
MATHEMATICAL MODELING OF BIOLOGICAL CLOCKS

A Dissertation

by

JONATHAN P. TYLER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jay Walton
Co-Chair of Committee, Anne Shiu
Committee Members, Harold Boas

Deborah Bell-Pedersen
Head of Department, Emil Straube

August 2019

Major Subject: Mathematics

Copyright 2019 Jonathan P. Tyler

ABSTRACT

Biological clocks generate rhythms with periods from seconds to months in many organisms

and control many processes that are critical to the survival of the organism. Many rhythms in

biology are the result of rhythms in the mRNA and protein abundances at the cellular level that are

then synchronized within the organism. To better understand biological clocks, mathematical and

computational modeling is crucial as these tools provide directions for experimental procedures,

test hypotheses within these models, and corroborate new biological revelations. Therefore, we

apply novel mathematical and computational techniques to obtain insights into biological clocks

at the molecular level.

First, we generalize and analyze an ODE model of the repressilator with an arbitrary number

of genes. Previous models of the repressilator were derived from assumptions that are biologically

restrictive. These previous models assume first-order transcription, translation, and degradation,

with rates equivalent among genes, mRNAs, and proteins, respectively. This assumption, however,

is not consistent with current biological knowledge. Accordingly, we propose a new repressilator

model allowing for differing transcription, translation, and degradation terms. We show that, under

conditions on these new functions, there is still a unique steady state when an odd number of genes

are in the network. We also show that, with an odd number of genes, either the model converges

to the steady state or to a periodic orbit. Finally, we give a counterexample to a recent conjecture

proposed by Tyler et al. Taken together, our results advance the theoretical study of cyclic gene

repression by generalizing the current repressilator models.

Next, we derive a new transcription-rate function that arises from more reasonable biological

assumptions than the traditionally used transcription-rate function. Furthermore, we analyze the

qualitative differences in the period, amplitude, and phase of a model with our new transcription-

rate function and a model with the old transcription-rate function. Our numerical simulations

reveal drastic differences in the period, amplitude, and phase of the protein waveforms between

the two models.

ii

Finally, we present novel algorithms to address the parameter estimation of the repressila-

tor. Parameter estimation of models of biological oscillators is inherently challenging due to the

nonlinearity present in the system. We illustrate two specific challenges by attempting to fit the

parameters of the repressilator using traditional techniques. We then revisit two standard parame-

ter estimation procedures and show how they fail to generate accurate parameter estimates. Next,

we present three novel algorithms, two that take as input time-course data of the repressilator and

output parameter estimates. The third algorithm takes as input time-course data of the repressilator

along with a specific parameter estimate and outputs the period of the model solution with that

parameter estimate as well as model solution values at the time points of the data. Ultimately, we

show that our new procedures are more accurate than the two standards in the field of computa-

tional biology and a commonly used global optimization procedure, the particle swarm algorithm.

iii

DEDICATION

To my parents, Amanda and Dan, for affording me every opportunity.

To my wife, Meredith, for loving and supporting me in everything.

To my children, Marie and James, for bringing me immeasurable joy.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my two advisors: Anne Shiu and Jay Walton. They

taught me how to conduct mathematical research, how to communicate effectively my results in

manuscripts and presentations, how to collaborate with other scientists, and how to balance a life

between work and family. I am blessed to have had two such distinguished, attentive, and patient

advisors.

Second, I would like to thank my two other committee members, Harold Boas from the Depart-

ment of Mathematics and Deborah Bell-Pedersen from the Department of Biology. Harold Boas

was quick to provide much comic relief in the stressful moments of my academic journey, which I

always appreciated. I am grateful to Deborah Bell-Pedersen for providing invaluable insights into

the biology of biological clocks that made my work significantly better.

Next, I would like to thank the graduate program at Texas A&M, specifically Peter Howard,

the Director of Graduate Studies, and Monique Stewart. Peter Howard was always willing to

listen and offer sage advice. Monique Stewart patiently endured my serial procrastination while

endlessly confirming that I had the proper paperwork submitted and the necessary requirements

satisfied.

In addition, I am grateful to the Texas A&M High Performance Research Computing center

for allowing me to use the computing resources to conduct portions of this research.

Also, I would like to thank my fellow graduate students in the math department (in particular,

Joe Torres, Mahishanka Withanachchi, Brian Hunter, Burak Hatinoglu, Alexander Ruys de Perez,

Nida Obatake, Ola Sobieska-Snyder, Ayomikun Adeniran, Taylor Brysiewicz, and David Sykes).

It has been an honor working alongside you, learning from you, and growing into mathematicians

with you. I thoroughly enjoyed our extended homework sessions, outdoor game days, game nights,

cookie breaks, writing groups, GSO seminars, and the select fluid dynamics that I attended. I am

excited to follow all of your careers and to witness all of your successes and joys in mathematics

and in life.

v

I must also thank all of the friends that I have made outside of the math department here in

Bryan/College Station. Nerd frisbee on Sunday evenings was always a much-needed diversion

from the rigors of mathematical research. All of my friends at St. Mary’s were instrumental in

facilitating my growth as a person, friend, husband, and father. I will always cherish the friends I

made through singing and playing with the 8 am choir.

Furthermore, I would like to thank my parents, Amanda and Dan. It truly is because of them

that I have done anything of circumstance in my life. They provided a nurturing home full of fun,

love, support, intellectual stimulation, and pride in their children. To them, I am eternally grateful.

I am also grateful to my younger sister, Abigail. She was the best partner in crime growing up, and

she continues to inspire me to pursue my passions in life. I am also blessed to have another set of

parents in my in-laws, Marian and Kevin. I am grateful that they have embraced me as their own

and have loved and supported me in this journey.

Finally, I would like to thank my wife, Meredith. She is truly the reason that this document

exists. She believed in me even when I didn’t. She pushed me when I couldn’t find the motivation

within myself. She supported me emotionally and financially. She cared for both of our children

so that I would have no distractions in my last year. All the while, she loved me and cared for me.

I cannot imagine having a better wife at my side.

And speaking of our children, Marie and James, there is nothing better in life than walking into

your home in the evening to two smiling children that have waited patiently all day for your arrival.

When they raced (either running or crawling) to see me, all stress in life instantly evaporated.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Jay Walton (co-advisor),

Dr. Anne Shiu (co-advisor), and Dr. Harold Boas of the Department of Mathematics and Dr. Bell-

Pedersen of the Department of Biology.

The student independently completed all work for the dissertation.

Funding Sources

Graduate study was supported by a teaching assistantship from Texas A&M University as well

as partial support from the NSF (DMS-1752672).

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. .xvii

1. INTRODUCTION. 1

1.1 From Biological Clocks to Circadian Rhythms. 1
1.2 Overview of the Main Results . 3

2. A SYNTHETIC INTRACELLULAR REGULATORY NETWORK THAT EXHIBITS
OSCILLATIONS . 5

2.1 Introduction. 5
2.1.1 The Repressilator as an Architecture for Circadian Clocks . 6
2.1.2 Section Organization . 8

2.2 Background . 8
2.2.1 Elowitz and Leibler Mathematical Model . 8
2.2.2 Müller et al. Mathematical Model . 10
2.2.3 Routh-Hurwitz Criterion . 12
2.2.4 Monotone Systems Theory. 13

2.3 Generalized Repressilator Model. 15
2.3.1 Steady States . 18

2.3.1.1 Odd-n Case . 20
2.3.1.2 Even-n Case . 21

2.3.2 Stability Analysis . 26
2.3.2.1 Even-n Case . 27
2.3.2.2 Odd-n Case . 30

2.3.3 Counterexample to Conjecture. 36
2.3.4 Asymptotic Behavior . 41

2.4 Discussion . 41

viii

3. TRANSCRIPTION-RATE FUNCTION FROM SUCCESSIVE BINDING 43

3.1 Introduction. 43
3.2 New Transcription-Rate Function from Successive Binding. 45

3.2.1 Successive-Binding Function . 46
3.2.2 Transcription-Rate Function Obtained from Successive-Binding Function . . . 48

3.3 Numerical Comparison of Models Arising from Hill Functions vs. Successive-
Binding Transcription-Rate Functions . 50
3.3.1 Amplitude . 51
3.3.2 Period . 52
3.3.3 Phase . 54

3.4 Analytical Comparison of Amplitudes . 55
3.5 Discussion . 60

4. NOVEL ALGORITHMS FOR ESTIMATING PARAMETERS OF THE REPRESSI-
LATOR. 62

4.1 Introduction. 62
4.2 Background . 65

4.2.1 The Constrained HEKF Algorithm . 65
4.2.1.1 Parameter Estimation. 66
4.2.1.2 Variance Test . 68

4.2.2 Skewness . 70
4.2.3 The Cost of Protein Production . 71
4.2.4 Estimating the Period of a Discrete Data Set Using the Fast Fourier Transform 72

4.3 Challenges in Parameter Estimation of the Repressilator . 73
4.3.1 Simulated Repressilator Data . 74
4.3.2 Challenge 1: Multimodality of the Objective Function. 75
4.3.3 Challenge 2: Lack of Initial mRNA Values . 77

4.4 Previous Parameter Estimation Procedures Applied to the Repressilator 77
4.4.1 Constrained HEKF Algorithm Applied to Simulated Repressilator Data 78
4.4.2 Lack of Some Initial Data Affects Accuracy of Estimates Generated by

GEARS . 79
4.5 Analyzing Possible Test Statistics . 81

4.5.1 Methods . 83
4.5.2 Skewness . 83
4.5.3 Period . 84
4.5.4 Amplitude . 85
4.5.5 Cost of Protein Production . 86
4.5.6 Peak-to-Trough Time. 86
4.5.7 Peak to 50%-Amplitude . 88
4.5.8 Minimum Derivative . 89
4.5.9 Biological Significance. 91

4.6 New Algorithms . 91
4.7 Algorithm Results . 96

ix

4.7.1 Algorithm 4.6.1 Results . 97
4.7.2 Algorithm 4.6.2 Results . 99
4.7.3 Repeated Runs of Algorithms 4.6.1 and 4.6.2 . 108

4.8 Final Algorithm and Algorithm Comparison . 111
4.8.1 Algorithm Comparison . 111

4.8.1.1 Comparison with the Particle Swarm Algorithm . 111
4.8.1.2 Comparison with the GEARS Toolbox. 113
4.8.1.3 Revisiting the Example in Section 4.4.1 . 115

4.9 Discussion . 115

5. CONCLUSION AND FURTHER DIRECTIONS. 119

5.1 Further Directions . 121
5.1.1 Parameter Estimation of Actual Repressilator Data . 121
5.1.2 A Generalized Stochastic Model of the Repressilator . 122

REFERENCES . 123

APPENDIX A. SELECT MATLAB CODE. 129

A.1 Section 3 Codes . 129
A.1.1 Estimating Hopf Bifurcations of Models (SS) and (SB). 129
A.1.2 Computing Phase, Amplitude, and Periods . 130
A.1.3 Plotting Limit Cycles . 135

A.2 Section 4 Codes . 136
A.2.1 Constrained HEKF Algorithm . 136

A.2.1.1 Code to Update P0 . 139
A.2.1.2 Code to Compute the Jacobian . 140

A.2.2 Generating Plots for Skewness. 141
A.2.3 Generating Plots for Period and Amplitude . 142
A.2.4 Generating Plots for Cost of Protein Production . 143
A.2.5 Generating Plots for Peak to Trough Time . 144
A.2.6 Generating Plots for Peak to 50% Amplitude Time . 145
A.2.7 Generating Plots for Min Derivative. 147
A.2.8 Cost Estimator . 147
A.2.9 Generating Simulated Data . 148
A.2.10 Cost Estimator . 150
A.2.11 Algorithm 4.6.2 and Particle Swarm Comparison . 150

APPENDIX B. SUPPLEMENTARY TABLES AND FIGURES . 158

B.1 Results from the New Algorithm in Section 4 . 158
B.1.1 Supplementary Tables for Section 4, Section 4.7.1 . 158

B.2 Supplementary Figures . 158
B.2.1 Data Sets for Section 4.7 . 158

x

Jonathan Tyler

Jonathan Tyler

LIST OF FIGURES

FIGURE Page

1.1 Human circadian rhythm. Adapted from a figure in The Body Clock Guide to Better
Health [1]. 2

2.1 The repressilator network with three genes and their respective products [2]. The
m’s denote mRNA while the P ’s denote proteins. The product of gene-1 represses
transcription of gene-2; the product of gene-2 represses transcription of gene-3; the
product of gene-3 represses transcription of gene-1. 5

2.2 (A) Outline of the Arabidopsis thaliana circadian clock. Components in yel-
low comprise the daytime elements and grey components, the nighttime elements.
Solid lines denote transcriptional regulation. Red dashed lines denote post-translational
regulation. (B) Simplified schematic of the Arabidopsis circadian clock to high-
light the repressilator architecture present within the system. Adapted from Figures
1 and 8 in [3]. 7

2.3 Contour Γ in proof of Theorem 2.3.13. 28

2.4 Plot of the curves given in condition (2.36). The blue curve plots points (r∗, α) that
satisfy the fixed point problem given by the first equation in (2.36). The red curve
plots points (r∗, α) that satisfy the second equation in (2.36) that guarantees that
Ki = −3. 40

3.1 (a) Protein 1 concentration amplitudes for models (SS) (blue curve) and (SB) (red
curve) with respect to the Hill coefficient. We fixed the transcription rates at the
same value, k = 10. (b) Amplitudes of the concentration of protein 1 for models
(SS) (blue) and (SB) (red) with respect to the transcription rate. The Hill coeffi-
cient, h, was fixed at 3 for the simulations. The initial conditions for both (a) and
(b) were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1, and p3 = 6. Code written to
create this figure appears in Appendix A, Section A.1.2. 53

3.2 (a) Period of the concentration of protein 1 for models (SS) (black) and (SB) (red)
with respect to the Hill coefficient. Similar to the amplitude comparison in Figure
3.1(a), the transcription rates were set to be equivalent at k = 10. (b) Period of the
concentration of protein 1 for models (SS) (blue) and (SB) (red) with respect to the
transcription rate. The Hill coefficient, h, was fixed at 3 for the simulations. The
initial conditions for both (a) and (b) were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1,
and p3 = 6. Code written to create this figure appears in Appendix A, Section
A.1.2. 53

xi

3.3 (a) Phase difference (in time) of the abundances of proteins 1 and 2 for models (SS)
(black) and (SB) (red) with respect to the Hill coefficient. Similar to the amplitude
and period comparisons in Figures 3.1(a) and 3.2(a), the transcription rates were
set to be equivalent at k = 10. (b) Phase difference (in time) of the abundances
of proteins 1 and 2 for models (SS) (black) and (SB) (red) with respect to the
transcription rate. The Hill coefficient, h, was fixed at 3 for the simulations. The
initial conditions for both (a) and (b) were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1,
and p3 = 6. Code written to create this figure appears in Appendix A, Section
A.1.2. 56

3.4 We obtain this figure by starting with Figure 3.1(b). The dotted blue line is the
bound, from Theorem 3.4.1, for the amplitude of protein-1 abundance. In the case

of system (SS), the bound is pi ≤
αk

dridpi
= α, where α is the transcription rate. 59

3.5 (a) The black curve is the projection Π1(r1, . . . , rn, p1, . . . , pn) = (r1, p1) to R2
≥0

of the limit cycle of a repressilator system with transcription modeled by the Hill
function. The red curve is the same projection to R2

≥0 of the limit cycle of a repres-
silator system with transcription modeled by the successive-binding function. (b)
Zooming in on the trough of the limit cycles plotted in (a). The code we wrote to
generate this figure appears in Appendix A, Section A.1.3. 60

4.1 Sample distributions, all with equivalent mean (0), standard deviation (1), and
fourth-moment, kurtosis (4). Each distribution was found in MATLAB with the
function pearsrnd [4], which allows you to specify a mean, standard deviation,
skewness, and kurtosis. There are 10,000 data points in each distribution. (a) Dis-
tribution with skewness equal to -1. (b) Distribution with skewness equal to 0. (c)
Distribution with skewness equal to 1. 70

4.2 Simulated protein abundances (p1(t), p2(t), and p3(t), respectively) arising from
system (4.9) with initial conditions r1 = 3, r2 = 6, r3 = 10, p1 = 10, p2 = 2, and
p3 = 10. 73

4.3 Objective plots with respect to each parameter value based on system (4.9). See
Section 4.3.2 for a description of how we calculate the objective function (Eqn.
(4.10)). For each simulation, the parameters that were not varied were fixed at the
actual value. 75

4.4 Two simulations of the protein abundance p3(t) with the parameters as in system
(4.9) but with differing initial mRNA values. The protein abundances were initial-
ized to be 0 for both simulations. The initial mRNA values for the blue curve were
4, 7, and 3 while the black curve is a simulation with initial mRNA values of 1, 0,
and 10. 76

xii

4.5 The red data points correspond to simulated data of system (4.9) with α0 = 0,
α = 5, β = 3, and n = 3. The data points were taken from the black curve at a
spacing .5 time units, and normal noise with mean zero and standard deviation .5
was added. The blue curve is the model solution of system (4.9) with a parameter
set that passed the Variance Test (parameters α0 = 0, α = 4.6324, β = 2.9558,
and n = 10.2211). 79

4.6 (a) The red curve is the regularized fit of r3 values of system (4.9) given the estimate
from GEARS with input as the correct initial values and r3 and p3 time-course data
(r3 data points in black). (b) The red curve is the regularized fit of r3 values of
system (4.9) given the estimate from GEARS with input as the perturbed initial
values of p1 and p2 and all other inputs the same as in the original example. 82

4.7 Plot of how the skewness varies with respect to (a) the Hill coefficient, (b) the
transcription rate, and (c) the degradation ratio. The parameters were fixed at α =
5, β = 3, and n = 3 when not considered as a variable. Code used to obtain plots
is found in Appendix A, Section A.2.2. 84

4.8 Plot of how the period varies with respect to (a) the Hill coefficient, (b) the tran-
scription rate, and (c) the degradation ratio. The parameters were fixed at α = 5,
β = 3, and n = 3 when not considered as a variable. Code used to obtain plots is
found in Appendix A, Section A.2.3. 85

4.9 Plot of how the amplitude varies with respect to (a) the Hill coefficient, (b) the
transcription rate, and (c) the degradation ratio. The parameters were fixed at α =
5, β = 3, and n = 3 when not considered as a variable. Code used to obtain plots
is found in Appendix A, Section A.2.3. 86

4.10 Plot of how the cost varies with respect to (a) the Hill coefficient, (b) the transcrip-
tion rate, and (c) the degradation ratio. The parameters were fixed at α = 5, β = 3,
and n = 3 when not considered as a variable. Code used to obtain plots appears
in Appendix A, Section A.2.4. 87

4.11 Plot of how the time between the peak and the trough varies with respect to (a)
the Hill coefficient, (b) the transcription rate, and (c) the degradation ratio. The
parameters were fixed at α = 5, β = 3, and n = 3 when not considered as a
variable. Code used to obtain plots appears in Appendix A, Section A.2.5. 88

4.12 Example of the test quantity considered in Section 4.5.7. One period of protein
abundance levels of system (4.9) with α = 5, β = 3, and n = 3. The red line
corresponds to the time when the protein abundance level is half of the amplitude. . . 89

4.13 Plot of how the time from the peak to 50% of the max protein 1 level varies with
respect to (a) the Hill coefficient, (b) the transcription rate, and (c) the degradation
ratio. The parameters were fixed at α = 5, β = 3, and n = 3 when not considered
as a variable. Code used to obtain plots is found in Appendix A, Section A.2.6. . . 90

xiii

4.14 Plot of how the minimum derivative (in magnitude) varies with respect to (a) the
Hill coefficient, (b) the transcription rate, and (c) the degradation ratio. The param-
eters were fixed at α = 5, β = 3, and n = 3 when not considered as a variable.
Code used to obtain plots appears in Appendix A, Section A.2.7. 90

4.15 (a) Simulated data set (0.5, 0) from system (4.9). (b) Simulated data set (1, 0.5)
from system (4.9). After adding noise, if any data point is negative, we set that
data point to 0. System (4.9) was simulated to the limit cycle using initial condi-
tions. Code used to generate these two data sets and all the others appears in
Appendix A, Section A.2.9. 98

4.16 The red points plot the data set (1, 0.5). The black curve is the model solution of
system (4.9). The dotted blue curve is the model solution of system (4.9) with the
parameters given in Table 4.5. 101

4.17 The red points in all three plot the data set (1, 0.5). The black curve in all three is
the model solution of system (4.9). The dotted line is the model solution of system
(4.9) with the parameters given by the estimates generated using Algorithm 4.6.1
when ranked by the (a) amplitude, (b) cost, and (c) period. 102

4.18 The white histogram for each of the above figures is the frequency of transcription
rates generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red his-
tograms are the top 25 transcription rates from Algorithm 4.6.1 when ranking by
(a) sum of the three statistics, (b) the amplitude, (c) the cost, and (d) the period.
Plots (e), (f), (g), and (h) are zoomed-in views of (a), (b), (c), and (d), respectively.
The black histogram in (g) represents the top 10 transcription rates from Algorithm
4.6.1 when ranked by the cost. 103

4.19 The white histogram for each of the above figures is the frequency of degradation
ratios generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red his-
tograms are the top 25 degradation ratios from Algorithm 4.6.1 when ranking by
(a) sum of the three statistics, (b) the amplitude, (c) the cost, and (d) the period.
Plots (e), (f), (g), and (h) are zoomed-in views of (a), (b), (c), and (d), respectively.
The black histogram in (g) represents the top 10 degradation ratios from Algorithm
4.6.1 when ranked by the cost. 104

4.20 The white histogram for each of the above figures is the frequency of Hill co-
efficients generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red
histograms are the top 25 Hill coefficients from Algorithm 4.6.1 when ranking by
(a) sum of the three statistics, (b) the amplitude, (c) the cost, and (d) the period.
Plots (e), (f), (g), and (h) are zoomed-in views of (a), (b), (c), and (d), respectively.
The black histogram in (e) represents the top 10 Hill coefficients from Algorithm
4.6.1 when ranked by all three test statistics. 105

xiv

4.21 The red points are the data points from data set (1, 0.5). The black curve is the
original model solution to system (4.9). The dotted curve is the model solution of
system (4.9) with the parameters α = 5.0574, β = 3.0381, and n = 3.0853 (Table
4.7, Row (1, 0.5)). 106

4.22 Results of Algorithm 4.6.2 on the data set (1, 0.5) (plotted in Figure 4.15(b)). The
white histograms plot the frequency of the (a) transcription rates, (b) degradation
ratios, and (c) Hill coefficients generated from 600 repetitions of Step 3 in Algo-
rithm 4.6.2. The red histograms plot the frequency of the top 25 (a) transcription
rates, (b) degradation ratios, and (c) Hill coefficients selected by Algorithm 4.6.2.
Plots (d), (e), and (f) are zoomed-in plots of (a), (b), and (c), respectively. Recall
that the true values are 5, 3, and 3 for the transcription rate, degradation ratio, and
Hill coefficient, respectively. 107

4.23 Algorithms 4.6.1 and 4.6.2 were run on 100 (0.5, 0.5) data sets. Plots (a) and (d) are
the frequencies of transcription rates from Algorithms 4.6.1 and 4.6.2, respectively.
Plots (b) and (e) are the frequencies of degradation ratios from Algorithms 4.6.1
and 4.6.2, respectively. Plots (c) and (g) are the frequencies of Hill coefficients
from Algorithms 4.6.1 and 4.6.2, respectively. The red and blue lines in each plot
are the mean and median values, respectively. Recall the actual parameter values
of the transcription rate, degradation ratio, and Hill coefficient are 5, 3, and 3,
respectively. 109

4.24 Algorithms 4.6.1 and 4.6.2 were run on 100 (1, 0.25) data sets. Plots (a) and (d) are
the frequencies of transcription rates from Algorithms 4.6.1 and 4.6.2, respectively.
Plots (b) and (e) are the frequencies of degradation ratios from Algorithms 4.6.1
and 4.6.2, respectively. Plots (c) and (g) are the frequencies of Hill coefficients
from Algorithms 4.6.1 and 4.6.2, respectively. The red and blue lines in each plot
are the mean and median values, respectively. Recall the actual parameter values
of the transcription rate, degradation ratio, and Hill coefficient are 5, 3, and 3,
respectively. 110

4.25 The Regularized Solution with Uncertainty plot generated by the GEARS Toolbox.
The black data points are the data points from the data set (0.5, 0.25). We initialized
the standard deviation of the data set in the GEARS Algorithm as .25 for each data
point. The parameter estimate that GEARS generated was 4.9444, 2.8049, and
2.4970 with actual values of 5, 3, and 3, respectively. 114

4.26 The red data points correspond to simulated data of system (4.9) with α0 = 0,
α = 5, β = 3, and n = 3. The data points were taken from the black curve at a
spacing 1 time unit, and normal noise with mean zero and standard deviation .5 was
added. The blue curve is the model solution of system (4.9) with a parameter set
that passed the Variance Test from Section 4.4.1 (parameters α0 = 0, α = 4.6324,
β = 2.9558, and n = 10.2211). The magenta curve is the model solution with the
parameter estimate generated from Algorithm 4.6.2 (parameters α = 4.91357316,
β = 2.93884965, and n = 2.74271903). 116

xv

B.1 Data used in Section 4.7. Spacing between consecutive time points is .5 (a.u.).
Gaussian normal noise with mean 0 and added noise with standard deviation: (a)
0, (b) .1, (c) .25, and (d) .5. 167

B.2 Data used in Section 4.7. Spacing between consecutive time points is 1 (a.u.).
Gaussian normal noise with mean 0 and added noise with standard deviation:(a) 0,
(b) .1, (c) .25, and (d) .5. 168

xvi

LIST OF TABLES

TABLE Page

4.1 A list of the variables and parameters of system (4.9). 74

4.2 Parameter estimates from data simulated from system (4.9) that passed the Con-
strained HEKF Algorithm Variance Test. The blue estimate is used to generate the
model solution of system (4.9) in Figure 4.5. The estimates in bold deviate more
than ten percent of the true parameter value. 80

4.3 The top-ten parameter estimates among the 500 generated as described in Section
4.4.1 when ranked by the ℓ1-norm difference between the row and the true vector
of parameters (5, 3, 3). None of the estimates listed passed the Variance Test. 80

4.4 Parameter estimates generated by the GEARS Toolbox. The original row lists
parameter estimates that were found from GEARS with input as the r3 and p3
data sets and correct initial values. The perturbed row lists the parameter estimates
that were found from GEARS with input as the perturbed initial values for p1 and
p2 and all other input the same as in the original example. See Section 4.4.2 for
how the initial values were perturbed. 83

4.5 Parameter estimates generated by Algorithm 4.6.1 for the respective time spacing
and noise added for the data in Appendix B. We repeat Step 4 600 times. Actual
parameter values given in system (4.9) are 5, 3, and 3 for the transcription rate
(TR), degradation ratio (DR), and Hill coefficient (Hill), respectively. 100

4.6 Parameter estimates generated by Algorithm 4.6.1 when ranked by the amplitude,
cost, and period. We repeat Step 4 600 times. Within the columns for the specific
test statistic, the parameters are ordered: transcription rate (TR), degradation ratio
(DR), and Hill coefficient (Hill). Actual parameter values given in system (4.9)
are 5, 3, and 3 for the TR, DR, and Hill, respectively. In the Cost Estimate col-
umn, the values that are blue/bold are parameter estimates that are better than the
corresponding estimates in Tables 4.5 and 4.7. 100

4.7 Parameter Estimates generated by Algorithm 4.6.2 for the respective time spacing
and noise added. Actual parameter values given in system (4.9) are 5, 3, and 3
for the transcription rate (TR), degradation ratio (DR), and Hill coefficient (Hill),
respectively. The estimates colored red refer to parameter estimates that are worse
than the corresponding estimate in Table 4.5. 106

xvii

4.8 Mean transcription rate, degradation ratio, and Hill coefficient of the 100 runs of
Algorithm 4.6.1 (Column 2) and Algorithm 4.6.2 (Column2) for the two data sets
(Column 1). 108

4.9 Number of times the estimate from corresponding algorithm (Column 1) of the
transcription rate (Column 2), degradation ratio (Column 3), and Hill coefficient
(Column 4) deviated by more than ten percent of the actual value (5, 3, and 3,
respectively). The numbers in parentheses count the number of times that the op-
posite algorithm’s estimate also deviated by more than ten percent. 109

4.10 Comparison of Algorithm 4.6.2 with the Particle Swarm Algorithm in MATLAB.
See Section 4.8.1.1 for a description of how the particleswarm function was ini-
tialized and how the objective function was defined. The estimates in red deviate
by more than ten percent of the true parameter value. 112

4.11 Comparison of Algorithm 4.6.2 and the GEARS Toolbox [6] given equivalent data
sets. See Section 4.8.1.2 for a description of how we initialized and ran the GEARS
Algorithm. 113

B.1 Top 10 parameter estimates when ranked by period, amplitude, and cost together
(all weighted equally). The total time of the data set was 50. No noise was added
to the data set. The cost estimate was 3.70424; the period estimate was 7.2; the
amplitude estimate was 4.075. 158

B.2 Top 10 parameter estimates when ranked by period only. The total time of the data
set was 50. No noise was added to the data set. The period estimate 7.2. 159

B.3 Top 10 parameter estimates when ranked by amplitude only. The total time of the
data set was 50. No noise was added to the data set. The amplitude estimate was
4.075. 159

B.4 Top 10 parameter estimates when ranked by cost only. The total time of the data
set was 50. No noise was added to the data set. The cost estimate was 3.70424. 160

B.5 Top 10 parameter estimates when ranked by period, amplitude, and cost together
(all weighted equally). The total time of the data set was 50. Gaussian noise with
mean zero and standard deviation .1 was added to the data set. The cost estimate
was 3.69347131. The period estimate was 7.2. The amplitude estimate was 4.075. . 160

B.6 Top 10 parameter estimates when ranked by period only. Gaussian noise with mean
zero and standard deviation .1 was added to the data set. The period estimate was
7.2. 161

B.7 Top 10 parameter estimates when ranked by amplitude only. The total time of the
data set was 50. Gaussian noise with mean zero and standard deviation .1 was
added to the data set. The amplitude estimate was 4.075. 161

xviii

B.8 Top 10 parameter estimates when ranked by cost only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .1 was added to
the data set. The cost estimate was 3.69347131. 162

B.9 Top 10 parameter estimates when ranked by period, amplitude, and cost together
(all weighted equally). The total time of the data set was 50. Gaussian noise with
mean zero and standard deviation .25 was added to the data set. The cost estimate
was 3.77331927. The period estimate was 7.2. The amplitude estimate was 4.075. . 162

B.10 Top 10 parameter estimates when ranked by period only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .25 was added
to the data set. The period estimate was 7.2. 163

B.11 Top 10 parameter estimates when ranked by amplitude only. The total time of the
data set was 50. Gaussian noise with mean zero and standard deviation .25 was
added to the data set. The amplitude estimate was 4.075. 163

B.12 Top 10 parameter estimates when ranked by cost only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .25 was added
to the data set. The cost estimate was 3.77331927. 164

B.13 Top 10 parameter estimates when ranked by period, amplitude, and cost together
(all weighted equally). The total time of the data set was 50. Gaussian noise with
mean zero and standard deviation .5 was added to the data set. The cost estimate
was 3.64458961. The period estimate was 7.2. The amplitude estimate was 4.075. . 164

B.14 Top 10 parameter estimates when ranked by period only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .5 was added to
the data set. The period estimate was 7.2. 165

B.15 Top 10 parameter estimates when ranked by amplitude only. The total time of the
data set was 50. Gaussian noise with mean zero and standard deviation .5 was
added to the data set. The amplitude estimate was 4.075. 165

B.16 Top 10 parameter estimates when ranked by cost only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .5 was added to
the data set. The cost estimate was 3.64458961. 166

xix

1. INTRODUCTION

1.1 From Biological Clocks to Circadian Rhythms

Across all Kingdoms in biology, biological clocks generate rhythms with periods from seconds

to months. These clocks control essential processes, which are critical for organism survival,

such as cell division [7], embryogenesis [8], DNA damage repair and metabolism [9, 10, 11, 12],

and the annual migration patterns of birds [13]. Arguably, the most important biological clock,

however, is the circadian clock which coordinates many processes in the 24 hour day. Perhaps most

notably, the clock regulates the sleep-wake cycle in mammals and other organisms by controlling

the secretion of melatonin starting in the evening and ending in the early morning. Other key clock

outputs include rates of metabolism, cognitive function, blood pressure, basal body temperature,

and hormonal secretion (Figure 1.1).

Because the circadian clock controls essential physiological processes, a disruption in the cir-

cadian clock leads to many pathological conditions. The most common example is jet lag, the

annoying effect of traveling across time zones. Feelings of exhaustion and fogginess are the result

of the circadian clock lagging in synchronizing to the new environmental light/dark cycle. More

serious disorders can be caused by defects in one’s circadian clock. For example, shift work, which

causes a desynchronization between processes controlled by the worker’s circadian rhythm and the

time the worker is active, has been labeled a class 2A carcinogen [14]. The designation 2A means

limited evidence of carcinogenicity in humans but sufficient evidence of carcinogenicity in experi-

mental animals. Other 2A carcinogens include red meat, repeated exposure to petroleum refineries,

and anabolic steroids.

To better understand biological clocks, mathematical models are necessary because such mod-

els identify key properties of the clock quickly and with little expense. Biological experiments

take years to complete at a high price tag, but mathematicians can help by using models to provide

directions for experimental procedures, to test hypotheses within these models, and to corroborate

1

Figure 1.1: Human circadian rhythm. Adapted from a figure in The Body Clock Guide to Better
Health [1].

new biological revelations. From the molecular to the macro level, many mathematical models

provide insights into the structure and dynamics of biological clocks.

One such example of a model providing insight into the molecular structure of the clock is the

discovery of interlocked feedback loops. Researchers knew from the 1960s that negative feedback

loops were essential for oscillations of the various cellular components. Since mathematical mod-

els provide the advantage to test many possible regulatory networks, in the early 2000s, modelers

began to compare network structures with and without positive feedback loops [10, 15, 16]. A

model by Becker-Weimann et al. revealed that components of a positive feedback loop are more

sensitive to parameter variations than components of a negative feedback loop. They also found

that these components have more variable phases and amplitudes than the negative components,

which allows for control of output pathways without disturbing core clock oscillations [17]. Mul-

tiple feedback loops also provide many sources of oscillations supplying necessary redundancy to

2

protect against mutations in genetic components of the clock [18].

In this dissertation, we present a rigorous mathematical and computational analysis of a spe-

cific biological clock called the repressilator [5]. The repressilator was introduced as a synthetic

gene network that, within E. coli cells and across generations, exhibited oscillations in its proteins

[5]. The network was later identified as the core molecular circadian mechanism in Arabidopsis

thaliana [3, 19]. The repressilator provides a foundation for studying the molecular mechanisms

of biological clocks and the mechanism of repression on the transcription of genes.

