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ABSTRACT

The 22Ne(α,n) reaction is an important neutron source reaction for the slow neutron capture

process (s-process) in asymptotic giant branch stars. Direct measurements are extremely difficult

to carry out at Gamow energies due to the extremely small reaction cross section. The large uncer-

tainties introduced when extrapolating direct measurements at high energies down to the Gamow

energies can be overcome by determining the partial α-width of the relevant states using indirect

measurements. This can be done using α-transfer reactions at sub-Coulomb energies to reduce the

dependence on optical model parameters. The α-transfer reaction of 22Ne(6Li,d)26Mg was carried

out at the Cyclotron Institute at Texas A&M University to study this reaction. It appears that the

partial α widths of the near α-threshold resonances of 26Mg are different from what was previously

assumed. This discrepancy affects the final 22Ne(α,n) reaction rate and the final abundances of the

s-process isotopes.
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1. INTRODUCTION

1.1 Origin of the chemical elements in the Universe

Understanding the origin of the chemical elements present in the Universe has been a funda-

mental question that many scientists are attempting to answer. In 1948, Alpher, Bethe and Gamow

made a breakthrough in nuclear astrophysics with the suggestion that all the chemical elements in

the Universe were created in the Big Bang explosion. This work was published in their ground-

breaking work "The Origin of the Chemical Elements." [10]. This paper argued that the Big Bang

created hydrogen and helium, and all the rest of the atomic nuclei were produced by successive

neutron captures on these two elements, one mass unit at a time. This latter part was contradicted

later on with the discovery of the absence of any stable nuclei with masses A=5 or A=8.

The physics of chemical evolution is far more nuanced and interesting. While only the three

lightest elements, hydrogen, helium and lithium, are created during the Big-Bang nucleosynthesis,

all the rest of the elements are created during various complex nucleosynthesis processes occur-

ring in stellar environments. There exists a cyclic process in the Universe where stellar matter is

transferred between gas clouds and stars, creating more and more complex atoms in the process.

It was proposed by Burbridge, Burbridge, Fowler and Hoyle in the famous work [11], the "B2FH

paper", that most of the chemical elements are formed in the interiors of stars. This work outlined

various important stellar nucleosynthesis scenarios which result in the production of the chemical

elements, and is the basis for our understanding of the origin of all the chemical elements in the

Universe.

The astrophysical sites still are uncertain for several major nucleosynthesis processes such as

the proton capture process (p-process) [12, 13]. Various theoretical and experimental efforts are

currently being utilized to further the understanding of this significant topic of stellar nucleosyn-

thesis.
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1.2 Nucleosynthesis beyond Iron

The B2FH paper hypothesized that nuclear reaction processes involving neutron captures and

subsequent β-decays on seed material such as iron and other intermediate mass nuclei occur within

stellar interiors in order to synthesize heavier elements than iron. This synthesis process can occur

at two different rates: a slow rate (slow neutron capture process ("s-process")), or a rapid rate

(rapid neutron capture process ("r-process")). The neutrons for the s-process are predominantly

produced during the helium-burning phase in red giant stars through (α,n) reactions. It is believed

that the majority of the elements above iron is created through the s-process and the r-process.

The neutron captures for these two processes occur via (n, γ) reactions during which the mass

number of the starting element is increased by one unit at a time. For each neutron capture, a

nucleus (A, Z) is changed to a heavier isotope of (A+1, Z). If this new isotope is stable, it can

lead to another neutron capture, subsequently creating the nucleus (A+2, Z) and so on. In case of

an unstable isotope being produced in this chain, the next step will be determined by the intensity

of the flux of neutrons in the immediate environment and on the β-decay lifetime of the unstable

nuclei.

For the s-process, the time between two successive neutron captures is much larger than the

β-decay lifetimes. Due to this reason, the s-process closely follows the valley of β-stability (see

Figure 1.1 from Ref. [14]). The r-process is on the neutron-rich extreme, where the time between

two successive neutron captures is much smaller than the β-decay lifetimes. The r-process follows

close to the neutron drip line (a region where neutron binding energies are very small) far from

the valley of stability. This occurs in environments where the neutron density is very high, on the

order of ∼1020 neutrons cm−3, which is roughly about 10 orders of magnitude higher than for the

s-process. Once the high neutron flux ceases, the neutron rich nuclei will have successive β-decays

into the region of stability, synthesizing elements not possible by the s-process.
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Figure 1.1: Chart of the nuclides showing the paths for the s-process and the r-process. Reprinted
with permission from Cauldrons in the Cosmos (1988).

64Zn 96Mo 124Te 192Pt 176Lu
70Ge 100Ru 128Xe 150Sm 176Hf
76Se 104Pd 130Xe 152Gd 186Os
80Kr 110Cd 134Ba 154Gd 187Os
82Kr 116Sn 136Ba 160Dy 198Hg
86Sr 122Te 142Nd 164Er 204Pb
87Sr 123Te 148Sm 170Yb

Table 1.1: List of isotopes created only through the s-process. Adapted from [8].

1.2.1 Slow Neutron Capture Process (s-process)

The s-process mainly starts with Iron (56Fe) as the seed nuclei for nucleosynthesis. In the s-

process, the nucleosynthesis chain begins with 56Fe and terminates with the production of 209Bi. A

brief description of the theory behind the s-process is detailed in this section. For a full description,

please refer to Ref. [14].

There are 34 isotopes that are created only via the s-process (hereafter referred to as s-only

isotopes). They are listed in Table 1.1. For a s-only isotope of mass number A which is not
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radioactive, the time dependence of the abundance (NA) is given as follows:

dNA(t)

dt
= Nn(t)NA−1(t)⟨σv⟩A−1 −Nn(t)NA(t)⟨σv⟩A (1.1)

Here, < σv >A is the mean neutron capture rate per particle pair for isotope A and Nn(t) is

the number density of neutrons at time t. The first term describes the capture of a neutron by the

predecessor (A−1) to create isotopeA, and the next term describes the destruction ofA by neutron

capture. Since the abundances of both A and (A − 1) depends mainly on the stellar temperature

which depends on time, NA and NA−1 are both time dependent. It is assumed in this case that the

stellar temperature remains constant during the s-process.

Defining ⟨σv⟩ = ⟨σ⟩vT = σAvT where vT is the thermal velocity of the neutron and σA is the

Maxwellian-averaged neutron capture cross section for A, Equation 1.1 becomes,

dNA(t)

dt
= vTNn(t)(σA−1NA−1 − σANA) (1.2)

For a Maxwell-Boltzmann energy distribution for neutrons, the neutron flux ϕ(t) can be given

by ϕ(t) = vTNn(t) neutrons cm−2 s−1. Using this quantity, the time-integrated neutron flux τ in

neutrons cm−2 can be written as follows:

τ =

∫ t

0

ϕ(t)dt = vT

∫ t

0

Nn(t)dt (1.3)

Using this result, Equation 1.2 can be written as follows where the abundance NA is now

expressed with respect to the time duration of neutron exposure τ .

dNA

dτ
= NA−1⟨σ⟩A−1 −NA⟨σ⟩A (1.4)

Certain situations such as regions between magic neutron numbers have a tendency to re-

duce the difference between the terms ⟨σ⟩ANA and ⟨σ⟩A−1NA−1, and reaches a state of equi-

librium where dNA/dτ = 0. This is called a local equilibrium approximation where ⟨σ⟩ANA =
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⟨σ⟩A−1NA−1 = constant. At this point, for the abundance of s-only isotopes the rate of destruction

equals the rate of production.

There are two principle neutron-source reactions that produces the neutrons for the s-process.

They are namely the 13C(α,n) and 22Ne(α,n) reactions. Their roles in the s-process nucleosynthesis

will be described in the next sections of this text.

1.2.1.1 Main component

The main neutron-source reaction in this component is the 13C(α,n) reaction due to the low

energy required for its activation. This component of the s-process is responsible for the formation

of elements from strontium (Sr) and yttrium (Y) all the way up to lead (Pb), bismuth (Bi) and

polonium (Po) in low metallicity stars. The production site for this component is low-mass (1.3

M⊙ ≤ M≤ 8 M⊙) asymptotic giant branch stars (see Chapter 1.2.2) detailed in the next section.

12C(p, γ)13N(β+ν)13C(p, γ)14N (1.5a)

14N(α, γ)18F (β+ν)18O(α, γ)22Ne (1.5b)

It is assumed that protons mix with 12C created via 3 4He → 12C, the "3α reaction", to create

13C during the hydrogen burning phase of AGB stars. This leads to a reaction sequence that

produces 14N and 13C through the reaction sequence in 1.5a shown above. When the temperature

of the star increases to about ∼ 0.3 x 109 Kelvin (K) during the helium burning phase, the created

14N is gradually converted through alpha and positron (β+) captures into 22Ne via the sequence

1.5b [8].

1.2.1.2 Weak component

Elements from iron up to strontium and yttrium are created through the weak s-process which

takes place in massive stars (M ≥ 8 M⊙) at the end of their helium and Carbon burning phases

[15]. This occurs with the 22Ne(α,n) reaction as the main neutron source. This component is far
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less understood compared with the main s-process. The yield of the weak s-process depends on

the amount of 22Ne present, which is in turn determined by the amount of 14N in the star.

In these massive stars, the 22Ne(α,n) reaction produces neutrons in two different stages [16].

The first is during the end of the core helium burning when the temperature is high enough to

activate this reaction. In this stage, since the amount of neutrons created is relatively low, the

s-process cannot overcome the closed neutron shell at N=50. Also at this stage, not all the 22Ne

created will be consumed by the helium burning. The second neutron exposure comes during the

Carbon shell burning phase where the leftover 22Ne will react with helium.

During the Carbon burning phase, the 12C(12C,p)23Na reaction creates protons which can react

with the 22Ne via the 22Ne(p,γ)23Na reaction and act as a poison for the 22Ne [15]. Nevertheless,

it has been shown that the effectiveness of the 22Ne(α,n) reaction during both core helium and

Carbon burning phases are comparable [15, 17].

1.2.1.3 Branching of the s-process

Branching in the s-process path occurs when an unstable isotope with long half-lives are en-

countered where neutron capture competes with β-decay [18]. In this scenario, the isotope can

either capture a neutron and create the next neutron-rich isotope or β-decay and continue along the

valley of stability. The strengths of the branching point for neutron capture and β-decay is given

by fn and fβ respectively as in:

fn =
λn

λβ + λn
and fβ =

λβ
λβ + λn

Here, λβ = 1/τ is the β-decay rate for a mean lifetime τ , and λn is the neutron capture

rate. Additionally, the β-decay lifetimes of certain isotopes can be affected by temperature and

electron density variations of the immediate environment. The temperature dependence will be

more complicated if these isotopes have an isomeric state which can be thermalized at higher

temperatures. Isotopes (s-only) affected in the manner can be used as tools to obtain information

about the physical conditions during the process, i.e., temperature, neutron density [19].
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1.2.2 Asymptotic giant branch (AGB) stars for the s-process

It was proposed [20, 21] that the helium-burning shell of thermally pulsing red giant stars are

the main sites of the s-process. This evolutionary phase of stars in particular are the asymptotic

giant branch (AGB) stars, which is the last stage of burning for stars with initial mass between ∼

0.8 - 8 M⊙.

C-O core
He-burning shell

He layer

Radiative layer

Convective
H envelope

H-burning shell

Figure 1.2: Schematic view of the internal structure of an AGB star. Adapted from [1]

At the base of the AGB phase, all the helium in the core of the star is exhausted, and the star

begins to produce energy by burning helium in a shell that surrounds the inert, electron-degenerate

carbon and oxygen (C-O) core, and by the release of energy from the gravitationally-collapsing

core. During this rapid early-AGB phase, the hydrogen-burning shell will remain inactive due to

the expansion and cooling of the star from the energy output of the helium-burning shell, which

leads to a mixing of different layers. Once this early-AGB phase is complete, hydrogen shell will

ignite and become the dominant energy source of the star for a long period of time (∼ 104 years)

while the growing helium shell remains inactive. At this point, these stars have a specific interior

structure shown in Figure 1.2. They consist of an inert C-O core, then a helium-burning shell, a

helium inter-shell, and finally a hydrogen-burning shell which is composed of an inner radiative
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shell and an outer convective shell, respectfully.

Figure 1.3: Schematic view of the time evolution of an low mass AGB star in the He-intershell. [2]

During hydrogen burning, the amount of matter in the helium inter-shell will be continuously

increasing, increasing its temperature and density. At some point, the helium will start to burn for

a short period of time (∼ few 100s of years) at the bottom of the helium inter-shell. This leads

to a thermal pulse where an enormous amount of energy is produced which in turn deactivates

the hydrogen burning. During this thermal pulse, a convective zone will be created in the helium

inter-shell (Figure 1.3), which mixes the ashes from the helium-burning shell with the inter-shell.

This phase is known as the thermally-pulsing AGB (TP-AGB) phase. During a thermal pulse, a

radiative layer is created between the helium inter-shell and the convective envelope. This layer

causes the sudden expansion and cooling of the convective envelope, which causes the bottom of

the envelope to move into the helium shell and mix with the material produced by helium-burning

and the s-process, and thus removing these material from the interior of the star. The thermal pulses

are caused mainly due to the strong temperature dependence of the helium burning shell combined

with the high temperatures in the stellar interior.
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There is a large amount of evidence for the presence of the s-process from observational as-

tronomy. S-process elements have been observed on the surface of some of the most luminous

portion of AGB stars called the S-type stars. Visual spectra of these S-type stars depict clear fea-

tures related to s-process isotopes such as spectral lines due to yttrium oxide (YO), strontium (Sr),

barium (Ba) and lanthanum oxide (LaO) present in the surface [22]. Several S-type stars have also

shown evidence of technetium (Tc) which results from s-process neutron capture [23].

1.2.3 Neutron poisons for the s-process

Neutron poisons for the s-process mainly concerning the 22Ne(α,n) reaction will be discussed

in this section.

The product of 22Ne+α, 26Mg, has the neutron decay threshold located at 11.093 MeV, while

the alpha-decay threshold is at 10.614 MeV. Hence, the resonances relevant for the 22Ne(α,n)25Mg

reaction will be affected by the 22Ne(α,γ) reaction which will compete for the amount of 22Ne in

the stellar environment. A Q-value of a nuclear reactions is a measure of the amount of energy

absorbed (negative Q-value) or released (positive Q-value) during the reaction. Due to the positive

Q-value for the 22Ne(α,γ) reaction (+10.614 MeV) compared with the 22Ne(α,n) reaction (-0.478

MeV), the former reaction will continue to burn throughout the helium-burning phase even at

low stellar temperatures, reducing the amount of 22Ne that can participate in the production of

neutrons. Hence the 22Ne(α,γ) reaction is called a neutron poison. The competition between these

two reactions during the thermal pulse of an AGB star will affect the neutron production for the

s-process.

Another important neutron poison is the 14N created as a product of the hydrogen-burning in

the CNO cycles (Equations 1.5a and 1.5b) and also present from the primordial abundance of the

star. 14N has a high cross section for absorption of neutrons through the 14N(n,p)14C reaction (Q

= +0.63 MeV). This reaction can also affect the yield of 22Ne produced by reducing the amount of

14N for alpha capture.

The yield of 18O created from the burning of 14N also plays a role in the yield of 22Ne. The

yield of 18O depends on the relative rates of the 18O(α,n)21Ne reaction (Q = -0.697 MeV) and
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the 18O(α,γ)22Ne reaction (Q = +9.67 MeV). Due to these Q-values, the temperature of the star

determines the manner of burning for 18O, i.e., and neutron-producing reaction will occur at high

temperatures creating 21Ne and at low temperatures the main product will be 22Ne.

In some occasions, the 22Ne(α,n)25Mg reaction can act as a self-poisoning reaction due to the

high neutron capture cross section of 25Mg. Hence, the 25Mg(n,γ)26Mg reaction is also a neutron

poison.

1.3 Significance of 26Mg for the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions

Out of the two main neutron-source reactions for the s-process, the 22Ne(α,n) reaction affects

the s-only isotopes near the branching points as compared with the 12C(α,n) reaction which deter-

mines the overall shape of the main component. The main focus of this study will be the effect of

the 22Ne(α,n) reaction in stellar environments.

The negative Q-value of the 22Ne(α,n) reaction (Q = -0.478 MeV) requires high temperatures

for activation (around T ≥ 0.3 GK). The energy region of interest for astrophysics of this reaction

lies around ∼400 - 800 keV in centre-of-mass energies. Since this reaction competes with the

22Ne(α,γ) radiative alpha-capture reaction, it is imperative to constrain the (α,n) and (α,γ) reaction

rates to accurately determine the contribution of the 22Ne(α,n) as a neutron source for the s-process.

Neutron production for the s-process occurring with alpha-capture on 22Ne occurs through the

resonances in the 26Mg nucleus. The main focus of this dissertation is the study of these resonance

levels of 26Mg contributing to the 22Ne(α,n) reaction rate.

An alpha particle is a cluster of two protons and two neutrons bound together in a closed-shell

configuration. This makes an alpha particle relatively stable within a nucleus consisting of an even

number of protons and neutrons (even-even nuclei). This effect can be seen in nuclei such as 8Be,

12C [24] and 16O which have two, three and four alpha-cluster configurations respectively. Such

nuclei can be characterized with states that have large alpha decay widths. 26Mg also exhibits a

similarly dominant alpha-cluster structure with large alpha spectroscopic factors for some states.

This effect can also be seen in resonances close to the alpha-decay threshold in nearby nuclei to

26Mg such as 18O [25].
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Several direct α-capture measurements have been performed in the past to study the 22Ne(α,n)

and 22Ne(α,γ) reactions [4, 26, 27, 28, 29, 30, 31, 32]. The direct study of these reactions at

energies relevant for astrophysics is difficult due to the presence of the Coulomb barrier prevent-

ing alpha-particles from penetrating into the 22Ne nucleus at such low energies, and experimental

measurements are limited to alpha energies above ∼ 800 keV. Obtaining an upper limit for the res-

onances of 26Mg in the region of interest have been attempted using various extrapolation methods

using direct/indirect measurements at higher energies.

