key aspects of tRNA biology to the genes and transcripts they overlap. This can 

fundamentally alter the function of these genes and transcripts through processes like 

molecular interactions and modifications. Our analysis indicates protein coding genes, 

lncRNAs, and antisense genes as the most abundant classes of tRNA intersects 

(Appendix B Table 5). Accordingly, we will narrow our analysis specific to these three 

classes. 
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5.2.1. The Intersection of tRNA and Protein Coding Genes 

 

The transcription of protein coding genes results in a pre-mRNA that contains non-

coding exons, exons, and introns. Introns are typically spliced out of the pre-mRNA and 

are not part of the sequence that gets translated to protein. Exons are the segments of 

genes that are retained in the mRNA and can either be coding or non-coding (Appendix 

A Figure 9). For example, UTRs are non-coding exons because they are a part of the 

mRNA but do not encode a sequence that will be translated to protein. Coding exons on 

the other hand are part of the mRNA and encode the sequence that will be translated to 

protein. Because the coding regions of protein coding genes dictate the ultimate protein 

product, we expect to see more evolutionary constraint amongst the coding regions of 

genes as opposed to a more relaxed constraint amongst the non-coding regions like 

UTRs and introns. Accordingly, we predict that the 79 protein coding genes indicated in 

our intersect analysis are most likely to contain tRNA genes within the non-coding 

regions and we do not expect to find tRNA sequences intersecting the coding regions. In 

line with our prediction, 67 protein-coding genes have tRNA sequences within intronic 

regions, 11 have tRNA sequences in non-coding exons, and, surprisingly, 1 has a tRNA 

sequence intersecting the interval of a coding exon. 
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The only protein coding gene to have a coding exonic overlapping tRNA is the 

pleckstrin homology domain interacting protein (PHIP; Supplemental 1 Figure 5A).13 

PHIP is in human chromosome 6 and is associated with glucose regulation and 

melanoma metastasis. The overlapping tRNA sequence identified here is in the same 

orientation as the protein coding gene and occurs in a coding exon of a protein coding 

isoform of this gene, although, the primary transcript is intronic at this interval. 

According to our predictions, a tRNA sequence that overlaps the sequence of a gene in 

the same orientation can act as an independent promoter unit and induce RNA-pol III 

transcription at this locus. In this particular gene (PHIP), the overlapping tRNA 

sequence occurs on the 10th exon of a 17-exon model. There are no isoforms indicated 

that begin near this region, so the transcription of isoforms by means of RNA-pol III for 

this gene is unlikely. However, post-transcriptional modifications that could splice or 

strengthen tRNA-like secondary structures found within transcripts introduces the 

potential to regulate the expression of the PHIP (or an isoform thereof) by the premature 

termination of translation or the physical inhibition of translation. In either situation, the 

overlapping tRNA sequence in PHIP may impose a regulatory mechanism that has yet to 

be described and to our knowledge has not been experimentally validated. 

 

Unlike coding exons, non-coding exons are not translated to protein. Regardless, these 

regions (3’ and 5’ UTRs) are implicated in the regulation of gene expression and are thus 
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likely to be under some level of evolutionary constraint (Jackson, R. J., et al. 1990; 

Conne, B., et al. 2000; Hughes, T. A., 2006; Van Der Velden, A. W., et al. 1999). The 5’ 

UTR of protein coding transcripts needs to accommodate the translational machinery 

and is likely under a slightly more stringent selective pressure than the 3’ UTR (Conne, 

B., et al. 2000). According to our predictions, a tRNA gene that overlaps the 5’ UTR of a 

protein coding gene in either orientation can act as an independent promoter unit to 

recruit the RNA-pol III transcription complex to the type-2 intragenic promoter of the 

tRNA gene. If the RNA-pol II transcription complex assembles within the same 

temporal framework as the RNA-pol III complex, it is possible that this mutual assembly 

can interfere with each other and inhibit the assembly of both complexes. Alternatively, 

if the overlapping tRNA sequence is in an opposing orientation with respect to the 

protein coding gene and there is no interference with the assembly of each respective 

transcription complex, the actively transcribing complexes on opposite strands moving 

towards each other are likely to interfere with each other upon contact. It is unclear 

whether or not this interaction would interrupt transcription. On the other hand, the 

RNA-pol III transcription complex could simply assemble on the type-2 promoter of the 

tRNA gene and transcribe the tRNA gene, or perhaps generate an alternative transcript 

by reading through the termination sequence of the tRNA gene. 

