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ABSTRACT 

 

The effective delivery of hydrophilic, bioactive molecules, such as enzymes and 

nucleic acids, to the cytosol of cells has proven to be a multibillion-dollar problem for 

cell biologists and the pharmaceutical industry. In recent studies, unprecedented 

cytosolic delivery of such cargos was achieved by the utilization of cell-penetrating 

agents. These densely charged, polycationic molecules, whether of biological or 

synthetic origin, have shown the ability to penetrate human cells and, concomitantly, 

carry macromolecular cargos into the intracellular milieu, albeit with variable 

efficiencies. 

Although this method of cell delivery seems promising, the molecular 

underpinnings involved in such transport remain unclear and, by proxy, limit 

advancements in this technology. In this study, I determine the effect of charge density 

(net charge / kDa) on cell penetration and gain insight into the proposed mechanism of 

transport by using the prototypical cell-penetrating peptide TAT. Cell penetrating 

peptide variants were synthesized containing one, two, or three copies of the TAT 

peptide on a synthetic scaffold to generate branched cell-permeable prototypes with 

increasing charge density. I establish that increasing TAT copies dramatically increases 

the cell penetration efficiency of the peptides while simultaneously enabling the efficient 

cytosolic delivery of macromolecular cargos. In previous studies, it has been shown that 

TAT-mediated cellular entry involves the leaky fusion of late endosomal membranes 

enriched with the anionic lipid BMP. We found that the derivatives with two and three 
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TAT branches, 2TAT and 3TAT, induce the leakage of lipid bilayers specifically 

containing BMP. Furthermore, these compounds lead to liposomal flocculation, fusion 

and an increase in lamellarity. In contrast, while the monomeric counterpart 1TAT binds 

to the same extent and causes liposomal flocculation, 1TAT does not induce fusion or a 

significant increase in lamellarity. Overall, these results indicate that an increase in the 

peptide density of these branched structures leads to the emergence of membrane-

disruption and cell penetration activities. 

Moreover, I sought to identify additional properties of BMP-containing 

membranes that play a role in endosomolysis. In this study, I found that late endosomal 

membranes are substantially more fluid or disordered than many other biological 

membranes. The source of this membrane fluidity stems from BMP itself. By utilizing 

phospholipid components with variable extents of unsaturation, I generated a series of 

late endosomal liposome mimics that increased in membrane fluidity as a function of 

unsaturation. As the liposomes increased in fluidity, 3TAT-induced membrane leakage 

increased as well. Conversely, liposomes containing saturated fatty acids leaked to a 

lesser extent than their unsaturated fatty acid counterparts. Taken together these results 

suggest that while the guanidinium-BMP interaction is necessary to cause 

endosomolysis, the intrinsic fluidity of BMP-enriched membranes directly impacts the 

extent of endosomolysis imparted by supercharged CPPs. 
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CHAPTER I  

INTRODUCTION  

1.1 Significance of the delivery of macromolecules into the cytosol of live cells 

Delivery of macromolecular cargo, such as nucleic acids and proteins, into the 

cytosolic space of live cells is of great value to the field of cell biology. For example, 

cellular delivery of a domain of Pseudomonas exotoxin A has been used to learn more 

about Pseudomonas cytotoxicity (1). Similarly, advancements in the 

pharmaceutical/biomedical field has been demonstrated by the delivery of bioactive 

molecular cargoes such as the transcription factors Oct4, Sox2, and Klf4, which led to 

the reprograming of human dermal fibroblasts into pluripotent stem cells (2). Large 

macromolecular cargoes, however, are often unable to reach the cytosolic space of cells 

due to the inability to cross the plasma membrane. In this sense, the cell’s plasma 

membrane acts as a natural barrier against the translocation of large, hydrophilic 

macromolecules to their place of action: the cytosol. As a result, direct plasma 

membrane translocation of macromolecular was the first approach taken toward 

successful delivery into the cytosolic space. Many methods have been developed to 

tackle this problem, such as scrape-loading, microinjection, and electroporation (3-6). 

However, these techniques have limited utility because they target only a very small 

population of cells. For applications requiring much larger populations of cells, such as 

drug delivery, a variety of different chemical and biological delivery tools have been 

developed. These delivery tools include bacterial toxins, virus-like particles (VLPs), 

cationic lipids, nanoparticles and lipid nanoparticles (LNPs), and liposomes; these tools 
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allow for the delivery of nucleic acids, proteins, and even well-known small molecule 

drugs (7-11). Many of these chemical and biological tools, however, suffer from 

drawbacks, including drastic cytotoxicity, host immunological response, inefficiency 

both in material used and administration time, and poor cargo delivery efficiency (1). 

Although these delivery tools are commonly used for several applications, the 

drawbacks listed above strongly suggest that there remains room for improvement in the 

cellular delivery field. Cell-penetrating peptides (CPPs) have emerged as an effective 

chemical means to cytosolic delivery and a possible solution to circumvent many of the 

issues highlighted above (12). 

1.2 Supercharged cell-penetrating peptides as cytosolic delivery tools 

1.2.1 History of cell-penetrating peptides 

 Two independent labs, led by Paul Loewenstein and Carl Pabo, discovered in 

1988 that the transactivator of transcription protein of HIV-1 (TAT) was capable of 

traversing the plasma membrane and retaining activity to activate gene expression once 

within the cytosol of human cells (13,14). This shared observation of cell permeability of 

this small, cationic protein spurred curiosity into the mechanism by which this protein is 

able to cross the plasma membrane. In work that followed, it was found that TAT enters 

cells by utilizing endocytosis (15). This discovery led to the potential applications of 

TAT as a cell delivery tool. Lebleu and coworkers sought to determine the exact 

sequence or domain that was responsible for the transduction of the protein. This group 

found that TAT was able to penetrate cells due to a protein transduction domain (PTD) 

made up of a short sequence of predominantly basic residues between positions 48-60 of 
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the 86-mer (16). It was found that a truncated form of this PTD, NH3
+-RKKRRQRRR-

COO-, was the minimum sequence required for cell penetration and, thus, the genesis of 

the first CPP: the TAT peptide. 

 CPPs are short peptide sequences typically consisting of less than 30 residues. 

CPPs have been used to deliver bioactive molecules into the cytosolic space of cells. 

Delivery is performed by either coincubation of the cargo of interest and CPP with cells 

or by covalent conjugation of the cargo of interest to the peptide by using chemical 

means or molecular biology (e.g., as a fusion construct with a protein of interest) (16). 

CPPs are classified into categories based on origin or molecular properties.  

Classification based on origin divides CPPs into the following three categories. 

The first category, to which TAT belongs, consists of peptides originating from proteins, 

such as penetratin, VP22 and pVEC (17,18). Penetratin, for example, is a 16 amino acid 

peptide derivative of Drosophila antennapedia homeodomain (Antp) (19). Members of 

the second category are chimeric peptides composed of two units. Chimeric CPPs 

include transportan (TP), MPG, and pep-1 (20). TP was generated by the fusion of the 

neuropeptide galanin to the peptide mastoparan from wasp venom (21). The final 

category includes CPPs derived from synthetic origins. CPPs in this category were 

identified by structural activity relationship (SAR) studies of well-studied CPPs, such as 

TAT and penetratin. Members of the synthetic CPP group include the model 

amphipathic peptide (MAP) MAP-17, GALA, R6W3, and polyarginine peptides. 

Notable CPPs that do not fall into one of these categories include CADY, Xentry, and 

PPTG1 (20,22-26). 
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CPP classification based on molecular properties is divided into the following 

four categories. The first category consists of cationic peptides. These peptides are 

cationic at physiological pH owing to an abundance of basic residues (e.g., arginine and 

lysine). This category is primarily composed of guanidinium-rich peptides, such as TAT 

and polyarginines. The second category includes amphipathic peptides. Amphipathic 

molecules have both hydrophobic and hydrophilic spatial arrangements. In addition to 

the canonical amphipathic CPP penetratin, well-known members of the amphipathic 

category of CPPs include MAP-17, GALA, and P28 (27-29). Hydrophobic CPPs make 

up the third category: an emerging class of CPPs exhibiting hydrophobicity are stapled 

peptides, although these peptides have been the last of categories to gain traction in the 

literature. Stapled peptides are peptides forced to maintain a given conformation by the 

incorporation of an often hydrophobic, synthetic chemical moiety (e.g., hydrocarbon) 

that acts as the “staple”. This “staple” maintains a peptides conformation by restricting 

the rotational degrees of freedom of the peptide itself (30). Interestingly, these stapled 

peptides seem to penetrate cells independent of residue specificity but, rather, do so as a 

result of the activity of the hydrophobic staple itself (16). The final CPP category is 

composed of cyclic peptides. Although originating as products commonly sourced from 

plants, the advent of recent chemical technologies has granted the ability to generate 

synthetic cyclic peptides as well. SFTI-1 is an example of a naturally occurring cell 

permeable cyclic peptide; groups such as Pei and coworkers have sought to advance this 

class of CPPs by creating synthetic variants that exhibit highly efficient cell penetration 

(31,32). 
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Table 1-1 Categorization of CPPs by their origin and corresponding sequences. 
Lower case letters indicate the use of D-amino acids; Φ indicates the use of the non-
natural amino acid L-2-naphthylalanine. 
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1.2.2 Importance of charge density and guanidinium density in cytosolic penetration of 

polycationic peptides 

 While polycationic CPPs universally possess a net positive charge, the total 

charge and size (in terms of mass) of each CPP varies. David Liu linked these 

parameters by coining the term “charge density”, which is defined as the quotient of the 

total charge of a molecule divided by the mass in kDa (33). Liu and coworkers went on 

to find that supercharged molecules, or molecules that possess a charge density of ≥ 

0.75, have a propensity to penetrate cells and can even be used as delivery tools for 

nucleic acids and other functional proteins (33-36). While able to deliver cargo, the 

cytosolic penetration efficiency of the supercharged variants of superfolder GFP (sfGFP) 

was very poor. It was then revealed by fluorescence microscopy that the majority of the 

supercharged fluorescent protein remained trapped in endocytic vesicles. One reason for 

this lack of activity could be that in supercharging the sfGFP template molecule, the 

majority of residue substitutions replaced lysine residues as opposed to arginine 

residues. While the charge density of supercharged GFP(+36) was certainly much higher 

than that of sfGFP (from -0.2 to 1.3), the change in terms of arginine or guanidinium 

density was less impressive (from 0.3 to 0.7). Undoubtedly, the enhancement in charge 

density led to a significant increase in endocytic uptake of the supercharged molecule. 

However, the ability to penetrate the cytosolic space of cells seems reliant on more than 

charge density alone. 
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The importance of arginine residues in the cell penetration activity of CPPs has 

been corroborated by Mitchell, Wender, and Futaki (37-39). Wender and coworkers 

performed an alanine scan over the TAT peptide and determined that the mutation of 

arginine residues, specifically, led to a lower cell penetration activity. At physiological 

pH, TAT has nine positive charges: six charges come from arginine residues, two 

charges from lysine residues, and the final charge comes from the N-terminal amine. 

Wender et al. found that the same activity could be reproduced by hexa-arginine even 

though it only possessed a net charge of +7 (38). Additionally, increasing arginine 

content led to even higher penetration activity than TAT itself. Complementary to this 

work, Rothbard and coworkers found that polyarginine peptides exhibited greater cell 

penetration activity than polylysine or polyornithine peptides with a similar or the same 

number of residues (37). Taken together, these results show that cytosolic penetration is 

not simply dependent on the charge density of a molecule; rather, it is more dependent 

on guanidinium content. However, cytosolic penetration is more complex than can be 

explained by this single parameter. 

 Rothbard et al. went on to show that molecular properties such as side chain 

length and chirality did not affect cell penetration (37). However, the importance of 

guanidinium was further underscored whenever Rothbard and coworkers synthesized 

peptides where arginine was replaced with the isostere citrulline. The newly synthesized 

peptides thus substituted the guanidino group for a urea group. It was found that 

heptacitrulline did not lead to cellular internalization, in contrast to heptaarginine, even 

when cells were incubated with peptide in great excess (at concentrations up to 100 µM). 
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A notable difference between these two functional groups is their charge. While 

guanidino groups have a pKa ~ 12, urea groups have a pKa of ~ 0.1 and, as such, do not 

yield a charged compound. The positive charge of the guanidinium groups on 

heptaarginine allows for stable hydrogen bond generation between the peptide and 

phosphate or sulfate moieties on the cell surface. This interaction is uniquely important 

for cellular internalization and will be discussed further below. 

 It is important to highlight a significant technical shortcoming in the two studies 

that are relevant to the work presented here. These findings were based on the use of 

flow cytometry. Flow cytometry measures the total fluorescence intensity of each event 

as it passes through the flow cell. However, this measurement does not distinguish where 

on the cell (inside or outside) the signal originates (e.g., attached to the surface, trapped 

in vesicles, localized to an organelle or distributed cytosolically) (40). Futaki and 

coworkers sought to combat this lack of cellular localization by utilizing fluorescence 

microscopy. Using this technique, they found that several fluorescently labeled arginine-

rich peptides were capable of cytosolic penetration (i.e., cytosolic distribution) in 

RAW264.2 cells (a macrophage cell line). From these studies, the authors expanded on 

the enhanced activity observed by Wender and Rothbard groups and determined that a 

minimum of eight arginine residues was required for efficient cytosolic penetration (39). 

Although suggestive, it is important to note that these experiments were performed after 

cellular fixation. One artifact of interest results in a false positive for cell penetration 

when extracellular peptide stains cellular components following membrane 

permeabilization (40,41). To circumvent this potential artifact, cell penetration of 
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fluorescent polyarginine peptides was evaluated in live cells via fluorescence 

microscopy (42,43). In these studies, it was found that cellular penetration of arginine-

rich peptides was much higher than that of other polycationic peptides (such as 

polylysine). 

1.2.3 Cytosolic delivery of molecular cargo: in cellulo applications 

 CPPs have been used to delivery a variety of molecular cargo such as small 

molecule drugs, peptide-based probes, proteins, liposomes, nanoparticles, and nucleic 

acids (44). Examples of CPP-mediated delivery of bioactive proteins and nucleic acids 

will be highlighted below. 

Delivery of proteins 

 Use of CPPs to deliver protein cargos has been accomplished via a conjugation 

method, through which the cargo of interest (COI) is covalently attached to the CPP, or 

via simple coincubation of the cargo and CPP with cells (45). Generally, protein cargoes 

are divided into two groups: reporters, which are probes for delivery itself (further 

investigated in section 1.5), and functional, bioactive proteins or peptides, which result 

in a cellular response in some fashion. Shortly after its discovery, Fawell and coworkers 

showed that TAT could be used to deliver β-galactosidase (β-gal), horseradish 

peroxidase (HRP), a domain of Pseudomonas exotoxin A, and ribonuclease A (RNase 

A) via direct conjugation (1). They showed that cell delivery appears to be independent 

of cell type and can be employed in a variety of cell lines, including HeLa cells and 

primary human keratinocytes. Fawell et al. went on to compare β-gal activity between 

TAT-mediated delivery and transfection. They observed a drastic difference in the 
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timescale of activity for each method; TAT-mediated delivery of β-gal resulted in 

activity on timescales ranging from minutes-to-hours, whereas β-gal activity produced 

via transfection required a longer timescale (overnight). These results suggested that 

cytosolic β-gal levels were much higher with the TAT delivery method. However, 

variability in the expression levels of the plasmids used as well as transfection efficiency 

could, in part, explain this difference. Furthermore, cell fixation was used to quantify the 

extent of protein delivery. Taken together, it is not clear from this study that TAT-

mediated delivery of β-gal was successful. 

In the studies that followed, stronger evidence for TAT-mediated delivery of 

protein cargos was presented. In 1997, Kim and coworkers described the use of a TAT 

conjugate as a therapeutic and prophylactic vaccine (46). Upon macrophage infection, 

proteins or peptides of pathogenic origin can be degraded into peptide fragments that are 

then presented on the major histocompatibility complex (MHC) classes I and II for T-

cell recognition. One caveat of this defense mechanism for MHC class II-deficient cells, 

however, is that the pathogenic proteins or peptides must reach the cytosolic space of 

cells, rendering traditional protein-based vaccines useless for invoking an immune 

response because they cannot cross the plasma membrane. Kim et al. produced a TAT-

ovalbumin conjugate as a proof of concept and showed that this conjugate evoked MHC 

class I responses in T-cells (46). 

 Transcription factors have also been delivered by CPPs to complement 

traditional transfection-based means of transient expression. Kim and coworkers 

produced polyarginine fusion constructs with Oct4, Sox2, Klf4, and c-Myc, all of which 
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have exhibited induction of pluripotency in stem cells (47,48). Each construct was 

expressed in HEK293 cells, and cell extracts were used to treat newborn human 

fibroblasts (HNF). They found that multiple subsequent 16-hr treatments of HNF cells 

led to a change in HNF morphology consistent with that of induced pluripotent stem 

cells (iPSC) (47). Additionally, they found expression markers indicative of iPSCs. 

Taken together, these results paved the way for the use of CPPs in therapeutic 

applications in which stem cell programming is required (e.g., organ transplants). 

 One commonality between the successful deliveries presented above is that very 

little protein must reach the cytosolic space of live cells in order to exhibit a phenotype 

or activity. While these assays have proven useful in these signal amplification 

scenarios, the total amount of material delivered remains relatively low. This highlights 

the need for improvement of these delivery tools to broaden their applications and 

effectiveness. Factors that contribute to the high sensitivity of these systems and the 

relative delivery efficiency of these tools in terms of total molecules delivered are 

discussed in greater detail in section 1.5. 

Delivery of nucleic acids 

 Nucleic acids can also be delivered either as reporters or therapeutic tools. For 

example, cellular gene delivery can be used to induce dysregulation of disease-

associated genes (49). Because of their large size and high level of negative charges, 

nucleic acids cannot easily traverse the plasma membrane. Many approaches have been 

employed to deliver nucleic acids as therapeutic tools. In particular, viral vectors have 

been particularly successful ultimately resulting in integration of DNA cargo into host 
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genomes. However, viral delivery faces many obstacles such as immunogenicity, 

cytotoxicity, and the nonscalable production of viral vectors (50). Consequently, an 

alternative approach for nucleic acid delivery is needed. 

 RNAi is an effective way to manipulate cells and can be used to screen for 

druggable targets in an array of different diseases. This technique relies on the cellular 

internalization of exogenous siRNA which exhibits poor efficiency and high cytotoxicity 

(51). Initial efforts to employ CPPs for RNAi delivery were unsuccessful. Direct 

conjugation of siRNA to cationic CPPs led to charge neutralization that inactivated the 

cell penetration activity of the CPP and drastically limited siRNA delivery (49). In 2009, 

however, Dowdy and coworkers demonstrated that a TAT fusion construct with a 

double-stranded (ds) RNA-binding domain (DRBD) could bind siRNA with a high 

affinity and deliver the siRNA in multiple cell lines (51). Notably, many of these cell 

lines had previously been deemed difficult to transfect. Additionally, little to no 

cytotoxicity was observed, and a variety of different siRNAs were successfully 

delivered. 

In addition to RNA, CPPs have been used to deliver oligonucleotides into live 

cells. Oligonucleotides (ONs) are a class of nucleic acids that have recently garnered 

interest for therapeutic applications. ONs can be used to form RNA-DNA duplexes 

which can block RNA recognition, inhibiting gene expression or inducing RNA 

cleavage through RNase H (52,53). Examples of ON-based (antisense) therapeutic 

applications include the modification of nuclear splicing genes as well as silencing of 

endogenous microRNAs (54,55). One highly impactful application of ONs is their 
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specific ability to block protein translation. Since ONs need not be recognized by 

endogenous cellular machinery, they can be produced by synthetic means. Synthesis of 

ONs not only allows for mass production but also chemical modification, which can 

greatly expand their therapeutic potential. 

 Peptide nucleic acids (PNAs) are synthetic analogs of ONs that have gained 

attention due their enhanced ability to inhibit gene expression. PNAs share the same 

purine and pyrimidine bases as DNA and RNA. However, the backbone of a PNA is 

different from those of DNA and RNA. Rather than a sugar phosphate backbone linked 

together by phosphodiester bonds, PNAs consists of a N-(2-aminoethyl)-glycine 

backbone linked by amide (peptide) bonds. As a result, the backbone of PNAs possesses 

a net neutral charge as opposed to the net negative charge of DNA and RNA. This 

characteristic allows PNAs to draw from the best of both worlds: PNAs exhibit strong, 

sequence-specific base recognition and binding of RNAs while decreasing the charge 

repulsion associated with a phosphoester backbone. Unfortunately, despite the lack of 

net charge, PNAs are generally cell impermeable. CPPs have however been employed as 

a means of cytosolic PNA delivery. The first report of PNA-CPP conjugates was 

published by Langel et al. in 2004 (56). Langel and coworkers used a 21-base PNA 

coupled to either Penetratin or transportan and showed that the PNA-CPP conjugates 

would form a duplex with galanin receptor mRNA, thereby inhibiting expression in 

Bowes cells. Many subsequent studies followed, in which PNA therapeutics were linked 

to CPPs such as TAT, polyarginine, and penetratin. Each construct proved, however, 

incapable of inducing the intended biologic effect at low concentrations. The reason for 
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this lack of biological activity stemmed from poor cytosolic penetration efficiency of 

these covalent constructs. In an attempt to improve the cytosolic penetrative activity of 

these compounds, chloroquine and ionic calcium were also employed to try and drive 

endosomal escape (57,58). As shown by these examples, endosomal entrapment 

(explored at greater lengths in section 1.3) remains a major bottleneck for most cell 

penetrating agents, and much effort has been focused on enhancing cytosolic penetration 

activity of these delivery tools (see section 1.4). 

1.2.4 Cytosolic delivery of molecular cargo: in vivo applications 

The use of proteins as biologics in vivo has, on the whole, been limited to 

extracellular targets such as cell surface receptors. As discussed previously, this is 

substantial because most proteins cannot cross the plasma membrane or gain access to 

the cytoplasm even if taken into an endocytic compartment. Overcoming these obstacles 

has been achieved in part by conjugating protein biologics to CPPs. An early example of 

the in vivo application of CPPs towards delivery of protein biologics was demonstrated 

by the Dowdy group. In 1999, Dowdy and coworkers were able to successfully deliver 

β-gal to a multitude of different tissues in mice in vivo by intraperitoneal (IP) injection of 

a TAT-β-gal fusion construct (59). Expanding upon this work, many others have adopted 

this protein biologic conjugation approach with CPPs in order to study and treat diseases 

such as cancer, diabetes, and ischemia (to be discussed below). These studies highlight 

the therapeutic potential of CPPs, demonstrating successful passage of a protein 

therapeutic across both epithelia and the blood-brain barrier (BBB). 
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The therapeutic potential of TAT has been demonstrated by delivering tumor 

suppressing proteins. In cancerous cells, the expression of tumor suppressing proteins is 

dysregulated. The protein p53 is a well-studied tumor suppressor protein arrests growth 

and induces apoptosis in response to cellular stress-based stimuli (60). In over half of all 

cancers, the p53 gene is mutated. One potential therapeutic application of CPPs would 

thus be to restore p53 activity by delivering a nonmutated gene or functional form of the 

tumor suppressor. In practice, this approach is challenging. Previous attempts to deliver 

a wildtype copy of the p53 gene have not been successful most likely because of low 

deliver efficiencies in combination with the host immune response (61). In an alternative 

approach, a C-terminal truncated form of p53 was derived (p53C’). Upon successful 

delivery into cancerous cells, the host-cell p53 mutant DNA-binding activity was 

restored, resulting in normal function of the mutated tumor suppressor (62). It is 

important to note, however, that the mechanism by which this occurs remains unknown. 

As with many biologics, cellular internalization of p53C’ was still poor. Consequently, 

in 2004, Dowdy and coworkers introduced a proteolytically stable TAT-p53C’ conjugate 

into a cancerous mouse model and showed that the conjugate induced apoptosis in 

cancerous cells (63). They further corroborated the previous in cellulo findings of Lane 

et al. by demonstrating that the TAT-p53C’ conjugate displayed apoptotic activation that 

required p53 expression in the target cell. Cancerous or non-cancerous cells lacking p53 

(mutant or otherwise) failed to show apoptotic activation upon administration of the 

conjugate (63). The use of TAT as a therapeutic delivery tool in vivo was further 

validated by similar studies in which the CPP was conjugated to other peptide 
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therapeutics, such as the MDM2-binding domain of p53 as well as peptides derived from 

the p16 tumor suppressor (64-66).  

An alternative anti-cancer approach involves targeting the serine-threonine 

kinase casein kinase 2 (CK2). Elevation of cellular CK2 levels leads to increased cell 

growth and proliferation, and CK2 acts as a potent suppressor of apoptosis. These 

characteristics highlight the role CK2 plays in cancer (67). The cyclic peptide p15 is a 

potential peptide therapeutic thought at the time to combat CK2 elevation by inhibiting 

CK2 phosphorylation (shown in vitro) (68). Conjugation of the cyclic peptide to TAT 

and intratumoral administration of the fusion construct to a TC-1 lung epithelial tumor 

on a mouse led to a decrease in tumor volume that extended beyond completion of the 

treatment. These resulted suggested that the conjugate was cell penetrative and exhibited 

anti-tumor properties. 

In addition to anti-cancer therapeutics, other protein therapeutics have been 

delivered in vivo by CPPs. These protein therapeutics include a suppressor of cytokine 

signaling as well as Bcl-2 family members. These protein therapeutics were used to treat 

systemic/local inflammation and cerebral ischemia secondary to cerebral infarction, 

respectively (69,70).  This study of in vivo delivery of the Bcl-2 family members also 

demonstrated successful BBB crossing, which was attributed to CPP conjugation. While 

these results are highly promising, TAT-containing therapeutics have notoriously failed 

in clinical trials. In fact, there are presently no FDA-approved TAT-containing 

therapeutics (71,72). Although TAT-containing drugs have frequently entered Phase I 

and II clinical trials, they have failed, so far, for a variety of reasons. 
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1.2.5 The limitations and failures of the application of CPPs 

 To date, the most effective use of CPPs as delivery vectors and therapeutic tools 

has been with in cellulo and in vivo applications. While a number of CPPs, such as TAT, 

have demonstrated their superior ability to be endocytosed into cells, CPPs have failed to 

escape endocytic vesicles. Endosomal entrapment has been extensively documented by 

fluorescence microscopy of cells treated with fluorescently labeled CPPs (40,73,74). 

