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Committee Members, Eric Rowell

Timothy Davis
Head of Department, Emil Straube

August 2019

Major Subject: Mathematics

Copyright 2019 Justin Colt Cantu



ABSTRACT

In this work, we introduce a method of proving when an infinite group of homeomorphisms

of a Cantor set is periodic using the geometry of its orbital graphs. In doing so, we expand a

recent class of infinite finitely generated periodic groups introduced by Volodymyr Nekrashevych.

In particular, we generalize his concept of fragmentation to arbitrary groups of homeomorphisms

of a Cantor set, and give examples of finitely generated groups that can be fragmented to produce

groups of Burnside type. Although some examples start with a group of isometries of the boundary

of an infinite regular rooted tree, the fragmentations of such a group, in general, will not be a group

of isometries.

It turns out that there is a strong relationship between fragmentations that produce a periodic

group and certain subdirect products of a finite product of finite groups. We describe this relation-

ship and give some results on when these types of subdirect products exists.

In order to study the orbital graphs of a group, we will realize the Cantor set as a space of

infinite sequences, namely, as a space of infinite paths of a Bratelli diagram. Using partial actions

of the group on finite paths, we can approximate certain connected infinite subgraphs of an orbital

graph using finite graphs. There is a recursive procedure to building these approximating finite

graphs described by the defining Bratteli diagram. We can then “paste" together some infinite

subgraphs to form the orbital graph. In the best case scenario, a single such infinite subgraph will

coincide with the entire orbital graph.
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1. INTRODUCTION

1.1 History of the Burnside Problems

A periodic (or torsion) group G is a group in which every element has finite order. If there is a

positive integer n such that gn = 1 for all g in G, then we say G has bounded exponent. The least

such n is the exponent of G. Clearly, any finite group G is periodic with exponent at most |G|. In

1902, William Burnside [4] posed the following question:

Problem 1.1.1 (General Burnside Problem). Is every finitely generated periodic group necessarily

finite?

In 1964, Golod and Shaferavich provided examples, for each prime p, of an infinite finitely

generated group in which each element has order a power of p (see [7]), thus answering the General

Burnside Problem in the negative. Their examples were attained as Galois groups of number field

extensions and are now called Golod-Shafarevich groups. These groups, however, do not have

bounded exponent.

Earlier work focused on Burnside’s “easier” question of whether every finitely generated pe-

riodic group of exponent n is necessarily finite, known as the Bounded Burnside Problem, or just

Burnside Problem. Let S = {s1, s2, . . . , sm} and S∗ denote the set of all finite words over S. The

free Burnside group of rank m and exponent n, denoted B(m,n), is the group with presentation

⟨S | gn = 1, g ∈ S∗⟩. Any group with m generators and exponent n is a quotient of B(m,n), thus

the Burnside Problem is equivalent to asking whether every B(m,n) is finite.

The case of rank 1 is trivial as B(1, n) is just a cyclic group of order n. Burnside [4] proved

B(m,n) is finite for n ≤ 3. In 1940, I. N. Sanov [20] showed that B(m, 4) is finite. For exponent

5, it is still an open question whether B(2, 5) is finite. Marshall Hall Jr. [12] proved that B(m, 6)

is finite in 1958.

In 1968, Adian and Novikov showed B(m,n) is infinite for odd n ≥ 4381 and m > 1, thus

answering the Bounded Burnside Problem in the negative (see [18]). Several years later, Adian
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reduced the bound to odd n ≥ 665. A corollary of this is that B(m, kn) is infinite for any even k.

Ivanov [14] and Lysenok [15] proved infiniteness of B(m,n) for some even exponents n without

odd divisor ≥ 665.

Some interesting examples of groups of Burnside type were discovered in the class of groups

defined by their action on a rooted tree and groups generated by automata. The first such examples

were constructed by S. Aleshin [1], V. Sushchanskii [21], and R. Grigorchuk [8].

A recent class of examples was constructed by V. Nekrashevych [17], where he developed a

method (called fragmentation) to transform an arbitrary non-free minimal action of the infinite

dihedral group D∞ on a Cantor set into an orbit-equivalent action of an infinite finitely gener-

ated periodic group. This dissertation will generalize the definition of fragmentation to transform

arbitrary groups of homeomorphisms of a Cantor set, and expand this class.

Infinite finitely generated periodic groups provided many firsts in group theory: first example

of a group of intermediate growth [9], first examples of non-elementary amenable groups [10],

first examples of non-amenable groups without free subgroups [19], and the first example of a

simple group of intermediate growth [17]. Their existence was also used to show that the class of

groups without free subgroups and the class of elementary amenable groups are distinct (see [5]).

All previous examples of infinite finitely generated periodic groups, including these important

examples, are part of four broad classes. The first class is the Golod-Shaferavich groups. The

second class consists of solutions to the Bounded Burnside Problem. The third class contains

groups defined by their action on rooted trees and groups generated by automata. The fourth class

are those obtained as fragmentations of the infinite dihedral group.

1.2 Organization

This dissertation is organized as follows. Chapter 2 gives the necessary background, including

definitions and notation, that will be used throughout the dissertation. This comprises of some

graph theory, information on group actions, and an introduction to Bratteli diagrams.

Chapter 3 is dedicated to building the ingredients needed to state and prove the main theorem

of periodicity. We begin by defining the domains of support of a finite group of homeomorphisms

2



of a Cantor space. Under suitable conditions, the domains of support form a finite partition of the

support of the group into invariant open sets. We then introduce germ-defining singular points.

This special type of fixed point of a set of homeomorphisms gives us a handle on the structure

of the graph of germs of the action at this point. Finally, we establish the notion of a thin graph,

before stating and proving the periodicity theorem.

Chapter 4 discusses fragmentations of a homeomorphism and of a group of homeomorphisms.

This is a generalization of the concepts of fragmentations of involutions and actions of the infi-

nite dihedral group on a Cantor space introduced by Volodymyr Nekrashevych. We note a cor-

respondence between certain fragmentations of finite groups and subdirect products. The chapter

concludes with some results on subdirect products.

Chapter 5 is dedicated to examples to which we can apply the main periodicity theorem. Each

example starts with a finitely generated group of homeomorphisms of a Cantor set (with properties

analogous to the infinite dihedral group), and gives conditions on fragmentations of the group that

result in periodicity. We mention that such conditions can be met, and thus give examples of

infinite finitely generated periodic groups.

Chapter 6 summarizes the dissertation and discusses some natural questions related to the work

in this paper.

3



2. PRELIMINARIES

We will assume that the reader is familiar with some group theory (at the level of chapter 1 of

[13]) and topology (at the level of chapter 1 of [3]).

2.1 Graph theory

A simple graph Γ consists of a set V = V (Γ) of vertices and a set E = E(Γ) of 2-element

subsets of V , called edges. If we instead let E consist of ordered pairs of vertices, called directed

edges or arrows, then Γ is called a directed graph. Arrows of the form (v, v) for v ∈ V are called

loops. For e = (u, v) ∈ E, we say u is the source of e and v is the target of e, denoted s(e) and t(e),

respectively. The vertices that make up an edge e (whether directed or undirected) are called the

endpoints of e, and we say u, v are adjacent if there is an edge e with endpoints u and v. Allowing

E to be a multiset gives the definition of a multigraph. We say Γ is labeled (or edge-labeled) if we

are given a function ℓ : E −→ L for some finite set L of labels. A rooted graph is a pair (Γ, v),

where Γ is a graph and v is a vertex of Γ.

For a vertex v of a simple graph, the degree of v is deg(v) = |{e ∈ E : v ∈ e}|. If v is a vertex

of a directed graph, then deg(v) = |{e ∈ E : s(e) = v}|+ |{e ∈ E : t(e) = v}|. All graphs in this

paper are assumed to be locally finite, that is, deg(v) is finite for all v ∈ V . The size of a graph

is the cardinality of its vertex set, denoted |Γ| instead of |V |. Similarly, we occasionally use the

notation v ∈ Γ to mean v is a vertex of Γ.

A graph ∆ is called a subgraph of Γ if V (∆) ⊆ V (Γ) and E(∆) ⊆ E(Γ). Furthermore, if Γ is

labeled by ℓ, we require ∆ be labeled by ℓ|∆. If Γ has root v and v ∈ V (∆), we require ∆ to have

root v. Otherwise, ∆ is not rooted. The boundary vertices of ∆, denoted ∂V (∆), are the vertices

of ∆ that are adjacent to a vertex outside of ∆.

Given a subset V ′ of V , we define the vertex-induced subgraph Γ[V ′] of Γ with vertex set V ′

and all edges from E whose endpoints are in V ′. Let Γ \ V ′ denote the subgraph of Γ obtained

by removing the vertices V ′ and any edges in E with an endpoint in V ′. In other words, Γ \ V ′ =

4



Γ[V \ V ′]. Given a subset E ′ of E, we define the edge-induced subgraph Γ[E ′] of Γ with edge set

E ′ and all vertices from V which are an endpoint of an edge in E ′. Let Γ \E ′ denote the subgraph

of Γ with vertex set V and edge set E \ E ′.

Let Γ1,Γ2 be two graphs of the same type (e.g., directed, labeled, rooted) with vertex sets V1, V2

and edge sets E1, E2. A homomorphism from Γ1 to Γ2, written ϕ : Γ1 −→ Γ2, consists of a pair of

bijections ϕV : V1 −→ V2 and ϕE : E1 −→ E2 (both written as just ϕ in the following) that respect

the structure of the graphs. First, this means that if e ∈ E1 has endpoints u, v ∈ V1, then ϕ(e) has

endpoints ϕ(u), ϕ(v). If the graphs are directed and e = (u, v), we require ϕ(e) = (ϕ(u), ϕ(v)),

that is, s(ϕ(e)) = ϕ(s(e)) and t(ϕ(e)) = ϕ(t(e)). If the graphs are labeled, say by ℓ1 and ℓ2, we

require that ϕ preserves labels : ℓ2(ϕ(e)) = ℓ1(e). If Γ1 has root v1 and Γ2 has root v2, we require

ϕ(v1) = v2. If ϕV and ϕE are injective, we call ϕ an embedding and say Γ1 embeds into Γ2. If both

ϕV and ϕE are bijections, we call ϕ an isomorphism. In particular, when Γ1 = Γ2, we call ϕ an

automorphism of Γ1.

A walk w in a graph Γ is a sequence (v0, e1, v1, . . . , em, vm) of alternating vertices vi and edges

ei such that ei has endpoints vi−1 and vi. We say w starts at v0 and ends at vm. If Γ is directed

and for each i the edge ei has source vi−1 and target vi, we call w directed. For 0 ≤ j ≤ k ≤ m,

the walk (vj, ej+1, . . . , ek, vk) is called a subwalk of w. A walk consisting of only the vertex v0

and no edges is called trivial. The inverse of w is the walk w−1 = (vm, em, . . . , v1, e1, v0). If

w = (v0, e1, v1, . . . , em, vm) and w′ = (v′0, e
′
1, v

′
1, . . . , e

′
n, v

′
n) are walks such that vm = v′0, we

define their concatenation w1w2 = (v0, e1, v1, . . . , em, vm = v′0, e
′
1 . . . , v′n). The length of a walk

is its number of edges and we say a walk is closed if v0 = vm. A walk is called a path if its vertices

are distinct. A closed walk is a cycle if all of its edges are distinct and the vertices v0, v1, . . . , vm−1

are distinct.

Any walk w = (v0, e1, v1, . . . , em, vm) induces a subgraph Γ(w) of Γ with vertices v0, v1, . . . , vm

and edges e1, e2, . . . , em. We also use the terminology walk, path, and cycle for these induced sub-

graphs.

If there is a path in Γ starting at vertex v and ending at vertex v′, we say v is connected to

5



v′. This forms an equivalence relation on V . The subgraphs induced by the equivalence classes

are called the connected components of Γ. A graph is called connected if it has one connected

component. If the vertices v and v′ are connected, the distance from v to v′ is the length of a

shortest path between them.

Let v be a vertex of Γ. For an integer r ≥ 0, the ball of radius r centered at v, denoted Bv(r),

is the subgraph of Γ induced by the vertex set consisting of vertices at distance less than r from

v. Let GS be the set of all isomorphism classes of connected rooted directed graphs labeled by S.

For (Γ1, v1), (Γ2, v2) ∈ GS , define the distance d((Γ1, v1), (Γ2, v2)) between them as 2−r, where

r is the maximal integer such that Bv1(r) and Bv2(r) are isomorphic (note that Bv(0) is the null

graph). This metric defines a topology on GS .

2.2 Group actions

Let G be a group and X be a nonempty set. An action of G on X is a homomorphism ρ :

G −→ Sym(X), where Sym(X) is the group of bijections of X under function composition.

Every g ∈ G defines a symmetry of X , ρg = ρ(g) : X −→ X . Since ρ is a homomorphism, ρid is

the identity map on X and ρgh = ρg ◦ ρh. If X has more structure (e.g., topological space), then

we say G acts by automorphisms (e.g., homeomorphisms) if ρg is an automorphism of X for all

g ∈ G. Let Aut(X) denote the set of automorphisms of X . Any subgroup G of Aut(X) defines a

natural action of G on X under the natural embedding map of G.

Equivalently, we can define an action of G on X by a mapping ϕ : G×X −→ X (with images

denoted g(x) = ϕ(g, x)) such that

1. id(x) = x for all x ∈ X ,

2. (gh)(x) = g(h(x)) for all g, h ∈ G and x ∈ X .

For every g ∈ G, the map ϕg = ϕ(g, ·) : X −→ X is a bijection of X . In particular, ϕid is

the identity map on X . From condition (2), we have ϕgh = ϕgϕh. Thus the map ρ : G −→

Sym(X) defined by ρ(g) = ϕg is a homomorphism. Conversely, for any homomorphism ρ, the

map ϕ(g, x) = [ρ(g)](x) satisfies both conditions above.
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An action of G on X is called faithful if g(x) = x for all x ∈ X implies g = id. In other

words, if the homomorphism ρ : G −→ Aut(X) is injective and G can be realized as a subgroup

of Aut(X). An action is free if whenever g(x) = x for some x ∈ X , we have g = id. Clearly all

free actions are faithful.

Example 2.2.1. Let G be any group and X = G. Then G acts on X by left multiplication:

g(x) = gx for all g, x ∈ G. This action is free since if g(x) = x for some x ∈ X , we get

gx = x, and thus g = id by multiplication on the right by x−1. Notice that although X has group

structure, each g ∈ G \ {id} only defines a symmetry and not an automorphism of X . Indeed,

g(id) = g ̸= id, so g does not define a homomorphism.

The orbit of x ∈ X is the set G(x) = {g(x) : g ∈ G}. If y ∈ G(x), then G(y) = G(x).

An action is transitive if G(x) = X for some (and thus all) x ∈ X . In other words, for every

pair x, y ∈ X there exists g ∈ G such that g(x) = y. A subset A of X is called G-invariant if

g(A) = A for all g ∈ G. For example, any orbit is G-invariant. For any G-invariant subset A of X ,

we define G|A = {g|A : g ∈ G}, considered as a group of homeomorphisms of A (with subspace

topology). The stabilizer of x, denoted Gx, is the subgroup of G consisting of all elements that fix

x, that is, Gx = {g ∈ G : g(x) = x}. We say A is g-invariant if g(A) = A, and A is fixed by g if

g(a) = a for all a ∈ A.

Suppose G is generated by a finite set S. For x ∈ X , the orbital graph Γx = Γx(G,X, S)

is the graph with the set of vertices equal to the orbit G(x) of x, in which for every y ∈ G(x)

and every s ∈ S there is an arrow from y to s(y) labeled by s. It follows that orbital graphs

are labeled directed multigraphs. The edges of Γx are naturally identified with the set S × G(x)

by (x, s(x)) ↔ (s, x). Note that Γx has a natural root given by the vertex x. The action of

G is completely determined by the action of its generators S, thus the orbital graphs encode all

information about the action.

The graph Γx is naturally isomorphic to the Schreier graph of the group G modulo the stabi-

lizer Gx. The Schreier graph of G modulo a subgroup H , denoted Γ(G,H, S), is the graph with

the set of vertices equal to the set of cosets gH, g ∈ G, in which for every coset gH and every
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generator s ∈ S there is an arrow from gH to sgH labeled by s. In other words, the Schreier graph

Γ(G,H, S) is exactly the orbital graph ΓH(G,G/H, S) where G acts on G/H by left multiplica-

tion.

If s is an involution, undirected edges labeled by s are typically used in place of a pair of

opposing arrows. Furthermore, loops corresponding to the identity element id of G are excluded

in the case id is in S. The graph Γ(G,S) = Γ(G, {id}, S) is called the Cayley graph of G (with

respect to S). A Cayley graph Γ is homogeneous in the sense that (Γ, v1) is isomorphic to (Γ, v2)

for any vertices v1, v2 of Γ, so that a Cayley graph looks the same everywhere.

When X is a topological space and G acts by homeomorphisms, we can define other types

of actions, natural subgroups of G, and graphs associated to actions. We will focus on the case

where X is a Cantor space. An action of G on X is called minimal if each orbit is dense in X .

The terminology stems from the equivalence that an action is minimal if and only if X is the only

nontrivial G-invariant closed subset of X . Thus we can’t (topologically) factor the action on X

into actions on subspaces.

Denote by G(x) the subgroup of elements of G acting trivially on a neighborhood of x, called

the neighborhood stabilizer of x. The graph of germs Γ(x) is the Schreier graph of G modulo G(x).

