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ABSTRACT

The use of fossil fuels to meet the global energy demand has led to a significant increase in CO2

emissions. CO2 emissions from coal-fired power plants, in particular, constitute a major part of the

global greenhouse gas (GHG) emissions. Capturing CO2 from power plant flue gas using solvent-

based absorption process is one of the most effective options of reducing emissions. However,

the high energy requirement of solvent regeneration and CO2 compression prevents widespread

deployment of the technology. This can be mitigated by flexible operation of the capture process

in response to dynamic variation in electricity prices. The literature in the dynamic scheduling of

power plants with flexible carbon capture systems mostly assumes perfect foreknowledge of elec-

tricity prices. However, electricity markets exhibit high uncertainty in reality, and it is necessary

to account for price uncertainty in optimal decision-making.

In this work, we consider a pulverized coal-fired power plant retrofitted with a carbon cap-

ture unit, which varies its load with variation in electricity price. We first pose a deterministic

problem that aims to maximize profit assuming complete knowledge of prices in the day-ahead

electricity market. This is then extended to incorporate price uncertainty. We apply a multi-stage

stochastic programming approach to determine an optimal hourly schedule of power production

and carbon capture operations, while meeting a strict regulation on CO2 emissions. Since hourly

electricity prices can assume a range of values, we need to consider a large number of price scenar-

ios. To reduce the resulting computational complexity in the optimization framework, we develop

low-complexity surrogate models for optimal action policy at each stage. These models are then

used to determine total optimal profit for different real-time scenarios of electricity price. Our ap-

proach is able to obtain solutions with the expected value of perfect information under uncertainty

within 25% of the maximum achievable profit, while keeping CO2 emissions sufficiently below

the threshold limit.
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1. INTRODUCTION

Driven by rapid economic development, the global energy demand continues to increase. De-

spite the efforts of policy makers around the world in promoting renewable energy resources for

sustainable consumption, the contribution of fossil fuels to meet the energy demand has remained

constant at more than 80% over three decades. This has led to an unprecendented increase in

worldwide CO2 emissions, which reached a record high of 33.1 gigatonnes (Gt) in 20181. Of this,

coal-fired power generation alone accounted for nearly 30% of the emissions. The rise in emis-

sions has several long-term negative consequences, including an increase in global temperatures,

rise in sea levels and water scarcity2.

The continued use of fossil fuels for electricity generation makes it necessary to invest in emis-

sion reduction efforts such as post-combustion CO2 capture. The captured CO2 can be injected in

underground rock formations for enhanced oil recovery3–6. Another economical end-use of CO2

is through conversion to various value-added fuels and chemicals7–11. However, despite the po-

tential of carbon capture and storage (CCS) retrofits in coal power plants to reduce CO2 emissions

by 90%, widespread deployment of the technology remains far from reality. Currently, only nine

power plants exist worldwide with large scale CCS projects12. Among these, the Boundary Dam

CCS project in Canada and the Petra Nova Carbon Capture project in the U.S. are in operation

while the others are still in early development stages. Significant energy and investment require-

ment in CO2 separation, compression and transportation stages restricts commercial scale-up of

the technology. CCS reduces net energy output of power plants by 25-40%13, which translates to

around 70% increase in production costs as compared to operating without a capture unit14. An

overview of the energy-intensive CO2 capture mechanism is presented below.

1.1 Overview of Carbon Capture in Thermal Power Plants

Based on the plant configuration, there are three main types of carbon capture methods: pre-

combustion capture, post-combustion capture and oxy-fuel combustion capture15. Among these,
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the most viable technology for large-scale carbon capture deployment in existing power plants

is post-combustion capture16. Furthermore, there are different available technologies to separate

CO2 from post-combustion flue gas. These include physical and chemical absorption, adsorption

and membrane separation17–21. The most promising and conventionally-used method of separa-

tion is chemical absorption, which can be further classified depending on the choice of solvent22.

Figure 1.1 depicts the various CO2 capture alternatives in coal power plants.

Figure 1.1: Technologies for CO2 capture from power plants. The alternatives marked in green are
the most viable ones for commercial scale-up and are considered in this work.

Commonly used solvents for chemical absorption include: i) amine-based solvents, namely

monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA)23,24; ii) ammo-

nia25,26; and iii) piperazine promoted potassium carbonate (K2CO3)27. MEA is the preferred sol-

vent due to its commercial availability and low cost. Figure 1.2 shows the overall process scheme

of a power plant integrated with a solvent-based post-combustion CO2 capture system19. For ease

of analysis, the generation system block is shown to represent the base plant without capture. Flue

gas produced on coal combustion in the boiler of the generation system is directed to the capture
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system for CO2 removal. Firstly, the flue gas enters a scrubber where it flows counter-currently

with the solvent (MEA) to remove CO2 by chemical absorption. Solvent leaving the scrubber is

loaded with CO2, and is called ‘rich solvent’. This rich solvent is heated to 100-120◦C in a rich-lean

heat exchanger28. It then enters the top of a stripper where CO2 desorption and solvent regenera-

tion occurs. The lean solvent leaving the stripper bottom is recirculated back to the scrubber. The

stream leaving the top of the stripper is high purity CO2, which is then compressed and transported

for further use in various applications such as sequestration or conversion to value-added fuels and

chemicals.

Figure 1.2: Process schematic of post-combustion carbon capture with solvent-based CO2 absorp-
tion system.

Heat required for solvent regeneration in the stripper is supplied by steam from the reboiler.

This low pressure steam requirement is typically met by the extraction of a portion of steam from

intermediate and low pressure turbines of the generation system in the power plant28–30. This
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causes a reduction in steam input to the turbines, thereby reducing the power output of the plant.

Furthermore, the energy required in CO2 compression adds to the power output reduction due to

the capture system.

To offset the high energy penalty and costs associated with CO2 capture, the dynamic variability

in electricity prices can be leveraged. Owing to fluctuating electricity demand and several other

market factors, real-time electricity prices exhibit high variability. Figure 1.3 depicts the electricity

market prices for two representative days from 2017 for the Houston load zone of the Electric

Reliability Council of Texas (ERCOT)31.

Figure 1.3: ERCOT settlement point prices for two representative days in 2017.

Figure 1.3 shows the price variation in a day of winter and a summer day in 2017. The graph

is indicative of the daily and seasonal variability in real-time electricity prices. This variability can

be used to vary the capture system load to make CO2 capture more profitable.

Flexible operation of the capture system, i.e. dynamically varying its load in response to fluc-

tuating electricity prices can make the capture system operation more profitable and suitable for
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large-scale deployment as compared to the conventional operation. Among the three capture meth-

ods described in this section, post-combustion capture offers the highest feasibility of flexible op-

eration as the capture system can be partially or completely circumvented by adjusting the solvent

circulation flow32.

1.2 Research Goals

The overarching goal of this research is to identify modifications in the conventional operation

of thermal power plants with CCS retrofits to make the technology economically viable for broad

uptake. We consider flexible operation of the carbon capture system leveraging volatile electricity

prices to reduce its high energy penalty. Time-varying solvent storage is used to facilitate flexible

operation and to minimize CO2 venting to the atmosphere. We first analyze a deterministic case

with perfect knowledge of hourly electricity price in the day-ahead price market. This model serves

as a benchmark and solving it establishes an upper bound on profit. However, real-time electricity

prices are highly uncertain. Therefore, the deterministic model is extended to account for price

uncertainty. The resultant stochastic problem is divided into multiple stages corresponding to each

hour and a stochastic programming algorithm is applied to solve for dynamic recourse.

We present a novel application of the value iteration algorithm in the optimal scheduling under

uncertainty in electricity prices. The conventional value iteration algorithm is modified to ensure

that the constraint on cumulative CO2 emissions is satisfied. Due to the large number of possible

price scenarios, the optimization problem is solved for a fixed set of hourly electricity prices and

surrogate models are developed to estimate decisions for intermediate prices. This eliminates op-

timizing at each electricity price point, thereby reducing the computational complexity. Moreover,

as discretization of the state space (electricity price) is avoided, it becomes possible to determine

optimal profit and operation strategy for any value of electricity price between its upper and lower

bounds.

1.3 Outline of the Thesis

The organization of the thesis is as follows:
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Section 2 gives an overview of flexible carbon capture mechanism in thermal power plants and

a comprehensive literature study of past work in improving the profitability of the technology. It

also delineates the challenges which exist and our objectives to bridge the research gap through

this work. Furthermore, we present a brief discussion on different aspects of the electricity and

carbon markets in this section.

Section 3 presents the deterministic model of flexible carbon capture and its application to a

specific case study. We also discuss the results on solving the aforementioned model and compare

its solution to conventional capture system operation.

Section 4 elucidates the various approaches on incorporating uncertainty in the optimization

formulation and significant past works on each approach. We also introduce the stochastic pro-

gramming approach based on value iteration. We discuss different attributes of the value iteration

algorithm and its application in our problem. Furthermore, we elaborate on the formulation of a

stochastic model to account for price uncertainty from the deterministic model. We also present

the solution strategy to solve the model along with the associated computational challenges. The

approach for handling the computational complexity is discussed in this section.

Section 5 elaborates on the results of the stochastic model and their significance. The results

obtained under uncertainty are compared with the deterministic model solution. The discussion of

the results has been split into three parts: i) CO2 emission intensity, ii) Total profit, and iii) Optimal

action policy.

Finally, Section 6 concludes the thesis and presents a summary of the overall work with key

results. Scope for future work has also been discussed in this section.

6



2. BACKGROUND AND LITERATURE REVIEW

A brief discussion on the flexible CO2 capture operation in thermal power plants and its advan-

tages is provided in this section. Furthermore, some key aspects of electricity and carbon markets

have been highlighted along with relevant assumptions which would be used in further sections

for model formulation. Based on the overview, we identify research gaps and outline our research

goals.

2.1 Flexible Carbon Capture Exploiting Variability in Electricity Price

Previous research on post-combustion carbon capture systems is mostly focused on operating

continuously at a fixed load, with all exhaust flue gas from the generation facility sent to the capture

system13,17,33–37. This makes carbon capture less alluring due to the consumption of a large portion

of electricity which could otherwise be monetized. Such inflexible operation is referred to as the

‘base-case’ condition in this work. The base-case condition involves the power plant operating at

a fixed and steady state load where the rates of CO2 absorption, desorption and compression in the

capture system are kept equal at all times.

On the other hand, flexible operation leverages the variability in electricity prices to dynami-

cally vary the power output and capture system load to maximize profit. Lucquiaud et al.38 have

analyzed the steam cycle operation of a dynamically operated generation system. With a turbine

system conducive to dynamic operation, a power plant can vary the energy output. This also en-

ables the base power plant to adjust the grid supply in presence of other renewable and intermittent

energy sources39.

Flexible operation allows the power plant to supply more electricity to the grid during periods

of high electricity price, with little or no carbon capture. During periods of low price, the genera-

tion system can operate at the minimum load and a major portion of electricity from the generation

system can be directed to the capture system. Thus, the capture system can be operated relatively

independent of the generation system, reducing its ‘parasitic’ energy dependence and improving

7



the overall power plant profitability28,39.

Previous research on flexible post-combustion carbon capture in thermal power plants investi-

gates three primary modes of flexible operation40–42:

(1) Exhaust gas venting: capture system operating at partial load, or complete bypass of capture

system with venting unprocessed emissions,

(2) Solvent storage: capture system operating at partial load with solvent storage to mitigate

venting, and

(3) Time-varying solvent regeneration: capture system operating at partial load with rich solvent

continuously recirculated to scrubber until it becomes saturated with CO2, thus preventing

additional capture.

Chalmers et al.39 provided a comprehensive review of these modes of flexible operation. Cohen

et al.43 considered flexible power plant operation in response to daily and seasonal variations in

electricity price. They analyzed the flexibility in terms of ‘on’ and ‘off’ periods of CO2 capture,

while venting the gas in periods of no capture. Lucquiaud and co-workers44 proposed an optimal

part-load operation strategy of a power plant with carbon capture using an Aspen model. However,

they also considered complete bypass of the capture unit during periods of no capture.

The major motivation behind employing ancillary facilities like solvent storage is when there

are environmental regulations restricting the amount of CO2 emissions. Specifically, in cases where

there is a penalty on CO2 emissions or a CO2 price as in a cap-and-trade carbon market, it would

be economically beneficial for the power plant to store the CO2 from absorption at periods of peak

electricity demand/price using solvent storage45. The CO2 rich solvent would later be regenerated

when the electricity price is low.