Thus, endosomal escape is the primary limiting factor for the effective use of CPPs for 

many applications. However, the underlying mechanisms that govern escape remain 

opaque. Another limitation of CPPs, both in cellulo and in vivo, is their susceptibility to 

proteolytic degradation. Incorporation of unnatural amino acids or D-amino acids can 

improve proteolytic stability of CPPs. This approach has proven successful in some in 

vivo applications (as is the case with p53C’ in vivo studies). 

 Another notable limitation of CPPs stems from conjugation to fluorophores. In 

early studies, CPPs were (and still are) often labeled with fluorophores to monitor cell 

penetration. Two major drawbacks come with the addition of a fluorescent label to 

CPPs. First, the fluorescent moiety affects (even improves) the cell penetrative activity 

of CPPs (75). For some applications, this enhancement may prove beneficial, but the 

removal of the fluorophore for downstream “traceless” applications may yield decreased 

penetrative activities. Second, the prolonged excitation of fluorophores generates radical 

oxygen species (ROS). ROS oxidize membranes which leads to membrane 

permeabilization (76). This oxidation leads to the overestimation of cytosolic penetration 

(as discussed previously), as well as cell death. Improvement of CPPs by implementing 
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“tracelessness” is a necessity to advance a number of CPP in cellulo and in vivo 

applications and is crucial for the implementation of CPP-based therapeutics. 

1.3 Proposed mechanisms of cytosolic penetration of TAT and TAT derivatives 

 While CPPs facilitate delivery into the cytosolic space of cells, the mechanisms 

of cellular internalization remain unclear. Two major routes of cellular internalization 

have emerged for CPPs. The first route, direct plasma membrane translocation, is an 

energy-independent route where the CPPs will translocate across the plasma membrane 

of the cell. The second route is energy-dependent and employs the endocytic pathway. 

The major route of cellular internalization is influenced by a number of factors. These 

factors include the peptide sequence, concentration, target cell type, target cell 

differentiation state, and the nature and size of the cargo/detection fluorophore (77-84). 

Notably, most CPPs undergo both routes of cellular internalization (85). These topics 

will be discussed in greater detail below. 

1.3.1 Direct plasma membrane translocation 

 CPPs can traverse the plasma membrane of a cell through an energy independent 

mechanism known as direct plasma membrane translocation. This mode of cellular 

internalization was first observed by fluorescence microscopy over live cells incubated 

at 4°C (39,86). At this temperature the cells reach an energy depletion state and 

endocytosis is greatly decreased. Under these conditions, cellular uptake and 

internalization were not inhibited for TAT. This suggests that TAT can adopt an 

endocytosis-independent cellular internalization route. Three models have been proposed 



 

19 

 

to explain the mechanism behind direct plasma membrane translocation. These include 

the inverted micelle, carpet, and barrel stave or toroidal pore models (87). 

 Antp is a 16 amino acid amphipathic CPP that interacts with the plasma 

membrane of cells to form inverted micelles and translocate into the cytosol (88). 

Following this observation, Daniele Derossi and coworkers proposed the inverted 

micelle model. First, a CPP interacts with the plasma membrane of the cell. Upon 

interaction, membrane disruption occurs, and the peptide is encapsulated within an 

inverted micelle within the lipid bilayer. Further CPP-induced disruption results in 

micelle dissociation and deposition of the CPP within the cytosolic space of a cell. 

However, these studies do not fully clarify this route of cellular internalization for much 

larger cell permeable agents (e.g., CPP-protein conjugates). Size limitations dictate the 

improbability of micelle encapsulation and, by proxy, cellular internalization through 

this route. 

 The carpet model, also known as the membrane-thinning model, was proposed to 

explain the major membrane destabilization that occurs in the presence of high 

concentrations of CPP. First, the CPP will bind and “carpet”, or saturate, the membrane. 

This saturated state induces a change in the secondary structure of the CPP, which 

allows for non-polar residues to interact with the hydrophobic fatty acid tails of the 

membrane. This results in a transient disruption allowing for translocation into the 

cytosol. This multibodied event can be envisioned as membrane thinning, as the 

transient disruptions that occur en masse allow for the insertion and intercalation of the 

CPPs within the membrane itself. This model relies on CPPs being enriched in 
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hydrophobic residues and has been demonstrated with peptides such as melittin and 

alamethicin (89). However, this route of cellular internalization is less likely for CPPs 

such as TAT that are not rich in hydrophobic residues. 

 Finally, CPP-induced pore formed inside the plasma membrane leads to direct 

membrane translocation. The barrel stave and toroidal pore models have been proposed 

to explain this phenomenon. In these models, the peptide first interacts with and inserts 

into the membrane followed by oligomerization to form a pore (87,90). The barrel stave 

and toroidal pore models differ in how the peptide interacts with the lipid bilayer. The 

barrel stave model involves interaction of hydrophobic residues of CPPs with the fatty 

acids of the plasma membrane. This interaction leads to a ring-shape, or “barrel”, 

structured by the hydrophilic residues. In the toroidal pore model, however, the peptide 

interacts exclusively with the phospholipid head, typically through electrostatic 

interactions. These interactions disrupt the plasma membrane leading to the 

characteristic toroidal pore. The pores formed in each mechanism act as a gateway for 

extracellular cargo and other CPP molecules to enter the cytosolic space of the cell. 

 Each of the models presented can be used to explain the cellular internalization 

mechanisms of CPPs such as short, amphipathic peptides. Notably, plasma membrane 

perturbation exhibits intrinsic cytotoxicity which is unfavorable for live cell applications. 

Additionally, this form of cellular internalization is unfavorable for the translocation of 

much larger molecules. This suggests that a different route of cellular internalization is 

likely adopted by hydrophilic CPPs. 
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1.3.2 Endocytosis-mediated translocation 

Uncertainties stem from many sources; in earlier studies, uncertainties stemmed 

from the techniques used to visualize cellular internalization of CPPs. These early 

studies utilized cellular fixation which was problematic since a) crucial initial steps in 

the mechanism were overlooked (e.g., interaction with receptors at the cell surface) 

(38,40,41,91). 

Early studies (utilizing cell fixation) suggested that cellular of internalization of 

TAT was through endocytosis. However, progress towards understanding this process 

was initially limited as crucial steps in the mechanism were overlooked (e.g., interaction 

with receptors at the cell surface) (38,40,41,91). Endocytosis is a naturally occurring 

process by which cells uptake biomolecules and required nutrients but also undesirable 

molecules, such as toxins (85,92-94). Endocytosis falls under two categories: 

phagocytosis (cell eating) and pinocytosis (cell drinking). Typically undergone by 

macrophages, phagocytosis is the engulfment of cell debris, bacteria, and other large 

particles (95). Pinocytosis involves the regulated uptake of smaller particles and is split 

into two categories: receptor-mediated endocytosis (e.g., clathrin- or caveolae-mediated 

endocytosis) and micropinocytosis (92,96). Endocytosis-mediated cell penetration 

begins with CPP interaction with the cell surface. CPPs are then internalized through 

endocytic uptake but remain trapped within endosomes. Finally, endosomal escape must 

occur for CPPs to translocate into the cytosolic space. Each of these processes will be 

investigated in more detail below. 
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1.3.3 Interaction with components on the cell surface 

Basic residues of hydrophilic CPPs form H-bonds with anionic groups present on 

the cell surface, such as phosphates, sulfates, and carboxylates (97-99). These anionic 

moieties are presented on the surface of the cell by proteoglycans. Examples include the 

transmembrane syndecans as well as the lipid-linked glypicans (100). Sulfates and 

occasionally carboxylates can also be found as substituents to linear glycosaminoglycans 

(GAGs) (101). Heparin sulfate proteoglycan (HSPG) in particular has proven crucial to 

the uptake of arginine-rich CPPs (102-105). Isothermal calorimetry (ITC) experiments 

demonstrated the high affinity of TAT towards heparin sulfate, revealed the multiple 

TAT-binding sites of HSPG, as well as the nature of these binding events (106). Seelig 

and coworkers also showed that these binding events are predominantly driven by 

electrostatic interactions and, to a lesser extent, hydrogen bonding. Dynamic light 

scattering (DLS) was used to show that HSPG clusters form upon interaction with 

guanidinium groups. Additionally, when TAT was unable to interact with HSPG on the 

cell surface (i.e., pretreatment with heparin, HSPG degradation, or downregulation) 

endocytic uptake and cell penetration efficiency decreased (103,107). Taken together, 

these experiments suggest that TAT interacts with HSPG on the cell surface. In 

subsequent studies, it was shown that HSPG and proteoglycans induce F-actin 

organization and macropinocytosis (102,108). HSPG and bound ligand (e.g. TAT) 

become endocytosed into the lumen of the newly formed vesicle. The process of 

cytosolic penetration of TAT through endocytosis will be described below. 
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1.3.4 Cytosolic penetration of TAT is a two-step endocytosis-mediated process 

 Several studies have suggested TAT and other CPPs hijack a number of 

pinocytic pathways that involve membrane ruffling (102). Membrane ruffling is defined 

as, “the formation of motile cell surface protrusions containing a meshwork of newly 

polymerized actin filaments” (109). To investigate cellular internalization of TAT 

through endocytosis, cells were forced into an energy-depleted state (through low 

temperature incubation or ATP depletion). (110). In each case, this led to a decrease in 

TAT internalization (103,111). Futaki and coworkers showed that endocytosis-mediated 

cellular internalization is also adopted by other cationic, arginine-rich CPPs as well 

(112,113). These results suggest the involvement of endocytosis in TAT cell penetration. 

To investigate the specific route of endocytosis adopted by TAT, molecular inhibitors 

were used to inhibit individual endocytic pathways. Incubation of cells with inhibitors of 

micropinocytosis (e.g., cytochalasin D, amiloride, and EIPA) led to a decrease in the 

cytosolic penetration of TAT and TAT-cargo conjugates (111,114). However, inhibition 

of endocytosis creates artifacts that alter the normal behavior of a cell (81). To 

complement these findings, colocalization of TAT with markers of different endocytic 

routes was performed. TAT colocalized with dextran and FM4-64 (markers of 

macropinocytosis and general endocytosis) but did not colocalize with transferrin (a 

marker of clathrin-mediated endocytosis), (85,112-114). Coincubation with TAT and 

TAT-conjugated to dextran markers exhibited a dose-dependent response, which 

suggested an increase in endocytic uptake via macropinocytosis (111,114). Based on 

these results, macropinocytosis is recognized as the major route of cellular 
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internalization adopted by TAT. Notably, other reports also suggest that clathrin- and 

caveolae-mediated endocytosis may also be involved to a lesser extent (85,103,115,116). 

 Macropinocytosis is a membrane ruffling event often stimulated by growth that 

involves the maturation of endocytic organelles through the endocytic pathway (92). 

This process occurs when the distal edges of the membrane ruffle begin to encapsulate 

the local extracellular fluid (as well as nutrients, cargos, etc.). The fully formed 

macropinosome results from the constriction and pinching inward of the membrane 

ruffles into a fully formed vesicle whose lumenal environment matches that of the 

extracellular material. As membrane ruffling is an essential process for macropinosome 

formation, actin restructuring can be monitored to determine the involvement of 

macropinocytosis in CPP internalization. Treatment of cells with R8 induced 

rearrangement of F-actin in a way that is comparable to treatment by epidermal growth 

factor (a known inducer of F-actin rearrangement) (113). Furthermore, incubation of 

cells with cytochalasin D, a drug that induces F-actin depolymerization, results in 

decrease of CPP uptake. Finally, the size of the molecular cargo influences the route of 

internalization. Macropinosomes range from 0.2-10 µm in diameter, allowing them to 

encapsulate much larger cargo (117). However, clathrin- and caveolae-dependent 

endocytosis bud into smaller vesicles averaging 50 and 100 nm in diameter, respectively 

(118,119). Based on these dimensional constraints, larger cargos such as high-mass 

dextrans are restricted to internalization through macropinocytosis. 

 The second step of endocytosis-mediated cell penetration is endosomal escape of 

CPPs and accompanying cargo. The endocytic pathway is a dynamic and complex 
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endocytic organelle maturation process. Notably, the process involves lumenal 

acidification, sorting and fusion events, membrane compositional changes, and the 

acquisition of lumenal degradative enzymes (120). First, budded vesicles containing the 

arginine-rich CPP merge with early endosomes via homotypic fusion (121). This 

endocytic organelle is characterized by cisternal regions of thin tubular-like structures 

that extend up to 60 nm as well as a central vesicle (ranging from 300-400 nm) that 

encapsulates interlumenal vesicles (ILVs) (122). Early endosomes (EEs) possess mosaic 

membranes with definitive segregation of phospholipids and proteins maintained by 

molecular machines which allow for the formation of functionalized domains. These 

domains not only act as docking and fusion points for other vesicles but are also 

involved in other cellular processes such as the intracellular trafficking of the EE. 

Trafficking of endocytic organelles along actin cytoskeletal structures is regulated by 

small Rab GTPases (123). Over 60 unique members of the Rab family are associated 

with different cellular membranes. Rab proteins interact with membranes through a 

geranylgeranyl functionalization conjugated to the C-terminus of the small proteins an 

exhibit specificity towards different target membranes. Rab5 is an early endosomal 

marker and plays a regulatory role in the maturation of the endocytic organelle. The 

maturation of EEs into multi-vesicular bodies (MVBs) is a process whereby the 

vesicular component of the EE detaches from the rest of the organelle. The newly 

formed MVBs, ranging from 400-500 nm in diameter, act as the intermediary organelle 

between EEs and late endosomes (LEs) (121). These endocytic organelles have proven 
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difficult to isolate and study, thus, knowledge about the membrane composition (i.e., 

lipid profile and protein content) remains unclear. 

Late endosomes (LEs) are acidic organelles (lumenal pH = 5.5) that vary in 

diameter and morphology but possess both a tubular and a multivesicular region. 

Proteins that associate with late endosomes include Rab7 and lysosomal-associated 

membrane protein-1 (LAMP1) (124). The lipid profile of late endosomes is highly 

enriched with the negatively charged phospholipid bis(monoacylglycero)phosphate 

(BMP) (125,126). In particular, the ILVs and inner leaflet of LEs exhibit very high BMP 

content. TAT binds to this anionic phospholipid with very high affinity (127). 

Furthermore, TAT exhibits membrane lytic activity in vitro towards BMP-containing 

liposomes. BMP and cell penetration involving the anionic phospholipid will be 

discussed in more detail in section 1.6. The final step in the endocytic pathway is fusion 

of LEs with lysosomes. Lysosomes are highly acidic organelles that play a large role in 

the hydrolytic degradation of proteins, nucleic acids, carbohydrates, and other biological 

molecules (128,129). Endosomal escape of TAT and accompanying cargo must occur 

upstream of the lysosome. Upon reaching the lysosome, TAT would lose cell-penetrative 

activity upon degradation. Furthermore, release of the lumenal contents of the lysosome, 

such as ionic calcium, would lead to cell death (130). The process of endosomal escape 

will be discussed below. 

1.3.5 Endosomal escape: the final frontier 

Endosomal escape is a crucial step for the COI to reach the cytosolic space of 

cells. However, it is estimated that TAT escapes endosomes in <1% of cells (131). While 
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this level of endosomal escape is sufficient for some applications, this poor efficiency 

limits the utility of TAT as a delivery tool. Fluorescence and mass spectrometry-based 

experiments have been conducted to demonstrate the presence and extent of endosomal 

entrapment of CPPs (132-136). One example includes a TAT-ubiquitin fusion construct 

(136). Upon reaching the cytosol, deubiquitanase would cleave the ubiquitin cargo 

liberating TAT. However, even though the fusion construct was endocytosed, the 

presence of liberated TAT was undetected. This suggests that the majority of the 

construct never reached the cytosolic space. 

In addition to limiting application, poor endosomal escape activity of TAT has 

limited progress towards elucidation of the mechanism of endosomal escape. Despite 

difficulties, efforts have been made to isolate which endocytic organelle(s) are involved 

in endosomal escape. Appelbaum and coworkers found that TAT colocalizes with Rab5 

and Rab7, markers of EEs and LEs, respectively (133). The dominant-negative variant of 

Rab5 (Rab5Q79L; DN-Rab5) arrests procession of the endocytic pathway downstream of 

EEs. Cells expressing DN-Rab decreased the endosomal escape of TAT into the 

cytosolic space. In our lab, we corroborated these results with a dimeric, fluorescent 

variant of TAT, dfTAT, using another DN-Rab5, Rab5S34N (137,138). We expanded 

upon this finding by using a dominant-negative form of Rab7 (Rab7T22N; DN-Rab7), 

which disrupts trafficking to late endosomes. Again, we saw that dfTAT penetration of 

cells was dramatically reduced. Taken together, these results suggest the involvement of 

late endosomes or lysosomes in endosomal escape. This is corroborated by the high 

affinity of TAT towards BMP (found only in LEs and lysosomes). While the mechanism 
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of endosomal escape remains largely unanswered, a number of approaches have been 

taken to enhance cytosolic penetration activity. These approaches will be investigated in 

the following section. 

1.4 Approaches towards the enhancement of cytosolic penetration activity 

Many approaches have been taken to enhance the endosomal escape property of 

CPPs. Examples of these approaches include lysomotropic agents, pH-dependent 

membrane-active peptides (PMAPs), endosomal escape domains (EEDs), photochemical 

internalization (PCI), and multivalency (139-141). Lysomotropic agents are small 

molecules that ultimately localize inside of lysosomes. The prototypical lysomotropic 

agent is chloroquine, a base that accumulates in acidic organelles (e.g., late endosomes 

and lysosomes) upon protonation. At high concentrations, chloroquine causes endosomal 

swelling by an accumulation of anions (142,143). Chloroquine-enhanced cytosolic 

penetration has been observed for both TAT-Cre and TAT-PNA (114,144,145). 

However, pursuits of enhancing cytosolic penetration activity via chloroquine and other 

lysomotropic agents has been stifled by intrinsic cytotoxicity associated with the small 

molecules. Additionally, HA2-TAT conjugated cargo can remain tethered to endosomes 

even after membrane perturbation. 

PMAP-CPP fusion constructs have been implemented as a means to enhance 

cytosolic penetration. Upon protonation in the endocytic pathway, PMAPs undergo a 

conformational change that causes the PMAP to insert into the limiting endosomal 

membrane (146). As this process is driven by the acidification of the endosomal lumen, 

the plasma membrane is left unperturbed (147). One example of a PMAP exhibiting this 
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behavior is the hemagglutinin-derived peptide HA2. The first instance of the use of HA2 

to enhance cytosolic penetration was used in conjunction with TAT-Cre (114). Although 

TAT-Cre delivery will be discussed in more detail in the following section, cytosolic 

deliver of the conjugate is determined by the induced expression of EGFP. Another 

example of enhanced cytosolic penetration by HA2 conjugation was demonstrated by 

conjugation to p53-R11 (148). Notably, simple coincubation of cargo with a TAT-HA2 

construct (no conjugation required) allowed for successful delivery (140). This is of 

interest because conjugation to the COI may affect its activity. Unfortunately, PMAPs 

are inherently cytotoxic, so they prove to be an unfavorable solution for enhancing 

endosomal escape. 

EEDs are short, hydrophobic peptides that, when fused to arginine-rich CPPs, 

enhance endosomal escape efficiency. Implementing the split GFP system (a delivery 

detection system to be discussed in the following section), Dowdy and coworkers 

demonstrated how EEDs can enhance cargo delivery (141). They showed that creating a 

fusion construct of TAT-β11-EED (EED sequence: GFWFG) led to increased cargo 

delivery as opposed to TAT-β11 alone. Although this seems to be a promising approach, 

the mechanism of action of the EED remains unclear. Additionally, β11 provides 

technical difficulty as the peptide is relatively hydrophobic and, thus, limits applications. 

Another approach towards enhancing endocytic escape is through the use of 

membrane-disrupting photosensitizers. Ferrer and coworkers demonstrated how 

endosomally entrapped fluorescein and Alexa-Fluor 633 labeled-CPPs were able to be 

released into the cytosolic space by irradiation with λ=488 nm or 633 nm, respectively 
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(149). This process was defined as CPP-mediated photochemical internalization (PCI). 

Use of a FITC-R11-p53 variant also demonstrated the use of PCI as a means to enhance 

the delivery of bioactive cargo as well (150). In our lab, we not only investigated the use 

of PCI as a means of enhancing endosomal escape but have also corroborated and 

identified key negative effects associated with the technique. We found that irradiation 

of TAT labeled with the fluorophore tetramethylrhodamine yielded singlet oxygen, a 

reactive oxygen species (ROS) that is highly membrane lytic (151). Intriguingly, TMR-

labeled K9, which accumulates in endosomes as well, was unable to escape endosomes 

upon irradiation (152). These results suggest that synergy exists, in which PCI only acts 

as an enhancer to cell penetration as opposed to independently causing cell penetration. 

The downside to utilizing PCI is, as with many of the previously discussed approaches, 

inherent cytotoxicity results from the permeabilization of not only endosomal 

membranes but also the plasma membrane (153).  

1.4.1 Enhancing endosomal escape efficiency through multivalency 

 For this work, multivalency is defined as the conjugation of multiple copies of a 

functional moiety (TAT, or a CPP) together to create a single molecule. Inspiration for 

multivalency comes from biological examples such as viral and bacterial adherence to 

the surface components of a host cell as well as the human immune response (154,155). 

Multivalent CPPs can interact with a multivalent receptor or even multiple monovalent, 

or single-copy, receptors (156). Multivalency imparts an enhanced avidity associated 

with multivalent compounds. The avidity effect is the increase in local concentration of a 

molecule or particular moiety as a result of the restriction in spatial freedom of said 
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moieties (157). Employing multivalent systems is an appealing approach toward 

enhancing the endosomal escape efficiency of arginine rich CPPs. 

1.4.2 Established multivalent CPP systems 

 Several approaches have been utilized towards generating multivalent CPPs 

(mCPPs) have been generated through several methods. These methods include 

complexation, oligomerization/aggregation, as well as other coupling mechanisms. 

Torchillin and colleagues generated a multivalent system through complexation where 

over 100 TAT copies were applied to a liposome whose phosphatidylethanolamine 

component was functionalized by p-nitrophenylcarbonyl-PEG (158). The resulting TAT 

complexation was used as a delivery vector for DNA transfection in multiple cell lines 

(159,160). Alternatively, superparamagnetic nanoparticles (NPs) have also served as a 

complexation scaffold to develop multivalent CPP systems (161,162). As with their 

liposomal progenitors, these mCPP-NP systems displayed a dose-dependent 

enhancement in cytosolic penetration respective to the number of TAT copies 

conjugated and have shown application potential in multiple cell lines (163,164). 

 Some COIs serve as scaffolds in the mCPP systems (157). These cargos are able 

to oligomerize or aggregate. One example of this mCPP can be exploits the 

tetramerization domain of p53 (165,166). First, SPPS was used to generate a fusion 

construct between TAT, decaarginine, or decalysine with the tetramerization domain of 

p53 (p53tet, residues 325-355) (167,168). Following tetramerization, the mCPP 

exhibited a 10-to-100-fold enhancement in cell penetration activity over their 

monomeric, non-multimerizing subunit counterparts. The mCPPs also demonstrated an 
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enhanced ability to delivery DNA cargo; in particular, 10R-p53tet showed promise as 

the most efficient of the mCPPs. Additional mCPP systems in this category include the 

fusion of Antp or TAT with the SH2 domain of Grb10 or the BH4 domain of Bcl-XL 

(169,170). In practice, and as a result of β-strand driven aggregation, these domains are 

predicted to form aggregates in solution. 

Another approach towards multimerization is through branching. One example of 

a branching system includes the use of a functionalized dendritic scaffold, onto which 

multiple copies of CPPs can be conjugated (171-175). A loligomer is a “squid-like” 

dendritic construct that has been used to form mCPPs (176-179). One example of a 

loligomer is a branched polylysine scaffold that allows for conjugation of CPPs to form 

an octomeric mCPP. These constructs have been successfully employed as cytosolic 

delivery vectors for DNA (178). Another example of loligomer-based delivery is of an 

antigenic epitope into T-cells which triggered a cytotoxic response (179). An alternative 

branching system, and a form of the approach taken in my studies, is the use of a 

peptide-based linear scaffold to conjugate CPPs. In previous studies from our lab, we 

demonstrated the use of this branching system. A TAT peptide with a C-terminal 

thioester functionalization was conjugated to the thiol of a (Lys(ε-NH-Cys)Gly)n (where 

n = the number of copies of CPP subunit) scaffold by means of native chemical ligation 

(NCL) (180,181). Additionally, dimeric CPPs have been generated by exploiting the 

ability of cysteine-containing CPPs to form disulfide bonds (137,182,183). A model 

dimeric CPP generated in our lab, dfTAT, has shown promise. The mCPP dfTAT 

demonstrates an unprecedented enhancement of endosomal escape with little-to-no 
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repercussions commonly associated with this enhancement (e.g., cytotoxicity, transcript 

up- and downregulation, etc.) (137). 

