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ABSTRACT

Field development workflows consist of production optimization and data assimilation

procedures that require running large number of reservoir simulations for fine scale models.

Recent advancements in parallel computing and accelerated solvers have reduced simulation

times for such high-fidelity models, however, repeated simulations and underlying complex

non-linearities involved in multiphase and multicomponent models still remain a bottleneck.

This computational challenge has motivated the development of Model Order Reduction

(MOR) techniques which provide low dimensional representation of high-fidelity models and

thus provide significant computational savings with the efforts to preserve the accuracy of

simulation outputs. The aim of my research is to develop projection based MOR workflows

for optimization problems in closed loop field development procedure, which include well

control optimization and well placement optimization. We pose the problem formulation

as Parametric Model Order Reduction (PMOR) that allows for taking into consideration a

system parameter for each optimization problem considered. For developing Reduced Order

Models (ROMs) for such problems, we use projection based Proper Orthogonal Decompo-

sition (POD) which enables representation of reservoir state variables in terms of highly

reduced set of variables.

First part of the research is based on developing ROMs for well control optimization

problem, where we look for the optimal strategy to control the wells settings. Here we use

DEIM in addition to POD for quick evaluation of non-linear functions. We introduce a

novel training procedure for global ROM during control optimization, which proved to give

accurate results when compared to optimization using fine scale simulations. We test the

performance of POD-DEIM for different optimization parameterization methods like poly-

nomial and piecewise polynomial approximations on a waterflooding scenario. Polynomial

approximation of BHP control served as good training sets for POD-DEIM with the training
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strategy proposed leading to accurate and fast reduced model.

The second part of my research, which is a major contribution of my work, is based on

developing ROMs for changing well locations during well placement optimization problem.

Here, we do not employ proposed MOR on well location optimization problem, rather develop

MOR strategies as a precursor to be used for well location optimization in future. Projection

based reduced order modeling methodologies for well control optimization have reached a

good level of maturity, however, MOR development for changing well configurations, is

unexplored. We first propose error based local PMOR for new well location using a Machine

Learning (ML) framework with POD. ML algorithms like Neural Networks and Random

Forests help us predict the ROM error that eventually will choose appropriate basis at a

new well location from previously computed reduced models. We introduce geometry based

features and physics based flow diagnostics features to train ML models.

In efforts to tackle the issues with local PMOR technique proposed, we introduce a

novel global non-intrusive PMOR technique based on machine learning. The idea here is to

represent the entire parameter space of well location by a single global ROB and then using

ML model to establish a relation between the input well location information and the POD

basis coefficients of each state. We then also formulate the error correction model based on

the reduced model solution, to account for solution discrepancies. The proposed method,

that can make use of parallel resources efficiently, shows promising results on waterflooding

case studies in predicting various quantities of interest (QoI) at new well locations such as

oil production rates and water cut, and showed significant speedups of one to two orders of

magnitude for the test cases.
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1. INTRODUCTION AND LITERATURE REVIEW

My research is an amalgamation of petroleum engineering, applied mathematics and

machine learning. The main idea of this work is to reduce the time complexity involved

in the oil and gas field development decision making. A majority of time is invested in the

simulation of complex fine scale reservoir models during the field development process. Thus,

I propose to develop lower complexity models using the concepts from linear algebra and

machine learning. This will eventually help reduce the cycle times for project evaluations

without losing accuracy at reduced costs. In the future, it will also facilitate in applying

these methods to explore problems that were otherwise unexplored by the industry due to

the time constraint.

1.1 Background

Oil and gas industry is considered to be the biggest industry in terms of dollar value,

catering to the needs of a large number of sectors such as manufacturing, transportation,

medical, leisure etc. The demand for fossil fuels continues to rise, as it supports the majority

of global energy needs. According to the U.S. Energy Information Administration’s Annual

Energy Outlook (AEO) [1], hydrocarbons (oil and gas) will still dominate energy supplies in

2050, shown in Figure 1.1.

The U.S. crude oil production has doubled since 2010 and by 2025 it is expected to

increase 160% above the 2010 level. AEO2019 projects that the U.S. will export more energy

than it imports in 2020. The primary reason for this is the production from unconventional

reservoir (e.g., shale formations). However, the success of meeting the production targets

and the world demand depends on the efficiency of reservoir management and the quality of

subsurface information. Thus, it is the role of petroleum engineers to understand the physics

of subsurface flow and make better field development decisions.

One of the areas heavily invested by the industry, that focuses on predicting flow of fluids
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Figure 1.1: The U.S EIA prediction of energy consumption by fuel (reprinted from [1])

(typically oil, water and gas) in the subsurface porous media, is reservoir simulation. They

rely on solving numerical partial differential equations that are deemed representative of flow

physics in the reservoirs. These equations are solved for large geological reservoir models

that represent the physical space and properties of the reservoir. Reservoir simulation assists

in getting important information such as oil and gas production forecast, optimization of

parameters to increase the value of the projects like number of wells required to drill, optimal

completion of wells, updating reservoir model given the past data etc.

In efforts to improve the field management decisions a workflow was proposed in [2],

called Closed Loop Reservoir Management (CLRM). CLRM is a combination of model-

based optimization and data assimilation that aims at maximizing the performance of the

reservoir. The improvement metric can either be percentage oil recovery or financial measures

like Net Present Value (NPV), over the life of the reservoir by changing reservoir management

from periodic to a near-continuous process. The workflow of CLRM involves well control
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optimization based on the current geological knowledge, using these settings to collect data

for some time period and finally performing history matching to integrate this data to update

the geological models for consistency with observed data.

Figure 1.2: Key elements of the closed-loop reservoir management process

Figure 1.2 shows key elements involved in the CLRM workflow. System corresponds

to the actual reservoir or well and system models represent the geological or well models

that are constructed based on current knowledge. Multiple models are usually considered as

system models to account for uncertainty in our knowledge of the subsurface. Optimization

algorithms on the system models determine optimal control strategies of the wells for actual

system and the output of the system like fluid production rates are observed by sensors in

the field. Observed data from sensors are used to update the current models using data

assimilation algorithms. This process is referred to as History Matching. These new system

models are then used to design new input parameters using optimization algorithms. This

process is repeated several times during the course of field development.
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However, for CLRM, only the well controls (bottom hole pressure (BHP) or well injection

rates) are considered as inputs to be optimized for the system during each stage of the

cycle. Closed Loop Field Development (CLFD) which is an extension to CLRM, involves

optimization of well number, type, location, and controls based on the current geological

knowledge (system models) for inputs to the system. Then, sequentially new wells are

drilled and data is collected which is used for history matching step to update geological

information. This procedure is repeated until the optimal number of wells are drilled. These

workflows like CLRM and CLFD, repeated during the development of reservoir, can help

make better reservoir management decisions than the heuristic approaches.

The optimization and history matching steps in each of these workflows require repeated

fine scale reservoir simulation runs, which corresponds to solving a discretized parametric

PDE which is time dependent and highly non-linear in nature. And since the process is

repeated several times during the development phase, accurate high-fidelity computational

models can incur substantial computational costs. To avoid this bottle neck of costly eval-

uations, researchers have developed various surrogate modeling techniques that are approx-

imations of high-fidelity models, which aim to provide large computational savings while

preserving the accuracy.

The main approaches to surrogate model construction are based on upscaling or grid

coarsening, data-driven methods, reduced physics models and reduced-order models (ROMs),

as shown in Figure 1.3. Assumption of spatial homogeneity and grid coarsening attempt

to reduce computational burden of the high-fidelity models by neglecting some physics or

coarsening the mesh size [3, 4]. Reduced physics models try to approximate the physics to

large extent that it compromises with the accuracy of the model [5]. Data-driven models

that are non-intrusive in nature are based on supervised machine learning techniques to

predict the input-output relationship of the models [6, 7]. Since, the data-driven methods

do not take into consideration the underlying physics, they are usually less robust. They

require a large amount of data for good accuracy but this is limiting in many engineering
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Figure 1.3: Hybrid Modeling Methods

applications. While ROMs are intrusive or non-intrusive projection-based methods that do

not approximate the physics and rely on reducing the dimensionality of the state-space of

fine scale models [8, 9], they are usually computationally cheaper than coarsened models and

more robust than the data-driven models. Thus, for this research, we focus on developing

model order reduction strategies for integrated workflows like CLRM and CLFD that can

be used specifically for various optimization problems.

1.2 Literature Review

1.2.1 Model Order Reduction

High CPU burden is incurred from high fidelity simulations as result of large degrees

of freedom obtained by spatial discretization of PDEs. Model order reduction (MOR) is a

technique to extract dominant dynamic modes of the model. It captures the essential spatial

or spatio-temporal characteristics of the underlying dynamics that can later be used for

cheap forward simulations. The approach is to approximate a high dimensional state space

5



model to a lower dimension model with much smaller degrees of freedom that has the same

response characteristics as the original system and computationally faster to simulate. Thus,

Reduced Order Models (ROMs) show a potential of being operated in near real time. ROMs

can be classified into two major categories namely intrusive and non-intrusive methods.

Intrusive methods require modifications in the source code of the simulator used, whereas,

non-intrusive methods do not require access to the simulator and hence can be used with

any commercial simulators where accessing the source code is difficult.

A widely used approach to yield ROMs is Galerkin projection. In ROMs, the projection

basis can be obtained through balanced truncation [10], Krylov subspaces [11], reduced basis

method [12] or proper orthogonal decomposition (POD) [9]. Galerkin projection uses the

same state projection basis and test basis, which when applied to the original equations

(strong or a weak form) or on the spatially discretized system, yields a low-dimensional alge-

braic system for steady problems or an ordinary differential equation (ODE) system in time

for dynamical problems. The most widely used technique for PDE systems is POD, in which

we generate the solutions from discretized full-order model at selected time instances (snap-

shots) to get the approximating subspace (spatial modes). POD provides computational

advantage at the linear solver level. Non-intrusive projection based MOR method includes

methods like dynamic mode decomposition which captures spatio-temporal modes of the

dynamical system [13, 14] and capacitance-resistance model [5]. ROMs have been applied

in various applications including aerodynamics [15, 16], semiconductors [17], electrochemical

[18], electrothermal [19] etc. In the Oil and Gas industry, MOR, especially using POD-based

techniques, has shown to be a viable way of mitigating the large-scale nature of the reservoir

simulation models by preserving the accuracy and accelerate the computations in some of

the subsurface applications. The concept of MOR for reservoir simulation applications is

shown in Figure 1.4. For most engineering applications, the major problem lies in building

ROMs for design optimization, control and uncertainty quantification etc., where they lack

robustness with respect to parameter variations. This is a major limitation since it allows
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the use of ROM at only the parameter value at which it is computed.

Figure 1.4: Model Order Reduction concept for reservoir simulation models (reprinted from
[20])

My research here focuses on a class of problems for which the reservoir simulation equa-

tions representing the dynamics of reservoir depend on a set of parameters, and the goal is to

characterize system response for different value of parameters. These parameters may enter

the models in many ways, representing, for example, reservoir properties, well geometry,

initial conditions, and boundary conditions. For my research, these set of parameters corre-

spond to changing boundary conditions of the system i.e., well controls and well locations,

for well control optimization and well placement optimization problems respectively. This

parametric dependence presents a unique set of challenges for model reduction. In order to

build a reduced order model for a new set of parameters, it is required to run an expensive

full model again and thus becomes infeasible. Hence, the desired approach is to generate a

reduced model or models, that approximate the original full-order dynamical system with

high fidelity over a range of parameters. This is the goal of parametric model order reduction

(PMOR), which is our area of focus for both the problems considered. We use POD-based
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methods for both, changing well control and changing well placement problems.

PMOR methodology is pictorially shown in Figure 1.5, which involves offline construction

of a database D of representative parameters and then using this database to compute

local/global ROM or ROB using POD for a new parameter in the online stage [21].

Figure 1.5: PMOR methodology where the offline stage computes fine scale simulations at
sample points in database and ROMs or ROBs are constructed, and in the online stage,
solutions are predicted at a new parameter ζ∗ based on the information from offline stage

(adapted from [21])

However, a number of challenges are associated with application of POD to dynamic,

non-linear parametrized PDEs which mainly include (1) constructing a basis that is accurate

across parameter space, (2) limited data availability, (3) high-dimensional parameter spaces,

and (4) efficient construction of reduced-order non-linear functions of the state variables for

different parameters. These challenges have been addressed across many engineering domain

applications for building reduced order models or reduced order basis (ROBs) for parametric

systems. The main approaches include (1) using a global ROM constructed offline that is

meant to be robust in the entire parameter space, (2) using database of local reduced models

or basis and then quickly interpolating the ROBs or ROMs at the unknown parameters of

interest, and (3) approximating the snapshot matrices at new parameter points.
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1.2.2 Model Order Reduction Background for Well Control Optimization

The goal of well control optimization problem is to seek for optimal BHP schedule of the

wells that maximizes an objective function like financial gain of a project or maximizing the

recovery from a field. This process of finding an optimal solution usually requires hundreds

to thousands of fine scale simulation runs depending on the size of the reservoir. In order

to tackle this problem of a computationally expensive strategy, initial work in reduced order

modeling was applied in the oil and gas industry for the well-control optimization problem

using POD [22, 23]. Since POD projects the state-space solution to a subspace of much

lower dimension, it achieves a significant speedup in solving system of equations. Solution

at any time during forward simulation can then be estimated by a linear combination of

the POD basis. When POD is applied to a non-linear problem, evaluation of the non-linear

terms requires to project back to the fine scale solution with similar computational cost as

the original system. However, there is not much speed-up reported by using POD since it

only targets the linear solver. Full Jacobian and residual matrices are still computed during

each iteration in simulator.

In order to overcome this limitation of POD, other techniques were developed for fast com-

putation of non-linear terms in the reservoir simulator. One such technique developed was

TPWL applied in conjunction with POD for production optimization [24]. Before subsurface

application, POD-TPWL was applied in other areas where it showed significant speed-ups

[25, 26, 27, 28]. The idea of TPWL for production optimization application is to save the

pressure and saturation states and Jacobian matrices generated during a few training runs

to predict new solutions. This is accomplished by linearizing the states around previously

saved states using Taylor series expansions. Computational speed-ups of the O(102 − 103)

in the online testing stage were shown in [29, 24] . Thus, TPWL provides computational

benefit in quickly predicting the non-linear Jacobian and residual and POD provides ad-

vantage at the linear solver level. However, due to linearization, many non-linear terms

are not approximated accurately and thus lead to loss of accuracy and instabilities in the
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final solution. This method also requires saving a large number of states and huge Jacobian

matrices which demands a lot of hardware capability even for small sized problems. Later,

TPWL was extended to include the quadratic terms for more accurate representation of non-

linear functions and thus called Trajectory Piecewise Quadratic (TPWQ) method [30]. This

method proved to be more accurate as compared to TPWL but the overhead time increases

significantly because it involves third-order matrix-tensor products. It showed potential as a

good error indicator for TPWL method during production optimization. A machine learning

based framework for surrogate model error prediction was proposed which was implemented

for POD-TPWL application on reservoir waterfloooding example [31].

The method used for my research to reduce the cost associated with non-linear func-

tion computations in well control optimization problem is Discrete Empirical Interpolation

Method (DEIM) [32]. This method is a variant of Empirical Interpolation Method (EIM)

that aims at reducing the dimensions of discretized parametric PDEs by computing the non-

linear terms at discrete locations in the spatial domain and then interpolating them to the

rest of the locations using projection based interpolation. This helps prevent projecting back

to the fine scale to evaluate non-linearities. The method DEIM uses to select the locations

at which to compute the non-linear functions is based on a greedy algorithm. It differs from

the method used in Missing Point Estimation (MPE) method [23] which is just based on

POD basis. Whereas, DEIM uses different POD basis for states and the non-linear terms.

POD-DEIM has been widely used across different engineering domains [33, 34, 35, 20]. Lo-

calized DEIM was introduced in [36, 37] using concepts in Machine Learning, that computes

several local subspaces, tailored to a particular region of characteristic system behavior.

Higher accuracies can be obtained by using POD-DEIM since DEIM evaluates non-linear

terms at specific locations, and then interpolate these terms at other locations. However,

less speed-ups have been reported for POD-DEIM as compared to POD-TPWL as a result of

linearization performed in the latter and it is also more invasive with respect to the simulator

as compared to POD-TPWL. Moreover, POD-DEIM still lacks a successful implementation
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on a full well control optimization procedure which is the main idea of a part of my work

here. Other methods were later implemented for this application of changing well controls,

such as, POD - Trajectory based DEIM (TDEIM) [38] which is a combination of TPWL

and DEIM techniques to utilize their benefits and avoid their shortcomings; bilinear approx-

imation and quadratic bilinear formulation [39, 40] and Gauss-Newton with Approximated

Tensors (GNAT) method [41].

In this research work, we use the strategy of global PMOR when using POD-DEIM for

well control optimization problem, where we construct a global reduced basis for the en-

tire parameter domain corresponding to the BHP profiles of the wells. This global basis is

obtained by concatenating the snapshot matrices corresponding to different representative

system parameters (BHP profiles in this case). The case of multiple training and retraining

for global basis construction in the context of well control optimization can be found in

[42, 38]. However, designing a good training set for the entire control optimization has still

been a challenge, which is tried to address in this work. For a global basis, the parame-

ters that are representative of the parameter domain are chosen a priori or using adaptive

greedy algorithms [43]. The a priori sampling of parameters is fast but can include unneces-

sary samples or miss important samples. The adaptive sampling strategy is more accurate

but computationally expensive as it needs repeated evaluations to look for parameters that

produce the maximum ROM error. We introduce a novel training procedure during the

optimization run to obtain a global ROB (Reduced Order Basis) which will be explained in

detail later.

1.2.3 Model Order Reduction Background for Well Placement Optimization

Well location optimization in the context of surrogate or low complexity models have

been developed in [44, 45]. However, until now, for projection based reduced order models,

the focus mainly has been developing them for well control optimization problem to the best

of our knowledge. But these ROM workflows were not meant for integrated schemes like

Closed Loop Field Development which involve changing reservoir or well configurations. So
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here in the second part of research, our focus is to address this issue specifically developing

Reduced Modeling strategies for changing well locations during well location optimization

problem.

The choice of MOR technique for this problem is POD. As discussed before, there are

a number of challenges associated with POD for changing system parameters. Considering

the complexity and after some observations for the changing well locations, we propose local

and global PMOR techniques for developing ROMs. Researchers from other communities

have developed various strategies for local parametric ROM construction. One approach to

construct ROMs/ROBs for different parameters, is to get a database of local ROMs, ROBs

or snapshot matrices at different parameters offline and then, interpolate these matrices in

the online stage, computed cheaply. [46] applied a ROM adaptation technique for a new

parameter for Linear Time Invariant (LTI) systems based on interpolation of local ROMs

in a tangent space to a Grassmann manifold. Similarly, ROBs for flight parameters are

interpolated in the tangent space in [47].The challenges here are construction of database

that still requires large number fine scale simulations, choosing representative parameters for

ROB and ROM interpolation for high dimensional parameter space and its limitation to LTI

system application. MOR for dynamic linear and non-linear PDEs was proposed in [48], that

uses manifold learning techniques to interpolate the snapshots evaluated at different param-

eters. Thus, as opposed to the global basis, these interpolation methods to get a ROB/ROM

for new parameter are not obtained directly from the underlying model. They try to get

accurate reduced basis or models during the online phase with much lower dimensions as

compared to global method. The accuracy however depends on the interpolating techniques

used. These methods have been employed for parameters of lower dimensional space.

Other ROM approaches were based on error estimates of the ROM. ROM error surrogate

(ROMES) [49] aimed at developing kriging error model of ROMs as a function of error

indicators like rigorous error bounds and reduced-order residual norms. The multi-fidelity

correction (MFC) models [50, 51] were developed for lower fidelity models in context of
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optimization that predicts the model error given the system parameters. Both ROMES and

MFCmethods use a global reduced-order model with a fixed basis dimension as the inputs. In

[52], an error based framework to predict the characteristics of the local parametric reduced

order models was developed called multivariate prediction of local reduced order models

(MP-LROM). It consists of mapping the parameters of the system and dimensions of the

ROM to ROM error. All these methods take advantage of concepts in Machine Learning

(ML) to build the complex input-output relations. Our first methodology here is based on

the observations that a dictionary of local reduced order basis at a few well locations may

be sufficient to describe the dynamics for the entire domain of parameters (well locations

in our case). The workflow relies on prediction of time averaged ROM errors at different

production well locations (error maps) using ML algorithms for each of the local ROB which

is an extension of work carried out in [52].

For complex non-linear problems with non-affine parameter dependence, as mentioned

before, direct (simulator invasive) use of POD do not provide major computational advan-

tage. This is because of the cost to compute projection coefficients of the non-linear functions

that depend on the dimension of high fidelity model. As the dimension of a system increases,

the computational advantage of using pure POD method decreases. Thus other techniques

were developed in conjunction with POD method as described in the MOR for well con-

trol literature review. Other alternative methods were also developed that still uses pure

POD implementation, but the coefficients are not obtained by projection process, rather

by interpolation over the parameter domain of reduced order basis [53]. Since ROBs be-

long to non-linear matrix manifolds, standard interpolation techniques cannot be applied as

they would not preserve the characteristics of the ROBs, unless a large number of samples

are used [54, 46]. To overcome this issue, researchers have developed ROB method using

POD and then employed Machine Learning techniques to interpolate the basis coefficients.

[55] developed POD-NN where he used Neural Networks (NN) for high dimensional coeffi-

cient prediction. [56] compared performance of different ML techniques to predict the basis
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coefficients for an aerodynamic and a structural problem. It considered the use of partic-

ular solutions in the POD expansion as a way to embed physical constraints that must be

preserved during coefficient prediction. These methods however, did not consider the time-

dependent problems. Such a non-intrusive ROM scheme have been applied here for changing

well locations which is highly non-linear in nature and also involves time dependency. The

proposed method is based on global ROB for the entire parameter domain.

1.3 Scope of Work

The two main objectives of this work are the development of a POD-DEIM workflow

when integrated with a production control optimization problem and development of a ROM

method for changing well placement during well location optimization problem, to facilitate

in filling the gap of fast simulations using projection based ROM in the field development

optimization procedures. Figure 1.6 shows the main contributions of this work where, the

blue path shows research direction with green boxes being the areas focused on and the

red path is yet to be developed in the context of MOR. We note here that, for the current

work, we look for developing reduced models for changing well locations as a precursor

to well location optimization. We do not employ the proposed methods on well location

optimization problem in this work. Following are the main contributions that are addressed

in this research work:

• We first introduce a new control optimization procedure that takes into account the

polynomial control parameterization. POD-DEIM which was introduced for changing

well control strategy [20] did not apply it to a full production optimization problem.

Thus, we use the new production control parameterization strategy and apply global

PMOR using POD-DEIM workflow for a full production control optimization problem

to assess its performance as compared to when used with traditional control param-

eterization. The global ROB is constructed that takes advantage of the global-local

optimization procedures used.
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Figure 1.6: Scope of Work. Green boxes are the area of focus.

• Next part of the research is the major focus of my work, i.e. development of MOR

methodology for changing well locations that has not been developed yet. We first

develop a POD-based local parametric reduced modeling strategy with the aim at

running a minimum number of fine scale simulations and still construct reduced order

basis over the domain of parameters. We use concepts from flow diagnostics and

develop a machine learning framework that estimates the error of a reduced basis at

all the well locations in the reservoir and thus construct an error map, which eventually

will help us adaptively pick the most accurate ROB. This methodology, however, was

applied for the cases of small simulation run times considering the challenges of this

problem. This ROM technique is simulator invasive in that it requires the projection

of fine scale non-linear functions.

• In order to address the limitations from the previous proposed method, we develop
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a global PMOR methodology for changing well locations that is non-intrusive to the

reservoir simulator source code. The method is based on POD, but uses ML techniques

to learn a map between the input parameters, that describe the well locations in the

reservoir, and the output basis coefficients. This idea was proposed in other areas for

time independent problems, but we extend it to time dependent problems for reservoir

simulation. The quantities of interest (QoI) are then corrected using a error surrogate

model similar to the concept used in [31]. This POD-ML based technique provides

significant speedup as it does not involve any non-linear function evaluations and the

time steps are independent of each other, hence can make use of the parallel comput-

ing resources effectively. This method will be applied to changing well locations for

reservoir waterflooding problem to assess its accuracy and feasibility.

1.4 Dissertation Outline

The dissertation proceeds as follows. In Section 2, we begin with reservoir simulation,

describing discretized governing equations for incompressible and slightly compressible oil-

water flow in the subsurface. We describe this governing equations as a parametric system

to develop the PMOR workflows for optimization. Then, we introduce the concept of POD

for basis construction with concepts in controllability and reachability. We will also briefly

introduce the topics of Galerkin projection error estimation and stability.

In the Section 3, we introduce the well control optimization formulation and propose

a new polynomial control parameterization strategy. Then we briefly describe about the

optimization strategies used for waterflooding optimization. This work was pursued in col-

laboration with Nadav Sorek, a previous Ph.D. colleague in our group. This production

optimization strategy is then implemented with the POD-DEIM procedure where we intro-

duce a new global PMOR training strategy to be used for the entirety of optimization run

without retraining. The proposed workflow is validated with a case study.

Section 4 introduces the multi-parametric machine learning framework for local para-

metric ROBs for changing well location problem based on intrusive POD technique. This
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framework estimates the error maps corresponding to each ROB in the database and then

select the best ROB for a new well location. We build this technique by analyzing a few

observations first. Then we introduce the Machine Learning techniques used and provide a

brief understanding on them. Later, we formulate the problem required to be solved in terms

of regression and classification problem. Then, the features representing the well locations

are introduced using a case study and some concepts in flow diagnostics. Finally, we apply

the findings for some case studies of waterflooding and changing well locations to analyze

the framework.

In Section 5, we develop a non-intrusive global PMOR strategy that is based on POD

for changing well locations, developing on the shortcomings of the previously introduced

method. This method is also based on using machine learning techniques for constructing a

map between input features and the output POD expansion coefficients. We first formulate

the problem and describe its advantage over the intrusive POD method. Then, we apply

this method on a few case studies to predict the QoI. Later, we also construct an ML based

error correction model in the states at well location to correct for the predicted QoI.

We conclude the dissertation in Section 6, with a summary and discussion about the

future work, especially for parametric reduced modeling problems like well location and

history matching and the direction of using machine learning techniques.
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2. RESERVOIR SIMULATION AND PROJECTION BASED MODEL ORDER

REDUCTION FOR PARAMETRIC SYSTEM

In this section, we first introduce the governing equations for two-phase flow in the reser-

voir for incompressible and slightly compressible fluids, as they will be used in the later

part of the research. We provide details of discretization and the boundary conditions corre-

sponding to well control and well locations. We then discuss in detail about the projection

based model order reduction techniques, especially POD (Proper Orthogonal Decomposition)

method, which is used throughout the scope of this work.

2.1 Reservoir Simulation

The subsurface flow models in porous media are derived by coupling equations represent-

ing conservation of mass, momentum, and energy as a function of pressure, temperature, and

saturation or fraction of each phase or component [57]. This results in space and time de-

pendent partial differential equations. The two phase flow equations used here, are generally

used for scenarios like waterflooding, where water is injected into the reservoir from injector

wells to help provide pressure support to the reservoir and increase the oil production rate

and, ultimately the oil recovery.