The solvent storage mode of flexible capture system operation is the most explored one. Chalmers

et al.46 focused on part-load steady-state operation of a power plant with flexible carbon capture.

They developed a model to study the economic benefits for scenarios of both venting CO2 and

solvent storage. Zaman et al.47 optimized the operational variables for time-varying solvent regen-

eration and solvent-storage modes in gPROMS. The optimization is done for a 24 hour time period

8



with varying electricity price and a penalty on CO2 emissions. Patino-Echeverri and co-workers48

determined that solvent storage could be cost-effective for power plants in areas with high vari-

ance of electricity prices, justifying the capital investment for storage tanks. Figure 2.1 depicts the

modifications to the power plant process scheme to enable flexible carbon capture, facilitated by

solvent storage and a venting system.

Figure 2.1: Process schematic of solvent-based post-combustion carbon capture system with sol-
vent storage tanks for flexible operation. The rich and lean solvent storage tanks facilitate the
decoupling of the power generation and CO2 capture systems, enabling flexibility in the operation
of both systems.

Developing a schedule for power generation, dispatch and utilization in power plants with flexi-

ble carbon capture systems subject to dynamically changing prices remains a relatively unexplored

area. Khalilpour49 proposed an MILP model for determining optimal multi-level carbon capture

investment and operating decisions in a dynamic electricity market. They obtained a schedule for

25 years with a given electricity price profile for the first year and a constant escalation rate. Cohen
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et al.50 optimized power plant schedules under pseudo-forecasted electricity prices over one year

of operation using a deterministic MILP model. They also compared the optimal profit level under

varying CO2 prices. Chen et al.51 developed a deterministic NLP model considering day-ahead

price forecasts and solvent storage. Husebye et al.52 used an MILP model with a weekly price

forecast to obtain maximum profit. However, they did not consider the effect of flexible operation

on CO2 transport and storage systems after capture. Sahraei et al.53 developed an optimal schedule

for dynamic operation by using model predictive control (MPC) under oscillatory disturbance in

flue gas flowrate.

Sections 2.2 and 2.3 below elaborate more on the features of electricity and carbon markets

which affect the power plant scheduling.

2.2 Electricity Market Operation Mechanism

Competitive electricity markets can be broadly categorized as either bilateral or pool-type mar-

kets, depending on how the majority of energy trading takes place. The Electric Reliability Council

of Texas market (ERCOT) is an example of a bilateral market; whereas Pennsylvania, New Jer-

sey, and Maryland (PJM) and California Independent System Operator (CAISO) are examples of

pool-based markets in the US54.

In a bilateral market, power producers and distributors enter into long-term bilateral contracts

over a time period, also known as a ‘contract horizon’. These contracts, facilitated by an Indepen-

dent System Operator (ISO), predetermine the amount of power supplied by the generating entity

to the retailer/load-serving entity along with the price over the contract horizon55.

In contrast, a pool-type market involves short-term trading between power producers and re-

tailers. An example of this is the ‘day-ahead’ scenario. A pool-based market uses a centralized

auction system, where producers submit hourly power generation and selling price bids, and re-

tailers submit power consumption and purchase price bids to a central entity: the Market Operator

(MO). The MO determines the winning supply bids which meet the demand56. The hourly elec-

tricity supply prices determined in this way are also known as market clearing prices (MCP) or

spot prices51,55.

10



We assume that the energy market comprises of both pool-based and bilateral trading scenarios.

The bilateral contract determines a fixed power generation schedule at a premeditated price. Power

demand in excess of the contract schedule is supplied by the producer at the MCP. Moreover, we

consider a day-ahead pool-based market, where electricity price forecasts are determined by the

hourly supply bids for the next day. We also assume that the power producer is a price-taker in the

market, i.e., hourly electricity prices are independent of net power produced by it50. Furthermore,

subject to price volatility, we consider only the self-scheduling decisions for the producer. Bidding

decisions in the day-ahead market are not considered in this work.

2.3 Carbon Market Mechanism

Typically, emission reduction is achieved by governments through either imposing a penalty on

carbon emissions (carbon tax), or by setting an upper limit on carbon emissions (cap). Following

the 1997 Kyoto Protocol, the European Union employed an Emissions Trading Scheme (ETS)

which allow nations to put a cap on emissions using a market-based approach57. The ETS is a form

of a cap-and-trade carbon market where a central entity (government) allocates a fixed number of

emission permits, also known as carbon emission credits (CECs) across various industries. The

CECs are valid for a fixed time period during which the industries can operate. During this time

period, entities which exceed their quota of CECs due to higher emissions purchase CECs in the

carbon market from companies with a surplus of CECs57. This kind of carbon trading gives an

incentive to industries to reduce CO2 emissions for maximizing their profit in the carbon market.

In this work, we consider the emission regulation policy to be cap-and-trade where the government

allocates 1 CEC for every metric ton of emissions. We also assume that the carbon trading takes

place at the end of the day, and the carbon price throughout the day remains constant.

2.4 Research Gaps and Objectives

Based on the above review, the goal of this research is to develop a schedule of power plant

operation to maximize its profit while regulating CO2 emissions through a capture system. To this

end, we outline the following research objectives:
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• Compare the benefits of incorporating flexible operation in CO2 capture systems with the

conventional, fixed operation. As discussed in Section 2.1, majority of the previous works in

incorporating post-combustion CO2 capture in power plants consider steady-state operation

of the capture system at some fixed, maximum load. We consider flexible operation to

mitigate the high energy penalty of CO2 capture.

• Develop a benchmark case assuming perfect foreknowledge of electricity price in the day-

ahead market. We formulate a profit-maximization model of the power plant with flexible

carbon capture subject to dynamically varying electricity prices. We first consider a deter-

ministic scenario which establishes a benchmark on profit.

• Develop an optimal power production and CO2 capture schedule under uncertainty in elec-

tricity prices. Previous literature in power plant scheduling with flexible carbon capture has

primarily considered operation under a given, deterministic price profile. However, adopting

the decision strategy as per the deterministic model solution can be suboptimal due to the

electricity prices exhibiting high uncertainty in reality. Therefore, the deterministic model is

extended to one which incorporates this uncertainty.

• Develop approximate models of optimal action policies to reduce computational complexity

in the optimization framework. The hourly electricity price can assume a range of values

with different probabilities associated with each value. This results in a large number of

price scenarios, giving rise to the possibility of the problem ‘exploding’ if solved at discrete

prices. To address this, the optimization problem is solved offline for a set of electricity

prices to obtain approximate models of optimal action policies. These models are then used

to estimate the optimal decisions for a real-time price scenario.
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3. DETERMINISTIC SCHEDULING

Flexible operation of the capture system enables the power plant to strike a balance between

CO2 emissions and operational profit. To achieve an optimal trade-off, it is necessary to obtain a

schedule of both the power generation and capture system operations. An optimization formula-

tion based approach can prove to be useful in developing an optimal schedule which maximizes

profit subject to various constraints. Some of the constraints which influence decision making

include power generation and CO2 capture capacity constraints, ramping constraints, solvent stor-

age constraints and constraints on cumulative CO2 emissions. We describe below the optimization

formulation which encapsulates these different constraints to maximize the daily operational profit.

We consider a pulverized-coal fired power plant with base capacity retrofitted with the post-

combustion capture system. The capture process is assumed to be absorption-based with MEA

as the absorption solvent. The generation system of the power plant can adjust its power output

between 300 to 600 MW. Moreover, flexible operation of the capture system is considered to

be facilitated by solvent storage. We first establish a benchmark case considering a fixed price

scenario. The deterministic model formulation is as follows:

Power plant decisions are assumed to have a hourly frequency. Thus, let t ∈ T = {1, 2, ..., NT}

represent the set of time periods in the scheduling horizon, where NT = 24. The variables in the

deterministic model formulation are given below:

ηG,t : gross efficiency at hour t

ηNG,t : net efficiency at hour t

cG,t : energy generation cost per unit of total energy output at hour t in $ MWh−1

eG,t : CO2 emission intensity (emissions per unit of gross power output) at hour t in tons MWh−1

EN
avg : daily average CO2 emission intensity

EN
G,t : net CO2 emission at hour t in tons
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ES
G,t : amount of compressed CO2 exiting the capture system at hour t in tons

gt : gross power output at hour t in MW

gNt : net power output at hour t in MW

Lt : solvent volume in lean solvent storage tank at hour t in m3

Lt,in : inlet volumetric flowrate in lean solvent storage tank at hour t in m3 hr−1

rA,t : ratio of rate of CO2 absorbed in scrubber at hour t and CO2 absorbed in base case operation

rC,t : rate of CO2 compression in compressor at hour t

rD,t : ratio of rate of CO2 desorbed in stripper at hour t and CO2 desorbed in base case operation

Rt : solvent volume in rich solvent storage tank at hour t in m3

Rt,in : inlet volumetric flowrate in rich solvent storage tank at hour t in m3 hr−1

These variables are bounded by fixed parameter values. The model also includes some key

parameters. The complete list of fixed parameters along with their values assumed in the model

and bounds for the variables can be found in Table 3.1.

3.1 Model Formulation

The deterministic model considered here is originally proposed by Chen et al.51. The objective

is to maximize the total profit over one day of power plant operation with flexible carbon capture.

The profit maximization model is represented as follows:

P0 : max
NT∑
t=1

[gLt πL
G + (gNt − gLt ) π

S
G,t − gt cG,t] + (EL

G −
NT∑
t=1

EN
G,t) π

L
E −

NT∑
t=1

ES
G,t c

TS
S

(3.1a)

s.t. gNt = gt − αArA,t − αDrD,t ∀t ∈ T (3.1b)

ηG,t = ω (gt − β)2 + ηG0 ∀t ∈ T (3.1c)
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EN
G,t =

(
ηG0 eG0

ηG,t

)
gt − g0 eG0 γA rD,t ∀t ∈ T (3.1d)

ES
G,t = rC,t g0 eG0 γA ∀t ∈ T (3.1e)

rC,t = rD,t ∀t ∈ T (3.1f)

cG,t =

(
ηG0 cG0

ηG,t

)
gt ∀t ∈ T (3.1g)

gmin ≤ gt ≤ g0 ∀t ∈ T (3.1h)

0 ≤ rA,t ≤ rA,max ∀t ∈ T (3.1i)

0 ≤ rD,t ≤ rD,max ∀t ∈ T (3.1j)

−∆gR ≤ gt+1 − gt ≤ ∆gR ∀t ∈ T \ {24} (3.1k)

−∆rA,max ≤ rA,t+1 − rA,t ≤ ∆rA,max ∀t ∈ T \ {24} (3.1l)

−∆rD,max ≤ rD,t+1 − rD,t ≤ ∆rD,max ∀t ∈ T \ {24} (3.1m)

Rt,in = R0 rA,t ∀t ∈ T (3.1n)

Lt,in = L0 rD,t ∀t ∈ T (3.1o)

Rt = R0,total +
t∑

i=1

(Ri,in − Li,in) ∀t ∈ T (3.1p)

Lt = L0,total +
t∑

i=1

(Li,in −Ri,in) ∀t ∈ T (3.1q)

0 ≤ Rt ≤ Rmax ∀t ∈ T (3.1r)

0 ≤ Lt ≤ Lmax ∀t ∈ T (3.1s)

NT∑
t=1

EN
G,t − eCG,max

NT∑
t=1

gNt ≤ 0 (3.1t)

The deterministic model represented by Eqs. (3.1a) - (3.1t) is a nonlinear programming (NLP)

problem. Eq. (3.1a) represents the objective of profit maximization. The first term in Eq. (3.1a)

is the revenue from long term bilateral contract between the distributor and power plant. The
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Table 3.1: Parameter values and variable bounds.

