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 ABSTRACT 

 

The study of porous materials dates back centuries to the discovery of activated charcoal 

used in holistic remedies across the globe. The recent advances in these materials has 

given rise to new applications and they sit a focal point of many energy related 

endeavors. This dissertation begins as an investigation of new materials for gas 

separations and storage and ends with a discussion on what structural considerations 

makes these materials function as they do. The need for new and improved methods for 

the capture and separation of carbon dioxide from air and energy emissions led to the 

development of a new cheaper benzimidazole based porous polymer network, PPN-101. 

This material demonstrated good surface area, 1095 m2/g, and selectivity, 199 CO2/N2. 

The cost of this material and others is also discussed. The development of new porous 

cage based materials for hydrogen and methane storage were investigated. This resulted 

in the synthesis of five chromium(II) paddle wheel based cuboctahedral cages with a 

total of seven different structures due to multiple possible packing schemes were 

investigated. Utilizing 5-tert-butylisophthalic acid and chromium(II) acetate 

monohydrate a highly porous molecular cage based material was obtained with a BET 

surface area of over 1000 m2/g. Difficulties in obtaining further structures and the 

presence of multiple packing modes observed for different ligands led to an analysis of 

the contributions solvents and surface functionalization provide these systems. An 

analysis of cage-solvent interactions resulted in identifying key interactions between 

ligands and coordinated solvents. Though no further new crystal systems were observed, 
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this resulted in the preliminary observation of the second non-axially coordinated 

chromium(II) carboxylate paddle wheel complex via solution state UV-Vis. These 

results indicate that porous materials can be achieved through molecular coordination 

compounds through judicious control of ligand interactions, geometry, and the strength 

of metal-metal interactions. 

 

 

 

 

 

 

  

 

 

 

 



 

iv 

 

DEDICATION 

 

To those that came before on whose shoulders I stand,  

So long, and thanks for all the fish 

 

 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

 

I would like to thank my PI Joe Zhou for the mentorship and experiences he allowed me 

to have and the many enthusiastic conversations we’ve had over our chemistry, the lab, 

and science in general. In my time at Texas A&M I have worked with many fine 

researchers and I would like to thank a few of them for their specific contributions to my 

Ph.D. experience: Dr. Jinhee Park for several years of fruitful collaboration and 

mentorship, Dr. Julian Sculley for making sure I knew what I was doing when I first 

arrived and for frequent conversations on my work, Dr. Trevor Makal who was willing 

to tell it like it is and still provides sage advice, Dr. Jihye Park for many helpful 

conversations and mentorship in my initial time in graduate school, and Stephen 

Fordham for the laughs and BBQ he provided. I would also like to thank the host of 

younger graduate students in the Zhou group and in others who have stepped up and 

provided much assistance and comaradarie, specifically, Creg Day for his helpful 

chemistry insights and less so for his punishing sense of humor, Elizabeth Joseph, 

Hannah Drake, Jeremy Willman, Sayan Banerjee, and Angelo Kirchon.  

 

One of the most lasting experiences of my graduate career was the ten weeks I spent at 

the National Academies of Sciences, Engineering and Medicine as a Christine Mirzayan 

Science and Technology Policy Fellow. My mentor Marilee Shelton-Davenport provided 

me with much insight and valuable connections and the program itself offered the kind 



 

vi 

 

of hands on experience in the science policy ecosystem that one can only get in 

Washington, D.C.. If you are reading this, and are within 5 years of obtaining your 

graduate degree or still a student, think about applying to this or similar programs. No 

matter what your professional goals are the perspective gained will help you navigate 

science outside of the laboratory and in with a renewed appreciation for the process and 

the impacts you are creating. 

 

I received by Bachelors of Science in Chemistry from the University of Tennessee at 

Chattanooga and the wonderful professors there provided me with the privilege of doing 

research that ultimately led to the drafting of this dissertation. Professors Gretchen Potts, 

Robert Mebane, John Lynch, Tom Rybolt, Jisook Kim, and John Lee provided me with 

an education in chemistry that stretched across disciplines and prepared me for my 

journey these past seven years. Jim Narramore provided me with stories to tell about 

chemical safety, in some of which I play a bit part, and operations of a chemistry lab that 

I will be telling for the rest of my life. However most important to my growth and indeed 

career as a researcher was Professor Greg Grant who gave me a chance to do summer 

research that resulted in trips to Honolulu, Richmond, Anaheim, San Diego, and all that 

followed in my time in College Station. 

  

Lisa Logan my 9th grade physical science teacher managed to keep the class entertaining 

with tales of her masters research, injecting mice with THC to see if affected spatial 

perception, and engaged with all of the students regardless of their interests. Terri 



 

vii 

 

Bicknell much as she tried could not keep my attention in biology, she was very good at 

her job I was not. Due to moving across the country and back I took way more high 

school chemistry, three credit years worth, than the typical student, from two teachers, 

one in Kansas who taught a comprehensive and thought provoking class and one in 

Georgia who taught me to evaluate science communication critically as they did not 

believe in global warming or “macro”-evolution. Without their outspoken, and quite 

incorrect, interpretations of the facts I might have remained oblivious to the ignorance 

that can pervade even those who we expect to teach us. This counterintuitively inspired 

in me an interest in science communication and a certain civic duty in sharing the good 

word of good research. 

 

I had one middle school science teacher Sandra Roebuck who kept us engaged with 

making cakes that looked like cells and experiments that we could relate too. She also 

mixed bleach and ammonia in the trashcan one time while throwing out the Dixie cups 

containing the unknowns from the previous class’s experiments. I noticed the rising 

vapors and exclaimed “it’s a chemical reaction”, I’ve always made the most astute of 

observations. She kept science and worked to make sure we all did eventually 

understand what she needed to teach us, it is an example I always try to follow. 

 

My primary teachers all provided me with the resources I needed to learn Paula Crosby 

at Graysville Elementary most of all.  

 



 

viii 

 

My brothers Will and Josh have graduated both high school and college while I’ve been 

here and are past the point where they need my help with homework but now I can 

return the favor as them about life after school. 

 

My grandfathers Papa Jim and Papa, a chemist and an engineer, helped spark my 

appreciation for science and have always provided support when I needed it. My 

grandmothers Mamas Judy and Sue also provided plenty of topics to discuss and learn 

especially encouraging a love of reading from a young age. My aunts and uncles have all 

supported me and provided me with books that have served as a welcome distraction 

from time to time. 

 

And finally I would like to thank my parents Bill and Gretchen who have provided me 

with all I ever needed and put up with me all these years. My mom always had the food 

network on and some of my earliest science engagement was with Good Eats. So I’d like 

to thank two A.B.s one for teaching me how cooking food works and the other for 

helping me to understand the broader picture how food and society are intertwined. 

 

All of these people and more that I’ve surely forgotten have provided me with privileges 

that touch on almost every level of my life and I can’t thank them enough for what they 

have done for me or how it has enabled me to be where I am today. 



 

ix 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a dissertation committee consisting of Professor Joe Zhou 

the Department of Chemistry and Professor(s) Charles Culp of the Department of 

Architecture and Professors Donald Darensbourg and David Powers of the Department 

of Chemistry. 

 

The work in Chapter 2 was conducted in part by Dr. Muwei Zhang of the Department of 

Chemistry and was published in 2014. The work in Chapter 3 was conducted in part by 

Dr. Jinhee Park of the Department of Chemistry. Dr. Park solved the crystal structures 

published in 2017 of the first three chromium cage compounds and along with J. Bae 

collected the powder patterns of Cr-1 and Cr-3. These structures were also used in the 

structural analysis in Chapter 4. 

All other work completed for the dissertation was completed by the student 

independently. 

Funding Sources 

Graduate study was supported in part by a teaching assistanceship from Texas A&M. 

This work was supported as part of the Center for Gas Separations, an Energy Frontier 

Research Center funded by the U.S. Department of Energy, Office of Science, Basic 

Energy Sciences under Award # DESC0001015 (CO2 separations and initial MOP 

studies), and the Welch foundation under grant A0030 (additional supplies and salary 



 

x 

 

support). Its contents are solely the responsibility of the authors and do not necessarily 

represent the official views of the Department of Energy or the Welch Foundation. 



 

xi 

 

TABLE OF CONTENTS 

 

 Page 

 

ABSTRACT ...................................................................................................................... II 

DEDICATION .................................................................................................................IV 

ACKNOWLEDGEMENTS .............................................................................................. V 

CONTRIBUTORS AND FUNDING SOURCES ............................................................IX 

TABLE OF CONTENTS .................................................................................................XI 

LIST OF FIGURES ....................................................................................................... XIII 

LIST OF TABLES ...................................................................................................... XVII 

CHAPTER I INTRODUCTION ........................................................................................ 1 

1.1 Porous Materials and their Uses ............................................................................... 1 

1.1.1 Highly Porous Materials .................................................................................... 1 
1.2 Basic principles of gas sorption ............................................................................... 6 

1.2.1 The pore and the isotherm ................................................................................. 6 

1.2.2 Quantifying surface area and porosity ............................................................... 8 

CHAPTER II COST-EFFECTIVE CARBON CAPTURE BY A POROUS 

POLYMER NETWORK* ................................................................................................ 10 

2.1 Introduction ............................................................................................................ 10 
2.1.1 The Carbon Dioxide Separations Problem ...................................................... 10 
2.1.2 Solid Sorbents for Carbon Capture ................................................................. 11 

2.2 Results and Discussion ........................................................................................... 15 
2.2.1 Preparation and Structure of PPN-101 ............................................................ 17 
2.2.2 Porosity and CO2 Adsorption in PPN-101 ...................................................... 18 
2.2.3 CO2/N2 Selectivity of PPN-101 ....................................................................... 20 
2.2.4 Adsorption of other gases of interest in PPN-101 ........................................... 22 

2.3 Future Work ........................................................................................................... 23 
2.4 Experimental .......................................................................................................... 24 

2.4.1 Materials and Instrumentation ......................................................................... 24 

ii 

iv

v v 

ix

v 
xi

v  xii 

 xviii 



 

xii 

 

2.4.2 Synthesis .......................................................................................................... 25 
2.4.3 Characterization of PPN-101 ........................................................................... 28 
2.4.4 Activation Procedures and Additional Gas Sorption Isotherms for PPN-101 30 
2.4.5 Calculation of CO2/N2 Selectivity ................................................................... 32 

CHAPTER III GAS ADSORPTION WITHIN POROUS MATERIALS DERIVED 

FROM METAL-ORGANIC POLYHEDRA WITH CHROMIUM(II)-

TETRACARBOXYLATE PADDLE WHEEL NODES* ............................................... 33 

3.1 Introduction ............................................................................................................ 33 

3.2 Results and Discussion ........................................................................................... 38 
3.3 Future Work ........................................................................................................... 54 

3.3.1 Expansion of scope in porous metal-organic polyhedra topologies ................ 54 

3.4 Experimental .......................................................................................................... 56 
3.4.1 Materials and Instrumentation ......................................................................... 56 
3.4.2 Syntheses ......................................................................................................... 57 

CHAPTER IV STRUCTURAL CONTRIBUTIONS TO OBSERVED PACKING 

AND POROUS BEHAVIOR IN METAL-ORGANIC POLYHEDRA .......................... 63 

4.1 Introduction ............................................................................................................ 63 

4.1.1 Effects of synthesis conditions and functionality on MOP formation ............ 65 

4.2 Results and Discussion ........................................................................................... 70 

4.2.1 Effects of Solvent on Synthesis of Cr(II) Metal-Organic Polyhedra Crystals 70 
4.2.2 Role of Solvents in Cage Packing ................................................................... 77 

4.2.3 Solvation of Chromium(II) MOPs .................................................................. 81 
4.3 Future Work ........................................................................................................... 88 

4.3.1 Control of cage packing through solvent size analysis ................................... 88 

4.3.2 Control of uncoordinated cage packing through functional group control ..... 89 
4.4 Experimental .......................................................................................................... 90 

4.4.1 Instrumentation and Materials ......................................................................... 90 
4.4.2 Synthesis .......................................................................................................... 90 

4.4.3 Uv-Vis Characterization .................................................................................. 92 

CHAPTER V CONCLUSIONS ....................................................................................... 94 

5.1 Porous Polymers in Carbon Capture ...................................................................... 94 
5.2 Metal-Organic Polyhedra as Porous Materials....................................................... 95 

REFERENCES .....................................................................................................................  

 

 

 

  



 

xiii 

 

LIST OF FIGURES 

 Page 

Figure 1 The two pathways for preparation of capped precursor and square (down) vs. 

the direct assembly of infinite coordination right. Coordination polymer b 

extends indefinitely along the plane of the paper while c exists as a 

molecular species. ............................................................................................... 3 

Figure 2 IUPAC isotherm types51 ...................................................................................... 7 

Figure 3 pKas of common nitrogen containing moieties in PPNs ................................... 14 

Figure 4 Tetrahedral node and linear linker that comprise the theoretical diamondoid 

net of PPN-101.21 .............................................................................................. 16 

Figure 5 Synthesis of PPN-101 ........................................................................................ 17 

Figure 6 Porosity measurements of PPN-101 a) N2 isotherm at 77 K and b) 

incremental pore volume21 ................................................................................ 19 

Figure 7 Carbon dioxide uptake and N2 uptake for PPN-10121 ....................................... 20 

Figure 8 Hydrogen and methane isotherms for PPN-10121 .............................................. 22 

Figure 9 FTIR spectrum of PPN-101 before and after activation21 ................................. 28 

Figure 10 TGA of PPN-101 before (black) and after (red) activation ............................. 29 

Figure 11 The PXRD of the as synthesized sample of PPN-10121 .................................. 29 

Figure 12 (a) The N2 uptake isotherm of PPN-101 samples activated at 80 and 120 ºC. 