1.2 Overview of the Main Results

In Section 2, we motivate and introduce a new mathematical model of the repressilator (Sys-

tem (2.7) in Section 2). The new system generalizes a previous model by Müller et al. in [20] by

removing two biologically restrictive assumptions. We prove that many results of previous repres-

silator models extend to our generalized model. First, with an odd number of genes, the system

has a unique steady state, called the central steady state (Theorem 2.3.3 in Section 2.3.1.1), and

the system converges to that steady state or produces limit-cycle oscillations (Theorem 2.3.20 in

Section 2.3.4). Next, we prove a necessary and sufficient condition for the stability of any steady

state in the case of an even number of genes (Theorem 2.3.13 in Section 2.3.2.1). Finally, we give

a counterexample to Conjecture 1 proposed by Tyler et al. in [21] (Section 2.3.3). With each result,

we discuss the biological implications of the mathematical analysis.

Next, in Section 3, we derive a new function that models the transcription rate in the presence of

a repressor protein (Eqn. (3.14) in Section 3.2.2). The new function arises under more reasonable

assumptions than the traditionally used Hill function (see Remark 2.3.1 in Section 2). We prove that

the new function satisfies the assumptions placed on transcription-rate functions in Section 2.3 in

Section 2. Also, we investigate the quantitative and qualitative differences between model solutions

of the repressilator with the Hill function and model solutions of the repressilator with the new

transcription-rate function. We show that there are drastic differences in the period, amplitude, and

phase between the two model solutions. Finally, we prove partial results towards a conjecture that

the amplitude of protein abundance of a model with the old transcription-rate function is greater

3

than the amplitude of protein abundance of a model with our new transcription-rate function, all

other parameters and functions being equal.

In Section 4, we perform a comprehensive investigation into new algorithms to estimate the

parameters of the repressilator system. First, we discuss two challenges to parameter estimation

of the repressilator (Section 4.3) and show how previous parameter estimation procedures fail to

address both at the same time (Section 4.4). Then, we analyze potential quantities to incorporate

into an identifiability test to produce accurate parameter estimates. Subsequently, we outline two

new algorithms that take as input time-course data of protein abundance profiles and output a

parameter estimate of the repressilator system (Section 4.6). We investigate the effectiveness of

the new algorithms on simulated data sets (Section 4.7). Also, we run both algorithms on 100 data

sets to compare the accuracy of each and, with the empirical evidence, conclude that the second

is more accurate than the first. We finish by using simulated data sets to compare the second

algorithm to standard algorithms in computational biology (Section 4.8.1). Our analysis reveals

that our new algorithm is more accurate and faster than existing algorithms.

Finally, in Section 5, we review all three studies and highlight the importance of our mathemat-

ical and computational analysis to answering questions in the field of biological clocks. Moreover,

we propose future directions that will expand the studies.

4

2. A SYNTHETIC INTRACELLULAR REGULATORY NETWORK THAT EXHIBITS

OSCILLATIONS

1

2.1 Introduction

m1

P1m2

P2

m3 P3

Figure 2.1: The repressilator network with three genes and their respective products [2]. The m’s
denote mRNA while the P ’s denote proteins. The product of gene-1 represses transcription of
gene-2; the product of gene-2 represses transcription of gene-3; the product of gene-3 represses
transcription of gene-1. The figure is used with permission from [21].

The seminal work of Elowitz and Leibler is a consequence of the paradigm shift in experimen-

tal biology occurring late in the 20th century when the field shifted from the traditional quantitative

analysis approach to the newly emerging field of synthetic biology. Even for simple intracellular

systems, design principles–rules that characterize some biological feature exhibited by a class of

systems [22]–are difficult to identify using traditional quantitative analytic techniques. Synthetic

biology complements quantitative analysis by designing and constructing synthetic networks that

implement a particular function. The insights arising from synthetic biology are twofold: engi-

neering of new cellular behaviors and improved functional understanding of naturally occurring
1Based on Sections 1 and 2 of “Revisiting a synthetic intracellular regulatory network that exhibits oscillations,”

by J. Tyler, A. Shiu, and J. Walton, 2019. J MATH BIOL, 78:2341-2368. Used with permission.

5

Jonathan Tyler

Jonathan Tyler
1

networks.

In their work designing and implementing the repressilator, Elowitz and Leibler aimed to bet-

ter understand naturally occurring networks that exhibit oscillations. In particular, an important

question in the field of biological clocks is: what cellular networks are sufficient for sustained

oscillations within the cell? Using the repressilator, they showed that, in fact, a circuit of pure

repression of three genes is sufficient to exhibit sustained oscillations within the cell and across

generations. This important insight has led to recent work in identifying organisms whose circa-

dian clocks–or other biological clocks–are driven by repressilator circuits [3, 19].

2.1.1 The Repressilator as an Architecture for Circadian Clocks

Currently, there are three leading classes of circadian models: Hill-type repression, protein se-

questration, and the repressilator [23]. Hill-type repression models are derived from the assump-

tion that the repressor facilitates a configuration change–e.g. through several phosphorylations,

catalyzed by the repressor, of the activator–to inhibit the binding of the activator to the promoter.

In contrast, for the protein sequestration mechanism, the repressor tightly binds to the activator to

form a 1:1 stoichiometric complex, rendering the activator inactive [24, 25, 26, 27]. Protein seques-

tration is currently thought to be the mechanism of action for the mammalian circadian clock and

others such as the cyanobacteria clock [28, 29]. There is a debate in the field about the mechanism

of other circadian clocks, such as the Neurospora crassa circadian clock, which is hypothesized to

utilize a Hill-type repression mechanism [30, 31, 32, 33, 34].

While the Hill-type repression and protein sequestration models seem to cover the structure

of circadian clocks in animals and prokaryotes, the third architecture, the repressilator, is thought

to be the core mechanism of action for the plant Arabidopsis thaliana circadian clock (Figure

2.2) [3, 19]. The morning transcription factors CCA1 (Circadian Clock Associated 1) and LHY

(Late Elongated Hypocotyl) repress the formation of the evening complex, EC. The EC consists

of the proteins LUX, ELF3, and ELF4, which all peak in the evening and form a tripartite protein

complex (Figure 2.2A). The EC then inhibits the production of pseudoresponse regulators 5, 7,

and 9 (PRR5, PRR7, and PRR9) in the late evening to allow for the production of the LHY/CCA1

6

Figure 2.2: (A) Outline of the Arabidopsis thaliana circadian clock. Components in yellow com-
prise the daytime elements and grey components, the nighttime elements. Solid lines denote
transcriptional regulation. Red dashed lines denote post-translational regulation. (B) Simplified
schematic of the Arabidopsis circadian clock to highlight the repressilator architecture present
within the system. Adapted from Figures 1 and 8 in [3].

complex to peak in the morning. Finally, the pseudoresponse regulators (PRRs) peak in the daytime

and repress the production of the LHY/CCA1 complex (Figure 2.2A). These three components

form the core negative feedback loop, which has the same structure as a repressilator (Figure 2.2B)

[3, 19].

Because the repressilator is important in the field of synthetic biology and has been recognized

as the core mechanism of the circadian clock in plants, we seek a rigorous mathematical under-

standing of this system. Accordingly, the work of this section addresses a generalized model of the

repressilator that is more faithful to biology. In particular, we allow for more types of functions

to model the processes of transcription, translation, and degradation than previous mathematical

models allow. The purpose of the work is twofold: a better functional understanding of the plant

circadian clock and the process of repression within a gene network in general and insights into

design principles of new repressilator circuits with implications into synthesizing new biotechnolo-

gies.

7

2.1.2 Section Organization

The section is organized as follows. In Section 2.2, we introduce necessary background ma-

terial including previous mathematical models of the repressilator (Sections 2.2.1 and 2.2.2) and

results from the theory of ODEs and dynamical systems (Sections 2.2.3 and 2.2.4). In Section 2.3,

we motivate and introduce our generalized model of the repressilator. We prove that many of the

results of previous repressilator models extend to our generalized model. First, with an odd number

of genes, the system has a unique steady state, called the central steady state (Section 2.3.1.1), and

the system converges to that steady state or produces limit-cycle oscillations (Section 2.3.4). Next,

we prove a necessary and sufficient condition for the stability of any steady state in the case of an

even number of genes (Section 2.3.2.1). We also discuss what the condition means biologically.

Finally, we end with a discussion in Section 2.4.

2.2 Background

Here, we present the relevant background material for the subsequent model construction and

analysis. In particular, we review the original repressilator model given by Elowitz and Leibler

in [5]. Next, we recall the mathematical model introduced by Müller et al. and a few key results

regarding steady states, stability, and the asymptotic behavior [20]. Finally, our work requires the

application of the Routh-Hurwitz Theorem and a key result from monotone systems theory, so we

review the two briefly.

2.2.1 Elowitz and Leibler Mathematical Model

In addition to presenting experimental results, Elowitz and Leibler also introduced a mathemat-

ical model to describe the dynamics of the three gene repressilator (Figure 2.1). Their mathematical

model is given by the following system of 6 ODEs [5]:

8

ṙ1 =
α

1 + pn3
+ α0 − r1, ṗ1 = −β(p1 − r1)

ṙ2 =
α

1 + pn1
+ α0 − r2, ṗ2 = −β(p2 − r2) (EL)

ṙ3 =
α

1 + pn2
+ α0 − r3, ṗ3 = −β(p3 − r3).

Here, the state mi corresponds to the i-th mRNA; the state pi corresponds to the i-th protein,

which is translated from mi. The parameter α is the transcription rate shared by all three mRNAs.

The parameter α0 refers to the leakiness of the promoter–the rate of transcription that occurs in

saturated amounts of repressor. The parameter β is the ratio of the protein decay rate to the mRNA

decay rate. Finally, the parameter n is the Hill coefficient.

For system (EL), Elowitz and Leibler addressed certain key questions in dynamical systems

and mathematical modeling of biological systems, the first of which is:

Question 2.2.1. What are the possible steady states of the system?

The structure of system (EL) guarantees that there is a unique steady state characterized as the

vector x∗ = (p̄, . . . , p̄). Here, the quantity p̄ solves the equation

p̄ =
α

(1 + p̄n)
+ α0 [5].

With the unique steady state x∗, the natural next question is

Question 2.2.2. Under what conditions is the steady state stable?

Again, the structure of system (EL) simplifies the stability analysis. The unique steady state x∗

is stable when
(β + 1)2

β
<

3X2

4 + 2X
,

where

X =
−αnp̄n−1

(1 + p̄n)2
[5].

9

Finally, the authors addressed:

Question 2.2.3. What possible asymptotic behavior can the system exhibit?

Through numerical simulations, Elowitz and Leibler showed that the system can stabilize or

oscillate. Also, they plotted stable and unstable domains when letting the parameters α, β, n, and

α0 vary. They showed that the unstable domain increases with increasing Hill coefficient while

an increase in the leakiness causes the unstable domain to shrink [5]. In subsequent sections, we

investigate more deeply how the repressilator is affected by changes in the Hill coefficient as well

as the biological interpretation of the Hill coefficient.

2.2.2 Müller et al. Mathematical Model

To incorporate an arbitrary number of genes and to make the mathematical analysis more rig-

orous, in 2006, Müller et al. generalized system (EL) [20]. Specifically, Müller et al. analyzed two

systems of ODEs that describe the dynamics of a repressilator with an arbitrary number of genes.

One system assumed that, in saturated amounts of repressors, transcription occurs at a very low

rate. Muller et al. called this system RepLeaky and addressed Questions 2.2.1-2.2.3, among others.

In particular, they proved results about the number of steady states, the stability of those steady

states, and the limiting dynamics [20]. Here, the RepLeaky system is the starting point for our

generalized repressilator model.

The RepLeaky system of Müller et al. arose from five key assumptions [20]:

(a) Genes are present in constant amounts.

(b) When a protein binds to a regulatory element of a gene, it either enhances or inhibits tran-

scription. Also, binding reactions are in equilibrium.

(c) Transcription and translation operate under saturated conditions.

(d) Both mRNAs and free proteins are degraded by first-order reactions.

(e) Transcription, translation, and degradation rates are the same among genes, mRNAs, and

proteins, respectively.

10

Müller et al.’s RepLeaky model [20], which arises from a generalization of Figure 2.1 to n

genes, is given by the following system of 2n ODEs where n denotes the number of genes:

ṙi = αf(pi−1)− ri,

ṗi = βri − βpi,

(2.1)

for i = 1, ..., n. Here, pi denotes the concentration of protein-i, where i is viewed mod n, and ri

denotes the mRNA concentration. The parameter β is the ratio of protein degradation to mRNA

degradation, and the parameter α is the transcription rate. The function f(x) models the repression

of gene-i transcription resulting from repressor protein-(i− 1) binding to the promoter (see Figure

2.1):

f(x) =
1− δ

1 + xh
+ δ,

where the parameter δ is the ratio of repressed to unrepressed transcription [20]. Synthesis of

protein-i occurs by translation of mRNA-i and is proportional to the mRNA-i concentration.

Degradation of each species is modeled by a first-order term proportional to its own concentra-

tion.

Again, the authors are concerned with the questions of the number of steady states and condi-

tions for stability of these steady states. They show that, when system (2.1) has an odd number of

genes, there is a unique steady state, denoted EC for central steady state. When the system has an

odd number of genes, the unique steady state EC is stable if and only if

β

(1 + β)2
<

1− Sc cos(π/n)

S2
c sin

2(π/n)
, (2.2)

where

Sc = −αf ′(EC). (2.3)

For system (2.1) with an even number of genes, the dynamics differ. When system (2.1) has an

even number of genes, it has exactly one or three steady states. The central steady state is always

11

a steady state. The proposition below gives conditions for stability of the steady states of system

(2.1) with an even number of genes.

Proposition 2.2.4. [20, Theorem 1] If SC = −αf ′(EC) < 1, then EC is globally asymptotically

stable and is the only steady state. If SC > 1, then EC is unstable and there are two more steady

states, Eodd and Eeven. Moreover, if SC > 1, then almost all orbits converge to Eodd or Eeven.

Finally, the authors address the asymptotic behavior of the system with an odd number of genes

in the proposition below.

Proposition 2.2.5. [20, Theorem 2] For n odd, system (2.1) has the following property: (i) Every

orbit converges to EC or to a periodic orbit. (ii) If EC is unstable, then there exists a periodic

attractor.

2.2.3 Routh-Hurwitz Criterion

Throughout the section, we will refer to the Routh-Hurwitz criterion, so we review it briefly.

Consider a univariate polynomial:

p(x) = an + an−1x+ an−2x
2 + ...+ a0x

n. (2.4)

Definition 2.2.6. For k = 1, . . . , n, the kth Hurwitz matrix of p as in (2.4) is the k × k matrix

Hk = [hij]
k
i,j=1, defined by hij = a2i−j , where a2i−j is defined as 0 if 2i− j < 0 or 2i− j > n.

For example, the fourth Hurwitz matrix of p(x) = a4 + a3x+ a2x
2 + a1x

3 + a0x
4 is:

H4 =

a1 a0 0 0

a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

.

Following the notation in [35], we write Di = det(Hi).

12

Proposition 2.2.7. [36, Routh-Hurwitz Criterion] Consider a polynomial p as in (2.4). Every root

of p has negative real part if and only if the determinants of all Hurwitz matrices (Definition 2.2.6)

are positive, i.e.,

Di > 0, i = 1, 2, ..., n.

Recall that the stability of a steady state is characterized by negative real parts of the roots of

the characteristic polynomial of the Jacobian. Thus, in Section 2.3.2, we apply Proposition 2.2.7

to the characteristic polynomial to obtain conditions for the stability of a steady state.

Remark 2.2.8. In his seminal work on Mathematical Biology, Murray stated of the Routh-Hurwitz

Criterion [37]: “Frankly, it is hard to imagine anyone actually using the conditions for polynomials

of order five or more.” Nevertheless, the Routh-Hurwitz Criterion is still a widely used technique

to analyze the stability of steady states for systems with many more than five species. The advance-

ment of computational software since Murray wrote his textbook has made it easier to implement

the criterion. For the repressilator, the criterion reduces nicely as we will see in Section 2.3.2.

2.2.4 Monotone Systems Theory

Finally, we review results of Mallet-Paret and Smith from their study of monotone cyclic feed-

back systems of ODEs. First, we recall that a monotone cyclic feedback system in n coordinate

variables is a system of the form

ẋi = fi(xi−1, xi), i = 1, . . . , n, (2.5)

where x0 is interpreted as xn [38]. Note that both systems (EL) and (2.1) are of the form in (2.5)

when the states are reordered as r1, p1, ..., rn, and pn.

A key assumption of Eqn. (2.5) is that the variable xi−1 forces ẋi monotonically. Thus, there is

some δi = {−1, 1} such that

δi
∂fi(xi, xi−1)

∂xi−1

> 0 for all 1 ≤ i ≤ n.

13

If δi = −1, then the state xi−1 inhibits the growth of state xi. Likewise, if δi = 1, then the state

xi−1 promotes the growth of xi. For systems (EL) and (2.1), the quantity δi corresponding to the

mRNA growth rate is −1 because the previous state, pi−1, inhibits the growth of ri. However, the

quantity δi corresponding to a protein is 1 because the previous state, ri, promotes the production

of the protein.

Given the individual δi terms, Mallet-Paret and Smith defined the product

∆ = δ1 · · · δn, (2.6)

which characterizes the system as a negative feedback loop if ∆ = −1 and a positive feedback

loop if ∆ = 1 [38]. The repressilator system (2.1) is a negative feedback loop when n is odd and

a positive feedback loop when n is even. This disparity drives the variation in dynamics between

our repressilator model with an odd number of genes and ours with an even number of genes.

Moreover, Mallet-Paret and Smith showed that the omega limit set of solutions to monotone

cyclic feedback systems can be embedded in R2, and in fact, must be of the form: either a single

equilibrium, a single, nonconstant periodic solution, or a set of equilibria together with homo-

clinic and heteroclinic orbits connecting these equilibria [38]. These results are summarized in the

proposition cited below.

Proposition 2.2.9. [38, Main Theorem] (a) Let x(t) be a solution of the monotone cyclic feedback

system (2.5) through x(0) = x0, and suppose the forward orbit γ+(x0) is bounded. Then the

omega limit set ω(x0) is one of the following:

(i) an equilibrium

(ii) a nonconstant periodic orbit

(iii) a set E ∪H where each y0 ∈ E is an equilibrium at which ∆det(Df(y0)) ≥ 0, with ∆ as

in (2.6), and where H is a set of orbits homoclinic to/heteroclinic between points of E; that

is, if y0 ∈ H , then α(y0) = {z0} and ω(y0) = {w0} for some z0, w0 ∈ E. There, moreover,

14

exists an integer k∞, which is odd if ∆ = −1 and even if ∆ = 1, such that for each z0 ∈ E

the matrix Df(z0) has either k∞ − 1 or k∞ eigenvalues γ satisfying Re(γ) > 0.

2.3 Generalized Repressilator Model

Here, we introduce the generalized repressilator model which allows for more general func-

tions to model the transcription, translation, and degradation processes. We motivate our gener-

alization by considering specific transcription, translation, and degradation mechanisms found in

the circadian biology literature. Our generalized model provides key insights into the processes of

transcription, translation, and degradation as well as insights into the design of new repressilator

circuits.

First, recall from Section 2.2.2 that the Müller et al. model was based on five assumptions [20]:

(a) Genes are present in constant amounts.

(b) When a protein binds to a regulatory element of a gene, it either enhances or inhibits tran-

scription. Also, binding reactions are in equilibrium.

(c) Transcription and translation operate under saturated conditions.

(d) Both mRNAs and free proteins are degraded by first-order reactions.

(e) Transcription, translation, and degradation rates are the same among genes, mRNAs, and

proteins, respectively.

Two of these assumptions are too biologically restrictive, so we generalize the model by removing

them. Consider, for example, the translation process. In eukaryotic cells, mRNAs must be spliced

correctly before they exit the nucleus and then be translated [39]. Similarly, since transcription

depends on the uncoiling of DNA due to different locations of genes on histones [40], transcription

rates should be allowed to vary across genes. Finally, ubiquitization, which facilitates degradation,

also differs extensively among proteins [41]. Thus, to be more faithful to the biology, we remove

assumption (e).

15

Next, we consider assumption (d). Recently, Page and Perez-Carrasco analyzed the repressi-

lator after allowing for differing degradation rates among the proteins [42]. Here, we argue for a

further generalization. In the context of the degradation pathway of a core clock component of the

Neurospora circadian clock, phosphorylation of the FREQUENCY (FRQ) protein initiates its own

degradation. This process occurs through the ubiquitin-proteasome pathway, which is a Michaelis-

Menten pathway [43]. Modeling the rate of FRQ degradation as proportional to its concentration

is therefore not appropriate. Thus, for our repressilator model, we remove assumption (d) to allow

for more general functions than first-order terms.

Our generalized n-gene repressilator system, which generalizes (2.1), is given by the follow-

ing system of ODEs:

ṙ1 = a1(pn)− dr1(r1),

...

ṙn = an(pn−1)− drn(rn),

ṗ1 = k1(r1)− dp1(p1),

...

ṗn = kn(rn)− dpn(pn).

(2.7)

Here, for the i-th gene, ri is the concentration of mRNA-i, and pi is the concentration of protein-i.

Each equation in the system has a synthesis term and a degradation term. One synthesis term is

the function ai(pi−1), called the transcription-rate function of gene-i in terms of protein-(i − 1).

The degradation term for mRNA-i is the degradation-rate function dri(ri), which is a function

of its own concentration. The function ki(ri) is the translation-rate function describing the syn-

thesis of protein-i in terms of mRNA-i. Finally, the degradation-rate function dpi(pi) models the

degradation of protein-i as a function of its own concentration.

The 3-gene version of system (2.7) reflects Figure 2.1. The m1 node denotes mRNA-1 which

translates, according to the function k1(r1), to protein-1, P1. This protein then represses the syn-

thesis of the second mRNA, which is described by the transcription-rate function a2(p1).

Next, we give conditions on the transcription-rate, degradation-rate, and translation-rate func-

16

tions that we assume for the results below. These assumptions are rooted in the biology of the

specific process they model. For the transcription-rate functions, we begin with the biological

assumptions.

(B1) Transcription rates vary smoothly in the amount of repressor present.

(B2) Transcription rates are always nonnegative.

(B3) Transcription rates decrease with increased repressor present.

(B4) Transcription rates are positive when no repressor is present.

These biological assumptions translate into the following mathematical assumptions on the transcription-

rate function ai(x):

(A1) ai(x) ∈ C1[R≥0].

(A2) ai(R≥0) ⊂ R≥0.

(A3) ai(x) is strictly decreasing on R≥0.

(A4) ai(0) > 0.

Remark 2.3.1. The canonical transcription-rate function, introduced by Goodwin in 1965 [44],

is called the Hill function, which is ai(p) =
kSi

1+ph
[45]. The exponent h is the Hill coefficient,

which we saw earlier in system (EL). It is easily seen that this function satisfies the assumptions

(A1)-(A4). In Section 3, we derive a new transcription-rate function from more reasonable bi-

ological assumptions and compare the dynamics of a model with the Hill function and a model

incorporating our new transcription-rate function.

Next, we provide biological assumptions for degradation-rate and translation-rate functions.

(B1) Degradation and translation rates vary smoothly in the protein or mRNA concentration.

(B2) Degradation and translation rates occur only when the protein or mRNA is present.

17

(B3) Degradation and translation rates increase as protein or mRNA concentrations increase.

These assumptions give rise to the following mathematical assumptions on the degradation-rate

and translation-rate functions dpi(x), dri(x), and ki(x).

(D1) d(x), k(x) ∈ C1[R≥0].

(D2) d(0) = k(0) = 0.

(D3) d(x), k(x) are strictly increasing on R>0.

Notice immediately that degradation-rate and translation-rate functions satisfying (D1)-(D3)

are invertible on their ranges. This will be important in the analysis below.

For the remainder of the section, when considering our repressilator system (2.7), we assume

that the functions ai(pi−1) satisfy (A1)-(A4), and the functions dpi(pi), dri(ri), and ki(ri) satisfy

(D1)-(D3).

2.3.1 Steady States

For system (2.1), Müller et al. proved the existence of a unique steady state, labeled EC for

central steady state, in the odd-n case and also showed that EC exists in the even-n case [20].

When we allow general transcription-rate and degradation-rate functions in system (2.7), however,

we are not always guaranteed a steady state. Consider the following example.

Example 2.3.2. Consider the following 2-gene version of the repressilator system (2.7):

ṙ1 = 2π − arctan(p2)− r1

ṙ2 = 2π − arctan(p1)− r2

ṗ1 = r1 − arctan(p1)

ṗ2 = r2 − arctan(p2).

(2.8)

It is straightforward to check that the assumptions (A1)-(A4) and (D1)-(D3) hold for the corre-

sponding functions ai = 2π − arctan(pi−1), dri = ri, and dpi = arctan(pi). We set the equations

18

in (2.8) to zero to solve for the steady states, giving

2π − arctan(p2) = arctan(p1) (2.9)

2π − arctan(p1) = arctan(p2). (2.10)

However, Eqns. (2.9) and (2.10) have no positive, real solution. Therefore, system (2.8) has no

steady state. The same is true if we augment system (2.3.2) to three genes using the same functions

for the mRNA and protein, respectively.

What went wrong in this example? The degradation-rate function dpi and the transcription-rate

function ai each had a horizontal asymptote that prevented intersection of their respective graphs

in R2
+. This lack of intersection precluded the existence of a steady state. So, to prove when steady

states exist, we must introduce more assumptions.

Notice that assumptions (A2) and (A3) imply:

αi := lim
x→∞

ai(x) < ∞ and lim
x→∞

a′i(x) = 0.

This parameter αi corresponds to the leakiness of the promoter of gene-i [20]. If αi > 0, then even

in saturated amounts of repressor, gene-i will still be transcribed at a positive rate, whereas αi = 0

implies that in saturated amounts of repressor, gene-i will not be transcribed. We introduce a new

assumption on the transcription-rate function ai(p).

(A5) αi = 0 for all i = 1, ..., n.

Even if the leakiness αi is nonzero, we avoid the problem highlighted in Example 2.3.2 by

introducing an assumption on the relationship among the transcription-rate and degradation-rate

functions. Let us define

δRi := lim
x→∞

dri(x) and δPi := lim
x→∞

dpi(x).

19

We allow for δRi and δPi to be infinite. The δPi ’s and δRi ’s correspond to the maximum possible

degradation rate for protein-i and mRNA-i, respectively. To avoid the problem in Example 2.3.2,

we introduce the following relationship among δRi , δPi , and ai:

(A6) δPi > ki(d
−1
ri
(ai(0))) and δRi > ai(0), for all i = 1, ..., n.

Below, by using combinations of the above assumptions and others, we prove conditions under

which EC exists, first with an odd number of genes, and then with an even number.

2.3.1.1 Odd-n Case

For system (2.1), Müller et al. showed that the system has a unique steady state [20]. We prove

that this property extends to system (2.7).

Theorem 2.3.3. For n odd, if system (2.7) satisfies (A6), then system (2.7) has a unique steady

state in R2n
+ .

Proof. First, we set the equations in system (2.7) to zero:

0 = ṙi = ai(pi−1)− dri(ri) =⇒ dri(ri) = ai(pi−1) (2.11)

0 = ṗi = ki(ri)− dpi(pi) =⇒ dpi(pi) = ki(ri). (2.12)

From Eqns. (2.11) and (2.12), it is easy to check that finding steady states reduces to finding

solutions to the system

pi = d−1
pi

◦ ki ◦ d−1
ri

◦ ai(pi−1) for i = 1, . . . , n.

Write fi = d−1
pi

◦ ki ◦ d−1
ri

◦ ai, which, if assumption (A6) holds, is well defined.

We compose the fi’s to obtain a fixed-point problem:

pi = fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1(pi), for i = 1, . . . , n. (2.13)

20

Since the fi’s are monotonically decreasing by (A3) and (D3) and we are composing an odd number

of functions, the composition in (2.13) is monotonically decreasing. It is also positive at 0 by (A3),

(A4), (D2), and (D3). Therefore, for i = 1, . . . , n, there is exactly one solution to Eqn. (2.13) in

R+, so system (2.7) has a unique steady state in R2n
+ .

We follow the notation in [20] and label this unique steady state as follows:

Definition 2.3.4. The central steady state, EC , is the concentration vector

(
d−1
r1

◦ a1(p∗n), d−1
r2

◦ a2(p∗1), . . . , d−1
rn ◦ an(p∗n−1), p

∗
1, . . . , p

∗
n

)
, (2.14)

where, for i = 1, . . . , n, the quantity p∗i solves Eqn. (2.13).

Remark 2.3.5. A solution to Eqn. (2.13) gives a steady state as in (2.14) regardless of whether n

is even or odd because it solves a fixed-point problem derived from setting the equations of system

(2.7) to zero.

2.3.1.2 Even-n Case

Below, we give various conditions under which the fixed-point problem in Eqn. (2.13) has a

solution and consequently, guarantees when EC is a steady state. First, however, we introduce

another assumption on the degradation-rate functions.

(D4) (dpi)
′(0) ̸= 0 and (dri)

′(0) ̸= 0 for all i = 1, ..., n.

Remark 2.3.6. Assumption (D4) is biologically reasonable as many commonly used degradation-

rate functions satisfy (D4), e.g., linear degradation and Michaelis-Menten kinetics. However, there

exist degradation processes that do not satisfy (D4). For example, consider a protein that is selected

for degradation by dimerization with itself. If we model this scenario with a quadratic degradation

term, then it will not satisfy assumption (D4).

With assumption (D4), we now prove various conditions under which system (2.7) admits a

steady state.

21

Proposition 2.3.7. For system (2.7) with n even, if assumptions (A5), (A6), and (D4) hold, then

EC exists and is a steady state.

Proof. We follow the notation used in Proposition 2.3.3 and show that there exists a solution to the

fixed-point problem from (2.13):

pi = fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1(pi). (2.15)

Note that all fi’s in Eqn. (2.15) are well defined by assumption (A6).

In Eqn. (2.15), we are composing an even number of strictly decreasing functions, so the com-

position is strictly increasing. We also know that the composition is positive at zero by (A2), (A3),

(D2), and (D3). We will show that

lim
x→∞

(fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)
′(x) = 0.

This, along with the composition being positive at zero, will imply that EC exists. We compute:

(fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)
′

= (f ′
i ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)(f

′
i−1 ◦ fi−2 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)

(f ′
i−2 ◦ fi−3 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1) · · · f ′

i+1.

First, we show that limx→∞ f ′
i+1(x) = 0. The following calculations are straightforward and follow

22

from (A5), (D2), and (D4):

f ′
i+1(x) = ((d−1

pi+1
)′ ◦ ki+1 ◦ d−1

ri+1
◦ai+1(x))·

(k′
i+1 ◦ d−1

ri+1
◦ ai+1(x)) · ((d−1

ri+1
)′ ◦ ai+1(x)) · a′i+1(x), (2.16)

lim
x→∞

(d−1
ri+1

)′ ◦ ai+1(x) = lim
x→0

(d−1
ri+1

)′(x)

=
1

(dri+1
)′(0)

< ∞, (2.17)

lim
x→∞

(k′
i+1 ◦ d−1

ri+1
◦ ai+1(x)) = k′

i+1(0) < ∞, (2.18)

lim
x→∞

(d−1
pi+1

)′ ◦ ki+1 ◦ d−1
ri+1

◦ ai+1(x) = lim
x→0

(d−1
pi+1

)′(x)

=
1

(dpi+1
)′(0)

< ∞. (2.19)

It is easy to check that Eqns. (2.16)-(2.19) imply:

lim
x→∞

f ′
i+1(x) = 0.

Now we show that for k = i, ..., 1, n, ..., i+ 2:

lim
x→∞

(f ′
k ◦ fk−1 ◦ · · · ◦ fi+1)(x) < ∞.

Recall that fi = d−1
pi

◦ ki ◦ d−1
ri

◦ ai. Then, by (A5),

lim
x→∞

(f ′
k ◦ fk−1 · · · ◦ fi+1)(x) = (f ′

k ◦ fk−1 · · · ◦ d−1
pi+1

◦ ki+1 ◦ d−1
ri+1

)(0) < ∞.

23

Therefore,

lim
x→∞

(fi ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)
′(x)

= lim
x→∞

(f ′
i ◦ fi−1 ◦ · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1)·

lim
x→∞

(f ′
i−1 ◦ fi−2 · · · ◦ f1 ◦ fn ◦ · · · ◦ fi+1) · · · lim

x→∞
f ′
i+1(x) = 0.

Since i was arbitrary, each pi has a solution, and EC exists and by Remark 2.3.5 is a steady

state.

Proposition 2.3.8. Consider system (2.7) with n even. If αi > 0 for all i = 1, ..., n and (A6) holds,

then EC exists and is a steady state.

Proof. The proof is similar to the proof of Proposition 2.3.7. Assumption (A6) implies that the

inverses of dri(ri) and dpi(pi) exist at ai(0) for all i. Also, by assuming that αi > 0, both

lim
x→∞

(d−1
ri
)′ ◦ ai(x) and lim

x→∞
(d−1

pi
)′ ◦ ki ◦ d−1

ri
◦ ai(x)

are finite because d′pi(αi), d
′
ri
(αi) > 0 by assumption (D3).

We present a final sufficient condition for when EC is a steady state in the even-n case. The

condition is motivated by the following example.

Example 2.3.9. Consider the following generalized 2-gene repressilator model:

ṙ1 =
1

1 + p22
− r21

ṙ2 =
1

1 + p21
− r22

ṗ1 = r1 − p21

ṗ2 = r2 − p22.

This model fails the assumptions of Proposition 2.3.7, namely (D4), because the derivatives

of the degradation-rate functions dpi = p2i at zero are zero, and it fails those of Proposition 2.3.8

24

because α1 = α2 = 0. Nevertheless, EC exists and is a steady state, because EC is the solution to

the following system:

p41 =
1

1 + p22

p42 =
1

1 + p21
.

Finding the fixed point is equivalent to solving:

p4 =
1

1 + p2
. (2.20)

The left-hand side of Eqn. (2.20) is zero at zero and increases to ∞ while the right-hand side is

greater than zero at zero and decreasing, so EC exists. This phenomenon leads to our final result

about EC in the even-n case.

Proposition 2.3.10. Consider system (2.7) with n even or odd. Assume that all the degradation-

rate functions dri are equal (= dr), all the degradation-rate functions dpi are equal (= dp), all the

transcription-rate functions ai are equal (= a), and all the translational-rate functions ki are equal

(= k). If limx→∞ k(x) > δP , where δP := limx→∞ dp(x), then EC exists and is a steady state.

Proof. Under the assumptions of the proposition, it is easy to check that computing EC reduces to

solving

a(p) = dr ◦ k−1 ◦ dp(p) (2.21)

for p ∈ R+. The composition dr ◦ k−1 ◦ dp(p) is well defined for all p > 0 by the assumption that

limx→∞ k(x) > δP . Also, the function a(p) is decreasing, while the composition dr ◦ k−1 ◦ dp(p)

is increasing. Finally, a(0) > dr ◦k−1 ◦dp(0) = 0 by assumptions (A4) and (D2). Therefore, there

is a solution p ∈ R+ to Eqn. (2.21), so EC exists.

Remark 2.3.11. The combinations of assumptions in Propositions 2.3.3-2.3.10 used to prove exis-

tence of EC provide insight into possible repressilator design circuits. For example, a design circuit

with a low-copy plasmid and a protein that is signaled for degradation through dimerization with

itself could be problematic because the system may not have a steady state. Likewise, assumption

25

(A6)–used in the proofs of Propositions 2.3.3-2.3.8–requires that the maximal mRNA degradation

rate “overcome” the maximal transcription rate. We revisit the theme of comparing degradation

rates and synthesis rates when we address the stability of steady states in the next section.

