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ABSTRACT

Gain-scheduling approach is a powerful tool but it only guarantees the local stability and perfor-

mance for a slow varying system. Linear parameter varying (LPV) systems hence were developed

to overcome this drawback. The LPV system is a linear system with parameter-dependent system

matrices, which can be formulated from a nonlinear system via either approximation or function

substitution. Three major control design methods includes linear fractional transformation, poly-

topic system design and gridding approach. All methods results in a convex optimization with

either parameter-dependent or parameter-independent linear matrix inequalities (LMIs) and some

conservatism may be introduced. Gridding based approach is the main focus in this research be-

cause it has no further assumptions about the structure and hence admits less conservatism. How-

ever, the number of samples for gridding approach grows up exponentially as the dimension of the

problem increases. This drawback hence inspires the approach developed in this research.

Several stability and performance conditions are introduced in this research and all controller syn-

theses arrive at optimization problems with parameter-dependent LMIs. Hence the objective of this

research is to solve these problems. We present two methodologies to handle with generic LPV

control systems. The first approach is to consider the problem in a stochastic framework so that

the stability and performance are guaranteed in the stochastic sense. Two algorithms, i.e. poly-

nomial chaos expansion and stochastic collocation, are used to formulate the convex optimization

problems. The other method is to directly interpolate the parameter-dependent LMIs by sparse

grid with Smolyak algorithm, which extremely reduces the amount of the sample points and suc-

cessfully solve the infinite-dimensional optimization by the proposed algorithm. Two examples

are shown to compare two proposed controllers with existing methods, where the benefits of the

method we develop are shown and some limitations of the current methodologies are discussed.
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1. INTRODUCTION

1.1 Origin of Linear Parameter-Varying Systems

Linear control is a well studied subject that is under a big assumption that the dynamical system is

a linear mapping from inputs to outputs. However, real physical systems are never performing as

linear systems even a simple mass-spring-damper system which can be nonlinear with respect to its

state-dependent spring and damper coefficients. A linear approximation technique, e.g. Jacobian

linearization, thus is applied to the systems at an operating point (or so-called equilibrium point)

such that the nonlinearities are eliminated, but it is limited by a "small" deviation from the point

and the error becomes significant when a trajectory is deviated too much.

As a result of the drawback of linear control, A gain-scheduling method, which is adaptive to

the original nonlinear system, has been developed. With a big assumption of the slowly varying

scheduling variables, the outline of gain-scheduling design is described as following steps:

1. Choose different operating points from a trajectory.

2. Linearize the system about each chosen point to formulate a family of linear systems.

3. Implement linear control theory for each linearized system to design a set of controllers and

satisfy specific specifications.

4. Use interpolation between each controller design to obtain a smooth structure.

Because of the simplicity of the design process, it has been widely used in various applications,

e.g. flight systems, ground vehicles, chemical process [4, 5, 6], etc., yet the performance and

stability of the controlled system are only guaranteed at each design point instead of thorough

trajectories due to the absence of theoretical analysis. The current major resolution is to exam
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the system by simulation explicitly. Furthermore, Shamma [7] has discussed the stability issue of

the parameter dependent system when designing controllers with ignorance of the parameter time

variations. An example of frozen parameter design has been demonstrated that it may still cause

unstable system at designed point if relatively fast time varying parameters exist. Consequently,

the research on linear parameter-varying systems are inspired, that the whole linearized models

should be investigated synchronously when designing controllers.

Linear parameter varying (LPV) systems are a special class of nonlinear systems, which were

introduced in [8] and can be described by the ordinary differential equations of the form

ẋ = A(ρ(t))x+B(ρ(t))u, (1.1)

where ρ(t) is a time varying exogenous parameter vector and measurable in real time. To simplify

the expression, ρ(t) and ρ are changeable and both will exist later on, but they fundamentally rep-

resent the same meaning. The system matrices, A(ρ(t)) and B(ρ(t)) are both depending on the

parameters, which can be either polytopic or fully nonlinear. Further, the model with the parame-

ters containing the states x is called quasi-LPV system. LPV modeling provides a mechanism for

transforming many nonlinear systems and designing controllers using parameter dependent convex

optimization problems.