Within the energy region of interest for this reaction, 26Mg has an extremely high level density

(a few tens of levels per 100 keV) [33] which can be challenging for experimental techniques. Only

the natural parity states of 26Mg should be of interest due to Jπ = 0+ for both alpha and 22Ne.

The biggest uncertainty lies in the fact that the spin-parity assignments and the energies of all the

resonances of 26Mg within the energy region of interest are not well known as of the time of the

writing.

An extensive amount of research has been done to study the levels of 26Mg in order to bet-

ter understand the effect of the levels 26Mg for the 22Ne(α,n) and 22Ne(α,γ) reactions. 1) Neu-

tron capture studies on 25Mg (reactions such as 25Mg(n,γ)26Mg and 25Mg(n,tot)) [34, 35, 36], 2)

26Mg(p,p’)26Mg [37, 38], 3) 26Mg(d,d’)26Mg measurements [38], and 4) 26Mg(α,α’)26Mg mea-

surements [6, 39] have been performed previously to obtain data on the resonance energies of

26Mg. 26Mg(γ,γ’)26Mg measurements [40, 41, 42] have also been performed using polarized and

unpolarized γ rays in order to obtain information on the spin-parities of the levels of 26Mg.

The work presented in this dissertation aims to reduce the uncertainties regarding the two

22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reaction rates.
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2. ALPHA-CAPTURE REACTIONS AT SUB-COULOMB ENERGIES

2.1 Motivation

Helium is the second most abundant element in the Universe. Hence, there are many alpha-

capture reactions such as (α,p), (α,γ) and (α,n) that takes place in various astrophysical sites.

The study of these various reactions can help towards understanding the chemical abundances in

the Universe. The nucleosynthesis rates that define the chemical abundances of isotopes created

through the s-process are mainly determined by the α-cluster states near the α-threshold of the

different nuclei involved. However, the cross sections for these reactions are suppressed due to the

Coulomb barrier between the charged particles. The energy range at which the reaction proceeds

with highest probability in the given astrophysical environment is defined as the ”Gamow energy

window” (Figure 2.1), named after Soviet-American Physicist George Gamow (1904-1968). De-

pending on the temperature of the star, this energy window defines the region where the cross

section of a nuclear reaction is significantly high. This is a convolution of two factors. First, the

probability of a particle penetrating the Coulomb barrier increases with the particle energy which

is parameterized by the transmission probability P . Second, the probability of a particle having a

high energy, and therefore a high velocity, at a given stellar temperature decreases rapidly with in-

creasing energy, which is given by the Maxwell-Boltzmann energy distribution (ϕ(v)) [43]. These

two quantities are depicted in the equations below.

P = exp(−2πη) = exp
(
− 2π

Z1Z2e
2

(h̄ν)

)
= exp

(
− 2π

Z1Z2e
2

h̄

√
µ

2E

)
(2.1)

ϕ(v) = 4πv2
( µ

2πkBT

) 3
2
exp

(
− µv2

2kBT

)
∝ Eexp

(
− E

kBT

)
(2.2)

Here, µ is the reduced mass of the system of particles with atomic numbersZ1 andZ2, and kB is

the Boltzmann constant. Equation 2.2 is the velocity distribution of the particles in an environment

with temperature T . The maximum of the Gamow peak (E0) is given by the derivative below using
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the exponential terms in the above two equations:

d

dE

(
− 2π

Z1Z2e
2

h̄

√
µ

2E
− E

kBT

)
E=E0

=
π

h̄
Z1Z2e

2

√
µ

2E3
0

− 1

kBT
= 0 (2.3)

Figure 2.1: Schematic representation of the Gamow energy window for a particle of energy E.
The Gamow energy window is a convolution between the Maxwell-Boltzmann energy distribution
and the Coulomb barrier penetration probability. Reprinted with permission from Cauldrons in the
Cosmos (1988).

In Figure 2.1 from Ref. [14], E0 is the maximum of the Gamow window given by E0 =

1.22µ1/3(Z1Z2T6)
2/3 keV where T6 is the stellar temperature in mega Kelvin (MK). The width of

the peak is given by ∆E0 = 0.749(Z2
1Z

2
2µT

5
6 )

1/6 keV.

For many reactions relevant for nuclear astrophysics, the Gamow energy window lies at very

low energies and has small cross sections, which makes it near impossible to replicate them in lab-

oratory environments. In order to study these reactions, much work has been done where the cross

sections are measured at higher energies and extrapolated into the energy region of interest. This

method produces significant uncertainties in the reaction rate calculations for stellar temperatures.

In order to reduce these uncertainties arising from the extrapolations, the use of transfer reactions

are becoming more prominent at the present.
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2.2 Reaction rate and the Astrophysical S-Factor

For nuclear reactions relevant for astrophysics, the rates of these reactions play a dominant

role in describing the abundances of the chemical elements in the Universe. These reaction rates

are highly dependent upon the reaction cross section and the temperature of the environment. The

reaction cross sections σ(E) are only dependent on the relative energy between two interacting

particles.

Using the velocity distribution from Equation 2.2 and the cross section σ(E), the averaged

reaction rate can be defined as,

NA⟨σv⟩ =
∫ ∞

0

σ(E)ϕ(v)vdv

=

√
8

πµ

NA

(kBT )
3/2

∫ ∞

0

Eσ(E)exp
(
− E

kBT

)
dE

(2.4)

The integrand of Equation 2.4, Eσ(E)exp(−E/kBT ) is called the Gamow distribution func-

tion, which is used to find the peak of the Gamow energy window described previously.

σ(E) =
1

E
e−2πηS(E) (2.5)

The reaction cross section σ(E) drops exponentially with the decrease of the center-of-mass

energy E due to the repulsion arising from the Coulomb barrier; σ(E) ∝ e−2πη where η =

Z1Z2e
2/hv is the Sommerfield parameter where v is the relative incident velocity and Z1Z2e

2

is the product of the charges of the two particles. The cross section is also inversely proportional to

the energy E, σ(E) ∝ 1/E. These energy dependences can be factored out by using the Astrophys-

ical S-Factor S(E) (see Figure 2.2 from Ref. [14]). This S-factor is a smoothly varying function of

energy (see Equation 2.5) and contains all the reaction physics. Hence, the S-Factor is much more

useful than the cross section when extrapolating to astrophysical energies.

In Equation 2.5, the exponent depicts the Coulomb barrier penetrability. Whereas the reaction

14



Figure 2.2: Dependence of the cross section and S-factor on the energy E. Reprinted with permis-
sion from Cauldrons in the Cosmos (1988).

cross section decreases exponentially with energy, the variations of the astrophysical S-factor is

minimal. For very low reaction cross sections at extremely low energies, it is much more common

to find S(E) over a range of available energies and then to extrapolate down to the energies of

interest, which has significant errors involved, which will be described in a later section.

2.3 Distorted-Wave Born Approximation

The Distorted-Wave Born Approximation (DWBA) is a common formalism used to obtain

inelastic and transfer reaction cross sections. The DWBA uses the optical model (described in

detail the Section 2.4) to describe the relative motions of the particles involved in a particular

reaction. Here the interaction between different nuclei during the transfer or inelastic excitation is

considered as a perturbation to the optical potentials modeling the system. More information can

be found in [44, 45].

Consider a projectile nucleus A = a + x scattering on a target nucleus b. Once the particle x

has been transferred to b, the final system would be B = b + x (See Figure 2.3). Here, a and b are
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Figure 2.3: Transfer reaction scheme for A + b = a + B reaction.

referred to as the core, and x is the valence particle. The bound states / internal wave functions of

the nuclei A and B, ϕA and ϕB, are described by the internal Hamiltonians HA and HB. In Figure

2.3 and all the following equations, r, r’, R and R’ are three dimensional vectors.

[HA − ϵA]ϕA(r) = [Tr − Vax(r)− ϵA]ϕA(r) = 0 (2.6a)

[HB − ϵB]ϕB(r’) = [Tr’ − Vbx(r’)− ϵB]ϕB(r’) = 0 (2.6b)

In the above equations, ϵA and ϵB are the internal energies of the A and B systems, T is the

kinetic energy and V is the potential energy. The total Hamiltonian for the transfer reaction can be

described in two different forms, prior and post, which depends on whether the initial (A + b) or

final (a+B) mass partition were chosen.

Hprior = TR + UAb(R) +HA(r) + Vprior(r,R) (2.7a)

Hpost = TR′ + UaB(R’) +HB(r’) + Vpost(r’,R’) (2.7b)

UAb, UaB are the diagonal potentials of the entrance and exit channels, and Vprior, Vpost are

the interaction terms or transition potentials for the prior and post forms. They can be further
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described as follows:

Vprior(r, R) = Vbx(r’) + [Uab(Rc)− UAb(R)] ≈ Vbx(r’) (2.8a)

Vpost(r’, R′) = Vax(r) + [Uab(Rc)− UaB(R’)] ≈ Vax(r) (2.8b)

Here, the terms in the brackets are called the remnant terms and the Vax, Vbx are the binding

potentials which are usually described by real-valued optical potentials. Uab(Rc) is the potential

describing the scattering between the a and b cores, which is described by real and imaginary po-

tentials. UAb(R) and UaB(R’) are the potentials describing the elastic scattering between the nuclei

in the entrance and exit channels, respectively. These are generally complex optical potentials. In

Eq. 2.8a, the approximation is valid if the core a and the target A are typically heavier than the

transferred particle x. In Eq. 2.8b, the approximation is true if the target A and the target-like

fragment B are similar. In cases where the full remnants are considered, the same results should

be obtained by the prior and post forms.

Using the above transition potentials, the Transition Amplitude can be written as follows for

the prior or post forms:

TDWBA
prior = ⟨χ(−)

β ϕaϕB|Vprior|χ(+)
α ϕAϕb⟩ (2.9a)

TDWBA
post = ⟨χ(−)

β ϕaϕB|Vpost|χ(+)
α ϕAϕb⟩ (2.9b)

Here, α and β refers to the entrance and exit channels, respectively. The plus and minus signs

denote the incoming and outgoing wave functions of the χ distorted waves. ϕA is also described

as an overlap functions between a and x, and similarly for ϕB between b and x. The distorted

waves are generated by solving Schrodinger’s equation using an optical potential obtained through

fittings for the relevant elastic scattering cross sections.

The theoretical DWBA cross sections can then be described using this transition amplitude, the
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reduced masses µα,β and the wave number kα,β , as

( dσ
dΩ

)
DWBA

=
µαµβ

(2πh̄2)
2

kβ
kα

|T (kβ, kα)|2 (2.10)

Consider the overlap function of the composite particle A (ϕA). This overlap function can

be described using the orbital angular momentum l and intrinsic spin s of the valence particle x

coupled with total angular momentum j to the core a with an intrinsic spin Ia.

ϕA(r) =
∑
Ia,lsj

AJIaIA
lsj

unl(r)

r

[
[Yl(r)⊗ χs]j ⊗ ϕIa

]
IA

(2.11)

Equation 2.11 shows the overlap function ϕA where J is the total angular momentum of the

composite particle A, unl(r) is the single-particle wave function normalized to unity and n is the

number of radial nodes of the overlap wave function. Here, AJIaIA
lsj is called the Spectroscopic

Amplitude, the square modulus of which is called the Spectroscopic factor (S),

SJIaIA
lsj = |AJIaIA

lsj |2 (2.12)

The spectroscopic factor can also be described as the probability of finding the core state Ia

within a composite state IA when removing a nucleon in a state lsj due to the relation,

∑
Ilsj

|AJIaIA
lsj |2 =

∑
Ilsj

SJIaIA
lsj = 1 (2.13)

2.4 The Optical Model

The behavior of one particle interacting with another beam of particles can be considered to be

analogous to the behavior of light and an optical lens, where the light could be partially absorbed

by the lens, partially scattered and partially transmitted. Hence, the "Optical Model" is more com-

monly used to model the interaction between particles in nuclear reactions. In order to calculate

the distorted waves described in the previous section, various optical potentials are used for this
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model. A brief description of the potentials used for the optical model is described in this section.

For additional information please refer to [44].

The most widely used form for the optical model potential is,

U(r) = −V f(r, R, a)− iWf(r, R′, a′)− iWDg(r, R
′, a′) (2.14)

where WD is the imaginary surface potential depth and f is the Woods-Saxon form factor

defined for the real (V ) and imaginary (W ) terms for a particle with radius R and diffusivity a as,

fi(r, Ri, ai) =
1

1 + e

(
r−Ri
ai

) for i = V,W (2.15)

The radius R of a nucleus is given by R = r0A
1/3 where A is the nuclear mass number and

r0 is the reduced radius. The second imaginary potential in Equation 2.14 is peaked at the nuclear

surface and is the derivative of the first term.

gi(r, R
′
i, a

′
i) = 4a

d

dr
fi(r, R

′
i, a

′
i) (2.16)

The Wood-Saxon form factor can be thought of as a smoothed out step function, where f(r =

0) ≈ 1 and f(r = R) = 0.5. Also f falls from 9/10 to 1/10 over a distance of 4.4a centered at

r = R.

Additionally, if the particles involved have spin, a spin-orbit term may also be added to the

list of potentials. Specifically for the spin-orbit potential, the derivative of the Wood-Saxon form

factor, gso(r), can be substituted with the "Thomas" form where gso(r) = r−1(d/dr)f(r, Rso, aso)

[46]. An expansion of Equation 2.14 including a full list of the most commonly used potentials are

shown below in Equation 2.17.
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U(r) =

+ Vc(r) (a Coulomb term),

− VRfR(r) (a real volume term),

− iWSfS(r) (an imaginary volume term),

+ 4aDVD
dfD(r)

dr
(a real surface term),

+ i4aDWD
dfD(r)

dr
(an imaginary surface term),

+ Vso

( h̄

mπc

)2

gso(r)(⃗l.s⃗) (a real spin-orbit term),

+ iWso

( h̄

mπc

)2

gso(r)(⃗l.s⃗) (an imaginary spin-orbit term)

(2.17)

Here, the subscript ’S’ is used for the imaginary volume term, ’D’ denotes the surface terms,

and so denotes the spin-orbit component. The Coulomb potential is usually approximated by two

different forms depending on which radius range is being considered. This is shown in Equation

2.18.

Vc(r) =


Z1Z2e2

2Rc

(
3− r2

R2
c

)
for r ≤ Rc

Z1Z2e2

r
for r > Rc

(2.18)

Here, Z1 and Z2 are the charges of the interacting nuclei and with an inter-nuclei distance of r,

and Rc is the Coulomb radius. For charged particles with angular momentum higher than l = 0,

the centrifugal barrier also has to be overcome for a reaction to occur. This is given by,

Vcf (r) =
l(l + 1)h̄2

2µr
. (2.19)
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2.5 Partial widths of astrophysically-relevant resonances

For a particle transfer reaction, the experimental and DWBA cross sections are related via the

Spectroscopic factor (S) for the entrance and exit channels. This relation is shown in Equation

2.20. The spectroscopic factor is a measure of how much the populated resonance resembles a

"single-particle" shell-model state [47].

( dσ
dΩ

)
exp

= SαSβ

( dσ
dΩ

)
DWBA

(2.20)

In order to study transfer reactions in this manner, the spectroscopic factor of either the entrance

or exit channel must be known prior to experimental measurements. The partial width of the state

for the transferred particle (Γx) is related to the spectroscopic factor by the single particle width

Γsp as follows:

Γx = SxΓsp (2.21)

The single particle widths are calculated using the wave function obtained by solving the time-

independent Schrodinger Equation with a potential described by correct optical model potentials.

It has been shown that the product of Sx and Γsp in this manner is quite insensitive to the bound-

state parameters due to the fact that the same wave functions are used to calculate both quantities

[48]. Γsp denotes the partial width of a single-particle resonance located at the same energy as the

resonance of interest and provides a measure of the maximum decay width based on the probability

of the Coulomb barrier penetration [49]. The method of obtaining the single-particle width is

briefly described below. For further information, please refer to Nuclear Reactions for Astrophysics

[43].

[ h̄2
2µ

(
− 1

R2

∂

∂R
(R2 ∂

∂R
) +

L̂2

R2

)
+ V (R)− E

]
ψ(R, θ, ϕ) = 0 (2.22)

The time-independent Schrodinger equation can be written as above using spherical coordi-
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nates (R, θ, ϕ) for a spherically symmetric potential V (R), and squared angular momentum oper-

ator L̂2. Choosing the z-axis as the beam direction simplifies this equation to be independent of

the coordinate ϕ, and thus simplifying the scattering wave function to ψ(R, θ). Using boundary

conditions for a smooth wave function at all radial distances, the wave function can be written as

follows.

ψ(R, θ) = eikz + f(θ)
eikR

R
(2.23)

In the above equation, f(θ) is called the scattering amplitude which gives the differential cross

section dσ/dΩ = |f(θ)|2 of a nuclear reaction. This wave function can be expanded using Legen-

dre polynomials PL(cosθ) using a partial-wave expansion.

ψ(R, θ) =
∞∑

L=0

(2L+ 1)iLPL(cosθ)
1

kR
χL(R) (2.24)

where the partial waves χL(R) satisfies the partial-wave equation given below.

[
− h̄2

2µ

( d2

dR2
− L(L+ 1)

R2

)
+ V (R)− E

]
χL(R) = 0 (2.25)

The scattering amplitude can then be derived using the expanded wave function given in Equa-

tion 2.24 using a phase shift δL for each partial wave:

f(θ) =
1

k

∞∑
L=0

(2L+ 1)PL(cosθ)e
iδLsin(δL) (2.26)

Most excitation functions (cross sections σ(E) plotted as a function of energy E) often show

peaks or dips caused by resonances, which are a result of a sudden increase in the phase shift δ(E)

[43]. This phase shift can be defined using the width (Γ) and the energy (ER) of the resonance:

δ(E) = tan−1
( Γ/2

ER − E

)
(2.27)
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The reaction cross section σ(E) can then be simplified using the phase shift as follows.

