
ONCHIP TRAINING OF SPIKING NEURAL ACCELERATORS USING

SPIKE-TRAIN LEVEL DIRECT FEEDBACK ALIGNMENT

A Thesis

by

RENQIAN ZHANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li
Committee Members, Duncan M. "Hank" Walker

Stavros Kalafatis
H. Rusty Harris

Head of Department, Miroslav Begovic

August 2019

Major Subject: Computer Engineering

Copyright 2019 Renqian Zhang



ABSTRACT

Spiking Neural Networks (SNNs) are widely researched in recent years and present a

promising computing model. Several key properties including biologically plausible in-

formation processing and event driven sample learning make SNNs be able for ultra-low

power neuromorphic hardware implementation. However, to achieve the same level of

performance in training conventional deep artificial neural networks (ANNs), especially

for networks with error backpropagation (BP) algorithm, is a significant challenge exist-

ing in SNNs training, which is due to inherent complex dynamics and non-differentiable

spike activities of spiking neurons. To solve this problem, this thesis proposes the first

study on realizing competitive spike-train level backpropagation (BP) like algorithms to

enable on-chip BP training of SNNs. This novel alrogithm, called spike-train level direct

feedback alignment (ST-DFA), performs better in computation complexity and training

latency compared to traditional BP methods. Furthermore, algorithm and hardware co-

optimization as well as efficient online neural signal computation are explored for on-chip

implementation of ST-DFA. To figure out the performance of this proposed algorithm,

the final online version of ST-DFA is tested on the Xilinx ZC706 FPGA board. During

testing on real-world speech and image classification applications, it shows excellent per-

formance vs. overhead tradeoffs. SNN neural processors with on-chip ST-DFA training

show competitive classification accuracy of 97.23% for the MNIST dataset with 4X input

resolution reduction and 87.40% for the challenging 16-speaker TI46 speech corpus, re-

spectively. This experimental result is then compared to the hardware implementation of

the state-of-the-art BP algorithm HM2-BP. While trading off classification performance

very gracefully, the design of the proposed online ST-DFA training reduces functional

resources by 76.7% and backward training latency by 31.6%, which dramatically cut re-
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source and power demand for hardware implementation.
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1. INTRODUCTION

1.1 Spiking Neural Networks

Spiking Neural Networks (SNNs) are brain-inspired models which have gathered sig-

nificant research interests in recent years [1, 2]. The updates of SNNs are spike-based

and event driven. Furthermore, the spike-based communication between spiking neurons

is one-or-nothing. A spike generates a trace of synaptic current to the post-synaptic target

neurons. When the integrated membrane potential of one target neuron exceeds certain

threshold, it will emit another spike for further transmission of information and reset to

reaccumulate input current. For a particular neuron, weights of different input synapses

can be introduced to represent and adjust strength of vairous information paths. With

the training process, these connection weights are finely determined to execute tasks like

classification. These behaviors, especially combined with spike-based inputs, support

temporal coding schemes and energy efficient VLSI neuromorphic hardware implemen-

tations. Well-known implementation of SNNs includes IBM’s TrueNorth [3] and Intel’s

Loihi [4]. With all these recent progresses in SNNs and neuromorphic processor designs,

compared with traditional artificial neural networks (ANNs) [5], SNNs still need to be

improved for greater performance. Despite of having been shown to become as com-

putationally powerful as ANNs in theory [6], SNNs have not been able to practically

achieve the state-of-the-art performance of ANNs for real-world applications. Among the

challenges of optimizing classification results of SNNs, the achievable performance and

computational complexity take main positions.
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1.2 Error Backpropagation

Error backpropagation (BP) and its variants such as stochastic gradient decent [7] is

a strong technique used in traditional ANNs to improve performance. According to the

definition of BP, the weights of connections are initialed randomly. Then with certain

period of training, the connection weights of a network can be adjusted to minimize the

loss function (for example mean square error (MSE) ) between the expected and actual

outputs of network through gradient descent. When the loss function satisfies require-

ment settings, the connection weights are determined and the training process of this

network finishes. Inspired by this technique, various methods have tried to implement BP

on SNNs to attain the same level of classification result [8, 6, 9, 10]. The major chal-

lenges in BP training of SNNs stem from the fact that spike signals are not differentiable.

This property, along with temporal dynamics, prevents straightforward derivative com-

putation of BP. SpikeProp [8] is known as the first attempt to implement BP algorithm

on SNNs. However, the network structure and application range of this method are quite

limited. Only single-spike training is accepted and the learning functions are also quite

simple, like XOR. [6] proposes a BP algorithm which differentiates neuron’s membrane

potential instead of discrete output spikes. This method adds low-pass filtered spiking

signals onto the membrane potential, ignoring sudden variation of membrane potential

during back propagating to generate differentiable activation functions which is critical

to error backpropagation. This idea is analogous to the non-linear activation function in

traditional neural networks. Though the work shows competitive learning results, it lacks

explicit consideration of temporal correlations of neural activities. [9] improves [6] by

capturing temporal effects with backpropapogation through time (BPTT) [11]. However,

the error gradient is still computed by differentiating the membrane potential, leading to

inconsistency w.r.t the rate-coded loss function.
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The inconsistency problems of applying BP on SNNs are solved by a more recently

published work [10]. In this paper, Jin proposes a hybrid macro/micro level backpropaga-

tion (HM2-BP) algorithm to train deep SNNs (which contain multiple layers). HM2-BP

finds a new approach to capture temporal behavior and directly computes the gradient

of the rate-coded loss functions to prevent inconsistency, so that it outperforms all other

existing BP algorithms based on the leaky integrated-and-fire neuron model. This method

derives the gradient by decomposing each derivative into two components, backpropaga-

tion over firing rates (macro-level) and over spike trains (micro-level). At microscopic

level for each pre/post-synaptic neural connection, this method precisely computes the

spike-train level post-synaptic potential (S-PSP) to gather temporal contribution on cer-

tain spike times [10]. Then after all inputs are passed through the network, it aggregates

S-PSPs of all connections of one neuron to define a rate-based loss and back-propagates

the error of this loss. By processing in this way, HM2-BP can evaluate the direct impact

of weight changes on the rate-coded loss function and further adjust the number of spikes

generated by each neuron.