 

There are eleven protein coding genes indicated by our analysis in which a non-coding 

exon overlaps with at least one tRNA gene. Seven of these protein coding genes have 

more than one overlapping tRNA. For example, VAC14 and CTC1 have 4 and 3 tRNA 
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genes that overlap the 3’ UTRs respectively. SHF and ZBED9 have 3 tRNA genes that 

overlap each of the respective 5’ UTRs (Appendix B Table 6). CTC1 is of particular 

interest, not only because it is a component of the CST complex that protects telomeres 

from degradation, and is therefore of great research value, but each of the three 

overlapping  

 

tRNA sequences are in the same orientation as the protein coding gene and are different 

species of tRNA from one another. This suggests they did not arise by duplication and 

have been independently recruited to this region. Furthermore, the spacing between these 

three overlapping tRNAs appears to be periodic as well. There are 301 nucleotides that 

separate the first and second tRNA gene and 300 nucleotides separating the second and  

third tRNA gene suggesting the spatial distribution of these tRNA genes is non-random. 

We are unaware of any literature that has implicated overlapping tRNA genes in the 3’ 

UTR of the CTC1 gene that affects transcriptional or translational regulation or other 

functional processes. Experimental validation is required to determine whether or not 

these overlapping tRNA genes are implicated in the expression or otherwise general 

function of CTC1. 

 

Our predictions indicate eight different ways a tRNA gene can overlap a region of a 

protein coding gene. Our analysis has identified seven of these eight possible overlaps in 

the human genome which occur in eleven protein coding genes. We did not find an 

example of a tRNA gene that overlaps a coding exon of a protein coding gene in the 
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antisense orientation. Moreover, we visually validated the indicated intersects and found 

some evidence to suggest the generation of alternative transcript predicted by our model 

are credible. For example, tRNAVal intersects the 5’ UTR of DPP9 in the same 

orientation (they are both in the Crick orientation). There is a protein coding isoform 

annotated by Havana as having an alternative 5’ UTR that, in the genome browser, 

appears to start at the same locus as the overlapping tRNA gene (Supplemental 1 Figure 

5B).14 This is what we would expect to see when a tRNA gene acts as an independent 

promoter region that can facilitate read-through transcription. 

  

5.2.2. The Intersection of tRNA and Long Non-coding RNA Genes 

 

Advancements in molecular techniques and computational power in the last fifteen years 

have helped erode a long-standing dogma that supposed most of the human genome was 

transcriptionally inactive and that the bulk of the transcriptome consisted of protein-

coding exons. Our current understanding is that a majority of the genome is in fact 

transcriptionally active and protein-coding exons make up a small fraction of the 

transcriptome. Throughout much of this period of discovery, the rate at which novel 

transcripts were identified outpaced the rate at which they are functionally annotated, 

although there have been considerable efforts in recent years to attribute function to a 

growing catalog of non-translated transcripts. 

                                                

14 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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lncRNAs are typically more concentrated in the nucleus and are maintained at lower 

levels of expression compared to protein-coding transcripts (Derrien, T., et al. 2012). 

Maintaining an assemblage of lncRNA transcripts within the nuclear envelope may be a 

function of interactions with neighboring genes. For example, Malat1 (metastasis 

associated lung adenocarcinoma transcript 1) is a highly conserved lncRNA that has 

been implicated in cis-acting regulatory pathways (Zhang, B., et al. 2012). Interestingly, 

Malat1 has a 3’ terminal tRNA-like secondary structure similar to that described by the 

GTH (Weiner, A. M., 1987). This structure is cleaved by the same ribonuclease RNase P 

that cleaves the 5’ end of pre-tRNA. This cleavage results in two distinct molecules; a 

mature lncRNA transcript with a stabilizing 3’ triple helix structure and a tRNA-like 

Malat1-associated small cytoplasmic RNA (mascRNA; Wilusz, J. E., et al. 2008). The 

matured Malat1 remains in the nucleus where it functions in the regulation of alternative 

splicing and the cleaved tRNA-like mascRNA is exported from the nucleus where it 

undergoes a similar modification regime to that of canonical tRNA (Wilusz, J. E., et al. 