σ(E) ≃ 4π

k
(2L+ 1)sin2δ(E) (2.28a)

=
4π

k
(2L+ 1)

(Γ/2)2

(ER − E)2 + (Γ/2)2
(2.28b)

It can be seen from Equation 2.28b that the cross section σ(E) peaks at E ∼ ER with a full-

width at half maximum (FWHM) equal to Γ for the resonance if the width is independent of

energy. In all realistic cases, Γ = Γ(E), with Γ increasing with energy due to the decrease of

the potential barrier with energy. A resonance of the form of Equation 2.28b is called a pure

Breit-Wigner resonance [50]. The single-particle width Γsp of a resonance is then defined as the

difference between the two energy points where sin2δ = 1/2, i.e., δ = 45◦ and 135◦ [51]. The

single-particle width denotes the width of a single-particle resonance located at energy ER. It also

provides information about the maximum decay width based on the barrier penetration probability

[49].

2.6 Sub-Coulomb alpha-transfer measurements

As mentioned in the previous chapter, since 4He is the second most abundant element in the

Universe, alpha-capture reactions play a dominant role in nuclear astrophysics. In order to study

the relevant nuclear reactions at astrophysical energies, the methods used until recently have been

to measure the cross sections and astrophysical S-factors at higher energies and then to extrapolate

the results down to the energies of interest. This method provides significant disadvantages since

the extrapolation of the cross sections inflict a large uncertainty on the reaction rates. The disad-

vantage has led to the development of indirect techniques to study these nuclear reactions. Some

of these indirect techniques used are to extract the Asymptotic Normalization Coefficients (ANCs)

of the relevant states, the Trojan Horse Method (THM) [52], the Coulomb Dissociation method, to

name a few. The ANC technique was first introduced by Tribble, Gagliardi and Mukhamedzhanov

from Texas A&M University in 1994 [53], and initially used to study (p,γ) reactions. This ANC
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technique is used to study the 22Ne(α, n)25Mg reaction in this thesis.

The use of the ANC technique for α-capture reactions was handicapped due to uncertainties in

optical model parameters needed for the theoretical analysis. In order to reduced the dependence

of the results on the optical model parameters, it was suggested to use the ANC technique in com-

bination with an alpha transfer reaction performed at sub-Coulomb energies (in both the entrance

and exit channels), which was first introduced by C. Brune [54] to study the 12C(α,γ)16O reaction.

More measurements have been performed since then using (6Li,d) α-transfer reactions at energies

close to the Coulomb barrier [55, 56, 57]. It has been demonstrated that this approach produces

reliable results in determining the partial α-width for the near α-threshold resonances [55].

2.7 The study of the 22Ne(α,n)25Mg reaction using 22Ne(6Li,d)26Mg.

Direct measurements of 22Ne(α,n)25Mg reaction at such low centre-of-mass energies is difficult

to carry out due to the very low reaction cross section due to the Coulomb barrier and relatively high

cosmic gamma-ray background. The lowest observed resonance of the compound nucleus 26Mg

of the 22Ne+α system is located at ∼ 832 keV [4], which is at the higher end of the astrophysical

energy region of interest. Following the success of using a (6Li,d) α-transfer reaction to study

the near α-threshold resonances, we use the same technique to study the 22Ne(α,n)25Mg reaction

by using the 22Ne(6Li,d)26Mg reaction to study the resonances of 26Mg within the Gamow energy

window that are relevant to the 22Ne(α,n)25Mg and the 22Ne(α,γ)26Mg reactions.

2.8 Asymptotic Normalization Coefficient (ANC)

The main technique used in this study is the measure of the ANCs for the resonances that are

relevant for the astrophysical reaction rate. The brief description regarding the equations relevant

for this technique is given in this section. Further information on this topic can be found in Refs.

[58] and [59].

For the system described in Section 2.3 of A + b → B + a, consider a virtual decay of A in

the form of A → a + x for a ’core’ of a and a ’valence’ particle x (similarly for B → b + x).

The overlap functions (IBax(r)) for the particles involved in this virtual decay can then be expressed
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using the wave functions ϕb(ξb) and ϕB(ξb, r), where ξb is the internal coordinate of b, and r is the

relative motion coordinate of the center of mass.

IAax(r) = ⟨ϕa(ξa)|ϕA(ξa, r)⟩ (2.29)

Direct capture reactions at astrophysical energies involve the capture of a particle through the

tail of the nuclear overlap function. The asymptotic behavior of the overlap function can then be

approximated using the ANC (C) and the Whittaker function (W) found for a particular Sommer-

field parameter η, orbital angular momentum l and a bound state wave number k.

IAax(r)
r>Rax−−−−→ CA

ax

W−ηA,lA+1/2(2kaxr)

r
(2.30)

Similarly, the asymptotic behavior of the bound state wave function (φax(r)) can also be ex-

pressed in terms of the single-particle ANC (b) as follows.

φax(r)
r>Rax−−−−→ bAax

W−ηA,lA+1/2(2kaxr)

r
(2.31)

The overlap wavefunction and the bound state wave function are related to each other via the

spectroscopic factor, IAax(r) = S
1/2
ax φax(r). Then using Equations 2.30 and 2.31, a relationship

between the ANC and the single-particle ANC can be found as follows:

(CA
ax)

2 = Sax(b
A
ax)

2 (2.32)

Using this relationship, Equation 2.20 for the theoretical DWBA cross section can be modified

as follows:

( dσ
dΩ

)
exp

=
(CA

ax)
2

(bax)2
(CB

bx)
2

(bbx)2

( dσ
dΩ

)
DWBA

(2.33)

The partial width (Γax(kax)) calculated at the relative momentum of kax between particles a

and x can be described using the reduced width γ2 and the penetrability Pl(E) factor evaluated at
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the channel radius Rax (Equation 2.34a) as shown by [60].

Γax(kax) = 2γ2axPlA(kaxRax) (2.34a)

γ2ax = Sγ2ax(sp) (2.34b)

The reduced width can be evaluated using the single-particle reduced width γ2sp and the spec-

troscopic factor S as shown in Equation 2.34b [61]. The penetrability Pl and the shift function S

can be expressed in terms of the regular and irregular Coulomb wave functions Fl and Gl as

PlA(kaxRax) =
( kaxRax

F 2
l +G2

l

)
(2.35a)

S(kaxRax) = kaxRax

(F ′
lFl +G′

lGl

F 2
l +G2

l

)
(2.35b)

The formal reduced width γ2 can be written using the Whittaker function W for the bound

state of A as follows.

γ2ax =
W 2

−ηA,lA+1/2(2kaxRax)

2µaxRax

(CA
ax)

2
(2.36)

Here, CA
ax shows the ANC of the A → a + x system, and µax is the reduced mass. Then, for

sub-threshold resonances (where the state is bound in the entry channel and unbound in the exit

channel), the ANC and the formal partial width can be related using Equation 2.34a.

Γax(kax) = PlA(kaxRax)
W 2

−ηA,lA+1/2(2kaxRax)

µaxRax

(CA
ax)

2
(2.37)

But since the penetrability and the shift function in reality is energy-dependent, the true position

of the energy of the resonance will be slightly shifted. Hence, the “formal” partial width from

Equation 2.34a will be modified as shown below to give the “observed” partial width:

26



Γax(kax) =
2γ2axPlA(kaxRax)

1 + γ2ax
dS
dE

(2.38)

This formalism to obtain the observed partial width is used in the work presented in this disser-

tation to obtain the partial alpha widths of the resonances in 26Mg which contribute to the 22Ne(α,n)

and 22Ne(α,γ) reaction rates.
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3. EXPERIMENTAL SETUP AND PROCEDURES

3.1 Experimental Setup

The 22Ne(6Li,d)26Mg and the 22Ne(7Li,t)26Mg reactions were carried out in April 2016 at the

Texas A&M University Cyclotron Institute using the Multipole-Dipole-Multipole (MDM) Spec-

trometer [3]. The MDM focal plane detector was modified for these measurements to accommo-

date low energies of the detected recoils. Inverse kinematics is used to study these reactions where

the dominant reaction yield is at backward angles in the center-of-mass frame at low energies,

which translates to forward angles in the laboratory frame. The 22Ne beam of 1 MeV/u energy

corresponding to 4.65 MeV in the center-of-mass was obtained from the K150 cyclotron and sent

to the beam-line in cave 3 (Figure 3.1). This beam energy was chosen such that the center-of-mass

energy would be below the Coulomb barrier of ∼ 6 MeV for the 22Ne+6Li system. Both of these

reactions were carried out in inverse kinematics because the detection of deuterons and tritons with

low energies are more favorable to be detected at small laboratory angles. Direct kinematics for

these reactions provided several disadvantages such as the need for a rare isotope gas target and

detection of low energy particles in backward angles in the lab frame.

3.1.1 The Target Chamber Setup

For these measurements, 6LiF and 7LiF targets were used with thickness of 30 µg/cm2 each,

which were separately placed in a cylindrical target chamber on a target ladder located at the center.

The 6Li enrichment of the 6LiF target was 95.34% and the lithium in the 7LiF target was natural

Lithium (92.41% of 7Li and 7.59% of 6Li). The LiF targets were supported by a 12C backing of 10

µg/cm2 thickness. For additional calibration purposes (described later in the text), a 197Au target of

thickness 198 µg/cm2 was also placed on the target ladder. A Faraday cup was located at the back

of the target to measure the incoming beam charge. A Micron quadrant silicon detector (outline

shown in Figure 3.2) was placed centered at 25◦ from the beam axis for additional normalization as

well as to monitor the degradation of the LiF targets. Each quadrant of the silicon detector has an
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Figure 3.1: Schematic representation of the beam line from the K150 cyclotron to the MDM
experimental area.

active area of 2.5 cm x 2.5 cm. In order to get a clear separation of the different reaction products

resulting from the various constituents in the target, a collimator was placed in front of the silicon

detector with narrow slits for each quadrant (Figure 3.3). The slits for quadrants 1 and 3 were 4.7

x 0.8 mm2 and for quadrants 2 and 4, were 4.7 x 1.2 mm2. The separation between the various

constituents was better for the quadrants at a larger angle from the beam axis (quadrants 2 and 4).

3.1.2 The Multipole-Dipole-Multipole Spectrometer

The Multipole-Dipole-Multipole (MDM) spectrometer was used to separate out the deuterons

and tritons populating the states of 26Mg from the other various reaction products (see Figure

4.1) by setting a specific magnetic field corresponding to the magnetic rigidity of the particles

of interest. For the measurements of 22Ne(6Li,d)26Mg and 22Ne(7Li,t)26Mg reactions, the MDM
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Figure 3.2: Schematic of the quadrant silicon detector.

Figure 3.3: Schematic of the Collimator (solid line) in front of the quadrant silicon detector (dashed
line).

spectrometer was placed at 5◦ from the beam axis.

3.1.2.1 Collimator box

The particles of interest are separated out using a ’slit-box’, which is located between the target

chamber and the spectrometer, and has three different collimation masks located 65.25 cm away

from the target location. The three collimation masks are the ’single slit’ mask, the ’5-finger’
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mask, and the ’wide’ or ’4-by-1’ mask (Figure 3.4). The single slit mask has a rectangular opening

which is 11.7 mm high and 1.6 mm wide (0.1◦). The 5-finger mask has 5 different slits equal to

the single slit with each slit separated by 0.765◦. The centermost of the 5 slits is centered along the

spectrometer center. These two masks are mainly used for calibration purposes. The final mask

has a 4◦ by 1◦ rectangular opening (11.7 mm high and 45.5 mm wide), hence the name 4-by-1 slit,

which is mainly used for data collection purposes. Each mask is made of brass with a lead backing

to prevent the particles that do not go through the slits from entering the spectrometer.

(a) Single slit (b) ’5-finger’ slit (c) ’4-by-1’ slit

Figure 3.4: Photos showing the different masks used in the collimator box. Each slit is 11.7 mm
high.

3.1.2.2 Spectrometer

The MDM spectrometer was built for the University of Oxford and was operational in early

1983. It was moved to Texas A&M University in the late 1990s. The MDM spectrometer has a

bending angle of 100◦ along with a central radius of 160 cm, and a maximum acceptance of 8 msr

[3]. A schematic view of the spectrometer is shown in Figure 3.5.
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Figure 3.5: Schematic of the various major components along the beam path from the cyclotron:
target chamber, multipole, dipole, multipole and focal plane detector. Reprinted from [3]. Units
are in millimeters.
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The spectrometer has a sextupole and multipole at the entrance, followed by a gradient field

dipole, and a multipole at the exit. The maximum field strength of the dipole is 1.5 T. The com-

puter code RAYTRACE [62] is used to determine the settings for the magnetic elements of the

spectrometer. This code has the ability to track a specific particle from the target location all the

way to the focal plane detector located at the exit of the spectrometer. It also takes into account

all the different elements in its path (such as the various magnetic fields) and their distances and

thicknesses. The multipole has been calibrated such that the magnitude of the field of the multipole

is always a factor of 0.71 of the value of the dipole field.

Figure 3.6: The MDM spectrometer and mobile platform (shown in yellow).

The MDM spectrometer has the ability to rotate through ∼ 200◦ around the beam axis (from

50◦ to the right of the beam direction to 150◦ to the left looking from the beam direction). This is

achieved by a rotating mobile platform on top of which the spectrometer sits (Fig. 3.6).

3.1.3 Oxford Detector

The particles that pass through the MDM spectrometer are detected using the focal plane de-

tector called the Oxford detector. This detector consists of a gas ionization chamber, and located
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Figure 3.7: Schematic of the cross section view of the modified Oxford detector. It consists of
a kapton entrance window, a micromegas plate anode and CsI detector array for particle iden-
tification, and 4 proportional counter wires (perpendicular to the beam axis) for particle track
reconstruction.

within the chamber are proportional counter wires, anode readouts and Cesium Iodide (CsI) detec-

tors. The chamber has a rectangular shape made of 1.27 cm thick stainless steel and has an active

detection region of 30 cm by 51 cm by 10.5 cm (w x l x h). The gas used for this measurement was

pure isobutane gas at a pressure of 50 Torr. Isobutane has an ionization potential of 10.52 eV [63].

The pressure was monitored using a Baratron gauge. A schematic of the cross sectional view of

the Oxford detector is shown in Figure 3.7. The cathode and the two inter-connected anode plates

between the 1st and 2nd wires and the 2nd and 3rd wires are made of aluminum. The gap between

the anode plane and the cathode plane is 12 cm.

The Oxford detector was originally built for the detection of charged heavy particles. When

these particles travel through the gas volume after entering through the entrance window, they

ionize the gas molecules in their path creating electron-ion pairs. The electrons are attracted to the

anode and the positive ions drift towards the cathode.

Additionally, there is another set of wires around the detection area which acts as a field cage

to form a uniform electric field between the cathode and the anode. There are 14 wire levels in

34



total and each are inter-connected by an electronic voltage divider setup. In this electric field, the

electrons travel quickly towards the anodes and produces a rapid signal. The drift of the positive

ions towards the cathode is slower compared to the electrons, which results in the positive ions

inducing a signal on the anode over a longer period of time. This results in a detection pulse in

the anode which does not show a linear response to the energy loss of the charged particles. This

effect from the positive ions can be eliminated by using a Frisch Grid.

The Frisch Grid is situated 10.5 cm above the cathode. It is made up of multiple, uniformly-

spaced Be-Cu wires. Each wire is 40 cm long and is 80 µm in diameter. The pitch between each

wire is 1.5 mm. The role of the Frisch Grid is to screen the anode plane from the positive ions

created during the ionization of gas particles. Using correct biases for the anode, Frisch Grid and

cathode, transparency of the Frisch Grid to the electrons can be ensured.

3.1.3.1 Proportional Counter wires

The Oxford detector contains four resistive avalanche counter wires to measure the track of the

particles through the detection volume. Each wire is made of a Ni-Cr-Fe alloy (Stablohm 675 from

California Fine Wire company), and has a diameter of 12.5 µm and a length of 40 cm. The first

wire is located 2 cm behind the entrance window. From the first wire, the other three wires are

placed at distances of 15.1 cm, 31.4 cm and 47.7 cm, respectively. One end of each wire is biased

between +800 V and +1500 V depending on the desired signal strength.

Each wire is surrounded by an aluminum body called a ’shell’, which is usually biased at +100

V. The electric field between the shell and the wire gradually increases in strength going from

the shell to the wire. Electrons that pass through the Frisch Grid are accelerated in this field and

interacts with neutral atoms in the gas creating many secondary electron-ion pairs, which in turn

creates additional pairs. This process is known as Townsend Avalanche. There are individual

screening grids underneath each wire to protect the Frisch Grid from all the positive ions created

during the avalanche process.

The output signal from the wires have two components: a direct signal from the attracted

electrons and an induced signal from the motion of the positive ions. The main contributor to the
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output signal comes from the positive ions; the electron component is considered negligible. The

signal is then divided across the wire resistance and sent to each end of the wire. Each signal’s

amplitude is inversely proportional to the encountered resistance which in turn depends on the

length from the interaction point to the end of the wire. Using this fact, the interaction location (x)

along the wire for a wire length of (D) can be determined by using the readout charge from the left

(QL) and right (QR) side of the wire.

x =
QL

QL +QR

D , (3.1)

Using the interaction points of the 4 wires, the track taken by the particle of interest through

the Oxford detector can be reconstructed after properly calibrating the wire positions.

3.1.3.2 The microMegas detector

Figure 3.8: The segmented microMegas detector used in the Oxford detector.

A recent upgrade [64] to the Oxford detector was done to improve the energy loss detection

of particles in the gas volume. This was done by installing a microMegas detector (Figure 3.8)

between the 3rd and 4th wire, replacing an aluminum plate. The microMegas detector has a small

amplification gap 128 µm and a much larger drift gap. These two different regions are separated

using a thin metallic "micromesh".