1.3 Spike-Train Level Direct Feedback Alignment

Though HM2-BP can result in a state-of-the art performance in classification, it still

has several limitations. One is the property that the error signal is transferred layer by

layer through weights symmetric to the feed-forward weights in backpropagation, which

is not biologically plausible. Also the high complexity of this method and complex layer-

by-layer backward computation constrain it to achieve lower training latency and be im-

plemented on a wider range of platforms, especially platforms with limited computation

resources. For instance, while HM2-BP improves the scalability of BPTT [9] by operat-

ing on the spike-train level, i.e. application of BP does not discretize time, it still involves

complex computations and its latency in the backward phase is proportional to network

3



depth.

To solve the first problem, a recent discovered direct feedback alignment (DFA) can

be introduced [12]. The concept of feedback alignment is that the error back-propagating

weights may not need to be symmetric to the feed-forward weights to gain a good training

performance. Instead, a randomly generated weight matrix can be used and can stay

unchanged since the networks can learn how to make feedback useful during training.

With DFA applied, the error is more biologically-plausibly fed back to each hidden layer

through fixed random feedback connections directly from the output layer, reducing a

bulk of the BP complexity. This DFA technique is first utilized in deep neural networks.

But SNNs can also benefit from this property. Furthermore, DFA can be performed for

all hidden layers concurrently, reducing the backward phase latency, especially for deeper

SNNs. To solve the second limitation of BP mentioned in the previous section, this work

finds a sidestepping backpropagation approach to reduce the computation cost and then

combines this approach with DFA algorithm to achieve a hardware implementation. The

derived approach is called spike-train level direct feedback alignment (ST-DFA).

This work aims to answer the following questions: 1) Can biologically plausible

mechanisms developed to sidestep complex BP algorithms while delivering competitive

performance? 2) Can such mechanisms be leveraged for efficient on-chip training of

multi-layer SNNs?

The main contributions of this work are:

• Demonstrate the first direct feedback alignment algorithm for training multi-layer

SNNs by extending the DFA concept developed for conventional ANNs;

• The spiking DFA algorithm is embodied at the spike-train level to further improve

scalability by avoiding involved error feedback over time;

• Perform algorithm-hardware co-optimization and demonstrate the first hardware

4



realization of DFA for SNNs with significantly reduced hardware overhead, en-

ergy dissipation, and latency while achieving competitive performances for im-

age/speech recognition tasks.

The proposed ST-DFA is optimized and implemented on the Xilinx ZC706 FPGA

board. Experimental result shows excellent cost-effectiveness for on-chip SNN training

and decent classification performance compared to state-of-the-art algorithms. Hardware

SNNs with ST-DFA deliver competitive accuracy of 97.23% for the MNIST [13] with 4X

input resolution reduction and 87.40% for the challenging 16-speaker TI46 [14] speech

corpus, respectively. Compared to the hardware implementation of the state-of-the-art BP

algorithm HM2-BP, the design of the proposed ST-DFA reduces functional resources by

76.7% and backward training latency by 31.6% while gracefully trading off classification

performance.

The rest of this thesis is organized as follows:

Section 2 shows some background of Direct Feedback Alignment (DFA) and Spike-

train level Post Synaptic Potential (S-PSP). Section 3 mainly introduces the proposed

ST-DFA method, the derivation and some simplification of it. Section 4 is about high

level architecture and detailed structure of critical modules of ST-DFA hardware imple-

mentation and optimization. Section 5 illustrates the experimental results on classification

performance, power consumption and time cost. Section 6 is the conclusion of this thesis

and outlook for future work.

I have close co-operations with my group mate Mr. Jeongjun Lee to finish this work.

Also Mr. Wenrui Zhang and Ms. Yu Liu give me valuable guidance in algorithm section

and writing skills. In this work my contribution includes the feed-forward part design of

ST-DFA implementation and the high level finite state machine (FSM) part for control

logic of the design. Also, I tested the power efficiency and classification performance on

5



MNIST dataset [13], finished some debugging and performed further optimization based

on these results.
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2. BACKGROUND

2.1 Direct Feedback Alignment

Just as mentioned in the last section, backpropagation (BP) has been widely utilized

in training process of neural networks. The basic process of BP can be concluded as

computing a global error at the output layer and then propagate this error signal layer by

layer through all previous layers until reaching the input layer. During the "propagating"

process, each layer finds its error by multiplying incoming error from the previous layer

with a weight matrix that is completely symmetric to the one for the feed-forward con-

nections. Actually a recent work called Feedback Alignment (FA) [15] has demonstrated

that this fact is not biologically plausible. In fact there is no causal relationship between a

good performance and keeping the weight used for layer by layer error transferring being

symmetric to the weights used for forward propagation. Since the neural network can

learn how to make feedback useful when training performs, the feedback weight matrix

can be generated randomly and stay unchanged during training process. [16] applies FA

for training SNNs.