(b) The Ar uptake isotherm of samples activated at 80 and 120 ºC21 ............... 31 

Figure 13 The O2 uptake isotherm of PPN-101 at 77K and 1 bar21 ................................. 32 

Figure 14 Solvent polarity controlled interconversion of copper TEI MOP from 

discrete cage (right) to infinite chain through dimetal paddle wheel self-

association through bridging of carboxylates(top).41 ........................................ 34 

Figure 15 Molybdenum core-shell MOP from a) Top and b) side. c) Core lantern 

shaped cage consisting of two M2 paddlewheels and and four ligands in the 

orientation shown in d). Sites I and II are ~100% Cu after exchange.35 .......... 36 

Figure 16 a) Mo(II) core-shell MOP and torsion angle of Mo paddle wheel b) Cu(II) 

core and 3:1 Mo:Cu shell after substitution35 ................................................... 37 

file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693002
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693004
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693004
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693005
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693006
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693006
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693007
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693008
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693014
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693014
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693014
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693015
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693015
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693015
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693016
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693016


 

xiv 

 

Figure 17 Isophthalate and 5- substituted isophthalate ligands used to synthesize 

porous chromium MOPs, Cr-1-4 ...................................................................... 38 

Figure 18 Chromium(II) cuboctahedral cages obtained from (a) isophthalic acid (b) 5-

tert-butylisophthalic acid, and (c) the TEI ligand47 .......................................... 39 

Figure 19 Color change from dried, activated, and oxidized Cr-247 ................................ 42 

Figure 20 Activation effects on N2 uptake at 77 K for a) Cu-TBI and b) Cr-2 activated 

at each temperature for 10 to 12 hours at a maximum vacuum of 8 μBar47 ..... 43 

Figure 21 N2 adsorption (a), packing of chromium MOPs and the closest 

intramolecular paddlewheel distances for each MOP: Cr-1(b,e), Cr-2(c,f), 

and Cr-3tet(d,g) functional groups and hydrogens removed for clarity.47 ......... 46 

Figure 22 Thermogravimetric analysis curves for Cr-2 (black) and Cu-2 (red) .............. 47 

Figure 23 The first ultra-short Cr-Cr quadruple bond demonstrated in a carboxylate 

bridged paddlwheel a) ball and stick model for clarity and b) spacefilling 

model showing steric bulk that prevents self-association of complexes 

through carboxylate bridging. ........................................................................... 48 

Figure 24 Carbon dioxide and methane uptake at 273 and 295 K (left) and high-

pressure methane gravimetric excess uptake (right)47 ...................................... 50 

Figure 25 Oxygen uptake for Cr-2 at RT and the effect of O2 exposure on Cr-2 H2 

uptake47 ............................................................................................................. 52 

Figure 26 Bridging-ligand angle driven design of molybdenum paddle wheel MOPs 

resulting from the angle between carboxylic acids (top) to give cages a) 0° 

b) 60° c) 90° d) 120° (cuboctahedra) 39 ............................................................ 55 

Figure 27 Powder diffraction patterns of Cr-2 and effects of activation on Cr-2 and 

Cu-2 .................................................................................................................. 59 

Figure 28 Powder X-ray diffraction pattern of Cu-2 (copper t-butyl isophthalate) and 

simulation of PXRD of Cu-2 ............................................................................ 60 

Figure 29 Powder X-ray diffraction pattern of Cr-3tet simulated and as synthesized ...... 61 

Figure 30 pseudo-hexagonal packing in MOP-1 and solvent participation in packing: 

a) single layer hexagonal packing viewing along c-axis, b) MOP-1 with exo 

solvents emphasized, c) nesting of exo-coordinated DMF (green) within the 

trianglular pore of an adjacent cage (blue) ....................................................... 66 

file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693017
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693017
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693018
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693018
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693019
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693020
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693020
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693021
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693021
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693021
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693022
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693023
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693023
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693023
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693023
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693024
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693024
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693025
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693025
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693026
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693026
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693026
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693030
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693030
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693030
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693030


 

xv 

 

Figure 31 a) Body-centered cubic packing of MOP-1 in Im-3m and b) interlocking of 

trigonal windows .............................................................................................. 67 

Figure 32 Azobenzene functionalized copper MOP a) azobenzene derived isophthalic 

acid ligand, b) MOP structure with azobenzenes in the trans-position, c) 

proposed mechanism for dye capture and release, the dye is trapped 

between azobenzene units in the precipitate (left) and is released upon 

radiation and isomerization (right) d) dye release during irradiation.140 .......... 69 

Figure 33 Tetragonally elongated body-centered packing of Cr-1 as viewed alon b-

axis  (a) and orientation of coordinated solvent towards triangular window 

of adjacent cage (b) ........................................................................................... 71 

Figure 34 5-substituted isopthalic acid ligands used for investigation of new Cr(II) 

MOPs ................................................................................................................ 71 

Figure 35 Molybdenum isopthalate cage packing (a) and DMPU resting in the square 

pore window (b) ................................................................................................ 72 

Figure 36 Hydroxyl groups hydrogen bonding to one another and adjacent DMF 

binding in pore window .................................................................................... 73 

Figure 37 Packing motifs of chromium MOPs a) Cr-1 b) Cr-5rhom c) Cr-4 d) Cr-3rhom 

e) Cr-2 f) Cr-5tet g) Cr-3tet. Red and blue used to identify 

crystallographically distinct cages .................................................................... 75 

Figure 38 Interactions between chromium(II) cages that generate observed packing 

motifs a) solvent pointing towards neighboring pore(green arrow)  in Cr-1, 

b) methyl group resting in neighboring pore and solvent pointing to 

neighboring pore, c) hydrogen bonding between hydroxyl groups (green 

circle) and solvent resting in neighboring pore in Cr-5rhom, d) interdigitation 

of triisopropylsilyl groups in Cr-3rhom, e) trigonal arrangement of t-butyl 

groups (lower circle) and close spacing of solvents (top circle) in Cr-2, f) 

side by side interactions of coordinated solvents in Cr-5tet, g) trigonal 

arrangement of triisopropylsilyl groups in Cr-3tet ............................................ 76 

Figure 39 Amide based solvents commonly used in MOP and MOF synthesis 

compared to DEET ........................................................................................... 82 

Figure 40 UV-Visible spectrum of Cr-4 (purple) dissolved in DEET and chromous 

acetate (yellow) in DEET ................................................................................. 83 

Figure 41 Cr-2 after activation in toluene (left) and after oxidation by air (right)........... 84 

file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693031
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693031
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693032
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693032
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693032
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693032
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693032
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693033
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693033
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693033
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693034
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693034
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693035
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693035
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693036
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693036
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693037
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693037
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693037
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693038
file:///C:/Users/blain/OneDrive/Documents/Dissertation/Dissertation%20ZTP_Final_OGAPS%20edits_v4.docx%23_Toc14693041


 

xvi 

 

Figure 42 UV-Visible spectrum of Cr-2 in toluene (Purple), Cr-2 in toluene + 

acetonitrile (red), Cr-2 in toluene + triphenylphosphine (green) ...................... 85 

Figure 43 UV-VIS spectrum of oxidized chromium species Cr-2 in Tol (Blue), Cr-4 

in DEET (red), and chromium(II) acetate dihydrate (Orange) ......................... 87 

 

 

 

 



 

xvii 

 

LIST OF TABLES 

 Page 

 

 

Table 1 Comparison of carbon dioxide uptake and sorption properties of 

representative PPNs .......................................................................................... 21 

Table 2 N2 adsorption values, surface areas, and porosity values for chromium(II) 

MOPs and Cu-TEI MOP material .................................................................... 41 

Table 3 Molar masses, BET gravimetric surface area and calculated BET molar 

surface area per cage pore ................................................................................. 44 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER I  

INTRODUCTION  

 

1.1 Porous Materials and their Uses 

 

Porous materials based on coordination structures and organic polymers have 

over the past two decades advanced into one of the fastest growing areas of chemistry 

and material science.1-4 This has been due to the realized tunable nature and far reaching 

applications of highly porous materials such as gas storage, separations, catalysis, 

medical diagnostics, and therapeutics.5-10 This dissertation will focus on discrete factors 

that enable porosity and improve performance towards possible applications of these 

materials. 

 

1.1.1 Highly Porous Materials 

 

Highly porous materials are those with high surface areas and accessible interior pore 

volumes. These are categorized into several well studied areas activated carbons, 

zeolites, porous polymer networks (PPNs), 3, 11-13 metal-organic frameworks(MOFs), 14-

16 and more recently metal-organic polyhedra (MOPs).17-18 These materials all have 

distinct advantages and disadvantages in their application toward gas adsorption and 

separations. The materials under study in this dissertation fall into the categories of 

porous polymer networks and MOPs. 
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1.1.1.2 Porous Polymer Networks 

 

Porous polymer networks are materials composed entirely of covalent bonds between 

organic and main-group structural units. These units are typically rigid and provide some 

steric or directional control to the synthesis. PPNs range from highly ordered crystalline 

organic frameworks (COFs), 19 to completely amorphous polymers20 but the defining 

feature is that they have a measurable porosity once activated by removing solvent 

within pores in the structure. They may have inherent functionality such as N-donor 

groups21 or be functionalized post-synthetically to included desired moieties22. Due to 

the robust nature of these covalent bonds these materials have high chemical and thermal 

stabilities and as such are of great interest in applications where other materials often 

foul or decompose.3, 12, 23 More specifics about PPNs and their use in carbon capture is 

discussed in Chapter II. 

 

1.1.1.3 Metal-Organic Polyhedra 

 

The coordination chemistry of metal ions bound by organic ligands has a rich history 

concerning both discrete molecular complexes and extended polymeric materials.24-25 

The discovery of metal-organic frameworks (MOFs) in the early 1990s and realization 

of their high permanent porosity provided an all new avenue for this field of research.26-

27 MOFs are generally defined as coordination polymers that extend in a regularly 
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repeating fashion in three dimensions and have potential or measured porosity.28 

Coordination polymers had been well-studied but the relatively recent realization that 

some of these systems could maintain porosity after removal of solvents has quickly 

garnered attention.16 

 

 

 

Figure 1 The two pathways for preparation of capped precursor and square (down) 

vs. the direct assembly of infinite coordination right. Coordination polymer b 

extends indefinitely along the plane of the paper while c exists as a molecular 

species. 
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Almost immediately, MOFs were seen as a replacement for zeolites in many applications 

for porous materials. This includes heterogeneous catalysis, separations, and perhaps 

most ubiquitously for the capture and storage of strategic gasses. However, another class 

of materials also arose during this time period, MOPs.25, 29-31 MOPs share many of the 

same characteristics and even structural moieties as MOFs; however, they lack bridging 

between the individual cages which leads to some inherent complications for their 

applications in solid state chemistry. Metal-organic polyhedra are discrete cages formed 

from the bridging of metal centers by organic ligands via coordination bonds. 

Geometrically, MOPs and MOFs differ in the connectivity, convergent versus divergent, 

of their two components, metal node and linker. For a coordination polymer to be 

produced the symmetry and connectivity of these two elements must be such that an 

infinite number can be added to the initial coordination complex (Figure 1b). MOPs on 

the other hand, require the geometry to be convergent, such that when the symmetry of 

the node and ligand are combined the resulting polymer meets itself and closes rather 

than infinitely repeating (Figure 1c). In fact for the two examples, Figure 1 b and c, the 

empirical formula, C20H16N4Pt, is identical and the coordination environment around the 

platinum is essentially the same; however, convergence is obtained via the capping of 

the platinum center. This is intuitive as we know that a square has four linear sides and 

four 90 degree corners. The 4,4’-bipyridine acts as the linear side while the 2,2’-

bipyridine capped Pt(II) acts as the vertices. There is also a logical extension of these 

into the third dimension if we consider an octahedral metal coordination environment. 

With six divergent linear linkers (4,4’-bipyrdine) an infinite network of vertex shared 
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cubes is formed. However if the metal is capped facially the resulting trigonal pyramidal 

node gives a cubic cage. In theory, any polyhedron could be produced as a MOP if the 

geometry of the vertices and ligands can be matched synthetically.17, 32 So long as a 

suitable way to reduce the connectivity of a given node is found, reduction of a 

polymeric framework to its constituent building blocks can be realized. Though this is 

not always feasible given the realities of synthesis. Such coordination assemblies have 

been synthesized from a wide variety of metals and ligands yielding a large number of 

geometries and functionalities.  

 

The first carboxylate-bridged MOP, copper isophthalate, was published by the Yaghi 

group and paved the way for much of the current research.33 The Zhou group has worked 

on the synthesis of a wide variety of cages and developed several methods for predicting 

structure and properties of these systems. The main connectivity in these cages is 

provided by M2(RC(O)O)4 paddlewheels, principally copper, molybdenum, and in most 

recently chromium.17, 29, 34-40 The group has developed several methods for structural and 

functional control via bridging angle, ligand substitution, surface functionalization, and 

intermolecular directing forces35, 39, 41-42. Though MOPs seem at first glance seem to 

possess inherent porosity due to their internal pores, little work has been done studying 

such systems as few studies showed promising results.43-45  

 

MOPs being porous molecular cages means that they do not often maintain their 

crystalline order after removal of solvent and impurities as intercage interactions are 
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often weak. This is because of three factors: 1) the solvents and other molecules may 

play a role in the packing forces leading to disorder and aggregation when removed, 2) 

inherent packing motif may cause windows to be blocked, limiting solvent diffusion 

through the resulting material and 3) the harsh conditions of the activation process such 

as elevated temperatures and high vacuum can result in cage disorder or collapse as the 

metal ligand interactions are ruptured or reorganized. As such only a handful of cases of 

MOPs have been reported as retaining some high level of porosity suitable for gas 

applications in materials without strong interactions bridging the cages.41, 46-50 This lead 

to the investigation of chromium(II based) MOPs, due to the metal-metal bonding within 

the paddle wheels,  as porous materials which were first successfully reported by the 

Zhou group and shortly thereafter by the Bloch group in 2017.47  

 

1.2 Basic principles of gas sorption 

 

1.2.1 The pore and the isotherm 

 

As the defining feature of porous materials is the presence of a measurable pore volume 

a system of conventions has been developed to formalize how we discuss them. IUPAC 

has developed recommendations for the different types of adsorption isotherms observed 

in these materials (Figure 2). These are representative of the pore environment within the 

material. Type I isotherms exhibit a steep initial rise in adsorption and then plateau until 

saturation is reached. This indicates micropores, pores less than 20 Å, are present in the 



 

7 

 

interior of the material. Type II isotherms have an initial rise after which they plateau 

and then have a point of inflection while the isotherm rises to saturation pressure. This 

indicates the material contains macropores ( pores > 500 Å) as indicated by the low 

uptake at low pressures and increasing uptake at higher pressures. Type IV isotherms 

indicate that some mesopores of a specific range are present in the material but no 

macropores (> 20 Å and < 500 Å) as there is no additional adsorption at high pressures.  

 

Figure 2 IUPAC isotherm types51 
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These help categorize materials based on their gas uptake from visual inspection of the 

isotherms.  

 

1.2.2 Quantifying surface area and porosity 

 

Perhaps the most compared characterization value for porous materials is the surface 

area. Two models are often used in the literature the Langmuir and BET theory models. 

The Langmuir model is quite simple and makes several assumptions that make it a poor 

choice for microporous materials. It assumes a perfectly flat surface covered in a single 

layer by the adsorbate with equivalent adsorption sites through the entire material. While 

this model works for materials that have little internal porosity or very large pores it does 

not apply well to microporous materials like those discussed in this dissertation.51 The 

Brunauer–Emmett–Teller method thus will be used in this dissertation. There is some 

concern about this model as well, however it is the standard by which all other materials 

are compared.51-52 The concerns arise from the nature of the BET equation where the 

presence of multiple adsorption sites who’s sorbate condensation overlaps in the 

microporous region of the isotherm. However DFT methods have not been standardized 

making the BET method the best method for comparison of similar materials. 

BET theory assumes a multi-layer model of gas adsorption wherein additional layers of 

sorbate can adsorb to the initial layer on the surface of the sorbent.52 This makes it a 

better model than the Langmuir model for estimating the surface area of microporous 

solids.  
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Equation 1 BET Equation n is moles of gas adsorpbed at pressure P/P0 and C is the 

BET constant 

 

 

The BET constant is obtained through a transformation of the measured isotherm by 

selecting points in a range of 0.05 to 0.3 P/P0 where the plot is linear. This is typically 

derived via the instrument software with the points for analysis being selected manually. 
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CHAPTER II  

COST-EFFECTIVE CARBON CAPTURE BY A POROUS POLYMER NETWORK*1 

 

2.1 Introduction 

 

2.1.1 The Carbon Dioxide Separations Problem 

 

 Carbon dioxide contributes to many factors in the global environment and anthropologic 

sources are attributed with inducing worldwide effects including acidification of the 

oceans and global warming.53 These changes threaten both the environment and humanity 

with a permanent change if nothing is done to curb these emissions. It is widely recognized 

that removing carbon dioxide from the air and industrial waste streams is necessary in 

combating global warming and climate change.53 To combat the continued rise of global 

carbon dioxide emissions the area of Carbon Capture and Sequestration (CCS) has 

developed to create a system to reduce, remove, and remediate carbon emissions from 

anthropologic sources.54 Traditional systems that have been used for decades such as 

monoethanolamine solutions have good raw performance numbers for selectivity and 

uptake of CO2 from waste streams and together with other alkanolamine derivatives make 

up the current industrial state of the art carbon dioxide removal systems.10 However the 

                                                 

*Part of the data in this chapter is reprinted and adapted with permission from Zhang, M. W.; Perry, Z.; 

Park, J.; Zhou, H. C., Stable benzimidazole-incorporated porous polymer network for carbon capture with 

high efficiency and low cost. Polymer 2014, 55 (1), 335-339 Copyright Elsevier 2014. 
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current limitations of these systems make them impractical for widespread implementation 

in an efficient and cost-effective manner.20 This includes their environmental toxicity, 

corrosivity, and high regeneration costs due to the energy requirements needed to release 

the CO2 trapped in the solutions. Alkanolamine solutions traditionally have required as 

much as 30% of a power plant’s output for operations that capture 90-100% of CO2 

emitted.55 In practical terms a large portion of extra hydrocarbons must be consumed to 

generate the energy necessary to capture the base level of CO2 as well as that energy 

expended in the carbon capture process. 