1.2 Literature Review

This section surveys some important research about LPV systems, which includes modeling and

controller design. One should note that the modeling indicated in this section means the ways

to transform an original nonlinear system with or without exogenous parameters to a standard

LPV or quasi-LPV formulation defined in (1.1). Generally speaking, Two catogories of modeling

techniques have been investigated with different philosophies to transform nonlinear systems to

LPV form either approximately or exactly [9]. In addition, three kinds of control syntheses have

been developed and all of them turn out to become solutions to convex optimization problems. A
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brief overview of LPV modeling and control are shown as follows.

The goal of modeling is to transform an original nonlinear system to a standard LPV or quasi-LPV

formulation by several techniques. The first direction is to utilize Jacobian linearization to the

original nonlinear system around chosen points and formulate an LPV system with interpolation

of a family of linearized models, which is similar to conventional gain-scheduling technique. The

points can be chosen from equilibrium conditions, nominal trajectories, or operating points devi-

ated from the equilibrium. Linearization based method is the most straightforward method and

easy to apply to various types of nonlinear systems. However, the result is a local approximation

around the trim points , so the linearized model may get a divergent behavior for large inputs and

to capture the transient response of the original system seems to be impossible [10].

The second category is substitution based transformations, which somehow substitute nonlinear

terms into linear ones. The easiest way is to simply rewrite a nonlinear function as a virtual

scheduling parameter, but the result of the model is not unique because of the different choices of

scheduling parameters assignment from the user. Some application can be seen in [11, 12]. One

drawback is that the singularities may not been seen in the scheduling parameters if the substi-

tutions are not used carefully. The detail is shown in [9]. The second way of substitution based

method is state transformation first introduced in [13], which eliminate the nonlinear terms in-

dependent of scheduling parameters, but it is applied only in a special form of nonlinear system

as  ż
ẇ

 = A(ρ(t))

z
w

+B(ρ(t))u(t) +K(ρ(t)) (1.2)

with

A(ρ(t)) :=

A11(ρ(t)) A12(ρ(t))

A21(ρ(t)) A22(ρ(t))

 ,B(ρ(t)) :=

B1(ρ(t))

B2(ρ(t))

 , andK(ρ) :=

K1(ρ)

K2(ρ)


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Under an assumption that there exist continuously differentiable functions weq and ueq such that

an equilibrium condition

0

0

 =

K1(ρ(t))

K2(ρ(t))

+

A11(ρ(t)) A12(ρ(t))

A21(ρ(t)) A22(ρ(t))


 z(ρ(t))

weq(ρ(t))

+

B1(ρ(t))

B2(ρ(t))

ueq(ρ(t))

is satisfied, the nonlinear system (1.2) can be transformed to

 ż

ẇ − ẇeq

 =

0) A12(ρ(t))

0 A22(ρ(t))− ∂weq(ρ(t))

∂z(t)
A12(ρ(t))


 z

w −weq


+

 B1(ρ(t))

B2(ρ(t))− ∂weq(ρ(t))

∂z(t)
B1(ρ(t))

 (u− ueq)

by basic algebra manipulations. One should notice that this approach does yield an exact transfor-

mation without any approximation, which is different from Jacobian linearization, but it is limited

to some conditions described above. More detail and related application can be found in [10, 14,

15, 16]. The third technique named function substitution was proposed in [17]. This approach

approximates a quasi-LPV model with nonlinear terms of control inputs and non-scheduling states

to a standard quasi-LPV form. The idea is to introduce function decomposition that is linear in

scheduling parameter to obtain a linearization of the nonlinear input. By solving minimization

problems subject to some smoothness constraints at grid points that are chosen by the user, one

can obtain a final decomposition function and the final quasi-LPV form is carried out by substitut-

ing this approximation back to the original quasi-LPV system. It is noted that the method is also

an approximation as the Jacobian linearization and the accuracy is highly depending on the choice

of grid points. Recently Shin has resolved the local statility issue caused by misrepresentation of

the model [18], but it is still an open question for choosing the points to get the optimal model.