2.1.1 Governing Equations

The governing equations for a two phase isothermal immiscible oil-water system is ob-

tained by combining the mass conservation law and the Darcy’s law for two phases. This

governing equation considering the gravity effects is a PDE of the form:

∂(ϕρlSl)

∂t
= ∇ · (ρlvl)− m̃l (2.1a)

vl = λlK(∇pl − ρg∇z) (2.1b)
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where, l indicates liquid, oil (o) or water (w), ϕ is the porosity of the reservoir, ρl indicates

density of the fluid per unit volume, and m̃l (mass flow rate) = ρlql denotes the external

sources and sinks, ql being the volumetric flow rate. vl here represents the Darcy velocity of

liquid (l). λl = krl(Sl)/µl, where µl, krl are the viscosity of fluids and relative permeability

of fluids, respectively and K is the absolute permeability. pl and Sl are the pressure and

saturation of each phase respectively. g is the gravity acceleration constant and z accounts

for vertical coordinates. Equations (2.1a) and (2.1b) for oil and water, along with the

constraints, saturation equation (So + Sw = 1) and capillary equation (pcow = po − pw)

completes the oil-water model. In these equations, po and Sw are considered to be the

primary unknowns, and once they are solved, the rest of the unknowns pw and So are

computed easily from the constraint equations.

2.1.2 Incompressible and slightly compressible flow

For an incompressible flow, the phase densities ρl and µ are constant. Under these

conditions and constant porosity ϕ, the governing equations for incompressible flow takes a

simplified form of 2.1 as:

φ
∂Sl
∂t

= ∇ · (vl)− ql (2.2a)

vl = λlK(∇pl − ρg∇z) (2.2b)

where, ql indicates the volumetric flow rate. After some manipulations of these equations,

it can be shown that saturation is coupled to pressure through the total Darcy velocity of

the fluids.

For slightly compressible flow, cl∆P � 1, where ∆P is the characteristic pressure drop

across the system. Thus, it is assumed that the fluid compressibility is small and remains

constant within the pressure range of interest. The properties of the fluids and rock such

as viscosity (µl), density (ρl) and hence formation volume factor (Bl), and porosity (ϕ) are

dependent on pressure. Thus, in the equation 2.1a, the accumulation term is expanded and
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the fluid and rock compressibilities are used to rewrite the derivatives of phase densities and

porosity. In the incompressible case, total Darcy velocity is the only quantity that couple the

saturation equation to fluid pressure, however, for slightly compressible case we have coupling

through the porosity and density which are pressure dependent. This makes the slightly

compressible flow scenario more challenging to solve as compared to the incompressible flow

problem.

We use fully implicit formulation using finite difference discretization to solve these in-

compressible (Equation 2.2) and slightly compressible flow PDEs (Equation 2.1). For our

work, we neglect the effects of capillary pressure, and hence, po = pw.

2.1.3 Discretized parametric equations for well control and well location

In order to solve the PDEs in equations (2.1 and 2.2), we perform spatial discretization

of these equations that result in the following parametric system of ODE in time to solve for

the state variables po and Sw represented by x:

−D(x, ζ)ẋ(t, ζ) + T(x, ζ)x(t, ζ) + G(x, ζ) + Q(x, t, ζ) = R(x, ζ) (2.3)

x(t, ζ) = [Po, Sw] ∈ RNd , is a state vector with Nd degrees of freedom and ζ ∈ P ⊂ RNζ is

a vector of parameters. ẋ(t, ζ) is the derivative of the states with respect to time, D is the

accumulation matrix, T is the transmissibility matrix, G is the gravity vector, Q contains

the (volumetric) sources and sinks terms (ql) and R is the residual vector. We satisfy R = 0

upon convergence to the solution for each time step. We consider the fully-implicit procedure

to solve equation (2.3). The source/sink volumetric term correspond to production/injection

from a well and is written as the Peaceman equation:

ql = WIl λl(Sl) (po − pwf ) (2.4)
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Here, WIl is the well index associated with each phase, po is the well-block pressure of the

oil phase and pwf is the bottom hole flowing pressure. Thus, Q(x, ζ) is a vector with ql value

at the indices corresponding to the well grid blocks and 0 elsewhere.

The parameter ζ of the system depends on the problem under consideration. Here, we

are interested in well control and well location optimization and hence we define the system

parameters for these two problems. For well control optimization, ζ = pwf ∈ RNt for each

well, where Nt is the number of simulation time steps. For well placement optimization, ζ

represents the indices in sparse vector Q, corresponding to spatial location of the well to be

optimized in the source/sink vector, which is the main focus of this paper.

ζ =


pwf or qinj, for well control optimization

indices in vector Q, for well location optimization
(2.5)

Using the fully implicit method, for a given system parameter, at each time step, this

non-linear system of equations (2.3), is solved using Newton’s method:

J(ζ)n+1 δ(ζ)n+1 = −R(ζ)n+1 (2.6)

x(ζ)n+1 = x(ζ)n + δ(ζ)n+1 (2.7)

Here, n and n+1 represent the previous and current time levels respectively and Jn+1 = ∂Rn+1

∂xn+1

is the Jacobian matrix. We satisfy Rn+1 = 0 upon convergence to the solution for each time

step, thus requires multiple newton iterations (see ([58]) for detailed derivation). The size of

the Jacobian matrix is Nd x Nd and that of the residual is Nd x 1. The degrees of freedom

in a reservoir simulation usually ranges from hundreds to millions. Thus, the size of the

system matrices (Jacobian and Residual) significantly increases the time to solve the linear

system in the Newton method. For a detailed explanation on oil-water flow simulation, one

can refer to some classical literature ([57, 58, 59, 60]).
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2.2 Controllability of reservoir flow

As an introduction to MOR, we begin with some system theoretical concepts of subsurface

flow. It provide insights on significant level of reduction that can be obtained by MOR.

The control of the positions of fluid front and phase arrival times during optimization are

related to the capacity to control streamlines by manipulating well controls [61, 62]. The

controllability of streamlines are strongly related to the controllability of pressure in the

reservoir, since streamlines are governed by the spatial derivatives of the pressure field.

A system is fully state controllable if an external input u has an ability to move the

internal state of the system from any initial state x1 to any other final state x2 in a finite time

interval [0, T ], i.e., x(T, 0,x1,u) = x2. The concept of controllability for reservoir simulation

can be considered by borrowing concepts from linear systems theory [63]. The reservoir

simulation flow equations are non-linear, but with some assumptions for simplified cases

(e.g., single phase slightly compressible flow), it can be represented by a linear expression

as:

xn+1 = Axn + Bun (2.8)

where x represents pressure state and n represents the time step (n = 0, 1, ..., n−1). u is the

control matrix consisting of BHPs or rate controls of the wells. A ∈ RNd×Nd is the system

matrix and B ∈ RNd×Nw is the input matrix that can be adjusted to account for changing

well locations. Here Nw is the number of wells and Nd that corresponds to total degrees of

freedom is equal to the number of grid blocks for single phase system since, x correspond to

pressure at each grid block.

It can be shown that such a system is fully controllable if the controllability matrix

defined as

C = [B AB A2B ... An−1B] ∈ R Nd×NdNw (2.9)

has a full rank. Also, controllability Gramian can be used for qualitative analysis of control-
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lability which is defined as:

P = C C T (2.10)

Fully controllable system requires the controllability Gramian to be full rank i.e., the con-

trollable subspace xcon = im(C ) = RNd . If rank(C ) < Nd, then xcon = im(C ) ⊂ RNd .

However, this rank test analysis gives an idea if the system is full state controllable or not,

it does not provide any quantitative measure of controllable states. This information can be

obtained by applying singular value decomposition (SVD) of the controllability matrix C :

C = UΣVT (2.11)

Here, U ∈ RNd×Nd is the left singular matrix, that represent an ordered set of linear combi-

nations of the states x. Σ ∈ RNd×l is a diagonal matrix with singular values in decreasing

order. It can be shown that the states in xcon that require the least energy to reach i.e., are

the most controllable, correspond to large singular values and have a significant component

in the span of the singular vectors U. Thus, U has the singular vectors that are decreasingly

controllable. l in the dimension of singular values matrix represent the number of singular

values with magnitude above machine precision. In reservoir simulation, typically l � Nd,

where Nd is the total degrees of freedom for a full order system. This was studied for sin-

gle phase flow using BHP and rate controls for the wells [64], that showed the controllable

subspace to be of much lower dimension than the state space, and the most controllable

pressure gradients are those close to the vicinity of the wells. These observations, however,

are valid only locally in the state space, which refers to controllability of the states close to

a reference state (‘reference trajectory’ in the state space).

For two phase flow, similar restrictions exist, in that the pressure controllability results

are similar to single phase flow problem and the controllability of saturations is restricted

close to the fluid fronts [65]. To investigate the controllability for non-linear models, empirical

Gramians have been used [66]. Empirical Gramians cannot represent the global behavior of
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the non-linear model but is used to analyze these models for specific inputs and specific initial

conditions. Empirical controllability Gramians are computed by collecting a large number

of state ‘snapshots’ for different input trajectories (control vector). It can be written as:

Pemp =
t∑

j=1

[
x1 x2 . . . xs

]j


xT1

xT2
...

xTs



j

(2.12)

where s is the number of snapshots and t is the number of different control vectors. Similar

to the linear case, it is possible to take SVD of the empirical Gramian P to compute the

local controllable subspace by taking the first l singular vectors. It is usually observer that

for most cases l� Nd i.e., the controllable subspace has much lower dimensions as compared

to the system state space. This is the motivation behind using MOR for reservoir simulation

applications like well control and well location optimization.

2.2.1 Case study to analyze controllability properties for changing well controls

and well locations

As we have briefly discussed about the theory on controllability of reservoir models that

shows the motivation behind using reduced order models, we now provide a simple case study

for analyzing the controllability properties for changing well control and well locations.

We consider a case of 2D homogeneous reservoir having dimensions 20 × 20 × 1 (400

grid blocks) with 1 producer and 1 water injector. The model is discretized using Cartesian

grid of size 30ft × 30ft × 30ft. The porosity of the field is set constant to 0.2. Figure 2.1

shows the permeability field and the well locations with injector at (20, 1) and producer at

(1, 20) gridblocks. Equation (2.3) is used to solve for the states during each simulation time

step. We neglect the capillary pressure effects and consider an incompressible flow of oil and

water. The initial saturation of oil and water is 0.8 and 0.2 respectively. The Corey-type

relative permeability curves with exponent of 2 are used for both the fluids.
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Figure 2.1: Homogeneous reservoir permeability field with 1 producer and 1 injector

Let us first consider the problem of well control change in the wells. So the first step

to quantify the controllability is to construct an empirical controllability Gramian (for non-

linear models). This is done by collecting the states in a single matrix as depicted in equation

(2.12). The BHP control profiles for injector and producer are shown in Figure 2.2a. The

simulation is run for a small time of 100 days. We then take the SVD of empirical Gramian

to get first l singular vector and their corresponding singular values. l� 800 (400 pressures

and 400 saturation values for each gridblock), which is determined by the energy criteria

described in the next section (2.3). Here, l = lp + ls = 12 (lp = 5 corresponding to pressure

and ls = 7 corresponding to saturation). As mentioned before, each singular vector in the

left singular matrix correspond to states that are decreasingly controllable. For compact

representation of the spatial patterns of states, we show the weighted singular vectors that

is the sum of lp or ls singular vectors for pressure or saturation respectively, weighted by the

corresponding singular values. For example for pressure, this can be written as:
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(a) (b) (c)

Figure 2.2: (a) BHP profile of wells with corresponding (b) Pressure and (c) Saturation
profiles at the end of simulation

(a) (b)

Figure 2.3: (a) weighted singular vectors of (a) pressure empirical controllability Gramian
and (b) saturation empirical controllability Gramian for BHP case 1

U1:lp =

lp∑
i=1

σi
σ1

Ũi (2.13)

where, σi are the singular values in Σ from equation (2.11) arranged in descending order

from σ1, ..., σNd .

Figures 2.2b and 2.2c show the pressure and saturation states at the initial time and

final time of simulation. Since eigenvalues of pressure and saturation have a big difference in
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(a) (b) (c)

Figure 2.4: (a) BHP profile of wells with corresponding (b) Pressure and (c) Saturation
profiles at the end of simulation

(a) (b)

Figure 2.5: (a) weighted singular vectors of (a) pressure empirical controllability Gramian
and (b) saturation empirical controllability Gramian for BHP case 2

terms of absolute values, we separately analyze the controllability of pressure and saturation.

Figure 2.3 shows the weighted singular vectors of the empirical controllability Gramian re-

lated to pressure and saturation. This shows the controllability properties of reservoir model

that indicates more controllability of the pressure close to the wells and controllability of

saturation at the fluid front. For MOR application on changing well controls, what we are

interested in is to analyze the controllable subspace for changing BHP profiles. Figure 2.4

shows a new BHP profile that is completely different than the previous case and the cor-
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(a) (b) (c)

Figure 2.6: (a) BHP profile of wells with corresponding (b) Pressure and (c) Saturation
profiles at the end of simulation

(a) (b)

Figure 2.7: (a) weighted singular vectors of (a) pressure empirical controllability Gramian
and (b) saturation empirical controllability Gramian for new well location

responding pressure and saturation solution at the end of simulation. Repeating the same

procedure again, Figure 2.5 shows the weighted singular vectors of the empirical Gramians.

As can be seen, we do not see a major difference in the controllability properties as compared

to the case above, in that it has pressure states controllable near the well locations and satu-

ration at the fluid front. Hence, for the problem of changing well controls, if different possible

scenarios of fluid fronts have been captured during the empirical Gramian construction, the

controllable subspace is expected to work well for a new set of BHP controls.
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Now, we consider the case of changing well locations. So first, we consider the same

location of wells as used above, i.e. the injector at location (20, 1) and the producer at

(1, 20). We have the weighted singular vector of pressure and saturation controllability

matrix as depicted in Figure 2.5. Now we change the producer well location to (3, 18)

and repeat the procedure. The BHP profile for new well location is the same as Figure

2.4a. Figure 2.6 shows the new well location and the pressure and saturation profiles at the

beginning and end of the simulation and Figure 2.7 shows the new weighted singular vectors

of the controllability matrix for this well configuration. It can be seen that the controllable

subspace of the previous well configuration cannot satisfy the controllability properties of the

new well configuration that requires the lowest pressure at the well location. Thus, unlike

MOR for well control, finding the controllable subspace that can satisfy the controllability

properties for new well locations is very challenging.

This analysis was shown to provide some general idea about different nature of MOR

challenges for the two problems considered. One may also look at the observability properties

as a motivation for use of MOR for reservoir simulation applications, as described in [67].

However, observability concept was not deemed very important to justify the complexity of

two optimization problems considered, and hence not discussed here. Now we look into the

MOR techniques focused on for these problems.

2.3 Projection based Model Order Reduction

In this section, we introduce a projection based MOR technique that projects a high

dimensional reservoir simulation equation onto a subspace of much lower dimension (as

justified by the controllability properties of the reservoir flow), thus reducing both the number

of equations and variables involved. In this work, projection based reduced order models are

considered for optimization applications.
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2.3.1 Galerkin projection

The main idea of projection based MOR is to generate a dynamical system of much lower

dimension r as compared to the full order dimension n as defined by equation (2.6), while still

retaining its dominant dynamical properties. One way to achieve this is Galerkin projection

that is employed in this research work. We begin with a state space representation of the

reservoir simulation equation for two phase flow to explain Galerkin projection. Referring

to equation (2.3), at convergence, neglecting gravity, it can be re-written as:

ẋ(t, ζ) = D(x, ζ)−1T(x, ζ)x(t, ζ)−D(x, ζ)−1Q(x, t, ζ) (2.14)

which can be written as a state space form:

ẋ(t, ζ) = A(x, ζ)x(t, ζ) + B(x, ζ)u(x, t, ζ) (2.15)

with initial condition x(0, ζ) = x0(ζ). The states here represent pressure and saturation for

two phase flow i.e., x(t, ζ) = [Po, Sw]. Here A = D(x, ζ)−1T(x, ζ) and B = −D(x, ζ)−1.

The first step in Galerkin projection is to define a trial basis Φ(ζ) ∈ Rn×r, referred to

as ROB (Reduced Order Basis), which is full rank and describes the subspace SΦ(ζ). The

state vector x can then be decomposed as sum of two orthogonal components, one in Φ(ζ)

and the other in Φ⊥(ζ) which can be written as:

x(t, ζ) = Φ(ζ)xr(t, ζ) + Φ⊥(ζ) x̃r(t, ζ) (2.16)

where, xr(t, ζ) ∈ Rr and x̃r(t, ζ) ∈ Rn−r. For a reduced representation of the state space,

we neglect components of the state in Φ⊥(ζ). Thus,

x(t, ζ) ≈ Φ(ζ)xr(t, ζ) (2.17)
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Thus, xr ∈ Rr represent the components of the state vector x ∈ Rn in the subspace Φ(ζ).

We can now write the equation (2.15) as:

Φ(ζ)ẋr(t, ζ) = A(x, ζ)Φ(ζ)xr(t, ζ) + B(x, ζ)u(x, t, ζ) (2.18)

The next step is to define the test basis, which for Galerkin projection is the same as

the trial basis i.e., Φ(ζ). This test basis is left multiplied in equation (2.18) to obtain lower

order system equation.

Φ(ζ)TΦ(ζ)ẋr(t, ζ) = Φ(ζ)TA(x, ζ)Φ(ζ)xr(t, ζ) + Φ(ζ)TB(x, ζ)u(x, t, ζ) (2.19)

The columns of Φ(ζ) are orthonormal i.e., Φ(ζ)TΦ(ζ) = Ir and the projector is ΠΦ(ζ),Φ(ζ) =

Φ(ζ)Φ(ζ)T . Let x̂ be the approximated full state after projection. The model reduction error

is then,

εROM(t, ζ) = x(t, ζ)− x̂(t, ζ)

= x(t, ζ)− ΠΦ(ζ),Φ(ζ)x(t, ζ) + ΠΦ(ζ),Φ(ζ)x(t, ζ)− x̂(t, ζ)

= (In − ΠΦ(ζ),Φ(ζ))x(t, ζ) + Φ(ζ)(Φ(ζ)Tx(t, ζ)− xr(t, ζ))

= εΦ(ζ)⊥(t, ζ) + εΦ(ζ)(t, ζ)

(2.20)

The first term εΦ(ζ)⊥(t, ζ) corresponds to the projection error that result from neglecting

the state projection on the orthogonal subspace and the second term εΦ(ζ)(t, ζ) is the result

of error from solving a dynamical system that is different than the original one. Since the

error components are orthogonal, we can write the following equality:

‖ εROM(t, ζ) ‖2
2 = ‖ εΦ(ζ)⊥(t, ζ) ‖2

2 + ‖ εΦ(ζ)(t, ζ) ‖2
2

(2.21)

This is used for an a priori indication of the ROM error that is indicative of the quality of

the basis Φ(ζ). The orthogonal component of the projection error can be computed by just

knowing the fine scale solution. Thus, if Φ(ζ) is not a suitable basis for parameter ζ, εΦ(ζ)⊥
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will be large and the full ROM error εROM(t, ζ) will be even larger.

Also, it can be shown that Galerkin projection can lead to unstable solutions in the case

of non-symmetric system matrix A, leading to unphysical system. Thus, it is very important

for an appropriate choice of basis Φ(ζ) for stability of the system. One way to address

this issue was proposed in [68, 69] using least-squares Petrov-Galerkin (LSPG) method,

which computes a different test basis than the trial basis. However, the computational cost

associated with LSPG is higher and hence for the current scope of work, we rely on Galerkin

projection method.

2.3.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) constructs a basis of dimension r by orthogonal

transformation of the data observations such that it represents the data in certain least square

optimal sense. The data can thus be represented by a linear combination of the basis vectors

which are called the basis functions. POD can be implemented for infinite dimensional or

finite dimensional data and does not assume the data source which can be from a linear or

non-linear system.

POD is typically employed on the state solutions of the system. As a first step to generate

the reduced basis, the full order system is solved for a given parameter ζ, which is called the

training step, to generate an ensemble of snapshots which are basically the state solutions

gathered at all simulation time steps by solving equations (2.6 and 2.7). More details on this

can be found in [35]. Snapshot matrix X(ζ) is defined as:

X(ζ) = [x1 x2 x3 ... xNt ], X(ζ) ∈ RNd×Nt (2.22)

where, Nd is the full order dimension of states Po and Sw, and Nt is the total number

of snapshots collected over a time period. From now, we denote Po and Sw as p and S

respectively. In order to project a fine scale system to a low dimensional space, the projection
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basis {φi}ri=1 is obtained by solving the minimization problem:

min
φi

Nt∑
j=1

‖ xj −
r∑
i=1

(xjTφi)φi ‖ (2.23)

The solution to this minimization problem [9] is given by the SVD of snapshot matrix X(ζ),

and selecting first r columns of the left projection matrix.

X(ζ) = U(ζ)Λ(ζ)V(ζ)T (2.24)

where, U and V are the left and right singular matrices respectively and Λ is a diagonal

matrix with eigenvalues in decreasing order. The r columns of U are usually selected by the

fraction of energy to be captured (generally more than 90%):

E =

r∑
i=1

σi

Nd∑
i=1

σi

(2.25)

where, σi is the ith diagonal element of Λ. Thus, for a fixed parameter, the states span the

space Φ(ζ) = [U1(ζ) U2(ζ) ... Ur(ζ)] ∈ Rn×r and for each state:

p(ζ) ≈ Φp(ζ)pr(ζ), S(ζ) ≈ Φs(ζ)Sr(ζ) (2.26)

Thus, for a given parameter, we may write:

p
S

 =

Φp 0

0 Φs


pr
Sr

 (2.27)
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which takes a short notation:

X = ΦXr , r � Nd (2.28)

Here, Φ is a diagonal matrix with pressure basis and saturation basis as its diagonal elements.

Using Galerkin projection, the linear system of equations in equation (2.6) can be written

as follows:

Φ(ζ)TJ(ζ)n+1Φ(ζ) δr(ζ)n+1 = −Φ(ζ)TR(ζ)n+1 (2.29)

which leads to a system of reduced order equations:

Jr(ζ)n+1δr(ζ)n+1 = −Rr(ζ)n+1 (2.30)

and after solving the equation (2.30), the reduced state space variables are updated as:

xr(ζ)n + δr(ζ)n+1 = xr(ζ)n+1 (2.31)

Thus, r being of much smaller magnitude compared to the fine scale degrees of freedom

Nd, POD has shown to achieve significant speed-ups at the linear solver level in reservoir

simulation applications by greatly reducing the dimensions of the huge Jacobian and resid-

ual matrices. However, since this method still requires us running fine scale simulations to

evaluate full Jacobian and residual matrices, it poses a challenge in terms of overall compu-

tational benefit. This problem will be addressed in the next sections as we build on various

MOR strategies for well control and well location optimization.

2.3.3 Parametric Model Order Reduction concept

Thus, as we saw above for POD, the main aim is to replace the computationally ex-

pensive solver in equation 2.6 to a reduced form of the Jacobian and Residual as shown in
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equation (2.30), where, r � Nd. To this end, we aim to construct reduced order models

or reduced order basis that are an accurate approximation of the fine-scale solution in the

entire parameter domain i.e., for any ζ in equation (2.3). For clarity again, ROB is defined

as the basis of lower dimension obtained by POD and the ROBs are used to construct ROMs

which are lower dimensional system matrices the accuracy of which is reflected as the pre-

dicted output of the system. Thus, ROM error refers to the error in output predicted by the

reduced system.

Thus, for any parameter ζ ∈ P representing the BHP values or well location we re-

quire the condition that the ROM error is less than a specified threshold, which is defined

mathematically as:

‖ X(t, ζ)− Φ(ζ)Xr(t, ζ) ‖< η (2.32)

Here, η is some maximum allowable error tolerance between fine scale and ROM solution

with Φ(ζ) obtained by POD in this work. We note again that, the parameter ζ depends on

the optimization problem considered.

Thus, in the following sections, we develop MOR techniques that are developed in the

context of POD concept for fast computation of simulations during well control and well

location optimization.
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3. MODEL ORDER REDUCTION FOR WELL CONTROL OPTIMIZATION∗

In this section, as we develop the MOR strategy for well control optimization, we begin

by with a brief introduction about this work. The next section focuses on formulating the

well control optimization problem with an introduction to polynomial controls and moti-

vation behind using them. We then develop various control parameterization techniques

later that will be evaluated for optimization and MOR performance. In the next section,

we briefly discuss about various optimization strategies that will be analyzed for use with

MOR technique. And finally, we propose the MOR methodology with the improved training

strategy and evaluate its performance with a case study.

Waterflooding control optimization is a PDE-constrained optimization problem, where

the PDE corresponds to the reservoir simulation equations as represented in equations (2.1

and 2.2). The aim is to seek optimal controls of the wells such that it maximizes certain

objective functions like sweep efficiency, net present value (NPV), and cumulative oil pro-

duction or minimizing water cut among others.

Reservoir flooding optimal control problems pose computational difficulties at both sim-

ulation and optimization levels. Extensive research has been attempted to alleviate these

hurdles. At the simulation level, the attempt is usually achieved by constructing a surro-

gate model that is computationally cheap to evaluate as described in the sections above

accomplished here using MOR. At the optimization level, the continuous nature of the con-

trol, which lie in an infinite dimensional space, call for a control parameterization procedure

to cast the problem into a finite dimension problem that is cheaper to compute. This

work combines these two methods to accelerate the process of reservoir flooding production

optimization. In the reservoir modeling level, we apply Model Order Reduction (MOR)

by utilizing the Proper Orthogonal Decomposition with Discrete Empirical Interpolation
∗Reprinted with permission from “SPE-182652-MS Model Order Reduction and Control Polynomial

Approximation for Well-Control Production Optimization” by N. Sorek, H. Zalavadia, E. Gildin, 2017, SPE
Reservoir Simulation Conference, Copyright 2017 by SPE
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Method (POD-DEIM). In the upper optimization level, we apply dimensionality reduction

by parametrization of the infinite dimensional control using Polynomial Approximation (PA)

and Piecewise Polynomial Approximation (PPA) as well as the traditional Piece-Wise Con-

stant (PWC) for comparison.

3.1 Well Control Optimization Formulation

3.1.1 Optimal Control of Reservoir Flooding

It has been discussed widely in the literature that reservoir flooding optimization can

be treated as an optimal control problem [70, 71, 72, 73]. In this approach, the well set-

tings are the control variables (also called decision or optimization variables), which can be

represented as either valve positions, Bottom Hole Pressure (BHP) of wells, well flow rates

(injection or production) and concentrations. In general, there are two distinct classes of

algorithms to solve an optimal control problem, namely indirect and direct methods. In the

former, one analyzes the optimality conditions prior to applying numerical discretization.

Such indirect methods are dynamic programing which solves the Hamilton-Jacobi-Bellman

(HJB) equation (suitable to a few state variables problem) and the Pontryagin Maximum

Principle (PMP) method [74]. In the direct method, on the other hand, the optimal control

problem is approximated by a finite dimensional non-linear programming (NLP) problem.

Then, different standard optimization algorithms (stochastic or deterministic, global or lo-

cal) can solve the approximated problem. Direct methods include single shooting, multiple

shooting and orthogonal collection approaches. The last two methods introduce many de-

cision variables and constraints which might lead to prohibitive computational efforts in

reservoir simulation problems. However, implementation of multiple shooting for reservoir

flooding problem was recently introduced in [71].