1.4.3 Limitations and challenges of the multivalent approach 

 Multivalent systems are inherently more complex to synthesize than their 

monomeric subunits. This difficulty is often realized in the form of low yields, structural 

and chemical restrictions on the mCPP formed, and a lack of purity/homogeneity of the 

fully synthesized probe (180). With respect to transitioning to in vivo systems, mCPPs 

face the challenge of immunogenicity, as they can often display structural similarities to 

multiple antigenic peptides (MAPs) (184). MAPs, such as PAMAM, are synthetic 

dendrimeric peptides that present multiple copies of antigenic peptides for enhanced T-

cell recognition and are often used as diagnostic reagents. As such, one could expect that 

the mCPPs would face a shorter lifetime extracellularly than their monomeric 

counterparts. Finally, cellular internalization mechanisms of mCPPs could be altered 

from that of their progenitor monomeric substituents. New mCPPs must be evaluated to 

determine if they retain the same major route of internalization or if this has changed by 

proxy of the multivalency (e.g., an endocytosis-mediated monomeric CPP switching to 

direct membrane translocation upon multivalent display).  
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Figure 1-1 Strategies used to generate mCPPs. 
 (1) A liposomal-mCPP assembly was generated by first synthesizing CPP-
conjugated phospholipids. Phosphatidylethanolamine was modified via a p-
nitrophenylcarbonyl-PEGylation to form PE-pNP. Following this modification, the 
CPP was conjugated to individual PE-pNP subunits and liposomes, modified with 
>100 CPP copies were generated. (2) The p53tet-mCPP assembly involves 
conjugation of the tetramerization domain of the human tumor repressor protein 
p53 (p53tet) to a CPP. The monomeric peptide fusion constructs were synthesized 
via SPPS. Spontaneous self-assembly of the monomeric units yielded the p53tet-
mCPP tetramer. (3) Loligomers are a dendrimeric mCPP assembly. Multiple copies 
of a CPP are attached to the ε-NH branches of a polylysine scaffold. The scaffold 
and the peptide are synthesized through SPPS. CPP valency is dictated by the 
number of conjugation steps of lysine branches (CPP valency = 2n where n is the 
number of lysine conjugations). (4) One example of a branched CPP assembly 
involves the synthesis of a peptide scaffold composed of Lys(ε-NH-Cys)Gly repeats 
to which a thioesterified CPP is conjugated via native chemical ligation (NCL). 
Each component was synthesized through SPPS. A fluorophore was conjugated to 
the N-terminal amine of the scaffold peptide to serve as a fluorescent reporter as 
well as a small molecular cargo.  
 

 



1.4.4 What is dfTAT and how does dfTAT-mediated delivery work? 

Structure and activity of dfTAT* 

dfTAT is composed of two copies of the prototypical TAT peptide derived from 

the protein HIV-1 transactivator of transcription (13,14,137,185). Both copies are 

conjugated to the fluorophore tetramethylrhodamine and are connected by a disulfide 

bond. When incubated with cells at concentrations of 5 µM or higher, dfTAT displays a 

cytosolic distribution, while its monomeric counterpart remains entrapped in endosomes. 

As shown in Figure 1-2, dfTAT can be coincubated with a variety of cargos to promote 

their endocytic uptake. As dfTAT and cargo traffic into the endocytic pathway, the 

endosomolytic peptide mediates the permeabilization of endosomal membranes, thereby 

releasing the cargo into the cell. 

Conditions where dfTAT successfully penetrates live cells 

Using the simple coincubation method, dfTAT has been successful at delivering 

cargos that are diverse in size, chemical properties, and function. These cargos include 

transcription factors, antibodies, and metal–organic framework (MOF) nanoparticles, as 

shown in Figure 1-2 (137,186). Given their well-defined sizes (50–100 nm in diameter), 

successful MOF nanoparticle delivery indicates that dfTAT-mediated endosomal  

leakage involves membrane disruptions that are wide enough to accommodate large 

cargos. Moreover, the ability to introduce dfTAT and the cargo as separate entities 

*This section was reprinted with permission from Allen, J. K., Brock, D. J., Kondow-McConaghy, H. M., 
and Pellois, J.-P. (2018) Efficient Delivery of Macromolecules into Human Cells by Improving the 
Endosomal Escape Activity of Cell-Penetrating Peptides: Lessons Learned from dfTAT and its Analogs. 
Biomolecules 8, E50. 
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enables the controlled titration of material into cells through the modulation of cargo 

concentration independent of dfTAT. This can be exceedingly difficult to achieve using 

other methods where the cargo must be covalently fused to the penetrating agent. One 

example of dfTAT’s versatility was the delivery of the transcription factor HOXB4 

(homeobox B4) into cells. To evaluate the dfTAT-mediated delivery of HOXB4, a 

HOXB4-inducible promoter was used to regulate the expression of luciferase in cells. In 

the absence of dfTAT, luciferase expression remained completely suppressed. However, 

with dfTAT, varying levels of luciferase expression could be controlled based on the 

amount of HOXB4 titrated into the incubation mixture (137). 

Conditions where dfTAT fails to penetrate live cells 

The polycationic nature of dfTAT is critical for its function (Figure 1-2). As 

described below, electrostatic interactions are important for cell penetration. However, 

these interactions can be abrogated if the charge of the peptide is screened in any way. 

For example, electrostatic interactions of dfTAT with negatively charged cargos (such as 

DNA) can cause aggregation, inhibiting the ability for dfTAT to induce endocytosis and 

endosomal leakage. This is also a consideration when delivery is performed in the 

presence of fetal bovine serum (FBS), which is a common supplement that is added to 

cell culture media. This is because FBS is rich in negatively charged albumin. Due to the 

binding of dfTAT to albumin, the introduction of FBS to the incubation medium reduces 

the activity of dfTAT in a manner that is proportional to the levels of FBS added (137). 
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Characteristics of the delivery process 

The penetration of dfTAT, as observed by fluorescence microscopy, appears to 

be a binary event (Figure 1-2). In particular, after peptide incubation, two distinct cell 

populations can be observed: one with a diffuse fluorescence signal (with cytosolic and 

nucleolar staining, establishing that the signal is intracellular), and one with a punctate 

distribution, which is indicative of endosomal entrapment. The cells with a diffuse signal 

typically show very few puncta, and the cells with puncta show no diffuse fluorescence. 

At low concentrations of dfTAT, almost all of the cells show puncta only. As peptide 

concentration is increased, this population shifts towards cells of diffuse fluorescence, 

until cell penetration is achieved in close to 100% of the cells. Overall, this indicates that 

for any given cell, dfTAT penetration is either achieved efficiently, or not at all. This is 

in contrast to a situation where a uniform level of translocation would be achieved over 

the entire population. In this case, the concentration of peptide that is added controls 

how much gets in. Overall, these results instead indicate that the peptide activity is 

dependent on a concentration threshold (137,138). This threshold may itself be 

dependent on multiple parameters (some of which are described below). Nonetheless, in 

practice, this means that small variations can have a big impact on delivery outcome, as 

they may shift the threshold of penetration. Conversely, using excess peptide 

concentrations well above the threshold required for successful penetration can alleviate 

this issue.  

The process of dfTAT-mediated delivery necessitates a minimum incubation 

period. dfTAT must be first taken up into the endocytic pathway. The peptide must then 
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traffic to the organelles that constitute the specific site of membrane leakage (i.e., late 

endosomes, see Section 2). Using pulse-chase experiments, it was established that this 

process requires 10 to 45 min (137). Based on these results, our typical protocol involves 

a 60-min incubation. Remarkably, this protocol does not lead to toxicity, it does not 

affect cell proliferation rates, and it does not impact the transcriptome (137). This means 

that efficient delivery can be performed without inducing dramatic disturbances in the 

cell.  

For successful delivery to occur, dfTAT does not need to interact with its cargo. 

Instead, dfTAT and cargo simply need to traffic together within the endocytic pathway 

of a cell. In turn, this means that the delivery process must also be carried out by pre-

incubation of the cargo first, and by adding dfTAT second. If the two incubation steps 

are performed immediately one after the other, dfTAT will “catch up” to the cargo 

within the endocytic pathway, and cell penetration of both peptide and cargo will be 

achieved. This can be particularly beneficial when attempting to deliver cargos prone to 

aggregation, as the peptide does not come into contact with the cargo until it reaches the 

same endocytic organelles as the pre-incubated cargo. In some cases, this two-step 

incubation process may therefore result in higher delivery efficiencies than a 

coincubation protocol. However, it should be noted that if time is allowed to pass 

between the two incubation steps, dfTAT will penetrate cells, but delivery of cargo will 

fail. This is because the cargo may reach lysosomes before dfTAT may have a chance to 

cause endosomal leakage.  
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In most of our experiments, dfTAT and cargo coincubation leads to a pulse 

delivery of cargo into cells. This means that a high concentration of cargo may enter 

cells during a typical 60-min coincubation. However, the cargo, which is now subjected 

to intracellular degradation, may soon vanish, depending on its intrinsic half-life. 

However, for many applications, a sustained cargo activity may be desirable (this is what 

is typically expected in DNA transfection experiment where gene products are 

continually produced by the cell). Notably, due to the low toxicity of dfTAT, it is also 

possible to repeat several dfTAT deliveries on the same cell population within a short 

time frame (137). We have not established whether there is a limit to the number of 

delivery steps that can be performed on cells before toxicity arises. It is also unclear 

whether cells can sustain endosomal leakage for a prolonged period of time: cells may 

be able to sustain a burst of endosomal membrane leakage but also may die if 

membranes are kept permanently permeable. 

A limitation of using the endosomal pathway as a route of cell entry is related to 

degradation. Endosomes contain various hydrolases, and both dfTAT and cargo can be 

subjected to degradation while transiting within the lumen of these organelles. The 

degradation of dfTAT by endosomal proteases can significantly impact the membrane-

leakage activity of the peptide, thereby diminishing delivery efficiencies (187). 

Degradation of the cargo may vary as it is presumably cargo-dependent. In principle, 

unfolded peptides or proteins are more prone to degradation than their folded 

counterparts, and this should be a consideration when delivering such cargos into cells 

(188-190). 
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Figure 1-2 Macromolecular delivery by the endosomolytic cell-penetrating peptide 
(CPP) dfTAT in cell cultures. 
dfTAT mediates cell penetration of various macromolecules by permeabilizing 
endosomal membranes efficiently. The stepwise process of cell entry—endocytic 
uptake followed by endosomal escape—is highlighted. Examples of cargos that have 
been successfully delivered are provided. Red boxes point to the limitations that are 
associated with this approach. Experimental evidence of the high efficiency of the 
delivery process is also shown in the form of microscopy images for two fluorescent 
cargos: the cell-impermeable small molecule SNAP-Surface 488 (which is delivered 
into cells expressing the nuclear tag SNAP-H2B), and the coumarin-labeled, 
nucleoli-staining peptide DEAC-k5. pI: isoelectric point; FBS: fetal bovine serum. 
The figure is used with permission (191). 
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1.5 Methods to quantify the cytosolic delivery of molecular cargo* 

With the emergence of highly efficient delivery tools like dfTAT, the need for 

standardized, quantification techniques for cytosolic delivery has become more apparent. 

However, the issue of endosomal escape efficiency is complicated. In particular, it 

includes several intertwined questions. To what extent do delivery agents and 

macromolecules escape from endosomes? To what extent does the endocytosed material 

remain trapped within the endosomal lumen? How many endosomes undergo leakage in 

a given cell? How does this process vary from cell-to-cell within the same experiment? 

These questions remain unanswered in many instances. Herein, several reports using a 

variety of delivery agents have been highlighted that address these questions 

quantitatively. 

*This section was reprinted with permission from Brock, D. J., Kondow-McConaghy, H. M., Hager, E. C., 
and Pellois, J.-P. (2019) Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by 
Synthetic Delivery Agents. Bioconjugate Chemistry 30, 293-304. Copyright 2018 American Chemical 

Society. 
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Figure 1-3 Examples of approaches used to detect the efficiency of cellular delivery 
and of endosomal escape. 
(a) Measuring the efficiency of DNA nuclear delivery by using a DsRed2-H2A
reporter. Once endocytosed, a plasmid encoding the histone H2A labeled with the
fluorescent protein DsRed2 escapes endosomes, penetrates the cytosol, and
translocates into the nucleus. Expression of the delivered plasmid leads to a
fluorescent DsRed2 signal sequestered in the nuclei of cells by incorporation of H2A
into chromatin. Nuclei are extracted and analyzed by flow cytometry to establish
protein expression level. Nuclei of various intensities are then sorted, and their
plasmid content is quantified by real-time PCR. This analysis can therefore reveal
how many plasmids enter the nucleus of cells for a given transfection reagent and
relate delivery efficiency to gene expression outcomes. (b) Measuring the efficiency
of enzyme delivery by using Cre recombinase as a model. Cells transfected with a
GFP gene under a loxP split promoter are treated with Cre recombinase and a
delivery agent. Upon successful delivery of Cre recombinase, the split promoter is
recombined allowing downstream expression of GFP. Cells are then scored for
delivery based on the presence or absence of cytosolic GFP fluorescence. (c)
Quantitative measurement of the concentration of a peptide or protein delivered
into the cytosol of cells. Cells are treated with a fluorescently labeled cell-
penetrating species. Cells are then washed to remove all traces of fluorescent signal
outside cells and imaged by confocal microscopy. A focal volume within the
cytoplasmic area of a cell is chosen and fluorescence correlation spectroscopy (FCS)
is performed. Autocorrelation analysis is performed, and the y-intercept of the
autocorrelative curve generated is used to determine the cytosolic concentration of
fluorescent molecules (192). (d) Quantitative determination of how leaky endosomes
are upon treatment with a delivery agent. Cells are transfected with a gene
encoding a fusion construct of the histone H2B labeled with a SNAP-tag. Cells are
then treated with the delivery agent and the cell- impermeable fluorophore SNAP-
Surface 488 (SS488). Depending on the efficiency of the delivery agent and of its
membrane disruption activity, endocytosed SS488 is either entrapped in the
endosome or released in the cytosol of cells. Once in the cytosol, SS488 is
sequestered to the nucleus via an irreversible reaction with the SNAP-tag. As a
result, the fluorescence of SS488 is either punctate (trapped inside endosomes), or
nuclear (bound to SNAP-H2B). More specifically, the nuclear capture depletes the
cytosolic signal, thereby revealing more clearly the signal left inside endosomes. In
turn, this approach can be used to estimate the efficiency of endosomal leakage, that
is, how much signal is in the nucleus versus how much is left trapped inside
endosomes. The figure is used with permission (193).
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1.5.1 Reagents with low apparent endosomal escape activity 

The efficiency of plasmid DNA transfection by LipofectAMINE2000 (LFA), a 

cationic lipid formulation, and PEI have been assessed by Glover et al. (194). The goal 

of their study was not to measure endosomal escape per se, but instead to assess how 

many plasmids reach the nucleus of cells. Furthermore, the authors were interested in 

establishing how nuclear access correlates with expression of a gene encoded in the 

delivered plasmid. To address these questions, cells were transfected with a plasmid 

encoding DsRed2-H2A, a fluorescently tagged histone that is incorporated into 

chromatin upon expression (Figure 1-3a). The nuclei of cells containing both the 

delivered plasmid and its protein product were subsequently isolated (the viability of 

cells was not directly discussed in this report; yet, one can infer that cells capable of 

expressing DsRed2-H2A are likely alive prior to nuclear isolation). Real-time PCR was 

then used to quantitatively measure the amount of plasmid DNA present, while flow 

cytometry was used to determine the amount of protein expressed based on its 

fluorescence signal. This analysis reveals that cells exposed to 4 μg of plasmid (2.2 × 106

plasmids per cell) for 24 hr accumulate 350 plasmids/h in the first 8 hr of exposure: this 

rate subsequently accelerates. At the end of the 24 hr incubation, PEI could deliver 1.8 × 

104 plasmids per nucleus while LFA delivered 8.3 × 103, representing overall yields 

(nuclear plasmid per cell/total DNA administered per cell) of 0.8% and 0.4%, 

respectively. Notably, while LFA delivers less plasmid into the nucleus of cells than 

PEI, it leads to equivalent levels of DsRed-H2A expression per cell, while also 

transfecting a higher percentage of cells overall. These results are in agreement with the 
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notion that cationic lipids dissociate from their DNA cargo upon endosomal escape and 

cytosolic egress, leaving a naked strand of DNA that may enter the nucleus only 

inefficiently. In contrast, PEI remains associated with DNA after endosomal escape and 

subsequently promotes the nuclear delivery of the cargo (195,196). While this may be an 

advantage for delivery, it is possible that the PEI that remains bound to DNA upon 

reaching the nuclear destination may then interfere with transcription. Overall, these 

results indicate that the multistep process of DNA transfection is of relatively poor 

efficiency. However, they do not reveal directly whether endosomal escape is itself a 

bottleneck. However, cells incubated with fluorescently labeled polyplexes or lipoplexes 

typically show a punctate distribution of fluorescence signal, as observed by high- 

magnification microscopy. This punctate signal corresponds to the accumulation of 

fluorescent material within endosomes. By contrast, no signal is typically detectable in 

the cytosol or nucleus of cells. Overall, this indicates that the vast majority of 

endocytosed complexes stay trapped within the endocytic pathway and that endosomal 

escape is a limiting step. 

The TAT peptide is a ubiquitous delivery agent that has been used with a variety 

of cargo in many applications. Despite its popularity, how well TAT works often 

remains unclear. To assess the extent to which TAT is capable of delivering enzymes 

into cells, Dowdy and coworkers have used Cre recombinase (Figure 1-3b) as a model 

(114). In this assay, cells are transfected with a LoxP-STOP-LoxP-eGFP plasmid. Upon 

introduction of Cre recombinase into the cytosol and nucleus of cells, the enzyme 

excises the STOP signal present in the reporter DNA, leading to expression of eGFP. 
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The expression of eGFP was quantitated via flow cytometry, excluding dead cells 

stained with propidium iodide (PI) from analysis. The authors showed that incubation of 

cells with the fusion TAT-Cre for 1 hr led to a majority (∼80%) of cells expressing 

eGFP 18 hr later. On one hand, these results clearly highlight that TAT can successfully 

bring cargo into cells. However, as described with lipoplexes, microscopy observation of 

a fluorescently labeled TAT-Cre shows exclusive retention of the protein inside 

endosomes. It is therefore likely that, while the endosomal escape activity of TAT is 

limited, TAT may be capable of delivering a few copies of TAT-Cre per cell. Given the 

catalytic properties of Cre, these few copies may be sufficient to activate the reporter 

plasmids present in the cell (as few as 4 Cre molecules, 4 Cre-bound sites being required 

for excision). Moreover, this assay is binary: there is either enough Cre recombinase that 

enters cells to activate eGFP expression or there is not. Therefore, above a given Cre 

recombinase threshold, eGFP is expressed regardless of how many enzymes are 

delivered. This, in turn, does not allow the testing of cell-to-cell variability. To assess 

how many peptides may enter the cytosol of cells, two groups have recently reported the 

use of fluorescence correlation spectroscopy (Figure 1-3c) (192,197). In these assays, 

fluorescently labeled peptides are incubated with cells. In one instance, live cells are 

isolated by FACS (based on size and granularity) and lysed. Cell lysates are then 

subjected to ultracentrifugation to isolate a cytosolic fraction. Samples are subsequently 

analyzed by bulk fluorescence correlation spectroscopy (FCS) and the concentration of 

fluorophore present is extracted from autocorrelation curves, using standards of known 

concentration as calibration. In another instance, FCS is directly performed in the focal 
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volume contained in the cytoplasmic space of cells (cells observed are determined to be 

viable based on their ability to remain adherent after a brief treatment with trypsin). 

Autocorrelation analysis yields an estimate of the number of molecules present in this 

volume. Using these alternative approaches, TAT was found to enter the cytosol of cells 

with an efficiency of 2% ([TAT]cytosol vs [TAT]outside cells). More specifically, a 30-

min incubation with 500 nM of peptide yields a cytosolic concentration of 10 nM (192). 

Similarly, Antp, a cationic CPP (RQIKIWFQNRRMKWKK) also used for delivery 

applications, was found to enter at very low level (197). In particular, incubation of 1 × 

106 cells with 1 μM peptide for 2 hr (∼1.2 × 108 molecules/cell), yields approximately 

9.0 × 105 molecules/cell of Antp internalized. Moreover, only 1.8 × 104 molecules/cell 

are present in the cytosol, the remainder being trapped inside endosomes. Overall, this 

represents efficiencies of 2% (cytosol/endosome) and 0.015% (cytosol/ total outside 

cells). Notably, the authors observed that addition of PAS (GKPILFF), a hydrophobic 

peptide previously shown to enhance endosomal escape by Futaki and coworkers, 

showed an increase in both total internalization (i.e., endocytosis, up to 1.5 × 107 

molecules/cell) and cytosolic release (up to 4.2 × 106 molecules/cell), corresponding in 

yields of 28% (cytosol/endosome) and 3.5% (cytosol/total) (198). Notably, despite this 

higher endosomal escape activity, the distribution of fluorescence signal remains 

punctate in microscopy images. Because endosomal escape remains relatively low, it is 

unknown whether the cytosolic delivery achieved involves just a few molecules escaping 

many endosomes in a cell, or conversely, many molecules escaping a single endosome 

among hundreds of organelles. 
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1.5.2 Reagents with high apparent endosomal escape 

Several reports have highlighted how some reagents are efficient enough that the 

molecules they deliver can readily be observed in the cytosol of cells by fluorescence 

microscopy (111,194,199). For instance, when PCI is used as a delivery method, 

molecules trapped inside endosomes can be seen bursting out into the cytoplasm upon 

irradiation of photosensitizers (200). Similarly, dfTAT, a disulfide-bonded dimer of TAT 

labeled with two tetramethylrhodamine fluorophores, can release high levels of 

molecules in the cytosol of cells, albeit in the absence of light-activation (138). Herein, 

we use dfTAT as an example to illustrate how efficient endosomal escape can be. Like 

monomeric TAT, at low incubation concentrations (<2 μM, 1 hr), dfTAT accumulates 

within endosomes without any apparent access to the cytosol. However, as incubation 

concentration is increased, a majority of cells display a diffuse fluorescence signal 

throughout the cell, with noticeable staining of nucleolar compartments. This staining is, 

in turn, confirmation that some of the signal detected is indeed intracellular, and not 

simply caused by out- of-focus fluorescence from peptide bound to the exterior of the 

cell. This staining is detectable in close to 100% of cells when 5 μM of peptide or more 

is used (dead cells, identified by SYTOX nuclear staining, represent less than 5% of the 

total population and are excluded from quantitation). In contrast, monomeric TAT 

remains trapped inside endosomes, even when the amount of TAT internalized in 

endosomes exceeds that of dfTAT by more than 2-fold (50 μM TAT vs 5 μM dfTAT 

incubation). The cytosolic entry of dfTAT is such that microscopy images typically 

show little to no fluorescence left inside endosomes. Inhibitors of endocytosis and of 



50 

endosomal trafficking, nonetheless, all confirm that the peptide enters the cytosol by 

escaping from endosomes (137). Endosomal escape therefore appears highly efficient. 

However, one may envision how, above a certain level of cytosolic entry, the cytosolic 

fluorescence may mask the signal left trapped inside endosomes. To address this 

question, an assay based on the cell- impermeable fluorophore SNAP-Surface was 

developed (Figure 1-3d). In this assay, cells are transfected with SNAP-H2B, a histone 

protein fused to the SNAP-tag. Upon cell entry, as mediated by endocytosis and dfTAT-

induced endosomal escape, SNAP-Surface diffuses freely into the cytosol of cells. 

However, upon nuclear entry, SNAP-H2B covalently captures the fluorophore. This 

leads to the retention of the fluorophore in the nuclear compartments and to a depletion 

of the signal in the cytosol. Importantly, this means that the signal that remains trapped 

inside endosomes, that is, signal from failed endosomal escape, is better revealed. Based 

on this assay, up to 90% of the fluorescent molecules reach the nucleus of cells in the 

presence of dfTAT (0% in its absence). The number of observable endosomes loaded 

with fluorophore is as low as a dozen, while hundreds are present when dfTAT is absent. 

Overall, this suggests that dfTAT can release a majority of internalized molecules into 

the cytosol and that this activity involves the leakage of many organelles in a cell. 

Notably, because dfTAT can stimulate an increase in cellular fluid-phase uptake (as 

reported for TAT and other arginine-rich peptides), the concentration of macromolecules 

that reach the interior of cells can exceed the extracellular concentration. Nonetheless, 

when comparing these results to the previous studies described, it is important to note 

that the number of molecules that enter cells remain an overall small percentage of the 
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number of molecules extracellularly administered. Specifically, with cells exposed to 1.5 

× 1010 molecules/cell of GFP, dfTAT-mediated delivery yields to 4.2 × 108 

molecules/cell of protein internalized overall (leading to a 2.8% yield). As with SNAP-

surface, the fluorescence of the protein is almost exclusively in the cytosol of cells, 

indicating that the cytosol/ endosome yield of release is close to 100%. This notion is 

further supported by the delivery of the transcription factor HOXB4: while TAT can 

deliver HOXB4 and induce the expression of a luciferase gene-reporter, dfTAT can 

improve this activity by more than 60-fold (201). 