 

 

2.1.2 Solid Sorbents for Carbon Capture 

 

To reduce the negative aspects of carbon capture processes, solid sorbents have become a 

focus of research in the area. Due to their solid nature they are more easily contained and 

do not readily react with the materials that constitute the carbon capture system. 

Additionally, by reducing the mass of material that does not play a role in carbon capture, 

such as the water in aqueous alkanolamine solutions, the total energy requirements for 

such systems can be lowered significantly over solution-based methods. The rapid 

development of these materials since the early 1990s1 has spurred a wide swath of new 

research areas under the promise of highly-tunable molecular designs enabled in these new 

systems.56 In the classes of advanced porous materials outlined in Chapter 1 researchers 

have found the potential to solve the current limitations through the use of metal-organic 

frameworks (MOFs)57  and porous polymer networks (PPNs)13 as they represent the most 
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promising materials in the area of adsorption based13, 58, gas separation48, 59 owing to their 

high surface areas and broad design possibilities. Traditionally MOFs provided a trade-

off in material tunability and structural variety with poor stability under practical 

conditions for carbon capture as well as high synthetic costs.11 Stability is of lesser concern 

in newer generations of MOF materials, however, these often do not show the high 

gravimetric capacity of other materials. Stability is however an area of lesser concern in 

newer MOF systems though carbon capture performance is most systems is3, 60 not 

adequate in such systems.61 As an alternative PPNs, owing to their construction largely 

from C-C, C-O, and/or C-N bonds, have physical properties such as increased stability 

and lower mass/unit volume that are desirable in post-combustion carbon capture 

systems.62 Crystaline organic Frameworks (COFs)19 alternatively span the divide between 

the long-range order of MOFs and the amorphous nature of PPNs. COFs are often fragile 

and many early systems, such as boronic ester COFs, lack the stability of PPNs. With 

Brunauer–Emmett–Teller (BET) surface areas as high as 6461 m2/g (in PPN-4), PPNs 

have the potential to be some of the most porous materials known.13 However impressive 

surface area and other characteristics do not yield increased CO2 capture performance in 

the same way gasses such as methane and hydrogen are generally improved. This is due 

to the fact that hydrogen and methane storage/separation systems rely on weak 

physisorptive interactions rather than the chemisorptive systems found most practical for 

CO2. 

 

It is important to understand a typical post-combustion flue gas system to see how the 
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limitations of many materials render them implausible for implementation (Fig 1). Perhaps 

most important is understanding the composition of flue gas which is the waste stream 

coming from a hydrocarbon burning power plant. It is this flow of gas that is scrubbed of 

CO2 but also what provides the difficulties over what is typically studied in the lab. This 

gas stream is scrubbed of the bulk of sulfur oxides, nitrogen oxides, and other acid gases 

before being sent through the CO2 scrubbing column. While typical lab and bench-scale 

testing is performed in stationary phase systems current state of the art systems utilize 

fluidized beds to maximize contact between sorbent, such as aqueous alkanolamine, and 

the gas stream. The final gas stream thus consists of 12-15% CO2, 12% H2O, 4% O2, and 

the remainder largely N2 with minor sulfur oxides and nitrogen oxides at <100 ppm levels.3 

 

2.1.2.1 Porous Polymer Networks for Carbon Dioxide Capture and Separations 

 

Previously some of the most promising PPNs developed in the Zhou lab, the PPN-4 and 

PPN-6 families, had synthesis regimes that were not compatible with scale-up to 

commercial systems. The costly Yamamoto homo-coupling reaction62 requires  

bis(cyclooctadiene)nickel (Ni(cod)2) as a stoichiometric reagent as well as greater than 

stoichiometric amounts of cyclooctadiene to yield the best materials. At scale, this is a 

significant barrier. Further, these materials, while having remarkable surface areas, have 

no functionalities that can adequately bind CO2. This relegates the base material to only 

physisorption which cannot yield a high enough CO2 capacity for practical applications. 

In order to effectively serve in a non-physisorptive capacity such systems must undergo 
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post-synthetic chemical modification (PSM) to install appropriate functional groups;20, 63 

there is however a delicate balance as PSM increases affinity for species of interest it also 

decreases porosity. It is highly desirable to synthesize functionalized PPNs with 

considerably large porosities and reasonable production costs for industrial CCS 

processes. 

 

 

Figure 3 pKas of common nitrogen containing moieties in PPNs 

 

  

It has been well established that inclusion of lewis basic moieties within MOFs60, 64and 

PPNs20, 22, 65-66 CO2 capacity and CO2/N2 selectivity can be increased.  There are several 

options of inclusion of such sites either through direct incorporation into the backbone, 

post-synthetic modification which fixes the basic moieties to the PPN backbone, or simple 

loading of the pores with basic-nitrogen containing species.3  

 

Several types of N-donor moieties have been incorporated into PPNs including triazine, 

67-68 cyclic amides and alkyl amines,66 pyrazine,69 and polyamines.20 However it is 

typically seen that the higher material performance observed the higher the synthetic cost 



 

15 

 

for the material. Triazine moieties typically show poor selectivity as shown in TFM-167 

and CTF-PX series68 due to the poorly basic nature of the triazine moiety.  

 

In contrast, the fixing of polyamines into PPNs20, 22, 65 has been demonstrated as an 

efficient way to improve the CO2/N2 selectivity. Though the performance metrics of many 

of these materials are promising in a vacuum they do not hold up to the rigors required by 

CCS systems. To try to bypass these issues a new material PPN-101 was synthesized. This 

material contains benzimidazole units which serve as the CO2 binding sites while also 

serving as part of the rigid backbone of the material. At the time of publication the 

synthetic pathway a cost-effective material as compared to those published previously.21 

 

2.2 Results and Discussion 

 

To accomplish the synthesis of a rigid basic PPN the condensation of the tetrahedral 

monomer tetra-4-carboxyphenyl silane with 1,2,4,5-tetraamino benzene followed by 

oxidation gave PPN-101 with a theoretical diamonoid net (Figure 4).   

Materials based on polybenzimidazoles have been utilized in the area of proton 

conduction, however, what makes a material good for proton conduction does not translate 

to good CO2 capture performance.70 This is because for proton conduction it is ideal to 

limit the distance between donor sites whereas in any adsorptive application it is porosity 

that is desired. Previous to this work  a PPN, BILP-1 (Benzimidazole Linked Polymer) 

was published by Kalderi utilizing the of tetrakis(4-formylphenyl)methane and 
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2,3,6,7,10,11-hexaaminotriphenylene. This material has a 1172 m2/g BET surface area 

and 18 wt% CO2 loading capacity at 273 K and 1 bar.71 The bulky aromatic amine and  

carbon centered monomers however limited practicality of this material as their costly 

multi-step syntheses are not cost-effective or practical at scale for CO2 capture.72 73  PPN-

101 alternatively uses a simple synthesis for the silicon-centered tetrahedral monomer74 

and the commercially available 1,2,4,5-tetraaminobenzene was chosen for the bridging 

monomer (Figure 5). 

 

 

Figure 4 Tetrahedral node and linear linker that comprise the theoretical diamondoid net 

of PPN-101.21 
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2.2.1 Preparation and Structure of PPN-101 

 

The tetrahedral geometry was chosen due to the relatively small pore size(~14 Å) and the 

literature trend of good performance for tetrahedrally centered PPNs.11, 13, 62 The 

diamondoid topology arises from an ideal orientation of tetrahedral and linear monomer 

units. This allows for a high connectivity, which helps support the framework, as well as 

ensuring accessibility of the benzimidazole moieties within the pore volume.62 The 

diamond topology also limits interpenetration enabling a higher percentage of the 

benzimidazoles to be accessible in the synthesized PPN.13 The silicon centered monomer 

Figure 5 Synthesis of PPN-101 
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has a more facile synthesis contributing to the overall potential cost reductions.15 

 

The polymer was synthesized by adding 2 eq. of tetraaminobenzene monomer to a chilled, 

30 °C, solution of the tetrahedral monomer in DMF. An orange precipate formed and the 

reaction was allowed to rise to room temperature overnight. To complete the reaction the 

flask was purged with oxygen gas and heated to 130 ˚C and kept at this near reflux 

condition for two days. It must be stressed that DMF is a flammable solvent and that great 

care must be taken during this step. Use of a blast shield and temperature probe controlled 

heating bath are necessary safety precautions. The resultant yellow solid was centrifuged 

from the supernatant and dried under vacuum giving a 59% yield. 

 

2.2.2 Porosity and CO2 Adsorption in PPN-101 

 

The observed porosity of PPN-101 indicated that study of its gas uptake properties was 

feasible. The sharp type-I 77 k N2 isotherm (Fig. 7) indicates microporosity within the 

sample as expected based on the distance between the tetrahedral centers of ~18 Å and a 

distance across the tetrahedral pore, from vertex to face, of ~17 Å. The BET surface area 

of 1095 m2/g and pore volume of 0.66 cm3/g are reasonable for the expected structure. 

The pore-size distribution was obtained using the Density Functional Theory (DFT) 

method in the instrument software (Figure 6 (b)). The broad distribution of pore sizes from 

12 Å to 35 Å fit well with the calculated pore size, allowing for defects involving one to 

two pores. The material itself, however, shows no regular order as seen by the powder x-
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ray diffraction pattern which is defined by a single broad feature that is assigned to solvent 

in the pores and the general amorphous nature of the solid. The most obvious pore 

diameters are at 11, 16, and 19 Å, this is in line with both the observed micro-porosity and 

the estimated pore size. This is 2-3 times the observed pore size in the BILP-1 PPN.71 This 

is attributed both to the bulky nature of the benzimidazole bridging groups and the 

diamondoid topology between monomer units.13  

 

The high N-donor content as well as moderate surface area and pore volume provide good 

selectivity for this material. The isotherms of CO2 at 273 K and 296 K and the N2 isotherm 

at 273 K are shown in Figure 7(a). Carbon dioxide shows reversible adsorption with a 

maximum of 226.2 mg/g at 1.1 bar and 273K, significantly greater than the 188 mg/g for 

BILP-1.71 This can be explained by the greater pore accessibility of PPN-101 and its higher 

Figure 6 Porosity measurements of PPN-101 a) N2 isotherm at 77 K and b) 

incremental pore volume21 
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nitrogen content, 17% vs. 14% by weight nitrogen. For comparison CO2 uptake at 195 K 

and 0.95 bar the CO2 uptake reaches 498 cm3/g this is most comparable to the N2 uptake 

values as these are near condensing conditions (Figure 7b).  

 

2.2.3 CO2/N2 Selectivity of PPN-101 

 

To calculate the selectivity for a theoretical flue gas of 15% CO2 the values of CO2 

adsorption at 0.15 bar and N2 0.85 bar adsorption at 273 K were used. The observed low 

N2 value translates to a selectivity of 199, much higher than that reported for other N-

donor containing aromatic heterocycles. (Table 1). However the CO2/N2 selectivity of 

PPN-101 half of that of  the PPN-6 series, as high as 400 for PPN-6-CH2DETA.20 However  

the porosity and BET surface area is considerably higher than the 555 m2/g of PPN-6-

CH2DETA. As previously mentioned this is due to the post-synthetic modifications of 

PPN-6 filling the pores and adding weight reducing from the base value of 4023 m2/g.63  

Figure 7 Carbon dioxide uptake and N2 uptake for PPN-10121 
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Table 1 summarizes all the aforementioned base-incorporated PPNs. The low production 

expense, considerable surface area, and large CO2/N2 selectivity indicated that PPN-101 

a promising material for industrial CO2 sequestration. 

 

 

Table 1 Comparison of carbon dioxide uptake and sorption properties of 

representative PPNs 

 

 

 

 

 

 

 TFM-1 CTF-P6 Aza-

CMP 

BILP-1 PPN-101 PPN-6- 

CH2DETA 

Incorporated 

Units 

Triazine Triazine Pyrazine Benzimidazole Benzimidazole Polyamine 

Basicity (pKa) <0.5 <0.5 0.65 5.532 5.532 pKa,1>10 

BET Surface Area 

(m2/g) 

738 1152 24 a 

/1227 b 

1172 1096 555 

CO2 Uptake 

(273K, mg/g) 

76.1 148.1 N/A 188 226.2 189 

Selectivity of 

CO2/N2 

29±2 16.1 N/A ~70 199 ~400 

PSM required  No No No No No Yes 

Ref 67 68 69 71 This Work 20 
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2.2.4 Adsorption of other gases of interest in PPN-101 

In addition to the carbon dioxide uptake, PPN-101 was investigated for other gases of 

interest, specifically H2 and CH4 uptake. The low cost synthesis would make this PPN an 

attractive alternative to other materials studied for storage applications. The H2 uptake at 

77 K and 1.21 bar (906 mmHg) is 214.18 cm3/g (1.91 wt %, Figure 8 (a)), this is similar 

BILP-1 (19 mg/g, 1.86 wt %)71 and larger than other porous materials with similar surface 

areas.75 However, this value is almost exactly what is expect according to Chahine’s rule 

which states that 1 wt% of excess hydrogen adsorption is expected per 500 m2/g of surface 

area. Chahine’s rule is formulated assuming hydrogen adsorption on graphite and fits well 

with the fused aromatic structure of the benzimidazole units in these materials. The 

methane uptake of 24 cm3/g at 273 K (Figure 9 (b)) is respectable but not remarkable for 

this class of materials. In addition the low density of these materials means that they could 

never meet the volumetric needs in vehicular storage applications for either methane or 

Figure 8 Hydrogen and methane isotherms for PPN-10121 
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hydrogen.1, 11, 20, 63 

 

2.3 Future Work 

 

When this work was originally published PPN-101 stood out as a potential candidate for 

carbon due to its good performance and low production costs. The benzimidazole units 

provide a high selectivity for CO2 compared to many other systems and provide a carbon 

dioxide fixing moiety directly into the structural backbone allowing for the pore volume 

to remain large. However in retrospect PPN-101 suffered from several issues that were 

not considered prior to the original publication. When also considering the synthesis of 

the silane monomer and the low temperatures required this becomes too costly given the 

performance of the material at room temperature since in a CCS system the temperature 

would likely be approximately 40 C. Further work on benzimidazole polymers has been 

conducted as sorbents21, 71, 76-78 and as mixed membrane components12, 79-80 as well as in 

simulated application environments.23 Many of these have better performance than PPN-

101 though they are more costly. If a cheaper route to benzimidazole PPNs can be found 

their use as sorbents may be found competitive, however, if not their inclusion in mixed 

matrix membranes where they contribute only a portion of the cost and the process may 

be more efficient could offer a better solution. 