2.3.2 Stability Analysis

For their model, Müller et al. proved general results about the stability of the central steady

state by harnessing the fact that the matrix J − λI , where J is the Jacobian of system (2.7) at EC ,

is a circulant matrix. This matrix representation allowed the eigenvalues to be represented in terms

of roots of unity, which in turn allowed for identifying general inequalities in the parameters that

characterize stability. For our generalized repressilator model, however, the matrix J − λI does

not reduce to a circulant matrix. Thus, we use different methods to characterize stability.

We begin with a few definitions.

Definition 2.3.12. Consider the generalized repressilator system (2.7). Let x∗ ∈ R2n
+ .

1. The i-th mRNA degradation rate at x∗ is

∂R
i =

ddri(ri)

dri

∣∣∣
x∗
.

2. The i-th protein degradation rate at x∗ is

∂P
i =

ddpi(pi)

dpi

∣∣∣
x∗
.

3. The i-th degradation product at x∗ is

Di := ∂R
i ∂

P
i .

4. The total degradation product at x∗ is

D :=
n∏

i=1

Di,

26

where Di is the i-th degradation product at x∗.

5. The i-th synthesis product at x∗ is

Ki :=

(
dki(ri)

dri

∣∣∣
x∗

)(
dai(pi−1)

dpi−1

∣∣∣
x∗

)
.

6. The total synthesis product at x∗ is

K :=
n∏

i=1

Ki,

where Ki is the i-th synthesis product at x∗.

When n is even, the total synthesis product is positive, because the even number of repression

elements in the cycle results in a positive feedback system (see Section 2.2.4). In the odd-n case,

the total synthesis product is negative, because the system is a negative feedback system (see

Section 2.2.4). These differences play an important role in determining the stability of EC .

2.3.2.1 Even-n Case

For system (2.1) with n even, Müller et al. found a condition on the derivative of the transcription-

rate function that characterizes when the central steady state is stable. Here, we generalize that

criterion to system (2.7) using D and K.

Theorem 2.3.13. Consider system (2.7) with n even. A steady state x∗ is locally asymptotically

stable if and only if

D > K, (2.22)

where D and K are evaluated at x∗.

Proof. It is easily checked that the characteristic polynomial of the Jacobian matrix of system (2.7)

at x∗ is

p(λ) =
n∏

j=1

(λ+ ∂R
j)(λ+ ∂P

j)−K.

27

Re

Im

γ1

γ2

R

Ri

−Ri

Figure 2.3: Contour Γ in proof of Theorem 2.3.13.

It follows that the constant term of p is D −K.

(=⇒) We use the Routh-Hurwitz criterion. Assume that system (2.7) is stable at x∗. Then

det(Hn−1) > 0 and det(Hn) > 0. However, det(Hn) = det(Hn−1) · (D − K) implying that

D −K > 0, i.e., D > K.

(⇐=) We use Rouché’s Theorem [46]. Write p1(z) =
∏n

j=1(z+∂R
j)(z+∂P

j) and p2(z) = K.

We will show that the number of zeros of p(λ) in the right-hand half plane is equal to the number

of zeros of p1 in the right-hand half plane. Since all ∂j’s are positive by assumption (D3), there are

no zeros of p1(z) in the right-hand half plane, so there are no zeros of p(λ).

Consider the contour described by the semicircle of radius R, where R is sufficiently large, in

the right-hand half plane along with the line segment connecting −Ri and Ri on the imaginary

axis. Call the contour Γ (Figure 2.3). We separate Γ into the semicircle, γ1, and the line, γ2. This

is a closed contour in the complex plane. First, we show that |p1(z)| > |p2(z)| on γ1. We write

z = Reiθ on γ1. Then

|p1(z)| = |p1(Reiθ)| =
n∏

j=1

|Reiθ + ∂R
j ||Reiθ + ∂P

j | ≥
n∏

j=1

|R− ∂R
j ||R− ∂P

j |,

28

by the reverse triangle inequality. Call d the maximum of the degradation constants. Then

n∏
j=1

|R− ∂R
j ||R− ∂P

j | ≥
2n∏
j=1

|R− d|,

for sufficiently large R. Let R′ = 2d+ 1. Then for all R ≥ R′,

2n∏
j=1

|R− d| > d2n ≥ D.

Therefore, for contours Γ with a sufficiently large radius, by assumption (2.22), the following

inequalities hold on γ1:

|p1(z)| > D > |K| = |p2(z)|.

Now all that is left to show is that |p1(z)| > |p2(z)| on γ2. On γ2, we write z = iy for −R < y < R.

Then

|p1(z)| =
n∏

j=1

|iy + ∂R
j ||iy + ∂P

j | ≥
n∏

j=1

|Re(iy + ∂R
j)||Re(iy + ∂P

j)| = D.

Therefore, again by assumption (2.22), the following holds on γ2:

|p1(z)| ≥ D > K = |p2(z)|.

The number of zeros of p1(z) − p2(z) inside Γ is the same as the number of zeros of p1(z) inside

Γ for all R ≥ R′. Since ∂R
i , ∂

P
i > 0 for all i, we know that there are no zeros of p(λ) inside Γ for

all R ≥ R′. Therefore, there are no eigenvalues of the Jacobian with positive or zero real part, so

the system is stable.

Theorem 2.3.13 has the following biological interpretation. Inequality (2.22) says that, in the

long term, degradation is a more powerful process than synthesis. Thus, system (2.7) converges

locally if and only if degradation is stronger than the combined synthesis of mRNA and protein.

29

2.3.2.2 Odd-n Case

Recall that, in Proposition 2.3.3, we proved when EC exists and showed it is unique when n

is odd. Below, we prove results towards finding a necessary and sufficient condition for stability

of EC in the odd-n case, like we have in the even case from Theorem 2.3.13. Our proofs use

Hurwitz matrices because the inherent structure of the system when n is odd allows us to simplify

the Routh-Hurwitz criterion. The main result of this section, Theorem 2.3.15, reduces the number

of determinants of the Routh-Hurwitz criterion to check from 2n to n− 2. We show at the end of

the section, through an example system (2.1), that we cannot extend this result.

First, we discuss why the proof of Theorem 2.3.13 does not generalize to the odd-n case.

Recall that, in this case, system (2.7) is a negative feedback loop and K < 0, while in the even

case, K > 0. Thus, in the odd case, D > K always holds, regardless of whether EC is stable. Also,

although D > 0 > K, we are not guaranteed that

D > |K|, (2.23)

which is what we used in the proof of Theorem 2.3.13. If inequality (2.23) does hold, however, we

conclude that the system is stable at EC .

Theorem 2.3.14. Consider system (2.7) with n odd. If inequality (2.23) holds, then EC is locally

asymptotically stable.

Proof. The proof is the same as in the backwards direction of Theorem 2.3.13.

We continue to solve the question of stability at EC by using the structure of the system to

reduce the number of Hurwitz matrices needed in the Routh-Hurwitz criterion. The idea is that the

characteristic polynomial of the system is close to a polynomial known to have all negative real

roots and so we will need to check fewer Hurwitz determinants.

Theorem 2.3.15. Consider system (2.7) with n odd, and let Di denote the determinant of the i-th

Hurwitz matrix of the Jacobian at EC . Then EC is locally stable if and only if Di > 0 for all

30

i = n+ 2, . . . , 2n− 1.

Proof. We first show that, when n is odd, the first n + 1 Hurwitz matrices calculated from the

characteristic polynomial of the Jacobian at EC always have positive determinant.

Recall from the proof of Theorem 2.3.13 that the characteristic polynomial of the Jacobian

matrix at EC is p(λ) =
∏n

i=1(λ + ∂R
i)(λ + ∂P

i) − K, where K is the total synthesis product from

Definition 2.3.12. Since n is odd and so K < 0, we rewrite this as p(λ) =
∏n

i=1(λ + ∂R
i)(λ +

∂P
i) + |K|. We introduce a new polynomial q(λ) =

∏n
i=1(λ+ ∂R

i)(λ+ ∂P
i).

In what follows, any quantity with a superscript p is constructed using p(λ), and similarly

for q(λ). Notice that p(λ) and q(λ) both have degree 2n, so there are 2n Hurwitz matrices Hp
i

for p(λ) and Hq
i for q(λ). Also, all coefficients of p(λ) and q(λ) match except for the constant

term. Therefore, every Hurwitz matrix constructed using only coefficients of p(λ) that are not the

constant term is equivalent to the corresponding Hurwitz matrix of q(λ). We will use this fact

below.

We now split the proof into two cases.

1. Case 1: i = 1, ..., n.

From Definition 2.2.6, the coefficients of the polynomial that appear in Hi are indexed by

1, ..., 2i − 1. Therefore, Hp
i = Hq

i for i = 1, ..., n, so Di
p > 0 for i = 1, ..., n because all

roots of q(λ) have negative real part.

2. Case 2: i = n+ 1.

For this case, we examine the effect of the constant term of p on the determinant of Hp
n+1.

Recall that ap2n = aq2n+ |K| where ap2n and aq2n are the constant terms of p and q, respectively.

Below, we use A[a,b] to denote the matrix A without row-a and column-b. The (n + 1)st

Hurwitz matrix of p is the following (n+ 1)× (n+ 1) matrix:

31

Hp
n+1 =

a1 a0 0 0 . . . 0

a3 a2 a1 a0 . . . 0

a5 a4 a3 a2 a1 a0
...

...
...

...
...

...

0 ap2n a2n−1 . . . an+2 an+1

,

and Hq
n+1 matches Hp

n+1 at all entries except for entry (n + 1, 2), where it is the constant

term aq2n rather than that of p. We compute Dp
n+1 = det(Hp

n+1) and Dq
n+1 = det(Hq

n+1) by

expanding along the last row:

Dp
n+1 = ap2n det(H

p,[n+1,2]
n+1)− a2n−1 det(H

p,[n+1,3]
n+1) + . . .

+ an+1 det(H
p,[n+1,n+1]
n+1), (2.24)

and

Dq
n+1 = aq2n det(H

q,[n+1,2]
n+1)− a2n−1 det(H

q,[n+1,3]
n+1) + . . .

+ an+1 det(H
q,[n+1,n+1]
n+1). (2.25)

As the constant term is present only in the last row of Hn+1, the submatrices of Hp
n+1 and

Hq
n+1 that exclude that row are equal. Combining this fact with Eqns. (2.24) and (2.25) gives

Dp
n+1 −Dq

n+1 = ap2n det(H
p,[n+1,2]
n+1)− aq2n det(H

q,[n+1,2]
n+1)

= (ap2n − aq2n) det(H
p,[n+1,2]
n+1) = |K| det(Hp,[n+1,2]

n+1).

(2.26)

32

To compute the determinant of the following matrix:

H
p,[n+1,2]
n+1 =

a1 0 0 . . . 0

a3 a1 a0 . . . 0

a5 a3 a2 a1 a0
...

...
...

...
...

a2n−1 a2n−3 a2n−4 . . . an−1

we expand about the first row, so det(H
p,[n+1,2]
n+1) = a1 det(A), where

A =

a1 a0 0 0 0 0 . . . 0

a3 a2 a1 a0 0 0 . . . 0

a5 a4 a3 a2 a1 a0 . . . 0

...
...

...
...

a2n−3 a2n−4 a2n−5 a2n−6 . . . an+1 an an−1

.

Notice that A = Hp
n−1 = Hq

n−1, which has positive determinant by Case 1. Therefore,

because a1 > 0, det(Hp,[n+1,2]
n+1) = a1 det(A) > 0. Since all roots of q(λ) have negative real

part, Dq
n+1 > 0 by Theorem 2.2.7, so Eqn. (2.26) gives

Dp
n+1 −Dq

n+1 = |K| det(Hp,[n+1,2]
n+1) > 0 =⇒ Dp

n+1 > Dq
n+1 > 0.

Therefore, Dp
n+1 > 0 and so the first n+ 1 determinants of the Hurwitz matrices constructed from

p(λ) are positive.

Since D2n = (D − K)D2n−1 and D − K > 0 (as explained above Proposition 2.3.14), we

conclude from Theorem 2.2.7 that EC is locally stable if and only if Di > 0 for all i = n +

2, . . . , 2n− 1.

Corollary 2.3.16. For n = 3, system (2.7) is stable at EC if and only if D5 > 0.

Proof. Follows immediately from Theorem 2.3.15.

33

Next, we recall the stability condition for EC due to Müller et al. and compare it to the one in

Theorem 2.3.15. Müller et al.’s criterion [20] is:

β

(1 + β)2
<

1− Sc cos(π/n)

S2
c sin

2(π/n)
, (2.27)

where

Sc = −αf ′(EC). (2.28)

In system (2.7), it is easy to see that Sc equals −Ki at EC . Therefore, we rewrite Eqn. (2.27) as:

β

(1 + β)2
<

1 +Ki cos(π/n)

K2
i sin

2(π/n)
. (2.29)

For n = 3, it is straightforward to check that inequality (2.29) is equivalent to:

(4 + 2Ki)(1 + β)2 − 3βK2
i > 0. (2.30)

For system (2.1) with n = 3, by Corollary 2.3.16, the condition D5 > 0 characterizes the same

stability region in parameter space as inequality (2.30). This is surprising because D5 under system

(2.1) and n = 3 is a more complicated expression than the left-hand side in (2.30):

D5 = β2(8β10K3
i + 64β10 + 144β9K3

i + 576β9 + 792β8K3
i + 2304β8 − 27β7K6

i

+ 2184β7K3
i + 5376β7 − 81β6K6

i + 3528β6K3
i + 8064β6 − 81β5K6

i

+ 3528β5K3
i + 8064β5 − 27β4K6

i + 2184β4K3
i + 5376β4 + 792β3K3

i

+ 2304β3 + 144β2K3
i + 576β2 + 8βK3

i + 64β). (2.31)

Next, we prove directly that these two inequalities define the same stability region when β ∈

R>0 and Ki ∈ R. Note that, by definition, Ki is always negative, but we show that even for Ki ∈ R

the two inequalities are equivalent.

34

Theorem 2.3.17 (Equivalence of the n = 3 stability conditions). For n = 3 of system (2.1),

inequality (2.30) holds for β ∈ R>0 and Ki ∈ R if and only if D5 > 0, where D5 is the determinant

of the Hurwitz matrix H5 of the characteristic polynomial of the Jacobian matrix of (2.1) evaluated

at EC .

Proof. Let f(β,Ki) = (4 + 2Ki)(1 + β)2 − 3βK2
i denote the polynomial on the left-hand side

of (2.30). We rename D5, as in (2.31), the polynomial g(β,Ki). We must show that f(β,Ki) and

g(β,Ki) are the same sign for all β ∈ R>0 and Ki ∈ R<0.

It is straightforward to check, e.g., using Maple, that g(β,Ki) = f(β,Ki)h(β,Ki), where

h(β,Ki) = 9K4
i β

8 + 6K3
i β

9 + 4K2
i β

10 + 27K4
i β

7 + 30K3
i β

8 + 40K2
i β

9

− 8Kiβ
10 + 27K4

i β
6 + 60K3

i β
7 + 144K2

i β
8 − 56Kiβ

9 + 16β10

+ 9K4
i β

5 + 60K3
i β

6 + 260K2
i β

7 − 168Kiβ
8 + 112β9 + 30K3

i β
5

+ 260K2
i β

6 − 280Kiβ
7 + 336β8 + 6K3

i β
4 + 144K2

i β
5 − 280Kiβ

6

+ 560β7 + 40K2
i β

4 − 168Kiβ
4 + 560β6 + 4K2

i β
3 − 56Kiβ

4 + 336β5

− 8Kiβ
3 + 112β4 + 16β3.

Because g = fh, any root of f is also a root of g. We will use this fact below.

Fix β̃ > 0. Let gβ̃(Ki) := g(β̃,Ki) and fβ̃(Ki) := f(β̃,Ki). We rewrite gβ̃:

gβ̃(Ki) = K6
i (−81β̃6 − 81β̃5 − 27β̃4) +K3

i (8β̃
10 + 144β̃9

+ 792β̃8 + 2184β̃7 + 3528β̃6 + 3528β̃5 + 2184β̃4

+ 792β̃3 + 144β̃2 + 8β̃) + C, (2.32)

where C is the sum of all the pure β terms in (2.31). It is easy to check that C > 0 when β̃ > 0.

Thus, we see from (2.32) that the polynomial gβ̃ has one sign change. Therefore, by Descartes’

rule of signs, gβ̃ has at most one positive real root and at most one negative real root.

From (2.30), fβ̃(Ki) is a quadratic polynomial in Ki that is downward facing and has a positive

35

y-intercept namely, (4(1 + β̃)2). Therefore, fβ̃ has exactly two real roots, and thus, gβ̃ has exactly

two real roots as well because g = fh and, as noted above, gβ̃ has at most two real roots.

We label these two real roots r1 and r2 with r1 < r2. Since gβ̃ has even degree in Ki with a

negative leading coefficient and a positive y-intercept, we know that gβ̃ > 0 if and only if Ki is in

the interval (r1, r2). It is straightforward to check that fβ̃(Ki) also is positive if and only if Ki is in

the interval (r1, r2). Therefore, fβ̃ > 0 if and only if gβ̃ > 0. Our choice of β̃ > 0 was arbitrary.

Therefore, the two inequalities D5 > 0 and (2.29) are equivalent.

Corollary 2.3.16 and the fact that Müller et al.’s criterion for system (2.1) is given by a single

inequality led us to conjecture, in [21], that, when n is odd, the stability of EC depends only on the

penultimate Hurwitz determinant.

Conjecture 2.3.18. [21, Conjecture 1] For n odd, system (2.7) is stable at EC if and only if

D2n−1 > 0.

Evidence for Conjecture 2.3.18 is seen in the possible types of bifurcations of EC in the odd

case. We reorder the species as r1, p1, r2, p2, ... to see that system (2.7) is a monotone system

(see Section 2.2.4). In [38], Mallet-Paret and Smith showed that all omega-limit sets of monotone

systems can be embedded in R2. Therefore, the possible bifurcations are stationary bifurcations

or simple Hopf bifurcations. However, there cannot be stationary bifurcations because zero is

never a root of the characteristic polynomial. Therefore, all bifurcations are simple Hopf bifur-

cations. Furthermore, from [35], at simple Hopf bifurcations, the following conditions hold: D1,

..., D2n−2 > 0, and D2n−1 = D2n = 0. This reasoning is not sufficient to prove the conjecture,

however, because there could be a point in parameter space where EC is unstable but nevertheless

D2n−1 > 0. In fact, the conjecture turns out to be false as seen by the example presented in the

next section.

2.3.3 Counterexample to Conjecture

Consider the following 5-gene repressilator system.

36

ṙ1 =
α

1 + p85
− r1, ṗ1 = r1 − p1

ṙ2 =
α

1 + p81
− r2, ṗ2 = r2 − p2

ṙ3 =
α

1 + p82
− r3, ṗ3 = r3 − p3

ṙ4 =
α

1 + p83
− r4, ṗ4 = r4 − p4

ṙ5 =
α

1 + p84
− r5, ṗ5 = r5 − p5.

(2.33)

The structure of system (2.33) comes directly from system (EL) with β = 1 and α0 = 0. For

now, we use α as a placeholder, but later, we will show that there exists an α such that D7 < 0 and

D9 > 0, which will prove Conjecture 2.3.18 false.

First, we know that there is a unique, positive steady state of system (2.33) given by the vector

of length 10 with all entries r∗ where r∗ is the solution to the fixed point problem

r =
α

1 + r8
.

For all i = 1, . . . , 5, the i-th synthesis rate of system (2.33) is

Ki =
−8α(r∗)8

(1 + (r∗)8)2
. (2.34)

The total synthesis product, K, is then K5
i .

With the notation in place, we give the Jacobian matrix, A, of system (2.33) at r∗.

37

A =

−1 0 0 0 0 0 0 0 0 Ki

0 −1 0 0 0 Ki 0 0 0 0

0 0 −1 0 0 0 Ki 0 0 0

0 0 0 −1 0 0 0 Ki 0 0

0 0 0 0 −1 0 0 0 Ki 0

1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1

The characteristic polynomial of A is

p(λ) = (λ+ 1)10 −K

= λ10 + 10λ9 + 45λ8 + 120λ7 + 210λ6 + 252λ5 + 210λ4 + 120λ3 + 45λ2 + 10λ+ 1−K.

(2.35)

Using the coefficients in (2.35), we compute H7 and H9.

H7 =

10 1 0 0 0 0 0

120 45 10 10 0 0 0

252 210 120 45 10 1 0

120 210 252 210 120 45 10

10 45 120 210 252 210 120

0 1−K 10 45 120 210 252

0 0 0 1−K 10 45 120

38

H9 =

10 1 0 0 0 0 0 0 0

120 45 10 10 0 0 0 0 0

252 210 120 45 10 1 0 0 0

120 210 252 210 120 45 10 1−K 0

10 45 120 210 252 210 120 45 10

0 1−K 10 45 120 210 252 210 120

0 0 0 1−K 10 45 120 210 252

0 0 0 0 0 1−K 10 45 120

0 0 0 0 0 0 0 1−K 10

If we substitute Ki = −3 or K = −243, then the determinant of H7 is −3566730365440. If we

substitute the same value for K into H9, then the determinant of H9 is 30502945385685152. Thus,

we have found a total synthesis product that gives a counterexample to Conjecture 2.3.18. Now, it

is left to show that there exists an α > 0 such that Ki = −3.

Recall from Eqn. (2.34) that

Ki =
−8α(r∗)8

(1 + (r∗)8)2
.

Therefore, to find a counterexample to Conjecture 2.3.18, we need an α and r∗ such that

r∗ =
α

1 + (r∗)8
and 3 =

8α(r∗)7

(1 + (r∗)8)2

or

r∗(1 + (r∗)8) = α and 3(1 + (r∗)8)2 = 8α(r∗)7. (2.36)

We use the symbolic toolbox in MATLAB to find positive real solutions to (2.36). We find values

r∗ ≈ 0.944693235528633 and α ≈ 1.491708014434 satisfy (2.36). To show this result rigorously,

we plot the curves of condition (2.36) and show that their respective graphs intersect in the positive

quadrant (Figure 2.4).

Conjecture 2.3.18 worked towards a necessary and sufficient condition for stability of the

39

Figure 2.4: Plot of the curves given in condition (2.36). The blue curve plots points (r∗, α) that
satisfy the fixed point problem given by the first equation in (2.36). The red curve plots points
(r∗, α) that satisfy the second equation in (2.36) that guarantees that Ki = −3.

unique steady state of the generalized repressilator with an odd number of genes. The counterex-

ample given by system (2.33) shows that the condition D2n−1 < 0 is not necessary to conclude

that EC is unstable. Thus, the strongest result regarding the stability of EC when the system has

an odd number of genes continues to be Theorem 2.3.15.

Moreover, the counterexample is significant in that the system used for the counterexample is

the previous model of Müller et al. Since system (2.33) follows directly from system (2.1), we

cannot reduce the assumptions of Conjecture 2.3.18 to the previous system and then prove the

conjecture true. I.e., the counterexample also disproves the following conjecture.

Conjecture 2.3.19. For n > 3 odd, system (2.1) is stable at EC if and only if D2n−1 > 0.

When n = 3, the structure of system (2.1) is unique and allows for the sign of the second to last

Hurwitz determinant to be determined completely by the simpler condition given by Müller et

al. An interesting open question is to determine how inequality (2.27) by Müller et al. relates to

Dn+2, . . . , D2n−1.

Finally, the counterexample is significant in that, for a 5-gene repressilator system, D7 was the

40

determinant that characterized stability. Since Theorem 2.3.15 already guarantees D1, . . . Dn+1 >

0, we cannot extend Theorem 2.3.15 to include Dn+2 > 0. Recall that Theorem 2.3.15, in the case

of n = 5 reduced the Routh-Hurwitz criterion from checking all Di > 0 for i = 1, . . . , 10 to only

checking Di > 0 for i = 7, 8, and 9. Since it was D7 that went negative while D9 stayed positive,

Theorem 2.3.15 cannot be extended in terms of the determinants to check from the Routh-Hurwitz

criterion.

2.3.4 Asymptotic Behavior

Finally, we prove a result about the global dynamics of system (2.7), which is similar to Propo-

sition 2.2.5, by using the result on monotone systems given in [38] recalled above in Proposition

2.2.9, Section 2.2.4.

Theorem 2.3.20. For n odd, system (2.7) has the following properties: (i) Every orbit converges

to EC or to a periodic orbit. (ii) If EC is unstable, then there exists a periodic-orbit attractor.

Proof. It is straightforward to check that the proof is the same as that of Theorem 2 in [20], which

uses the Main Theorem from [38]. We note that we can rule out the third option of the Main

Theorem in [38] because EC is unique, so there are no heteroclinic or homoclinic orbits.

Theorem 2.3.20 is significant biologically because it shows the species concentrations of the

repressilator constructed with an odd number of genes will either stabilize to the steady state value

or to a limit-cycle.

2.4 Discussion

This work advances the theoretical study of cyclic gene repression by generalizing the current

repressilator models. First, we permit more transcription-rate functions than the traditional single-

step binding function. We require only that these functions satisfy a few properties that agree with

current biological knowledge. We also broaden the possible degradation terms beyond first-order

degradation. Again, we require only that these functions satisfy certain biological assumptions.

Finally, we assume first-order translation rates but allow them to vary among mRNAs.

41

Our new system retains many advantageous qualitative properties of the previous repressilator

after these generalizations. We proved, for instance, that the system with an odd number of genes

has a unique steady state, called the central steady state. We also showed that the system with

an odd number of genes converges to the central steady state or to a periodic orbit. We worked

towards a necessary and sufficient condition for when the central steady state is stable.

For the even case, we characterized when the central steady state exists. We also give a bio-

logical criterion for when a steady state is stable. However, at the level of generality we propose,

we cannot generalize the results of Müller et al. regarding the possible number of steady states.

For specific choices of degradation-rate and transcription-rate functions, one can, however, analyze

the limiting dynamics of system (2.7) with n even by using the Poincaré-Bendixson Theorem for

monotone systems given in [38].

In summary, we now better understand stability and limiting dynamics of the repressilator

system for a wide range of biologically relevant degradation-rate and transcription-rate functions.

We hope that our results will encourage theoretical and experimental biologists to broaden the

possible degradation-rate and transcription-rate functions used to model the repressilator and other

gene regulatory networks. Finally, we expect that allowing general functions for these terms will

generate more accurate and predictive models of not only the repressilator but genetic repression in

general. To investigate how incorporating general functions will affect dynamics, in Section 3, we

derive a new transcription-rate function and investigate the qualitative and quantitative differences

between a model using the Hill function for transcription and a model using our new function for

transcription.

42

3. TRANSCRIPTION-RATE FUNCTION FROM SUCCESSIVE BINDING

1

3.1 Introduction

The discovery that circadian rhythms are conserved across many organisms–from cyanobacte-

ria [47, 48] to the most complex mammals [49, 50]–led scientists to hypothesize that cells within

organisms have self-sustaining molecular clocks that are then synchronized throughout the or-

ganism. Consequently, mathematicians used mathematical models to test whether hypothesized

molecular mechanisms were capable of generating oscillations. For instance, in 1965, Goodwin

presented the following mathematical model of a molecular feedback loop where a gene’s product

represses production of the gene itself (X → Y ⊣ X) [44]:

dX

dt
=

a

A+ kY
− b,

dY

dt
= αX − β.

(3.1)

Here, the variable X is the concentration of the mRNA; the variable Y is the concentration of the

protein. The other quantities are parameters. A major feature of this model is the appearance of

Y in the denominator of the synthesis component of
dX

dt
in (3.1). This denominator is due to the

assumption that the way the repressor protein acts on DNA is similar to how inhibitors work on

enzymes. Goodwin claimed that system (3.1) models a biological oscillator with amplitudes in Y

much larger than those in X .

In 1968, Griffith generalized Goodwin’s model by allowing for a general exponent of Y in the

denominator of Eqn. (3.1) [51]. Griffith’s model is

dX

dt
=

a

1 +KY m
− bX,

dY

dt
= cX − dY.

(3.2)

1Based on Sections 3 and 4 of “Revisiting a synthetic intracellular regulatory network that exhibits oscillations,”
by J. Tyler, A. Shiu, and J. Walton, 2019. J MATH BIOL, 78:2341-2368. Used with permission.

43

Jonathan Tyler

Jonathan Tyler
1

Here, the variables X and Y are the same as in system (3.1). The parameters a, b, c, and d are all

positive constants. Recall from Remark 2.3.1 that the exponent m is called the Hill coefficient.

Griffith argued that, although computer simulations are helpful, mathematicians must approach

these models with a more rigorous analysis. Thus, he used results of nonlinear dynamics to analyze

model (3.2). Griffith’s analysis showed that there is one limit cycle if and only if m > 8. These

predictions were compared against computer simulations and held true. Notice that this result

contradicts that of Goodwin who had found a limit cycle when m = 1. Apparently, Goodwin later

considered his own result to have “arisen erroneously” [51].

Remark 3.1.1. The Hill coefficient introduced by Griffith has a clear biological interpretation.

The exponent corresponds to the number of intermediate steps that are assumed to occur rapidly

or, in the case of repression, the number of repressor proteins that rapidly bind to the promoter

[10, 52]. In the case Goodwin considered, the Hill coefficient corresponds to the number of copies

of a particular protein that are needed to bind to its own gene’s promoter to inhibit transcription.

Recall from above that Griffith showed, for one protein repressing its own gene’s transcription,

system (3.1) requires a Hill coefficient of eight to exhibit oscillations. Thus, eight repressors must

bind to the promoter for the protein abundance to oscillate. However, a total of eight transcription

factors is an unprecedented number in biology. In Section 4, we further investigate how oscillatory

quantities (e.g., period, cost of protein production, skewness, etc.) of a model of the repressilator

(Section 2) vary with respect to the Hill coefficient.

Since 1968, the Hill function derived by Griffith has been used extensively to model repression

of gene transcription by a repressor and arises from the following “single-step assumptions” [45]:

1. On the promoter, either no repressor proteins are bound and transcription occurs, or repres-

sors proteins are bound to all binding sites and no transcription occurs.

2. The repressor protein binds rapidly to the promoter.

These assumptions are restrictive because they require that all repressors bind to a gene’s promoter

instantaneously. Thus, the model does not incorporate information such as the time taken for the

44

repressor proteins to bind.

Accordingly, we advocate for changing how we model repression. We introduce the following

alternate set of assumptions, similar to those given in [45]:

1. There are m binding sites on a promoter, and the repressor proteins bind in order from sites

1 to m.

2. Transcription cannot occur if m repressor proteins are bound to the promoter. Transcription

can occur in all other cases.

3. The repressor protein binds rapidly to the promoter.

4. Repressor proteins bind to the m binding sites at varying rates.

We label these assumptions the successive-binding assumptions and use them to derive a new

transcription-rate function in Section 3.2. One major difference between the successive-binding

and the single-step binding assumptions is that, in the successive-binding assumptions, the repres-

sor proteins bind in succession; i.e., the repressor proteins do not “instantaneously” bind to the

promoter together as in the single-step binding assumptions. Successive binding promotes quali-

tative and quantitative differences between models that incorporate the functions derived from the

two lists of binding assumptions. In Section 3.3, we investigate these differences using the repres-

silator (Section 2) as a foundational model. Finally, in Section 3.4, we conjecture a theoretical

result comparing the amplitudes of proteins of a repressilator model with the Hill function and a

corresponding model with our new transcription-rate function.

3.2 New Transcription-Rate Function from Successive Binding

Below, we derive a new transcription-rate function from the successive-binding assumptions

listed in Section 3.1. The derivation proceeds in two steps. First we derive the function that models

binding of the proteins to the promoter (Section 3.2.1). Then, using this new successive-binding

function, we derive the actual transcription-rate function (Section 3.2.2).

45

3.2.1 Successive-Binding Function

First, we recall the assumptions for successive binding introduced in Section 3.1.

1. There are m binding sites on a promoter, and the repressor proteins bind in order from sites

1 to m.

2. Transcription cannot occur if m repressor proteins are bound to the promoter. Transcription

can occur in all other cases.

3. The repressor protein binds rapidly to the promoter.

4. Repressor proteins bind to the m binding sites at varying rates.

These assumptions are adapted from [45, Chapter 2] where Forger presents three models of repres-

sion. The model we are interested in is his Model “a”: A Model for Transcription Regulation with

Independent Binding Sites.

Here, we present the reaction mechanism. Let G denote the gene; and P the repressor protein

acting on the gene. We write the i-th gene-repressor complex–the complex consisting of i repressor

proteins, P, bound to the gene promoter G–as C(i). The successive-binding reaction mechanism is

G + P ⇌ C(1)

C(1) + P ⇌ C(2)

... (3.3)

C(m−1) + P ⇌ C(m).

Assumption 1 presumes that the promoter has m binding sites and that repressors bind in order

from site 1 to m, so the mechanism has m possible gene-repressor complexes C(1), ...,C(m). We

will derive the binding functions c(i) for complex C(i) that model the rate of repressor protein

binding to the gene promoter as a function of the total gene concentration and concentration of the

repressor protein present. We proceed with this derivation below.

46

Assumption 3 allows us to use the quasi steady state assumption–after an initial fast transient,

some of the dependent variables can be regarded as in steady state [53]–on the concentrations of

the gene-repressor complexes to derive the binding function. Hence, the binding function for C(1)

is

c(1) =
gp

K1

, (3.4)

where g is the free gene concentration, p is the concentration of the repressor, and K1 is a dis-

sociation constant. In what follows, dissociation constants for each gene are distinct because of

Assumption 4. We use the function (3.4) to write the binding function for C(2):

c(2) =
pc(1)

K2

=
gp2

K1K2

,

where K2 is another dissociation constant. We continue this process to get a general formula for

the binding function of the j-th complex:

c(j) =
gpj

K1K2 · · ·Kj

, (3.5)

where K1, . . . , Kj are all dissociation constants.

Conservation of mass for genes is given by

ḡ = g + c(1) + c(2) + · · ·+ c(m) (3.6)

where ḡ is the total gene amount. This conservation equation differs from the conservation equation

arising from single-step binding. Under single-step binding, the genes are either free or consumed

in the final gene-repressor complex, leading to the conservation equation:

ḡ = g + c(m).

We desire a binding function that depends only on the protein product concentration and the

47

total gene concentration. To obtain such a function, we must first solve for c(m)
i in terms of p using

Eqns. (3.5) and (3.6).

c(m) =
(ḡ − c(1) − · · · − c(m−1) − c(m))pm

K1K2 · · ·Km

=⇒ c(m) =
ḡpm

K1K2 · · ·Km

− c(m)p

K1

− · · · − c(m)pm−1

K1K2 · · ·Km−1

− c(m)pm

K1K2 · · ·Km

=⇒ c(m)

(
1 +

p

K1

+
p2

K1K2

+ · · ·+ pm

K1K2 · · ·Km

)
=

ḡpm

K1K2 · · ·Km

=⇒ c(m)

(
K1K2 · · ·Km +K2 · · ·Kmp+ · · ·+Km−1p

m−1 + pm

K1K2 · · ·Km

)

=
ḡpm

K1K2 · · ·Km

=⇒ c(m) =
ḡpm∑m

j=0((
∏

l>j Kl)pj)
.