1.5.3 Summary of cell delivery quantification techniques 

The efficiency of endosomal escape of various delivery agents appears to vary 

widely. It is important to note that, in many instances, high efficiency is not required. As 

pointed out earlier with the example of DNA plasmid or Cre recombinase, low levels of 

cell entry are adequate if few macromolecules delivered are sufficient to execute a 

biological function. For other applications, this may, however, not be satisfactory and 

more robust delivery tools are then required. Additionally, more efficient endosomal 

escape may, in principle, provide other advantages. This may include lower variability or 

a higher percentage of cells with successfully delivered cargo. Moreover, by improving 

endosomal escape, lower levels of externally administered cargo may be required. While 

this may only provide added convenience in cell cultures by reducing the loss of 

reagents, which are often challenging and costly to prepare, this may prove absolutely 

necessary for in vivo applications where delivery agents and their cargo cannot be 

introduced in high concentrations. 
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1.6 Significance of the late endosomal and lysosomal-enriched lipid, 

Bis(monoacylglycero)phosphate 

1.6.1 What is Bis(monoacylglycero)phosphate? 

In 1998, Gruenberg and coworkers sought to understand the lipid composition of 

endocytic vesicles (122,125,126,202). Individual endocytic membranes from BHK cells 

were isolated including heavy membranes (HM), early endosomal membranes (early 

endosome; EE), and late endosomal membranes (late endosome; LE). While 

phospholipids such as DOPC and DOPE were found in all membranes, a unique lipid 

was highly enriched in late endosomal membranes (77% of the total membrane content) 

(125,126). This unique phospholipid  was lysobisphosphatidic acid (LBPA) also known 

as bis(monoacylglycerol)phosphate (BMP). BMP is a negatively charged phospholipid 

and a structural isomer of phosphatidylglycerol (PG). Where the fatty acids of PG are 

conjugated to a single glycerol substituent, the fatty acids of BMP are conjugated 

symmetrically to each glycerol substituent of the phospholipid. Owing to its structure, 

BMP has a unique behavior that will be discussed in detail in the following subsection. 
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Figure 1-4 The minimal structure of 2,2’-bis(monoacylglycerol)phosphate (BMP). 
Fatty acid conjugation positions are specified as 2 or 3 for the first glycerol 
substituent and 2’ or 3’ for the second glycerol substituent. 
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1.6.2 BMP is highly fusogenic 

In a later study, Gruenberg and coworkers showed that liposomes enriched in 

BMP exhibited fusogenicity which led to the formation of multivesicular liposomes 

(MVLs) (203,204). These results suggested that the fusogenic behavior was dependent 

on an acidic interlumenal pH (pH 5.5). This lumenal pH-dependent fusogenic behavior 

is corroborated in cellulo by the acidic lumen of late endosomal membranes which are 

highly enriched with BMP. Additionally, Gruenberg et al. found that five proteins were 

found to associate selectively for BMP; among these proteins was Alix (203). Alix is 

also associated with exosomes, phagosomes, and the yeast homolog Vps31p is involved 

in multivesicular endosome biogenesis (205-207). Alix inhibits MVL formation of 

liposomes in a pH-independent manner. In the cell, the fusogenicity of BMP is exploited 

in interlumenal vesicle (ILV) formation and inward budding of ILVs into late 

endosomes is regulated, in part, by Alix (208). The ability of this organelle to form and 

compartmentalize these interlumenal membrane structures is critical for the biologic 

function of sorting and distributing endosomal cargos. The involvement of BMP in the 

sorting of cholesterol will be investigated in greater detail below. 

1.6.3 The biological function of BMP as regulator to endosomal cholesterol content 

Cellular cholesterol acquisition is a well-characterized process. Low-density 

lipoproteins (LDL) are carriers of cholesterol which undergo receptor-mediated 

endocytosis (209). Following endocytic uptake, cholesterol carrying LDLs travel 

through the endocytic pathway until they reach the lysosome where they are degraded, 

releasing their sterol cargo. However, how the freed cholesterol gets distributed among 
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different cellular membranes had remained unclear. In 1999, Gruenberg and coworkers 

showed that late endosomes are involved in the regulation of cholesterol transport using 

cells affected by the lysosomal storage disease Niemann-Pick type C (NPC) (202). 

Symptoms of this disease include unesterified cholesterol accumulation as well as an 

abundance of multivesicular membrane structures in late endosomal and lysosomal 

organelles (210). Vesicles that had accumulated cholesterol associated with the late 

endosomal markers GTPase Rab7 and CD63 as well as BMP (211,212). These findings 

suggest that cholesterol accumulation was not restricted to lysosomes but to late 

endosomes as well. One role of the late endosome is the sorting of IGF2/MPR (insulin-

like growth factor type 2 aka mannose-6-phosphate receptor). IGF2/MPR distributes 

newly-synthesized lysosomal enzymes from the trans-Golgi network (TGN) to LEs and 

then gets recycled for the next distribution (213). Gruenberg et al. observed prolonged 

redistribution of IGF2/MPR from the TGN to LEs (24-48 hr time scale). This sorting 

deficiency of the late endosome can be imparted upon the lysosome via late endosomal 

fusion. 

1.6.4 Involvement of BMP in cellular internalization of cell penetrating agents 

In the past decade, BMP has been implicated in the endosomal escape of CPPs. 

In addition to a high binding affinity of TAT toward BMP, TAT mediates the lysis of 

BMP-containing membranes (127). In our lab, we sought to similarly characterize 

dfTAT to provide insight into the unprecedented endosomal escape efficiency of the 

mCPP. The peptide displayed a high affinity towards BMP-containing liposomes and 

selectively induced membrane lysis over BMP-containing LUVs. Additionally, induced 
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inverted micelle formation that encapsulated the hydrophilic peptide and allowed it to 

partition into a hexane phase (138). Taken together, these results suggest that BMP plays 

a role in the endosomal escape of dfTAT. 

In addition to TAT compounds, viruses and viral particles interact with BMP in 

infection mechanisms. Examples include Dengue, Bluetongue, and Yellow fever viruses 

(214-218). Dengue virus (DENV), a member of the Flaviviridae family, is an enveloped 

virus with a positive sense, single-stranded genomic RNA (219). In 2010, Chernomordik 

demonstrated that DENV interacts with BMP in the mechanism of cytosolic deposition 

of the viral RNA genome (214). The virus is internalized via endocytosis where, upon 

acidification of the lumen, the envelope protein (DENV E) dissociates into monomeric 

subunits that subsequently interact with the limiting membrane of the EE. This 

interaction leads to restricted hemifusion of the viral envelope with the limiting 

membrane where the virus is trapped until introduction of the anionic lipid. Maturation 

of the EE into a LE introduces BMP into the inner leaflet of the endocytic organelle 

allowing for the fusion loop of DENV E to insert into the membrane. The monomeric 

subunits undergo conformational change which allows for homotrimerization. The 

homotrimers drive the completion of the fusion event and result in the deposition of the 

nucleic acid cargo. Freire et al. demonstrated how the capsid protein of Dengue virus 

(DENV C) alone is capable of delivering nucleic acids via interaction with BMP (216). 

Multiple units of DENV C form a nucleocapsid which store the genomic RNA of the 

virus. DENV C is a supercharged dimeric protein with a net charge of +42 and a charge 

density of +1.97/kDa (220). The capsid protein contains a lipid binding motif (pepM, 
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residues 45-72) as well as a putative RNA binding domain (pepR, residues 67-100). 

Friere and coworkers demonstrated how DENV C delivered single-stranded DNA 

(ssDNA) as well as siRNA into BHK-21 cells, astrocytes, and HepG2 cells. 

Additionally, pepM and pepR were independently able to penetrate cells yet remain 

relatively innocuous. Finally, DENV C, pepM and pepR have anionic lipid-specific 

interactions with BMP  that are crucial to the leaky fusion event that leads to cytosolic 

penetration. Taken together, these results underscore the utility of supercharged viral 

capsid proteins as transfection reagents. Datamining revealed that several other capsid 

proteins from the Flaviviridae family are supercharged proteins (> +0.75/kDa) and 

possess putative nucleic acid binding domains (216-218). Viruses such as Human 

adenovirus C type 1, HIV 1 and 2, and Chikungunya virus outside of the Flaviviridae 

family also have supercharged capsid proteins. By extrapolating the results of DENV 

and its interaction with BMP, opportunities arise as these other capsid proteins could be 

similarly harnessed as transfection reagents and a potentially widespread antiviral 

therapeutic can even be developed by targeting this interaction. 

1.7 Goal of this research 

In this study, I used a multivalent approach to determine the role that 

multivalency and, by proxy, charge or guanidinium density play in the endosomal escape 

of CPPs. While many multivalent synthetic approaches have exhibited poor yields due to 

inefficient means of multimerization, my approach has overcome this limitation, 

allowing for the preparation a sufficient amount of material to execute the studies 

discussed herein. As such, I was able to synthesize constructs via solid-phase peptide 
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synthesis (SPPS) that contain one, two, or three copies of the peptide TAT. These 

constructs share a universal scaffold to maintain high structural similarity and allow for 

the evaluation of the difference in penetrative activity contributed by only the varied 

charge/guanidinium density. To determine the contribution of the charge/guanidinium 

density to endosomal escape activity, each construct was compared in cellulo to discern 

differences or similarities in their inherent activities, including the ability to penetrate 

cells, deliver bioactive cargo, and induce cytotoxicity. In a more controlled environment, 

in vitro studies were also conducted in model membrane systems to gain insight into the 

endosomolytic nature of polycationic cell-penetrative compounds. In particular, the use 

of model membranes allowed for the determination of membrane restructuring events, as 

induced by the endosomolytic cell penetrative compounds, as well as provided a deeper 

understanding of the role of BMP in the mechanism of cell penetration by supercharged 

compounds. The results from this work will not only lead to the development of more 

efficient cell penetrating delivery agents and cell-permeable probes/therapeutics but can 

be extrapolated beyond CPPs to broadly apply to the mechanism of cellular 

internalization for all classes of supercharged polycationic molecules, including 

supercharged viral particles. 
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CHAPTER II 

EFFICIENT CELL DELIVERY MEDIATED BY LIPID-SPECIFIC ENDOSOMAL 

ESCAPE OF SUPERCHARGED BRANCHED PEPTIDES* 

2.1 Introduction 

Reagents that can deliver exogenously administered macromolecules into live cells are 

useful in applications ranging from basic cell biology, ex vivo cell manipulations for 

biotechnological purposes or in vivo therapeutic strategies. Crossing cellular membranes 

to gain access to the cell interior is, however, a significant challenge and, whether it is 

because of low efficiencies or toxicity, the search for ideal delivery agents remains a 

research focus. A general class of delivery agents consists of polycationic molecules. It 

includes lipid particles, polymers, artificial or viral proteins and cell-penetrating peptides 

(CPPs) (221-224). For many decades, polycationic molecules have been recognized for 

their propensity for cellular internalization by endocytosis. It is thought that electrostatic 

interactions between polycationic species and anionic cell-surface glycosaminoglycans 

are important for this process (225,226). However, while advantageous as a first step of 

cellular entry, endocytic uptake itself does not lead to successful delivery. In fact, 

endosomal entrapment is typically useless in most applications, as macromolecular 

cargos shuttled in endocytic organelles cannot reach intended targets that may be 

localized in other parts of the cell. Notably, polycationic species, in some cases, appear  

to also be able to escape from endosomes, thereby releasing their cargo into to the 

*This chapter is reprinted with permission from Brock, D. J., Kustigian, L., Jiang, M., Graham, K., Wang,
T. Y., Erazo-Oliveras, A., Najjar, K., Zhang, J., Rye, H., and Pellois, J. P. (2018) Efficient cell delivery
mediated by lipid-specific endosomal escape of supercharged branched peptides. Traffic 19, 421-435.
Copyright 2018 John Wiley & Sons, Inc.
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to also be able to escape from endosomes, thereby releasing their cargo into to the 

cytosolic space of cells. For instance, this is the case for cationic, lipid-based DNA 

transfection reagents or for CPP-mediated delivery of enzymes (45,137,227,228). While 

the percentage of molecules that escape is relatively low (often estimated to be less than 

1% of what remains trapped inside endosomes), intracellular activities can nonetheless 

be detected. Recently, a number of studies have highlighted how increasing the charge 

density of polycationic delivery agents to a relatively high degree may help increase 

their endosomal escape activities. An example is supercharged green fluorescent protein 

(GFP), a GFP mutant obtained by replacing anionic residues of wild-type superfolder 

GFP with cationic amino acids. While GFP has a charge of −7 at pH 7, supercharged 

GFP has an overall charge of +48 (33,34). When fused to other proteins, supercharged 

GFP is capable of escaping endosomes and delivering a variety of cargos (35). 

Remarkably, cell-permeable supercharged proteins also appear to occur in nature. Viral 

capsid proteins seem especially prone to “supercharging.” This is the case of proteins of 

flaviviruses, including DENV C (+42 charge, +1.97/kDa, dengue virus) or YFC (+52 

charge, +2.30/kDa, yellow fever virus) and WNV (+46 charge, +1.74/kDa, West Nile 

virus) (216-218). These proteins, which are involved in the entry of viruses into host 

cells at endosomal sites, can also be used as delivery agents for exogenous cargos. The 

notion of supercharging molecules for increased membrane permeation may be 

expanded to CPPs. For instance, CPPs incorporated into multimeric proteins have shown 

better delivery outcomes than their monomeric counterparts (157). Similarly, increasing 

the number of protein transduction fusion tags incorporated recombinantly at the N-
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terminus of a protein can improve the cell penetration of the macromolecule (141). In 

our laboratory, we have recently observed that dimerization of the prototypical CPP 

TAT (GRKKRRQRRR, residues 48-57 form HIV-1 Trans-Activator of Transcription) 

could lead to a reagent, dfTAT (dimeric fluorescent TAT), with dramatically increased 

endosomal escape activity (137). In particular, dfTAT is capable of causing the 

endosomal release and cytosolic egress of more than 90% of material initially trapped 

inside endosomes. Because of this improved activity, dfTAT can deliver relatively high 

concentrations of small molecules, peptides and proteins in a simple coincubation assay. 

More specifically, dfTAT and its cargo do not need to interact: they simply need to be 

endocytosed together and, by making endosomes leaky, dfTAT mediates the cytosolic 

release of the cargo. Mechanistically, dfTAT escapes specifically from late endosomes, 

which are organelles where the cationic CPP encounters the anionic lipid BMP (138). 

dfTAT is in turn capable of causing the leaky fusion of late endosomal BMP-rich 

membranes. One promising approach towards the generation of supercharged cell-

penetrating agents is by the branching of polycationic moieties of a molecular scaffold. 

When exploited in solid phase peptide synthesis (SPPS), this technique allows one to 

greatly increase the cationic content of potential cell-penetrating agents with relative 

ease when compared with linear peptide synthesis. One early example utilized branched-

chain arginine-rich peptides to study plasma membrane translocation (229). In more 

recent work, branched polycationic peptides have even been successfully employed as 

gene transfection tools as well (230,231). Herein, we were interested in elucidating how 

multimerization of the TAT peptide leads to an enhanced endosomal escape activity. To 
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address this question, we generated branched structures that present a variable number of 

copies of the peptide on a common scaffold. The cell penetration activities of the 

constructs were evaluated in cell cultures and their propensities to disrupt membranes 

were characterized in vitro. We establish that multivalent display of the TAT peptide 

leads to dramatic increases in endosomal leakage, cytosolic escape and overall delivery 

efficiencies. These improved performances result from BMP-specific activities that are 

present in the branched species but not in the monomeric parent compound. They 

include a glue-like behavior that promotes lipid bilayer contact and the ability to induce 

the leaky fusion of BMP-containing bilayers. 

2.2 Results 

Several new CPP constructs were synthesized. These compounds are named 

1TAT, 2TAT and 3TAT in relation of the number of TAT copies attached to a common 

scaffold (Figure 2-1a). This scaffold consists of the peptide KGKGKG, where the amino 

side-chains of the lysine residues are connected to either the C-terminus of a TAT 

peptide or to an acetyl capping group. The N-terminus of the scaffold is labeled with 

carboxytetramethylrhodamine (TMR), a red fluorophore used herein for peptide 

quantification and fluorescence microscopy tracking of the peptide behavior in cells. The 

peptides were synthesized by solid-phase peptide synthesis, purified by high-

performance liquid chromatography (HPLC) and analyzed by mass spectrometry 

(Figures A-1 and A-2 in Appendix A, Supporting Information). 

To first test the peptide reagents, cells were treated with 1TAT, 2TAT and 3TAT 

for 30 min, a time that is, in our experience, convenient for delivery protocols in cell 
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cultures. Under this condition, 1TAT, 2TAT and 3TAT displayed 2 distinct cellular 

localizations. In the case of 1TAT, a punctate distribution was observed at all 

concentrations tested (1, 3, 9 μM; Figure 2-1b). Colocalization of the red puncta with 

LysoTracker Green, a marker of acidic-organelles such as late endosomes and 

lysosomes, indicated that 1TAT is trapped in the lumen of endocytic organelles (Figure 

A-3 in Appendix A), as previously reported for similar peptides (232). In the case of

2TAT and 3TAT, a similar punctate distribution was observed at low concentration (1 

μM). However, as the incubation concentration is increased, a population of cells 

displaying a diffuse cytoplasmic staining can be observed (Figure 2-1b). The red 

fluorescence of these cells also includes a distinct nucleolar staining, a feature previously 

observed for other cationic peptides (137,233,234). In this particular instance, nucleolar 

staining serves to demonstrate that the fluorescence signal detected is, at least in part, 

intracellular (as opposed to originating from surface binding). Notably, the percentage of 

cells showing cytoplasmic/nucleolar staining was low in the case of 2TAT (less than 

10% at an incubation concentration of 4.5 μM). In contrast, approximately 50% of the 

cells showed cytosolic penetration by 3TAT. The cells counted in this assay exclude 

SYTOX Green positive cells, indicating that the cells do not have a compromised 

plasma membrane. However, it should be noted that less than 10% of cells become 

positive to SYTOX Green when exposed to 3 μM 3TAT, indicating that the peptide is 

modestly toxic at this concentration. Importantly, 3TAT was significantly more toxic at 

5 μM (Figure 2-1d). This increased toxicity, which gives rise to peptide-stained cellular 

debris during imaging, made quantifying cell penetration difficult. Achieving delivery 
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while killing cells is also counterproductive. For these reasons, in the context of our 

mechanistic studies, 3TAT was not tested at a concentration higher than 3 μM (longer 

incubation times were, however, tested to characterize the cytotoxicity of the peptides 

more fully, Figure A-4 in Appendix A). Overall, this concentration alone was sufficient 

to exemplify that 3TAT is significantly more active than 1TAT and 2TAT. This is 

apparent when the peptides are compared at equal incubation concentrations, or at 

concentrations that lead to similar overall TAT content (i.e., 9 μM 1TAT vs 4.5 μM 

2TAT vs 3 μM 3TAT). In particular, 3 μM 3TAT is internalized by cells at a higher level 

than 1TAT or 2TAT, at all concentrations tested. This indicates that 3TAT enters cells, 

being either trapped inside endosomes or diffused in the cytoplasm, in a larger amount 

than the analogs with fewer peptide copies. This in turn may suggest that this higher 

propensity for uptake is correlated to its ability to enter the cytosolic space of cells. 

However, it should be noted that, under conditions where 3TAT is internalized to a 

lower extent than 2TAT (i.e., 4.5 μM 2TAT vs 1 μM 3TAT), 3TAT displays more 

cytosolic penetration than 2TAT. 
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Figure 2-1 Cell penetrative and cytotoxic activities of supercharged peptides. 
(a) Representative scheme of the peptide constructs 1TAT, 2TAT and 3TAT. The
constructs consist of a KGKGKG scaffold labeled with the TAT peptide or an
acetyl capping group on the side chain of the lysine residues. Additionally, the
scaffold is labeled with the fluorophore carboxytetramethylrhodamine (TMR) at its
N-terminus. The molecular weight and expected charge of each construct at pH 7
and below are represented. (b) 2TAT and 3TAT reach the cytosol and nucleoli of
cells but 1TAT does not. Fluorescence microscopy images of cells treated with each
peptide for 30 min at indicated concentrations, washed, and stained with SYTOX
Green and the nuclear stain Hoechst 33342. Cells were imaged 1 hr after
incubation with peptides. Images are overlay of images pseudocolored red for
TMR, blue for Hoechst 33342, and green for SYTOX Green (only present if cells
have a disrupted plasma membrane; scale bars: 20×: 50 µm, 100×: 10 µm). (c) The
cell penetration activity of 3TAT is superior to that of 2TAT and 1TAT.
Quantitative evaluation of the percentage of cells positive for penetration (i.e.,
showing nucleolar staining while excluding SYTOX Green) after incubation for 30
min (1 hr wait) at the concentrations indicated. The data represented correspond to
the mean of biological triplicates (>500 cells counted per experiment). (d)
Evaluation of the toxicity of the peptides by a SYTOX Green exclusion assay. Cells
were treated as in b and c. The number of cells displaying a nucleus stained by
SYTOX Green were counted. The data represented correspond to the mean of
biological triplicates (>500 cells counted per experiment). The red dashed line
indicates a threshold toxicity at which, in our hands, cell penetration cannot be
reliably quantified because of high levels of fluorescently stained cellular debris. (e)
Evaluation of the levels of peptide uptake in cells by quantification of the TMR
fluorescence intensity of cell lysates. Cells were treated as in b and c. Cells were
washed, trypsinized, and homogenized. The fluorescence of the cell lysate was
measured and normalized to the number of cells in each sample, assessed by flow
cytometry. The data reported corresponds to the mean of technical triplicates. The
figure is used with permission (235).



66 



67 

The usefulness of these peptides is not found in whether they penetrate cells per 

se, but instead in whether they can mediate the cytosolic delivery of other molecules. To 

address how 1TAT, 2TAT and 3TAT compare in this respect, we chose 2 cargoes, the 

enzyme Cre recombinase and the cell-impermeable small molecule SNAP-Surface 488. 

The cytosolic delivery of Cre recombinase, and the subsequent accumulation of the 

enzyme in the cell nucleus, can be quantified by the expression of an enhanced GFP 

(EGFP) reporter incorporated in a Cre-Lox recombination system (Figure 2-2a) (236). 

Similarly, the cytosolic delivery of SNAP-Surface 488 in cells expressing SNAP-H2B, a 

histone fusion, results in cells displaying fluorescent nuclei (Figure 2-2b) (137,237). In 

principle, the successful delivery of only a few Cre recombinase molecules is sufficient 

to induce GFP expression. In contrast, micromolar intracellular concentrations of 

molecules are required for microscopy detection of SNAP-Surface (based on calibration 

experiments performed in-house). We, therefore, envisioned that these 2 assays span a 

range of detection sensitivities that may reveal differences between the CPPs tested. As 

shown in Figure 2-2a, the percentage of cells positive for GFP expression was small 

when Cre recombinase was incubated with 1TAT (~10%, 3 μM 1TAT, 4 μM Cre 

recombinase; Cre recombinase used is expressed as a TAT fusion to promote endocytic 

uptake and the protein itself displays some cell-permeation activity, ~5%). In 

comparison, incubating Cre recombinase with 2TAT and 3TAT led to more than 50% of 

GFP positive cells. 
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Interestingly, the delivery activities of 2TAT and 3TAT were relatively 

equivalent, indicating that both compounds are capable of delivering enough enzyme to 

initiate expression of the EGFP reporter (however, the amount of enzyme actually 

delivered could, in principle, vary). In contrast, 3TAT was dramatically more effective at 

inducing the delivery of SNAP-Surface 488 to the nucleus of cells than 1TAT or 2TAT. 

These results closely match the results obtained with the peptides in Figure 2-1 and 

indicate that 3TAT is able to induce the cytosolic of delivery of a significantly higher 

amount of SNAP-Surface 488 than 1TAT and 2TAT. 

Overall, these data indicate that 1TAT is ineffective, that 2TAT is active enough 

to mediate the delivery of few molecules, and that 3TAT, in contrast, can deliver larger 

quantities. Additionally, these data suggest that 2TAT and 3TAT are capable of 

delivering a variety of bioactive cargo as the two cargoes tested drastically differ in their 

respective chemical makeups.  
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Figure 2-2 Molecular cargo delivery efficiency of supercharged peptides. 
(a) 2TAT and 3TAT deliver the enzyme TAT-Cre into cells. Cells transfected with a
plasmid containing EGFP downstream of an LSL cassette were coincubated with
TAT-Cre (4 µM) and peptide at indicated concentrations for 30 min. Because
successful cellular entry of TAT-Cre results in EGFP expression, the number of
cells positive for EGFP fluorescence were counted 24 hr after each peptide/TAT-
Cre incubations. Fluorescence microscopy images, pseudocolored green for EGFP,
are representative examples of the cells 24 hr after enzyme delivery (scale bars:
20×: 50 µm, 100×: 10 µm). The data reported corresponds to the normalized mean
of biological triplicates (>500 cells per experiment). NS, p>0.05; * p<0.05. (b) 3TAT
delivers the cell-impermeable green fluorophore SNAP-Surface 488 into the
cytosolic space of cells. Cells transfected with a plasmid coding for histone H2B-
SNAPf were coincubated with SNAP-Surface 488 (50 µM) and peptide at indicated
concentrations for 30 min. Cells were then washed and stained with Hoechst 33342.
Upon entry into cells, SNAP-Surface 488 is retained in the nucleus of cells by
reaction with H2B-SNAP. Successful delivery was therefore assessed by counting
the number of cells displaying a green nucleus. Fluorescence microscopy Images,
pseudocolored green for SNAP-Surface 488 and colored white for Hoechst 33342,
are representative examples of the cells 1 hr after incubation (scale bars: 20×: 50
µm, 100×: 10 µm). The data reported corresponds to the normalized mean of
biological triplicates (>500 cells per experiment). The figure is used with permission
(235).
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2.2.1 Cell penetration involves endosomal escape 

We have previously demonstrated that dfTAT delivers macromolecular cargos by 

causing endosomal leakage. To test whether 3TAT has a similar activity, the 

intracellular localization of the peptide was first monitored in a pulse-chase experiment 

(Figure 2-3a). Cells were incubated with 3 μM 3TAT for 5 min, washed and examined 

by fluorescence microscopy. At early time points, cells displayed a punctate distribution 

consistent with endosomal entrapment. At later time points, this distribution change to a 

cytosolic and nucleolar staining. Because the peptide is not present extracellularly during 

the post-treatment period, these data, therefore, suggest that the peptide, initially trapped 

inside endosomes, is subsequently able to escape from endosomes and reach a cytosolic 

destination. To ensure cells under each condition assayed were exposed to the same 

amount of internalized peptide, uptake measurements were performed, as before, at the 

indicated time points. These measurements indicate that the relative amount of peptide 

taken up by the cells was relatively equivalent across the 2 conditions. 