 

Additionally subsequent works from the Zhou group have produced materials that are both 

cost-effective and highly selective.65 Another method previously researched but largely 
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eschewed due to the lower amine losses in tethered materials is loading a cost-effective 

material with free polyamines. This has been achieved in the PPN-150 series.81 This PPN 

is based on a melamine-formaldehyde condensation polymer, originally published by Tan 

and coworkers82 that has been loaded with DETA, a formulation developed in the Zhou 

group. While free amines generally escape a porous material over many cycles, by 

controlling cycling behavior cycling losses can be limited and uptakes between 10 and 20 

wt% have been observed. However, when tests were performed at the 1 L sorbent scale 

control over amine losses was lost. When the material synthesis and breakthrough testing 

wash scaled to the lab scale (250 g) performance issues such as lowered porosity and 

amine leaching become obvious causing fowling of the equipment and low CO2 uptake 

across cycling conditions. Further work in this area to tune the porosity of the material to 

better hold the amines may make this a competitive sorbent due to its cheap synthetic cost, 

both the paraformaldehyde and melamine starting materials can be obtained at a price two 

orders of magnitude cheaper than that for PPN-101, and high uptake potential. 

 

2.4 Experimental 

 

2.4.1 Materials and Instrumentation 

 

The tetrakis(4-formylphenyl)silane was synthesized by a previously reported procedure 

with slight modification by Muwei Zhang.74 Benzene-1,2,4,5-tetraamine 

tetrahydrochloride, N,N’-dimethylformamide (DMF), were purchased from VWR. 
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Infrared spectroscopy (FTIR) data were collected using a SHIMADZU IRAffinity-1 

FTIR Spectrophotometer.  

 

Powder X-ray diffraction (PXRD) was carried out with a BRUKER D8-Focus Bragg-

Brentano X-ray Powder Diffractometer equipped with a Cu sealed tube (λ = 1.54178) at 

40 kV and 40 mA. Elemental analysis (C, H, and N) were performed by Atlantic 

Microlab, Inc. (Norcross, Georgia). Thermogravimetric analyses (TGA) were performed 

on a SHIMADZU TGA-50 Thermogravimetric Analyzer with a heating rate of 5 °C 

min–1 under N2. A Micrometritics ASAP 2020 Gas sorption analyzer was used to collect 

all isotherms. The various temperatures were achieved using a dewar flask and liquid 

nitrogen (77 K), liquid argon (87 K), dry ice/Acetone bath (195 K), ice bath (273 K), and 

tap water (296 K).  

 

2.4.2 Synthesis 

2.4.2.1. Synthesis of PPN-101 

 

 Synthesis of tetrakis(4-formylphenyl)silane 

 

A 500 mL round bottom flask equipped with a condenser was pumped under vacuum 

and refilled with N2 three times before the dry 4-bromobenzaldehyde dimethyl acetal 

(pre-dried by molecular sieves, 10.90 mL, 52.5 mmol) was added. Freshly distilled THF 

from a solvent still (300 mL) was carefully added to the flask through a cannula. The 
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solution was cooled to -78˚C by a dry ice/acetone bath. At this temperature, n-butyl 

lithium (20 mL, 2.5 M in hexane) was added dropwise slowly over a period of 1 hour. 

The reaction mixture was kept at -78˚C for an additional 2 hours before SiCl4 (1.14 mL, 

10 mmol) was added dropwise. The mixture was stirred at this temperature for an 

additional 2 hours before it was warmed up to room temperature and kept overnight. The 

reaction mixture was quenched with 2 M HCl (60 mL) and extracted with ethyl acetate 

(100 mL×3). The combined organic phase was washed with brine, dried over MgSO4 

and evaporated to give the oily intermediate acetal product Si(4-C6H4CH(OEt)2), which 

was hydrolyzed without purification. The oil was dissolved in 100 mL THF/HCl (aq) 

and the mixture was refluxed for 2 hours. The reaction mixture was quenched with 

enough NaHCO3 till no more formation of CO2 was observed and extracted with ethyl 

acetate (100 mL×3). The combined organic phase was washed with brine, dried over 

MgSO4 and evaporated to give an off-white solid as the crude product. A 

recrystallization in EtOAc/Hexane afforded 3.24 g white crystalline powder as the final 

product (72.32%). 1H NMR (300 MHz, DMSO-d6): δ = 10.08 (s, 4H, CHO), 8.01 (d, 8H, 

Ph), 7.75 (d, 8H, Ph). 

 

 Synthesis of PPN-101 

 

PPN-101 was synthesized by a similar synthetic route as BILP-1. 71 The aldehyde 

monomer tetrakis(4-formylphenyl)silane (134 mg, 0.3 mmol) was dissolved in 

anhydrous DMF, and under N2 atmosphere, the other monomer 1,2,4,5-
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tetrabenzeneamine tetrahydrochloride (176 mg, 0.6 mmol) dissolved in anhydrous DMF 

were added dropwise at -30 °C. An orange precipitate was formed very slowly in the 

solution. The reaction was kept cold until no more precipitate was formed and then 

allowed to warm to r. t. overnight. Then the reaction mixture was placed under an O2 

atmosphere and directly refluxes under O2 for 2 days. (Caution: This step should be 

handled in an extremely cautious way to prevent any possible combustions or 

explosions. Protective shields should be used during the process of reaction). The 

polymer was centrifuged and washed with DMF then dried in vacuo to give a  yellow/tan 

solid (119 mg) in 59.2% yield. (IR: 725 (s), 829 (s), 1018 (m), 1085 (m), 1294 (m), 1249 

(m), 1610 (s), 2312 (w, br), 3616 (w, br). Calculated for C40H28N8Si: C, 74.05%; H, 

4.35%; N, 17.27%; Si, 4.33%. Found: C, 74.50%; H, 4.13%; N, 16.93%; Si, 4.07%.) 
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2.4.3 Characterization of PPN-101 
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Figure 9 FTIR spectrum of PPN-101 before and after activation21  
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Figure 10 TGA of PPN-101 before (black) and after (red) activation 
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Figure 11 The PXRD of the as synthesized sample of PPN-10121  
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2.4.4 Activation Procedures and Additional Gas Sorption Isotherms for PPN-101 

 

The fresh polymer sample was washed with DMF three times for 3 days, methanol twice 

for 2 days, and acetone twice for 2 days. After activation at 80 ºC for 8 h, it had resulted 

in a fluffy bright yellowish polymer with the BET surface area 996 m2/g and Langmuir 

surface area 1613 m2/g. After activation at 120 ºC for 12 h, the BET surface area was 

improved to 1096 m2/g and Langmuir surface area 1799 m2/g. This is probably due to 

the incomplete removal of the H2O molecule residing at the Lewis base sites at lower 

temperatures. 71 Figure S4 shows the N2 and Ar adsorption data of PPN-101 activated at 

both 80 ºC and 120 ºC. A significant increase of the both N2 and Ar uptake was observed 

when the sample was activated at an elevated temperature. Further increase of activation 

temperature does not result in a significant improvement of surface area or a significant 

decrease of the weight of the sample. 
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Figure 12 (a) The N2 uptake isotherm of PPN-101 samples activated at 80 and 120 

ºC. (b) The Ar uptake isotherm of samples activated at 80 and 120 ºC21  

 

 

 

The following gas adsorption isotherm (Figure 13) was measured from the fully 

activated sample (120 ºC, 12h). 
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Figure 13 The O2 uptake isotherm of PPN-101 at 77K and 1 bar21  

2.4.5 Calculation of CO2/N2 Selectivity 

 

The selectivity of CO2/N2 of PPN-101 in flue gas conditions was evaluated from the 

composition of flue gas where the partial pressure for CO2 is 0.15 bar and N2 is 0.85 bar. 

10 The uptake of CO2 at 0.15 bar and N2 at 0.85 bar were estimated by linear 

interpolation, and the selectivity is calculated by using Eq. 2. 

𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑸𝑪𝑶𝟐

𝑸𝑵𝟐
⁄

𝑷𝑪𝑶𝟐
𝑷𝑵𝟐

⁄
                   𝐄𝐪. 𝟐 

In Eq. 2, Q indicates the quantity of the absorbents, while P indicates the partial 

pressure. The calculated CO2/N2 selectivity of BIPPN-1 in flue gas at 273K was 

calculated as 199.
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CHAPTER III  

GAS ADSORPTION WITHIN POROUS MATERIALS DERIVED FROM METAL-

ORGANIC POLYHEDRA WITH CHROMIUM(II)-TETRACARBOXYLATE 

PADDLE WHEEL NODES*2 

 

3.1 Introduction 

 

The scope of porous coordination materials extends from zero to three dimensional 

coordination structures namely metal-organic polyhedra (MOPs) and metal-organic 

frameworks (MOFs).9, 57, 83-84 The regular order of MOFs in 3D space gives them 

structural rigidity and access to permanent porosity. 85 MOPs are however defined by 

their discrete nature and structurally defined pore space.8, 84, 86-89 Several MOP based 

materials have been reported with measured porosity.41, 46, 48-50, 90-94 While discrete MOP 

structures have a pore volume defined by the cage structure until recently materials 

consisting only of coordination cages supported without bridging through metal 

coordination have rarely demonstrated significant porosity. This is due to a number of 

factors including both the stability of the discrete cages as well as the extended structure 

of the material with respect to activation conditions. This has typically resulted in 

materials with a much lower porosity than would be expected from theory.95-96 However, 

                                                 

* Part of the data in this chapter is reprinted and adapted with permission from Park, J.; Perry, Z.; Chen, Y. 

P.; Bae, J.; Zhou, H. C., Chromium(II) Metal-Organic Polyhedra as Highly Porous Materials. ACS Appl 

Mater Interfaces 2017, 9 (33), 28064-28068. Copyright American Chemical Society 2017. 
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some of the previous successful examples relied on crystal engineering principles to 

improve the rigidity and ultimately the stability of such materials. To that end two 

separate methodologies had been developed and applied to achieve observable porosity. 

The first developed method utilizes known mesoporous silicas and metal-organic 

frameworks which have cavities large enough to encapsulate the discrete MOPs. By 

dispersing the cages within these pores at relatively low coverage their discrete nature is 

preserved and changes in the porosity can be measured. This was confirmed by 

observation of behaviors within the composite materials that derive from the specific 

features of the MOPs such as windows and cavity size.97-99 The second method uses 

intermolecular interactions to create interdigited MOPs creating chain-like structures 

through formation of coordination bonds that bridge the individual cage species(Figure 

14).41 In this case reported by the Zhou lab, solvent polarity was used to drive a single-

Figure 14 Solvent polarity controlled interconversion of copper TEI MOP from 

discrete cage (right) to infinite chain through dimetal paddle wheel self-

association through bridging of carboxylates(top).41 
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crystal to single-crystal transformation. The bulky and hydrophobic 

triisopropylsilylethynyl directs the di-copper paddlewheel units to associate similarly to 

that of anhydrous chromium acetate. 

 

Many record-breaking materials and some of the top-performing materials for gas 

storage applications are based on dimetal paddle wheel units, almost exclusively 

copper(II), and often bridged by isophthalic acid derived ligands.100-101 While these 

paddlewheels typically exist as discrete M2(RCOO-)4L2 groups chromium(II) examples 

are known to self-associate if no advantageous ligand is available.102 103 The high axial 

ligand affinity coupled with the stability afforded by the multiply bonded centers 

stabilizes the paddlewheel structure. The “locking” of dimetal paddlewheels due to 

orbital orientations required for metal-metal bonding is well studied.104-105  

 

In particular a molybdenum paddle wheel based core-shell structure, published by the 

Zhou lab, demonstrates the ability for a multiply bonded metal node to absorb stress 

induced by the structure (Figure 15).35 In this unique core-shell structure two individual 

coordination structures exist with one nested within the other. This behavior arises from 

the flexibility of the ligand and as well as the fact that the void space within the outer 

shell matches both the symmetry and functionality with that of the core species. Upon 

exchange at sites I and II (Figure 15c) from molybdenum to copper the paddlewheel 

twists by an additional ~15° decreasing the distance between the hydrogen bonding sites 

at the amides (Figure 16). This core-shell structure cannot be obtained directly from 
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copper salts. This indicates that the presence of a metal-metal multiple bond enables 

observation of a structure that otherwise could not be resolved utilizing an analogous 

secondary-building unit without that bonding. Additionally the resulting twist shows that 

the bond is absorbing some of the strain within the system that is relaxed when the non-

bonding copper is substituted. 

 

Figure 15 Molybdenum core-shell MOP from a) Top and b) side. c) Core 

lantern shaped cage consisting of two M2 paddlewheels and and four 

ligands in the orientation shown in d). Sites I and II are ~100% Cu after 

exchange.35 
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When the chromium MOP work was first published it was hypothesized that such a self-

association mechanism could explain the observation of porosity in Cr(II) paddlewheel 

based cages that is not seen in isostructural Cu(II) systems.29-30, 106-110 Based on further 

considerations this mechanism is no longer thought to accurately reflect the entirety of 

the system as discussed in Chapter IV of this dissertation. Through functionalization of 

the 5-position in isophthalic acid porosity was achieved in each of the systems through 

thermal activation. The resulting chromium(II) based systems have BET surface areas as 

high as 1000 m2/g higher than many other such systems. These were also the first Cr(II)-

based MOPs reported in the literature47 and although not the first porous Cr(II)-based 

compounds, two previous Cr(II) containing MOFs have been published by the Long 

group,93, 111 they are also the first to be able to be solved using single crystal diffraction 

Figure 16 a) Mo(II) core-shell MOP and torsion angle of Mo paddle wheel 

b) Cu(II) core and 3:1 Mo:Cu shell after substitution35 
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methods. Several other Cr(II) based MOP materials have been published by the Bloch 

group since that original publication.49-50, 93 

 

3.2 Results and Discussion 

 

Four different isophthalic acid derived ligands were selected for the porosity study based 

on previous experience and published works (Figure 17).38-39, 41, 112-113  

The cages obtained with these ligands have the same basic structure as those reported by 

Yaghi and Zhou for dimetal paddle wheels with copper, molybdenum, and ruthenium 

nodes.113-115 The structure of these M2(12) L24 MOPs  is cuboctohedral in nature 

consisting of M2 paddle-wheel vertices, ligands along the edges, and windows serving as 

the triangular and square faces (Figure 18).29 The Cr-Cr bond distance within the MOPs 

of 2.36 – 2.39 Å matches well with that reported value of 2.36 Å for chromium acetate 

and is significantly longer than that seen in carboxylate bridged di-chromium 

paddlewheels with no axial coordination of 1.97 Å.103 This Cr-Cr distance is 

Figure 17 Isophthalate and 5- substituted isophthalate ligands used to synthesize 

porous chromium MOPs, Cr-1-4 
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predominantly controlled by the presence of the axial ligands with gas-phase 

chromium(II) acetate having a distance of 1.96 Å.116 Porosity was first successfully 

observed in MOPs with three ligands with the TEI ligand giving rise to two distinct 

packing motifs all with the same cuboctahedral structure for the MOPs.  

 

To achieve porosity, a number of factors had to be considered. First was the solvent 

exchange step, this was chosen to be the same as the synthesis solvent to ensure that a) 

the cage had a low solubility and b) any remaining acetate or ligand would be removed. 