Parameter Significance Unit Value
Key Model Parameters

β - MW 550
γA CO2 removal rate of scrubber - 85 %
ηG0 Base case gross efficiency - 0.44
µA0 Base case efficiency penalty of absorption - 0.02
µB0 Base case basic efficiency penalty - 0.01
µC0 Base case efficiency penalty of compression - 0.02
µD0 Base case efficiency penalty of desorption - 0.04
πL
E Price of CECs in carbon market $ ton−1 12.3

πL
G Average long-term contract price $ MWh−1 51.7
ω - MW−2 -6.4x10−7

cG0 Base case power generation cost $ MWh−1 31
cTS
S Transport and storage cost of CO2 $ ton−1 7
eG0 Base case CO2 emission intensity tons MWh−1 0.76
EL

G CECs allocated for one day of operation tons 4373
eCG,max Maximum CO2 emission intensity tons MWh−1 0.3
g0 Base case (maximum) gross power output in MW MW 600
gLt Power output as per contract schedule MW 400
L0 Base case inlet flowrate in lean solvent tank m3 hr−1 7300

L0,total Initial solvent volume in lean solvent tank m3 7300
R0 Base case inlet flowrate in rich solvent tank m3 hr−1 7300

R0,total Initial solvent volume in rich solvent tank m3 7300

Variable Bounds
∆gR Maximum ramping rate of power generation MW min−1 6

∆rA,max Maximum ramping rate of scrubber - 1
∆rD,max Maximum ramping rate of stripper - 1.25

g0 Base case (maximum) gross power output MW 600
gmin Minimum gross power output MW 300
Lmax Maximum capacity of lean solvent storage tank m3 14600
rA,max Maximum CO2 absorption rate in scrubber - 1
rD,max Maximum CO2 desorption rate in stripper - 1.25
Rmax Maximum capacity of rich solvent storage tank m3 14600

second term is the hourly revenue generated by selling the power produced in excess of the amount

determined by the contract, which is valued at the electricity spot price. The third term accounts for

generation costs associated with power production. The fourth term indicates the profit obtained
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from selling excess carbon credits in the cap-and-trade carbon market at the end of the day. The

last term signifies transportation and storage costs associated with CO2 capture. The key decision

variables in the model are gt, rA,t and rD,t.

The details of Eqs. (3.1b)-(3.1g) can be found in Chen et al51. Here, only the final forms

have been shown. Eq. (3.1b) computes the net power output as the reduction in gross power

output due to energy consumption by absorption and desorption operations of the carbon capture

system. αA is the base case penalty due to absorption and is given by E0 µA0, where E0 represents

the power input to the plant under base case conditions
(

g0
ηG0

)
. Similarly, αD represents the

combined base case penalty of compression and desorption systems, and is given by E0 (µD0 +

µC0). Eq. (3.1c) represents the general relation between gross efficiency and power output for a

600 MW capacity pulverized coal based power plant. Eq. (3.1d) gives the net CO2 emissions as

the difference between the total CO2 emissions by the generation system and CO2 absorption in

the capture system.

Eq. (3.1h) constitutes the capacity constraint of the generation system. The minimum gross

power production should be a positive quantity (gmin) and must not exceed the production capacity

of the base case plant (g0) operating at full load conditions. Eqs. (3.1i) and (3.1j) denote capacity

constraints of scrubber and stripper respectively.

Eqs. (3.1k) - (3.1m) depict ramping constraints on the generation system, scrubber and stripper,

respectively. They restrict the change in gross power produced, CO2 absorption and desorption

from one time period to the next below a maximum ramping rate.

Constraints on the capacity of rich and lean solvent storage tanks are given by Eqs. (3.1n) -

(3.1s). Eqs. (3.1n) - (3.1o) calculate the volumetric flowrate in rich and lean tanks as functions of

the base case (fixed) inlet flowrates and amount of CO2 processed by the capture system during

flexible operation. Furthermore, Eqs. (3.1p) - (3.1q) depict volumetric flow balances to calculate

solvent storage in the tanks at time t. The solvent storage in the two tanks is constrained by their

maximum capacities, which are enforced by Eqs. (3.1r) - (3.1s).

Eq. (3.1t) indicates that the total CO2 emissions in one day of operation should be below a
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certain threshold value. This constraint prevents the power plant from emitting out all the CO2

to the atmosphere to avoid expending energy in the capture system and obtaining a higher profit.

This trade-off between emissions and net power output is represented through the daily average

CO2 emission intensity EN
avg, where

EN
avg =

NT∑
t=1

EN
G,t

NT∑
t=1

gNt

(3.2)

3.2 A Deterministic Case Study

Perfect foreknowledge of day-ahead electricity prices is assumed in the deterministic model.

The price profile is taken from Chen et al51. Although they do not give the exact values, the prices

are approximately taken from the price profile in their work.

The NLP model P0 comprises of 459 equations, 392 variables, 361 nonlinear terms and 2472

nonzero elements. It is solved to global optimality using BARON58 v. 14.4.0 in GAMS environ-

ment. The CPU time to solve is 32 seconds on a Dell Optiplex 9020 computer (Intel 8 Core i7-4770

CPU 3.4GHz, 16.2 GB memory). The optimal total daily profit obtained is $187,593. The different

components contributing to the profit are provided in Table 3.2.

Table 3.2: Profit components in deterministic case (in $).

Profit component Value
Revenue from contract 496,320

Revenue in electricity spot market 107,855
Generation costs 387,595

Revenue in carbon market 16,058
Transportation and storage costs 45,044

The optimal power production schedule is given in Figure 3.1a. The price at each hour t

represents the value of πS
G,t in the model. The sum of the two bars represent the gross power output
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(a) Optimal power production schedule

(b) Optimal CO2 capture schedule

Figure 3.1: Optimal power plant schedule for deterministic case.

of the power plant. The result indicates that during periods of low electricity price, the gross power

output is lower as compared to periods when the electricity price is high. Furthermore, more power

is consumed in the capture process during low price periods than when the price is high. Thus, the
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Figure 3.2: Deterministic solution: Net CO2 emissions profile.

net power production is relatively lower when the price is low as compared to the case when the

price is high.

Figure 3.1b shows the optimal CO2 absorption and desorption rates in the scrubber and stripper

respectively. It shows that during periods of low price, both CO2 absorption and desorption are

high. Additionally, in periods with high prices, both rates decrease to maximize net power output

of the plant. The two rates are controlled synchronously with some exceptions over certain time

intervals. The divergence is to ensure that the volume in the rich and lean solvent storage tanks

does not exceed the maximum capacity.

Figure 3.2 portrays variation of net CO2 emissions by the power plant with time. During

periods of high electricity price, it is more profitable for the power plant to emit CO2 than invest

power on capturing it. This increases the net power output, resulting in higher profits. When the

price drops, it is more feasible for the power plant to increase CO2 capture. The net negative

emissions during some periods of low electricity prices can be attributed to the desorption of CO2

from the rich solvent stored when the price was relatively high. The average CO2 emission intensity

EN
avg hits the the upper bound of 0.3 tons/MWh for one day. Relaxing constraint (3.1t) increases
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the profit with higher CO2 emissions. It is an environmental limitation required to keep the power

plant emissions under check.

Although we have assumed that the minimum power generation is 50% of the base load (300

MW), power plants can turn down their output to as low as 20% in response to varying prices59.

On reducing the minimum power output to 20% of the base load (120 MW), the total profit in the

deterministic case increases by around 12% to $209,312. This increase in profit is due to increased

revenue in the carbon trading market and reduced power generation costs.
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4. MULTI-STAGE STOCHASTIC DYNAMIC OPTIMIZATION

In a competitive energy market, it is rarely that the next-day hourly electricity price profile is

perfectly known60. Electricity price is uncertain as well as subject to dynamic changes. Address-

ing the uncertainty in market clearing prices is essential for power plants to develop production

schedules.

To address uncertainty, several techniques are available in the literature, such as stochastic pro-

gramming61,62, robust optimization63,64 and fuzzy programming65,66. Sahinidis67 provided a de-

tailed review of different modeling frameworks and optimization strategies under uncertainty and

their application in planning and scheduling problems. Particularly in the area of scheduling for

power generation, Dentcheva et al.68 formulated a mixed-integer model with dynamic recourse for

a hydro-thermal power plant under uncertainty in demand. They captured the uncertainty through a

scenario tree and used a Lagrangian decomposition-based algorithm to solve the problem. Pappala

et al.69 generated scenarios to model uncertainty in load demand and intermittent wind supply and

used a scenario reduction technique to make the problem computationally tractable for optimiza-

tion. They then used a two-stage heuristic algorithm based on adaptive particle swarm optimization

to solve the stochastic problem.

In this work, we employ a stochastic dynamic programming approach to develop an optimal

operation schedule under price uncertainty. Specifically, the deterministic model described in sec-

tion 3.2 is extended to a multi-stage optimization problem. We apply the recursive value iteration

algorithm70,71 to solve the problem. This algorithm, based on the Bellman equation72, involves

recursively determining an optimal ‘value function’. It assumes that when a decision-maker takes

a decision at a state, it receives a reward. This decision also enables reaching a future state. The

value function is the optimal reward obtained at the current state. However, as per dynamic pro-

gramming’s ‘principle of optimality’, optimality is recursive in a dynamic problem and “an optimal

policy has the property that whatever the initial state and initial decision are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting from the first decision”72.
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Thus, the value function includes the maximum rewards obtained at the current state as well as the

those accumulated till the end of the planning horizon. This algorithm is chosen for the current

problem as we wish to determine optimal actions at each time period in the planning horizon, based

on some estimate of what the price would be in the future.

To begin with, the planning horizon is divided into NT stages where t ∈ T is the stage index.

We wish to determine actions which maximize the profit obtained at each stage. The objective is

obtained by considering only the time dependent terms in the objective of model P0 (Eq. 3.1a).

Thus, the profit at each stage t ∈ T can be expressed as

Pf,t = (gNt − gLt ) π
S
G,t − gt cG,t − EN

G,t π
L
E − ES

G,t c
TS
S ∀t ∈ T (4.1)

Furthermore, the following sets are defined:

• State variables: These contain all the information required to fully determine current action

to be taken and reward as a result of taking the action. At a particular time t, st denotes the

state space vector, which includes: πS
G,t and Rt. We consider Rt ∈ [0, Rmax] and πS

G,t ∈

[0, πmax
G,t ], where πmax

G,t = 100. The set St represents all possible values that can be assumed

by the state space vector st at time t.

• Decision variables: These consist of actions to be taken at the current state which results in

a future state. At a particular time t, the decision variable vector is denoted by at(st), which

includes gt, rA,t and rD,t. The bounds on the decision variables are same as those considered

in model P0: gt ∈ [gmin, g0], rA,t ∈ [0, rA,max] and rD,t ∈ [0, rD,max]. Furthermore, At is the

set of all possible actions that can be taken over the state space at time t.

In addition, the following attributes of the algorithm are defined:

• Reward function: At a particular time t, the reward function ut(st, at) consists of the im-

mediate reward obtained from taking an action at a current state. As given by Eq. (4.1), the

reward function for the stochastic counterpart is formulated by considering only the time
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dependent terms in the profit expression (Eq. 3.1a) of the deterministic model. Therefore,

the reward function represents immediate profit at each time step in the stochastic case.

To ensure that emission intensity constraint given by Eq. (3.1t) is satisfied over the entire

scheduling horizon, it is included in the reward function with a penalty parameter λ. This

penalizes the profit when the constraint is violated. The immediate reward function incorpo-

rating constraint (3.1t) then becomes

ut(st, at) = (gNt −gLt ) π
S
G,t−gt cG,t−EN

G,t π
L
E−ES

G,t c
TS
S −λ (EN

G,t−eCG,max g
N
t ) ∀t ∈ T

(4.2)

• Transition probability function: This denotes the probability of going from a current state

i ∈ St to a future state j ∈ St+1 given the decision-maker takes an action a ∈ At. This is

represented by P (i, a; j). To implement the value-iteration algorithm, it is assumed that the

transition function is time-independent, resulting in a stationary stochastic process.

• Transition equation: This indicates the system equation establishing the relation between

the current state, actions taken at the current state, and how it leads to the future state. In the

deterministic model, Eq. (3.1p) calculates the total volume in the rich solvent storage tank at

time t using a volumetric flow balance. As R0 = L0, Eq. (3.1p) is modified to the following

form to represent the transition equation in the stochastic case

Rt+1 = Rt +R0 (rA,t − rD,t) ∀t ∈ T (4.3)

Volumetric flow balance around the lean solvent storage tank is not considered in the transi-

tion equation as Eqs. (3.1q) and (3.1p) in model P0 are not independent equations.
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4.1 Value Iteration Algorithm

The value iteration algorithm uses Bellman’s principle of optimality72 to recursively calculate a

value function V . This recursive calculation is represented as follows using the Bellman equation:

Vt(st) = max
at∈At

ut(st, at) +
∑

s′∈St+1

Pt(st, at; s
′) Vt+1(s

′) st ∈ St,∀t ∈ T (4.4)

Eq. (4.4) denotes the value function as the maximum of the sum of the current profit and expected

value of the future profit. The set St+1 represents all possible states at time t+ 1 and s′ indicates a

state space vector in this set.

