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ABSTRACT 

 

Detailed classification of floodplain land cover and geomorphology is a fundamental step 

in understanding the process-pattern interactions between a river channel and its floodplain. 

Although supervised classification has been used extensively to classify remote-sensing images 

for a range of landscapes, including floodplain landscapes, GEOgraphic Object-Based Image 

Analysis (GEOBIA) has been rarely used to classify vegetation and the geomorphology of these 

environments. In this study, using GEOBIA, we examine the floodplain of Río Beni, located in 

the Bolivian Amazon. Río Beni is a highly-dynamic river system, characterized by rapid planform 

migration and chute and neck cut-off processes that are observable over decadal scales. The Río 

Beni floodplain is abundant with geomorphic landforms of varying types, ranging from oxbow 

lakes, meander scars, to scroll bars. The floodplain vegetation is composed of forest and non-forest 

vegetation, entailing spatially-varying patterns across the floodplain. In order to determine the 

effects of varying input data on remote sensing-based land-cover and geomorphic classification 

within the Río Beni floodplain, we perform 24 dataset-combination classification trials, where 

Landsat 7 ETM+ image bands are combined with various ancillary data layers as joint inputs, 

including the enhanced vegetation index (EVI), normalized water index (NDWI), and a detrended 

digital elevation model (DDEM). Overall classification accuracy for the dataset-combination trials 

range from 55.22% to 88.52%, whereas the Kappa Index of Agreement ranges from 0.4417 to 

0.8539. The highest classification accuracies for each respective land-cover and geomorphic 

class—stemming from the various dataset-combination trials—are: river (91.32%), oxbow lake 

(96.90%), sandbar (86.68%), scroll bar ridge (28.85%), scroll bar swale (35.53%), forest (97.01%), 

non-forest vegetation (80.29%), and bare soil (96.39%). Results also indicate that in addition to 
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the Landsat 7 image, the NDWI image is beneficial to the classification of the river class; the EVI 

and NDWI images are beneficial to classifying oxbow lake and non-forest vegetation classes; the 

DDEM aids in the classification of the sandbar class; and the DDEM and NDWI data layers are 

beneficial to classifying bare soil. Nine automated local threshold methods (Bernsen, Contrast, 

Mean, Median, MidGrey, Niblack, Otsu, Phansalkar) were also applied to two scroll bar rich areas 

within our floodplain study site to segment image into scroll bar ridges and scroll bar swales. 

Result showing Bernsen’s method with a local radius 210m can achieve an accuracy of 92.20% 

across our two study sites. When applying to the whole floodplain, the mean method can achieve 

an accuracy of 81.02%. 
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1. INTRODUCTION  

 

Geomorphological floodplain is defined as the largely horizontally-bedded alluvial 

landform adjacent to a channel, separated from the channel by banks, and built of sediment 

transported by the present flow-regime (Nanson and Croke 1992).   

Floodplains, as an important ecosystem component, have many functions. Flood protection 

is the first function of the floodplain, by the definition, floodplain is the area that will be inundated 

in a 100-year flood, so the basic function of the floodplain is to attenuate the peak flows when 

there is a flooding and enhance the low flows. Floodplain, with its enormous drainage area is the 

habitat for the wildlife and showing the biodiversity in the ecosystem. For the hydrology 

perspective, the floodplain has the function of convey and store water, recharge the ground water 

and essential to protect the water quality. 

Detailed classification of floodplain land cover and geomorphology is a fundamental step 

in understanding the process-pattern interactions between a river channel and its floodplain. Such 

classification also provides important information for estimating the spatial extent of flooding and 

developing effective management strategies for rivers and their ecosystems. Although supervised 

classification (Brondízio et al. 1996; Turner and Congalton 1998; Friedl et al. 2002; Gómez, White 

and Wulder 2016; Khatami, Mountrakis and Stehman 2016) has been used extensively to classify 

a range of landscapes, including floodplain landscapes, GEOgraphic Object-Based Image Analysis 

(GEOBIA) has rarely been used (Furtado et al. 2015; Iersel et al. 2016) to classify vegetation and 

the geomorphology of these environments. The proposed research will address the use of GEOBIA 

in land-cover and geomorphology classification of meandering-river floodplains and fill 

knowledge gaps via the following research objectives:  
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(1) Establish optimal dataset combinations used as input to the GEOBIA classification 

method, of those tested, in order to maximize classification accuracy; and 

(2)  Identify the most accurate scroll bar-specific extraction method based on automated 

local thresholding, and compare the results with those from GEOBIA. 
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2. LITERATURE REVIEW 

 

2.1. Floodplain 

The definition of the floodplain varies. American hydrologists have stated that the 

consensus being shared by various state, federal and local authorities is that floods need to be 

regulated has a probability of occurrence once in 100 years. And they proposed floodplain is the 

flooded area being affected by the once in 100-year flood event. They also noted that 100-year 

flood event may or may not be the main flood that result in the formation of the floodplain, but for 

the lack of better definition, the 100-year flood event is usually treated at the floodplain-forming 

discharge (Bhowmik and Stall 1979).  

Junk, Bayley and Sparks (1989) suggested that the definition of floodplain proposed by 

Bhowmik and Stall (1979) is arbitrary, obtaining historical record of 100 years would not be 

possible for some river systems and this definition lacks meaning in ecology. Instead, they defined 

floodplain as areas that are periodically inundated by the lateral overflow of rivers or lakes, and/or 

by direct precipitation or groundwater; the resulting physicochemical environment causes the biota 

to respond by morphological, anatomical, physiological, phenological, and/or ethological 

adaptations, and produce characteristic community structures. This definition was not focused on 

the single 100-year flood event but extend it to short or long duration floods. It also incorporated 

the ecological meaning to the definition by recognize the interaction between the biota and flood 

event. 

Graf (1988) suggested geomorphic history should also be included in the definition of the 

floodplain. Nanson and Croke (1992) indicated the aforementioned definitions were for hydraulic 
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floodplain and proposed a new definition. This geomorphological floodplain is defined as the 

largely horizontally-bedded alluvial landform adjacent to a channel, separated from the channel 

by banks, and built of sediment transported by the present flow-regime.   

Ilhardt, Verry and Palik (2000) also defined the floodplain as the flat depositional area 

adjacent to the channel of some stream types. 

2.2. Vegetation Index 

Ever since human being have launched the first civilian Earth observation satellite (Earth 

Resources Technology Satellite, ERTS-1), scientists are trying to study the vegetation coverage 

on the earth surface with the data derived from the satellite (USGS 2016). Considering the 

chlorophyll absorbs visible light ranging from 0.4 to 0.7 um for the purpose of photosynthesis and 

the strong reflectance of the near-infrared light caused by the cell structure of the plant leaves, this 

huge difference in the reflectance was used by many researchers to determine the spatial 

distribution of vegetation in the satellite image. 

Various combinations of the red and near-infrared band have been deployed resulting in 

broad choice of vegetation indices. The following vegetation indices are usually used in literature: 

 

 DVI = NIR - R (1) 

 

Difference Vegetation Index (DVI) is calculated by subtracting the red band from the near 

infrared band. DVI is sensitive to the vegetation amount but does not account for the difference 

between radiance and reflectance caused by the atmosphere or shadows. 
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 RVI = 
NIR

R
 (2) 

 

Ratio Vegetation Index (RVI), also called Simple Ratio is represented by near-infrared 

band divided by red band. Vegetation are often associated with high RVI, water, ice and soil are 

often associated with low RVI. RVI also reduces the atmospheric and topographic effects. 

 

 NDVI = 
NIR - R

NIR + R
 (3) 

 

Normalized Difference Vegetation Index (NDVI), like the RVI is a ratio-based vegetation 

index but calculated by dividing the difference between near-infrared band and red band by the 

sum of the near-infrared and red band. NDVI has a range of -1 to 1 and is strongly linked to the 

amount of vegetation. NDVI have the advantages of minimizing the topographic effects and 

exhibiting a good differentiation between vegetation and soil. 

In general, NDVI is a simple and effective vegetation index being used to assess the plant 

grow and vegetation cover in a local or global scale (Henik 2012). In addition to assessing the 

vegetation, the NDVI is also found to have a strong connection to the surface emissivity (Valor 

and Caselles 1996), being an important component in the weather prediction models (Gutman and 

Ignatov 1998) and is widely used in ecosystem related researches such as determining the habitats 

for animals (Hurlbert 2004) and assessing the land degradation at multiple scales (Yengoh et al. 

2014). 

The Enhanced Vegetation Index (EVI) was proposed by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Discipline Group as an improvement over NDVI. In the 
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equation (equation 4), NIR, R, and B are atmospherically-corrected surface reflectances in near-

infrared, red, and blue bands respectively. G is a gain factor, C1 and C2 are the coefficients of the 

aerosol resistance term, which uses the blue band to correct for aerosol influences in the red band, 

and L is a canopy background adjustment (Huete et al. 2002; Jiang et al. 2008). EVI was originally 

used for MODIS and the parameter values for G, C1 and C2 and L are 2.5, 6, 7.5, and 1, 

respectively (Huete, Justice and Liu 1994). EVI is based on feedback-based approach that 

incorporates both background adjustment and atmospheric resistance concept (Matsushita et al. 

2007). 

 

 EVI = G
NIR - R

NIR + C1R - C2B + L
 (4) 

 

Huete et al. (2002) found NDVI and EVI demonstrated good dynamic range and sensitivity 

for monitoring and assessing spatial and temporal variations in vegetation amount and condition. 

However, he also noted that NDVI is trend to saturate in high biomass regions for example in the 

Amazon while EVI is still sensitive to the canopy variations. 

Since Landsat project is the world’s longest running collection of satellite imagery of Earth, 

many researches were conducted using Landsat images and EVI is widely applied. The wavelength 

of the blue, red, near-infrared band of MODIS are 459-479nm, 620-670nm and 841-876nm 

respectively. Since those specifics are similar to the wavelength used in the Landsat satellite (Table 

3), the values for G, C1, C2 and L used in MODIS can be applied to Landsat image directly or with 

little modification. Oguro et al. (2003) used Landsat derived EVI to monitor rice field in the 

growing season. Soudani et al. (2006) used Landsat derived EVI for leaf area index estimation in 
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temperate coniferous and deciduous forest stands. Hassan, Bourque and Meng (2007) used Landsat 

derived EVI in mapping seasonal accumulation of growing degree days. Tatsumi et al. (2015)  used 

Landsat derived EVI to develop a new technique for crop type classification. They all adopted the 

same parameter setting recommend by Huete et al. (1994). Wu et al. (2010) used a series of 

vegetation indices calculated based on Landsat TM image and Hyperion image to estimate the 

canopy chlorophyll content of the maze field. In the calculation of the EVI, he used the same 

parameter values recommend by Huete et al. (1994), except changed the C2 parameter from 7.5 to 

7. 

2.3. GEOgraphic Object-Based Image Analysis (GEOBIA) Overview 

Ever since the first Landsat satellite was launched in 1972, imagery derived from the 

remote sensor has provide tremendous information about the earth surface we lived on. Since earth 

surface reflectance are captured and recorded in digital remote sensing imagery with pixel as the 

smallest unit, most methods developed since 1970s are based on the individual pixel and try to use 

different algorithms to extract information from pixel values. These approached are called pixel-

based methods. In the last a few decades, we has seen fast development in the remote sensing field, 

with higher resolution sensors being launched into the space, more and more high quality remote 

sensing imagery available to the public at no cost or less cost than before, people’s awareness of 

the remote sensing products and interacting with them in daily life such as weather forecast and 

maps from google earth images. Scientists and researchers are also thinking about possibility of 

the extracting surface reflectance information based on other methods than the pixel-based method. 
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As early as 1990s, several research groups have found the pre-defined boundaries such as 

the boundaries of the agricultural fields can be used to increase the accuracy of the terrain objects 

classification (Janssen 1994). 

In the case that no pre-defined boundary is available, how to include neighborhood 

information across several spectral bands is a question need to be answered. Image segmentation 

is one of the solutions emerged at that time. 

Segmentation methods introduced before 2000 are mainly focus on the grey scale imagery. 

Kartikeyan, Sarkar and Majumder (1998) noted that although segmentation of grey scale image 

has some development in the field of robotic vision and many other fields, image segmentation 

based on the color or multi-band imagery has shown little development. Kartikeyan et al. (1998) 

further divided the segmentation methods into two categories: local behavior based approach and 

global behavior based approach. Local behavior based approach used variance of feature in a small 

neighborhood to derive segmentation result. Depending on the analytic method used, local 

behavior based approach can be classified into two categories: edge detection method and region 

growing method. Edge detection is primarily applying a moving window to a neighborhood of 

pixels that will derive high value if edge is detected. N-dimensional edge detection methods have 

been applied in Di Zenzo (1986) and Trahanias and Venetsanopoulos (1993). Another method is 

the region growing method which first select a small number of pixels, test the homogeneity of 

those selected pixels based on specific region model. Next step is to split or merge depending on 

the homogeneity values derived in the prior step. Skidmore (1989) proposed a region growing 

algorithm that started with single seed pixel using the homogeneity criterion. Thomas et al. (1987) 

in his review article, examined several separability indices such as Euclidean distance, divergence, 
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Jeffries-matusita distance and Bhattacharyya distance for their effectiveness in separating classes 

of interest to the user.  

Baatz et al. (2000) proposed a new optimization method for high quality multi-scale image 

segmentation. This method is generally a region growing method. It started with treating each pixel 

in the image as one image object. And the next step is to compare a pair of image objects to see if 

those two image objects can be merged into larger object. The criterion for merging is based on 

the local homogeneity, comparing the similarity of adjacent image objects. A value called 

“merging cost” is being calculated for each potential merge. These costs are indicator of “degree 

of fitting”. If the degree of fitting is smaller than the “least degree of fitting” decided by the end 

user, the merging will be complete. This whole procedure will come to an end if there are no 

potential merges as permitted by the “least degree of fitting”. Since smaller “least degree of fitting” 

will permit less merging than larger “least degree of fitting”, which will cause smaller image 

objects at the end of segmentation, hence the “least degree of fitting” is also called “scale 

parameter”. Larger “scale parameter” will generate larger segmentation objects. The calculation 

of “degree of fitting” and heterogeneity criteria is described in detail in the paper. This 

segmentation method is adopted in the commercial object-based analysis software eCognition and 

being used by many researchers afterwards.      

2.4. GEOgraphic Object-Based Image Analysis (GEOBIA)-Related Research 

Flanders, Hall-Beyer and Pereverzoff (2003) used an object-based approach to classify 

forest cut blocks in Canada. Landsat 7 ETM+ bands 1-5 and 7 were used in the segmentation with 

equal weighting, and in the classification process, spectral characteristics, texture, shape, and the 

hierarchical relationships between objects of different sizes were selected as the class membership 
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functions to assign class. Results demonstrated that the object-based accuracies of cut block scars, 

sparse forest, young forest, mature forest, urban objects, and water were significantly higher than 

those derived from a traditional pixel-based method (maximum likelihood classification). 

Drăguţ and Blaschke (2006) implemented object-oriented image analysis in an effort to 

automatically classify the landform elements. Three layers consisting of slope gradient, profile 

curvature, and plan curvature derived from a digital terrain model (DTM), in addition to the DTM, 

were used as input layers for the segmentation. Segmentation was conducted in eCognition 

software, where four scale parameters values—300, 200, 100, and 10—were used to generate 

segmented images with various object sizes. Segmented images were then draped over the DTM 

to classify image into nine landforms such as peak, shoulder, and side slope. The result showing 

multiscale image segmentation can achieve a satisfying result for the geomorphometry and terrain 

classification. 

Chubey, Franklin and Wulder (2006) applied an object-based approach to IKONOS-2 

imagery to derive forest inventory information. Results showed that the segmented objects carried 

important forest-related information, such as spectral and spatial characteristics of forest stands, 

which is essential in differentiating various forest stand species. 

Dorren, Maier and Seijmonsbergen (2003) examined whether topographic-corrected 

Landsat TM images along with DEMs can improve the accuracy in mapping forest stand types in 

steep mountainous terrain. A forest mask derived from the Landsat TM image data was used to 

generate first-level segmentation results, which were then used to differentiate forest and non-

forest areas. Objects assigned as forest were then used to generate second-level, finer-scale 

segmentation results. A decision tree was used in the classification process in order to classify the 

forest into four stand types. Results indicated that the object-based method does not yield any 
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improvement over the per-pixel classification in the forest stand classification, based on overall 

accuracy values and kappa statistics. However, the authors noted that the forest stand type map 

derived from object-based method agrees more with reality. This controversy is likely caused by 

not using randomly sampled truth in the validation process.   

Forghani, Cechet and Nadimpalli (2007) applied object-based classification on multi-

sensor optical imagery for the generation of terrain surface roughness information, which can be 

used in wind risk simulation. Sensors used included MODIS, Landsat, and IKONOS; the utility of 

such derived image data was tested, and results showed that object-based image classification 

improves the quality of the terrain mapping relative to the pixel-based maximum likelihood 

classification method. 

Frohn et al. (2011) applied segmentation and object-based processing to Landsat ETM+ 

images, with an aim to classify wetlands in Alachua County, Florida, USA. The segmentation 

method used in that study was a bottom-up, region-merging approach, and output was generated 

at three scales: scale 50 was used for data masking, and scales 7 and 10 were used for classification. 

Membership functions were used in classifying the objects into wetland or non-wetland classes, 

and membership features used were spectral mean, shape, and size parameters, texture, and ratio 

of band 4 to the overall brightness values. The results indicated that the object-based classifier 

outperformed the maximum likelihood classifier by 12%.  

Kim, Madden and Xu (2010) used very high spatial-resolution image data and GEOBIA 

method to map vegetation in Great Smoky Mountains National Park, USA. Segmentation was 

performed on the three spectral bands of the 0.5-m spatial-resolution aerial photograph, with a 

series of scale parameter values, ranging from 50 to 300. In the classification process, spectral and 

non-spectral ancillary data, such as three texture measures calculated from grey-level co-
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occurrence matrix (i.e., contrast, correlation and entropy) were used. Results indicated that the 

incorporation of topographic and texture variables increased the accuracy of the vegetation 

classification by 5% and 2.8% respectively, as measured by the Kappa Index of Agreement. 

Lewinski (2006) used Landsat ETM+ image bands 2, 3, and 4, as well as the panchromatic 

band, to produce three pan-sharpened images. Then, two levels of segmentation were performed 

in eCognition software: level one only employs the panchromatic image at a fine scale, and level 

two uses the three pan-sharpened images, with a 1:2:1 weighting scheme at a coarse scale. 