Then a second solvent was needed to replace the non-volatile amide based solvents 

DMF, DMA, and DEF (N,N-dimethylformamide, N,N-dimethylacetamide, N,N-

diethylformamide, respectively) with one that would not induce pore collapse upon 

activation. Since these compounds were being handled in a glovebox, non-protic 

solvents were considered and with the hindsight of the changes such materials may 

undergo in polar or coordinating solvents as observed in the Cu-TEI MOP previously 

published by the group such solvents were also excluded.41 For these reasons toluene 

Figure 18 Chromium(II) cuboctahedral cages obtained from (a) isophthalic 

acid (b) 5-tert-butylisophthalic acid, and (c) the TEI ligand47 
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was chosen for Cr-1 and Cr-2 while hexane was used for both topologies of Cr-3 as this 

cage was found to be soluble in toluene. The TEI ligand enabled solubility of the cage in 

toluene, diethyl ether, and benzene, among others non-polar solvents.41, 117 As the goal in 

this project was to study the effects of replacing the typical copper for chromium 

paddlewheels maintaining the discrete nature of the cages was considered a priority.  

 

Upon activation, these MOPs exhibited significant color changes from dark purple for 

the as synthesized materials to a light purple after solvent exchange and initial drying 

and finally yielding a yellow/tan colored product. The as synthesized material fresh from 

the mother liquor can be handled briefly in air and placed under oil for mounting on a 

crystal loop and similarly may be used to collect PXRD patterns but will oxidize within 

several minutes in air. After exchange with toluene or hexane the materials decompose 

quickly as the more volatile solvents evaporate from the pores. After activation extreme 

care was needed and many samples were lost in developing methodologies for acquiring 

gas adsorption data. Thus the data reported was obtained from strict handling procedures 

and only those samples that showed no visible signs of oxidation, present as a greening 

or darkening of the activated solid, were used for gas adsorption measurements. The N2 

uptakes and porosity determinations for these compounds are given in Table 1. These 

materials showed significantly higher uptake than the related isostructural copper and 

molybdenum MOPs after thermal activation. 
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The calculated BET and Langmuir surface areas of the Cr-MOPs were determined 

utilizing the Brunauer–Emmett–Teller theory selecting at least five points that provided 

the best linear fit between .05 and .30 p/p0 as is appropriate for microporous materials.52 

The best performance was observed in Cr-2 with a BET SA of 1084 m2/g and a 

Langmuir SA of 1496 m2/g. At the time of publication this was the highest reported 

value for an unsupported MOP with paddlewheel nodes, however, shortly after Bloch 

and coworkers published the same MOP with a slightly higher value of  1135 m2/g.49 

This is in the range of many well-known MOF structures. This exceptional porosity 

indicates that the pore volume within the material after activation is accessible. The 

pore-size distribution indicates a major pore at approximately 15 Å which correlates to 

the pore width within the cage of approximately 16 Å from one metal center to another 

across the cage. Previous to this work the only porous metal-organic materials 

containing Cr2+ ions were Cr(BTC) a structural analogue of the well-known HKUST-1  

and Cr-BTT both  reported by the Long group.118-120  A large portion of the MOF 

Table 2 N2 adsorption values, surface areas, and porosity values for 

chromium(II) MOPs and Cu-TEI MOP material 

 

 Cr-1 Cr-2 Cr-3rhom Cr-ttet Cr-4 Cu-TEI 

BET 833.4 1084 579.8 708.5 574.4 739 

Lang. SA 1161 1496 618 1020 796.5 843 

Pore Vol. 0.45 0.60 0.20 0.35 0.28 0.29 

Reference 47 (49) 47 47 47 This 

Work 

41 
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literature has focused on copper paddlewheel MOFs and many records such as surface 

area and maximum hydrogen and methane uptakes have been held by such MOFs over 

the past two decades.1, 75 However, the distinct difference between molecular cages and 

those extended structures is that the regular packing through the structure is maintained 

by non-covalent intramolecular interactions rather than molecular or dative bonding. 

That means that when the paddlewheels are desolvated at high-temperatures and high 

vacuum the rigidity of the extended structure is maintained. However, within MOPs the 

structure is more tenuously balanced and when desolvation occurs a significant strain on 

the metal nodes may cause them to fall apart. As is seen in the works by Long the 

isostructural chromium and copper MOFs have similar levels of performance and 

surface area, though the chromium materials tend to perform below what might be 

expected when mass is considered. This may be in part due to the synthetic methods 

applied and the nature of MOFs which often yield microcrystalline powders that may 

contain defects unlike the MOP syntheses presented here which can yield large single 

crystals.  

Figure 19 Color change from dried, activated, and oxidized Cr-247 
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As a performance reference, isostructural copper MOP crystals (Cu-TBI) were 

synthesized and subjected to the same activation scheme as the isolated chromium cages. 

The copper cage shows gradual improvements in N2 uptake after activation at 

temperatures from 80 °C to °160 C, however, at °200 C the pores completely collapse 

and porosity is no longer observed (Figure 20a). Cr-2 (Figure 20(b)) in contrast shows 

no significant uptake until activated at 200 °C wherein it displays a type-1 isotherm and 

significant hysteresis. It is reasonable given these results to attribute the greater stability 

afforded to the dichromium paddle wheels to the metal-metal which enables 

maintenance of the cage structure when the axial ligands are removed. 

 

Since the cages have internal surface areas identical to one another, the difference being 

that of the functional groups at the 5-position, a non-traditional method was devised to 

Figure 20 Activation effects on N2 uptake at 77 K for a) Cu-TBI and b) Cr-2 

activated at each temperature for 10 to 12 hours at a maximum vacuum of 8 μBar47 
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compare the relative performance of these systems. Rather than a traditional gravimetric 

surface area represented as m2/g the surface area for each system was normalized per 

mole of cage which is represented as a value of km2/mol of cage. In doing so the surface 

areas can be evaluated based on how much of each cage is accessible on average which 

would normally be occluded by the presence of bulky functional groups. 

 

Table 3 Molar masses, BET gravimetric surface area and calculated BET molar 

surface area per cage pore 

 

 

The expected trend based on the relative size of the functional groups would be Cr-

1<Cr-2<Cr-3 as the large functional groups should increase accessible surface area 

outside of the cages as well as provide additional surface area themselves. As expected 

Cr-1 is indeed the lowest but as with the total surface area Cr-2 is higher than Cr-3. The 

difference between these values is significantly lower than that of the total surface area 

and the value for Cr-3Rho is lower than that of Cr-3Tet. The significantly lower 

 Cr-1 Cr-2 Cr-3rhom Cr-3tet Cu-TEI Mo-TBI 

MM Cage 5207.0 6552.4 9530.1 9530.1 9807.3 7607.1 

BET SA 833 1040 580 709 739 437 

Molar BET 

km2/mol 

4.34 6.84 5.53 6.75 7.25 3.32 

Lang. SA 1161 1406 618.0 1020 843 504 
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performance of Cr-1 is attributed to the lack of strong interactions or bulky functional 

groups keeping the cages from aggregating. The lower than expected performance of Cr-

3 both tetrahedral and rhombohedral crystals was attributed to the large voids between 

the space leading to aggregation and reducing pore-accessibility in much the same way, 

however upon inspection of a normalized factor for gas adsorption based on a per cage 

basis Cr-3tet performs almost as well as Cr-2.  
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Figure 21 N2 adsorption (a), packing of chromium MOPs and the closest 

intramolecular paddlewheel distances for each MOP: Cr-1(b,e), Cr-2(c,f), and 

Cr-3tet(d,g) functional groups and hydrogens removed for clarity.47 

 



 

47 

 

The N2 77 K sorption isotherms show inflection of the adsorption portion and hysteresis 

in the desorption portions of the isotherms.121  The inflection can be attributed to 

formation of larger mesopores as seen in the sloping nature of the isotherms after the 

initial microporous region, as compared to the plateau like nature of true type-1 

isotherms.95, 122-123 Additionally the small pore windows and aggregation of the cages 

produces bottle neck effects in the desorption phase. The gas molecules thus cannot exit 

the pores at the same pressures they entered due to capillary effects giving rise to the 

observed hysteresis.  

 

It is proposed that the difference in porosity under the activation regimes seen in the 

copper and chromium MOPs arises from the fundamental differences between the 

paddlewheel complexes. As seen in their respective TGA curves (Figure 22). While the 

TGA curves cannot give information regarding the structural collapse the approximately 

Figure 22 Thermogravimetric analysis curves for Cr-2 (black) and Cu-2 (red)  
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100 °C difference in the onset of the steep drop in mass, attributed to loss of coordinated 

solvents, indicates that the copper desolvates at a lower temperature than the chromium 

species. This matches the observed activation data in Figure 20. This explains why a 

significantly higher temperature is required to activate the chromium based materials as 

the elevated temperature is required to successfully desolvate the chromium cages. 

Further the presence of the metal-metal bond is proposed to facilitate the stability of the 

individual cages as compared to the copper which lacks the additional support. The 

copper paddle wheels have no direct bonding interactions even though each atom 

contains an unpaired electron. Once desolvated it is proposed that the copper acetate 

moieties rearrange due to the stress imposed by the aggregated solid, similar to the twist 

Figure 23 The first ultra-short Cr-Cr quadruple bond demonstrated in a 

carboxylate bridged paddlwheel a) ball and stick model for clarity and b) 

spacefilling model showing steric bulk that prevents self-association of 

complexes through carboxylate bridging.  
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observed in the core-shell system. Once such a distortion is severe enough the paddle 

wheel and thus the cage decompose. The chromium system however can maintain the 

paddlewheel shape in the absence of such an axial ligand, as shown by Cotton and 

coworkers (Figure 23), when an axial ligand is not present and steric bulk prevents 

aggregation of the paddlewheels through carboxylate bridging. It has been suggested that 

such a bridging mechanism is a possible way in which the chromium cages are 

stabilized, much as the copper(II) TEI system was, but this is unlikely as while such 

structural rearrangements were single-crystal to single-crystal they were still solvent 

supported which is not the case in the chromium cages under discussion here. Though 

some such self-association may occur in these systems it is unlikely to occur to the 

degree of that previous publication. The stability of these systems must then be 

attributed to the reinforcement of the structure through the Cr-Cr quadruple bond and 

any intermolecular interactions between the cages. The intermolecular interactions 

driving the formation of these structures is discussed in Chapter 4. 
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The storage of methane and hydrogen was thought to be a potential use for these 

cuboctahedral cages as they contain similar structural features to many of the copper 

paddle wheel based MOFs1, 7, 58 that have high uptakes such as HKUST-1,124, NU-111, 

125 and PCN-14.126 These MOFs are all constructed from copper paddlewheels and what 

can be considered isophthalic acid derivatives and contain trigonal windows of the same 

size as in the cuboctahedral MOPs. These windows have been identified as the primary 

binding site for methane in such systems rather than the open metal sites as previously 

thought.7, 127-128 The room temperature CH4 uptake was not significantly high, 15 cm3/g, 

and the high-pressure gravimetric uptake maxes out at 120 cm3/g at 90 Bar, far below 

the DOE target.7 Bloch and co-workers have reported a Cr(II) coordination cage based 

on a carbazole ligand with measured uptake values of 194 cm3/g at 65 Bar. 

 

 

Figure 24 Carbon dioxide and methane uptake at 273 and 295 K (left) and high-

pressure methane gravimetric excess uptake (right)47  

 

 

 

 

 



 

51 

 

The potential for non-axially coordinated chromium paddlewheels to demonstrate 

reversible O2 adsorption was of interest to both our work and others. The two 

chromium(II) based metal-organic frameworks published by the Long group showed 

some reversibility for oxygen and it was hoped that these molecular species might 

behave similarly.93, 129 Cr-2 demonstrates irreversible O2 chemisorption at 295 K of 34 

cm3/g at 295 K (Figure 25x(a)).119 This correlates to approximately one molecule of O2 

per paddwheel unit. This behavior was also observed in the material based on the same 

chromium cage by Bloch.49 Work by Kitigawa on similar rhodium cages and CO 

binding showed a similar value of approximately one gas molecule per paddlewheel 

which is attributed to only the inside of the cages being accessible. At lower 

temperatures the adsorption can be considered semi-reversible, however in all cases the 

materials degrade upon cycling. Under purely physisorptive conditions N2 and O2  

typically have similar uptake values, due to similar kinetic diameters and quadrupole 

moments indicating that the increased selectivity of O2 is indeed derived from the 

presence of the divalent chromium centers.130  

 

The Cr-2 material was then checked for stability following oxidation to see if the 

oxidized material had been templated by the original structure. Compared to unoxidized 

material, the oxidized material (Cr-2’) demonstrated decreased H2 uptake at 77 K, going 

from 149 cm3/g to 71 cm3/g. This is essentially the same as that of the activated copper 

analog, 70 cm3/g.  Importantly this indicates that upon oxidation the chromium material 

begins to behave very similarly to the copper based material which is known to have 
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collapsed during the activation process. This points again to the importance of the Cr-Cr 

bond in achieving porosity in these systems.  

 

In contrast, HKUST-1, one of the most studied and successful MOFs in terms of impact 

and documented performance, is constructed from copper(II) paddlewheels and 1,3,5-

benzene tricarboxylic acid.7, 124, 131-132 The stability of HKUST-1 under typical single-

component gas sorption systems, that is not in the presence of water, is well known.133 

However the copper MOPs constructed from isophthalate ligands show no appreciable 

Figure 25 Oxygen uptake for Cr-2 at RT and the effect of O2 exposure on Cr-

2 H2 uptake47  

 



 

53 

 

gas uptake except in situations where they are dispersed or where strong intercage 

interactions have been formed.95, 109, 124 Extension of the chromium MOPs via briding 

ligands between the paddle wheels has also been demonstrated to show increased gas 

uptake as compared to the pure cages.94 The stronger bonds in these MOP-MOF 

materials stabilize them and prevent shifting in the structure that might cause collapse. 

This explains the similarities between the chromium and copper species after the 

oxidation events. While the copper MOP collapses during the activation procedure the 

chromium MOP maintains a level of porosity due to its metal-metal bond. However, 

once the paddlewheel is oxidized this bonding becomes weak and the structure can 

collapse in the same way as the copper system. This also explains the lack of 

reversibility in the O2 adsorption as compared to the chromium(II) based MOFs. At 

higher temperatures the ligation of oxygen and subsequent oxidation of the chromium 

causes the weakening of the metal-metal bond. Without the support of the intermetallic 

bonding the stresses within the material caused by aggregation induce structural 

collapse. In the MOFs the extended network of coordination bonds maintains rigidity 

even in the absence of this bonding, as seen in HKUST-1 for copper, thusly preventing 

the immediate collapse of the structure. The higher oxygen uptake at lower temperatures 

can be associated with the system not having enough energy to drive the oxidation 

forward similar to that seen in porphyrin systems wherein the lack of an axial ligand 

prevents permanent oxidation of a divalent iron center by molecular oxygen.134 There 

needs to be further work to identify the details of this phenomena but based on the 
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evidence collected and analyzed here and as well as that by the Bloch this mechanism 

seems likely. However further work will be needed to confirm these details. 