Figure 3.9 shows the individual components of the microMegas detector. The main printed

36



Charged particle

Drift Gap = 12 cm

e- e- e-D

B
A

C

Cathode

Amplification Gap

256 μm 

Figure 3.9: Individual components of the microMegas detector: A) The printed circuit board B)
gold-plated copper pads C) resin pillars D) micromesh.

circuit board (PCB) of 6 mm thickness has 28 gold-plated copper pads, each with dimensions 32.5

mm by 44 mm. There are 4 rows of pads and 7 columns, each separated by a spacing of ∼0.2 mm.

The PCB is made of multiple layers of circuit boards with 6 grounded copper layers in between,

which allows the signals between the pads and the connectors to have no capacitive connections to

other pad-lines. The PCB has been designed to minimize noise and cross-talk between pads.

The micromesh sitting below the pads is made of stainless steel interwoven wires. The mi-

cromesh is located 128 µm below the pads and this region is called the amplification gap. The

mesh is supported by many tiny insulating resin pillars. These pillars ensure the uniformity of the

amplification gap to an accuracy of a few microns. This very small amplification gap produces high

electric field that generates the avalanche, and hence, results in the microMegas having an overall

amplification of up to 105 [65]. This high amplification was desirable for the 22Ne(6Li,d)26Mg and

22Ne(7Li,t)26Mg reactions where the particles detected in the Oxford detector are Z=1 ions that

have small specific energy losses in the gas.

The positive ions created during the avalanche process are collected by the mesh while the pads

collect the charge from the electrons. The positive ions that escape the mesh are then collected by

the Frisch Grid. The output signal from each pad is the sum of the ion-induced signal and the
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signal from the electrons.

3.1.3.3 Modification

The original Oxford detector consisted of an entrance and exit windows for the gas section

made of aramica foil. The thicknesses of these two windows are 25 µm and 50 µm, respectively.

Each window is 6 cm high and 30 cm wide. Due to these windows, the gas volume can handle

pressures up to 150 Torr. The original Oxford detector also has a plastic scintillator made of

BC-400, which is attached to the exit window frame and lies behind the exit window. The light

produced by the scintillator is collected by two Hamamatsu photomultiplier tubes connected to

either end of the scintillator.

Figure 3.10: Schematic of the new exit flange of the Oxford detector holding 7 Cesium Iodide
detectors.

For the study of the 22Ne(6Li,d)26Mg and 22Ne(7Li,t)26Mg reactions, the deuterons and tritons

will lose a few MeV in the Oxford detector and will lose more energy while travelling through the

50 µm thick exit window. Once the particles have passed through the window the residual energy

falls in the noise regime for the plastic scintillator that originally came with the Oxford detector. In

order to overcome this obstacle, it was necessary to remove the exit window, the scintillator, and

the photomultiplier tubes. This entire back unit was replaced by a new back flange that held seven
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CsI(Tl) scintillator detectors (Figure 3.10). This flange contains an O-ring to ensure that the gas

pressure of the Oxford can be controlled without an exit window. Each detector has an active area

of 50 mm x 50 mm, and a thickness of 40 mm. Each CsI detector is individually wrapped by 2 µm

Mylar foil, and has a resolution of 2.8%.

3.1.4 The DAQ System / Electronics

Component Bias (Volts)

Silicon detector -150

CsI detectors +60

Cathode -800

Proportional counter wires +1000

microMegas pads +360

Shell +100

Table 3.1: The biases used for the various components of the Oxford detector and target chamber.

The voltage biases used for the various detector components are listed in Table 3.1.

For each proportional counter wire, the position along the wire (POS) can be calculated using

the left (L) and right (R) signals after the Analog-to-Digital Converter (ADC) using the following

formula:

POS = A
L

L+R
. (3.2)

Here A (=1024) is the number of channels in the histogram for the position along the pro-

portional counter wire, and L/R are the charges induced at the left/right end of the wire. Each

end of the 4 wires was connected to a Canberra 2004 preamplifier, and all the preamplifiers were

connected to a CAEN N568B 16-channel spectroscopy amplifier. The wires were biased using the
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preamplifiers on the right side of each wire. The bias applied for the wires depends on the required

gas gain and can vary from experiment to experiment.

For the microMegas pads, row 1 and 2 were connected to a Mesytec MPR-16 preamplifier. A

second similar preamplifier was used for row 3 and 4 (4 rows total). Both of these preamplifiers

were then connected to a Mesytec MSCF-16 shaper amplifier.

All the signal amplitudes were digitized using Mesytec MADC-32 (analog to digital converter)

32-channel modules, and the timing signals were obtained using a 128-channel Caen V1190 TDC

(time to digital converter) module. The schematic for the analog electronic signals is shown in

Figure 3.11. The coincidence between the two shaper module triggers from the two sections of

the microMegas detector was taken as the first level of trigger. Next, this was combined with the

signal from the CsI detector array. For the final trigger, the CsI and microMegas coincidence was

combined with the silicon detector trigger using a Philips Quad 4-Fold Logic Unit along with the

DAQ veto (dead-time) signal, in order to record only the events of interest (Figure 3.12). One logic

output of this module was then used as the trigger for the acquisition. Another output was sent to

an Ortec 8010 Gate and Delay Generator module to create the logic gates for the ADC modules.

The Gate and Delay Generator created a 6.4 µs gate for the ADC modules. A third output was used

to trigger the TDC module (see Figure 3.13). The silicon detector timing signals were prescaled

by a factor of 100 to reduced the amount of data recorded for the silicon detector. The silicon

and CsI detector array analog signals were also send to a Mesytec MPR-16 preamplifier, Mesytec

MSCF-16 shaper amplifier and Mesytec MADC-32 modules respectively.

Data events were collected using a VME electronics crate and observed, recorded and analyzed

with a software created in Linux, using the C++ based ROOT framework [66].

3.2 Experimental Procedures

Before using the 22Ne beam for the study of interest, we first employed a 8 MeV deuteron beam

from the K150 Cyclotron for calibrations and to normalize the Faraday cup. The energy of this

deuteron beam was chosen such that it was very similar to the energies of the deuterons produced

by the 22Ne(6Li,d) reaction. For this study, the single-slit mask was used in the collimator box
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Figure 3.11: Electronic schematic (C ≡ Caen, M ≡ Mesytec)
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Figure 3.12: Timing signal schematic (C ≡ Caen, M ≡ Mesytec, MuO ≡ microMegas)
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Figure 3.13: The trigger setup schematic (C ≡ Caen, M ≡ Mesytec)

to obtain a narrow recoil beam. Several calibration measurements (explained later in the section)

were then done using elastic scattering of the deuteron beam on 197Au target foil of thickness

198 µg/cm2. The intensity of the deuteron beam was 150 pnA at the target location. The narrow

deuteron beam is sent across the MDM spectrometer and into the Oxford detector.

3.2.1 Detector Center and Deuteron Beam Energy

The energy of the deuteron beam was found by observing the elastically scattered deuterons

in the silicon detector placed in the target chamber. Each quadrant of the silicon detector was

calibrated using a 4-peak alpha source consisting of four different radioactive isotopes: 148Gd,

239Pu, 241Am and 244Cm. The energies of the peaks of the alpha source were 3.117, 5.142, 5.474

and 5.787 MeV. Taking into account the energy loss of the deuterons in the 0.5 µm dead layer of

the silicon detector, the deuteron beam energy was found to be 7.8 MeV. An additional check for

the deuteron beam energy was also carried out by sending the elastically scattered deuteron beam

into the Oxford detector, and by recreating the deuteron energies at the target location using the

code MDMTRACE. Both of these methods result in a very similar deuteron beam energy of 7.8

MeV.

MDMTRACE is a code which runs the computer code RAYTRACE [62] in a ’reverse’ direc-

tion. By using the RAYTRACE code for the MDM spectrometer and Oxford detector, the path of

a particle can be tracked from the target location until the end of the focal plane Oxford detector.

This code takes into account the effects of all the magnetic elements along the path of the particle

43



such as the multipoles and dipole defining the MDM spectrometer. The main function of RAY-

TRACE is to track a particle (with a specific magnetic rigidity) right after the reaction location

(generally a solid target) with a given initial energy and angle from the beam axis. The output of

RAYTRACE gives the location of the particle in each of the 4 proportional counter wires of the

Oxford detector. The angle of the particle relative to the center axis of the Oxford detector can

be found using the positions along any two proportional counter wires. The MDMTRACE code

was developed at Texas A&M University Cyclotron Institute to use the properties of RAYTRACE

and do a reverse calculation. MDMTRACE uses the position of a particle along the 4 wires of the

Oxford detector obtained experimentally for specific magnetic fields of the magnetic elements of

the MDM spectrometer, and finds the corresponding energy and angle at the target location using

a chi-square minimization routine.

Since the microMegas detector is centered on the center axis of the Oxford detector, and since

the pads of the microMegas detector have a well-defined width, the center of the detector can

be found using the central column of the microMegas. The elastically scattered deuteron beam

through the Oxford detector can be swept from one corner to the other corner by changing the field

of the dipole magnet. The dipole field values were found for the two edges of the central column

of the microMegas detector by observing the charge collected by each pad on either side of an

edge. When the charge is equal on either side of an edge, it means that the magnetic field is set

right along the edge. In this manner, once the field values for both edges of the central column

were found, the mean of these two values will provide the dipole field for the detector center for

the deuteron beam.

3.2.2 Energy Calibration of the Oxford detector.

The elastically scattered deuterons have an energy of 8 MeV within the Oxford detector. Since

energies are very close to the deuteron energies from the 22Ne(6Li,d)26Mg reaction, this beam was

used to calibrate the microMegas pad energies and the CsI detector energies. The raw deuteron

spectrum obtained from the CsI detector located along the center of the Oxford detector is shown

in Figure 3.14. The channel spectrum from the ADC for the CsI detectors and microMegas pads
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Figure 3.14: The raw spectrum of elastically scattered deuterons from the CsI detector located
along the center of the Oxford detector.

were calibrated for 3.5 keV/channel and 5.5 keV/channel respectively.

3.2.3 Gain-matching the wires

Before any new measurement with the Oxford detector is performed, the 4 avalanche counter

wires have to be gain-matched. The elastically scattered deuteron beam used to find the center of

the Oxford detector was also used for the gain matching. For this, all the right-side (R) signals of

the 4 wires were set to the same gains in their respective shapers. Since there are 1024 channels in

the histograms for the position along each wire, the gains of the left-side (L) shapers were changed

until the peak due to the beam appeared at channel 512 for each wire.

Once all the wires were gain-matched, the position resolution for each wire were calculated by

fitting a gaussian to the deuteron beam peak for the detector center run. The wire resolutions were

as follows:
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Wire number Resolution (mm)

1 3.6

2 4.0

3 5.2

4 6.4

Table 3.2: The position resolution for 7.8 MeV deuterons for the 4 wires of the Oxford detector.

3.2.4 Position Calibration

The position calibration for the signals from the 4 wires was done using the collimated deuteron

beam and the edges of the pads of the microMegas. Following the same procedure detailed in Sec-

tion 3.2.1, seven (7) "beam sweep" measurements were taken for every pad edge and the detector

center (one detector center measurement and 3 inter-pad locations on either side).

Figure 3.15: Two-dimensional plot for wire 1 with the left and right signals from the ADCs for the
beam sweep plotted against each other. Units are in ADC channel numbers.
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Once these 7 measurements were done, then the MINUIT2 minimization function of ROOT

was used to calibrate the positions of each wire. The procedure for the calibrations is described

below.

First, each signal obtained for each wire from the left side (L) is assumed to have a linear

response. This linear response is defined using two undetermined variables A and B, and the same

for the right side (R) with variables C and D. Then these two signals will be "A + BL" and

"C +DR". Then Equation 3.2 becomes:

POS =
(A+BL)

(A+BL) + (C +DL)
(3.3)

Equation 3.3 only gives a ratio. In order to compare this with the known positions for the pad

edges, this has to be converted to measurable units. This is done using two additional variables E

and F , to be determined. Then the ratio in Equation 3.3 becomes,

P (L,R) = E ∗
( A+BL

A+BL+ C +DL

)
+ F (3.4)

Here, P (L,R) is the position for one wire calculated as a function of the left and right signals

from the ADCs. Next, the positions for each wire for the 7 different magnetic fields correspond-

ing to the 7 beam sweep measurements were calculated using the RAYTRACE code. Then a χ2

minimization was done between the RAYTRACE position values and the experimental position

obtained using Equation 3.4 for each of the 4 wires, and the parameters A through F were found

for each wire. Finally, these parameters were used to obtain the position of each particle along the

wire in units of centimeters. The calibrated positions of the beam sweep measurements (“Exper-

imental Pos”) plotted against the theoretical values obtained by RAYTRACE (“Theoretical Pos”)

are shown in Figure 3.16. The y-axis in the plot in Figure 3.16 is restricted to show the actual total

length of 30 cm of each proportional counter wire.
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Figure 3.16: Two-dimensional plot for wire 1 with the calibrated experimental positions against
the theoretical positions.

3.2.5 Faraday Cup Normalization

In order to properly count the incoming beam particles, it is necessary to normalize the Faraday

cup (FC) placed downstream of the target location. This normalization should be done with the

Faraday cup placed at the location it will remain during the experiment, and it should be done at

the beginning of every experiment.

σRuth =

(
ZtargetZbeam e

2

4E

)2
1

sin4(θ/2)
. (3.5)

Equation 3.5 gives the formula to calculate the Rutherford cross section. Here, E is the en-

ergy of the beam, e is the electron charge, Z is the atomic charge and θ is the c.m. scattering

angle. Accounting for the finite mass of the target (M ) and the projectile (m), Equation 3.5 can be

generalized as follows.

σRuth =

(
ZtargetZbeam e

2

2E

)2
1

sin4 θ

{cos θ ± [1− (m/M)2 sin2 θ]
1/2}2

[1− (m/M)2 sin2 θ]
1/2

. (3.6)

The normalization is done at small laboratory angles using a very heavy target, ensuring that
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the elastic scattering is mainly the Rutherford cross section (σRuth). In this particular case, the

same deuteron beam and the Au foil used for position calibration measurements were also used for

the Faraday cup normalization.

Data was taken for a specific number of counts in the beam current integrator and the ex-

perimental cross section (σexp) can be calculated. Then it is compared with the theoretical cross

section given by Equation 3.5. The ratio of the theoretical and experimental cross sections obtained

in this manner (f ) is used to correct for the counts from the current integrator (FCcorr) for further

calculations:

f =
σexp
σRuth

FCcorr = f × FC
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4. DATA ANALYSIS AND RESULTS

The 1 MeV/u 22Ne beam from the K150 Cyclotron was used to measure the 22Ne(6Li,d)26Mg

and 22Ne(7Li,t)26Mg reaction cross section using the 6LiF and 7LiF targets. A detailed description

of the experimental procedures, theoretical analysis and results for these two measurements are

presented in this chapter.

4.1 Cross section normalization procedures

It is critical to obtain accurate and verifiable normalization in this experiment to have reliable

absolute values for the cross section. Elastic scattering of 22Ne on 6Li was used for this purpose,

as described below.

The K150 Cyclotron provided a 22Ne beam with charge state 3+. When the beam is travelling

through the target, the electrons of the 22Ne beam interact with the atoms in the target, and the

equilibrium charge state of 22Ne ions after the target is different than the initial one. We have

evaluated the effective charge state after the target using the following procedure.

1500 2000 2500 3000 3500 4000 4500 5000

Channels
0

50

100

150

200

250

300

350

400

C
ou

nt
s

C)12Ne (22

Li6
Li7

O)16Ne (22

F)19Ne (22

C12

F19

Figure 4.1: The spectrum from quadrant 2 of the silicon detector. The various peaks arise from the
22Ne beam elastically scattering off of the various components of the target (12C, 19F and 16O), as
well as elastically scattered 6Li, 7Li, 12C and 19F from the 22Ne beam.
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The beam current was measured by the Faraday cup, located at zero degrees after the target

using a blank target frame. The beam current was monitored between the measurements with

the 6LiF target and a blank target by the Faraday cup upstream of the target. It was found that

the Faraday cup reading was about a factor of two higher with the target than without. Hence,

the equilibrium charge state of the 22Ne beam has changed from 3+ to about 6+ after the target.

This gives as approximate initial normalization, but the more accurate normalization procedure is

described below.
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Figure 4.2: The elastically scattered 6Li peak in the silicon detector (zoomed from Figure 4.1) fit
with a flat background below the peak from channel 3100 to 3400, and a Gaussian fit to obtain the
true number of counts in the peak.

The 6Li ions in the target which are elastically scattered from the 22Ne beam were measured in

the silicon detector installed inside the scattering target chamber as well as by the Oxford detector

at two different angle settings of the MDM spectrometer (5◦ and 10◦ from the beam axis). The

spectrum from the 2nd quadrant (upper right) of the silicon detector from the 22Ne beam on the

6LiF target is shown in Fig. 4.1. The peaks in Fig. 4.1, going from left to right, are: the 22Ne

elastically scattered on carbon backing of the LiF target, the elastically back-scattered 6Li ions, a

small contribution from elastically back-scattered 7Li ions overlapping with 22Ne ions elastically
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scattered on 16O that is present on the surface of the target, the 22Ne ions elastically scattered on

the fluorine target nuclei, and the 12C and 19F ions back-scattered by the 22Ne beam. As seen in

Figure 4.1, the background introduced by other various elements have to be subtracted to obtain

the number of back-scattered 6Li.

Figure 4.3: Curve fit to obtain pure elastically scattered 6Li in the silicon detector for 5◦ MDM
angle.

For the elastically scattered 6Li peak in the silicon detector, two extreme background subtrac-

tion cases were considered to obtain the proper number of elastically scattered particles. One was

assuming a flat background under the 6Li peak. The Gaussian fit, which includes the flat back-

ground for the 6Li peak is shown in Figure 4.2. Another assumption is that there is no “flat” back-

ground, only a contribution from neighboring peaks that are accounted for by a multi-Gaussian fit

as shown in Fig. 4.3. The systematic error associated with the assumptions made on the shape of

the background was found to be 4.5.