In this current work we use a direct single shooting approach to solve the optimal control

problem. This method parameterizes the control trajectories along time and the parameteri-

zation coefficients become the decision variables in finite-dimensional optimization problem.
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Theoretically, prior to any parameterization procedure, the control variables are manipulated

continuously in time, and thus the optimal solution trajectory lies in an infinite dimensional

space. Practically, however, due to time discretization in a reservoir simulator, the control

trajectory is projected into a finite dimension of piecewise-constant intervals, and usually

the control values at each interval become the finite set of decision variables. This piecewise-

constant projection is a finite dimensional approximation of the original infinite dimensional

solution. Next, we investigate different parameterization approaches.

3.1.2 Optimization Dimensionality Reduction by Polynomial Approximation

Indeed, most of the reservoir flooding optimization works presented in the literature ac-

count for parameterization and dimensionality reduction via a simple piece-wise constant

approximation. That is, the time discretization of the wells schedule (namely, the points

in time where a change in the control is introduced into the simulator) is identical to the

optimization parameterization. However, in recent work [75, 76] two different parameteriza-

tion procedures were presented, namely Polynomial Control Method (PCM) using monomial

polynomial approximation (PA) and Interpolation Control Method (ICM) using cubic Spline

piece-wise polynomial approximations (PPA). In these methods, the control trajectory of

each well is polynomial or piecewise polynomial, such that the input to each control-step in

the simulator is regulated by an upper level polynomial functions. The decision variables

in this case are the polynomial coefficients (in the PCM case) or the interpolation points

(in the case of ICM). Therefore, smooth solutions were enabled, and the algorithmic search

turned relatively efficient in the new dimension-reduced polynomial space. We note here

also the work in [70] which presented both polynomial and trigonometric parametrization

for reservoir flooding problems. Polynomial approximation is a well-known technique in sci-

entific computing to approximate more complicated functions [77]. The procedure involves

a weighted summation of finite number of orthogonal polynomials.

In optimization, infinite dimensional problem can be transformed to a finite problem

by polynomial approximation of a continuous decision variable, which is an unknown input
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function. For example, the work in [78] presents a case of linear objective and constraints,

where a sequence of optimal solutions of finite dimensional linear subspaces converge to the

optimal value of the original infinite-dimensional problem. Another interesting example is

the work presented first in [79] for deterministic global optimal control, and then in [74] for a

much more general framework for optimization in Hilbert space. The authors of these works

introduced a new algorithm named Branch and Lift, in which the problem is projected into

a polynomial subspace using orthogonal Legendre polynomials, starting with branching in

a low dimensional subspace, and gradually lifting the subspace dimension till obtaining a

convergence to a suboptimal global solution. The aforementioned previous attempts of poly-

nomial approximation of reservoir flooding control used monomial basis functions (i.e., the

set {1, x, x2, ...}). However, this natural form of the polynomial might be inefficient during

the optimization since all the monomials look very similar on [0, 1], such that large changes

in the polynomial coefficients yield only small changes in the control [80]. Therefore, in this

work we consider orthogonal polynomial basis functions, which provide more variability and

efficient search during the optimization. Some examples from the optimal control literature

which used orthogonal polynomials can be found in [81, 79].

3.1.3 Infinite Dimensional Problem Statement

In this work, the objective function that we try to maximize is Net Present Value (NPV)

that dictates the economic value of the project and in order to achieve this, the control

variable that we seek to optimize is the BHPs of producer and injector wells. In order to

formulate the optimal control problem, we consider the reservoir simulation equation in the

form as shown in equation (2.14). Note that in this equation, the control input is assigned

through the source-sink term ql found in the Q vector, which is defined in equation (2.4).

The control input can either be the value assigned as ql (known as rate control) or as pwf

(known as pressure control).

To this end, as was discussed in [72], the controls enter linearly into the flow model, and

39



we can rewrite the flow equation as:

ẋ(t) = f1(x(t)) + f2(x(t))u(t) (3.1)

where u(t) = [u1(t), . . . , uj(t), . . . , uNw(t)] is a column vector contains continuous control

functions of each well j. Here, Nw is the total number of wells. Originally, prior to any

discretization, each uj function maps a continuous time input to a continuous control tra-

jectory. Equation (3.1) represents the governing partial differential reservoir flow equation,

which is now formulated in a well-known optimal control form, that describes the reservoir

system dynamics in a state space form.

3.1.4 Objective function

We consider the NPV function as the objective function, which accounts for revenue

associated with produced oil and for the cost of handling produced and injected water (which

is incurred as a result of pumping and separation requirements),

J(u) = NPV =

∫ Tf

0

( Np∑
j=1

roq
j
o(u(t))−

Np∑
j=1

cwpq
j
wp(u(t))−

Ni∑
j=1

cwiq
j
wi(u(t))

)
1

(1 + ir)t/tref
dt

(3.2)

where qjo, qjwp, q
j
wi are the flow rates of the oil, water produced and water injected for well j,

respectively. The revenue from a unit of oil produced, the cost of a unit of water produced

and a unit of water injected are represented by ro , cwp and cwi, respectively. t and Tf are

continuous and terminal times, respectively. ir is the interest rate associated with a time

reference tref . Ni and Np are the total number of injection and production wells, respectively.

Again, as can be observed from equation 3.2 and as was discussed in [72], the performance

measure (the objective function) is linear in the control and can be rewritten in a typical

optimal control form:

J(u) = χ
(
x(Tf ), Tf

)
+

∫ Tf

0

L
(
x(t),u(t), t

)
dt (3.3)
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3.1.5 The Infinite Dimension Optimization Problem

Now, we can introduce the infinite dimension optimal control Bolza problem, as follows:

max
u(t)

χ
(
x(Tf ), Tf

)
+

∫ Tf

0

L
(
x(t),u(t), t

)
dt

subject to ẋ(t) = f1(x(t)) + f2(x(t))u(t)

u(t) = [u1(t), . . . , uj(t), . . . , uNw(t)]T

uj(t) ∈ U ,∀t ∈ [0, Tf ]

U = {h(t) : ulb ≤ h(t) ≤ uub}

x(0) = x0

(3.4)

where the initial conditions are specified as x(0) = x0, and the original bounded infinite

dimension control space is defined by u.

3.2 Parameterization Strategies

Practically, the problem in equation (3.4) is parameterized (and hence approximated)

in two different levels. In the reservoir simulation level, the constraint given in the state

equation ẋ(t) = f1(x(t)) + f2(x(t))u(t) is being discretized both in time and space in order

to solve numerically the PDE (as was mentioned in Section 2). Note that different time

discretization is often applied to the state variables and to the control variables. We shall

note that here we define Nsim as the number of simulation time steps. In this case, a

surjective function maps each simulation time step index (associated with the solution of

the state variables) to a control variable index [71]. Next, in the optimization process, the

continuous decision variables uj(t) is being parametrized and projected to a finite dimension

space such that the problem can be tackled with any existing optimization algorithm.

We discuss here three different parameterization approach: piecewise constant (PWC),

polynomial approximation (PCM) and cubic spline (ICM). The first and the third, both

belong to the control vector parameterization (CVP) approach where the time horizon is
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divided into intervals in which the control variable is approximated by a constant value

or with some higher order approximations [82]. On the other hand, the PCM describes

the control at all times with one continuous polynomial function constructed by weighted

summation of orthogonal polynomial basis functions.

3.2.1 Piecewise Constant Parametrization

Traditionally, in reservoir flooding optimization the decision variables values enter directly

as input to the simulator using a surjective function h : RNsim → RNu , where each simulation

time step of the total Nsim simulation time steps is associated with one of the Nu control time

intervals. In each interval the control is kept constant, which render a piecewise constant

approximation of the original continuous control (decision) variable.

To formalize this concept, for each well with index j = {1, . . . , Nw}, we can obtain a

piecewise constant parameterization over Nu intervals of equal duration h = Tf/Nu. By

applying a linear combination of basis functions ψ1(t), ψ2(t), . . . , ψNu(t), where:

∀i ∈ {1, 2, ..., Nu}, ∀j ∈ {1, 2, ..., Nw}, ψi,j(t)


1 , if (i− 1)h ≤ t ≤ ih

0 , otherwise
(3.5)

such that the control of each well j is approximated as follows:

∀t ∈ RNsim , ∀j ∈ {1, 2, ..., Nw}, uj(t) ≈ ũj(t) =
Nu∑
i=1

ai,jψi,j(t) (3.6)

Note that the equality uj(t) ≈ ũj(t) holds when Nu →∞. Also, ũ(t) = [ũ1(t), . . . , ũj(t), . . . ,

ũNw(t)]T , as the vector contains approximations for all the wells at every time step and by

inserting equation (3.6) into equation (3.4), we project the infinite dimensional optimization

problem into a finite dimension (of a degree NuNw) optimization problem. Taking into
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account the simulation time discretization we get:

max
ũ(t)

χ
(
x(Tf ), Tf

)
+

Nsim∑
k=1

Lk
(
x(t), ũ(t), t

)
subject to ẋ(t) = f1(x(t)) + f2(x(t))ũ(t)

ũj(t) =
Nu∑
i=1

ai,jψi,j(t), ∀j ∈ {1, ..., Nw}

ulb ≤ ai,j ≤ uub

x(0) = x0

(3.7)

Note that the integral from equation (3.4) was replaced in equation (3.7) by a summation

over Nsim simulation time steps, such that the flow rates are now associated with discrete

values with an index k. Also note that rather than a continuous functions uj(t), the decision

variables are now the control values ai at each well at each one of the Nu control time steps.

3.2.2 Polynomial Approximation using Chebyshev Polynomials

Let us define the following linear combination:

∀t ∈ RNsim , ∀j ∈ {1, 2, ..., Nw}, uj(t) ≈ p̃j(t) =

Np∑
i=1

ci,jΘi,j(t) (3.8)

where Θi,j(t) are polynomial basis functions, ci,j are the variables to be optimized, and p̃j(t)

is the resulting polynomial approximation for the control of well j. Again, note that equality

uj(t) = p̃(t) holds when Np →∞.

The main advantage of this approach is that the optimization dimension is decoupled

from the reservoir simulation control discretization, and a fine control approximation can be

optimized only with a few optimization (decision) variables. This cardinality reduction of

the decision variables set gets important, as optimization algorithms might not converge in

a reasonable time when the number of variables grow unbounded [74].

We note p̃(t) = [p̃1(t), . . . , p̃j(t), . . . , p̃Nw(t)]T , as the vector contains all approximations
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for all wells in all time steps and by inserting equation (3.8) into equation (3.4), we project

the infinite dimensional optimization problem into a finite dimension (of a degree NpNw) op-

timization problem. With this parameterization the optimal control problem can be defined

similarly to equation (3.7), as follows:

max
ũ(t)

χ
(
x(Tf ), Tf

)
+

Nsim∑
k=1

Lk
(
x(t), p̃(t), t

)
subject to ẋ(t) = f1(x(t)) + f2(x(t))p̃(t)

pj =

Np∑
i=1

ci,jΘi,j(t), ∀j ∈ {1, ..., Nw}

clb ≤ ci,j ≤ cub

x(0) = x0

(3.9)

where Np is the finite number of polynomial basis functions.

As we discussed before, previous works dealt with polynomial approximation for reservoir

flooding [70, 75] using monomial basis functions Θi = t̃i−1, where t̃ is a scaled time. This

natural form of the polynomial might be inefficient and therefore here we consider orthogonal

polynomial basis functions. Some examples from the optimal control literature are Lagrange

Polynomials [81], Legendre polynomials [79] and Chebyshev polynomials [83]. The latter is

also our choice in this work.

The Chebyshev polynomials of the first kind takes the following form:

Tn(x) = cos
(
n arccos(x)

)
(3.10)

which take the following recursion form:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) (3.11)

These polynomials are orthogonal on the interval −1 ≤ x ≤ 1 with respect to the following
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weight function:

w(x) =
1√

1− x2
(3.12)

such that:

∀i, j ∈ (0, ..., Np),
1

σn

∫ 1

−1

Tn(x)Tm(x)w(x)dx = δn,m =


1 , if n 6= m

0 , otherwise
(3.13)

where σn is a scaling factor.

Our choice of Chebyshev polynomials stemmed from an inspection of their image on the

support [−1, 1]. By scaling both time and controls coordinates to the box [−1, 1]×[−1, 1], the

Chebyshev polynomials of the first kind are promising candidates as their image is bounded

to this box on the support [−1, 1], as shown in Figure 3.1:

Figure 3.1: Chebyshev polynomials of the first kind. Left: degrees zero up to four. Right:
degrees five, six and seven

Note that for monomial basis functions {1, x, x2, . . . , xNp}, the bounds clb and cub are
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simply the bounds on the polynomial coefficient. In more general, for a non-monomial basis,

the bounds are imposed on the coefficient in front of the polynomial basis functions. The

bounds values can be set heuristically (as in [75, 70]) or deterministically (as in [79]). Before

setting those bounds it is important to consider that optimal controls of a reservoir flooding

problem might result in a combination of bang-bang and singular arcs controls [72]. That

is, control trajectories might be found either on the bounds or continue smoothly between

bounds. Thus, we set the bounds for the decision variables as follow −1 ≤ ci,j ≤ 1 such that

we allow at any arbitrary time interval to obtain a control trajectory on the bounds. Figure

3.2 demonstrates this concept with three polynomials resulted from a linear combination of

Chebyshev polynomials. Note that we allow the trajectories to get slightly out of bounds to

enable bang-singular control (the control is set to the nearest boundary to the polynomial

curve).

Figure 3.2: Examples of polynomial trajectories obtained by weighted sum of Chebyshev
polynomials. Intervals outside of the box are treated as (nearest) boundary control.
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3.2.3 Piecewise Polynomial Approximation using Cubic Spline Interpolation

In order to avoid the question which bounds to impose on the variables ci,j, one can

obtain a polynomial-control representation using piecewise polynomial interpolation between

points sampled from the original u space. Some examples of interpolated curves used in the

optimal control literature are B-spline functions [84] and Bézier curves [85]. The advantages

of piecewise polynomial over a polynomial interpolation in terms of numerical stability is well-

known [86, 77]. Our choice here is cubic spline interpolation with a not-a-knot condition (for

details see [86]). Cubic spline interpolation guarantees continuity up to the second derivative

and thus impose a smooth control trajectory that might be beneficial from a production

engineering point of view [87].

Let us denote the vector zj ∈ RNz as the vector contains Nz interpolation point for each

well j. Then, a cubic piecewise polynomial approximation can be defined as follows:

∀i ∈ {1, 2, ..., Nz−1}, ∀j ∈ {1, 2, ..., Nw}

Ωi,j(zj, t)


γ0,i,j + γ1,i,jt+ γ2,i,jt

2 + γ3,i,jt
3 , if (i− 1)h ≤ t ≤ ih

0 , otherwise

(3.14)

where a piecewise cubic spline interpolation between the values in zj determines the

coefficient γ0 , γ1, γ2 and γ3 for each Ωi,j(zj, t). Here, the control is approximated as follows:

∀t ∈ RNsim , ∀j ∈ {1, 2, ..., Nw}, uj(t) ≈ s̃j(t) =
Nz−1∑
i=1

Ωi,j(zj, t) (3.15)

We note s̃(z, t) = [s̃1(z1, t), . . . , s̃j(zj, t), . . . , s̃Nw(zNw , t)]T as a column vector contains ap-

proximations for all wells at every time step, where z = [z1, ..., zj, ..., zNw ]T is the concate-

nated interpolation vector. By inserting equation 3.15 into equation 3.4, we project the

infinite dimensional optimization problem into a finite dimension (of a degree NzNw) opti-

mization problem. Then, the finite dimensional optimization problem takes the following

47



form:

max
ũ(t)

χ
(
x(Tf ), Tf

)
+

Nsim∑
k=1

Lk
(
x(t), s̃(z, t), t

)
subject to ẋ(t) = f1(x(t)) + f2(x(t))s̃(z, t)

s̃j(zj, t) =
Nz−1∑
i=1

Ωi,j(zj, t),∀j ∈ {1, ..., Nw}

ulb ≤ zi,j ≤ uub

x(0) = x0

(3.16)

Note that the decision variables in this case are the interpolation points inside zj vectors.

These are the control parameterization techniques we use for well control optimization

and evaluate their performance with model order reduction technique developed in the later

section (3.4).

3.3 Motivation for Polynomial Controls

In this section, we demonstrate why polynomial control strategy is the choice of control

parameterization using a case study for varying number of control variables.

We show a test case for three different parametrization methods, namely PWC, Spline and

Chebyshev polynomials, each for ten different levels of parametrization and for two types of

algorithms (gradient-based and gradient-free). Thus, in total, we performed 60 optimization

runs for this section. Our goal here is to compare the different parametrization schemes

for each of the optimization strategies used here namely gradient-based and gradient-free

methods. For each parameterization, we tested the range from one decision variable per well

(constant value) up to ten variables per well. We reiterate that this number translate to the

number of control intervals for PWC, to the number of interpolation points in Spline and to

the number orthogonal polynomial basis in the Chebyshev method.

As for the gradient-based algorithm, we used the Interior Point Optimization (IPOPT)

method with limited memory BFGS (L-BFGS) inverse Hessian quasi-Newton approximation.

More details on this method can be found in [88]. Average values were used as initial guess
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for all gradient-based optimization runs. For the gradient- free method, we used Particle

Swarm Optimization with dynamic neighborhood and dynamic inertia [89], with a swarm of

30 particles.

3.3.1 Case Study

Here, since we tested many cases, we used a fast and simple incompressible simulator

as discussed in Section 2. In the next section, where we couple different parametrization

methods with reduced order modeling, we use a more accurate black oil simulator. Figure

3.3 shows the model used in this section, with a five-spot pattern (four producing wells and

one injector) in a 51 by 51 grid. The grid cell dimensions are 20 × 20 × 20 ft3 . There are

three permeability sub-regions in three distinct geological facies: facies 1 with the original

low-permeability (about 100mD) geological environment, facies 2 with east-west moderate

permeability (about 680mD) channels formed by ancient rivers and facies 3 with newer

high-permeability (about 1370mD) channels whose flow eroded the environment from north

to south. The porosity, the initial and residual water saturation are all assumed equal to

0.2. The relative permeability curves are shown in Figure 3.3.

Figure 3.3: Synthetic two-dimensional reservoir, with its relative permeability curves
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We ran the swarm simulations and generated the forward finite difference gradients in

parallel on a High Performance Computing (HPC) machine (Texas A&M High Performance

Research Computing facility using Ada IBM NeXtScale Cluster operated with Linux, CentOS

6.6, using 31 nodes with 64 GB, DDR3 1866 MHz). We assumed a ratio of ten to one between

oil revenue and cost of water produced and injected (100:10:10 $/STB, respectively), with

an interest rate of 10%. Note that though these prices might not reflect the actual market

prices for a given point in time, same optimal control solution would be obtained for different

prices scenarios as long as the oil-water price ratios are kept the same, as can be inferred

from equation (3.2). The only inequality constraints we considered are hard bounds. Output

inequality constraints are out of the scope of this work. For all producers, we set a lower

bound of 500 psia and an upper bound of 2200 psia. For the injector, the upper and lower

bounds are 2100 and 3000 psia, respectively.

3.3.2 Parametrization Sensitivity Computational Results

Figure 3.4 shows the relative comparison results and Figure 3.5 shows the number of

iterations to convergence for all ten levels of parameterization, and for both gradient-free

using PSO and gradient-based using IPOPT methods. All the values are given in percentage

relative to the best solution ($17.73 million) obtained by Chebyshev parameterization with

10 polynomials basis for each well.

The convergence criterion for the PSO was 10 stall iterations without a relative improve-

ment above a threshold of 10−8. All the IPOPT cases stopped after the relative norm of the

step (change in the decision variables) reached below a threshold of 10−8. We note that at

the time of convergence with respect to this criterion, all gradient base cases did not satisfy

the first optimality condition. Thus, the algorithm did not guarantee the existence of KKT

conditions, implying the local optimality was not necessarily obtained.

From both Figure 3.4 and Figure 3.5, it is hard to derive a general conclusion which

parameterization methods yield the best results. Note that parameterization level 1 trans-
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Figure 3.4: (Left) Gradient free (PSO) and (Right) gradient based (IPOPT) results for
different numbers of basis functions, normalized to the best solution found ($17.73 million)

Figure 3.5: (Left) Gradient free (PSO) and (Right) gradient based (IPOPT) number of
iterations

lates into optimization of one constant value, and thus all methods are equivalent in this

level. In the gradient-free approach (Figure 3.4)(Left), PWC achieved the highest objective
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function at four levels (3, 4, 7 and 10), Chebyshev polynomials at three levels (2, 5 and 6)

and Spline at two levels (8 and 9) which had the highest value in the gradient free group

($17.67 million). Note that due to the stochastic nature of PSO, testing more realizations

per each level of parameterization might lead to different observations.

In the gradient-based approach (Figure 3.4(Right)), PWC achieved the highest objective

function values at four levels (4, 5, 6 and 9), and Chebyshev polynomials at five levels

(2, 3, 7, 8 and 10, the last with the highest value in all 60 runs). Note that Spline method

underperformed at all levels in the gradient-based approach. In terms of computational cost,

note from Figure 3.5(Left) that, in the gradient-free approach, Spline achieves the fastest

convergence in most of the cases, and Chebyshev is the slowest in most of the cases. From

Figure 3.5(Right), we can see that, in the gradient-based approach PWC converge the fastest

in most of the cases, while Spline is the slowest in most of the cases.

Though local optimality was not proven, we can see from Figure 3.4 how the gradient-

based method consistently outperforms the gradient-free method. We performed tests (not

shown here) with more tight gradient-free convergence criteria, but they yielded only slight

solution improvements with much higher computational cost (number of iterations). We

note here the work of [90] which had a different observation, that the gradient free methods

outperform SQP (Sequential Quadratic Programming) gradient based algorithm, where the

gradients were acquired via finite difference derivatives (same as this current work). If the

adjoint implementation is available, the gradient based methods become much more efficient

in terms of the number of simulation runs.

From Figure 3.4(Right), the gradient-based method consistently produced better objec-

tive values upon adding more variables for most of the cases. PWC is an exception where,

in some cases (in both algorithms) adding more variables causes a decrease in the obtained

solution. Thus, it seems that PWC is more prone to be trapped in the local solutions. From

the previous observation of improving solutions as the number of basis increases, we reinforce

the claim that as the number of basis approaches infinity, the approximation to the infinite
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solution turns more accurate.

Figure 3.6 shows the optimal control trajectories obtained by each parametrization method

for a level of 10 variables per well. The control changes every 10 days in these cases. The

results are given for both gradient-free (PSO) and gradient-based (IPOPT) methods. The

control trajectories shown for IPOPT with Chebyshev polynomial approximation is the so-

lution which produced the highest NPV.

Figure 3.6: (Optimal controls of level 10 obtained by each parametrization method. Top:
Gradient-free (PSO). Bottom: Gradient-based (IPOPT)

Thus, from this case study, it is evident that the polynomial control strategy (especially

Chebyshev polynomial) obtains better NPV values for many levels of parameterization along

with smooth control changes over a time period. This is much more practical as compared to

the conventional piecewise constant parameterization that causes erratic changes in controls
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between high and low values of BHP (as can be seen in Figure 3.6), which can cause equip-

ment fatigue and hence impractical. Thus, the polynomial strategy is recommended here for

practical purposes that has the ability to maintaining the near maximum or maximum NPV

values.

3.4 Global Parametric Model Order Reduction

In this section, we introduce the PMOR strategy to be used with the different control

parametrization schemes during control optimization. As mentioned before, the parameter

in this case used is ζ = pwf for all the wells. One challenge that needs to be addressed while

developing PMOR method using POD is, we need to compute fine scale non-linear functions

before projecting them to the reduced dimensional subspace, that does not significantly add

to the computational advantage. And the second challenge is, during the control optimiza-

tion, each optimization iteration will introduce a new set of BHP profiles, and thus, it is not

feasible to run a fine scale simulation for each BHP set and develop a ROM. The former is

solved here using DEIM (Discrete Empirical Interpolation Method) that constructs a sepa-

rate subspace of non-linear terms, selects interpolation points by greedy algorithm, and then

approximate the non-linear terms in the subspace by a combination of projection and inter-

polation [32]. The application of POD-DEIM for BHP control changes in reservoir simulation

was introduced in [35, 20]. However, its full scale implementation for a control optimization

problem is still lacking. The latter challenge is solved using global PMOR technique, where

we seek to train the model with representative BHP profiles, that are deemed to represent

the dynamics of the reservoir for different BHP profiles throughout the optimization run, to

obtain a global PMOR basis.

3.4.1 Discrete Empirical Interpolation Method

DEIM is a simplified form of EIM (Empirical Interpolation Method), where the non-

linear functions are evaluated at only a selected grid points and then approximated in the

full grid by a combination of projection and interpolation.

54



Let f(t) ∈ Rn be a non-linear function of time or other parameter. f can be approximated

by projecting it into a subspace spanned by the basis function U = (U1, U2, ..., Um) ∈ Rn×m

as

f(t) ≈ Uc(t) (3.17)

This basis function is determined by assembling the function evaluations in a matrix

Sf ∈ Rn×ns and then SVD is employed to this matrix to compute m modes that are used as

the basis functions.

The coefficient vector c(t) can be determined uniquely from the following:

P Tf(t) = (P TU)c(t) (3.18)

where, P = [eγ1 , eγ2 , ..., eγm ] ∈ Rn×m, and eγi = [0, ..., 0, 1, 0, ..., 0]T ∈ Rn is the γthi column

of the identity matrix In ∈ Rn×n. These interpolation indices P used for determining the

coefficient vector c(t) are selected inductively from the basis U by the greedy algorithm to

have the non-singular matrix P TU . The greedy algorithm is shown in Table 3.1.

Thus, from equations (3.17) and (3.18), we may write

f(t) ≈ U(P TU)−1P Tf(t) (3.19)

The non-linear functions (in our case the Transmissibility, Gravity, Accumulation, Source

or Sink, Jacobian and the Residual) are thus computed only at the selected interpolation

points by the greedy algorithm (P Tf(t)) and then approximated in fine scale by the above ex-

pression. For in depth discussions on the applications of POD-DEIM in reservoir simulation,

the reader is referred to [20].
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DEIM Algorithm [32]

INPUT {ul}ml=1 ⊂ Rn linearly independent

OUTPUT ~γ = [γ1, γ2, ..., γm]T ∈ Rm

1. [|ρ|, γ1] = max|u1|

2. U = [u1], P = [eγ1 ], ~γ = [γ1]

3. for l = 2 to m, do

4. Solve (P TU)c = P Tul for c

5. r = ul − Uc

6. [|ρ|, γl] = max{|r|}

7. U ← [U ul], P ← [P eγl ], ~γ ← [γl ~γ]T

8. end for

Table 3.1: DEIM procedure

3.4.2 Global PMOR training strategy

As we have discussed the PMOR method, POD-DEIM, that we use for well control

optimization, the next task is to define the basis Φ for POD and U for all the non-linear

functions in reservoir simulation during DEIM. The method we use here is global ROM where

the aim is that the ROB yields a sufficient reduction in the dimension of the model such

that it accurately represents the full-scale outputs over the entire parametric space (all BHP

profiles encountered during the optimization process) as represented in equation (2.32).

For well control optimization, the quality of the resulting reduced order models (ROMs)

is highly dependent on the parameter choice, which is BHP profiles over time, used during

training period. Major issues arise in selecting a good parameter set for a representative

ROB. One is the number of samples that need to be selected, which in general is an ad hoc
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precess, where usually, the representative parameters are selected based on the knowledge of

application being used for. The other challenge is computation of fine scale simulations for

selected parameter which specially becomes prohibitive in case of high dimensional parameter

space.