Classification was also conducted via eCognition with the following parameters of the object 

chosen to aid the classification: spectral standard deviations, spectral average values, and Haralick 

texture functions. Results showing land-use class separation did not significantly improve with the 

inclusion of the panchromatic image. However, the panchromatic image was found to be beneficial 

to the image-segmentation process.   

Myint et al. (2011) used QuickBird image data to determine whether an object-based 

classifier can delineate urban features correctly in Phoenix, Arizona. Multispectral image 

segmentation using eCognition was performed to generate image segments at four scales: 10, 25, 

50, and 100. Two object-based classification methods—a membership function classifier and a 

nearest-neighbor classifier—were tested. Results demonstrated that an object-based classifier can 

achieve a higher overall accuracy (90.40%) compared with a commonly-used pixel-based 

classifier (i.e., maximum likelihood) (67.6%).   

Powers, Hay and Chen (2012) proposed a GEOBIA method, which includes new object-

based texture measures (geotex) and a decision-tree classifier (see5). The authors utilized this 

approach to investigate how wetland type and area differ across use of five spatial resolutions, 

ranging from 5m to 30m. Multi-scale segmentation was performed via Size-Constrained Region 
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Merging (SCRM) software on pan-sharpened SPOT 5 images, resampled into 5 scales. The 

decision tree was then used to classify segmented objects into 15 wetland classes. Results showed 

that 10-m is the spatial resolution that yields the highest classification accuracy, of those tested. 

Thomas, Hendrix and Congalton (2003) compared three methods for effectiveness in 

extracting land-cover and land-use information using 1-m high-resolution digital imagery. The 

three methods compared were: supervised/unsupervised per-pixel classification, raster-based 

spatial modeling, and image segmentation with a classification-tree analysis. The results indicated 

that the spatial-modeling method had the highest overall accuracy (81%), whereas the objected-

based approach yielded an accuracy of 70%, and the supervised/unsupervised approach posted the 

lowest accuracy (58%).  
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3. STUDY SITE AND DATA 

 

3.1. Study Site 

In this study, we examine the floodplain of Río Beni (Figure 1), located in the Bolivian 

Amazon. Río Beni, with its upper sub-catchments in Andean and sub-Andean ranges, is a main 

tributary of the Madeira River and counts for 72% of the sediment load in Madeira River (Guyot, 

Jouanneau and Wasson 1999; Gautier et al. 2007). Latrubesse, Stevaux and Sinha (2005) indicated 

there are limited knowledge available on tropical rivers. This statement is especially true for river 

systems in Amazonian floodplains. Previous fluvial dynamics studies are mainly focus on 

anastomosed river systems in the middle and lower Amazon river (Mertes, Dunne and Martinelli 

1996; Dunne et al. 1998; Mertes and Dunne 2007) as well as Rio Negro (Franzinelli and Igreja 

2002; Latrubesse and Franzinelli 2002). The analysis of the Río Beni floodplain will provide new 

information of the meandering river system. Río Beni is a highly dynamic river system, 

characterized by rapid planform migration and chute and neck cut-off processes that are observable 

decadal scales. The sinuosity index in the upper part of the floodplain ranges from 1.5 to 2 and in 

the lower part it ranges from 3.5 to 4 (Gautier et al. 2010). Gautier et al. (2007) observed 27 cut-

off processes occurred during 1967-2001 and those meander cut-offs generate plentiful abandoned 

channels which some of them are transited to oxbow lakes. Other than oxbow lake, the floodplain 

of Río Beni is also abundant with geomorphic landforms such as meander scars and scroll bars. 

The floodplain vegetation is composed of forest and non-forest vegetation, entailing spatially-

varying patterns on the floodplain. In this study, we examined a total area of 2682 square 

kilometers of the floodplain, extending from 12˚14ʹ S to 14˚19ʹ S and from 66˚52ʹ to 67˚33ʹ W. 
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Figure 1. Study site: Río Beni Floodplain in Bolivia. 
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3.2. Digital Elevation Model 

Digital Elevation Model (DEM) which can display the terrain’s surface in 3D visualization 

is commonly used by geomorphologists to measure and extract the surface characters. Currently, 

a variety of DEM products are available to the public at no cost. 

3.2.1. United States National Elevation Dataset 

The National Elevation Dataset (NED) provided by the U.S. Geological Survey (USGS) is 

a DEM dataset with coverage of the mainland US and its territories. The elevation data inside NED 

all share a consistent resolution and elevation units (Gesch et al. 2002).  

3.2.2. ASTER Global Digital Elevation Model 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) is a dataset produced by the Ministry of Economy, Trade and 

Industry (METI) of Japan and National Aeronautics and Space Administration (NASA) of United 

States (Jet Propulsion Laboratory 2004). Elevations were measured aboard the Terra satellite 

launched by NASA in December 1999, using downward- and rearward-pointing stereoscopic 

cameras. These cameras captured overlapping near-infrared images of effectively global 

geographic extent (latitudes S83 to N83). The first version of the GDEM (GDEM1) was released 

in June 2009, and the second version of the GDEM (GDEM2) was released in October 2011; both 

versions have a spatial resolution of 30m (NASA/METI/AIST/Japan Space Systems 2009). The 

second version of the GDEM exhibits higher accuracy over the United States, with an average 

absolute vertical accuracy approximately -0.2 m, when compared with ~18,207 control points in 

the Conterminous US (CONUS), and a 17-m precision with a confidence level set at 0.95 (Gesch 

et al. 2011; Tachikawa et al. 2011; Robinson, Regetz and Guralnick 2014). 
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3.2.3. Shuttle Radar Topography Mission Digital Elevation Model 

Shuttle Radar Topography Mission (SRTM) is a joint mission conducted by the National 

Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency 

(NIMA) under the U.S. Department of Defense, and the German and Italian space agencies, with 

an aim to acquire radar elevation data at a global scale that can be used to build a high-resolution 

topographic database of the Earth (Nghiem et al. 2001; Jet Propulsion Laboratory 2019). This 

mission started when Space Shuttle Endeavour was launched on February 11, 2000, and over a 

period of 11 days, successfully collected synthetic aperture radar (SAR) data, covering ~80% of 

the globe (from 60°S to 60°N ), with some part of the Earth having more than four times the 

coverage (Nghiem et al. 2001; Robinson et al. 2014). The radar instrument used in this mission is 

called the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar, which was previously 

commissioned for a Space Shuttle Endeavour mission in 1994. However, to fulfill the aim of 

collecting 3D elevation data of the earth surface, additional C/X band antennas were installed on 

the 200 foot long mast of the Space Shuttle. With one pair of antennas installed at a known 

distance, radar interferometry can be used to triangulate the position of the surface point from 

space.  

The resultant elevation dataset derived from SRTM has a spatial resolution of 1 arc-second, 

or ~30 m for the United States, and 3 arc-seconds, or ~90 m, for the rest of the world at first release. 

On September 23, 2014, following by an announcement from the White House, 1 arc-second (~30 

m) elevation data were made available to the public for the global dataset.  
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3.2.4. Comparison among various Digital Elevation Models 

Since SRTM is humanity’s first attempt to generate a high-resolution digital elevation 

dataset at a global scale, the accuracy of the SRTM dataset is important for all the users around 

the world. As indicated by the producer, final linear vertical absolute height error of the SRTM 

dataset is specified to be less than 16m for 90% of the data and final circular absolute geolocation 

error of the SRTM dataset is set to be less than 20m for the 90% of the data (Rodriguez et al. 2005). 

In order to verify the SRTM accuracy globally, extensive ground-reference data, including nearly 

9.5 million ground control points collected using Kinematic Global Positioning System (KGPS) 

from six continents (with average error of 50cm) as well as other elevation data sources such as 

Digital Terrain Elevation Data (DTED) produced by NGA (National Geospatial-Intelligence 

Agency) have been used to evaluate the accuracy of the SRTM dataset (Rodriguez, Morris and 

Belz 2006). The evaluation result is shown in Table 1, values in the tables represent 90% errors 

(Rodriguez et al. 2005). 

 

 

Table 1. Summary of SRTM accuracy (Rodriguez et al. 2005)  

 Africa Australia Eurasia Islands N. America S. America 

Absolute 

Geolocation 

Error (m) 
 

11.9 7.2 8.8 9.0 12.6 9.0 

Absolute Height 

Error (m) 
 

5.6 6.0 6.2 8.0 9.0 6.2 

Relative Height 

Error (m) 
 

9.8 4.7 8.7 6.2 7.0 5.5 

Long Wavelength 

Height Error (m) 
3.1 6.0 2.6 3.7 4.0 4.9 
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As indicated in Table 1, the absolute height error and absolute geolocation error for South 

America at 90 percentile is 6.2m and 9.0m respectively, which are less than the 16m and 20m 

requirement of the mission. Gesch et al. (2011) compared the absolute vertical accuracy of the 

ASTER GDEM with NED and 1 arc-second SRTM elevation dataset using 18,207 ground control 

points derived from National Geodetic Survey (NGS) when the second version of the GDEM was 

first released. The result is shown in Table 2; RMSE denotes the Root Mean Square Error, and 

LE95 signifies the linear error at the 95% confidence level. We can observe from the table that 

GDEM2 shows significant improvement over GDEM1 in mean absolute vertical error (from -

3.69m to -0.2m). When compares to SRTM, although the mean absolute vertical error of the 

GDEM2 is slightly smaller (-0.20m compares to 0.73m), other statistics such as standard deviation, 

RMSE, LE95 still indicating SRTM is more consistent in error which made it more reliable than 

GDEM2. 

 

 

Table 2. Absolute vertical accuracy assessment (unit: meter) for four elevation datasets (Gesch et 

al. 2011) 

DEM Minimum Maximum Mean 
Standard 

Deviation 
RMSE LE95 

GDEM2 -137.37 64.80 -0.20 8.68 8.68 17.01 

NED -46.21 16.42 -0.33 1.81 1.84 3.61 

SRTM -28.67 28.58 0.73 3.95 4.01 7.86 

GDEM1 -127.74 105.41 -3.69 8.58 9.34 18.31 
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In the same paper, Gesch et al. (2011) also investigated the relationship between the 

absolute vertical error of GDEM2 and different land-cover types. All the ground control points 

were classified into three different classes: forest, developed land, and open land. Results indicate 

that although the RMSE of the absolute vertical error for each class is approximately the same (~9 

m), the mean absolute vertical error for each class is quite different. Mean absolute vertical error 

for forest, developed land, and open land are 3.1m, -0.13m, and -0.95m, respectively. Such high 

mean error for the forest class can be explained by the method for generating the GDEM. Since 

GDEM was generated using ASTER stereo-pair surface-reflectance images, for areas with dense 

vegetation/canopy coverage or human-made structures, the derived DEM will include the 

elevation of such objects instead of the bare Earth (bare ground). Tachikawa et al. (2011) also 

confirmed that such error over forested areas can be observed when compared to a 10-m DEM of 

central Honshu Island generated by the Geographical Survey Institute (GSI) of Japan; absolute 

vertical error of the GDEM2 is 8.68m, which is larger than the 3.1m error observed in United 

States.   

When comparing the mean error of the ASTER GDEM2 with the SRTM DEM, it is notable 

that in forested areas, elevation values from ASTER GDEM2 are higher than elevation values from 

SRTM DEM. This discrepancy can be explained by different methods used to generate those two 

elevation datasets. Due to the short wavelength (5.6 cm C-band radar) used in the SRTM radar, 

the interferometric height response in the vegetated area will be scattered, causing the derived 

DEM higher than bare-Earth and lower than the top of canopy (Kellndorfer et al. 2004). As for the 

ASTER GDEM2, since it uses stereo images to generate DEM, the derived DEM in the vegetated 

area will reflects the elevation at the top of canopy.      
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Wong et al. (2014) also suggested that when comparing both SRTM DEM and ASTER 

GDEM2 with a high-accuracy Light Detection and Ranging (LiDAR) DEM in a tropical montane 

forest area located in Malaysian Borneo, SRTM DEM is found to produce better topographic data 

than ASTER GDEM2. 

Since our study site is located in Bolivia, South America, we chose to use the 1 arc-second 

(~30-m) resolution SRTM DEM based on its accuracy, as well as reliability over the South 

American continent (Table 1; Table 2). Also, since much of the Río Beni floodplain is densely 

covered with vegetation, the SRTM DEM is a better choice relative to other available global DEMs 

since its measured elevations are closer to bare-Earth. 

3.3. Detrended DEM 

A detrended DEM (DDEM), referred to as a Relative Elevation Model (REM), represents 

the elevations relative to the stream’s or river’s water surface or active channel by removing 

downstream changes in elevation associated with the channel gradient, a process called 

“detrending” (Olson et al. 2014). A detrended DEM is suitable for extracting subtle floodplain 

landforms, and its usefulness in extracting side channels and other fluvial landforms along 

stream/river corridors has been described in Jones (2006).  

There are three commonly-used DEM-detrending methods: a kernel density method (Dilts, 

Yang and Weisberg 2010), an inverse distance weighting method (Olson et al. 2014), and a cross-

section method (Jones 2006). The kernel density method and inverse distance weighting method 

require less time and are more automated than the cross-section method. However, the cross-

section method allows user to draw cross-sections manually as a way to control how elevations 

are extrapolated away from the channel. Hence the cross-section method is superior when dealing 
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with meandering river systems like the one in our case since the automated algorithm tends to 

generated more artifacts in the final product. In this study, we adopted the cross-section method, 

and the process we employed to generate the detrended DEM for our study site is summarized 

below (Olson et al. 2014): 

1. Digitize the left and right bank of the Río Beni, and then smooth the banks via a 

Savitzky-Golay filter, with a window that achieves maximum smoothness while 

still preserving the shape of the river banks. In this case, we adopted a 5th order 

Savitzky-Golay filter with a kernel window of 31 vertices along the river banks. 

2. Use the centerline tool in Esri ArcGIS/ArcMap to generate a channel centerline 

using the digitized left and right river banks. Channel centerlines generated from 

bends with significant unequal widths of the left and right bank will have an 

abnormal shape that is not centered between the banks; a Savitzky-Golay filter is 

used again to correct those abnormalities.   

3. Draw the cross section. All cross sections must cross the channel centerline, and 

cross sections cannot intersect with each other. Cross sections are drawn 

perpendicular to the channel centerline and extend to the edges of the floodplain; 

exceptions can be made for meandering river channels, such as the Río Beni in this 

case. The spacing of cross sections are usually dependent upon the user’s 

requirement of the final detrended DEM.  

4. Assign elevations of the river channel to the cross-section. Sample points are 

created along the channel centerline and then used to extract the elevation of the 

river surface. Then, the elevation values are passed from the sampling points to the 

corresponding cross-sections. 
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5. Create a Triangulated Irregular Network (TIN) from the cross sections. The TIN is 

then converted to a raster DEM with the extent of the floodplain study area. This 

raster DEM now represents the elevation of the water surface. 

6. The detrended DEM is generated by subtracting the newly-generated water surface 

DEM from the SRTM DEM of our study site. 

The detrended DEM represents the elevation above the water surface in our study area, the 

Río Beni floodplain; given its properties, we expect the detrended DEM to be beneficial with 

respect to classification accuracy of land cover and geomorphic objects. 

3.4. Satellite Image Acquisition and Preprocessing 

The Landsat project is the world’s longest-running collection of satellite imagery of the 

Earth. Since July 23, 1972, when the Earth Resources Technology Satellite was launched, the 

Landsat mission has continuously been providing moderate spatial-resolution multispectral data 

of the Earth’s surface. The extensive spatio-temporal coverage of Landsat data has enabled 

researchers in various disciplines to investigate the world’s natural resources, including forests, 

water, minerals, as well as Earth-surface human-related activities, such as urbanization and 

agriculture (USGS 2019a). Data from Landsat 5 and Landsat 7 have particularly been commonly-

analyzed in recent years. Specific characteristics of the Landsat 7 ETM+ sensor are given in Table 

3. 
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Table 3. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor characteristics (Goward et 

al. 2001). 

Bands 
Wavelength Range 

(Micrometers) 

Spatial Resolution 

(Meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 

Band 8 - Panchromatic 0.52-0.90 15 

 

 

Image-acquisition date and cloud-cover extent are the two criteria that we consider when 

selecting appropriate Landsat images for this study site. Since the Shuttle Radar Topography 

Mission (SRTM) began on February 11, 2000, and since we utilize its product (SRTM DEM) in 

this study, to minimize the temporal offset between Landsat image and SRTM DEM data 

acquisitions, we select two Landsat 7 ETM+ scenes (courtesy of the U.S. Geological Survey) 

acquired on September 12, 1999, as they are cloud-free with minimal temporal disjunction with 

respect to the SRTM DEM data-collection date. We used two Landsat scenes in order to cover the 

entire floodplain area of interest. 

Standard Landsat data distributed by USGS are in GeoTIFF format, with 30-m pixel size. 

The Landsat Product Generation System (LPGS) is used to generate three different levels of 

Landsat products: (1) Precision and Terrain Correction Level (Level-1TP, L1TP); (2) Systematic 

Terrain Correction Level (Level-1GT, L1GT); and (3) Systematic Correction Level (Level-1GS, 
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L1GS). The Level-1TP product is radiometrically-calibrated and orthorectified based on a digital 

elevation model and ground control points, which translates this into being the highest-quality 

Level-1 product. Correction of relief displacement with this product also makes it suitable for time-

series analysis at the pixel scale (USGS 2019b). The two Landsat 7 ETM+ scenes used in this 

study are Level-1TP products. 

3.5. Enhanced Vegetation Index (EVI) 

Huete et al. (2002) indicated that the normalized difference vegetation index (NDVI) tends 

to saturate in high biomass regions, such as in the Amazon rainforest, whereas EVI is still sensitive 

to forest canopy variations in such areas. Since our study site is located in a tropical floodplain 

environment, where a large portion of the area is covered with vegetation canopy, we use EVI as 

the vegetation index layer in our classification process. EVI is calculated using atmospherically-

corrected Landsat surface reflectance image data (described below) based on the equation: 

 

 EVI = G
NIR - R

NIR + C1R - C2B + L
 (5) 

 

where NIR, R, and B are atmospherically-corrected surface reflectances in near-infrared, red, and 

blue bands, respectively; G = 2.5, C1 = 6, C2 = 7.5, and L = 1. 