Based on the result of this work, [12] introduced Directed Feedback Alignment

(DFA), which abandons the backpropagation way of error used by traditional BP algo-

rithms. In DFA, random and fixed feedback connections are generated directly between

each layer and the output layer, rather than between current layer and the previous layer in

BP algorithm. This property makes DFA more biologically friendly since in this method

errors can be treated completely locally and layers more closely to spikes input layer side

do not need to wait long backpropagation time to receive error inputs. The elimination of

symmetric weight also improves the biologically plausibility of DFA. [12] shows that for

conventional multi-layer ANNs, for example DNN, DFA will not result in any significant

7



performance drop, compared to state-of-the-art BP method.

Figure 2.1: (a) Backpropagation (BP) vs. (b) direct feedback alignment (DFA). Solid ar-
rows indicate feedforward paths and dashed arrows indicate feedback paths. The feedback
matrices B1 and B2 need not be symmetric to W2 or W3.

In this thesis, the idea of DFA is borrowed and extended from traditional ANNs into

SNNs. To the best of writer’s knowledge, this is the first work applying DFA to SNNs.

Furthermore the proposed DFA method, as known as ST-DFA, operates at spike-train

level, so that the calculation and implementation of the DFA can be much more efficient

and cost less than tradition backpropagation rule. A more detailed demonstration will be

shown in next sections.

2.1.1 Spike-train Level Post-synaptic Potential

Before describing the proposed ST-DFA in Section 3, the concept of Spike-train

Level Post-synaptic Potential (S-PSP) behind the spike-train level computation of ST-

DFA should be introduced first since it is a critical internal variable in calculation.

The widely adopted leaky integrate-and-fire (LIF) model for spiking neurons is given

8



by [17]:

τm
ui(t)

dt
= −ui(t) +R αi(t), (2.1)

with

τs
αi(t)

dt
= −αi(t) +

∑
j

wij
∑
t
(f)
j

D
(
t− t(f)j

)
, (2.2)

Where ui(t) is the membrane potential of the neuron i, αi(t) is the first order synaptic

model where τs is the time constant used in this model to control potential accumulation,

and τm is the time constant of membrane potential with value τm = RC. R and C are the

effective leaky resistance and effective membrane capacitance. The weight of the synapse

from the pre-synaptic neuron j to current neuron i is represented by wij . t
(f)
j denotes a

particular firing time of the neuron j. D(t) is the Dirac delta function. R is set to 1 since

it can be absorbed into synaptic weights.

Integrating (2.1) and (2.2) gives the spike response model (SRM) [10]:

ui(t) =
∑
j

wij
∑
t
(f)
j

ε
(
t− t̂(f)i , t− t(f)j

)
, (2.3)

where t̂(f)i denotes the last firing time of the neuron i. ε(s, t) specifies the normalized time

course of the post-synaptic potential evoked by a single firing spike of the pre-synaptic

neuron:

ε(s, t) =
1

C

∫ s

0

exp

(
− t′

τm

)
αi (t− t′) dt′. (2.4)

Integrating (2.4) gives:

ε(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[
e(−

min(s,t)
τm

) − e(−
min(s,t)
τs

)
]
H(s)H(t), (2.5)

where H(t) is the Heaviside step function.
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The (normalized) spike-train level post-synaptic potential (S-PSP) ei|j is defined by

summing all the (normalized) post-synaptic potential of the neuron i, while the sample

time is chosen as right before all the neuron i’s firing times evoked by the spike train of

the pre-synaptic neuron j. This is given by

ei|j =
∑
t
(f)
i

∑
t
(f)
j

ε(t
(f)
i − t̂

(f)
i , t

(f)
i − t

(f)
j ). (2.6)

S-PSP accumulates the spike train of the pre-synaptic neuron j and calculate the effect of

this spike train on the membrane potential of the post-synaptic neuron i. This provides

the basis to build a connection between firing counts to spike events.

Summing the weighted S-PSPs from all pre-synaptic neurons of the neuron i gives the

total post-synaptic potential (T-PSP) ai, which is directly correlated to the neuron i’s

firing count oi through the firing threshold voltage ν:

ai =
∑
j

wij ei|j. oi = g(ai) ≈
ai
ν

(2.7)
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3. PROPOSED SPIKE-TRAIN LEVEL DIRECT FEEDBACK ALIGNMENT

(ST-DFA)

3.1 Proposed ST-DFA Algorithm

In conventional (non-spiking) ANNs like DNNs, the error for one training sample is

the squared error and can be defined at the output layer by:

E =
1

2
||o− y||22, (3.1)

where y and o are vectors specifying the desired output (label) and the actual output,

respectively. The output oi of each neuron i is determined by the activation function φi:

oi = φi(
∑

j wijxj), where xj is the input value from the pre-synaptic neuron j and wij is

the synaptic weight between neuron j and neuron i.

The well-known BP algorithm for ANNs [18], which is ubiquitously used in deep

learning, is:

∆wij = η
∂E

∂wkij
= ηδki φ

k−1
j

δki =


oi − yi for output layer,

φ′k+1
i

∑rk+1

l=1 δk+1
l wk+1

li for hidden layers,

(3.2)

where η is the learning rate, δki the error for the ith neuron of the kth layer, rk the number

of neurons in the kth layer.