To further assess how 3TAT enters cells and mediates the delivery of cargos, we 

next tested whether the peptide could cause the release of material preloaded inside 

endosomes. Cells were preincubated with DEAC-k5, a peptide labeled with a blue 

fluorescent coumarin and containing cationic D-lysine residues that confer protease-

resistance and that facilitate endocytic uptake (140,234). Cells were washed, treated with 

or without 3TAT and imaged by fluorescence microscopy (Figure 2-3b; Figure A-8 in 

Appendix A). Cells incubated with DEAC-k5 for 1 hr displayed punctate fluorescence 

signal (Figure 2-3b). The blue fluorescent puncta colocalized with LysoTracker Green, 
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consistent with endosomal accumulation of DEAC-k5 (Figure 2-3b; Figure A-5 in 

Appendix A). Upon addition of 3TAT, the blue fluorescence was redistributed 

throughout the cell cytosol. In addition, like 3TAT, DEAC-k5 showed a distinct 

nucleolar staining, confirming that the signal detected is intracellular. The cytosolic 

penetration of both 3TAT and DEAC-k5 was inhibited by addition of bafilomycin (cells 

are treated after DEAC-k5 loading), suggesting that blocking endosomal acidification 

prevents endosomal escape. Cytosolic delivery of DEAC-k5 was also abolished when 

addition of 3TAT was delayed by 2 hr, a time frame that allows accumulation of DEAC-

k5 in lysosomes (138). Together, these data indicate that 3TAT is capable of reaching 

endosomes preloaded with DEAC-k5 and of causing a membrane leakage that results in 

the release of both peptides. When the time window between DEAC-k5 and 3TAT is 

short, endocytic organelles containing 3TAT presumably fuse with endocytic organelles 

containing DEAC-k5, leading to content mixing. When the time window is longer, 

DEAC-k5 reaches organelles further downstream in the endocytic pathway (i.e., 

lysosomes), away from sites of 3TAT-mediated escape. 

Previous reports on dfTAT have established that endosomal escape involves the 

disruption of the membrane of late endosomes (138). In particular, dfTAT mediates its 

membrane-disrupting activity by interacting with the anionic lipid BMP in late 

endosomes. Because lipid bilayers of both late endosomes and lysosomes contain BMP, 

3TAT may have the capacity to disrupt either of these organelles. To determine the 

major route of endosomal escape, a delivery assay of preloaded lysosomal cargo was 

performed (Figure 2-3b, exp 4). Cells first incubated with DEAC-k5 were then treated 
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with 3TAT following 2 hr wait to ensure that a majority of the endocytosed cargo was 

sequestered to the lysosome (a time frame in which one would expect this to happen). 

This experiment displayed very poor delivery of DEAC-k5 (<3%). Furthermore, 

whenever cells were treated shortly after the DEAC-k5 delivery, cells displayed a 

substantial amount of DEAC-k5 delivery (54%). Taken together, these data suggest that 

cargo must not be sequestered to the lysosome for successful delivery. 

Notably, anti-BMP, a monoclonal antibody raised against BMP, can prevent the 

fusion of late endosomal membranes (late endosomes are organelles that contain vesicles 

in their lumen) and thereby block the endosomal escape of dfTAT (138). To establish 

whether 3TAT would respond to a similar treatment, cells were preincubated with anti-

BMP or with the control antibody anti-IgG, a monoclonal antibody that does not 

recognize BMP as an epitope. Cells were then incubated with 3TAT and imaged. As 

shown in Figure 2-3c, anti-IgG did not prevent 3TAT from reaching the cytosol and 

nucleoli of cells. In contrast, anti-BMP inhibited cytosolic penetration, most of the cells 

displaying instead a punctate distribution of the peptide. Importantly, neither antibodies 

led to a significant reduction in peptide uptake, as measured by the total fluorescence of 

cell lysates. This indicates that the peptide is capable of accumulating inside endosomes 

but becomes unable to escape endosomes when anti-BMP is present. 
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Figure 2-3 3TAT utilizes endocytosis to penetrate the cytosolic space of cells. 
(a) 3TAT enters the cytosol of cells after endocytic uptake. Cells were incubated
with 3TAT (3 µM) for 5 min, washed, and then imaged by fluorescence microscopy
at different time points to determine the extent of cell penetration. The number of
cells displaying nucleolar staining (i.e., penetration positive) were counted as
previously described. The fluorescence microscopy images represented,
pseudocolored red for TMR, highlight that cells first display a punctate
distribution consistent endosomal entrapment at first and that nucleolar staining
appear subsequently. The data reported corresponds to the mean of biological
triplicates (>500 cells per experiment). Total peptide uptake at the 6- and 35-min
time points was determined by lysing cells and measuring the bulk lysate for TMR
fluorescence. The fluorescence of the cell lysate was measured and normalized to
the number of cells in each sample, assessed by flow cytometry. The data reported
corresponds to the mean of technical triplicates. NS, p>0.05. (b) 3TAT releases a
cargo entrapped inside endocytic vesicles into the cytosol of cells. First, experiments
were performed to determine the lysosomal accumulation of DEAC-k5 as a
function of time after incubation. In experiments 1-3, cells were incubated with the
blue fluorescent peptide DEAC-k5 (25 µM) for 1 hr. Cells were then washed and
incubated in L15 medium for the indicated time periods (exp 1 = 0 hr, exp 2 = 0.75
hr, and exp 3 = 2.75 hr). Following L15 incubation, cells were treated with
LysoTracker Green (500 nM) for 15 min prior to imaging by fluorescence
microscopy. Colocalization analysis was performed over representative images
taken of DEAC-k5 and LysoTracker Green taken under 100× magnification. From
this analysis, Pearson’s R value is reported to represent the extent of colocalization.
For experiments 4-7, cells were treated with DEAC-k5 for 1 hr, as before. For
experiments 2 and 3, cells were washed, incubated with L-15 ± bafilomycin (200
nM) for 20 min, and then treated with 3TAT (3 µM) ± bafilomycin for 30 min. For
experiment 4, following DEAC-k5 incubation, cells were washed and incubated
with L15 for 2 hr. Cells were then treated with 3TAT (3 µM) for 30 min. Following
a 30 min wait for experiments 2-4, fluorescence microscopy images were taken at
20× and 100× magnification to quantify DEAC-k5 delivery. Cells were scored, as
before, for successful DEAC-k5 penetration if nucleoli staining was observed
(biological triplicates, >500 cells per experiment). Prior to 3TAT treatment, DEAC-
k5 displays a punctate distribution consistent with endosomal entrapment. After
treatment with 3TAT, DEAC-k5 redistributes throughout the cell (nucleolar
staining, presumably attributable to the polycationic nature of the peptide, can be
observed). This effect is blocked by bafilomycin, an inhibitor of endosomal
acidification and trafficking. However, whenever DEAC-k5 is accumulated
predominantly in the lysosome, cell delivery of the molecular cargo is abolished. (c)
Preincubation with an anti-BMP mAb inhibits 3TAT cytosolic penetration but not
endocytic uptake. Cells were preincubated with anti-BMP or the control antibody,
anti-IgG (50 µg/mL), for 1 hr, washed, and then treated with 3TAT (3 µM) for 30
min. Cell penetration was then visualized and quantified by fluorescence
microscopy as previously described. The percentage of penetration positive cells
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reported is the mean of biological triplicates (>500 cells per experiment). 
Fluorescence images are pseudocolored red for 3TAT (scale bars: 20×: 50 µm, 
100×: 10 µm). Total peptide uptake was determined by lysing cells and measuring 
the bulk lysate for TMR fluorescence. The fluorescence of the cell lysate was 
measured and normalized to the number of cells in each sample and to the level of 
uptake observed for 3TAT alone, assessed by flow cytometry. Each condition was 
normalized to cells treated with 3TAT (3 µM) for 30 min. The data reported 
corresponds to the mean of technical triplicates. NS, p>0.05. The figure is used with 
permission (235). 
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2.2.2 In vitro characterization of 1TAT, 2TAT and 3TAT 

To test whether the involvement of late endosomes and BMP could be 

corroborated in vitro, lipid bilayer leakage assays were performed. Large unilamellar 

vesicles (LUVs) were prepared with membrane com- position mimicking that of the 

plasma membrane or early endosomes (PM/EE LUV: 65:15:20 PC:PE:Chol) or that of 

late endosomes (LE LUV: 77:19:4 BMP:PC:PE). The lipid composition for early and 

late endosomes is adapted from studies performed by Gruenberg et al. (126). It should be 

noted that in this and more recent studies, it was not possible to differentiate the lipid 

compositions between late endosomes and lysosomes. These LUVs were loaded with the 

green fluorophore calcein and membrane leakage upon treatment with peptides was 

evaluated by measuring calcein release (126). When mixed at a peptide-to-lipid ratio 

(P:L) of 1:50, 3TAT was unable to induce leakage of PM/EE LUVs. In contrast, 3TAT 

caused dramatic leakage of soluble lumenal dye from LE LUVs (Figure 2-4a; ~40%, 

100% leakage being obtained after treatment of LUVs with the detergent Triton X-100). 

3TAT did not induce leakage when BMP was substituted with its structural isomer PG. 

Because PG is negatively charged like BMP, this suggests that electrostatic interactions 

between the cationic peptide and an anionic lipid are not sufficient to induce leakage. 

This in turn implies that a relative specificity is involved in the interaction between 

3TAT and BMP. Furthermore, addition of 250 μg/mL of anti-BMP was sufficient to 

inhibit 3TAT-mediated leakage. In this assay, the amount of peptide added exceeds that 

anti-BMP by a factor of 3 × 106 (5 μM vs 1.7 × 10−6 μM). As previously reported, anti-

BMP does not block peptide binding to the lipid membrane. Instead, it inhibits contact 
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between BMP-containing liposomes (202,238). Notably, preincubation with anti-IgG 

had no effect on the leakage. Together, these results mirror those obtained in cellulo and 

further validate the involvement of the late endosome and of its lipid BMP in the process 

of endosomal escape. 

To establish how 1TAT, 2TAT and 3TAT differ in their membrane-disruption 

activities, LE liposomes were treated with the peptides and leakage was quantified (total 

lipid concentrations are kept constant). At low P:L, both 2TAT and 3TAT induced 

leakage, 3TAT being consistently more active than 2TAT. In contrast, 1TAT showed 

negligible membrane disruption. When increasing peptide concentration and P:L ratio, 

the leakage activity of both 2TAT and 3TAT reach a maximum but, instead of 

displaying a continual increase, the extent of induced leakage declines to levels 

comparable to 1TAT. Interestingly, we observed that the leakage activity of 2TAT and 

3TAT appeared to be correlated with the turbidity of the liposomal suspensions. For 

instance, upon centrifugation, a pellet of liposomes coated with the red-colored 3TAT 

was obtained at a P:L ratio of 1:50, a condition leading to liposomal leakage (Figure 2-

4a-c). Because the liposomes do not form a pellet in the absence of peptide at the 

centrifugation speed used here (data not shown), this suggests that 3TAT can cause 

liposomes in suspension to flocculate and sediment. Remarkably, at a P:L ratio of 1:10, 

the liposomes did not form a noticeable pellet upon centrifugation. This behavior 

correlated with an inversion of charge on the surface of liposomes, as indicated by zeta 

potential measurements (Figure 2-4c). In particular, addition of increasing amounts of 

peptide changes the zeta potential of the particles from highly negative (zeta potential of 
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−58.9 V for BMP- containing liposomes in the absence of peptide) to highly positive

(e.g., +39.7 V at 1:10 3TAT:L; zeta potential measurements were not possible when 

excessive flocculation takes place at intermediate P:L). Together, these results are 

consistent with the notion that as 3TAT coats the surface of liposomes, the negative 

charges of the lipids are neutralized. Liposomes may then flocculate either because of 

the absence of repulsive electrostatic forces, or because of the bridging action of the 

peptide itself. In contrast, as the amount of peptide partitioning on the surface of 

liposomes increases, particles become positively charged and repulsion is restored (our 

data also suggest that coating of the liposome surface with peptide happens faster than 

leakage does). Notably, similar behaviors were observed with 1TAT and 2TAT with the 

exceptions that higher P:L were necessary to abolish flocculation. In addition, it is worth 

noting that 3TAT induced flocculation even at low P:L and that overall, 2TAT can do 

what 3TAT does (i.e., leakage, flocculation and liposomes charge inversion), albeit at 

higher concentrations. It is, however, clear that while 1TAT can also bind to liposomes 

and induce their flocculation, it fails to induce significant leakage. Overall, while contact 

between liposomes appears to be necessary for leakage, it may not be sufficient. 
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Figure 2-4 Supercharged peptides induce lysis over BMP-containing membranes. 
(a) 3TAT causes the leakage of LUVs with a lipid composition consistent with that
of the late endosome (LE LUVs, 77:19:4 BMP:PC:PE) but does not disrupt LUVs
with a lipid composition consistent with that the early endosome (EE LUVs,
65:15:20 PC:PE:Chol). LUVs (250 µM total lipid), preloaded with the green
fluorophore calcein, were treated with 3TAT (5 µM) for 1 hr. Membrane leakage
was assessed by measuring the release of calcein. The peptide activity is normalized
against the leakage obtained after treatment of LUVs with 1% of the detergent
Triton X-100. PG LUVs correspond to LE LUVs in which the lipid BMP is
substituted to its isomer phosphatidyl glycerol (PG). The effects of the monoclonal
antibodies anti-IgG and anti-BMP (250 µg/mL). The data represented correspond
to the mean of triplicates. NS, p>0.05; * p<0.05. (b) The leakage of LE LUVs
induced by 2TAT or 3TAT displays a non-linear dose response. LE LUVs (250 µM
total lipid) were treated with peptides at the indicated concentrations (peptide:lipid
ratios are also provided) for 1 hr. The release of calcein from LUVs was then
quantified. The data reported is the mean of technical triplicates and the
corresponding standard deviation. (c) Table representing the zeta potential
measurements and flocculation propensity of liposomal suspensions at different
peptide:lipid ratios. Flocculation was determined by visual examination of the
sample after centrifugation (photographic examples of two conditions, P:L of 1:50
and 1:10 for 3TAT, are provided). Under conditions where substantial flocculation
occurred, it was not possible to take zeta potential measurements as the number of
particles in colloidal suspension was too low. Values in each experiment are
represented as the mean percentage with resultant standard deviation of triplicate
experiments. The figure is used with permission (235).
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Considering both the in cellulo and in vitro results gathered thus far, it is 

surprising that such low activity is reported for 2TAT despite the very high activity we 

reported for the TAT-dimer, dfTAT. One notable difference between the 2 peptides is 

that 2TAT is labeled with only one fluorophore, while dfTAT is labeled with 2. To 

investigate whether the fluorophore plays a role in the membrane activity of 2TAT and 

3TAT, non-fluorescent variants, nf2TAT and nf3TAT, were synthesized (Figure A-2g-i 

in Appendix A). The non-fluorescent peptides were then assayed for cell penetration, 

cytotoxicity, delivery of macromolecules and membrane lytic activity of late endosomes 

(Figure A-7 in Appendix A). Because these peptides do not contain a covalent 

fluorescent label, cell penetration was assayed by the ability of the non-fluorescent 

peptides to deliver the small molecular cargo DEAC-k5 or the enzyme TAT-Cre. In all 

assays, the trend observed for nf2TAT and nf3TAT across all the conditions assayed is 

similar to that of 2TAT and 3TAT. Namely, the peptide with 3 TAT branches is more 

active than the analog with only 2. However, the non-fluorescent analogs are overall less 

active than the fluorescent counterparts. In particular, nf3TAT requires higher 

concentrations than 3TAT to achieve similar cell delivery activities. The lytic activity of 

nf3TAT towards liposomes is also substantially less than that of 3TAT. 

To gain additional insights into the complex behavior of the peptides with LE 

LUVs, liposomal suspensions treated with 1TAT, 2TAT and 3TAT were analyzed by 

Burst Analysis Spectroscopy (BAS), a single particle technique that permits quantitative 

analysis of liposome size distributions in heterogeneous samples (239,240). In these 

assays, liposomes were doped with a membrane staining carbocyanine fluorescent dye, 
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Vybrant DiD (0.03% of total lipid). Fluorescence bursts were first recorded from 

individual liposomes as they advectively flowed through the detection volume of a 

custom 2-channel confocal microscope at velocities much greater than the rate of 

particle diffusion. The underlying particle size distribution was reconstructed by BAS 

from the observed fluorescence burst amplitude distribution (240). The resulting BAS 

size distributions from the DiD channel are then directly proportional to liposome 

membrane con- tent, while the TMR amplitude distributions measure the amount of 

bound peptide. We examined samples representing P:L ratios in the range 1:2500 to 

1:200. We envisioned that these conditions would be representative of the early steps in 

liposomal flocculation and possibly reveal how peptides and lipids interact as membrane 

leakage is initiated. As shown in Figure 2-5a, addition of peptides to liposomal 

suspension at these low P:L ratios induced a shift of the liposomes to much larger mean 

particle size for both 2TAT and 3TAT. This indicates that the particles detected contain 

a much greater level of lipid bilayer content as more peptide is added. By contrast, the 

shift in mean particle size upon the addition of 1TAT was far more modest. These results 

demonstrate that, while the binding of 1TAT does not dramatically alter the size 

distribution of the liposomes, the binding of 2TAT and 3TAT fundamentally restructures 

the liposome particles in suspension. To assess whether this restructuring can be linked 

to differences in peptide binding, the ratio of TMR signal to DiD signal was plotted for 

all correlated burst events (Figure 2-5b). At the lowest concentration of peptide tested (1 

nM), the distribution of the TMR/DiD burst amplitude ratios are shifted to higher values 

for 2TAT and 3TAT vs 1TAT, indicating that the branched species may have a higher 
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binding affinity for the liposomes than the monomeric peptide. In contrast, at 5 nM, the 

TMR/DiD ratio distribution is similar for all 3 peptides. This strongly suggests that, for 

the same number of peptide molecules bound, 1TAT does not cause an increase in 

membrane content per particle detected but that 2TAT and 3TAT do. Importantly, each 

molecule bound leads to 1, 2 or 3 TAT copies being present on the surface of the lipid 

bilayer for 1TAT, 2TAT and 3TAT, respectively. Therefore, we next examined how the 

behavior of the peptides compares when differences in absolute TAT content are taken 

into account. For this test, the binding of 1TAT at 12.5 nM (the maximal peptide 

concentration accessible in our BAS experiments without causing detector saturation) 

was evaluated. Under this condition, a large population of liposomal particles can be 

observed that contain levels of bound 1TAT peptide that exceeds by several- fold (>3-

fold) the amount of 2TAT and 3TAT bound at 5 nM. However, the liposomes coated 

with this higher amount of 1TAT retain a smaller mean particle size than liposomes 

coated with substantially less 2TAT or 3TAT. These results, therefore, suggest that the 

differential impact of 1TAT vs 2TAT or 3TAT on the liposome size distributions are not 

a consequence of how much peptide is bound per se, but to differences in how the 

peptides interact with the membrane. 

To further reveal the basis for the 3TAT-mediated flocculation and leakage, 

liposomal samples were analyzed by cryo-electron microscopy (241). Liposomes were 

treated with peptides at a P:L ratio of 1:50, conditions that lead to maximal leakage for 

3TAT. Untreated LE liposomes were on average bilamellar (Figure 2-5d). It is notable 

that BMP-containing liposomes have a propensity to spontaneously form multivesicular 
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structures at acidic pH (126). When treated with 1TAT, the lamellarity of the liposomes 

increased, albeit to a modest extent. In contrast, liposomes treated with 3TAT showed 

several clear differences. Consistent with both the observed propensity to sediment and 

increases in particle size observed by BAS, the liposomes were clustered (Figure 2-5c). 

The number of bilayers present per liposome was also significantly increased, with up to 

20 layers observed in a single liposome (Figure 2-5d). Finally, multilamellar liposomes 

displayed thick external membranes. This apparent thickness is the result of several 

bilayers being in close proximity (Figure 2-5c). The vicinity between bilayers is 

particularly high. This is exemplified by the fact that, in the absence of peptide, a solvent 

layer is present between liposomes, even when liposomes are forced against one another 

(as illustrated by membrane distortion in Figure 2-5c). An interstitial solvent layer is, 

however, not visible when 3TAT is present. Together, these data demonstrate that 3TAT 

has the ability to bring lipid bilayers into close contact and reconfigure liposomes into 

complex multilamellar structures. However, 1TAT does not display these activities. 
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Figure 2-5 3TAT causes restructuring of BMP-containing membranes which leads 
to leakage of lumenal contents. 
(a) 2TAT and 3TAT cause increases in the size and membrane content of LE LUVs
when 1TAT does not. LE LUVs doped with DiD (2.5 µM total lipid, 0.03% DiD)
and treated with peptide at indicated concentrations were analyzed by Burst
Analysis Spectroscopy (BAS) (240). Fluorescence bursts from individual DiD-
labeled liposomes in each sample are detected and quantified. Each fluorescent
event is binned based on its fluorescence intensity and the overall population is
represented as a heat map (242). The x-axis is a logarithmic scale of DiD
fluorescence burst amplitude (which is directly proportional to liposome size) while
the color of each bin is pseudo-colored blue to yellow and is proportional to the
concentration of liposomes of a given size. The data represented is the compilation
of triplicates. (b) Differences in binding affinity do not contribute to the lower
membrane perturbing behavior of 1TAT when compared to 2TAT and 3TAT.
Peptide binding to individual liposomes was assessed in two color BAS experiments
by measuring the ratio of the fluorescence of the peptide (Fpeptide, TMR signal) to
the fluorescence of the membrane (Fmembrane, DiD signal) obtained for each burst
event detected during a BAS measurement. The data represented is the compilation
of triplicates. (c) 3TAT causes the flocculation and fusion of LE LUVs and favors
lipid bilayer contacts. LE LUVs (250 µM total lipid) were treated with 1TAT or
3TAT peptides (5 µM), sedimented, and imaged by cryo-electron microscopy (241).
Untreated LE LUVs were imaged as a control. Insets represent zoomed in portions
of images to highlight lipid bilayer contact or the lack there of. (d) Images of
liposomes were quantified for lamellarity (number of lipid bilayers present in
individual spherical liposomal structures). Each data point represents a liposomal
structure observed from cryo-EM images (each experiment was duplicated, and 5
images were acquired per sample). The figure is used with permission (235).
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2.3 Discussion 

The cellular assays performed in this study demonstrate that the number of 

branches present in the peptide constructs dramatically impact cell penetration. For 

instance, the efficiency of endocytosis, endosomal escape, and cargo delivery is 

consistently greater for 3TAT than for 2TAT. The monomeric 1TAT, an analog of the 

proto- typical and widely used HIV TAT peptide, is relatively poor in all activities and 

clearly outperformed by 3TAT. In particular, the relatively sensitive Cre recombinase 

assay illustrates how 1TAT can only deliver the enzyme in few cells. In turn, the SNAP-

Surface assay and the monitoring of the cellular distribution of the peptide itself indicate 

that the delivery activity of 1TAT is too poor for microscopy detection. Notably, 1TAT 

and 2TAT are typically unable to produce the results obtained with 3TAT even when the 

concentration of the monomeric and dimeric constructs is increased to match the total 

amount of TAT species present in each condition. These results, therefore, highlight that 

covalently linking of several TAT copies produces effects that are not obtained when the 

same number of individual TAT peptides are present. In other words, raising the 

concentration of 1TAT can never reproduce what is achieved with 3TAT. One of the 

positive effects observed with peptide branching is a high propensity for endocytosis. In 

particular, the overall peptide internalization quantified in Figure 2-1e is a measure of 

endocytic uptake efficiency. This is because, although 3TAT distributes in the cytosol 

and nucleoli of cells, it needs to be first endocytosed to reach these localizations (the 

total amount of peptide present in the cell was, therefore, originally taken up by 

endocytosis first). As such, the endocytosis of 3TAT, 2TAT and 1TAT is proportional 
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the peptide copy numbers, indicating that a multibranch display is favoring endocytosis-

inducing interactions on the cell surface. This effect is potentially mediated by the 

clustering of heparan sulfate proteoglycans, known interaction partners of polycationic 

CPPs on the cell surface (243-245). Moreover, the enhanced endocytic uptake of 3TAT 

may contribute to making this compound more prone than 2TAT or 1TAT at escaping 

endosomes. As a matter of fact, by being able to accumulate inside endosomes at higher 

levels than monomeric or dimeric counterparts, 3TAT may be able to reach a membrane-

disruption concentration threshold more readily. However, the connection between 

endocytic uptake and endosomal escape may be more complicated. This is because 

2TAT does not escape from endosomes as well as 3TAT, even when 2TAT is 

endocytosed at higher levels than 3TAT (e.g., 4.5 μM 2TAT vs 1 μM 3TAT, Figure 2-

1e). Instead, our results indicate that 3TAT is also more prone to induce membrane 

disruption and endosomal leakage than 2TAT and 1TAT. 

The enhanced membrane-disruption efficacy of 3TAT is corroborated in vitro, 

with liposomes mimicking the lipid bilayers of late endosomes. It should be noted that 

late endosomes are organelles with a limiting membrane and multiple intralumenal 

vesicles with a size and composition consistent with the liposomes tested. These 

membranes are also known to undergo fusion and fission endogenously, indicating that 

contact between these membranes is possible in the context of a living cell (126). 

Notably, several results point to 3TAT-mediated bilayer-to-bilayer contact, a previously 

unknown activity of polycationic delivery agents, as an important process involved in 

membrane translocation. BAS measurements indicate that 3TAT increases the total 
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amount of lipid per particle detected. Cryo- EM confirms that 3TAT brings lipid bilayers 

into close proximity, thereby causing liposome-to-liposome clustering as well as 

juxtaposition of lipid bilayers within an individual liposome. Interestingly, the increase 

in lamellarity observed by cryo-EM and the contact between bilayers has several 

implications. First, while multilamellar liposomes have a size comparable to that of 

untreated liposomes, the large increase in absolute bilayer content per liposome is 

indicative of fusion between many unilamellar liposomes. For instance, given that the 

intralumenal bilayers have a radius approximately equal to the radius of the external 

bilayer, formation of a liposome with 7 bilayers would require the fusion of 

approximately 7 unilamellar liposomes of equivalent size. However, the 3TAT-mediated 

fusion activity, instead of leading to larger liposomes (7 unilamellar liposomes of a 

radius r may fuse to a unilamellar liposome of radius √7r, or 2.6r), leads to the collapse 

of liposomes into smaller but multilamellar structures. This collapse could be 

contributed by BMP, as this lipid has a propensity to spontaneously promote 

multilamellarity. The fact that there is contact between bilayers of virtually identical 

radii (as in the “thick” membrane highlighted in Figure 2-5c) also highlight that 3TAT 

must act as a bridging agent that keeps the bilayers glued to one another. 