Note that G(x) is a normal subgroup of Gx, hence the map hG(x) 7→ hGx induces a Galois covering

of graphs Γ(x) → Γx with the group of deck transformations Gx/G(x). We call Gx/G(x) the group

of germs of the point x. The vertices of Γ(x) are identified with germs of elements of G at x. Here

a germ is an equivalence class of a pair (g, x), where two pairs (g1, x) and (g2, x) are equivalent if

there exists a neighborhood U of x such that g1|U = g2|U .

Let A be a subset of X that accumulates on x, that is, every neighborhood U of x intersects

A \ {x}. Denote by G(x,A) the subgroup of elements of G acting trivially on a subset of A of the

form U ∩ A for some neighborhood U of x, called the neighborhood stabilizer of x relative to

A. It is easy to see that G(x) ≤ G(x,A) ≤ Gx. For example, G(x,X) = G(x). The graph of germs

relative to A, denoted Γ(x,A), is the Schreier graph of G modulo G(x,A). The vertices of Γ(x,A)

can be identified with equivalence classes of triples (g, x, A), where (g1, x, A) and (g2, x, A) are
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equivalent if there exists a neighborhood U of x such that g1|U∩A = g2|U∩A.

Let h be a homeomorphism of X . A fixed point x of h is called singular if h fixes x but does

not fix a neighborhood of x. For a set H of homeomorphisms, we say x is a singular point of H

if x is a singular point of some h ∈ H . If x is not a singular point of H , then we say that it is

H-regular, or just regular when H is understood. A subset of X is called regular (respectively,

singular) if it consists entirely of regular (resp., singular) points.

For a homeomorphism h of X , we define the support of h to be supp(h) = {x ∈ X : h(x) ̸=

x}. It is an open subset of X . For a set H of homeomorphisms, the support of H is the set

supp(H) =
∪

h∈H supp(h). The set of fixed points of h is a closed subset of X and is denoted by

Fix(h). The set of singular points of a homeomorphism h is given by the common boundary of

supp(h) and Fix(h). So we have X = supp(h)
⊔

Fix(h)◦
⊔

∂Fix(h), where Fix(h)◦ denotes the

interior of Fix(h).

The point x ∈ X is G-regular if and only if G(x) = Gx. Since gG(x)g
−1 = G(g(x)) and

gGxg
−1 = Gg(x) for all x ∈ X and g ∈ G, the set of G-regular points is G-invariant. Consequently,

any orbit G(x) is either regular or singular.

2.2.1 Groupoids

A groupoid is a set G with partially defined multiplication and everywhere defined operation

of taking inverses satisfying the following:

1. if g1g2 and g2g3 are defined, then (g1g2)g3 and g1(g2g3) are both defined and are equal,

2. for every g ∈ G the products gg−1 and g−1g are defined,

3. if g1g2 is defined, then (g−1
1 g1)g2 and g1(g2g

−1
2 ) are both defined, and (g−1

1 g1)g2 = g2 and

g1(g2g
−1
2 ) = g1.

Example 2.2.2. Let G be a group acting by homeomorphisms on a topological space X . Consider

the equivalence relation on G×X , where (g1, x1) and (g2, x2) are equivalent if x1 = x2 and there

is a neighborhood U of x1 such that g1|U = g2|U . The equivalence classes are called germs, and
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the germ (g, x) encodes the local action of g at x. The set of germs has a groupoid structure with

multiplication (g1, g2(x))(g2, x) = (g1g2, x) and inverses (g, x)−1 = (g−1, g(x)).

2.3 Bratteli diagrams

A Bratteli diagram D = ((Vi)i≥0, (Ei)i≥1, s, t) is defined by two sequences of finite sets

(V0, V1, . . . ) and (E1, E2, . . . ), and maps s :
⊔

i≥1 Ei −→
⊔

i≥0 Vi, t :
⊔

i≥1 Ei −→
⊔

i≥1 Vi such

that s(Ei) = Vi−1 and t(Ei) = Vi for i ≥ 1. We interpret the sets V =
⊔

i≥0 Vi and E =
⊔

i≥1Ei

as vertices and edges of the diagram, partitioned into levels, and s and t as the source and target

maps. An edge e ∈ Ei connects s(e) ∈ Vi−1 and t(e) ∈ Vi. An example of a Bratteli diagram is

shown in Figure 5.4. A path of length n, where n is a positive integer or infinity, in D is a sequence

of edges ei ∈ Ei, 1 ≤ i ≤ n, such that t(ei) = s(ei+1) for all i. For n finite let Ωn = Ωn(D)

denote the set of paths in D of length n, and let Ω = Ω(D) denote the set of infinite paths in D.

Define Ω∗ =
⊔

n≥1Ωn to be the set of all finite paths in D, and extend the map s to Ω∗ ∪ Ω by

s(e1, e2, . . . ) = s(e1), and the map t to Ω∗ by t(e1, e2, . . . , en) = t(en). We say u ∈ Ω∗ ∪ Ω starts

at s(u) and ends at t(u).

For m ≥ 1, we can construct the Bratteli diagram D(m) with vertex sequence (Vm, Vm+1, . . . )

and edge sequence (Em+1, Em+2, . . . ). We call the diagram D(m) the m-shift of D, and consider

it as a subdiagram of D. We then define Ω
(m)
n = Ωn(D

(m)) and Ω(m) = Ω(D(m)), considered as

length n paths and infinite paths in D starting in level m.

For x ∈ Vn, let Ωx = Ωx(D) denote the set of paths in D ending at x. Similarly, for m < n,

we define Ω(m)
x = Ωx(D

(m)). Given v = (en+1, en+2, . . . ) ∈ Ω(n) ∪Ω
(n)
x and u = (em+1, . . . , en) ∈

Ω
(m)
s(v), their concatenation is the path uv = (em+1, . . . , en, en+1, . . . ) ∈ Ω(m) ∪ Ω

(m)
x . We say

u ∈ Ωm is a prefix of w ∈ Ω ∪ Ωx if there exists v ∈ Ω(m) ∪ Ω
(m)
x such that w = uv. For w ∈ Ω

and n ≥ 1, let wn ∈ Ωn denote the length n prefix of w. The following is straightforward.

Proposition 2.3.1. Let x ∈ Vn+m, then

Ωx =
⊔

v∈Ω(n)
x

Ωs(v)v,
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where Ωs(v)v = {uv | u ∈ Ωs(v)}.

We can consider Ω to be a subspace of
∏

i≥1 Ei endowed with the prodiscrete topology. It is

closed, compact, Hausdorff, and totally disconnected. For w ∈ Ωn, let wΩ denote the set of infinite

paths beginning with w (note slight abuse of notation). The sets wΩ, w ∈ Ω∗, are clopen and form

a basis of topology for Ω. We will assume Ω has no isolated points, so that it is homeomorphic to

the Cantor set. This is if and only if wΩ is infinite for all w ∈ Ω∗.

If u, v ∈ Ωx, then the map τu,v : uw 7→ vw is a homeomorphism between uΩ and vΩ. Given

a homeomorphism h of Ω, let suppx(h) be the subset of Ωx consisting of elements u such that

h|uΩ = τu,v for some v ∈ Ωx, v ̸= u, and define suppn(h) =
∪

x∈Vn
suppx(h), called the level n

support of h. Further, let supp∗(h) =
∪

n≥1 suppn(h). Consider the poset (Ω∗,≤), where u ≤ v

if u is a prefix of v, and let N (h) be the set of minimal elements of supp∗(h). In other words, for

u ∈ Ωx, h|uΩ = τu,v for some v ∈ Ωx \ {u} if and only if there exists u′ ∈ N (h) that is a prefix of

u.

Definition 2.3.2. Let h be a homeomorphism of Ω and let w ∈ Ω. We say w is a critical point of

h if h|wnΩ ̸= τwn,v for all n ≥ 1 and v ∈ Ωt(wn). We will use Ch to denote the set of critical points

of h.

For a set S of homeomorphisms of Ω, define the set of critical points of S to be CS =
∪

s∈S Cs.

Note that a fixed critical point is singular (if w is a critical point of h, then h|wnΩ ̸= τwn,wn = id|wnΩ

for all n ≥ 1).

Proposition 2.3.3. Let h be a homeomorphism of Ω, then supp(h) =
⊔

u∈N (h) uΩ⊔{non-fixed Ch}.

Proof. Let w ∈ supp(h). If w is not a critical point of h, then there exists a minimal n ≥ 1 such

that h|wnX = τwn,v for some v ∈ Ωt(wn). We have v ̸= wn since w ∈ supp(h), so that wn ∈ N (h)

(by minimality of n). It follows that supp(h) ⊆
⊔

u∈N (h) uΩ ⊔ {non-fixed Ch}.

Now let uw ∈ uΩ for some u ∈ N (h) of length n. Then h|uΩ(uw) = τu,v(uw) = vw for some

u ̸= v ∈ Ωt(wn), so uw ∈ supp(h).
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In particular, if all critical points of h are fixed points, then supp(h) =
⊔

u∈N (h) uΩ. The set⊔
u∈N (h) uΩ is called the noncritical support of h, and we say N (h) is its generating set.

2.3.1 Tiles

Let G = ⟨S⟩ be a finitely generated group acting faithfully on Ω by homeomorphisms. For

x ∈ V (1), let Tx be the labeled directed graph with the set of vertices Ωx and an edge labeled by

s ∈ S from u to v if s|uΩ = τu,v. The graphs Tx, x ∈ Vn, are called level n tiles. For u ∈ Ωn, let

Tu = (Tt(u), u).

The boundary of Tx, denoted ∂Tx, consists of pairs (s, u) ∈ S × Ωx such that s|uΩ ̸= τu,v for

all v ∈ Ωx. We will also use the term boundary edges as we can interpret the boundary element

(s, u) as an arrow in Tx labeled by s with source u and no target vertex.

Let x ∈ Vn+m. For every v ∈ Ω
(n)
x , the map ϕv : u 7→ uv gives an isomorphism of Ts(v) with

a subgraph of Tx. We will denote this subgraph by Ts(v)v. The graphs in {Ts(v)v : v ∈ Ω
(n)
x }

are disjoint and their union contains all vertices of Tx by Proposition 2.3.1. It follows that a level

n+m tile can be obtained by connecting tiles of the nth level along their boundary. In particular,

we can obtain a level n+ 1 tile from level n tiles.

Proposition 2.3.4 (Tile Inflation). Fix x ∈ Vn+1 and consider the disjoint union of the graphs

Ts(e)e for e ∈ Ω
(n)
x = t−1(x). Connect ue ∈ Ts(e)e to u′e′ ∈ Ts(e′)e

′ by an arrow labeled by

s if (s, u) ∈ ∂Ts(e) and s|ueΩ = τue,u′e′ . The obtained graph is equal to Tx. In particular, if

(s, ue) ∈ ∂Tx, then (s, u) ∈ ∂Ts(e).

Proof. Easily follows from the discussion in previous paragraph and the definition of tile graphs.

For x ∈ Vn+1, we introduce the model graph Mx to describe how the boundaries of the level

n tiles Ts(e), e ∈ t−1(x), are connected to form Tx. It is the subgraph of Tx with vertex set

{ue : e ∈ t−1(x), (s, u) ∈ ∂Ts(e)} with an edge from ue to u′e′ labeled by s if (s, u) ∈ ∂Ts(e)

and s|ueΩ = τue,u′e′ , or a dashed edge with source ue and no target vertex if s|ueΩ ̸= τue,u′e′ for
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all u′e′. We can then imagine placing the graphs Ts(e), e ∈ Ω
(n)
x , into the model graph so that if

(s, u) ∈ ∂Ts(e), u aligns with ue, forming Tx as described in Proposition 2.3.4.

We say w, z ∈ Ω are cofinal if they differ in only finitely many edges. This defines an equiva-

lence relation on Ω with equivalence classes denoted by Cof(·), called cofinality classes.

Let z = (e1, e2, . . . ) ∈ Ω. Consider the subgraph of Γz with vertex set G(z) and an edge from

w to w′ labeled by s ∈ S if there exists n ≥ 1 such that s|wnΩ = τwn,w′
n
. The connected component

of this graph containing z is the orbital tile graph Tz. The vertex set of Tz is Cof(z) ∩ G(z), and

it is straightforward to see that the rooted graphs (Tt(zn), zn) converge to (Tz, z). We also call the

graphs Tz infinite tiles. We can then define the boundary of Tz, denoted by ∂Tz, as the set of pairs

(s, w) ∈ S × (Cof(z)∩G(z)) such that s|wnΩ ̸= τwn,v for all v ∈ Ωt(wn) and n ≥ 1 (i.e., such that

w is a critical point of s). We can then construct orbital graphs from infinite tile graphs.

Proposition 2.3.5. Fix z ∈ Ω.

1. Then G(z) ∩ CS is empty if and only if Tz = Γz.

2. Suppose G(z)∩CS is nonempty. For every w ∈ G(z)∩CS and (s, w) ∈ ∂Tw connect w ∈ Tw

to s(w) ∈ Ts(w) by an arrow labeled by s. The obtained graph is equal to Γz.

Proof. Suppose G(z) ∩ CS is empty. It is sufficient to show Γz is a subgraph of Tz. We first prove

that G(z) ⊆ Cof(z), so that Tz and Γz have the same vertex set. Let w ∈ G(z), then there exists

g ∈ G such that g(z) = w. Write g = sm · · · s1 as a product of elements of S∪S−1 and note that if

S has no critical points in Gz, then S ∪ S−1 has no critical points in G(z). Thus, z is not a critical

point of s1, s1(z) is not a critical point of s2, . . . , and sm−1 · · · s1(z) is not a critical point of sm. It

follows that g changes only finitely many letters of z, so that w ∈ Cof(z). Now consider an arrow

labeled by s from w to s(w) in Γz. Since w is not a critical point of s, the same arrow exists in Tz.

Thus Γz is a subgraph of Tz.

Conversely, if Γz = Tz, then ∂Tz is empty and Cof(z)∩G(z) = G(z). It follows that G(z)∩CS

is empty.
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Now suppose G(z)∩CS is nonempty. We first show that the vertices of Tw ∪ Ts(w) as w ranges

over G(z) ∩ CS and (s, w) ∈ ∂Tw cover the vertices of Γz, i.e., that

∪
w∈G(z)∩CS

∪
(s,w)∈∂Tw

(
Cof(w) ∪ Cof(s(w))

)
∩G(z) = G(z).

The left containment is trivial. Let w ∈ G(z) and suppose Cof(w)∩G(z)∩CS is empty, then every

vertex of Tw has |S| outgoing arrows. There must be a vertex w′ ∈ G(z) \Cof(w) and s ∈ S such

that s(w′) ∈ Cof(w). Indeed, if not, then Tw = Γw, a contradiction as G(z) ∩ CS = G(w) ∩ CS

is nonempty. Since w′ and w differ in infinitely many letters, w′ is a critical point of s. We have

w ∈ Cof(s(w′)) as desired. Now suppose Cof(w) ∩ G(z) ∩ CS is nonempty, so that there is an

s ∈ S and vertex w′ of Tw such that w′ is a critical point of s. We have that w ∈ Cof(w′) where

w′ ∈ G(z) ∩ CS and (s, w′) ∈ ∂Tw′ .

Proposition 2.3.6. If the finite tiles are eventually connected (i.e., there exists N such that any tile

of level n ≥ N is connected), then Cof(z) ⊆ G(z) for all z ∈ Ω, so that the vertices of Tz can be

identified with Cof(z).

Proof. There exists N ∈ N such that the tiles Ωx are connected for all x ∈ Vn and n ≥ N .

Suppose z = (e1, e2, . . .) ∈ Ω and let w = (f1, f2, . . .) ∈ Cof(z) be different from z, then there

exists n ≥ N such that ek = fk for k ≥ n. Since Tt(zn) is connected, there exists g ∈ G such that

g|znΩ = τzn,wn . Thus g(z) = w and w ∈ G(z).

Let σ be the shift map on
⊔

m≥0Ω
(m) sending (em+1, em+2, em+3, . . .) to (em+2, em+3, em+4, . . .).

For z ∈ Ω and n ≥ 1, we have σn(z) ∈ Ω(n). The following is straightforward.

Proposition 2.3.7. Let z ∈ Ω and n ≥ 1, then

Cof(z) =
⊔

w∈Cof(σn(z))

Ωs(w)w.

Let z ∈ Ω and n ≥ 1. Suppose the finite tiles are eventually connected, then the set of

vertices of Tz is given by Cof(z). For every w ∈ Cof(σn(z)), the map ϕw : v 7→ vw gives
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an isomorphism of Ts(w) with a subgraph of Tz. Denote this subgraph by Ts(w)w. The graphs

{Ts(w)w | w ∈ Cof(σn(z))} are disjoint and their union contains all vertices of Tz by Proposition

2.3.7.

The study of orbital graphs descends to the study of orbital tile graphs, which are approximated

by finite tiles. Thus, having a handle on finite tiles can lead to conclusions about orbital graphs.

Dynamically, the action of G on Ω is approximated by a partial action of G on Ω that agrees with

the complete action when defined. That is, g ∈ G is defined on w ∈ Ω if there exists n ≥ 1 and

v ∈ Ωt(wn) such that g|wnΩ = τwn,v, and undefined if w is a critical point of g. The orbital graphs

of this partial action are exactly the orbital tile graphs.