Using Monte Carlo approximation73, Eq. (4.4) can be modified to

Vt(st) ≈ max
at∈At

ut(st, at) +
1

N

∑
s′∈St+1

Vt+1(s
′) st ∈ St, ∀t ∈ T (4.5)

The optimal action policy at stage t constitutes the actions which provide the optimal value func-

tion. While at represents different possible decisions at time t, the optimal decisions are the ones

which maximize the value function given by Eq. (4.5). These optimal decisions, also known as the

optimal action policy, is represented as πt as follows:

πt(st) = arg

max
at∈At

ut(st, at) +
1

N

∑
s′∈St+1

Vt+1(s
′)

 st ∈ St,∀t ∈ T (4.6)

In Eqs. (4.5) and (4.6), N indicates the number of possible state scenarios in the future, stage

(t + 1), and is used to determine expected value of future profit. Therefore, there are N values of

s′ corresponding to each st ∈ St.

Implementing the algorithm over a discrete state space at every stage can be computationally

expensive and can lead to the infamous ‘curse of dimensionality’ common to stochastic, dynamic

optimization problems67,74. The challenges associated with a discrete state space can be addressed

by developing approximate models for the optimal action policy and value functions at each stage
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through offline optimizations. These models are then used to estimate near-optimal actions for a

real-time price scenario.

The implementation of the value iteration algorithm to determine an optimal action policy

under uncertainty in electricity price is described below.

4.2 Algorithm Implementation

In the multi-stage stochastic model, electricity spot price is an uncertain parameter. It can

be classified as an exogenous uncertainty. This means that its possible values are independent

of the action policy. To ensure that an optimal action is taken at a particular time with no prior

knowledge of the future price, we adopt a two-fold approach as follows: (1) Backward recursion:

starting at the last time period t = NT and proceeding backwards, Eq. (4.6) is used recursively

to get optimal action policies πt for different state space points at each time t. This is then used

to obtain approximate models of the optimal actions over the state space, (2) Forward simulation:

the optimal action policy models determined from backward recursion are used to estimate the

decisions to be taken for an electricity price scenario and calculate total optimal profit. These two

processes are depicted in Figure 4.1 and are now described in detail.

4.2.1 Backward Recursion: Obtaining Optimal Action Policy

As mentioned previously, the planning horizon is divided into 24 stages and the value iteration

algorithm is applied recursively on each stage to obtain the optimal action policy, (gt, rA,t, rD,t), at

different points in the state space (πS
G,t, Rt). At each time period t, the following profit maximiza-

tion problem P1 is solved at discrete state space points st:

P1 : Vt(st) = max
at∈At(st)

ut(st, at) +
1

N

∑
s′∈St+1

V̂t+1(s
′) (4.7a)

s.t. ut = (gNt − gLt ) π
S
G,t − gt cG,t − EN

G,t π
L
E − ES

G,t c
TS
S − λ (EN

G,t − eCG,max g
N
t ) (4.7b)

gNt = gt − αArA,t − αDrD,t (4.7c)

ηG,t = ω (gt − β)2 + ηG0 (4.7d)
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EN
G,t =

(
ηG0 eG0

ηG,t

)
gt − g0 eG0 γA rD,t (4.7e)

ES
G,t = rC,t g0 eG0 γA (4.7f)

rC,t = rD,t (4.7g)

cG,t =

(
ηG0 cG0

ηG,t

)
gt (4.7h)

gmin ≤ gt ≤ g0 (4.7i)

0 ≤ rA,t ≤ rA,max (4.7j)

0 ≤ rD,t ≤ rD,max (4.7k)

Rt+1 = Rt +R0 (rA,t − rD,t) (4.7l)

Lt+1 = Lt +R0 (rD,t − rA,t) (4.7m)

Lt = Vtotal −Rt (4.7n)

0 ≤ Rt+1 ≤ Rmax (4.7o)

0 ≤ Lt+1 ≤ Lmax (4.7p)

−∆gR ≤ ĝt+1(s
′)− gt ≤ ∆gR (4.7q)

−∆rA,max ≤ r̂A,t+1(s
′)− rA,t ≤ ∆rA,max (4.7r)

−∆rD,max ≤ r̂D,t+1(s
′)− rD,t ≤ ∆rD,max (4.7s)

The stochastic model P1 represented by Eqs. (4.7a) - (4.7s) is an NLP. The nonlinearity is

due to the quadratic expression of generation efficiency given by Eq. (4.7d) and the future value

function approximation V̂t+1. The approximation process for V̂t+1 is detailed in Section 4.2.1.2.

Eqs. (4.7a) - (4.7p) are defined for ∀t ∈ T and st ∈ St, whereas Eqs. (4.7q) - (4.7s) are defined for

∀t ∈ T \ {24} and s′ ∈ St+1.

Most of the constraints in the above stochastic model are same as in the deterministic case.

The major change in the model is in the objective function given by Eq. (4.7a), with current profit
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Figure 4.1: Two-fold approach in value iteration algorithm.

denoted by Eq. (4.7b). As mentioned previously, this profit includes only the time dependent terms

from the objective function of the deterministic model P0 along with a penalty on CO2 emissions

above a threshold. Another change from the deterministic model is in the ramping constraints

given by Eqs. (4.7q) - (4.7s). In these constraints, the future actions are evaluated at each of the

N future state space variables. Furthermore, Eqs. (4.7l) - (4.7n) now represent the volumetric flow

balance modified to give the transition equation. Eq. (4.7n) indicates that the total volume in the

two tanks is constant, Vtotal = 14600, at hour t. This is derived from Eqs. (3.1p) - (3.1q) of model

P0.

The following assumptions are made:

1. Value function at the (NT + 1)th hour has a value of zero: VNT+1 = 0

Typically, in value iteration, the value function corresponding to the next stage after the final

one in the current planning horizon is given a fixed value. Here, it is assumed to be 0 for

simplification. This transforms the objective function given by Eq. (4.7a) to:
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VNT = max
aNT∈ANT

uNT (sNT , aNT )

Thus, only at the last stage in the planning horizon, the optimal action policy is the one that

maximizes the current profit alone, without taking into consideration the future.

2. At t = NT + 1, or the beginning of the next day, both storage tanks are half full of solvent,

that is: RNT+1 = LNT+1 = R0,total = L0,total.

3. At each stage t, the realization of future prices (at stage t+ 1) follows a normal distribution

with current price as mean. A standard deviation of 10 is assumed, with minimum value of

0 and maximum value of 100 based on past data75. This can be represented as

πS
G,t+1 ∼ N(πS

G,t, 10
2)

4. N = 100 in Eq. (4.7a). This indicates that the objective in model P1 is maximizing the

sum of the current profit at a particular st and the future profits evaluated at 100 s′ ∈ St+1

points. To obtain these state space points s′ = (πS
G,t+1, Rt+1), a normal distribution is used

to generate future electricity prices πS
G,t+1 as per assumption 3 above. However, as shown by

Eq. (4.7l), there is only one corresponding Rt+1 for all these 100 points, obtained on solving

the model.

Based on the above assumptions, model P1 is solved for different values of the penalty param-

eter λ. The significance of this parameter in the model and its effect on the algorithm implementa-

tion is discussed below.

4.2.1.1 Penalty Parameter λ

A major challenge in optimizing under uncertainty is ensuring that the cumulative CO2 emis-

sions are kept below the threshold value eCG,max. The stochastic model P1 lacks a cumulative

constraint on CO2 emissions similar to Eq. (3.1t) in the deterministic model. To ensure that CO2

emissions are kept in check, the model is penalized at each time step for emissions exceeding a
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certain threshold. This penalty is imposed in the offline optimization (backward recursion) pro-

cess. Thus, the penalty parameter λ represents the trade-off between CO2 emissions and power

plant profit in the stochastic case. The enforcement of emission regulations and of power generat-

ing entities adhering to them is different for different locations around the world. The penalty is

thereby pre-determined by the power plant operators on the basis of the amount of profit they are

willing to sacrifice to keep CO2 emissions below a certain level. We consider a representative set

of 10 possible penalty parameters from λ = 10 to λ = 100 as an input to model P1.

Another challenge in backward recursion is the computational expense of solving model P1

at discrete price points at each time step. There have been many efforts in literature to reduce the

computational expense associated with a discretized state space in the value-iteration algorithm.

This includes approximating the value function using piecewise linear functions76,77 and heuristic

methods like neuro-dynamic programming78. Moreover, approximation is also required for the

optimal action policies as it is be nonviable to solve the model P1 over the entire state space at

each time t. An overview of the approach used in this work to develop approximate value function

and action policy models is given below.

4.2.1.2 Approximating the Optimal Value Function and Action Policy

A precedent to deciding on the method of approximation is checking how the plot of the optimal

value function: Vt and action policies: (gt, rA,t, rD,t) looks like over the state space variables st =

(πS
G,t, Rt). To get a representative contour plot, the state space at t = 24 is divided into a 20x20

grid and model P1 is solved for each of the 400 state space points on this grid. Figure 4.2 shows

the contour of the optimal action policies and value function obtained at t = 24 and t = 23.

As can be seen from Figure 4.2, the optimal action policies and value functions are smooth

over the state space at t = 24. Moreover, there are distinct regions in the state space where the

optimal actions remain at either their upper or lower bounds. The plots also depict that the optimal

action policies are more concentrated at the upper and lower bounds, with a sparse distribution in

between. This is a result of the ramping constraints, Eqs. (4.7i - 4.7k) which facilitate the increase

of power output through generation system from minimum to maximum load within one hour.
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Moreover, the scrubber and stripper can also ramp up their load from 0 to 100% in an hour. These

constraints make it possible for the power plant to operate at minimum power load and maximum

capture system capacity when electricity price is low, and ramp up its operation to maximum gross

power output and minimum CO2 capture when the price is high. Thus, to maximize profit, it is

be more beneficial for the power plant to set decision variables at their bounds which causes the

trends seen in Figure 4.2.

However, such distinct regions are obtained only at t = 24 as the optimization problem involves

maximizing only the current profit, without accounting for the future. For t = 23, the contour

plots obtained do not have such distinct demarcations, as shown by Figure 4.2. This is because

for all time periods except at t = 24, the optimal actions and value function are obtained by also

accounting for N different electricity price scenarios in the future.

To globally approximate the optimal actions and value function based on solutions of P1 for

fixed scenarios, we use ALAMO79. ALAMO is a data-driven, black-box modeling tool which

builds compact, albeit accurate surrogate models. It uses adaptive sampling to identify deviations

of the developed surrogate model from simulation. The points of model inconsistencies are added

to the model training set and used to iteratively improve the model until the deviation is less than

a specific tolerance79. ALAMO uses an external simulator to generate samples (in this case, the

solution of P1) which gives the corresponding output variable evaluation for a given set of inputs.

The state space variables πS
G,t and Rt are considered as the ALAMO input variables in this

work. At time t, considering the expression for V̂t+1 is known, we wish to determine approximate

models for the optimal value function Vt and decision variables gt, rA,t, rD,t. Solving P1 at dif-

ferent state space points st, we pass these points and the corresponding optimal solutions as data

points to ALAMO for interpolation. The output obtained from ALAMO constitutes the approx-

imate models for Vt, gt, rA,t and rD,t. These models are passed to the previous time period as

models for V̂t+1(s
′), ĝt+1(s

′), r̂A,t+1(s
′) and r̂D,t+1(s

′) in P1. This process is repeated till t = 1.

31



(a) Gross power generated (MW)

(b) Rate of CO2 absorption

(c) Rate of CO2 desorption

(d) Value function ($)

Figure 4.2: Contour plots of optimal value function and action policies for t = 24 and t = 23.
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To avoid compromising on model accuracy as much as possible, sum of square errors (SSEp)

is chosen as the fitness metric with the term penalizing the model size set to 0. At every instance of

sampling, the corresponding response variables (outputs) are obtained at the sample points (inputs)

by solving model P1 using BARON58 solver in GAMS environment.