3.6. Normalized Difference Water Index (NDWI) 

McFeeters (1996) introduced Normalized Difference Water Index (NDWI) as a new 

method to delineate open water features and enhance their presence in images derived from remote 

sensor. NDWI is calculated using the equation listed below: 
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 NDWI = 
G - NIR

G + NIR
 (6) 

 

In this equation, G and NIR are atmospherically corrected surface reflectances in green and 

near-infrared bands. Wavelengths selection presented here is aimed to enhance the reflectance of 

the water body by using green wavelength and limit the low NIR reflectance of the water body. 

This selection also benefits from the high NIR reflectance presented by soil and vegetation. When 

applying the equation to multispectral remote sensing image, water body will have positive NDWI 

values while soil and vegetation will have zero or negative values. 

In our study, we use atmospheric corrected Landsat surface reflectance image of our study 

site to calculate the NDWI layer to be used as ancillary layer in our classification process.   
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4. METHOD 

 

4.1. Image Pre-processing 

Although the Landsat products were geometrically corrected by USGS, a high percentage 

of images are contaminated by atmospheric effects include aerosol and molecular scattering, gas 

absorption as well as cloud shadows (Liang, Fang and Chen 2001). Atmospheric correction is 

needed to remove or minimize those effects before we can retrieve spectral signature from earth 

surface land covers. Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH®) 

radiative transfer model is selected in this study to covert the DN values in the original products 

to surface reflectance. The FLAASH algorithm is based on the existing MODTRAN4 radiative 

transfer model, which was developed by the Air Force Research Laboratory and Spectral Science 

Inc. to support atmospheric correction of visible to short-wave infrared multispectral and 

hyperspectral sensors (Cooley et al. 2002).    

Certain parameters are required by the FLAASH model in order to accurately execute the 

atmospheric correction. Scene center location, flight date and time, sensor altitude, pixel size can 

be located in the metadata of the downloaded image file. Ground elevation is set as the mean 

elevation of the full scene calculated using the SRTM. Atmospheric Model is an important 

parameter in the standard MODTRAN model. Based on water vapor amount in the atmosphere, 

the whole world can be divided into six different zones: (1) Sub-Arctic Winter (SAW); (2) Mid-

Latitude Winter (MLW); (3) U.S. Standard (US); (4) Sub-Arctic Summer (SAS); (5) Mid-Latitude 

Summer (MLS); (6) Tropical (T). If water vapor amount is not available (our case), Table 4 can 

be used to decide atmospheric zone based on the relationship between water vapor content and 
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seasonal-latitude surface temperature (Harris geospatial solutions 2019). In our case, atmospheric 

model is set to Tropical (T) since mean latitude for our study site is 13˚ and images were acquired 

on September. Aerosol model in the FLAASH is set to rural, since by definition, this model should 

be chosen if aerosols in the study area is not heavily affected by industrial or urban sources. For 

the Aerosol Retrieval method, we chose 2-Band (K-T) method and set the Band 7 (shortwave 

infrared 2) of the ETM+ image as KT upper channel, Band 3 (red) as KT lower channel. 

 

 

Table 4. Seasonal-latitude surface temperature model (Harris geospatial solutions 2019) 

Latitude 

(°N) 
Jan March May July Sept Nov 

80 SAW SAW SAW MLW MLW SAW 

70 SAW SAW MLW MLW MLW SAW 

60 MLW MLW MLW SAS SAS MLW 

50 MLW MLW SAS SAS SAS SAS 

40 SAS SAS SAS MLS MLS SAS 

30 MLS MLS MLS T T MLS 

20 T T T T T T 

10 T T T T T T 

0 T T T T T T 

-10 T T T T T T 

-20 T T T MLS MLS T 

-30 MLS MLS MLS MLS MLS MLS 

-40 SAS SAS SAS SAS SAS SAS 

-50 SAS SAS SAS MLW MLW SAS 

-60 MLW MLW MLW MLW MLW MLW 

-70 MLW MLW MLW MLW MLW MLW 

-80 MLW MLW MLW MLW MLW MLW 

 

 

After completing atmospheric correction for the two Landsat 7 scenes, image mosaicking 

and subsetting was performed in ENVI 5.4 to derive the atmospherically-corrected surface 

reflectance image of the study area (Figure 2).  
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Figure 2. Surface reflectance image of the Río Beni floodplain in false-color composite. 

 

 

4.2. Reference Region Selection 

The floodplain of Río Beni is abundant with geomorphic landforms, ranging from oxbow 

lakes, meander scars, to scroll bars. Vegetation coverage of the floodplain can often be observed 

in the following locations: (1) Sand bar—scrub in sandbar can grow to 1-2 m in height and is 

dominated by Salix humboldtiana and Tessaria integrifolia; (2) River edge—dominate tree species 

in this area are Erythrina, Ochroma and Cecropia, and they can often grow to 20-25 meters in 

height; (3) Areas seasonally or permanently inundated by weak current—forest in this area is called 
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varzea forest and is dominated by buttressed trees with close to 30-meter canopy height; (4) Area 

never flooded—palms and bamboo can be observed in this area and have more undergrowth than 

other regions (Remsen Jr and Parker III 1983). 

Given this, we propose eight (8) land-cover and geomorphic classes (Table 5): (1) River; 

(2) Oxbow Lake; (3) Sand Bar; (4) Scroll Bar Ridge; (5) Scroll Bar Swale; (6) Forest; (7) Non-

forest Vegetation; and (8) Bare Soil. Reference regions for each land-cover and geomorphic class 

are required for the use as training areas for supervised classification, as well as for validation sites 

for the subsequent classification accuracy-assessment phase. Since the reflectance variation of the 

oxbow lake and sand classes present within the Landsat 7 ETM+ image mosiac is very high, those 

two classes have been further divided into 2 sub-classes to decrease the reflectance variation within 

sample groups (Table 5).  

 

Table 5. Land cover, geomorphic classes and reference region count 

No. 
Land Cover and 

Geomorphic Classes 
Reference Classes 

Reference 

Region Count 

Area 

(km2) 

1 River River 25 39.43 

2 Oxbow Lake 
I.  Oxbow Lake (Bright) 25 27.32 

II. Oxbow Lake (Dark) 25 20.25 

3 Sand Bar 
I.  Sand Bar (Bright) 25 3.49 

II. Sand Bar (Dark) 25 2.94 

4 Scroll Bar Ridge Scroll Bar Ridge 50 2.69 

5 Scroll Bar Swale Scroll Bar Swale 50 4.14 

6 Forest Forest 100 3.96 

7 Non-Forest Vegetation Non-Forest Vegetation 50 20.04 

8 Bare Soil Bare Soil 50 42.05 
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The surface-reflectance image mosaic derived from the input Landsat 7 image data is the 

main data source for visually identifying those regions. A Normalized Difference Water Index 

(NDWI) image was used along with the surface-reflectance image to locate river bank and oxbow 

lake boundaries. Normalized Difference Vegetation Index (NDVI) image and Landsat Vegetation 

Continuous Fields (VCF) tree-cover data (Global Land Cover Facility, University of Maryland) 

are used in conjunction with the surface-reflectance image to delineate forest and non-forest 

vegetation regions. For scroll bars, due to the limited, moderate spatial resolution of the Landsat 

image data, many individual scroll bars cannot be accurately delineated using surface-reflectance 

image alone, a pan-sharpened image of the study site (using the panchromatic band of the Landsat 

7 ETM+ sensor to increase detail in the reflectance image) as well as high-spatial resolution 

Google Earth images acquired during the 2000-2003 time interval are used to help delineate scroll 

bars in the map. Spectral reflectance variation within each reference class and average area of the 

individual reference regions are considered together in determining the size for each reference 

class. The number of regions chosen for each class ranges from 25 to 100, with the total number 

of reference regions is 425. Reference regions are selected across the study area (Figure 3) to 

ensure their representativeness of the respective classes, and reduce bias in the sampling process. 

Digitization of reference regions was performed in ArcMap. Example reference regions are given 

in Figure 4.  
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Figure 3. Spatial distribution of the reference regions in Rio Beni study site. 
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Figure 4. Reference regions of the land-cover and geomorphic classes. 

 

 

For supervised classification training and validation purposes, reference regions are further 

divided into two parts: 60% of the reference regions are randomly selected to be used as training 

samples in the image classification analysis, whereas the rest of the regions serve as reference for 

the classification accuracy assessment. 

4.3. Image Segmentation Using eCognition® Software 

4.3.1. eCognition® Image Segmentation Method Overview 

eCognition® is remote-sensing image-analysis software developed by Definiens Imaging 

GmbH in 2000 and was acquired by Trimble in 2010. It was originally designed for medical 

imaging applications, but remote-sensing professionals, as well as researchers in forestry, urban 

planning, and agriculture saw the potential of this software to rapidly and accurately extract geo-

information from remote-sensing images. The patented Cognition Network Technology used in 
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eCognition was developed by Nobel Laureate in Physics Gerd Binning. This technology simulates 

human cognitive perception in extracting information from images, and the use of advanced 

machine-learning algorithms, as well as the infusion of user knowledge and domain expertise, 

enable it to automatically process large stores of images (Flanders et al. 2003; Trimble 2010). 

 

 

 

Figure 5. Chessboard segmentation   

 

 

The first step in eCognition image analysis is to divide input image into small pieces, which 

serve as fundamental blocks for later analysis. This step is called segmentation in this software 

and results are undefined objects. In general, those objects are relatively crude, but can be refined 

with additional rule sets. There are two kind of segmentation methods supported by eCognition: 

(1) A top-down segmentation, which dividing something big into smaller fragments; (2) A bottom-

up segmentation, which combining smaller fragments into something bigger. Chessboard 

segmentation (Figure 5), quadtree-based segmentation, contrast filter/split segmentation are all 

representative methods within the top-down segmentation. Examples for bottom-up segmentation 

are multiresolution segmentation and multi-threshold segmentation. The multi-threshold 

segmentation divides image objects from a user defined pixel value threshold. In our study, we 
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choose to use multiresolution segmentation, which is a method successively merging image pixels 

or image objects based on a pairwise region merging technique (Trimble 2011).  

To start, this algorithm identify objects with the size of one pixel and then merging them 

into their neighborhood if the relative homogeneity criteria is met (eCognition Developer 2014). 

By definition, homogeneity criterion measures the homogeneity of the pixels within image objects 

and two different parameters, shape and compactness are used in combination to composite this 

criterion. Shape value ranges from 0.0 to 0.9. By defining a shape value, you defined what 

percentage of shape homogeneity should be taken into consideration when composite the 

homogeneity criterion. Also, by changing the shape value, the color criteria (color value = 1 – 

shape value) will be changed. For example, if the shape value were set to 0.3, color value will 

automatically set to 0.7 which means homogeneity criterion will 30% depends on the shape 

homogeneity and 70% depends on the homogeneity of the spectral homogeneity of the input image 

objects. The maximum value of shape parameter was set to 0.9 since if shape value were set to 1.0, 

then the output segmentation objects would not have any connections with the image’s spectral 

information. Compactness describes how compact an object is, the more compact an object is, the 

smaller its border appears. Compactness and smoothness are combined to decide the shape value 

(Trimble 2011). In this study, after multiple trials, shape value and compactness value are set to 

0.1 and 0.5 respectively.
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4.3.2. Segmentation Layer Weights and Scale Parameter 

Seven raster layers have been chosen to use as the input layer for the segmentation process. 

Including six 30m resolution atmospheric corrected surface reflectance images (Blue, Green, Red, 

Near Infrared, Shortwave Infrared 1, Shortwave Infrared 2) derived from Landsat ETM+ and 30m 

resolution DEM raster from SRTM. After choosing the input layer, individual layer’s weight also 

needs to be set before the segmentation can start. Image layers should be weighted depending on 

the importance of each layer and their fitness to the result of the segmentation. If higher weight is 

set to one image layer, then more weight is assigned to this layer’s pixel information in the 

segmentation. Weights for the input layer were usually decided on a case-by-case scenario. Many 

researchers use equal weights for their input layers. For example, Gupta and Bhadauria (2014) use 

equal weights for the Landsat ETM+ image bands for a San Antonio, Texas study area, as well as 

high-spatial resolution orthophotos (acquired in 1995, 2000, 2003 and 2004) to generate 

segmentation results; Zhang et al. (2010) choose to use equal weighting for the four (4) pan-

sharpened multispectral bands (derived from QuickBird and Ikonos multispectral images) acquired 

over Fredericton, Canada to determine optimal segmentation parameters for eCognition, as well 

as other researchers (Sun et al. 2014; Wei, Chen and Ma 2005). However, different weighting can 

be used if there is more information in a given image/layer relative to other data layers. In Syed, 

Dare and Jones (2005), equal weight (weight = 1) was assigned to each of the multispectral bands 

due to lack of color homogeneity visually observed within the same features in the image. 

However, another layer that was used—a LiDAR-derived nDSM layer entailed more homogeneity 

in grey level; therefore more weight (weight = 5.5) was given to this layer. In Kampouraki, Wood 

and Brewer (2008), the authors found, through several empirical trials, that the best values for each 
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parameter were: weight of red band = 2; weight of green band = 4; and weight of blue band = 1. 

Chubey et al. (2006) found that preliminary correlation analysis of the image data revealed a high 

degree of correlation among the three bands representing the visible portion of the spectrum (bands 

1 through 3), but much lower correlation between the near-infrared band (band 4) and the visible 

bands. In response to the above considerations and observations, the weightings of the 

multispectral bands were arranged such that the three visible bands were assigned equal weights, 

and the sum of the weights assigned to the three visible bands combined equaled the weighting 

assigned to the near-infrared band. 

In our study, we adopt the method proposed by Chubey et al. (2006). We first conduct a 

correlation analysis on our six (6) 30-m spatial-resolution atmospherically-corrected surface-

reflectance images, and the result is given in Table 6. Based on the correlation matrix, blue, green, 

and red bands are highly correlated (with a correlation index greater than 0.96), as is the case 

between the first and second SWIR bands (i.e., SWIR 1 and SWIR 2) (where correlation index = 

0.82). Based on this information, equal weight should be assigned for Blue, Red and Green band 

and for SWIR 1 and SWIR 2 band. Since NIR band has low correlation with other bands, greater 

weight should assign to NIR band to extract more information from this band. 
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Table 6. Correlation matrix of the surface reflectance images 

Correlation 

Coefficient 
Blue Green Red NIR SWIR 1 SWIR 2 

Blue 1.000 0.968 0.961 -0.580 -0.067 0.433 

Green 0.968 1.000 0.966 -0.559 -0.111 0.366 

Red 0.961 0.966 1.000 -0.618 -0.098 0.409 

NIR -0.580 -0.559 -0.618 1.000 0.637 0.176 

SWIR 1 -0.067 -0.111 -0.098 0.637 1.000 0.820 

SWIR 2 0.433 0.366 0.409 0.176 0.820 1.000 

 

 

4.3.3. Selecting optimal segmentation result 

In order to observe different weighting combination as well as different scale parameter’s 

effect on the segmentation process, we propose 15 trials as shown in Table 7. First, for the scale 

parameter, we select three scale parameters (10, 20 and 30) to generate segmentation object at 

different scale level. Second, within each scale parameter, following our conclusion from previous 

section, equal weight (weight = 1) has been assigned for Blue, Red and Green band and for SWIR 

1 and SWIR 2 band. Different weighting combination between NIR band and SRTM is then 

adopted for each scale. 
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Table 7. Segmentation trials with different weighted layers and scale parameter 

Trial  

NO. 

Weight Scale 

Parameter Blue Green Red NIR SWIR1 SWIR2  SRTM 

1 1 1 1 3 1 1 0 

10 

2 1 1 1 2 1 1 1 

3 1 1 1 3 1 1 1 

4 1 1 1 2 1 1 2 

5 1 1 1 3 1 1 3 

6 1 1 1 3 1 1 0 

20 

7 1 1 1 2 1 1 1 

8 1 1 1 3 1 1 1 

9 1 1 1 2 1 1 2 

10 1 1 1 3 1 1 3 

11 1 1 1 3 1 1 0 

30 

12 1 1 1 2 1 1 1 

13 1 1 1 3 1 1 1 

14 1 1 1 2 1 1 2 

15 1 1 1 3 1 1 3 

 

 

Evaluation of the segmentation result is needed once the trials described above are 

conducted. Generally speaking, there are two kinds of the discrepancies that will occur in the 

segmentation process: 

• Under segmentation, which occurs if the segmentation method divides the image 

into too few segments, resulting a part or even the whole real world object be 

contained in another object. 

• Over segmentation, which occurs if the segmentation method divides the image 

into too many segments, resulting the real-world objects being divided into sub-

objects. 

While over segmentation can divide real word object into multiple parts, it’s usually 

feasible to rebuild the original object using those sub-objects in the post-processing. However, 
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rebuilding the original object using under-segmentation result would be much harder. Therefore, 

under- segmented result should be avoided during the segmentation process.    

Various accuracy assessment methods have been introduced from the day when image 

segmentation was first performed and keep evolving as new segmentation methods emerged. In 

one review paper (Zhang 1996), the author studied different evaluation methods and attempted to 

generalize those existing methods into three categories:  

1) Analytical methods, these methods inspect and analyze the principles as well as the 

properties behind the segmentation algorithms. One advantage of this evaluation 

method is that it does not rely on the implementation of segmentation algorithms and 

thus can avoid the errors introduced by different evaluation trials. However, some 

properties associated with the algorithm may not be acquired by analytical study, which 

hinders the usage of this method. 

2) Empirical goodness methods, these methods assess the performance of the 

segmentation algorithms based on the quality of the resulted image. Various quality 

measurements have to be defined before the implementation of this method. In general, 

those measurements are linked to human intuition regarding what can be classified as 

“ideal” segmentation. One advantage of this evaluation method is that it doesn’t need 

a reference image for the assessment process. If reference image is hard to acquire or 

would be labor-intensive to acquire, empirical goodness method can provide an easy 

and time-efficient solution. Three criteria are often used in empirical goodness 

methods:  

a) Uniform property within each region, Levine and Nazif (1985) proposed that ideal 

segmentation algorithm should result in an image showing higher uniformity within 



 

41 

 

each segmented region. Variance of the pixel values within each region (Levine 

and Nazif 1985) and higher order local entropy (Pal and Pal 1989) are some of the 

properties can be measured here. 

b) Contrast among each regions, Levine and Nazif (1985) also proposed that ideal 

segmentation algorithm should result in an image showing higher contrast among 

segmented regions. An automatic threshold selection method presented by Otsu 

(1979), which maximizing the separability of the resulted classes, is based on this 

criterion.  

c) Region shape, instead of focusing on the pixel value, Sahoo, Soltani and Wong 

(1988) introduced a shape measure which can assess different segmentation 

algorithms.   