Similarly, we obtain c(j):

c(j) =
(
∏

ℓ>j Kℓ)ḡp
j∑m

j=0((
∏m

ℓ>j Kℓ)pj)
. (3.7)

We simplify notation by letting B(p) =
∑m

j=0((
∏

ℓ>j Kℓ)p
j) and A(j)(p) = (

∏m
ℓ>j Kℓ)p

j , so that:

B(p) =
m∏
j=1

Kj +
m∑
j=1

A(j)(p). (3.8)

Therefore, we rewrite Eqn. (3.7), the successive-binding function, as

c(j) =
ḡA(j)(p)

B(p)
for j = 1, . . . ,m. (3.9)

3.2.2 Transcription-Rate Function Obtained from Successive-Binding Function

We assume as in [20] that the transcription rate a(p) depends linearly on the free gene concen-

tration g given by the two cases

g = ḡ =⇒ a = ḡ, (3.10)

48

and

g = 0 =⇒ a = δḡ. (3.11)

Here, following Müller et al. [20], the parameter δ denotes the ratio of repressed to unrepressed

transcription. Case (3.10) assumes that, if the gene is free of any repressors, then transcriptional

activity will occur proportional to the total gene concentration. Case (3.11) assumes that, if m

repressors are bound to the gene, then transcriptional activity will occur proportional to the constant

δ.

From cases (3.10) and (3.11), the transcription-rate a is given by

a = (1− δ)g + δḡ.

We use Eqns. (3.6) and (3.9) to rewrite a:

a = ḡ

[
(1− δ)

(
1− A(1)(p) + A(2)(p) + · · ·+ A(m)(p)

B(p)

)
+ δ

]
. (3.12)

Using Eqn. (3.8), we rewrite Eqn. (3.12) as

a = ḡ

[
(1− δ)

∏m
j=1 Kj

B(p)
+ δ

]
.

To simplify notation, let us write

S(p) :=

∏m
j=1Kj

B(p)
. (3.13)

Then, from Eqns. (3.12) and (3.13), the derived transcription-rate function is:

ai = ḡ[(1− δ)Si(pi−1) + δ]. (3.14)

It is straightforward to check that Eqn. (3.14) satisfies assumptions (A1)-(A4), and hence is a valid

transcription-rate function.

49

Theorem 3.2.1. The transcription-rate function arising from the successive-binding mechanism,

given by Eqn. (3.14), satisfies assumptions (A1)-(A4) of the generalized repressilator model (Sec-

tion 2).

Theorems 2.3.3 and 3.2.1 immediately yield the following corollary.

Corollary 3.2.2. Consider the repressilator system from Section 2 with n odd and transcription-

rate functions ai(pi−1) in Eqn. (3.14), that is, arising from the successive-binding mechanism.

Then the central steady state EC exists and is the unique, positive steady state.

Remark 3.2.3. Forger, in [45], simplifies Eqn. (3.13) by assuming that the dissociation constant,

Kj , is the same across each reaction in the successive-binding mechanism (3.3). Hence, his version

of Eqn. (3.13) is:

S(p) =
Km

(K + p)m
.

3.3 Numerical Comparison of Models Arising from Hill Functions vs. Successive-Binding

Transcription-Rate Functions

Below, we numerically compare a model using the traditional single-step binding assumption

for transcription and another model constructed using the successive-binding assumption. Specif-

ically, we show that the amplitudes and periods of the oscillations can differ widely (see Figures

3.1 and 3.2).

The first model is the following three-gene repressilator system:

ṙ1 =
k1

1 + ph3
− r1, ṗ1 = 3(r1 − p1)

ṙ2 =
k2

1 + ph1
− r2, ṗ2 = 3(r2 − p2) (SS)

ṙ3 =
k3

1 + ph2
− r3, ṗ3 = 3(r3 − p3).

Model (SS) (for single-step) is constructed using the single-step binding assumption for each

transcription-rate function, and the Hill coefficients, h, are assumed to be equal.

50

In contrast, the second model considered is:

ṙ1 =
k1

(1 + p3)h
− r1, ṗ1 = 3(r1 − p1)

ṙ2 =
k2

(1 + p1)h
− r2, ṗ2 = 3(r2 − p2) (SB)

ṙ3 =
k3

(1 + p2)h
− r3, ṗ3 = 3(r3 − p3).

Model (SB) (for successive-binding) is constructed using the successive-binding assumption for

each transcription-rate function (Eqn. (3.14)), and, like model (SS), the Hill coefficients, h, are

assumed to be equal. Note from systems (SS) and (SB) that the two models are equivalent in the

degradation and translation components.

Remark 3.3.1. In the subsequent analysis, we consider two scenarios: varying the Hill coefficient

while fixing all other parameters as correct and varying the transcription rate while fixing all other

parameters as correct. When varying the transcription rate, we fix the Hill coefficient as 3. Using

Corollary 2.3.16, we compute the Hopf bifurcation of model (SS) as k ≈ 1.8466 and the Hop bi-

furcation of model (SB) as k ≈ 6.2964. When varying the Hill coefficient, we fix the transcription

rate at 10. In this case, again using Corollary 2.3.16, we estimate the Hopf bifurcation of model

(SS) as h ≈ 1.8043 and the Hopf bifurcation of model (SB) as h ≈ 2.5717. The code we wrote to

estimate the Hopf bifurcation values appears in Appendix A, Section A.1.1.

3.3.1 Amplitude

Here, we compare the amplitudes of models (SS) and (SB). For the first numerical comparison,

we vary the Hill coefficient, h, from 2 to 50 while keeping all other parameters fixed. For both

models (SS) and (SB), we numerically solve the system until it reaches a steady state or a limit

cycle. Then, we compute the amplitude of protein 1 by evaluating the difference of the maximum

and minimum protein 1 abundance. Figure 3.1(a) shows the amplitudes of the first protein concen-

tration with respect to the Hill coefficient (sampled at every two-tenth value–1, 1.2, 1.4, etc.) for

models (SS) (black) and (SB) (red). All computations were performed in MATLAB.

51

As shown in Figure 3.1(a), the amplitude of model (SS) increases to an order of magnitude

larger than the amplitude of model (SB). This, along with a smaller Hopf bifurcation of model

(SS) than model (SB) with respect to the Hill coefficient (see Remark 3.3.1), suggests that the tra-

ditional transcription-rate function allows for oscillations to occur at smaller Hill coefficients than

for our newly derived transcription-rate function. This means, in terms of the biology, that under

the single-step binding assumption, oscillations can occur when there are fewer repressors binding

to the gene promoter. However, incorporating intermediate steps into the repressor-promoter inter-

actions (like in the successive-binding assumption) leads to more repressors required to produce

oscillations.

Next, we conducted a numerical comparison that fixed all parameters (h = 3) while letting

the transcription rates, k1, k2, and k3, vary. In order to plot the amplitudes, we assume that k1 =

k2 = k3 = k and let k vary from 3 to 50. Again, we sample k at every two-tenth interval and

numerically solve both models to convergence to the steady state or the limit cycle. We then

compute the amplitudes as in the first comparison. Figure 3.1(b) shows the amplitudes of the first

protein concentration with respect to the transcription rate for both models. Similar to the first

comparison, model (SS) amplitudes are significantly different from those of model (SB), and in

fact, reach an order of magnitude difference (Figure 3.1(b)).

These and other numerical simulations support the claim that the amplitude of a model con-

structed using the successive-binding assumption will be smaller than the amplitude of a model

constructed using the single-step binding assumption, all other components being equal. As am-

plitudes are an important quantity of oscillations of a system, care should therefore be taken when

considering appropriate models of gene repression and transcription or when fitting models to

actual data.

3.3.2 Period

Similar to the amplitude, the two transcription-rate functions yield dramatically different peri-

ods. To compare, we compute the periods of models (SS) and (SB), again using MATLAB. First, we

fix all parameters except the Hill coefficient, h. Again, we let h vary from 2 to 50 and sample h

52

(a) (b)

Figure 3.1: (a) Protein 1 concentration amplitudes for models (SS) (blue curve) and (SB) (red
curve) with respect to the Hill coefficient. We fixed the transcription rates at the same value,
k = 10. (b) Amplitudes of the concentration of protein 1 for models (SS) (blue) and (SB) (red)
with respect to the transcription rate. The Hill coefficient, h, was fixed at 3 for the simulations.
The initial conditions for both (a) and (b) were r1 = 10, r2 = 2, r3 = 3, p1 = 5, p2 = 1, and
p3 = 6. Code written to create this figure appears in Appendix A, Section A.1.2.

(a) (b)

Figure 3.2: (a) Period of the concentration of protein 1 for models (SS) (black) and (SB) (red)
with respect to the Hill coefficient. Similar to the amplitude comparison in Figure 3.1(a), the
transcription rates were set to be equivalent at k = 10. (b) Period of the concentration of protein 1
for models (SS) (blue) and (SB) (red) with respect to the transcription rate. The Hill coefficient, h,
was fixed at 3 for the simulations. The initial conditions for both (a) and (b) were r1 = 10, r2 = 2,
r3 = 3, p1 = 5, p2 = 1, and p3 = 6. Code written to create this figure appears in Appendix A,
Section A.1.2.

53

at every two-tenth value. We numerically solve the systems to either the steady state or the limit

cycle. To compute the period, we perform an event location procedure. The procedure first finds

a time point when p1 = p and
dp1
dt

∣∣∣
p1=p

> 0, where p is a concentration known to be in the limit

cycle. Then, the algorithm finds the next time point in which p1 = p and
dp1
dt

∣∣∣
p1=p

> 0 and saves

this time point. The period is then estimated to be the difference between the two time points.

Figure 3.2(a) shows the periods of the two models with respect to the Hill coefficient. Interest-

ingly, the period of model (SB) increases more rapidly with respect to h and eventually surpasses

the period of model (SS) (h ≈ 4.75, Figure 3.2(a)). We hypothesize this phenomenon is a result

of the increased time delay present in the successive-binding transcription-rate function. Because

we incorporate successive binding of the repressor proteins to the promoter, the time required to

repress transcription increases, resulting in an elongated period of model (SB).

Next, we fix the Hill coefficient, h = 3, and let the transcription rates vary. Again, we set

k1 = k2 = k3 = k and vary k from 3 to 50. Figure 3.2(b) shows, for both models, the periods of

the first protein concentration with respect to the transcription rate. In Figure 3.2(b), we see that the

variation in the period with respect to the transcription rate does not differ significantly between

the two models. This finding is not surprising as an increase in the Hill coefficient contributes more

time delay in model (SB) than an increase in the transcription rate.

3.3.3 Phase

Finally, we analyze how the phase differs between models (SS) and (SB). Again, we fix all

parameters except the Hill coefficient and let h vary from 2 to 50. To estimate the phase, we

perform an event location procedure that computes the peak of the abundances of proteins 1 and

2. We find the peak of protein 1 by having the ODE solver find when ṗ1 = 0 and decreasing

(similarly for protein 2). After computing the peaks of the protein abundances within the limit

cycle, we calculate the phase difference by subtracting the time of protein 2 abundance from the

time of protein 1 abundance. The phase corresponds to the strength of the repression of protein 1

on the transcription of gene 2. Thus, a longer time between the two peaks indicates that protein 1

has more of a repressive action than a lesser phase difference.

54

Figure 3.3(a) shows the phase difference in protein 1 and protein 2 abundance levels between

the two models with respect to the Hill coefficient. Similar to the period comparison in Figure

3.2(a), the Hill coefficient does not affect phase difference for model (SS) (transcription rate given

by the Hill function). In contrast, the phase difference of model (SB) continues to increase with

increasing Hill coefficient (red curve in Figure 3.3(a)). This phenomenon is due to the strength

of repression by protein 1 on protein 2 transcription increasing more rapidly given the successive-

binding transcription rate.

Figure 3.3(b) shows the phase difference of protein 1 and protein 2 abundances between the

two models with respect to the transcription rate. It is interesting that both increase with increasing

transcription rate. This phenomenon may appear counterintuitive initially because, with an increas-

ing transcription rate, one would expect the repressive effect of protein 1 to decrease. However,

with a larger transcription rate, more proteins are produced through translation, which contributes

to more repression of the next protein’s production. Unlike when varying the Hill coefficient,

however, the phase differences between the two models increase at similar rates.

3.4 Analytical Comparison of Amplitudes

In light of our numerical comparison of the amplitudes in Section 4.5.4, in this section, we

pursue a theoretical result proving that, all parameters being equal, a repressilator model with the

successive-binding transcription-rate function will exhibit smaller amplitudes than a repressilator

model in which transcription is modeled by a Hill function. To our knowledge, however, there is

limited information on how to compute rigorously amplitudes of limit-cycle oscillations, even for

the simplest of ODE systems. Given the state of the field in this respect, we obtain only partial

results, and then we give a formal conjecture at the end of the section.

First, we consider a repressilator model of the form:

ṙi =
αi

1 + phi
i−1

− driri,

ṗi = kiri − dpipi,

(SS-2)

55

(a) (b)

Figure 3.3: (a) Phase difference (in time) of the abundances of proteins 1 and 2 for models (SS)
(black) and (SB) (red) with respect to the Hill coefficient. Similar to the amplitude and period
comparisons in Figures 3.1(a) and 3.2(a), the transcription rates were set to be equivalent at k = 10.
(b) Phase difference (in time) of the abundances of proteins 1 and 2 for models (SS) (black) and
(SB) (red) with respect to the transcription rate. The Hill coefficient, h, was fixed at 3 for the
simulations. The initial conditions for both (a) and (b) were r1 = 10, r2 = 2, r3 = 3, p1 = 5,
p2 = 1, and p3 = 6. Code written to create this figure appears in Appendix A, Section A.1.2.

for i = 1, . . . , n. Here, the parameters αi are the transcription rates, the ki’s the translation rates,

dri (dpi) the degradation rate of mRNA-i (protein-i, respectively), and the hi’s the Hill coefficients.

Note that system (SS-2) generalizes system (SS) to allow for general degradation, transcription,

and translation rates.

Similarly, we generalize system (SB) to allow for general degradation, transcription, and trans-

lation rates. Consider a repressilator system with the transcription-rate function given by the newly

derived function in Section 3.2

ṙi =
αi

(1 + pi−1)hi
− driri,

ṗi = kiri − dpipi,

(SB-2)

for i = 1, . . . , n.

For these two systems, we prove a theorem that confines possible limit cycles to a compact

region in R2n
≥0, where n is the number of genes in the system.

56

Theorem 3.4.1. Consider system (SS-2) with a limit cycle γ ⊂ R2n
≥0 and period T . Let Πi : γ →

R2
≥0 where Πi(x) := (ri, pi) where x = (r1, r2, . . . , rn, p1, p2, . . . , pn). Then Πi(γ) ⊂ Γi where

Γi =

[
0,

αi

dri

]
×
[
0,

kiαi

dridpi

]
.

Proof. From the equation for ṙi in system (SS-2), we have

ṙi =
αi

1 + phi
i−1

− driri < αi − driri. (3.15)

Let x̄ = (r̄1, . . . , r̄n, p̄1, . . . , p̄n) with r̄i >
αi

dri
. Then, by Eqn. (3.15), we have

dri
dt

∣∣∣
x̄
< αi − dri r̄i < 0.

Since ṙi < 0 at all points x̄ with r̄i >
αi

dri
, the point x̄ cannot be in the limit cycle γ. For, if x̄ were

in the limit cycle, then the limit cycle must return to x̄, but this is impossible due to
dri
dt

< 0 for all

points in some neighborhood of x̄. Therefore, if x∗ = (r∗1, . . . , r
∗
n, p

∗
1, . . . , p

∗
n) is in the limit cycle

γ, then r∗i ≤
αi

dri
.

The argument for showing that

pi ≤
αiki
dridpi

follows similarly plus we use the fact that ri ≤
αi

dri
.

Our choice of i was arbitrary, so, for all i = 1, . . . , n, the projection Πi(γ) ⊂ Γi where

Γi =

[
0,

αi

dri

]
×
[
0,

kiαi

dridpi

]
.

The analogous result holds for system (SB-2).

Theorem 3.4.2. Consider system (SB-2) with n genes with a limit cycle γ ⊂ R2n
≥0 and period T .

57

Let Πi : γ → R2
≥0 where Πi(x) = (ri, pi) for x ∈ γ. Then Πi(γ) ⊂ Γi where

Γi =

[
0,

αi

dri

]
×
[
0,

kiαi

dridpi

]
.

Proof. The proof is analogous to the proof of Theorem 3.4.1.

Theorems 3.4.1 and 3.4.2 are significant per se because they give an upper bound on the limit-

cycle amplitude of systems (SS-2) and (SB-2), respectively, with respect to the parameters describ-

ing the rates of transcription, translation, and degradation of the i-th gene and protein. To illustrate

the upper bounds in Theorems 3.4.1 and 3.4.2, in Figure 3.4, we extend Figure 3.1(a) to include

a line through the origin with slope given by the quantity
αiki
dpidri

. For systems (SS) and (SB), the

protein bound given in Theorems 3.4.1 3.4.2 is equivalent to the transcription rate, αi. In Figure

3.4, notice that the amplitude of protein 1 for the model (SS) (black line) closely matches the upper

bounds from Theorems 3.4.1 and 3.4.2 whereas the amplitude of protein 1 of model (SB) (red line)

does not.

Next, we investigate how the limit cycles compare between models with the Hill function

versus the successive-binding transcription-rate function. In particular, we ask whether the limit

cycle of the model with the successive-binding transcription-rate function is always “embedded”

in the limit cycle of a model with the Hill function. To clarify what we mean by “embedded”, we

view the limit cycle γ as a Jordan curve–a plane curve which is topologically equivalent to the

unit circle, i.e., it is simple and closed [54]. Then, by the Jordan curve theorem, we divide the

complement of the limit cycle into the interior and exterior [54]. We denote the interior of the limit

cycle γ as int(γ). To pose our question rigorously, we ask:

Question 3.4.3. Let γ1 be the limit cycle of a model with the successive-binding transcription-rate

function and γ2 the limit cycle of the corresponding model with the Hill function. Then, is it the

case that the graph of Πi(γ1) ⊂ int(Πi(γ2))?

The answer to Question 3.4.3 is no. Essentially, the strength of repression given by the

successive-binding transcription-rate function allows for the minimum protein levels to drop below

58

Figure 3.4: We obtain this figure by starting with Figure 3.1(b). The dotted blue line is the bound,
from Theorem 3.4.1, for the amplitude of protein-1 abundance. In the case of system (SS), the

bound is pi ≤
αk

dridpi
= α, where α is the transcription rate.

the minimum protein levels of a model with the Hill function. Figure 3.5(a) plots the projection Πi

to R2
≥0 of the limit cycle of a model with the Hill function (black) and the limit cycle of the corre-

sponding model with transcription-rate function given by the successive-binding function. Figure

3.5(b) zooms in on the trough of the limit cycles to show that, in fact, the minimum protein 1 (and

mRNA 1) abundance for the model with the successive-binding function is smaller than that of the

model with the Hill function.

Finally, returning to Question 3.4.3, we conclude the section with a conjecture. To state the

conjecture, consider generalized repressilator models of the form

ṙi =
αi

Ki + phi
i−1

− dri(ri),

ṗi = ki(ri)− dpi(pi). (SS-3)

59

(a) (b)

Figure 3.5: (a) The black curve is the projection Π1(r1, . . . , rn, p1, . . . , pn) = (r1, p1) to R2
≥0 of the

limit cycle of a repressilator system with transcription modeled by the Hill function. The red curve
is the same projection to R2

≥0 of the limit cycle of a repressilator system with transcription modeled
by the successive-binding function. (b) Zooming in on the trough of the limit cycles plotted in (a).
The code we wrote to generate this figure appears in Appendix A, Section A.1.3.

and

ṙi =
αi

(Ki + pi−1)hi
− dri(ri),

ṗi = ki(ri)− dpi(pi). (SB-3)

Conjecture 3.4.4. Consider generalized models of the repressilator (SS-3) and (SB-3) where the

functions dri , ki(ri), and dpi , respectively, are equivalent between the two models. Then the am-

plitude of ri for system (SS-3) is greater than the amplitude of ri for system (SB-3). Likewise, the

amplitude of pi for system (SS-3) is greater than the amplitude of pi for system (SB-3).

3.5 Discussion

Currently, the Hill function is the standard function used to model the process of transcription in

systems of gene regulatory networks [45]. However, even a preliminary theoretical result regarding

the Hill function–Griffith’s result that a Hill coefficient of 8 is required for oscillations–yielded a

biologically unreasonable conclusion. Therefore, we derived a new transcription-rate function

60

labeled the successive-binding function that arose from more reasonable biological assumptions.

In addition, we showed that incorporating the new successive-binding function within a model

of the repressilator leads to significant changes in dynamics. For example, numerical simulations

showed that amplitudes, periods, and phase differences between proteins of a model constructed

with the old transcription-rate function differed significantly from those of a model with our new

function. Numerical simulations revealed that, with the successive-binding function, the period

was more sensitive to the Hill coefficient and continued to increase with increasing Hill coefficient

whereas the period stabilized quickly with respect to the Hill coefficient given the model using

the Hill function. We found that the phase difference behaved similarly to the period. Protein

abundance amplitudes, however, stabilized quickly for a model with the new transcription-rate

function as opposed to those computed from a model with the Hill function as the transcription-

rate function. These differences in dynamics are a result of the new transcription-rate function

modeling a stronger repressive action than the previous Hill function.

Furthermore, we worked towards a theoretical result confirming our numerical findings that

the amplitudes of proteins from a model with the new successive-binding function are smaller

than those from a corresponding model with the Hill function. We proved that limit cycles of both

models, when projected to R2
≥0, are confined to a particular region that is defined by the parameters

of the model. We showed numerically that the amplitudes of proteins of the model with the Hill

function are close to the bound of this region whereas the amplitudes of the other model do not.

In the end, we conjecture a formal result comparing the amplitudes of the two models. However,

the current state of the field of dynamical systems has limited results on explicitly computing

amplitudes of limit cycles. Thus, a future direction of research is to explicitly compute amplitudes

of the two repressilator models in terms of the parameters and, more generally, of systems of ODEs

that exhibit limit-cycle oscillations.

61

4. NOVEL ALGORITHMS FOR ESTIMATING PARAMETERS OF THE REPRESSILATOR

4.1 Introduction

Historically, scientists have addressed two problems regarding parameters of the repressilator:

identifying parameter regions yielding certain dynamics (e.g., [55, 56]) and parameter estimation–

determining unknown system parameters from measurements of other quantities (e.g., [57, 6]).

These two issues are related to the two main motivations of the field of synthetic biology, dis-

cussed previously in Section 2: engineering certain cellular behaviors and gaining a deeper func-

tional understanding of natural biological systems. For example, in the interest of bioengineering

and synthetic biology (motivation 1 mentioned above), Strelkowa and Barahona studied analytic

conditions for the emergence of a finite sequence of periodic orbits leading to reachable long-lived

oscillating transients [55].

Below, we are concerned with the latter problem: estimating model parameters of the repres-

silator given experimental data. Parameter estimation is an important problem in system biology

because it is a crucial step in obtaining predictions from computational models of biological sys-

tems. Therefore, our main motivation for the study is a better understanding of naturally occurring

biological networks and systems using a more efficient and faster parameter estimation procedure

than current algorithms. An important future direction of our work is–with a more robust param-

eter estimation procedure than those currently used–better investigating the variation in the rates

at which the processes of transcription, translation, and degradation of the repressilator genes and

proteins occur within cells. Moreover, accurately estimating the Hill coefficient parameter, in light

of our discussion in Remark 3.1.1, will lead to biological insights, as the coefficient relates to the

number of proteins that bind to a gene promoter.

Furthermore, with a parameter estimation procedure that generates accurate fits, we can address

the issue of model selection. Recall that, in Section 2, we generalized a well-known model of the

repressilator by Müller et al. Specifically, in our generalization, we allowed for monotone functions

62

to model the processes of transcription, translation, and degradation. With a generalized model and

a more accurate parameter estimation algorithm, we can compare model solutions that arise from

two differing repressilator systems. For example, in future work, with our new algorithm, we

will investigate the faithfulness of solutions of the repressilator with the Hill function modeling

transcription (see Remark 2.3.1 in Section 2) to solutions of the repressilator with our newly-

derived transcription-rate function from Section 3.

Along with a better functional understanding of biological systems, another motivation of our

work is the need for new techniques that address the problems of parameter estimation for biolog-

ical oscillators in general. Estimating parameters of models of biological oscillators is inherently

challenging due to the nonlinearity present in the system. In particular, algorithms must overcome

two key challenges: multimodality–the presence of many local optima in the objective-function

landscape [58]–and the lack of all initial data. In Section 4.3, we illustrate how these two issues

complicate parameter estimation of the repressilator.

Recently, to address multimodality, a new toolbox called GEARS was developed to perform

global optimization of parameters of nonlinear systems [6]. The toolbox was applied to four well-

known biological oscillators, one in particular being the repressilator. As long as we input all initial

conditions, the procedure works quickly and generates accurate parameter estimates [6]. However,

when there are unknown initial conditions, the algorithm fails to identify accurate parameter es-

timates (see Section 4.4.2). Thus, the procedure fails to address the challenge two of parameter

estimation of the repressilator, the lack of initial mRNA data.

To address the issue of lack of initial mRNA values, in Section 4.6, we introduce an algorithm

taking as input a parameter estimate and discrete data and outputs model solution values at time

points of the discrete data set. The procedure works independently of knowing all initial data

points and extracts model solution values inside the limit cycle. Therefore, the new algorithm

can be coupled with global optimization procedures, such as GEARS, to address challenge two,

the lack of initial mRNA data. An important future iteration of the GEARS Toolbox will be to

incorporate a procedure similar to our new algorithm to handle parameter estimation of models

63

where some initial data is unknown.

Another commonly used parameter estimation procedure in computational biology is the Con-

strained Hybrid Extended Kalman Filter (HEKF) Algorithm with an a posteriori identifiability

test–a test that assesses the reliability of the parameter estimate [57]–using the variance, called the

Variance Test. Using simulated data from a repressilator model, Khammash and Lillacci employed

the Constrained HEKF Algorithm with the Variance Test to generate parameter estimates. When

the repressilator model was run with the parameter estimate output from the algorithm, the solution

closely matched the original model solution [57]. However, Khammash and Lillacci did not report

the original parameters used to simulate the data nor the parameter estimates generated by the al-

gorithm. In contrast, in our implementations of the Constrained HEKF Algorithm with Variance

Test, we see inaccuracies in the three parameters, with the most variation in the Hill coefficient.

In Section 4.4.1, we show the Variance Test sometimes rejects parameter estimates more accurate

than those it accepts.

As a discriminator among possible parameter estimates, the variance is inadequate because it

fails to incorporate any information regarding the oscillatory nature of the repressilator. There-

fore, to replace the variance as a test statistic–a quantity to discriminate among possible parameter

estimates–in the Constrained HEKF Algorithm a posteriori identifiability test, in Section 4.5, we

investigate how certain quantities related to biological oscillators vary with respect to the parame-

ters of the repressilator system. In particular, we seek a quantity, or quantities, that are sensitive to

variations in the parameters. Example quantities that we analyze include the period of oscillations,

the amplitude of protein abundance levels, the skewness (see Section 4.2.2), the cost of protein

production [59] (see Section 4.2.3), and others.

In our numerical analysis, we find that the test statistics we considered, in general, are sensitive

to variations in the transcription rate and degradation ratio but rarely sensitive to variations in the

Hill coefficient parameter. In fact, most quantities are initially sensitive to the Hill coefficient but

stabilize soon after. Ultimately, in our first algorithm, we incorporate the period, the amplitude,

and the cost of protein production (see Section 4.2.3) into an identifiability test coupled with the

64

Constrained HEKF Algorithm to discriminate among possible parameter estimates. The algorithm

takes as input the discrete, time-course data of protein abundance levels and outputs the param-

eter estimate. In addition, we introduce a second algorithm that discriminates among parameter

estimates using the ℓ2-norm between the data points and the model solution with the parameter

estimate (see Section 4.6).

For an initial investigation into the effectiveness of the two algorithms, we simulate data sets

with various spacings and noise added. We show that, after inputing these data sets, the two algo-

rithms produce accurate parameter estimates of the repressilator. The second algorithm, however,

generates parameter estimates consistently more accurate than those of the first algorithm. We

continue, in Section 4.8.1, to compare the effectiveness of the second algorithm to that of other

commonly used algorithms in computational biology. In summary, we show that our new algo-

rithm is as accurate and faster than existing algorithms.

4.2 Background

Here, we present background for the subsequent analysis. In particular, we outline the Con-

strained HEKF algorithm, which was first applied to the repressilator in [57]. As a substitute to

the Variance Test used in [57], we propose several test statistics. In particular, we consider the

skewness as one possible test statistic, so we define our version of the skewness of a distribution.

Next, we recall a quantity introduced by Jo et al. in [59], namely the cost of protein production.

Finally, since we consider the period as a test statistic, we outline how we use the Fourier transform

to estimate the period from a discrete data set.

4.2.1 The Constrained HEKF Algorithm

We give a brief overview of the Constrained HEKF algorithm presented by Khammash and

Lillacci in [57]. For more details on the derivation and methods, see [57] and [60].

65

4.2.1.1 Parameter Estimation

We begin with a model of the form

ẋ = f(x, u, θ)

θ̇ = 0

x(t0) = x0

θ(t0) = θ0

y = h(x).

(4.1)

The state vector x contains the concentrations of the species of interest; the vector θ contains the

parameters to be estimated by the algorithm; the output vector y represents the measurements,

which are functions of the state vector x.

First, the algorithm converts the problem into one of state extension–considering parameters

as states of the system and estimating the initial conditions that generate the observed output y.

The algorithm proceeds in two main steps: (1) The prediction step where the estimates are updated

based on the model (a priori estimate) and (2) The correction step where the estimates are updated

based on the measurements (called the a posteriori estimate). At each time point, new estimates

are computed based on the previous a posteriori estimates.

To make these steps more precise, we introduce some notation. First, consider the system

ẋ = f(x, u, θ) + w

yk = h(xk(tk)) + vk.

(4.2)

From (4.2), notice that we retain the continuous ODE model for the state vector x but allow for

discrete measurements of the outputs, yk. Assume that we have measurements yk for times t1, ..., ts.

Then the algorithm computes a priori and a posteriori estimates corresponding to each time point.

We follow the notation in [57] and denote the a priori estimate at time tk as x−
k and the a posteriori

66

estimate at time tk as x+
k . The algorithm also computes estimates for the error covariance matrix,

P , at each time step. The a priori error covariance estimate, P−
k , is formed by integrating a

differential Lyapunov function using the previous a posteriori error covariance matrix, P+
k , as an

initial condition.

The variable w is called the process noise and inversely represents the confidence in the model.

The process noise is assumed to be Gaussian with mean zero and with a covariance matrix Q. The

matrix Q is an n×n matrix where n is the number of states in the system. The variable vk is called

the measurement noise and, similarly, inversely represents confidence in the measurements. The

measurement noise is also assumed to be Gaussian with mean zero, and we denote its covariance

matrix by R. The matrix R is a p×p matrix, where p denotes the number of measurements (length

of the vector y).

With the notation in place, we outline the main steps of the algorithm [57]. Code for im-

plementing this algorithm for parameter estimation of a simple repressilator system appears in

Appendix A, Section A.2.1.

Algorithm 4.2.1. Constrained HEKF algorithm summary [57]

INPUT:

Models (4.1) and (4.2).

Time points t1, . . . , ts.

Measurements y(i)1 , . . . , y
(i)
s for i = 1, . . . , p.

OUTPUT: Parameter estimate θ̂.

1. Initialize the system.

2. Compute the Jacobians of f and h at the previous a posteriori estimate.

Ak =
∂f

∂x
|x=x+

k−1
, Hk =

∂h

∂x
|x=x+

k−1

67

3. Advance to the next time step.

ẋ = f(x, u)

x(tk−1) = x+
k−1

=⇒ x−
k = x(tk).

Ṗ = AkP + PAT

k +Q

P (tk−1) = P+
k−1

=⇒ P−
k = P (tk).

4. Compute the gain.

Lk = P−
k HT

k (HkP
−
k HT

k +R)−1

5. Incorporate the current measurement to correct the prediction step.

x+
k = x−

k + Lk(yk − hk(x
−
k))

P+
k = (I − LkHk)P

−
k (I − LkHk)

T + LkRkL
T
k

6. Check if the estimates satisfy constraints on the states and parameters. If not, optimize

x̂+
k+1 = arg min(xk+1 − x+k + 1)T (P+

k)−1(xk+1 − x+
k+1),

subject to the linear constraints Dxk+1 ≤ dk+1.

7. Repeat steps 2-6 for each time point t1, ..., ts.

8. Output θ+s .

4.2.1.2 Variance Test

Along with the algorithm to estimate the parameters as states, Khammash and Lillacci gave a

test to accept or reject the estimates with a user-defined level of confidence γ ∈ (0, 1). The test is

based on a simple estimation of the variance of a random variable. To outline the test, recall that s

68

denotes the number of time points, and p denotes the number of quantities being measured. Also,

R is a p × p matrix with diagonal entries σ2
i corresponding to the variance of each measurement

for i = 1, ..., p. Then the steps of the variance test are as follows.

Algorithm 4.2.2. The Variance Test [57]

INPUT:

Parameter estimate θ̂0.

Confidence γ.

Measurements y(i)1 , . . . , y
(i)
s for i = 1, . . . , p.

OUTPUT: Accept or reject θ̂0 with confidence γ.

1. Compute the parameter estimates, θ̂0, based on the algorithm in Section 4.2.1.1.

2. For each measurement i = 1, ..., p, compute

v̂
(i)
k = y

(i)
k − h

(i)
k (xθ̂0

(tk)).

This gives s samples of a Gaussian random variable assumed to have zero mean.

3. Compute the variance for i = 1, ..., p:

σ̂2
i =

1

s

s∑
k=1

(v̂
(i)
k)2.

4. For confidence γ = 1− δ, compute confidence intervals of the variance for i = 1, ..., p:

[
sσ̂2

i

χs,1−δ/2

,
sσ̂2

i

χs,δ/2

]
.

5. Check whether σ2
i is in the above interval for all i = 1, ..., p. If σ2

i is outside the interval

for some i, REJECT the parameter estimates with a confidence γ. Else, ACCEPT the

parameter estimate with a confidence γ.

69

(a) (b) (c)

Figure 4.1: Sample distributions, all with equivalent mean (0), standard deviation (1), and fourth-
moment, kurtosis (4). Each distribution was found in MATLAB with the function pearsrnd [4],
which allows you to specify a mean, standard deviation, skewness, and kurtosis. There are 10,000
data points in each distribution. (a) Distribution with skewness equal to -1. (b) Distribution with
skewness equal to 0. (c) Distribution with skewness equal to 1.

4.2.2 Skewness

The mean (the first moment) and the variance (second moment) provide information on the

central location and the spread about that location, respectively, of a given data set [61]. The third

moment, called skewness, is
1

N

N∑
i=1

[
xi − x̄

σ

]3
, (4.3)

where σ is the standard deviation of the data set [61].