The way the samples are chosen are using either a priori sampling [42, 38] or adaptive

sampling approaches [43, 91, 92, 21]. Adaptive sampling approaches tend to pick a database

of samples that are close to the optimal database but are usually computationally expensive

as they require evaluation of errors of the models. We use a priori sampling based on

random selection of BHP profiles but we use the optimization strategy as part of the training

procedure for efficient representation of parameter space.

Choose parameterization method for controls

Run fine scale simulations for the intital swarm of BHP profiles

Concatenate the state solutions from each particle in the
swarm into a single big snapshot matrix for PIOD The
same is done for all the non-linear functions for DEIM

Build POD-DEIM reduced order model us-
ing the concatenated snapshot matrices

Resume the PSO/IPOPT optimization procedure using
ROM. PSO resumes second iteration with a new swarm
and IPOPT with the best particle from initial swarm

Figure 3.7: Workflow for optimization-online training of POD-DEIM

Our approach here, as shown in Figure 3.7, is to start the optimization with a few
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fine scale simulation runs for different parameters and use them as an online training set.

During the optimization process within the PSO framework, we spend a good amount of

effort simulating different particles in parallel. Thus, assuming the initial swarm profiles

will adequately represent the dynamics of the reservoir during the subsequent optimization

iterations, we use the fine scale solutions of these particles from the first optimization iteration

to construct the snapshot matrix. In more detail, in the gradient-free approach using PSO,

the simulation state outputs of the initial random swarm are concatenated into one snapshot

matrix. After constructing the POD-DEIM basis, the optimization proceeds to the second

iteration with the reduced order model. Similarly, in the gradient-based approach we used a

swarm of random BHP profiles for training, where the profile which produced the best NPV

was chosen as the initial guess for the optimization procedure. By doing so, we utilize the

training effort also to advance the optimization process.

3.5 Case Study

Our goal here is to analyze and compare the results of optimization using fine scale sim-

ulations and reduced order modeling with POD-DEIM for three different parameterization

methods. Again, the optimization parameterization strategies used are Piece-wise Constant

(PWC), Chebyshev Polynomial Approximation and Spline interpolation. Here we consider

only one level of parameterization with 4 optimization variables per well for each one of

the three methods. Thus, the number of decision variables for a five spot pattern is 20.

We compare the results for both the gradient-based (IPOPT with LBFGS) and gradient-free

(Particle Swarm Optimization (PSO)) optimizers. For this section, we used 8-core machines,

and thus we set the swarm size to 8 particles to be evaluated in parallel. Here, we used a

tighter convergence criterion of 20 stall iterations without a relative improvement above a

threshold of 10−6.
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3.5.1 Problem Statement

In this section, we test our POD-DEIM methodology for the three different parameter-

ization methods on a small model, which is a modified version of the one shown in [90].

The 2D model used is a 40 × 40 × 1 reservoir (1600 grid blocks) with 4 producers and 1

injector placed in the channelized area. The model is discretized using Cartesian grid of size

20ft × 20ft × 20ft. The porosity of the field is set constant to 0.2. Figure 3.8 shows the

permeability field and the well locations. Here, we use a black-oil fully implicit simulator

which solve equation (2.3) during each simulation time step. As mentioned earlier, we ne-

glect the capillary pressure effects and consider a slightly compressible flow of oil and water.

The initial saturation of oil and water is 0.8 and 0.2 respectively. The Corey-type relative

permeability curves with exponent of 2 are used for both the fluids.

Initial reservoir pressure is 2100 psia. The injector has an upper bound of 3200 psia and

a lower bound of 2200 psia while the upper bound for all four producers is set to 2100 psia

and lower bound to 500 psia. Control time step for each well is 10 days. Oil price is

considered to be 50$/STB and the water-injection and production costs are each 10$/STB.

3.5.2 PMOR training

The snapshot matrix here is a (3200× 1530) matrix collected from the 8 particles. The

POD basis is constructed using 40 columns from the pressure left projection matrix and

70 columns from saturation left projection matrix. The number of basis for pressure and

saturation are selected to capture 99% of the energy of snapshot matrix (see Figures 3.9a

and 3.9b). The DEIM greedy algorithm selected 65% cells that need to be used for function

evaluations (see Figure 3.9c). All optimization and parameterization methods use the same

number of basis and interpolation cells. Here, we do not try to determine the strategies to

reduce the number of interpolation points. This would be a future scope of study.

59



Figure 3.8: Reservoir permeability field with 4 producers and 1 injector (after [90])

3.5.3 POD-DEIM Performance for a Representative Case

We will now show a detailed analysis of the POD-DEIM performance. Out of the 6

POD-DEIM optimization runs (3 parameterization methods with 2 different algorithms),

we chose one representative case to analyze its POD-DEIM performance. Our choice is

Chebyshev Polynomial Approximation coupled with PSO. As will be shown in the next

section, Chebyshev method obtained the best results in both optimization search methods.

Figure 3.10 shows three training samples from the eight initial random Chebyshev profiles

of four producers and an injector.

Next, we validate the accuracy of the reduced order model, by taking the Chebyshev

optimal control from the POD-DEIM optimization as an input and comparing the simulation

outputs from both full and reduced order models. As can be seen in the results below, the

POD-DEIM produces accurate results. Figure 3.11 compares the saturation profiles for the

POD-DEIM optimal control at three points in time: at the first time-step, after 1 year and
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(a) (b) (c)

Figure 3.9: (a) Pressure and (b) Saturation basis selection for POD and (c) cells selected for
DEIM (in strong colors)

Figure 3.10: Three training samples from the initial eight-particles swarm of Chebyshev
profiles

after 2 years. The comparison is between fine scale and reduced scale simulations. It also

shows the relative error for POD-DEIM saturation at these times.

The oil production and water production rates for the POD-DEIM optimal control using

fine scale and reduced scale simulations are shown in Figure 3.12 and Figure 3.13, respec-

tively, which show a good agreement in the production rates between the two. The produc-

tion rates are off in a few initial time-steps but do not have a large effect on the NPV values

since these time-steps are very fine. Although we can increase the number of saturation basis

to remedy this issue, we found it unnecessary at this point.
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Figure 3.11: (Top) Saturation profiles from POD-DEIM Chebyshev optimal control using
fine scale simulation and (Below) using the reduced model at different times and their relative
errors

We performed similar accuracy analysis to all optimization techniques mentioned and

they show a reasonable accuracy as the Chebyshev results. In the next section, we perform

a different accuracy comparison, where we compare the optimal solutions obtained by an

optimization using a full-order model to an optimization using a reduced order model.

3.5.4 Comparison: PSO Optimal Control Solutions

In this subsection, we show that global search method such as PSO with POD-DEIM can

obtain reasonable optimization accuracy. For that purpose, we use a relative error indicator

for the control trajectories, as defined below:

ErrorBHP (%) =
‖ BHPPOD−DEIM −BHPfine ‖

‖ BHPfine ‖
× 100 (3.20)

where, BHPPOD−DEIM is the optimal control obtained from optimization with POD-
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Figure 3.12: Oil production rate from the high fidelity simulation and reduced model simula-
tion for 4 production wells using the Chebyshev optimal control solution from POD-DEIM.

DEIM and BHPfine is the optimal control from fine scale optimization. Figure 3.15 shows

the relative error, as defined in equation (3.20), for the control trajectories obtained by the

PSO algorithm for the Chebyshev control, Spline control and piece-wise constant control.

Figure 3.14 shows these optimal control trajectories. As is evident from these optimal control

and relative error plots, the polynomial and piece-wise polynomial approximations from

POD-DEIM and fine scale optimization show similar control strategies.

We can see from the tables that POD-DEIM proves to be a viable model reduction

technique for production well control optimization problems especially for Chebyshev and

Spline controls. We can see again that IPOPT outperforms the PSO.

In Figure 3.16, we compare the relative errors of the NPV estimated for each parame-

terization method using fine scale and POD-DEIM simulations. The relative NPV error is

computed as follow:

ErrorNPV (%) =
|NPVPOD−DEIM −NPVfine|

|NPV fine|
× 100 (3.21)
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Figure 3.13: Water production rate from the high fidelity simulation and reduced model
simulation for 4 production wells using the Chebyshev optimal control solution from POD-
DEIM

where NPVPOD−DEIM refers to the NPV obtained by using the optimal control from

POD-DEIM with fine scale simulation and NPVfine is the NPV from fine scale optimization.

We can see from Figure 3.16, Table 3.2 and Table 3.3 that Chebyshev control optimization

showed the best accuracy and the highest NPV for the two optimizers. Also, note from

Table 3.2 and Table 3.3 that it had a fast rate of convergence when used with IPOPT for

this example. NPV with PWC and Spline was less than that of Chebyshev, and Spline

showed the least convergence rates for all the cases.

Overall we can say that the POD-DEIM with PWC did not show good results. One of the

reasons could be a need for retraining during optimization or a large number of basis need to

be selected for such control profiles to represent the dynamics of all the controls. Regarding

runtime saving, one simulation run during the optimization on fine scale is about 20 seconds,

whereas, using POD-DEIM takes on an average 12 seconds. Since the optimizations for all the
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Fine Scale POD-DEIM Fine Scale with
POD-DEIM
Control

NPV Iterations NPV Iterations NPV

PWC 1.871 92 1.817 87 1.801
Spline 1.870 204 1.864 178 1.846

Chebyshev 1.881 46 1.903 25 1.875

Table 3.2: NPV and number of iterations for fine scale and reduced scale optimization using
the 3 methods with IPOPT. NPV values are in million USD

Fine Scale POD-DEIM Fine Scale with
POD-DEIM
Control

NPV Iterations NPV Iterations NPV

PWC 1.828 205 1.79 159 1.74
Spline 1.814 413 1.801 446 1.803

Chebyshev 1.84 262 1.878 280 1.839

Table 3.3: NPV and number of iterations for fine scale and reduced scale optimization using
the 3 methods with PSO. NPV values are in million USD

methods were performed on different platforms, we do not report the overall time. But the

total computational saving on the entire optimization run in all the cases using the reduced

model was about 45-50% (including the offline basis computation stage) when compared

to the fine scale optimization. These results justify the use of POD-DEIM for well-control

optimization problem and also a good set of training that is representative of all the BHP

profiles during the optimization run particularly for Chebyshev and Spline control methods.
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(a)

(b)

(c)

Figure 3.14: PSO optimal control solution comparison from POD-DEIM and fine-scale using
all three parameterization methods (a) Chebyshev polynomial control (b) Spline control (c)
Piecewise constant control
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Figure 3.15: Control trajectories relative error for a PSO algorithm

Figure 3.16: Control trajectories relative error for a PSO algorithm
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3.6 Summary

In this work, we develop a global PMOR strategy using POD-DEIM, applied to a well

control optimization procedure. We begin by introducing different parameterization meth-

ods to reduce the cardinality of the original infinite set of control-decision variables to a

finite set. The parameterization techniques include a traditional piecewise constant (PWC)

approximation, a newly introduced here, polynomial approximation by Chebyshev orthog-

onal polynomials and a piece-wise polynomial approximation by cubic Spline interpolation.

These parameterization of controls during control optimization procedure is combined with

POD-DEIM as the global model order reduction method for computational advantage at

the reservoir simulation level, where a new training strategy is proposed that can be used as

part of an optimization run.

In the first example, the parameterization methods are tested for increasing level of

refinement using fine scale simulation to evaluate their performances for gradient-free (PSO)

and gradient-based (IPOPT) methods. The results showed an increasing performance of

optimization with respect to the objective function upon increasing the number of decision

variables. For the highest refinement level, Chebyshev polynomial approximation found

the maximum NPV for the case considered. PWC exhibited the fastest convergence, but

with more likelihood to be trapped in local solutions. Spline method suffered from slow

convergence when gradient-base method was used.

In the second example, we tested the control parameterization strategy with POD-DEIM

for a given level of parameterization refinement. We observed that Chebyshev polynomials

performed better than Spline control and PWC control. The training selection for POD-

DEIM here utilizes the information from the first fine scale optimization iteration on multiple

random particles run in parallel, which is then used as a snapshot matrix. The optimization

then follows from the next swarm chosen by PSO in case of gradient free method and from

the best solution as the initial guess for the IPOPT method.

Choice of such a training set proved to perform consistently well for the polynomial
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and piece-wise polynomial control approximations. POD-DEIM when used for optimization

using Chebyshev polynomial approximation, produced very good accuracy with the fine scale

optimization as was evident from the errors in optimal control solution and NPV. A 45-50%

speedup on the reduced scale optimization runs was achieved for all the cases compared to

high fidelity runs. This work demonstrates the use of control parameterization with model

order reduction as an efficient methodology for optimization particularly when used with

polynomial controls.

In future work, the use of this methodology on benchmark models and bigger duration of

well control optimizations should be investigated. These cases performed significantly well

without a need for retraining. However, it might be necessary to retrain the model during

the course of optimization run for more complex cases, which may require a robust error

indicator to quantify the errors from POD-DEIM.
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Until now, we discussed about the use of global basis for well control optimization prob-

lem. MOR for well control changes can also be described in terms of local basis in time

which we try to address in the following section. Thus, this is a preliminary work shown to

address the idea of generating multiple realizations of local ROM solutions using Bayesian

formulation as an initial step for future research direction.

3.7 Bayesian framework for probabilistic sampling of basis functions

This section describes the preliminary work on a Bayesian framework to sample the basis

function for well control optimization problem. We note that this topic is not in continuation

with the PMOR strategy discussed until now in the above sections. Here, the idea is to

describe the solution of a new well control from multiple realizations of inexpensive reduced

models rather than a single global reduced model. Thus, this method, rather than providing

a deterministic solution, can take into account multiple low confidence solutions and thus,

obtain a probabilistic description of approximate solutions. This concept was applied for a

multiscale approach based on finite element method in [93]. The work that we show here is

not complete but provides a good starting point as a proof of concept and some areas need

to be addressed in the future, as will be discussed later.

As we seek to obtain realizations of basis functions from a given set of basis functions,

we adopt the following procedure:

1. The first step is to compute the global basis functions for a training set of BHP profiles

using POD. We then use a subset of these basis functions as permanent or "fixed" basis

functions and the rest are assumed to be the "tail" basis functions. Fixed basis functions

provide a good solution approximation.

2. We then use the residual information at each time step to compute the prior distribu-

tion of the "tail" basis functions.

3. Once the prior distribution is obtained, we then define the posterior that includes

residual minimization and then sample from the posterior using sampling techniques.

In the next section, we show these steps in detail. But before that, we do not go into the
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details of the offline basis construction as it has been already shown in the snapshot based

POD method.

3.7.1 Bayesian Formulation

The POD basis functions which we denote by φ(x) are a function of space x and the

solutions are obtained as a linear combination of these basis functions at each time step. For

the current work, we just show the working of this method for time interval [tn−1, tn]. Since

we consider two-phase flow system, we have different basis functions for both pressure and

saturation. For the ease of notations we describe the method using a single state variable

and its basis functions. Let us denote the reduced model predicted solution by x̃ and the

coefficients of the basis functions as β. In our case, β corresponds to the reduced order

correction in the states obtained at each time step as represented by δr in equation (2.31).

The reduced order model solution can then be written as:

x̃n(x, t) =
r∑
i=1

βni (t)φni (x) (3.22)

=

Nfix∑
i=1

βni (t)φni (x) +
r∑

i=Nfix+1

βni,+(t)φni,+(x) (3.23)

Here, Nfix denotes the number of fixed basis functions φi and φi,+ denotes the tail basis

functions. r is the dimension of POD basis from which the basis functions are sampled. For

the current problem we do not consider the time dependency of the basis functions since we

consider a global basis in time and for each time interval, same fixed basis are considered.

Let us denote the residual computed at the time interval [tn−1, tn] by Rn which is computed

using the fixed basis function φi. As we keep φi fixed, we then select Nbasis basis functions for

prior distribution, which is user specified and depends on the computer resources available.

For each tail basis we find the correlation coefficient αk,+ as:

αk,+ = corrcoeff(Rn, φk,+) (3.24)

We normalize the correlation coefficients αk,+ so that on average we have Nbasis basis
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functions.

α̂k,+ =
αk,+∑
αi,+

Nbasis (3.25)

Thus, for prior distribution of basis functions, we choose kth basis with probability α̂k,+ ∧ 1.

Thus, we basically sample from a number randomly from a uniform distribution and select the

basis that has the α̂k,+ value greater than this number. As we use α̂k,+ for prior distribution,

we may use approximate residuals and hence for the cases shown here, we just use one

Newton iteration to get the residual for correlation.

Posterior around previous time

Now that we have the prior distribution, we formulate the posterior function. Denoting

the indices of the basis functions as I, we sample from the posterior at each time interval

based on the solution from the previous time interval. Thus from the Bayesian theorem we

may write the posterior as:

P (βn+1, In+1 | x̃n(x, t)) ∼ P (x̃n(x, t) | βn+1, In+1)π(βn+1 | In+1)π(In+1) (3.26)

P (x̃n(x, t) | βn+1, In+1) ∼ exp

(
− ‖ R

n+1 ‖2

σ2
L

)
(3.27)

where, Rn+1 is the residual computed for time interval [tn, tn+1] and σL represents numerical

precision. Thus, the posterior is computed based on the residual information from the

solution at previous timestep.

Sampling from the posterior

Here, we use Gibbs sampling method to sample the posterior given the prior, as stated in

previous section. Let us consider our prior distribution as Ij+ = [Ij1,+, I
j
2,+, I

j
3,+, ..., I

j
n,+].

Here, each Iji,+ represent the index of the tail basis functions. Given this prior, we sample

a posterior Ij+1
+ . Gibbs sampling computes the probabilities π̂k of each additional basis
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function:

π̂n+1
i,+

1− π̂n+1
i,+

=
α̂n+1
i,+

1− α̂n+1
i,+

×Ri (3.28)

where, Ri is the multiplicative factor that defines how much a change in one basis function

affects the residual change.

Ri = exp

(
− ‖ Ri −R−i ‖

σ2
L

)
(3.29)

Thus, for example, when calculating the probability of first tail basis function, R1 is calcu-

lated using [Ij1,+ = 1, Ij2,+, I
j
3,+, ..., I

j
n,+] and R−1 using [Ij1,+ = 0, Ij2,+, I

j
3,+, ..., I

j
n,+].

Once π̂n+1
i,+ is calculated, we randomly sample from a uniform distribution r ∼ N(0, 1) and

set Ij+1
1,+ = 1 if π̂n+1

i,+ > r, otherwise, it is set to 0. This step is repeated for each tail basis

function to get a posterior sample Ij+.

3.7.2 Case Study

We demonstrate this formulation on a simple two dimensional heterogeneous reservoir

model as shown in Figure 3.17. The reservoir model is discretized with a Cartesian grid of

size 50 ft × 50 ft × 50 ft, and it contains 400 (20×20) active cells. We neglect capillary

and gravity effects. The initial reservoir pressure is 4200 psi and the injector and producer

are BHP controlled. The training and test BHP controls for both injector and producer are

shown in the Figure 3.18. Simulation is run for 3 years and POD is used to obtain the basis

functions from the state solutions obtained in this time duration of 3 years. We aim to use

the methodology to sample the posterior and get multiple realizations of the basis functions

for a time interval in the simulation run. The time interval that we choose here is the last

time step to predict the new states using many but very fast low order models.

Once we get the basis functions, we fix first few basis for both pressure and saturation.

Here 99.99% energy criteria was chosen to get the basis dimensions which resulted in 40
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Figure 3.17: Heterogeneous permeability field with one producer (red) and one injector
(white)

(a) (b)

Figure 3.18: (a) Training BHP profile for producer and injector (b) Test BHP profiles of
producer and injector

pressure basis and 60 saturation basis. We fix first two basis for both pressure and saturation

and then use the proposed methodology to sample the tail basis functions. One important

parameter in this method is determining Nbasis number of basis functions we wish to have
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on average. As can be expected, the more this number, the closer it will be to the exact

solution. Thus, here we try different values of Nbasis to evaluate the performance. Another

parameter is σL that represents the numerical precision. Thus, lower this number, we have

less confidence in our samples and the sampling method will pick more number of basis

functions on an average. We generate 20 posterior realizations of basis functions to compute

the coefficients β and hence the POD predicted states at the given time interval and an

average of these state solutions is compared to the true solution.

Figures 3.19 and 3.20 show the predicted pressure and saturation solution after 3 years

(last time interval) using Nbasis = 8 and σL = 2. Note, the predicted solutions are the

average of solutions obtained from 20 posterior samples. Table 3.4 shows the relative error

in prediction of pressure, saturation and oil production rate at the end of simulation for

different values of Nbasis. Thus, these results are more accurate with increasing number of

basis required as expected. In this way, we obtain many approximate solutions that are

extremely fast to solve because only a few basis functions are sampled in the posterior at

each time interval. It is also interesting to see the basis functions selected for pressure and

saturation. Table 3.5 shows the indices of the tail basis functions for pressure and saturation

for one of the samples. It can be observed that as opposed to the convention to select first

few basis functions, many basis functions towards the end are sampled in the posterior.

Nbasis Pressure Saturation Oil Production Rate

5 1.9 1.4 4.7
6 2.1 1.4 2.1
8 1.7 1.3 0.9
10 1.2 1.3 0.02

Table 3.4: Relative error (%) in predicted solutions by posterior samples of basis functions
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Figure 3.19: Pressure solution comparison at the last time step for which basis functions are
sampled - Nbasis = 8

Figure 3.20: Saturation solution comparison at the last time step for which basis functions
are sampled - Nbasis = 8

3.7.3 Summary

In this work, we propose a Bayesian formulation for solving reduced order models within

a probabilistic setup, which provides multiple inexpensively computed solutions to account

for uncertainties in the reduced model solution. This method is applied to a reservoir simu-
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Indices of the basis functions

Pressure 6, 7, 9, 12, 14, 16, 25
Saturation 2, 4, 5, 24, 47, 58

Table 3.5: Indices of the pressure (38 basis) and saturation (58 basis) tail basis functions
selected in one of the 20 samples

lation application of changing well controls during well control optimization. The proposed

framework is based on the understanding that a first few basis functions, referred here as

"fixed" basis functions, of the state space can account for the dominant dynamics in the

reservoir and hence reduce the error significantly and, the rest of the basis functions, re-

ferred to here as the "tail" basis, reduce the error only slightly. Thus, as opposed to the

convention of selecting global basis for all time steps, we sample a few tail basis functions at

each time step which allows us to compute multiple realizations of the state solution, each of

which is computed significantly faster. A residual based posterior is proposed, which is then

sampled using Gibbs sampling technique. The validity of this method is demonstrated on a

changing well control problem for a single time step and shows promising results. This work

is in the preliminary stage and requires a full scale implementation in the future. One of the

areas that need to be focused is the computation cost associated with residual calculation

which is non-linear for reservoir simulations. This makes the workflow slow to implement

and hence some quick approximation to residual must be sought. In general, this framework

shows the promise to represent a state solution by generating multiple realizations of very

fast computed reduced order solutions.
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4. LOCAL MODEL ORDER REDUCTION FOR CHANGING WELL LOCATIONS

DURING WELL PLACEMENT OPTIMIZATION∗

After developing the PMOR strategy for well control optimization, we now focus on the

PMOR development for the case of changing well locations. This is the main focus of my

research from this point. However, it should be noted here again that, this is just a first step

towards well placement optimization. We only address development of MORs for changing

well locations that can ultimately be used for well placement optimization problem in the

future.

In this section, we develop a local model order reduction technique where the idea is to

use pre-existing reduced order basis (ROBs) for a new well location in the reservoir. Most

parts of this work have been published in [94]. We begin with the main challenges underlying

the PMOR development for changing well placement followed by some observations using a

simple case study that aid in constructing the reduced models. The idea used here is based

on construction of error maps for a ROB and these observations motivate us to use concepts

in machine learning (ML). As we develop a POD-based strategy, we later formulate the

basis selection process as a regression and classification machine learning problem. We then

provide a brief overview of the machine learning algorithms used here with the reason behind

using them. Later, we address the feature selection process for the formulated ML problem

that is the main challenge for the case of new well locations, which is not as straightforward

to define as the changing well controls. The features are defined based on the geometry of

well locations and we also introduce flow diagnostics based features to capture the physics of

flow. The validity of the proposed methodology is shown with some case studies. The current

scope of work for this method is limited to low contrast reservoirs and small simulation run

times such that we do not have water production in the wells. We also show the limitations
∗Reprinted with permission from “Th A2 08 Parametric Model Order Reduction For Adaptive Basis

Selection Using Machine Learning Techniques During Well Location Opt” by H. Zalavadia and E. Gildin,
2018, 15th European Conference on the Mathematics of Oil Recovery, Copyright 2018 by EAGE

78



of this method when considering the realistic case of water fronts reaching the wells and the

possible ways to address them in the future.

4.1 MOR challenges for changing well locations

Determining the optimal well locations is a crucial decision during a field-development

plan as it plays a significant role towards the value of the project. This optimization prob-

lem has been approached as a discrete optimal problem by researchers using gradient-free

optimization algorithms like the genetic algorithm [95, 96] and neural networks [44]. It was

formulated as a continuous optimization problem and solved with gradient based methods in

[97] and using gradient free methods in [98]. However, these techniques require a large num-

ber of fine scale forward simulation runs to obtain convergence and thus require significant

computer time, which motivates us to develop MOR strategies for changing well locations.

As discussed in Section 1 and Section 3, ROM approaches have been applied in the liter-

ature within the context of well control optimization problems with fixed well configurations

and have reached a good level of maturity to achieve significant computational saving. Dur-

ing well control optimization, there is usually only a slight change in controls moving from

one timestep to other. This makes the aforementioned MOR techniques more suitable for

control optimization. But these approaches are not well suited for well placement optimiza-

tion since a slightest change in well configuration can lead to a totally different dynamical

system, something that has not been addressed yet and becomes very difficult to develop a

ROM for new well location as was shown in the controllability concept explaining changing

well location. The selection of parameters i.e. well locations during the training stage is thus

a challenge that can act as an appropriate controllable subspace for new well locations.

The parameter ζ of the system depends on the problem under consideration as discussed

before. For well control optimization, where, ζ = pwf ∈ RNt for each well, with Nt being the

number of simulation time steps, for well placement optimization, ζ represents the indices

in sparse vector Q, corresponding to spatial location of the well to be optimized in the

source/sink vector, which is the main focus of this work. Thus, a major challenge is to
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explicitly represent ζ for well locations such that it represents accurately the dynamics at

new well locations in reservoir simulation equation (2.3), as opposed to the parameter for

well control, which is a real valued number corresponding to BHP at different time steps.

4.2 Observations

As a starting point to tackle the challenges that are underlying the MOR development for

changing well locations, we first try to solve a simple problem by making some observations

that will lead us to formulating our main contribution. So we discuss now these observations

that motivated us to develop the methodology proposed later in this section. In this section,

we first analyze the results using widely used global PMOR techniques that show potential

benefits and drawbacks that can be addressed by using local basis as will be discussed later

in this section. The cases considered here are reservoirs with one producer and one injector.

The parameter of interest here is the producer well location, so we keep the injector well

position same throughout. The ROM methodology proposed in this work is based on the

assumption that all the wells are controlled with same BHP profiles such that the well rates

are affected only by the well position, represented by ζ. For this work, we also note that, the

results are analyzed for the cases where water-front does not reach the producers for most

well locations i.e. the simulations are run for a short time (1 year) and the permeability

fields have low contrast, i.e. the range of order of magnitude change in the permeability

values is small.