3) Empirical discrepancy methods, these methods assess the performance of the 

segmentation algorithms based on discrepancy between user’s segmentation result and 

an ideal segmented result of the same image. This ideal segmented result is also called 

reference image or gold standard (de Graaf et al. 1994) in image processing field. In 

general, these methods examine how much difference can be observed in user’s 

segmentation result when compare to the reference image. Higher difference 

measurement usually associated with more flaws in the user’s segmentation, which 

indicates the implemented algorithm has lower accuracy. Similar to empirical goodness 

methods, four criteria are often used in empirical discrepancy methods:  

a) Percentage of mis-segmented pixels. This criterion derives from accuracy 

assessment concept used in pixel-based image classification. If a segmented image 

has N classes, a confusion matrix of N dimensions can be built and then used to 
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determine two type of errors (Type I error and Type II error) associated with the 

segmentation. 

b) Location of mis-segmented pixels. This criterion account for the spatial position of 

the mis-segmented pixels. It’s not uncommon to see two segmented images has 

similar percentage of mis-segmented pixels but with tremendously different spatial 

pattern.    

c) Object counts in the image. This criterion examines the difference of the total 

objects found in the reference image and user’s segmentation result. 

d) Feature values of the segmented objects. The ultimate goal for the segmentation 

process is to extract information, thus if a segmented image can yield same feature 

values as in the reference image, it would be considered as high quality. 

In our study, the empirical discrepancy method is selected since the main purpose for our 

evaluation is to assess whether image segments are based on “real” objects, such as oxbow lake 

boundaries, and forest and grassland outlines, in the real world. We need to determine whether the 

segmentation result from the trials listed on the last section can accurately delineate objects from 

our eight (8) land-cover and geomorphic classes.  

As indicated in Neubert’s review paper (Neubert, Herold and Meinel 2008), numerous 

comparing algorithms have emerged to assess the segmentation quality based on the corresponding 

reference image. In our study, we adopted a method proposed by Marpu et al. (2010). The criteria 

used here derive from the concept of under segmentation and over segmentation as defined earlier. 

Detailed explanation of this method is described below.  
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Figure 6.A. Simplified illustration of segmentation showing lost pixels and extra pixels. B. 

Dotted outline indicating reference object, which can be rebuilt using sub-object A, B, C, D and 

E in the post processing. 

 

 

As illustrated in Figure 6A is a simplified result derived from one segmentation 

experiment. The reference object is outlined by dotted lines while the segmentation process has 

divided the image into multiple sub-objects (sub-object A to F). Based on the spatial relation with 

the reference object, those sub-objects either lies completely within the reference object or contain 

part of the area that is not belong to the reference object. To assess the segmentation quality, only 

those sub-objects which have enough overlap with the reference object can be retained for the 

following analysis. In our case 55 percent was chosen as a threshold for the selection. If a sub-

object has less than 55 percent overlapping area with reference object, those sub-objects are not 

considered in the following analysis since they may not contain enough spectral information of the 

reference object or not beneficial to the regeneration of the reference object. In Figure 6A, sub-

object A to E are selected for the following analysis based on the 55 percent threshold, sub-object 

F and G are not considered due to insufficient overlapping area. By using retained sub-object A to 

E, reference object can be rebuilt as shown in Figure 6B.  After the removal of sub-object F and 

G, areas showing in grey in Figure 6A are defined as lost pixels since this part of the reference 

A B 
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object is lost during the rebuild. Lost pixels are the overlapped pixels between the reference object 

and those sub-objects which have less than 55 percent of overlapped area with the reference object. 

Similarly, extra pixels are defined as the pixels that is outside the boundary of the reference object 

but belongs to the sub-object which has more than 55 percent overlapped area with the reference 

object. Extra pixels are showing in black in Figure 6A. Figure 6B shows the difference between 

the reference object (outlined in dotted line) and the rebuilt reference object (consists of sub-object 

A to E) using 55 percent overlapping criteria. We can observe that the rebuilt reference object do 

not include lost pixels but includes extra pixels. Ideally, if a rebuilt reference object matches 

reference object at 100 percent, the lost pixels and extra pixels will all equal to zero. Thus, lost 

pixels and extra pixels can be used as criteria to evaluate the quality of the segmentation. Based 

on this thought, Marpu et al. (2010) proposed five indices to quantitatively assess the segmentation 

result which is also used in this study: 

Index 1: For each reference object, finding the largest sub-object and calculate the ratio 

between its area (minus any extra pixels if existed) and reference object’s area.  

Index 2: For each reference object, calculate the ratio between lost pixels and reference 

object’s area. 

Index 3: For each reference object, calculate the ratio between extra pixels and reference 

object’s area. 

Index 4: the number of the reference objects which lost more than 25 percent of the pixels. 

Index 5: the number of the reference objects which gained more than 25 percent of the 

pixels.   

Index 1 to 3 are calculated on the individual reference object. Index 1 has a range (0-1) is 

a measurement for over-segmentation. Value closes to zero indicates extreme over-segmentation 
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while value closes to 1 indicates high quality segmentation. Index 2 and 3 can be used together to 

assess under-segmentation. Segmentation with higher quality is usually corresponding with low 

reading for those two indices. For image consists of multiple reference objects, index 4 and 5 can 

be calculated to assess the overall segmentation quality for the whole image. 

4.4. Image Classification Using eCognition® Software 

eCognition® software provides various methods for the image classification process. In this 

study, we proposed using classifier algorithm. This algorithm enables us to apply machine-learning 

functions to our image analysis in a two-step process: First we need to train the classifier using the 

training samples we obtained in previous section. Second, the trained classifier will be applied to 

whole image, classifying segmentation objects based on the configuration of the trained classifier 

(Trimble 2011).  

Defining the feature space that going to be used by Nearest Neighbor classifier is the most 

important setting during the classification process. Four geometry feature space were selected: 

elliptic fit, shape index, compactness and thickness. Elliptic fit index showing how well an image 

objects fits into an ellipse of similar size, where value 1 indicates a perfect fit and 0 indicates no 

fit at all. Shape index showing the smoothness of an image object border, where lower shape index 

indicating smoother border of the image objects. Compactness index showing the ratio of 

polygon’s area to the area of the circle which has the same perimeter. Compactness index ranges 

from 0 to 1 where 1 indicating perfect fit. Thickness index is calculated as the smallest of three 

eigenvalues of a rectangular 3D space with the same volume and same proportions as the image 

object (Trimble 2011). For spectral information statistical feature space such as mean and standard 

deviation of the image objects were also include in the classifier. 
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After classifier is configured, this Nearest Neighbor classifier will be applied to a stack of 

user defined image layers to execute the classification process. 

4.4.1. Classification Trials Using Different Input Datasets 

In order to answer our objective two: establish optimal dataset combinations used as input 

to the GEOBIA classification method that maximize classification accuracy, we proposed 24 

different trials to investigate how the change in the input dataset combination will influence the 

result accuracy (Table 8). 

 

 

Table 8. Input layer-combination trials 

 Segmentation Classification 

Trial  Layer 

one 

Layer 

Two 

Scale  Layer 

One 

Layer 

Two 

Layer 

Three 

Layer 

Four 

1 Landsat  - 20 Landsat - - - 

2 Landsat  - 20 Landsat EVI - - 

3 Landsat  - 20 Landsat NDWI - - 

4 Landsat  - 20 Landsat EVI NDWI - 

5 Landsat  - 30 Landsat - - - 

6 Landsat  - 30 Landsat EVI - - 

7 Landsat  - 30 Landsat NDWI - - 

8 Landsat  - 30 Landsat EVI NDWI - 

9 Landsat  DDEM 20 Landsat - - - 

10 Landsat  DDEM 20 Landsat EVI - - 

11 Landsat  DDEM 20 Landsat NDWI - - 

12 Landsat  DDEM 20 Landsat EVI NDWI - 

13 Landsat  DDEM 30 Landsat - - - 

14 Landsat  DDEM 30 Landsat EVI - - 

15 Landsat  DDEM 30 Landsat NDWI - - 

16 Landsat  DDEM 30 Landsat EVI NDWI - 

17 Landsat  DDEM 20 Landsat DDEM - - 

18 Landsat  DDEM 20 Landsat EVI DDEM - 

19 Landsat  DDEM 20 Landsat NDWI DDEM - 

20 Landsat  DDEM 20 Landsat EVI NDWI DDEM 
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Table 8. Continued 

 Segmentation Classification 

Trial  Layer 

one 

Layer 

Two 

Scal

e  

Layer 

One 

Layer 

Two 

Layer 

Three 

Layer 

Four 

21 Landsat  DDEM 30 Landsat DDEM - - 

22 Landsat  DDEM 30 Landsat EVI DDEM - 

23 Landsat  DDEM 30 Landsat NDWI DDEM - 

24 Landsat  DDEM 30 Landsat EVI NDWI DDEM 

 

 

After all the trials have been implemented in eCognition, accuracy assessment will be 

conducted for each of the 24 trials listed above. As mentioned in previous section, 40 percent of 

the total reference regions that were generated earlier will be used as validation data in this step. 

Classification accuracy of each land cover type and geomorphic objects will also be examined to 

determine the best input dataset combination to extract a certain class.  

Following metrics will be used to evaluate the classification accuracy: 

1. Producer’s accuracy: when calculate the accuracy of land use land cover map, a 

confusion matrix is often used. As can be seen in Table 9, producer’s accuracy for 

category X can be calculated as correctly classified samples of category X divided by 

total number of reference samples of category X (equation 7). Producer’s accuracy is 

actually measure the omission errors and can tell us from the perspective of the map 

maker how accurate is the map (Story and Congalton 1986). 

 

 X = 
a1

a1 + a4 + a7

 (7) 
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Table 9. An example of confusion matrix 

  Reference Data 

Classified 

Data 

 X Y Z 

X a1 a2 a3 

Y a4 a5 a6 

Z a7 a8 a9 

 

 

2. User’s accuracy: user’s accuracy for category X can be calculated as correctly 

classified samples of category X divided by the total number of samples that were 

classified to category X (equation 8). User’s accuracy is actually measure the 

commission error and can tell us from the perspective of the map user how accurate is 

the map (Story and Congalton 1986). 

 

 X = 
a1

a1 + a2 + a3

 (8) 

 

3. Hellden’s Mean Accuracy Index (Hellden): Hellden’s mean accuracy index (Helldén 

1980; Rosenfield and Fitzpatrick-Lins 1986) for category X is calculated as: 

 X = 
2a1

(a1 + a2 + a3) + (a1 + a4 + a7)
 (9) 

Hellden’s mean accuracy index is the harmonic mean of producer’s and user’s accuracy 

(Turk 2002; Liu, Frazier and Kumar 2007). 

4. Short’s Mean Accuracy Index (Short): Short’s mean accuracy index (Short 1982) for 

category X is calculated as: 
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 X = 
a1

(a1 + a2 + a3) + (a1 + a4 + a7) - a1

 (10) 

Short’s mean accuracy index is similar to Hellden’s mean accuracy index, and it’s a 

monotonic function of the harmonic mean of producer’s and user’s accuracy (Liu et al. 

2007). 

5. Kappa Index of Agreement (KIA): Kappa index of agreement is first introduced by 

Cohen (1960), and represent the proportion of agreement after chance agreement is 

removed. Calculation of the KIA is explained in detailed in Liu et al. (2007). 

4.5. Using Automated Local Thresholding Method to Extract Scroll Bar 

ImageJ is an open source image processing program designed for scientific 

multidimensional images (ImageJ 2018a). Automated local threshold plugin inside ImageJ can 

transform 8-bit images into binary images using various local threshold methods. Local 

thresholding meaning the threshold is computed for each pixel within a window of radius r around 

it (ImageJ 2018b). There are currently nine methods available in this plugin: 

1. Bernsen: This method is introduced by Bernsen (1986). If local contrast (max-min) is equal 

or larger than 15, threshold will be set to local mid-grey value (mean of the minimum and 

maximum grey values in a user defined area). If the local contrast is less than 15, pixel value of 

the output binary image will be set to white or black depending on the value of mid-grey (Sezgin 

and Sankur 2004). 

2. Contrast: based on contrast, the pixel value of the output binary image will be set to white 

(pixel value 255) if current value is closer to local maximum in a calculation window defined by 

the user. Pixel value will be set to black (pixel value 0) if current value is closer to local minimum 

(Soille 2013). 
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3. Mean: this method selects the mean of the local greyscale distribution as the threshold, 

pixel value of the output binary image will be set to white or black depending on whether current 

value is larger or smaller than the mean.  

4. Median: this method selects the median of the local greyscale distribution as the threshold, 

pixel value of the output binary image will be set to white or black depending on whether current 

value is larger or smaller than the median.  

5. MidGrey: this method selects the mid-grey of the local greyscale distribution 

((min+max)/2) as the threshold, pixel value of the output binary image will be set to white or black 

depending on whether current value is larger or smaller than the mid-grey value. 

6. Niblack: this method is introduce by Niblack (1986).  

 

 Threshold = mean + k * standard_deviation (11) 

 

K is 0.2 and -0.2 for bright, dark object. Pixel value of the output binary image will be set to white 

or black depending on whether current value is larger or smaller than the threshold value calculated 

based on user defined window. 

7. Otsu: this method is introduce by Otsu (1979). This method searches for one threshold that 

will minimize the intra-class variance, which is calculated as the weighted sum of the variances of 

two classes. 

8. Phansalkar: this method is introduce by Phansalkar et al. (2011). It’s an adaptation of 

Sauvola’s method aim to process images with low contrast.  

 Threshold = mean*(1 + p* exp(- q*mean) + k*( (
stdev

r
)  - 1) (12) 
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In here, mean and stdev are the local mean and standard deviation in a user defined window. K = 

0.25, r = 0.5, p = 2 and q = 10 is recommended by the Phansalkar. 

9. Sauvola: this method is introduce by Sauvola and Pietikäinen (2000). It’s an adaptation of 

Niblack’s method. 

 Threshold = mean*( 1 + k* ( 
stdev

r
 - 1 ) ) (13) 

In here, k = 0.5 and r = 128 is recommended by Sauvola. 

Strick (2016) implemented automated local threshold algorithm in his research of 

floodplain geomorphology and topography. Specifically, he used this method on LiDAR DEM to 

generate a binary image of the scroll bar, segmented the scroll bar into two classes, scroll bar ridge 

are treated as binary “foreground” (white) and scroll bar swale are treated as binary “background” 

(black) (Strick et al. 2018). In the paper, the conclusion is drawn that Niblack method is best 

method for his study area and most suitable window size is 100m. 

In our study, we intend to experiment all nine automated local threshold methods to two 

scroll bar rich areas within our floodplain study site. We first digitized all the visible scroll bar 

ridge and scroll bar swale of our two chosen study areas in ArcMap 10.5 to be used as a reference 

in the later accuracy assessment. Strick (2016) use radius range between 50m and 200m at 5m 

interval in his trials in seek optimal local window radius. In our study, since we use SRTM DEM 

which has much coarser spatial resolution than the LiDAR DEM used by Strick, hence we first 

adopted a range of 30m, 60m, 90m, 120m, 150m, 180m, 210m, 240m, 270m and 300m (1 to 10 

times pixel size) as radius and used those radius setting in our first trial on study area 1 using 

Niblack method. Based on the visual examination, we found radius ranges between 150m to 270m 

trend to generate better segmentation result than other radius settings. Then we adopted this new 



 

52 

 

radius setting: 150m, 180m, 210m, 240m and 270m which corresponding to five to nine times 

pixel size (30m) of the SRTM DEM used in our study. We use those radius settings on nine auto 

local threshold methods to our study sites and then compare the resulting binary images showing 

segmented scroll bar ridges and scroll bar swales to our reference data for an accuracy assessment. 

 

 

 

 



 

53 

 

5. RESULT AND DISCUSSION 

 

5.1. Segmentation Result 

In object-based image classification, the prerequisite of a decent classification result is a 

decent image segmentation result as input layer. In order to derive an optimal segmentation result, 

we proposed 15 trials with each trial utilize different weighting scheme for the segmentation input 

layer and different scale parameter as indicated in previous section (Table 7). Scale parameter 

determines the average size of the output image objects in the multiresolution segmentation. In our 

study, we choose three different scale: 10, 20 and 30 to investigate which scale is the most suitable 

for our application. Sample segmentation images showing the effect of using different scale 

parameter to the same study area is shown in Figure 7. From the example, it’s clear that high scale 

parameter will yield to large image objects and low scale parameter will yield to small image 

objects. 

Optimal segmentation result should be a reflection of real-world objects. In our study, we 

want to select those segmentation results which can accurately delineate objects from our eight 

land-cover and geomorphic classes. Therefore, 60 percent of reference regions (Table 5) for each 

land-cover and geomorphic class were randomly selected and compared to the segmentation result 

from our proposed 15 trials. Calculation of the following indices were conducted in ArcMap 10.6 

using a Python script wrote by the author.  
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Figure 7. An example of segmented image using different scale parameter. A. False color 

composite image of Landsat 7 ETM+. B. Scale parameter = 10. C. Scale parameter = 20. D. 

Scale parameter = 30. 