The skewness of a waveform provides information on the bias of the tail of the distribution

to one direction or the other. For example, a negative skewness of a distribution corresponds to

a distribution with a longer tail to the left than to the right (Figure 4.1(a)). A distribution with

positive skewness will have a longer tail to the right than to the left (Figure 4.1(c)). Finally, a

distribution with zero skewness will have tails centered around the mean (Figure 4.1(b)). As this

quantity is intimately linked to shapes of waveforms, we consider it as a way to identify parameter

sets of models that exhibit oscillatory behavior more accurately than with the variance as done in

Section 4.2.1.2.

70

4.2.3 The Cost of Protein Production

In [59], Jo et al. investigate the relationship between waveform shapes of oscillations and

the underlying biochemical process. They derive a mathematical framework that uses waveforms

to reveal previously hidden biochemical mechanisms of circadian timekeeping. Since parameter

estimation is intimately linked with matching shapes of oscillations, we apply portions of their

framework to our parameter estimation problem.

First, we introduce the type of differential equation that Jo et al. consider. Let x(t) denote the

production of a protein over time. For many systems, the dynamics of x(t) are described by an

equation of the form
dx(t)

dt
= g(t)− r(t)x(t). (4.4)

The functions g(t) and r(t) correspond to protein synthesis and protein degradation over time,

respectively.

Remark 4.2.3. Equations of the form (4.4) are common in many models for circadian clocks. In

fact, Forger and Kim considered a slightly more general type of equation in [62] and then proved

results about existence and uniqueness of the functions g(t) and r(t), given perfect or noisy time-

course data. Also, the equations governing protein production in the repressilator system are of the

form (4.4) [5, 20], where r(t) is assumed to be a constant [5, 20].

The following definition was introduced in [59]:

Definition 4.2.4. The cost of protein production, c, of a protein with dynamics governed by (4.4)

is:

c :=
∆x

T
= ⟨g(t)⟩ = ⟨r(t)x(t)⟩, (4.5)

where ∆x denotes the amount of protein synthesized over the period T , and ⟨·⟩ represents the time

average from time 0 to T , i.e.,

⟨g(t)⟩ := 1

T

∫ T

0

g(t)dt.

71

Here, we propose the cost, c, as a test statistic for a few reasons. First, the cost has been shown

to be linked to the waveform of oscillations [59]. Second, the cost c can be approximated from

discrete protein levels using, for example, the function trapz in MATLAB. Finally, for the repressi-

lator, experimental data sets rarely include both mRNA and protein expression time courses. Thus,

we need a quantity that can be approximated from only one type of profile. From Eqn. (4.5), we

see that protein levels are sufficient to compute the cost.

4.2.4 Estimating the Period of a Discrete Data Set Using the Fast Fourier Transform

Finally, we propose the period of oscillations as another test statistic to discriminate among

Hill coefficients. However, the period can be hard to approximate given a discrete data set. So, for

our analysis, we use the following procedure to estimate the period. We assume that there are k

time points, t1, . . . , tk that are uniformly spaced with a spacing of τ .

1. Compute the power spectrum of the data set using the Fast Fourier Transform (FFT).

2. Compute ω values from the time points as

ωi =
2πti
tk

, for i = 1, . . . , k. (4.6)

3. Plot the power spectrum with respect to the ω values.

4. Find the ω value that gives the peak of the power spectrum. Call it ω∗.

5. The estimated period is

T =
2π

ω∗ . (4.7)

There are issues with estimating the period in this way. First, let ω̂ denote the actual frequency

of the model. Then, from (4.6), we know that

2πti
tk

≤ ω̂ ≤ 2π(ti + τ)

tk
, (4.8)

72

for some i = 1, . . . , k − 1. From (4.8), the estimated frequency differs from the actual frequency

by as much as 2πτ
tk

. Say, for example, that a circadian experiment gathers data every 4 hours for

two days. Then, the maximum possible error in the estimated frequency is

8π

48
=

π

6
.

Therefore, care should be taken for data to be gathered for as long as possible at the smallest

possible interval if one wants to estimate the period.

4.3 Challenges in Parameter Estimation of the Repressilator

Parameter estimation of the repressilator, as with other biological oscillators, is challenging due

to the nonlinearity present in the system. Here, we highlight two such challenges: multimodality

and the lack of initial values for mRNA abundances. We illustrate these issues by generating sam-

ple data from a repressilator system and then attempting to estimate the parameters using traditional

techniques.

Figure 4.2: Simulated protein abundances (p1(t), p2(t), and p3(t), respectively) arising from sys-
tem (4.9) with initial conditions r1 = 3, r2 = 6, r3 = 10, p1 = 10, p2 = 2, and p3 = 10.

73

Variable/Parameter Description
ri abundance of mRNA-i
pi abundance of protein-i

α0
rate of transcription that occurs in the
presence of saturating amounts of repressor [5]

α transcription rate

β
ratio of the degradation rate of proteins to
the degradation rate of mRNAs

n Hill coefficient

Table 4.1: A list of the variables and parameters of system (4.9).

4.3.1 Simulated Repressilator Data

To begin, recall, from Section 2.2.1, the three-gene repressilator system from [5]:

ṙi = α0 +
α

1 + pni−1

− ri,

ṗi = β(ri − pi),

(4.9)

where i =1, 2, and 3. The parameter α is the transcription rate for each gene. The parameter β is

the ratio of the degradation rate of the protein to the degradation rate of the mRNA. The parameter

n is the Hill coefficient. Finally, the parameter α0 is the rate of transcription that occurs in the

presence of saturating amounts of repressor [5]. Hereafter, we use system (4.9) for all subsequent

analysis and simulations, so, in Table 4.1, we list the variables and parameters for reference.

To illustrate challenges of fitting parameters of the repressilator, we simulate data from system

(4.9) with the parameters α = 5, β = 3, n = 6.5, and α0 = 0. Figure 4.2 plots the protein

abundances we generated for system (4.9). The initial conditions, given in the caption of Figure 4.2,

were randomly generated integers between 1 and 10. We display the protein abundances starting

at time t = 90 to ensure that the system is in the limit cycle (Figure 4.2).

74

(a) Relative error as a function of the Hill coeffi-
cient.

(b) Relative error as a function of the degradation
ratio.

(c) Relative error as a function of the transcription
rate.

(d) Relative error as a function of one initial mRNA
value.

Figure 4.3: Objective plots with respect to each parameter value based on system (4.9). See Sec-
tion 4.3.2 for a description of how we calculate the objective function (Eqn. (4.10)). For each
simulation, the parameters that were not varied were fixed at the actual value.

4.3.2 Challenge 1: Multimodality of the Objective Function

Given protein-abundance time-courses p(t) = (p1(t), p2(t), p3(t)) and p̃(t) = (p̃1(t), p̃2(t), p̃3(t)),

where p(t) is viewed as the “true” data, we consider the following relative error:

3∑
i=1

||pi(t)− p̃i(t)||22
||pi(t)||22

. (4.10)

Using this relative error as our objective function, we investigate the resulting objective-function

landscape. Specifically, the input to the objective function is an alternate set of parameters for

75

system (4.9), and the output is the relative error between the data p(t) from Figure 4.2 and the

simulated data p̃(t) arising from the alternate parameters and same initial conditions.

Slices of this landscape, displayed in Figure 4.3(a)–(c), show the objective function as a func-

tion of only one parameter (all other parameters are fixed at the correct values). This landscape

contains many local optima (Figure 4.3), making optimization difficult: gradient-descent methods

will get stuck at one of many local optima.

In fact, when we estimated parameters using standard MATLAB optimization commands such

as fminsearch, fmincon, and fminbnd [4], we observed that if an initial guess deviated by more

than ten percent of the actual parameter value, then the estimated parameter value differed signif-

icantly from the true value. Although in some cases one may be able to guess, for instance, the

transcription rate–this rate is closely linked to the maximum protein abundance value (see Section

3.4)–within ten percent, in general having to know the true value within ten percent is a severe

limitation. Indeed, one is unlikely to know the Hill coefficient or degradation ratio within such a

strict bound.

Figure 4.4: Two simulations of the protein abundance p3(t) with the parameters as in system (4.9)
but with differing initial mRNA values. The protein abundances were initialized to be 0 for both
simulations. The initial mRNA values for the blue curve were 4, 7, and 3 while the black curve is
a simulation with initial mRNA values of 1, 0, and 10.

76

4.3.3 Challenge 2: Lack of Initial mRNA Values

Traditionally, experimental repressilator data have been generated using fluorescent tags on the

three proteins of the system. Thus, data representing protein abundances are collected, but not

data for mRNA values. In the context of estimating parameters, not knowing initial mRNA values

effectively adds one new parameter for each gene.

As we did for three parameters earlier, we investigate the objective-function landscape with

respect to a new parameter, the initial mRNA value for one of the three genes. Displayed in Figure

4.3(d) is the relative error as a function of a single initial mRNA value (fixing all other parameter

values and initial mRNA values to their correct values). As we saw for the other parameters, this

landscape has many local minima, making the optimization problem challenging.

4.4 Previous Parameter Estimation Procedures Applied to the Repressilator

In 2010, Khammash and Lilacci applied the Extended Kalman Filter [60] to systems biology

parameter estimation problems, one in particular being the repressilator [57]. Their new Con-

strained HEKF Algorithm addressed the two issues of multimodality and lack of initial mRNA

values because it was a Bayesian approach that worked independently of any initial values. In

Section 4.2.1.1, we outlined the main steps of the algorithm.

Although the Constrained HEKF Algorithm quickly produced relatively accurate estimates of

the repressilator compared to other traditional techniques, the identifiability test that Khammash

and Lilacci considered, the Variance Test (see Section 4.2.1.2), fails to pass seemingly accurate

parameter estimates. To illustrate, in Section 4.4.1, we run the Constrained HEKF Algorithm

with the Variance Test on a sample repressilator data set and show that it does not output the best

possible parameter estimate.

More recently, Pitt and Banga addressed the issue of multimodality with a novel methodology,

GEARS (Global parameter Estimation with Automated Regularization via Sampling) [6]. The

method combines three main strategies: (1) global optimization, (2) reduction of search space, and

(3) regularized parameter estimation. More information on the derivation and implementation of

77

the algorithm can be found in [6].

To illustrate the effectiveness and speed of the new toolbox, Pitt and Banga applied the new

toolbox to four well-known biological oscillators: Goodwin, FitzHugh-Nagumo, Repressilator,

and a metabolic oscillator. They showed that the methodology quickly and accurately estimates

parameters of the four systems. However, one shortcoming of the GEARS Toolbox is that all initial

values of the system are required as input. Below, in Section 4.4.2, we revisit the repressilator

example to illustrate how not knowing all initial values can have a significant impact on parameter

estimation by the GEARS Toolbox.

4.4.1 Constrained HEKF Algorithm Applied to Simulated Repressilator Data

Below, we apply the Constrained HEKF Algorithm from [57]. We simulate data of system

(4.9) with α0 = 0, α = 5, β = 3, and n = 3 (red points, Figure 4.5). The data set was taken at a

spacing of 1 time unit with a total time of 50. We added normal noise with mean zero and standard

deviation .5. Here, we attempt to fit the three parameters α, β, and n.

We ran the Constrained HEKF Algorithm and generated 500 parameter estimates. We then

ran the Variance Test with a confidence level of γ = .975 on each parameter estimate. Only ten

parameter estimates passed, listed in Table 4.2. In Table 4.2, the parameter estimates in bold deviate

more than ten percent of the original value. Notice from Table 4.2 that, of the three parameters, the

estimated Hill coefficient has the most relative variation from its actual value of 3. In fact, seven

of the ten Hill coefficients differ from the actual value by more than ten percent (Table 4.2). Our

example highlights the need for a better test to discriminate among possible Hill coefficients.

In Figure 4.5, the blue curve plots the model solution of system (4.9) for one of the ten passing

parameter estimates (namely, α = 4.6324, β = 2.9558, and n = 10.2211). The model solution

in blue is very close to the actual model solution in black. However, there are better parameter

estimates that did not pass the variance test. For example, each parameter estimate in Table 4.3 has

smaller ℓ1-norm difference between the actual parameter values and the parameter estimate than

any of the parameter estimates that passed the Variance Test.

In Section 4.5, we seek a new test that yields more accurate parameter estimates than

78

Figure 4.5: The red data points correspond to simulated data of system (4.9) with α0 = 0, α = 5,
β = 3, and n = 3. The data points were taken from the black curve at a spacing .5 time units, and
normal noise with mean zero and standard deviation .5 was added. The blue curve is the model
solution of system (4.9) with a parameter set that passed the Variance Test (parameters α0 = 0,
α = 4.6324, β = 2.9558, and n = 10.2211).

those given by the Variance Test. We consider several possible test statistics that reflect the oscil-

latory nature of the repressilator such as: period, amplitude, skewness, cost of protein production,

etc. In Section 4.5, we investigate how sensitive these quantities are to variations in the three pa-

rameters of system (4.9). Using our analysis from Section 4.5, in Section 4.6, we introduce two

new algorithms to estimate parameters of the repressilator.

4.4.2 Lack of Some Initial Data Affects Accuracy of Estimates Generated by GEARS

To illustrate the effect of not knowing the initial values on the results from GEARS, we rerun

GEARS twice to estimate parameters of system (4.9). To perform the parameter estimation, the

GEARS Toolbox requires as input the initial values for all species and time-course abundance

levels for at least one species. In the example below, we show that when assuming that not all

initial conditions are known, the parameter estimates recovered differ drastically from the true

parameter values.

In [6], using system (4.9) with α = 300, β = .3, n = 8.5, α0 = .05 and initial conditions

[r1, r2, r3, p1, p2, p3] = [1, .01, 10, 10, 0.01, 1], Pitt and Banga simulated data for r3 and p3 for

79

Transcription Rate
(true = 5)

Degradation Ratio
(true = 3)

Hill Coefficient
(true = 3)

4.6324 2.9558 10.2211
4.6067 3.0020 9.9508
4.6229 2.8655 9.8716
4.8377 3.2301 2.8272
4.5490 3.0235 7.1158
4.9885 2.5294 2.7291
4.4963 3.0080 8.2367
4.6844 3.1100 3.3781
4.6734 3.1141 3.4212
4.2573 2.9487 5.6124

Table 4.2: Parameter estimates from data simulated from system (4.9) that passed the Constrained
HEKF Algorithm Variance Test. The blue estimate is used to generate the model solution of system
(4.9) in Figure 4.5. The estimates in bold deviate more than ten percent of the true parameter value.

Transcription Rate
(true = 5)

Degradation Ratio
(true = 3)

Hill Coefficient
(true = 3)

4.8944 3.0297 3.0092
4.8794 3.0501 2.9482
4.9271 3.0487 2.8880
5.0299 2.9066 2.8527
4.7870 3.0705 3.0785
4.9136 2.9388 2.7427
4.6853 3.1272 2.9879
4.6712 3.0708 3.1262
4.8377 3.2301 2.8272
4.7518 3.0863 3.2388

Table 4.3: The top-ten parameter estimates among the 500 generated as described in Section 4.4.1
when ranked by the ℓ1-norm difference between the row and the true vector of parameters (5, 3,
3). None of the estimates listed passed the Variance Test.

80

twenty time points, each spaced ten time units apart. They then used the GEARS Toolbox to fit all

four parameters.

First, we input the correct initial conditions and the simulated data for r3 and p3 as done in [6].

For the second run, we input the correct initial conditions for r1, r2, r3, and p3 and the simulated

data sets for r3 and p3. However, for p1 and p2, we set the initial conditions as 300 ·rand where rand

is a uniformly distributed rational number between 0 and 1. We choose 300 because the amplitude

of the system when α = 300 is near 300 (see Section 3.4). Thus, assuming that the system is in the

limit cycle, the values p1 and p2 should be between 0 and 300 (see Theorem 3.4.1, Section 3.4).

Table 4.4 lists the parameter estimates from the two scenarios. With the correct initial values

as input, the parameter estimates of the transcription rate, degradation ratio, and Hill coefficient

(row “Original” in Table 4.4) are good approximations of the original parameters. However, after

perturbing the initial values for p1 and p2, the parameter estimates from GEARS (bottom row of

Table 4.4) are drastically different from the actual values. Figure 4.6(a) plots the fit (red curve) of

r3 under the first scenario. Figure 4.6(b) plots the fit of r3 when we perturb the initial conditions of

p1 and p2. From Figures 4.6(a) and 4.6(b), we see a drastic difference in the waveforms, periods,

and amplitudes between the two fits. Therefore, the GEARS Toolbox fails to produce accurate

parameter estimates when some of the initial conditions are unknown.

To address the effect of not knowing all initial values, in Section 4.6, we present a novel

procedure to extract model solution values at the same time points as the data time points

(Algorithm 4.6.3). To circumvent the problem highlighted above in the GEARS example, we

couple Algorithm 4.6.3 with an objective function in a global optimization procedure to estimate

parameters more accurately for models that exhibit oscillations. Moreover, although we do not do

so here, Algorithm 4.6.3 can be integrated into the GEARS Toolbox to improve upon the current

version by removing the requirement of knowing all initial values.

4.5 Analyzing Possible Test Statistics

Here, we investigate how certain quantities–e.g., period, amplitude, cost of protein production,

skewness, etc.–vary with respect to the parameters of the repressilator system. Ultimately, we seek

81

(a)

(b)

Figure 4.6: (a) The red curve is the regularized fit of r3 values of system (4.9) given the estimate
from GEARS with input as the correct initial values and r3 and p3 time-course data (r3 data points
in black). (b) The red curve is the regularized fit of r3 values of system (4.9) given the estimate
from GEARS with input as the perturbed initial values of p1 and p2 and all other inputs the same
as in the original example.

82

Run
Leakiness α0

(true = 0.05)
Transcription Rate

(true = 300)
Degradation Ratio

(true = .3)
Hill Coefficient

(true = 8.5)
Original .001 304.7459 .2969337 8.835106

Perturbed 0.001676976 500 2.933361 1.954551

Table 4.4: Parameter estimates generated by the GEARS Toolbox. The original row lists parameter
estimates that were found from GEARS with input as the r3 and p3 data sets and correct initial
values. The perturbed row lists the parameter estimates that were found from GEARS with input
as the perturbed initial values for p1 and p2 and all other input the same as in the original example.
See Section 4.4.2 for how the initial values were perturbed.

a test statistic that includes one or more such quantities as a means to accept or reject parameter

estimates generated by the Constrained HEKF Algorithm. Recall that, in Section 4.4.1, we saw

that the variance test rejected parameter estimates that were more accurate than those it passed,

when considering the ℓ1-norm between the parameter estimate and the vector of actual parameter

values.

4.5.1 Methods

To determine how sensitive the various quantities are to the parameters, using system (4.9)

with α0 = 0, we investigate three scenarios. For each test statistic, we examine how it varies with

respect to the Hill coefficient n when fixing α = 5 and β = 3. Similarly, we investigate how the

test quantity varies with respect to α when fixing n = 3 and β = 3. Finally, we consider how the

test statistic varies with respect to β when fixing α = 5 and n = 3.

4.5.2 Skewness

First, we investigate how the skewness of a data set varies with respect to the three parameters

in system (4.9). To compute the skewness, we simulate system (4.9) to the limit cycle. Once in the

limit cycle, we extract protein 1 abundance levels at a uniform spacing of .01 for one period. We

then use Eqn. (4.3) to estimate the skewness.

Figure 4.7(a) plots how the skewness varies with respect to the Hill coefficient. The skewness

stabilizes to a value near 0.3 near a Hill coefficient of 5 (Figure 4.7(a)). Figure 4.7(b) plots the

skewness with respect to the transcription rate. The skewness increases monotonically and appears

83

(a) (b) (c)

Figure 4.7: Plot of how the skewness varies with respect to (a) the Hill coefficient, (b) the tran-
scription rate, and (c) the degradation ratio. The parameters were fixed at α = 5, β = 3, and n = 3
when not considered as a variable. Code used to obtain plots is found in Appendix A, Section
A.2.2.

to approaches a skewness value of 1 (Figure 4.7(b)). Recall, from Section 4.2.2, that a skewness

value near 1 indicates a tail to the right (Figure 4.1(c)). This result corroborates our intuition from

numerical simulations that, with increasing transcription rate, the waveform skews with a longer

tail to the right.

Finally, Figure 4.7(c) plots the variation in skewness with respect to the degradation ratio, β.

Initially, the skewness oscillates around a value of 0.32. Then, after a degradation ratio of about 5,

the skewness decreases with increasing degradation ratio.

4.5.3 Period

Second, we consider how the period varies with respect to the three parameters (Figure 4.8).

Figure 4.8(a) plots how the period varies with respect to the Hill coefficient. When fixing α = 5

and β = 3, the Hopf bifurcation with respect to n occurs near n = 2.6, so we begin the plot in

Figure 4.8(a) at that Hill coefficient. From Figure 4.8(a), we see that the period does not vary more

than approximately 1.4% and stabilizes near a Hill coefficient of 10.

Figure 4.8(b) plots the variation in the period with respect to the transcription rate. When

fixing β = n = 3, the Hop bifurcation with respect to α happens near α = 1.9 (Figure 4.8(b)). The

period appears more sensitive to the transcription rate than to the Hill coefficient and continues to

increase with increasing transcription rate (Figure 4.8(b)). However, from Figure 4.8(c), we see

84

(a) (b) (c)

Figure 4.8: Plot of how the period varies with respect to (a) the Hill coefficient, (b) the transcription
rate, and (c) the degradation ratio. The parameters were fixed at α = 5, β = 3, and n = 3 when
not considered as a variable. Code used to obtain plots is found in Appendix A, Section A.2.3.

that, among the three parameters, the period is most sensitive to the degradation ratio. In fact, when

fixing α = 5 and n = 3, at the Hopf bifurcation near β = .1, the period is above 50 and decreases

to less than ten when β = 40.

4.5.4 Amplitude

Next, we investigate how the amplitude varies with respect to the three parameters. By ampli-

tude, we mean the maximum protein-1 abundance. We choose this characterization because it is

easy to calculate from a discrete data set with noise. Figure 4.9(a) plots the amplitude with respect

to the Hill coefficient when fixing α = 5 and β = 3. Similar to Figure 4.8(a), the amplitude

stabilizes near a Hill coefficient of 7 (Figure 4.9(a)).

From Figure 4.9(b), we see that the amplitude satisfies a near-linear relationship with respect to

the transcription rate. Recall, from Section 3.4, that we showed that the upper bound of the protein

abundance level of system (4.9) is linear with respect to α. Also, we showed that, for system (4.9),

the protein 1 abundance level closely follows the upper bound. Therefore, it is not surprising that

we see a near linear relationship between the amplitude and the transcription rate in Figure 4.9(b).

Lastly, in Figure 4.9(c), we plot the variation of the amplitude with respect to the degradation

ratio. From Figure 4.9(c), we see that, initially, the amplitude increases until approximately β =

1.9 and then decreases.

85

(a) (b) (c)

Figure 4.9: Plot of how the amplitude varies with respect to (a) the Hill coefficient, (b) the tran-
scription rate, and (c) the degradation ratio. The parameters were fixed at α = 5, β = 3, and n = 3
when not considered as a variable. Code used to obtain plots is found in Appendix A, Section
A.2.3.

4.5.5 Cost of Protein Production

In Section 4.2.3, we recall the definition of cost of protein production introduced by Jo et al.

in 2018 [59]. We consider the cost as a test quantity for the following reasons: the cost is easy to

estimate from discrete data, the cost is tied to the shape of the protein waveforms, and the cost has

implications in the evolution of biological clocks [59].

Here, we investigate how sensitive the cost quantity is to the three parameters. Figure 4.10(a)

plots the variation in cost with respect to the Hill coefficient. Again, as in Figures 4.8(a) and

4.9(a), the cost stabilizes near a Hill coefficient of 10 with a total variation of about 5%. The other

two plots, Figures 4.10(b) and 4.10(c), are nearly identical in shape to amplitude figures (Figures

4.9(b) and 4.9(c)). The cost increases nearly linearly with respect to the transcription rate (Figure

4.10(b)). In contrast, the cost initially increases with respect to the degradation ratio (from β ≈ .1

to β ≈ 2, Figure 4.10(c)) and then decreases.

4.5.6 Peak-to-Trough Time

The quantities considered, thus far, have shown variation with respect to the transcription rate

and degradation ratio. However, the quantities stabilized quickly with respect to the Hill coeffi-

cient. Consequently, for the remainder of the section, we investigate more quantities in an effort

86

(a) (b) (c)

Figure 4.10: Plot of how the cost varies with respect to (a) the Hill coefficient, (b) the transcription
rate, and (c) the degradation ratio. The parameters were fixed at α = 5, β = 3, and n = 3 when
not considered as a variable. Code used to obtain plots appears in Appendix A, Section A.2.4.

to identify one sensitive to the Hill coefficient. Recall, from our example in Section 4.4.1, that

the Hill coefficient, of the three parameters, expressed the highest relative variation from the true

values among the estimates accepted by the Variance Test.

First, we investigate how the time from the peak to the trough varies with respect to the three

parameters. We saw from numerical simulations of system (4.9) with varying Hill coefficients that,

as the Hill coefficient increases, the steepness of the degradation portion of the protein abundance

waveform increases. Therefore, we expect that the time from peak to trough will decrease with

respect to the Hill coefficient.

Figure 4.11(a) plots the variation in the time from peak to trough with respect to the Hill

coefficient. We normalize the time by the period of system (4.9). From Figure 4.11(a), we see that

the time increases with increasing Hill coefficient, which is the opposite of our original hypothesis

mentioned above. Apparently, even though the degradation portion of the protein waveform is

sharper with a larger Hill coefficient, the time that the protein abundance spends near the trough is

greater with respect to the period.

Figure 4.11(b) plots the variation in the time between the peak and trough with respect to the

transcription rate. Interestingly, the plot follows similarly to the plot in Figure 4.11(a). With respect

to the degradation rate, however, the peak to trough time initially decreases before increasing.

Perhaps, since we are normalizing by the period of the system, the initial decrease corresponds to

87

(a) (b) (c)

Figure 4.11: Plot of how the time between the peak and the trough varies with respect to (a) the
Hill coefficient, (b) the transcription rate, and (c) the degradation ratio. The parameters were fixed
at α = 5, β = 3, and n = 3 when not considered as a variable. Code used to obtain plots appears
in Appendix A, Section A.2.5.

the initial increase in the period seen in Figure 4.8(c).

4.5.7 Peak to 50%-Amplitude

In light of Figure 4.11(a), we consider a variant of the peak to trough time. Instead of the time

taken from the peak to trough, we now investigate how the time taken from the peak to 50% of the

amplitude varies with respect to the three parameters. Figure 4.12 plots an example of the quantity.

The red line corresponds to the time when the protein level is 50% of the amplitude. Then the test

quantity is the time at the red line. As in Section 4.5.6, we normalize the time by the period.

Since the increase in Figure 4.11(a) was due to the time that the protein abundance spends near

the trough, we expect that considering the reduced time from the peak to 50% of the amplitude

will reveal more variation with respect to the three parameters. In fact, Figure 4.13(a) plots the

variation in this time with respect to the Hill coefficient. As expected, the time decreases with

respect to increasing Hill coefficient. However, similar to the other quantities considered above,

the time stabilizes near a Hill coefficient value of 10.

Figures 4.13(b) and 4.13(c) plot the quantity with respect to the transcription rate and degra-

dation ratio, respectively. As in the analysis in Section 4.5.6, the variation with respect to the

transcription rate matches the plot with respect to the Hill coefficient. As in Section 4.5.6, the test

quantity is influenced heavily by the normalization by the period resulting in an initial decrease

88

Figure 4.12: Example of the test quantity considered in Section 4.5.7. One period of protein
abundance levels of system (4.9) with α = 5, β = 3, and n = 3. The red line corresponds to the
time when the protein abundance level is half of the amplitude.

and then an increase in the time.

4.5.8 Minimum Derivative

Finally, we consider one more test statistic: the magnitude of the minimum derivative of the

protein abundance level. Similar to the quantities in Sections 4.5.6 and 4.5.7, we consider this value

because of the increased sharpness in the degradation portion of the protein abundance waveform.

We expect that, with increasing Hill coefficient, the magnitude of the minimum derivative will

increase. In fact, Figure 4.14(a) shows that the minimum derivative in magnitude does increase

with respect to the Hill coefficient. However, as with all the other test quantities considered, it

stabilizes near a Hill coefficient of 10.

Figure 4.14(b) plots the magnitude of the minimum derivative with respect to the transcrip-

tion rate. The derivative appears to increase linearly with respect to the transcription rate (Figure

4.14(b)). Similarly, the derivative initially increases linearly with respect to the degradation ratio,

but it levels off instead of increasing linearly (Figure 4.14(c)).

89

(a) (b) (c)

Figure 4.13: Plot of how the time from the peak to 50% of the max protein 1 level varies with
respect to (a) the Hill coefficient, (b) the transcription rate, and (c) the degradation ratio. The
parameters were fixed at α = 5, β = 3, and n = 3 when not considered as a variable. Code used
to obtain plots is found in Appendix A, Section A.2.6.

(a) (b) (c)

Figure 4.14: Plot of how the minimum derivative (in magnitude) varies with respect to (a) the Hill
coefficient, (b) the transcription rate, and (c) the degradation ratio. The parameters were fixed at
α = 5, β = 3, and n = 3 when not considered as a variable. Code used to obtain plots appears
in Appendix A, Section A.2.7.

90

4.5.9 Biological Significance

In this section, we investigate how sensitive various quantities of systems with oscillating com-

ponents are to the Hill coefficient, transcription rate, and degradation ratio. We predominantly saw

that these values were only sensitive to smaller Hill coefficients (n ≈ 3-5) and stabilized soon

after (n ≈ 5-10). In light of Remark 3.1.1, there is a significant biological interpretation of this

discovery: For biological clocks generated by transcriptional regulation, increasing the number

of transcription factors has a negligible impact on the shape and period of the oscillations. This

phenomenon may help to explain why, in general, many transcription factors function with at most

two or three others on a specific promoter. Thus, it is not surprising that, in biology, it is rare to see

more than three proteins bind to a gene promoter.

4.6 New Algorithms

In Section 4.5, we worked towards a quantity, or quantities, that we can incorporate into an

analogue of the Variance Test that will yield more accurate parameter estimates. We found that,

after analyzing the variation in the quantities with respect to each parameter, most quantities were

sensitive to the transcription rate and the degradation ratio, but not the Hill coefficient, so we

choose as test statistics the quantities that are most easily estimated from a discrete data set: period,

amplitude, and cost of protein production. Recall that, in Section 4.2.4, we review how to estimate

the period given a discrete data set of protein values.

Here, we incorporate the test statistics period, amplitude, and cost of protein production into

an identifiability test coupled with the Constrained HEKF Algorithm. In particular, we introduce

a new algorithm to estimate parameters of the repressilator (system (4.9)). The algorithm initially

generates many possible parameter estimates using the Constrained HEKF Algorithm (Algorithm

4.2.1) initialized in a certain way. Then, the algorithm, outlined below, ranks the parameter esti-

mates by the absolute errors between amplitude, cost, and period in the model solution with the

estimated parameters and those from the data set.

91

Algorithm 4.6.1. Enhanced Constrained HEKF Algorithm #1:

INPUT:

Time points: t1, . . . , tk.

Protein data points: p(i)1 , . . . , p
(i)
k for i = 1, 2, and 3.

Model (4.9).

Weights: λC , λT , and λA.

OUTPUT: Parameter estimate θ̂.

1. Estimate the period (T̃), cost (C̃), and amplitude (Ã) of the data set.

(a) In Appendix A, Section A.2.10, we give the code used to estimate the cost.

2. Initialize Algorithm 4.2.1.

(a) For system (4.9), in particular, initialize the transcription rate α as the maximum protein

abundance.

(b) We initialize the matrix Q from Algorithm 4.2.1 as 5 · rand · I2m where m is the num-

ber of genes in system (4.9), rand is a uniformly distributed random rational number

between 0 and 1, and I2m is the 2m× 2m identity matrix.

(c) We initialize the state ri(0) as a uniformly distributed random rational number from 0

to max{p(i)1 , . . . , p
(i)
k }.

3. Run Algorithm 4.2.1 and save the parameter estimates.

4. Repeat steps 2 and 3 for as many times as desired. For our runs of this algorithm, we

generate 600 parameter estimates.

5. For each parameter estimate generated, estimate the cost (C∗), period (T ∗), and amplitude

(A∗) of the system in the limit cycle.

(a) Compute the cost at the model values found using the Event Location procedure out-

lined in Algorithm 4.6.3.

92

(b) Use the Event Location procedure outlined in Algorithm 4.6.3 to compute an estimate

of the period.

6. Compute the absolute error:

ϵ = λC|C∗ − C̃|+ λT |T ∗ − T̃ |+ λA|A∗ − Ã|, (4.11)

for weights 0 < λC, λT , λA. For our run of the algorithm in Section 4.7.1, we use equal

weights.

7. Rank the parameter estimates from smallest to largest with respect to ϵ.

8. Output θ̂ with the smallest ϵ.

Next, while Algorithm 4.6.1 above considers amplitude, cost, and period as test statistics, we

introduce a second algorithm that ranks the parameter estimates by the ℓ2-norm error between the

protein values of the data set versus those of the model solution with the parameter estimate. The

second algorithm is outlined below.

Algorithm 4.6.2. Enhanced Constrained HEKF Algorithm #2:

INPUT:

Time points: t1, . . . , tk.

Protein data points: p(i)1 , . . . , p
(i)
k for i = 1, 2, and 3.

Model (4.9).

OUTPUT: Parameter estimate θ̂.

1. Initialize Algorithm 4.2.1.

(a) For system (4.9), in particular, initialize the transcription rate α as the maximum protein

abundance.

(b) Initialize the matrix Q from Algorithm 4.2.1 as 5 · rand · I2m where m is the number of

genes in system (4.9), rand is a uniformly distributed random number between 0 and 1,

93

and I2m is the 2m× 2m identity matrix.

(c) Initialize the state ri(0) as a uniformly random number from 0 to max{p(i)1 , . . . , p
(i)
k }.

2. Run Algorithm 4.2.1 (Section 4.2.1.1) and save the parameter estimates.

3. Repeat Steps 2 and 3 for as many times as desired. We suggest at least 100 repetitions.

4. For each parameter estimate generated, θ̂, run Algorithm 4.6.3 to estimate model values

p̂
(i)
1 , . . . , p̂

(i)
k at the data time points t1, . . . , tk for i = 1, 2, and 3.

5. For all three proteins, i = 1, 2, 3, compute the relative error, ϵi, between the model solution

values found in Step 4 and the data values:

ϵi =
||p̂(i) − p(i)||

||p(i)||
.

6. Output θ̂ with the smallest
∑m

i=1 ϵi where m is the number of genes in system (4.9).

The event location procedure used in the Algorithms 4.6.1 and 4.6.2 is given below.

Algorithm 4.6.3. The Event Location Procedure to compute model estimates at the same time

points as the data:

INPUT:

Parameter estimate θ̂ for system (4.9).

Time points t1, . . . , tk.

Protein data points: p(1)1 and p
(1)
2 .

OUTPUT:

REJECT or:

1. Period of system (4.9) with parameter estimate θ̂ .

2. The model solution values p̄(i)1 , . . . , p̄
(i)
k for i = 1, 2, and 3.

1. Run system (4.9) with the parameter estimate θ̂ to a limit cycle or to a steady state (Re-

call, from Section 2.3.4, that these dynamics are the only two possibilities for the 3-gene

repressilator).