Nevertheless, function substitution seems to be more accurate for some models, such as the model

of F-16 [19, 20, 21], Boeing 747-100/200 [17, 10] and missile systems [22].
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Figure 1.1: A block diagram describes the structure of LFT model where upper block represents
the structure of parameters and lower block denotes the nominal linear system with parameter
inputs.

Different from the gain-scheduling method, the LPV control theoretically proves the guarantee of

performance and stability of the system. This can be achieved through several approaches. One

way is to use linear fractional transformation (LFT) shown in Fig.(1.1), which is also omnipresent

in the area of systems with uncertainties, e.g. µ-analysis [23]. This allows an LPV system to be

transformed into a two-block interconnection, where one represents the nominal system and one

is associated with parameters describing how they enter the system. In addition, scaled small-gain

theorem is a key technique to be used for bounded conditions [24, 25, 26]. However, a certain

conservatism is existing due to a hypothesis on the multipliers with a block-diagonal structure.

Scherer [26, 27, 28, 29] thus has introduced so-called full block S-procedure, which allows for

arbitrary fast parameter variations by subdividing the parameter set, for LPV systems in the form

of LFT so that the conservatism is reduced to an arbitrary degree.

The other approach of LPV control is based on Lyapunov functions, which can be either parameter-

dependent or parameter-independent. Since the unknown matrix of the latter is considered as a

constant and the associated stability condition formulated from a fixed value matrix needs to be

satisfied for each element in the set of parameters, it would be more conservative than the former

one that is adaptive to the parameter variations. Furthermore, the LPV control with a parameter-

dependent Lyapunov function turns out to be a parameter-dependent convex optimization prob-

lem, which is infinite dimensional, so the research on specific structure of parameter-dependent
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Lyapunov function is indispensable. The most straightforward and common way is to design a

controller based on the LPV system matrices affine in parameters, or called a polytopic system.

A parameter-affine Lyapunov function thus can be defined and evntually yield a convex optimiza-

tion problem in finite dimensional [30, 31, 32, 33, 34]. An obvious drawback of polytopic control

system is conservatism due to an assumption of linearity of the parameters in the structure of Lya-

punov function, although a polytopic system may require less effort on numerical computations.

To reduce the conservatism from the affine parameter-dependent Lyapunov function, a generic LPV

system is considered, where no further assumption about the structure of the system matrices is

needed. Hence, an infinite-dimensional parameter-dependent Lyapunov function is parameterized

by user-defined functions, which are highly depending on the nonlinear terms in the LPV system.

Moreover, the resulting control synthesis arrives at parameter-dependent linear matrix inequalities

(LMIs) [35, 36, 37, 38], which is convex if the parameters are constants. Intuitively, a gridding

technique is used to find a solution to the parameter-dependent optimization problem, where a set

of sample points are chosen and substituted into the LMIs respectively. Accordingly, the controller

is obtained by solving the problem with a large amount of LMIs simultaneously. One should notice

that the controller obtained here does not necessarily guarantee the performance and stability for

the whole parameter set but the samples chosen from the set. A further check-up should be done

by analyzing the stability with a set of finer grids or implementing the control system in simulation

directly. Another open question is the choice of the grid points, which involves the amount of

points and the location of the points. Moreover, the size of the problem exponentially increase as

the dimension of the parameters increase, which is known as "the curse of dimensionality" [39].

All these approaches result in convex optimization problems with finite but large number of vari-

ables and there is a tradeoff between computational complexity and conservatism in the design.

While the polytopic framework renders somehow less computation cost, the generic one carries

out a less conservative result. However, regarding an extreme case in which a highly nonlinear

system is given, the polytopic system may decrease computational efficiency more than the generic
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one since more virtual scheduling parameters should be introduced to achieve the polytopic frame-

work. Hoffmann [40] has shown a decision chart which gives an advice how to choose a method

for an LPV system.