Recently several works [6, 9, 10] have demonstrated that to produce highly competi-

tive performance, training SNNs using BP with respect to a rate-coded loss function can

be treated as a good method. These rate-coded loss functions are also adopted for the
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proposed ST-DFA. As mentioned in last section, different from BP, the proposed ST-DFA

algorithm for SNNs computes each error δ by direct feedback from the output layer on

the spike-train level rather than by error from connected previous layer, giving to the

following update rule:

∆wij = η
∂E

∂wij
= ηδki e

k
i|j,

δki =


ooi−yoi
ν

for output layer,∑ro

l=1 δ
o
l b
k
li for hidden layers,

(3.3)

where η is the learning rate, δki the error of the neuron i in the kth hidden layer, eki|j the

S-PSP from the neuron i to neuron j, ooi the actual firing count of neuron i in the output

layer, yoi the desired firing count for the neuron i, ν the firing threshold, ro the number

of neurons in the output layer, δol the error of the neuron l in the output layer, and bkli the

value of the fixed random feedback.

The last equation of (3.3) is based on the concept of DFA. As shown in figure, with

ST-DFA, each hidden layer builds a direct connection with the output layer where the

measurement is a different matrix which is called the random feedback matrix B. The

weights (values) in these matrices are randomly generated and then stay fixed during

training. The error vector δk of the hidden layer k is directly obtained from the error

vector of the output layer δo and the random feedback matrix Bk as: δk = Bk × δo. The

detailed derivation of ST-DFA is introduced next.
3.2 Derivation of ST-DFA

Similar to (3.1) and using (2.7), we define the rate-coded loss function as:

E =
1

2
||o− y||22 =

1

2
||a
ν
− y||22, (3.4)

12
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Figure 3.1: The proposed spike-train level DFA (ST-DFA).

where y, o and a are vectors specifying the desired firing counts (label), the actual firing

counts, and the T-PSP of the output neurons, respectively. Differentiating the loss function

with respect to each trainable weight wij leads to:

∂E

∂wij
=
∂E

∂aki

∂aki
∂wij

= δki
∂aki
∂wij

, (3.5)
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where aki is the T-PSP of the neuron i in the kth layer.

At the microscopic level, in each pre/post-synaptic spike train pair, S-PSP is precisely

computed to account for the temporal contribution of the given pre-synaptic spike train

to the firings of the post-synaptic neuron based on exact spike times. At the macroscopic

level, the rate-based errors in the output layer is backpropagated by aggregating the effects

of spike trains on each neuron’s firing count via the use of S-PSPs. This is a practical way

of linking spiking events to firing rates. To assist backpropagation, a decoupled model of

the S-PSP for disentangling the effects of firing rates and spike-train timings is proposed

to allow differentiation of the S-PSP w.r.t. pre and post-synaptic firing rates at the micro-

level. As a result, HM2-BP approach is able to train synaptic weights at the spike-train

level. In contrast to other methods, this hybrid approach can directly compute the gradient

of the rate-coded loss function with respect to tunable parameters.

With explaination above, it is instrumental to note that each S-PSP ei|j depends on

both rate and temporal information of the pre/post spike train pair, i.e. ei|j depends on the

pre/post-synaptic firing counts oi and oj and pre/post-synaptic firing times t(f)j and t
(f)
i :

ei|j = f(oj, oi, t
(f)
j , t

(f)
i ). (3.6)

For the ith output neuron, δoi can be obtained from (3.5) and (2.7):

δoi =
∂E

∂aoi
= (oi − yi)

∂oi
∂ai

=
oi − yi
ν

. (3.7)
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For each ith neuron in the hidden layer k, δki is derived from the chain rule based on (2.7):

δki =
∂E

∂aki
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

rk+1∑
l=1

δk+1
l

∂ak+1
l

∂aki

=
rk+1∑
l=1

δk+1
l wk+1

li

∂ek+1
l|i

∂aki
.

(3.8)

The first key development in ST-DFA is that the way in which the error δki is calculated

in each hidden layer changes from
∑rk+1

l=1 δk+1
l wk+1

li

∂ek+1
l|i
∂aki

to
∑ro

l=1 δ
o
l d

k
li

∂ek+1
l|i
∂aki

, where dkli

is the direct feedback alignment from the output neuron l to the hidden layer neuron i. dkli

is a randomized and fixed value. In this process, the wk+1
li is replaced from (k+ 1)th layer

to kth layer in (3.8) by dkli, leading to:

δki = δol d
k
li

∂ek+1
l|i

∂aki
. (3.9)

As such, the error δk of each hidden neuron is directly determined by the output layer

error vector δo rather than by the error vector δk+1 of the connected next layer.

Moreover is the following key observation. In (3.9), since dkli is randomly generated,
∂ek+1
l|i
∂aki

can be absorbed into dkli to further simplify ST-DFA. Denote the new DFA parameter

absorbing
∂ek+1
l|i
∂aki

by bkli = dkli
∂ek+1
l|i
∂aki

, the simplified error computation becomes:

δki =


ooi−yoi
ν

for output layer,∑ro

l=1 δ
o
l b
k
li for hidden layers,

(3.10)

where bkli is one entry of the random feedback matrix B in Fig. 3.1.

Thus, ST-DFA reduces the computational complexity by not only avoiding layer-by-

layer propagation but also the additional simplification via the using of bkli.

15



3.3 Simplification for Hardware Friendliness

The last term on the right-hand side of (3.5) differentiates the total post-synaptic po-

tential (T-PSP) aki . Considering (2.7), it can be written as:

∂aki
∂wij

=
∂

∂wij

rk−1∑
j=1

wij e
k
i|j

 = eki|j +
rk−1∑
l=1

wil
∂eki|l

∂oki

∂oki
∂wij

= eki|j +
eki|j
ν

rk−1∑
l=1

wil
∂eki|l

∂oki
.