We also have partial actions of G on Ωx, x ∈ V (1), whose “inductive limits" give the above

partial action on Ω. That is, g ∈ G is defined on v ∈ Ωx if and only if there exists v ∈ Ωt(wn) such

that g|wnΩ = τwn,v.

2.3.2 Homeomorphisms of bounded type

We want to use infinite tiles to get a handle on orbital graphs, and finite tiles to approximate

infinite tiles. Thus, having a grasp on the size of tile boundaries will assist us in our study of orbital

graphs.

Definition 2.3.8. Let h be a homeomorphism of Ω. For x ∈ V (1), let αx(h) be the number of paths

u ∈ Ωx such that h|uΩ ̸= τu,v for all v ∈ Ωx. We say h is of bounded type if αx(h) is uniformly

bounded and h has finitely many critical points.

The set of all homeomorphisms of bounded type form a group. If S is a finite generating set of

homeomorphisms of Ω and h ∈ S, then αx(h) is the number of elements (s, u) ∈ ∂Tx with s = h.

Proposition 2.3.9. Let h be a homeomorphism of Ω(D) and suppose |Vi| is uniformly bounded. If

αx(h) is uniformly bounded, then h has finitely many critical points, so that h is of bounded type.

Proof. There exists N,M such that |Vi| ≤ N for all i and αx(h) ≤ M for all x. Suppose |Ch| >

MN and let z(1), z(2), . . . , z(MN+1) be distinct critical points of h. There exists an m such that
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z
(1)
m , . . . , z

(MN+1)
m are distinct paths of length m, and for i = 1, 2, . . . ,MN + 1, we have h|

z
(i)
m Ω

̸=

τ
z
(i)
m ,v

for all v ∈ Ω
t(z

(i)
m )

. It follows that
∑

x∈Vm
αx(h) > MN , a contradiction. Thus |Ch| ≤ MN ,

so that h has finitely many critical points.

Proposition 2.3.10. Let h be a homeomorphism of Ω and suppose its set of critical points is finite.

1. If N (h) is finite, then h has no critical points and supp(h) =
⊔

u∈N (h) uΩ. We say h is

finitary of depth n, where n is the maximum of the lengths of elements of N (h).

2. If N (h) is infinite, then Ch is nonempty and equal to the boundary of
⊔

u∈N (h) uΩ. We say h

is almost finitary.

Proof. (1) Suppose h has a critical point w and let n be the maximum of the lengths of elements

of N (h). We have h|wnX ̸= τwn,v for all v ∈ Ωt(wn). It follows that every element of wnΩ is a

critical point, which is a contradiction. Indeed, suppose wnz is not a critical point, then there exists

minimal m ≥ 1 such that h|wnzmX = τwnzm,v for some v ∈ Ωt(wnzm). Then wnzm ∈ N (h) and

has length n + m, a contradiction. Thus h has no critical points, and supp(h) =
⊔

u∈N (h) uΩ by

Proposition 2.3.3.

(2) First note that the set
⊔

u∈N (h) uΩ is open and not closed, thus has nonempty boundary. If

w is a boundary point of
⊔

u∈N (h) uΩ ⊆ supp(h), then w is clearly a critical point of h.

Now suppose w is a critical point of h and consider the basic clopen set wnΩ for some n. There

is a z ∈ wnΩ that it not a critical point of h, so there exists minimal m > n such that h|zmΩ = τzm,v

for some v ∈ Ωt(zm). It follows that zm ∈ N (h) and zmΩ ⊂ wnΩ, so that w is a boundary point of⊔
u∈N (h) uΩ.

Note that h is finitary if and only if supp(h) is closed. If a homeomorphism h : Ω −→ Ω

is finitary of depth n, then for every u ∈ Ωn there exists v ∈ Ωt(u) such that h|uΩ = τu,v. In

other words, h fixes the tail of each element of Ω starting at the nth edge (or sooner). The set

of all finitary homeomorphisms of depth at most n form a group, and thus the set of all finitary

homeomorphisms is also a group (as an increasing union).
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Suppose S is a finite set of homeomorphisms of Ω of bounded type and consider the induced

action of G = ⟨S⟩ on X . It follows from Propositions 2.3.5 that for all z ∈ Ω, either Tz = Γz or

we can construct Γz by connecting finitely many infinite tiles.

2.3.3 Groups acting on rooted trees

Consider the case when every Vi of the Bratteli Diagram D has exactly one vertex, say Vi =

{vi}. Then D is determined by the sequence (E1, E2, E3, . . . ) of finite edge sets. We have Ωn =

Ωvn = E1 × E2 · · · × En and Ω =
∏

i≥1Ei. The set X∗ = Ω∗ ∪ {v0} has a natural structure of

a rooted tree with root v0, level n vertices given by Ωn, an edge between v0 and every element of

Ω1, and an edge between u ∈ Ωn and v ∈ Ωn+1 if v = ue for some e ∈ En+1.

Let Aut(X∗) denote the automorphism group of the rooted tree X∗ and let Xn denote the level

n vertices Ωn. The tree is level-transitive, that is, Aut(X∗) acts transitively on each of the levels

Xn. Let X∗
(m) denote the rooted tree corresponding to the diagram D(m). It is naturally identified

with any of the subtrees of X∗ starting at a vertex of the mth level.

For every g ∈ Aut(X∗) and v ∈ Xn, there exists g|v ∈ AutX∗
(n) such that

g(vw) = g(v)g|v(w)

for all w ∈ X∗
(n). The automorphism g|v is called the section of g at v. We have the following

straightforward properties of sections:

(gh)|v = g|h(v)h|v, g|vu = (g|v)|v = g|v|u

for all g, h ∈ Aut(X∗), v ∈ X∗, and u ∈ X∗
(n), where v ∈ Xn. Any g ∈ Aut(X∗) induces

a homeomorphism of Ω by g(e1, e2, e3, . . . ) = (g(e1), g|e1(e2), g|e1e2(e3), . . . ). The tile graph

Tn = Tvn has vertex set Xn and an edge from u to v labeled by s if s(u) = v and s|u = id. The

boundary ∂Tn consists of pairs (s, u) ∈ S ×Xn such that s|u ̸= id.

If the edge sets Ei have the same cardinality, say |Ei| = N for all i, then we will identify each
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Ei with the set X = {0, 1, 2, . . . , N − 1}. We will generally write elements as finite and infinite

words over X .

2.3.4 Automata

Definition 2.3.11. A (transducer) automaton is a 4-tuple A = (Q,X, π, λ), where

1. Q is a set (called the set of states of the automaton),

2. X is a finite set (called the alphabet of the automaton),

3. π : Q×X −→ Q is a map (called the output function of the automaton),

4. λ : Q×X −→ X is a map (called the transition function of the automaton).

We interpret A as a machine that when in state q ∈ Q and reading x ∈ X as input, outputs

λ(q, x) and then changes its state to π(q, x). If we let X∗ denote the set of finite words over X ,

including the empty word ∅, we can extend the maps π and λ to Q×X∗ inductively by:

π(q,∅) = q, π(q, x1x2 · · · xn) = π(π(q, x1), x2 · · · xn),

λ(q,∅) = ∅, λ(q, x1x2 · · · xn) = λ(q, x1)λ(π(q, x1), x2 · · · xn).

Then π(q, x1x2 · · · xn) is the state of the automaton after reading the word x1x2 · · · xn and starting

in state q, and λ(q, x1x2 · · · xn) is the total output word (of length n).

If Q is finite, we say A is finite-state. An automaton is invertible if λ(q, ·) : X −→ X is a

permutation for all q ∈ Q. An automaton can be represented by a labeled directed graph, called a

Moore diagram, which has vertex set Q and for every q ∈ Q and x ∈ X there is an arrow from q

to π(q, x) labeled by x|λ(q, x). Figure 5.1 shows the Moore diagram for an invertible finite state

automaton. We also use A to represent the Moore diagram of A.

Let Xω be the set of (right) infinite words over X . Every state q ∈ Q inductively defines a

transformation of X∗ ∪Xω, also denoted q, by

q(x1x2x2 . . . ) = λ(q, x1)λ(π(q, x1), x2x3 . . . ).
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In terms of the Moore diagram, given a word x1x2x3 . . . in X∗∪Xω, there is a unique directed path

starting at q and successively labeled by x1|y1, x2|y2, x3|y3, . . . , and q(x1x2x3 . . . ) = y1y2y3 . . . .

If A is invertible, then every transformation defined by a state of Q is invertible. We can then

define the automaton group G(A) generated by A to be the group of transformations generated by

Q. The set X∗ has a natural structure of a rooted tree, and any automaton group is a subgroup of

Aut(X∗). For any v ∈ X∗ and q ∈ Q, we have q|v = π(q, v).

Definition 2.3.12. A finite invertible automaton A is called bounded if the number of left-infinite

paths of A \ {id} is finite.

Here, a left-infinite path is a path in the Moore diagram of A where each edge is against

orientation (or a loop). It is not difficult to show that A is bounded if and only if the number of

right-infinite paths of A\{id} is finite. There is a one-to-one correspondence between right infinite

paths starting at state q and critical points of q. It follows that each q ∈ Q is a homeomorphism of

bounded type.
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3. PERIODICITY

Let X be a Cantor space and h be a homeomorphism of X . For ζ ∈ X , the h-orbit of ζ is the set

Oh(ζ) = {hn(ζ) : n ∈ Z}. For any integer n ≥ 2, let supp(h, n) = {ζ ∈ supp(h) : |Oh(ζ)| = n}.

The order of h, denoted ord(h), is the smallest positive integer n such that hn is the identity map

on X , or ∞ if no such n exists.

Reminder. The set of singular points of a homeomorphism h is given by the common boundary

of supp(h) and Fix(h). We have X = supp(h)
⊔

Fix(h)◦
⊔
∂Fix(h), where Fix(h)◦ denotes the

interior of Fix(h).

3.1 Domains of support of a finite group of homeomorphisms

Let H be a nontrivial finite group of homeomorphisms of X and let DH be the set of all

nontrivial intersections of the form
∩

h∈H Uh, where Uh ∈ {supp(h), Fix(h)◦} and Uh′ = supp(h′)

for some h′ ∈ H . For any Uh1 and h2 ∈ H , we have h2(Uh1) = Uh2h1h
−1
2

. The set DH has the

following properties:

1. DH is finite,

2. the elements of DH are open and pairwise disjoint,

3. for every D ∈ DH and h ∈ H either D ⊆ supp(h) or D ⊆ Fix(h)◦,

4. h(D) ∈ DH for every h ∈ H and D ∈ DH ,

5.
⊔

D∈DH
D consists of the H-regular points of supp(H).

We call the elements of DH the domains of support of H . The set of singular points of H is given

by
∪

h∈H ∂Fix(h), and thus is nowhere dense. It follows that the domains of support of H cover

supp(H) up to a meager set, i.e., up to a countable union of nowhere dense sets (such sets are

considered “topologically small”).
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We will be interested in cases where the elements of DH are H-invariant. For example, if H

is abelian, then h2(Uh1) = Uh2h1h
−1
2

= Uh1 so that each D ∈ DH is H-invariant. We say H has

invariant domains. If supp(h) = supp(H) for all h ∈ H (i.e., H acts freely on supp(H)), then

DH = {supp(H)} and H trivially has invariant domains. If in addition, H has regular support,

then DH is a partition of supp(H) into H-invariant open sets.

3.2 Germ-defining singular points

A nontrivial walk w = (ζ0, e1, ζ1, . . . , en, ζn) in an orbital graph of G = ⟨S⟩ ↷ X (with label

function ℓ) corresponds to an element of G, namely gw = sεmm s
εm−1

m−1 · · · sε11 , where si = ℓ(ei) and

εi = 1 if ei has source vi−1 or εi = −1 if ei has source vi. The order of edges reverses as we are

considering left actions. We have gw1w2 = gw2gw1 and gw−1 = g−1
w . If w is trivial, then we define

gw = id.

Conversely, for a finite word g = snsn−1 · · · s1 over S ∪ S−1 and ζ0 ∈ X , we define the

walk wg,ζ0 = (ζ0, e1, ζ1, . . . , en, ζn) where ζi = sisi−1 · · · s1(ζ) for 0 < i ≤ n, and ei is the edge

with endpoint(s) {ζi−1, ζi} labeled by si following orientation if si ∈ S, and against orientation if

si ∈ S−1 \S. This is the walk starting at ζ and corresponding to g that is “as directed as possible".

With a slight abuse of notation, we will denote this walk by (ζ0, s1, ζ1, . . . , sn, ζn). Such walks are

important in the following because the “journey" ζ0, ζ1, . . . , ζn that ζ0 takes when acted on by a

product snsn−1 · · · s1 of elements of S ∪ S−1 will play a crucial role in analyzing the action of ⟨S⟩

on X .

Definition 3.2.1. Let S be a finite set of homeomorphisms of X and consider the induced action

of G = ⟨S⟩ on X . A singular point ξ of S is called germ-defining if:

1. ξ is the only singular point of S in G(ξ),

2. for any ζ ∈ G(ξ) and nonloop cycle c in Γξ starting at ζ , we have (gc, ζ) = (id, ζ).

The second condition is really just a succint way to say that for any ζ0 ∈ G(ξ) and product

g = smsm−1 · · · s1 ∈ Gζ0 , si ∈ S∪S−1, such that ζi = si · · · s1(ζ0) are distinct for i = 1, . . . ,m−1,

we have (g, ζ0) = (id, ζ0).
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Let Sξ denote the subset of S consisting of elements that fix ξ and S(ξ) denote the subset of S

consisting of elements that fix a neighborhood of ξ, then Sξ \S(ξ) consists of the elements of S that

have ξ as a singular point. The length of g ∈ G (with respect to S) is defined to be the minimal

number of factors m needed for a decomposition g = sm · · · s1, si ∈ S ∪ S−1, and is denoted |g|S .

In other words, it is the distance between id and g in the Cayley graph of G (with respect to S).

Proposition 3.2.2. Let G = ⟨S⟩ and H = ⟨Sξ \ S(ξ)⟩. If ξ is a germ-defining singular point of S,

then Gξ = G(ξ)H .

Proof. We clearly have G(ξ)H ⊆ Gξ since both G(ξ) and H are subgroups of Gξ. We show

Gξ ⊆ G(ξ)H by strong induction on the length of elements of Gξ. Let g ∈ Gξ. The case of length

0 is trivial, as g = id. If g has length 1, then g ∈ Sξ ∪S−1
ξ . Either g ∈ S(ξ) ∪S−1

(ξ) , so that g ∈ G(ξ),

or g /∈ S(ξ) ∪ S−1
(ξ) , so that g ∈ H . Therefore, g ∈ G(ξ)H .

Suppose the claim is true for length less than some n > 1 and let g = sn · · · s1 have length n.

Consider the closed walk w = wg,ξ = (ξ0, s1, ξ1, s2, . . . , sn, ξn), where ξ0 = ξn = ξ. If ξk = ξ

for some 0 < k < n, then g1 = sk . . . s1 and g2 = sn . . . sk+1 are in Gξ and have length less than

n, so are in G(ξ)H by inductive hypothesis. But G(ξ)H is a group (since G(ξ) is normal in Gξ), so

g = g2g1 ∈ G(ξ)H .

Now suppose ξk ̸= ξ for 0 < k < n. We will show the stronger conclusion g ∈ G(ξ). If w is a

cycle, then we get g = gw ∈ G(ξ) since ξ is germ-defining. If w is not a cycle, then it must contain

a cycle subwalk c, say c = (ξk, sk+1, . . . , sk+r, ξk+r), where 1 ≤ r ≤ n−2 and 0 < k < n. Indeed,

if w is not a cycle, then by definition either its edges are not distinct or the vertices ξ0, ξ1, . . . , ξn−1

are not distinct. Suppose the latter is true and let k be minimal such that ξk appears more than once

in ξ0, ξ1, . . . , ξn−1. By the assumption that ξi ̸= ξ for 0 < i < n, we must have k > 0. Finally,

there exists 1 ≤ r ≤ n − 2 such that ξk = ξk+r and ξk, ξk+1, . . . , ξk+r−1 are distinct. If the edges

are not distinct, then si = sεj for some 1 ≤ i < j ≤ n and ε ∈ {−1, 1}. If ε = 1, then ξi−1 = ξj−1.

If ε = −1, then ξi = ξj−1. So this case reduces to the other.
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We then have

(g, ξ) = (sn · · · s1, ξ)

= (sn · · · sk+r+1, ξk+r)(sk+r · · · sk+1, ξk)(sk · · · s1, ξ)

= (sn · · · sk+r+1, ξk+r)(id, ξk)(sk · · · s1, ξ)

= (sn · · · sk+r+1, ξk)(sk · · · s1, ξ)

= (sn · · · sk+r+1sk · · · s1, ξ),

where g1 = sn · · · sk+r+1sk · · · s1 ∈ Gξ is a word over S ∪S−1 of length n− r and 2 ≤ n− r < n.

If w1 = wg1,ξ is a nonloop cycle or g1 = id in G, then (g, ξ) = (g1, ξ) = (id, ξ). Otherwise, we

can continue this until we obtain a word gr of length at least 2 such that wr is a nonloop cycle or

gr = id in G, and (g, ξ) = (gr, ξ) = (id, ξ).

Corollary 3.2.3. If ξ is germ-defining, then Gξ/G(ξ) is naturally isomorphic to H/H(ξ). In partic-

ular, for any g ∈ Gξ there exists h ∈ H such that (g, ξ) = (h, ξ).