4.2.1 Global PMOR results

For a parametric PDE, construction of ROMs can be achieved by generating a global

basis, by adding fine scale solution information from different well locations into a single

snapshot matrix before computing SVD. As was discussed in the global ROB strategy used

in my research for well control optimization, for a global basis, the parameters that are rep-

resentative of the parameter domain are chosen a priori or using adaptive greedy algorithms.

The a priori sampling of parameters is fast but can include unnecessary samples or miss
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important samples. The adaptive sampling strategy is more accurate but computationally

expensive as it needs repeated evaluations to look for parameters that produce the maximum

ROM error. Just for the sake of analysis for the case of changing well locations, we use the

adaptive selection strategy using a brute force technique, by computing ROM errors at all

well locations for a small case and then recursively selecting the locations with maximum

ROM error.

We demonstrate the global basis result for different well locations in a heterogeneous

channelized reservoir. POD is applied to a two-phase flow (oil-water) reservoir model with

one injector well and one producer well as shown in Figure 4.1, using method of snapshots

described in Section 2. The reservoir model is discretized with a Cartesian grid of size 30

ft × 30 ft, and it contains 400 (20×20) active cells. We neglect the capillary and gravity

effects. The initial reservoir pressure is 4200 psi and the injector and producer are BHP

controlled at a constant pressures of 7000 psi and 2500 psi respectively. After we get the

basis for this well configuration using POD, we use it to find percentage ROM error in oil

production rate (Equation. (4.1)) for all the other cells as potential locations for producer,

as shown in Figure 4.2. POD dimensions for pressure and saturation are chosen based on the

99.99% energy criteria. Pressure basis dimensions is higher than that of saturation as the

simulation is run for a short time and the saturation solution can be represented by fewer

basis due to slow dynamics. The next well location in the database is chosen as the cell

with maximum error. We run the fine scale simulation using this new parameter to get a

new snapshot matrix. This is concatenated with the previous snapshot matrix to get a new

ROB. The same process is repeated. Here, in the figures, Lp and Ls represent the number

of pressure and saturation basis selected and Nacc represents the number of gridblocks with

error less than 1%.

Error(%) =
‖ qROM − qfine ‖
‖ qfine ‖

∗ 100 (4.1)
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As we note here that, concatenating the snapshots from 2 well locations result in error

Figure 4.1: Normal scale knorm of permeability field. The values of permeability are chosen as
5knormmD to exhibit low contrast. Red indicates the producer well and white is the injector

reduction over many well locations. However, the decrease is not strict when a third location

is added for concatenation. There are many well locations where the error actually increases.

The basis dimensions however strictly increase as expected for both pressure and saturation

as more snapshots are concatenated.

4.2.2 Local PMOR results

From the above results, we can see that a global basis lead to high dimensional subspaces

and does not necessarily produce strictly decreasing errors at many well locations. In this

section, we use local PROM using pre-existing ROBs from a database D of well locations

to investigate their behavior. The first scenario is to check the behavior of a local ROB on

the parameter space. The well configuration is as shown in the Figure 4.3a. The production

well is located at grid block (2, 19) and injector well at grid block (20, 1). We use POD to

get the ROB for this configuration with dimensions of pressure and saturation based on the

99.99 % energy criteria. This basis is now used for all the possible production well locations
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Lp = 14, Ls = 12
Nacc = 13

(a)

Lp = 24, Ls = 18
Nacc = 263

(b)
Lp = 30, Ls = 20
Nacc = 155

(c)

Figure 4.2: Global basis construction using greedy search. At each stage from (a) – (c), a
producer well is set to the location of maximum error to concatenate the snapshot with that
from previous configuration

and the error map is obtained as shown in Figure 4.3b. Many parameters produce a small

ROM error when a same basis is used. For example, Figure 4.4 shows POD predicted oil

production rate at one such well location (6,17), that is the low error location in the error

map. The area in the top right corner (area swept by injected water) of the error map shows
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high errors as expected, since the basis used have no dynamical information about the water

flooded area.

Permeability Field

(a)

Lp = 11, Ls = 15
Nacc = 8

(b)

Figure 4.3: (a) is the permeability field with well configuration shown. (b) shows the error
map for this well configuration and the given basis

Figure 4.4: Oil production rate comparison at well location (7,16) between the true solution
and that predicted by POD using a basis from well location (2,19)
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Next, we analyze the effect of basis dimensions for a ROB. As we use the POD for PMOR,

we project the pressure and saturation states to a subspace of much lower dimensions. So

before we apply POD for analysis, we need to understand, a criteria to choose the dimensions

of this lower dimensional subspace when we use it for a parameter space. For a fixed well

configuration, we generally use, for an example, 99.99% rule to get the number of pressure

and saturation basis. For these cases, we usually have more number of saturation basis as

compared to pressure basis since saturation exhibits slower dynamics. However, when we use

this basis for different parameters, this rule does not always provide a good subspace. For

some new well locations, the saturation behavior might not change drastically as compared

to that for the well location in the database of training parameters (D). However, the

pressure solution might be very different. So it is possible that a tail basis corresponding

to low singular values for the basis well location might have a high importance for a new

well location. It is also possible that a good subspace for a new parameter might require

lower basis dimension than the basis of the well location in D. So we keep these points in

mind and explore a range of pressure and saturation dimensions of the basis. We still need

a strong understanding on the behavior of the basis dimensions that can help us choose a

good database of parameters.

From the Figure 4.5, we see that a change in the basis dimensions can significantly change

the error map. This indicates that the basis dimensions need to be taken into account when

determining the basis for a new parameter. There is no definite pattern that these error maps

follow with change in the basis dimensions and thus this relationship is highly non-linear to

understand and visualize.

These results show that a dictionary of local ROBs obtained from D, can be used for

the parameter space, and this can lead to projection to a much lower dimensional subspace

during the online stage. Basis from snapshot concatenation can prove better for parameters

that may not have a representative local ROB from D. So, our aim will be to predict the

error maps given a database of ROBs using the methodology as will be outlined in the next
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section (4.3), to eventually select a pre-existing ROB for new well location.

Lp = 15, Ls = 13
Nacc = 36

(a)

Lp = 18, Ls = 18
Nacc = 51

(b)

Figure 4.5: (a) and (b) shows the error map for different basis dimensions for the given well
configuration

4.3 POD-based local PMOR problem formulation

A brief overview of the local PMOR techniques used in the literature was provided in

Section 1, where majority of the methods were developed for LTI systems. They were based

on construction of new ROBs or ROMs for a new parameter of interest [47, 46]. Some work

was done for dynamic linear and non-linear PDEs was proposed in [48], that uses manifold

learning techniques to interpolate the snapshots evaluated at different parameters.

In this work, we use a local ROB technique by analyzing some of its benefits compared to

global ROBs (the main advantage being a much lower dimensional ROB for new parameter)

for a new parameter of interest based on some case studies addressed in previous section (4.2).

However, we also try to leverage some benefits of snapshot concatenation. As with the other

local and global techniques, during the offline stage, we construct a database of parameters
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(D) at which fine scale simulations are run. The ROB is constructed based on POD method

for the application considered. The parameter ζ representing well location is defined in a

high dimensional space as will be depicted in the next section (4.5). The methodology is

based on the observations that a dictionary of preexisting ROBs (also includes a range of

basis dimensions for each parameter) of the parameter database are sufficient to be robust in

the parameter space. The selection of a preexisting ROB is based on prediction of the error

maps for these basis. An error map is defined as the error in quantity of interest produced

by a ROM for the entire parameter domain. We employ the methodology introduced in [52]

for construction of the error maps. The idea is to use Machine Learning (ML) techniques

to map the ROM errors for high dimensional parameters. During the online stage, the ML

models will quickly predict the errors at a new parameter value to select the best preexisting

ROB. Thus, this method relies on errors using a output quantity of interest (QoI) and does

not necessarily ensure the physics of dynamics of flow to be captured correctly. For example,

we will show later that, the preexisting ROB when used for a new well location does not

project correctly that the new lowest pressure in the reservoir is well block pressure. This

follows from the theory that was depicted by controllability study.

Thus, high dimensional regression ML models approximate the mapping:

[ζ∗, ζD, LX ]→ ηHF (4.2)

Here, ζD is the parameter in D at which we obtain the ROB, ζ∗ is the new parameter

of interest not present in the database, LX corresponds to the dimension of ROB for the

state variable X and ηHF represents ROM error in quantity of interest produced by a ROB

with dimension LX , for parameter ζ∗. The benefit of this formulation is that it gives an idea

about the error in QoI that should be expected given a ROB.

We also propose this mapping as a classification problem by setting a threshold in ROM

error, for a qualitative response rather than a quantitative one. So the classification ML
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models approximate the mapping:

[ζ∗, ζD, LX ]→ C(ηHF ) (4.3)

C(ηHF ) =


1, if ηHF < ηth

0, otherwise
(4.4)

Here ηth is the maximum allowable error for the ROB to qualify as a good candidate basis

for ζ∗.

4.4 Machine Learning Overview

In this section, we discuss about the machine learning techniques we use for comparison

of their performance in accurately predicting these error maps.

4.4.1 Artificial Neural Network (ANN)

Artificial neural networks are non-linear statistical models that detect pattern in the data

by discovering the input-output relationships, used for both regression and classification. The

choice of ANN model is motivated by its capability to capture highly non-linear complex

relationship between the input features and the output [99]. A feed-forward neural network

used here consists of L layers with each layer consisting of predefined nodes and an input

layer consisting of the features or independent variables used for prediction. Each of these

layers have an associated transfer function and the nodes are connected to the nodes from

previous layers by weights. A simple mathematical description is as follows:

Z l+1 = Θl+1X l (4.5)

Here, Θl+1 is the weight matrix connecting the nodes between layer l and l + 1. X l is the

output of the layer l and Z l+1 a simple linear regression of these outputs. Then, the output
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of the layer l + 1 is given by:

X l+1 = G(Z l+1 +Bl+1) (4.6)

Bl+1 is the bias term added to each node. The non-linearity of the model arises from the

activation function G. Most widely used activation functions include sigmoid, hyperbolic-

tangent and rectified-linear unit (ReLU). For the regression problem here, we use hyperbolic-

tangent activation in the hidden layers (as they work better in most cases than a sigmoid

function) and simple linear regression in the output layer. Whereas, in the classification

problem, we use hyperbolic-tangent activation in the hidden layers and sigmoid activation

in the output layer.

The model is trained using backpropagation and optimization algorithms to adjust the

weights Θ of the network that minimize the cost function. The detailed description on ANN

and backpropagation algorithm can be found in [99]. Figure 4.6 shows a schematic of ANN.

The neural network usually tend to overfit the data and thus, we use a regularized cost

function for regression given by:

J(θ) =
1

2m

[
m∑
i=1

(
hθ(x

i)− yi
)2

+ λ
n∑
j=1

θ2
j

]
(4.7)

And, for classification problem, the regularized cost function is:

J(θ) =
1

2m

[
−

m∑
i=1

(
yi log

(
hθ(x

i)
)

+ (1 − yi) log
(

1 − hθ(x
i)
))

+
λ

2

n∑
j=1

θ2
j

]
(4.8)

Here, m represents total number of data examples, hθ(x) represent the predicted output of

the network and y is the expected output. θ represents each of the elements of the weight

matrix Θ in each layer and λ is the regularization parameter to control feature importance

and prevent overfitting. We use λ and number of units in each layer as the tuning parameters

while training the ANN. The values of these hyperparameters are chosen here using K-fold
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Figure 4.6: Schematic of a feedforward Artificial Neural Network

cross validation technique.

4.4.2 Random Forests (RF)

Random Forests (RF) is a supervised machine-learning technique that constructs an en-

semble of decorrelated decision trees. It is based on the concept of bootstrap aggregating

(bagging) to reduce the high variance from single decision trees and further using decor-

related trees to induce more randomness and variance reduction that eventually improves

prediction performance for test cases. Like ANN, RF can be used for both regression and

classification. We briefly describe the working of a RF here. The way a single decision tree

is constructed is using a recursive binary splitting strategy. At each node of a tree, best

split of a predictor variable is made that results in two branches and then successively splits

the predictor space at each step. For the regression problem, the best split is the one that

leads to the maximum possible reduction in error Residual Sum of Squares (RSS), and for

the classification problem, Gini index or the cross-entropy are generally used to evaluate the

best split. Bagging generates new training sets by sampling the data with replacement and

then we generate an ensemble of decision trees for each of these training sets. A random

forest further decorrelates the trees by selecting only a random subset of features for building
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Figure 4.7: Description of Random Forests model where, each of the branches from sample
dataset correspond to a bootstrap sample and a random feature subset is chosen for each
branch to construct a decision tree

each tree. During prediction, for regression, the outcome is simply averaged over all the trees

in the forest and for classification, the outcome is based on majority vote. For more details

on Random Forests refer to [100]. Figure 4.7 shows the working of random forests pictorially.

4.5 Well Location Feature Determination

Before we employ the ML techniques to predict error maps, we need to quantify the

features representing the parameter ζ. As we state before, the system parameter ζ for well

location optimization corresponds to the index in the source/sink term vector. There is no

explicit quantification of this parameter that represents changing well location in the PDE

(Eq. 2.3). Thus, defining the input (parameter change) - output (ROM error) relationship

is difficult. So, in this section, we first define geometric features for changing well locations

based on a case study. Then, we introduce some physics based features using the concepts

from flow diagnostics.
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4.5.1 Geometric features

For the input features of prediction problems (equations (4.2) and (4.3)) one of the

obvious choices of changing well locations is the coordinates of wells in the database and

the new wells. We define more input features based on the analysis from a simple case of a

homogeneous reservoir.

(a)

(b)

Figure 4.8: (a) shows the error map for a homogeneous reservoir. (b) shows the feature
parameters chosen on the basis of results from (a)

Consider a homogeneous reservoir with a 400 (20 × 20) grid cells and permeability of

10mD. We run fine scale simulation for a well D, referred to as a basis well, at location

(2, 19) to get ROB from the snapshot matrix and then, use this basis to get ROMs for all

the production well locations. The error map is shown in Figure 4.8a. As we can observe,

the error map shows symmetric pattern in error distribution. As we move radially away

from the original well, we see a continuous increase in the oil production rate error. This
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motivates us to use the distance and orientation information of the wells for defining ζD

and ζ∗. Again, we note that the top right corner of high error region refers to the water

flooded area. We show a pictorial representation of all the features that we deem relevant

to information about the changing well locations in Figure 4.8b. We also note that we need

to add information about the basis dimensions to error prediction and thus, by adding the

pressure and saturation basis dimensions as one of the input features, we aim to model the

complex non-linear relation between basis dimensions and quantity of interest errors. Then,

we also aim to add the information from snapshot concatenation to predict the error maps

from corresponding basis by adding features of all the parameters used in concatenation.

Table 4.1 shows all the geometric features used for error map prediction for basis from a

single well. Table 4.2 shows all the geometric features in addition to those in Table 4.1 used

for error map prediction for basis from concatenated solutions of 2 well locations.

Feature Set for local basis (single well)

xo - X coordinate of the basis well
yo – Y coordinate of the basis well
xn – X coordinate of the new well
yn – Y coordinate of the new well
roi – distance between basis well and injector
rni – distance between new well and injector
θoi – angle between basis well and injector
θni – angle between new well and injector
ron – distance between basis well and new well
θon – angle between basis well and new well
Lp – Pressure basis dimension
Ls – Saturation basis dimension

Table 4.1: Geometric features corresponding to the basis well (a single well) and new wells
for error map prediction. Features corresponding to basis wells correspond to ζD and those
for new wells correspond to ζ∗ in equations (4.2) and (4.3)
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Feature Set for local basis (two wells)

xo2 – X coordinate of the basis well 2
yo2 – Y coordinate of the basis well 2
roi2 – distance between basis well 2 and injector
θoi2 – angle between basis well 2 and injector
ron2 – distance between basis well 2 and new well
θon2 – angle between basis well 2 and new well
ro – distance between basis well 1 and basis well 2
θo – angle between basis well 1 and basis well 2

Table 4.2: Geometric features corresponding to the basis wells (concatenate solutions from
2 wells) and new wells for error map prediction. Add these to features in Table 4.1, for basis
with snapshot concatenation

4.5.2 Physics based features

As we have discussed the geometric features that correspond to changing well locations

and deem important for relation to the error maps estimation, we now try to define the

physics based features that are of major importance as they describe the physics of flow and

their relation to the well locations.

The geometric features were defined based on the observations for a homogeneous reser-

voir. So when we consider a heterogeneous reservoir case, one obvious choice of physics based

feature that need to be included is the permeability change in the well gridblock when the

location of well changes. Thus, ∆K which defines the difference in permeability between

the basis well gridblock and that of the new well gridblock is one important physics based

feature we consider.

What is also of major importance for us to understand the change in physics of flow with

changing well location is some representation of well connectivity and flow heterogeneity

between well pairs. In order to understand such properties, we now introduce the concept

of flow diagnostics and various properties that are calculated during flow diagnostics that

serve as important features for our problem.
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Flow Diagnostics

Flow diagnostics are computational tools based on simple and controlled numerical flow

experiments to help us quickly get quantitative and qualitative information regarding the

flow patterns in a reservoir model. Traditional reservoir simulations can perform this task

but computationally very demanding, and in contrast, flow diagnostic measures can be ob-

tained within seconds. Thus, they are an inexpensive and reliable alternative to rank and/or

compare realizations or strategies, and ideal for interactive visualization output due to com-

putational advantage.

The reason behind this computational advantage is because the flow diagnostic tools

provide quantitative information based on the steady-state flow. Flow diagnostic tools have

been developed using streamline simulation techniques [101, 102] that has shown to be very

effective for various applications, but have some limitations in terms of computational com-

plexity and extensibility. Most of the existing commercial simulators are based on finite

volume methods capable of simulating fluid flow with different spatial grid geometry be-

cause of their mass conservative nature. Keeping this in mind, the flow diagnostic properties

were obtained using standard finite-volume discretization in [103, 104]. We use the flow

diagnostics module of MRST (Matlab Reservoir Simulation Toolbox) [104] to evaluate these

properties with the aim to aid in accurate construction of reduced order models for changing

well locations. We now briefly introduce the governing equations that lead to quantitative

measures of flow dynamics as explained in the works [103, 104].

Governing Equations

A single phase incompressible flow is considered to compute the representative flow field,

∇ · v = 0 (4.9a)

v = −K
µ
∇p (4.9b)
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where, K is the permeability tensor, µ is the viscosity of fluid, v is the Darcy velocity and p

is the phase pressure. Here, for the purpose of flow diagnostics, no flow boundary conditions

are assumed and µ is set to 1.

Stationary Tracer Distribution and Time of Flight

To observe the transport properties of the flow field, we consider the equation (4.10)

describing the neutral tracer transport which is injected into the injection well with a con-

centration c. For simplicity we neglect source/sink terms and assume zero concentration of

tracer initially in the entire domain. The transport equation is written as:

φ
∂

∂t
c+ v · ∇c = 0 (4.10)

where, φ is the porosity of reservoir. At late times, the equation (4.10) takes the steady state

form:

v · ∇c = 0 (4.11)

The stationary tracer equation gives an idea about the regions in the reservoir that are

influenced by injectors and producers and ultimately help us understand swept volumes, well

allocation factors etc. However, it does not give enough information about the impact of flow

on the heterogeneity of the reservoir as dictated by permeability and porosity distribution.

Thus, instead of considering the tracer distribution, we consider time of flight (TOF ) coor-

dinate τ(x) which indicates the time it takes for a tracer to travel from the nearest injector

to a given point x in the reservoir. TOF is defined as:

τ(x) =

∫
ψ(s)

φ

|v(x)|
ds (4.12)

where ψ and s denote the streamline and the arc length measured along the streamline,

respectively. Operator identity shown in equation (4.13) is used to represent the 1D flow
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along streamlines for the equation (4.10) [105].

v · ∇ = |v| · ∂
∂s

(4.13)

Similarly, we can derive the TOF equation in Eulerian coordinates using this identity:

v · ∇τ = φ (4.14)

These equations (4.11 and 4.14) have a hyperbolic form. They can be written in a

conservative form as:

∇ · (vu) = b (4.15)

where, u = TOF or tracer concentration and b represents the source or sink. This form is

used since it has a natural finite volume discretization that can be used to solve for TOF

and c and is a generalization to the case where ∇ · v 6= 0.

For the cases considered here for my research, we only have one producer and one injector

and hence we do not consider the tracer distribution to identify quantities like well allocation

factors, well-pair connections etc. However, these should serve as important features for

multiple injectors and producers. Thus, we only consider TOF for our cases. Two quantities

are calculated called the forward and backward time of flight using equation (4.14) as:

v · ∇τf = φ (4.16a)

−v · ∇τb = φ (4.16b)

The forward TOF τf is the time required for a tracer to reach at a given point in the reservoir

after injected at an inflow boundary (injector in our case). The backward TOF τb is obtained

by reversing the flux field which indicates the time required for a tracer released at a given

location within the reservoir to reach a producer/outflow boundary. The sum of both these
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quantities gives the total time of flight also defined as the residence time of the particle.

τf + τb = τ (4.17)

Lorenz Coefficient

Time of flight and tracer concentration can also be used to assess displacement het-

erogeneity of the reservoir using a quantity called Lorenz coefficient. The heterogeneity is

represented in terms of flow capacity - storage capacity (F − Φ) diagrams. (Note that for

the sake of consistency in notations with the literature, for this section we refer to Φ as the

storage capacity and not to be confused with POD basis). This is equivalent to plotting

fractional flow versus saturation for a 1D flow displacement. As defined in [106], the storage

capacity Φ is defined as the cumulative pore volume as fraction of total travel time τ , i.e.,

Φ(τ) =
∫ τ

0
φ(x(τ))dτ . The flow capacity is defined as the cumulative flux for increasing

travel time. For an incompressible flow, F (τ) =
∫ τ

0
φ(x(τ))

τ
dτ , since the pore volume equals

the product of the flux and the total travel volume. Lorenz coefficient which is the measure

of displacement heterogeneity is defined by measuring how much the flow capacity deviates

from the ideal piston like displacement and hence can be written as:

Lc = 2

∫ 1

0

(F (Φ)− Φ)dΦ (4.18)

which is twice the area under the F − Φ curve and above the line F = Φ. Thus, it

is 0 which corresponds to homogeneous displacement and unity for infinitely heterogeneous

displacement. For a detailed explanation on calculating F and Φ, the reader is referred to

[106] for streamline based calculations and [103] for finite volume based diagnostics.

Flow diagnostic features - Example

We now show an example of the flow diagnostic features for one of the well configurations.

Consider the same heterogeneous permeability case as was shown in (4.3a) with wells at
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location (2, 19). We use the MRST flow diagnostics module that computes TOF and Lorenz

coefficient based on solving equations as shown above (4.16 - 4.18).

(a) Normalized Permeability Field
(b) Streamlines

Figure 4.9: (a) Heterogeneous channelized permeability field with one producer in red and
one injector in white (b) Streamlines imposed on the permeability field

It can be seen that the low perm area in the reservoir that is not well connected to the

injector has a higher travel time and the producer location as shown above has a very low

travel time as it is located on a high permeability gridblock and connected to the injector

via a channel. Thus, while considering the feature to be added for ML procedure, we use the

TOF at the producer well location corresponding to the basis well and the new well. Note

that since we are interested in finding time of flight at producer well location, it is sufficient

to compute forward time of flight since backward time of flight will be negligible.

4.5.3 Feature Selection

The important step before training a ML model is to remove any redundant and correlated

features. For this procedure we use the Wrapper approach, the procedure of which is briefly
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(a) Total travel time (b) F − Φ plot to compute Lorenz coefficient

Figure 4.10: (a) The total travel time of the particle injected at injector to any point in the
reservoir (b) F − Φ plot to compute Lorenz coefficient as the area under the solid F − Φ
curve and the dashed line F = Φ

Physics based feature set for local basis (single well)

∆K – Permeability difference between basis well and new
well locations
TOFo - Total time of flight at basis well location
TOFn - Total time of flight at new well location
LCo - Lorenz coefficient for basis well location
LCn - Lorenz coefficient at new well location

Table 4.3: Physics based features corresponding to the basis well (a single well) and new
wells for error map prediction. Features corresponding to basis wells correspond to ζD and
those for new wells correspond to ζ∗ in equations (4.2) and (4.3)

outlined below. The wrapper approach sequentially selects subset of feature space and

evaluate its performance with respect to an induction algorithm (black box model) using

cross-validation and subsequently adds or deletes features based on the search criteria. The

search engine we use is Best First Search (BFS) using Forward selection which is more

robust than the greedy hill-climbing search. Additional details about the wrapper approach

can be found in [107]. The procedure is explained in the Figure 4.11. This step becomes
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computationally expensive as the number of features grows. But, what we observe with

the feature set that we will propose for the well locations is that, the BFS methodology

sometimes selects all the features, depending on the data set and the black-box model used.

This suggests than no features in this case are correlated. So while training the models, we use

all the features and then for feature importance, we try to tune better the hyperparameters

and the regularization parameters instead of spending computational effort using the wrapper

approach.

Figure 4.11: Wrapper approach

4.6 Case Study

Based on the observations and feature selection described above, we now apply the ML

techniques to predict the error maps for different cases. We use two different strategies for

error prediction as mentioned in the section (4.3). First is, posing the problem as the standard

regression problem for quantitatively predicting the ROM error values at each well location.

The second strategy is posing the problem as a classification problem for qualitative error

description. Depending on the application, it may sometimes not be necessary to predict

exact value of errors for different parameters (especially no need to predict exact values of
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large error). So, for the examples below, we also show the classification results, where the

threshold error is chosen as 5%. Thus, the classification models will predict the locations

where local ROBs, corresponding to well locations in D, will produce less than 5% error in

the oil production rates.

ROBs are computed at well locations selected in D

Select sample locations at which
fine scale simulations are computed

Use ROBs computed in D at sample well locations to
compute error in quantity of interest at these samples

Train the regression/classification ML mod-
els using errors calculated at sample locations

Predict the errors at other well locations
to determine the best ROB calculated in D

Figure 4.12: Workflow of the ML based local PMOR procedure

The workflow of the process is outlined in Figure 4.12. During the well location optimiza-

tion procedure, for a new well location at each iteration, error is predicted using the trained

ML model for all pre-existing ROBs and the best ROB for this well location is selected. This

prediction process and finding the ROB with minimum error is computationally very cheap.
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4.6.1 Case 1: Error maps of basis obtained by single well location

Reservoir model 1

Here, we show the results of predicting the error maps for different basis. The reservoir

model is the same 20× 20 grid block channelized permeability field as before (Figure 4.13).

The relative permeability is defined by Corey-type curves with exponent 2 for both the fluids.

The flow is considered incompressible for all the cases shown. Thus, we can use the MRST

flow diagnostics module for TOF and Lorenz coefficient calculation which is developed for

incompressible fluids. The permeability field is isotropic and the porosity is set to 0.2. The

initial reservoir pressure is 4200 psi and the injector and producer are BHP controlled at a

constant pressures of 7000 psi and 2500 psi respectively. The irreducible water saturation is

0. For all the well locations we consider, the BHP control profile is set the same for each.

We note that we are just looking at the single parameter i.e. producer well location. But the

workflow can be extended for Closed Loop Field Development where we need both BHP or

rate control and well location optimization, by including the controls as additional parameter

to the feature space.