2012; Tripathi, V., et al. 2010; Brown, J. A., et al. 2012; Wilusz, J. E., et al. 2008). The 

function of tRNA-like mascRNA remains unknown, but it is unlikely it participates in 

translation because it does not have a conserved anticodon sequence and it is not 

aminoacylated (Wilusz, J. E., et al. 2008). Because the lncRNA remains in the nucleus 

and the mascRNA is exported into the cytoplasm, it is possible the mascRNA could act 

as a signaling molecule to inform some cytoplasmic process that the parental lncRNA 

has been transcribed and matured (Wilusz, J. E., et al. 2008). Regardless, a tRNA-like 

structure in the body of a lncRNA transcript recruits enzymes known to modify tRNA 
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transcripts. This provides experimental data that supports a fundamental prediction of 

our hypothesis. 

 

There are currently 7,490 lincRNA genes and 48 lncRNA genes annotated in the human 

genome (Gencode.v28; GRCh38.p12). We have identified tRNA genes overlapping the 

intervals of 30 lincRNA genes and 2 lncRNA genes (Appendix B Table 5). Additionally, 

there are 118 transcripts that are mostly derived from the 30 lincRNA genes that retain 

the overlapping tRNA sequence. This averages out to be about 4 transcripts per lincRNA 

gene that have an overlapping tRNA gene suggesting a functional parameter that is 

conserving this condition within the lincRNAs indicated in our analysis. 

 

As with the Malat1 example, and in-line with our predictions, tRNA structures within 

the transcripts of the lincRNA and lncRNA genes are likely recruiting enzymes known 

to splice or otherwise modify the embedded tRNA structure. tRNAAla is the most 

abundant species of tRNAs in the human genome. Despite this, there appears to be a 

preference for asparagine when it comes to the species of tRNA intersecting lincRNA 

(Supplemental 1 Figure 6).15 The apparent bias for tRNAAsn intersecting lncRNAs 

indicates a property of the asparagine anticodon that is not present in the rest of the 

tRNA anticodon population. To our knowledge, this characteristic (the apparent bias for 

specific anticodons) has not been experimentally explored. 

                                                

15 https://etd.tamu.edu/submit/22476/file/172859/Supplemental+1 
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5.2.3. The Intersection of tRNA and Antisense Genes 

 

We have identified tRNA genes that overlap the intervals of 11 antisense genes 

(Appendix B Table 5). A tRNA gene that overlaps an antisense gene is effectively 

intersecting two genes simultaneously; the sense gene and the antisense gene. Thus, 

transcriptional interference by the physical contact of transcriptional complexes can 

occur with the complexes from either the sense or the antisense gene. Furthermore, it is 

possible that an antisense gene responsible for downregulating the expression of a sense 

gene can itself become downregulated upon the recruitment of an overlapping tRNA 

gene. This would effectively rescue the expression of the otherwise suppressed sense 

gene. We have identified this type of overlap (i.e., a tRNA gene that simultaneously 

intersects a sense and antisense gene) amongst 3 of the 11 antisense genes indicated in 

our intersect analysis. Interestingly, 2 of these 3 trisects occur within the 5’ UTR of the 

sense protein coding gene. Of particular interest is the SHF gene. According to 

GeneCards, SHF has been implicated in the regulation of apoptosis in response to a 

growth factor that regulates cell growth and division (Stelzer, G., et al. 2016). The tRNA 

gene overlapping this antisense gene is in the opposite orientation with respect to the 

antisense gene. Thus, the overlapping tRNA gene could act as an independent promoter 

to transcribe a sequence that is complementary to the antisense gene therefore preventing 

the antisense gene to otherwise downregulate the expression of the sense SHF gene. To 

our knowledge, this mechanism of gene regulation has not been experimentally 

explored. 
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Antisense genes are a class of lncRNAs that are, by definition, complementary to a sense 

gene. The sense genes in these respective pairings are not necessarily protein coding. For 

many years, antisense transcripts were considered to be little more than transcriptional 

noise, however, relatively recent and consistent observations of pervasive transcription 

and biological relevancy has challenged this long-held idea. For example, antisense 

transcripts have been shown to induce DNA methylation and histone modification 

patterns that can affect the initiation of transcription and the subsequent expression of 

their paired sense genes (Tufarelli, C., et al. 2003; Yu, W., et al. 2008). Moreover, 

antisense transcripts can also work synergistically with their sense transcripts to enhance 

the translational efficiency of the sense transcript (Carrieri, C., et al. 2012). Adversely, 

the transcript of an antisense gene, also known as antisense RNA (asRNA), can 

hybridize with the sense transcript which not only prevents the translation of the sense 

gene but can also recruit endonucleases that have an affinity for double-stranded RNA 