The Oxford detector and the MDM spectrometer were used to measure the elastically back-

scattered 6Li ions at large c.m. angles (160◦ and 170◦). The raw spectrum obtained from the

2nd proportional counter wire of the Oxford detector is shown in Figure 4.4 for the spectrometer
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Figure 4.4: The raw spectrum from the 2nd proportional counter wire of the Oxford detector when
the dipole field was set to accept 6Li elastically scattered from the 22Ne beam. The physical length
of the wire spans from -150 mm to +150 mm. Unlike from the silicon detector, the absence of any
background when using the MDM spectrometer is evident from this spectrum.

at 170◦ in center of mass. This x-axis of this figure is the position along the wire where the

center of the detector is at 0 mm after the position calibration (the total length of the actual wire

is 300 mm, i.e 150 mm to each side from the center of the detector). As seen in this figure, a

background subtraction is not necessary. Only a peak associated with the elastically scattered 6Li

ions is observed. Using the number of 6Li ions measured in the Oxford detector, the nominal

elastic scattering cross sections can be calculated.

The experimental cross section (dσ/dΩ) in the center of mass frame can be calculated as fol-

lows:

dσ

dΩ
=

Nk

It∆Ω
(4.1)
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I =
Amount of charge collected

(Electron charge) x (Charge state)
(4.2a)

t =
(Target thickness in g/cm2) x (Avagadro constant)

Atomic mass of the LiF
(4.2b)

where N is the number of counts in the peak of interest, k is the conversion factor between

lab and center-of-mass frames, I is the total number of beam ions impinged on the target, t is the

effective target thickness (Equation 4.2b) and ∆Ω is the solid angle. The Faraday cup used for this

measurement gives a signal measured using a current integrator, producing the total accumulated

charge.

The silicon detector placed in the target chamber has a collimator in front of it with slits de-

scribed in Section 3.1.1. Using the distance to the collimator and the dimensions of the slits,

the solid angle for the 2nd quadrant can be accurately calculated. This, the values obtained from

the faraday cup, the charge state of the beam, the nominal target thickness and the background-

subtracted number of 6Li peak counts from the silicon detector can be used in Equation 4.1 to

calculate the elastic cross section for the angle of the silicon detector (see Figure 4.5). Here,

three nominal cross sections for the 2nd quadrant of the silicon detector have been calculated for

the number of counts recorded in three separate measurements: 1) Detecting deuterons from the

(6Li,d) transfer reaction (magenta circle in Figure 4.5) 2) Detecting elastically scattered 6Li for

the MDM spectrometer placed at 5 degrees (red circle in Figure 4.5), and 3) Detecting elastically

scattered 6Li for the MDM spectrometer placed at 10 degrees (blue circle in Figure 4.5). For the

last two measurements, the MDM spectrometer used the ’4-by-1’ mask (described in the previous

Chapter) which has a nominal solid angle of 1.25 millisteradians (msr). Using this, along with the

number of 6Li particles detected in the Oxford detector, the nominal elastic cross sections can be

found for the two different angles of the MDM spectrometer (5◦ (red triangle in Figure 4.5) and 10◦

(blue triangle in Figure 4.5)) as well. The two laboratory angles of the spectrometer correspond
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Figure 4.5: The Rutherford cross section (solid curve) along with elastic scattering cross sections
calculated using optical model calculations (dashed curves) for 3 different entrance channel poten-
tials. These individual points are the elastic cross sections calculated using nominal values for the
2nd quadrant of the silicon detector in the target chamber and for two different angles of the MDM
spectrometer.

to 170◦ and 160◦ in the c.m frame, respectively. These five different cross section data points (3

for the silicon detector quadrant and 2 for the two angles of the MDM spectrometer) are shown in

Figure 4.5. The measurements of detecting elastically scattered 6Li using the MDM spectrometer

was performed after the transfer reaction measurements. Hence, the reason that the nominal cross

sections are lower compared to the theoretical cross sections could be due to the degradation of the

thin 6LiF targets. The large uncertainties introduced by the charge state of the beam and the target

thickness results in the nominal cross sections to be lower than the theoretical cross sections.

The theoretical elastic scattering cross sections, calculated using three different entrance chan-

nel optical model potentials (dashed curves) using the code FRESCO [43] (described in detail in
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Section 4.6), are also shown in Figure 4.5 along with the Rutherford cross section (solid curve).

At the c.m angle for the silicon quadrant (118◦), the theoretical cross section is about 70% of the

Rutherford cross section. The difference is increased at larger angles. The systematic uncertainty

due to the optical model parameters is about 20%. It is evaluated based on the variations of the

calculated cross section when different potentials are used.

It can be seen from Figure 4.5 that the elastic scattering cross sections calculated using nominal

values for target thickness, solid angle, etc. are in relative agreement with the cross sections

calculated using theoretical models even without any application of normalization procedures. It

also indicates that there is significant variation if one relies on the beam integral recorded by the

Faraday cup (which was not electron suppressed). This is likely due to several factors, such as

variations in beam geometry, and possible target degradation. We have employed the normalization

to elastic scattering to avoid these uncertainties. It also has an additional important benefit of

significantly reducing uncertainties associated with the choice of optical model potential in the

entrance channel, as will be discussed later in this section.

Using the theoretically calculated elastic scattering cross section at the c.m. angle for the 2nd

quadrant of the silicon detector (which is about 70% of the Rutherford cross section), the number

of background-subtracted 6Li ions in the silicon detector, the solid angle for the silicon quadrant

and the kinematic conversion between lab and c.m frames (k), the product of (It) in Equation 4.1

can be accurately calculated. The theoretical cross section is obtained using the global 6Li optical

model parameter set described in section 4.6.1.1.

The elastic scattering cross sections from FRESCO and the number of elastically-scattered

6Li observed using the spectrometer can then be used in Equation 4.1 along with the previously

calculated (It) factor to find the corresponding solid angle of the MDM spectrometer. Consistency

of this method was checked using the measurements at both angles (5◦ and 10◦) of the MDM

spectrometer. The solid angles calculated for both of these were 1.01 and 1.11 msr respectively.

The error budget for the solid angle calculations is given in Table 4.1.

For these two measurements, elastically scattered 6Li from the 6LiF target was measured in
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Quantity Component Statistical Systematic

Error (%) Error (%)

Number of counts from silicon (Nsi) ± 5.5 ± 4.5

∆ΩMDM,5 Number of counts from Oxford (NMDM) ± 4 -

Theoretical elastic cross section - ± 7

Number of counts from silicon (Nsi) ± 2.3 ± 4.5

∆ΩMDM,10 Number of counts from Oxford (NMDM) ± 1.5 -

Theoretical elastic cross section - ± 7

Table 4.1: The error analysis for the determination of the solid angle of the MDM spectrometer
using elastic scattering measurements done at 5◦ and 10◦.

the Oxford detector. The number of 6Li particles measured in the detector for these cases along

with corresponding number of elastic 6Li measured in the 2nd quadrant of the silicon detector in

the target chamber provides the statistical uncertainty. For both cases, the systematic error arises

from the uncertainty of the theoretical elastic scattering cross sections (∼ 7%) calculated using

FRESCO, and the uncertainty in the number of counts in the 6Li peak in the silicon detector after

background subtraction. The final solid angle is taken as the weighted average between these two

values, which is 1.09 ± 0.03(stat) ± 0.08(sys) msr.

4.2 Alpha transfer reaction measurements

To measure the 6Li(22Ne,d)26Mg∗ reaction, the magnetic field of MDM Spectrometer was set

for 6.5 to 7.5 MeV deuterons, the relevant energy ranges for populating the excitation energies of

26Mg corresponding to the Gamow energy window for the 22Ne(α,n) reaction in the AGB stars.

The Gamow energy window for this reaction lies at ∼ 10.7 MeV - 11.4 MeV in excitation energies

of 26Mg.

The magnetic field setting for deuterons populating the center of the Gamow window was

approximately found using the RAYTRACE code, and this value was set as the dipole field value of

the MDM spectrometer. The deuterons were measured in the Oxford detector. Using the calibrated
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positions for the four proportional counter wires and the MDMTRACE code, the energies and

angles of the deuterons right after the target were reconstructed. The spectrum of deuterons is

shown in Fig. 4.6.
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Figure 4.6: The deuteron energy spectrum reconstructed from the tracks in the Oxford detector for
the 22Ne(6Li,d)26Mg transfer reaction.

4.3 Analysis of the 26Mg Excitation energies

Once the deuteron energies have been recreated using MDMTRACE (Figure 4.6), their ener-

gies at the center of the 6LiF target are reconstructed using the energy losses through the carbon

backing and half of the 6LiF. After these energy losses are accounted for, the deuteron energies can

be converted into excitation energies of 26Mg.

Q =
(M3 +M4)

M4

E3 −
(M4 −M1)

M4

E1 − 2 cos θ

√
M1M3E1E3

M4

(4.3)

Using the reconstructed deuteron energies and angles, the Q-value for each event can be calcu-

lated using Equation 4.3. The Q-value for a reaction is the amount of energy which is absorbed or

58



released during the nuclear reaction. Here, M is the mass and E is the energy. The subscripts are

defined as follows: 1 = Beam particle, 2 = Target particle, 3 = Light recoil, 4 = Heavy recoil.

Ex = Q0 −Q (4.4)

Once the Q-values has been calculated, the corresponding excitation energies (Ex) can be found

by subtracting this from the Q-value for the ground state of the heavy recoil (Q0) as shown in

Equation 4.4. The ground state Q-value is calculated using the masses of the individual particles

involved.

Figure 4.7: The excitation energy spectrum of 26Mg reconstructed from deuteron energies for the
22Ne(6Li,d)26Mg transfer reaction.

The reconstructed 26Mg excitation energy spectrum from the 22Ne(6Li,d)26Mg reaction is shown

in Figure 4.7. The curve shown in this figure is a Gaussian fit for the four peaks. In order to obtain

this curve, the isolated peak at 11.3 MeV in excitation energies was fitted with a Gaussian function

(f(x)) and the width of that state was set as the width for all the 4 states.
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f(x) = Aexp
(
− (x− b)2

2σ2

)
(4.5)

By fitting the peak at 11.3 MeV of Figure 4.7, a standard deviation for the peak (σ) was found

to be ∼40 keV. Using this value, the full-width at half maximum (FWHM) experimental resolution

is calculated as 2
√
2ln2 σ = 94 keV. Then the curve in Figure 4.7 was obtained by combining four

Gaussian fits with the standard deviations set to 40 keV centered at the respective peak locations

obtained from individual gaussian fits. It is important to note that the same σ=40 keV was extracted

also by fitting the spectrum obtained from track reconstruction of elastically scattered deuterons

from the 197Au target into the Oxford detector. This implies that the experimental resolution is

mainly influenced by the detector resolution and the reconstruction procedure.

Area of a Gaussian curve = A× σ ×
√
2π (4.6)

Peak location (MeV) Number of counts in the peak

11.30 (2) 206

11.08 (2) 66

10.95 (2) 98

10.83 (2) 62

Table 4.2: The excitation energies and the number of counts in the peaks for the excitation energy
of 26Mg.

Using the complete multi-Gaussian fit, the number of counts for each peak can be found using

Equation 4.6 and the parameters from the fit. The peak locations and number of counts for each

peak are listed in Table 4.2. Similarly to the solid angle calculations, the (It) normalization factor

should also be found for the (6Li,d) runs using the corresponding elastic scattering peak in the

silicon quadrant (Figure 4.3).
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Using the number of counts per each peak (N ) and the solid angle of the spectrometer, com-

bined with the (It) value established from elastic scattering (see previous section) the experimental

cross sections for each resonance can be calculated using Equation 4.1. The corresponding cross

section for the 6Li(22Ne,d)26Mg reaction, performed at 21.7 MeV energy of 22Ne beam and popu-

lating the near α-threshold states in 26Mg is given in the Table 4.3.

Excitation energy (MeV) Adopted values (MeV) Experimental Cross section (µb/sr)

11.30 (2) 11.3195 (25) a 82 ± 6 (stat) +13
−8 (sys)

11.08 (2) 11.08 (2) b 26 ± 3 (stat) +4
−3 (sys)

10.95 (2) 10.95 (2) b 39 ± 4 (stat) +6
−4 (sys)

10.83 (2) 10.82 (2) b 24 ± 3 (stat) +4
−3 (sys)

Table 4.3: The cross sections of the peaks in the excitation energy spectrum of 26Mg.
aAdopted from Ref. [9].
b Averaged between current and previous measurements (described within the chapter).

The statistical and systematic errors associated with the calculation of the (It) factor and the

experimental cross sections are listed in Table 4.4. The statistical uncertainty for the (It) factor

arises from the number of counts for elastically scattered 6Li detected in the 2nd quadrant of the

silicon detector placed at 31◦ from the beam axis in the target chamber. The systematic errors

arises from: the different optical model potentials used to calculate the elastic scattering cross

section at that angle, the uncertainty in the solid angle for that silicon quadrant and the uncertainty

in the subtraction of the background from the spectrum of the Si detector at 31◦ to obtain the “true”

number of elastically scattered 6Li.
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Quantity Component Statistical Systematic

Error (%) Error (%)

Number of counts from silicon (Nsi) ± 0.4 ± 4.5

(It) Solid angle of the silicon detector quadrant (∆Ω) - ± 2

Theoretical elastic cross section - +13
−3

(It) factor ± 0.4 +6
−14

Solid angle of the MDM spectrometer (∆ΩMDM) ± 3 ± 8

dσ/dΩ Number of counts in the 11.30 MeV peak (N11.30) ± 7 -

Number of counts in the 11.08 MeV peak (N11.08) ± 12 -

Number of counts in the 10.95 MeV peak (N10.95) ± 10 -

Number of counts in the 10.83 MeV peak (N10.83) ± 13 -

Table 4.4: The error analysis for the determination of the (It) factor and the experimental cross
sections

4.4 Overview of previous direct measurements of 22Ne(α,n) and 22Ne(α,γ) reactions.

Several direct measurements to study the excitation functions of the 22Ne(α,n)25Mg reaction

have been performed previously [32, 31, 27, 26]. Remarkable progress in suppressing the back-

ground was shown in the latest direct measurement by Ref. [4]. This work provides independent

data on the partial α-widths for the lowest resonance observed in direct measurements at a cen-

ter of mass energy of 704 keV for 22Ne+α, corresponding to the 11.319 MeV excitation energy

in 26Mg (832 keV resonance energy Eα in Figure 4.8), and also for near α-threshold resonances

at lower excitation energy. The (α,n) strength of the 11.3 MeV resonance was measured to be

118±11 µeV [4]. Additionally, a strong limit is given in Ref. [4] for another resonance located at

537 keV (11.152 MeV excitation energy in 26Mg). The 11.15 MeV resonance has been previously

reported in Ref. [5]. It is important to point out that neutron resonance strength measurements

are inconsistent, ranging from 80(20) [31] to 200(36) [7] µeV. The Gamow energy window for the

22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions lies between ∼200-800 keV in c.m. This range can-
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Figure 4.8: The excitation energy spectrum from a direct 22Ne(α,n)25Mg measurement from Ref.
[4]

not be entirely covered by direct measurements due to the small cross section and high background

conditions. Hence, the possible contributions from lower lying resonances of 26Mg (below Ec.m =

704 keV) have to be measured using indirect methods. The lowest resonance observed at 704 keV

using direct measurements corresponds to the highest excitation energy peak in the spectrum from

the present study. The present work covers the entirety of the Gamow energy window (Figure 4.7).

There have been previous direct studies to explore the 22Ne(α,γ)26Mg reaction as well. One

prominent measurement was done by Ref. [26] where the 11.3 MeV state was measured at Ex

= 11313.4 ± 4.2 keV (corresponding to Eα(lab) of 828 ± 5 keV, and a resonance strength of ωγ

= 36 ± 4 µeV). Another more recent measurement was published in 2019 [9]. Here, the state at

11.3 MeV in the present study has been observed at Ex = 11319.5 ± 2.5 keV (corresponding to

Eα(lab) = 835.2 ± 3.0 keV, and a resonance strength of ωγ = 46 ± 12 µeV). The weighted average

between these two measurements is taken as the adopted resonance strength of the state for the

(α, γ) reaction, ωγ = 37 ± 4 µeV for future discussions.
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4.5 Comparison to the previous (6Li,d) measurements performed at higher energies

(a) (b)

Figure 4.9: Previously published 26Mg excitation energy spectra for higher energies obtained by
a) a 32 MeV measurement by Ref. [5] and b) a 82 MeV measurement by Ref. [6].

There have been several previous experimental efforts to use indirect techniques to study the

resonances in 26Mg which potentially could contribute to the reaction rates of the 22Ne(α,n) and

22Ne(α,γ) reactions. Some of these efforts include the use of the 22Ne(6Li,d) α-transfer reaction [5,

6, 67] to populate excited states of 26Mg. Two previous measurements performed at two different

energies were used for comparisons with the results of the current work; the most recent work

by [6] which used a 6Li beam of 82.3 MeV and another work by [5] which utilized a 32 MeV

6Li beam. Additionally, the work by [6] provides details regarding an (α,α’) inelastic scattering

measurement to populate the states of 26Mg using an alpha particle beam of 206 MeV. Due to the

extremely high level density of 26Mg in the excitation energy range of interest, it is difficult to

uniquely link the states populated using the 26Mg(α, α’) reaction to those observed in 22Ne(6Li,d).

The peak at 11.3 MeV within the Gamow energy window is a common feature in all three

measurements. It is dominant within the Gamow window in the current measurement and in Ref.
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[6]. A significant difference between the excitation energy spectrum obtained in this dissertation

and in Ref. [6] is a state at 11.17 MeV. In Ref. [6], this state is populated as strongly as the 11.3

MeV state. It is absent in the current measurements as well as in the 32 MeV measurement [5].

The state observed in the current measurement at 10.95 MeV is also present in both of the

previous studies as well (10.95 MeV in [5] and 10.951(21) MeV in [6]). This peak has also been

previously observed in Ref. [67] using the same 22Ne(6Li,d) alpha-transfer reaction with a 30 MeV

beam of 6Li, and is located at Ex=10.953(21) MeV. The excitation energy value observed in all

4 of these measurements (present work included) averages to 10.95(2) MeV which is used as the

adopted value in Table 4.3.