Proof. The Second Isomorphism Theorem gives H/(H ∩ G(ξ)) and G(ξ)H/G(ξ) are isomorphic

under the homomorphism h(H ∩ G(ξ)) 7→ hG(ξ). From Proposition 3.2.2 we have Gξ = G(ξ)H .

Since H ∩ G(ξ) = H(ξ), we get H/H(ξ) and Gξ/G(ξ) are isomorphic under the homomorphism

φ : hH(ξ) 7→ hG(ξ). The second statement follows from surjectivity of φ.

Let Γ′
ξ be Γξ without the loops at ξ labeled by s ∈ Sξ \ S(ξ). Consider the graph Ξ with set of

vertices H/H(ξ) ×G(ξ) obtained by taking |H/H(ξ)| copies of Γ′
ξ, and then connecting their roots

ξ by the Schreier graph Γ(ξ)(H) = Γ(H,H(ξ), Sξ \ S(ξ)), i.e., by the graph of germs of H at ξ.

Proposition 3.2.4. If ξ is a germ-defining singular point of S, then Γ(ξ) is isomorphic to Ξ.

Proof. Let T be a left transversal of Gξ in G containing id, then any vertex ζ of Γ′
ξ can be written

uniquely as ζ = g(ξ) for some g ∈ T . We show the map φ : Ξ −→ Γ(ξ) defined on vertices by

φ(hH(ξ), g(ξ)) = (gh, ξ) and on arrows by φ((s, (hH(ξ), g(ξ))) = (s, (gh, ξ)) is a well-defined
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isomorphism. First, if (h1H(ξ), g1(ξ)) = (h2H(ξ), g2(ξ)), then h1H(ξ) = h2H(ξ) and g1 = g2. Thus

(g1h1, ξ) = (g1, ξ)(h1, ξ) = (g2, ξ)(h2, ξ) = (g2h2, ξ) and the map is well-defined. Now suppose

(g1h1, ξ) = (g2h2, ξ), then g1(ξ) = g2(ξ) and thus g1 = g2. It follows that (h1, ξ) = (h2, ξ),

i.e., h1H(ξ) = h2H(ξ), so φ is injective. Let (g, ξ) ∈ G/G(ξ). We have g = g1g2 for some

g1 ∈ T and g2 ∈ Gξ. By Corollary 3.2.3, there exists h ∈ H such that (g2, ξ) = (h, ξ), and so

(g, ξ) = (g1g2, ξ) = (g1, ξ)(g2, ξ) = (g1, ξ)(h, ξ) = (g1h, ξ), i.e., φ(hH(ξ), g1(ξ)) = (g, ξ), and

thus φ is surjective.

Consider the s-labeled edge from (hH(ξ), g(ξ)) to (hH(ξ), sg(ξ)) in a copy of Γ′
ξ ⊆ Ξ. The

vertices are sent to (gh, ξ) and (sgh, ξ) = s(gh, ξ) by φ, which are connected by an edge labeled

by s. Next consider the s-labeled edge, s ∈ Sξ\S(ξ), from (hH(ξ), ξ) to (shH(ξ), ξ) in Γ(ξ)(H) ⊆ Ξ.

The vertices are sent to (h, ξ) and (sh, ξ) = s(h, ξ). Thus φ is an isomorphism.

Let S be a finite set of homeomorphisms of X with germ-defining singular point ξ. Let G =

⟨S⟩, H = ⟨Sξ \ S(ξ)⟩, and A be a subset of X accumulating on ξ. It is straightforward to show

G(ξ,A) = G(ξ)H(ξ,A). Thus, we can go from the chain of subgroups H(ξ) < H(ξ,A) < H to the

chain G(ξ) < G(ξ,A) < Gξ by multiplication of G(ξ). The map hH(ξ,A) 7→ hG(ξ,A) is a bijection

between Gξ/G(ξ,A) and H/H(ξ,A), and the graph Γ(ξ,A) is isomorphic to the graph ΞA obtained

by taking |H/H(ξ,A)| copies of Γ′
ξ and connecting their roots by the Schreier graph Γ(ξ,A)(H) =

Γ(H,H(ξ,A), Sξ \S(ξ)). Let λA : Γ(ξ) −→ Γ(ξ,A) denote the natural covering map. In terms of Ξ and

ΞA, it is given by λA(hH(ξ), v) = (hH(ξ,A), v). Note that if H is finite and D ∈ DH is H-invariant

and accumulates on ξ, then H(ξ,D) = HD, and thus Γ(ξ,D)(H) = ΓD(H).

3.3 Thin graphs

A vertex of a connected graph is called a cut vertex if removing it disconnects the graph. A

connected graph is called separable if it has a cut vertex, otherwise it is biconnected. A block of a

graph is a maximal biconnected subgraph. The intersection of two different blocks is either empty,

or consists of a single cut vertex, possibly with some loops. The block-cut graph BC(Γ) of a graph

Γ is the simple graph with vertices given by the blocks and cut vertices of Γ, and an edge between
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a block B and cut vertex c if c belongs to B. If Γ is connected, then BC(Γ) is a tree, and is called

a block-cut tree.

Definition 3.3.1. An infinite separable graph Γ is called thin if it has infinitely many blocks and

there is a bound on the size of its blocks.

If Γ is thin, then BC(Γ) is an infinite tree. In other words, given a collection F of finite

biconnected graphs of bounded size, we can create thin graphs whose blocks come from F by

connecting elements of F in a “tree-like” way. In particular, infinite simple trees are examples of

thin graphs. If Γ is also of bounded degree (i.e., there exists an integer d such that deg(v) ≤ d for

all vertices v ∈ Γ), then there are a finite number of “block types" that can occur in Γ.

3.3.1 Structure of thin graphs

Given an infinite rooted graph (Γ, ζ), a ray r in Γ is an infinite sequence of distinct vertices

v0 = ζ, v1, v2, . . . in which each two consecutive vertices in the sequence are connected by an

edge. Two rays r and r′ are equivalent if for every finite subset ∆ ⊂ V (Γ) infinitely many vertices

of r and r′ belong to the same connected component of Γ \∆. An end of Γ is an equivalence class

of rays. Let V (r) denote the set of vertices of the ray r.

Definition 3.3.2. Let (Γ, ζ) be an infinite rooted thin graph with rays {ri}i∈I . The spine of Γ,

denoted |Γ, is the subgraph induced by
∪

i∈I V (ri) minus loops.

Definition 3.3.3. For v ∈ |Γ, the limb at v is the connected component of Γ \ E(|Γ) that contains

v, denoted Λ(v).

Every Λ(v) is finite, and |Γ along with Λ(v), v ∈ |Γ, completely determine the graph (Γ, ζ). In

other words, (Γ, ζ) consists of its infinite spine |Γ with finite limbs Λ(v), v ∈ |Γ, connected to it.

Definition 3.3.4. Let v1, v2, . . . , vn be vertices of a connected graph Γ. The hull of v1, . . . , vn,

denoted [v1, . . . , vn], is the subgraph of Γ given by the union of all paths between these vertices.

It is not difficult to see that [v1, v2, . . . , vn] is given by the union of all blocks (modulo loops)

of Γ that contain an edge of some path between these vertices. Equivalently, if Bi is the block of
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Γ containing vi then [v1, v2, . . . , vn] is the union of all blocks (modulo loops) corresponding to a

vertex of [B1, B2, . . . , Bn]. If Γ consists of a single block, then BC(Γ) is a single vertex and the

hull of any set of vertices is the graph Γ minus loops.

For the rest of this section, assume ξ is a germ-defining singular point of S, Γξ is a 1-ended

thin graph, and H = ⟨Sξ \ S(ξ)⟩ is finite. Since H(ξ) is a proper normal subgroup of H , the graph

of germs Γ(ξ)(H) is (isomorphic to) a finite Cayley graph with at least two vertices. It follows that

this graph has no cut vertex. Therefore, Γ(ξ)
∼= Ξ is also a thin graph, and Γ(ξ)(H) is a block in

Γ(ξ) (modulo some loops coming from Γ′
ξ). In particular, |Γ(ξ) is obtained by connecting |H/H(ξ)|

copies of |Γξ by Γ(ξ)(H). Similarly, the graph Γ(ξ,D) is thin for each D ∈ DH that accumulates on

ξ, except the graph Γ(ξ,D)(H) = ΓD(H) may consist of several blocks. If D is H-invariant, then

HD is normal in H and ΓD(H) is (isomorphic to) a Cayley graph.

Let ζ1, ζ2 be vertices of Γξ (or Γ′
ξ) that are either cut vertices or equal to ξ. If ζ1 = ζ2 = ζ , then

the hull [ζ, ζ] consists of the vertex ζ without edges. If ζ1 ̸= ζ2, by the structure of a thin graph

[ζ1, ζ2] is a finite union of blocks without loops, where the blocks are connected in a “path-like”

way (meaning the corresponding subgraph of the block-cut tree is a path graph). The subgraph

Σ(ζ1, ζ2) given by the union of [ζ1, ζ2] and Λ(ζ) for all ζ ∈ [ζ1, ζ2] is called the segment from ζ1 to

ζ2. The vertices ζ1, ζ2 are its endpoints. Note that the endpoints of Σ = Σ(ζ1, ζ2) are the boundary

vertices ∂V (Σ) of Σ.

For ζ ∈ |Γξ a cut vertex or equal to ξ, define the core subgraph Θ(ξ)(ζ) of Γ(ξ) to be the

graph obtained by taking the union of Γ(ξ)(H) and the segment Σ(ξ, ζ) in each copy of Γ′
ξ. We

can define the core subgraphs ΘD(ζ) of ΓD analogously (we leave off the subscript of Θ(ζ) when

the parent graph is understood, or when talking about general core subgraphs). We say Θ(ζ) has

segment length m if the distance between ξ and ζ in Γξ is equal to m. The vertices {(hH(ξ), ζ)}

(or {(hHD, ζ)}) of Θ(ζ) are its endpoints. As with segments, the endpoints of Θ = Θ(ζ) are the

boundary vertices of Θ.

Proposition 3.3.5. Suppose D ∈ DH accumulates on ξ and ζn ∈ D, n ≥ 1, is a sequence of points

converging to ξ, then Γζn converges to Γ(ξ,D).
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Proof. Consider a ball B(id,ξ,P )(r) in Γ(ξ,D). It can be described by a set of equations and inequal-

ities of the form (g1, ξ,D) = (g2, ξ,D) or (g1, ξ,D) ̸= (g2, ξ,D) for g1, g2 ∈ G of length at most

r. If (g1, ξ, P ) = (g2, ξ, P ), then there is a neighborhood U of ξ such that g1(ζ) = g2(ζ) for all

ζ ∈ U ∩ P .

Now suppose (g1, ξ,D) ̸= (g2, ξ,D), that is (g2g−1
1 , ξ,D) ̸= (id, ξ,D). If g1(ξ) ̸= g2(ξ), then

g1(ζ) ̸= g2(ζ) for all ζ ∈ V = supp(g−1
2 g1), which is an open set containing ξ. In particular,

this is true for all ζ ∈ V ∩ P . If g1(ξ) = g2(ξ), then g−1
2 g1 ∈ Gξ so there exists g ∈ G(ξ) and

h ∈ H such that g−1
2 g1 = gh. Then (g−1

2 g1, ξ,D) = (gh, ξ,D) = (h, ξ,D) ̸= (id, ξ,D). It

follows that h|D ̸= id|D and thus D ⊆ supp(h). There exists a neighborhood W of ξ such that

g−1
2 g1|W∩D = h|W∩D, thus g−1

2 g1(ζ) = h(ζ) ̸= ζ for all ζ ∈ W ∩D. That is, g1(ζ) ̸= g2(ζ) for all

ζ ∈ W ∩D.

It follows that there exists a neighborhood N of ξ such that for every ζ ∈ N ∩ D the balls

Bζ(r) and B(id,ξ,D)(r) are isomorphic.

Since the set of G-regular points is dense in X , we can find a sequence of regular points in D

converging to ξ. Thus the balls in Γ(ξ,D) are isomorphic to balls in the orbital graphs of regular

points. The following proposition shows that for minimal actions on X , the balls in an orbital

graph of a regular point are contained (as an isomorphic copy) in every orbital graph.

Proposition 3.3.6. Suppose that the action of G on X is minimal and let ζ ∈ X be a G-regular

point. For every ball Bζ(r) of Γζ there exists R(r) > 0 such that for every η ∈ X there exists a

vertex η′ of Γη on distance at most R(r) from η such that Bζ(r) and Bη′(r) are isomorphic.

Proof. The ball Bζ(r) is described by a finite set of equations and inequalities of the form g1(ζ) =

g2(ζ) and g1(ζ) ̸= g2(ζ) for g1, g2 ∈ G of length at most r. Since ζ is G-regular, each such

equation or inequality holds on a neighborhood of ζ . It follows that there exists a neighborhood U

of ζ such that for every η ∈ U the balls Bζ(r) and Bη(r) are isomorphic.

By minimality, for every η ∈ X there exists gη ∈ G such that gη(η) ∈ U , i.e., η ∈ g−1
η (U). The

sets g−1
η (U), η ∈ X , cover X , and by compactness there is a finite subcover g−1

1 (U), . . . , g−1
n (U).
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Let R be the maximum of the lengths of the elements gi with respect to S. Then for every η ∈ X

there exists gi such that η′ = gi(η) ∈ U , and thus Bζ(r) and Bη′(r) are isomorphic. Clearly the

distance between η and η′ is at most R. There are finitely many isomorphism classes of balls of

radius r in the orbital graphs of G ↷ X , so we can find an upper bound R(r) independent of

ζ .

We can apply the above proposition to every vertex of Γη so that for every vertex η′ of Γη there

exists η′′ on distance at most R(r) from η′ such that Bζ(r) is isomorphic to Bη′′(r). We say Bζ(r)

is repetitive in Γη.

Definition 3.3.7. Let ∆ be a finite connected graph and Γ be an infinite connected graph. We say

∆ is strongly repetitive in Γ if there exists infinitely many isomorphic copies {∆}i∈I of ∆ in Γ such

that Γ \ E(
∪

i∈I ∆i) consists of finite connected components of bounded size. The set {∆i}i∈I is

called a ∆-sieve.

Without loss of generality, we can assume that each copy ∆i of ∆ has at least one full mul-

tiedge, that is, there exists distinct u, v ∈ ∆i such that every edge of Γ with endpoints u, v is in

∆i.

Proposition 3.3.8. Suppose the size of the blocks of Γξ is bounded by N and let Θ be a core with

segment size greater than N/2. If Θ is strongly repetitive in Γξ, then there is a copy that has two

segments on the spine of Γξ.

Proof. Let {Θi}i∈I be a Θ-sieve in Γξ with embedding maps φi : Θ −→ Θi. Let {Θj}j∈J be the

subset of copies of Θ with an edge on the spine of Γξ. Notice that J must be infinite, thus there

exists k ∈ J such that Θk does not contain ξ. We have ∂V (Θk) ⊆ φk(∂V (Θ)) since the vertices

of Θ \ ∂V (Θ) have degree 2|S|, and every vertex of Γξ has degree 2|S|. There cannot be a path

from distinct u, v ∈ ∂V (Θk) with edges outside of Θk because this would imply Γξ has a block

of size greater than N , a contradiction. It follows that exactly one endpoint of Θk is connected

to ξ by edges outside of Θk, and a second endpoint of Θk is on the unique infinite component of

Γξ \ E(Θk). In other words, two segments of Θk are on the spine of Γξ.
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3.4 Main theorem

Theorem 3.4.1. Let S be a finite set of finite order homeomorphisms of the Cantor set X . Suppose

the following is true:

1. the induced action of G = ⟨S⟩ on X is minimal,

2. ξ is a germ-defining singular point of S,

3. Γξ is thin and 1-ended,

4. H = ⟨Sξ \ S(ξ)⟩ is finite with invariant domains, and for every h ∈ H there exists D ∈ DH

accumulating on ξ such that h|D = id|D,

5. for every D ∈ DH that accumulates on ξ, any core subgraph of Γ(ξ,D) is strongly repetitive

in Γξ.

Then G is periodic.

Proof. Let g ∈ G \ {id} and suppose |g|S = m. We will show g has finite order. Note that Γ(ξ)

and each Γ(ξ,D), D ∈ DH , have the graph structure discussed in the previous section, with center

given by the Cayley graph of Γ(ξ)(H) or ΓD(H). Let N be an upper bound for the block sizes of

Γξ.

Let ∆ be a core subgraph of some Γ(ξ,D) with segment length greater than max{m,N/2}.

There is an embedding φξ of ∆ with two segments on the spine of Γξ by Proposition 3.3.8. Denote

its image by ∆ξ. Let φhHD
and φhH(ξ)

denote the natural embeddings of ∆ξ into {hHD} × Γ′
ξ and

{hH(ξ)} × Γ′
ξ, respectively. Note that λD ◦ φhH(ξ)

= φhHD
and g ◦ λD = λD ◦ g for all D ∈ DH

accumulating on ξ and g ∈ G.

Lemma 3.4.2. For every vertex v of ∆ξ on the segment closest to ξ, there exists a Γ(ξ,D) and integer

k ≥ 1 such that gk(φHD
(v)) ∈ φHD

(∆ξ).