(dsRNA). Antisense genes have also been implicated as an underlying cause in disease 

state expression of an otherwise apparently normal gene and are increasingly being 

recognized as critical regulators of both the transcription and translation of their sense 

genes (Tufarelli, C., et al. 2003). SAS gene pairs can also impose regulatory processes 

based on their spatial and temporal characteristics. 

 

The respective orientation of SAS gene pairs introduces the possibility that the 

transcriptional machinery of two overlapping genes will interfere with each other. When 

the promoter regions of genes on opposing strands overlap, or are otherwise close 
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enough to each other, competition between transcription factors assembling on or near 

one of the promoters can preclude the transcription factors from assembling on or near 

the other. This was shown to occur in prokaryotes and at enhancer sites in eukaryotes 

(Wang, P., et al. 1998; Hirschman, J. E., et al. 1988; Conte, C., 2002). If the promoter 

regions of SAS gene pairs are distal enough from each other such that the assembly of 

transcription complexes is not impeded, interference can still occur by the physical 

interaction of the respective transcriptional complexes if they are each actively 

transcribing. This establishes a mechanism in which the respective transcriptional 

complexes are on a collision course with one another and has been shown to occur in S. 

cerevisiae (Prescott, E. M., et al. 2002). This type of transcriptional interference is 

believed to be rare in nature, although most genomic searches for convergent promoters 

has been limited to RNA-pol II genes. We propose the presence of an RNA-pol III type-

2 intragenic promoter in addition to an RNA-pol II promoter can cause this type of 

interference. It is likely that the type-2 promoter of tRNA genes have evaded detection 

of previous work describing this mechanism of transcriptional interference and is 

therefore, to our knowledge, not well explored. 
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6. DISCUSSION AND CONCLUSION 

 

The origin story of tRNA is relevant to most research in tRNA biology but it is often 

ignored or underestimated by researchers. An understanding of this dynamic and ancient 

history helps to put a unique perspective on current findings. It is easy to lose sight of 

the probability that precursor tRNA-like molecules preceded the origin of life and were 

likely instrumental through the processes of abiogenesis. Today, most research centered 

on tRNA biology is focused on pathway dependent interactions between primary tRNA 

transcripts, highly modified mature tRNA, and more recently, tRFs. Most findings are 

interpreted with an emphasis on the effects these molecules have on downstream 

transcriptional and translational efficiency and homeostatic processes. Attention is also 

given to the clinical role tRNA molecules and their derivatives have on disease state 

tissues. What is ominously missing from much of the contemporary literature focused on 

some aspect of tRNA biology is the possibility of retained ancient catalytic functionality.    

 

Modern molecular techniques and increasing computational power have allowed us to 

untangle much of the complexity of tRNA biology broadening a catalog of disparate 

functionality connecting tRNAs to mechanisms that far surpass the dutiful service of 

amino acid delivery. Many of these newfound discoveries have been characterized as 

having unique, or alternative functionality with respect to dogmatic translational 

activities, but when considering the tRNA origin story, these alternatives are likely 

reflective of the original functions that dominated an ancient pre-DNA/protein world. 
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Ironically, our definition of tRNA canonical function is likely the alternative. Despite 

this, tRNAs remain inextricably linked to the central dogma of biology on account of the 

integral role they play in the translation of genetic code into protein. 

 

In our most conservative estimation, we have identified 445 cytosolic predicted tRNA 

gene copies in the human genome. This amount redundancy suggests peak tRNA 

transcription rates cannot be facilitated by a single template and tRNA genes can tolerate 

various types of mutations (e.g., point mutations or insertions and deletions) with little to 

negligible deleterious functional consequence (Sharp, S. J., et al. 1985). Alternatively, 

the generation of mascRNAs, or other tRNA-like mimics may have elicited evolutionary 

mechanisms that work to degrade and eliminate these types of molecules in an effort to 

inhibit any deleterious interactions. These destructive mechanisms would likely act on 

canonical tRNA molecules as well (e.g., angiogenin, RNase P, RNase Z, etc.). Thus, the 

proliferation of tRNA genes would result in the observed redundancy in copy number 

and would be required to maintain tRNA populations at a sustainable level. This process 

could also explain the presence and pervasiveness of tRFs. 