LPV framework is quite elegant and powerful and many engineering problems exploit this to de-

sign controllers that guarantee performance within certain specifications. For example, Lu et.

al. [41] assigned rotational speed of motors in active magnetic bearing systems as a scheduling

variable and designed a robust H∞ control that improves the performance. Johansen et. al. [42]

designed a switched vehicle-speed-dependent LQR control for an anti-lock brake system to main-

tain steerability. Fialho et. al. [43] combined LPV control with backstepping techniques to achieve

adaptive active suspension by scheduling both suspension deflections and vehicle speed. LPV con-

trol systems has also been used widely in the area of aerospace engineering. Tan et. al. [22] re-

duced a nonlinear coupled generic missile model to a quasi-LPV form. Marcos and Balas [17] have

also investigated different approaches to obtain quasi-LPV models for Boeing 747 series 100/200

and showed that these models match at trim points. Various control techniques have been devel-

oped based on F-16 aircraft and missile autopilot LPV model, e.g. L2 norm control [3, 44] and

model predictive control [21], by scheduling angle of attack and vehicle velocity.

1.3 Motivation

1.3.1 Modeling of Multibody Dynamics in Non-minimal Coordinates

LPV systems have been proved that it is a successful framework to investigate many engineer-

ing applications, especially in the area of aerospace, robotics, automotive and etc. When looking

deeply into the fundamental development of dynamics, a minimal set of generalized coordinates is

usually used to describe the multibody system involving lots of nonlinear term, e.g. trigonomet-

ric functions, so the configuration space is naturally reduced in the presence of joints and other

constraints. Changing the generalized coordinates with Cartesian coordinates, which is a non-

minimal representation, to describe the motion of bodies provides two notable advantages. First,
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A non-minimal coordinate system avoids singularity issues that cause the dynamical model fail to

be well-behaved. As an example of tesegrity system, Skelton observed [45] that in three dimen-

sions, a minimal coordinates approach is prone to singularities developed in the mass matrix, and

therefore, the dynamics necessitates an excess coordinates description. Additionally, non-minimal

descriptions of vector kinematics allows us to write elegant differential-algebraic equations (DAE),

free of trigonometric terms.

1.3.2 LPV Control with Gridding Method

Conservatism is always an important issue that needs to be concerned during LPV control design

process, since some assumptions are necessarily made to simplify the problem and render a convex

optimization problem with a family of LMIs. An LFT based control, for example, assumes a sys-

tem having rational dependence on a set of scheduling parameters, and an LPV control based on

polytopic system also assumes system matrices affine in the parameters. As a result, these meth-

ods have no capability of resolving generic LPV problems directly unless introducing a larger set

of parameters or linearizing the problems, which introduces conservatism further. The gridding

method, however, is able to handle a more general system even with highly nonlinear terms, al-

though desired conditions are only guaranteed at grid points. The other advantage is more degree

of freedom of parameterization for infinite-dimensional function in convex optimization that ren-

ders a controller with better resolution. Therefore, it has great potentiality to explore a feasible

solution to a complex system with less conservatism.

As mentioned in the previous section, the choices of location and number of grid points are still

open questions. Generally speaking, equidistant samples in each dimension are chosen since be-

forehand there is no clue about variations of parameters in time. Besides, a finer grid yields guar-

antees of feasibility at more sample points, but adversely the computational expense increases

exponentially. Hence, a novel gridding method that can guarantee the stability and performance

for all elements in the parameter set with both less computation effort and conservatism becomes
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a priority. For instance, Bandeira et. al. [46] and Araujo et. al. [47] recently have proposed a

gridding-based algorithm for stability analysis of LPV systems by using wavelet theory, in which

the system matrix are approximated as a Haar series expansion and an upper bound of the asso-

ciated approximation error is developed. Using the error bound one can ensures the stability for

the whole parameter set. Although the conservatism may be introduced, this can be alleviated by

increasing the order of the Haar expansion.

1.4 Contribution of Thesis

This section states major contributions of the thesis separated in two parts: an LPV model of

a special class of rigidbody motions, i.e. tensegrity structures, and control theories in the LPV

framework.