(3.11)

The exact evaluation of the above expression requires multiple additions, multiplications,

and divisions, introducing high hardware overhead and additional latency for hardware

implementation.

The first term eki|j on the right-hand side of (3.11) can be interpreted as the direct

influence exerted on the T-PSP aki by changing the synaptic weight wij as seen from (2.7).

The second term
ek
i|j
ν

∑rk−1

l=1 wil
∂ek
i|l

∂oki
comes from the fact that changing the weight wij

leads to variation in the post-synaptic spike train. Thus, the S-PSP eki|l to the neuron i

also varies as it depends on the firing times of the post-synaptic neuron. Nevertheless, it

has been observed that the first term dominates the second term. By dropping the second

term, the final hardware-friendly ST-DFA algorithm can be reached of (3.3). With the

deduction process shown before, it is convincing that this algorithm can maintain good

performance.
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In comparison, the spike-train level BP algorithm HM2-BP is [10]:

∆wij = ηδki e
k
i|j

1 +
1

ν

rk−1∑
l=1

wil
∂eki|l

∂oki

 ,

δki =


oki−yki
ν

for output layer,

1
ν

∑rk+1

l=1 δk+1
l wli

∂ek+1
l|i
∂oki

for hidden layers.

(3.12)

While HM2-BP delivers the state-of-the-art performance, it would be very costly to im-

plement on hardware if ever feasible.

In all, compared to HM2-BP in (3.12), ST-DFA in (3.3) is much more hardware

friendly. With ST-DFA, direct error feedback to each hidden layer is accomplished with-

out layer-by-layer back propagation while HM2-BP requires high-resolution multiplica-

tions with the transpose of the forward weights and other expensive operations layer by

layer. Next section will introduce the way to efficiently realize the ST-DFA algorithm on

digital hardware.
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4. SNN ACCELERATORS WITH ST-DFA ON-CHIP TRAINING

4.1 Architecture

Using the proposed ST-DFA on-chip training algorithm, the architecture of the pro-

posed multi-layer spiking neural processors is shown in Fig. 4.1. For illustration purpose,

only two hidden layers are introduced. Architecturally, the processor is comprised of an

input spike buffer feeding multiple hidden layers composed of hidden neuron elements

(HEs). The last hidden layer connects to the output layer which consists of a set of output

neuron elements (OEs). The function of same type of neuron elements is identical. There-

fore, a modular design approach can be used to implement each spiking neuron with the

form of HE or OE. As such, given an arbitrary network depth and width, a proper number

of HEs and OEs can be instantiated to this particular multi-layer SNNs.

Both inference and training are supported. Training over an input example splits into

two phases: forward passing and backward passing. To compute the S-PSPs, which is

an critical internal variable used in ST-DFA training, an online manner is used in the

forward passing phase of training. The remaining computations of the forward passing

are identical to those performed in inference. To support ST-DFA training, the error

generator utilizes an array of subtractors to compute the difference between the actual OE

output spike counts with expected ones (label). At each hidden layer, this output-layer

error vector is multiplied with the associated ST-DFA random feedback matrix inside

each layer to allow weight updates performed by each neuron.

4.1.1 On-chip Training

For each training sample, a global controller (FSM) controls the behaviors of the for-

ward and backward parts of training. At a particular layer, all neurons will process input
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Figure 4.1: Proposed architecture of multi-layer SNNs with onchip ST-DFA training. HE
represents a digital hidden neuron element; and OE represents a digital output neuron
element.

information in parallel so that the inherent parallelism of the hardware SNN processor

architecture can be fully explored. In the forward passing phase, starting from the hidden

layer connected to inputs till the output layer, only one layer is activated by the global

controller at certain biological time step. After output spikes are generated at current

time step, the global controller will inform the connected post layer and push the training

forward to the next time step. The processor will repeat this process as long as there are

training samples not learned by the networks. After all samples processed, the global

controller will shut down the function of feed forward passing phase to reduce power

consumption and start the backward passing phase. In backward part, the first step is

to calculate the output error δol in (3.3) based on a pre-set expected output spike counts

(label) and accumulated output spikes vector stored in an array of registers. After that, all

hidden layers start to perform ST-DFA for weight updating at the same time. The weight

updating time for one neuron is related to the number of input synapses and the input

connection density of neurons in different layers is not the same. Thus, the weight update

process of all hidden layers may not end at one time. Again this is the global controller’s

job to collect end information of different weight updating process and find out the latest
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among all layers. After detecting that all hidden layers finishing ST-DFA weight updates,

the networks will move onto next training data.

4.1.2 Neuron Unit Design

Each HE or OE contains several functional blocks which can be categorized into feed-

forward functional blocks and feedback functional blocks as shown in Fig. 4.1. Except

the ST-DFA learning module, OEs are identical to HEs. This is because that the error δki

defined for output neurons is computed by the Error Generator module, as mentioned in

last paragraph. In each neuron unit, two memory modules are used to store the synaptic

weights and all its spike-train level post-synaptic potentials (S-PSPs), respectively. The

weight memory is implemented with block RAM (BRAM) and a 2-D array of flip flops

(FFs) is utilized to build the S-PSP memory on the FPGA. A neuron-level local controller

(FSM) controls the detailed inference/training steps, which shown in Fig. 4.2. When re-

ceiving feed forward enable signal from global controller, the local FSM starts the process

of updating input current to each synapse from previous layer. After this stage the local

FSM changes into membrane potential calculating state to update potential of current neu-

ron. With membrane potential updated, the neuron’s firing activity in current biological

time step is decided. The local controller also communicates with the global controller

for synchronizing processes between different layers and inference/training stages.