 

The human mitochondrial genome (ignored in our analysis) encodes only 20 tRNA 

genes. This demonstrates an alarming vulnerability to dysfunction and disease not 

observed in cytosolic tRNA populations. Indeed, greater than 50% of mutations that 

occur in mitochondria are located within tRNA genes (Lott, M. T., et al. 2013). 

Although cytosolic heteroplasmy allows for some level of cellular redundancy, 
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mutations in mt-tRNA genes result in a wide breadth of syndromes. For example, 

MERFF (myoclonic epilepsy and ragged red fibers) syndrome results from a point 

mutation in the TѰC-loop of tRNALys and Mitochondrial Encephalopathy with Lactic 

Acidosis and Stroke-like episodes (MELAS) is an extreme example with no known 

treatment (Tryoen-Tóth, Petra, et al. 2003; Perli, E., et al. 2014). Several mechanisms in 

which cytosolic tRNAs can be imported into the mitochondria are known, and it may be 

possible to rescue these disease states by the manipulation of such a mechanism (Rubio, 

M. A. T., et al. 2008). Moreover, it would be an enormous waste of metabolic resources 

if each tRNA gene copy were to be expressed simultaneously (Sharp, S. J., et al. 1985). 

Accordingly, processes involved in the controlled expression of tRNA genes are 

critically important. Research focused on the mechanisms that coordinate and regulate 

transcription have been crucial in expanding our understanding of tRNA biology (for 

reviews, see Willis, I. M., et al. 2007; Cieśla, M., et al. 2008).  

 

Regulating the expression of tRNA genes is essential to the maintenance of cellular and 

organismal health. In eukaryotes, there are three classes of RNA polymerase (I, II, and 

III) which are regulated by the conserved protein Maf1 (Pluta, K., et al. 2001; Reina, J. 

H., et al. 2006; Johnson, S. S., et al. 2007). Under normal conditions, Maf1 is 

phosphorylated and unable to negatively regulate the activity of RNA-pol III. However, 

when cellular conditions deteriorate (e.g., stress or disease), Maf1 becomes 

unphosphorylated and actively begins to negatively regulate RNA-pol III through 

interactions with RNA-pol III subunits and associated transcription factors (Pluta, K., et 
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al. 2001; Gavin, A-C., et al. 2006; Oficjalska-Pham, D., et al. 2006; Reina, J. H., et al. 

2006; Upadhya, R., et al. 2002; Desai, N., et al. 2005; Rollins, J., et al. 2007). Despite 

this downregulation during cellular stress, there is a subset of tRNA genes in which 

transcription appears to be impervious to negative Maf1 regulation (Turowski, T. W., et 

al. 2016; Orioli, A., et al. 2016). Of the many mechanisms proposed that can maintain 

transcription of these so-called ‘housekeeping’ tRNA genes, the one most favorable to 

our findings suggests the proximity of RNA-pol III genes to actively transcribing RNA-

pol II protein-coding genes (Turowski, T. W., et al. 2016). Within the regions of 

chromosomes 1 and 6 in which we found tRNA gene density to be punctuated, we also 

observe a statistical overrepresentation of genes implicated in nucleosome assembly and 

adaptive immunity. It is highly probable these regions exhibit attributes similar to 

euchromatin and may facilitate the ongoing transcription of tRNA genes, even in 

episodes of cellular stress. Regulating the transcription of tRNA molecules is a critical 

process as the consequences of dysregulation can be devastating. Regardless of the 

cellular attempt to dynamically regulate the expression of tRNA, we suggest the 

clustering of tRNA genes amongst other critical cellular protein-coding genes on 

chromosomes 1 and 6 may impart a mechanism to safeguard the continuing transcription 

of tRNA genes when cellular signals mandate otherwise. 