 

3.3 Future Work 

 

3.3.1 Expansion of scope in porous metal-organic polyhedra topologies 

 

While the work in this dissertation focuses on cuboctahedral cages constructed from 

dichromium paddle wheels and substituted isophthalate ligands there exists a larger 

range of such paddle wheel based cage structures (Figure 26) that also have the potential 

for porosity. This range of cages have pore windows and volumes of varying sizes and 

since they are topologically defined by the angle of the bridging ligand extension of the 

ligand results in larger windows and pore sizes.17, 32 Such cages have been demonstrated 

for both molybdenum,39 and ruthenium135 for the octahedral cage (Figure 26c). Thus far 

only the cubic M2(6)L12 has been synthesized, by the Bloch group,50 with Cr(II) and it 

shows remarkably high methane uptake for a molecular cage. A systematic study of 

these other cages’ porosity through functional group control would provide a method of 

developing a wide variety of new materials for gas sorption. The cubic cage provides 

perhaps the best option for an initial study in this direction through functionalization of 

nitrogen in the carbazole ligand. Control of the arrangement of the cages and the 

interactions between them, discussed further in Chapter IV, may allow them to approach 

that of MOFs having the same size and shape pores seen in these cages.50 However for 
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most of this work to occur a better understanding of what drives the extended structures 

of these cages to arrange in the way observed by various groups depending on synthesis 

conditions. Chapter IV discusses the structural effects of ligand and solvents on the 

packing structures of these cuboctahedral cages and this can be extrapolated to the other 

shapes if a wider variety of them is synthesized and analyzed. 

 

 

 

Figure 26 Bridging-ligand angle driven design of molybdenum paddle wheel MOPs 

resulting from the angle between carboxylic acids (top) to give cages a) 0° b) 60° c) 

90° d) 120° (cuboctahedra) 39 
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3.4 Experimental 

 

3.4.1 Materials and Instrumentation 

 

3.4.1.1 Instrumentation  

 

1H nuclear magnetic resonance (NMR) data to analyse the synthesized ligand was 

recorded on a Mercury 300 spectrometer at the Center for Chemical Characterization 

and Analysis (CCCA). FT-IR spectra was obtained in an IRAffinity-1 instrument. The 

TGA data was recorded by the use of a TGA-50 (SHIMADZU) thermogravimetric 

analyzer and Auto Q500 (TA Instruments) with a heating rate of 5 °C min–1 under 25 

mL/min N2 flow. A BRUKER D8-Focus Bragg-Brentano X-ray Powder diffractometer 

and Empyrean (Panalytical) equipped with a Cu sealed tube (λ = 1.54178 Å) was used to 

record the powder X-ray diffraction patterns (PXRD) of the MOPs at a scan rate of 0.5 s 

deg–1. Gas adsorption isotherms were obtained by the use of Micromeritics’ ASAP 2020 

with the extra-pure quality gases.  

  

3.4.1.2 Chemicals 

 

Materials were used as received unless otherwise noted. Copper acetate monohydrate 

(Cu2(OAc)4·2H2O), chromium chloride hexahydrates (CrCl3•6H2O), isophthalic acid, 5-

tertbutylisophthalic acid were purchased from Alfa Aesar Chemicals. N,N-
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dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N,N-

diethylformamide were obtained from Acros organic, Macron fine chemicalstm, and TCI, 

respectively. Sulfuric acid was purchased from EMD. 99.9% Zinc Powder and Sodium 

acetate was purchased from Sigma-Aldrich, and ethanol from Koptec.  

  

3.4.2 Syntheses   

 

3.4.2.1 Triisopropylsilyl ethynyl isophthalic acid (H2TEI) 

 

H2TEI was synthesized as reported previously.41  

 

3.4.2.2 Cr2(OAc)4 Synthesis  

 

All procedures were performed under nitrogen using proper Schlenk line technique. 15 g 

of CrCl3·6H2O was dissolved in 30 mL of a 0.4 N sulfuric acid solution resulting in a 

dark green solution. Simultaneously 90 g of sodium acetate in 70 mL of H2O was 

brought to a boil and bubbled with nitrogen for 30 min. The chromium solution was 

added to 10 g of zinc powder which was subjected to three vacuum/N2 backfill cycles to 

remove any oxygen above the solution. After 45 minutes a deep blue solution was 

present which was diluted, via cannula transfer, with 190 mL of degassed H2O. This was 

then rotated to allow the solution to filter through a fritted filter tube and drip into the 

sodium acetate solution, immediately brick red crystals began to form as the two 
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solutions mixed. This was allowed to stir overnight to ensure full precipitation of 

product. The product was filtered through a fritted filter tube, washed with 3 x 20 mL 

degassed H2O and 3 x 20 mL degassed 200-proof ethanol. The filter tube was capped on 

one end and an adapter was used to apply a vacuum for 24 h to ensure total dryness of 

solid. The solid was transferred into an argon atmosphere glove box for storage. Yield 

7.58 g, 71.6%   A greater yield could be obtained from further precipitates in the filtrate, 

however to ensure purity only the material which was collected and washed on the frit 

was used for MOP syntheses.  Due to the air sensitivity of Cr(II) ions, all syntheses and 

treatments of Cr-MOPs were performed in an Ar-filled glove box.   

  

3.4.2.3 Synthesis of Cr-1 

 

Isophthalic acid (100 mg) dissolved in 5 mL DEF and Cr(OAc)2 (100 mg) in 10 mL 

DEF were mixed and placed in a 20 mL vial. The vial was sit in room temperature for 2 

days. Purple block crystals of Cr-1 were obtained. IR (ν max): 617, 694, 716, 744, 775, 

812, 829, 910, 1026, 1109, 1201, 1269, 1367, 1566, 1598, 1726, 2312, 2372, 2864, 2962 

cm-1.   

 

3.4.2.4 Synthesis of Cr-2  

 

5-tert-butylisophthalic acid (200 mg) dissolved in 5 mL DMA and Cr(OAc)2 (200 mg) in   

10 mL DMA were mixed and placed in a 20 mL vial. The vial sat in room  
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Temp. for 2 days. Purple block crystals of Cr-2 were obtained. IR (ν max): 623,  

675, 696, 717, 746, 777, 810, 910, 949, 1012, 1058, 1188, 1265, 1354,1394, 1502, 1597,  

1641, 1708, 2873, 2951 cm-1.  

Figure 27 Powder diffraction patterns of Cr-2 and effects of activation on Cr-2 and 

Cu-2  
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Figure 28 Powder X-ray diffraction pattern of Cu-2 (copper t-butyl isophthalate) 

and simulation of PXRD of Cu-2 

 

 

3.4.2.5 Synthesis of Cr-3 

 

 For Cr-3 in a rhombic space group, H2TEI (100 mg) dissolved in 5 mL DEF and 

Cr(OAc)2 (50 mg) in 10 mL DEF were mixed and placed in a 20 mL vial. The vial was 

sit in room temperature for 2 days. Purple diamond shape crystals of Cr-3 were obtained. 

For Cr-3 in a tetragonal space group, H2TEI (100 mg) dissolved in 3 mL DEF and 

Cr(OAc)2 (50 mg) in 5 mL DEF were mixed and placed in a 20 mL vial. The vial was 

allowed to sit at room temperature for 2 days. Purple octahedral shape crystals of Cr-3 

were obtained. IR (ν max): 671, 719, 771, 825, 881, 916, 962, 997,1012, 1072, 1103, 

1130, 1211, 1247, 1271,1357,1427, 1564, 1625, 2152,2864, 2943 cm-1.  
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Figure 29 Powder X-ray diffraction pattern of Cr-3tet simulated and as synthesized 

 

 

3.4.2.6 Synthesis of Cr-4 

 

H2Misoph (100 mg) along with 100 mg of chromous acetate were added to 10 mL DMA 

solution containing 100 mg of chromium acetate in a 20 mL scintillation vial. A stirbar 

was added and the solution mixed for 10 minutes  and then removed from the glovebox 

and placed into an oven at 85 C for two days. Purple bar shaped crystals of Cr-4 were 

obtained. Synthesis under similar conditions in DMA yielded octahedral shaped crystals 

but these could not be resolved via single-crystal x-ray diffraction. After activation at 
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200 °C for 12 hrs on a micromeritics ASAP 2020 at a maximum vacuum of 8 μbar 52.3 

mg of tan solid was collected from the BET tube. 
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CHAPTER IV  

STRUCTURAL CONTRIBUTIONS TO OBSERVED PACKING AND POROUS 

BEHAVIOR IN METAL-ORGANIC POLYHEDRA 

 

4.1 Introduction 

 

As has been demonstrated in this dissertation, work previously published by the Zhou 

group, 38-39, 41, 43, 45, 47, 136-137  the Yaghi group,29-30, 138-139 and recent work published by the 

Bloch group48-50, 93-94 paddlewheel based metal-organic polyhedra are a rich area of study 

for porous materials. However most of this previous work treats these molecular entities 

with two minds. One sees them entirely as molecular species and focus on the design of 

these discrete cages without considering how they will arrange in the solid state while the 

other treats them much like extended materials such as metal-organic frameworks and 

zeolites without properly considering how the pieces fit together. In the original 

publication of the first three chromium cages the experimental design largely fell into the 

latter category, relying on the known structure of the cages and viewing these materials as 

porous solids regardless of the local structure issues. To some extent it was thought that 

the most significant control in the experiments was the choice of cage topology. This is 

largely because many of these constructions, particularly neutral species such as paddle 

wheel based MOPs, are often insoluble once obtained in crystalline form. Thus the solids 

obtained, and characterized crystallographically, were assumed to be the only materials 

we could synthesize. Modifications made to increase solubility also increase the presence 
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of other problems such as structural characterization owing to the larger amount of 

disorder and less regular packing that is obtained in these species.5, 18, 28, 32, 140-141 Often 

these works propose the usefulness of these structures lie in the possibility of solution-

phase processing and further structural control not available to extended coordination 

polymers. Features such as solubility, facile synthesis, and further tunability are often 

sought but rarely observed for molecular coordination cages, this holds particularly true 

in the search for MOPs which can be used for gas storage and separations applications.39, 

47, 139 When these systems are reported they are generally not soluble except at elevated 

temperatures and in non-volatile solvents such as DMF. The TEI ligand, as discussed in 

Chapter III, provides both the copper and chromium MOPs with a wide solubility range 

in organic solvents at room temperature however the tert-Butyl isophthalic acid derivative 

shows no appreciable solubility. The molybdenum TBI MOP demonstrates through 

observed ligand exchange that it can be solubilized at elevated temperatures in amide 

solvents (DMF, DMA, DEF), but, a room temperature solution of it is not isolable as 

crystallization happens upon cooling.112 

 

Synthesis of new MOP compounds is in many ways similar to the approach taken with 

metal-organic frameworks. Typically this requires a broad screening of solvents, 

concentrations, and other reaction variables to achieve high-quality single crystals or 

powders. This is necessary as formation of the cages is facile due to rapid ligand exchange 

and informed design principles, but, formation of the crystal requires regular order and a 

level of reversibility to reduce defects. In Metal-Organic Frameworks this is an absolute 
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necessity and achieving synthesis of only a single target phase, let alone a highly 

crystalline material, often requires hundreds of test reactions. One recurring concept that 

continues to drive researchers towards molecular porous materials is the possibility of 

ameliorating these problems through the solubility and surface functionality of discrete 

coordination complexes. This pushes the design of MOP based materials firmly into the 

area of crystal engineering. However, most of the literature on these cages focuses solely 

on the design and properties of the discrete cage rather than that of the resulting 

supramolecular-ordering of these species. While this may be a valid approach for 

investigating functionality in the solution phase and for applications such as sensing,4 

drug-delivery, and catalysis4, 44, 95, 142 it is not sufficient for the study of porosity with 

respect to gas storage and separations.4, 95, 143 As such a deeper discussion of the effects of 

solvents on MOP synthesis and structure, particularly with respect to the extended 

arrangements that arise in the crystalline state is needed. 

  

4.1.1 Effects of synthesis conditions and functionality on MOP formation 

 

Whereas the chromium MOPs, Cr-1-3, were successfully crystalized without applying 

heat and only a single solvent is used the other systems utilized more involved syntheses. 

This might be expected for the molybdenum species as the slower ligand exchange rate 

may necessitate applying a higher temperature and allowing a longer synthesis time, 

however the copper system, MOP-1 the first paddlewheel MOP published,29 set a 

precedent that has generally been followed in the literature since. Closer inspection of the 
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structure of MOP-1 it is obvious that the solvents play a key role in the synthesis of the 

extended ordering in these materials (Figure 30).  

 

The MOP-1 cages pack in pseudo-hexagonal sheets around the threefold axis through the 

trigonal caps at the center of the cuboctahedron (Figure 30a) In this structure by Eddoudi 

and co-workers the solvent molecules surrounding the cages were identified as six DMF 

molecules and six water molecule (Figure 30b). These DMF molecules are somewhat 

disordered but a clear pattern arises. The coordinated DMF molecule from one cage nests 

in the window of an adjacent cage. It was also found that upon standing it was found that 

a structural rearrangement had taken place. This resulted in the cages repacking in a body 

centered cubic motif and the space group changing to Im-3m (Figure 31a).  This 

arrangement occurs due to the interlocking of the trigonal windows with the solvents 

Figure 30 pseudo-hexagonal packing in MOP-1 and solvent 

participation in packing: a) single layer hexagonal packing viewing 

along c-axis, b) MOP-1 with exo solvents emphasized, c) nesting of exo-

coordinated DMF (green) within the trianglular pore of an adjacent 

cage (blue) 
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pointing towards the square windows. All coordinated solvents were assigned to water 

molecules but given the structure this is unlikely. Rather the DMF is likely disordered 

within the larger window/void spaces and cannot be resolved due to the higher symmetry 

of this crystal system. This is often an issue in the crystals of MOFs where large pores and 

metal nodes often sitting on sites of high symmetry resulting in an inability to resolve 

coordinated solvents. Rather than model the solvent within the void often only the atom 

directly coordinating the metal is resolved and the un-accounted for electron density in the 

pore is removed through a solvent mask or implementation of SQEEEZE. In MOFs this 

is usually accepted as a necessity since the disordered solvent can rarely be adequately 

resolved within the high symmetry space groups. This effect has carried over to MOPs 

and their reported structures. Though the voids within these systems tend to be smaller the 

high symmetry often leads to poor observation of solvents, coordinated or within the 

pores, and generally these are not considered when constructing new MOP crystals.  

Figure 31 a) Body-centered cubic packing of MOP-1 in 

Im-3m and b) interlocking of trigonal windows 
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One case where intermolecular interactions were observed and taken advantage of is that                                           

the Zhou group with the the intent of studying the effects of photoisomerization and 

inducing photoswitchable gating of the pores, similar to what has been see in MOFs.131, 

140, 144-145 However, rather than controlled gating of pore access what was instead observed 

was reversible binding of an aromatic dye molecule, methylene blue, through control of 

MOP solubility. The ligands should be in present as the trans isomers under non-irradiative 

conditions and the MOP will not readily dissolve. This behavior was attributed to the 

intermolecular interactions of the extended azobenzene units (Figure 32c). When the dye 

was added the MOP absorbs it, which can be detected via UV-Vis spectroscopy. Upon 

irradiation the azobenzene contracts diminishing the intermolecular interactions and the 

cage and dye solubilize. This release of dye was measured by UV-Vis showing a slow 

release during irradiation (Figure 32d). This demonstrated the effects intermolecular 

interactions can have on MOP applications in the solution state and inspired further 

investigation of those effects in crystal design and in extension to the solid state.                                                               

                            

This chapter focuses on the observed structural contributions in MOP material synthesis 

and observed behavior due to solvents and ligand functionalization. This is achieved 

through comparison of the structures, observed behavior, and characterization of 

previously published chromium(II) based MOPs (Cr-1, Cr-2, Cr-3) as well as further 

synthesis and structural characterization of new Cr(II) based MOP crystals using 5-

methylisophthalic acid and 5-hydroxyisophthalic acid.  
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Figure 32 Azobenzene functionalized copper MOP a) azobenzene derived 

isophthalic acid ligand, b) MOP structure with azobenzenes in the trans-

position, c) proposed mechanism for dye capture and release, the dye is 

trapped between azobenzene units in the precipitate (left) and is released 

upon radiation and isomerization (right) d) dye release during irradiation.140  
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4.2 Results and Discussion 

 

4.2.1 Effects of Solvent on Synthesis of Cr(II) Metal-Organic Polyhedra Crystals 

 

The preparation of the chromium(II) compounds discussed in this work largely differ from 

previous methods more typically employed in the synthesis of paddlewheel based 

MOPs.17-18, 29, 35-36, 43, 109, 139-140 Perhaps the largest difference is that these MOPs are 

synthesized largely at room temperature from a solution consisting of only the solvent, 

ligand, and chromium(II) acetate dihydrate precursor. The molybdenum analogue is 

synthesized in a similar manner only using DMPU as the solvent but requiring several 

days of heating.112 The published syntheses and resulting structures for the isophthalic 

acid MOPs of Cr(II), Mo(II), and Cu(II) were compared to determine if synthesis 

conditions played a role in the resulting crystal structures. While the cuboctahedral cages 

themselves are the same in terms of extended structure the packing between them is quite 

different owing to the solvent and synthesis conditions used. 