Regarding LPV model, this thesis is tempted to obtain a mathematical description of rigid multi-

body dynamics in the LPV framework. First of all, a Lagrangian formulation based on Cartesian

coordinates is used for deriving DAEs of the governing equations of motion (EOM) for a rigid

multibody system. In addition, a quasi-LPV system is transformed from the EOM by introducing

virtual scheduling parameters, which are system states themself, after model reduction by coordi-

nate partitioning [48] is implemented. Finally, a novel technique for improving the accuracy of the

simulation is developed to ensure that the errors in states arising from numerical integration are

corrected on the position and velocity levels according to both geometric and energy constraints.

With respect to LPV control, We are focusing on both linear quadratic regulator (LQR), which

is an optimal control with respect to a quadratic cost function, and H2 control, which yields a

robust performance under certain disturbances. Both control methods in the LPV framework result

in a parameter-dependent convex optimization problem. This thesis develops two approaches to

solve this problem. Firstly, a new LPV regulator synthesis algorithm, in the stochastic framework,

which generates a parameter dependent gain, is developed. In this framework, orthogonal basis

functions are determined by polynomial chaos theory. The controller is optimal with respect to a
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quadratic cost in states and control. To see the performance we look at the LPV-LQR problem with

application to a realistic autopilot missile control problem. Secondly, an interpolation technique,

i.e. Smolyak algorithm, is utilized directly to the parameter-dependent optimization problem so

that the size of optimization is extremely reduced comparing with the convectional tensor-grid

method. An LQR and H2 control are developed with this methodology and applied to a robotic

arm based on tensegrity structures as an example.

1.5 Organization of Thesis

This section gives a brief overview of each chapter. In Chapter 2, we analyze stability conditions

of generic LPV systems, which contain quadratic stability and robust stability. Moreover, a neces-

sary condition to guarantee a linear quadratic regulator for LPV systems is developed, where the

control gain is parameter-dependent and solved via an convex optimization problem. A full-state

feedback H2 control synthesis for LPV systems is also being established, where a convex opti-

mization formulated with two kinds of parameter-dependent LMIs guarantees both the stability

and performance.

Chapter 3 presents a new theoretical framework for designing linear parameter varying controllers

in the stochastic framework. We assume the scheduling variables to be random and implement the

polynomial chaos expansion to synthesize the controller for the resulting linear stochastic dynam-

ical system. Two algorithms are presented that minimize the performance objective with respect

to the stochastic system. The first algorithm is based on the polynomial chaos expansion and the

second algorithm is based on the stochastic collocation.

Instead of considering a stochastic framework as Chapter 3, Chapter 4 introduces another novel ap-

proach that improves the conventional gridding method. A high dimensional polynomial interpo-

lation with sparse grid, i.e. Smolyak algorithm, is used to approximate parameter-dependent LMIs

derived in Chapter 3. Using the algorithm, a convex optimization problem with finite-dimensional

LMIs is obtain. The control gain then can be determined by solving the problem.
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In Chapter 5, we present a Lagrangian approach to simulating multibody dynamics in a tenseg-

rity framework with an ability to tackle holonomic constraint violations in an energy-preserving

scheme. Governing equations are described using non-minimum coordinates to simplify descrip-

tions of the general multibody structure’s kinematics. This leads to an undesirable constraint drift

with numerical computation errors. To minimize this constraint drift, the direct correction method

has been employed in conjunction with a novel energy-correcting scheme that treats the total me-

chanical energy of the system as a constraint to nullify any numerical violations occurring in in-

tegration. The coordinate partitioning method is applied transform the nonminimum description

to a minimum coordinate system, then the nonlinear terms in system matrices are considered as

matrices function of parameter and we finally reach a standard quasi-LPV formulation.

Chapter 6 shows two examples to demonstrate the performance of the proposed methods. The

first problem is a common LPV application, i.e. a nonlinear autopilot missile system. The control

objective of the problem is to stabilize the trajectory with LQR. Both proposed methods are applied

to the system and we compare the results with each other. The second problem is a robotic arm

built with tensegrity structures in 2 dimensions, where the derived mathematical model and the

associate simulation algorithms are from the Chapter 5. We opt to have a control objective for this

model: a tracking problem. Since the LPV control with stochastic framework is not suitable for

high dimension problem, we only test Smolyak algorithm based control in this example.