In the forward passing phase of training, first, the synaptic current x through each

synapse is calculated. With the updated synaptic current, some key variables in calculat-

ing the spike-train level post-synaptic potential (S-PSP) is updated for the same synapse,

which will be introduced in detail in next sub-section and Fig. 4.1. The synaptic current

update and the S-PSP update modules shown in Fig. 4.1 are shared by all input synapses.

Hence, all input synapses of current neuron are processed in series. After all synaptic re-

sponses updated, the spike generation module calculates the updated neuron’s membrane
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potential based on the sum of weighted currents of all input synapses and makes the firing

decision of current biological time step. The model used in potential updating is the leaky

integrate-and-fire (LIF) spiking neuron model. This firing activity can be treated as input

of next layer and enable signal for variable updating of S-PSP module. In the backward

passing phase of training, the ST-DFA module implements the proposed on-chip ST-DFA

training algorithm, the output of which is then fed to the weight update module. Finally,

the corresponding synaptic weight is updated and stored back to the weight memory. Sim-

ilar to the feed forward blocks, the feedback functional modules are also shared among

all input synapses.

4.2 Efficient On-chip S-PSP Calculation

One important component in the proposed ST-DFA algorithm is the spike-train level

post-synaptic potential (S-PSP), ei|j , in (3.3). As demonstrated in (2.6), by definition, ei|j

is the effect of all firing events of the pre-synaptic neuron j on the post-synaptic neuron

i via the synapse connecting these two neurons. However, direct implementation of (2.6)

on hardware is very costly; all firing events of the pre- and post-synaptic neurons need to

be stored during the process of training all input examples and excessive multiplication,

division and exponentiation operations are involved, incurring much logic complexity and

memory usage.

Instead of directly implementing 2.6,an online S-PSP calculation approach is pro-

posed, which can dramatically reduce hardware overhead. Rather than recording all firing

events of the two neurons during every biological step of feed forward passing phase and

computing ei|j at once in the backward passing phase, in the forward part ei|j is accumu-

lated and updated only when there’s a firing event happening at current neuron i. Also,

the updated ei|j is stored in the S-PSP memory of each neuron element.

Inspecting (2.3) and (2.6) reveals that ei|j is the normalized (by weight) of the con-
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tribution from the postsynaptic neuron j to the aggregated membrane potential of the

postsynaptic neuron i. While the aggregated postsynaptic membrane potential is effec-

tively tracked by the LIF model, each individual contribution ei|j to it can be accumulated

exactly using the following equations:

τs
pi|j(t)

dt
= −pi|j(t) +

∑
t
(f)
j

D(t− t(f)j ),

τm
qi|j(t)

dt
= −qi|j(t) + pi|j(t),

ei|j(t) =
∑
t
(f)
i

qi|j(t
(f)
i ),

(4.1)

where pi|j(t) is the (normalized) synaptic input from the neuron j to neuron i, which is

part of (2.2), and qi|j(t) is interpreted as the (normalized) postsynaptic membrane voltage

contribution from the neuron j to neuron i, which shall be reset to zero when the neuron

i fires at a particular firing time t(f)i .

The hardware realization of (4.1) is based on discretizing it using the first-order Euler

method with a fixed stepsize:

qi|j[t+ 1] = (1− 1

τm
)qi|j[t] + pi|j[t+ 1]

pi|j[t+ 1] = (1− 1

τs
)pi|j[t] +

1

τs

∑
t
(f)
j

Dn(t− t(f)j )


ei|j[t+ 1]+ = qi|j[t+ 1]

qi|j[t+ 1] = 0

if t+ 1 = t
(f)
i ,

(4.2)

where Dn(·) is the unit sample function and we have abused the notation by using t and

t+ 1 to indicate a discrete time step and the step after that.

(4.2) allows ei|j to be accumulated in an online manner with great hardware efficiency
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and its implementation is shown in Fig. 4.4. At each time step, the value of pi|j is first

updated based on synaptic inputs, followed by the updates of pi|j and ei|j , controlled by

the FSM states of the local controller. The new structure of local controller with online

S-PSP variables learning is shown in Fig. 4.3. The shaded blocks in Fig. 4.4 are registers

used to store the current-time variable values. Both decay constants τs and τm are set to be

a power of 2 such that multiplications/divisions can be efficiently realized by using shift

operations. The updated ei|j is stored in the S-PSP memory and retrieved by the ST-DFA

module during the backward training passing phase.

4.3 Efficient On-chip ST-DFA Implementation

Fig. 4.5 depicts the ST-DFA module in hidden neurons shown in Fig. 4.1. As in (3.3),

for each hidden neuron i, the inner product between the error vector δol from the output

layer and the i-th column of the random feedback matrix B of the corresponding layer

is computed. The inner product is then multiplied with ei|j to produce the weight update

value ∆wij for the j-th input synapse. All these inner products for different synapses are

computed in series and would result in large hardware and power overheads. Furthermore,

if each entry of the feedback matrix is set to be a high-bit resolution random number, high

memory usage is required for storage.

To mitigate the above design complexity, A hardware-friendly realization of ST-DFA

is proposed, named ST-DFA-2. ST-DFA-2 is based on the key observation from extensive

algorithmic experiments that the feedback matrix B need not be generated in a true ran-

dom manner; setting each entry bli of B to one of a small set of fixed numbers at random

is sufficient for achieving good training performance. Furthermore, the set of fixed num-

bers can be optimized for hardware efficiency. For this, this set is constructed by making

each number a signed power of 2 with low-bit resolution such that the multiplications in

(3.3) can be implemented by shift operations and storage for B is kept at minimal. With
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this optimization, not only the storage requirement of internal variables will be reduced,

but also the computation complexity and resource cost of whole back propagation phase

will decrease.