The state at 10.83 MeV from the present study has also been seen in 2 previous (6Li,d) studies,

in Ref. [67] at Ex = 10.808(20) MeV and in Ref. [6] at 10.822(10) MeV. Since the uncertainties

for these measurements are roughly similar to the present study as well as Ref. [67], the average

of these are used as the adopted value for the excitation energy for this state in Table 4.3.

For the state at 11.08 MeV from the present study, it has been previously reported in Ref. [6]

at 11.085(8) MeV. A similar approach as for the 10.95 and 10.83 MeV states is used here and an

excitation energy of 11.084(20) MeV is adopted for the partial alpha width calculations (shown in

Table 4.3).

4.6 Theoretical analysis of the cross sections

A DWBA analysis of the α-transfer reactions using code FRESCO was performed to determine

the spin/parities and partial α-widths of the populated states. These calculations require knowledge

of interaction potentials for the partitions given in Table 4.5. The choices of parameters for these

potentials and uncertainties associated with these choices are described below.
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Interaction Description

Entrance Channel 22Ne + 6Li

Exit Channel 26Mg + d

Core-Core 22Ne + d

6Li Form Factor d + α

26Mg Form Factor 22Ne + α

Table 4.5: The various interactions for the 22Ne(6Li,d)26Mg α-transfer reaction.

4.6.1 Entrance channel optical model parameters

Three different optical model parameterizations for the 22Ne+6Li partition were considered.

Descriptions for each of these parameterizations are provided below. The entrance channel poten-

tials play an important role because they are the dominant source of theoretical uncertainty for the

analysis of the α-transfer reactions, as it will be clear from the discussion below.

4.6.1.1 Global 6Li potentials

V0 = 109.5 MeV,

rR = 1.326 fm, aR = 0.811 fm,

rI = 1.534 fm, aI = 0.884 fm,

rC = 1.3

W0 = 58.16− 0.328A+ 0.00075A2 MeV

(4.7)

A set of global optical model potentials for 6Li elastic scattering was provided by [68]. Here,

V0,W0, r, a denote the real and imaginary potential depths, the reduced radius and the diffuseness,
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respectively. The subscripts R and I denote the real and imaginary components. This has been

accomplished by fitting a large set of experimental 6Li elastic scattering data over a mass range of

24 - 208 and an energy range of 13 - 156 MeV. The parameters established in Ref. [68] are listed

in Equation 4.7. Here, A is the atomic mass of the nuclei interacting with 6Li.

4.6.1.2 Double-folding potentials

The double-folding potential model is described in 1979 by G. R. Satchler and W. G. Love

[46]. An optical potential for a A+ b system (U(R)) appears in the Schrödinger equation:

[
− h̄2

2µ
∇2 + U(R)

]
χ(R) = E χ(R) (4.8)

In Equation 4.8, µ is the reduced mass of the two particles, χ(R) is the wavefunction, R is

the separation of the particles in the center of mass and E is the center of mass energy. When the

proper boundary conditions are applied, χ(R) will be the elastic scattering between A and b. The

total wavefunction of the A + b system can be described using the internal eigenstates (ψ) of the

separate nuclei.

Ψ =
∑
i,j

ψbiψAjχij(R) (4.9)

Here, i and j are the internal states of b and A, respectively. χij(R) is the wave function that

corresponds to the relative motion between the i and j states. When i = j = 0, χ00 represents

elastic scattering. In order to obtain an equation similar to Equation 4.8 for χ00, an effective

potential Uop can be used.

Uop = UF (R) + ∆U (4.10)

where,

UF (R) = V00 = (ψb0ψA0|V |ψb0ψA0) (4.11)

where the term UF (R) is called the "folded potential". In a case where all the nucleons i are in
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one nucleus and j is from the other, UF (R) can be described using the distributions of the center of

mass of the nucleons in the ground state of each interacting nuclei (density distributions). Then for

UF (R), since there is an integration over two separate densities, this is often called the "Double-

folding model". Hence the double-folding model derives the real and imaginary parts of the optical

potentials from realistic nucleon-nucleon interactions and particle densities. More details can be

found in Ref. [69].

4.6.1.3 São Paulo potentials

The São Paulo potential [70] is a theoretical model mainly used for heavy-ion interactions

which uses the double-folding potential UF (R) described previously. The São Paulo potential

(V SP ) can be used to describe various other reaction mechanisms in addition to elastic scattering

(e.g. inelastic scattering, transfer reactions, etc.). This potential can be combined with coupled-

channel calculations to describe elastic processes near the Coulomb barrier.

V SP (R,E) = UF (R)× e−
4v2

c2 (4.12)

Equation 4.12 shows the form of the São Paulo potential. Here, c is the speed of light and v is

the local velocity between two interacting nuclei.

v2(R,E) =
2

µ

[
E − VC(R)− V SP (R,E)

]
(4.13)

The velocity v is given by Equation 4.13. VC(R) is the Coulomb potential and E is the energy.

By numerically solving Equations 4.12 and 4.13 in an iterative process, the São Paulo potential

can be found.

4.6.2 Exit channel and core-core optical model parameters

A global fit for the optical model potentials for deuterons used for this work was provided by H.

An and C. Cai in 2006 [71] for deuteron of energies Ed. This global fit was produced for incident

deuteron energies up to 183 MeV and a mass range of A = 12-238. A χ2 minimization routine to

68



minimize the deviation between the experimental data and the calculated cross section from the fit

was used to obtain the fit parameters. The parameters from Ref. [71] are listed below in Equation

4.14, where the notation is described in Section 2.4.

VR = 91.85− 0.249Ed + 0.000116E2
d + 0.642Z/A1/3

WD = 10.83− 0.0306Ed, WS = 1.104 + 0.0622Ed,

Vso = 3.557,

aR = 0.719 + 0.0126A1/3, aD = 0.531 + 0.062A1/3,

aS = 0.855− 0.100A1/3,

rR = 1.152− 0.00776A−1/3, rD = 1.334 + 0.152A−1/3,

rS = 1.305 + 0.0997A−1/3,

aso = 1.011, rso = 0.972, rC = 1.303.

(4.14)

Since the binding energy of deuteron is very low, most of the elastic scattering measurements

are performed at higher energies (∼5-10 MeV/u). Hence, the global fits for deuteron systems are

much better for higher energies. For optical model calculations, apart from the real potential, the

imaginary potential can be broken into many different scenarios such as surface, volume, etc. For

transfer reactions, most of the time, it is the surface effect that contributes the most. Hence for low

energies, the volume part could be safely ignored. In case of the compound nucleus contribution

(described later), the volume term is important. In this case, the volume imaginary part has to be

taken into account. Hence in a more realistic situation, both the surface and volume imaginary

parts have to be considered. When going to lower energies where the accuracy of the global fits

are unclear, it is a trade off between having a slightly more accurate fit with the volume term

considered along with the addition of three more parameters (depth, radius, diffuseness) for higher

uncertainties.

For this global fit, when the deuteron energy is increasing, the contribution of the real poten-

tial (VR) decreases, the imaginary surface potential (WD) decreases, and the imaginary volume
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potential (WS) increases (Equation 4.14).

4.6.3 Form factor potentials

Two different potential sets were chosen for the 22Ne+α form factor. One is a potential with

a larger interaction radius (potential A in Table 4.6) from [72], and the other is a potential which

fits the partial alpha widths of α-cluster states in 16O [73] (potential B in Table 4.6). In the work

presented here, it is assumed that a good measure for a realistic upper limit for the α-cluster widths

in 26Mg is provided by potential B since this potential reproduces the width of a well-known strong

α-cluster state. The potentials for the d+α system were obtained from Ref. [74].

The transfer reaction cross section for one state of 26Mg at 11.30 MeV was calculated using

FRESCO for the transfer of angular momenta L = 0, 1, 2 by the alpha particle using the three

different entrance channel potentials described above. The transfer reaction cross section depen-

dence for these three angular momenta are shown in Figure 4.10. Low angular momenta for the

transferred particles were chosen due to the fact that a sub-Coulomb energy was used for this study

(described in detail in Section 4.8). The global parametrization was chosen for further calcula-

tions for the entrance channel because it produced cross sections between the São Paulo and the

double-folding potentials. The selection of this potential set over other parametrizations does not

influence the principal conclusions of this work. As seen in Figure 4.10, the different optical model

parameter sets for the entrance channel do not significantly change the shape of the angular distri-

bution which is mainly governed by the Coulomb potential. The cross section at the higher center

of mass angles varies roughly within 30% in magnitude. However, there is a partial cancellation

of this theoretical uncertainty due to the normalization procedure adopted using elastic scattering

measurements.

The final potential parameters chosen for the DWBA calculations are shown in Table 4.6.

4.7 Attempt to obtain spin / parity assignments for the 11.30 and 10.95 MeV states of 26Mg

One of the difficulties regarding the evaluation of the astrophysical importance of resonances in

26Mg for the 22Ne(α,n) and 22Ne(α,γ) reaction rates using indirect methods is the lack of definitive
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Figure 4.10: The angular distribution of the cross section for L=0, 1 and 2 angular momentum
transfers.
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spin-parity Jπ assignments for the states of 26Mg within the Gamow energy window. Sensitivity of

the angular distribution of the (6Li,d) reactions to the transferred angular momenta is limited and

model dependent. Additionally, it has been noted that for higher energies of 6Li beam, there is a

strong dependence of the spectroscopic factors on the optical potentials [75].

Figure 4.11: The transfer cross section for the 11.30 MeV state in 26Mg for different transferred
angular momenta using different center of mass energies, present work (solid line), 32 MeV data
(dashed) and 82 MeV data (dotted)

A comparison is made between the results of the current measurement with the higher energy

(6Li,d) data mentioned previously in an attempt to constrain the spin-parities of the populated states

of 26Mg.

Figure 4.11 shows cross section calculations done using the three different energies of the

three experimental studies for different transferred angular momenta of the α-cluster. The cross

sections shown in this figure correspond to the respective center of mass angles of the observations

in question: small angles of 8◦ for [5] and 0◦ for [6] for previously published data, and 170◦ for the

present work. Each cross section calculation for the two higher energy data were performed using

the optical model parameters provided in the respective publication.
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The angular momentum of a grazing collision between two nuclei is given by L = keffR =

r0(A
1/3
1 + A

1/3
2 )

√
(2µ/h̄)(E −B) where A1, A2 are the masses of the nuclei involved, µ is the

reduced mass, E is the energy and B is the Coulomb energy at the point of contact of the nuclear

surfaces [76]. From this relation, it can be seen that an increase in the energy of 6Li results in the

possibility for higher transferred angular momenta. Hence, for the higher energies used by Refs.

[5] and [6], population of higher spin states of 26Mg is preferred. It should be noted that in the work

by Ref. [6], the 11.3 and 11.17 MeV states are mentioned to have rapidly falling cross sections at

larger angles and have only been observed at a single angle of zero degrees (along the beam axis).

Hence, for further discussion of spin-parity assignments, data from Ref. [6] will only used for the

lower lying excited states for further discussion.

Figure 4.12: The transfer cross section distributions obtained for the global and double folding
parameter sets for 32 MeV 6Li beam (corresponding to a 117 MeV 22Ne beam) scaled using the
spectroscopic factors established from the present measurement. The points represent the experi-
mental cross sections obtained by Giesen et al [5].
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The spectroscopic factor for the 11.3 MeV state was calculated for the current measurement us-

ing the experimental cross section at 170◦ in center of mass and the theoretical cross sections calcu-

lated using the global and double folding potentials for three different angular momenta (L=0,1,2).

Next, DWBA calculations were performed using the same optical model potential parameters for

the energy used in the work of Giesen et al. [5]. The theoretical cross sections obtained in this

manner were scaled using the respective spectroscopic factors and plotted along with the experi-

mental data obtained for the 32 MeV measurement. These scaled theoretical curves are shown in

Figure 4.12.

It is seen from Figure 4.12 that none of the two DWBA cross section distributions for any

choice of transferred angular momenta perfectly matches with the experimental data provided by

Giesen et al. It can also be seen here that the theoretical cross sections for the alpha transfer

reaction are extremely model dependent at these energies and further development of better optical

model potentials are needed for such cases.

It is also important to note that at the energies used by Giesen et al., the experimental data

could also have contributions from the compound nucleus reaction mechanism (indicative of the

relatively smooth angular distribution reported) that would affect the final cross sections reported

by the authors.

Hence, it can be concluded that using the spectroscopic factors from the current measurement,

a definitive spin-parity assignment for the 11.3 MeV state of 26Mg cannot be achieved.

4.8 Partial alpha widths of the states of 26Mg

Theoretical cross sections for the sub-Coulomb (Ec.m.=4.7 MeV) 22Ne(6Li,d)26Mg α-transfer

reaction at 170◦ in the center of mass frame were calculated for different transferred angular mo-

mentum for the state at 11.30 MeV using the global 6Li potentials (described in Section 4.6.1.1)

for the entrance channel. These calculations, shown in Fig. 4.13, demonstrate that low transferred

angular momenta (L less than 4) are preferred for the energies used for this study. The highest

cross section is obtained for L=2. After this point, the cross section drops rapidly.
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Figure 4.13: The α-transfer cross section at 170◦ in the center of mass for the 11.30 MeV state in
26Mg for different transferred angular momenta.

4.8.1 Partial widths using the ANC technique

In order to calculate the partial widths of the excited states of 26Mg, the wave functions for the

22Ne+α form factors were initially generated using the optical model potentials listed in Table 4.6.

The depth of the potentials were fitted individually for each state of interest in 26Mg so that they

would have the correct c.m. energy.

A typical shape of a wave function for the 22Ne+α system is shown in Figure 4.14. As ex-

pected, the wave function will have an oscillatory pattern resulting from the nuclear potentials

which defines the interactions of the nuclei at small distances. The amplitude of the wave function

smooths out at asymptotic distances (further away from the core). The number of times the ampli-

tude of the wave function crosses the zero value gives the number of radial nodes (N ) of the wave

function for which a minimum number is given by:

2(N − 1) + L =
v∑

i=1

(2(ni − 1) + li) (4.15)

The minimum number of radial nodes suitable for these wave functions while satisfying the

76



0 5 10 15 20 25 30 35 40 45 50
Radius (fm)

0.6

0.4

0.2

0.0

0.2

0.4

Am
pl

itu
de

 o
f t

he
 w

av
ef

un
ct

io
n

Figure 4.14: The shape of the nuclear wavefunction for the 11.3 MeV state.

Pauli principle were calculated using the Talmi-Moshinky transformation given in Equation 4.15

[77]. Here, ni and li are the principle quantum number and angular momentum quantum number

for the ith nucleon of the transferred cluster with v number of nucleons. L is the transferred angular

momenta by the alpha particle. All the constituent nucleons of an alpha particle transferred into the

ground state of 22Ne would occupy the 1d5/2 orbital of the sd-shell, giving 2N+L = 8 for positive

parity states (even L) and 2N + L = 9 for negative parity states (odd L). For higher excitation

levels, higher 2N +L values should be used. For the excited states of interest for the present study,

2N + L = 12 and 2N + L = 11 were used for positive and negative parity states respectively.

Using the number of nodes and various angular momenta of the α particle, the partial α widths

(Γα) can be calculated using a formalism described in Section 2.8. DWBA codes such as FRESCO

are designed to calculate the transfer cross sections only to bound states (positive binding energies).

Since all the states of 26Mg withing the Gamow energy window are unbound with respect to α

decay, an artificial binding energy is used (bound state approximation) and a linear extrapolation

to the correct resonance energy is then made. The extrapolation for the width of the 11.30 MeV

state for a L=0 transfer is shown in Fig. 4.15.
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Figure 4.15: Partial α width as a function of binding energy for L=0 angular momentum transfer
into the 11.30 MeV state of 26Mg. The vertical dashed line represents the correct binding energy
for this state.

An artificial parameter which is called the channel radius is defined to calculate the partial

widths using the ANC approach. When using the R-matrix calculations, for radii higher than

the channel radius, the solution for the wave function is analytical as the nuclear interaction is

negligible and the Coulomb energy is the only contribution. So, it is important to use a channel

radius that is large enough to escape the nuclear potential, but the exact values are still arbitrary and

the dependence of the final result on the specific choice of this parameter needs to be elucidated.

For the calculations of the partial αwidths, the penetrability factor and the Whittaker function were

calculated using a channel radius of R = 6.0 fm. This choice was made because it has been shown

to reproduce the width of the known cluster states in neighboring nuclei [55]. It was evaluated that

the uncertainty arising from this choice of the channel radius is ∼ 15 %, if it is varied between 5.5

and 6.5 fm.

It is important to point out that Γα from the direct 22Ne(α,n) measurement in Ref. [4] (with

the published assumption of an angular momentum transfer of L=2) and assuming that this state

decays predominantly via neutron decay, is approximately equal to the upper limit of the α cluster
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width (Wigner limit) for the state with Γα = 26 µeV. This is a very unlikely feature since there are

no well-known states with low spins that have similar properties in neighboring nuclei to 26Mg.

Such a pure configuration of a low spin state for excitation energies around 12 MeV is highly

unlikely to not mix with nearby states, which could provide a part of the cluster configuration. Due

to this reason, an assumption is made in the present study that the transferred angular momentum

in the 22Ne(6Li,d) reaction populating the 11.3 MeV state should be limited to L=2 or below. A

more detailed discussion of the spin-parity assignment for the 11.3 MeV state will follow.

The method described previously to calculate the partial α widths using ANCs was applied

for all the 4 states observed within the Gamow energy window. They are listed in Table 4.7.