Well Location (Lp, Ls)

(4,19) (1,4)
(2,19) (2,8)
(18,19) (1,6)
(20,20) (1,4)

Table 4.4: Dictionary of basis used for prediction

The well location positions in D, to get the dictionary of ROBs are set to (4,19), (2,19),

(18,19), (20,20), that includes a range of different permeabilities. The sets of basis dimensions

for each well are shown in Table 4.4. Thus, we have a dictionary of 4 ROBs to choose from for

other well locations. The dimension pairs are chosen by 99.9% energy criteria of the singular
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Figure 4.13: Normal scale knorm of permeability field. The values of permeability are chosen
as 5knormmD to exhibit low contrast. Red indicates the producer well and white is the
injector. The producer well changes location at any location in the reservoir

values. For an incompressible flow, we did not observe any significant changes in the error

maps for different set of basis dimensions. Hence we just consider one set of pressure and

saturation basis for each well location. Thus, for this case, the basis dimension will not

be an input feature for ML models. The first step of our workflow is to generate a sample

dataset from the error maps. We randomly choose 30 samples from each of the 4 cases.

However, the sample locations in each case are the same. By doing so, we just need 30

fine scale simulations at each sample point (run in parallel on a 30 node high performance

computer and hence just a single run required), corresponding to producer wells at these

locations. Then, for each sample, we run the reduced model at these locations corresponding

to 4 pre-existing ROBs. Figure 4.14 shows these samples on true error maps for regression

ML model and Figure 4.15 shows samples on 2 of the true error maps for classification ML

models.

The next step is feature selection to remove any redundant and correlated features. But

as mentioned before, for many cases, all the features were selected by the BFS algorithm.

Thus, we include all the features while training the model and spend more efforts on tuning
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Lp = 1, Ls = 14

(a) Basis well location (4,19)

Lp = 2, Ls = 8

(b) Basis well location (2,19)
Lp = 1, Ls = 14

(c) Basis well location (1,6)

Lp = 2, Ls = 8

(d) Basis well location (1,4)

Figure 4.14: Samples collected from 4 error maps as shown by red × for training the regres-
sion ML models

the regularization parameter for feature importance. We use 5-fold cross validation on the

data set to tune the regularization parameters and hyperparameters.

The last step is to train the model. We use both ANN and RF to compare the results for

each algorithm. For this case example, we have 15 features input to the ML models as listed

in Tables 4.2 and 4.3. The tuning parameters we choose for ANN are, number of nodes in

the hidden layers (Nnodes) and the regularization parameter λ. For RF, we use number of

features to search for split (Nfmax) and minimum number of samples at each leaf node (Nl)
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Lp = 1, Ls = 14

(a) Basis well location (4,19)

Lp = 2, Ls = 8

(b) Basis well location (2,19)

Figure 4.15: Samples collected from 2 of the 4 error maps as shown by red × for training
the classification ML models

as the tuning parameters. ANN used here has 4 hidden layers which is fixed. We show the

predicted results of ANN and RF using both regression and classification strategies.

Regression Classification

ANN Nnodes=14, λ=0.04 Nnodes=18, λ=0.8
RF Nfmax=8, Nl=2 Nfmax=8, Nl=2

Table 4.5: Regularization parameters and hyperparameters chosen by 5-fold Cross Validation

Table 4.5 shows the optimal regularization parameters selected for the models. We expect

the regression accuracy to be low because of the larger discrepancies at high error points.

But, we are more interested in finding the locations with low errors. Thus, we also use Reg-

Class accuracy measure shown in Table 4.6, which is obtained by converting the regression

predicted map to a binary map (0 - 1) based on the 2% threshold and compare it with the

true binary error map, to get an idea about the prediction of low error locations.

Figure 4.16 and Figure 4.17 shows the quantitative error maps predicted by ANN and

106



(a) Error map comparison using ANN for basis well at (4, 19)

(b) Error map comparison using ANN for basis well at (2, 19)

Figure 4.16: ANN regression prediction for an error map corresponding to (a) Lp = 1, Ls = 4
for basis well at (4,19) and (b) Lp = 2, Ls = 8 at (2,19) gridblocks

RF respectively for 2 of the 4 ROBs in dictionary given the sample distribution as shown in

Figure 4.12.

Figures 4.18 and 4.19 show the qualitative error maps predicted by ANN and RF classi-

fication models for 2 out of the 4 basis respectively given the sample distribution as shown

in Figure 4.13. To clarify the idea of classification map, we show an example in Figure 4.20.

It shows POD predicted oil production rate at well location (17,14) which is classified as 1

(shown by yellow block in Figure 4.18) by the basis well location at (4,19) and the true oil

production from the fine scale simulation. Thus, if the well is moved to location (17,14), we
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(a) Error map comparison using RF for basis well at (4, 19)

(b) Error map comparison using RF for basis well at (2, 19)

Figure 4.17: RF regression prediction for an error map corresponding to (a) Lp = 1, Ls = 4
for basis well at (4,19) and (b) Lp = 2, Ls = 8 at (2,19) gridblocks

can use the POD basis from well at (4,19) to get less than 2% error in the oil production

rate as shown in Figure 4.20.

Table 4.6 and 4.7 shows the accuracy of prediction for all the 4 error maps using ANN

and RF for regression and classification problems respectively for the sample distribution

as shown. For regression, it is the norm relative accuracy and for classification, it is the

percentage of locations where error is correctly classified.

This was the result considering one of the random sample distributions. We performed

the same test for 10 different random distributions and observed similar results. Figures
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(a) Classification error map comparison using ANN for basis well at (4, 19)

(b) Classification error map comparison using ANN for basis well at (2, 19)

Figure 4.18: ANN classification prediction for an error map corresponding to (a) Lp = 1, Ls =
4 for basis well at (4,19) gridblock and (b) Lp = 2, Ls = 8 for basis well at (2,19) gridblock
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(a) Classification error map comparison using RF for basis well at (4, 19)

(b) Classification error map comparison using RF for basis well at (2, 19)

Figure 4.19: RF classification prediction for an error map corresponding to (a) Lp = 1, Ls = 4
for basis well at (4,19) gridblock and (b) Lp = 2, Ls = 8 for basis well at (2,19) gridblock
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Figure 4.20: Oil production rate comparison at well location (17,14) between the true solution
and that predicted by POD using a basis from well location (4,19)

Regression Reg- Class

Train Test Train Test
ANN 99.9 88.1 99.9 92
RF 94.7 72.9 98.9 88.9

Table 4.6: Error map prediction accuracy for ANN and RF regression problem

4.21 and 4.22 shows the accuracy box plot of regression and classification problems for these

samples respectively.

As we can see from the results, posing the prediction problem as a classification problem

gets a better accuracy in determining an appropriate basis for new well location. For prob-

lems like well placement optimization, we believe, using a small threshold error, and thus

posing the formulation as a classification problem, for selecting a ROB from the database

should be good enough rather than very accurate reduced models.

ANN proved better than RF for all the other cases of sample distributions for regression

problem and proved better for most of the cases for classification problem by looking at the

median for both kind of models in the box plots.
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Classification

Train Test
ANN 99.9 92.93
RF 100 90.69

Table 4.7: Error map prediction accuracy for ANN and RF classification problem

Figure 4.21: Box plot of accuracy for regression results using RF and NN on 10 sample
datasets

Reservoir model 2

We now apply the same procedure on a bigger, more heterogeneous reservoir. The reser-

voir model is a 51× 51 grid block heterogeneous permeability field as shown in Figure 4.23

with two phase oil-water flow. The relative permeability is defined by Corey-type curves

with exponent 2 for both the fluids. The flow is considered incompressible and we neglect

the effects of gravity and capillary pressure. Again, for all the well locations we consider,

the BHP control profile is set the same for each.
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Figure 4.22: Box plot of accuracy for classification results using RF and NN on 10 sample
datasets

We now use the same procedure as above to predict the error maps associated with

each basis in the database. The database of well locations and the corresponding basis

dimensions used to construct the error maps is shown in the Table 4.8. The basis dimensions

here are chosen based on 99.99% energy criteria of singular values. The database of basis well

locations chosen represent the permeability range from low values to high, since permeability

is found to be the most important feature that has a strong correlation to the error in QoI.

We randomly choose the basis wells in different regions of the reservoir. From the results in

previous case study, we show this case only for classification problem which is expected to

show much better accuracy. Here, the threshold of error is chosen to be 10% and hence all the

gridblocks marked by yellow color are the low error cells for the corresponding basis. Figure

4.24 shows samples locations selected to train the ML models for predicting the classification

error maps.

Both ANN and RF models are trained to predict the error maps and compare their

performances. The hyperparameters associated with the trained models are shown in Table
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Figure 4.23: Heterogeneous permeability field in log scale

Well Location (Lp, Ls)

(44,11) (16,23)
(32,19) (15,22)
(1,51) (9,15)
(51,51) (11,18)

Table 4.8: Dictionary of basis used for prediction

4.9. Figures 4.25 and 4.26 are the error maps as predicted by ANN and RF models for two

of the basis wells. From the accuracy and the error maps predicted, it is clear that artificial

neural network does a much better job in identifying the low error regions as compared to

the random forest model which is the same observation as previous case.
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Lp = 16, Ls = 23

(a) Basis well location (44,11)

Lp = 15, Ls = 22

(b) Basis well location (32,19)
Lp = 9, Ls = 15

(c) Basis well location (1,51)

Lp = 11, Ls = 18

(d) Basis well location (51,51)

Figure 4.24: Samples collected from 4 error maps as shown by red × for training the classi-
fication ML models

Classification

ANN Nnodes=10, λ=0.02
RF Nfmax=8, Nl=3

Table 4.9: Regularization parameters and hyperparameters chosen by 5-fold Cross Validation
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(a) Classification error map comparison using ANN for basis well at (4, 19)

(b) Classification error map comparison using ANN for basis well at (2, 19)

Figure 4.25: ANN classification prediction for an error map corresponding to (a) Lp =
16, Ls = 23 for basis well at (44,11) gridblock and (b) Lp = 15, Ls = 22 for basis well at
(32,19) gridblock

Classification

Train Test
ANN 100 93.8
RF 100 91.3

Table 4.10: Error map prediction accuracy for ANN and RF classification problem
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(a) Classification error map comparison using RF for basis well at (4, 19)

(b) Classification error map comparison using RF for basis well at (2, 19)

Figure 4.26: RF classification prediction for an error map corresponding to (a) Lp = 16, Ls =
23 for basis well at (44,11) gridblock and (b) Lp = 15, Ls = 22 for basis well at (32,19)
gridblock

117



4.6.2 Case 2: Error maps of basis obtained by snapshot concatenation of two

well locations

As we saw in the observation section (4.2), a basis obtained by snapshot concatenation can

provide a good reduced subspace for a wide range of parameters, although the dimensions of

the basis can be much larger than a local basis. But if there is no local ROB in the database

that is accurate enough for a new well location, we hope to get good accuracy by using a

basis from concatenation of snapshots at different parameter values. So in this case, we try to

predict the error maps for basis obtained by snapshot concatenation from two well locations

by using the proposed methodology. We use the same reservoir properties as Case 1. For the

feature set now, we also add the features corresponding to a second well location as shown in

Table 4.2. The dictionary of ROBs used for this case is shown in the Table 4.11. The error

map is obtained using basis from snapshot concatenation at two different well locations and

also considering a dictionary of two sets of basis dimensions. The basis dimensions used here

are obtained by using 95% and 99.99% energy criteria. As we consider the incompressible flow

case, we observe that the basis dimension change has only a little impact on the error map.

We show both regression and classification results for this example. Here, we are interested

in mapping the relation, [ζ∗, ζwell1D , ζwell2D , LX ] → C(ηHF ). Note, that this formulation can

be used for a single set of well configurations used for snapshot concatenation. Since we

add features corresponding to two training well locations, we cannot determine the order for

features corresponding to two basis wells. Hence, for each basis obtained from different pairs

of well configurations, we should have separate ML models.

Well Location (Lp, Ls)

(4, 19) + (2, 19) (2,3), (7,11)

Table 4.11: Dictionary of ROBs used for predicting basis (obtained by snapshot concatena-
tion) error maps
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Figure 4.27: Normal scale knorm of permeability field. Two producer well location used for
snapshot concatenation

Figures 4.28 and 4.29 show the comparison of predicted error maps by regression NN and

RF models for the basis dimension set (2, 3) and 7, 11 respectively. Similarly, Figures 4.30

and 4.31 show the comparison of predicted error maps by classification NN and RF models for

the basis dimension set (2, 3) and 7, 11 respectively. Table 4.12 shows the prediction accuracy

for RF and ANN models for the regression models with optimal hyperparameters and Table

4.13 shows the prediction accuracy for classification models with optimal hyperparameters.

Regression Reg- Class Hyperparameters

Train Test Train Test
ANN 99.9 76.75 99.9 90.1 Nnodes = 12, λ = 0.07
RF 95.2 53.8 99.2 88.1 Nfmax = 6, Nl = 3

Table 4.12: Snapshot concatenation based basis - error map prediction accuracy for ANN
and RF regression problem and corresponding optimal hyperparameters

Again, ANN proves to be better than RF for predicting the error maps given highly

non-linear complex behavior between the features and output for both regression and classi-

fication problems. The classification accuracy was found to better than the regression based
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Figure 4.28: Error map prediction (regression) for snapshot concatenation cases using ANN
and RF corresponding to Lp = 2, Ls = 3 for basis wells at (4,19) and (9,15) gridblock

Figure 4.29: Error map prediction (regression) for snapshot concatenation cases using ANN
and RF corresponding to Lp = 7, Ls = 11 for basis wells at (4,19) and (9,15) gridblock
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Figure 4.30: Error map prediction (classification) for snapshot concatenation cases using
ANN and RF corresponding to Lp = 7, Ls = 11 for basis wells at (4,19) and (9,15) gridblock

Figure 4.31: Error map prediction (classification) for snapshot concatenation cases using
ANN and RF corresponding to Lp = 7, Ls = 11 for basis wells at (4,19) and (9,15) gridblock
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Classification Hyperparameters

Train Test
ANN 100 90.8 Nnodes = 18, λ = 0.01
RF 96.8 88.8 Nfmax = 2, Nl = 3

Table 4.13: Snapshot concatenation based basis - error map prediction accuracy for ANN
and RF classification problem and corresponding optimal hyperparameters

classification accuracy for most of the cases we ran and hence proves to be a better model

for adaptively selecting the basis for a new well location. The regression model prediction is

useful to estimate the exact error corresponding to a basis for new well locations.

We only show the results for small case here to show that the proposed formulation can

also be applied for the cases of snapshot concatenation. But it is difficult to make an a priori

selection of wells to concatenate the solutions such that it produces a good quality basis for

many new well locations. Also, it requires obtaining separate ML models for separate pair of

wells used for basis. Hence, more research work is required in the future before application

to bigger reservoir models, with better understanding of basis well locations to be used for

solution concatenation and a formulation that can predict error maps for pairs of different

well configurations.

4.7 Computational Complexity

The workflow proposed here requires a little higher computational cost in the offline stage

corresponding to the samples collected for the dictionary of ROBs. Most of the Local/Global

PROM methods developed in the literature have a high computational cost associated in

the offline stage to get a good database for a range of parameters. However, with the advent

of cloud computing and parallel processing, the offline cost can be significantly reduced

given that the offline process involves independent computations. Our examples were run

on High Performance Computing (HPC) machine (Texas A&M High Performance Research

Computing facility using Ada IBM NeXtScale Cluster operated with Linux, CentOS 6.6,
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using 30 nodes with 64 GB, DDR3 1866 MHz). Thus, fine scale simulations required for

30 samples for each error map were computed only once with a single but parallel forward

runs. Since, the sample locations in the error maps is the same, we do not need more

fine scale simulations for other error maps. After this, we only need to run reduced order

models corresponding to each ROB in the database at this 30 locations, also ran in parallel.

Training ANN while tuning the parameters is expensive as compared to RF at a cost of

better accuracy, which is again run in parallel. Since a smaller case is considered here, the

training is computationally cheap but becomes expensive with bigger model architecture and

more samples. The online computation cost to predict error at new well location and finding

the best basis is very cheap (fraction of a second). Thus, the main computational cost is

involved in the offline stage. However, future part of the research will involve better sampling

strategies that might require less number of samples with better predictive performance.

4.8 Conclusion and Future Work

A local parametric model order reduction technique using a Machine Learning framework

has been proposed for well placement optimization problems. The motivation behind this

strategy was the observation that a local basis can act as a good lower dimensional subspace

of the state space solutions for a wide range of parameters. A selection criteria for feature

set, that includes geometric features and physics based features inspired by flow diagnostics

concepts, used for representing the well location performs reasonably well to predict the error

maps associated with each local basis using high dimensional regression techniques. The

problem has also been proposed as a classification problem, owing to the fact that a relaxed

form of basis selection may be sufficient for many applications, which also shows better

accuracy compared to predicting exact errors. Results show that regularized Artificial Neural

Network show much better accuracy in error prediction as compared to Random Forest for

both regression and classification problems. Based on the studies, our first preference would

be to choose a local basis if it provides a good accuracy at a new well location, due to

its lower dimensions. If a local ROB is not accurate for the new parameter, we may use
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snapshot concatenation methods at different well locations that might prove to be a better

basis for a wide range of new well locations. In the case of using multiple parameters for basis

construction, we construct ML model for each set of multiple parameters used for training

because of the way the input features are defined that showed promising results using ANN

as compared to RF. Thus, using above workflow, during the well location optimization

procedure, the error at a new well location is predicted using the trained ML model for a

given ROB and the ROB that produces the least error is used for that well location.

For the future work, we notice that as basis dimensions play a very important role in

defining the ROB dictionary for slightly compressible flow, an understanding on finding

better prior information about the effect of basis dimensions on new parameters need to be

developed. Since we show the cases for incompressible flow, the effect of basis dimensions was

not prominent. The examples shown here include the cases where water front does not reach

most parts of the reservoir. This method is more data driven rather than physics based as it

is based on predicting error in the output quantity of interest without considering the state

behavior and the ROBs used for new well location do not honor the controllability properties

at that location. This is the main reason this method is difficult to be implemented for the

cases when water front reaches the potential producer gridblock, where we have more complex

physics of flow and thus higher error in QoI will be observed. In the future, using local in time

ROBs and multiple training parameters for a more representative parameter space should

be considered to solve this problem. This also includes proposing better sampling strategy

using adaptive methods in the parameter space rather than randomly chosen samples as

in this paper. This can lead to significant reduction in the number of samples required in

the database. In the next section, we propose a global non intrusive PMOR technique that

addresses the limitations of proposed local PMOR methodology.
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5. NON-INTRUSIVE GLOBAL MODEL ORDER REDUCTION FOR CHANGING

WELL LOCATIONS DURING WELL PLACEMENT OPTIMIZATION

In this section, we continue developing methodologies with an aim to develop robust and

accurate reduced order models for well location changes during well placement optimization.

We again note that we do not solve a well placement optimization problem, rather develop a

precursor that aims at MOR construction for changing well locations, which can be eventually

used for optimization in the future.

Here, we build on the limitations of the local PMOR strategy mentioned in Section 4

where we use ML techniques to choose an appropriate basis from a dictionary of pre-existing

ROBs. However, as we saw, this method is still limited to use for the cases when there is no

water cut observed at the producers and for less permeability contrast reservoirs. We seek to

develop a method that is not limited by these restrictions and propose a non-intrusive global

PMOR technique based on the motivation from observations as shown in the section (4.2)

of Section 4. This work aims at establishing a connection between the concepts of model

order reduction and machine learning while seeking for the best of the two domains. We

begin the section discussing the motivation behind using non-intrusive global PMOR. The

main idea is to represent the entire parameter space with a single ROB calculated using fine

scale solutions from some representative parameters and then in the online stage, express

the solution for a new parameter as a linear combination of the global basis functions. Here,

we discuss about parameterizing the states of the reservoir using POD-based model order

reduction followed by a way of addressing the physical constraints in the POD method.

In the next section, we formulate the non-intrusive PMOR problem using machine learning

methods with a brief discussion on the ML methods used. This formulation is then validated

using some case studies for prediction of pressure and saturation states at new well locations.

Errors in the well block states are then modeled using ML algorithms to correct for the errors

in the output quantities of interest (QoI) like oil, water production rates and water-cut. This
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error modeling strategy is shown to result in much better accuracy using some case studies

in the last section of this section.

5.1 Motivation for non-intrusive global PMOR using machine learning

In this section, we discuss about the motivation behind developing the non-intrusive

global PMOR method using machine learning techniques.

In Section 4, we ran some simple case studies in section (4.2), that showed that the local

ROBs obtained from single well location are good candidates for ROB at a new well location.

However, this was true only for the case of small simulation run times where the water

did not flood a significant area in the reservoir. This is expected from the controllability

results as was shown in Section 2 that the controllable subspace corresponding to a well

location does not preserve the controllability properties at new well locations. Hence, it

becomes very difficult to produce accurate results using a reduced subspace of one well

location. Also, the observations in section (4.2) show that the ROB corresponding to one

well location is only a valid basis for fewer locations when compared to the ROB obtained by

concatenating solutions from different well locations. This is the reason behind considering

the global ROB strategy for well location problem similar to that used for well control

optimization. The global ROB can be obtained as discussed before by random sampling in

the parameter space or using greedy algorithms. For the former case, fine scale simulations

for randomly distributed parameters are computed and using POD, reduced basis is obtained.

It is highly likely that the distribution contains many unnecessary samples or neglects some

important samples. Whereas, using greedy algorithms, the samples are carefully chosen using

an optimality criteria and usually lead to much better samples. However, the computational

expense involved with a greedy sampling procedure for certain kind of problems, especially,

highly non-linear dynamical system like reservoir simulation, make it infeasible to use. Thus,

for this work, we just focus on random sampling of the candidate well locations.

Most of the PMOR methods discussed above for well control optimization and well lo-

cation optimization that have been published relies on the simulator source code. Methods
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like POD-TPWL [24] are intrusive to some extent as it requires access to Jacobian and resid-

ual matrices, that is not easily available for commercial simulators and POD-DEIM [108] is

highly intrusive to the source code. One of the non-intrusive methods that has been used

for changing well controls is DMD [13]. We propose a new non-intrusive PMOR technique

that has been applied in [56, 55] for problems that are time independent or steady state sys-

tems. We extend this technique to time dependent problems which is the case for reservoir

simulation where states evolve over time. One of the other main advantages of proposing

this strategy is it is extremely fast compared to if the global ROB is used within a simula-

tor to project non-linear functions. As discussed before, the reason is, as more parameters

are used for concatenating solutions for a global ROB, we expect the basis dimension to

increase monotonically and hence projection of non-linear functions become slower. The

proposed PMOR technique does not involve such non-linear function projections and can

make efficient use of parallel computational facilities as will be discussed in the later section

(5.2).

The use of machine learning has revolutionized the field of decision making in numerous

areas of applications, where it learns complex models entirely from huge data sets. However,

the availability of such amount of data for engineering applications can be a bottleneck, as

it usually involves running a large number of fine scale simulations. Another challenge is to

ensure the ML models understand the physics of the system like conservation laws. Thus,

blending the positives of both MOR and ML in that, MOR provides a low dimensional

representation of the dynamics of fluid flow and hence represent the physics of the system

and ML provides a complex mapping of the input parameters (well locations in our case)

to the MOR parameters as will be discussed in the next section, is the main motivation of

using this strategy.

5.1.1 Parameterizing states of reservoir using POD

We begin by introducing the parameterization of the reservoir states using proper or-

thogonal decomposition. POD method was described in section (2.3) of Section 2. Thus, we

127



do not go into the same details here, but talk about the relevant information needed for the

new formulation.

We use the same notations as used in Section 2. Let us consider the states x(t, ζ) ∈ RNd

at time t ∈ T and ζ ∈ P ⊂ RNζ , a vector of input parameters. Each column in x collected

over time is also referred to as snapshots. x represents the pressure and saturation states

for our case, i.e. x = [p, s] and ζ corresponds to the well location. In order to construct the

global ROB, we collect the states snapshots from different well locations and hence can be

written as:

S = {x(ti, ζj)|i = 1, ..., Nt, j = 1, ..., Nζ} (5.1)

Thus, we have a total of NtNζ snapshots, with each of the Nζ parameter has Nt snapshots

all concatenated in a single snapshot matrix S. The Nζ parameters can be selected using

experimental design sampling methods like Lattice Hypercube Sampling (LHS), full factorial

design etc. or randomly. Thus, POD entails obtaining a reduced order basis (ROB) by taking

a singular value decomposition of the snapshot matrix S and then selecting first few vector

r (reduced dimension) of the left singular matrix by certain energy criteria on the singular

values. This ROB is represented by Φ. The detailed procedure is explained in Section 2.

Φ = {φ1(x), φ2(x), ..., φr(x)}, where φi(x), i = 1, ..., r, are called the reduced basis functions

and we seek solutions at any parameter that are a linear combination of these basis functions.

We assume that these basis functions span a space Φrb called the reduced basis space:

Φrb = span{φ1(x), φ2(x), ..., φr(x)} (5.2)

where, r � Nd. Thus, for any ζ ∈ P, we seek a solution x(ζ):

x̃(t, ζ) =
r∑
i=1

cxi(t, ζ)φxi(x) (5.3)

128



Here, x correspond to p (pressure) or s (saturation). Note that x here denote the states and

x denote the spatial variable. Thus we have

p̃(t, ζ) =

rp∑
i=1

cpi(t, ζ)φpi(x) (5.4a)

s̃(t, ζ) =
rs∑
i=1

csi(t, ζ)φsi(x) (5.4b)

p̃(t, ζ) = p̄ +

rp∑
i=1

cpi(t, ζ)φpi(x) (5.5a)

s̃(t, ζ) = s̄ +
rs∑
i=1

csi(t, ζ)φsi(x) (5.5b)

cpi(t, ζ) and csi(t, ζ) represent the basis coefficients or POD expansion coefficients for pressure

and saturation respectively, and p̃(t, ζ) and s̃(t, ζ) represent the approximated pressure and

saturation solutions at a parameter ζ and time t. Note that the magnitudes of pressure

and saturation scale very differently, with pressures usually in the range of thousands of psi

and saturation as a fraction between 0 and 1, we compute the global ROBs of pressure and

saturation separately as denoted by Φpi(x) and Φsi(x). Thus the dimension of both these

basis can be different as depicted by rp and rs for pressure and saturation respectively. From

now on, we just use r for both the states for ease of notations but it should be remembered

that it is different for different states.

These POD parameterizes the states in terms of the basis coefficients. These basis coef-

ficients can be calculated as:

cx(ζ) = ΦT
xx(ζ) ∈ Rr×t, (5.6)

for both states. The matrix cx(ζ) contains columns of basis coefficients at each timestep.

Thus, cx(t, ζ) = [cx1(t, ζ) , cx2(t, ζ) , ..., cxr(t, ζ)]T .
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5.1.2 Addressing physical constraints in POD

In this method, we also enforce physical constraints in the form of POD representation.

This is done by writing the equation (5.3) in a different way as:

x̃(t, ζ) = x̄ +
r∑
i=1

cxi(t, ζ)φ̄xi(x) (5.7)

Here, x̄ is called the particular solution which enforces certain characteristics of the spatial

behavior of states during POD-based prediction. For our case, this particular solution is

defined as the mean of all the snapshots corresponding to all the parameters in snapshot

matrix. By doing so, as expected, the accuracy of state prediction increased using the

formulation proposed in the next section (5.2). The procedure to calculate the global basis

functions remain the same as above, except now, the POD basis Φ̄ = {φ̄1(x), φ̄2(x), ..., φ̄r(x)}

is computed on the mean subtracted snapshot matrix:

S̃ = {x(ti, ζj)− x̄|i = 1, ..., Nt, j = 1, ..., Nζ} (5.8)

After, the basis coefficients are obtained, the states at new parameters and a given time are

computed as equation (5.8).