Fig. 4.5 illustrates the computation of each weight update. The corresponding inner

product is computed by accumulating the element-wise products. The idx signal selects a

particular element in the error vector δol and its shift amount mil, which is set by the cor-

responding bli in the B matrix according to |bli| = 2mil . If bli is negative, the shift result

is converted to its compliment before added to δi. Finally, the resulting δi is multiplied

with the S-PSP ei|j to get the weight update value ∆wij for the current synapse.

>> + x
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Figure 4.5: On-chip ST-DFA weight update computation.
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5. EXPERIMENTAL SETTINGS AND RESULTS

5.1 Experimental Settings and Benchmarks

The performance vs. hardware overhead tradeoffs of the proposed on-chip ST-DFA

training are measured on several feed-forward SNN neural processors on the Xilinx ZC706

platform. The classification performances are evaluated by software simulation of the

digital computations with the actual bit resolutions implemented on FPGA. Major SNN

variables, for example synaptic weight w, S-PSP ei|j and membrane potential v, are in

the fixed-point representation. Each w is a signed 17-bit variable with 12-bit fractional.

11 bits are used for each unsigned variable ei|j with 6-bit fractional and 9 bits are used

for each signed variable v with 3-bit fractional. FPGA prototypes of SNN neural acceler-

ators are designed on the Xilinx ZC706 platform for design overhead and power/energy

analysis.

Three datasets are employed for evaluation: MNIST[13], N-MNIST, or the neuromor-

phic version of MNIST [19], and the 16-speaker English letter subset of the TI46 speech

corpus [14]. The MNIST handwritten digit dataset [13] contains 60k training and 10k

testing examples, each of which is a 28 × 28 grayscale image. Each pixel value of the

MNIST image is converted into a spike train using Poisson sampling and the probability

of spike generation is proportional to the pixel intensity. Due to the limited hardware

resources available on the Xilinx Zynq ZC706 board, each image is cropped to include

only the 14× 14 pixels around the center for FPGA evaluation.

The N-MNIST dataset [19] is a neuromorphic version of MNIST. The static digit im-

ages of MNIST are converted into spike trains using a dynamic vision sensor (DVS) [20]

moving on a pan-tilt unit. The image is resized to 34 × 34 since the relative shift of im-

ages during the saccade process is required. Two kinds of spike events, ON and OFF, are
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recorded since the intensity can either increase or decrease. Thus, each N-MNIST image

has 34 × 34 × 2 = 2312 spike sequences lasting for about 300ms. We reduce the time

resolution of the N-MNIST images by 500x to speed up the processing.

The TI46 Speech corpus [14] contains spoken English letters from 16 speaker. There

are 4,142 and 6,628 spoken English letters for training and testing, respectively. The con-

tinuous temporal speech waveforms are first pre-processed by the Lyon’s ear model [21]

and then encoded into 78 spike trains using the BSA algorithm [22].

Among these datasets, MNIST and TI46 are tested on both software and hardware

while N-MNIST is only tested on software simulation due to that the available FPGA

resources are not sufficient to support the large number of spike trains. Moreover, to

thoroughly assess the classification performance and hardware benefits of our proposed

spike-train level direct feedback alignment (ST-DFA), we build multiple SNNs with dif-

ferent network depths and widths.

5.2 Classification Accuracies

The proposed spike-train level direct feedback alignment (ST-DFA) algorithm is in-

spired by the spike-train level backpropagation HM2-BP algorithm. In [10], HM2-BP is

compared with other state-of-the-art spiking or non-spiking BP methods such as spike-

based BP [6], STBP [9], temporal coding BP [23] and non-spiking BP [24] on MNIST and

N-MNIST. Apart from its high efficiency due to the spike-train level processing, HM2-

BP outperforms or is on a par with all these recently developed algorithms. For example,

with a single hidden layer of 800 neurons, HM2-BP can achieve 98.93% accuracy on

MNIST while [24] gets up to 98.30%. HM2-BP obtains 98.88% accuracy on N-MNIST

compared with 97.80% by [23]. Moreover, HM2-BP delivers competitive performance

on challenging benchmarks such as the 16-speaker spoken English letters of TI46 Speech

corpus [14] and 47-class image recognition dataset Extended MNIST (EMNIST) [25].
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As presented in Section 3, ST-DFA propagates the errors δ from the output layer to

each hidden layer directly without layer by layer error backpropagation through symmet-

ric weights matrices. In Section 4.3, ST-DFA is further optimized by setting each entry

of the random feedback matrix B to a power of 2, leading to the hardware-friendly ST-

DFA-2 algorithm. In this work, feedback matrix entries are randomly chosen from the set

{−4,−2,−1, 0, 1, 2, 4} for ST-DFA-2.

As mentioned in last chapter, in terms of complexity, ST-DFA-2 costs much less com-

pared to HM2-BP particularly for hardware implementation. First, it reduces the com-

plexity of HM2-BP by adding feedback alignments. Second, in this particular setting of

feedback matrix entries, each value of ST-DFA-2 feedback alignments only costs 4 bits

of storage rather than that for a floating point number. Finally, with ST-DFA-2, back-

propagating the error δ to each hidden layer can be done with only additions and shifts

while high-resolution multiplications are required in HM2-BP.