 

We have identified two regions of the human genome that exhibit a sharp increase in the 

frequency of tRNA genes and are populated by genes implicated in nucleosome 

assembly and the MHC (chromosomes 1 and 6 respectively). Perhaps the most pressing 
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question is what genetic aspect(s) of tRNA biology are necessary, or otherwise related, 

to sets of genes implicated in nucleosome assembly and the adaptive immune system, or 

vice versa? Given the critical nature of these genes, it is possible the regulatory aspect of 

these regions may play a role. For example, the clustering of and colocalization of these 

genes may facilitate mutual transcription. Moreover, the polymorphic nature of the MHC 

region suggests the clustering of tRNA and MHC genes could be a source of generating 

and maintaining variation, although this type of heterozygosity is not observed in the 

nucleosome assembly genes on chromosome 1 that also display clustering with tRNA 

genes. It is possible there are separate regulatory mechanisms in place to ensure these 

disparate properties of gene clustering do not overlap. Regardless, maintaining dense 

clusters of tRNA genes in close proximity to genes associated with nucleosome 

assembly and adaptive immunity suggests tRNA genes play a role in the maintenance of 

genomic stability, immunology, and sexual selection further broadening its non-

canonical repertoire. 

 

Early work in tRNA biology seldom examined processes beyond the understood 

function of tRNA acting as adapter molecules required for the translation of mRNA into 

proteins. More recently, however, a more dynamic landscape has emerged that highlight 

tRNAs as principal components involved in an array of biological processes that range 

from homeostatic to disease state. Our analysis essentially forwards two main 

hypotheses; HA1: The genomic organization of tRNA genes in the human genome is non-

random and plays a key role in nucleosome assembly and adaptive immunology, and 
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HA2: The intersection of tRNA genes with various genomic features provides critical 

regulatory mechanisms to that be both cis- and trans-acting. Here, we have provided 

evidence that identified a spatial relationship between tRNA genes and genes associated 

with nucleosome assembly and adaptive immunology. Whether or not this spatial 

relationship will translate into a functional one will be determined by future work. We 

have also forwarded evidence to suggest certain coding and non-coding genes may be 

recruiting enzymes normally associated with tRNA modification. We have predicted 

regulatory implications of these associations that will need to be validated in future 

work. 

 

The origin story of tRNA and subsequent evolutionary optimization imply this molecule, 

in one form or another, has been present from a time in which life did not exist. When 

recognizing the likely origin of tRNA from a population of self-replicating RNA 

molecules, the ubiquity of tRNA across domains should not be surprising and the 

pervasiveness of tRNA in a myriad of biological processes should be expected. It is 

within this framework that we have interpreted our findings. Furthermore, it is our 

conviction that future research will be served well to, in the least, apply the context of a 

foregone origin when interpreting data that involves any aspect of tRNA biology.
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APPENDIX A 

 

 

 

 

 

Figure 1. The origin of tRNA adapted from models presented by Di Giulio, and Dick 
and Schamel (Di Giulio, M. G., 1992; Dick, T. P., et al. 1995). A. An original RNA 
oligonucleotide with a stem and loop secondary structure. B. A replicated RNA 
oligonucleotide with an aberrant run-off sequence. C. Complexed molecules based 
on Watson and Crick pairing rules. D. The run-off sequence is ligated and the intronic 
region is self-spliced. E. A final tRNA-like molecule. 
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Figure 2. A typical tRNA gene model and distinct cloverleaf secondary structure.  
A. The distinct cloverleaf secondary structure of a typical tRNA transcript. The 
conserved A- and B-box promoter regions (light blue boxes) form the D-loop and 
TѱC-loop functional regions. B. A typical tRNA gene model highlighting the type-
2 A- and B-box intragenic promoters (blue boxes). The black arrow represents the 
transcription start site (TSS) of the gene. 
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Figure 3. The correlation of all genes, tRNA genes, and chromosome length. A. 
The correlation of the total number of genes per chromosome and the 
chromosome length in the human genome (r2=0.57). B. The correlation of the 
total number of tRNA genes per chromosome and the chromosome length in the 
human genome (r2=0.19). 
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Figure 4. A histogram showing the ordinal distribution of tRNA genes in the human 
genome (GRCh38 Gencode.v28). Human chromosomes are ordered such that the first 
base of chromosome 1 corresponds to position ‘0’ on the x-axis, and the last base of 
chromosome X corresponds to position ‘1’ on the x-axis. The start positions of all tRNA 
genes were calculated relative to their position in the genome. There is a clear 
enrichment of tRNA genes in chromosomes 1 (red) and 6 (orange) with a distinct 
concentration in chromosome 6. Binwidth = 3Mbp. 
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Figure 5. The total number of tRNA genes predicted by tRNAscan-SE in humans and 
three popular model organisms; Mus musculus (mouse), Caenorhabditis elegans 
(nematode), and Drosophila melanogaster (fruit fly). Pseudo genes are shown in red and 
non-pseudo genes are shown in turquoise. Comparatively, humans are the only species 
shown here that exhibit a clear and distinct tRNA gene enrichment. 
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Figure 6. Assembly exceptions at the MHC region of human chromosome 6. Ensembl 
(release 95) has indicated seven assembly exceptions named COX, SSTO, QBL, 
MANN, MCF, APD, and DBB. tRNAscan-SE identifies a dense cluster of tRNA genes 
immediately downstream of the 5’ boundary of each exception with no other tRNAs 
predicted within the region. The vertical lines represent the absolute start position of 
each predicted tRNA gene colored by species type. The length of each assembly, 
including the reference sequence, is indicated in parentheses. 