Induced membrane fusion is in itself not sufficient to explain the cell penetration 

activity of 3TAT. This is because fusion does not imply translocation across membranes. 

In other words, fusion of late endosomal vesicles does not equate to endosomal escape. 

It is, therefore, more probably that the leakage activity of 3TAT detected in vitro is more 

pertinent to the mechanism of endosomal escape and cytosolic entry. However, we 
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envision that leakage and fusion are intimately related. In particular, leakage appears to 

decrease when liposomes cease to flocculate. Furthermore, leakage does not take place 

with 1TAT, a compound that also has a limited ability to induce multilamellarity and 

bilayer contact. The decline in leakage observed at high peptide to lipid ratios may also 

indicate that leakage requires liposomal contact. Indeed, liposomes do not sediment 

when leakage is low. Finally, anti-BMP, an antibody that can block the fusion of BMP-

containing liposomes, can inhibit membrane leakage, in vitro and in cellulo (202,238). 

Overall, it would, therefore, seem that 3TAT, by coating the surface of liposomes, 

directly creates linkages between various lipid bilayers. This, in turn, causes membrane 

contact that overcomes liposomal repulsion and allows leakage to occur. When treated 

with a higher concentration of peptide, these 3TAT-bound liposomes possess a net 

positive charge restoring repulsion between individual liposomes resulting in no leakage. 

While the compounds tested clearly highlight the influence of the number of branches 

present in the constructs, several questions remain open. For instance, 2TAT performed 

poorly in our assays in comparison to the previously reported reagent dfTAT, although 

both reagents contain 2 TAT copies. Structural features, such as the number of 

fluorophores bound or the linker length between TAT branches may, therefore, play a 

role in membrane permeabilization. The contribution of the fluorophore in our constructs 

is highlighted herein by the decrease membrane-disruption activities observed for the 

non-fluorescent analogs. It is, therefore, possible that the fluorophore, when attached to 

2TAT and 3TAT, interacts with lipid bilayers and enhances membrane destabilization. 

Notably, this contribution is not sufficient to cause substantial membrane leakage when 
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the fluorophore is linked to a single copy of the peptide, as in 1TAT. Overall, these 

results, therefore, indicate that, while a threshold charge density is required to induce 

membrane leakage by the molecules reported, other parameters, such as perhaps the 

relative hydrophobicity of a fluorophore, can further enhance this activity. A detailed 

characterization of what these parameters may be will be the object of future studies. 

Another question left open is the topic of toxicity, specifically when comparing 

3TAT to dfTAT. While 3TAT displays a delivery efficiency and mode of cellular entry 

similar to dfTAT, 3TAT is relatively toxic while dfTAT is relatively innocuous (dfTAT-

mediated delivery does not noticeably impact viability, proliferation rates or 

transcription). On one hand, disrupting cellular membranes to gain cytosolic access can 

obviously be damaging to cells. It may not, therefore, be surprising that 3TAT is toxic, 

though it remains remarkable that dfTAT is not. Notably, because of its disulfide 

linkage, dfTAT is reduced into TAT monomers upon entry into the cytosolic space 

(137,187). The membrane-disrupting activity of the reagent is, therefore, greatly reduced 

after delivery is achieved. In contrast, 3TAT, while presumably susceptible to partial 

proteolytic cleavage, should remain trimeric and membrane active after cytosolic entry. 

3TAT could, therefore, kill cells by disrupting the membrane of various intracellular 

organelles, a scenario that will be examined in future studies. Finally, it should be noted 

that our study does not directly address whether the branching design of the multivalent 

CPPs tested is necessary for efficient cellular penetration. For instance, it is possible that 

a linear peptide containing 3TAT sequence back-to-back could reproduce some of the 

activities observed with 3TAT. Unfortunately, we could not test this possibility because, 
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in our hands, the solid-phase peptide synthesis of linear constructs failed due to 

extremely poor coupling yields during the incorporation of residues of the second and 

third TAT segments. Such issue is well-known limitation of SPPS and, perhaps, this 

high- lights a benefit of synthesizing branched structures containing shorter sequences. 

Overall, because of their synthetic accessibility and of their advantageous cell 

penetration properties, branched CPP structures may provide new opportunities in the 

delivery field. 

2.4 Materials and Methods 

2.4.1 Peptide design, synthesis, purification, and characterization 

Peptides were synthesized on Rink amide MBHA resin (Novabiochem). The amino 

acids used in synthesis were Fmoc-Lys (Mtt)-OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, 

Fmoc-Gln(Trt)-OH and Fmoc-Lys(Boc)-OH (Novabiochem) (0.78 mmol). Reactions 

were performed in a glass vessel at room temperature while streaming dry N2 for 

effective mixing. Deprotection of Fmoc was accomplished by incubation of the peptide-

bound resin with a mixture of piperidine in dimethylformamide (DMF) (Fisher 

Scientific) (20%, 15 mL). Two deprotections were performed for 5 and 15 min, 

respectively, washing with DMF in between deprotections. Coupling reactions of the 

amino acids to synthesize the peptide scaffold were performed for 4 hr with streaming 

dry N2 at room temperature using a solution containing the Fmoc-protected amino acid 

(4 mmol), HCTU (Novabiochem) (3.9 mmol) and diisopropylethylamine (DIEA) 

(Sigma-Aldrich) (10 mmol) dissolved in DMF. In between coupling reactions, the resin 

was washed extensively with DMF (Fisher Scientific). Once synthesized, peptide 
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scaffolds were labeled using a mixture of 5(6)-TAMRA (Novabiochem), HCTU and 

DIEA (3, 2.9 and 7.5 eq., respectively) in DMF that was allowed to react overnight at 

room temperature under dry N2. For the non-fluorescent variants, nf2TAT and nf3TAT, 

the scaffold's N-terminus was rendered relatively inert via standard acetic anhydride-

mediated acetylation. After the peptide scaffolds were labeled with TMR or acetylated, 

Mtt deprotection was carried out using a solution of 1% trifluoroacetic acid (TFA) 

(Fisher Scientific) and 2% triisopropylsilane (TIS) (Sigma-Aldrich) in dichloromethane 

(DCM), and, in between deprotections, the resin was washed with DCM, DMF and 

methanol. For the synthesis of 1TAT, 2TAT and 3TAT, equivalents of coupling 

solutions were adjusted to Fmoc-protected amino acid (3, 6 and 9 mmol, respectively), 

HCTU (2.9, 5.8 and 8.7 mmol, respectively) and DIEA (7.5, 15 and 22.5 mmol, 

respectively) in DMF and allowed to react while streaming dry N2 overnight for each 

coupling. Upon completion of each peptide, the N-terminal Fmoc was deprotected and 

the resin was washed with DCM and dried in vacuo. For cleavage of peptide from the 

resin, a solution containing 2.5% H2O, 2.5% TIS and 95% TFA was added to the resin 

and allowed to react for 3 hr at room temperature to achieve cleavage as well as 

deprotection of the side chain of each amino acid. Upon completion of the cleavage, 

crude peptide products were allowed to precipitate in cold, anhydrous diethyl ether 

(Fisher Scientific). Precipitants were then resuspended in H2O and lyophilized. Dried 

peptide products were then resuspended in 0.1% TFA in H2O and then analyzed and 

purified by reverse-phase HPLC. rpHPLC analysis was performed on an Agilent 1200 

series instrument with an analytical Biobasic-18 C18 column (Thermo Scientific) (5 μm 
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particle size, 4.6 × 250 mm). The flow rate was 2 mL/min, and absorbance at λ = 214, 

556 nm was measured using a diode array detector (Agilent). Preparative HPLC was 

performed on an Ultimate 3000 preparative HPLC (Thermo Scientific) with a 

preparative Biobasic-18 C18 column (Thermo Scientific) (10 μm particle size, 21.2 × 

250 mm). The flow rate was 20 mL/min, and absorbance at 214 and 556 nm was 

measured using a diode array detector (Thermo Scientific). For all analytical and 

preparative runs, linear gradients using 0.1% aqueous TFA (solvent A) and 90% 

acetonitrile, 9.9% H2O and 0.1% TFA (solvent B). Correct peptide products were 

confirmed via MALDI-TOF using a Shimadzu/Kratos instrument (AXIMA-CFR). The 

expected mass for 1TAT was 2447.90 Da; 1TAT observed mass was [M-H+/H+] = 

2448.55 Da. The expected mass for 2TAT was 3784.53 Da; 2TAT observed mass was 

[M-H+/H+] = 3784.53 Da. The expected mass for 3TAT was 5121.16 Da; 3TAT 

observed mass was [M-H+/H+] = 5121.83 Da. For the fluorescent peptides, 

concentration was determined using Beer's law over the absorbance of TMR. For the 

non-fluorescent peptides, back-calculation of the concentration was made possible by 

utilizing amino acid analysis (Protein Chemistry Lab, TAMU). 

2.4.2 Cell penetration and delivery experiments 

Cells were seeded and grown to 100% confluency after 24 hr. Prior to treatment, 

cells were washed twice with Leibovitz's L-15 medium (L-15) (Fisher Scientific). Cells 

were then either incubated with peptide or coincubated with peptide and cargo, 4 μM 

TAT-Cre or 50 μM SNAP-Surface 488 (NEB), at specified concentrations at 37°C for 

30 min. Immediately following incubation, cells were washed twice with L-15 
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containing heparan (1 mg/mL) and once with L-15. To assess cytotoxicity, cells were 

treated with 2.5 μM SYTOX Blue or SYTOX Green 1-hr post-treatment. SYTOX dyes 

are cell-impermeable and are only capable of staining nucleic acids if a cell has a 

compromised plasma membrane. Fluorescence microscopy was performed using an 

inverted microscope (Olympus IX-81) with both 20× and 100× objectives as well as a 

heated stage (37°C) and images were taken using a Rolera-MGI Plus back-illuminated 

electron- multiplying CCD camera (Qimaging). Filters used in fluorescence imaging 

included DAPI (λex/λem = 300-388, 425-488 nm), CFP (λex/ λem = 420-450, 450-600 

nm), FITC (λex/λem = 450-490, 500-550 nm) and RFP (λex/λem = 535-580, 570-670 

nm) filter cubes (Chroma Technology). 

Cytosolic penetration and delivery of cargo was determined, qualitatively, by 

100× imaging and quantitatively by 20× imaging. Cells scored for penetration or 

delivery of cargo (nuclear or cytosolic fluorescence distribution) were counted using 

Slidebook and ImageJ software. Cells were not counted for penetration if they displayed 

SYTOX staining. The percentage of cells with successful penetration or delivery of 

cargo was determined by dividing scored cells by total cells. The total number of cells 

was determined by Hoechst 33342 stain (5 μM) for penetration, cells that transiently 

expressed EGFP using the control plasmid gWiz for TAT-Cre or cells stained with 

SNAP-Cell Fluorescein (5 μM) for SNAP-Surface 488. In each experiment, more than 

1000 cells were counted to assess penetration and delivery efficiency, as well as 

cytotoxicity. Fluorescent images acquired using the 100× objective were subjected to 

deconvolution using the Slidebook software. Each experiment was performed in 
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triplicate. It is important to note that in each cell assay, individual wells were used for 

each condition as prolonged or repeated exposure of light to the TMR-labeled peptides 

can lead to the artifact of photolysis, extensively covered in the following publications. 

To measure the whole cell lysate for peptide uptake, cells were grown and treated 

as before with each peptide at varying concentrations. Post-treatment, cells were 

harvested by treatment with 0.5% trypsin in PBS for 3 min followed by suspension and 

dilution in L-15 medium. Cells were pelleted by centrifugation at 1500×g for 10 min, 

resuspended in L-15 and then treated with 2× lysis buffer (50 mM Tris, pH 7.4, 2 mM 

EDTA, 1× HALT protease inhibitors (Thermo Scientific) and 20% Triton X-100) and 

vortexed to complete lysis. The cell lysates were then transferred to a 96-well plate 

where 3TAT fluorescence was measured using the green channel (Em = 525; Ex = 580-

640 nm) of a GloMax-Multi+ detection system plate reader (Promega). Triplicate 

experiments were performed and measured on the same day to avoid fluctuation in 

fluorescence read out. 

To measure colocalization of 1TAT or DEAC-k5 with LysoTracker Green 

(Thermo), cells were grown to 100% confluency and then treated with 9 μM 1TAT for 

30 min or 25 μM DEAC-k5 for 1 hr. Cells were washed as before then treated with 500 

nM LysoTracker Green at 0, 1 or 3 hr after DEAC-k5 treatment. Cells were imaged at 

100× magnification using fluorescence microscopy to produce representative images of 

colocalization. Finally, colocalization was determined using the colocalization function 

of the software ImageJ. Pearson's colocalization coefficient, R, and Manders’ 
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colocalization coefficient, M1, were reported to effectively determine the degree of 

colocalization. 

2.4.3 Expression and purification of TAT-Cre 

The gene for TAT-Cre from pTriEx-HTNC (Addgene) was cloned into the vector 

pTXB1 and transformed into Escherichia coli BL21 (DE3) cells (Agilent Technologies) 

using a standard heat shock method. LB media containing 100 μg/mL of ampicillin was 

inoculated with colonies containing the plasmid and allowed to grow shaking at 37°C 

overnight. Cultures were then used to inoculate 1 L of LB containing ampicillin and 

allowed to grow until OD600 = 0.6. Cultures were then induced with 1 mM Isopropyl-β-

D-1-thiogalactopyranoside (IPTG) (Fisher Scientific) and grown, shaking, at 37°C for 3

hr. Escherichia coli cells were then pelleted by centrifugation using a J2-21 (Beckman) 

centrifuge and a JA-10 rotor at 4000 RPM x 30 min at 4°C. Cell pellets were then 

resuspended in buffer containing 20 mM NaH2PO4, 500 mM NaCl and 20 mM 

imidazole and then cells were lysed by sonication for a total sonication time of 8 min. 

Cell debris was removed from the whole-cell lysate by centrifugation using a JA-20 

rotor at 17000 RPM x 45 min at 4°C. TAT-Cre was then purified using metal-affinity 

chromatography (HisTrap HP) (GE Healthcare). 

2.4.4 Transfection 

For experiments requiring transfections, cells were first grown to 80% 

confluency and then treated with transfection solutions. For TAT-Cre delivery, HeLa 

cells were transfected with the plasmid pCALNL (Addgene) using Lipofectamine 2000 

(Thermo). For SNAP- Surface 488 (NEB) delivery, FuGene HD (Promega) was used to 
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transfect HeLa cells with the plasmid pSNAP-H2B (NEB). In both conditions, cells were 

incubated with transfection solutions for 12 (Lipofectamine 2000) or 18 hr (FuGene HD) 

followed by a 12- or 6-hr recovery, respectively, in DMEM supplemented with 10% 

FBS prior to treatment. 

2.4.5 Delivery of preloaded endosomal cargo 

For this experiment, cells were grown to 100% confluency and then treated with 

50 μM DEAC-k5 in L-15 for 1 hr. Cells were then washed twice in L-15 and then 

incubated with L-15 ± 200 nM bafilomycin (Sigma-Aldrich). Following this incubation, 

cells were washed and finally treated with 3TAT as before (± 200 nM bafilomycin). Ten 

min prior to imaging, cells were treated with 2.5 μM SYTOX Green to visualize and 

exclude dead cells. 

2.4.6 Liposome Preparation 

Liposomes were prepared using the following lipids: 1,2-di-(9Z-octa-decenoyl)-

sn-glycero-3-phosphocholine (DOPC), 1,2-di-(9Z-octadece-noyl)-sn-glycero-3-

phosphoethanolamine (DOPE), sn-(3-oleoyl-2-hydroxy)-glycerol-1-phospho-sn-1’-(3’-

oleoyl-2’-hydroxy)-glycerol (S,S) (BMP) and cholesterol (ovine wool) (Chol) (Avanti 

Polar Lipids). For BAS experiments, liposomes were doped with 0.03% DiD (Vybrant). 

Lipids dissolved in chloroform, at aforementioned ratios, were transferred to a 

clean glass vial and dried overnight in vacuo. Lipid cakes were hydrated in LUV buffer 

(10 mM NaH2PO4, 100 mM NaCl, pH 7.4) which contained 60 mM calcein if used in 

leakage assays. The hydrated lipid cake underwent multiple freeze thaw cycles and the 

generated MLVs were extruded to 100 nm LUVs using a 0.1 μm membrane (Whatman). 
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For BAS experiments, liposomes were further extruded using a manifold extruder 

(Northern Lipids) and a 0.05 μm membrane (Whatman). Liposomes loaded with calcein 

were purified from free calcein using Sephadex G50 resin (Fisher Scientific). 

2.4.7 Cytosolic delivery of DEAC-k5 into live cells 

LUVs (250 μM total lipid) loaded with calcein were mixed with varying 

concentrations of peptide (1-25 μM) in LUV Buffer (10 mM NaH2PO4, 100 mM NaCl, 

pH 5.5 [LE] or 7.4 [EE/PM]). Peptides were allowed to react with LUVs for 1 hr at room 

temperature, rocking in the dark. A supernatant was obtained by centrifugation at 

15000×g for 2 min and then the supernatant was applied to an illustra NAP-10 column 

(GE Healthcare Life Science) to isolate free calcein. Free calcein was pooled and the 

fluorescence intensity was measured using the blue channel (Ex = 490 nm, Em = 520-

560 nm) of a GloMax-Multi+ detection plate reader. To normalize leakage results, a 

positive control was conducted by treating LUVs with 0.2% Triton X-100. Where 

indicated, lipid composition of LUVs varied. For leakage experiments involving 

antibodies, LUVs were first treated with 250 μg/mL of anti-BMP or anti-IgG for 30 min, 

room temperature, followed by direct addition of peptide to the reaction mixture. Extent 

of liposomal leakage was determined as before (138). 

2.4.8 BAS experiments 

BAS measurements are taken with a custom-built, multichannel con- focal 

microscope, as previously described (239,240). Built on a research quality, vibrationally 

isolated 40 × 80 optical table, the system is con- structed around a Nikon Eclipse Ti-U 

inverted microscope base with a 60×/1.4NA CFI Plan Fluor oil-immersion objective. 
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The microscope base is outfitted with a precision, 2-axis stepper motor sample stage 

(Optiscan II; Prior) and a custom-designed confocal optical bench with 3 independent 

detection channels. Each detection channel is configured with an optimized bandpass 

filter set for wavelength selection and a low-noise, single photon counting APD unit 

(SPCM- AQRH-15; Excelitas). Photon pulses were collected, and time stamped with 

either a multichannel hardware correlator (correlator.com) or high-speed TTL counting 

board (NI9402; National Instruments). Sample excitation is provided by a diode laser 

(642 nm; Omicron) and a diode-pumped solid-state laser (561 nm; Lasos). The free-

space beams of each laser are each coupled to a 3-channel fiber combiner (PSK-000843; 

Gould Technologies) and the combined output is directed into the sample objective with 

a custom, triple-window dichroic filter (Chroma). Each laser is addressable from the 

integrated control and data acquisition software, custom developed using LabView 

(National Instruments). 

Liposomes, diluted to 2.5 μM in LUV Buffer pH 5.5, were mixed with 1TAT, 

2TAT or 3TAT (1-12.5 nM). Each sample was spotted onto a BSA-blocked glass 

coverslip held in a custom cassette. The coverslip cassette was clamped to a high-

precision, computer controlled, 2-axis translation stage connected to a customized 

microscope system. For all experiments, dual excitation was employed with 50 μW input 

power (measured at the back of the objective) for both 488 and 561 nm lasers. For each 

experimental run, 5 min of fluorescence burst data was recorded and each experiment 

was repeated a minimum of 3 times. The TMR/DiD was calculated from the raw burst 

that were coincident in both channels. 
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2.4.9 Cryo-EM and image processing 

LE LUVs treated with 1TAT, LE LUVs treated with 3TAT and PG LUVs treated 

with 3TAT were frozen in vitreous ice on a Quantfoil R2/1 holey carbon grid with an 

FEI Vitrobot, respectively. Cryo-EM images were acquired on a K2 Summit Direct-

detection camera (Gatan) in the electron-counting mode using a TECNAI F20 cryo- 

electron microscope (FEI) operated at 200 kV. A nominal magnification of 19000× or 

7800× was used, giving a pixel size of 1.87 Å/pixel or 4.8 Å/pixel, respectively. 
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CHAPTER III 

MEMBRANE FLUIDITY DIRECTLY IMPACTS THE EXTENT OF 

SUPERCHARGED CPP-INDUCED MEMBRANE LYSIS ON BMP-CONTAINING 

MEMBRANES 

3.1 Introduction 

In previous work, it was found that the guanidinium-rich compounds dfTAT and 

3TAT exhibit highly efficient cell penetration activities (137,138,235). The source of 

this enhanced cell penetration stems from overcoming endosomal entrapment: the 

bottleneck of endocytosis-mediated cell penetration. dfTAT and 3TAT achieve 

endosomal escape via selective lysis of organelles with BMP-containing membranes. 

Structural studies revealed that 3TAT-mediated membrane lysis results from 3TAT-

induced membrane restructuring (235). Restructuring events included an increase in 

lamellarity, induced fusion and, most importantly, lipid bilayer contact of BMP-

containing liposomes. While these findings advanced the understanding of the 

mechanism of endosomal escape, many details remain unclear. 

In this study, we sought to identify additional factors that contribute to the 

mechanism of endosomal escape. 1TAT, 2TAT, 3TAT and their non-fluorescent variants 

were used as model guanidinium-rich CPPs that vary in endosomolytic activities. In this 

pursuit, we found that introduction of cholesterol resulted in differential 3TAT-induced 

membrane leakage. Based on this finding, we hypothesized that manipulation of 

membrane fluidity will allow us to modulate the extent of membrane leakage. Herein, 

we demonstrate the reliance of the membrane lytic activity of 3TAT on the fluidity of 
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BMP-containing membranes. In turn, these findings will bestow greater understanding 

of the mechanism of endosomal escape for guanidinium-rich delivery tools and can 

potentially be extended to the endosomal escape mechanisms of supercharged proteins 

and viral capsids as well. 

3.2 Results 

3.2.1 3TAT-induced membrane leakage and restructuring is selective towards BMP-

containing membranes 

In previous studies, it was found that the guanidinium-rich compound 3TAT was 

capable of the selective lysis of BMP-containing membranes that mimic late endosomes 

(235). These results have been reproduced in order to highlight this specificity (Figure 3-

1a). Large unilamellar vesicles (LUVs) were prepared with membrane compositions 

mimicking early endosomes (65:15:20 PC:PE:Chol), late endosomes (77:19:4 sn-3,3’-

BMP:PC:PE), or late endosomes, in which BMP has been substituted for PG (77:19:4 

PG:PC:PE). Additionally, LE LUVs utilizing sn-2,2’-BMP were generated for 

comparison, as this form of the lipid as it is thought to be the most biologically relevant 

form (REFs). The LUVs were loaded with calcein as a reporter for extent of membrane 

leakage. Upon treatment of calcein-loaded LUVs with 3TAT at a 1:50 peptide-to-lipid 

ratio (P:L), EE LUVs and PG LE LUVs remained intact, whereas LE LUVs (consisting 

of either form of BMP) demonstrated marked membrane leakage. These results suggest 

that 3TAT-induced leakage is selective towards BMP-containing membranes. The sn-

2,2’-BMP form demonstrated a marginally greater degree of 3TAT-induced leakage than 

the sn-3,3’-BMP form. However, attempts to synthesize sn-2,2’-BMP failed in our 
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hands. For this reason, and since there was not a substantial difference in leakage, the 

commercially available sn-3,3’-BMP form was used for the rest of this study. While 

3TAT has proven highly endosomolytic, an activity that is corroborated by the 

aforementioned in vitro studies, a range of membrane lytic activities can be tested by 

implementation of the non-endosomolytic agent 1TAT and the lowly endosomolytic 

agent 2TAT. To demonstrate this capability, calcein-loaded LE LUVs were treated with 

1TAT, 2TAT, or 3TAT at 1:250 – 1:10 P:L in order to determine the amount of liberated 

calcein resulting from membrane leakage (Figure 3-1b). While 1TAT proved relatively 

innocuous, 2TAT and 3TAT exhibited substantial membrane lytic activity. To 

complement these results, we determined if the lack of membrane leakage of PG LE 

LUVs was corroborated by partitioning of 3TAT into an organic phase via induced 

inverted micelle formation (representative of the fusogenic activity of each lipid) (Figure 

3-1c). For this experiment, partitioning of 3TAT into the hexane phase was determined

by measuring the fluorescence of the TMR moiety of the peptide in the aqueous phase. 

Calculations were performed to determine the percentage of 3TAT that had portioned 

into the hexane phase. While both lipids were capable of partitioning 3TAT into the 

hexane phase, the rate of induction of BMP inverted micelle partitioning of 3TAT was 

substantially higher than that of the structural isomer. 

To further the mechanistic understanding of this membrane lytic behavior, our 

focus diverted towards identifying parameters that influence membrane lysis of BMP-

containing membranes. In the leakage experiments carried out, phosphate was used as a 

buffering salt. At the pH (5.5), the pH at which these experiments were conducted, 
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phosphate (10 mM) exists predominantly in the HPO4
2- form (98% as calculated by 

Henderson-Hasselbalch). Therefore, this divalent anionic phosphate, existing in > 103 

excess to that of 3TAT at 1:50 P:L, can act as a “bridging unit” to oligomerize 3TAT via 

electrostatic interactions, which may confer extensive membrane leakage. To test this 

possibility, calcein LE LUVs were generated and assayed with 3TAT in LUV buffer 

substituting phosphate for Tris, a monovalent, cationic buffering salt incapable of this 

electrostatic bridging effect (Figure B-1 in Appendix B). However, switching buffering 

systems led to no appreciable difference in membrane leakage for the conditions tested. 

The LE LUVs used in this study consist of 77 mol% BMP, as this is the value reported 

in the late endosomal membrane lipid analysis conducted by Gruenberg et al. (125,126). 