Table 5.1 compares the inference accuracies of HM2-BP, ST-DFA, and ST-DFA-2

on MNIST, N-MNIST, and TI46. Compared to HM2-BP, ST-DFA and ST-DFA-2 still

maintain rather competitive performance while the low computational cost and hardware-

friendliness of ST-DFA-2 translate into huge hardware resources and energy overhead

savings as shown later. It shall be noted that in comparison with ST-DFA, ST-DFA-2 does

not necessarily degrade performance; it can even slightly outperform ST-DFA in practice.

5.3 FPGA Hardware Evaluations

Several FPGA SNN accelerators are built on the targeted Xilinx ZC706 platform,

the sizes of which are decided considering the available resources onchip. Table 5.2

shows the resource and energy overhead as well as the inference accuracies of these SNN

accelerators with on-chip ST-DFA-2.

As shown in the table, the implemented networks have either one or two hidden
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Table 5.1: Inference accuracy comparison of HM2BP, ST-DFA and ST-DFA-2. All SNNs
are fully connected networks with a single hidden layer of 800 neurons. MNIST: 28x28
input resolution; N-MNIST: 2,312 input spike trains; 16-speaker TI46: 78 input spike
trains.

Dataset Learning rule & Network structure Accuracy

MNIST HM2-BP: 784-800-10 98.93%
MNIST ST-DFA: 784-800-10 98.64%
MNIST ST-DFA-2: 784-800-10 98.74%

N-MNIST HM2-BP: 2312-800-10 98.88%
N-MNIST ST-DFA: 2312-800-10 98.47%
N-MNIST ST-DFA-2: 2312-800-10 98.59%

TI46 HM2-BP: 78-800-10 89.92%
TI46 ST-DFA: 78-800-10 87.00%
TI46 ST-DFA-2: 78-800-10 87.31%

layer(s), and each hidden layer has 50 or 100 neurons. Numbers of input and output

neurons are application-dependent. Training powers are estimated by the Xilinx Power

Analyzer based on application-specific workloads. The training latency and training en-

ergy are for training a representative input example of the corresponding dataset using one

iteration of forward and backward passes. Table 5.2 indicates that the SNNs integrated

with ST-DFA-2 in general have efficient FPGA resource utilization as well as low train-

ing energy dissipation. Furthermore, with a trimmed down input size and/or constrained

network size, the FPGA SNNs with on-chip ST-DFA-2 can still deliver competitive clas-

sification performance in reference to the simulated accuracies achieved at full input size

and by larger networks reported in Table 5.1.

To better illustrate the cost-effectiveness of the proposed ST-DFA algorithm, we also

compare the overheads of implementing HM2-BP vs. ST-DFA-2 in a fully-connected

SNN FPGA with two hidden layers in Table 5.3. Training latency of the backward pass
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of the corresponding SNN neural processor is also presented in the table. We do not

consider forward pass latency and inference latency since they do not differ significantly

in the two cases. The results in the table indicate that ST-DFA is much more efficient

in terms of hardware implementation on both resource utilization and backward pass la-

tency compared with HM2-BP. The ST-DFA-2 based SNN neural processor saves 18% on

LUTs, 76.7% on DSPs and 31.6% on backward phase latency compared with the HM2-BP

based SNN. The large additional hardware overhead and backward latency of HM2-BP

mainly come from the layer-by-level error propagation and the required multiplication

operations. Moreover, as the network goes deeper, the backward phase latency grows

proportionally in HM2-BP, while in ST-DFA the backward latency will not affect by the

network depth since the error processing is concurrently executed in all hidden layers.

With the proposed ST-DFA algorithm, we have sidestepped the complex backpropagation

and enabled cost-effective on-chip training for multi-layer SNNs.
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Table 5.2: Overheads and inference performances of the fully-connected SNNs with on-
chip ST-DFA-2.

MNIST (14x14 input resolution) @100 MHz
Resource

Utilization Training
Power
(mW)

Training
Latency

(mS)

Training
Energy

(mJ)

Accuracy

LUTs FFs DSPs
196-50-10 33484 6836 60 113 3.998 0.452 95.48%

195-50-50-10 62989 12516 110 125 4.836 0.604 95.87%
196-100-10 73027 12329 110 224 4.802 1.076 96.86%

196-100-100-10 126482 23331 210 275 6.445 1.772 97.23%
TI46 (16-speaker Spoken English Letters) @100 MHz

Resource
Utilization Training

Power
(mW)

Training
Latency

(mS)

Training
Energy

(mJ)

Accuracy

LUTs FFs DSPs
78-50-26 38220 8826 76 73 3.688 0.269 73.34%

78-50-50-26 74709 14641 126 87 5.123 0.445 76.45%
78-100-26 64280 14096 126 113 5.089 0.575 77.64%

78-100-100-26 145452 30546 226 185 7.929 1.467 87.40%

Table 5.3: Overheads of an FPGA SNN with on-chip HM2-BP vs. ST-DFA-2 (Network
size:196-100-100-10)

LUTs FFs DSPs Backward Phase
Latency (uS)

HM2-BP 154477 23462 900 17.560
ST-DFA 126482 23331 210 12.010

Normalized
LUTs

Normalized
FFs

Normalized
DSPs

Normalized
B-P Latency

HM2-BP 122% 101% 429% 146%
ST-DFA 100% 100% 100% 100%
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6. CONCLUSION

This work proposes a novel spike-level direct feedback alignment (ST-DFA) algorithm

for training multi-layer spiking neural networks (SNNs) with improved bio-plausibility

and scalability over traditional backpropagation algorithms. Moreover, it is demonstrated

that the ST-DFA algorithm with its hardware-friendly optimized implementation enable

efficient on-chip training of FPGA SNN neural processors while delivering competitive

classification performance for practical speech and image recognition tasks.
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