The complete backward recursion process is given by the flowchart in Figure 4.3.

Figure 4.3: Backward recursion workflow. This process is repeated for different values of the
penalty parameter λ, where λ is incremented by 10: λ ∈ {10,20,...,100}.
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The match between predicted value function given by ALAMO and optimal value function is

best among the four variables, with R2 value of 0.988 for the case when penalty parameter λ = 10

and t = 24. For the same case, R2 values of decision variables g, rA and rD are 0.950, 0.781 and

0.866 respectively. This indicates good fit of the generated models.

4.2.2 Forward Simulation: Calculating Total Profit

On completion of the backward recursion process, the obtained algebraic models for the opti-

mal action policies are used to calculate the profit in the forward direction. This calculation, which

does not involve any optimization is done for all stages t ∈ T .

At a particular state st ∈ St at stage t, the optimal actions (gt, rA,t, rD,t) are determined from

the corresponding approximate models. On taking these actions, the value of the state space

variable Rt+1 at the next stage is obtained from the transition equation (Eq. 4.3). The value

of the second state space variable πS
G,t+1 is generated randomly from the normal distribution:

πS
G,t+1 ∼ N(πS

G,t, 10
2).

The reward function expression without the penalty term (Eq. 4.1) gives the profit at stage t:

Pf,t = (gNt − gLt ) π
S
G,t − gt cG,t − EN

G,t π
L
E − ES

G,t c
TS
S ∀t ∈ T

We add together this profit from every stage along with time independent terms to get the total

profit over one day of operation:

Total profit =
NT∑
t=1

Pf,t + c

where, c is constant =

NT∑
t=1

gLt πL
G + EL

G πL
E (4.8)

For the starting point of the process, we assume a rich solvent volume of 7300 m3 at the

beginning of the day. Furthermore, initial electricity price of $32 MW h−1 is taken, same as that in

the deterministic model.
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The entire forward simulation process is summarized as follows:

1. Initialize st = (Rt, πS
G,t) to (7300, 32) at t = 1.

2. Determine the optimal action policy from the approximate models for gt, rA,t and rD,t.

3. Calculate current profit Pf,t from Eq. (4.1).

4. To determine states at next stage, (Rt+1, πS
G,t+1), perform the following:

4.a. Calculate rich storage tank volume Rt+1 from transition equation (Eq. 4.3).

4.b. For future electricity price πS
G,t+1, generate a random number from Normal distribution

with mean as current price πS
G,t and standard deviation of 10.

5. If t = NT :

calculate total profit. Forward simulation ends.

Else: t = t + 1, go to step 2.

100 scenarios are generated for electricity price in the forward direction to capture uncertainty.

The above process for forward simulation is repeated in its entirety for each of these 100 scenarios

to calculate the optimal total profit over one day of operation. Stochasticity in electricity price is

represented using a box and whisker plot, given in Figure 4.4. As the initial electricity price (at

t = 1) is taken as $32 MW h−1 for all scenarios, the price at this time is just represented by a single

line instead of a range.

Forward simulation is done parallely for different values of λ to obtain optimal profit as a

function of penalty parameter. This also enables determining the threshold value of λ beyond

which the daily average CO2 emissions intensity constraint (Eq. 3.1t) is met.

To summarize, the stochastic model P1 is solved to global optimality at different state space

points s ∈ St for each stage t to get interpolated functions of value function V and action policy

(gt, rA,t, rD,t). Each of the four variables have an interpolated function at every time t ∈ NT . Such

interpolations at each of the ten λ values gives 4 x 24 x 10 = 960 models. The expressions for op-

timal action policies and value function for λ = 10 are given in the Appendix. These expressions

for optimal action policy obtained as continuous functions of state space variables are then used
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Figure 4.4: Stochasticity in electricity price. Electricity price distribution v/s time is represented
through box and whisker plots. Each box at a particular time t represents distribution of price over
100 scenarios, with the red line at the middle indicating the location of midpoint (median) of the
price range.

in the forward direction to determine optimal profit for different electricity price scenarios. The

algorithm is implemented parallelly for different values of λ. The run time of ALAMO to approx-

imate the optimal actions at each hour contributes to majority of the computational time in the

backward recursion process. For example, the run time of ALAMO and thereby the computational

time of backward recursion is approximately 18 hours for λ = 10. In contrast, forward simulation

is computationally inexpensive and the time taken is negligible compared to backward recursion.

36



5. RESULTS AND DISCUSSION

This section elaborates on the results obtained for the price uncertainty case and comparison

with the results of the deterministic model.

5.1 CO2 Emission Intensity

The variation of daily average CO2 emission intensity EN
avg with λ is given in Figure 5.1. As

λ represents the trade-off between power plant emissions and profit, for a high cost of increased

emissions the power plant would take actions to lower the net CO2 emissions. This is evident from

Figure 5.1: as λ increases, EN
avg follows a decreasing trend.

Figure 5.1a shows variation in the expected value of EN
avg calculated over 100 scenarios for

different values of λ. It depicts that the expected EN
avg at λ = 10 is above the threshold emission

intensity, with a large spread of data. At λ = 20, although the average EN
avg lies below the threshold,

the spread of the data results in some values of EN
avg exceeding the threshold value. A similar trend

is displayed in Figure 5.1b where the variation of EN
avg with λ is shown through a box and whisker

plot. From both plots, it can be safely assumed that a λ value of 30 is acceptable in satisfying the

cumulative constraint on CO2 emissions. It is difficult to determine a specific value of λ beyond

which satisfying the constraint can be guaranteed, as the spread of the data changes with every new

set of scenarios generated.
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(a) Expected value and standard deviation of daily average CO2 emission intensity at different λ.

(b) Box and whisker plot of daily average CO2 emission intensity at different λ.

Figure 5.1: Variation of daily average CO2 emission intensity: EN
avg with penalty parameter.
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5.2 Total Profit

Figure 5.2 depicts variation of the total stochastic profit calculated from forward simulation

for different λ values. Stochastic profit is represented as spread around an expected value, while

deterministic profit is depicted only through the expected value. It is evident that as the penalty

parameter λ increases, the expected value of total stochastic profit goes on decreasing. In compar-

ison, the deterministic profit remains relatively unchanged with changing λ.

Figure 5.2: Variation of stochastic and deterministic profit with λ.

Given a price profile, the difference between the results of the two models is due to the method

used to determine optimal profits. In the deterministic case, we assume perfect foreknowledge of

the price profile. The deterministic profit is then obtained through optimization, by solving model

P0. As a regulatory constraint on cumulative CO2 emissions is included in the model through

Eq. (3.1t), the optimal net power output and CO2 emissions from this model always ensure that:
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EN
avg ≤ eCG,max. Thus, the deterministic profit gives a global maxima and serves as an upper bound

on profit, provided the CO2 emissions are kept below the threshold (eCG,max).

On the other hand, we assume no prior knowledge of the price profile for the stochastic case. As

discussed in Section 4.2.1, the optimal actions are determined through offline optimizations (back-

ward recursion). To ensure that the cumulative CO2 emissions are below the threshold (eCG,max),

we penalize the objective function for emissions exceeding the threshold using a penalty param-

eter λ. The resulting optimal actions are approximated over the state space to get optimal action

policy models at each hour. For a price scenario realization which follows the same profile as in

the deterministic case, the optimal profit is then calculated using these action policy models.

This indicates that the profit obtained thereby depends on the emphasis placed on the reduction

of CO2 emissions through the penalty imposed while handling price uncertainty. When less em-

phasis is placed on reducing emissions by means of a low λ, the power plant emits more CO2. This

results in an increase in net power generation. Consequently, the stochastic model solution gives

high profit when there is less penalty to be paid for emitting CO2. For emissions exceeding the

threshold at low penalty, the stochastic profit exceeds the deterministic profit. At sufficiently high

penalty, the emissions are below the threshold and the deterministic profit gives an upper bound to

the stochastic profit.

Another way of comparing deterministic and stochastic profits is through a metric called value

of perfect information (VPI). VPI can be defined as the cost of uncertainty, and is given by the

difference between deterministic and stochastic profits. In other words, it is the price the deci-

sion maker would pay to obtain perfect information. Variation of VPI with penalty parameter is

represented through a box and whisker plot by Figure 5.3.

As the deterministic solution represents ‘perfect information’, VPI is typically expected to be

positive. As can be seen from Figure 5.3, VPI is negative for some outliers at λ values of 10 and

20 due to the stochastic profit exceeding the deterministic one for some scenarios. As emissions

decrease along with stochastic profit for increasing penalty, VPI shows an increasing trend.

As depicted by Figure 5.1, for a λ value of 30, the range of CO2 emissions is below the thresh-
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Figure 5.3: Variation of value of perfect information (VPI) with λ.

old level. At this value of the penalty parameter, the expected stochastic profit is within 25% of

the expected deterministic profit, as depicted by Figure 5.2. Thus, we can say that for a satisfac-

tory reduction of CO2 emissions, the profit achieved under uncertainty in electricity price is within

25% of the maximum achievable profit. Moreover, to get closer to the benchmark case, other ap-

proximation methods like linear interpolation can be further applied to this problem and compared

with the trade-off between accuracy and computational tractability provided by the approximate

models.

5.3 Optimal Action Policy

The models for the decision variables (gt, rA,t, rD,t) determine the hourly actions to be taken

by the plant operator in face of changing electricity prices. This ensures optimal profit for any

scenario realization of electricity price profile. Thus, rather than the fixed actions represented by

Fig. 3.1 assuming perfect foreknowledge of electricity price, taking the actions as per the obtained
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models is more beneficial to the power plant operator.

To show the effect of changing λ values on the optimal action policy, the hourly variation of

decision variables for λ = 10 and λ = 100 is compared (Figure 5.4). Less emphasis is placed on

emission reduction when λ = 10. As can be seen from Figure 5.4, a range of values for decision

variables is obtained at each stage for λ = 10.

In comparison, the optimal action policies are different, where more emphasis is placed on

emission reduction, when λ = 100. It can be seen that the optimal power generation is most

concentrated at 300 MW with a few outliers. As more power generation results in higher emissions

and due to the limited capacity of capture system, power generation at the minimum value of

300 MW ensures that the daily average emission intensity constraint (Eq. 3.1t) is not violated.

Moreover, a similar trend is followed by CO2 absorption rate. The rates of CO2 absorption are

mostly concentrated around the maximum value of 1, indicating more absorption to reduce CO2

emissions. CO2 desorption rates also show a similar pattern, with rD,t tending to take higher values,

although there are some deviations to adjust the volume in solvent storage tanks.
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(a) Optimal gross power generation (MW)

(b) Optimal rate of CO2 absorption

(c) Optimal rate of CO2 desorption

Figure 5.4: Hourly optimal action policy for λ = 10 and λ = 100.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Although carbon capture systems are required to reduce the high CO2 emissions from thermal

power plants, their high energy dependence restricts widespread deployment of the technology.

To reduce the high energy dependence, flexible operation is considered leveraging the dynamic

variation of electricity prices to vary power production as well as carbon capture operations. This

work aims to develop a power production and carbon capture schedule for thermal power plants

with flexibly operating carbon capture systems to achieve daily profit maximization. Compared to

a conventionally considered fixed electricity price profile, uncertainty in electricity prices is incor-

porated to develop the schedules. A deterministic model with a fixed price profile is considered

as a benchmark and is extended to include the uncertainty in electricity price along with hourly,

dynamic variation. A multi-stage stochastic programming approach based on the Bellman equa-

tion is used to optimize under uncertainty in prices. To ensure that optimal actions are taken, the

algorithm follows a two-fold approach: i) backward recursion and ii) forward simulation. Approx-

imate models for optimal action policies are generated offline in the backward recursion process.

These models are used to determine the actual actions and optimal profit for a real-time scenario

realization of electricity price through forward simulation. This approach reduces the computa-

tional difficulties associated with optimizing repetitively for different price scenarios to get opti-

mal schedules. Moreover, the models generated for optimal actions through backward recursion

are relatively simple with fewer terms as compared to other modeling techniques like kriging and

artificial neural networks, but provide higher complexity than linear interpolation. These mod-

els facilitate an optimal balance between model complexity and accuracy and are computationally

advantageous due to the requirement of 24 sequential and accurate approximations.