Finally, Chapter 7 concludes the work done in this thesis and discuss related future work that may

improve the performance and computation time for controller synthesis.
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2. ANALYSIS AND CONTROLLER DESIGN OF LPV SYSTEMS

In this chapter we state stability results for generic LPV systems. This involves quadratic stability

condition and robust stability condition. In addition, we develop a linear quadratic regular in an

LPV framework, in which a sufficient condition, that guarantees both stability and performance

criteria, is derived. Finally, we introduced an LPV system with disturbances and derive certain

conditions of H2 control that ensure disturbance rejection and stability of the systems.

2.1 Mathematical Preliminary

Before presenting the main content of this chapter, some definitions and notations have to be made.

2.1.1 Stability of Dynamical Systems

Consider a dynamical system of the form

ẋ(t,ρ) = f(x(t)) (2.1)

with an initial condition x(0) = x0, where x(t) ∈ Rn is the system state vector, f(x(t)) : Rn →

Rn is a continuous function vector. We assume there exists an equilibrium point of the system

(2.1), xe, such that f(xe) = 0, then we define the following stability conditions.

1. If, for each ε > 0, there exists δ > 0 such that ‖x(t)−xe‖ < ε for all t ≥ 0 if ‖x0−xe‖ < δ,

then xe is said to be Lyapunov stable.

2. If there exists δ > 0 such that limt→∞ ‖x(t)− xe‖ = 0 if ‖x0 − xe‖ < δ, then xe is said to

be asymptotically stable.

3. If there exists δ > 0, m > 0, λ > 0 such that ‖x(t)− xe‖ ≤ m‖x0 − xe‖e−λt for all t ≥ 0
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if ‖x0 − xe‖ < δ, then xe is said to be exponentially stable.

Based on these conditions we arrive a well-known theorem related to Lyapunov functions [49].

Theorem 1. Consider the dynamical system (2.1) and an equilibrium point xe = 0. If there exists

a continuous differentiable function V (x) : Rn → R such that

V (0) = 0 for x = 0 (2.2)

V (x) > 0 for all x 6= 0 (2.3)

V̇ (x) < 0 for all x 6= 0, (2.4)

then the equilibrium point xe is globally asymptotically stable.

The function V in the theorem is called Lyapunov function, named after Aleksandr Mikhailovich

Lyapunov [50]. Furthermore, a theorem with stronger stability condition is also derive in [49].

Theorem 2. Consider the dynamical system (2.1) and an equilibrium point xe = 0. If there exists

a continuous differentiable function V (x) : Rn → R such that

k1‖x‖a ≤ V (x) ≤ k2‖x‖a

V̇ (x) ≤ −k3‖x‖a for all x 6= 0,

where k1, k2, k3 and a are positive constants, then the equilibrium pointxe is globally exponentially

stable.

So far, we have results to satisfy two kinds of stability conditions for general nonlinear system. We

further define stability conditions for general LPV systems. Consider a general LPV system of the

form

ẋ(t) = A(ρ(t))x(t) (2.5)
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with an initial condition x(0) = x0, where x ∈ Rn is the state vector of the system, A(ρ(t)) :

Rnρ → Rn×n is the system matrix that is a continuous differentiable matrix function of the param-

eters ρ(t). We assume the parameter ρ(t) is bounded in magnitude and rate, i.e. ρ(t) ∈ Dρ ⊂ Rnρ

and ρ̇(t) ∈ Dρ̇ ⊂ Rnρ . It is noted that we do not assume any structure in (2.5), that is, the LPV

model here fits most cases of parameter-varying nonlinear systems even it is a quasi-LPV system.

We then define the following stability conditions, which is also shown in [39].