 

 

5.1.1. Index 1: Percentage of the Area of the Largest Sub-object 

As can be observed from Table 10, the average area percentage of the largest sub-object 

has a trend to increase when scale parameter increased from 10 to 30. This is because when scale  

C D 

A B 
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Table 10. Percentage of the area of the largest sub-object (indicator of over-segmentation) 

Scale 

Parameter 

Trial 

NO. 
River 

Oxbow 

Lake 

(Bright) 

Oxbow 

Lake 

(Dark) 

Sand 

Bar 

(Bright) 

Sand 

Bar 

(Dark) 

Scroll 

Bar 

Ridge 

Scroll 

Bar 

Swale 

Non 

Forest 

Vegetation 

Bare 

Soil  
Average  

10 

1 7.51% 10.90% 13.29% 10.88% 18.08% 13.45% 15.98% 7.94% 10.78% 12.09% 

2 9.49% 14.73% 16.20% 11.57% 19.46% 15.95% 19.50% 9.41% 11.36% 14.19% 

3 8.59% 13.65% 12.91% 11.46% 18.15% 14.32% 16.48% 8.47% 11.73% 12.86% 

4 9.42% 14.57% 16.64% 12.01% 20.74% 16.54% 21.24% 10.67% 12.48% 14.92% 

5 10.91% 14.40% 15.63% 12.85% 20.04% 17.51% 20.81% 9.72% 13.81% 15.08% 

20 

6 22.12% 23.59% 28.80% 22.59% 35.33% 15.04% 30.82% 20.12% 21.78% 24.47% 

7 25.70% 28.21% 36.63% 25.34% 39.99% 13.03% 32.92% 20.94% 21.93% 27.19% 

8 23.04% 24.70% 30.27% 24.12% 37.59% 15.39% 31.97% 21.59% 22.51% 25.69% 

9 25.35% 30.80% 37.38% 28.37% 41.64% 13.83% 32.48% 22.01% 23.81% 28.41% 

10 26.02% 30.58% 31.49% 29.40% 40.25% 13.83% 34.07% 22.49% 25.67% 28.20% 

30 

11 31.16% 36.18% 48.76% 36.86% 46.00% 8.08% 29.89% 28.83% 30.76% 32.95% 

12 33.26% 41.80% 44.62% 44.48% 54.35% 9.39% 28.50% 33.49% 29.72% 35.51% 

13 35.74% 37.23% 51.68% 41.33% 45.75% 6.04% 28.50% 30.98% 31.45% 34.30% 

14 36.59% 43.26% 46.96% 45.18% 55.62% 7.74% 22.24% 36.75% 30.47% 36.09% 

15 37.23% 40.74% 50.81% 43.51% 46.01% 5.69% 23.14% 33.43% 36.26% 35.20% 
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parameter is set to 10, the image is being divided into finer parts, and since the reference object 

are the same, there will be more image objects inside one reference object compare to segmentation 

image using larger scale parameter. We can also observe different land-cover and geomorphic 

classes have different area percentage. When the scale parameter is set to 30, we can see oxbow 

lake, sand bar has largest average area percentage of the largest sub-object, which is around 40% 

to 50%. River, non-forest vegetation and bare soil classes have lower average area percentage 

around 30%, while scroll bar has a lowest average area percentage. This trend is also observable 

when scale parameter is set to 10 and 20.  

For an ideal segmentation, the percentage of the area of the largest sub-object should be 

high, which indicates the over-segmentation of the reference object is low. So, we can conclude 

from the calculation of this index that segmentation result is better to delineate the shape of oxbow 

lake and sand bar while not so accurately delineate the shape of the scroll bar.   

5.1.2. Index 2: Percentage of the Area of the Lost Pixels 

As can be observed from Table 11, the average area percentage of the lost pixel also has a 

trend to increase when scale parameter increased from 10 to 30. Different land-cover and 

geomorphic classes also have different area percentage. When the scale parameter is set to 30, we 

can see both bright and dark oxbow lake classes have the lowest area percentage, around 6%, while 

bright sand bar and bare soil has the second lowest area percentage. River, dark sand bar and non-

forest vegetation has average area percentage of around 20% while scroll bar ridge class has the 

highest area percentage. This trend is also observable when scale parameter is set to 10 and 20. 
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Table 11. Percentage of the area of lost pixels (indicator of under-segmentation) 

 

 

Scale 

Parameter 

Trial 

NO. 
River 

Oxbow 

Lake 

(Bright) 

Oxbow 

Lake 

(Dark) 

Sand 

Bar 

(Bright) 

Sand 

Bar 

(Dark) 

Scroll 

Bar 

Ridge 

Scroll 

Bar 

Swale 

Non-

Forest 

Vegetation 

Bare 

Soil 
Average 

10 1 5.96% 3.79% 4.35% 8.59% 13.29% 38.35% 23.18% 11.31% 7.09% 12.88% 

10 2 7.42% 3.75% 4.15% 8.40% 13.09% 45.38% 24.75% 13.33% 7.08% 14.15% 

10 3 6.33% 3.81% 4.24% 8.42% 13.35% 41.55% 24.29% 12.18% 7.16% 13.48% 

10 4 6.93% 3.68% 4.09% 8.28% 13.13% 47.64% 26.46% 13.04% 7.64% 14.54% 

10 5 5.92% 3.73% 4.19% 8.36% 13.71% 44.22% 25.07% 13.00% 7.89% 14.01% 

20 6 10.35% 4.53% 4.34% 9.19% 19.38% 74.08% 39.26% 15.76% 13.57% 21.16% 

20 7 11.43% 5.06% 4.90% 10.22% 19.21% 80.96% 44.68% 22.70% 13.75% 23.66% 

20 8 10.98% 4.82% 4.45% 9.57% 19.29% 77.60% 40.50% 17.32% 13.13% 21.96% 

20 9 12.21% 5.12% 5.33% 9.56% 19.40% 81.07% 46.41% 23.38% 15.99% 24.28% 

20 10 9.67% 5.11% 5.14% 9.63% 20.06% 81.13% 43.82% 20.29% 12.72% 23.06% 

30 11 20.85% 5.92% 6.91% 10.82% 22.09% 89.90% 51.78% 22.44% 14.57% 27.25% 

30 12 18.31% 5.86% 7.55% 10.68% 25.04% 88.96% 59.53% 24.96% 18.34% 28.80% 

30 13 18.29% 6.15% 6.84% 10.58% 21.93% 91.73% 55.87% 22.28% 15.39% 27.67% 

30 14 17.49% 5.89% 7.83% 11.18% 24.12% 90.86% 66.57% 23.08% 22.59% 29.96% 

30 15 20.84% 6.08% 6.88% 12.32% 28.22% 92.72% 64.91% 24.55% 12.33% 29.87% 
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For an ideal segmentation, the percentage of the area of the lost pixels should be low, which 

indicated the under-segmentation of the reference object is low. So, we can conclude from the 

calculation of this index that segmentation result is better to delineate the shape of oxbow lake, 

bright sand bar and bare soil while not so accurately delineate the shape of the scroll bar ridge.   

5.1.3. Index 3: Percentage of the Area of the Extra Pixels 

As can be observed from Table 12, the average area percentage of the lost pixel still has a 

trend to increase when scale parameter increased from 10 to 30. However, the trend is not as steep 

as can been seen in previous two indices. Different land-cover and geomorphic classes also have 

different area percentage while the range is also not as large as previous result. When the scale 

parameter is set to 30, we can see scroll bar ridge class have the lowest area percentage, around 

4% while oxbow lake class has area percentage of 6.5%. River, bright sand bar and scroll bar swale 

classes has an area percentage of 11% while dark sand bar and non-forest vegetation has the highest 

area percentage of around 17.5%. 

For an ideal segmentation, the percentage of the area of the extra pixels should also be low, 

which is another indicator that the under-segmentation of the reference object is low. So, we can 

conclude from the calculation of this index that segmentation result is better to delineate the shape 

of scroll bar ridge and oxbow lake while not so accurately delineate the shape of the dark sand bar 

and non-forest vegetation.   

5.1.4. Index 4: Count of Deformed Area Due to Lost Pixels 

Index 4 calculated the number of reference objects which lost more than 25 percent of the 

pixels. As can be observed from Table 13, the total number of deformed objects is increasing as 

the scale parameter increases.
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Table 12. Percentage of the area of extra pixels (indicator of under-segmentation) 

 

Scale 

Parameter 

Trial 

NO. 
River 

Oxbow 

Lake 

(Bright) 

Oxbow 

Lake 

(Dark) 

Sand 

Bar 

(Bright) 

Sand 

Bar 

(Dark) 

Scroll 

Bar 

Ridge 

Scroll 

Bar 

Swale 

Non-

Forest 

Vegetation 

Bare 

Soil 
Average 

10 1 4.28% 4.23% 4.77% 6.71% 9.62% 17.77% 15.24% 8.87% 6.44% 8.66% 

10 2 5.02% 4.41% 5.14% 7.13% 10.23% 17.20% 17.72% 8.98% 7.33% 9.24% 

10 3 4.56% 4.29% 4.92% 7.05% 9.96% 17.54% 16.29% 8.95% 6.96% 8.95% 

10 4 5.59% 4.62% 5.33% 7.42% 10.46% 18.13% 17.55% 9.78% 7.17% 9.56% 

10 5 5.06% 4.51% 5.14% 7.36% 10.20% 18.95% 18.33% 9.58% 7.27% 9.60% 

20 6 7.54% 5.36% 6.44% 9.59% 13.35% 11.48% 17.68% 15.71% 9.03% 10.69% 

20 7 8.85% 5.44% 7.14% 9.19% 14.34% 6.67% 17.08% 12.90% 10.62% 10.25% 

20 8 7.47% 5.34% 6.71% 9.75% 13.99% 10.21% 17.61% 14.94% 9.99% 10.67% 

20 9 10.11% 5.59% 7.12% 9.45% 14.49% 6.63% 16.55% 13.54% 9.19% 10.29% 

20 10 10.03% 5.39% 6.69% 9.97% 15.21% 7.74% 17.34% 14.08% 11.06% 10.84% 

30 11 10.87% 5.67% 6.52% 10.71% 18.58% 4.03% 15.36% 16.54% 12.50% 11.20% 

30 12 11.57% 6.09% 7.33% 11.41% 17.52% 5.12% 11.13% 18.73% 12.47% 11.26% 

30 13 12.11% 5.98% 6.68% 11.29% 18.75% 3.50% 13.87% 17.09% 13.43% 11.41% 

30 14 12.93% 6.38% 7.24% 11.14% 17.35% 4.10% 9.01% 19.72% 11.14% 11.00% 

30 15 12.39% 6.36% 7.18% 11.37% 15.43% 3.54% 9.27% 16.53% 15.61% 10.85% 
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When scale parameter is set to 10, we can see deformed objects are mainly in the scroll bar 

ridge and scroll bar swale classes. Non-forest vegetation class also shows a few deformed objects. 

When scale parameter is set to 20, deformed objects in scroll bar ridge and scroll bar swale class 

are slowly increasing, we can also see deformed objects in non-forest vegetation, bare soil and 

dark sand bar classes in small quantities. When scale parameter is set to 30, in addition to the 

aforementioned observation, deformed objects begin to show in the river class.  

5.1.5. Index 5: Count of Deformed Area Due to Extra Pixels 

Index 5 calculated the number of reference objects which gained more than 25 percent of 

the pixels. As can be observed from Table 14, the total number of deformed objects do not have a 

clear trend to increase or decrease as the scale parameter increases. When scale parameter is set to 

10, we can see deformed objects are mainly in the scroll bar swale, non-forest vegetation and bare 

soil classes. Deformed objects are also presented in dark sand bar, scroll bar ridge, bright sand bar 

and river class in small quantities. When scale parameter increased to 20, we can observe that 

number of deformed objects in scroll bar ridge and scroll bar swale classes increased while the 

number of deformed objects in dark sand bar, bright sand bar, non-forest vegetation, bare soil and 

river classes all declined to 0. When scale parameter increased to 30, we can see deformed objects 

are still mainly in scroll bar ridge and scroll bar swale class. Deformed objects reappeared in the 

dark sand bar, non-forest vegetation and bare soil classes while none or few deformed objects can 

be seen in these classes when scale parameter is set to 20.   
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Table 13. Count of deformed areas due to lost pixels 

 

 

 

Scale 

Parameter 

Trial 

NO. 
River 

Oxbow 

Lake 

(Bright) 

Oxbow 

Lake 

(Dark) 

Sand 

Bar 

(Bright) 

Sand 

Bar 

(Dark) 

Scroll 

Bar 

Ridge 

Scroll 

Bar 

Swale 

Non-

Forest 

Vegetation 

Bare 

Soil 
Ratio 

10 1 0 0 0 0 0 22 13 2 1 19.49% 

10 2 0 0 0 0 0 24 13 3 0 20.51% 

10 3 0 0 0 0 0 24 14 3 1 21.54% 

10 4 0 0 0 0 0 24 16 3 0 22.05% 

10 5 0 0 0 0 0 24 14 3 1 21.54% 

20 6 0 0 0 0 3 30 18 4 5 30.77% 

20 7 0 0 0 1 3 29 22 8 4 34.36% 

20 8 0 0 0 0 3 30 20 7 4 32.82% 

20 9 0 0 0 0 3 29 21 9 5 34.36% 

20 10 0 0 0 0 3 29 20 9 4 33.33% 

30 11 4 0 0 0 3 30 20 11 4 36.92% 

30 12 2 0 0 0 6 29 24 8 6 38.46% 

30 13 3 0 0 0 2 30 21 11 4 36.41% 

30 14 2 0 0 1 4 30 25 7 7 38.97% 

30 15 5 0 0 1 4 29 24 13 3 40.51% 
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Table 14. Count of deformed areas due to extra pixels 

 

 

Scale 

Parameter 

Trial 

NO. 
River 

Oxbow 

Lake 

(Bright) 

Oxbow 

Lake 

(Dark) 

Sand 

Bar 

(Bright) 

Sand 

Bar 

(Dark) 

Scroll 

Bar 

Ridge 

Scroll 

Bar 

Swale 

Non-

Forest 

Vegetation 

Bare 

Soil 
Ratio 

10 1 0 0 0 0 2 1 6 5 3 8.72% 

10 2 0 0 0 0 1 3 4 9 5 11.28% 

10 3 2 0 0 1 2 1 6 5 3 10.26% 

10 4 0 0 0 1 1 2 4 9 3 10.26% 

10 5 1 0 0 1 2 2 3 6 4 9.74% 

20 6 0 0 0 0 0 4 3 0 0 3.59% 

20 7 0 0 0 0 0 4 8 0 1 6.67% 

20 8 0 0 0 0 0 3 3 0 1 3.59% 

20 9 0 0 0 0 0 6 6 0 1 6.67% 

20 10 0 0 0 0 0 8 7 0 0 7.69% 

30 11 0 0 0 0 0 6 6 3 1 8.21% 

30 12 0 0 0 0 0 1 6 2 4 6.67% 

30 13 0 0 0 0 1 4 5 3 2 7.69% 

30 14 0 0 0 0 1 1 7 3 2 7.18% 

30 15 0 0 0 0 2 3 5 2 3 7.69% 
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5.1.6. Segmentation Result Selection 

In above sections, we examined the performance of each segmentation trial by looking at 

the five indices calculated based on the comparison between the reference objects and segmented 

land cover and geomorphic classes. We can observe that segmentation result demonstrates 

different level of delineation details for each land cover and geomorphic classes. Judging by the 

result summarized from Table 10 to Table 14, we can see bright oxbow lake, dark oxbow lake 

classes have the highest segmentation performance and bright sand bar and dark sand bar classes 

has second highest segmentation performance. This is due to those classes has specific spectral 

signature and clear object boundary. River class has slightly lower performance at large scale 

because surface reflectance variance within river class is small, so the segmented objects of river 

class tend to have larger size (Figure 7) which may not align well with our smaller reference river 

object. Non-forest vegetation and bare-soil classes have moderate performance. Scroll bar ridges 

and scroll bar swales has the lowest performance largely due to land cover above those geomorphic 

objects. Scroll bar ridges is usually covered with forest or non-forest vegetation while scroll bar 

swales is usually covered in bare soil or water during the rainy season. This will limit the ability 

of the segmentation algorithm to differentiate them from neighboring landforms. Also due to the 

coarse resolution (30m) of the Landsat ETM+ image and DEM, small scroll bar and scroll bar 

ridges used as reference regions may not pick up by the segmentation algorithm. 

In order to find optimal segmentation result to be used as input layer in the classification 

process, we have to compare overall segmentation performance for all classes. We evaluated the 

average accuracy for each trial and summarized the best trials for each scale in Table 15. We can 

conclude trial 1 and trial 6 are the optimal segmentation results for scale 10 and scale 20. Situation 
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for scale 30 is a bit complicated because different between trials is not significant. Since both trial 

1 and trial 6 share a common layer weighting, we intend to follow the same layer weighting for 

scale 30, so in the end trial 11 was chosen to be the optimal trial for scale 30. 

 

 

Table 15. Selection of the optimal segmentation trial 

 Optimal Segmentation 

Trail NO. (Scale = 10) 

Optimal Segmentation 

Trail NO. (Scale = 20) 

Optimal Segmentation 

Trail NO. (Scale = 30) 

Index 1 5 9 14 

Index 2 1 6 11 

Index 3 1 7 15 

Index 4 1 6 13 

Index 5 1 6 12 

 

 

Segmentation result derived from trail 6 and trial 11 were used in the classification process. 

Segmentation result derived from trial 1 was not used because under further examination, 

segmented objects are too small and many objects only consists one pixel which contradict the 

purpose of object-based analysis. 

5.2. Classification Result 

5.2.1. Overall Classification Accuracy 

The accuracy assessment result of the classified map is summarized in Table 16. Both 

overall accuracy and Kappa Index of Agreement (KIA) were calculated for 24 trials. Overall 

accuracy ranges from 0.5522 to 0.8852 while KIA ranges from 0.4417 to 0.8539.  
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Table 16. Classification accuracy result for proposed 24 trials 

Trial NO. 
Overall 

Accuracy 
KIA Trial NO. 

Overall 

Accuracy 
KIA 

Trial 01 0.6377 0.5405 Trial 13 0.5522 0.4417 

Trial 02 0.8845 0.8526 Trial 14 0.8721 0.8368 

Trial 03 0.8813 0.8485 Trial 15 0.8756 0.8415 

Trial 04 0.8846 0.8527 Trial 16 0.8719 0.8368 

Trial 05 0.5602 0.4515 Trial 17 0.6272 0.5272 

Trial 06 0.8852 0.8539 Trial 18 0.8725 0.8372 

Trial 07 0.8794 0.8466 Trial 19 0.8717 0.8362 

Trial 08 0.8828 0.8510 Trial 20 0.8736 0.8386 

Trial 09 0.6272 0.5272 Trial 21 0.5522 0.4417 

Trial 10 0.8725 0.8372 Trial 22 0.8721 0.8368 

Trial 11 0.8717 0.8362 Trial 23 0.8756 0.8415 

Trial 12 0.8736 0.8386 Trial 24 0.8719 0.8368 

 

 

If we sort those accuracy values in an ascending order as shown in Table 17, those values 

can be roughly divided into two groups. Trial 13, 21, 05, 09, 17 and 01 can be grouped into group 

one and the rest 18 trials can be grouped into group two. Overall accuracy of group one ranges 

from 0.5522 to 0.6377 while the overall accuracy of the group two ranges from 0.8717 to 0.8852. 

The lowest overall accuracy of 0.5522 comes from trial 13, which only used Landsat image in the 

classification process and its segmentation input layer is based on Landsat image and detrended 

DEM at scale 30. The highest overall accuracy of 0.8852 comes from trial 06, which use Landsat 

and EVI images in the classification process and its segmentation input layer is based on Landsat 

only at scale 30.  
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Table 17. Classification trials sorted by overall accuracy in an ascending order. (DDEM = Detrended DEM) 

Low to 

High 
Trial NO. 