Proof. By way of contradiction, suppose for all Γ(ξ,D) the sequence gk(φHD
(v)) does not return

to φHD
(∆ξ). In particular, g(φHD

(v)) jumps toward ΓD(H). Now fix a Γ(ξ,D), then the sequence
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gk(φHD
(v)) must converge to an end associated to {hHD} × Γ′

ξ for some h /∈ HD. We have

gk(φHD
(v)) = gk(λD(φH(ξ)

(v))) = λD(g
k(φH(ξ)

(v))). This implies that in Γ(ξ) the sequence

gk(φH(ξ)
(v)) converges to an end {h′H(ξ)} × Γ′

ξ where h′ /∈ H(ξ) and h′HD = hHD. By (4),

there exists a D′ ∈ DH such that λD′({h′H(ξ)} × Γ′
ξ) = {HD′} × Γ′

ξ, but then the sequence

λD′(gk(φH(ξ)
(v))) will move from one connected component of Γ(ξ,D′)\λD′(φH(ξ)

(∆ξ)) to another,

which is a contradiction as ∆ has segment length m.

Corollary 3.4.3. For every vertex v of ∆ξ on the segment closest to ξ, there exists a Γ(ξ,D) and

integer k ≥ 1 such that gk(φhHD
(v)) ∈ φhHD

(∆ξ) for all cosets hHD.

Proof. Follows from Lemma 3.4.2 and symmetry/homogeneity of Γ(ξ,D).

For simplicity, in the following we leave out any mention of embedding maps φ. Recall that

two segments of ∆ξ are on the spine of Γξ. Let Σξ denote the segment closest to ξ and Σ′
ξ denote

the other segment. Let v1, v2, . . . , vr be the vertices of Σξ and v′1, v
′
2, . . . , v

′
r be the vertices of Σ′

ξ.

By Corollary 3.4.3, there exists a Γ(ξ,D1) and k1 ≥ 1 such that gk1(v1) ∈ ∆ξ for each natural

copy of ∆ξ in Γ(ξ,D1). Let Θ1 be a core subgraph of Γ(ξ,D1) containing each copy of ∆ξ and the

first-return orbit {gk(v1) : k = 1, . . . , k1} for each copy of v1.

By (5) and Proposition 3.3.8, there exists a copy of Θ1 in Γξ with two segments on the spine

of Γξ. It follows that two of the copies of ∆ξ ⊆ Θ1 are on the spine of Γξ. Let ∆ξ,1 denote the

copy closest to ξ, and consider v′1 ∈ Σ′
ξ ⊆ ∆ξ,1. By Corollary 3.4.3, there exists a Γ(ξ,D′

1)
and k′

1

such that gk′1(v′1) ∈ ∆ξ,1 for each copy of ∆ξ,1 on the rays of Γ(ξ,D′
1)

. Let Θ′
1 be a core subgraph

of Γ(ξ,D′
1)

containing each ray’s copy of Θ1 and the first-return orbit {gk(v′1) : k = 1, . . . , k′
1} for

each copy of v′1.

Again, by (5) and Proposition 3.3.8, there exists a copy of Θ′
1 in Γξ with two segments on the

spine of Γξ. It follows that two of the copies of ∆ξ,1 ⊆ Θ′
1 are on the spine of Γξ. Let ∆′

ξ,1 denote

the copy on the segment of Θ′
1 closest to ξ, and consider v2 ∈ Σξ ⊆ ∆′

ξ,1. By Corollary 3.4.3,

there exists a Γ(ξ,D2) and k2 such that gk2(v2) ∈ ∆′
ξ,1 for each copy of ∆′

ξ,1 on the rays of Γ(ξ,D2).

Let Θ2 be a core subgraph of Γ(ξ,D2) containing each ray’s copy of Θ′
1 and the first-return orbit
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{gk(v2) : k = 1, . . . , k2} for each copy of v2.

Continuing in this way, we get a core subgraph Θ′
r of Γ(ξ,D′

r) such that each vertex on the spine

segments of each copy of ∆ξ,r returns to ∆ξ,r under some positive power of g, while also staying

inside Θ′
r. Now let v be a vertex on a non spine segment and suppose the sequence gk(v), k ≥ 1,

does not return to ∆ξ,r, then the sequence is confined to the finite subgraph containing g(v). It

follows that there exists m1,m2 with m2 > m1 such that gm2(v) = gm1(v), that is, gm2−m1(v) = v,

a contradiction. Thus every vertex of each copy of ∆ξ,r returns to ∆ξ,r under some positive power

of g, while also staying inside Θ′
r. Now by (5), Θ = Θ′

r is strongly repetitive in Γξ. Let {Θi}i∈I

be a Θ-sieve in Γξ.

Lemma 3.4.4. The collection of |H/HP ′
r
| copies of ∆ξ,r in each Θi form a ∆-sieve in Γξ.

Proof. Let RΘ be such that Γξ \E(
∪

i∈I Θi) consists of finite components of size less than or equal

to RΘ. If {∆j}j∈J denotes the collection of copies of ∆ξ,r, then the components of Γξ\E(
∪

j∈J ∆j)

must be finite. Indeed, if there is an infinite component, it must contain an infinite piece of the spine

of Γξ. This would imply there are only finitely many copies of ∆ on the spine of Γξ, and thus only

finitely many copies of Θ on the spine, a contradiction.

Let L be one of the finite components of Γξ \ E(
∪

j∈J ∆j), then either L is isomorphic to a

subcore Θ′ of Θ, or there is a unique component L′ of Γξ \E(
∪

i∈I Θi) contained in L. In the first

case, |L| = |Θ′|. In the second case, the number of copies of Θ adjacent to L′ in Γξ is at most

|∂V (L′)||S|. Thus |L| ≤ |L′| + |∂V (L′)||S||Θ| ≤ RΘ + RΘ|S||Θ|. It follows that the size of a

component of Γξ \ E(
∪

j∈J ∆j) is bounded by max{|Θ′|, RΘ +RΘ|S||Θ|}.

Let {∆j}j∈J be the above ∆-sieve and let u be a vertex of Γξ. (Case 1) If u is in some ∆j ,

then the length of the orbit of u under g is not more than M = |Θ|. (Case 2) Suppose u is in one

of the finite components of Γξ \ E(
∪

j∈J ∆j) and each component has size less than or equal to

R. Since |g|S = m, the orbit of u under g cannot “jump over" a copy of ∆, so the orbit either

stays in the finite component or eventually lands in a copy of ∆. (Case 2a) If the orbit stays in the

finite component, then the length of the orbit of u under g is not more than R. (Case 2b) Suppose
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gk(u) ∈ ∆j for some j and k ≥ 1, then gi+k(u) = gk(u) for i ≤ M by case 1 and thus gi(u) = u.

It follows that the lengths of all g-orbits of vertices of Γξ are uniformly bounded by max{R,M},

hence there exists n such that gn acts trivially on the vertices of Γξ. But the set of vertices of Γξ is

dense in X by minimality, so gn = id.

Remark. From the proof of the theorem, it is clear that it is sufficient to have the core subgraphs

of each Γ(ξ,D) be eventually strongly repetitive in Γξ, meaning there is an integer N such that all

core subgraphs of segment length greater than N are strongly repetitive.
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4. FRAGMENTATIONS

4.1 Introduction

We will come across examples of groups of homeomorphisms of X that satisfy all of the con-

ditions of Theorem 3.4.1 except the condition that for every h ∈ H there exists D ∈ DH accumu-

lating on ξ such that h|D = id|D. In this section we develop a method (called fragmentation) that

can transform some such examples into groups satisfying all of the conditions of Theorem 3.4.1.

Fragmentations (of involutions and the infinite dihedral group) were introduced by Nekrashevych

in [17], where they were used to construct groups of Burnside type, including the first example of

a simple group of intermediate growth.

Definition 4.1.1. Let h be a finite order homeomorphism of X and Ph be a finite partition of

supp(h) into h-invariant open sets. A fragmentation of h (with respect to Ph) is a group Fh of

homeomorphisms of X such that:

1. for all g ∈ Fh and P ∈ Ph, there exists k ∈ Z such that g|P = hk|P ,

2. for all g ∈ Fh, g|Fix(h) = id|Fix(h),

3. for all P ∈ Ph there exists g ∈ Fh such that g|P = h|P .

The elements of Ph are called the pieces of the fragmentation.

Remark. We can be more general and allow h to have infinite order and Ph to be infinite in the

definition of fragmentation, however, we are not interested in such fragmentations in this paper.

First note that such a partition Ph always exists since supp(h) itself is an h-invariant open set.

The first two conditions tell us that for each g ∈ Fh and ζ ∈ X there exists k ∈ Z such that

g(ζ) = hk(ζ), so that elements of Fh act as powers of h. If ζ is a regular point of ⟨h⟩, then this

equation is true for a neighborhood of ζ . The third condition says that for every ζ ∈ X there exists

g ∈ Fh such that g(ζ) = h(ζ), so that Fh remembers h.
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For example, we have the trivial fragmentation Fh = ⟨h⟩ (which doesn’t depend on Ph). On

the other end of the spectrum, we have the full fragmentation Fh = ⟨hP : P ∈ Ph⟩, where

hP (ζ) =


h(ζ) if ζ ∈ P,

ζ otherwise.

For any subset A of X , we have ⟨h⟩(A) = Fh(A). In particular, the elements of Ph are

Fh-invariant and (Fh)|P = ⟨h⟩|P for all P ∈ Ph. Every P ∈ Ph defines an epimorphism

πP : Fh −→ ⟨h⟩|P by πP (g) = g|P , and the product map (πP )P∈P : Fh −→
∏

P∈Ph
⟨h⟩|P is

a subdirect embedding, i.e., is an embedding that is surjective on each factor. Conversely, any

subdirect product of
∏

P∈Ph
⟨h⟩|P naturally defines a fragmentation of h by the following faithful

action on X : for α ∈
∏

P∈Ph
⟨h⟩|P define

α(ζ) =


hk(ζ) if ζ ∈ P and αP = hk|P ,

ζ otherwise.

This is a one-to-one correspondence. In particular, Fh is always a finite abelian group.

Definition 4.1.2. Let S be a set of finite order homeomorphisms of X and, for each s ∈ S, let Ps

be a finite partition of supp(s) into s-invariant open sets. A fragmentation of the group G = ⟨S⟩ is

a group FG = ⟨
∪

s∈S Fs⟩, where Fs is a fragmentation of s (with respect to Ps).

We will focus on the case where S is finite, so that S and
∪

s∈S Fs are finite generating sets

for G and FG, respectively. First, we discuss some results about particular fragmentations of finite

groups.

4.2 Fragmentations of finite groups

Suppose H = ⟨S⟩ is a finite group, then every element of S has finite order. Let P be a finite

partition of supp(H) into H-invariant open sets and, for s ∈ S, let P|s consist of the nonempty

sets of the form supp(s) ∩ P for P ∈ P . It is straightforward to show that P|s is a finite partition
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of supp(s) into s-invariant open sets.

Proposition 4.2.1. Let FH = ⟨
∪

s∈S Fs⟩ be a fragmentation of H = ⟨S⟩ such that Ps = P|s for

all s ∈ S, then

1. every P ∈ P is FH-invariant and (FH)|P = H|P ,

2. FH subdirect embeds into
∏

P∈P(FH)|P =
∏

P∈P H|P ; consequently, FH is finite.

Proof. (1): Let FS =
∪

s∈S Fs denote the generating set of FH and let P ∈ P . Let t ∈ FS and

suppose t ∈ Fs. We have P = (supp(s)∩P )⊔ (Fix(s)∩P ), where P ′ = supp(s)∩P ∈ P|s, and

thus t|P ′ = sk|P ′ for some k. It follows that P is s-invariant and t|P = sk|P (since Fix(s) ⊆ Fix(t)).

Therefore, P is FS-invariant, and thus FH-invariant.

Let g ∈ FH , say g = tm · · · t1, ti ∈ FS , and suppose ti ∈ Fsi . Then

g|P = (tm · · · t1)|P

= tm|P · · · t1|P

= skmm |P · · · sk11 |P

= (skmm · · · sk11 )|P .

for some ki’s. Thus g|P ∈ H|P . Now let h ∈ H , say h = sm · · · s1 ∈ H , si ∈ S. For i =

1, 2, . . . ,m, there exists ti ∈ Fsi such that ti|P = si|P . Thus

h|P = (sm · · · s1)|P

= sm|P · · · s1|P

= tm|P · · · t1|P

= (tm · · · t1)|P ,

so that h|P ∈ (FH)|P .
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(2): Clearly the homomorphism (πP )P∈P : FH −→
∏

P∈P(FH)|P is surjective on each factor.

Since supp(Fs) = supp(s) for all s ∈ S, we have supp(FH) = supp(H) =
⊔

P∈P P . It follows

that (πP )P∈P is injective.

Conversely, suppose A is a subdirect product of
∏

P∈P H|P . For s ∈ S, the subgroup As =

A ∩
∏

P∈P⟨s⟩|P is a subdirect product of
∏

P∈P⟨s⟩|P ∼=
∏

P∈P|s⟨s⟩|P . This corresponds to a

fragmentation Fs of s with pieces P|s. We then have A = ⟨As⟩ ∼= ⟨Fs⟩ =: FH . In other words,

there is a one-to-one correspondence between fragmentations FH = ⟨
∪

s∈S Fs⟩ with Ps = P|s for

all s ∈ S and subdirect products of
∏

P∈P H|P .

Suppose H has regular support and invariant domains, then DH is a finite partition of supp(H)

into H-invariant open sets. In this case, we have X = supp(H)⊔Fix(H)◦⊔∂Fix(H) and ∂Fix(H)

consists exactly of the singular points of H . For example, if H = ⟨h⟩, it is straightforward to show

D⟨h⟩ consists of the sets supp(h, n) for n dividing ord(h).

A refinement P of DH is a partition of supp(H) into H-invariant open sets such that for every

P ∈ P there exists D ∈ DH with P ⊆ D. We also say P refines D. Since any subset of H also

has regular support, the subgroup ⟨s⟩ has regular support for every s ∈ S. Let P be a refinement of

DH , then P|s is a refinement of D⟨s⟩ for each s ∈ S. We say P|s is the refinement of D⟨s⟩ induced

by P .

Proposition 4.2.2. Suppose H = ⟨S⟩ is finite with regular support and invariant domains. Let P

be a refinement of DH . If FH = ⟨
∪

s∈S Fs⟩ is a fragmentation of H such that Ps = P|s for all

s ∈ S, then

1.
∏

P∈P H|P ∼=
∏

D∈DH
(H|D)rD , where rD = |{P ∈ P : P ⊆ D}|,

2. P is a refinement of DFH
, which is a refinement of DH .

Proof. (1): Suppose P ∈ P and D ∈ DH such that P ⊆ D. We first show HP = HD. If h ∈ H

fixes P (pointwise), then it must fix D. Indeed, by definition of a domain of support, once h fixes

a single point in D, it must fix all of D. The other containment is trivial.
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The epimorphisms h 7→ h|P , h 7→ h|D induce isomorphisms H/HP
∼= H|P and H/HD

∼=

H|D. It follows that H|P ∼= H|D.

(2): Note that for any subset A of X , we have H(A) = FH(A). In particular, a set is H-

invariant if and only if it is FH-invariant.

We first show P refines DFH
. Let P ∈ P , then P ⊆ D for some D ∈ DH , say D =

∩
h∈H Uh.

For every g ∈ FH there exists hg ∈ H such that g|P = hg|P , so that P ∩ supp(hg) ⊆ supp(g) and

P ∩ Fix(hg)
◦ ⊆ Fix(hg)

◦. For g ∈ FH let U ′
g = supp(g) if Uhg = supp(hg), and U ′

g = Fix(hg)
◦

otherwise, then P ∩ Uhg ⊆ U ′
g. Define D′ =

∩
g∈FH

U ′
g ∈ PFH

. We have P = P ∩ D =∩
h∈H(P ∩ Uh) ⊆

∩
g∈FH

(P ∩ Uhg) ⊆
∩

g∈FH
U ′
g = D′. Recall supp(FH) = supp(H) =

⊔
P∈P P ,

so that P is a partition of supp(FH) into open sets. Every P ∈ P is H-invariant, and thus FH-

invariant. It follows that the domains of FH are FH-invariant, and P refines DFH
.

We next show DFH
refines DH . Let D ∈ DFH

, then D =
⊔n

i=1 Pi, Pi ∈ P . For each i there

exists Di ∈ DH such that Pi ⊆ Di. We claim Di = Dj for all i, j. By way of contradiction,

suppose, without loss of generality, that D1 ̸= D2. Then, without loss of generality, there exists

h ∈ H such that D1 ⊆ supp(h) and D2 ⊆ Fix(h)◦. By Proposition 4.2.1 there is a g ∈ FH such

that g|P = h|P , and thus P ∩ supp(h) ⊆ supp(g) and D ∩ Fix(h)◦ ⊆ Fix(g)◦. It follows that

P1 ⊆ D ∩ D1 ⊆ D ∩ supp(h) ⊆ supp(g) and P2 ⊆ D ∩ D2 ⊆ P ∩ Fix(h)◦ ⊆ Fix(g)◦. But

then only one of P1, P2 can be contained in D (depending on choice of Ug), a contradiction. Thus

Di = Dj for all i, j. If we denote this common set by D′, then D ⊆ D′. We have supp(H) =

supp(FH) =
⊔

D∈DFH
D, so that DFH

is a partition of supp(H) into open sets. Every D ∈ DFH
is

FH-invariant, and thus H-invariant. It follows that DFH
refines DH .