1. If, for each ε > 0, there exists δ > 0 such that ‖x(t,ρ)−xe‖ < ε for all t ≥ 0 and ρ(t) ∈ Dρ

if ‖x0 − xe‖ < δ, then xe is said to be Lyapunov stable.

2. If there exists δ > 0 such that limt→∞ ‖x(t,ρ)−xe‖ = 0 for all ρ(t) ∈ Dρ if ‖x0−xe‖ < δ,

then xe is said to be asymptotically stable.

3. If there exists δ > 0, m > 0, λ > 0 such that ‖x(t,ρ) − xe‖ ≤ m‖x0 − xe‖e−λt for all

t ≥ 0 and ρ(t) ∈ Dρ if ‖x0 − xe‖ < δ, then xe is said to be asymptotically stable.

2.1.2 Norms for Signals

To specify the performance of a system we need to compare the "size" of matrices and vectors

somehow. The "size" mentioned here does not actually mean dimension of them but in the sense

of certain properties we are interested in. Therefore, some spaces and norms needs to be defined

so that we have a level to compare with.

First of all, we give a definition of a norm for signals.

Definition 3. Suppose there exists a signal u(t) defined on R, then ‖u(t)‖ is said to be a norm if it

has the following 4 properties:

• ‖u(t)‖ ≥ 0

• ‖u(t)‖ = 0 if and only if u(t) = 0 for all t
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• For any a ∈ R, ‖au(t)‖ = ‖a‖‖u(t)‖

• For any v(t) ∈ R, ‖u(t) + v(t)‖ ≤ ‖u(t)‖+ ‖v‖

In particular, we can define an Lp norm of u(t) as

‖u(t)‖p := (

∫ ∞
−∞
|u(t)|pdt)

1
p for p ≥ 1

A special case of the norm is ‖u‖∞ := sup
t
|u(t)|, which is the least upper bound of the absolute

value. Another interesting property is the average power of a signal, which is defined by

pow(u(t)) :=

(
lim
T→∞

1

2T

∫ T

−T
u(t)2dt

) 1
2

.

One should notice that the average power is not a norm since the power can be zero even if the u(t)

is not a zero signal.

The norm can also be defined in the frequency domain. For u(jω) ∈ C as an example, The L2

norm can be defined as

‖û(jω)‖2 :=

(
1

2π

∫ ∞
−∞
|û(jω))|2dω

) 1
2

.

According to Parseval’s theorem, the L2 norm defined in time domain and the one defined in

frequency domain are equivalent, i.e. ‖û(jω)‖2 = ‖u(t)‖2. The relation is very useful while

analyzing the system and deriving the controller.
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2.1.3 Norms for Systems

Here we consider a linear time-varying (LTV) system G(t) in the form of

ẋ(t) = A(t)x(t) +B(t)u(t) (2.6)

y(t) = C(t)x(t) (2.7)

with x0 = 0, where A(t), B(t), C(t) are time-varying matrices, and u(t) is assumed to be unit

variance white noise with zero mean. The interesting property of the system in this thesis is H2

norm, so we define it as

‖G(t)‖2 := lim
T→∞

1

T
E

[
(

∫ T

0

y(t)Ty(t)dt)

] 1
2

(2.8)

in time domain, which is the root mean square (RMS) value of the output signal, and it can also be

defined in frequency domain as

‖Ĝ(jω)‖2 :=

(
1

2π

∫ ∞
−∞

tr(Ĝ(jω))Ĝ∗(jω)))dω

) 1
2

, (2.9)

where G∗ means the complex conjugate transpose of G. Analogous to the signal norms, (2.8) and

(2.9) are identical according to Parseval’s theorem. One can notice that there does not exist direct

feedthrough from the input u to the output y, i.e. strictly proper, so this results in finite H2 norm.