 

92 

 

 

Figure 7. tRNA gene distribution in five apes (Pan paniscus, Pan troglodytes, Gorilla 
gorilla, and Pongo abelii), and one Old World monkey (Macaca mulatta). The apes 
exhibit a similar distribution with an apparent tRNA gene enrichment in chromosomes 1 
and 6, whereas the Old World monkey appears to have an enrichment in chromosomes 1 
and 4. Pseudo genes are shown in red and non-pseudo genes are shown in turquoise. 
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Figure 8. The distribution of tRNA genes with respect to species type in chromosomes 
1 and 6 of human, bonobo, chimp, gorilla, orangutan, and macaque. For the macaque, 
chromosomes 6 and 4 are shown as chromosome 4 more closely resembles the order 
and species of tRNA genes with the apes rather than chromosome 6. Colored vertical 
lines indicate the loci of tRNA genes as predicted by tRNAscan-SE. Chromosome 
length was normalized and ranges in value from 0-1. 
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Figure 9. A typical gene model. The top bar represents the entire interval of the gene. 
Blue boxes represent non-coding exons (e.g., UTRs), black boxes represent exons, thin 
black lines represent the intronic regions, and the bent black arrow represents the 
transcription start site (TSS). This example illustrates three possible isoforms 
transcribed from the same genic interval. 
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Figure 10. Eight possible ways a tRNA gene can intersect a protein coding gene. (1A 
and 1B) A tRNA gene intersecting a 5’ UTR in the sense and antisense orientation 
respectively. (2A and 2B) A tRNA gene intersecting a 3’ UTR in the sense and 
antisense orientation respectively. (3A and 3B) A tRNA gene intersecting a coding exon 
in the sense and antisense orientation respectively. (4A and 4B) A tRNA gene 
intersecting an intronic region in the sense and antisense orientation respectively. Light 
blue boxes with orange A and B boxes represent a tRNA gene in the sense orientation 
with respect to the protein coding gene. Orange boxes with backwards light blue A and 
B boxes represent a tRNA gene in the antisense orientation with repsect to the protein 
coding gene. Green arrows represent a possible TSS overlap with RNA-pol II and RNA-
pol III. Black arrows represent a typical TSS for RNA-pol II. Red arrows represent 
possible transcriptional interference between RNA-pol II and RNA-pol III. 
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Figure 11. Possible modifications to tRNA genes intersecting protein coding genes. A. A 
tRNA-like structure in an intronic region of a primary transcript. Endonucleases may be 
recruited to the structure and splice the transcript. B. A tRNA-like structure in the 5’ 
UTR of a mature transcript. Modifications that stabilize the structure may block the 
translational machinery from binding. 
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Figure 12. A graphical representation of the intersect analysis. The top model is the 
gene interval which contains non-coding (blue rectangles) and coding (black 
rectangles) exons, and introns (thin black lines). The bottom model indicates the 
location of tRNA genes (yellow squares). The vertical transparent yellow rectangles 
represent the overlap of tRNA genes and certain features within the gene interval (i.e., 
coding exon or intron). 
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APPENDIX B 