4.3 Orbital graphs of fragmentations

Let FG = ⟨
∪

s∈S Fs⟩ be a fragmentation of G = ⟨S⟩ on X . For every s ∈ S, t ∈ Fs, and

ζ ∈ X we have t(ζ) = sk(ζ) for some k. For every s ∈ S and ζ ∈ X , there exists t ∈ Fs such that

t(ζ) = s(ζ). It follows that G(ζ) = FG(ζ) so that G ↷ X and FG ↷ X are orbit equivalent.

Let ζ ∈ X and s ∈ S. Suppose first that ζ ∈ Fix(s), then s labels a loop at ζ in Γζ and every

t ∈ Fs fixes ζ . In the corresponding orbital graph Γζ(FG) of FG ↷ X , there are loops at ζ labeled
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by each t ∈ Fs \ {id}. It follows that fragmenting “multiplies loops".

Now suppose ζ ∈ supp(s) and let ζj = sj(ζ) for j = 0, 1, . . . , n − 1. Consider the directed

cycle (ζ0, s, ζ1, . . . , ζn−1, s, ζ0), each edge labeled by s, in the orbital graph Γζ . This is precisely

the orbital graph Γζ(⟨s⟩) = Γζ(⟨s⟩,X , {s}). We have ⟨s⟩(ζ) = Fs(ζ) = {ζ0, ζ1, . . . , ζn−1}. Since

ζ ∈ supp(s) and the elements of Ps are s-invariant, there exists P ∈ Ps that contains each ζj .

Let t ∈ Fs, then there exists k such that t|P = sk|P , and there will be an arrow labeled by t

from ζi to ζi+k (subscripts taken modulo n) for each i. In other words, Γζ(Fs) = Γζ(Fs,X , Fs)

is a “decorated complete" version of Γζ(⟨s⟩). It follows that fragmenting turns nontrivial directed

cycles with all elements labeled by some s into “decorated complete graphs" with edges labeled

by elements of Fs \{id}. We call the graphs Γζ(FG) fragmented orbital graphs, and say Γζ(FG) is

obtained by fragmenting Γζ . Note that fragmenting preserves cut vertices, that is, v is a cut vertex

of Γζ if and only if v is a cut vertex of Γζ(FG).

Lemma 4.3.1. Let FG = ⟨
∪

s∈S Fs⟩ be a fragmentation of G = ⟨S⟩.

1. If G ↷ X is minimal, then FG ↷ X is minimal.

2. If ξ is a germ-defining singular point of S, then ξ is a germ-defining singular point of FS =∪
s∈S Fs.

3. If Γξ is thin and 1-ended, then Γξ(FG) is thin and 1-ended.

Proof. (1): Suppose the action of G on X is minimal. Recall that G ↷ X and FG ↷ X are orbit

equivalent. It immediately follows that the action of FG on X is minimal.

(2): Suppose ξ is a germ-defining singular point of S. Let ζ ∈ FG(ξ) \ ξ = G(ξ) \ ξ, then ζ is

not a singular point of any s ∈ S. It follows that ζ is not a singular point of any element of FS .

We next show if c is a nonloop cycle in Γξ(FG) starting at vertex ζ ∈ FG(ξ), then (gc, ζ) =

(id, ζ). Suppose c = (ζ, t1, ζ1, t2, . . . , tm, ζm), where ζi = titi−1 · · · t1(ζ). It follows that gc =

tmtm−1 · · · t1, ti ∈ FS . Suppose ti ∈ Fsi , then since ti moves ζi−1, we have (ti, ζi−1) = (skii , ζi−1)
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for some 0 < ki < ord(si). Then

(g, ζ) = (tmtm−1 · · · t1, ζ)

= (tm, ζm−1)(tm−1, ζm−2) · · · (t1, ζ)

= (skmm , ζm−1)(s
km−1

m−1 , ζm−2) · · · (sk11 , ζ)

= (skmm s
km−1

m−1 · · · sk11 , ζ).

Let ĝ = skmm s
km−1

m−1 · · · sk11 . Since c has no loops in Γξ(FG), the directed closed walk ŵ defined by ĝ

at ζ ∈ Γξ has no loops. If ŵ is a cycle at ζ in Γξ, then (ĝ, ζ) = (id, ζ). Otherwise, ŵ has a nonloop

cycle subwalk ĉ and we can write ŵ = uĉv for some walks u, v. We have (ĝ, ζ) = (gvgĉgu, ζ) =

(gvgu, ζ), and ŵ1 = uv is a closed walk at ζ without loops with length less than that of ŵ. After

finitely many steps, we get a ŵr that is a nonloop cycle at ζ and (g, ζ) = (gŵr , ζ) = (id, ζ).

(3): It is clear that if Γξ is a 1-ended thin graph, then Γξ(FG) is a 1-ended thin graph since

fragmenting preserves cut vertices and block sizes.

Theorem 4.3.2. Let S be a finite set of homeomorphisms of X with singular point ξ. Suppose

H = ⟨Sξ \ S(ξ)⟩ is finite with regular support and invariant pieces, and let P be a refinement of

DH . Let FG = ⟨
∪

s∈S Fs⟩ be a fragmentation of G = ⟨S⟩ such that Ps = P|s for all s ∈ Sξ \ S(ξ).

Suppose the following is true:

1. the induced action of G on X is minimal,

2. ξ is a germ-defining singular point of S,

3. Γξ is thin and 1-ended,

4. for every g ∈ FH = ⟨
∪

s∈Sξ\S(ξ)
Fs⟩ there exists P ∈ P accumulating on ξ such that g|P =

id|P ,

5. for every P ∈ P that accumulates on ξ, any core subgraph of Γ(ξ,P )(FG) is strongly repetitive

in Γξ(FG).
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Then FG is periodic.

Remark. Note that (1)-(3) are conditions associated to S and G, while (4)-(5) concern the frag-

mentation.

Proof. Let FS =
∪

s∈S Fs denote the generating set of FG. We will show that the conditions of

Theorem 3.4.1 are satisfied for FG = ⟨FS⟩ and ξ. Let (i) refer to the ith condition of Theorem 4.3.2

and (3.4.1.i) refer to the ith condition of Theorem 3.4.1.

The conditions (3.4.1.1) - (3.4.1.3) immediately follow from Lemma 4.3.1.

(3.4.1.4): We first show FH = ⟨(FS)ξ \ (FS)(ξ)⟩. By definition, FH = ⟨
∪

s∈Sξ\S(ξ)
Fs⟩. We have

(FS)ξ \ (FS)(ξ) =
∪

s∈S(Fs)ξ \
∪

s∈S(Fs)(ξ) =
∪

s∈S[(Fs)ξ \ (Fs)(ξ)] =
∪

s∈Sξ\S(ξ)
[Fs \ (Fs)(ξ)].

Therefore, it is enough to show that ⟨Fs \ (Fs)(ξ)⟩ = Fs for s ∈ Sξ \ S(ξ). For this, it is enough to

show that any g ∈ (Fs)(ξ) can be written as a product of elements in Fs\(Fs)(ξ). Let h ∈ Fs\(Fs)(ξ),

then hg, h−1 ∈ Fs \ (Fs)(ξ) and g = (h−1h)g = h−1(hg). Thus ⟨(FS)ξ \ (FS)(ξ)⟩ = FH .

By Proposition 4.2.1, we have FH is finite. Let g ∈ FH , then by (4) there exists P ∈ P

accumulating on ξ such that g|P = id|P . By Proposition 4.2.2, FH has invariant domains and P is

a refinement of DFH
, thus there exists D ∈ DFH

refined by P (therefore accumulating on ξ). Since

g fixes the subset P of D, it must fix all of D, i.e., g|D = id|D.

(3.4.1.5): We start with a lemma.

Lemma 4.3.3. If D ∈ DFH
refines D′ ∈ DH , then Γ(ξ,D)(FG) is obtained by fragmenting Γ(ξ,D′).

Proof. Let ζ ∈ D, then (FH)ζ = (FH)D and Hζ = HD′ by definition of domains of support.

Then Γζ(FH) = ΓD(FH) and Γζ(H) = ΓD′(H). It follows that ΓD(FH) is obtained by frag-

menting ΓD′(H) as described at the beginning of this section. Therefore Γ(ξ,D)(FG) is obtained by

fragmenting Γ(ξ,D′).

Now suppose D ∈ DFH
accumulates on ξ, then there exists P ∈ P accumulating on ξ such

that P ⊆ D. We have (FH)D = (FH)P , thus any core subgraph of Γ(ξ,D)(FG) = Γ(ξ,P )(FG) is

strongly repetitive in Γξ(FG) by (5).
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4.4 Tiles of fragmentations

For the examples, it will be sufficient to describe infinite tiles Tξ(FG) of a fragmentation FG

when ∂Tξ = (Sξ \ S(ξ))× {ξ}.

Consider cycle (ζ, s, ζ1, . . . , s, ζm), ζ i = si(ζ), in Tξ, so that ζ i is not a critical point of s for

all i. If m = 1, so that s labels a loop at ζ in Tξ, then s|ζnΩ = τζn,ζn = id|ζnΩ and ζnΩ ⊆ Fix(s)◦.

For every t ∈ Fs, we have Fix(s)◦ ⊆ Fix(t)◦ so that t|ζnΩ = id|ζnΩ = τζn,ζn . It follows that for

every t ∈ Fs \ {id} there is a loop at ζ labeled by t in Tξ(FG).

Now suppose m > 1, then for each i there exists (minimal) ni ≥ 1 such that s|ζini
Ω = τζini

,ζi+1
ni

.

Let n = max{ni}, then s|ζinΩ = τζin,ζi+1
n

for all i. In particular, for all i and k = 0, 1, . . . ,m − 1

we have sk|ζinΩ = τζin,ζi+k
n

and ζ i is not a critical point of sk. The same is true for any N ≥ n.

There exists P ∈ Ps containing each ζ i. In the corresponding tile graph Tξ(FG), there will be

arrows from ζj to ζk labeled by all elements t ∈ Fs \ {id} such that t|P = sk−j|P . Indeed, suppose

t|P = sk−j|P and consider the open set ζjnΩ ∩ P . Claim it is closed: the sets ζjnΩ ∩ P , P ∈ Ps,

finitely partition the clopen set ζjnΩ into open sets. It follows that each ζjnΩ∩P is clopen. Suppose

ζjnΩ ∩ P =
⊔M

i=1 uiΩ. There exists i such that ζj ∈ uiΩ ⊆ ζjnΩ ∩ P , then there exists N ≥ n such

that ui = ζjN . Therefore t|ζjNΩ = sk−j|ζjNΩ = τζjN ,ζkN
. Thus the “fragmented cycle" is in Tξ(FG).

For s ∈ Sξ \ S(ξ), the loop at ξ labeled by s is missing from Tξ. If t ∈ (Fs)(ξ) \ {id}, then

there will be a loop at ξ labeled by t. It is easy to see all of edges described above completely give

Tξ(FG). It follows that ∂Tξ(FG) = ((FS)ξ \ (FS)(ξ))× {ξ}.

Proposition 4.4.1. Suppose ξ is a singular point of S and ∂Tξ = (Sξ \ S(ξ)) × {ξ}, then ξ is

germ-defining. Furthermore, Tξ = Γ′
ξ.

Proof. Clearly ξ is the only singular point of S in G(ξ). Let c = (ζ, e1, ζ
1, . . . , em, ζ

m) be a

nonloop cycle in Γξ and consider gc = ℓ(em)
εm · · · ℓ(e1)ε1 = sm · · · s1, si ∈ S ∪ S−1. For each

0 ≤ i < m, there exists an ni such that si+1|ζini
Ω = τζini

,ζi+1
ni

. It follows that there exists an N such

that gc|ζNΩ = id|ζNΩ.

By Proposition 2.3.5, we can obtain Γξ from Tξ by adding loops at ξ labeled by elements of
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Sξ \ S(ξ). In other words, Tξ = Γ′
ξ.

4.5 Some results on subdirect products

Proposition 4.5.1. For every prime p, there exists a subdirect product H of Cp+1
p = ⟨a | ap =

id⟩p+1 such that every element of H has a coordinate equal to id.

Proof. Consider the subgroup H generated by x = (id, a, a2, . . . , ap−1, a) and y = (a, a, . . . , a, id).

Let g ∈ H , then there exists c, d ∈ {0, 1, . . . , p− 1} such that

g = xcyd,

= (id, ac, a2c, . . . , a(p−1)c, ac)(ad, ad, . . . , ad, id)

= (ad, ac+d, a2c+d, . . . , a(p−1)c+d, ac)

If c or d is 0, then the last or first coordinate of g is id. Suppose c, d are nonzero. We have

{c, 2c, . . . , (p−1)c} = {1, 2, . . . , p−1} since c is nonzero. In particular, there exists 1 ≤ n ≤ p−1

such that nc = −d (mod p). It follows that the (n+ 1)st coordinate of g is ad+nc = id.

Corollary 4.5.2. Let p, q be prime and r be coprime to p. There exists a subdirect product H of

(Cp ⋊ Cq)
(p+1)(q+1) = ⟨a, b | ap = id, bq = id, bab−1 = ar⟩(p+1)(q+1) such that every element of H

has a coordinate equal to id.

Proof. Partition the set of coordinates {1, 2, . . . , (p+ 1)(q + 1)} into q + 1 pieces I1, I2, . . . , Iq+1

of size p + 1, where Ij = {j(p + 1) − p = (j − 1)p + j, . . . , j(p + 1) = jp + j}. Define x =

(id, a, a2, . . . , ap−1, a) ∈ Cp+1
p , y = (a, a, . . . , a, id) ∈ Cp+1

p , and Id = (id, id, . . . , id) ∈ Cp+1
p .

Let G = Cp ⋊ Cq. For j = 1, 2, . . . , q + 1 define xj = (Id, Id, . . . , x, . . . , Id) ∈ G(p+1)(q+1)

which is x in Ij and identity elsewhere. Similarly define yj . Let B = (b, b, . . . , b) ∈ Cp+1
q

and define X = (Id,B,B2, . . . , Bq−1, B) and Y = (B,B, . . . , B, Id). Consider the subgroup

H = ⟨x1, . . . , xq+1, y1, . . . , yq+1, X, Y ⟩. It is straightforward to show that

H ∼= ⟨x1, . . . , xq+1, y1, . . . , yq+1⟩⋊ ⟨X,Y ⟩ ∼= (

q+1∏
j=1

⟨xj, yj⟩)⋊ ⟨X,Y ⟩.
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We can write any element of H as h1h2 for h1 ∈ ⟨x1, . . . , xq+1, y1, . . . , yq+1⟩ and h2 ∈ ⟨X,Y ⟩.

The element h2 will have some Ik coordinate equal to Id, and h1 will have some coordinate k′

inside of Ik equal to id, thus h1h2 will be id in coordinate k′.

When q = 2 and r = −1, we have Cp ⋊ C2
∼= Dp, the dihedral group consisting of all sym-

metries of a regular p-gon. For example, C3 ⋊C2
∼= D3

∼= Sym(3) and the corollary implies there

exists (by construction) a subdirect product of Sym(3)12 such that every element has a coordinate

equal to id.

Proposition 4.5.3. Suppose H has regular support and singular point ξ ∈ Fix(H). For every

D ∈ DH and n ≥ 1, there exists a refinement of D with n elements accumulating on ξ.

Proof. Let Uk, k ≥ 0, be a descending sequence of clopen neighborhoods of ξ such that U0 = X

and
∩

k≥0 Uk = {ξ}. Then Vk =
∩

h∈H h(Uk) is a descending sequence of clopen H-invariant

neighborhoods of ξ such that
∩

k≥0 Vk = {ξ} and
∪

k≥0 Vk = X . Remove all repetitions, so

that Vk ̸= Vk+1 for every k. Also remove Vk if Vk \ Vk+1 does not intersect D. We’re left with

an infinite descending sequence Wk, k ≥ 0, of clopen H-invariant neighborhoods of ξ such that∩
k≥0 Wk = {ξ}, D ⊆

∪
k≥0 Wk, Wk ̸= Wk+1, and Wk \Wk+1 intersects D nontrivially for all k.

Choose an arbitrary partition of the set of non-negative integers into m ≥ n disjoint subsets

I1, I2, . . . , Im with I1, . . . , In infinite, and define Ri =
∪

k∈Ii Wk \Wk+1. Then Pi = D ∩Ri gives

a refinement {Pi} of D of size m with n elements accumulating on ξ.
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5. EXAMPLES

In each the following examples, we begin with a finitely generated group G = ⟨S⟩ with singular

point ξ that satisfies:

1. G ↷ X is minimal,

2. ξ is a germ-defining singular point of S,

3. Γξ is thin and 1-ended,

4. H = ⟨Sξ \ S(ξ)⟩ is finite with invariant domains,

5. for every D ∈ DH that accumulates on ξ, any core subgraph of Γ(ξ,D) is strongly repetitive

in Γξ,

but does not satisfy the condition that for every h ∈ H there exists D ∈ DH such that h|D = id|D.

Thus, it does not completely satisfy all of the conditions of Theorem 3.4.1. We know that any

fragmentation of G will preserve 1-3 (Lemma 4.3.1). If we fragment the subgroup H = ⟨Sξ \S(ξ)⟩

carefully, we can satisfy the conditions of Theorem 4.3.2, so that FG is periodic. This will be

most interesting when G is not periodic (or its periodicity is unknown), as any fragmentation of

a periodic group is periodic. Thus, we present groups other than D∞ that can be fragmented to

produce groups of Burnside type.