 

Compared to MOP-1, the chromium analogue, Cr-1, shows similar behavior but the 

packing motif is different. Rather than hexagonal sheets or in a true body-centered cubic 

fashion Cr-1 packs in a tetragonally elongated body centered motif (Figure 33a). The 

structure was solved in the I4/m space group and only the oxygens of the solvent molecules 

directly coordinated to the metals were resolved. However a close inspection shows that 

the orientation of the paddlewheel nodes shows that the solvents must in fact rest within 
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the windows of adjacent cages (Figure 33b). This observation has also been made by Bloch 

and coworkers in regards to the Cr(II) MOP formed by the 5-tert-Butylisophthalate (TBI) 

ligand.49 In both cases for the isophthalate based cages the phenyl rings from adjacent 

cages sit against one another at a distance of ~3.8 A from carbon to adjacent carbon in a 

side on fashion. Additionally while MOP-1 packs via solvent “bridging” from 

Figure 33 Tetragonally elongated body-centered packing of Cr-1 as viewed 

alon b-axis  (a) and orientation of coordinated solvent towards triangular 

window of adjacent cage (b) 

Figure 34 5-substituted isopthalic acid 

ligands used for investigation of new 

Cr(II) MOPs 
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coordination in one cage to the square pores of the adjacent cage Cr-1 is packed via 

bridging from chromium center to the adjacent triangular window. The molybdenum 

isophthalate species behaves similarly with the chromium, however, the larger DBU 

ligands rest in the square windows of adjacent cages as shown in Figure 35.39 This 

alignment blocks the pores and gives an arrangement without long-range channels as 

discussed seen in the chromium materials. 

 

Since thermal activation of these materials typically decomposes the copper MOPs whilst 

the porosity of the chromium MOPs is achieved only at high (>180 °C) temperatures 

further structural investigation of the role of coordinated solvents in cuboctahedra cages 

is warranted. A series of cuboctahedral cages synthesized under various solvent and 

thermal conditions were investigated to determine the structural factors that controlled 

relative orientation of the cages within the extended solids. 

Figure 35 Molybdenum isopthalate cage packing (a) 

and DMPU resting in the square pore window (b) 
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The series of chromium MOPs previously reported (Cr-1-3)47, those structures reported 

by the Bloch group49, 94, 141, as well as new chromium MOP ligands were chosen for the 

investigation (Figure 34). To ensure that the structures would be comparable to previous 

work and to one another 5- substituted isophthalic acid ligands were chosen. The intention 

in choosing these ligands was to modulate the resulting cage structures through 

interactions of the ligands. By choosing ligands that would have stronger intermolecular 

interactions, such as through hydrogen bonding, it was hypothesized that the structural 

stability of these materials could be improved during the activation process. However 

single crystals were only obtained for the methyl and hydroxyl derivatives with the 

hydroxyl containing ligand giving different crystal packing depending on the temperature 

of synthesis (Figure 37c and f). 

Figure 36 Hydroxyl groups 

hydrogen bonding to one another 

and adjacent DMF binding in pore 

window 
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The amino derivative did occasionally yield what appeared to be small, droplet shaped 

crystals but these did not diffract. Solutions containing both chromium(II) acetate and 5-

amino-isophthalic acid turned turbid and no crystalline material was obtained at room or 

elevated temperatures. This is possibly due to the amino group coordinating in the axial 

position either of the starting material or adjacent cages. The nitro derivative yielded 

almost immediate, within 2-5 minutes, formation of a blue sol-gel of the entire solution. 

Likewise the sulfonate derivative, depending on reaction conditions, yielded fine powders 

or gels. While the isostructural copper and molybdenum MOPs are known, no crystals 

large enough for single crystal diffraction were obtained with chromium. Attempts to 

obtain powder diffraction data were unsuccessful, largely due to oxidation issues. The 

material was activated utilizing the scheme previously employed resulted in 

decomposition yielding a gray-green powder and no significant porosity. It is 

hypothesized that while the ligand itself is known to be thermally stable it may not be in 

proximity to such strong reducing agents at 200 °C. There was however success in 

obtaining crystals of the methyl and hydroxyl derivatives yielding the first single crystal 

structures of these MOPs, Cr-4 and Cr-5 respectively.   

 

The hydroxyl derivative had been previously synthesized by Bloch but the single crystal 

structure was not obtained.49 Two different crystal packing modes were obtained via 

syntheses at room temp, space group R_1 Cr-5Rhom, and 85 °C, space group I4/m Cr-5tet. 

The structure obtained in I4/m is a good fit for the unit-cell parameters, a = b = 28.4653(17) 
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Å c = 41.067(3) Å α = β = γ = 90° for Cr-5tet, determined by Bloch of  a = b = 29.42 Å 

and c = 41.18 Å α = β = γ = 90° in either I4/m or P4/mm space groups. While the crystal 

quality is rather poor the structure can be resolved to show that the packing between the 

cages is due entirely to interactions between coordinated solvents (Figure 37c). It was 

expected that in this cage the hydroxyl groups might interact in a similar manner to that 

of the t-Butyl ligand forming three fold arrangements through hydrogen bonding. The 

large voids between the cages and poor data quality mean that the solvents in the pore-

volume cannot be resolved though based on the structure of Cr-5rhom they may play a role 

as well. Unlike Cr-5tet the crystal structure of 5rhom shows clear indications of participation 

of the hydroxyl groups in the formation of the extended structure (Figure 37f). The 

Figure 37 Packing motifs of chromium MOPs a) Cr-1 b) Cr-5rhom c) Cr-4 d) Cr-

3rhom e) Cr-2 f) Cr-5tet g) Cr-3tet. Red and blue used to identify crystallographically 

distinct cages 
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hydroxyl groups from each ligand show evidence of hydrogen bonding with a hydroxyl 

group of the adjacent cage. Further the hydroxyl group also is within range to indicate the 

possibility of hydrogen bonding, ~3.2 A, to the carbonyl of a DMF molecule which 

occupies the triangular window of the neighboring MOP. This is in contrast to what is 

seen in many of the other cages wherein the coordinated solvents directly bridge the cages 

either by resting within an adjacent window or directly interacting with one another such 

Figure 38 Interactions between chromium(II) cages that generate observed 

packing motifs a) solvent pointing towards neighboring pore(green arrow)  in 

Cr-1, b) methyl group resting in neighboring pore and solvent pointing to 

neighboring pore, c) hydrogen bonding between hydroxyl groups (green circle) 

and solvent resting in neighboring pore in Cr-5rhom, d) interdigitation of 

triisopropylsilyl groups in Cr-3rhom, e) trigonal arrangement of t-butyl groups 

(lower circle) and close spacing of solvents (top circle) in Cr-2, f) side by side 

interactions of coordinated solvents in Cr-5tet, g) trigonal arrangement of 

triisopropylsilyl groups in Cr-3tet 
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as in Cr-1 or Cr-5tet respectively. The general packing schemes for each of the cages 

discussed in this chapter are shown in Figure 37. 

 

4.2.2 Role of Solvents in Cage Packing 

 

There are obvious patterns in the packing seen in Figure 37 for each of the MOPs. 

Particularly the alignment of the metal centers with the pore windows in most of these 

extended cage arrangements is highlighted in the observed packing. This is largely due to 

the solvents used in these syntheses as compared to previous synthesis of related cages 

with other metals. This is frequently driven by coordinated solvent molecules extending 

from the exo-position of one paddlewheel into a pore window of an adjacent MOP. This 

is possible due to the relatively small size of the dimethyl or diethyl amine groups found 

in these solvents. This is readily observed by looking at the discrete interactions within 

these structures in Figure 38. As previously discussed the isophthalate MOP packs through 

the extension of coordinated solvent molecules into the triangular windows of adjacent 

cages. This gives rise to the tetragonally elongated body-centered packing of the cages 

where each of the four top and bottom paddlewheels coordinate a solvent which interlocks 

with one of eight triangular windows in the adjacent eight cages. Additionally the phenyl 

rings of the ligand rest against one another in a side on fashion. In the example of the 

molybdenum isophthalate cage described earlier in this chapter rather than packing 

towards the triangular windows, the larger DMPU directs the paddlewheels to point 

towards the more spacious square windows.39 This is possibly due to the lack of other 
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directing groups on the MOP backbone. It has been shown that when the group in the 5-

position of these ligands is elongated such as alkoxy groups of various lengths that they 

can coil within the windows for the best fit.141 In the copper isophthalate example it is 

seen that while the larger DMF solvent directs the alignment of paddlewheel and pore it’s 

absence yields a higly symmetric window to window packed structure due to the tight 

fitting of the phenyl rings (Figure 31). Such arrangements are impossible or exceedingly 

unlikely for functionalized isopthalates because competing interactions will prevent such 

structures from occurring. 

 

The methyl derivative, Cr-4 (Figure 38b), has this solvent interaction but rather than the 

solvent in the triangular windows it is the methyl group that nests within them. The 

solvents instead point into the inter-cage void spaces. Cr-4 is the only cage in this series 

that packs in this manner though other paddlewheel cages pack in this way it is usually 

only seen when the ligand has a moiety that is close in size to the size of the cage 

windows.17, 30, 34, 36, 39 While the crystals of Cr-4 showed no solublity in DMF, DMA, or 

DEF they do have considerable solubility in N,N-Diethyl-m-toluamide (DEET). This was 

taken advantage of to obtain the first solution state UV-Vis of a chromium(II) 

cuboctahedral cage (vida infra).  

 

The tert-Butyl derivative Cr-2, Figure 38e, which has a similar but larger functionality 

packs through a trigonal arrangement of the tert-butyl groups of three adjacent cages. This 

arrangement and packing motif is seen in most of the examples of cuboctahedra utilizing 
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this ligand including the copper,47 molybdenum,39 and ruthenium114 analogs.  This 

interaction is also seen in the Cr-3tet packing arrangement (Figure 38g) indicating that it is 

observable when bulky groups are present as compared to those which allow a closer 

approach or can rest within the pore windows. Cr-3rhom however shows an interdigitation 

of the triisopropyl silyl groups. It is not known why these two different structures are 

obtained with the only synthetic difference being the concentration, however it is 

postulated that the tetragonal packing is due to the higher concentration precipitating out 

what might be considered the kinetic product of crystallization. Once these crystals are 

present they serve as seeds to control the phase of the resulting material. While MOPs are 

generally considered to be the kinetic products in these syntheses, rather than MOFs or 2-

D coordination polymers which occur often in the Cu(II) analogs at elevated temperatures, 

the formation of the extended structure must also have kinetic and thermodynamic 

considerations in formation.  

 

The formation of the cages can be exceedingly quick, the copper(II) 5-hydroxy-

isophthalate cuboctahedral MOP assembles in less than a minute from mixing to formation 

of the paddlewheel and fragment condensation to the resulting cage in methanol.146 Even 

if formation of the related chromium species takes longer due to higher solvent viscosity 

or slower exchange kinetics for the chromium(II) acetate to the isophthalate ligand the 

reaction will be complete long before the several days required to obtain crystals has 

passed. The study of the crystallization nucleation and growth conditions will need to be 

addressed in future work, however, it is relevant to what is observed for both Cr-3 and Cr-
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5 as two distinct crystallographic packing structures are obtained through varying 

synthetic conditions. Previously only the MOP-1 structure was reported with two separate 

crystallographic forms from such similar synthesis conditions and that only due to the 

crystals being allowed to sit for some months before reanalysis.33 

 

The structure of Cr-5 in both rhombohedral and tetragonal space groups is controlled 

through interactions between the hydroxyl groups (Figure 38c and f respectively), 

however, these are very different than that seen from the TEI ligand. The packing in the 

Cr-5rhom structure is due to three sets of interactions: 1) hydroxyl groups between the cages 

form hydrogen bond linkages (Figure 36 and green circle  Figure 38), 2) coordinated 

solvent bridges from the metal centers to an adjacent window (green arrow Figure 38c), 

and 3) hydrogen bonding between the hydroxyl groups and solvent molecules resting in 

other pore windows (Figure 36). The large number of interactions between the cages and 

relatively close packing might explain the observed heavy level of twinning, occurring 

almost exclusively at right angles. If a cage were to rotate 90° the only way to continue 

the packing pattern is in that direction thus nucleation of new crystals may occur due to 

multiple directions the cages can pack.  The tetragonal packing however is very similar to 

that seen in the other MOPs and is directed largely by solvent interactions rather than the 

hydroxyl groups. The cages in this motif do not pack as tightly as rather than direct cage 

to cage interactions or solvent to cage interactions the coordinated solvents align with one 

another in pointing into the adjacent pores. With the solvents sitting on top of each other 

the cages cannot approach as closely as they do with some of the other functionalities. 
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Other solvents in the void spaces could not be resolved but it is also likely that these play 

a role, along with the large DMA solvent, in achieving this structure. The larger solvent 

and heating allow the reversible aggregation of the cages which yields higher quality 

crystals. This lead to the investigation of other related solvents that might take advantage 

of such effects. 

 

4.2.3 Solvation of Chromium(II) MOPs 

 

After taking a deeper look at the crystal structures and the impacts solvents play a 

variety of new synthetic conditions were applied to try and grow new MOP structures. 

DEET, a major component of mosquito repellants, came to my attention as a possible 

solvent. DEET has a structure much like the amide solvents commonly applied in these 

syntheses (Figure 39). The large DEET molecule has both the steric bulk of DEF with 

the additional m-tolyl group. When coordinated to a metal center through the carbonyl 

this molecule will not readily fit inside of the pore windows of adjacent cages but would 

pack well with itself. The hope then was that this would provide crystal structures which 

could be easily dissolved, however, this did not work as anticipated. The chromous 

acetate is not appreciably soluble in DEET at room temperature at the concentrations 

typically employed in these syntheses. Instead once the solution is saturated a thick gel-

like layer forms at the bottom of the container it is being mixed in. Thus room 

temperature syntheses were not successful for either chromium or copper. Crystals were 

found in the copper samples but were found to be recrystallized copper acetate and 
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unreacted ligand. In most cases where a reaction was observed at room temperature or 

85 °C only gels were obtained. However, at elevated temperatures it was found that in 

certain cases no precipitate formed at temperature or even upon cooling. This was 

especially true utilizing the methyl ligand which for copper yielded a deep blue solution. 