The error analysis for all the four states is shown in Table 4.8. For the three states observed

below the neutron decay threshold (Ex = 11.093 MeV), the uncertainty for the calculated widths is

dominated by the large uncertainty in resonance energies (20 keV). We expect that future studies

will reduce this uncertainty by a factor of 10 (as in the case of the 11.3 MeV resonance) and

therefore the uncertainties given in Tables 4.7 and 4.8 exclude the uncertainty due to resonance

energy. This is done to highlight the uncertainties that result from these measurements of the

(6Li,d) and (7Li,t) reactions, that were not designed to provide accurate excitation energies for the

populated states. However, the final reaction rate uncertainties discussed in the next Chapter, will

include the resonance energy uncertainty. The error budget for each resonance is shown in Table

4.8.

Table 4.8: The error analysis for the determination of the partial alpha widths for the states of 26Mg
in the Gamow energy window for different transferred angular momenta L.

ER (MeV) L Component Statistical Systematic

Error (%) Error (%)

11.319 0 Experimental cross section ± 7 +16
−10

Resonance Energy - ± 8

Channel Radius - +11
−13

Theoretical cross section - ± 14
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Table 4.8 Continued

ER (MeV) L Component Statistical Systematic

Error (%) Error (%)

11.319 1 Experimental cross section ± 7 +16
−10

Resonance Energy - ± 8

Channel Radius - ± 15

Theoretical cross section - ± 14

2 Experimental cross section ± 7 +16
−10

Resonance Energy - ± 8

Channel Radius - ± 14

Theoretical cross section - ± 14

11.080 0 Experimental cross section ± 11 +16
−10

Channel Radius - +5
−13

Theoretical cross section - ± 14

1 Experimental cross section ± 12 +16
−10

Channel Radius - +15
−13

Theoretical cross section - ± 14

2 Experimental cross section ± 12 +16
−10

Channel Radius - +13
−12

Theoretical cross section - ± 14

10.950 0 Experimental cross section ± 10 +16
−10

Channel Radius - ± 12

Theoretical cross section - ± 14

1 Experimental cross section ± 10 +16
−10

Channel Radius - ± 12

Theoretical cross section - ± 14

2 Experimental cross section ± 10 +16
−10

Channel Radius - +12
−11

Theoretical cross section - ± 14
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Table 4.8 Continued

ER (MeV) L Component Statistical Systematic

Error (%) Error (%)

10.820 0 Experimental cross section ± 12 +16
−10

Channel Radius - +9
−10

Theoretical cross section - ± 14

1 Experimental cross section ± 12 +16
−10

Channel Radius - ± 10

Theoretical cross section - ± 14

2 Experimental cross section ± 12 +16
−10

Channel Radius - ± 10

Theoretical cross section - ± 14

4.8.2 Resonance at 11.17 MeV excitation energy in 26Mg

There have been many observations/predictions of a resonance at Ex = ∼11.15-11.17 MeV

in previous direct and indirect measurements of the excitation levels of 26Mg [4, 5, 6, 7, 34].

We have not observed this state, but an upper limit for its contribution can be established. A

previous 22Ne(α,n) direct measurement [4] has observed this level at Ex = 11152(10) keV. The

highest reported excitation energy for this state using an alpha-transfer reaction is by Ref. [6] at

11167(8) keV using a 22Ne(6Li,d) measurement. An attempt to establish an upper limit to the

width of this state is performed using the value from Ref. [6] for the excitation energy of this state

(resonance energy 553(8) keV). From the present work, no more than 2 counts from Figure 4.7 can

be attributed for this state at the energy of interest which can be used to calculate an upper limit for

the width and resonance strength of this state. Assuming a Poisson distribution for the number of

counts that can be attributed to the 11.17 MeV state, the “true” mean has to be below 5.8 at 95%

confidence level. This value is used to calculate the upper limit for the experimental cross section

for this state - 2 µb/sr.
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ER (MeV) Transferred Γα (µeV)

Momentum L

11.319a

0 58 ± 4 (st.) ± 15 (sys.)

1 13 ± 1 (st.) ± 3 (sys.)

2 3 ± 1 (st.) ± 1 (sys.)

11.080b

0 (1.3 ± 0.1 (st.) ± 0.3 (sys.)) x 10−3

1 (2.5 ± 0.3 (st.) +0.7
−0.5 (sys.)) x 10−4

2 (5.7 ± 0.7 (st.) +1.4
−1.2 (sys.)) x 10−5

10.950b

0 (9.6 ± 1.0 (st.) +2.3
−1.9 (sys.)) x 10−8

1 (2.0 ± 0.2 (st.) +0.5
−0.4 (sys.)) x 10−8

2 (0.5 ± 0.1 (st.) +0.1
−0.1 (sys.)) x 10−8

10.820b

0 (3.8 ± 0.5 (st.) +0.8
−0.7 (sys.)) x 10−15

1 (7.4 ± 0.9 (st.) +1.7
−1.4 (sys.)) x 10−16

2 (1.5 ± 0.2 (st.) +0.3
−0.3 (sys.)) x 10−16

Table 4.7: Partial alpha widths of the states of 26Mg calculated for the resonances observed within
the Gamow window for different transferred angular momenta L.
a Changed later in the text after taking the weighted average using the (7Li,t) measurement. Final
values are shown in Table 4.12.
b Exact energies used for the partial alpha width calculations. The systematic error does not include
the error from the uncertainty from the resonance strength.

The spin parity of this state in 26Mg is not known. As is seen from the four resonances obtained

from the present measurement, the widths and the resonance strengths are the largest for a Jπ

assignment of 0+. This choice results in an upper limit for the width of the 11.17 MeV state of Γα

= 6.5 x 10−3 µeV, assuming 553(8) keV center of mass resonance energy from Ref. [6], which is
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the highest value reported for this resonance. In this manner, we have arrived at the absolute upper

limit for the partial α width for this state.

4.9 Transfer reaction cross section dependence on optical model parameters

For the study of the 22Ne(6Li,d)26Mg reaction, the beam energy of 21.7 MeV was chosen

such that the center of mass energy will be below the Coulomb barrier to reduce the dependence

of the results on the parameters used for the optical model potentials. The dependence of the

theoretical cross sections on the various optical model parameters used for the entrance and exit

channels is discussed in this section. This study was done for an angular momentum of L=0 for

the transferred alpha particle into the 11.30 MeV state of 26Mg. The values adopted for the final

DWBA calculations (selected from the global optical model potentials for 6Li [68] and deuterons

[70] are shown by the dotted vertical lines in the plots below) were individually changed to see

their effect on the theoretical cross section. The theoretical cross section was calculated at 170◦ in

the center of mass frame (5◦ in the lab frame).

4.9.1 Coulomb radius

The dependence of the cross section on the Coulomb reduced radius parameter is shown in

Figure 4.16. For the entrance channel as well as the d+α interaction channels, the Coulomb radius

does not affect the reaction cross section at all (Figures 4.16a and 4.16d).

When the Coulomb radius is increased for the other two channels (Figures 4.16b and 4.16c)

the calculated cross section is decreased, but the effect is very small (2%) as compared to the

uncertainty due to the 6Li+22Ne potential parametrization.

4.9.2 Potentials in the entrance channel

For the present study, since the normalization is performed using the theoretical elastic scat-

tering cross sections, the sensitivity of the choice of the entrance channel potentials in the transfer

reaction cross sections are significantly reduced. The overall influence from the entrance channel

potentials are estimated as 10%.
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(a) Coulomb reduced radius for 22Ne+6Li (b) Coulomb reduced radius for d+26Mg

(c) Coulomb reduced radius for 22Ne+α (d) Coulomb reduced radius for d+α

Figure 4.16: The cross section dependence on the potential variation for the reduced radius of the
Coulomb potentials for the various channels. The adopted values are denoted by the vertical lines.

4.9.3 Potential depth in the exit channel

In the case of the exit channel potentials, the most interesting dependence is shown in the

imaginary potential part by the surface absorption (see Figure 4.17c). Since sub-Coulomb ener-

gies are used for this experimental measurement, the particle-transfer reaction mainly occurs as a

peripheral reaction due to the presence of the Coulomb barrier. Hence the surface absorption will

play a major role in the reaction cross section. As the depth of the surface potential is gradually

increasing, the reaction cross section will gradually decrease until it reaches a point where further
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(a) Real volume depth (b) Imaginary volume depth

(c) Imaginary surface depth

Figure 4.17: The cross section dependence on the potential variation for the real and imaginary
volume depth term of the exit channel potentials. The adopted values are denoted by the vertical
lines.

penetration of the particle is hindered completely. At this point, the cross section of the reaction

will no longer vary with the depth of the potential. This is clearly seen in Figure 4.17c. The depth

of the real potential of the exit channel shows an oscillatory behavior (see Figure 4.17a). The

dependence of the cross section on the imaginary potential from the volume absorption seems to

be very small (see Figure 4.17b). Overall, the influence of the variation of the d+26Mg potential

parameters are generally within 10%.
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4.9.4 Reduced radius of the exit channel potentials

(a) Real volume reduced radius (b) Imaginary volume reduced radius

(c) Imaginary surface reduced radius

Figure 4.18: The cross section dependence on the potential variation for the real and imaginary
reduced radius term of the exit channel potentials. The adopted values are denoted by the vertical
lines.

The cross section dependence of the reduced radius parameter of the potentials of the exit

channel are shown in Figure 4.18. The reduced radius of the real volume potential (Fig. 4.18a)

showcases a similar oscillatory behavior followed by the depth of the same potential (see Figure

4.17a). The reduced radius of the imaginary volume potential does not show a significant effect on
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the reaction cross section. The overall variation is still significantly below the dependence on the

entrance channel potentials.

From Figures 4.16 - 4.18, it can be concluded that the final results are most sensitive to the

parameters of the exit channel (d+26Mg) optical model potentials. None of the other potential

parameters influence the theoretical cross section at the same level. A final uncertainty of 14% is

adopted for the theoretical uncertainty.

4.10 Compound nucleus mechanism

An important check that needs to be done at this stage is to see if there is any contribution for

this measurement from a compound nucleus reaction mechanism. A compound nucleus reaction

is one where two nuclei will combine together to create a single “compound” nucleus system in

highly excited state. This was first introduced by Niels Bohr in 1936. In most cases, the created

compound nucleus will have a relatively long lifetime and it will ‘forget’ the mechanism which

formed it. These collisions lead to a thermally equilibrated state within the compound nucleus.

A+ b→ C∗ → a+B (4.16)

For the system described in Section 2.3, the reaction mechanism would be modified as above to

include the compound nucleus (C∗). These reactions can be described in two stages: the formation

of the compound nucleus (σA+b→C∗) and the probability of the decay of the compound nucleus

(PC∗→a+B). The cross section of this reaction would be given by the product of these two factors.

Since a compound nucleus in thermal equilibrium has no memory of the mechanism involved in

creating it, the mode of decay of the compound nucleus is entirely independent of the method of its

creation. Hence, no information on the partial α-widths of the states in 26Mg can be extracted from

this experiment if the compound nucleus is the dominant mechanism for the reaction in question.

In the case of the 22Ne+6Li reaction, the compound nucleus that would be created is 28Al. In

order to elucidate the influence of the compound nucleus mechanism, another measurement was

done concurrently with the 22Ne(6Li,d)26Mg, utilizing the 7LiF target. Using this target and the
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Figure 4.19: The triton energy spectrum reconstructed from the tracks in the Oxford detector for
the 22Ne(7Li,t)26Mg transfer reaction.

same 22Ne beam, a similar α-particle transfer reaction of 22Ne(7Li,t)26Mg was carried out (with

lower statistics), which populated the same excitation energy window of 26Mg as the previous

reaction. The 7Li nucleus has an α − t structure [78] with an alpha binding energy of 2.47 MeV.

In this case, if there is a contribution from a compound nucleus, the spectrum of tritons should be

very different from that in Figure 4.6 due to the fact that the compound system would be an entirely

different isotope (29Al) and there is no reason for triton evaporation from the highly excited states

in 29Al to lead to the same states in 26Mg as deuteron evaporation from 28Al.

Figure 4.19 shows the triton energy spectrum reconstructed from the tracks in the Oxford detec-

tor for the 22Ne(7Li,t)26Mg transfer reaction. Figures 4.6 and 4.19 show a very dominant resonance

in the 6-7 MeV region which translates to the same 11.3 MeV excited state of 26Mg. The domi-

nance of the 11.3 MeV state in both spectra serves as an indication of the dominance of the same

α-cluster transfer reaction mechanism. Similarities between the spectrum of states populated in the

(6Li,d) and (7Li,t) reactions can be used as an argument for the dominant role of direct α-transfer

reaction mechanism. To make a quantitative comparison, the partial α-width for the 11.3 MeV

resonance obtained in two different reactions can be used as a consistency check.

In order to calculate the cross section for the 26Mg peak at 11.3 MeV, the same normalization
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Figure 4.20: The calibrated energy spectrum from the 2ndquadrant of the silicon detector for the
22Ne(7Li,t)26Mg transfer reaction.

procedure tat was carried out for the (6Li,d) measurement using the silicon detector located in the

target chamber is used. There is no definitive elastic 7Li peak in the silicon detector (see Figure

4.20) at the angle of the silicon quadrant (31◦). The elastically scattered 7Li peak is overlapping

with 22Ne beam particles elastically scattered from the oxygen (16O) in the water molecules spread

out in the target due to the hydroscopic nature of LiF.

V0 = 114.2 MeV,

rR = 1.286 fm, aR = 0.853 fm,

rI = 1.739 fm, aI = 0.809 fm,

rC = 1.3

W0 = 40.13− 0.341A+ 0.00093A2 MeV

(4.17)

Figure 4.21 shows Gaussian fits to separate the elastic 7Li peak from the elastic 22Ne peak. The

number of counts in the 7Li peak after this fit, is used to calculate the (It) factor. The 22Ne+7Li
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Figure 4.21: The calibrated energy spectrum from the 2ndquadrant of the silicon detector for the
22Ne(7Li,t)26Mg transfer reaction.

elastic scattering cross section was calculated using FRESCO with the global 7Li optical potential

set (see Equation 4.17, the parameters of which are described in Section 2.4) provided in Ref. [68].

Unlike the 22Ne+6Li case where the elastic scattering cross section is ∼ 70% of the Rutherford

cross section at higher c.m angles, it is roughly 30% for 22Ne+7Li. Using this calculated cross

section, the number of counts measured in the silicon quadrant 2 and the solid angle of the quadrant,

the (It) factor can be found using Equation 4.1. Using this (It) factor, the experimental cross

section for populating the 11.3 MeV resonance in 26Mg using the (7Li,t) reaction was found to be

59 ± 7 (stat.) ± 6 (sys.) µb/sr. The error analysis for the experimental cross section for the 11.3

MeV state is given in Table 4.9.

Once the experimental cross section for this resonance is known, the theoretical cross section

can be calculated using various potentials for the exit channel. Four different exit channel optical

model parameters were used for the t+26Mg channel: one from the global triton optical poten-

tials published in Ref. [79] and three from Ref. [80]. The core-core (22Ne+t) optical potential

parameters were also obtained from Ref. [80].
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Quantity Component Statistical Systematic

Error (%) Error (%)

Number of counts from silicon (Nsi) ± 0.9 ± 4.5

(It) Solid angle of the silicon detector quadrant (∆Ω) - ± 2

(It) factor ± 0.9 ± 5

Solid angle of the MDM spectrometer (∆ΩMDM) ± 3 ± 8

dσ/dΩ Number of counts in the 11.30 MeV peak ± 11 -

Table 4.9: The error analysis for the determination of the (It) factor and the experimental cross
section for the (7Li,t) measurement.

Using these four exit channel parameter sets, the partial alpha width (Γα) of the 11.3 MeV

state of 26Mg can be calculated for L = 0,1 and 2 transferred-angular momenta using the formalism

described in Section 2.8, and the extrapolation used for the (6Li,d) described in Section 4.8.1. The

center of the range of the four widths was considered as the width of the state for a given transferred

angular momentum. The widths found in this manner for the 11.3 MeV state for L=0,1,2 are listed

below in Table 4.10.

Angular Momentum (L) Γα (µeV)

0 64 ± 7 (stat.) ± 14 (sys.)

1 13 ± 1 (stat.) ± 3 (sys.)

2 3 ± 1 (stat.) ± 1 (sys.)

Table 4.10: The partial alpha widths calculated for the 11.3 MeV state of 26Mg using the (7Li,t)
measurement.

The statistical error for the experimental cross section for the 11.3 MeV state using the (7Li,t)

measurement is determined by the number of elastically scattered 7Li particles as well as the tritons

from the (7Li,t) reaction in the Oxford detector. The error analysis of the partial widths are shown
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Quantity Component Statistical Systematic

Error (%) Error (%)

Experimental cross section ± 11 ± 9

Γα (L=0) Resonance energy - ± 7

Channel radius - ± 13

Theoretical cross section - ± 11

Experimental cross section ± 11 ± 9

Γα (L=1) Resonance energy - ± 7

Channel radius - ± 15

Theoretical cross section - ± 12

Experimental cross section ± 11 ± 9

Γα (L=2) Resonance energy - ± 7

Channel radius - ± 14

Theoretical cross section - ± 12

Table 4.11: The error analysis for the determination of the experimental cross section and widths
for the 11.3 MeV state in 26Mg using the (7Li,t) measurement.

in Table 4.11.

The partial alpha width (Γα) found using the (7Li,t) measurement for the 11.3 MeV state agrees

within error bars with the widths obtained for the same state using the (6Li,d) measurement. This

shows that the contribution from the compound nucleus mechanism for the sub-Coulomb α transfer

reaction for (6Li,d) and (7Li,t) should be negligible.

The weighted average of the alpha partial widths obtained from the (6Li,d) and (7Li,t) mea-

surements for the 11.3 MeV state of 26Mg is taken as the final widths for this state. The averaged

widths are shown in Table 4.12.

The reaction rates of the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions are proportional to the

resonance strengths and the partial α-width (Γα) of the resonances in 26Mg. In the approximation

of a narrow resonance, the resonance strengths for the (α, n) and (α, γ) reactions can be calculated
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Angular Momentum (L) Γα (µeV)

0 61 ± 4 (stat.) ± 10 (sys.)