5.1 Periodic fragmentations

Proposition 5.1.1. Let S be a finite set of finite order homeomorphisms of X . If G = ⟨S⟩ is

periodic, then any fragmentation FG = ⟨
∪

s∈S Fs⟩ of G is periodic.

Proof. If G is periodic, then for any g ∈ G there exists n such that gn = id. Let FG be a

fragmentation of G and g ∈ FG. Then g = tmtm−1 · · · t1, ti ∈
∪

s∈S Fs, say ti ∈ Fsi . For

any ζ ∈ X , there exist k1, k2, . . . , km (depending on ζ) such that g(ζ) = tmtm−1 · · · t1(ζ) =
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skmm s
km−1

m−1 · · · sk11 (ζ). There are
∏m

i=1 ord(si) possible choices for the ki’s, and each choice gives an

element of G of finite order. Multiplying all of these orders gives an N such that gN = id.

Example 5.1.2. Let X = {0, 1} and consider the set X = Xω of all right-infinite sequences over

X . Define three automorphisms a, b, c of X∗ by

a(0w) = 1w, b(0w) = 0w, c(0w) = 0c(w),

a(1w) = 0w, b(1w) = 1a(w), c(1w) = 1b(w).

for w ∈ X∗. Recall that a, b, c induce actions on the boundary X = Xω of the tree. The group G =

⟨a, b, c⟩ is the iterated monodromy group of h(z) =
(

2z
q+1

− 1
)2

, where q ≈ −0.6478 + 1.7214i

is a fixed point of
(

p−1
p+1

)2

(see [16]). It is easy to check that each generator has order two and cba

has infinite order.

Recall (s, u) ∈ ∂Tn if and only if s|u ̸= id. For n ≥ 2, it can be shown (using the Moore

diagram in Figure 5.1) that ∂Tn = {(c, αn), (c, βn), (c, γn)}, where γ = 0−ω, β = 0−ω1, α =

0−ω11. If n is understood, we will use α, β, γ, in place of αn, βn, γn. Notice that the above set of

left-infinite words is shift-closed. In particular, we have γ = γ0, β = γ1, α = β1.

The recursive procedure for constructing the level n + 1 tile for n ≥ 2 is shown in Figure 5.2

using model graphs. An easy induction shows that the tile graphs Tn are connected for all n. It will

be convenient to consider the subgraphs [α, β, γ]n of Tn given by the hull of the vertices αn, βn, γn,

i.e., by the union of all paths between these vertices. For n ≥ 3, a simple induction using model

graphs shows [α, β, γ]n is a “star graph" with center 1n and endpoints αn, βn, γn (see Figure 5.2).

Let 1 = 1ω and 1n = 1n. For n ≥ 3, the graphs [α, 1]n, [β, 1]n, and [γ, 1]n cover [α, β, γ]n and

pairwise intersect at 1n. We have the following recursive descriptions of these subgraphs:

[α, 1]n+1
∼= [β, 1]n, [β, 1]n+1

∼= [γ, 1]n, [γ, 1]n+1
∼= [γ, 1]n[1, α]n c— [α, 1]n.

The only singular point of S = {a, b, c} is ξ = 0ω, and H = ⟨Sξ \ S(ξ)⟩ = ⟨c⟩ ∼= Z/2Z. It

follows that DH = {supp(c)} and H is finite with regular support and invariant domains. We want

45



Figure 5.1: Moore diagram of IMG(h)

(a) Mn+1 for n ≥ 2 (b) [α, β, γ]n for n ≥ 3

Figure 5.2: Recursion for model graphs and hull graphs

to find fragmentations of G that satisfy the conditions of Theorem 4.3.2. The first three conditions

are independent of the fragmentation.

All finite tiles Tn are connected. It follows from Proposition 2.3.6 that for each ζ ∈ X , we have

Cof(ζ) ⊆ G(ζ). Cofinality classes are dense in X , thus G acts minimally on X .

The generators a, b are finitary and do not have critical points, while c has the unique criti-

cal/singular point ξ. Thus ξ is germ-defining by Proposition 4.4.1.

Let B(Γ) denote the number of blocks of a finite graph Γ. From Figure 5.2, we see that
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B(Tn+1) = 2B(Tn) + 1. It follows that Tξ has infinitely many blocks. Furthermore, an easy

induction shows each block of Tξ consists of two vertices and a single edge (possibly with loops;

or technically, a pair of opposing arrows with loops), so that Tξ is thin. By Proposition 2.3.5, Γξ is

obtained from Tξ by adding a loop at ξ labeled by c, so is also thin. By Propositions 3 and 4 of [2],

the graph Tξ is 1-ended, and thus Γξ is 1-ended.

Conditions (4)-(5) of Theorem 4.3.2 depend on the fragmentation of H = ⟨c⟩, in other words,

on the fragmentation of c. It will be useful to have a handle on the noncritical support structure of

c. It is not difficult to show that

N (c) =
⊔
k≥0

{0k110, 0k111}

=
⊔
k≥2

{αk0, αk1},

and thus supp(c) =
⊔

k≥2 αkX . We first show that the core subgraphs of Γ(ξ,supp(c)) for G ↷ X

are strongly repetitive in Γξ, then give conditions for a fragmentation Fc that preserves the strong

repetitivity for pieces in Pc that accumulate on ξ.

Proposition 5.1.3. Any core subgraph of Γ(ξ,supp(c)) is strongly repetitive in Γξ.

Proof. Let Θ be a core subgraph of Γ(ξ,D), D = supp(c) ∈ DH , and let Σ be one of its segments,

considered as a subgraph of Γ′
ξ. By Proposition 4.4.1, we have Γ′

ξ = Tξ, so Σ is a subgraph of Tξ.

There exists M ≥ 2 such that Σ is a subgraph of (Tn, ξn) for n ≥ M . Let N ≥ M + 2.

There is a copy of Σ in TN−2 with one endpoint ξN−2 = γN−2 and the other endpoint also

on [γ, 1]N−2. From the model graphs (or the recursive definitions of the path hulls), we see after

two inflations we will have a copy of Σ in TN with one endpoint αN and second endpoint also

on [α, 1]N . In TN+1, the copies of Σ at αN0 and αN1 are connected by the orbital graph ΓD(H)

(i.e., the edge c), giving a copy of the core Θ on [γ, 1]N+1. From the recursive description of path

subgraphs, we see that there is a copy of [γ, 1]N+1 in each path subgraph of level N + 3. Thus,

there is a copy of Θ on each path subgraph of level N + 3.
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Let n = N + 3 and denote the copies of Θ on each path subgraph by Θαn ,Θβn ,Θγn . Let

Lαn , Lβn , Lγn be the components of Tn \E(Θαn ∪Θβn ∪Θγn) containing αn, βn, γn, respectively,

and let L∗
n be the component containing 1n (see Figure 5.3). We can cover the vertices of Tξ by

level n tiles and connect them along their boundary by edges (labeled by c) to obtain Tξ. Let

{Θi}i∈I be the copies of Θ in this cover. A component of Tξ \E(
∪

i∈I Θi) will have size less than

max{|L∗
n|,m}, where m = maxx,y∈{α,β,γ}{|Lxn | + |Lyn |}, so that Θ is strongly repetitive in Tξ,

and thus Γξ.

(a) Copies of Θ in [α, β, γ]n (b) [α, β, γ]n \ E(Θα ∪Θβ ∪Θγ)

Figure 5.3: Disconnecting α, β, γ, 1 by copies of Θ

Corollary 5.1.4. Suppose FG = ⟨Fa∪Fb∪Fc⟩ is a fragmentation of G such that for every P ∈ Pc

accumulating on ξ and M ≥ 2, there exists N ≥ M such that αNX ⊆ P . Then any core subgraph

of Γ(ξ,P )(FG), P ∈ Pc, is strongly repetitive in Γξ(FG).

Proof. Let Θ(FG) be a core of Γ(ξ,P )(FG), P ∈ Pc, and let Σ(FG) be one of its segments, con-

sidered as a subgraph of Γ′
ξ(FG). By Proposition 4.4.1, we have Γ′

ξ(FG) = Tξ(FG), so Σ(FG) is
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a subgraph of Tξ(FG). There exists M ≥ 2 such that Σ(FG) is a subgraph of (Tn(FG), ξn) for

n ≥ M . By assumption, there exists N ≥ M + 2 such that αNX ⊆ P .

If we let Σ and Θ denote the “unfragmented" versions of Σ and Θ respectively, then as in the

proof of Proposition 5.1.3, we get Θ is strongly repetitive in Γξ. But the fragmented versions of

each of these copies is exactly Θ(FG), giving strong repetitivity in Γξ(FG) (because vertices of

c-edge are of the form αN0w and αN1w).

For example, any partition of {αk : k ≥ 2} induces a set of pieces Pc that satisfies the con-

dition in the corollary. Recall that there is a one-to-one correspondence of fragmentations of c

and subdirect products of
∏

P∈Pc
H|P ∼=

∏
D∈DH

(H|D)rD = H |Pc| ∼= (Z/2Z)|Pc|. Then if we use

enough pieces that accumulate on ξ, to be specific, at least 3 (see Proposition 4.5.1), we can find

a fragmentation of c where every element acts as identity on some piece accumulating on ξ, and

thus obtain a periodic fragmentation FG.

Example 5.1.5. Consider the Bratteli diagram D shown in Figure 5.4 where Vn = {(1, n), (2, n)}

for n ≥ 0 and En = E = {a1, c1, a2, b, c2} for all n ≥ 1. Then Ω = Ω(D) is a Markov shift

with allowed transitions {a1, c1} · {a1, a2} ∪ {a2, b, c2} · {b, c1, c2}. We will write elements of Ω

as infinite words over E and finite tiles as T1,n, T2,n. Define transformations L,M, S of Ω by the

following rules:

M(aiw) = aiw, M(bw) = c2w, M(c1w) = c1w, M(c2w) = bw,

S(aiw) = ciw, S(bw) = bM(w), S(ciw) = aiw,

L(a1w) = bS(w), L(a2w) = a2w, L(bbw) = bS(bw), L(bciw) = a1S(ciw),

L(c1a1w) = c2L(a1w), L(c1a2w) = c1a2w, L(c2bbw) = c2L(bbw),

L(c2bciw) = c1L(bciw), L(c2c1w) = c2L(c1w), L(c2c2w) = c2L(c2w).

The transformations L,M, S have a partial nondeterministic automata structure as shown in

Figure 5.5 (where Au = A|uΩ for A ∈ {L,M, S}, u ∈ Ω∗). Using this, for n ≥ 2, we get
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Figure 5.4: Bratteli diagram

∂T1,n = {(L, λ1,n), (L, σ1,n)} and ∂T2,n = {(L, λ2,n), (L, σ2,n), (L, µ2,n)}, where λ1 = c−ω
2 c1,

σ1 = c−ω
2 c1a1, λ2 = c−ω

2 , σ2 = c−ω
2 b, and µ2 = c−ω

2 bb. These left-infinite words are shift closed,

and in particular, we have λ1 = λ2c1, σ1 = λ1a1, λ2 = λ2c2, σ2 = λ2b, and µ2 = σ2b.

The recursive procedure for constructing the level n+ 1 tiles for n ≥ 2 is shown in Figure 5.6.

The tile graphs Ti,n are connected for all n and i = 1, 2, so we can define the hull subgraphs [λ, µ]1,n

and [λ, µ, σ]2,n as in the previous example. For n ≥ 3, [λ, µ]1,n is a path graph, and a simple

induction using model graphs shows [λ, µ, σ]2,n is a “star graph" with center bn and endpoints

λ2,n, σ2,n, and µ2,n (see Figure 5.6).

Let b = bω and bn = bn. For n ≥ 3, the graphs [λ,b]2,n, [µ, b]2,n, and [σ,b]2,n cover [λ, µ, σ]2,n

and pairwise intersect at bn. We have the following recursive descriptions of the path subgraphs:

[λ, σ]1,n+1
∼= [λ, b]2,n[b, σ]2,n L— [σ, λ]1,n, [µ, b]2,n+1

∼= [σ,b]2,n,

[λ,b]2,n+1
∼= [λ, b]2,n[b, µ]2,n L— [µ, b]2,n, [σ,b]2,n+1

∼= [λ, b]2,n+1.

The only singular points of S = {L,M, S} is ξ = cω2 , and H = ⟨Sξ \ S(ξ)⟩ = ⟨L⟩ ∼= Z/2Z.

It follows that DH = {supp(L)} and H is finite with regular support and invariant domains. We
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Figure 5.5: Partial nondeterministic automata describing the actions of L,M, S

want to find fragmentations of G = ⟨S⟩ that satisfy the conditions of Theorem 4.3.2. The first

three conditions are independent of the fragmentation.

All finite tiles Ti,n are connected. It follows from Proposition 2.3.6 that for each ζ ∈ Ω, we

have Cof(ζ) ⊆ G(ζ). Cofinality classes are dense in X , thus G acts minimally on Ω.

The generators M,S are finitary and do not have critical points, while L has the unique criti-

cal/singular point ξ. Thus ξ is rigid by Proposition 4.4.1.

From Figure 5.6, we see that B(T2,n+1) = 2B(T2,n) + B(T1,n) + 2. It follows that Tξ has

infinitely many blocks. Furthermore, an easy induction shows each block of Tξ consists of two

vertices and a single edge (possibly with loops; or technically, a pair of opposing arrows with

loops), so that Tξ is thin. By Proposition 2.3.5, Γξ is obtained from Tξ by adding a loop at ξ labeled

by L, so is also thin. By (the ideas of) Propositions 3 and 4 of [2], the graph Tξ is 1-ended, and

thus Γξ is 1-ended.

Conditions (4)-(5) depend on the fragmentation of H = ⟨L⟩, in other words, on the frag-

mentation of L. It will be useful to have a handle on the noncritical support structure of L.

Define Nn(L) = N (L) ∩ Ωn, (then Nn(L) consists of the left labels of length n paths in the

51



(a) M1,n+1 for n ≥ 2 (b) [λ, σ]1,n+1 for n ≥ 3

(c) M2,n+1 for n ≥ 2 (d) [λ, µ, σ]2,n+1 for n ≥ 3

Figure 5.6: Recursion for model graphs and hull graphs

automata starting at a vertex Lu and ending in id). It is not difficult to show that N1(L) = {a2},

N2(L) = {c1a2, a1a1, a1a2, bc1, bc2}, and for n ≥ 2

Nn+1(L) = cn−2
2 {bbb, bbc1, bbc2, c2bc1, c2bc2, c2c1a2, c1a1a1, c1a1a2}

= {µ2,nb, µ2,nc1, µ2,nc2, σ2,nc1, σ2,nc2, λ1,na2, σ1,na1, σ1,na2}.
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We first show that the core subgraphs of Γ(ξ,supp(L)) for G ↷ X are strongly repetitive in Γξ,

then give conditions on a fragmentation FL that preserves the strong repetitivity for pieces in PL

that accumulate on ξ.

Proposition 5.1.6. Any core subgraph of Γ(ξ,supp(L)) is strongly repetitive in Γξ.

Proof. Let Θ be a core of Γ(ξ,D), D = supp(L) ∈ DH , and let Σ be one of its segments, considered

as a subgraph of Γ′
ξ. By Proposition 4.4.1, we have Γ′

ξ = Tξ, so Σ is a subgraph of Tξ. There exists

M ≥ 2 such that Σ is a subgraph of (T2,n, ξn) for n ≥ M . Let N ≥ M + 2.

There is a copy of Σ in TN−2 with one endpoint ξN−2 = λ2,N−2 and the other endpoint also on

[λ,b]2,N−2. From the model graphs, we see after two inflations we will have a copy of Σ in T2,N

with one endpoint µ2,N and second endpoint also on [µ, b]2,N . In T2,N+1, the copies of Σ at µ2,Nb

and µ2,Nc2 are connected by the orbital graph ΓD(H) (i.e., the edge L), giving a copy of the core

Θ on [λ, b]2,N+1. From the recursive description of path subgraphs, we see that there is a copy of

[λ,b]2,N+1 in each path subgraph of level N +3. Thus, there is a copy of Θ on each path subgraph

of level N + 3. Similar to the previous example, we get Θ is strongly repetitive in Γξ.

Remark. Notice that from Figure 5.6, there were three choices for introducing an L-edge, i.e., a

copy of ΓD(H). The edge labeled L connecting σ1,Na2 and σ2,Nc2 is not in the hull [λ, µ, σ]2,N+1,

so we cannot “distribute" the connection across all path subgraphs using the recursion to obtain

strong repetivity. Similarly, although the edge labeled L connecting σ1,Na1 and σ2,Nc1 is in the

hull [λ, σ]1,N+1, we cannot have it appear on a future hull of λ2, µ2, σ2.

Corollary 5.1.7. Suppose FG = ⟨FL∪FM ∪FS⟩ is a fragmentation of G = ⟨S⟩ such that for every

P ∈ PL accumulating on ξ and M ≥ 2, there exists N ≥ M such that µ2,NbΩ, µ2,Nc2Ω ⊆ P .

Then any core subgraph of Γ(ξ,P )(FG), P ∈ PL, is strongly repetitive in Γξ(FG).