94

(a) If the model converges to a steady state, REJECT the parameter estimate and END.

2. With the model solution in the limit cycle, save two consecutive time points, denoted t̂1 and

t̂2, when the model satisfies the two conditions: (1) the protein-1 value of the model with θ̂

matches p(1)1 and (2) the direction of protein-1–a value of 1 if protein-1 is increasing and a

value of −1 if protein-1 is decreasing–matches sign(p∗2 − p∗1).

(a) If the model never satisfies both conditions while in the limit cycle, REJECT the

parameter estimate and END.

(b) Let (r̂1, . . . , r̂n, p̂1, . . . , p̂n) and t̂ denote the abundance values and time, respectively,

when the model with θ̂ satisfies the two conditions.

(c) Output the period estimated by the time t̂2 − t̂1.

3. Run system (4.9) with parameter estimate θ̂ using as initial conditions (r̂1, . . . , r̂n, p̂1, . . . , p̂n)

and a time span given by the time points of the data, t1, . . . , tk.

(a) When using an ODE solver such as ode23tb in MATLAB, if one specifies a time span

of discrete points, then the output is model solutions at those time points specifically.

(b) Output the protein-i values p̄(i)1 , . . . , p̄
(i)
k for i = 1, 2, and 3.

Remark 4.6.4. For the above Algorithm 4.6.3, we implement Step 2 in MATLAB using the

“Events” options in the odeset function. The “Events” option takes an events function that out-

puts three values: (1) a value, (2) whether finding the event stops the ode solver (isTerminal: 0 if

no, 1 if yes), and (3) the direction of the value.

(i) Set the value as p1(t)− p∗1.

(ii) Set isTerminal = 0.

(iii) Set the direction as 1 if the initial direction of p∗1 is increasing and −1 if the initial direction

of p∗1 is decreasing.

95

Remark 4.6.5. The Event Location Procedure outlined above in Algorithm 4.6.3 addresses the

challenge discussed in Section 4.3.3, the lack of initial mRNA values. By matching the protein-1

level of the model solution with the parameter estimate, the protein-1 values are initialized in the

same phase as the protein-1 values in the data set. Thus, the relative error computed in Step 5 in

Algorithm 4.6.2 is due to differences in the waveform of the model solution with the parameter

estimate versus the data, not due to the model solution values being in a different phase from the

data points.

Remark 4.6.6. We recommend combining Algorithm 4.6.3 with a traditional objective function

to circumvent the challenge of the lack of initial mRNA values. To illustrate this, in Section 4.8.1,

we employ Algorithm 4.6.3 with a particle swarm optimization procedure, and then compare the

results to our final algorithm outlined in Section 4.8.

4.7 Algorithm Results

First, we run Algorithms 4.6.1 and 4.6.2 on simulated data sets generated from system (4.9)

with α = 5, β = 3, n = 3, and α0 = 0. The black curve in Figure 4.15(a) plots the model solution

of system (4.9) for a total time of 50 (a.u.). We use both algorithms to estimate the parameters α,

β, and n.

Remark 4.7.1. Ordinarily, circadian rhythm experiments generate data every two to four hours

resulting in about six to twelve time points per period. The period of protein abundances in system

(4.9) is around 7.2. Thus, if we simulate data with a spacing of .5 or 1, we generate data sets that

have around seven to fourteen data points per period, reflecting the nature of experimental data.

In all, we generate eight data sets by simulating data sets with a uniform spacing of .5 or 1

time unit (a.u.) and with Gaussian random noise added at each time point with standard deviations

0, .1, .25, and .5. Henceforth, we label a data set (s, σ) where s = 0.5 or 1 is the spacing and

σ = 0, .1, .25, or .5 is the standard deviation of the added noise. We give the code used to

generate the data sets in Appendix A, Section A.2.9.

96

In Appendix B, Section B.2.1, we plot all the data sets that we generated. In Figure 4.15, we

plot the data sets (0.5, 0) and (1, 0.5).

4.7.1 Algorithm 4.6.1 Results

We ran Algorithm 4.6.1 on all eight data sets. We chose equal weights for Step 6 in Algorithm

4.6.1. Table 4.5 lists the parameter estimates generated by Algorithm 4.6.1 for the eight simulated

data sets. In general, the recovered parameter estimates are exceptionally accurate. With the

exception of one Hill coefficient (3.488) estimated using the data set (0.5, 0.5) (Table 4.5), no

parameter estimate deviated by more than ten percent of the original value. In Appendix B, Section

B.1.1, we include tables that list the top-ten estimates from Algorithm 4.6.1 for each of the data

sets and each of the test statistics.

In addition to ranking with respect to the absolute error in Step 6 in Algorithm 4.6.1, we also

rank the parameter estimates based on individual test statistics: amplitude, cost, and period. Table

4.6 lists the parameter estimates generated by Algorithm 4.6.1 when ranking with amplitude only

(Column 3), cost only (Column 4), and period only (Column 5). In general, the parameter estimate

given by the cost test statistic is the most accurate among the three test statistics. In Table 4.6,

we color the cost parameter estimate blue if it is more accurate than both of the corresponding

estimates in Tables 4.5 and 4.7.

Next, we plot the model solutions given the top parameter estimate for each test statistic (Figure

4.17) and the final parameter estimate generated by Algorithm 4.6.1 (Figure 4.16). The data set in

Figures 4.16 and 4.17 is the data set (1, 0.5). The black curve in both figures is the model solution

of system (4.9) with the true parameters. Figure 4.16 plots the model solution of system (4.9) with

parameters given by the top ranked estimate in the last row in Table 4.5. Similarly, Figure 4.17

plots the model solutions of system (4.9) with parameters given by the estimates in the last row of

Table 4.6 (the top ranked estimates for amplitude, cost, and period, respectively).

From Figure 4.16, we see that the model solution with parameter estimate output from Algo-

rithm 4.6.1 is nearly identical to the model solution with the true parameter values. Likewise, from

Figure 4.17(b), we see that the model solution of system (4.9) with the parameter estimate given

97

(a)

(b)

Figure 4.15: (a) Simulated data set (0.5, 0) from system (4.9). (b) Simulated data set (1, 0.5) from
system (4.9). After adding noise, if any data point is negative, we set that data point to 0. System
(4.9) was simulated to the limit cycle using initial conditions. Code used to generate these two
data sets and all the others appears in Appendix A, Section A.2.9.

98

by the cost test statistic also aligns well with the actual model solution.

Finally, we investigate the variation of parameters ranked in the top 25 estimates given by

each test statistic and the absolute error in Step 6 in Algorithm 4.6.1. In Figure 4.18, we plot

the frequency of estimated transcription rates that were generated by the 600 runs of Step 4 in

Algorithm 4.6.1 (white histograms). For each test statistic, we then plot the frequency of the top

25 transcription rates (red histogram). The first row of Figure 4.18 corresponds to the weighted

sum, the second row the amplitude statistic, the third row the cost statistic, and the last row the

period statistic. Notice from Figure 4.18 that the amplitude gives the smallest variation in the top

25 transcription rates. This is not surprising, as the amplitude is closely related to the transcription

rate (recall discussion in Section 3.4).

Along with the transcription rate, in Figures 4.19 and 4.20, we plot analogous histograms for

the degradation ratio and Hill coefficient, respectively. From Figure 4.19, we see that the top

degradation ratio estimates are situated near the actual value of 3 (with the exception of the cost

statistic which gives a top 25 estimate near 3.8). In contrast, the estimates of the Hill coefficient

vary significantly from the actual value of 3 (Figure 4.20). With the exception of the cost test

statistic, top 25 estimates of the Hill coefficient are seen near 10 (Figure 4.20). This follows from

our analysis in Section 4.5 in which we saw a lack of sensitivity of variation in the Hill coefficient

to the various test statistics considered.

4.7.2 Algorithm 4.6.2 Results

We ran Algorithm 4.6.2 on the same eight data sets, two of which are given in Figure 4.15.

Table 4.7 lists the top parameter estimate for each data set. In Table 4.7, the estimates colored

red correspond to estimates that are less accurate than the corresponding estimate generated by

Algorithm 4.6.1 listed in Table 4.5. In general, the parameter estimates generated by Algorithm

4.6.2 are more accurate than those generated by Algorithm 4.6.1, which, from Section 4.7.1, are

already very accurate. From the last column in Tables 4.5 and 4.7, we see that, because a majority

of the time for both algorithms is in generating all the parameter estimates, the elapsed time is

nearly identical.

99

Data Set
(s, σ)

TR
(true = 5)

DR
(true = 3)

Hill
(true = 3)

Elapsed Time
(minutes)

(0.5, 0) 5.01025578 2.99585437 2.97951441 22.65
(1, 0) 5.00321990 2.99992929 2.99337307 20.31

(0.5, 0.1) 4.98654296 2.98740773 2.98848187 19.83
(1, 0.1) 5.15732470 2.99143751 2.81515213 20.86

(.5, 0.25) 5.18151647 3.00361258 2.80073595 18.79
(1, .0.25) 4.90739488 2.88710651 3.19750507 23.96
(0.5, 0.5) 4.76019839 2.96649153 3.48843037 24.85
(1, 0.5) 4.89380202 2.94513595 3.09510014 19.50

Table 4.5: Parameter estimates generated by Algorithm 4.6.1 for the respective time spacing and
noise added for the data in Appendix B. We repeat Step 4 600 times. Actual parameter values
given in system (4.9) are 5, 3, and 3 for the transcription rate (TR), degradation ratio (DR), and
Hill coefficient (Hill), respectively.

Data Set Amplitude-Ranking Estimate Cost-Ranking Estimate Period-Ranking Estimate
(0.5, 0) 5.0366 2.9987 2.9467 4.9990 2.9926 3.0000 5.0102 2.9958 2.9795
(1, 0) 5.0023 2.9614 2.9797 5.0009 2.9980 2.9993 5.0029 3.0009 2.9956
(0.5, 0.1) 4.6523 2.6873 3.7524 4.9865 2.9874 2.9884 5.0373 2.9955 2.9121
(1, 0.1) 4.5140 2.8629 5.7750 5.0329 3.0129 2.9935 4.5140 2.8629 5.7750
(0.5, 0.25) 5.0907 2.9678 2.8777 5.2399 3.0299 2.7850 5.1831 3.0131 2.8160
(1, 0.25) 4.4685 2.9544 9.8917 4.9481 2.8524 3.2983 4.5969 2.8940 6.3650
(0.5, 0.5) 4.7601 2.966 3.4884 4.8924 3.0331 3.0342 4.7601 2.966 3.4884
(1, 0.5) 4.5994 2.8729 4.0605 4.9227 2.9741 2.9775 3.9820 2.7443 3.7897

Table 4.6: Parameter estimates generated by Algorithm 4.6.1 when ranked by the amplitude, cost,
and period. We repeat Step 4 600 times. Within the columns for the specific test statistic, the
parameters are ordered: transcription rate (TR), degradation ratio (DR), and Hill coefficient (Hill).
Actual parameter values given in system (4.9) are 5, 3, and 3 for the TR, DR, and Hill, respectively.
In the Cost Estimate column, the values that are blue/bold are parameter estimates that are better
than the corresponding estimates in Tables 4.5 and 4.7.

100

Figure 4.16: The red points plot the data set (1, 0.5). The black curve is the model solution of
system (4.9). The dotted blue curve is the model solution of system (4.9) with the parameters
given in Table 4.5.

Figure 4.21 plots the top parameter estimate when fitting the data set (1, 0.5). The black curve

in Figure 4.21 is the model solution of system (4.9). From Figure 4.21, we see that the model

solution given the parameter estimate found using Algorithm 4.6.2 varies little from the model

solution of system (4.9).

Finally, as in Section 4.7.1, we examine the variation in each parameter among the top 25

estimates of Algorithm 4.6.2. Figure 4.22 plots the frequency of the parameter estimates generated

in Step 3 of Algorithm 4.6.2 (white histograms). The red histograms correspond to the top 25

parameter estimates using Algorithm 4.6.2. Similar to our findings in Section 4.7.1, we see from

Figure 4.22 that there is relatively little variation in the top 25 estimates of the transcription rate

and degradation ratio, which indicates that Algorithm 4.6.2 identifies these two parameters well.

However, the top 25 estimates for the Hill coefficient vary from around 2.6 to as much as 7,

indicating that the Hill coefficient is less identifiable than the other two parameters. Thus, we

conclude that, from our possible test statistics considered in Algorithms 4.6.1 and 4.6.2, the cost

of protein production is the best at discriminating among possible Hill coefficients.

101

(a)

(b)

(c)

Figure 4.17: The red points in all three plot the data set (1, 0.5). The black curve in all three is
the model solution of system (4.9). The dotted line is the model solution of system (4.9) with
the parameters given by the estimates generated using Algorithm 4.6.1 when ranked by the (a)
amplitude, (b) cost, and (c) period.

102

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.18: The white histogram for each of the above figures is the frequency of transcription
rates generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red histograms are the top
25 transcription rates from Algorithm 4.6.1 when ranking by (a) sum of the three statistics, (b) the
amplitude, (c) the cost, and (d) the period. Plots (e), (f), (g), and (h) are zoomed-in views of (a),
(b), (c), and (d), respectively. The black histogram in (g) represents the top 10 transcription rates
from Algorithm 4.6.1 when ranked by the cost.

103

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.19: The white histogram for each of the above figures is the frequency of degradation
ratios generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red histograms are the top
25 degradation ratios from Algorithm 4.6.1 when ranking by (a) sum of the three statistics, (b) the
amplitude, (c) the cost, and (d) the period. Plots (e), (f), (g), and (h) are zoomed-in views of (a),
(b), (c), and (d), respectively. The black histogram in (g) represents the top 10 degradation ratios
from Algorithm 4.6.1 when ranked by the cost.

104

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.20: The white histogram for each of the above figures is the frequency of Hill coefficients
generated from 600 repetitions of Step 4 in Algorithm 4.6.1. The red histograms are the top 25 Hill
coefficients from Algorithm 4.6.1 when ranking by (a) sum of the three statistics, (b) the amplitude,
(c) the cost, and (d) the period. Plots (e), (f), (g), and (h) are zoomed-in views of (a), (b), (c), and
(d), respectively. The black histogram in (e) represents the top 10 Hill coefficients from Algorithm
4.6.1 when ranked by all three test statistics.

105

Data Set
(s, σ)

TR
(true = 5)

DR
(true = 3)

Hill
(true = 3)

Elapsed Time
(minutes)

(0.5, 0) 5.02910172 2.99851551 2.95718491 18.25
(1, 0) 5.00142005 3.00017108 2.99859154 16.85

(0.5, 0.1) 5.02833460 2.99419699 2.91920914 18.39
(1, 0.1) 4.93001543 3.00347825 3.15639849 17.07

(0.5, 0.25) 5.14185394 3.00635434 2.85666843 18.78
(1, 0.25) 5.59612661 2.97756431 2.58264460 16.06
(0.5, 0.5) 4.76019839 2.96649153 3.48843037 18.49
(1, 0.5) 5.05740650 3.03809159 3.08531641 17.20

Table 4.7: Parameter Estimates generated by Algorithm 4.6.2 for the respective time spacing and
noise added. Actual parameter values given in system (4.9) are 5, 3, and 3 for the transcription rate
(TR), degradation ratio (DR), and Hill coefficient (Hill), respectively. The estimates colored red
refer to parameter estimates that are worse than the corresponding estimate in Table 4.5.

Figure 4.21: The red points are the data points from data set (1, 0.5). The black curve is the original
model solution to system (4.9). The dotted curve is the model solution of system (4.9) with the
parameters α = 5.0574, β = 3.0381, and n = 3.0853 (Table 4.7, Row (1, 0.5)).

106

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.22: Results of Algorithm 4.6.2 on the data set (1, 0.5) (plotted in Figure 4.15(b)). The
white histograms plot the frequency of the (a) transcription rates, (b) degradation ratios, and (c)
Hill coefficients generated from 600 repetitions of Step 3 in Algorithm 4.6.2. The red histograms
plot the frequency of the top 25 (a) transcription rates, (b) degradation ratios, and (c) Hill coeffi-
cients selected by Algorithm 4.6.2. Plots (d), (e), and (f) are zoomed-in plots of (a), (b), and (c),
respectively. Recall that the true values are 5, 3, and 3 for the transcription rate, degradation ratio,
and Hill coefficient, respectively.

107

Data Set Parameter Estimate Means, Alg. 4.6.1 Parameter Estimate Means, Alg. 4.6.2
(0.5, 0.5) 5.2426 2.9103 3.6912 4.9910 2.9655 3.4620
(1, 0.25) 5.0471 2.7693 4.3710 4.9770 2.9860 3.3266

Table 4.8: Mean transcription rate, degradation ratio, and Hill coefficient of the 100 runs of Algo-
rithm 4.6.1 (Column 2) and Algorithm 4.6.2 (Column2) for the two data sets (Column 1).

4.7.3 Repeated Runs of Algorithms 4.6.1 and 4.6.2

To investigate the robustness of Algorithms 4.6.1 and 4.6.2, we run both algorithms on 100 of

the (0.5, 0.5) and (1, 0.25) data sets simulated from system (4.9). In Figure 4.23, for each param-

eter, we plot the frequency of the Algorithm 4.6.1 and Algorithm 4.6.2 output. Figures 4.23(a)

and 4.23(b) plot the frequency of the transcription rate output by Algorithms 4.6.1 and 4.6.2, re-

spectively. Similarly, Figures 4.23(c) and 4.23(d) (Figures 4.23(e) and 4.23(f)) plot the frequency

of the degradation ratios (Hill coefficients) selected by Algorithms 4.6.1 and 4.6.2, respectively.

From Figure 4.23, we see that, for each parameter, the results of Algorithm 4.6.2 are significantly

sharper about the actual parameter value.

In Table 4.8, we list the mean parameter estimates generated by Algorithm 4.6.1 (Column 2)

and Algorithm 4.6.2 (Column 3) with respect to the data set (Column 1). Again, we see that the

mean parameter estimates from Algorithm 4.6.2 are consistently closer to the actual parameter

value (Table 4.8).

Furthermore, in Table 4.9, we list the number of times, for each algorithm, that each estimate

deviated by more than ten percent of the actual value (for dataset (1, 0.25)). From Table 4.9, we

see that, for all three parameters, Algorithm 4.6.2 yielded fewer estimates that deviated by more

than ten percent of the actual value. Moreover, of the 45 times that Algorithm 4.6.2 generated an

estimate outside of ten percent of the actual value, Algorithm 4.6.1 also yielded an estimate outside

of ten percent of the actual value a total of 27 times (Table 4.9). In comparison, of the 127 times

that Algorithm 4.6.1 output an estimate outside of ten percent of the actual value, Algorithm 4.6.2

only output an estimate outside of ten percent of the actual value a total of 27 times (Table 4.9).

108

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.23: Algorithms 4.6.1 and 4.6.2 were run on 100 (0.5, 0.5) data sets. Plots (a) and (d) are
the frequencies of transcription rates from Algorithms 4.6.1 and 4.6.2, respectively. Plots (b) and
(e) are the frequencies of degradation ratios from Algorithms 4.6.1 and 4.6.2, respectively. Plots
(c) and (g) are the frequencies of Hill coefficients from Algorithms 4.6.1 and 4.6.2, respectively.
The red and blue lines in each plot are the mean and median values, respectively. Recall the actual
parameter values of the transcription rate, degradation ratio, and Hill coefficient are 5, 3, and 3,
respectively.

Algorithm > 10% TR > 10% DR > 10% Hill
Algorithm 4.6.1 16 (3) 39 (0) 72 (24)
Algorithm 4.6.2 8 (3) 0 37 (24)

Table 4.9: Number of times the estimate from corresponding algorithm (Column 1) of the tran-
scription rate (Column 2), degradation ratio (Column 3), and Hill coefficient (Column 4) deviated
by more than ten percent of the actual value (5, 3, and 3, respectively). The numbers in parentheses
count the number of times that the opposite algorithm’s estimate also deviated by more than ten
percent.

109

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.24: Algorithms 4.6.1 and 4.6.2 were run on 100 (1, 0.25) data sets. Plots (a) and (d) are
the frequencies of transcription rates from Algorithms 4.6.1 and 4.6.2, respectively. Plots (b) and
(e) are the frequencies of degradation ratios from Algorithms 4.6.1 and 4.6.2, respectively. Plots
(c) and (g) are the frequencies of Hill coefficients from Algorithms 4.6.1 and 4.6.2, respectively.
The red and blue lines in each plot are the mean and median values, respectively. Recall the actual
parameter values of the transcription rate, degradation ratio, and Hill coefficient are 5, 3, and 3,
respectively.

110

In summary, both algorithms, when given simulated data with various levels of noise as input,

produce particularly accurate parameter estimates. In general, however, the second algorithm,

Algorithm 4.6.2 generates more accurate parameter estimates than the first algorithm, Algorithm

4.6.1, and the second algorithm is more robust to noise in the data set. In the next section, we

compare Algorithm 4.6.2 to three other algorithms in the field of computational biology and show

that it is as accurate and faster.

4.8 Final Algorithm and Algorithm Comparison

In light of our empirical results in Section 4.7, we conclude that Algorithm 4.6.2 is better

at estimating parameters of system (4.9) than Algorithm 4.6.1. In Section 4.8.1, we compare our

Algorithm 4.6.2 to standards in the field including the previous Constrained HEKF Algorithm with

the Variance Test (Section 4.2.1.2), the particle swarm algorithm (a global optimization procedure),

and GEARs [6]. We show that our parameter estimates are comparable to, if not better than,

estimates generated using these other algorithms, and our algorithm saves significant time.

4.8.1 Algorithm Comparison

Below, we compare Algorithm 4.6.2 against three leading algorithms: the particle swarm op-

timization procedure (Section 4.8.1.1), the GEARS Toolbox [6] (Section 4.8.1.2), and the Con-

strained HEKF Algorithm with Variance Test (Section 4.8.1.3). We show that the parameter esti-

mates generated by Algorithm 4.6.2 are comparable to the estimates generated using the particle

swarm algorithm, and Algorithm 4.6.2 saves significant time (Table 4.10).

4.8.1.1 Comparison with the Particle Swarm Algorithm

First, we compare Algorithm 4.6.2 with the particle swarm algorithm on eight data sets gen-

erated in the same way as described in Section 4.7. We find that Algorithm 4.6.2 is significantly

faster than the global optimization procedure without sacrificing accuracy in any of the parameters.

To compare, we implement Algorithm 4.6.2 with a repetition number of 500 (Step 3 in Algo-

rithm 4.6.2). To implement the particle swarm optimization procedure in MATLAB, we use the

particleswarm function. We build an initial population matrix by first creating a 30 × 3 matrix

111

Data Set Algorithm 4.6.2 Time (min) Particle Swarm Time (min)
(0.5, 0) 5.0291 2.9985 2.9571 11.68 4.9994 3.0001 3.0005 26.62
(1,0) 5.0015 3.0001 2.9983 14.53 5.0001 3.0000 2.9999 23.13

(0.5, 0.1) 5.0129 2.9917 2.939 12.16 5.0148 2.998 2.9760 17.48
(1, 0.1) 4.9497 2.9830 2.9705 12.27 5.0180 3.0012 2.9832 21.88

(0.5, 0.25) 5.0846 2.9668 2.7541 10.89 5.0484 2.9988 2.9130 25.59
(1, 0.25) 4.9370 3.0303 3.0200 11.69 4.9934 2.9938 2.9325 33.13
(0.5, 0.5) 5.4596 2.9732 2.5935 11.80 5.3433 2.9859 2.6690 31.54
(1, 0.5) 5.0338 3.0467 2.9892 11.78 5.2651 3.0006 2.7420 34.15

Table 4.10: Comparison of Algorithm 4.6.2 with the Particle Swarm Algorithm in MATLAB. See
Section 4.8.1.1 for a description of how the particleswarm function was initialized and how the
objective function was defined. The estimates in red deviate by more than ten percent of the true
parameter value.

where each row is

[max(pi) 10 · rand 10 · rand].

Here, pi represents the protein data, and rand is a uniformly distributed random number between

0 and 1. Then, we add normal noise with mean zero and standard deviation .25 to each entry in

the initialized matrix. We constrain the particleswarm function with lower bounds of 0 for the

transcription rate and degradation ratio and 2 for the Hill coefficient. We use upper bounds of 10

for each of the three parameters. Finally, we use Algorithm 4.6.3 to define an objective function

based on the relative ℓ2-norm error between the model solution values and the data values. Code

used for this comparison appears in Appendix A, Section A.2.11.

Table 4.10 lists the results of the two algorithms and the time taken for each to finish. Overall,

the parameter estimates given by Algorithm 4.6.2 are comparable to the estimates generated using

the Particle Swarm Algorithm. The most inaccurate parameter estimate is the Hill coefficient–a

fit of 2.5986 with an original value of 3–when fitting to data set (0.5, 0.5). However, the particle

swarm estimate of 2.669 given the same data set is not significantly better. Moreover, the run time

for Algorithm 4.6.2 is consistently less than half the run time for the Particle Swarm Algorithm.

112

Data Set Algorithm 4.6.2 GEARS
(0.5, 0) 4.9923 2.9985 3.0149 5.8894 2.5556 2.0423

(1,0) 5.0015 3.0001 2.9983 4.4322 3.5088 2.7834
(0.5, 0.1) 5.1077 2.9742 2.7770 5.1412 2.7624 2.3926
(1, 0.1) 4.8980 2.8735 3.2434 4.6304 2.7864 2.7787

(0.5, 0.25) 5.0890 2.9579 2.7172 4.9444 2.8049 2.4970
(1, 0.25) 4.9370 3.0303 3.0208 6.5915 3.3713 2.0750
(0.5, 0.5) 5.3476 2.9952 2.5986 4.8056 2.4742 2.1976
(1, 0.5) 5.0338 3.0467 2.9892 6.0895 2.0963 2.0000

Table 4.11: Comparison of Algorithm 4.6.2 and the GEARS Toolbox [6] given equivalent data
sets. See Section 4.8.1.2 for a description of how we initialized and ran the GEARS Algorithm.

4.8.1.2 Comparison with the GEARS Toolbox

Next, we compare our algorithm with the optimization procedure in the GEARS Toolbox [6].

As in Section 4.8.1.1, we provide both algorithms with the same data sets. The GEARS algorithm

requires an initialization of all mRNA and protein values. We initialize the protein values as the

initial value in the data set. We initialize the mRNA values as 5 · rand where rand is a uniformly

distributed random number between 0 and 1. The GEARS Algorithm also requires a standard

deviation value for each data point. For the data sets with zero noise, we set the standard deviation

values as .1. For all other data sets, we set the standard deviation values as the standard deviation

of the added noise. Finally, for the GEARS Algorithm, we set the lower bounds of the parameters

at 10−3, 10−3, and 2 for the transcription rate, degradation ratio, and Hill coefficient, respectively.

We set the upper bounds for the parameters as 10 for each.

Table 4.11 lists the parameter estimates generated from Algorithm 4.6.2 and the GEARS Al-

gorithm. From Table 4.11, we see that all parameter estimates, with the exception of one, from

Algorithm 4.6.2 are more accurate than the parameter estimate from the GEARS Algorithm. Also,

although we do not report the times, the algorithms run in roughly the same amount of time.

Figure 4.25 plots one of the output plots from the GEARS Toolbox. The data set in Figure 4.25

is (0.5, 0.25). We choose this plot to report because the parameter estimate generated with this

specific data set is the most accurate parameter estimate generated by GEARS.

113

Figure 4.25: The Regularized Solution with Uncertainty plot generated by the GEARS Toolbox.
The black data points are the data points from the data set (0.5, 0.25). We initialized the standard
deviation of the data set in the GEARS Algorithm as .25 for each data point. The parameter
estimate that GEARS generated was 4.9444, 2.8049, and 2.4970 with actual values of 5, 3, and 3,
respectively.

114

4.8.1.3 Revisiting the Example in Section 4.4.1

Recall from Section 4.4.1 that we ran–for a total of 500 times–the Constrained HEKF Algo-

rithm with the Variance Test on data set (1, 0.5) (Figure 4.5). The Variance Test passed ten param-

eter estimates (Table 4.2). However, the top ten most accurate parameter estimates–when ranked

by the ℓ1-norm difference between the actual parameter set and the parameter estimate–generated

in the 500 iterations of the algorithm did not pass the Variance Test (Table 4.3). Here, we revisit

this example and show that Algorithm 4.6.2 results in a more accurate parameter estimate than any

of the estimates that passed the Variance Test.

To begin, we start at Step 4 of Algorithm 4.6.2 with the 500 parameter estimates that we

generated in Section 4.4.1. The output of Algorithm 4.6.2 in this case was α = 4.91357316,

β = 2.93884965, and n = 2.74271903, where the actual values were α = 5, β = 3, and n = 3.

Recall that this specific parameter estimate was listed in Table 4.3 as one of the top-ten parameter

estimates when ranked by the ℓ1-norm error between the estimate and the actual values. Figure 4.26

plots the model solution with the new parameter estimate in magenta. Notice that the waveform

of the new model solution closely follows that of the actual model solution (black curve) with the

exception that the peak of the model solution with the new parameter estimate is slightly smaller

than the peak of the actual model solution (Figure 4.26).

4.9 Discussion

Parameter estimation of the repressilator, and more generally biological oscillators, is important

but challenging due to the nonlinearity present in the system. Specifically, we saw that estimating

parameters of the repressilator involves two key challenges: multimodality [58] and lack of initial

mRNA values. Previous attempts at parameter estimation of the repressilator either fail to address

both issues or result in poor parameter estimates. For example, we showed that the GEARS Tool-

box [6] requires all initial data for optimal results (Section 4.4.2). In addition, in Section 4.4.1, we

show that the other standard procedure in the field, the Constrained HEKF Algorithm with Variance

Test, pass parameter estimates that are less accurate than select estimates that were rejected.

115

Figure 4.26: The red data points correspond to simulated data of system (4.9) with α0 = 0, α = 5,
β = 3, and n = 3. The data points were taken from the black curve at a spacing 1 time unit, and
normal noise with mean zero and standard deviation .5 was added. The blue curve is the model
solution of system (4.9) with a parameter set that passed the Variance Test from Section 4.4.1
(parameters α0 = 0, α = 4.6324, β = 2.9558, and n = 10.2211). The magenta curve is the model
solution with the parameter estimate generated from Algorithm 4.6.2 (parameters α = 4.91357316,
β = 2.93884965, and n = 2.74271903).

In this section, we present a novel procedure that addresses both issues and also incorporates

information about the inherent oscillatory structure to generate more precise parameter estimates.

We use as a foundation the Constrained HEKF Algorithm because it addresses the issue of multi-

modality through its Bayesian approach. However, we seek a more informative test statistic than

the variance. In Section 4.5, we investigate how various quantities (skewness, period, amplitude,

cost of protein production, etc.) are sensitive to changes in the three parameters of the repressilator.

We see that all quantities are sensitive to variations in the transcription rate and degradation ratio,

but not necessarily the Hill coefficient. In fact, each quantity stabilizes after the Hill coefficient

reaches a value between 5 and 10.

In light of our analysis in Section 4.5, we choose, as potential test statistics, three quantities:

period, amplitude, and cost of protein production. These three quantities are as sensitive to varia-

tions in the parameters as the other quantities tested, and they are easy to estimate from a discrete

data set. Using these quantities, in Section 4.6, we introduce two new algorithms to estimate the

116

parameters of the repressilator. The first, Algorithm 4.6.1, generates many possible parameter esti-

mates using the Constrained HEKF Algorithm and then ranks them based on how well the resulting

system matches the period, amplitude, and cost of protein production of the data set.

Similarly, the second, Algorithm 4.6.2, computes many possible estimates but outputs the esti-

mate with the smallest ℓ2-norm between the model solution and the data points. To guarantee that

our model solution values correspond to the time points of the data, we also outlined an event lo-

cation procedure (Algorithm 4.6.3) that takes as input a parameter estimate and the time points (of

the data set) and that outputs the model solution values coming from the input parameter estimate.

Algorithm 4.6.3 can be coupled with an objective function inside another optimization procedure

to yield more reliable parameter estimates.

In Section 4.7, we ran Algorithms 4.6.1 and 4.6.2 on eight data sets simulated from a simple

repressilator model. We saw that, among the possible test statistics considered in Algorithm 4.6.1,

simply ranking estimates using the cost of protein production or using the ℓ2-norm error resulted in

the most accurate parameter estimates. Thus, in Section 4.7.3, we further investigated the robust-

ness of the two algorithms using 100 additional simulated data sets. Our analysis revealed that, in

general, Algorithm 4.6.2 results in better parameter estimates.

Finally, continuing with Algorithm 4.6.2 as our final algorithm, in Section 4.8, we compare

outputs of Algorithm 4.6.2 against outputs of the particle swarm algorithm (Section 4.8.1.1) and the

GEARS Toolbox (Section 4.8.1.2). Algorithm 4.6.2 is as accurate as the particle swarm algorithm

but in half the time. Also, Algorithm 4.6.2 is more accurate than the GEARS Toolbox in the same

amount of time. Lastly, we revisit our example in Section 4.4.1 to show that Algorithm 4.6.2 gives

a better parameter estimate than any that passed the original Variance Test.

In summary, we now have a parameter estimation procedure, Algorithm 4.6.2, that addresses

the challenges of parameter estimation of biological systems that exhibit oscillations. The new

algorithm is robust to noise in the system and is efficient in its implementation. The procedure

also overcomes the lack of all initial data that is inherent to experimental data of the repressilator.

Ultimately, robust parameter estimation procedures are crucial in faithfully representing biological

117

systems to provide models with more predictive power. Therefore, an important future direction

of our work is applying Algorithm 4.6.2 to actual repressilator data, e.g., data recently generated

by the Paulsson lab at Harvard [63].

118

5. CONCLUSION AND FURTHER DIRECTIONS

In this dissertation, we advance the field of biological clocks through the rigorous analysis of a

specific biological clock called the repressilator. Originally studied as a synthetic gene network, the

repressilator led to a better functional understanding of transcriptional control by repression and

also showed the promise of constructing, from naturally occurring components, artificial genetic

networks with desirable functional properties [5]. Subsequently, the repressilator was identified

as the core circadian mechanism of the plant circadian clock in Arabidopsis thaliana [3]. Here,

we articulate our contributions to repressilator theory and the implications they have in the field of

biological clocks, synthetic biology, and computational biology.

In Section 2, we develop and rigorously analyze the most general ODE model of the repressi-

lator (System (2.7)). The model extends the work of Müller et al. by removing two biologically

restrictive assumptions that seriously limit the model’s applicability. Previous models used first-

order degradation and translation functions with equivalent rates among the various mRNAs and

proteins. In our generalization, we allow for monotone transcription-rate, translation-rate, and

degradation-rate functions to model the respective processes. Our new system retains many advan-

tageous qualitative properties of the previous repressilator after these generalizations. We analyze

the system to find the number of possible steady states (Theorems 2.3.3, 2.3.7, 2.3.8, and 2.3.10),

to characterize the stability of steady states (Theorems 2.3.13, 2.3.14, and 2.3.15), and to determine

possible asymptotic behavior (Theorem 2.3.20). We also give a counterexample to Conjecture 1 in

[21] (Section 2.3.3).