The profit obtained when we have perfect foreknowledge of electricity price establishes a

benchmark for profit under uncertainty, provided CO2 emissions are below the threshold limit. For
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the price uncertainty case, it is ensured that emissions are below the threshold through a penalty

on increased emissions while determining the optimal actions offline. This penalty quantifies the

trade-off between CO2 emissions and profit. When the penalty is low, the power plant emits more

CO2, resulting in higher profits as compared to a high penalty case. Moreover, for cases when

a low penalty results in emissions exceeding the threshold, the profit obtained in the uncertainty

case exceeds the deterministic profit. For a high penalty, the emissions obtained when the price

is uncertain are below the threshold and the deterministic model gives an upper bound on profit.

Thus, the gap between the benchmark profit and the stochastic profit increases as the penalty on

high emissions is increased. This gap, also indicated as the value of perfect information (VPI),

denotes the price to obtain perfect knowledge of electricity price. The optimal action policy mod-

els developed in this work result in a VPI within 25% of the deterministic (maximum profit) case

when CO2 emissions from the power plant are sufficiently below the threshold value.

6.2 Recommendations for Future Work

As the surge in the use of renewables with near-zero emissions and marginal operating costs

threaten to displace coal-based power generation, it is necessary for coal power plants to invest in

CCS technologies that are economically viable. This research has tremendous potential in reducing

the environmental footprint of coal-based power generation, making it possible for the world to

continue using coal as an energy source. Although we conduct thorough research on making CCS

in coal plants more cost effective through flexible operation, there is scope in further reducing the

energy and cost penalty associated with CCS technologies. The following recommendations for

future work have been made in this regard:

• More efficient models for the decision variables can be built through the accurate forecasting

of electricity price. The number of price profiles the model is solved for in the backward

recursion process can be reduced based on a probabilistic, scenario analysis.

• Renewable energy can be used to partially offset the high energy requirement of CO2 cap-

ture. The main drawback of using renewable energy is its intermittency and unpredictable
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availability. Increasing renewable penetration at the grid-level would require large-scale,

capital-intensive modifications. This challenge can be addressed by using renewables to

partly provide the energy requirement of CCS in coal power plants. This would prevent

curtailment of excess renewable energy as well as reduce the cost of capture operation.

• An overall analysis of coal power plants with flexible carbon capture, renewables and energy

storage can be considered for a decarbonized energy portfolio. Interactions between these

systems can be studied at the grid level to meet electricity demand while minimizing CO2

emissions.
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APPENDIX A

MODELS FOR OPTIMAL DECISION VARIABLES AND VALUE FUNCTION

A.1 Input Variables

Following are the independent variables and their bounds used in model formulation:

Table A.1: Input variable set (X).

Input System
variable

Description Lower
bound

Upper
bound

Unit

X1 Rt Volume in rich solvent
storage tank

0 14,600 m3

X2 πS
G,t Electricity spot price 0 100 $ MWh−1

A.2 Models for Penalty parameter of 10

Table A.2: Models for gross power gt.

Hour t Model

1 −0.615859E − 2X1 − 47.715740X2 + 0.615294X0.5
1 + 149.654167X0.5

2 +

0.156157E − 6X2
1 + 0.979528X2

2 − 0.249401E − 2X3
2 − 0.114130E − 3X4

2 +

0.782460E− 6X5
2 + 0.421913E− 5X1X2 + 183.525191

2 −0.615828E − 2X1 − 47.715757X2 + 0.615266X0.5
1 + 149.654204X0.5

2 +

0.156151E − 6X2
1 + 0.979529X2

2 − 0.249404E − 2X3
2 − 0.114130E − 3X4

2 +

0.782458E− 6X5
2 + 0.421891E− 5X1X2 + 183.525639

3 0.274375E−2X1−50.835215X2−0.337286X0.5
1 +157.849180X0.5

2 −0.409378E−

7X2
1 +1.082753X2

2 −0.440870E−2X3
2 −0.989948E−4X4

2 +0.742954E−6X5
2 +

0.967342E− 5X1X2 + 205.259764
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Table A.2 – Continued

Hour t Model

4 −0.615823E − 2X1 − 47.715612X2 + 0.615262X0.5
1 + 149.653828X0.5

2 +

0.156148E − 6X2
1 + 0.979523X2

2 − 0.249392E − 2X3
2 − 0.114131E − 3X4

2 +

0.782462E− 6X5
2 + 0.421900E− 5X1X2 + 183.525973

5 −0.615835E − 2X1 − 47.715704X2 + 0.615271X0.5
1 + 149.654059X0.5

2 +

0.156153E − 6X2
1 + 0.979527X2

2 − 0.249401E − 2X3
2 − 0.114130E − 3X4

2 +

0.782459E− 6X5
2 + 0.421895E− 5X1X2 + 183.525640

6 −0.615820E − 2X1 − 47.715487X2 + 0.615259X0.5
1 + 149.653487X0.5

2 +

0.156147E − 6X2
1 + 0.979519X2

2 − 0.249384E − 2X3
2 − 0.114132E − 3X4

2 +

0.782465E− 6X5
2 + 0.421907E− 5X1X2 + 183.526288

7 −0.613084E − 2X1 − 47.699088X2 + 0.613046X0.5
1 + 149.610795X0.5

2 +

0.155366E − 6X2
1 + 0.978915X2

2 − 0.248142E − 2X3
2 − 0.114247E − 3X4

2 +

0.782860E− 6X5
2 + 0.421520E− 5X1X2 + 183.587000

8 −0.615796E − 2X1 − 47.715633X2 + 0.615241X0.5
1 + 149.653887X0.5

2 +

0.156138E − 6X2
1 + 0.979524X2

2 − 0.249393E − 2X3
2 − 0.114131E − 3X4

2 +

0.782462E− 6X5
2 + 0.421906E− 5X1X2 + 183.526341

9 −0.615841E − 2X1 − 47.715849X2 + 0.615279X0.5
1 + 149.654408X0.5

2 +

0.156151E − 6X2
1 + 0.979533X2

2 − 0.249413E − 2X3
2 − 0.114129E − 3X4

2 +

0.782455E− 6X5
2 + 0.421913E− 5X1X2 + 183.525414

10 −0.615844E − 2X1 − 47.716021X2 + 0.615281X0.5
1 + 149.654905X0.5

2 +

0.156156E − 6X2
1 + 0.979538X2

2 − 0.249424E − 2X3
2 − 0.114128E − 3X4

2 +

0.782451E− 6X5
2 + 0.421889E− 5X1X2 + 183.524851

11 −0.613221E − 2X1 − 47.699605X2 + 0.613157X0.5
1 + 149.612151X0.5

2 +

0.155405E − 6X2
1 + 0.978934X2

2 − 0.248180E − 2X3
2 − 0.114244E − 3X4

2 +

0.782848E− 6X5
2 + 0.421546E− 5X1X2 + 183.584396
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Table A.2 – Continued

Hour t Model

12 −0.615806E − 2X1 − 47.715671X2 + 0.615245X0.5
1 + 149.653990X0.5

2 +

0.156145E − 6X2
1 + 0.979525X2

2 − 0.249396E − 2X3
2 − 0.114131E − 3X4

2 +

0.782461E− 6X5
2 + 0.421896E− 5X1X2 + 183.526223

13 −0.615818E − 2X1 − 47.715696X2 + 0.615258X0.5
1 + 149.654048X0.5

2 +

0.156147E − 6X2
1 + 0.979526X2

2 − 0.249399E − 2X3
2 − 0.114130E − 3X4

2 +

0.782460E− 6X5
2 + 0.421892E− 5X1X2 + 183.525876

14 −0.615833E − 2X1 − 47.715976X2 + 0.615270X0.5
1 + 149.654776X0.5

2 +

0.156150E − 6X2
1 + 0.979537X2

2 − 0.249421E − 2X3
2 − 0.114128E − 3X4

2 +

0.782453E− 6X5
2 + 0.421901E− 5X1X2 + 183.525326

15 −0.615764E − 2X1 − 47.716435X2 + 0.615225X0.5
1 + 149.655787X0.5

2 +

0.156123E − 6X2
1 + 0.979559X2

2 − 0.249475E − 2X3
2 − 0.114122E − 3X4

2 +

0.782430E− 6X5
2 + 0.421879E− 5X1X2 + 183.525405

16 −0.311533E − 2X1 − 42.859289X2 + 0.333396X0.5
1 + 137.369423X0.5

2 +

0.105663E − 6X2
1 + 0.789406X2

2 + 0.163793E − 2X3
2 − 0.155549E − 3X4

2 +

0.936966E− 6X5
2 + 0.536853E− 5X1X2 + 195.026660

17 −0.359174E − 2X1 − 48.182930X2 + 0.337740X0.5
1 + 150.266906X0.5

2 +

0.106713E − 6X2
1 + 1.011575X2

2 − 0.349933E − 2X3
2 − 0.101487E − 3X4

2 +

0.728364E− 6X5
2 + 0.514501E− 5X1X2 + 190.886033

18 −0.693333E − 2X1 − 47.275032X2 + 0.661982X0.5
1 + 148.287852X0.5

2 +

0.187534E − 6X2
1 + 0.968379X2

2 − 0.235763E − 2X3
2 − 0.114619E − 3X4

2 +

0.781687E− 6X5
2 + 0.437269E− 5X1X2 + 184.127138

19 −0.615791E − 2X1 − 47.715594X2 + 0.615240X0.5
1 + 149.653775X0.5

2 +

0.156134E − 6X2
1 + 0.979522X2

2 − 0.249391E − 2X3
2 − 0.114131E − 3X4

2 +

0.782463E− 6X5
2 + 0.421918E− 5X1X2 + 183.526410
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Table A.2 – Continued

Hour t Model

20 −0.524635E − 2X1 − 47.483018X2 + 0.492995X0.5
1 + 148.687020X0.5

2 +

0.149211E − 6X2
1 + 0.979268X2

2 − 0.266731E − 2X3
2 − 0.110890E − 3X4

2 +

0.766118E− 6X5
2 + 0.468284E− 5X1X2 + 188.136461

21 −0.616853E − 2X1 − 47.721901X2 + 0.616096X0.5
1 + 149.670187X0.5

2 +

0.156443E − 6X2
1 + 0.979755X2

2 − 0.249871E − 2X3
2 − 0.114086E − 3X4

2 +

0.782309E− 6X5
2 + 0.422041E− 5X1X2 + 183.502867

22 −0.615824E − 2X1 − 47.715720X2 + 0.615265X0.5
1 + 149.654105X0.5

2 +

0.156147E − 6X2
1 + 0.979527X2

2 − 0.249402E − 2X3
2 − 0.114130E − 3X4

2 +

0.782459E− 6X5
2 + 0.421895E− 5X1X2 + 183.525661

23 −0.571854E − 2X1 − 48.457093X2 + 0.601121X0.5
1 + 151.593133X0.5

2 +

0.134895E − 6X2
1 + 1.008286X2

2 − 0.317875E − 2X3
2 − 0.106718E − 3X4

2 +

0.753520E− 6X5
2 + 0.532909E− 5X1X2 + 181.754533

24 −0.615673E − 2X1 − 47.714105X2 + 0.615158X0.5
1 + 149.650213X0.5

2 +

0.156101E − 6X2
1 + 0.979461X2

2 − 0.249255E − 2X3
2 − 0.114144E − 3X4

2 +

0.782511E− 6X5
2 + 0.421793E− 5X1X2 + 183.528790

Table A.3: Models for rate of CO2 absorption rA,t.