5.2 Global PMOR problem formulation

Once the global ROB is obtained using the method shown above, a traditional way

of solving such system is solving the non-linear reservoir simulation equation online and

getting the coefficients of the basis for a new parameter by projecting the non-linear Jacobian

and residual functions. However, it has been shown several times in the literature that

this technique shows modest improvements in the computational speedups as it requires

computing the fine scale non-linear functions during each Newton iteration. Also, for well

location changes, implementing the simulator intrusive POD-based online procedure caused

lot of stability issues and it is very challenging to decide on the suitable dimensions of
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global basis. Changing well location as the parameter for PMOR is observed as much more

challenging as compared to well control changes as even a global PMOR technique is found

difficult to represent the controllability properties of a new well location. On way to address

these issues is using non-intrusive reduced basis methods, where the basis coefficients are

obtained by interpolating the ROBs or ROMs over the parameter domain. But, the reduced

bases belong to non-linear, matrix manifolds and hence the standard interpolation can fail in

preserving the constraints characterizing those manifolds and requires having a large dataset

[47, 21]. We present an alternative way to overcome this issue by multidimensional mapping

of input parameters to the basis coefficients given a global ROB. We use ML techniques

that have capabilities of mapping complex non-linear relationships and specially suitable

for interpolation of basis coefficients where the parameters have a non-affine dependence.

Similar approach was applied to steady state cases in [56, 55]. We extend this technique to

time dependent problems. Thus, the ML model F is trained to learn the relation:

F : [ζj, tk]→ [cx1(ζj, tk), cx2(ζj, tk), ..., cxr(ζj, tk)], j = 1, ..., Nζ and k = 1, ..., Nt (5.9)

[cxi(ζj, tk)]
r
i=1 = ΦT

xx(ζj, tk), x = [p, s]T (5.10)

Note that, the basis Φx is obtained from the mean subtracted snapshot matrix and the basis

dimensions of pressure and saturation are different shown by r here. ζj are the parameters

representing the well location used for training which are the features of the ML model. In

order to consider the temporal evolution of the coefficients, we also add time as one of the

features and the coefficients as a function of time as the outputs of the ML model.

Once this ML model is trained, we predict the POD basis coefficients for each state,

pressure and saturation for a new well location, which correspond to the states in low di-

mensional subspace that are projected later back to the full dimensional space. For a new

well location represented by parameter ζ∗ ∈ P, the online procedure can be written as:

F (ζ∗, tk) = [cxi(ζ
∗, tk)]

r
i=1 = cx(ζ∗, tk) (5.11)
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x̃(ζ∗, tk) =
r∑
i=1

cxi(tk, ζ
∗)φxi + x̄ = Φxcx(ζ∗, tk) + x̄ (5.12)

Note that here, x̄, which is the training snapshot mean, act as a physical constraint

enforced on the predicted solution.

5.2.1 Machine Learning and feature selection

As mentioned in the section (5.2), we are interested in understanding the relationship be-

tween the input parameters representing well locations and the basis coefficients of pressure

and saturation. The inputs representing the well locations are defined in high dimensional

spaces as will be shown later, and the outputs, which are the POD coefficients, also are

expected to be very high dimensional based on the number of basis functions chosen that

increase with increasing number of training well locations and size of the reservoir. Such high

dimensional input-output relation and a highly non-linear relation that is very difficult to

define explicitly calls for machine learning strategies. However, for engineering applications

like the ones considered, it becomes very challenging to generate a large data set for the ma-

chine learning algorithms to capture the underlying dynamics. Thus, there is trade-off that

needs to be considered between getting a good training data set and the least computational

expense at building a good predictor. Thus sometimes, specially for such applications as

developing MOR for changing well locations in the reservoir, it is just beneficial to use sim-

pler ML algorithms that are faster to train and can still capture the underlying non-linearity.

Thus, we consider using Random Forest (RF) regressors as our algorithm of choice, since they

are much faster to train and capable of mapping complex input-output relationships while

using concepts like bootstrap aggregation to avoid overfitting. The results are compared to

those obtained by Neural Networks (NN) which are widely used for mapping complex high

dimensional input-output relations. They have been used for non-intrusive ROM in [55].

According to many applications, NN is found to be a feasible method where we have access

to huge data sets and spending a lot of time in training is a viable option. We however, ana-

lyze its performance as compared to that obtained by a fast algorithm like Random Forests.
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Other faster and simpler methods like kNN and multi polynomial regression were also con-

sidered but their performance was very poor for such complex problem and hence not shown

here. The hyperparameters for the random forest regressor model are again chosen to be

the minimum number of splits at the leaf node (Nl) and the number of features to search

for split (Nfmax). For NN model, we use number of nodes in the hidden layers (Nnodes) and

the regularization parameter (λ) from equation (4.8) as the tuning parameters. For all the

cases shown in this section, the best model was found through cross validation.

For input features of the machine learning model, we consider the same observations for

feature construction as that used in error map modeling. However, here we do not have

a local basis corresponding to a parameter that needs to be selected and hence for the

current problem, the new set of features used are listed in Table 5.1. Note that the features

correspond to information that we think best describes the well location and also includes

time information as discussed previously to account for understanding the temporal behavior

of the POD basis coefficients.

Feature Set for a well configuration

x - X coordinate of the well
y – Y coordinate of the well
r – Distance between well and injector
θ – Angle between well and injector
K – Permeability at the well location
TOF - Total time of flight at the producer well location
LC - Lorenz coefficient for the well configuration
index - Well gridblock number in the reservoir
t - Time at which the POD coefficients are computed

Table 5.1: Geometric and physics based features for ML model construction corresponding
to the well configuration
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5.2.2 Remarks

As we have formulated the method, we now demonstrate its performance with some case

studies. However, before that, we point out some specifics of these cases. The injector for all

the cases shown here is at a fixed location and the producer is considered as the parameter

i.e. it can change the location in the reservoir. All the new producer well locations have

the same BHPs to consider only the well location as a system parameter. The workflow can

be extended in the future to also include varying well BHPs as the feature but not in the

current scope of work. The simulations are run long enough to observe significant water cut

at most of the well locations in order to introduce complexity to the problem which was

a limitation in the local ROB based workflow discussed in Section 4. For the cases shown

below, we use random sampling in the parameter space to train the MLmodels. Experimental

design sampling techniques or greedy sampling procedures as listed before can be used for

sampling the parameter space for better representative parameters, but, for simplicity and

fast sampling we choose the parameters randomly for training purpose. However, the number

of random samples chosen is an open challenge that needs to be addressed in the future. With

random sampling we usually expect a lot more samples than something like greedy sampling

procedures, in efforts to capture representative samples for global ROB. The main aim here

is to show the validity of proposed methodology given the high complexity of the problem

compared to that of changing well control problem and hence we use relatively large training

sample sizes here.

5.3 Case Study

In this section, we present the numerical results for the proposed non-intrusive global

PMOR technique. We start with a simple example of a homogeneous reservoir model. The

model has 20× 20 gridblocks and has one injector and one producer well as shown in Figure

5.1a. The porosity is set constant to 0.2 and the relative permeability model is defined by

Corey function of degree 2. The permeability of the field is considered to be 100mD. The
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(a) (b)

Figure 5.1: (a) Homogeneous permeability reservoir with 1 injector (white) and 1 producer
(red). Producer is the parameter and can change location anywhere in the reservoir (b) BHP
profiles of injector and producer that is set constant for all well configurations considered

2-phase flow is considered incompressible neglecting the capillary and gravitational effects.

All the producers are produced with a constant BHP of 2425 psi and injector injects water

a constant BHP of 7200 psi. We look to change the producer locations only and the injector

location is fixed at (20, 1) gridblock. The simulations are ran for a period of 1 year with

which we observe watercut at all the producer locations.

The problem is setup as follows. First, in order to construct a global ROB, we randomly

sample the well locations. Fine scale simulations are run for each well location and the

snapshots are collected in a single snapshot matrix as shown in equation (5.1). We then

follow the procedure as described before to train the ML model. Since, we have 400 grid

blocks, there are 399 locations we consider where the producer can move (1 injector block).

So we randomly sample 100 cases to train the ML models and the rest 299 cases are used as

test cases.
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5.3.1 Energy of eigenvalues - Global PMOR

Now, we discuss about an observation on energy of eigenvalues that is important in

understanding the complexity of developing PMOR strategy for changing well location using

this case of homogeneous reservoir. For problem of changing well controls and fixed well

configuration, we usually observe higher number of saturation basis as compared to pressure

basis due to the fast moving pressure front and slow saturation front. Here, for changing

well location problem, as we construct the global PMOR by concatenating solutions from

different well configurations, as expected, we will see an increase in the number of basis for

both pressure and saturation. However, we look at how these eigenvalues decay or rather

how the energy of the basis change with increasing number of parameters in the snapshot

matrix.

PMOR for a well control usually use a lot more saturation basis as compared to pressure

basis for a fixed well configuration as the pressure behavior has a fast moving front and is not

expected to change significantly for for a fixed well location as compared to the saturation

behavior that has a very slow moving front with major updates occurring at the saturation

front. For the problem of changing well locations, at each well location we have the lowest

or highest pressure point in the reservoir corresponding to the well BHP and hence there is

also significant difference in the pressure behavior observed moving from one well location

to the other. This has a significant impact on the number of well configurations used in the

training set. A typical energy criteria used for choosing the basis dimensions is above 90%

of the energy of eigenvalues from the equation (2.25). As can be seen in Figure 5.2, we begin

with Nζ = 10 where, as usual, we have a higher number of saturation basis than pressure

basis satisfying more than 90% energy criteria. However, after adding more parameters,

these trend changes, especially after Nζ = 200. It requires significantly more number of

pressure basis to capture to understand the dynamics. Note, that the pressure basis energy

plateaus at a point equaling number of training parameter Nζ . As we add more training

parameters, we see that the saturation basis energy profile does not change significantly.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Change in cumulative energy of the basis as calculated by the magnitude of
eigenvalues for increasing number of parameters (well configurations) in the state snapshot
matrix
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Thus, for many cases at hand, depending on the training parameters selected, we may

observe higher number of pressure basis as compared to saturation basis. This observation

also gives a notion on the complexity of the problem as there is a trade-off between choosing

the number of training samples and the basis dimension required for a good quality basis

over the domain of parameters. For example, we may choose 10 training samples and capture

99.99% energy basis but still may not produce accurate results as each parameter has very

different dynamical behavior. So it may sometimes be good to have more training samples

and a lower energy criteria at the expense of running more fine scale simulations in the

training phase and getting significant speedups in the testing phase.

5.3.2 Results

We now show the prediction results for new well locations not included in the training

set. Figure 5.3 shows the training samples of producer well locations each simulated one at

time and the new well location in the first test set for which we predict the POD coefficients.

(a)
(b)

Figure 5.3: (a) Training samples of producer well locations shown by red crosses (b) Test
case 1 well location at (3,13) in homogeneous reservoir

138



We first use Random Forest regressor to compute the POD basis coefficients. For pressure,

the basis dimension is 99 and that for saturation is 113, which corresponds to the output

dimension for ML models of pressure and saturation respectively. The outputs are predicted

using the relation in equation (5.11). and for this example the optimal tuning parameters

for RF regressor found are shown in Table 5.2.

RF Regression Train Accuracy Test Accuracy

Pressure Nfmax=3, Nl=2 99.83 98.18
Saturation Nfmax=3, Nl=3 98.89 93.21

Table 5.2: Hyperparameters chosen by 5-fold Cross Validation for Random Forest Regressor
using 100 training samples

Figures 5.4 and 5.5)show the comparison between predicted and true states (pressure and

saturation) for the new well configuration at two different times. We also show the error in

states along time. As can be seen in Figure 5.6, prediction of the overall state behavior is

fairly accurate but there is discrepancy in the solution close to the producer well location

for pressure, and at the fluid front for saturation.

The quantities of interest that are the outputs of the simulation like fluid production

rates, water cut etc. are solely dependent on the state quantities at the well blocks through

the Peaceman equation (2.4). Thus, for this prediction results we expect some error in these

quantities due to higher prediction error close to the wells. To quantify these discrepancies,

we show the pressure and saturation solution comparison at the producer well block in Figure

5.8. As we can see, the predicted solution captures the overall trend of dynamical behavior of

the states but has kind of a bias in the solution. Figures 5.9a and 5.9b show the comparison

of oil production rate and water cut between the true and predicted solution.

We also consider a second test case with new producer well location as shown in Figure

5.11 to validate the method. Figure 5.11 shows the pressure and saturation comparison
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(a)

(b)

Figure 5.4: Pressure solution comparison at (a) Time = 70 days and (b) Time = 360 days

between ML predicted and true solutions. Both the solutions show a very good agreement

visually. For a more detailed analysis, we also plot the well block pressure and saturation in

Figure 5.12a and (5.12b). This case shows that ML predicts the solution with a very good

accuracy which eventually reflects in the Figure 5.13, where we plot the oil production rate

and water cut.

After plotting the results from other test cases, we found that for some cases the prediction

is reasonably accurate, similar to that in test case 2. But there are many well configurations

that show discrepancies as the test case 1 which overall captures the solution trend but there

is some bias associated. So, we need to analyze the reason behind the solution discrepancy

which can either be due to the error in machine learning model or due to the quality of

global basis. In order to get an intuition about these two factors, we first analyze the
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(a)

(b)

Figure 5.5: Saturation solution comparison at (a) Time = 70 days and (b) Time = 360 days

(a) (b) (c)

Figure 5.6: Relative error in pressure at time = (a) 1 day , (b) 70 days and (c) 360 days

machine learning model performance. In Figures 5.15 and 5.16, we compare the predicted

and true basis coefficients for pressure and saturation respectively for different timesteps for

test case 1. These show that the ML model predicts the coefficients with a good accuracy
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(a) (b) (c)

Figure 5.7: Relative error in saturation at time = (a) 1 day , (b) 70 days and (c) 360 days

(a) (b)

Figure 5.8: Well block state solution comparison (a) Pressure and (b) Saturation

except for some instances like the first pressure basis at time 360 days. The true coefficients

for a new parameter ζ∗ are obtained by projecting the fine scale simulation on the subspace

spanned by global basis Φ by computing ΦT
xx(ζ∗).

Thus, the performance of ML model suggests that the discrepancies near the well locations

are less likely due to the errors in ML model specially the fact in understanding that the new

producer well location should be the lowest pressure point in the reservoir. Thus, now we

analyze the quality of the global basis Φ used on test case 1. Here, we look back to Section

2, where we introduced the concept of MOR error that has a orthogonal component which

basically results from neglecting the state projection on the orthogonal subspace. At a given
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(a) (b)

Figure 5.9: Quantities of Interest comparison (a) Oil production rate and (b) Water cut

Figure 5.10: Test case 2 with producer at (8,4) grid block and injector at (20,1) gridblock in
homogeneous permeability reservoir

time instant for a new parameter ζ∗, it can be written as:

εΦ⊥(t, ζ∗) = (In − ΠΦ,Φ)x(t, ζ∗)

ΠΦ,Φ = ΦΦT

(5.13)

Thus, the deviation of the product ΦΦT from the identity matrix gives an a priori es-
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(a)

(b)

Figure 5.11: Pressure solution comparison at (a) Time = 70 days and (b) Time = 360 days

timation about the quality of basis for the new parameter. To visualize this for our case,

we project the true coefficients obtained by ΦT
xx(ζ∗) back to the fine scale domain. This is

basically performing the operation ΠΦ,Φ)x(t, ζ∗) which we refer to here as the true orthog-

onal solution. The Figures 5.17a and 5.17b show the predicted orthogonal solution, true

orthogonal solution and true fine scale solution for pressure and saturation respectively at

the end of simulation for test case 1. As can be seen, the true orthogonal pressure and

saturation solutions differ from the true solutions around the producer well. This is clearly

visible for the case of pressure solution. However, the predicted orthogonal pressure and

saturation solutions are in a very good agreement to their true orthogonal solutions. This is

an indication of the quality of basis that is the main reason behind the higher errors around

producer well locations. This indicates that even with a global basis of parameters, it is very
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(a)

(b)

Figure 5.12: Saturation solution comparison at (a) Time = 70 days and (b) Time = 360
days

(a) (b)

Figure 5.13: Well block state solution comparison (a) Pressure and (b) Saturation
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(a) (b)

Figure 5.14: Quantities of Interest comparison (a) Oil production rate and (b) Water cut

(a) (b)

Figure 5.15: True and ML predicted pressure basis coefficient comparison at time = (a) 70
days and (b) 360 days

difficult to preserve the controllability properties for all the new well locations. The global

basis here proves to be a good quality basis for some cases like the test case 2. Thus, the

best possible way to alleviate this problem is to try getting the most representative set of

parameters in the training sample set which can be a future direction of research.
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(a) (b)

Figure 5.16: True and ML predicted saturation basis coefficient comparison at time = (a)
70 days and (b) 360 days

(a)

(b)

Figure 5.17: Comparison of predicted orthogonal and true orthogonal solutions with true
solution at time = 360 days for (a) Pressure and (b) Saturation
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5.4 Modeling error correction

As we saw that finding a good global basis for the entire domain of parameters is very

difficult, we get solution discrepancies although it captures the overall trend of the solution.

So with the given information about the reduced order model, we propose an error correction

method to adjust the solution discrepancies. The error correction model takes into account

the information about the reduced order model solution at a new parameter and then predicts

the correction required in the quantity of interest. This model is constructed using machine

learning techniques to account for high dimensional feature space and mapping the complex

non-linear relationship between inputs and outputs. The quantity of interest can be the

oil/water production rate, water cut or the well block states. For the current work, we just

consider the well block states (pressure and saturation) as the QoI to be corrected as these

states directly transfer to the correction in production rates and water cut. At a given instant

in time, the error in the well block states is:

∆xwb(ζ, tk) = (xwb(ζ, tk))fine − (xwb(ζ, tk))PMOR

where, k = 0, 1, ..., Nt and ζ ∈ P
(5.14)

Thus, we are interested in determining ∆xwb for a new well location over time given the

reduced model solution obtained in equation (5.12). We also note that, the saturation map

comparison at different times during prediction Figure 5.5 and comparison of the predicted

injection rates with true injection rates showed good agreement. This information helps us

consider the pore volumes injected predicted by the reduced model as a good reduced model

information. The formulation of the error correction model is thus given by:

E (ζ, tk, x̃, PV Ir)→ ∆x (5.15)

This model is constructed using ML techniques, where, the ζ correspond to the well location

parameter and hence represented by the same features as used in global PMOR formulation.
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x̃ correspond to the PMOR predicted solution at all the gridblocks in the reservoir and PV Ir

is the pore volumes injected as predicted by the reduced order model. However, since we are

interested in correction of states at the well gridblock only, it is worthwhile considering the

relation between the reduced solution at gridblock location x̃wb to the correction ∆xwb. By

this assumption, the formulation changes to:

E (ζ, tk, x̃wb, PV Ir)→ ∆xwb (5.16)

This formulation is thus a global error model that is used for the entire parameter space.

Similar idea was implemented to construct local error models for POD-TPWL method [31]

that showed promising results for well control changes but can be computationally expensive

to construct. However, the global error model is used here to avoid further computational

complexity to the already expensive PMOR training procedure. Including the reduced order

model solution to the input features achieves good accuracy as we take into account the

physics of ROMs rather than constructing completely data driven error models as in [7, 6].

Similar to the cases of constructing error maps using ML, we have the single output here

corresponding to state error at well gridblock. For such cases, NN proved to be a better

model at mapping the complex input-output relation and is faster to train for a single

output system rather than using it for the prediction of POD coefficients in global PMOR

formulation with high dimensional outputs.

5.5 Case study

5.5.1 Homogeneous reservoir model

We use the error correction model now in efforts to minimize the solution discrepancies

at the well locations. We use the same case study as before for the homogeneous reservoir

model and changing producer well locations. In order to construct the error model, we

sample randomly other 100 well locations to generate the data set that account for running

100 fine scale simulations. In order for the ML models to capture the underlying behavior of
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the system, it requires many data points especially to understand such complex relationships.

We realize the computational expense associated with fine scale simulation runs, but better

sampling strategies should be the research focus in the future, that can reduce the number of

sampling points. Also, the current case is a small model and hence the number of sampling

points relative to the size of the problem is high here, however, as we move to the bigger

reservoir models, we expect much lower sample points relative to the reservoir size.

So for the reservoir description as shown in Figure 5.1, we have 100 well configurations

used to construct the global PMOR model and 100 other well configurations for training the

error correction ML model. Thus, we have 199 test cases in total to test the performance

of this methodology. Figures 5.18, 5.19, 5.20 show the comparison of the results obtained

by just implementing the non-intrusive global PMOR method, its implementation with the

error correction models and the true solution obtained by fine scale simulation.

It can be observed from these test cases that, the proposed method shows a very good

accuracy with the solution trend captured by global PMOR and then adding error correction

to the solution to get a much improved accuracy. This was examined for the other test cases

as well. The predicted results accurately captures the water breakthrough time which is

different for different test cases, as can be seen in the plots of water cut comparison.

We predicted the solutions for all the test cases and show the errors in prediction for all

these cases in Figure 5.21 for oil production rate and water cut. In this figure, the errors

shown in red are those obtained by POD coefficient prediction without error correction.

These are arranged in increasing order for all the test cases. The blue dots show error after

correcting the solutions in the second step for each corresponding red dot. This gives an

intuition of the behavior of proposed method for all kinds of test cases. This plot shows

that most of the test cases show a very good accuracy after error correction even when the

predicted solutions just based on ML estimated POD coefficients have large errors. There

are a very few test cases that show errors increasing after correction, that most probably can

be attributed to random sampling, and should be solved after efficient sampling techniques.
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(a)

(b) (c)

Figure 5.18: (a) Test case with producer well location at (2,6) (b) Comparison of oil pro-
duction rate and (c) Comparison of water cut, predicted using global PMOR method alone
using 100 samples (dotted green line) and after implementation of error correction model
(red circled line) with the true solution (blue line)

The average accuracy for all the test cases can be found in Table 5.3.

Average Accuracy (%)

Oil production rate 95.28
Water cut 98.4

Table 5.3: Homogeneous reservoir case 1: Average accuracy of oil production rate and water
cut for all test samples
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(a)

(b) (c)

Figure 5.19: (a) Test case with producer well location at (3,16) (b) Comparison of oil pro-
duction rate and (c) Comparison of water cut, predicted using global PMOR method alone
(dotted green line) and after implementation of error correction model (red circled line) with
the true solution (blue line)
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(a)

(b) (c)

Figure 5.20: (a) Test case with producer well location at (16,19) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone using 100 samples (dotted green line) and after implementation of error correction
model (red circled line) with the true solution (blue line)
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(a)

(b)

Figure 5.21: Error in prediction of (a) Oil Production Rate (b) Water Cut, for all the test
cases before and after the error correction of the solutions
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Now, we show the same example, but using lesser number of training sample well locations

for predicting basis coefficients and construction of global ROB (this should be a lower quality

basis than before) and using same number of training points for error correction model.

Since it is challenging to pick the number of sample points for training and ultimately

choosing appropriate basis dimensions, such an analysis is useful to determine if the error

correction model can also provide reasonable results even if the global ROB is not a very good

representation of the parameter domain. The ML based PMOR model is thus constructed

with 50 sample well locations for this example.

Table 5.4 shows the optimum hyperparameters and the corresponding train and test

accuracies obtained from the trained Random Forest model to predict the basis coefficients

for both pressure and saturation. As can be expected, the train accuracy decreases as the

ML model does not have a large data set to learn the physics which eventually also shows a

decrease in the test accuracy as compared to the previous test case.

RF Regression Train Accuracy Test Accuracy

Pressure Nfmax=2, Nl=2 99.55 97.55
Saturation Nfmax=2, Nl=2 98.71 90.79

Table 5.4: Hyperparameters chosen by 5-fold Cross Validation for Random Forest Regressor
using 50 training samples

Figures 5.22 and 5.23 show two of the test cases for this example by comparing the oil

production rates and water cut. These results show a good agreement in the solutions thus

showing the validity of error correction model for the cases when the global basis is not

very accurate for the entire parameter domain but still can capture the overall trend of the

solutions. However, these observations may not hold true when the quality of global basis is

compromised enough to explain the appropriate physics of flow.
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(a)

(b) (c)

Figure 5.22: (a) Test case with producer well location at (3,16) (b) Comparison of oil pro-
duction rate and (c) Comparison of water cut, predicted using global PMOR method alone
using 50 samples (dotted green line) and after implementation of error correction model (red
circled line) with the true solution (blue line)

Average Accuracy (%)

Oil production rate 95.2
Water cut 98.3

Table 5.5: Homogeneous reservoir case 2: Average accuracy of oil production rate and water
cut for all test samples
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(a)

(b) (c)

Figure 5.23: (a) Test case with producer well location at (11,10) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone using 50 samples (dotted green line) and after implementation of error correction
model (red circled line) with the true solution (blue line)
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(a)

(b)

Figure 5.24: Error in prediction of (a) Oil Production Rate (b) Water Cut, for all the test
cases before and after the error correction of the solutions
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5.5.2 Heterogeneous reservoir model - single well case

The methodology shows promising results for a small homogeneous reservoir model. Now

we apply the same methodology to a heterogeneous reservoir model which is a section of layer

50 of the SPE10 benchmark reservoir. Again, this is a two-phase flow (oil-water) reservoir

model with one injector well and one producer well as shown in Figure 5.22. The reservoir

model is discretized with a Cartesian grid of size 20 ft × 20 ft × 50 ft, and it contains

2500 (50×50) active cells. We neglect the capillary and gravity effects. The initial reservoir

pressure is 4200 psi and the initial water saturation is considered 0. The injector and producer

are BHP controlled at a constant pressures of 7000 psi and 2500 psi respectively. For the

current scope of work, we believe, this model with about 5 orders of range in permeability and

an injector and a producer, should be a good case with reasonable complexity to demonstrate

the validity of proposed global PMOR strategy. Again we only consider that the producer is

the parameter of interest which means the injector location is fixed and the producer changes

location in the reservoir. The simulation is run for a duration of 3 years.

For the training of global PMOR model, we consider the producer well locations only

on the high permeability gridblocks majority of which lie on the channel connecting the

injector and producer. We use all the gridblocks with greater than 10 mD as candidate well

locations as shown in Figure 5.23. This is employed to observe the water cut for most of the

well locations. Thus, here this global PMOR strategy is employed on a subset of parameter

domain. These are around 1000 sample locations out of which we use 200 randomly sampled

locations for training the ML based global PMOR model and 100 samples chosen for training

the error correction model. The rest of the samples are test cases for which the accuracy of

the PMOR model is evaluated.

We show the randomly sampled data set for training the global PMOR ML model in

Figure 5.27a. Figure 5.27b shows the cumulative energy of singular values for the given

sample set. For the first example, we use 99% energy criteria for pressure basis dimension

and 90% energy criteria for saturation basis dimension. Later in the section, we analyze
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Figure 5.25: Heterogeneous log permeability field (section of SPE10 model layer 50) with
one producer and one injector

the accuracy of the method with changing energy criteria for these states. We observe the

steep cumulative energy curve for pressure and a more concave curve for saturation. This is

expected since all the well locations are just considered on the high permeability area of the

reservoir. The observations about energy curves follows the same explanation as that of the

homogeneous case if we consider well locations throughout the spatial domain of reservoir.