Taken together, our results from Section 2 advance the theoretical study of cyclic gene repres-

sion by generalizing the current repressilator models. We hope that our results will encourage

theoretical and experimental biologists to broaden the possible degradation-rate and transcription-

rate functions used to model the repressilator and other gene regulatory networks. Finally, we

expect that allowing general functions for these terms will generate more accurate and predictive

models of not only the repressilator but genetic repression in general.

119

In Section 3, we derive a new transcription-rate function (Eqn. (3.14)) that arises under more

reasonable biological assumptions than the commonly used Hill function (see Remark 2.3.1).

We then compare the qualitative properties of model solutions of the repressilator with our new

transcription-rate function versus model solutions of the repressilator with the Hill function. From

our numerical simulations, we see that the period, amplitude, and phase of oscillations vary drasti-

cally between the solutions of the two systems. In particular, with the successive-binding function,

the period is more sensitive to the Hill coefficient and continues to increase with increasing Hill co-

efficient whereas the period stabilizes quickly with respect to the Hill coefficient given the model

using the Hill function. We find that the phase difference behave similarly to the period. Pro-

tein abundance amplitudes, however, stabilize quickly for a model with the new transcription-rate

function as opposed to those computed from a model with the Hill function as the transcription-

rate function. These differences in dynamics are a result of the new transcription-rate function

modeling a stronger repressive action than the previous Hill function.

In addition, we present a conjecture, with supporting theoretical motivation, that the amplitude

of protein abundance of the repressilator model with the Hill function is always greater than the

amplitude of protein abundance of the repressilator with our new transcription-rate function, all

other parameters and functions being equal. For example, we proved that the transcription rate

is an upper bound of limit cycle values of the repressilator model with the Hill function and the

repressilator model with our new transcription-rate function (Theorems 3.4.1 and 3.4.2). In the

end, we stated a conjecture comparing the amplitudes of the two models (Conjecture 3.4.4).

In Section 4, we present three novel algorithms to address the challenges of parameter estima-

tion of models of biological oscillators. Two algorithms, when given time-course data of biological

oscillators, output parameter estimates of the model (Algorithms 4.6.1 and 4.6.2). The foundation

for the parameter estimation procedures was the Constrained HEKF Algorithm [57]. Instead of the

Variance Test as an a posteriori identifiability test, we introduce new quantities to exploit for identi-

fiability. For example, we use the period, amplitude, and cost of protein production to discriminate

among possible parameter estimates. In the second algorithm, we select the parameter estimate

120

that results in the least ℓ2-norm error between the model solution given the parameter estimate and

the data points. We ran both algorithms on simulated data sets and showed that our algorithms

work well at recovering accurate parameter estimates. Moreover, we compare our algorithms to

standard algorithms in the field of computational biology and show that our new algorithm works

faster and more accurately than any that we test against.

Furthermore, we address the issue of the lack of initial mRNA values by producing a new

algorithm that takes as input time-course data and a parameter estimate and outputs model solution

values given that parameter estimate that aligns with the data points (Algorithm 4.6.3). We note that

Algorithm 4.6.3 can be coupled with optimization procedures that minimize an objective function

of relative-error between data and model solution values.

5.1 Further Directions

In this section, we highlight some further directions for our research.

5.1.1 Parameter Estimation of Actual Repressilator Data

In Section 4, we developed a novel algorithm to estimate parameters of models of biological

clocks. Moreover, we applied it to parameter estimation of a repressilator model given simulated

data. Next, we intend to use Algorithm 4.6.2 in Section 4 to fit actual clock data to uncover rates

of transcription, degradation, and translation of the genes, proteins, and mRNAs, respectively.

Furthermore, an interesting future direction is applying Algorithm 4.6.2 to address the prob-

lem of model selection–identifying the mathematical model that most accurately reflects the actual

biological mechanisms. For example, we will employ Algorithm 4.6.2 to select between a repressi-

lator model with the Hill function modeling transcription and a corresponding repressilator model

with our new transcription-rate function in Section 3. In developing a method to couple Algo-

rithm 4.6.2 with a selection procedure, we will gain insight into the mechanisms of transcription,

translation, and degradation.

121

5.1.2 A Generalized Stochastic Model of the Repressilator

In this dissertation, we were concerned with generalizing a deterministic ODE model of the

repressilator. However, biological processes are inherently stochastic in nature. Thus, we will

continue our work by translating our generalized repressilator system to a stochastic model. Also,

we will analyze the dynamics of the stochastic system to uncover what, if any, advantages the

stochastic system confers on the repressilator network.

122

REFERENCES

[1] M. Smolensky and L. Lamberg. The Body Clock Guide to Better Health. Henry Holt and

Company, LLC, New York, New York 10011, 1st edition, 2001.

[2] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators.

NATURE, 403, January 2000.

[3] A. Pokhilko, A. P. Fernández, K. D. Edwards, M. M. Southern, K. J. Halliday, and A. J.

Millar. The clock gene circuit in arabidopsis includes a repressilator with additional feedback

loops. MOL SYST BIOL, 8(1), 2012.

[4] Matlab optimization toolbox, R2017a. The MathWorks, Natick, MA, USA.

[5] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators.

NATURE, 403:335–338, 2000.

[6] J. A. Pitt and J. R. Banga. Parameter estimation in models of biological oscillators: an

automated regularised estimation approach. BMC BIOINFORMATICS, 20(1):82, Feb 2019.

[7] C. H. Johnson. Circadian clocks and cell division: what’s the pacemaker? CELL CYCLE

(Georgetown, Tex.), 9(19):3864–3873, 10 2010.

[8] L. Ziv and Y. Gothilf. Circadian time-keeping during early stages of development. PNAS,

103(11):4146–4151, 2006.

[9] R. Lev Bar-Or, R. Maya, L. A. Segel, U. Alon, A. J. Levine, and M. Oren. Generation of

oscillations by the p53-mdm2 feedback loop: A theoretical and experimental study. PNAS,

97(21):11250–11255, 2000.

[10] B. Novak and J. Tyson. Design principles of biochemical oscillators. NAT REV MOL CELL

BIO, 9:981–991, December 2008.

123

[11] T. Y. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell. Robust, tunable

biological oscillations from interlinked positive and negative feedback loops. SCIENCE,

321(5885):126–129, 2008.

[12] A. Goldbeter, C. Gérard, D. Gonze, J.-C. Leloup, and G. Dupont. Systems biology of cellular

rhythms. FEBS LETT, 586(18):2955–2965.

[13] E. Gwinner. Circadian and circannual programmes in avian migration. J EXP BIOL,

199(1):39–48, 1996.

[14] K. Straif, R. Baan, Y. Grosse, B. Secretan, and F. El Ghissassi. Carcinogenicity of shift-work,

painting, and fire-fighting. LANCET ONCOL, 8:1065–1066, December 2007.

[15] J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, and J. J. Collins. Designer gene networks:

Towards fundamental cellular control. CHAOS, 11(1):207–220, 2001.

[16] A. Goldbeter. Computational approaches to cellular rhythms. NATURE, 420:238–245, 2002.

[17] S. Becker-Weimann, J. Wolf, H. Herzel, and A. Kramer. Modeling feedback loops of the

mammalian circadian oscillator. J THEOR BIOL, 87:3023–3034, 2004.

[18] J. C. Leloup and A. Goldbeter. Towards a detailed computational model for the mammalian

circadian clock. PNAS, 100:7051–7056, 2003.

[19] H. Huang and D. A. Nusinow. Into the evening: Complex interactions in the arabidopsis

circadian clock. TRENDS GENET, 32(10):674 – 686, 2016.

[20] S. Müller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, and P. Schuster. A generalized model

of the repressilator. J MATH BIOL, 53(6):905–937, Dec 2006.

[21] J Tyler, A Shiu, and J Walton. Revisiting a synthetic intracellular regulatory network that

exhibits oscillations. J MATH BIOL, 78:2341–2368, 2019.

[22] M. A. Savageau. Design principles for elementary gene circuits: Elements, methods, and

examples. CHAOS, 11(1):142–159, 2001.

124

[23] J. K. Kim. Protein sequestration versus Hill-type repression in circadian clock models. IET

SYST BIOL, 10(4):125–135, July 2016.

[24] B. Novák and J. J. Tyson. Design principles of biochemical oscillators. NAT REV MOL CELL

BIO, 9, 10 2008.

[25] N. Barkai and S. Leibler. Circadian clocks limited by noise. NATURE, 403, 01 2000.

[26] JM. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in

genetic oscillators. PNAS, 99(9):5988, 04 2002.

[27] P. François and V. Hakim. Core genetic module: The mixed feedback loop. PHYS REV E,

72(3):031908–, 09 2005.

[28] J. K. Kim, D. B. Forger, M. Marconi, D. Wood, A. Doran, T. Wager, C. Chang, and K. M. Wal-

ton. Modeling and validating chronic pharmacological manipulation of circadian rhythms.

CPT: Pharmacometrics & Systems Pharmacology, 2(7):57, 2018/10/15 2013.

[29] J. K. Kim and D. B Forger. A mechanism for robust circadian timekeeping via stoichiometric

balance. MOL SYST BIOL, 8(1), 01 2012.

[30] Q. He, H. Shu, P. Cheng, S. Chen, L. Wang, and Y. Liu. Light-independent Phosphorylation

of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback

loop. J BIOL CHEM, 280:17526–17532, April 2005.

[31] Q. He and Y. Liu. Molecular mechanism of light responses in neurospora: from light-induced

transcription to photoadaptation. GENES DEV, 19(23):2888–2899, 12 2005.

[32] Q. He, J. Cha, Q. He, H.-C Lee, Y. Yang, and Y. Liu. CKI and CKII mediate the frequency-

dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circa-

dian negative feedback loop. GENES DEV, 20(18):2552–2565, 09 2006.

[33] T. Schafmeier, A. Haase, K. Káldi, J. Scholz, M. Fuchs, and M. Brunner. Transcriptional

feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of

its transcription factor. CELL, 122(2):235–246, 2005.

125

[34] G. Huang, S. Chen, S. Li, J. Cha, C. Long, L. Li, Q. He, and Y. Liu. Protein kinase a and

casein kinases mediate sequential phosphorylation events in the circadian negative feedback

loop. GENES DEV, 21(24):3283–3295, 12 2007.

[35] X. Yang. Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order.

APPL MATH LETT, 15:615–621, 2002.

[36] L. J. S. Allen. An Introduction to Mathematical Biology. Pearson, Upper Saddle River, NJ,

2006.

[37] J. D. Murray. Mathematical Biology, volume 19 of Biomathematics. Springer-Verlag, Berlin

Heidelberg, second, corrected edition, 1993.

[38] J. Mallet-Paret and H. L. Smith. The Poincaré-Bendixson theorem for monotone cyclic feed-

back systems. J DYN DIFFER EQU, 2(4):367–421, Oct 1990.

[39] S.M. Berget, C. Moore, and P. A. Sharp. Spliced segments at the 5’ terminus of adenovirus 2

late mRNA. PNAS, 74(8):3171–3175, August 1977.

[40] O. I. Kulaeva, F. Hsieh, H. Chang, D. S. Luse, and V. M. Studitsky. Mechanism of transcrip-

tion through a nucleosome by RNA polymerase II. BIOCHIM BIOPHYS ACTA, 1829(1):76–

83, January 2013.

[41] G. M. Cooper. The Cell: A Molecular Approach. Sinauer Associates, Sunderland, MA, 2000.

[42] K. M. Page and R. Perez-Carrasco. Degradation rate uniformity determines success of oscil-

lations in repressive feedback regulatory networks. J R SOC INTERFACE, 15(142), 2018.

[43] Q. He and Y. Liu. Degradation of the neurospora circadian clock protein frequency through

the ubiquitin–proteasome pathway. BIOCHEM SOC T, 33(5):953–956, 2005.

[44] B. C. Goodwin. Oscillatory behavior in enzymatic control processes. ADV ENZYME REGUL,

3:425–438, 1965.

[45] D. B. Forger. Biological Clocks, Rhythms, and Oscillations: The Theory of Biological Time-

keeping. The MIT Press, Cambridge, MA, 2017.

126

[46] D. Ullrich. Complex Made Simple. American Mathematical Society, Providence, Rhode

Island, 2008.

[47] T. Mori and C. H. Johnson. Circadian programming in cyanobacteria. Seminars in Cell &

Developmental Biology, 12(4):271–278, 2001.

[48] T. Kondo. A cyanobacterial circadian clock based on the kai oscillator. COLD SPRING

HARB SYM, 72:47–55, 2007.

[49] J. S. Takahashi. Molecular neurobiology and genetics of circadian rhythms in mammals.

ANNU REV NEUROSCI, 18(1):531–553, 1995. PMID: 7605073.

[50] S. M. Reppert and D. R. Weaver. Coordination of circadian timing in mammals. NATURE,

418(6901):935–941, 2002.

[51] J. S. Griffith. Mathematics of cellular control processes I. Negative feedback to one gene. J

THEOR BIOL, 20:202–208, 1968.

[52] D. Gonze and W. Abou-Jaoudé. The Goodwin model: Behind the Hill function. PLOS ONE,

8(8):e69573–, 08 2013.

[53] L. Segel and M. Slemrod. The quasi-steady-state assumption: A case study in perturbation.

SIAM REV, 31(3):446–477, 1989.

[54] O. Veblen. Theory on plane curves in non-metrical analysis situs. TRANS AMER MATH

SOC, 6:83–98, 1905.

[55] N. Strelkowa and M. Barahona. Transient dynamics around unstable periodic orbits in the

generalized repressilator model. CHAOS, 21(2):023104, 2011.

[56] I Potapov, B. Zhurov, and E. Volkov. Multi-stable dynamics of the non-adiabatic repressilator.

J R SOC INTERFACE, 12(104):20141315, 2015.

[57] G. Lillacci and M. Khammash. Parameter estimation and model selection in computational

biology. PLOS COMPUT BIOL, 6(3):1–17, 03 2010.

127

[58] A. Villaverde and J. Banga. Reverse engineering and identification in systems biology: strate-

gies, perspectives, and challenges. J R SOC INTERFACE, 11, 2013.

[59] H. Jo, Y. J. Kim, J. K. Kim, M. Foo, D. E. Somers, and P. Kim. Waveforms of molecu-

lar oscillations reveal circadian timekeeping mechanisms. NAT COMMUN BIOL, 1(1):207,

2018.

[60] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-

Interscience, New York, NY, USA, 2006.

[61] E. Ziegel. Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory, volume 31.

Taylor & Francis, 1989.

[62] J. Kim and D. Forger. On the existence and uniqueness of biological clock models matching

experimental data. SIAM J APPL MATH, 72(6):1842–1855, 2012.

[63] L. Potvin-Trottier, N. D. Lord, G. Vinnicombe, and J. Paulsson. Synchronous long-term

oscillations in a synthetic gene circuit. NATURE, 538:514–517, 10 2016.

128

APPENDIX A

SELECT MATLAB CODE

A.1 Section 3 Codes

A.1.1 Estimating Hopf Bifurcations of Models (SS) and (SB)

%%% Estimate the Hopf Bifurcations %%%

% Initialize the symbolic variables

syms x h p y

% Save the Jacobian

J = [-1 0 0 0 0 x;

0 -1 0 x 0 0;

0 0 -1 0 x 0;

3 0 0 -3 0 0;

0 3 0 0 -3 0;

0 0 3 0 0 -3];

% Compute the characteristic polynomial

p = charpoly(J);

% Compute H5

H5 = [p(2) p(1) 0 0 0;

p(4) p(3) p(2) p(1) 0;

p(6) p(5) p(4) p(3) p(2);

0 p(7) p(6) p(5) p(4);

0 0 0 p(7) p(6)];

% Compute the determinant

D5 = det(H5);

% Find the negative, real zero of the determinant

129

sols = solve(D5);

r1 = double(sols(1));

%% Fix h = 3

% SB Model Hopf bifurcation with respect to the transcription rate

sols_p = solve([y== k/(1+y)^3, a == -3*k*(1+y)^(2)/(1+y)^6]);

k_sb = double(sols_p.k(1));

% SS Model Hopf bifurcation with respect to the transcription rate

sols_p = solve([y== k/(1+y^3), a == -3*k*(y)^(2)/(1+y^3)^2]);

k_ss = double(sols_p.k(1));

%% Fix k = 10

% SB Model Hopf bifurcation with respect to the Hill coefficient

sols_p = solve([y== k/(1+y)^3, a == -3*k*(1+y)^(2)/(1+y)^6]);

h_sb = double(sols_p.h(1));

% SS Model Hopf bifurcation with respect to the Hill coefficient

sols_p = solve([y== 10/(1+y^h), 1 == -h*10*y^(h-1)/(1+y^h)^2])

h_ss = double(sols_p.h(1));

A.1.2 Computing Phase, Amplitude, and Periods

Below, I furnish the code (PhAP_diff.m) that I wrote to illustrate the differences in phase,

amplitude, and period between a repressilator model with the Hill function and the corresponding

repressilator model with the successive-binding transcription-rate function. This code was used to

generate figures in Section 3.

130

% PhAP - Phase, Amplitude, and Period Comparison between two models: one with Hill

% function and the other with successive-binding assumption

% How does phase vary with respect to alpha first?

alpha = 2:0.2:50;

phase_diffs = [];

periods = [];

amplitudes = [];

phase_diffs_b = [];

periods_b = [];

amplitudes_b = [];

for a = alpha

% Parameter set [transcription-rate degradation-ratio Hill-coefficient alpha_0]

p = [a 3 3 0];

% Compute phase difference between protesins 1 and 2

% First, run to limit cycle (if it stabilizes to a limit cycle)

% Use the event locator to find when the protein 1 level peaks

options = odeset(’Events’, @initial_events);

[ts, xs, te, ye, ie] = ode23tb(@ode_repress2, [0 3000], [10 0 10 0 10 10 30 30], options, p);

[tsb, xsb, teb, yeb, ieb] = ode23tb(@ode_repress2_sb, [0 3000], [10 0 10 0 10 10 30 30], options, p(1:3));

% Calculate phase diff

if(length(te)< 10)

phase_diff_temp = 0;

amp_temp = 0;

period_temp = 0;

131

elseif((te(end)-te(end-4)) - (te(end-4)-te(end-8)) < .01)

% Period Estimate

period_temp = te(end)-te(end-4);

% Estimate Amplitude diff

for i = 0:3

if(ye(end-i, 8) < 0 &ye(end-i,8) > -.001)

p2max = i;

elseif(ye(end-i,8) > 0 & ye(end-i,8) <.001)

p2min = i;

elseif(ye(end-i,7) < 0 & ye(end-i,7) > -.001)

p1max = i;

else

p1min = i;

end

end

amp_temp = ye(end-p1max,2) - ye(end-p1min,2);

if(p2max > p1max)

phase_diff_temp = te(end-p2max) - te(end-p1max) + period_temp;

else

phase_diff_temp = te(end-p2max) - te(end-p1max);

end

else

phase_diff_temp = 0;

amp_temp = 0;

period_temp = 0;

end

% Save the phase, amplitude, and period

phase_diffs = [phase_diffs phase_diff_temp];

periods = [periods period_temp];

amplitudes = [amplitudes amp_temp];

if(length(teb)< 10)

phase_diff_temp_b = 0;

132

amp_temp_b = 0;

period_temp_b = 0;

elseif((teb(end)-teb(end-4)) - (teb(end-4)-teb(end-8)) < .01)

% Period Estimate

period_temp_b = teb(end)-teb(end-4);

% Estimate Amplitude diff

for i = 0:3

if(yeb(end-i, 8) < 0 &yeb(end-i,8) > -.001)

p2max = i;

elseif(yeb(end-i,8) > 0 & yeb(end-i,8) <.001)

p2min = i;

elseif(yeb(end-i,7) < 0 & yeb(end-i,7) > -.001)

p1max = i;

else

p1min = i;

end

end

amp_temp_b = yeb(end-p1max,2) - yeb(end-p1min,2);

if(p2max > p1max)

phase_diff_temp_b = teb(end-p2max) - teb(end-p1max) + period_temp_b;

else

phase_diff_temp_b = teb(end-p2max) - teb(end-p1max);

end

else

phase_diff_temp_b = 0;

amp_temp_b = 0;

period_temp_b = 0;

end

phase_diffs_b = [phase_diffs_b phase_diff_temp_b];

periods_b = [periods_b period_temp_b];

amplitudes_b = [amplitudes_b amp_temp_b];

end

figure

133

plot(alpha, phase_diffs, ’k’, ’LineWidth’, 3)

hold on

plot(alpha, phase_diffs_b, ’r’, ’LineWidth’, 3)

xlabel(’Hill Coefficient’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Phase Difference’, ’FontSize’, 14, ’FontWeight’, ’bold’)

hold off

figure

plot(alpha, amplitudes, ’k’, ’LineWidth’, 3)

hold on

plot(alpha, amplitudes_b, ’r’, ’LineWidth’, 3)

xlabel(’Hill Coefficient’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Amplitude’, ’FontSize’, 14, ’FontWeight’, ’bold’)

hold off

figure

plot(alpha, periods, ’k’, ’LineWidth’, 3)

hold on

plot(alpha, periods_b, ’r’, ’LineWidth’, 3)

xlabel(’Hill Coefficient’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Period’, ’FontSize’, 14, ’FontWeight’, ’bold’)

hold off

function [value, isterminal, direction] = initial_events(t,x,p)

value = [x(7); x(8)];

isterminal = [0;0];

direction = [0; 0];

end

In the above code, I call on two functions that give the ODEs for the two systems. I include the
two functions below.

function dxdt = ode_repress2(t,x,p)

% The eight ODEs for the repressilator system with first-order degradation and translation.

% The transcription-rate functions are given by Hill functions.

% The two extra ODEs at the end are the second derivatives of \dot{p}_1 and \dot{p}_2,

% respectively. They allow for the identification of the peaks and troughs of the protein abundance.

dxdt = [p(4)+p(1)/(1+x(6)^p(3)) - x(1); p(2)*(x(1)-x(2)); p(4)+p(1)/(1+x(2)^p(3)) - x(3);

p(2)*(x(3)-x(4)); p(4)+p(1)/(1+x(4)^p(3)) - x(5); p(2)*(x(5)-x(6));

p(2)*(p(1)/(1+x(6)^p(3)) - x(1) - p(2)*(x(1)-x(2)));p(2)*(p(1)/(1+x(2)^p(3)) - x(3) - p(2)*(x(3)-x(4)))];

end

function dxdt = ode_repress2_sb(t,x,p)

% The eight ODEs for the repressilator system with first-order degradation and translation.

134

% The transcription-rate functions are given by the successive-binding transcription-rate function..

% The two extra ODEs at the end are the second derivatives of \dot{p}_1 and \dot{p}_2,

% respectively. They allow for the identification of the peaks and troughs of the protein abundance.

dxdt = [p(1)/(1+x(6))^p(3) - x(1); p(2)*(x(1)-x(2)); p(1)/(1+x(2))^p(3) - x(3); p(2)*(x(3)-x(4));

p(1)/(1+x(4))^p(3) - x(5); p(2)*(x(5)-x(6)); p(2)*(p(1)/(1+x(6))^p(3) - x(1) - p(2)*(x(1)-x(2))) ;

p(2)*(p(1)/(1+x(2))^p(3) - x(3) - p(2)*(x(3)-x(4)))];

end

A.1.3 Plotting Limit Cycles

%%% Plot the Limit Cycles (Chapter 3) %%%

% Initialize the parameters

p = [9 3 5];

% Initialize the time span and initial conditions

tspan = [0 1000];

initials = [10 0 10 0 10 10];

% Run the ODE solver

[tss xss] = ode23tb(@ode_repress2, tspan, initials, [], p);

[tsb xsb] = ode23tb(@ode_repress2_sb, tspan, initials, [], p);

% Restrict the time

timess = find(tss > 900);

timesb = find(tsb > 900);

% Plot the limit cycles for mRNA1 and protein1

plot(xss(timess, 1), xss(timess,2), ’k’, ’LineWidth’, 3)

hold on

plot(xsb(timesb, 1), xsb(timesb,2), ’r’, ’LineWidth’, 3)

hold off

xlabel{’mRNA 1Abundance (a.u.)’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Protein 1 Abundance (a.u.)’, ’FontSize’, 14, ’FontWeight’, ’bold’)

135

A.2 Section 4 Codes

A.2.1 Constrained HEKF Algorithm

Below, I give the code used to compute the Kalman filter estimates of the repressilator param-

eters using the algorithm outlined by Khammash and Lilacci in [57].

%%%%%%%% EKF Algorithm on Simple Repressilator Models%%%%%%%%

% A program that uses the Constrained EKF Algorithm along with a skewness

% test to estimate parameters of an ODE System.

% The key steps to the algorithm are:

% 1. Load the data.

% 2. Initialize the system.

% 3. Compute the Jacobians at the previous a posteriori estimate.

% 4. Advance to the next time step (solve the ODE).

% 5. Compute the gain matrix.

% 6. Incorporate the current measurement to correct the prediction step.

% 7. Check if the estimates satisfy constraints on the states and

% parameters.

% 8. Repeat steps 3-7 for each time point in the dataset.

% States of the system: 3 mRNA, 3 protein, 3 parameter (TR, DR, Hill) = 9 total states

global p1_init p1_direction

%% Load the data

run(’data_gen1.m’);

%% Open the file

fileID = fopen(’Parameters_4.txt’, ’w’);

%% Initialize the system.

% Initialize the nine states

r1_init = 10*rand;

p1_init = p1_data(1);

136

r2_init = 10*rand;

p2_init = p2_data(1);

r3_init = 10*rand;

p3_init = p3_data(1);

par1_init = 10*rand;

par2_init = 10*rand;

par3_init = 10*rand;

x0 = [r1_init

p1_init

r2_init

p2_init

r3_init

p3_init

par1_init

par2_init

par3_init];

% Initialize the error covariance matrix P

P0 = eye(9);

P0(2,2) = 2;%var(p1_data);

P0(4,4) = 2;%var(p2_data);

P0(6,6) = 2;%var(p3_data);

% Initialize the Q, R, and H matrices

Q = 5*eye(9);

R = eye(3);

R(1,1) = var(p1_data);

R(2,2) = var(p2_data);

R(3,3) = var(p3_data);

H = zeros(3,9);

H(1,2) = 1;

H(2,4) = 1;

H(3,6) = 1;

H_t = transpose(H);

% Initialize the constraint matrix

137

D = -1*eye(9);

d = zeros(9,1);

% Initialize estimates

[num_data, ~] = size(t_data);

p1_estimates = [p1_init];

p2_estimates = [p2_init];

p3_estimates = [p3_init];

%% Run the Algorithm

for i = 2:num_data

% Compute the prediction term for x and P

tspan = [t_data(i-1) t_data(i)];

x_init_temp = x0(1:6);

p = x0(7:end);

[~, x] = ode23tb(@ode_repress2, tspan, x_init_temp, [], p);

%Compute the new P

P0 = newP_TR_DR_H(x0, P0, Q, tspan);

x_temp = transpose(x(end,:));

x_temp(7) = x0(7);

x_temp(8) = x0(8);

x_temp(9) = x0(9);

% Compute the correction terms

L = P0*H_t/(H*P0*H_t + R);

residual = transpose(p_data(i,:)) - x_temp([2 4 6]);

% Compute the new estimate

x0 = x_temp + L*(transpose(p_data(i,:)) - x_temp([2 4 6]));

p1_estimates = [p1_estimates x0(2)];

p2_estimates = [p2_estimates x0(4)];

p3_estimates = [p3_estimates x0(6)];

% Compute corrected P

P0 = (eye(9,9) - L*H)*P0*transpose(eye(9,9)-L*H) + L*R*transpose(L);

138

% Test to see if we need to run the constraint

test = find(x0 < 0);

if(length(test > 0))

fun = @(x) transpose(x-x0)*inv(P0)*(x-x0);

x = fmincon(fun, x0, D, d)

% Set the new x0

x0 = x;

end

end

parameter_estimate = x0(7:end)

fprintf(fileID, ’%f \t %f \t %f \n’, parameter_estimate)

A.2.1.1 Code to Update P0

In the above script for the HEKF Algorithm, we call a function called newP_TR_DR_H to

update the error-covariance matrix, P . We provide the code below.

%% Matlab function that returns the new P matrix after solving the differential equation

function P = newP_TR_DR_H(x, P0, Q, tspan)

A = f_Jac_TR_DR_H(x);

[~, P] = ode23tb(@(t,P)odefun(t,P,A,Q), tspan, P0(:));

P = P(end,:);

P = reshape(P, size(A));

end

function dPdt = odefun(t,P,A,Q)

P = reshape(P, size(A));

dPdt = A*P + P*transpose(A)+Q;

dPdt = dPdt(:);

end

139

A.2.1.2 Code to Compute the Jacobian

In the above script for newP_TR_DR_H , we call a function f_Jac_TR_DR_H. We provide the

code below.

function A = f_Jac_TR_DR_H(x)

A = zeros(9,9);

% r_dot contributions

A(1,1) = -1;

A(1,6) = -x(7)*x(9)*x(6)^(x(9)-1)/(1+x(6)^x(9))^2;

A(1,7) = 1/(1+x(6)^x(9));

A(1,9) = -x(7)*log(x(6))*x(6)^x(9)/(1+x(6)^x(9))^2;

A(3,3) = -1;

A(3,2) = -x(7)*x(9)*x(2)^(x(9)-1)/(1+x(2)^x(9))^2;

A(3,7) = 1/(1+x(2)^x(9));

A(3,9) = -x(7)*log(x(2))*x(2)^x(9)/(1+x(2)^x(9))^2;

A(5,5) = -1;

A(5,4) = -x(7)*x(9)*x(4)^(x(9)-1)/(1+x(4)^x(9))^2;

A(5,7) = 1/(1+x(4)^x(9));

A(5,9) = -x(7)*log(x(4))*x(4)^x(9)/(1+x(4)^x(9))^2;

% p_dot contributions

A(2,1) = x(8);

A(2,2) = -x(8);

A(4,3) = x(8);

A(4,4) = -x(8);

A(6,5) = x(8);

A(6,6) = -x(8);

A(2,8) = x(1)-x(2);

A(4,8) = x(3)-x(4);

A(6,8) = x(5)-x(6);

end

140

A.2.2 Generating Plots for Skewness

%%%% Plot Skewness %%%%

n=2:.1:40;

i=1:length(n);

skews = zeros(1,length(n));

%

for i=i

p = [5 3 n(i)];

tspan = [0 1000];

initials = [10 0 10 0 10 10 10*p(2)];

options = odeset(’Events’, @initial_events);

[~, ~, te, ye, ~] = ode23tb(@ode_repress1, tspan, initials, options, p);

if(te(end)<800)

continue;

else

tspan = te(end-1):.01:te(end);

initials = ye(end-1,:);

[t x] = ode23tb(@ode_repress1, tspan, initials, [], p);

skews(i) = skewness(x(:,2));

end

end

figure

plot(n, skews, ’k’, ’LineWidth’, 3)

xlabel(’Hill Coefficient’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Skewness’, ’FontSize’, 14, ’FontWeight’, ’bold’)

141

function [value, isterminal, direction] = initial_events(t,x,p)

value = x(7);

isterminal = 0;

direction = -1;

end

A.2.3 Generating Plots for Period and Amplitude

%%%% Plot Amplitude Variation with respect to the 3 parameters %%%%

% Create vector of the varying parameter

n=1:.1:40;

i=1:length(n);

%

amplitudes = zeros(length(n),1);

periods = zeros(length(n),1);

for i=i

p = [n(i) 5 3];

tspan = [0 1000];

initials = [10 0 10 0 10 10 10*p(2) 10*p(2)];

options = odeset(’Events’, @initial_events);

[~, ~, te, ye, ~] = ode23tb(@ode_repress2, tspan, initials, options, p);

if(te(end)<800)

continue;

else

amplitudes(i) = ye(end,2);

periods(i) = te(end)-te(end-1);

end

end

figure

142

plot(n, amplitudes, ’k’, ’LineWidth’, 3)

xlabel(’Transcription Rate’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Amplitdue’, ’FontSize’, 14, ’FontWeight’, ’bold’)

figure

plot(n, periods, ’k’, ’LineWidth’, 3)

xlabel(’Transcription Rate’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Period’, ’FontSize’, 14, ’FontWeight’, ’bold’)

function [value, isterminal, direction] = initial_events(t,x,p)

value = x(7);

isterminal = 0;

direction = -1;

end

A.2.4 Generating Plots for Cost of Protein Production

%%%% Plot differences in cost with respect to Hill, transcription rate, or

%%%% degradation ratio %%%%

n = 1.9:.1:40;

costs = zeros(length(n),1);

for i=1:length(n)

p = [n(i) 3 3];

tspan = [0 1000];

initials = [10 0 0 100 1 1 p(2)*10];

options = odeset(’Events’, @initial_events);

[t, x, te, ye, ie] = ode23(@ode_repress1, tspan, initials, options, p);

per_est = te(end)-te(end-1)

[t x] = ode23tb(@ode_repress1, [te(end-1):.001:te(end)], ye(end-1,:), [], p);

costs(i) = trapz(t-t(1), x(:,2))/per_est;

end

143

plot(n, costs, ’k’, ’LineWidth’, 3)

xlabel(’Transcription Rate’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Cost of Protein 1 Production’, ’FontSize’, 14, ’FontWeight’, ’bold’)

function [value, isterminal, direction] = initial_events(t,x,p)

value = x(7);

isterminal = 0;

direction = -1;

end

A.2.5 Generating Plots for Peak to Trough Time

%%%% Plot Peak 2 Trough Times Actual Values %%%%

peak2trough_times = zeros(1,length(.1:.1:40));

j = 1;

for k = .1:.1:40

p = [5 k 3];

tspan = [0 1000];

initials = [10 0 0 100 1 1 p(2)*10];

options = odeset(’Events’, @initial_events);

[t, x, te, ye, ie] = ode23(@ode_repress1, tspan, initials, options, p);

if(ye(end,2)-ye(end-1,2)>0)

peak2trough_temp = te(end-1)-te(end-2);

else

peak2trough_temp = te(end)-te(end-1);

end

144

% Compute the period

real_per = te(end)-te(end-2);

peak2trough_times(j) = peak2trough_temp/real_per;

j=j+1;

end

plot(.1:.1:40, peak2trough_times, ’k’, ’LineWidth’, 2)

xlabel(’Degradation Ratio’, ’FontSize’, 12, ’FontWeight’, ’bold’)

ylabel(’Peak 2 Trough Time’, ’FontSize’, 12, ’FontWeight’, ’bold’)

function [value, isterminal, direction] = initial_events(t,x,p)

value = x(7);

isterminal = 0;

direction = 0;

end

A.2.6 Generating Plots for Peak to 50% Amplitude Time

%%%% Plot Peak 2 50% Amplitude Times Actual Values %%%%

global p5level

p5values = zeros(1,length(.1:.1:40));

j = 1;

for k = .1:.1:40

p = [5 k 3];

tspan = [0 1000];

initials = [10 0 0 100 1 1 p(2)*10 -100*p(2)];

options = odeset(’Events’, @initial_events);

[t, x, te, ye, ie] = ode23(@ode_repress3, tspan, initials, options, p);