However, one key difference in regard to lipid distribution remains between the 

organelle and synthetic doppelgänger. The inner leaflet of late endosomes is composed 

almost entirely of BMP, whereas there is presumably a homogenous mixture of lipid 

between each leaflet of the LUV, resulting in only a 77 mol% composition of BMP 

(238). As such, calcein-loaded LUVs composed only of BMP were generated to more 

closely mimic the membrane composition of the interlumenal vesicles (ILVs) and inner 

leaflet of late endosomes (Figure 3-1d). Upon treatment with 3TAT, a substantial 

enhancement in membrane lytic activity was observed. In particular, the 1:10 P:L 

condition yielded a 4-fold activity enhancement. Intrigued by this finding, BMP content 

was then modulated to test the effectiveness of 3TAT-induced membrane lysis. For this 

experiment, calcein-loaded LUVs were generated as before following a 77-X:X:19:4 

BMP:PG:PC:PE formula where BMP content was decreased by substitution with the 
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structural isomer PG. Importantly, this substitution allowed for the total amount of lipid 

and negative charge to remain constant while still modulating BMP content. 

Interestingly, at all conditions tested below 77 mol% BMP, little-to-no membrane 

leakage was observed. Taken together, these results suggest that not only must BMP be 

present but that it most compose a large majority (> 50 mol%) of the membrane in order 

to confer 3TAT-induced membrane leakage. Another key difference between late 

endosomes and the LUV mimic is the presence of cholesterol in the organelle. Late 

endosomes serve a role in the sorting and trafficking of cellular cholesterol to different 

cellular membranes (202,204,246). To probe the effect that the presence of this 

membrane component has membrane lysis, calcein loaded LE LUVs were generated, in 

which the PC component (19 mol%) was substituted for cholesterol (Figure 3-1e). Upon 

treatment with the indicated P:L of 3TAT, a greater extent of membrane leakage was 

observed in the cholesterol-containing LUVs. Notably, cholesterol is a known regulator 

of membrane fluidity. With this in mind, these data suggest that modulating membrane 

fluidity may affect 3TAT-induced lysis towards BMP-containing membranes. 
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Figure 3-1 Identification of membrane parameters that influence the membrane 
lytic activity of guanidinium-rich CPPs. 
(a) 3TAT-induced membrane leakage is specific to 2,2’- or 3,3’-BMP-containing
membranes that mimic the late endosomal lipid composition. LUVs (250 µM total
lipid), preloaded with the green water-soluble fluorophore calcein (60 mM), were
treated with 3TAT (5 µM) for 1 hr. Membrane leakage was assessed by measuring
the release of calcein. The peptide membrane lytic activity is normalized against the
leakage obtained after treatment of LUVs with 1% of the detergent Triton X-100.
EE LUVs refer to LUVs mimicking early endosomal membranes (65:15:20
PC:PE:Chol); LE LUVs refer to LUVs mimicking late endosomal membranes
(77:19:4 X:PC:PE, where X = PG, 2,2’-BMP or 3,3’-BMP where indicated). (b) The
resulting 2TAT- and 3TAT-induced membrane lysis presents a non-linear dose
response. Calcein-loaded LE LUVs (250 µM total lipid) were treated with 1, 5, or
25 µM of each indicated peptide, resulting in 1:250, 1:50, and 1:10 peptide:lipid
ratios, respectively. The leakage that ensued was measured and normalized as
described previously. (c) BMP partitions 3TAT into an organic phase via induced
inverted micelle formation where the structural isomer, PG does not. A solution of
3TAT (3 µM) in LE LUV buffer was added in a 1:1 mixture with hexanes to lipid
films of the indicated lipids (3-3000 µM). The samples were agitated briefly via
vortex mixing and separated was assisted by centrifugation. Once phase separation
was complete, an aliquot of the hexane layer was taken, and the fluorescence of the
TMR-labeled peptide was measured for each condition. The results shown are the
fluorescence intensity of the average of technical triplicates with the corresponding
standard deviation. (d) A membrane must reach a threshold of BMP content in
order for 3TAT-mediated membrane lysis to occur. LUVs consisting of different
BMP levels were generated and loaded with calcein as before to assess differences
in the membrane lytic activity of 3TAT. The lipid content for 10-77% BMP
followed the following formula: X:(77-X):19:4 – BMP:PG:PC:PE, where X is the
percentage of BMP to be tested. (e) Substitution of PC with cholesterol confers
greater 3TAT-mediated membrane lytic activity of BMP-containing membranes.
Calcein-loaded LE LUVs were generated as described previously with a
composition of 77:19:4 – BMP:PC/Chol:PE to assess the difference in 3TAT-
induced membrane lytic activity. In all experiments, the data are reported as the
mean of technical triplicates with the corresponding standard deviation.
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In the process of 3TAT-induced membrane leakage, extensive membrane 

restructuring results in an overall increase in membrane content manifested as an 

increase in lamellarity, fusion, and most notably, lipid bilayer contact (235). To gain a 

deeper understanding as to why PG does not behave as its structural isomer, the 

occurrence of these 3TAT-induced restructuring events was investigated. Utilizing burst 

analysis spectroscopy (BAS), overall membrane content was assessed as a metric to 

measure the extent of membrane restructuring between DiD-doped BMP or PG LE 

LUVs treated with 3TAT (Figure 3-2a). It is important to note that with this technique, 

resultant fluorescent burst intensity is directly proportional to the amount of lipid 

content. As such, BMP LE LUVs treated with 3TAT exhibited more membrane content 

per liposome than did PG LE LUVs. To understand this result and investigate if this 

difference in 3TAT-induced total lipid content is involved in the failure of PG LE LUV 

leakage, differences in membrane restructuring events were investigated (Figure 3-2b). 

For this experiment, the flocculants induced by treatment of either BMP or PG LE LUVs 

with 3TAT were collected, flash frozen and imaged by Cryo-EM. Both sets of liposomes 

seemed to undergo restructuring in the form of increased lamellarity as well as fusion 

(albeit, to a much greater extent in BMP LE LUVs). However, a notable absence 

persisted throughout imaging of PG LE LUVs; there was no observation of lipid bilayer 

contact. The lack of this membrane restructuring event likely explains why leakage does 

not take place in PG LE LUVs. Taken together, these data suggest that notable factors 

that influence 3TAT-induced membrane lysis include BMP structural specificity, the 

modulation of BMP or cholesterol content and, by proxy, membrane fluidity. 
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Figure 3-2 Similarities and differences of 3TAT-induced membrane restructuring 
between LE LUVs containing BMP or PG. 
(a) BAS analysis reveals that, upon treatment with 3TAT, BMP LE LUVs possess
greater lipid content than that of PG LE LUVs. BMP or PG LE LUVs doped with
DiD (2.5 µM total lipid, 0.03% DiD) and treated with 10 nM 3TAT where indicated
were analyzed by BAS. Fluorescence bursts from individual DiD-labeled liposomes
in each sample are detected and quantified. Each fluorescent event is binned based
on its fluorescence intensity, and the overall population of each condition tested is
represented via a three-dimensional histogram. The x-axis is a logarithmic scale of
DiD fluorescence burst amplitude (which is directly proportional to liposome size),
while the y-axis represents the total number of events in each bin. (b) 3TAT
selectively induces bilayer contact in BMP-containing LUVs as opposed to LUVs,
where BMP was substituted for the structural isomer PG. BMP or PG LE LUVs
were treated with 3TAT (1:50 P:L), sedimented by centrifugation, and flash frozen;
the flocculants were subsequently imaged by Cryo-EM. Red arrows indicate events
where bilayer contact was induced in BMP LE LUV flocculants; blue arrows
indicate events where bilayer contact failed to occur in PG LE LUV flocculants.
Provided scale bars correspond to 100 nm.
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3.2.2 Identifying the role of membrane fluidity in 3TAT-induced membrane leakage 

Assessment of membrane fluidity has been conducted in vitro and in cellulo by 

employing lipid-soluble fluorescent dyes as tools (247-249). Di-4-ANEPPDHQ, for 

example, is a potentiometric probe that, upon a change in the surrounding electric field 

(such as an alteration in lipid packing or change in surface charge), undergoes a shift in 

its electronic structure and, by proxy, fluorescent properties (248,250). This probe allows 

for the determination of membrane fluidity and polarity via calculation of the 

generalized polarization (GP) of the membrane. Generally, more positive (higher) GP 

values are associated with more rigid or ordered membranes, whereas more negative 

(lower) GP values are representative of more fluid or disordered membranes (251). With 

this in mind, Di-4-ANEPPDHQ was employed to investigate the effect of the membrane 

property of fluidity on 3TAT-induced membrane leakage. First, Di-4-ANEPPDHQ-

labeled BMP or PG LE LUVs were generated in order to assess the intrinsic membrane 

fluidity for each set of liposomes (Figure 3-3a). While measurements for both sets of 

LUVs resulted in negative GP values (indicating intrinsically fluid membranes), BMP 

LE LUVs proved substantially more fluid than their PG LE LUV counterparts. 

Furthermore, upon addition of the nonendosomolytic agent nf1TAT, only a marginal 

change in GP was observed whereas treatment with the endosomolytic counterpart 

nf3TAT led to rigidification of only BMP LE LUVs (Figure 3-3a). One alternative 

mechanism to explain the membrane rigidification of +ΔGP membranes is the presence 

of a change in surface charge induced by nf3TAT. However, this mechanism seems 

unlikely, as the shift in GP would be realized in both sets of liposomes because the net 
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negative charge of each set of LUVs is equivalent. Based on these results, we 

hypothesized that the extent of induced leaky fusion depended on the intrinsic membrane 

fluidity of BMP LE LUVs. To determine if these results could be corroborated in cellulo 

to help explain the endosomolytic nature of 3TAT, Di-4-ANEPPDHQ was again 

employed the measure the membrane fluidity of endocytic organelles. As Di-4-

ANEPPDHQ is added exogenously, it was first determined if the lipid-soluble dye could 

stain endocytic membranes (Figure B-2 in Appendix B). For this experiment, CHO-K1 

cells were treated with a cocktail containing 5 µM Di-4-ANEPPDHQ and 500 nM 

LysoTracker Blue DND-22 (a fluorescent dye that selectively localizes within BMP-

containing endocytic organelles). Following incubation, the cells were imaged via 

fluorescence microscopy, and the colocalization of LysoTracker-stained vesicles with 

Di-4-ANEPPDHQ-stained vesicles was calculated for regions of high puncta density 

within the plasma membrane of cells. The Pearson coefficient reported for this region of 

interest suggests that the fluorescent puncta inside cells largely represent BMP-

containing endocytic vesicles. Following this experiment, CHO-K1 cells +/- treated with 

10 µM of nf1TAT or nf3TAT were then stained with Di-4-ANEPPDHQ as before to 

determine the membrane fluidity of endocytic vesicles before and after treatment with 

guanidinium-rich CPPs of varying endosomolytic activities (Figure 3-3b). The inherent 

membrane fluidity of acidic endocytic vesicles mimicked that of BMP LE LUVs. Upon 

treatment with nf3TAT, acidic endocytic vesicles become more rigid while treatment 

with nf1TAT proved relatively innocuous in regard to acidic endocytic membrane 

fluidity. These results corroborate the in vitro findings of membrane fluidity in live cells. 
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Figure 3-3 BMP-containing membranes are more fluid than PG-containing or 
other biological membranes and undergo 3TAT-induced rigidification. 
(a) BMP-containing membranes are more fluid than their PG-containing
counterparts and undergo rigidification upon treatment with nf3TAT but nf1TAT
induces no change in fluidity. BMP or PG LE LUVs containing 0.1% Di-4-
ANEPPDHQ were generated as previously described. The fluorescence of the
liposomes +/- nf1TAT or nf3TAT was then measured (λex = 488 nm; λem1 = 560 nm,
λem2 = 650 nm). From these measurements, generalized polarization was calculated
and plotted to assess lipid fluidity. ΔGP was then calculated by subtracting the
GPpre-treatment from GPpost-treatment in order to represent the extent of rigidification
undergone by each set of LUVs upon treatment with nf3TAT. (b) BMP-containing
membranes exhibit greater fluidity than other biological membranes, and
treatment with endosomolytic agents confers rigidity of endocytic vesicles, thus
suggesting in cellulo relevance. CHO-K1 cells +/- 10 µM of each indicated peptide
were costained with 5 µM Di-4-ANEPPDHQ and 500 nM LysoTracker Blue DND-
22 for 30 min. Fluorescence microscopy was then performed (λex1 = 465-500 nm,
λem1 = 510-560 nm; λex2 = 450-490 nm, λem2 = 590-670 nm). The representative
fluorescence microscopy images consist of an overlay of the two fluorescent
channels pseudocolored green and red. The reported GP values correspond to
calculations performed over Di-4-ANEPPDHQ signals that colocalize with
LysoTracker Blue DND-22 signals. The colocalized puncta represent acidic
endocytic vesicles. Scale bars represent 10 µm.
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Inspired by the following results, we then sought to test our hypothesis by 

attempting to manipulate the membrane lytic efficiencies of the guanidinium-rich CPPs 

by modulating the fluidity of BMP LE LUVs (Figure 3-4). The membrane fluidity of the 

BMP-containing LE LUV variants (18:0-3 PC LE LUVs) for the experiments that 

followed was modulated by introducing phosphatidylcholine (PC) with 0-3 points of 

unsaturation in the 18-carbon fatty acid tails (Figure 3-4a). Our logic was that 

introducing PC with 18:0-3 fatty acid tails would generate LUVs with a range of 

membrane fluidity. As PC only makes up 19 mol% of the lipid bilayer, we wanted to 

establish that the PC variant LE LUVs exhibited a difference in membrane fluidity 

(Figure 3-4b). For this experiment, 18:0-3 PC LE LUVs containing 0.1% Di-4-

ANEPPDHQ were generated, and the fluorescence of the resultant LUVs was measured 

to determine GP. From these results, we concluded that the membrane fluidity increased 

as a function of the degree of fatty acid unsaturation. Next, we wanted to investigate the 

effects of the non-membrane lytic variant nf1TAT and its membrane lytic counterpart 

nf3TAT on the 18:0-3 PC LE LUVs (Figure 3-4b). Treatment with nf1TAT was 

relatively innocuous across each condition tested; however, 3TAT-induced rigidification 

of the LE LUVs was drastically increased for the more fluid 18:2 and 18:3 PC LE LUVs. 

We then sought to determine the effect of manipulated fluidity on the membrane lytic 

activities of the guanidinium-rich peptides (Figure 3-4c). Calcein-loaded 18:0-3 PC LE 

LUVs were treated as previously with 1TAT, 2TAT, or 3TAT at the indicated P:L ratio. 

These data demonstrate that the membrane lytic activities of 2TAT and 3TAT increase 

as a function of increased membrane fluidity. Based on these experiments, a corollary 
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plot was then developed to link the intrinsic membrane fluidity of BMP-containing 

LUVs to resultant extent of guanidinium-rich CPP-induced leakage (Figure 3-4d). 

Leakage percentages resulting from treatment of 18:0-3 PC LE LUVs with 5 µM of each 

peptide (1:50 P:L) were plotted as a function of the intrinsic membrane fluidity of each 

of these sets of LUVs. To establish the correlation, linear regressions were performed 

over each set of data points, resulting in R2 values of 0.9984, 0.9239, and 0.9996 for 

1TAT-, 2TAT-, and 3TAT-treated LUVs, respectively. These R2 values suggest a strong 

correlation between the fluidity of BMP-containing membranes and resultant leakage 

incurred via treatment with guanidinium-rich membrane lytic agents such as 2TAT and 

3TAT. Taken together, these findings highlight the influence of membrane fluidity on 

guanidinium-rich CPP-mediated endosomolysis. 
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Figure 3-4 Increasing membrane fluidity of BMP-containing membranes confers 
greater extent of membrane lysis mediated by guanidinium-rich CPPs. 
(a) For the following experiments, LE LUVs were generated where the PC
component consisted of fatty acids varying from 18:0-3 in order to induce a change
in membrane fluidity. (b) As the extent of PC unsaturation increases, so too does
membrane fluidity as well as the extent of nf3TAT-induced rigidification. 18:0-3
PC LE LUVs with 0.1% Di-4-ANEPPDHQ were generated as before. The
fluorescence of LUVs +/- 10 µM nf1TAT or nf3TAT (where indicated) was
measured as before to determine membrane fluidity. GP and ΔGP calculations
were performed as previously and are represented by the reported values. (c)
Increasing membrane fluidity confers greater extent of membrane lytic activity by
guanidinium-rich CPPs. Calcein-loaded 18:0-3 PC LE LUVs were generated as
before. LUVs were treated with 1TAT, 2TAT, or 3TAT for 1 hr at the indicated
peptide:lipid ratios. Following treatment, extent of calcein leakage was measured
and represented as described previously. (d) Extent of guanidinium-rich CPP-
induced membrane lysis correlates strongly with membrane fluidity. A correlation
was generated by plotting the extent of leakage of 18:0-3 PC LE LUVs (250 µM)
treated with 5 µM of each indicated peptide (1:50 peptide:lipid ratio) against the
pretreatment GP value associated with each representative liposome. In all
experiments, the data are reported as the mean of technical triplicates with the
corresponding standard deviation.
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3.3 Discussion 

The assays performed throughout highlight the complexity of the mechanism of 

guanidinium-rich CPP endosomal escape. While the interaction between the 

phospholipid head of BMP and the guanidinium groups of TAT peptide variants is 

necessary, other factors play a role in endosomal escape as well. As identified in Figure 

3-1, the introduction of greater levels of either BMP or cholesterol led to a greater extent

of 3TAT-induced membrane leakage in late-endosome-mimicking liposomal systems. 

The introduction of greater levels of BMP seemed to be a predictable path to yield a 

greater extent of guanidinium-rich CPP-mediated membrane lysis. One might expect 

outcome, as it was previously shown that interaction of the CPP’s guanidinium groups 

with the anionic phospholipid head of BMP triggers the fusogenic activity of the lipid, 

which ultimately leads to leaky fusion (138,235). However, armed with this 

understanding, cholesterol was perhaps a less predictable modulator of this leaky fusion 

event. In mammalian cells, cholesterol acts a bidirectional, temperature-dependent 

modulator of membrane fluidity (252-254). Cholesterol intercalates into the acyl chains 

of cellular membranes. This process can disrupt acyl chain packing, which makes 

membranes more fluid (disordered) but simultaneously rigidifies membranes (making 

them more ordered) by restricting more flexible unsaturated acyl chains. We then 

reasoned that the increase in membrane leakage was resultant of the modified membrane 

fluidity of the BMP-containing LE LUVs. As corroborated by both in vitro and in cellulo 

measurements of BMP LE LUVs and late endosomes/lysosomes, respectively, BMP 

causes membranes to become highly fluid (Figure 3-3). Conversely, the structural isomer 
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PG does not confer the same extent of membrane fluidity in PG LE LUVs. Interestingly, 

PG LE LUVs fail to leak upon treatment with 3TAT (Figure 3-1), an observation 

corroborated by the absence of 3TAT-treated LUVs with extensive membrane content or 

lipid bilayer contact (Figure 3-2). With these results in mind, we hypothesized that an 

intrinsic membrane fluidity threshold must be crossed in order for leaky fusion to occur. 

To test this hypothesis, we modulated the fatty acid tails of the PC component of BMP 

LE LUVs. PC variants with fatty acids ranging from 18:0-3 were incorporated as a 

means to develop a range of finely tuned LE LUVs varying in membrane fluidity (Figure 

3-4). We demonstrated that guanidinium-rich CPP-induced membrane leakage increased

as a function of inherent membrane fluidity. 

The next logical step for this study is to attempt to modulate the membrane 

fluidity of late endosomes resulting in enhanced (or inhibited) cytosolic penetration of 

guanidinium-rich cell permeable compounds. Many molecules have been identified as 

tools to increase membrane fluidity, such as various fish oils and polyunsaturated fatty 

acids (PUFAs); fluid phospholipids, such as BMP and PE; and phospholipids with more 

unsaturated fatty acid chains (252,255,256). However, selectively increasing the fluidity 

of late endosomes has not proven to be trivial. We have tried to preincubate cells with 

2,2’-BMP LE LUVs or 3,3’-BMP LUVs to increase late endosomal membrane fluidity 

prior to treatment with endosomolytic agents (data not shown). However, fluorescence 

microscopy revealed that fusion failed to occur between the artificial vesicles and either 

the ILVs or the limiting membrane of BMP-containing organelles. We reached this 
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conclusion because the intact calcein-loaded LUVs appeared as puncta that colocalized 

with LysoTracker after treatment with 3TAT. 

To reiterate, this study highlights the fickle complexity of endosomal escape of 

guanidinium-rich compounds. As membrane fluidity is respective to the interacting 

membrane in theory, these findings can be applied not only to TAT-based delivery 

systems but also towards other guanidinium-rich compounds, such as supercharged viral 

capsid proteins. By taking the step to incorporate a moiety that enhances the membrane 

fluidity of BMP-containing membranes, next generation guanidinium-rich cell delivery 

tools may be developed for a variety of applications. Conversely, by rigidifying late 

endosomal membranes, the cell penetration of guanidinium-rich infectious moieties of 

viruses could potentially be inhibited. This could yield a novel new approach towards an 

“umbrella” therapeutic approach against an entire route of viral infection. 

3.4 Materials and Methods 

3.4.1 Materials 

(S,S) Bisoleoyl-lysobisphosphatidic acid (sn-2,2’-BMP) was purchased from 

Echelon Biosciences, and all other lipids and cholesterol were purchased from Avanti 

Polar Lipids. All peptides were synthesized previously, and all reagents in the synthesis 

were purchased from Millipore Sigma. Di-4-ANEPPDHQ was purchased from Thermo 

Scientific. CHO-K1 cells were a gift from Dr. Patricia Pietrantonio (TAMU), and all cell 

culturing consumables and media were purchased from Fisher Scientific. 
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3.4.2 LUV preparation 

LUVs for all experiments were prepared using the following protocol. Lipid 

films were mixed for EE (65:15:20 DOPC:DOPE:Chol), BMP LE (77:19:4 

DOBMP:DOPC:DOPE; 2,2’-BMP or 3,3’-BMP were used where indicated), PG LE 

(77:19:4 DOPG:DOPC:DOPE), LE LUVs with cholesterol substitution (77:19:4 

DOBMP:Chol:DOPE), or variable PC LE LUVs (77:19:4 DOPG:XPC:DOPE; X = 

stearic, oleic, linoleic, or α-linoleic acid) and allowed to dry in vacuo overnight. The 

following day, liposomes were swelled in LUV buffer (10 mM phosphate, 100 mM 

NaCl, pH 5.5) at 42°C for 15 min (or 70°C for 18:0 PC LE LUVs to be well above the 

Tc of DSPC); the liposomes were then subjected to 10 cycles of freeze/thaw performed 

by freezing in liquid N2 and thawing at either 42°C or 70°C in a water bath. For leakage 

assays, swelling buffer contained 70 mM calcein (Sigma); for lipid packing assays, 

swelling buffer contained 0.1 mol% Di-4-ANEPPDHQ (relative to lipid). Following 

freeze/thaws, liposomes were subjected to extrusion through a 0.1 µm polycarbonate 

membrane 11 times to create LUVs. Calcein-loaded LUVs for leakage assays were 

purified from free calcein via gel filtration with Sephadex G50 resin (Sigma) purified 

using LUV buffer (pH 7.4). 

3.4.3 Leakage assays 

All LUV leakage experiments were performed, quantified, and 

normalized as previously reported (235). In the assays reported, LUVs (250 µM) were 

treated with 1:250, 1:50, 3:50, or 1:10 peptide-to-lipid ratios (1, 5, 15, or 25 µM peptide, 
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respectively) of 1TAT, 2TAT, 3TAT, nf1TAT, nf2TAT, or nf3TAT, where indicated. 

The included chemical structures were generated using ChemDraw (PerkinElmer).  

3.4.4 Lipid partitioning assays 

Lipid films (corresponding to a final concentration of 3-3000 µM) composed of DOBMP 

or DOPG were dried in vacuo overnight. The following day, lipid films were 

resuspended via vortex mixing at the phase interface between 75 µL LUV buffer (pH 

5.5) and 150 µL hexanes. Lipid partitioning was initiated upon the addition and mixing 

(via pipetting) of 3TAT to a final aqueous concentration of 3 µM. Phase separation was 

assisted by centrifugation at 2,000×g for 1 min. The hexane phase was then transferred 

to a 96-well plate, and the fluorescence of 3TAT was measured via a Tecan Infinite 

M200 Pro plate reader (λex = 556±9 nm, λem = 583±20 nm). The values were reported by 

normalization to a positive portioning control (fluorescence from aqueous 3 µM 3TAT) 

and negative portioning control (hexane alone). 

3.4.5 Burst Analysis Spectroscopy 

All BAS experiments were performed by Dr. Lauren Kusitigian as previously 

reported (235). 

3.4.6 Cryo-EM 

All Cryo-EM experiments were performed as previously reported (235). 

3.4.7 Di-4-ANEPPDHQ-based lipid packing assays 

For in vitro lipid packing experiments, Di-4-ANEPPDHQ-labeled BMP or PG 

LE LUVs (250 µM) in LE LUV buffer (pH 5.5) were mixed with 10 µM nf1TAT, 

nf2TAT, or nf3TAT where indicated. Immediately following, lipid packing was 
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determined by measuring the fluorescence of Di-4-ANEPPDHQ via a Tecan Infinite 

M200 PRO plate reader (λex = 488±9 nm, λem1 = 560±20 nm, λem2 = 650±20 nm). GP 

was then calculated with the following formula: GP = (I560 – I650) / (I560 + I650) (248,257). 

ΔGP was calculated by subtracting the GP of untreated BMP or PG LE LUVs from the 

GP of BMP or PG LE LUVs treated with nf1TAT, nf2TAT, or nf3TAT, where 

indicated. 