 

Gene Type Count 
Protein Coding Isoforms 149592 
Protein Coding Genes 19901 
Processed Pseudogene 10219 
lincRNA 7490 
Antisense 5501 
Unprocessed Pseudogene 2664 
Miscellaneous RNA 2213 
snRNA 1900 
miRNA 1881 
TEC 1067 
snoRNA 943 

Table 1. The most abundant gene types as 
defined by Gencode.v28 (GRCh38.p12). 
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Chromosome Length 
(bp) 

Total 
Number 

of 
Genes 

Total 
Number 

of 
tRNA 

1 248956422 5277 149 
2 242193529 3993 23 
3 198295559 3031 11 
4 190214555 2507 2 
5 181538259 2864 23 
6 170805979 2870 188 
7 159345973 2898 32 
8 145138636 2372 13 
9 138394717 2262 9 
10 133797422 2207 6 
11 135086622 3257 20 
12 133275309 2959 15 
13 114364328 1314 6 
14 107043718 2216 23 
15 101991189 2162 11 
16 90338345 2502 34 
17 83257441 3014 41 
18 80373285 1174 3 
19 58617616 2956 12 
20 64444167 1397 2 
21 46709983  832 1 
22 50818468 1347 2 
X 156040895 2370 10 

Table 2. The length of each chromosome and the 
number of total genes and tRNA genes in the human 
genome (GRCh38.p12; Gencode.v28). 
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 Database Total tRNA 
Genes 

UCSC 631 
tRNAscan-SE 619 

tRNAdb 359 
tRFdb 625 

Program - 
tRNAscan-SE 636 

Aragorn 916 
Table 3. The total number of tRNA 
genes reported by four databases 
and two programs. 
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PANTHER GO-Slim Biological Process Chr1 FE P-value FDR 
Nucleosome Assembly (GO:0006334) 39.49 7.93E-05 4.75E-02 
Protein Folding (GO:0006457) 19.58 8.07E-07 1.45E-03 
Peptidyl-amino Acid Modification 
(GO:0018193) 12.45 1.00E-05 9.00E-03 

PANTHER GO-Slim Biological Process Chr6 FE P-value FDR 
Nucleosome Assembly (GO:0006334)  > 100 6.71E-19 1.21E-15 
T cell Receptor Signaling Pathway 
(GO:0050852) 99.27 9.43E-11 3.39E-08 

Cellular Component Assembly (GO:0022607) 71.22 1.83E-17 1.64E-14 
Cellular Component Organization or Biogenesis 
(GO:0071840) 24.48 8.56E-14 5.13E-11 

Cellular Component Biogenesis (GO:0044085) 24.48 8.56E-14 3.84E-11 
Antigen Receptor-mediated Signaling Pathway 
(GO:0050851) 21.44 4.52E-07 1.35E-04 

Immune Response-activating Cell Surface 
Receptor Signaling Pathway (GO:0002429) 19.71 7.26E-07 1.86E-04 

Immune Response-regulating Cell Surface 
Receptor Signaling Pathway (GO:0002768) 19.71 7.26E-07 1.63E-04 

Immune Response (GO:0006955) 7.66 1.34E-04 2.68E-02 
Table 4. Regions of human chromosomes 1 and 6 with dense tRNA gene clusters 
also enriched with gene ontology (GO) terms related to nucleosome assembly and 
adaptive immunology. There is a nearly 40-fold and 100-fold enrichment (FE) of GO 
terms related to nucleosome assembly in chromosomes 1 and 6 respectively. The 
false discovery rate (FDR) is much lower in chromosome 6 (1.2e-15) than 
chromosome 1 (4.8e-2). Additionally, chromosome 6 has a nearly 100-fold 
enrichment (FE) of GO terms associated with T cell receptor signaling pathways with 
an FDR of 3.4e-8. 
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 Gene Type Count 
Protein Coding 79 
lincRNA 30 
Antisense 11 
Transcribed Unprocessed 
Pseudogene 8 

Bidirectional Promoter 
(lncRNA) 2 

Processed Transcript 2 
Sense Intronic 2 
Sense Overlapping 2 
TEC 1 
Polymorphic Pseudogene 1 

Table 5. The gene type and total 
count of genes that have an 
intersecting tRNA gene. 
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