145

real_per = te(end)-te(end-2);

if(ye(end,2)-ye(end-1,2)>0)

peak2trough_temp = te(end-1)-te(end-2);

amp_temp = ye(end,2)-ye(end-1,2);

p5level = .5*amp_temp + ye(end-1,2);

initials = ye(end-2,1:end-1);

else

peak2trough_temp = te(end)-te(end-1);

amp_temp = ye(end-1,2)-ye(end-2,2);

p5level = .5*amp_temp + ye(end,2);

initials = ye(end-3,1:end-1);

end

% Next event location

tspan = [0 real_per];

options = odeset(’Events’, @initial_events1);

[t, x, te, ~, ~] = ode23tb(@ode_repress1, tspan, initials, options, p);

% if(mod(j,8)==0)

% figure

% plot(t, x(:,2), ’k’, ’LineWidth’, 2)

% hold on

% plot([te(1) te(1)], [0 x(1,2)], ’r--’, ’LineWidth’, 2)

% hold off

% end

p5values(j) = te(1)/real_per;

j=j+1;

end

plot(.1:.1:40, p5values, ’k’, ’LineWidth’, 2)

xlabel(’Degradation Ratio’, ’FontSize’, 12, ’FontWeight’, ’bold’)

ylabel(’Peak to 50% Amplitude’, ’FontSize’, 12, ’FontWeight’, ’bold’)

function [value, isterminal, direction] = initial_events(t,x,p)

value = [x(7);x(8)];

isterminal = [0;0];

direction = [-1;-1];

146

end

function [value, isterminal, direction] = initial_events1(t,x,p)

global p5level

value = x(2)-p5level;

isterminal = 0;

direction = 0;

end

A.2.7 Generating Plots for Min Derivative

%% Plot minimum derivative with respect to Hill coefficient

j = .1:.1:40;

derivatives = ones(1,length(j));

i=1;

for n = j

p = [5 n 3];

tspan = [0 1000];

initials = [10 0 0 10 1 0 p(2)*10 p(2)*-10];

[t x] = ode23tb(@ode_repress3, tspan, initials, [], p);

times = find(t>900);

der_temp = min(x(:,7));

derivatives(i) = der_temp;

i = i+1;

end

figure

plot(j, abs(derivatives), ’k’, ’LineWidth’, 3)

xlabel(’Degradation Ratio’, ’FontSize’, 14, ’FontWeight’, ’bold’)

ylabel(’Derivative of Protein 1 Abundance’,’FontSize’, 14, ’FontWeight’, ’bold’)

A.2.8 Cost Estimator

function [cost_est] = cost_estimator(t, p, per_est, dr)

num_times = floor(t(end)/per_est);

147

costs = zeros(1,num_times);

for i = 1:num_times

t_temp = find(t>= (i-1)*per_est & t<= i*per_est);

p_temp = p(t_temp);

cost_temp = trapz(t_temp, dr*p_temp)/per_est;

costs(i) = cost_temp;

end

cost_est = mean(costs);

end

A.2.9 Generating Simulated Data

%%%% Generate Noisy, Discrete Data and Estimate Period and Cost %%%%

function [t_data, p_data, per_est] = data_gen2(hill, interval, error_amount)

% Generate the data

p = [5 3 hill];

tspan = [0 1000];

initials = [10 0 0 100 1 1];

[t, x] = ode23tb(@ode_repress2, tspan, initials, [], p);

% Extract at every unit time for 50 time units

% interval = .5;

times = zeros(1,length(950:interval:1000));

j = 1;

for i = 950:interval:1000

a = abs(t - i);

times(j) = find(a == min(a));

j=j+1;

end

% Save the real data

t_data = t(times);

148

t_data = t_data - t_data(1);

r_p1_data = x(times, 2);

r_p2_data = x(times, 4);

r_p3_data = x(times, 6);

r_x1_data = x(times, 1);

r_x2_data = x(times, 3);

r_x3_data = x(times, 5);

% Introduce noise

% error_amount = .25;

p1_data = r_p1_data + error_amount*randn(size(r_p1_data));

p2_data = r_p2_data + error_amount*randn(size(r_p2_data));

p3_data = r_p3_data + error_amount*randn(size(r_p3_data));

m1_data = r_x1_data;

m2_data = r_x2_data;

m3_data = r_x3_data;

p1_data(1) = r_p1_data(1);

p2_data(1) = r_p2_data(1);

p3_data(1) = r_p3_data(1);

p1_data(2) = r_p1_data(2);

p2_data(2) = r_p2_data(2);

p3_data(2) = r_p3_data(2);

% Set all negative data points to 0

p1_neg = find(p1_data < 0);

p1_data(p1_neg) = 0;

p2_neg = find(p2_data < 0);

p2_data(p2_neg) = 0;

p3_neg = find(p3_data < 0);

p3_data(p3_neg) = 0;

p_data = [p1_data p2_data p3_data];

% Estimate the period

p1 = p1_data - mean(p1_data);

powerspectrum = abs(fft(p1)).^2;

149

omegavals = 2*pi*t_data/t_data(end);

maxes = find(max(powerspectrum) == powerspectrum);

omega_max = omegavals(maxes(1));

per_est = interval*2*pi/omega_max;

A.2.10 Cost Estimator

function [cost_est] = cost_estimator(t, p, per_est, dr)

num_times = floor(t(end)/per_est);

costs = zeros(1,num_times);

for i = 1:num_times

t_temp = find(t>= (i-1)*per_est & t<= i*per_est);

p_temp = p(t_temp);

cost_temp = trapz(t_temp, dr*p_temp)/per_est;

costs(i) = cost_temp;

end

cost_est = mean(costs);

end

A.2.11 Algorithm 4.6.2 and Particle Swarm Comparison

%%% Comparison between final algorithm and particle swarm optimization %%%

% Global Variables

global t_data p1_data p2_data p3_data initial_direction initial_value per_est skew_est cost_est

% Open File to Write Out

fileID = fopen(’Comparison_Final_PSO_Try1.txt’, ’w’);

150

% Initializations

error_amounts = [0 .1 .25 .5];

intervals = [.5 1];

hill = 3;

thresh = .011;

fprintf(fileID, ’Initialize Q: 5 times rand times identity\n’);

for error_amount = error_amounts

for interval = intervals

% Load the data

[t_data, p_data, ~, ~, ~] = data_gen2(hill, interval, error_amount);

p1_data = p_data(:,1);

p2_data = p_data(:,2);

p3_data = p_data(:,3);

per_est = 7.2;

cost_est = cost_estimator(t_data, p1_data, per_est,1);

full_data = [t_data p_data];

filename = [’Comparison1_DataSet’ num2str(error_amount) num2str(interval) ’.txt’];

fileID1 = fopen(filename, ’w’);

fprintf(fileID1, ’%.8f %.8f %.8f %.8f \n’, full_data’);

% Write out information to file

fprintf(fileID, ’%%%%%%%%%%%%%%%%%%%%\n’);

fprintf(fileID, ’Interval for data set: %f\n’, interval);

fprintf(fileID, ’Noise Added: %f\n’, error_amount);

fprintf(fileID, ’Cost Estimate: %.8f\n’, cost_est);

% Set initial conditions for period/error test

initial_value = p1_data(1);

if(p1_data(2) > p1_data(1))

initial_direction = 1;

else

151

initial_direction = -1;

end

% Start the clock

tic;

% Run the optimization procedure

parameter_estimates = zeros(300,3);

for c = 1:300

% Initialize the States for the parameter estimation

r1_init = 10*rand;

p1_init = p1_data(1);

r2_init = 10*rand;

p2_init = p2_data(1);

r3_init = 10*rand;

p3_init = p3_data(1);

par1_init = 10*rand;

par2_init = 10*rand;

par3_init = 10*rand;

x0 = [r1_init

p1_init

r2_init

p2_init

r3_init

p3_init

par1_init

par2_init

par3_init];

P0 = eye(9);

P0(2,2) = 2;%error_amount;

P0(4,4) = 2;%error_amount;

P0(6,6) = 2;%error_amount;

% Initialize the Q, R, and H matrices

Q = 5*rand*eye(9);

152

R = eye(3);

R(1,1) = var(p1_data);

R(2,2) = var(p2_data);

R(3,3) = var(p3_data);

H = zeros(3,9);

H(1,2) = 1;

H(2,4) = 1;

H(3,6) = 1;

H_t = transpose(H);

% Initialize the constraint matrix

D = -1*eye(9);

d = zeros(9,1);

% Initialize estimates

[num_data, ~] = size(t_data);

p1_estimates = [p1_init];

p2_estimates = [p2_init];

p3_estimates = [p3_init];

% Loop through the data set

try

for i = 2:num_data

% Compute the prediction term for x and P

tspan = [t_data(i-1) t_data(i)];

x_init_temp = x0(1:6);

p = x0(7:end);

[~, x] = ode23tb(@ode_repress1, tspan, x_init_temp, [], p);

%Compute the new P

P0 = newP_TR_DR_H(x0, P0, Q, tspan);

x_temp = transpose(x(end,:));

x_temp(7) = x0(7);

x_temp(8) = x0(8);

x_temp(9) = x0(9);

% Compute the correction terms

153

L = P0*H_t/(H*P0*H_t + R);

residual = transpose(p_data(i,:)) - x_temp([2 4 6]);

% Compute the new estimate

x0 = x_temp + L*(transpose(p_data(i,:)) - x_temp([2 4 6]));

p1_estimates = [p1_estimates x0(2)];

p2_estimates = [p2_estimates x0(4)];

p3_estimates = [p3_estimates x0(6)];

% Compute corrected P

P0 = (eye(9,9) - L*H)*P0*transpose(eye(9,9)-L*H) + L*R*transpose(L);

% Test to see if we need to run the constraint

test = find(x0 < 0);

if(length(test) > 0)

fun = @(x) transpose(x-x0)*inv(P0)*(x-x0);

x = fmincon(fun, x0, D, d)

% Set the new x0

x0 = x;

end

end

% Save the parameter estimate

parameter_estimates(c,:) = x0(7:end);

catch

parameter_estimates(c,:) = [10 10 10];

end

end

filename = [’Comparison1_Parameters’ num2str(error_amount) num2str(interval) ’.txt’];

fileID2 = fopen(filename, ’w’);

fprintf(fileID2, ’%.8f %.8f %.8f \n’, parameter_estimates’);

costs = zeros(300,1);

for j = 1:300

p = parameter_estimates(j,:);

% Compute the period

154

tspan = [0 1000];

initials = [10 0 0 100 0 1];

options = odeset(’Events’, @initial_events);

[t, ~, te, ye, ~] = ode23tb(@ode_repress1, tspan, initials, options, p);

if(length(te)<2)

costs(j) = 100;

else

per_temp = te(end)-te(end-1);

periods(j) = te(end) - te(end-1);

tspan = t_data;

initials = ye(end,:);

[t x] = ode23tb(@ode_repress1, tspan, initials, [], p);

cost_temp = cost_estimator(t_data, x(:,2), per_est, 1);

costs(j) = cost_temp;

end

end

% Rank the parameter estimates

test_cost = abs(costs - cost_est)/cost_est;

[sort_cost I_cost] = sort(test_cost);

sort_pars_cost = parameter_estimates(I_cost,:);

elapsedTime = toc;

r_cost = sort_pars_cost(1:10,:);

r_cost = r_cost’;

fprintf(fileID, ’Top 10 Cost:\n’);

fprintf(fileID, ’%.8f& %.8f& %.8f\n’, r_cost);

fprintf(fileID, ’Elapsed Time: %.8f\n’, elapsedTime);

fprintf(fileID, ’%%%%%%%%\n\n\n’);

filename = [’Comparison1_Ranked_Cost’, num2str(error_amount), num2str(interval), ’.txt’];

fileID4 = fopen(filename, ’w’);

fprintf(fileID4, ’%.8f %.8f %.8f\n’, sort_pars_cost’);

% Particle Swarm Optimization Try

155

tic;

initpop = .25*randn(30,3) + repmat([max(p1_data) 10*rand 10*rand], 30,1);

opts = optimoptions(’particleswarm’, ’InitialSwarmMatrix’, initpop);

[xpso, fpso] = particleswarm(@error_norm, 3, [0 0 2], [10 10 10], opts);

elapsedTime = toc;

fprintf(fileID, ’PSO: %.8f & %.8f & %.8f\n’,xpso);

fprintf(fileID, ’PSO Error: %.8f\n’, fpso);

fprintf(fileID, ’PSO Elapsed Time: %.8f\n’, elapsedTime);

end

end

% Functions needed for script

function e = error_norm(p)

global t_data p1_data p2_data p3_data initial_direction initial_value

% Run solution to limit cycle

p

try

tspan = [0 1000];

initials = [10 0 0 100 0 1];

options = odeset(’Events’, @initial_events);

[t, x, te, ye, ~] = ode23tb(@ode_repress1, tspan, initials, options, p);

if(length(te)<2)

e = 100;

else

% Re run starting at the endpoint

tspan = t_data;

initials = ye(end,:);

[t, x] = ode23tb(@ode_repress1, tspan, initials, [], p);

e = norm(p1_data - x(:,2))^2/norm(p1_data)^2

156

+ norm(p2_data - x(:,4))^2/norm(p2_data)^2

+ norm(p3_data - x(:,6))^2/norm(p3_data)^2

end

catch

e = 100;

end

end

function [value, isterminal, direction] = initial_events(t,x,p)

global initial_value initial_direction

value = x(2)- initial_value;

isterminal = 0;

direction = initial_direction;

end

function [value, isterminal, direction] = initial_events1(t,x,p)

value = x(7);

isterminal = 0;

direction = -1;

end

157

APPENDIX B

SUPPLEMENTARY TABLES AND FIGURES

B.1 Results from the New Algorithm in Section 4

B.1.1 Supplementary Tables for Section 4, Section 4.7.1

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.01025578 2.99585437 2.97951441 5.00321990 2.99992929 2.99337307
5.00942510 2.99607230 2.98342591 5.00556955 3.00156492 2.99105924
5.00973107 2.99609168 2.98301825 5.00725331 2.99666999 2.98049459
5.00570737 2.99578688 2.98998196 5.00451075 2.99610433 2.98791181
5.00252550 2.99427682 2.99420614 5.00336630 3.00252641 2.99433614
5.00236251 2.99428642 2.99460957 5.00407481 3.00169485 2.99354476
5.01730157 2.99726625 2.97205239 5.00601344 3.00120915 2.99064822
5.00347251 2.99448289 2.99298359 5.00572291 2.99941319 2.99008944
5.00646377 2.99545340 2.98815822 5.00294216 3.00096025 2.99563030
5.01057440 2.99599781 2.98222167 5.00336490 3.00034269 2.99439882

Table B.1: Top 10 parameter estimates when ranked by period, amplitude, and cost together (all
weighted equally). The total time of the data set was 50. No noise was added to the data set. The
cost estimate was 3.70424; the period estimate was 7.2; the amplitude estimate was 4.075.

B.2 Supplementary Figures

B.2.1 Data Sets for Section 4.7

Here, we plot the eight data sets that were generated in Section 4.7. Figures B.1(a)-(d) plot the

data sets with a spacing of 0.5 time units and added noise with standard deviation: (a) 0, (b) 0.1,

(c) 0.25, and (d) 0.5. Figures B.2(a)-(d) plot the data sets with a spacing of 1 time unit and added

noise with standard deviation: (a) 0, (b) 0.1, (c) 0.25, and (d) 0.5.

158

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.45349304 2.82297878 8.58170935 5.00294216 3.00096025 2.99563030
4.51174553 2.85449844 6.62823265 5.00556955 3.00156492 2.99105924
4.99238076 2.99859074 3.01492435 5.00601344 3.00120915 2.99064822
4.99146711 2.99833568 3.01692050 4.99977169 3.00127190 3.00562028
5.41164488 3.00041157 2.63368682 5.00407481 3.00169485 2.99354476
4.52950146 2.86345035 5.99536511 4.98208845 3.00227742 3.04021357
5.23014876 3.00380962 2.75480813 5.00806826 3.00195515 2.98782239
5.02910172 2.99851551 2.95718491 4.98116177 3.00036498 3.03998012
4.98880979 2.99797447 3.02537543 5.00194410 3.00101635 2.99752334
5.01730157 2.99726625 2.97205239 5.02671669 3.00234357 2.96448600

Table B.2: Top 10 parameter estimates when ranked by period only. The total time of the data set
was 50. No noise was added to the data set. The period estimate 7.2.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.03667808 2.99877831 2.94674901 5.00233371 2.96142654 2.97967263
5.01025578 2.99585437 2.97951441 5.00455219 2.98380067 2.98314902
5.02910172 2.99851551 2.95718491 5.00524012 2.99318505 2.98465917
5.01730157 2.99726625 2.97205239 5.00532887 2.98766553 2.98247279
5.41164488 3.00041157 2.63368682 5.04272821 3.00746675 2.94143301
5.03788017 2.99823107 2.94715798 5.00523705 2.98617568 2.98189665
5.00973107 2.99609168 2.98301825 5.08136778 3.01034799 2.89882706
5.01057440 2.99599781 2.98222167 5.01316384 3.00500603 2.97791794
5.00942510 2.99607230 2.98342591 5.00572454 2.98750436 2.98123492
5.01310373 2.99642982 2.97933189 5.00716098 3.00802062 2.98466702

Table B.3: Top 10 parameter estimates when ranked by amplitude only. The total time of the data
set was 50. No noise was added to the data set. The amplitude estimate was 4.075.

159

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.99909159 2.99268870 3.00005540 5.00096462 2.99800465 2.99938011
4.99693796 2.99147335 3.00571321 5.00173119 2.99807165 2.99746703
4.99137003 2.99066525 3.01855262 5.00066806 2.99782955 3.00029162
5.00136029 2.99203468 2.99527495 5.00128720 2.99856216 2.99839015
5.00122877 2.99283936 2.99575987 5.00155930 2.99756039 2.99811831
5.00140302 2.99133582 2.99501259 5.00622985 2.99605411 2.98825054
4.99289665 2.97473272 3.01212549 5.00121885 2.99833170 2.99853329
4.98671853 2.99675247 3.03164841 5.00127851 2.99816944 2.99869827
4.99940148 2.99147580 3.00038668 5.00138877 2.99821360 2.99797361
5.00138060 2.99074779 2.99500557 5.00133406 2.99840029 2.99855992

Table B.4: Top 10 parameter estimates when ranked by cost only. The total time of the data set
was 50. No noise was added to the data set. The cost estimate was 3.70424.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.98654296 2.98740773 2.98848187 5.15732470 2.99143751 2.81515213
4.99126957 2.98802907 2.96884627 5.03293353 3.01294671 2.99356680
5.01220295 2.98662024 2.94979551 5.00141836 3.03032851 3.00272637
5.02833460 2.99419699 2.91920914 5.00650460 3.01655267 3.02595248
5.03725371 2.99558557 2.91210168 4.99098828 3.01561925 3.05395145
4.97361136 2.99585736 2.98727090 4.96812730 3.03823719 3.08481566
5.03230532 2.99337966 2.91257160 4.96438885 3.02582950 3.09641930
4.90876755 2.97675551 3.10269883 4.96496040 3.03617879 3.09050549
5.05603183 2.99465287 2.89505720 4.94522749 2.99750449 3.11665431
5.03135918 2.99837592 2.90265666 4.96013911 3.03739031 3.09740649

Table B.5: Top 10 parameter estimates when ranked by period, amplitude, and cost together (all
weighted equally). The total time of the data set was 50. Gaussian noise with mean zero and
standard deviation .1 was added to the data set. The cost estimate was 3.69347131. The period
estimate was 7.2. The amplitude estimate was 4.075.

160

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.03725371 2.99558557 2.91210168 4.51405604 2.86296367 5.77502696
4.90212396 2.97214375 2.93961458 4.91561165 2.99483857 3.16189724
4.97361136 2.99585736 2.98727090 4.94522749 2.99750449 3.11665431
5.15602823 2.99627194 2.79552985 4.75600608 2.97087293 4.34252929
5.15836771 2.99560139 2.79065300 4.52437735 2.85969885 6.56480523
4.90185810 2.97299572 2.93783058 4.74483118 2.96160515 4.26098999
5.02833460 2.99419699 2.91920914 5.13069935 3.01918695 2.90111593
5.03230532 2.99337966 2.91257160 4.78424327 2.97501429 3.80105646
4.89527575 2.96658116 2.93801964 4.93001543 3.00347825 3.15639849
4.91492455 2.97876143 2.94504492 4.76564832 2.97562536 3.93224718

Table B.6: Top 10 parameter estimates when ranked by period only. Gaussian noise with mean
zero and standard deviation .1 was added to the data set. The period estimate was 7.2.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.65234988 2.68737271 3.75244545 4.51405604 2.86296367 5.77502696
4.64763434 2.73324097 3.80003034 5.00141836 3.03032851 3.00272637
4.64708190 2.85001217 3.88433383 5.15732470 2.99143751 2.81515213
4.65124176 2.89568839 3.91859457 7.77913213 2.83460288 2.05192581
4.46129995 2.81691637 8.83837681 5.00143743 3.17968341 3.05207821
4.59618143 2.86390909 4.34479834 4.96545439 3.06856955 3.07619281
4.56299638 2.87770007 4.80309097 4.90373046 3.10290768 3.19965424
4.55988934 2.86634519 4.83795727 4.91033900 3.15234548 3.20525673
4.53747628 2.84408028 5.24638181 4.90784133 3.14537740 3.20846484
4.50536723 2.84019708 6.27267196 4.90729455 3.12491798 3.20442039

Table B.7: Top 10 parameter estimates when ranked by amplitude only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .1 was added to the data set.
The amplitude estimate was 4.075.

161

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.98654296 2.98740773 2.98848187 5.03293353 3.01294671 2.99356680
4.99126957 2.98802907 2.96884627 4.90894985 3.10110930 3.36544828
5.03135918 2.99837592 2.90265666 4.95051552 3.05360532 3.20509225
5.02399933 3.00371869 2.90096374 4.94949029 3.05954911 3.21702925
5.01667109 3.00219290 2.91033661 5.00143743 3.17968341 3.05207821
5.04859709 3.00183485 2.87867138 4.89931616 3.16157918 3.45393713
5.01220295 2.98662024 2.94979551 4.97956114 3.02257196 3.11362361
5.01362155 3.00184289 2.91077044 4.97978095 3.02482263 3.10731369
5.02833460 2.99419699 2.91920914 4.88997926 3.11788955 3.41825714
5.02470489 3.00677529 2.89069948 5.00650460 3.01655267 3.02595248

Table B.8: Top 10 parameter estimates when ranked by cost only. The total time of the data set
was 50. Gaussian noise with mean zero and standard deviation .1 was added to the data set. The
cost estimate was 3.69347131.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.18151647 3.00361258 2.80073595 4.90739488 2.88710651 3.19750507
5.19252543 3.00942825 2.79835902 4.58149095 2.86844613 4.48298620
5.18317737 3.01312170 2.81609341 5.05547537 2.90489508 2.99272712
5.23063685 3.02535050 2.78645812 4.98236413 2.91390226 3.13773231
5.16324568 2.99821953 2.81384892 4.99318222 2.88035004 3.11191314
5.20225160 3.02105459 2.80810218 4.92383515 2.88146329 3.28930177
5.23997201 3.02993774 2.78509779 4.54999998 2.89388432 6.75750987
5.15800017 2.99753664 2.81765158 4.59698279 2.89408324 6.36502321
5.15705501 2.99654632 2.81921632 4.52363792 2.90351028 8.42986473
5.23166576 3.02801702 2.78987970 4.56273115 2.94057599 7.99100708

Table B.9: Top 10 parameter estimates when ranked by period, amplitude, and cost together (all
weighted equally). The total time of the data set was 50. Gaussian noise with mean zero and
standard deviation .25 was added to the data set. The cost estimate was 3.77331927. The period
estimate was 7.2. The amplitude estimate was 4.075.

162

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.18317737 3.01312170 2.81609341 4.59698279 2.89408324 6.36502321
5.18151647 3.00361258 2.80073595 4.63101270 2.90662017 7.83324867
5.17701684 3.01387024 2.82434932 4.68391234 2.95107991 9.34557648
5.09844449 3.01613419 2.92681751 4.47760926 2.84106137 5.12348312
5.19252543 3.00942825 2.79835902 4.67288338 2.94867665 9.11488005
5.14185394 3.00635434 2.85666843 4.53011640 2.86897875 4.50196749
4.78293660 2.98011417 3.44821693 4.54999998 2.89388432 6.75750987
4.55362019 2.87894618 8.88038502 4.58149095 2.86844613 4.48298620
5.20225160 3.02105459 2.80810218 5.59612661 2.97756431 2.58264460
5.20434800 3.02452746 2.81128035 4.52363792 2.90351028 8.42986473

Table B.10: Top 10 parameter estimates when ranked by period only. The total time of the data set
was 50. Gaussian noise with mean zero and standard deviation .25 was added to the data set. The
period estimate was 7.2.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.09077477 2.96781168 2.87770728 4.46859720 2.95449634 9.89178802
5.16324568 2.99821953 2.81384892 4.58149095 2.86844613 4.48298620
5.15705501 2.99654632 2.81921632 6.13001640 3.09235154 2.36878189
4.90626198 2.59639289 3.00919174 4.41483174 2.63814455 8.64835988
5.15800017 2.99753664 2.81765158 4.42932010 2.96054128 9.76395633
5.15360454 2.99623759 2.82370297 4.53011640 2.86897875 4.50196749
5.06713475 2.95101903 2.89686421 4.51835945 2.97032617 9.48870279
5.18151647 3.00361258 2.80073595 4.52363792 2.90351028 8.42986473
4.84694159 2.42981004 3.05726182 4.90739488 2.88710651 3.19750507
4.90768134 2.60166489 3.00434792 5.93697552 3.31490733 2.42478777

Table B.11: Top 10 parameter estimates when ranked by amplitude only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .25 was added to the data set.
The amplitude estimate was 4.075.

163

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

5.23997201 3.02993774 2.78509779 4.94816768 2.85247025 3.29830333
5.21034548 3.04332799 2.83036315 4.68391234 2.95107991 9.34557648
5.23166576 3.02801702 2.78987972 5.05291426 2.80271781 3.21196651
5.22640532 3.02800721 2.79471300 4.84604997 2.82043963 7.66937818
5.23063685 3.02535050 2.78645812 5.02945491 2.80842024 3.25328522
5.19617244 3.04266841 2.84216722 4.92383515 2.88146329 3.28930177
5.27092063 3.04013104 2.77292787 4.84274592 2.82889322 7.88399970
5.21868354 3.02670463 2.80026003 5.48241972 2.71325689 2.51153835
5.19375775 3.04016353 2.84222764 5.00986106 2.81622895 3.24811420
5.19445399 3.03077907 2.82842203 4.67288338 2.94867665 9.11488005

Table B.12: Top 10 parameter estimates when ranked by cost only. The total time of the data set
was 50. Gaussian noise with mean zero and standard deviation .25 was added to the data set. The
cost estimate was 3.77331927.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.76019839 2.96649153 3.48843037 4.89380202 2.94513595 3.09510014
4.89241719 3.03318738 3.03422286 4.98081309 2.97516979 2.96946905
4.80843277 3.03328713 3.15865516 4.92265681 2.97410497 2.97753241
4.78099517 3.03850820 3.15799987 4.59948942 2.87294317 4.06058681
4.48041745 2.93076420 5.22437398 5.14856306 3.03510629 2.80208554
4.86336016 3.05467792 2.96479556 5.05740650 3.03809159 3.08531641
4.58751717 2.99738118 3.65674626 4.42934349 2.80542045 6.94825148
5.17674566 3.07944500 2.63270792 4.42949473 2.85265533 5.77450651
4.91086731 3.07294215 2.86832924 4.79005676 2.99485236 3.00066761
4.41177621 2.92072161 6.65507913 4.90535248 3.07646579 2.87010276

Table B.13: Top 10 parameter estimates when ranked by period, amplitude, and cost together (all
weighted equally). The total time of the data set was 50. Gaussian noise with mean zero and
standard deviation .5 was added to the data set. The cost estimate was 3.64458961. The period
estimate was 7.2. The amplitude estimate was 4.075.

164

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.76019839 2.96649153 3.48843037 3.98200278 2.74433532 3.78978505
3.84919929 2.61530024 6.41633408 3.97692464 2.64758383 5.63333213
3.85107435 2.62443093 6.32302339 4.92265681 2.97410497 2.97753241
3.85390716 2.61632754 6.81107172 4.02045527 2.70861287 4.39022162
3.85227788 2.63271162 6.17688330 4.01883325 2.76929549 3.77360712
4.89241719 3.03318738 3.03422286 5.05740650 3.03809159 3.08531641
3.85842698 2.62898045 6.89053043 4.42934349 2.80542045 6.94825148
4.80843277 3.03328713 3.15865516 4.02487954 2.70685393 4.39587422
3.85755789 2.64286461 6.41847742 4.98081309 2.97516979 2.96946905
3.85985114 2.63488338 6.84616283 4.01373161 2.72782291 3.93628798

Table B.14: Top 10 parameter estimates when ranked by period only. The total time of the data set
was 50. Gaussian noise with mean zero and standard deviation .5 was added to the data set. The
period estimate was 7.2.

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.76019839 2.96649153 3.48843037 4.59948942 2.87294317 4.06058681
4.48041745 2.93076420 5.22437398 4.89380202 2.94513595 3.09510014
4.89241719 3.03318738 3.03422286 4.98081309 2.97516979 2.96946905
4.38869629 2.90940316 8.77831113 5.14856306 3.03510629 2.80208554
4.80843277 3.03328713 3.15865516 4.42934349 2.80542045 6.94825148
4.41177621 2.92072161 6.65507913 4.39638879 2.75680980 9.85211434
4.78099517 3.03850820 3.15799987 4.41647449 2.96511650 7.29847819
4.58751717 2.99738118 3.65674626 4.92265681 2.97410497 2.97753241
4.86336016 3.05467792 2.96479556 4.42949473 2.85265533 5.77450651
4.31914764 2.90896920 8.51678313 4.40880553 2.87047965 6.72533671

Table B.15: Top 10 parameter estimates when ranked by amplitude only. The total time of the data
set was 50. Gaussian noise with mean zero and standard deviation .5 was added to the data set.
The amplitude estimate was 4.075.

165

Spacing = 0.5 time units Spacing = 1 time unit
TR DR Hill TR DR Hill

4.89241719 3.03318738 3.03422286 4.92265681 2.97410497 2.97753241
4.76019839 2.96649153 3.48843037 4.89380202 2.94513595 3.09510014
5.17674566 3.07944500 2.63270792 4.90535248 3.07646579 2.87010276
4.80843277 3.03328713 3.15865516 4.98081309 2.97516979 2.96946905
4.86336016 3.05467792 2.96479556 4.96379323 3.02686292 2.72669873
4.78099517 3.03850820 3.15799987 4.79005676 2.99485236 3.00066761
4.91086731 3.07294215 2.86832924 4.86753375 3.01413463 2.83746057
4.92920305 3.08045111 2.81970486 4.86113311 3.18048291 2.80560744
4.82370121 3.07261056 2.95217424 5.33577525 3.80284772 2.55837708
4.85598914 3.08093770 2.88526212 4.59948942 2.87294317 4.06058681

Table B.16: Top 10 parameter estimates when ranked by cost only. The total time of the data set
was 50. Gaussian noise with mean zero and standard deviation .5 was added to the data set. The
cost estimate was 3.64458961.

166

(a)

(b)

(c)

(d)

Figure B.1: Data used in Section 4.7. Spacing between consecutive time points is .5 (a.u.). Gaus-
sian normal noise with mean 0 and added noise with standard deviation: (a) 0, (b) .1, (c) .25, and
(d) .5. 167

(a)

(b)

(c)

(d)

Figure B.2: Data used in Section 4.7. Spacing between consecutive time points is 1 (a.u.). Gaussian
normal noise with mean 0 and added noise with standard deviation:(a) 0, (b) .1, (c) .25, and (d) .5.

168

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	From Biological Clocks to Circadian Rhythms
	Overview of the Main Results

	A Synthetic Intracellular Regulatory Network That Exhibits Oscillations
	Introduction
	The Repressilator as an Architecture for Circadian Clocks
	Section Organization

	Background
	Elowitz and Leibler Mathematical Model
	Müller et al. Mathematical Model
	Routh-Hurwitz Criterion
	Monotone Systems Theory

	Generalized Repressilator Model
	Steady States
	Odd-n Case
	Even-n Case

	Stability Analysis
	Even-n Case
	Odd-n Case

	Counterexample to Conjecture
	Asymptotic Behavior

	Discussion

	Transcription-Rate Function from Successive Binding
	Introduction
	New Transcription-Rate Function from Successive Binding
	Successive-Binding Function
	Transcription-Rate Function Obtained from Successive-Binding Function

	Numerical Comparison of Models Arising from Hill Functions vs. Successive-Binding Transcription-Rate Functions
	Amplitude
	Period
	Phase

	Analytical Comparison of Amplitudes
	Discussion

	Novel Algorithms for Estimating Parameters of the Repressilator
	Introduction
	Background
	The Constrained HEKF Algorithm
	Parameter Estimation
	Variance Test

	Skewness
	The Cost of Protein Production
	Estimating the Period of a Discrete Data Set Using the Fast Fourier Transform

	Challenges in Parameter Estimation of the Repressilator
	Simulated Repressilator Data
	Challenge 1: Multimodality of the Objective Function
	Challenge 2: Lack of Initial mRNA Values

	Previous Parameter Estimation Procedures Applied to the Repressilator
	Constrained HEKF Algorithm Applied to Simulated Repressilator Data
	Lack of Some Initial Data Affects Accuracy of Estimates Generated by GEARS

	Analyzing Possible Test Statistics
	Methods
	Skewness
	Period
	Amplitude
	Cost of Protein Production
	Peak-to-Trough Time
	Peak to 50%-Amplitude
	Minimum Derivative
	Biological Significance

	New Algorithms
	Algorithm Results
	Algorithm 4.6.1 Results
	Algorithm 4.6.2 Results
	Repeated Runs of Algorithms 4.6.1 and 4.6.2

	Final Algorithm and Algorithm Comparison
	Algorithm Comparison
	Comparison with the Particle Swarm Algorithm
	Comparison with the GEARS Toolbox
	Revisiting the Example in Section 4.4.1

	Discussion

	Conclusion and Further Directions
	Further Directions
	Parameter Estimation of Actual Repressilator Data
	A Generalized Stochastic Model of the Repressilator

	REFERENCES
	APPENDIX Select Matlab Code
	Section 3 Codes
	Estimating Hopf Bifurcations of Models (SS) and (SB)
	Computing Phase, Amplitude, and Periods
	Plotting Limit Cycles

	Section 4 Codes
	Constrained HEKF Algorithm
	Code to Update P0
	Code to Compute the Jacobian

	Generating Plots for Skewness
	Generating Plots for Period and Amplitude
	Generating Plots for Cost of Protein Production
	Generating Plots for Peak to Trough Time
	Generating Plots for Peak to 50% Amplitude Time
	Generating Plots for Min Derivative
	Cost Estimator
	Generating Simulated Data
	Cost Estimator
	Algorithm 4.6.2 and Particle Swarm Comparison

	APPENDIX Supplementary Tables and Figures
	Results from the New Algorithm in Section 4
	Supplementary Tables for Section 4, Section 4.7.1

	Supplementary Figures
	Data Sets for Section 4.7