For in cellulo lipid packing experiments, CHO-K1 cells were cultured to a 

confluency of 70-100% on glass-bottom 8-well culture plates (Fisher). The cells were 

first treated with 5 µM Di-4-ANEPPDHQ in F12K medium (HyClone) containing 10% 

FBS for 45 min. This solution was removed, and the cells were washed twice with L15 

medium (HyClone). Where indicated, cells were then treated with 10 µM nf1TAT or 

nf3TAT in L15 medium for 30 min. Following incubation, cells were washed twice with 

L15 containing heparin (1 mg/mL), once with L15, and then incubated in L15 + 10% 

FBS for imaging. Fluorescence microscopy was conducted using an Olympus IX-81 

inverted microscope equipped with a 100× objective and heated stage (37°C). Images 

were captured using a Rolera-XR back-illuminated electron-multiplying CCD camera 

(Qimaging). Filters used in fluorescence imaging included DAPI (λex/λem = 300-388, 

425-488 nm), FITC (Di-4-ANEPPDHQ channel 1) (λex/λem = 465-500, 510-560 nm) and

IFRET (Di-4-ANEPPDHQ channel 2) (λex/λem = 450-490, 590-670 nm) filter cubes 

(Chroma Technology). GP was calculated via a macro for ImageJ (the code for this 

macro was derived from Gaus, et. al) (258). 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

4.1 Multivalency and high guanidinium density allow for BMP-specific 

endosomal escape of polycationic delivery agents via a leaky fusion event 

For almost 30 years, research has been conducted towards the use and 

improvement of CPPs as delivery tools for bioactive molecular cargo. While many 

approaches have been taken toward enhancement of cell penetration efficiency, 

constructs implementing multivalency have exhibited high levels of cell penetration. The 

mCPP dfTAT demonstrates an unprecedentedly high cell penetration efficiency and is 

able to deliver a variety of bioactive cargoes through coincubation. The cell penetration 

efficiency of dfTAT stems from the enhanced ability of the guanidinium-rich compound 

to escape the late endosome: the bottleneck in endocytosis-mediated delivery. The 

peptide is able to escape late endosomes through interaction with the anionic 

phospholipid BMP. 

While many multivalent prototypes have been developed, the exact contribution 

of multivalency on cell penetration activity remained unclear. Through a SPPS-based 

approach, I was able to generate TAT constructs that vary only in their TAT valency (or 

copy number) and, by proxy, their charge/guanidinium density. These TAT constructs 

demonstrated that multivalency and guanidinium density lead to a variety of changes in 

cellulo. Multivalent constructs display drastically improved cell penetration activity 

compared to that of the monovalent counterpart. Although the multivalent constructs 

induced higher levels of endocytic uptake than monovalent TAT, this alone cannot 
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explain the differences in cell penetration. Notably, multivalency and higher 

guanidinium density impart cytotoxicity as well. Although not as guanidinium-rich as 

3TAT, dfTAT exhibits high cell penetration efficiency with little-to-no cytotoxicity or 

observable phenotypic effects on the cell. This suggests that an upper limit to 

guanidinium density or multivalent exists. Finally, as demonstrated by both 3TAT and 

dfTAT, the efficiency of molecular cargo delivery via coincubation followed closely 

with their respective cell penetration efficiencies. Taken together, these findings address 

the effect of TAT multivalency and charge/guanidinium density on the cell penetrative 

and cargo delivery activities of CPPs as well as consequences associated with excessive 

levels of guanidinium. 

More simplistic lipid bilayer models were utilized in order to understand the 

differences of these constructs’ ability to escape late endosomes. Multivalent and 

endosomolytic constructs (such as 2TAT, 3TAT, or dfTAT) are highly membrane lytic 

towards BMP-containing LUVs mimicking late endosomes. The results presented above 

suggest that the lumenal contents of LE LUVs are liberated through a leaky fusion event. 

CPP-induced membrane restructuring was characterized by BAS and Cryo-EM. 

Treatment with the guanidinium-rich CPPs led to restructuring of BMP-containing 

membranes including flocculation, fusion, and increase in lamellarity. However, 

treatment with the membrane lytic variant, 3TAT, resulted in lipid bilayer contact. These 

data suggest that increasing the guanidinium density of cell penetrating molecules 

through multivalency confers glue-like activity between BMP-containing lipid bilayers. 

This results in leaky fusion and allows for the release of interlumenal contents. 
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Figure 4-1 Model depicting mCPPs such as 2TAT, 3TAT and dfTAT cause the 
leakage of late endosomes through interactions with the anionic lipid BMP. 
Guanidinium-rich mCPPs are taken up by the cell primarily through 
macropinocytosis. The CPPs are then trafficked along the endocytic pathway to 
late endosomes, a process that spans an approximately 10-45 min time window. 
mCPPs cause the leaky fusion of late endosomal membranes. The nature of this 
process remains unclear and may hypothetically involve the translocation at the 
limiting membrane of the late endosomes or the translocation of intraluminal 
vesicles. In vitro, mCPPs selectively permeabilize lipid bilayers that contain the late 
endosomal anionic lipid BMP. Permeabilization involves leaky fusion, a process 
where mCPPs neutralize anionic bilayers and bring them into contact. 
Permeabilization may also relate to the unique ability of mCPPs and BMP to 
partition into hydrophobic environments (hexanes, as shown in the figure, mimic 
the hydrophobic tails of lipids). The figure is used with permission (191). 
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4.2 The efficiency of guanidinium-rich CPP-mediated leaky fusion of BMP-

containing membranes is dependent on innate membrane fluidity 

While interaction between the guanidinium group of polycationic CPPs and the 

anionic phospholipid BMP is necessary, other factors contribute to the process of 

endosomal escape. Comparison of BMP LE LUVs to PG LE LUVs revealed that 3TAT 

and dfTAT selectively lyse BMP-containing membranes despite the net charge of the 

LUVs remaining constant. However, analysis by BAS and Cryo-EM suggest that many 

of the same 3TAT-induced membrane restructuring events are shared between BMP LE 

LUVs and PG LE LUVs. Notably, lipid bilayer contact was not observed for PG LE 

LUVs treated with 3TAT, however, this may simply be due to the poor resolution of the 

images. Investigation into potential modulators of membrane leakage revealed that 

enrichment of either BMP or cholesterol in BMP LE LUVs conferred greater extent of 

membrane lysis. Cholesterol regulates the fluidity of biological membranes. Upon 

analysis of the membrane fluidity of BMP LE LUVs and PG LE LUVs, BMP LE LUVs 

proved to be much more fluid or disordered than PG LE LUVs (results that were 

corroborated in cellulo). Manipulation of the fluidity of BMP-containing membranes via 

the substitution of fatty acids for those with a greater or lesser extent of unsaturation 

yielded a direct effect on the extent of membrane lysis upon treatment with mCPPs such 

as 3TAT. Taken together, these data suggest that the inherent disordered state of BMP-

containing membranes allows for leaky fusion to occur. Pretreatment of cells with a 

modulator of late endosomal fluidity could potentially affect the permeation efficiency 

of guanidinium-rich molecules. 



131 

4.3 Implications of this work on other guanidinium-rich supercharged cell 

penetrating agents 

In theory, this work is not restricted to guanidinium-rich CPPs but can be applied 

to other cationic cell permeable molecules. Cationic delivery tools, such as cationic 

lipids/polymers or even supercharged proteins and viral particles, are of particular 

interest. Cationic lipids, lipid nanoparticles (LNPs), and lipoplexes have been employed 

to deliver a variety of different nucleic acid cargos (259-261). In fact, lipoplexes and 

LNPs have been shown to enter cells through endocytosis. Upon endocytosis, it is 

possible that the very same electrostatic interaction between 3TAT/dfTAT and BMP 

could be established between the cationic lipoplex or LNP in order to escape the 

endosome and deliver the nucleic acid cargo. In fact, in vitro studies demonstrated the 

ability of lipoplexes to fuse with membranes containing the anionic, fusogenic 

phospholipid PE (262). These results suggest that the electrostatic interaction of 

lipoplexes with BMP is plausible, and the inherent fusogenicity of BMP could aid in the 

process of lipoplex endosomal escape. 

Supercharged protein and viral particles share many of the same properties with 

the discussed mCPPs. Despite being much larger relatively, they possess many more 

basic residues which, in turn, bestows them with a charge density >+0.75. As previously 

discussed, dengue, bluetongue, and yellow fever are viruses that possess supercharged 

capsid proteins (214-218). It has even been demonstrated that DENV actually interacts 

with BMP in order to deliver its genomic cargo. It is therefore possible that other 

flaviviruses and viruses that possess supercharged protein components may follow in 
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suit by utilizing BMP for the delivery of their respective genomic cargos as well. These 

findings suggest that inhibiting the interaction of BMP with viral components may be a 

route forward towards the development of new antiviral therapeutics.  

4.4 Future work 

To expand upon this body of work, the paramount goal would be to reveal the 

final details required to fully elucidate the mechanism of endosomal escape. Being able 

to visualize guanidinium-rich CPP-induced endosomolysis would prove highly valuable 

in furthering our understanding of the mechanism of endosomal escape. However, a 

number of difficulties, such as the highly dynamic nature of late endosomes, makes 

studying this process in cellulo very challenging. Herein lies the value of coupling in 

vitro lipid membrane systems with emerging single particle techniques. For instance, a 

single liposome mimicking the late endosomal lipid profile could be optically trapped; 

then, using atomic force microscopy (AFM), the topography of the vesicle could be 

measured. Measuring the same vesicle upon treatment with a CPP would reveal even 

greater detail into membrane restructuring events (such as pore size, membrane ruffling, 

etc.) than Cryo-EM by providing a three-dimensional read out. Similarly, a real-time 

analysis of membrane lysis could be provided by coupling this method of optically 

trapping a liposome with Raman microscopy. Indeed, this approach has been recently 

utilized to monitor membrane leakage of DPPC or DPPC/cardiolipin liposomes loaded 

with a molecular cargo possessing a unique Raman signature (such as 3-

nitrobenzenesulfonate, or 3-NBS) (263). This experiment would not only allow for the 

real-time observation of CPP-induced membrane leakage but would also yield valuable 
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kinetic details as well. Taken together, experiments of this nature would greatly expand 

our understanding or could even fully elucidate the mechanism of endosomal escape. 

Additionally, work must be done to test if the mechanism of guanidinium-rich 

CPP endosomal escape can be applied to other supercharged moieties such as 

polycationic delivery tools, viral particles and viruses. If polycationic delivery tools, 

such as cationic lipids for DNA transfection, utilize BMP for cell penetration, then 

improvements can be made to make these tools more efficient and less cytotoxic. These 

improvements would ultimately expand the number of applications for the use of these 

delivery tools. If viruses possessing supercharged proteins utilize BMP for cell 

penetration, then therapeutics could be developed that target late endosomes and disrupt 

this interaction. That being said, caution should be taken in developing these 

therapeutics, as they may affect the biological role of BMP in regulating cholesterol 

trafficking and endosomal cholesterol content (202,204). This concern was realized 

when Gruenberg and coworkers determined that treatment of healthy cells with anti-

BMP resulted in symptoms reminiscent of Niemann-Pick type C, such as cholesterol 

accumulation (202). 

Finally, novel new approaches may be used toward enhancing the cell 

permeability of molecular probes and biologics. From the findings described previously, 

two approaches towards the enhancement of cell penetration have been revealed. The 

first approach includes enhancing cell penetration via chemical modification of the 

bioactive molecule of interest. By conjugating a small, guanidinium-rich “cell 

penetration tag”, many previously cell impermeable molecules of interest may become 
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viable effectors of intercellular targets due to this newfound cell penetrating activity. 

Additionally, the in vitro assays discussed above demonstrated that the innate membrane 

lytic activity of guanidinium-rich CPPs could be enhanced by increasing the inherent 

membrane fluidity or disorder of BMP-containing vesicles. Theoretically, if a molecule 

were designed to specifically target late endosomes and disrupt the lipid packing of 

BMP-containing membranes, then endosomal escape could be greatly enhanced. This 

molecule could be co-administered or even conjugated to the cell penetrating molecule 

of interest as an “enhancer” of endosomal escape. Perhaps then, the best way to target 

the late endosome is through conjugation to guanidinium-rich agents. Coupling 

hydrophobic moieties, such as fluorophores and endosomal escape domains (short 

stretches of aromatic amino acids), with guanidinium-rich CPPs has been demonstrated 

as a means to enhance cell penetration (75,141). Although the effect on membrane 

packing has not yet been investigated, it is possible that these hydrophobic moieties 

enhance cell penetration by disordering BMP-containing membranes. 
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APPENDIX A  

SUPPORTING INFORMATION FOR EFFICIENT CELL DELIVERY 

MEDIATED BY LIPID-SPECIFIC ENDOSOMAL ESCAPE OF 

SUPERCHARGED BRANCHED PEPTIDES 

Figure A-1 Synthetic route used for the generation of the peptides 1TAT, 2TAT, 
3TAT. Scaffold peptides were first synthesized via solid phase peptide synthesis 
(SPPS) using standard Fmoc-chemistry. Lysine residues containing cleavable 
(MTT) or non-cleavable (Ac) protecting groups on the ε-N are introduced at 
different positions in the scaffold sequence. Following Fmoc removal, the N-
terminus of the scaffold peptide is capped with the fluorophore TMR. Next, MTT 
groups are selectively cleaved under 1% TFA. The TAT peptide branches are then 
assembled off the ε-N of each deprotected lysine residues. Completed products are 
cleaved from the solid support by treatment with 95% TFA. 
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Figure A-2 Characterization of 1TAT, 2TAT and 3TAT. 
(a) Structure of 1TAT. (b) rpHPLC analysis and MALDI-TOF MS spectrum of
purified 1TAT (retention time (rt): 15.04 min, 0-73% solvent B in 0-30 min)
(1TAT, expected mass = 2447.42, observed mass: (M-H+)/H+ = 2449.55). (c)
Structure of 2TAT. (d) rpHPLC analysis and MALDI-TOF MS spectrum of
purified 2TAT (retention time (rt): 13.94 min, 0-73% solvent B in 0-30 min)
(2TAT, expected mass = 3783.29, observed mass: (M-H+)/H+ = 3784.53). (e)
Structure of 3TAT. (f) rpHPLC analysis and MALDI-TOF MS spectrum of
purified 3TAT (retention time (rt): 13.54 min, 0-73% solvent B in 0-30 min)
(3TAT, expected mass = 5119.16, observed mass: (M-H+)/H+ = 5121.03). (g)
Structure of nf2TAT. (h) rpHPLC analysis and MALDI-TOF MS spectrum of
purified nf2TAT (retention time (rt): 9.25 min, 0-30% solvent B in 0-30 min)
(nf2TAT, expected mass = 3413.15, observed mass: (M-H+)/H+ = 3414.22). (i)
Structure of nf3TAT. (j) rpHPLC analysis and MALDI-TOF MS spectrum of
purified nf3TAT (retention time (rt): 9.52 min, 0- 30% solvent B in 0-30 min)
(nf3TAT, expected mass = 4750.02, observed mass: (M-H+)/H+ = 4750.53).
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a) 

b)
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c) 

d) 

Figure A-2 continued. 
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e) 

f) 

Figure A-2 continued. 
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g) 

h) 

Figure A-2 continued. 
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i) 

j) 

Figure A-2 continued. 
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Figure A-3 1TAT colocalizes inside cells with LysoTracker Green. 
Cells were incubated with 1TAT (3 µM) for 30 min at 37°C and washed thereafter. 
Next, cells were incubated in L-15 medium for indicated times (exp 1 = 0 hr, exp 2 = 
0.75 hr, exp 3 = 2.75 hr) and then stained with LysoTracker Green (500 nM), a 
marker of acidified endocytic organelles, as well as Hoechst 33342 (5 µM) for 
nuclear visualization. Representative fluorescence microscopy images taken under 
100× magnification were obtained for 1TAT (pseudocolored red), LysoTracker 
Green (pseudocolored green) and an overlay of 1TAT, LysoTracker green and 
Hoechst 33342 (pseudocolored blue). Colocalization analysis was performed over 
zoomed-in sections of 1TAT and LysoTracker images of each condition. Pearson’s 
R and Manders’ M1 coefficients are reported to represent the extent of 
colocalization. Student’s t-test was performed to compare the Ravg of each 
condition. Scale bars: 100× images: 10 µm, zoomed images: 2 µm. NS, p>0.05; *, 
p<0.05. 

These data suggest that the accumulation of 1TAT in lysotracker-stained 
organelles, late endosomes and lysosomes increases overtime. 
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Figure A-4 Cytotoxicity upon 24 hr exposure of HeLa cells to 1TAT, 2TAT, and 
3TAT. 
(a) Representative fluorescence microscopy images of a SYTOX exclusion assay
over HeLa cells treated with each peptide for 24 hr. HeLa cells were incubated with
the peptides at the listed concentrations for 24 hr. Post-treatment, cells were
washed and stained with SYTOX Green and Hoechst 33342 as before. Fluorescence
microscopy was performed over the cells under each condition, and representative
images were taken at 20× magnification (scale bars: 20×: 50 µm). (b) Evaluation of
the toxicity of the peptides via a SYTOX Green exclusion assay. Cells were treated
as in a. The number of cells displaying a nucleus stained by SYTOX Green were
counted. The data represented correspond to the mean of technical triplicates (>500
cells counted per experiment). (c) Evaluation of the viability of cells treated with
the peptides via an MTT viability assay. Cells were treated as in a and b. Post-
treatment; cell viability was assessed using a standard MTT viability assay. Each
condition was replicated (n=7) and represented as the normalized mean ± standard
deviation.

These data suggest that the majority of the cytotoxic effect conferred by the 
addition of the peptides occurs initially, that is, within the first 30 min of addition. 
Little to no additional deleterious effects were observed upon prolonged exposure 
of the cells to the peptides. 
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Figure A-5 DEAC-k5 colocalizes with LysoTracker Green. 
Cells were incubated with DEAC-k5 (25 µM) for 1 hr at 37°C and washed 
thereafter. Next, cells were incubated in L-15 medium for indicated times (exp 1 = 0 
hr, exp 2 = 0.75 hr, exp 3 = 2.75 hr) and then stained with LysoTracker Green (500 
nM) as well as Hoechst 33342 (5 µM) for nuclear visualization. Representative 
fluorescence microscopy images at under 100× magnification were taken for 
DEAC-k5 (pseudocolored red), LysoTracker Green (pseudocolored green) and an 
overlay of DEAC-k5, LysoTracker green and Hoechst 33342 (pseudocolored blue). 
Colocalization analysis was performed over zoomed-in sections of DEAC-k5 and 
LysoTracker images of each condition. Pearson’s R and Manders’ M1 coefficients 
are reported to represent the extent of colocalization. Student’s t-test was 
performed to compare the Ravg of each condition. DEAC-k5 was pseudocolored red 
in the images provided to enhance the contrast between the peptide and 
LysoTracker Green (as opposed to comparing blue and green). Scale bars: 100× 
images: 10 µm, zoomed images: 2 µm. NS, p>0.05; *, p<0.05; **, p<0.01. 

These data suggest that the accumulation of DEAC-k5 in lysotracker-stained 
organelles, late endosomes and lysosomes, increases overtime. 
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Figure A-6 DEAC-k5 does not affect cell penetration or endosomolytic activities of 
3TAT. 
(a) DEAC-k5 does not affect cellular uptake of 3TAT. Cells were treated with 3 µM
3TAT ± DEAC-k5 (25 µM) for 30 min, 37°C. Following treatment, cells were
washed, trypsinized, and lysed as described previously. Cellular uptake of 3TAT
was determined by measuring the red fluorescence of the cell lysates. The data
represented correspond to the mean of technical triplicates (>500 cells counted per
experiment) with corresponding standard deviation. NS, p>0.05. (b) DEAC-k5 does
not affect endosomal escape of 3TAT. Cells were treated with 3 µM 3TAT and/or
DEAC-k5 (25 µM) for 30 min, 37°C. Following treatment, cells were washed and
then stained with Hoechst 33342 (2.5 µM) 30 min later. Representative fluorescence
microscopy images at 20× magnification were taken of DEAC-k5 (pseudocolored
blue), 3TAT (pseudocolored red) and Hoechst 33342 (pseudocolored white). (Scale
bars: 20×: 50 µm). (c) DEAC-k5 does not affect membrane lysis of liposomes
treated with 3TAT. LE LUVs (250 µM total lipid) were treated with 3TAT (5 µM),
DEAC-k5 (25 µM), or both peptides for 1 hr. The release of calcein from LUVs was
then quantified. The data reported is the mean of technical triplicates and the
corresponding standard deviation. Means were normalized to the leakage induced
by 3TAT alone.
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Figure A-7 Non-fluorescent variants of nf2TAT and nf3TAT confer similar in 
cellulo and in vitro activities to their fluorescent counterparts, albeit with poorer 
efficiency. 
(a) Non-fluorescent peptide-mediated delivery of DEAC-k5 into HeLa cells. DEAC-
k5 delivered by nf2TAT and nf3TAT allows for the quantification of cell
penetration efficiency. Representative fluorescence microscopy images of cells
coincubated with DEAC-k5 (25 µM) and each peptide at indicated concentrations
for 30 min, washed, and stained with DRAQ7 (cell impermeable nucleic acid stain)
and the nuclear stain Hoechst 33342. Cells were imaged 1 hr after incubation with
peptides. Images are an overlay of DEAC-k5 (pseudocolored blue) and Hoechst
33342 (pseudocolored white). Scale bars: 20×: 50 µm. (b) The cell penetration
activity of nf3TAT is superior to that of nf2TAT with a marked decrease from the
activity of the fluorescent variant, 3TAT. Cells were treated as in a. Quantitative
evaluation of the percentage of cells positive for penetration/delivery of DEAC-k5
(i.e., showing nucleolar staining by DEAC-k5 while excluding DRAQ7(+) cells. The
data reported represent the mean of biological triplicates with corresponding
standard deviation (>500 cells counted per experiment). (c) At high concentrations,
nf3TAT is toxic to cells but significantly less toxic than 3TAT. Evaluation of the
toxicity of the peptides by a DRAQ7 exclusion assay. Cells were treated as in b and
c. The number of cells displaying a nucleus stained by DRAQ7 were counted. The
data reported represent the mean of biological triplicates (>500 cells counted per
experiment). (d) nf2TAT and nf3TAT deliver the biologically active enzyme TAT-
Cre into HeLa cells. Cells transfected with a plasmid containing EGFP downstream
of an LSL cassette were coincubated with TAT-Cre (4 µM) and each peptide at
indicated concentrations for 30 min. Because successful cellular entry of TAT-Cre
results in EGFP expression, the number of cells positive for EGFP fluorescence
were counted 24 hr after each peptide/TAT-Cre incubations. Fluorescence
microscopy images, pseudocolored green for EGFP, are representative examples of
the cells 24 hr after enzyme delivery (scale bars: 20×: 50 µm, 100×: 10 µm).
Quantification of cells positive for TAT-Cre delivery were scored and reported as
the mean of biological triplicates (>500 cells per experiment) with corresponding
standard deviation. (e) The leakage of LE LUVs induced by nf2TAT or nf3TAT
displays a non-linear dose-dependent response. LE LUVs (250 µM total lipid) were
treated with peptides at the indicated concentrations (peptide:lipid ratios are also
provided) for 1 hr. The release of calcein from LUVs was then quantified. The data
reported is the mean of technical triplicates and the corresponding standard
deviation.
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Figure A-8 Representative fluorescence microscopy images of 3TAT-mediated 
DEAC-k5 cellular delivery under different conditions. 
Cells were treated as described in the main text Figure 3b. Fluorescence microscopy 
images, at 20× and 100× magnification, were taken over treated cells. Images are 
reported over the cells (bright field), DEAC-k5 (pseudocolored blue), and 3TAT 
(pseudocolored red). In experiments 4 and 7, the DEAC-k5 channel contrast of 20× 
magnification images was adjusted in an attempt to show the minimal level of staining 
of cells with the peptide. In the 100× magnification images of experiment 5, white 
arrows are superimposed to highlight the nucleoli-staining characteristic shared by both 
DEAC-k5 and 3TAT. Scale bars: 20×: 50 µm, 100×: 10 µm. 
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Figure A-9 Quantification of peptides bound to LE LUVs by BAS. LE LUVs doped 
with DiD (2.5 µM total lipid, 0.03% DiD) and treated with peptide at indicated 
concentrations were analyzed by Burst Analysis Spectroscopy (BAS). Fluorescence 
bursts from individual TMR-labeled peptides coincident with fluorescence bursts of 
DiD-labeled liposomes in each sample were detected and quantified. Each 
fluorescent event is binned based on its fluorescence intensity, and the overall 
population is represented as a heat map. The x-axis is a logarithmic scale of TMR 
fluorescence burst amplitude, while the color of each bin is pseudo-colored blue to 
yellow and is proportional to the concentration of peptide bound to liposomes. The 
data represented is the compilation of triplicates. 



174 

APPENDIX B 

SUPPORTING INFORMATION FOR MEMBRANE FLUIDITY DIRECTLY 

IMPACTS THE EXTENT OF SUPERCHARGED CPP-INDUCED MEMBRANE 

LYSIS ON BMP-CONTAINING MEMBRANES 

Figure B-1 The buffering system used does not play a role in 3TAT-mediated lysis 
of BMP-containing membranes. 
Calcein-loaded LE LUVs were generated and treated with indicated peptide:lipid 
ratios of 3TAT in either a phosphate or Tris buffering system to monitor 
differences in membrane lytic activity. Values reported are the mean of technical 
triplicates and corresponding standard deviations. 



175 

Figure B-2 Di-4-ANEPPDHQ is capable of staining BMP-containing endocytic 
membranes. CHO-K1 cells were stained with 5 µM Di-4-ANEPPDHQ and allowed 
to incubate for 30 min prior to addition of 500 nM LysoTracker Blue DND-22. 
Following LysoTracker incubation, cells were imaged by fluorescence microscopy 
in order to determine the extent of colocalization between LysoTracker-stained 
membranes and Di-4-ANEPPDHQ-stained membranes. Colocalization calculations 
were performed for the indicated regions of interest with high puncta density. The 
Pearson colocalization coefficient, R, was reported for colocalization of the 
LysoTracker channel with either the λex = 510-560 nm or λex = 590-670 nm Di-4-
ANEPPDHQ channels. 
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