Overall 

Accuracy 
KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 13 0.5522 0.4417 Landsat DDEM 30 Landsat - - - 

2 21 0.5522 0.4417 Landsat DDEM 30 Landsat DDEM - - 

3 05 0.5602 0.4515 Landsat - 30 Landsat - - - 

4 09 0.6272 0.5272 Landsat DDEM 20 Landsat - - - 

5 17 0.6272 0.5272 Landsat DDEM 20 Landsat DDEM - - 

6 01 0.6377 0.5405 Landsat - 20 Landsat - - - 

7 11 0.8717 0.8362 Landsat DDEM 20 Landsat NDWI - - 

8 19 0.8717 0.8362 Landsat DDEM 20 Landsat NDWI DDEM - 

9 16 0.8719 0.8368 Landsat DDEM 30 Landsat EVI NDWI - 

10 24 0.8719 0.8368 Landsat DDEM 30 Landsat EVI NDWI DDEM 

11 14 0.8721 0.8368 Landsat DDEM 30 Landsat EVI - - 

12 22 0.8721 0.8368 Landsat DDEM 30 Landsat EVI DDEM - 

13 10 0.8725 0.8372 Landsat DDEM 20 Landsat EVI - - 

14 18 0.8725 0.8372 Landsat DDEM 20 Landsat EVI DDEM - 

15 12 0.8736 0.8386 Landsat DDEM 20 Landsat EVI NDWI - 

16 20 0.8736 0.8386 Landsat DDEM 20 Landsat EVI NDWI DDEM 

17 15 0.8756 0.8415 Landsat DDEM 30 Landsat NDWI - - 

18 23 0.8756 0.8415 Landsat DDEM 30 Landsat NDWI DDEM - 

19 07 0.8794 0.8466 Landsat - 30 Landsat NDWI - - 

20 03 0.8813 0.8485 Landsat - 20 Landsat NDWI - - 

21 08 0.8828 0.8510 Landsat - 30 Landsat EVI NDWI - 

22 02 0.8845 0.8526 Landsat - 20 Landsat EVI - - 

23 04 0.8846 0.8527 Landsat - 20 Landsat EVI NDWI - 

24 06 0.8852 0.8539 Landsat - 30 Landsat EVI - - 



 

67 

 

By looking closely at group one in Table 17, we can see despite the segmentation layer 

used in those trials is different, layers used in classification is either Landsat image only or the 

combination of the Landsat image and detrended DEM. It’s clear from the statistical standpoint, 

using Landsat image or using Landsat image plus detrended DEM in the classification process 

does not help to achieve high classification accuracy. 

If we examine group two closely, we can see from the statistic standpoint, segmentation 

layer that is derive from Landsat image is performed better than segmentation layer derived using 

Landsat image and detrended DEM (trial 07, 03, 08, 02, 04 and 06 versus other trials in the group 

two). When compare different layers used in the classification process, we can conclude that using 

Landsat image and EVI can achieve highest overall classification accuracy. Moreover, we can see 

using the combination of the Landsat image and EVI layer, combination of Landsat image with 

EVI and NDWI layer, combination of Landsat image with NDWI layer in the classification process 

can all achieve high overall classification accuracy. Introducing detrended DEM to those 

combination does not benefit from achieving higher overall accuracy. 

Classification map of the Río Beni floodplain showing all eight land cover and geomorphic 

classes are illustrated in Figure 8. Classification result used here is from trial 06, which has the 

highest overall accuracy among 24 trials. Classification accuracy for each land cover and 

geomorphic class will be discussed in next section. 
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Figure 8. Río Beni floodplain classification map 
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5.2.2. Classification Accuracy Result by Land Cover and Geomorphic Classes  

5.2.2.1. River 

The accuracy assessment result for the river class is summarized in Table 18. Five accuracy 

assessment metrics: producer’s accuracy, user’s accuracy, Hellden’s Mean Accuracy Index 

(Hellden), Short’s Mean Accuracy Index (Short) and Kappa Index of Agreement (KIA) were 

calculated for 24 trials. Producer’s accuracy ranges from 0.5522 to 0.9132, user’s accuracy ranges 

from 0.5385 to 0.9482, Hellden’s mean accuracy index ranges from 0.5708 to 0.9205, Short’s 

mean accuracy index ranges from 0.3994 to 0.8527 and KIA ranges from 0.4269 to 0.8868. 

Similar to the overall accuracy, those 24 trials can be grouped into two groups. Group one 

consists trial 09, 17, 13, 21, 05, 01 and all the rest can be grouped into group two. Producer’s and 

user’s accuracy for group one ranges from 0.5522 to 0.6442 and from 0.5385 to 0.5907 

respectively. On the other hand, producer’s and user’s accuracy for group two ranges from 0.8363 

to 0.9132 and from 0.9164 to 0.9482 respectively.  

The lowest producer’s accuracy of 0.5522 comes from trial 09, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image and 

detrended DEM at scale 20. The highest producer’s accuracy of 0.9132 comes from trial 08, which 

use Landsat image, EVI and NDWI layers in the classification process and its segmentation input 

layer is based on Landsat only at scale 30.  
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Table 18. River classification accuracy sorted by producer’s accuracy in an ascending order 

 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 09 0.5522 0.5907 0.5708 0.3994 0.4269 Landsat DDEM 20 Landsat - - - 

2 17 0.5522 0.5907 0.5708 0.3994 0.4269 Landsat DDEM 20 Landsat DDEM - - 

3 13 0.5969 0.5650 0.5805 0.4089 0.4646 Landsat DDEM 30 Landsat - - - 

4 21 0.5969 0.5650 0.5805 0.4089 0.4646 Landsat DDEM 30 Landsat DDEM - - 

5 05 0.6297 0.5385 0.5805 0.4090 0.4903 Landsat - 30 Landsat - - - 

6 01 0.6442 0.5818 0.6114 0.4403 0.5198 Landsat - 20 Landsat - - - 

7 14 0.8363 0.9376 0.8840 0.7922 0.7931 Landsat DDEM 30 Landsat EVI - - 

8 22 0.8363 0.9376 0.8840 0.7922 0.7931 Landsat DDEM 30 Landsat EVI DDEM - 

9 10 0.8512 0.9379 0.8924 0.8057 0.8111 Landsat DDEM 20 Landsat EVI - - 

10 18 0.8512 0.9379 0.8924 0.8057 0.8111 Landsat DDEM 20 Landsat EVI DDEM - 

11 16 0.8535 0.9289 0.8896 0.8012 0.8134 Landsat DDEM 30 Landsat EVI NDWI - 

12 24 0.8535 0.9289 0.8896 0.8012 0.8134 Landsat DDEM 30 Landsat EVI NDWI DDEM 

13 11 0.8577 0.9357 0.8950 0.8099 0.8188 Landsat DDEM 20 Landsat NDWI - - 

14 19 0.8577 0.9357 0.8950 0.8099 0.8188 Landsat DDEM 20 Landsat NDWI DDEM - 

15 12 0.8583 0.9394 0.8970 0.8133 0.8198 Landsat DDEM 20 Landsat EVI NDWI - 

16 20 0.8583 0.9394 0.8970 0.8133 0.8198 Landsat DDEM 20 Landsat EVI NDWI DDEM 

17 15 0.8693 0.9274 0.8974 0.8139 0.8326 Landsat DDEM 30 Landsat NDWI - - 

18 23 0.8693 0.9274 0.8974 0.8139 0.8326 Landsat DDEM 30 Landsat NDWI DDEM - 

19 02 0.8895 0.9482 0.9179 0.8483 0.8585 Landsat - 20 Landsat EVI - - 

20 04 0.8935 0.9425 0.9173 0.8473 0.8631 Landsat - 20 Landsat EVI NDWI - 

21 06 0.8950 0.9357 0.9149 0.8432 0.8647 Landsat - 30 Landsat EVI - - 

22 03 0.8991 0.9429 0.9205 0.8527 0.8702 Landsat - 20 Landsat NDWI - - 

23 07 0.9078 0.9164 0.9121 0.8383 0.8800 Landsat - 30 Landsat NDWI - - 

24 08 0.9132 0.9175 0.9153 0.8439 0.8868 Landsat - 30 Landsat EVI NDWI - 
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The lowest user’s accuracy of 0.5385 comes from trial 05, which only used Landsat image 

in the classification process and its segmentation input layer is based on Landsat image only at 

scale 30. The highest user’s accuracy of 0.9482 comes from trial 02, which use Landsat image and 

EVI layer in the classification process and its segmentation input layer is based on Landsat only at 

scale 20. 

Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can derive similar conclusion from the analysis of the overall accuracy assessment: 

1. Using Landsat image alone or with detrended DEM in the classification process does 

not generate satisfactory classification accuracy for the river class.  

2. Trials that using the segmentation layer derived from Landsat image and using either 

the combination of the Landsat image and EVI layer, the combination of Landsat image 

with EVI and NDWI layer, the combination of Landsat image with NDWI layer in the 

classification process can all achieve high overall classification accuracy for river class. 

3. Based on the result of the user’s accuracy, trials using segmentation layer with scale 

parameter 20 trends to have better user’s accuracy than those trials use segmentation 

layer with scale parameter 30. This trend is not observed in the producer’s accuracy 

result. 

A map showing the classified river class (derived from trial 08) of the Río Beni floodplain 

is depicted in Figure 9. Visual comparison between the classified river class and Landsat 7 ETM+ 

image indicates a good match along the river channel. However, we can also observe that part of 

the oxbow lakes are misclassified as river in the output.  
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Figure 9. Río Beni floodplain classification map for river class 
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5.2.2.2. Oxbow Lake 

The accuracy assessment result for the oxbow class is summarized in Table 19. Producer’s 

accuracy ranges from 0.5593 to 0.9690, user’s accuracy ranges from 0.6721 to 0.9377, Hellden’s 

mean accuracy index ranges from 0.6230 to 0.9445, Short’s mean accuracy index ranges from 

0.4524 to 0.8948 and KIA ranges from 0.4242 to 0.9550. 

Grouping phenomenon can still be observed in the result. Producer’s and user’s accuracy 

for group one ranges from 0.5593 to 0.6848 and from 0.6721 to 0.7030 respectively. On the other 

hand, producer’s and user’s accuracy for group two ranges from 0.9374 to 0.9690 and from 0.8884 

to 0.9377 respectively.  

The lowest producer’s accuracy of 0.5593 comes from trial 05, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image only 

at scale 30. The highest producer’s accuracy of 0.9690 comes from trial 02, which use Landsat 

image and EVI layer in the classification process and its segmentation input layer is based on 

Landsat only at scale 20.  

The lowest user’s accuracy of 0.6721 comes from trial 09, which only used Landsat image 

in the classification process and its segmentation input layer is based on Landsat image and 

detrended DEM at scale 20. The highest user’s accuracy of 0.9377 comes from trial 08, which use 

Landsat image, EVI and NDWI layers in the classification process and its segmentation input layer 

is based on Landsat only at scale 20. 
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Table 19. Oxbow lake classification accuracy sorted by producer’s accuracy in an ascending order 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 05 0.5593 0.7030 0.6230 0.4524 0.4242 Landsat - 30 Landsat - - - 

2 13 0.6181 0.6753 0.6454 0.4765 0.4768 Landsat DDEM 30 Landsat - - - 

3 21 0.6181 0.6753 0.6454 0.4765 0.4768 Landsat DDEM 30 Landsat DDEM - - 

4 01 0.6181 0.6879 0.6511 0.4827 0.4804 Landsat - 20 Landsat - - - 

5 09 0.6848 0.6721 0.6784 0.5133 0.5493 Landsat DDEM 20 Landsat - - - 

6 17 0.6848 0.6721 0.6784 0.5133 0.5493 Landsat DDEM 20 Landsat DDEM - - 

7 08 0.9374 0.9377 0.9375 0.8824 0.9112 Landsat - 30 Landsat EVI NDWI - 

8 07 0.9380 0.9339 0.9359 0.8795 0.9119 Landsat - 30 Landsat NDWI - - 

9 15 0.9515 0.9108 0.9307 0.8704 0.9299 Landsat DDEM 30 Landsat NDWI - - 

10 23 0.9515 0.9108 0.9307 0.8704 0.9299 Landsat DDEM 30 Landsat NDWI DDEM - 

11 16 0.9519 0.8999 0.9252 0.8607 0.9301 Landsat DDEM 30 Landsat EVI NDWI - 

12 24 0.9519 0.8999 0.9252 0.8607 0.9301 Landsat DDEM 30 Landsat EVI NDWI DDEM 

13 06 0.9574 0.9264 0.9417 0.8898 0.9388 Landsat - 30 Landsat EVI - - 

14 11 0.9603 0.8966 0.9274 0.8646 0.9420 Landsat DDEM 20 Landsat NDWI - - 

15 19 0.9603 0.8966 0.9274 0.8646 0.9420 Landsat DDEM 20 Landsat NDWI DDEM - 

16 14 0.9613 0.8884 0.9234 0.8577 0.9431 Landsat DDEM 30 Landsat EVI - - 

17 22 0.9613 0.8884 0.9234 0.8577 0.9431 Landsat DDEM 30 Landsat EVI DDEM - 

18 12 0.9622 0.8975 0.9287 0.8670 0.9447 Landsat DDEM 20 Landsat EVI NDWI - 

19 20 0.9622 0.8975 0.9287 0.8670 0.9447 Landsat DDEM 20 Landsat EVI NDWI DDEM 

20 10 0.9624 0.8932 0.9265 0.8631 0.9449 Landsat DDEM 20 Landsat EVI - - 

21 18 0.9624 0.8932 0.9265 0.8631 0.9449 Landsat DDEM 20 Landsat EVI DDEM - 

22 03 0.9643 0.9255 0.9445 0.8948 0.9484 Landsat - 20 Landsat NDWI - - 

23 04 0.9645 0.9212 0.9424 0.8910 0.9486 Landsat - 20 Landsat EVI NDWI - 

24 02 0.9690 0.9197 0.9437 0.8934 0.9550 Landsat - 20 Landsat EVI - - 
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Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can see conclusion 1 and 2 derived previously still valid for the oxbow lake class. Although we 

observed a different pattern for conclusion 3: that is based on the result of the producer’s accuracy, 

trials using segmentation layer with scale parameter 20 trends to have better producer’s accuracy 

than those trials use segmentation layer with scale parameter 30. However, for the user’s accuracy, 

trials using segmentation layer with scale parameter 30 trends to have slightly better accuracy than 

those trials use segmentation layer with scale parameter 30. 

A map showing the classified oxbow lake class (derived from trial 02) of the Río Beni 

floodplain is depicted in Figure 10. Visual comparison between the classified oxbow lake class 

and Landsat 7 ETM+ image indicates a good match for most of the oxbow lakes. However, we 

can also observe that several river segments and isolated water areas are misclassified as oxbow 

lake in the output. 



 

76 

 

 

Figure 10. Río Beni floodplain classification map for oxbow lake class 
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5.2.2.3. Sand Bar 

The accuracy assessment result for the sandbar class is summarized in Table 20. Producer’s 

accuracy ranges from 0.4825 to 0.8668, user’s accuracy ranges from 0.4513 to 0.8244, Hellden’s 

mean accuracy index ranges from 0.4664 to 0.8433, Short’s mean accuracy index ranges from 

0.3041 to 0.7291 and KIA ranges from 0.4630 to 0.8618. 

Grouping phenomenon can still be observed in the result. Producer’s and user’s accuracy 

for group one ranges from 0.4825 to 0.6080 and from 0.4513 to 0.7377 respectively. On the other 

hand, producer’s and user’s accuracy for group two ranges from 0.8555 to 0.8668 and from 0.7750 

to 0.8244 respectively.  

The lowest producer’s accuracy of 0.4823 comes from trial 13, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image and 

detrended DEM at scale 30. The highest producer’s accuracy of 0.8668 comes from trial 20, which 

use Landsat image, detrended DEM, EVI and NDWI layer in the classification process and its 

segmentation input layer is based on Landsat only at scale 20.  

The lowest user’s accuracy of 0.4513 comes from trial 13 as well. The highest user’s 

accuracy of 0.8244 comes from trial 03, which use Landsat image and NDWI layer in the 

classification process and its segmentation input layer is based on Landsat only at scale 20. 

Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can conclude: 

1. Using Landsat image alone or with detrended DEM in the classification process does 

not generate satisfactory classification accuracy for the sandbar class.  
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Table 20. Sandbar classification accuracy sorted by producer’s accuracy in an ascending order 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 13 0.4825 0.4513 0.4664 0.3041 0.4630 Landsat DDEM 30 Landsat - - - 

2 21 0.4825 0.4513 0.4664 0.3041 0.4630 Landsat DDEM 30 Landsat DDEM - - 

3 05 0.5441 0.5137 0.5284 0.3591 0.5271 Landsat - 30 Landsat - - - 

4 09 0.5851 0.7377 0.6526 0.4843 0.5736 Landsat DDEM 20 Landsat - - - 

5 17 0.5851 0.7377 0.6526 0.4843 0.5736 Landsat DDEM 20 Landsat DDEM - - 

6 01 0.6080 0.7084 0.6544 0.4863 0.5963 Landsat - 20 Landsat - - - 

7 11 0.8555 0.8215 0.8382 0.7214 0.8502 Landsat DDEM 20 Landsat NDWI - - 

8 19 0.8555 0.8199 0.8373 0.7202 0.8502 Landsat DDEM 20 Landsat NDWI DDEM - 

9 02 0.8579 0.8085 0.8325 0.7130 0.8526 Landsat - 20 Landsat EVI - - 

10 16 0.8592 0.7750 0.8149 0.6876 0.8536 Landsat DDEM 30 Landsat EVI NDWI - 

11 24 0.8592 0.7750 0.8149 0.6876 0.8536 Landsat DDEM 30 Landsat EVI NDWI DDEM 

12 14 0.8604 0.7881 0.8226 0.6987 0.8550 Landsat DDEM 30 Landsat EVI - - 

13 22 0.8604 0.7881 0.8226 0.6987 0.8550 Landsat DDEM 30 Landsat EVI DDEM - 

14 10 0.8612 0.8091 0.8343 0.7157 0.8560 Landsat DDEM 20 Landsat EVI - - 

15 15 0.8612 0.7768 0.8168 0.6903 0.8557 Landsat DDEM 30 Landsat NDWI - - 

16 18 0.8612 0.8075 0.8335 0.7145 0.8560 Landsat DDEM 20 Landsat EVI DDEM - 

17 23 0.8612 0.7768 0.8168 0.6903 0.8557 Landsat DDEM 30 Landsat NDWI DDEM - 

18 04 0.8620 0.8210 0.8410 0.7256 0.8569 Landsat - 20 Landsat EVI NDWI - 

19 07 0.8628 0.8006 0.8305 0.7102 0.8576 Landsat - 30 Landsat NDWI - - 

20 03 0.8632 0.8244 0.8433 0.7291 0.8581 Landsat - 20 Landsat NDWI - - 

21 06 0.8632 0.7998 0.8303 0.7098 0.8580 Landsat - 30 Landsat EVI - - 

22 08 0.8648 0.8004 0.8313 0.7114 0.8596 Landsat - 30 Landsat EVI NDWI - 

23 12 0.8668 0.8089 0.8368 0.7194 0.8618 Landsat DDEM 20 Landsat EVI NDWI - 

24 20 0.8668 0.8089 0.8368 0.7194 0.8618 Landsat DDEM 20 Landsat EVI NDWI DDEM 
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2. Different from previous analysis, we can observe that adding the detrended DEM to 

the segmentation process or the classification process is beneficial to improvement of 

the classification accuracy (trial 12 and 20). 