Hour t Model

1 −0.133892E − 4X1 + 0.100752X2 − 0.180981E − 3X0.5
1 − 0.283559X0.5

2 +

0.151676E− 9X2
1 − 0.308166E− 2X2

2 +0.468019E− 4X3
2 − 0.334544E− 6X4

2 +

0.919186E− 9X5
2 + 0.188915E− 7X1X2 + 1.278027

2 0.797826E − 4X1 + 0.808634E − 1X2 − 0.807607E − 2X0.5
1 − 0.239093X0.5

2 −

0.241166E− 8X2
1 − 0.213254E− 2X2

2 +0.233127E− 4X3
2 − 0.781870E− 7X4

2 −

0.845222E− 10X5
2 − 0.481187E− 7X1X2 + 1.399251
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Table A.3 – Continued

Hour t Model

3 0.318680E − 4X1 + 0.979775E − 1X2 − 0.420931E − 2X0.5
1 − 0.269243X0.5

2 −

0.948219E− 9X2
1 − 0.316872E− 2X2

2 +0.510785E− 4X3
2 − 0.388199E− 6X4

2 +

0.113203E− 8X5
2 − 0.265733E− 8X1X2 + 1.342271

4 0.333552E − 4X1 + 0.660035E − 1X2 − 0.372824E − 2X0.5
1 − 0.192791X0.5

2 −

0.114431E− 8X2
1 − 0.177946E− 2X2

2 +0.193149E− 4X3
2 − 0.671131E− 7X4

2 −

0.454019E− 10X5
2 − 0.166519E− 7X1X2 + 1.263587

5 0.175699E − 4X1 + 0.699310E − 1X2 − 0.197542E − 2X0.5
1 − 0.218221X0.5

2 −

0.914592E− 9X2
1 − 0.151172E− 2X2

2 +0.815039E− 5X3
2 +0.757665E− 7X4

2 −

0.642998E− 9X5
2 − 0.198530E− 7X1X2 + 1.241313

6 0.478160E − 4X1 + 0.612443E − 1X2 − 0.481878E − 2X0.5
1 − 0.189010X0.5

2 −

0.171430E− 8X2
1 − 0.137281E− 2X2

2 +0.780728E− 5X3
2 +0.615899E− 7X4

2 −

0.546167E− 9X5
2 − 0.203978E− 7X1X2 + 1.288127

7 0.436411E − 4X1 + 0.714481E − 1X2 − 0.411575E − 2X0.5
1 − 0.221337X0.5

2 −

0.188717E− 8X2
1 − 0.160364E− 2X2

2 +0.104894E− 4X3
2 +0.493314E− 7X4

2 −

0.535208E− 9X5
2 − 0.109879E− 7X1X2 + 1.294126

8 0.431558E − 4X1 + 0.491739E − 1X2 − 0.490182E − 2X0.5
1 − 0.149516X0.5

2 −

0.154074E− 8X2
1 − 0.115592E− 2X2

2 +0.511442E− 5X3
2 +0.782446E− 7X4

2 −

0.576693E− 9X5
2 + 0.910791E− 9X1X2 + 1.289585

9 0.336737E−5X1+0.110656X2−0.106208E−2X0.5
1 −0.304901X0.5

2 −0.562766E−

9X2
1 − 0.348797E− 2X2

2 +0.531049E− 4X3
2 − 0.363871E− 6X4

2 +0.915526E−

9X5
2 + 0.663664E− 8X1X2 + 1.287038

10 −0.107665E − 3X1 + 0.117299X2 + 0.648456E − 2X0.5
1 − 0.297604X0.5

2 +

0.418015E− 8X2
1 − 0.448167E− 2X2

2 +0.889772E− 4X3
2 − 0.822361E− 6X4

2 +

0.284432E− 8X5
2 − 0.114945E− 6X1X2 + 1.142116
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Table A.3 – Continued

Hour t Model

11 0.158569E−3X1−0.371055E−1X2−0.145808E−1X0.5
1 +0.836526E−1X0.5

2 −

0.356543E− 8X2
1 +0.209140E− 2X2

2 − 0.591091E− 4X3
2 +0.663565E− 6X4

2 −

0.258035E− 8X5
2 − 0.371096E− 6X1X2 + 1.186290

12 0.113765E−3X1−0.878420E−2X2−0.104893E−1X0.5
1 +0.172816E−2X0.5

2 −

0.363270E− 8X2
1 +0.106284E− 2X2

2 − 0.401987E− 4X3
2 +0.494868E− 6X4

2 −

0.198800E− 8X5
2 − 0.881809E− 7X1X2 + 1.286697

13 0.118921E − 3X1 + 0.571517E − 1X2 − 0.104381E − 1X0.5
1 − 0.180127X0.5

2 −

0.463122E− 8X2
1 − 0.127491E− 2X2

2 +0.457978E− 5X3
2 +0.113341E− 6X4

2 −

0.807179E− 9X5
2 − 0.865087E− 8X1X2 + 1.424123

14 −0.105488E − 3X1 − 0.543884E − 1X2 + 0.491986E − 2X0.5
1 + 0.817441E −

1X0.5
2 +0.623721E−9X2

1 +0.202504E−2X2
2 −0.491171E−4X3

2 +0.520841E−

6X4
2 − 0.197532E− 8X5

2 + 0.593246E− 6X1X2 + 1.201116

15 −0.365905E− 3X1 − 0.499947E− 1X2 + 0.230343E− 1X0.5
1 + 0.128681X0.5

2 +

0.143261E− 7X2
1 +0.147567E− 2X2

2 − 0.271574E− 4X3
2 +0.210606E− 6X4

2 −

0.551227E− 9X5
2 + 0.141223E− 6X1X2 + 0.529091

16 0.166007E − 3X1 − 0.552634E − 1X2 − 0.140226E − 1X0.5
1 + 0.115716X0.5

2 −

0.414260E− 8X2
1 +0.297892E− 2X2

2 − 0.806255E− 4X3
2 +0.888183E− 6X4

2 −

0.342241E− 8X5
2 − 0.202890E− 6X1X2 + 1.138632

17 0.262602E−4X1−0.128444X2−0.176596E−2X0.5
1 +0.327972X0.5

2 −0.806667E−

9X2
1 +0.516471E− 2X2

2 − 0.117839E− 3X3
2 +0.117156E− 5X4

2 − 0.419201E−

8X5
2 − 0.137371E− 6X1X2 + 0.817862

18 0.148450E−4X1−0.114995X2−0.121797E−2X0.5
1 +0.296641X0.5

2 −0.388087E−

9X2
1 +0.461147E− 2X2

2 − 0.104433E− 3X3
2 +0.102602E− 5X4

2 − 0.362701E−

8X5
2 − 0.164184E− 6X1X2 + 0.844516
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Table A.3 – Continued

Hour t Model

19 0.726053E−4X1−0.107051X2−0.756423E−2X0.5
1 +0.271935X0.5

2 −0.163761E−

8X2
1 +0.433161E− 2X2

2 − 0.981670E− 4X3
2 +0.958188E− 6X4

2 − 0.335074E−

8X5
2 − 0.142905E− 6X1X2 + 1.045707

20 0.315803E−4X1−0.105849X2−0.292494E−2X0.5
1 +0.275117X0.5

2 −0.872700E−

9X2
1 +0.417589E− 2X2

2 − 0.927089E− 4X3
2 +0.887707E− 6X4

2 − 0.304799E−

8X5
2 − 0.163793E− 6X1X2 + 0.907091

21 0.375258E − 4X1 − 0.953493E − 1X2 − 0.313421E − 2X0.5
1 + 0.248734X0.5

2 −

0.118288E− 8X2
1 +0.377766E− 2X2

2 − 0.836521E− 4X3
2 +0.794344E− 6X4

2 −

0.270114E− 8X5
2 − 0.195731E− 6X1X2 + 0.917441

22 0.648702E−4X1−0.103298X2−0.696106E−2X0.5
1 +0.267650X0.5

2 −0.133476E−

8X2
1 +0.414933E− 2X2

2 − 0.924453E− 4X3
2 +0.885846E− 6X4

2 − 0.304218E−

8X5
2 − 0.282234E− 6X1X2 + 1.033070

23 0.148612E−3X1−0.107786X2−0.152988E−1X0.5
1 +0.287179X0.5

2 −0.314149E−

8X2
1 +0.432647E− 2X2

2 − 0.962110E− 4X3
2 +0.923110E− 6X4

2 − 0.316868E−

8X5
2 − 0.563909E− 6X1X2 + 1.216738

24 0.238511E−3X1−0.219043X2−0.250696E−1X0.5
1 +0.566625X0.5

2 −0.750237E−

8X2
1 +0.894924E− 2X2

2 − 0.209734E− 3X3
2 +0.217482E− 5X4

2 − 0.811099E−

8X5
2 − 0.469981E− 6X1X2 + 1.369160

Table A.4: Models for rate of CO2 desorption rD,t.

Hour t Model

1 −0.363146E − 4X1 − 0.377439E − 2X2 + 0.734809E − 2X0.5
1 + 0.226600E −

2X0.5
2 −0.634753E−9X2

1 −0.858979E−4X2
2 +0.648535E−5X3

2 −0.147347E−

6X4
2 + 0.830200E− 9X5

2 + 0.474815E− 6X1X2 + 0.949011
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Table A.4 – Continued

Hour t Model

2 −0.139230E − 3X1 − 0.278775E − 1X2 + 0.176639E − 1X0.5
1 + 0.808304E −

1X0.5
2 +0.203365E−8X2

1 +0.697608E−3X2
2 −0.836305E−5X3

2 −0.145181E−

7X4
2 + 0.386647E− 9X5

2 + 0.271475E− 6X1X2 + 0.619123

3 −0.134095E − 3X1 + 0.111551E − 1X2 + 0.166476E − 1X0.5
1 − 0.268771E −

1X0.5
2 +0.201280E−8X2

1 −0.735176E−3X2
2 +0.229310E−4X3

2 −0.329302E−

6X4
2 + 0.154191E− 8X5

2 + 0.338391E− 6X1X2 + 0.733077

4 −0.137439E− 3X1 − 0.416174E− 1X2 + 0.169024E− 1X0.5
1 + 0.121381X0.5

2 +

0.233852E− 8X2
1 +0.113579E− 2X2

2 − 0.157443E− 4X3
2 +0.364195E− 7X4

2 +

0.278284E− 9X5
2 + 0.195737E− 6X1X2 + 0.622256

5 −0.145512E− 3X1 − 0.855213E− 1X2 + 0.165289E− 1X0.5
1 + 0.239179X0.5

2 +

0.302956E− 8X2
1 +0.272065E− 2X2

2 − 0.486476E− 4X3
2 +0.343562E− 6X4

2 −

0.756131E− 9X5
2 + 0.157690E− 6X1X2 + 0.593491

6 −0.135207E − 3X1 − 0.104774X2 + 0.152276E − 1X0.5
1 + 0.287016X0.5

2 +

0.287891E− 8X2
1 +0.349471E− 2X2

2 − 0.668337E− 4X3
2 +0.536065E− 6X4

2 −

0.149090E− 8X5
2 + 0.176535E− 6X1X2 + 0.607941

7 −0.118031E− 3X1 − 0.820327E− 1X2 + 0.138739E− 1X0.5
1 + 0.226309X0.5

2 +

0.220904E− 8X2
1 +0.259177E− 2X2

2 − 0.459161E− 4X3
2 +0.314387E− 6X4

2 −

0.637013E− 9X5
2 + 0.242403E− 6X1X2 + 0.675538

8 −0.115421E− 3X1 − 0.887871E− 1X2 + 0.134781E− 1X0.5
1 + 0.237244X0.5

2 +

0.212649E− 8X2
1 +0.296032E− 2X2

2 − 0.570290E− 4X3
2 +0.453424E− 6X4

2 −

0.123011E− 8X5
2 + 0.331970E− 6X1X2 + 0.690514

9 −0.110723E − 3X1 − 0.111606E − 2X2 + 0.144356E − 1X0.5
1 − 0.216090E −

2X0.5
2 +0.137083E−8X2

1 −0.133470E−3X2
2 +0.600641E−5X3

2 −0.125670E−

6X4
2 + 0.694589E− 9X5

2 + 0.423319E− 6X1X2 + 0.775922
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Table A.4 – Continued