 

 

Figure 39 Amide based solvents commonly used in MOP and MOF synthesis 

compared to DEET 

 

 

Attempts to generate crystals via addition of precipitating solvents (water, acetonitrile, 

diethylether) from this stock solution were unsuccessful producing either no observable 

reaction besides dilution, more gels, cloudy precipitates and colloidal suspensions which 

remain suspended for weeks to months. Taking crystals of Cr-4 that had been solvent 

exchanged with DMF for 1 day and adding DEET with subsequent stirring dissolved and 

formed a solution that showed no precipitate over six months. Similar to the copper cage 

no crystals were able to be grown from this solution. This however did present an 

opportunity to take UV-Vis measurements of a dichromium cage for the first time. 

While it would have been possible to take UV-VIS during synthesis due to the quick 

formation of the cages the presence of residual acetate, and any resulting equilibrium, 

would have complicated the spectra. The washing step allowed removal of excess 
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acetate that may have remained from the synthesis. Comparing the spectra of Cr-5 and 

chromous acetate in DEET shows some similarities and differences (Figure 40).  

 

 

Figure 40 UV-Visible spectrum of Cr-4 (purple) dissolved in DEET and chromous 

acetate (yellow) in DEET 

 

 

Chromium(II) acetate shows a peak at 330 nm but due and another broad peak centered 

at 524 nm closely matching reported values. In comparison the ~330 nm peak for cage 

Cr-4 cannot be interpreted due to saturation of the detector. The rise of a peak at 424 nm 

and a broad feature centered at 512 nm are also apparent for the cage. The acetate in 

DEET has similar absorbances as the two features reported for chromium acetate 

monohydrate of 476 nm and 333 nm.147 The differences may arise due to the DEET 
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coordination of the paddlewheel. The additional peak for the cage may arise from the 

presences of an aryl ligand and the bridging nature of the ligand. The few chromium(II) 

carboxylate paddlewheels synthesized with aryl ligands do not report electronic spectra 

so there is not much literature for comparison.116, 148-149 In reevaluating the literature and 

specifically the previously discussed report of a non-axially coordinated chromium(II) 

carboxylate paddle wheel, in the writing of this dissertation the solubility of that 

compound stood out. The triisopropylbenzoic acid ligands (Figure 23) and the bulk they 

provided enabled the compound to be soluble in non-polar solutions. The idea that the 

tert-Butyl groups on Cr-2 might enable a similar solubility emerged. Taking a sample of 

already activated Cr-2, 61 mg, and adding 10 mL of toluene gave a cloudy yellow 

solution. Centrifugation of this solution gave a mostly clear yellow-orange solution with 

a fine brown solid as shown in Figure 41. This was encouraging as the cage as 

synthesized and generally all other carboxylate bridged Cr(II) paddle wheels are brick 

Figure 41 Cr-2 after activation in toluene (left) and 

after oxidation by air (right) 
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red to dark purple in color. However the previously reported unaxially coordinated 

species was orange-yellow. This also presented the opportunity to obtain the second 

reported UV-Vis spectrum of a potentially unaxially coordinated chromium carboxylate 

paddle wheel. The UV-Vis spectra of activated Cr-2 in toluene and with the additions of 

acetonitrile and triphenylphosphine are shown in  Figure 42. 

 

 Figure 42 UV-Visible spectrum of Cr-2 in toluene (Purple), Cr-2 in toluene + 

acetonitrile (red), Cr-2 in toluene + triphenylphosphine (green) 

 

 

The same broad peak present in Cr-4 is seen for all three samples however the as dissolved 

Cr-2 and the acetonitrile added sample show two new features in the area of ~430 to 450 
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nM. The peaks for Cr-2 in toluene are 427 nm and 452 nm almost identical to the 453 nm 

and 423 nm peaks reported for the unaxially coordinated paddle wheel previously.104 

 

The acetonitrile added sample approaches that seen of Cr-4 in DEET indicating 

coordination of the axial positions. This spectrum was taken after only several minutes 

of sitting and thus may not reflect a fully equilibrated sample. Triphenyl phosphine was 

selected as a dopant as its larger size might have prevented diffusion into the pores and it 

can be see than it still maintains two peaks at approximately 330 nm and 360 nm. This 

data is highly preliminary and attribution of these peaks to specific transitions is made 

here. To ensure that oxidation was not causing the shifts the samples were opened to air 

and air was forced through them by a pipette until no further color change could be 

detected Figure 43. As can be seen in the figure above oxidation greatly reduces the 

uptake of any peaks at 330 nm and a new peak at ~585 nm is observed in all three 

samples. This peak is diagnostic of the oxidation of the chromous acetate and is not seen 

in the previous spectra indicating that oxidation, if occurring, is not what is being 

observed. Cr-4 still shows some absorption at 330 nm which may be due to a secondary  

 

product or due to the higher viscosity and nature of the cage preventing full oxidation in 

the time between collecting data. Additionally while both samples in DEET remain in 

solution the sample in toluene precipitates as a fluffy green material. This is attributed to 

the poor solvating effect toluene would have for the oxidized chromium species. In the 

absence of other ligands the decomposed cages likely aggregate. This is further evidence  
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Figure 43 UV-VIS spectrum of oxidized chromium species Cr-2 in Tol (Blue), Cr-4 

in DEET (red), and chromium(II) acetate dihydrate (Orange) 

 

 

for the proposed hypothesis that the molecular nature of these cages is why they are not 

as stable to oxygen binding as other 3-D systems. While the data presented here is very 

preliminary the ability to observed and potentially isolate the unaxially solvated cages is 

an opportunity to access a previously undeveloped area of chemistry. 
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4.3 Future Work 

 

4.3.1 Control of cage packing through solvent size analysis 

 

Based on the observations in this dissertation of the inter-cage interactions that drive 

packing in porous MOP materials there should be a systematic study completed utilizing 

a variety of solvents with various steric properties to develop a practical methodology 

for predicting cage packing and orientation. While the insights provided here give 

direction future work should consider the quantification of packing effects through 

computational and experimental methods. This will enable the creation of a set of crystal 

engineering rules on which researchers can consistently rely. This could be 

accomplished by screening solvents, functional group size and identity, temperatures, 

and several different metals and then comparing the resulting crystal structures. Through 

a combination of high-throughput computation and high-throughput automated synthetic 

methods these samples could be readily collected and analyzed for property-function 

relationships for each piece of the design puzzle. 

 

Through such a study it may also be possible to identify the dividing line between 

extended structure stability and pore stability in the copper systems. By carefully 

controlling the inter-cage interaction strength, and tuning functionality such that solvent 

plays a less involved role in packing, generation of highly porous copper MOP based 

materials may be realized. 
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4.3.2 Control of uncoordinated cage packing through functional group control 

 

Through the discovery that the activated cages can potentially be accessed post-synthesis 

through solution chemistry a new series of highly-reactive coordination structures is now 

accessible. Further work should seek to isolate and crystalize these cages which, could 

then be activated under less strenuous conditions. This gives the potential to have these 

materials activated without structural aggregation. The use of larger functional groups 

and non-coordinating solvents will be required to prevent further aggregation. Once 

these cages are isolated a new series of compounds can be generated by creating 

asymmetrically coordinated paddle wheels through ligand size control. The use of large 

ligands would limit coordination to only the exo-position of the cages leaving the 

internal position open and potentially more reactive. This can be applied to the 

chromium cages for investigation in improving interactions with gases such as methane 

and hydrogen. The synthesis of the V(II) analogs may provide even stronger 

interactions. It may even be possible to use these systems as porous liquids through 

control of solvent size and solubility. 

 

Perhaps even more interesting is that this may be applied to other metals such as 

rhodium and ruthenium paddle wheels. The generation of asymmetric ligation as well as 

size exclusion properties of these cages may enable new catalytic activities from readily 

synthesized MOPs.  
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4.4 Experimental 

 

4.4.1 Instrumentation and Materials 

4.4.1.1 Instrumentation 

 

UV-Vis was measured on a Shimadzu spectrometer from 330-1100 nm at the fast scan 

setting. 

 

4.4.1.2 Chemicals 

 

All chemicals were used as received. Solvents were purchased from EMD-milipore and 

were dried and degassed prior to use. 5-methylisophthalic and sodium 5-isophthalica 

acid sulfonate were purchased from Sigma-Aldrich and 5-hydroxyisophthalic acid, 5-

aminoisophthalic acid, and 5-nitroisophthalic acid were purchased from TCI. 

 

4.4.2 Synthesis 

 

4.4.2.1 Chromium(II) acetate monohydrate 

 

Was synthesized according to the procedure in Chapter III 
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4.4.2.2 Cr-1,2,3,4 

 

Crystals of crystallographic quality of MOPs Cr 1-4 were synthesized according to the 

procedures in Chapter III 

 

4.4.2.3 Cr-5Rhom 

 

Cr-5rhom was prepared in an analogous manner to the other chromium(II) MOP materials. 

200mg of Cr2(OAc)4·2H2O and 200 mg of 5-hydroxyisophthalic acid were dissolved in 

DMF and stirred for 10 minutes in a 20 mL scintillation vial. This solution was allowed 

to sit for two days over which time highly twinned deep purple/red  rod shaped crystals 

up to 3mm in length of the product were formed.  

 

4.4.2.4 Cr-5Tet 

 

Cr-5Tet was prepared in an analogous manner to the other chromium(II) MOP materials. 

200mg of Cr2(OAc)4·2H2O and 200 mg of 5-hydroxyisophthalic acid were dissolved in 

DMA and stirred for 10 minutes in a 20 mL scintillation vial. The vial was tightly 

capped and removed from the glovebox then placed in an oven at 85 °C. This solution 

was allowed to sit for two days over which time large purple octahedral shaped crystals 

of the product were formed. While consistent control of crystal size was difficult 

occasionally crystals over 1mm on an edge were obtained in this manner. 
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4.4.2.5 Other ligand screening 

 

For the amino, nitro, and sodium sulfonate functionalized ligands crystal growth was 

screened through conditions of 8-15 mg/mL of ligand and 10-20 mg/mL of either cupric 

or chromous acetate at room temperature, 65 °C, and 85 °C in DMF, DMA, and DEET. 

The nitro ligand yielded blue gels within minutes under all conditions indicating that the 

ligand was oxidizing the chromium. The molybdenum version of this cage is known 

however. Under pure solvent conditions single crystals of x-ray quality were never 

achieved. Several of the copper reactions had what appeared to be crystals but they 

decomposed on the synchrotron beamline and no data was successfully collected locally. 

 

4.4.3 Uv-Vis Characterization 

 

4.4.3.1 UV-Visible spectrum of chromium(II) acetate and Cr-4 in DEET 

 

To prepare a dilute enough sample 0.1 ml of saturated chromous acetate in DEET was 

added to five ml of DEET to dilute. The cage solution was prepared by dissolving the 

products of one vial of Cr-4 in 10 mL of DEET. 1 ml of this solution was added to 2 ml 

of neat DEET for the UV-Vis measurements. The oxidized spectra were collected after 

removing the septum and forcing air through the solution in the cuvette via a pipette 

until no further color change could be detected. 
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4.4.3.2 UV-Visible spectrum of Cr-2 and its solvent adducts in toluene 

 

To prepare a solution for UV-Vis measurements 61 mg of activated Cr-2, which had a 

slight discoloration after several months in the glovebox, was added to a vial along with 

10 ml of dry toluene. Given the timeline of the realization that this experiment could be 

performed this was the only sample available for analysis prior to completion of this 

dissertation. This solution was stirred overnight giving a cloudy yellow solution then 

removed from the box and centrifuged giving a clear yellow solution. This was then 

placed back in the glovebox to prepare the samples. For the cage itself 1 ml of the 

prepared solution was added to the cuvette along with 2 ml of dry toluene. For the 

acetonitrile adduct .14 ml of acetonitrile was added to the solution through the septum of 

the cuvette. The oxidized spectrum for this sample was collected after removing the 

septum and forcing air through the solution in the cuvette via a pipette until no further 

color change could be detected. The PPh3 adduct solution was made the night before the 

measurement by taking 1 ml of the mother solution and adding an excess of PPh3 

allowing it to sit. This was diluted using 2 ml of neat toluene. Dilution with either 

heptane or chlorobenzene caused some precipitation but no crystal formation was 

observed. 
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CHAPTER V  

CONCLUSIONS 

 

5.1 Porous Polymers in Carbon Capture 

 

The research presented here shows that new routes towards porous materials for carbon 

capture are an active area of study with many avenues to investigate. The benzimidazole 

porous polymer PPN-1 showed initial promise in carbon capture applications but more 

recent investigations and a better understanding of the scope has led me to believe that it 

was never as competitive as it was originally purported to be. While it was competitive 

in the chemical literature the original study did not consider the current practical 

conditions under which such systems operate. This was typical in the literature at the 

time but as the field has broadened an appreciation for the engineering challenges and 

requirements for such systems has been impressed upon the materials science discipline. 

As such the investigation of systems with alkyl amines appended or structurally included 

within the backbone remain the best class of materials for such research. There also 

remains a lag between what systems engineers are designing as next generation systems 

and what materials scientists are designing and next generation sorbents. Over my 

studies it has become obvious that this gap, while lessened, still exists to a significant 

degree and serves as a major impediment to transformational changes in these 

technologies. Federal funders have taken note and now require more applied components 

to new sorbent research systems. This is a positive trend and should it continue new 
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transformational sorbent systems should appear within the literature in the next few 

years and hopefully in power plants within the next fifteen. 

 

5.2 Metal-Organic Polyhedra as Porous Materials 

 

The continued activity in the study of Metal-Organic Polyhedra is a sign of a bevy of 

advancements to come. However, accessing these materials as solid sorbents still has 

much room to grow. The chromium MOPs discussed in this these advance that area of 

study in two ways. First they demonstrate that larger architectures constructed from 

coordination bonds can maintain porosity even under more extreme conditions. Secondly 

their inherent stability allows for the study of the other structural factors that are 

normally occluded by instability in the copper(II) examples that dominate the literature. 

The work that needs to be accomplished here is to take a few steps back from the gas 

adsorption and take a more holistic view of the synthesis of these materials. The focus 

on the individual cages has previously limited accessibility of porosity in these systems 

as the long-rang ordering was not being controlled. If such materials are going to be 

viewed the same as other extended coordination structures like MOFs and zeolites then 

the forces that hold them together can no longer be taken for granted. Though works 

have tried to account for these factors they are often looking at other applications than 

gas sorption.107  
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The realization that the non-axially coordinated cages are accessible through solvation 

opens up an even broader range of possibilities. While this behavior has been observed 

in these chromium systems the extension of this to the rhodium, molybdenum, and 

ruthenium systems may allow for new chemistries to be identified. Taking advantage of 

the structural control over the cages new size and shape selective host-guest systems 

may be devised to observe previously unobservable phenomena. While the failures to 

obtain a broader range of materials in the course of this work is unfortunate the 

observations that could be made from those that were successful and those that weren’t 

provides a path forward to obtaining new materials in a more facile manner. 

 

To achieve such results researchers must consider the cage topology, size of windows or 

clefts in the cage surface and how these compare to ligand functionalities and solvents. If 

solvent is similar in size to cage windows it will likely rest there if it is too large then 

functional groups might rest in the windows. If both are large then the cages align at the 

functional groups, such as in the TEI, MOPs. By preselecting solvent size or including 

competing ligands/molecules it may be possible to control material phase. 

 

The work in chapters II and III is in many ways preliminary but without analyzing the 

current set of results further progress had been stymied. Future work in this area is open 

to a number of possibilities and with the considerations made here hopefully new 

experiments can be developed to take full advantage of metal-organic polyhedra with 
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full synthetic design from metal and ligand choice to cage topology and ultimately to the 

control of the three-dimensional arrangement of the cages. 
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