3. Trials that using the segmentation layer derived from Landsat image and using either 

the combination of the Landsat image and EVI layer, the combination of Landsat image 

with EVI and NDWI layer, the combination of Landsat image with NDWI layer in the 

classification process can all achieve high overall classification accuracy for sanbar 

class. 

4. Based on the result of the user’s accuracy, trials using segmentation layer with scale 

parameter 20 trends to have better user’s accuracy than those trials use segmentation 

layer with scale parameter 30. This trend is not observed in the producer’s accuracy 

result. 

A map showing the classified sand bar class (derived from trial 20) of the Río Beni 

floodplain is depicted in Figure 11. Visual comparison between the classified sand bar class and 

Landsat 7 ETM+ image indicates the classification result accurately represented the sand bar areas 

that is observable along the river banks.  
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Figure 11. Río Beni floodplain classification map for sand bar class 
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5.2.2.4. Scroll Bar Ridge and Scroll Bar Swale 

The accuracy assessment result for the scrollbar class are summarized in Table 21 and 

Table 22. For scroll bar ridge class, producer’s accuracy ranges from 0.0673 to 0.2885, user’s 

accuracy ranges from 0.0659 to 0.3785, Hellden’s mean accuracy index ranges from 0.0666 to 

0.3274, Short’s mean accuracy index ranges from 0.0344 to 0.1958 and KIA ranges from 0.0481 

to 0.2776. For scroll bar swale class, producer’s accuracy ranges from 0.1617 to 0.3553, user’s 

accuracy ranges from 0.0989 to 0.4423, Hellden’s mean accuracy index ranges from 0.1227 to 

0.3899, Short’s mean accuracy index ranges from 0.0654 to 0.2422 and KIA ranges from 0.1151 

to 0.3377. 

Grouping phenomenon can still be observed in the result. For scroll bar ridge class, 

producer’s and user’s accuracy for group one ranges from 0.0673 to 0.1692 and from 0.0659 to 

0.2105 respectively. On the other hand, producer’s and user’s accuracy for group two ranges from 

0.1699 to 0.2885 and from 0.2714 to 0.3785 respectively. For scroll bar swale class, producer’s 

and user’s accuracy for group one ranges from 0.1617 to 0.2088 and from 0.0989 to 0.2277 

respectively. On the other hand, producer’s and user’s accuracy for group two ranges from 0.2958 

to 0.3553 and from 0.3823 to 0.4423 respectively. 

For scroll bar ridge class, the lowest producer’s accuracy of 0.0673 comes from trial 05, 

which only used Landsat image in the classification process and its segmentation input layer is 

based on Landsat image only at scale 30. The highest producer’s accuracy of 0.2885 comes from 

trial 06, which use Landsat image and EVI layer in the classification process and its segmentation 

input layer is based on Landsat only at scale 30. 
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Table 21. Scrollbar Ridge classification accuracy sorted by producer’s accuracy in an ascending order 

 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 05 0.0673 0.0659 0.0666 0.0344 0.0481 Landsat - 30 Landsat - - - 

2 13 0.0832 0.1581 0.1090 0.0577 0.0736 Landsat DDEM 30 Landsat - - - 

3 21 0.0832 0.1581 0.1090 0.0577 0.0736 Landsat DDEM 30 Landsat DDEM - - 

4 09 0.0971 0.1212 0.1078 0.0570 0.0826 Landsat DDEM 20 Landsat - - - 

5 17 0.0971 0.1212 0.1078 0.0570 0.0826 Landsat DDEM 20 Landsat DDEM - - 

6 01 0.1692 0.2105 0.1876 0.1035 0.1558 Landsat - 20 Landsat - - - 

7 11 0.1699 0.3043 0.2181 0.1224 0.1607 Landsat DDEM 20 Landsat NDWI - - 

8 19 0.1699 0.3043 0.2181 0.1224 0.1607 Landsat DDEM 20 Landsat NDWI DDEM - 

9 12 0.1824 0.3321 0.2355 0.1334 0.1734 Landsat DDEM 20 Landsat EVI NDWI - 

10 20 0.1824 0.3321 0.2355 0.1334 0.1734 Landsat DDEM 20 Landsat EVI NDWI DDEM 

11 10 0.1872 0.3529 0.2447 0.1394 0.1787 Landsat DDEM 20 Landsat EVI - - 

12 15 0.1872 0.2714 0.2216 0.1246 0.1760 Landsat DDEM 30 Landsat NDWI - - 

13 18 0.1872 0.3529 0.2447 0.1394 0.1787 Landsat DDEM 20 Landsat EVI DDEM - 

14 23 0.1872 0.2714 0.2216 0.1246 0.1760 Landsat DDEM 30 Landsat NDWI DDEM - 

15 04 0.1983 0.3119 0.2425 0.1380 0.1882 Landsat - 20 Landsat EVI NDWI - 

16 02 0.2039 0.3213 0.2495 0.1425 0.1938 Landsat - 20 Landsat EVI - - 

17 03 0.2039 0.3101 0.2460 0.1403 0.1934 Landsat - 20 Landsat NDWI - - 

18 16 0.2101 0.3183 0.2531 0.1449 0.1997 Landsat DDEM 30 Landsat EVI NDWI - 

19 24 0.2101 0.3183 0.2531 0.1449 0.1997 Landsat DDEM 30 Landsat EVI NDWI DDEM 

20 14 0.2247 0.3344 0.2688 0.1552 0.2143 Landsat DDEM 30 Landsat EVI - - 

21 22 0.2247 0.3344 0.2688 0.1552 0.2143 Landsat DDEM 30 Landsat EVI DDEM - 

22 07 0.2774 0.3735 0.3183 0.1893 0.2667 Landsat - 30 Landsat NDWI - - 

23 08 0.2816 0.3701 0.3198 0.1903 0.2706 Landsat - 30 Landsat EVI NDWI - 

24 06 0.2885 0.3785 0.3274 0.1958 0.2776 Landsat - 30 Landsat EVI - - 
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Table 22. Scrollbar Swale classification accuracy sorted by producer’s accuracy in an ascending order 

 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 13 0.1617 0.0989 0.1227 0.0654 0.1151 Landsat DDEM 30 Landsat - - - 

2 21 0.1617 0.0989 0.1227 0.0654 0.1151 Landsat DDEM 30 Landsat DDEM - - 

3 01 0.1744 0.1859 0.1800 0.0989 0.1487 Landsat - 20 Landsat - - - 

4 09 0.1851 0.2026 0.1934 0.1071 0.1604 Landsat DDEM 20 Landsat - - - 

5 17 0.1851 0.2026 0.1934 0.1071 0.1604 Landsat DDEM 20 Landsat DDEM - - 

6 05 0.2088 0.2277 0.2178 0.1222 0.1848 Landsat - 30 Landsat - - - 

7 14 0.2958 0.4043 0.3417 0.2060 0.2789 Landsat DDEM 30 Landsat EVI - - 

8 22 0.2958 0.4043 0.3417 0.2060 0.2789 Landsat DDEM 30 Landsat EVI DDEM - 

9 15 0.3018 0.4155 0.3496 0.2119 0.2851 Landsat DDEM 30 Landsat NDWI - - 

10 23 0.3018 0.4155 0.3496 0.2119 0.2851 Landsat DDEM 30 Landsat NDWI DDEM - 

11 16 0.3065 0.4068 0.3496 0.2118 0.2892 Landsat DDEM 30 Landsat EVI NDWI - 

12 24 0.3065 0.4068 0.3496 0.2118 0.2892 Landsat DDEM 30 Landsat EVI NDWI DDEM 

13 03 0.3272 0.4097 0.3639 0.2224 0.3095 Landsat - 20 Landsat NDWI - - 

14 02 0.3285 0.4351 0.3744 0.2303 0.3118 Landsat - 20 Landsat EVI - - 

15 04 0.3298 0.4382 0.3764 0.2318 0.3132 Landsat - 20 Landsat EVI NDWI - 

16 06 0.3447 0.4423 0.3874 0.2402 0.3278 Landsat - 30 Landsat EVI - - 

17 11 0.3447 0.4070 0.3732 0.2294 0.3263 Landsat DDEM 20 Landsat NDWI - - 

18 19 0.3447 0.4070 0.3732 0.2294 0.3263 Landsat DDEM 20 Landsat NDWI DDEM - 

19 12 0.3463 0.4096 0.3753 0.2310 0.3281 Landsat DDEM 20 Landsat EVI NDWI - 

20 20 0.3463 0.4096 0.3753 0.2310 0.3281 Landsat DDEM 20 Landsat EVI NDWI DDEM 

21 07 0.3489 0.3823 0.3648 0.2231 0.3292 Landsat - 30 Landsat NDWI - - 

22 10 0.3506 0.4151 0.3801 0.2347 0.3324 Landsat DDEM 20 Landsat EVI - - 

23 18 0.3506 0.4151 0.3801 0.2347 0.3324 Landsat DDEM 20 Landsat EVI DDEM - 

24 08 0.3553 0.4321 0.3899 0.2422 0.3377 Landsat - 30 Landsat EVI NDWI - 
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For scroll bar swale class, the lowest producer’s accuracy of 0.1617 comes from trial 13, 

which only used Landsat image in the classification process and its segmentation input layer is 

based on Landsat image and detrended DEM at scale 30. The highest producer’s accuracy of 

0.3553 comes from trial 08, which use Landsat image, EVI and NDWI layer in the classification 

process and its segmentation input layer is based on Landsat image only at scale 30. 

For scroll bar ridge class, the lowest user’s accuracy of 0.0659 comes from trial 05 as well. 

The highest user’s accuracy of 0.3785 comes from trial 06. For scroll bar swale class, the lowest 

user’s accuracy of 0.0989 also comes from trial 13, and the highest user’s accuracy of 0.4423 

comes from trial 06.  

Maps showing the classified scroll bar ridge class (derived from trial 06) and scroll bar 

swale (derived from trial 08) of the Río Beni floodplain are depicted in Figure 12 and Figure 13. 

Visual comparison between the classified scroll bar ridge/swale classes and Landsat 7 ETM+ 

image indicates the classification result unable to accurately extract scroll bar ridges and swales. 
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Figure 12. Río Beni floodplain classification map for scroll bar ridge class 
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Figure 13. Río Beni floodplain classification map for scroll bar swale class 



 

87 

 

 

5.2.2.5. Forest 

The accuracy assessment result for the forest class is summarized in Table 23. Producer’s 

accuracy ranges from 0.6219 to 0.9701, user’s accuracy ranges from 0.1865 to 0.6002, Hellden’s 

mean accuracy index ranges from 0.2972 to 0.7203, Short’s mean accuracy index ranges from 

0.1745 to 0.5629 and KIA ranges from 0.5977 to 0.9688. 

Grouping phenomenon can still be observed in the result. Producer’s and user’s accuracy 

for group one ranges from 0.6219 to 0.7640 and from 0.1865 to 0.2553 respectively. On the other 

hand, producer’s and user’s accuracy for group two ranges from 0.8684 to 0.9701 and from 0.5275 

to 0.6002 respectively.  

The lowest producer’s accuracy of 0.6219 comes from trial 01, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image only 

at scale 20. The highest producer’s accuracy of 0.9701 comes from trial 24, which use Landsat 

image, detrended DEM, EVI and NDWI layer in the classification process and its segmentation 

input layer is based on Landsat and detrended DEM at scale 30.  

The lowest user’s accuracy of 0.1865 comes from trial 05, which only used Landsat image 

in the classification process and its segmentation input layer is based on Landsat image only at 

scale 30. The highest user’s accuracy of 0.6002 comes from trial 04, which use Landsat image, 

EVI and NDWI layer in the classification process and its segmentation input layer is based on 

Landsat only at scale 20. 

Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can conclude: 
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Table 23. Forest classification accuracy sorted by producer’s accuracy in an ascending order 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 01 0.6219 0.2553 0.3620 0.2210 0.5977 Landsat - 20 Landsat - - - 

2 09 0.6595 0.2300 0.3410 0.2055 0.6335 Landsat DDEM 20 Landsat - - - 

3 17 0.6595 0.2300 0.3410 0.2055 0.6335 Landsat DDEM 20 Landsat DDEM - - 

4 05 0.7308 0.1865 0.2972 0.1745 0.7019 Landsat - 30 Landsat - - - 

5 13 0.7640 0.1889 0.3029 0.1785 0.7377 Landsat DDEM 30 Landsat - - - 

6 21 0.7640 0.1889 0.3029 0.1785 0.7377 Landsat DDEM 30 Landsat DDEM - - 

7 10 0.8684 0.5757 0.6924 0.5295 0.8633 Landsat DDEM 20 Landsat EVI - - 

8 18 0.8684 0.5757 0.6924 0.5295 0.8633 Landsat DDEM 20 Landsat EVI DDEM - 

9 12 0.8695 0.5762 0.6931 0.5303 0.8645 Landsat DDEM 20 Landsat EVI NDWI - 

10 20 0.8695 0.5762 0.6931 0.5303 0.8645 Landsat DDEM 20 Landsat EVI NDWI DDEM 

11 02 0.8740 0.5955 0.7083 0.5484 0.8692 Landsat - 20 Landsat EVI - - 

12 04 0.8773 0.6002 0.7128 0.5537 0.8727 Landsat - 20 Landsat EVI NDWI - 

13 03 0.8795 0.5948 0.7096 0.5499 0.8749 Landsat - 20 Landsat NDWI - - 

14 11 0.8800 0.5745 0.6952 0.5328 0.8753 Landsat DDEM 20 Landsat NDWI - - 

15 19 0.8800 0.5745 0.6952 0.5328 0.8753 Landsat DDEM 20 Landsat NDWI DDEM - 

16 07 0.9420 0.5347 0.6821 0.5176 0.9393 Landsat - 30 Landsat NDWI - - 

17 06 0.9447 0.5275 0.6770 0.5117 0.9422 Landsat - 30 Landsat EVI - - 

18 08 0.9447 0.5317 0.6805 0.5157 0.9422 Landsat - 30 Landsat EVI NDWI - 

19 15 0.9453 0.5627 0.7054 0.5449 0.9429 Landsat DDEM 30 Landsat NDWI - - 

20 23 0.9453 0.5627 0.7054 0.5449 0.9429 Landsat DDEM 30 Landsat NDWI DDEM - 

21 14 0.9701 0.5722 0.7199 0.5623 0.9688 Landsat DDEM 30 Landsat EVI - - 

22 16 0.9701 0.5728 0.7203 0.5629 0.9688 Landsat DDEM 30 Landsat EVI NDWI - 

23 22 0.9701 0.5722 0.7199 0.5623 0.9688 Landsat DDEM 30 Landsat EVI DDEM - 

24 24 0.9701 0.5728 0.7203 0.5629 0.9688 Landsat DDEM 30 Landsat EVI NDWI DDEM 
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1. Using Landsat image alone or with detrended DEM in the classification process does 

not generate satisfactory classification accuracy for the forest class.  

2. Adding the detrended DEM to the segmentation process or the classification process is 

beneficial to the classification accuracy (trial 15, 23, 14, 16, 22 and 24). 

3. Using segmentation result at scale 30 will have better producer’s accuracy when 

compared to the trials using segmentation result at scale 20. This trend is inversed in 

the user’s accuracy result. 

A map showing the classified forest class (derived from trial 24) of the Río Beni floodplain 

is depicted in Figure 14. From the map we can observe that most of the study site is covered by 

forest. Visual comparison between the classified forest class and Landsat Vegetation Continuous 

Fields (VCF) tree-cover data (Global Land Cover Facility, University of Maryland) indicates a 

good match over the tree covered area.   
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Figure 14. Río Beni floodplain classification map for forest class 
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5.2.2.6. Non-forest vegetation 

The accuracy assessment result for the non-forest vegetation class is summarized in Table 

24. Producer’s accuracy ranges from 0.4265 to 0.8029, user’s accuracy ranges from 0.4732 to 

0.8289, Hellden’s mean accuracy index ranges from 0.4501 to 0.8072, Short’s mean accuracy 

index ranges from 0.2904 to 0.6767 and KIA ranges from 0.3548 to 0.7740. 

Grouping phenomenon can still be observed in the result. Producer’s and user’s accuracy 

for group one ranges from 0.4265 to 0.4767 and from 0.4292 to 0.4767 respectively. On the other 

hand, producer’s and user’s accuracy for group two ranges from 0.7579 to 0.8029 and from 0.7646 

to 0.7834 respectively.  

The lowest producer’s accuracy of 0.4265 comes from trial 13, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image and 

detrended DEM at scale 30. The highest producer’s accuracy of 0.8029 comes from trial 04, which 

use Landsat image, EVI and NDWI layer in the classification process and its segmentation input 

layer is based on Landsat image only at scale 20.  