Proof. Let Θ(FG) be a core of Γ(ξ,P )(FG), P ∈ PL, and let Σ(FG) be one of its segments, con-

sidered as a subgraph of Γ′
ξ(FG). By Proposition 4.4.1, we have Γ′

ξ(FG) = Tξ(FG), so Σ(FG) is

a subgraph of Tξ(FG). There exists M ≥ 2 such that Σ(FG) is a subgraph of (Tn(FG), ξn) for

n ≥ M . By assumption, there exists N ≥ M + 2 such that µ2,NbΩ ⊔ µ2,Nc2Ω ⊆ P .
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If we let Σ and Θ denote the “unfragmented" versions of Σ and Θ respectively, then as in the

proof of Proposition 5.1.6, we get Θ is strongly repetitive in Γξ. But the fragmented versions of

each of these copies is exactly Θ(FG), giving strong repetitivity in Γξ(FG) (because vertices of

L-edge are of the form µ2,Nbw and µ2,nc2w).

For example, any partition of {{µ2,kb, µ2,kc2} : k ≥ 2} can be used to create a set of pieces PL

that satisfies the condition in the corollary. As in the last example, if we have at least 3 pieces, we

can find a fragmentation of L where every element acts as identity on some piece accumulating on

ξ, and thus produce periodic fragmentations FG.

Example 5.1.8 (Gupta-Fabrykowski). Let X = {0, 1, 2} and consider the full shift X = Xω of all

right-infinite sequences over X . Define two automorphisms a, b of X∗ by

a(0w) = 1w, b(0w) = 0a(w),

a(1w) = 2w, b(1w) = 1w,

a(2w) = 0w, b(2w) = 2b(w),

for w ∈ X∗. The group G = ⟨a, b⟩ is the Gupta-Fabrykowski group [6]. Both generators have

order three and ba has infinite order. See Figure 5.7 for the automata structure of G.

Figure 5.7: Moore diagram of Gupta-Fabrykowski group

For n ≥ 1, it can be shown that ∂Tn = {(b, αn), (b, βn)}, where α = 2−ω0 and β = 2−ω. These
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left-infinite words are shift-closed: α = β0 and β = β2.

The recursive procedure for constructing the level n + 1 tile for n ≥ 1 is shown in Figure 5.8.

The tile graphs Tn are connected for all n, and the single hull subgraph [α, β]n is a path subgraph

for all n. In particular, [α, β]n is a “path” of directed 3-cycles. In Figure 5.8, we have simplified

this description with squiggly lines to denote the linear path structure.

(a) Mn+1 for n ≥ 1 (b) [α, β]n+1 for n ≥ 1

Figure 5.8: Recursion for model graphs and hull graphs of Gupta-Fabrykowski group

The only singular point of S = {a, b} is ξ = 2ω, and H = ⟨Sξ \ S(ξ)⟩ = ⟨b⟩ ∼= Z/3Z. We have

DH = {supp(b)} and thus H is finite with regular support and invariant domains.

All finite tiles Tn are connected. It follows from Proposition 2.3.6 that for each ζ ∈ X , we have

Cof(ζ) ⊆ G(ζ). Cofinality classes are dense in X , thus G acts minimally on X .

The generator a is finitary and does not have critical points, while b has the unique criti-

cal/singular point ξ. Thus ξ is germ-defining by Proposition 4.4.1.

From Figure 5.8, we see that B(Tn+1) = 3B(Tn) + 1. It follows that Tξ has infinitely many

blocks. Furthermore, an easy induction shows each block of Tξ consists of three vertices in a

directed cycle with all labels either a or b, so that Tξ is thin. By Proposition 2.3.5, Γξ is obtained

55



from Tξ by adding a loop at ξ labeled by b, so is also thin. By Propositions 3 and 4 of [2] the graph

Tξ is 1-ended, and thus Γξ is 1-ended.

Conditions (4)-(5) of Theorem 4.3.2 depend on the fragmentation of H = ⟨b⟩, in other words,

on the fragmentation of b. It will be useful to have a handle on the noncritical support structure of

b. It is not difficult to show that

N (b) =
⊔
k≥0

{2k00, 2k01, 2k02}

=
⊔
k≥1

{αk0, αk1, αk2},

and thus supp(b) =
⊔

k≥1 αkX . We first show that the core subgraphs of Γ(ξ,supp(b)) for G ↷ X

are strongly repetitive in Γξ, then give conditions for a fragmentation Fb that preserves the strong

repetitivity for pieces in Pb that accumulate on ξ.

Proposition 5.1.9. Any core subgraph of Γ(ξ,supp(c)) is strongly repetitive in Γξ.

Proof. Let Θ be a core of Γ(ξ,D), D = supp(b) ∈ DH , and let Σ be one of its segments, considered

as a subgraph of Γ′
ξ. By Proposition 4.4.1, we have Γ′

ξ = Tξ, so Σ is a subgraph of Tξ. There exists

M ≥ 1 such that Σ is a subgraph of (Tn, ξn) for n ≥ M . Let N ≥ M + 1.

There is a copy of Σ in TN−1 with one endpoint ξN−1 = βN−1 and the other endpoint also on

[α, β]N−1. From the model graphs, we see after one inflation we will have a copy of Σ in TN with

one endpoint αN and second endpoint also on [α, β]N . In TN+1, the copies of Σ at αN0, αN1, and

αN2 are connected by the orbital graph ΓD(H) (i.e., the directed 3-cycle with b labels), giving a

copy of the core Θ on [α, β]N+1.

Let n = N +1. Let Lαn , Lβn , be the components of Tn \E(Θ) containing αn, βn, respectively.

We can cover the vertices of Tξ by level n tiles and connect them along their boundary by 3-

cycles (labeled by b) to obtain Tξ. Let {Θi}i∈I be the copies of Θ in this cover. A component of

Tξ \E(
∪

i∈I Θi) will have size less than 3max{|Lαn |, |Lβn |}, so that Θ is strongly repetitive in Tξ,

and thus Γξ.
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Corollary 5.1.10. Suppose FG = ⟨Fa ∪ Fb⟩ is a fragmentation of G such that for every P ∈ Pb

accumulating on ξ and M ≥ 1, there exists N ≥ M such that αNX ⊆ P . Then any core subgraph

of Γ(ξ,P )(FG), P ∈ Pb, is strongly repetitive in Γξ(FG).

Proof. Let Θ(FG) be a core of Γ(ξ,P )(FG), P ∈ Pb, and let Σ(FG) be one of its segments, con-

sidered as a subgraph of Γ′
ξ(FG). By Proposition 4.4.1, we have Γ′

ξ(FG) = Tξ(FG), so Σ(FG) is

a subgraph of Tξ(FG). There exists M ≥ 1 such that Σ(FG) is a subgraph of (Tn(FG), ξn) for

n ≥ M . By assumption, there exists N ≥ M + 1 such that αNX ⊆ P .

If we let Σ and Θ denote the “unfragmented" versions of Σ and Θ respectively, then as in the

proof of Proposition 5.1.9, we get Θ is strongly repetitive in Γξ. But the fragmented versions of

each of these copies is exactly Θ(FG), giving strong repetitivity in Γξ(FG) (because vertices of

b-labeled directed cycle are of the form αN0w, αN1w, and αN2w).

For example, any partition of {αk : k ≥ 1} induces a set of pieces Pb that satisfies the condition

in the corollary. There is a one-to-one correspondence of fragmentations of b and subdirect prod-

ucts of
∏

P∈Pb
H|P ∼=

∏
D∈DH

(H|D)rD = H |Pb| ∼= (Z/3Z)|Pb|. Then if we use enough pieces that

accumulate on ξ, to be specific, at least 4 (see Proposition 4.5.1), we can find a fragmentation of b

where every element acts as identity on some piece accumulating on ξ, and thus obtain a periodic

fragmentation FG.

Example 5.1.11. Let X = {0, 1, 2, 3, 4, 5} and consider the set X = Xω of all right-infinite

sequences over X . Define four automorphisms a1, a2, b1, b2 of X∗ by

a1(0w) = 5w, a2(0w) = 1w, b1(0w) = 0a1(w), b2(0w) = 0a2(w),

a1(1w) = 4w, a2(1w) = 2w, b1(1w) = 1b1(w), b2(1w) = 1b2(w),

a1(2w) = 3w, a2(2w) = 0w, b1(2w) = 2w, b2(2w) = 2w,

a1(3w) = 2w, a2(3w) = 4w, b1(3w) = 3w, b2(3w) = 3w,

a1(4w) = 1w, a2(4w) = 5w, b1(4w) = 4w, b2(4w) = 4w,

a1(5w) = 0w, a2(5w) = 3w, b1(5w) = 5w, b2(5w) = 5w,
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for w ∈ X∗. Let G = ⟨a1, a2, b1, b2⟩. The generators a1, b1 are involutions and a2, b2 have order

three. The element b2a2 has infinite order. See Figure 5.9 for the automata structure of G.

Figure 5.9: Automata describing the actions of a1, a2, b1, b2

For n ≥ 1, it can be shown that ∂Tn = {(b1, αn), (b2, αn), (b1, βn), (b2, βn)}, where α = 1−ω0

and β = 1−ω. These left-infinite words are shift-closed: α = β0 and β = β1.

The recursive procedure for constructing the level n+ 1 tile for n ≥ 1 is similar to the Gupta-

Fabrykowski group, except the middle connections form the Cayley graph of Sym(3) with labels

b1, b2. The tile graphs Tn are connected for all n, and the single hull subgraph [α, β]n is a path

subgraph for all n. In particular, [α, β]n is a “path” of Sym(3) Cayley graphs.

The only singular point of S = {a1, a2, b1, b2} is ξ = 1ω, and H = ⟨Sξ \ S(ξ)⟩ = ⟨b1, b2⟩ ∼=

⟨b2⟩ ⋊ ⟨b1⟩ ∼= C3 ⋊ C2
∼= Sym(3). We have DH = {supp(H)} and thus H is finite with regular

support and invariant domains.

All finite tiles Tn are connected. It follows from Proposition 2.3.6 that for each ζ ∈ X , we have

Cof(ζ) ⊆ G(ζ). Cofinality classes are dense in X , thus G acts minimally on X .

The generators a1, a2 are finitary and do not have critical points, while b1 and b2 have the unique

critical/singular point ξ. Thus ξ is germ-defining by Proposition 4.4.1.
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We have B(Tn+1) = 6B(Tn) + 1. It follows that Tξ has infinitely many blocks. Furthermore,

an easy induction shows each block of Tξ consists of 6 vertices and is isomorphic to the Cayley

graph of Sym(3) with either labels a1, a2 or labels b1, b2, so that Tξ is thin. By Proposition 2.3.5,

Γξ is obtained from Tξ by adding two loops at ξ labeled by b1, b2, so is also thin. By Propositions

3 and 4 of [2] the graph Tξ is 1-ended, and thus Γξ is 1-ended.

Conditions (4)-(5) of Theorem 4.3.2 depend on the fragmentation of H = ⟨b1, b2⟩ and the

refinement P of DH used to induce pieces Pb1 = P|b1 , Pb2 = P|b2 for the fragmentations of b1, b2.

It will be useful to have a handle on the noncritical support structure of each bi. They are equal,

and

N (bi) =
⊔
k≥0

{1k00, 1k01, 1k02, 1k03, 1k04, 1k05}

=
⊔
k≥1

{αk0, αk1, αk2, αk3, αk4, αk5},

and thus supp(bi) =
⊔

k≥1 αkX = supp(H). We first show that the core subgraphs of Γ(ξ,supp(H)) for

G ↷ X are strongly repetitive in Γξ, then give conditions for a fragmentation FH and refinement

P of DH that preserves the strong repetitivity for elements of P that accumulate on ξ.

Proposition 5.1.12. Any core subgraph of Γ(ξ,supp(H)) is strongly repetitive in Γξ.

Proof. Let Θ be a core of Γ(ξ,D), D = supp(H) ∈ DH , and let Σ be one of its segments, considered

as a subgraph of Γ′
ξ. By Proposition 4.4.1, we have Γ′

ξ = Tξ, so Σ is a subgraph of Tξ. There exists

M ≥ 1 such that Σ is a subgraph of (Tn, ξn) for n ≥ M . Let N ≥ M + 1.

There is a copy of Σ in TN−1 with one endpoint ξN−1 = βN−1 and the other endpoint also

on [α, β]N−1. From the model graphs, we see after one inflation we will have a copy of Σ in

TN with one endpoint αN and second endpoint also on [α, β]N . In TN+1, the copies of Σ at αN i,

i = 0, 1, . . . , 5, are connected by the orbital graph ΓD(H) (i.e., the Cayley graph of Sym(3) labeled

by b1, b2), giving a copy of the core Θ on [α, β]N+1.

Let n = N +1. Let Lαn , Lβn , be the components of Tn \E(Θ) containing αn, βn, respectively.
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We can cover the vertices of Tξ by level n tiles and connect them along their boundary by Sym(3)

Cayley graphs to obtain Tξ. Let {Θi}i∈I be the copies of Θ in this cover. A component of Tξ \

E(
∪

i∈I Θi) will have size less than 6max{|Lαn|, |Lβn |}, so that Θ is strongly repetitive in Tξ, and

thus Γξ.

Corollary 5.1.13. Let P be a refinement of DH such that for every P ∈ P accumulating on ξ and

M ≥ 1, there exists N ≥ M such that αNX ⊆ P . Suppose FG = ⟨Fa1 ∪ Fa2 ∪ Fb1 ∪ Fb2⟩ is a

fragmentation of G such that Pbi = P|bi = P for i = 1, 2. Then any core subgraph of Γ(ξ,P )(FG),

P ∈ P , is strongly repetitive in Γξ(FG).

Proof. Let Θ(FG) be a core of Γ(ξ,P )(FG), P ∈ P , and let Σ(FG) be one of its segments, con-

sidered as a subgraph of Γ′
ξ(FG). By Proposition 4.4.1, we have Γ′

ξ(FG) = Tξ(FG), so Σ(FG) is

a subgraph of Tξ(FG). There exists M ≥ 1 such that Σ(FG) is a subgraph of (Tn(FG), ξn) for

n ≥ M . By assumption, there exists N ≥ M + 1 such that αNX ⊆ P .

If we let Σ and Θ denote the “unfragmented" versions of Σ and Θ respectively, then as in the

proof of Proposition 5.1.12, we get Θ is strongly repetitive in Γξ. But the fragmented versions of

each of these copies is exactly Θ(FG), giving strong repetitivity in Γξ(FG) (because vertices of

b1, b1 labeled Sym(3) Cayley graph are of the form αN iw for i = 0, 1, 2, 3, 4, 5).

For example, any partition of {αk : k ≥ 1} induces a refinement P of DH that satisfies the

condition in the corollary. There is a one-to-one correspondence of fragmentations of H induced

by P and subdirect products of
∏

P∈P H|P ∼=
∏

D∈DH
(H|D)rD = H |P| ∼= Sym(3)|P|. Then if we

use enough pieces that accumulate on ξ, to be specific, at least 12 (see Proposition 4.5.2), we can

find a fragmentation of H where every element acts as identity on some piece accumulating on ξ,

and thus obtain a periodic fragmentation FG.
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6. SUMMARY AND CONCLUSIONS

This dissertation had three main purposes. The first was to introduce a method of proving the

periodicity of an infinite group of homeomorphisms of a Cantor set using the geometry of its orbital

graphs. The second was to introduce the (generalized) concept of a fragmentation of a group of

homeomorphisms of a Cantor set. The third was to expand the class of examples of groups of

Burnside type containing fragmentations of the infinite dihedral group.

6.1 Questions and future work

Throughout this paper, there are several natural questions that arise. The first is the following.

Question 6.1.1. Are any conditions from Theorem 3.4.1 superfluous? In particular, is there a

combination of four conditions that implies the fifth?

An affirmative answer to this question could greatly simplify examples, particularly, if strong

repetivity of core subgraphs is the superfluous condition.

In the examples, it became apparent that constructing a periodic fragmentation relied on the

existence of a subdirect product of a finite power of a finite group such that every element of

the subdirect product had a coordinate equal to the identity. The mentioned finite group was the

subgroup H of G generated by the subset of generators acting singularly on a point. It is not

too difficult to construct examples where any finite group can appear as H . This motivates the

following question.

Question 6.1.2. Given a finite group H , does there exist n and subdirect product A of Hn such

that every element of A has a coordinate equal to id? If so, what is the minimal such n?

A majority of our examples started with a group generated by bounded automata. For some

examples, we can fragment such a group and obtain a new bounded automata group. This is related

to the following.
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Question 6.1.3. Given a finite group H , does there exist n and subdirect product A of Hn such

that A is closed under shifting coordinates: (h1, h2, . . . , hn) 7→ (h2, h3, . . . , h1)?

In particular, is there an n and A such that A satisfies both conditions of Questions 6.1.2 and

6.1.3? For example, when H = Z/2Z, for any odd n ≥ 3 we can take A to be the subgroup of Hn

consisiting of all n-tuples with an even number of 1’s.

Proving strong repetivity of core subgraphs heavily relied on the recursive procedure for build-

ing tile graphs. Is there a way to get around this dependence?

Question 6.1.4. Is there a notion of strong minimality for an action that implies balls of orbital

graphs of regular points are eventually strongly repetitive in every orbital graph?

Finally, thin graphs are a natural generalization of infinite simple trees. In particular, simple

thin graphs with block sizes bounded by 2 are precisely infinite simple trees.

Question 6.1.5. What other applications may thin graphs have?

The expanded fourth class of Burnside type groups containing generalized fragmentations are

very similar to, and intersect, the third class of examples involving groups acting on rooted trees.

However, there are examples in the third class, such as the Gupta-Sidki group [11], whose period-

icity cannot be proved using the methods of this dissertation. It would be interesting to understand

if there is a correct description of a big class encompassing all examples in these two classes.
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