Since, we consider the heterogeneous case here, an additional feature corresponding to the

well block permeability is added which was not included for the homogeneous model before.

We first consider a test case as shown in Figure 5.28 with producer well location at (28,50).

In Figures 5.29 and 5.30, we show pressure and saturation solutions obtained by predicted

POD basis coefficients with the true solutions for two of the test cases at different times.

We also show the error in pressure solution in Figure 5.31 to verify the same observations as

in the homogeneous case where the maximum error is obtained at producer well locations.
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Figure 5.26: Samples considered as potential well locations shown by red crosses. Injector
location is fixed at location (10,1) (not shown here) and hence not sampled.

By observing the saturation solutions, we can see that there are small saturation errors near

the waterfront. The time at which all the solutions are reported are chosen to be somewhere

in the middle and at the end of simulation run time. As can be observed, the error is very

small throughout the spatial domain and maximum at the well location which is the same

observation as before.

Here, we also show the comparison of basis coefficients for pressure and saturation as

predicted by the ML algorithm at the same timesteps to determine the validity of ML models.

We can see that the ML model produces a very small error in prediction of the coefficients for

some of the pressure and saturation basis. Hence to check if the discrepancy in the predicted

solution is due to the ML model or the quality of basis, we also compare the plots of relative

error in ML predicted solution and the orthogonal projection error computed using equation

(5.13). This comparison for pressure in Figure 5.34 shows that the orthogonal projection

error is maximum at the well location. Hence majority of the error in the output quantity
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(a)
(b)

Figure 5.27: (a) Training samples randomly chosen for basis coefficient prediction (b) Cu-
mulative energy of eigenvalues for pressure (red) and saturation basis (blue)

Figure 5.28: Test case with producer well at gridblock (28,50)

of interest that is dependent on well block states is expected due to the quality of basis.

Thus, it is in line with our discussion for homogeneous case. As we see that it challenging to

find a single global basis that is representative of the controllability properties at all the well

locations, we use the error correction formulation to adjust for the error in state solutions
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(a)

(b)

Figure 5.29: Pressure solution comparison at (a) Time = 506 days and (b) Time = 1026
days

at the gridblock. Figures 5.32, 5.33 and 5.34 show the test cases for different well locations

comparing the oil production rates and watercut. We can see that the corrected solutions for

some cases like test case 2 may not be very accurate but still shows much improvement after

error correction. Similarly, for test case 3, where we see a lot of irregularities in the solutions

obtained just by coefficient prediction, show significant improvement after error correction.

For a better intuition about the results for this case study, we show a plot of accuracy in

prediction for oil production rate and water cut for all the test cases (Figure 5.38). The sam-

ples are arranged in increasing order of errors obtained just from predicted basis coefficients

and for each sample we show the error after employing the error correction model. It can be

observed that after error correction, the accuracy of predictions in oil production rate and

water cut increase significantly. There are some test cases that produces higher error after
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(a)

(b)

Figure 5.30: Saturation solution comparison at (a) Time = 506 days and (b) Time = 1026
days

correction which were found to be the cases where no water cut was observed and very low

oil production rates. A better sampling strategy can solve this issue. The average accuracy

for all test cases after error correction is shown in Table 5.6.

Average Accuracy (%)

Oil production rate 92.6
Water cut 95.04

Table 5.6: Heterogeneous reservoir case 1: Average accuracy of oil production rate and water
cut for all test samples

Table 5.7 shows the time comparison in seconds for these cases between fine scale simu-
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(a) (b)

Figure 5.31: Relative error in pressure at time = (a) 506 days (b) 1026 days

(a) (b)

Figure 5.32: True and ML predicted pressure basis coefficient comparison at time = (a) 506
days and (b) 1026 days

lations run in matlab and the proposed PMOR model with error correction, both run on a

local 8 core machine. We see the speedups of about 50× for these test cases. This does not

include time required to train the PMOR models.

It is also important to decide on the energy criteria used for choosing the basis dimensions,

since it is not trivial to make this decision a priori. As discussed before, there is a trade-off

in accuracy and computational time between the decision to select the number of training
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(a) (b)

Figure 5.33: True and ML predicted pressure basis coefficient comparison at time = (a) 506
days and (b) 1026 days

Figure 5.34: Comparison of relative error in pressure due to orthogonal projection (left) and
ML predicted solution (right)

samples and the basis dimensions. To get another perspective, we also show a box plot of

the pressure and saturation solution accuracies as predicted from the basis coefficients for a

range of energy criteria (Figure 5.39). Each box is constructed with 10 different training sets.

As can be expected, with increasing number of basis, we see an increase in the accuracies of

solutions. However, we also see a drastic reduction in the number of basis with decreasing
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(a)

(b) (c)

Figure 5.35: (a) Test case 1 with producer well location at (36,26) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone (dotted green line) and after implementation of error correction model (red circled
line) with the true solution (blue line)

Fine scale simulation PMOR + Error correction

Test Case 1 65 seconds 1.3 seconds
Test Case 2 52 seconds 1 seconds

Table 5.7: Time (seconds) comparison for the two test cases between fine scale simulation
and reduced order model with error correction

percentage of singular values selected, especially for pressure. The accuracy shown here is the

that when compared at all the gridblocks, which is not very different in magnitude between
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(a)

(b) (c)

Figure 5.36: (a) Test case 2 with producer well location at (28,50) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone (dotted green line) and after implementation of error correction model (red circled
line) with the true solution (blue line)

different basis dimensions. But it was observed that the accuracy of solutions at the well

gridblock increases significantly with increasing basis dimension.

The case shown above correspond to pressure and saturation basis dimension selected

using energy criteria of 99% and 90% respectively. Thus, we now evaluate, if the error

correction model can also produce reasonable results if lower energy basis dimensions criteria

is chosen. For this reason we consider another case with pressure and saturation basis

dimension selected using energy criteria of 95% and 80% respectively (Note that these energy
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(a)

(b) (c)

Figure 5.37: (a) Test case 3 with producer well location at (14,12) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone (dotted green line) and after implementation of error correction model (red circled
line) with the true solution (blue line)

are chosen such that they capture most of the high energy singular values as shown in Figure

5.27b. If we choose even lower, the predicted basis coefficients are not expected to capture

the physics of states behavior adequately and hence lead to inaccurate solutions). Figures

5.40 and 5.41 show two test cases comparing the oil production rate and water cut before

and after error correction. In general, the solutions are a good match after error correction.

The error in prediction, for all the test samples, before and after error correction is shown in

Figures 5.42a and 5.42b. It can be seen that the error from predicted coefficients now increase
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(a)

(b)

Figure 5.38: Error in prediction of (a) Oil Production Rate (b) Water Cut, for all the test
cases before and after the error correction of the solutions

at a higher rate which is expected due to much lower basis dimensions. However, after error

correction, most of the test cases show a much better accuracies. The average accuracy for

oil production rate and water cut is shown in Table 5.8. It is lower than that predicted in

the case of higher basis dimension (Table 5.6), but still not significantly less. Thus, it is up

to one to choose appropriate basis dimensions such that significant computational speed ups
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(a)

(b)

Figure 5.39: Box plot of accuracies in pressure and saturation using predicted POD coeffi-
cients for increasing basis dimensions

are obtained at the cost of losing accuracy.

Table 5.9 shows the time comparison in seconds for these cases between fine scale simu-

lations run and the proposed PMOR model with error correction, both run on a local 8 core

machine. We see the speedups of about 100× for these test cases since the model outputs
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(a)

(b)
(c)

Figure 5.40: (a) Test case 1 with producer well location at (9,29) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone (dotted green line) and after implementation of error correction model (red circled
line) with the true solution (blue line)

Average Accuracy (%)

Oil production rate 91.74
Water cut 94.6

Table 5.8: Heterogeneous reservoir case 2: Average accuracy of oil production rate and water
cut for all test samples

have lower dimensions and hence less complex.
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(a)

(b) (c)

Figure 5.41: (a) Test case 2 with producer well location at (26,48) (b) Comparison of oil
production rate and (c) Comparison of water cut, predicted using global PMOR method
alone (dotted green line) and after implementation of error correction model (red circled
line) with the true solution (blue line)

Fine scale simulation PMOR + Error correction

Test Case 1 56 seconds 0.7 seconds
Test Case 2 46 seconds 0.5 seconds

Table 5.9: Time (seconds) comparison for the two test cases (lower dimensional basis) be-
tween fine scale simulation and reduced order model with error correction
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(a)

(b)

Figure 5.42: Error in prediction of (a) Oil Production Rate (b) Water Cut, for all the test
cases before and after the error correction of the solutions

5.5.3 Heterogeneous reservoir models - multiple wells case

The results for a single producer and injector shows the validity of the proposed method-

ology, but for practical implementation, we need to see if this method shows such promising

results. This is mainly the future work that needs to be addressed, but we show a simple
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case study as a beginning for future directions. We know from the MOR literature that,

MOR techniques when used within optimization workflows, that require many simulation

runs corresponding to new parameter sets during each iteration, the training set of parame-

ters for MOR development is designed such that the parameters are not drastically different

from those expected to be encountered in the test set. For well locations, as we see from

the above results, it is very difficult to determine how different is one location to the other,

especially for heterogeneous reservoirs like the section of SPE10 model considered. Also,

the parameter domain for well locations increase significantly for large reservoir models, in

that each grid block in the reservoir is a potential well location. This becomes even more

challenging as we have more wells where we can have different combinations of well locations

across all the gridblocks. In these scenarios, it just becomes impractical to devise PMOR

strategies that can satisfy all possible combinations of well locations in the reservoir model.

Thus, training a PMOR model must be tied to the optimization strategy to be used and

training samples must be designed accordingly. For example, well location optimization

being a very challenging problem given numerous possible well configurations, researchers

resort to quick evaluations or diagnostics 11of the reservoir to rule out many areas in the

reservoir as potential well locations [45, 104]. And then, given this information, complex

optimization routines using simulation runs can be sought for a systematic decision making

process.

The method currently proposed, is suitable for any well location in the reservoir, and

hence further adds to the training effort by collecting more samples. But in the future,

when this workflow is applied with optimization routines, the training strategy should be

designed keeping the optimization strategy in mind. As a preliminary idea, we show a simple

case for the same model as considered for single well case, but now we consider 2 producers

and 1 injector. We keep the injector location fixed and producers can change locations.

With 2500 gridblocks and injector location fixed, we can have 2498 × 2498 = 6, 240, 004

number of producer combinations. If both the producers have the same well properties
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and produced with the same BHP schedule, i.e. both the well are equivalent, we have

6, 240, 004/2 = 3, 120, 002 different well configurations. Thus, the optimization strategies are

sought such that this possible combinations are reduced a priori by setting some constraints.

It is thus impractical to develop the proposed PMOR strategy that is expected to work for

all these combinations. We only consider a simplistic case here as a beginning to validate

the method for multiple wells. Figure 5.43 shows the reservoir model with an injector and

2 regions (shown in red) where producer 1 and producer 2 locations are randomly sampled.

We choose 20 samples in each region and hence we can have 400 combinations of producer

1 and producer 2 pairs. The BHP schedules for both producers are kept the same and have

identical well properties. The simulation is ran for a duration of 500 days. ML model is

trained to predict the POD basis coefficients for pressure and saturation using 50 sample

points randomly chosen out of 400. 100 training samples are randomly chosen for error

correction ANN model. Note that, the change here as compared to single well formulation

lies in the input featured defined for ML models. Now the inputs include geometric and flow

diagnostics based features for both the wells in ML model to predict the basis coefficients

and the error correction model has the same features representing both producer wells along

with the reduced order states and pore volumes injected.

Figures 5.44 and 5.45 shows two of the test cases with different producer 1 and 2 pairs than

used in training. For test case 1, the results show a good accuracy after error correction which

shows erratic behavior for producer 2 using just the predicted basis coefficients. Similarly,

the test case 2 is an example where even without error correction the results are a good

match to the true solutions, which improve further after error correction. This shows that

even though the global basis may not be a good quality basis for many parameters, we can

employ error correction model to account for the solution discrepancies. Figure 5.46 shows

the test accuracies for all the 250 test samples of oil production rates and water cut for both

the producers. As we see, the accuracy after error correction improves significantly for many

test cases. There are very few test cases again, with higher error after error correction that
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we deem as a result of random sampling procedure.

Figure 5.43: Reservoir model with on injector at location (24,26) and red regions showing
the regions from where producer 1 (top of the reservoir) and producer 2 (bottom of the
reservoir) locations are sampled

Table 5.10 shows the comparison of time between fine scale simulation and the proposed

PMOR model with error correction. The speedup obtained for these cases was about 100×.

Note that these times are just for the test runs. It does not include the training time, which

must be the area of focus for reduction in the future.

Fine scale simulation PMOR + Error correction

Test Case 1 102 seconds 1 second
Test Case 2 90 seconds 0.8 seconds

Table 5.10: Time (seconds) comparison for the two test cases between fine scale simulation
and reduced order model with error correction
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From these results, we validate the applicability of proposed workflow as a starting point

for the case of multiple wells. We believe, the explanation on its use with the optimization

procedure described above, should be taken into a consideration for practical implementation.

As we move to the cases with many wells, the feature space becomes high dimensional,

that might lead to slower training procedures. A possible way to avoid this, would be the

observation that, time of flight, well block permeability, Lorenz coefficients and the indices of

well gridblocks, which are the most important features representing well locations, be used

for POD basis coefficients prediction and then during error correction step, we may use all the

geometric features along with physics based features. This can reduced the dimensionality

of feature space and hence faster training procedure.

5.5.4 Advantages and Limitations

The method described above requires many fine scale simulations to train the ML models

but can easily be used with high performance computing facilities. With the advent of parallel

computing resources and cloud architecture, the training procedure can be extremely fast. It

is true that one may argue running just fine scale simulations, but it should also be considered

that the proposed technique has been designed for well location optimization problems,

where, each optimization iteration may be dependent on the solution of previous iteration,

depending on the optimization strategy used, and hence cannot make full use of parallel

resources. Keeping the expensive training procedure in mind one may also design better

sampling methods that reduce the number of sampling points significantly. We also note here

that the methodology described is used for any parameter in the parametric domain. That

is, the PMOR method is strictly global in the sense that the test cases may be significantly

different from the training cases which is easily encountered in the new well locations as a

new well location can change the dynamics of the problem significantly. This is not usually

the case with PMOR methods developed for well control optimization problem, where, the

training procedure is not designed such that it is drastically different from the test cases or

they may fail or lead to unstable solutions.
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The advantages of the proposed method are manyfold. One, this PMOR strategy is

completely non-intrusive in nature as it just requires data (pressure and saturation states in

our cases) from any simulator and does not require evaluation of any non-linear functions

like Jacobian and residuals. Second, the ML procedure described here is extremely fast in

predicting the solutions at a given time in simulation run. For the case of heterogeneous

reservoir above, computational speed up of around 50× (case 1 with large basis dimensions)

to about 100× (case 2 with lower basis dimensions) was observed for the test examples when

run on a local 8-core machine. Each forward ML prediction (coefficients and error correction)

is very fast and the proposed method also allows multiple timesteps computed in parallel.

Since each timestep enters as a feature to the ML model, the solution at the current timestep

is independent of the solution at previous timestep as in reservoir simulation. Thus, we do

not rely on the time stepping for solution convergence and running the timesteps in series

with the proposed method. This also helps to avoid convergence issues that may occur due

to a few bad predictions at some timesteps. However, one limitation of this method is that

it does not necessarily obey mass conservation and should be a research focus in the future

to handle it.

5.6 Summary

In this section, we introduced a non-intrusive global parametric model order reduction

method for changing well locations based on machine learning techniques. This method

requires just the pressure and saturation states at different time steps and a global basis is

constructed from the representative well locations in the reservoir. The machine learning

model is trained to learn the coefficients of the POD basis for the well locations as defined by

a set of geometric and flow diagnostics based features. We also introduce time as a feature

to account for temporal behavior of the coefficients. The trained ML model is then used to

predict the POD coefficients of the states for the new well locations. The ML model used

here is Random Forest, which is much faster to train compared to other algorithms like ANN

especially for large dimensional outputs, and has the ability to define complex input-output
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relations. ML model predicts the basis coefficients extremely fast with speed ups of about

50×(for high dimensional basis) - 100× (for low dimensional basis). However, the ML model

could capture the overall solution trend but he states predicted at the well block showed a

significant bias as can be attributed to the controllability theory. But due to a systematic

discrepancy in the solution, in that it captures the solution behavior, we considered fixing

this discrepancy through error correction models. These error correction model is a ML

based model that captures the state disparity given the reduced model solutions. ANN was

used in this case which is faster to train due to this being a single output model and proved

to reduced the error of prediction drastically for most test cases. The proposed workflow has

a limitation in that it requires many training samples to define the global parameter space.

This should be looked in the future research using efficient sampling techniques, that can

reduce the number of samples required significantly and using local parameter regions to

develop multiple local models in a similar way as proposed. We also note that, as mentioned

in the case study for multiple wells, the proposed method must be tied with the optimization

strategy used that would help design a better training strategy, as it is impractical to expect

the model to be accurate for all possible well configurations in the reservoir.
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(a)

(b) (c)

(d) (e)

Figure 5.44: (a) Test case 1 with producer 1 at (9,2) and producer 2 at (31,50) (b) Compar-
ison of oil production rate for producer 1, (c) Comparison of water cut for producer 1, (d)
Comparison of oil production rate for producer 2, (e) Comparison of water cut for producer
2, predicted using global PMOR method alone (dotted green line) and after implementation
of error correction model (red circled line) with the true solution (blue line)
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(a)

(b) (c)

(d) (e)

Figure 5.45: (a) Test case 2 with producer 1 at (20,3) and producer 2 at (32,49) (b) Compar-
ison of oil production rate for producer 1, (c) Comparison of water cut for producer 1, (d)
Comparison of oil production rate for producer 2, (e) Comparison of water cut for producer
2, predicted using global PMOR method alone (dotted green line) and after implementation
of error correction model (red circled line) with the true solution (blue line)
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(a) (b)

(c) (d)

Figure 5.46: Error in prediction of (a) Oil Production Rate and (b) Water Cut for producer
1, (c) Oil Production Rate and (d) Water Cut for producer 2, for all the test cases before
and after the error correction of the solutions
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6. CONCLUSIONS AND FUTURE WORK

In this research work, we have tried to address reduced order modeling procedures for the

optimization step in reservoir management workflows. This optimization step includes well

control and well placement optimization problems, which are computationally very expensive

to accomplish using fine scale simulations. Thus, our focus here is the development of fast

and reliable projection based reduced order models for quick evaluation of simulations during

optimization procedures. The reduced order models are represented as parametric models to

account for different system parameters, namely, well controls for well control optimization

and well indices for well placement optimization. All the PMOR techniques proposed are

based on Proper Orthogonal Decomposition that projects a high dimensional state space

model to a subspace of much lower dimensions and thus solves the system in this reduced

space much faster. We summarize our findings in this work below.

6.1 PMOR for well control optimization

In this work, we develop a global parametric model order reduction (PMOR) technique

using Proper Orthogonal Decomposition - Discrete Empirical Interpolation Method (POD-

DEIM), which is applied to a novel control optimization procedure that takes into account

various polynomial control strategies. The POD-DEIM workflow for changing well controls

was introduced in previous work ([35]) but lacked a full scale implementation in an opti-

mization procedure which was accomplished here. The proposed methodology takes into

advantage the optimization procedure itself to train the global reduced order model. Since,

this is a global PMOR technique, we just train the model once with representative BHP

controls of the wells and use it for all the well controls during optimization.

We begin our work by first introducing the control optimization framework to be used.

For that we compare various control parameterization techniques like conventional Piece-

wise constant (PWC) approximation of control, cubic spline approximations and, newly
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introduced here, Chebyshev polynomial controls. The motivation behind using polynomial

controls was for a practical implementation of control schedule which is smooth as compared

to the bang-bang type control procedure in PWC approximation. For optimization perfor-

mance evaluation, we use both gradient based interior point optimization (IPOPT) method

and gradient free particle swarm optimization (PSO) method. Chebyshev approximation

procedure proved to yield the maximum net present value (NPV) for the case study used

which we believe is because of the better parameter search obtained with orthogonal basis

functions in Chebyshev polynomials.

All these control strategies were then tied with the POD-DEIM model order reduction

technique to be implemented during optimization procedure. We introduced a novel training

strategy where we use a swarm of BHP controls as the first step in optimization procedure

and also to train the reduced model using snapshot of states collected from this swarm. In

the next optimization iteration, we use the best swarm for IPOPT based optimization or

continue with a new swarm for PSO based optimization, but now the solutions are evaluated

using the trained POD-DEIM model. We could achieve a time reduction to 50% for the

entire optimization procedure while maintaining the accuracy of fine scale simulations to a

good extent. The PMOR strategy proved to be the most accurate with proposed polynomial

controls, especially Chebyshev polynomial controls, at providing optimal control profiles

and NPV values very close to those obtained using fine scale optimization procedure. Thus,

polynomial control strategy, being a practical optimization control procedure, also proved to

capture the dynamics of state evolution, for PMOR training, better than traditional control

procedures.

We also introduced our work in Bayesian formulation for solving reduced order models

within a probabilistic framework for changing well controls. We did some preliminary work to

validate the idea of sampling several realizations of basis functions to obtain less accurate but

a number of inexpensive solutions to account for uncertainties in reduced model solutions.

The posterior formulations is based on residual information and we use Gibbs sampling to
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sample the posterior. The proposed method showed promising preliminary results on small

case studies and need full scale implementation after addressing some issues.

6.2 PMOR for changing well location during well location optimization

The next part of my research, which was the major focus of my work, was developing

PMOR procedure for changing well locations observed during well placement optimization.

There has not been any development, to the best of our knowledge, for construction of

projection based MOR workflow for well location optimization, which is a computationally

very demanding problem using fine scale simulations during optimization procedure. This

was the main motivation behind this work. In the first part, a machine learning based

local PMOR workflow using POD was introduced. The proposed method was based on

the observations that a pre-exisiting reduced order basis (ROB) produces a small error in

the quantity of interest, here oil production rate, for a new well location and hence can be

used for that location. Thus, a ML based formulation was proposed to adaptively select a

pre-existing basis from a dictionary of ROBs that can predict the solution at a new well

location within a desired tolerance. The ML formulation also requires defining features

corresponding to a new well location. These were defined based on some analysis using

simple case studies and are described as geometric and physics based features. The physics

based features are derived from the concept of flow diagnostics that evaluate some properties

describing flow of fluids like Time of Flight (TOF) and Lorenz coefficient, computed very

quickly. The proposed formulation can be set as a regression problem to quantify the QoI

errors at new well locations or as a classification problem for qualitative description of a

database of basis. The case studies show two phase flow problems for an injector - producer

pair with changing producer location. The methodology when applied to such system showed

promising results using Artificial Neural Network (ANN) models as compared to Random

Forest (RF) models. In general, posing the problem as classification problem showed better

accuracy in determining good quality basis selection for new well locations. Since, this

method is based on selecting basis obtained from single well location, the basis dimension is
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very low and hence lead to very fast online procedure. But a major limitation to this method

in its current form was its applicability to smaller simulation times where water front does

not reach the producers.

In the next part of research, in order to work on the limitations of the proposed local

PMOR technique, we introduced a non-intrusive global PMOR technique based on Machine

Learning framework. This technique is based on predicting the POD basis coefficients of

pressure and saturation states given a new well location. The global basis is constructed

from randomly chosen training sample well locations. Thus, a ML model is trained to learn

the relationship between the input features corresponding to new well locations and the

multi-dimensional output of basis coefficients. The input features are defined based on the

same geometric and flow diagnostic concepts for new well locations. We also introduce time

as a feature to account for temporal evolution of basis coefficients, which in intrusive methods

is done by projecting the non-linear functions at each simulation time step. The application

of this workflow on two phase flow cases, shows that the ROM captures the solution trend

but produced a discrepancy in the well block states. This is expected from the controllability

property explanation for well locations. In order to minimize this discrepancy, we introduced

a error correction model that predicts the error in well block states given the reduced model

solution. This showed a significant reduction in the QoI errors for most of the well locations

in the reservoir.

Thus, we introduce a novel PMOR procedure for changing well locations, and thereby,

try to complete the PMOR workflow for optimization problems during field development.

6.3 Suggestions for future work

Future research work in the areas focused in this dissertation can include the following

ideas:

• In PMOR development for well control optimization, we considered a global PMOR

method that aims at constructing a global ROB from representative controls, which
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can be used for all the BHP profiles during entire optimization run. However, such

techniques lead to higher dimensional basis as we add more BHP profiles during the

training procedure. One may look for strategies to construct local ROBs in the param-

eter space for POD to achieve even more speedups. One of the ways to address this

can be using QoI error prediction as discussed in Section 4 for changing well locations.

The same strategy can also be used considering polynomial coefficients as the system

parameter to represent well BHP profiles. DEIM used here for fast computation of

non-linear functions here requires large number of selected cells by greedy algorithms

since we use the same global DEIM basis for all the BHP profiles. Thus, similar to

POD basis, it may lead to significant computational speedups by choosing local DEIM

basis in the parameter domain. Also, one may look into time varying DEIM selected

cells as. Thus, for a given time interval, a very few gridblocks may be needed to

interpolate non-linear terms in reservoir simulation and thereby achieving significant

computational advantage. Since POD-DEIM is a very intrusive method, one should

also look at the non-intrusive Machine Learning based PMOR method proposed in 5 for

well control optimization that has the potential to achieve significantly high speedups

in the online stage.

• The preliminary work done in Bayesian formulation for selecting basis functions show

promising results with the proposed idea, but, the posterior formulation is based on

residual calculations at each time step, which for reservoir simulation is non-linear, and

hence spends a lot of time effort in sampling the posterior. Thus, one should devise a

faster approximation of residual for practical feasibility of the proposed method. Also,

one may think of efficient sampling strategies instead of Gibbs sampling for faster

computation such as two-stage MCMC [109].

• The local and global PMOR techniques developed for well location changes rely on

Machine Learning methods that require efficient sampling procedures in the parameter
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space such that it is representative of the new parameters during testing phase. We

use random sampling here which may lead to a large number of unwanted samples.

Thus, it is of great interest for one to consider fast and reliable sampling methods

for practical implementation of these workflows for well location optimization. As

mentioned before, the local PMOR technique based on error map construction, in its

present form, is applicable for scenarios where we do not observe significant water

fronts i.e. small simulation times. Considering the complexity of the problem, it is

difficult for a basis from single well location to represent the physics of a new well

location, especially for large water fronts. Hence it is worthwhile to consider local in

time basis and concatenating snapshots from different well locations for future work

for the proposed error map based formulation.

• Global PMOR method being able to tackle the limitations of local PMOR technique,

should focus on reducing the computational effort required in training by efficient

sampling procedures. One possible way is to sample the parameter space using ex-

perimental design for the most important features like TOF, well block permeability

and LC. One can also consider adding more features to represent the well location

parameter in addition to geometric and flow diagnostics based features suggested here.

Extending this methodology to a full field implementation for multiple wells in the

future, as suggested in 5, it may be required to use the most important features for

well locations while predicting POD coefficients and then using the full feature set

during the error correction procedure for computational savings. As per the ROM lit-

erature while using PMOR with optimization methods, it is necessary to tie the PMOR

training procedures with strategy used for optimization. For example, it may not be

required to collect well location training samples from certain parts of the reservoir

deemed unimportant for well placement, which is set as a constraint in optimization

routine. Hence, PMOR may be designed without the requirement of it being used for

all the gridblocks of reservoir as potential well locations.
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