The lowest user’s accuracy of 0.4732 comes from trial 05, which only used Landsat image 

in the classification process and its segmentation input layer is based on Landsat image only at 

scale 30. The highest user’s accuracy of 0.8289 comes from trial 06, which use Landsat image and 

EVI layer in the classification process and its segmentation input layer is based on Landsat only at 

scale 30. 
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Table 24. Non-forest vegetation classification accuracy sorted by producer’s accuracy in an ascending order 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 13 0.4265 0.5054 0.4626 0.3009 0.3576 Landsat DDEM 30 Landsat - - - 

2 21 0.4265 0.5054 0.4626 0.3009 0.3576 Landsat DDEM 30 Landsat DDEM - - 

3 05 0.4292 0.4732 0.4501 0.2904 0.3548 Landsat - 30 Landsat - - - 

4 09 0.4743 0.5838 0.5234 0.3544 0.4138 Landsat DDEM 20 Landsat - - - 

5 17 0.4743 0.5838 0.5234 0.3544 0.4138 Landsat DDEM 20 Landsat DDEM - - 

6 01 0.4767 0.6134 0.5364 0.3665 0.4193 Landsat - 20 Landsat - - - 

7 07 0.7579 0.8220 0.7886 0.6510 0.7258 Landsat - 30 Landsat NDWI - - 

8 03 0.7646 0.7891 0.7766 0.6348 0.7315 Landsat - 20 Landsat NDWI - - 

9 11 0.7765 0.7926 0.7845 0.6454 0.7447 Landsat DDEM 20 Landsat NDWI - - 

10 19 0.7765 0.7926 0.7845 0.6454 0.7447 Landsat DDEM 20 Landsat NDWI DDEM - 

11 08 0.7803 0.8238 0.8015 0.6687 0.7502 Landsat - 30 Landsat EVI NDWI - 

12 06 0.7834 0.8289 0.8055 0.6743 0.7538 Landsat - 30 Landsat EVI - - 

13 12 0.7850 0.7915 0.7882 0.6505 0.7540 Landsat DDEM 20 Landsat EVI NDWI - 

14 20 0.7850 0.7915 0.7882 0.6505 0.7540 Landsat DDEM 20 Landsat EVI NDWI DDEM 

15 10 0.7898 0.7932 0.7915 0.6550 0.7594 Landsat DDEM 20 Landsat EVI - - 

16 18 0.7898 0.7932 0.7915 0.6550 0.7594 Landsat DDEM 20 Landsat EVI DDEM - 

17 15 0.7913 0.8136 0.8023 0.6699 0.7619 Landsat DDEM 30 Landsat NDWI - - 

18 23 0.7913 0.8136 0.8023 0.6699 0.7619 Landsat DDEM 30 Landsat NDWI DDEM - 

19 16 0.7927 0.8098 0.8012 0.6683 0.7633 Landsat DDEM 30 Landsat EVI NDWI - 

20 24 0.7927 0.8098 0.8012 0.6683 0.7633 Landsat DDEM 30 Landsat EVI NDWI DDEM 

21 14 0.7985 0.8161 0.8072 0.6767 0.7699 Landsat DDEM 30 Landsat EVI - - 

22 22 0.7985 0.8161 0.8072 0.6767 0.7699 Landsat DDEM 30 Landsat EVI DDEM - 

23 02 0.8009 0.7958 0.7983 0.6643 0.7717 Landsat - 20 Landsat EVI - - 

24 04 0.8029 0.7965 0.7997 0.6663 0.7740 Landsat - 20 Landsat EVI NDWI - 
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Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can conclude: 

1. Using Landsat image alone or with detrended DEM in the classification process does 

not generate satisfactory classification accuracy for the non-forest vegetation class.  

2. Using the combination of the Landsat image and EVI, the combination of the Landsat 

image, EVI and NDWI layer in the classification process will achieve the highest 

classification accuracy for non-forest vegetation class. 

3. Using segmentation result at scale 30 will have better user’s accuracy when compared 

to the trials using segmentation result at scale 20. This trend is not observed in the 

producer’s accuracy result. 

A map showing the classified non-forest vegetation class (derived from trial 04) of the Río 

Beni floodplain is depicted in Figure 15. From the map we can observe that non-forest vegetation 

has a presence over the entire floodplain. 
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Figure 15. Río Beni floodplain classification map for non-forest vegetation class 
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5.2.2.7. Bare soil 

The accuracy assessment result for the bare soil class is summarized in Table 25. 

Producer’s accuracy ranges from 0.5738 to 0.9639, user’s accuracy ranges from 0.7595 to 0.9778, 

Hellden’s mean accuracy index ranges from 0.6537 to 0.9700, Short’s mean accuracy index ranges 

from 0.4855 to 0.9418 and KIA ranges from 0.4825 to 0.9530.  

Grouping phenomenon can still be observed in the result. Producer’s and user’s accuracy 

for group one ranges from 0.5738 to 0.8529 and from 0.7595 to 0.8234 respectively. On the other 

hand, producer’s and user’s accuracy for group two ranges from 0.9571 to 0.9639 and from 0.9525 

to 0.9778 respectively.  

The lowest producer’s accuracy of 0.5738 comes from trial 13, which only used Landsat 

image in the classification process and its segmentation input layer is based on Landsat image and 

detrended DEM at scale 30. The highest producer’s accuracy of 0.9639 comes from trial 023, 

which use Landsat image, detrended DEM and NDWI layer in the classification process and its 

segmentation input layer is based on Landsat image and detrended DEM at scale 30.  

The lowest user’s accuracy of 0.7595 comes from trial 13 as well. The highest user’s 

accuracy of 0.9778 comes from trial 06, which use Landsat image and EVI layer in the 

classification process and its segmentation input layer is based on Landsat only at scale 30. 
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Table 25. Bare soil classification accuracy sorted by producer’s accuracy in an ascending order 

Order 
Trial 

NO. 
Producer User Hellden Short KIA 

Segmentation 

Layers 
Scale Classification Layers 

1 13 0.5738 0.7595 0.6537 0.4855 0.4825 Landsat DDEM 30 Landsat - - - 

2 21 0.5738 0.7595 0.6537 0.4855 0.4825 Landsat DDEM 30 Landsat DDEM - - 

3 05 0.6372 0.7663 0.6958 0.5335 0.5498 Landsat - 30 Landsat - - - 

4 09 0.8214 0.8177 0.8195 0.6942 0.7666 Landsat DDEM 20 Landsat - - - 

5 17 0.8214 0.8177 0.8195 0.6942 0.7666 Landsat DDEM 20 Landsat DDEM - - 

6 01 0.8529 0.8234 0.8379 0.7210 0.8060 Landsat - 20 Landsat - - - 

7 10 0.9571 0.9653 0.9612 0.9253 0.9442 Landsat DDEM 20 Landsat EVI - - 

8 18 0.9571 0.9653 0.9612 0.9253 0.9442 Landsat DDEM 20 Landsat EVI DDEM - 

9 02 0.9574 0.9635 0.9604 0.9239 0.9445 Landsat - 20 Landsat EVI - - 

10 12 0.9575 0.9654 0.9614 0.9257 0.9447 Landsat DDEM 20 Landsat EVI NDWI - 

11 20 0.9575 0.9654 0.9614 0.9257 0.9447 Landsat DDEM 20 Landsat EVI NDWI DDEM 

12 04 0.9577 0.9637 0.9607 0.9244 0.9449 Landsat - 20 Landsat EVI NDWI - 

13 16 0.9577 0.9674 0.9626 0.9278 0.9450 Landsat DDEM 30 Landsat EVI NDWI - 

14 24 0.9577 0.9674 0.9626 0.9278 0.9450 Landsat DDEM 30 Landsat EVI NDWI DDEM 

15 03 0.9584 0.9525 0.9554 0.9147 0.9456 Landsat - 20 Landsat NDWI - - 

16 08 0.9589 0.9767 0.9677 0.9375 0.9466 Landsat - 30 Landsat EVI NDWI - 

17 11 0.9590 0.9614 0.9602 0.9234 0.9465 Landsat DDEM 20 Landsat NDWI - - 

18 19 0.9590 0.9614 0.9602 0.9234 0.9465 Landsat DDEM 20 Landsat NDWI DDEM - 

19 14 0.9608 0.9696 0.9652 0.9327 0.9490 Landsat DDEM 30 Landsat EVI - - 

20 22 0.9608 0.9696 0.9652 0.9327 0.9490 Landsat DDEM 30 Landsat EVI DDEM - 

21 06 0.9615 0.9778 0.9696 0.9410 0.9501 Landsat - 30 Landsat EVI - - 

22 07 0.9627 0.9774 0.9700 0.9418 0.9516 Landsat - 30 Landsat NDWI - - 

23 15 0.9639 0.9694 0.9667 0.9355 0.9530 Landsat DDEM 30 Landsat NDWI - - 

24 23 0.9639 0.9694 0.9667 0.9355 0.9530 Landsat DDEM 30 Landsat NDWI DDEM - 
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Based on the performance of the 24 trials using producer’s accuracy and user’s accuracy, 

we can conclude: 

1. Using Landsat image alone or with detrended DEM in the classification process 

does not generate satisfactory classification accuracy for the non-forest vegetation 

class.  

2. Using the combination of the Landsat image, NDWI and detrended DEM, the 

combination of the Landsat image and NDWI layer in the classification process 

will achieve the highest classification accuracy for bare soil class. 

3. Using segmentation result at scale 30 will have better accuracy when compared to 

the trials using segmentation result at scale 20. 

A map showing the classified bare soil class (derived from trial 23) of the Río Beni 

floodplain is depicted in Figure 16. From the map we can observe that bare soil class has a presence 

over the entire floodplain while majority of the bare soil class are located in the floodplain 

boundary. 
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Figure 16. Río Beni floodplain classification map for bare soil class 
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5.3. Automated Local Threshold Result 

Digitized scroll bar ridges and scroll bar swales of our two chosen study areas in our 

floodplain study site are shown in Figure 17. 

 

 

 

Figure 17. A. Study area 1, superimposed image of SRTM DEM on Landsat false color 

composite image. B. Study area 1, digitized scroll bar ridges (yellow) and scroll bar swale 

(purple). C. Study area 2, superimposed image of SRTM DEM on Landsat false color composite 

image. D. Study area 2, digitized scroll bar ridges (yellow) and scroll bar swale (purple). 
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Two subsets of SRTM DEM of study area 1 and 2 were processed to derive 8-bit grey scale 

images, and then were imported to ImageJ software. As indicated in the previous section, all nine 

automated local threshold methods are used, and we implement each method with different radius 

settings, ranging from 150m to 270m. 90 trials in total are conducted for study areas 1 and 2; an 

image showing the segmentation result derived from all nine methods for study area 1, using a 

radius setting of 150m, is shown in Figure 18.   

 

 

 

Figure 18. Applying all nine methods on study area 1 with a 150m radius setting. A. 

Bernsen; B. Contrast; C. Mean; D. Median; E. MidGrey; F. Niblack; G. Otsu; H. Phansalkar; I. 

Sauvola.  
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The segmented binary images were then georeferenced and then compare with the digitized 

scroll bar ridges and swales for accuracy assessment. Accuracy for both ridges and swales were 

calculated and then arithmetic mean is derived for each trials and the result is summarized in Table 

26 and Table 27 for study area 1 and 2. 

 

Table 26. Mean accuracy of scroll bar ridges and swales for study area 1. 

Method 
Local Window Radius 

150m 180m 210m 240m 270m 

Bernsen 90.70% 91.26% 91.36% 91.18% 90.81% 

Contrast 87.14% 89.36% 90.65% 91.30% 91.56% 

Mean 89.71% 91.07% 91.48% 91.70% 91.67% 

Median 86.60% 88.32% 89.80% 90.92% 91.42% 

MidGrey 90.37% 91.13% 91.30% 91.13% 90.77% 

Niblack 89.05% 90.25% 90.98% 91.17% 91.34% 

Otsu 89.86% 90.76% 90.66% 90.32% 90.26% 

Phansalkar 80.66% 83.17% 84.92% 85.94% 86.56% 

Sauvola 54.94% 57.50% 60.72% 63.34% 65.43% 

 

 

Table 27. Mean accuracy of scroll bar ridges and swales for study area 2. 

Method 
Local Window Radius 

150m 180m 210m 240m 270m 

Bernsen 90.79% 92.10% 93.04% 93.21% 93.30% 

Contrast 79.70% 79.98% 79.66% 79.26% 78.78% 

Mean 87.45% 89.79% 91.07% 91.90% 92.47% 

Median 82.20% 83.90% 85.74% 87.07% 88.04% 

MidGrey 90.14% 91.58% 92.65% 92.69% 92.61% 

Niblack 85.96% 87.92% 89.56% 90.85% 91.31% 

Otsu 89.38% 91.66% 92.66% 93.32% 93.39% 

Phansalkar 92.93% 93.47% 93.72% 93.97% 94.14% 

Sauvola 61.60% 64.17% 66.88% 69.65% 71.73% 
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By average those two tables together, we can derive the overall performance assessment 

for those nine methods used in our two study areas. The result is summarized in Table 28. Based 

on the result, we can derive the top five trials which has highest accuracy as follow: 

1. Using Bernsen’s method at radius 210m can achieve an accuracy of 92.20%. 

2. Using Bernsen’s method at radius 240m can achieve an accuracy of 92.19%. 

3. Using Mean method at radius 270m can achieve an accuracy of 92.07%. 

4. Using Bernsen’s method at radius 270m can achieve an accuracy of 92.06%. 

5. Using MidGrey method at radius 210m can achieve an accuracy of 91.98%. 

 

 

Table 28. Mean accuracy of scroll bar ridges and swales for both study areas. 

Method 
Local Window Radius 

150m 180m 210m 240m 270m 

Bernsen 90.75% 91.68% 92.20% 92.19% 92.06% 

Contrast 83.42% 84.67% 85.16% 85.28% 85.17% 

Mean 88.58% 90.43% 91.27% 91.80% 92.07% 

Median 84.40% 86.11% 87.77% 88.99% 89.73% 

MidGrey 90.26% 91.35% 91.98% 91.91% 91.69% 

Niblack 87.51% 89.08% 90.27% 91.01% 91.33% 

Otsu 89.62% 91.21% 91.66% 91.82% 91.82% 

Phansalkar 86.79% 88.32% 89.32% 89.95% 90.35% 

Sauvola 58.27% 60.84% 63.80% 66.50% 68.58% 

 

 

In Figure 19 we illustrated the result when applying three different method: Bernsen at 

radius 210m, Mean at radius 270m, MidGrey at radius 210m to study area 1 and 2 and 

corresponding reference data. 
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Figure 19. Automated local threshold output in area 1 (A-D) and area 2 (E-H).  A. 

Bernsen, radius =210m; B. Mean, radius=270m; C. MidGrey, radius=210m;                 D. 

Digitized ridges and swales; E. Bernsen, radius =210m; F. Mean, radius=270m;          G. 

MidGrey, radius=210m; H. Digitized ridges and swales. 

 

 

Table 29. Accuracy of the scroll bar segmentation when compared to reference data 

Method Radius (m) 
Sroll Bar Swale 

Accuracy 

Scroll Bar Ridge 

Accuracy 

Average 

Accuracy 

Bernsen 210 95.05% 61.76% 78.40% 

Mean 270 93.34% 68.70% 81.02% 

MidGrey 210 95.58% 59.00% 77.29% 

 

 

Furthermore, we applied those three methods to our whole floodplain and compared with 

same reference data of the scroll bar ridges and swale used in the classification accuracy 

assessment described in previous section, the result is summarized in Table 29. Mean method has 

B C D 

E F G H 

A 
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a highest accuracy of 81.02% while Bernsen’s method and MidGrey’s method has an accuracy of 

78.4% and 77.29% respectively.   
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6. CONCLUSION 

 

In this research we implement GEOgraphic Object-Based Image Analysis on Landsat 7 

ETM+ imagery and ancillary datasets in an attempt to classify Río Beni floodplain into eight land 

cover and geomorphic classes as defined by the author. 

Multi-resolution segmentation using Landsat 7 atmospheric corrected surface reflectance 

image and SRTM DEM is conducted inside eCognition. Segmentation result indicates choosing a 

weighting scheme of 1:1:1:3:1:1 for Landsat 7 blue, green, red, near-infrared, shortwave infrared 

1 and shortwave infrared 2 bands can achieve optimal segmentation result in all three scale (10, 

20 and 30). Inclusion of SRTM DEM in the segmentation does not significantly improve the 

overall accuracy of the segmentation result. We can also observe that segmentation result 

demonstrates different level of delineation details for each land cover and geomorphic classes. 

Bright oxbow lake, dark oxbow lake classes have the highest segmentation performance and bright 

sand bar and dark sand bar classes has second highest segmentation performance. River, non-forest 

vegetation and bare-soil classes have moderate performance. Scroll bar ridges and scroll bar swales 

has the lowest performance largely due to land cover above those geomorphic objects, as well as 

the spatial resolution of the our datasets, limiting the ability of the segmentation algorithm to 

differentiate them from neighboring objects. Segmentation result of scale 20 and 30 are deemed 

suitable for our study. 

We implemented nearest neighbor classifier in the object-based classification and proposed 

24 trials using different combination of segmentation input layers and classification input layers. 

Overall accuracy ranges from 0.5522 to 0.8852 while Kappa Index of Agreement ranges from 

0.4417 to 0.8539. The highest overall accuracy of 0.8852 comes from trial that uses Landsat 7 and 
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EVI images in the classification process and its segmentation input layer is based on Landsat 7 

image only at scale 30. Classification result also showed despite using various segmentation layers, 

classification trials which use Landsat 7 image only or combination of Landsat 7 and detrended 

DEM in the classification process trend to have significantly lower accuracy than other dataset 

combination.  

The highest accuracy for each land cover and geomorphic class is listed here: river 

(91.32%), oxbow lake (96.90%), sandbar (86.68%), scroll bar ridge (28.85%), scroll bar swale 

(35.53%), forest (97.01%), non-forest vegetation (80.29%) and bare soil (96.39%). Result showed 

in addition to the Landsat 7 image, NDWI layer is beneficial to the classification of river class, 

EVI and NDWI layers are beneficial to the classification of oxbow lake and non-forest vegetation 

class, Detrended DEM is beneficial to the classification of sandbar class, Detrended DEM and 

NDWI layers are beneficial to the classification of the bare soil class. Result also showed 

segmentation result with a scale 30 is suitable for the classification of river, scroll bar ridge, forest, 

bare soil classes, while segmentation result with a scale 20 is more suitable for the classification 

of oxbow lake, sand bar and non-forest vegetation classes. 

In the end, we experimented nine automated local threshold methods to two scroll bar rich 

areas within our floodplain study site to segment image into scroll bar ridges and scroll bar swales. 

Result showing Bernsen’s method with a local radius 210m can achieve an accuracy of 92.20% 

across our two study sites. When applying to the whole floodplain, the mean method can achieve 

an accuracy of 81.02%. 

Accurate floodplain land cover and geomorphic objects mapping is an important step to 

understand floodplain geomorphology in a large scale, result from this study could applied to 

finding the underlying factor of floodplain pattern change as well as river restoration, helping 
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decrease the chance of flooding and habitats losses. The knowledge of floodplain classification 

will also help authority to design the floodplain, which will benefit the sustainable agriculture, 

forestry management and carbon sequestration.  
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