1 13 ± 1 (stat.) ± 2 (sys.)

2 3 ± 1 (stat.) ± 1 (sys.)

Table 4.12: The partial alpha widths calculated for the 11.3 MeV state of 26Mg as a weighted
avegrage between the widths obtained from the (6Li,d) and (7Li,t) measurements.

using the partial widths, the total width of the state (Γ) and the spins of the particles (J’s) as

follows:

ωγ(α,n) =
2J + 1

(2J1 + 1)(2J2 + 1)

ΓαΓn

Γ
(4.18a)

ωγ(α,γ) =
2J + 1

(2J1 + 1)(2J2 + 1)

ΓαΓγ

Γ
(4.18b)

Here, J is the spin of the resonance and J1 = J2 = 0 are the spins of the 22Ne and α particles.

Γα,Γγ,Γn are the partial widths for alpha, gamma and neutron decays, respectively.

For neutron bound states (states below the neutron decay threshold), the total width is Γ =

Γα + Γγ . For neutron unbound states, the total width is Γ = Γα + Γγ + Γn. For low energy

resonances where the penetrability of an α particle through the Coulomb barrier is very small, Γα

is much smaller than the neutron and γ partial widths. For neutron unbound states, the ratio of

neutron and gamma widths can be found using the ratio of the resonance strengths of those states

as follows:

ωγ(α,n)
ωγ(α,γ)

=
Γn

Γγ

(4.19)

For low energy resonances (Γα ≪ Γn and Γγ), the resonance strength for neutron unbound

states can be written as follows:
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ωγ(α,n) ≈ (2J + 1)
Γα

1 + Γγ/Γn

(4.20a)

ωγ(α,γ) ≈ (2J + 1)
Γα

1 + Γn/Γγ

(4.20b)

For the neutron bound states that contribute to the (α, γ) reaction, the resonance strength is

then ωγ(α,γ) ≈ (2J + 1) Γα.

4.11 Spin-parity assignment of the 11.3 MeV state using comparison to the direct 22Ne(α,γ)

measurements

As mentioned previously, the only resonance observed within the Gamow energy window for

the 22Ne(α, γ) reaction using direct measurements is the state at 11.3 MeV. The strength of this

resonance has been reported by two direct measurements (Refs. [9] and [26]). The weighted

average between these two reported strengths is ωγ(α,γ) = 37 ± 4 µeV. By using this strength

in Equation 4.20 along with a recent Γn/Γγ value of 1.25 ± 0.28 from Ref. [81], the partial

alpha width of the state can be calculated as 83(13), 28(5), and 17(3) µeV for L = 0, 1 and 2,

respectively. The partial α-width for the 11.3 MeV state obtained in the present study (see Table

4.7) is in agreement within error bars (although, outside of 1σ) with the widths calculated from

the direct 22Ne(α, γ) measurements but only for the L=0 case - yielding the likely 0+ spin-parity

assignment for the 11.3 MeV state. The L=1 assignment would produce close to 3σ discrepancy,

and the L=2 would lead to almost 5σ discrepancy. Therefore, we exclude the L=2 assignment, but

we cannot rule out the L=1 (Jπ = 1−).

The other three resonances within the Gamow energy window have not so far been measured

directly.

4.12 Comparison of neutron strengths with previous direct measurements

Out of the four resonances observed within the Gamow energy window in the present work,

only the 11.3 MeV state is above the neutron decay threshold ofEx = 11093.08(4) keV. Hence, this
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is the only resonance that will contribute to the 22Ne(α,n)25Mg reaction. There have been several

previous attempts to measure the neutron strength of this state (Refs. [4, 31, 82]). Out of these,

the work by Jaeger et.al. (Ref. [4]) shows remarkable background suppression in measuring the

relevant states of 26Mg for the 22Ne(α,n)25Mg reaction. This work provides a strength of ωγ(α,n)

= 118 ± 11 µeV for the 11.3 MeV state. The work by Ref. [82] provides the lowest measured

strength for this state at a value of 80 ± 20 µeV for this state.

It is important to note here that if the weighted average of the gamma strength for the 11.3

MeV state ωγ(α,γ) = 37 ± 4 µeV from previous measurements is used along with Γn/Γγ value of

1.25 ± 0.28 from Ref. [81] in Equation 4.20, the resulting neutron decay strength would be ωγ(α,n)

= 46 ± 12 µeV. This value is within 2σ of the minimum strength for this resonance published by

Ref. [82], but certainly disagrees with all other direct measurements of the (α,n) strength for this

resonance. If the result from the present sub-Coulomb (6Li,d) measurement and the Γn/Γγ from

Ref. [81] are adopted, the ωγ(α,n) would be 34 ± 7 µeV. In either case, the (α,n) resonance strength

for the 11.3 MeV state is much lower than previously reported values.

4.13 Conclusion

The 22Ne(α,n) and 22Ne(α,γ) reactions were studied using the 22Ne(6Li,d) reaction in in-

verse kinematics using sub-Coulomb energies. Four resonances in 26Mg were observed within

the Gamow energy window, for which the partial alpha widths have been calculated. The consis-

tency of the partial width of the 11.3 MeV state using the 22Ne(6Li,d) reaction has been checked

using the 22Ne(7Li,t) reaction populating the same states in 26Mg. An upper bound for the partial

alpha width of a state at 11.17 MeV is provided.

The dependence of the partial alpha widths of the states on the parameters chosen for the

entrance channel (22Ne+6Li) is significantly reduced by using a beam and target normalization to

the elastic scattering measurements.

Only the 11.3 MeV state (and possibly 11.17 MeV state) contribute to the 22Ne(α,n) reaction.

The 11.3 MeV resonance strengths were found using the partial alpha widths of the state for dif-

ferent angular momenta and the γ/n branching ratio from Ref. [81]. The values obtained for the
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resonance strengths of this state are lower than the values previously reported from direct 22Ne(α,n)

measurements. However, it is in good agreement with the strengths observed for this state using di-

rect 22Ne(α,γ) measurements if 0+ spin-parity assignment is assumed. The 1− assignment cannot

be excluded, but it results in 3σ discrepancy between the direct 22Ne(α,γ) measurements. Hence,

the spin-parity of the 11.3 MeV state has been constrained to Jπ = 0+ or 1−.

Large uncertainties for the other three resonances of 26Mg within the Gamow window is present

due to the uncertainties in the spin-parity assignments and the resonance energies.
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5. THE ASTROPHYSICAL REACTION RATE

5.1 Reaction rate of the 22Ne+α reaction

Constraining the reaction rate of the 22Ne + α reaction is important to understand the role

of this reaction as a neutron source for the s-process. In order to calculate the reaction rate, it is

important to know the exact center of mass energies of all the resonances involved in the reaction

(ER), and the strength of each of the resonances (ωγ).

ER = Eex −Q (5.1)

The resonance energies can be found as using the above equation by using the excitation energy

of each state (Eex) and the Q value of the reaction (Ex: 10.614 MeV for the 22Ne(α, γ)26Mg

reaction, also called the alpha threshold).

NA⟨σv⟩ = 1.54× 105(µT9)
− 3

2

∑
i

(ωγ)iexp
[
− 11.605ER,i

T9

]
× ( cm3 s−1 mol−1) (5.2)

Once the resonance strength has been found, Equation 2.4 to calculate the rate of the reaction

(NA⟨σv⟩) can be written as Equation 5.2. Here NA is the Avagadro’s constant, µ is the reduced

mass (in atomic mass units), T9 is the temperature (in GK), ωγ is the resonance strength (in eV),

and ER,i is the center of mass resonance energy of the ith resonance (in MeV).

The reaction rate for the 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions can be calculated in this

manner for the results from the present work and can be compared with previous work that have

attempted to constrain the reaction rate of the 22Ne(α,n)25Mg reaction.

The contributions for the reaction rates by the relevant individual states within the Gamow

window are shown in Figure 5.1. Out of the four resonances observed in the present study, only

the 11.30 MeV state lies above the neutron decay threshold, which lies atEx = 11.093 MeV. Hence,
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this is the only state that contributes to the (α,n) reaction from the states observed in the present

work. The Γn/Γγ ratio of 1.25 ± 0.28 [81] has been used for the neutron unbound state 11.30

MeV in both cases. The uncertainty in the partial alpha widths for each state for each angular

momenta is considered for the curves in Figure 5.1. The dashed lines in Figure 5.1 represents

the upper bound of the reaction rate for the 11.17 MeV state. This was calculated assuming an

L=0 transferred momentum and the highest reported resonant energy of 11.167 MeV by Talwar

et. al [6]. For the upper limit reaction rate contributions from the 11.17 MeV state, the state was

assumed to decay predominantly via neutron and gamma emission for the 22Ne(α,n) and 22Ne(α,γ)

reactions, respectively.

Figure 5.2 shows the reaction rates for the 22Ne(α,n) and 22Ne(α,γ) reactions with the upper

and lower bounds from the present work, and the most recent 82 MeV measurement by Talwar

et al. [6] as a ratio to the reaction rate from Käeppeler et al. (1994) [7]. The reaction rates were

all normalized to the rates published in Ref. [7]. The width of the bands for the reaction rate

contributions from each state is mainly dominated by the uncertainty in the angular momentum

(L=0,1,2) and the uncertainty in the resonance energy (20 keV for the neutron bound states). For

the 11.30 MeV state, only L values of 0 and 1 are considered.

For the 22Ne(α,n)25Mg reaction rate comparison shown in Figure 5.2a, for the present mea-

surement and the works of Talwar et al. (2016) [6] and Käeppeler et al. (1994) [7], higher lying

resonances (Ex > 11319 keV) were adopted from the direct measurement of Jaeger et al. [4]. For

the strength of the resonance at 11.17 MeV from Käeppeler, 10% of the reported strength was used

as explained in Ref. [7].

For the 22Ne(α,γ)26Mg reaction rate (Figure 5.2b), all the reported resonances within the

Gamow energy window are taken into account. It is important to note that the work by Käep-

peler et al. have not included the resonances at 10.82 and 11.08 MeV.

For the upper bounds on the rates for the 22Ne(α,n) and 22Ne(α,γ) reactions from the present

work in Figure 5.2, the upper limit for the resonance strength calculated for the 11.17 MeV state

(assuming J=0) is included assuming that the state decays predominantly via neutron and gamma
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emission, respectively.

5.2 Effect on the s-process isotope abundances

S-process nucleaosynthesis calculations can be performed using the code NEWTON (Nucle-

osynthesis of Elements With Transfer Of Neutrons) [83, 84] upgraded from the original version by

Busso et al. [85]. This code is devoted to neutron-capture nucleosynthesis for the main component

(from Sr to Bi) of the s-process in low mass stars (less massive than 3 solar masses). However, this

code can also be used for several (∼400) other isotopes ranging from He to Bi, along with ∼500

reactions and possible decays for each. Using this code, several stellar models can be selected to

describe the effect of the 22Ne(α,n)26Mg reaction as a neutron source for the s-process.

[Fe/H] = log10

(
NFe

NH

)
star

− log10

(
NFe

NH

)
sun

(5.3)

In order to perform s-process nucleosynthesis calculations, a few different stellar models were

chosen with different metallicities for the stars. The metallicity of a star describes the abundance

of elements present that are heavier than hydrogen (H) and helium (He). These choices are listed

below. The metallicity of a star is defined by the total amount of iron (Fe) content of the star along

with the amount of hydrogen (H) that is present (hydrogen being the most abundant element in

most stellar environments). The abundance ratio of a star is defined as a logarithm of the ratio

of the iron abundance of the star to that of the sun (see Equation 5.3). Here NFe and NH are the

number of iron and hydrogen atoms per unit volume. [Fe/H] will be a positive logarithmic value

for stars with a higher metallicity than our sun, and a negative value otherwise.

A 1.5M⊙ star is an appropriate model for a low-mass AGB star where the 13C(α,n)16O reaction

is the main source of neutrons for the s-process. Stars of this mass do not have the required

temperatures to effectively activate the 22Ne(α,n)25Mg reaction. In order to study the effect of the

22Ne(α,n)25Mg reaction as a neutron source, higher mass stellar models such as 3.0 M⊙ or 5.0 M⊙

are more appropriate where this reaction is the main neutron source in some cases. For Model 1

in Table 5.1, 1.5 M⊙ and solar metallicity provides an environment with low temperatures and low
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Model number Stellar Mass Metallicity [Fe/H]

1 1.5 M⊙ +0.0

2 3.0 M⊙ -0.5

3 5.0 M⊙ +0.0

Table 5.1: The various stellar masses and metallicities used for s-process nucleosynthesis calcula-
tions.

neutron densities. For Models 2 and 3, environments with higher temperatures and higher neutron

densities are considered.

Pisotope =
misotope

X⊙
isotope ×Mtot

(5.4)

These upper and lower limits for the reaction rates established in Section 5.1 are used as inputs

to the NEWTON code in order to calculate the Production Factors (P) for all of the s-only isotopes

for various stellar models. The production factor for an isotope can be calculated as shown in

Equation 5.4. Here, misotope is the total yield of a given isotope (in solar masses), Mtot is the initial

mass of the star, and X⊙
isotope is the mass fraction of the isotope. The production factor is a measure

of the amount of a certain isotope produced in a star compared with the amount of the same isotope

in the Sun.

Production factors for the s-only isotopes for the three stellar models listed in Table 5.1 are

shown in Figure 5.3. These calculations adopt the recommended value for the 22Ne+α rate from

Ref. [7] as the reference for normalization. The production factors have been calculated here

for the upper and lower limit for the reaction rate produced by the present measurement, and the

reaction rate from Ref. [6]. It can be seen in Figure 5.3a that for a low-mass star, the effect of

the 22Ne(α,n)26Mg reaction on the production factors of the s-only isotopes is relatively low com-

pared with other higher mass stars (Figures 5.3b, 5.3c). Variations are proportional to differences

between the adopted rates (for different reaction rates used) and the reference, as expected. More-

over, changes are higher when the calculations were performed with higher masses models where
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the 22Ne+α reactions are expected to be more efficient. All these facts are plausible and seem to

provide reasonable results.

The reason behind the increase/decrease of the production factors for specific s-only isotopes

due to the lower reaction rate from the present measurement requires further analysis and is not

ventured in the present work. We only make three general observations:

• The 22Ne(α,n) reaction rate has a strong influence on the s-process nucleosynthesis in heavier

stars.

• The lower reaction rate results in lower overall production of the s-process isotopes in gen-

eral in heavier stars. This is not surprising, as the lower rate reduces the neutron flux avail-

able for the s-process.

• The (α, γ) reaction rate was fixed to that of Ref. [7] in these preliminary calculations. A more

detailed study will be necessary to elucidate the effects due to the updated (α, γ) reaction

rate.
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(a) 22Ne(α,n)25Mg reaction rate contribution from the 11.32 MeV state.

(b) 22Ne(α,γ)26Mg reaction rate contributions from individual states

Figure 5.1: Contributions from the observed states of 26Mg for the rates of 22Ne(α,n)25Mg and
22Ne(α,γ)26Mg reactions. The widths of the bands represent the uncertainties of the spin-parity
assignments, the resonance energies and the resonance strengths. The dashed line represents the
upper bound of the reaction rate for the 11.17 MeV state in 26Mg. The temperature region relevant
for AGB stars is 0.2-0.3 GK.
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(a) 22Ne(α,n)25Mg reaction rate comparison

(b) 22Ne(α,γ)26Mg reaction rate comparison

Figure 5.2: Reaction rate comparisons for 22Ne(α,n)25Mg and 22Ne(α,γ)26Mg reactions using dif-
ferent studies (present work and Ref. [6]) normalized to the rate of Käeppeler (1994) [7].
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(b) 3.0 M⊙
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Figure 5.3: Production factors for the different stellar models listed in Table 5.1 normalized to that
of Ref. [7].
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6. CONCLUSION

The 22Ne(6Li,d)26Mg alpha transfer reaction at sub-Coulomb energies was used to study the

22Ne(α,n) and 22Ne(α,γ) reactions, which are important for s-process nucleosynthesis in asymp-

totic giant branch stars. Measurements were performed using the MDM spectrometer and Oxford

detector at the Texas A&M University Cyclotron Institute. Four resonances have been observed in

excitation energy region of 26Mg that corresponds to the Gamow energy window for the tempera-

tures of interest for the 22Ne(α,n) reaction in massive stars (0.2-0.3 GK).

The experimental cross sections and partial alpha widths for all four states have been estab-

lished. The consistency of the applied method was tested using the 22Ne(7Li,t) reaction populating

the same states in 26Mg and producing the same partial width (although, only 11.3 MeV state had

sufficient statistics in the 22Ne(7Li,t) measurements).

Out of the four observed states, the resonance at Ex = 11.319 MeV is the only resonance which

contributes significantly to the 22Ne(α,n) reaction at temperatures above 0.2 GK. The spin-parity of

this state has been constrained to Jπ = 0+ or 1− by requiring consistency with the previous direct

22Ne(α,γ)26Mg measurements [9, 26]. An upper bound for the partial alpha width of a possible

state at Ex = 11.17 MeV is provided at 6.5 x 10−3 µeV, assuming 0+ spin-parity (the resonance

strength would be lower for any other spin-parity assignment).

The partial alpha width calculated for the 11.3 MeV state is lower compared with the previous

direct 22Ne(α,n) measurements, which in turn reduced the reaction rate of the 22Ne(α,n) reaction

by one order of magnitude as compared to Ref. [7], and by a factor of four as compared to Ref.

[6]. This lowers the overall production of s-process isotopes in more massive stars (more than 5

solar masses) considerably in comparison with the rates adopted from previous measurements.

The 22Ne(α,γ) reaction rate still has a large uncertainty below 0.3 GK. This is mostly due to

uncertainties in spin-parity assignments and resonance energies. The rate recommended in Ref.

[7] is within our uncertainty band. Future work is necessary to make the spin-parity assignments

and to obtain accurate excitation energies for the observed resonances within the Gamow energy
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window to further constrain the reaction rates of the 22Ne(α,n) and 22Ne(α,γ) reactions.
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