Hour t Model

10 −0.142969E − 3X1 + 0.813781E − 2X2 + 0.201822E − 1X0.5
1 + 0.272660E −

2X0.5
2 +0.151966E−8X2

1 −0.777239E−3X2
2 +0.277037E−4X3

2 −0.402380E−

6X4
2 + 0.186562E− 8X5

2 − 0.474554E− 7X1X2 + 0.516190

11 −0.295382E − 3X1 − 0.121877X2 + 0.301776E − 1X0.5
1 + 0.346713X0.5

2 +

0.783285E− 8X2
1 +0.424770E− 2X2

2 − 0.847578E− 4X3
2 +0.741423E− 6X4

2 −

0.236240E− 8X5
2 − 0.318203E− 6X1X2 + 0.173826

12 0.618331E−5X1−0.157778X2−0.111164E−2X0.5
1 +0.402991X0.5

2 +0.635634E−

9X2
1 +0.607585E− 2X2

2 − 0.134676E− 3X3
2 +0.130545E− 5X4

2 − 0.456753E−

8X5
2 + 0.861544E− 7X1X2 + 1.013913

13 0.382219E−4X1−0.134936X2−0.347068E−2X0.5
1 +0.329238X0.5

2 −0.889985E−

9X2
1 +0.527162E− 2X2

2 − 0.119426E− 3X3
2 +0.117085E− 5X4

2 − 0.411865E−

8X5
2 + 0.440841E− 6X1X2 + 1.125117

14 0.621613E−4X1−0.394891E−1X2−0.230367E−2X0.5
1 +0.632390E−1X0.5

2 −

0.321312E− 8X2
1 +0.165032E− 2X2

2 − 0.421015E− 4X3
2 +0.441347E− 6X4

2 −

0.165267E− 8X5
2 + 0.856002E− 6X1X2 + 1.165153

15 0.162951E − 3X1 − 0.828274E − 1X2 + 0.463072E − 4X0.5
1 + 0.199317X0.5

2 −

0.114439E− 7X2
1 +0.334602E− 2X2

2 − 0.793689E− 4X3
2 +0.833470E− 6X4

2 −

0.318879E− 8X5
2 + 0.109982E− 6X1X2 + 0.712765

16 −0.370841E − 3X1 − 0.128881X2 + 0.366395E − 1X0.5
1 + 0.344830X0.5

2 +

0.101086E− 7X2
1 +0.533196E− 2X2

2 − 0.127276E− 3X3
2 +0.132834E− 5X4

2 −

0.500039E− 8X5
2 − 0.421958E− 6X1X2 + 0.497607E− 1

17 0.200640E−4X1+0.602515E−3X2−0.326606E−2X0.5
1 −0.689618E−2X0.5

2 +

0.107808E− 8X2
1 +0.333770E− 3X2

2 − 0.195831E− 4X3
2 +0.258313E− 6X4

2 −

0.104741E− 8X5
2 − 0.133608E− 6X1X2 + 1.303197
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Hour t Model

18 0.931939E − 4X1 + 0.595380E − 1X2 − 0.981633E − 2X0.5
1 − 0.152879X0.5

2 −

0.696368E− 9X2
1 − 0.204890E− 2X2

2 +0.345942E− 4X3
2 − 0.289174E− 6X4

2 +

0.942493E− 9X5
2 − 0.205706E− 6X1X2 + 1.512320

19 0.341740E − 4X1 − 0.631958E − 1X2 − 0.125598E − 2X0.5
1 + 0.189541X0.5

2 −

0.271449E− 9X2
1 +0.198501E− 2X2

2 − 0.441949E− 4X3
2 +0.420825E− 6X4

2 −

0.141401E− 8X5
2 − 0.126908E− 6X1X2 + 0.996647

20 0.121209E − 3X1 − 0.593755E − 1X2 − 0.129436E − 1X0.5
1 + 0.147834X0.5

2 −

0.145540E− 8X2
1 +0.251776E− 2X2

2 − 0.676048E− 4X3
2 +0.741635E− 6X4

2 −

0.282128E− 8X5
2 − 0.220433E− 7X1X2 + 1.440634

21 0.218982E−3X1+0.236188E−1X2−0.214138E−1X0.5
1 −0.493859E−1X0.5

2 −

0.380922E− 8X2
1 − 0.108642E− 2X2

2 +0.176802E− 4X3
2 − 0.148722E− 6X4

2 +

0.520890E− 9X5
2 − 0.873030E− 7X1X2 + 1.692309

22 0.506518E−4X1−0.146674X2+0.430501E−3X0.5
1 +0.396702X0.5

2 −0.433541E−

9X2
1 +0.527962E− 2X2

2 − 0.120705E− 3X3
2 +0.124527E− 5X4

2 − 0.465217E−

8X5
2 − 0.282869E− 6X1X2 + 0.624189

23 0.393103E − 3X1 − 0.639995E − 1X2 − 0.390806E − 1X0.5
1 + 0.164418X0.5

2 −

0.777199E− 8X2
1 +0.213808E− 2X2

2 − 0.532974E− 4X3
2 +0.575623E− 6X4

2 −

0.219910E− 8X5
2 + 0.161588E− 6X1X2 + 2.022054

24 0.375497E−3X1−0.219043X2−0.250696E−1X0.5
1 +0.566625X0.5

2 −0.750237E−

8X2
1 +0.894924E− 2X2

2 − 0.209734E− 3X3
2 +0.217482E− 5X4

2 − 0.811099E−

8X5
2 − 0.469981E− 6X1X2 + 0.369160
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Table A.5: Models for value function Vt.

Hour t Model

1 0.649878X1+2296.628784X2−12.723415X0.5
1 −6539.962585X0.5

2 −0.141041E−

4X2
1 − 141.330757X2

2 + 3.029752X3
2 − 0.250226E− 1X4

2 + 0.717401E− 4X5
2 −

0.590248E− 2X1X2 − 312649.681050

2 0.223343X1+2145.344224X2+9.684335X0.5
1 −6070.647489X0.5

2 +0.151655E−

5X2
1 − 136.780729X2

2 + 2.947198X3
2 − 0.243496E− 1X4

2 + 0.697870E− 4X5
2 −

0.552429E− 2X1X2 − 298898.600510

3 0.867813X1+2146.804259X2−44.797266X0.5
1 −6097.530708X0.5

2 −0.153054E−

4X2
1 − 136.863953X2

2 + 2.953843X3
2 − 0.244579E− 1X4

2 + 0.703624E− 4X5
2 −

0.587200E− 2X1X2 − 284061.446995

4 0.561508X1+2217.304223X2−17.143861X0.5
1 −6273.709487X0.5

2 −0.661349E−

5X2
1 − 139.018660X2

2 + 2.988392X3
2 − 0.246603E− 1X4

2 + 0.705494E− 4X5
2 −

0.596577E− 2X1X2 − 270685.992810

5 0.734027X1+2257.292158X2−30.496921X0.5
1 −6390.147734X0.5

2 −0.113842E−

4X2
1 − 140.228267X2

2 + 3.012368X3
2 − 0.248885E− 1X4

2 + 0.713635E− 4X5
2 −

0.590330E− 2X1X2 − 256547.798833

6 0.727425X1+2250.086087X2−27.694629X0.5
1 −6373.125420X0.5

2 −0.117774E−

4X2
1 − 139.862927X2

2 + 3.006376X3
2 − 0.248501E− 1X4

2 + 0.712721E− 4X5
2 −

0.578353E− 2X1X2 − 242803.102431

7 0.762673X1+2264.706488X2−28.156741X0.5
1 −6425.988361X0.5

2 −0.141526E−

4X2
1 − 140.212224X2

2 + 3.018063X3
2 − 0.250107E− 1X4

2 + 0.719600E− 4X5
2 −

0.570159E− 2X1X2 − 228912.661109

8 0.627012X1+2243.941710X2−17.958249X0.5
1 −6349.659043X0.5

2 −0.108517E−

4X2
1 − 139.828603X2

2 + 3.022139X3
2 − 0.251592E− 1X4

2 + 0.727708E− 4X5
2 −

0.551382E− 2X1X2 − 215177.705695
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Table A.5 – Continued

Hour t Model

9 0.725096X1+2290.330344X2−25.352354X0.5
1 −6510.066289X0.5

2 −0.156428E−

4X2
1 − 140.824459X2

2 + 3.043128X3
2 − 0.254020E− 1X4

2 + 0.737832E− 4X5
2 −

0.549182E− 2X1X2 − 201021.938579

10 0.312872X1+2184.487993X2+0.633035X0.5
1 −6197.468860X0.5

2 −0.178826E−

5X2
1 − 136.829709X2

2 + 2.958440X3
2 − 0.246099E− 1X4

2 + 0.711464E− 4X5
2 −

0.534920E− 2X1X2 − 187572.110969

11 0.387970X1+2109.643931X2−16.388782X0.5
1 −5873.084358X0.5

2 +0.311075E−

5X2
1 − 134.967423X2

2 + 2.924033X3
2 − 0.242749E− 1X4

2 + 0.698797E− 4X5
2 −

0.542021E− 2X1X2 − 173713.869743

12 1.205862X1+2274.747239X2−65.508564X0.5
1 −6476.992754X0.5

2 −0.248248E−

4X2
1 − 137.306926X2

2 + 2.942874X3
2 − 0.243286E− 1X4

2 + 0.698062E− 4X5
2 −

0.550205E− 2X1X2 − 159764.329280

13 0.882523X1+2194.843658X2−28.593420X0.5
1 −6279.211998X0.5

2 −0.209193E−

4X2
1 − 133.585958X2

2 + 2.876141X3
2 − 0.238682E− 1X4

2 + 0.687497E− 4X5
2 −

0.536216E− 2X1X2 − 147111.844728

14 0.647145X1+2110.029782X2−8.421409X0.5
1 −6101.144024X0.5

2 −0.198360E−

4X2
1 − 128.859585X2

2 + 2.775694X3
2 − 0.229981E− 1X4

2 + 0.660306E− 4X5
2 −

0.519247E− 2X1X2 − 133664.219791

15 −0.301423X1 + 1941.095985X2 + 67.800279X0.5
1 − 5665.359802X0.5

2 −

0.964160E − 6X2
1 − 121.139625X2

2 + 2.593356X3
2 − 0.210941E − 1X4

2 +

0.587700E− 4X5
2 − 0.563212E− 2X1X2 − 121308.344327

16 −1.134184X1 + 1367.401675X2 + 66.667109X0.5
1 − 3556.508729X0.5

2 +

0.586959E − 4X2
1 − 108.465793X2

2 + 2.426615X3
2 − 0.201998E − 1X4

2 +

0.576823E− 4X5
2 − 0.553373E− 2X1X2 − 108211.800318
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Table A.5 – Continued

Hour t Model

17 1.851391X1+2028.462777X2−139.993518X0.5
1 −5737.643234X0.5

2 −0.324398E−

4X2
1 − 123.924011X2

2 + 2.686386X3
2 − 0.225160E− 1X4

2 + 0.658439E− 4X5
2 −

0.582260E− 2X1X2 − 92601.907255

18 1.391922X1+1858.470716X2−72.195064X0.5
1 −5310.261340X0.5

2 −0.248974E−

4X2
1 − 115.038811X2

2 + 2.503641X3
2 − 0.209851E− 1X4

2 + 0.613021E− 4X5
2 −

0.633896E− 2X1X2 − 82236.626282

19 1.132653X1+1661.184618X2−39.639640X0.5
1 −4778.860098X0.5

2 −0.204149E−

4X2
1 − 105.246267X2

2 + 2.309204X3
2 − 0.194407E− 1X4

2 + 0.569962E− 4X5
2 −

0.631293E− 2X1X2 − 70415.965156

20 1.024894X1+1541.744471X2−28.595551X0.5
1 −4469.304452X0.5

2 −0.187822E−

4X2
1 − 97.420008X2

2 + 2.160203X3
2 − 0.184743E − 1X4

2 + 0.553031E − 4X5
2 −

0.598982E− 2X1X2 − 57874.074753

21 1.013258X1+1291.603774X2−26.245348X0.5
1 −3787.275406X0.5

2 −0.199079E−

4X2
1 − 84.149975X2

2 + 1.896007X3
2 − 0.164536E − 1X4

2 + 0.501105E − 4X5
2 −

0.562704E− 2X1X2 − 45740.259788

22 1.127898X1+1277.472156X2−33.207077X0.5
1 −3851.711699X0.5

2 −0.255273E−

4X2
1 − 76.417203X2

2 + 1.732570X3
2 − 0.154423E − 1X4

2 + 0.488102E − 4X5
2 −

0.530053E− 2X1X2 − 33372.965678

23 0.681600X1 + 775.028369X2 + 8.651342X0.5
1 − 2356.233890X0.5

2 − 0.154240E−

4X2
1 − 51.799655X2

2 + 1.216008X3
2 − 0.110384E − 1X4

2 + 0.354457E − 4X5
2 −

0.491363E− 2X1X2 − 23750.713466

24 1.300856X1+622.991680X2−42.983476X0.5
1 −1856.578705X0.5

2 −0.356728E−

4X2
1 − 34.556613X2

2 + 0.809821X3
2 − 0.758148E − 2X4

2 + 0.253297E − 4X5
2 −

0.504685E− 2X1X2 − 12601.866707
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