Since it is challenging to compute H2 norm in the frequency domain, we compute the norm in the

state-space realization of system. Thus, the following result presents a way to calculate the H2

norm in terms of the controllability or observability gramian [51].
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Theorem 4. Consider the LTV system (2.7). The H2 norm is determined by

‖G(t)‖2 = lim
T→∞

1

T

∫ T

0

tr(C(t)Lc(t)C
T (t))dt

= lim
T→∞

1

T

∫ T

0

tr(BT (t)BT (t))dt,

in which Lc(t) is the controllability gramian such that

L̇c(t) = A(t)Lc(t) +Lc(t)A
T (t) +B(t)BT (t) (2.10)

with Lc(0) = 0, and Lc(t) is the observability gramian such that

−L̇o(t) = Lc(t)A(t) +AT (t)Lc(t) +CT (t)C(t) (2.11)

with Lc(∞) = 0.

Proof. The solution to the system G with white noise signal inputs is

y(t) =


limT→∞

1
T

∫ T
0
C(t)Φ(t, τ)B(τ)u(τ)dτ, for t ≥ τ

0, otherwise
(2.12)

where Φ(t, τ) is the transition matrix for A(t). According to the property of trace, we can rewrite

the H2 norm in time domain as

‖G(t)‖2 = lim
T→∞

1

T
E

[
(

∫ T

0

tr(y(t)y(t)T )dt)

] 1
2

, (2.13)
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and substituting (2.12) into (2.13) yields

‖G(t)‖2 = lim
T→∞

1

T

∫ T

0

∫ T

0

∫ T

0

tr(C(t)Φ(t, τ)B(τ)E [u(τ)u(σ)]BT (τ)ΦT (t, τ)CT (t)dτdσdt

= lim
T→∞

1

T

∫ T

0

∫ T

0

tr(C(t)Φ(t, τ)B(τ)BT (τ)ΦT (t, τ)CT (t))dτdt (2.14)

= lim
T→∞

1

T

∫ T

0

tr(C(t)Lc(t)C
T (t))dt (2.15)

with Lc(t) :=
∫ t

0
Φ(t, τ)B(τ)BT (τ)ΦT (t, τ)dτ . Using Leibniz’s rule and taking time derivative

of (2.15), we arrive (2.10).

To prove the observability gramian (2.11), we rearrange (2.14) as

‖G(t)‖2 = lim
T→∞

1

T

∫ T

0

∫ T

0

tr(BT (τ)ΦT (t, τ)CT (t)C(t)Φ(t, τ)B(τ))dτdt

= lim
T→∞

1

T

∫ T

0

tr(B(t)Lo(t)B
T (t))dt (2.16)

(2.17)

with Lo(t) := limT→∞
∫ T
τ

ΦT (t, τ)CT (t)C(t)Φ(t, τ). Similarly, taking time derivative of (2.16)

renders (2.11). This concludes the theorem.

�

Different than LTI system, the differential matrix Lyapunov equations (2.10) and (2.11) involve

the time-varying gramian functions. If the system G is asymptotically stable, two differential

Lyapuvnov equation will converge to the solution constant matrices, which are the unique solution

to the Lyapunov equations for the LTI system (A,B,C) [51].

18



2.2 Quadratic Stability

Based on the LPV system (2.5) and Theorem 1, we define a common stability condition of the

LPV system.

Definition 5. If the continuous differentiable function V (x) is expressed in the form of

V (x) = xTPx (2.18)

where P > is a parameter-independent matrix, such that (2.2)-(2.4) are satisfied, the system (2.5)

is said to be quadratically stable.

One should notice that quadratic stability is only a sufficient condition of asymptotical stability of

LPV systems, which means the system is not necessarily quadtatically stable if it is asymptotically

stable. The following example [39] is shown to illustrate the relationship.

Example 1. Consider an LPV system with matrix

A(ρ) =

 1 ρ

−4
ρ
−3

 (2.19)

with ρ ∈ [−1,−1
2
] ∪ [1, 1

2
]. The eigenvalues of A(ρ) are all negative so that the system is asymp-

totically stable for all ρ in the parameter set. However, it is not quadratically stable. To see this,

we assume there exist a matrix

P =

p1 p2

p2 p3

 > 0

19



such that the LMI

M (ρ) := A(ρ)TP + PA(ρ) =

2p1 − 8p2

ρ
p1ρ− 2p2 − 4p3

ρ

∗ 2p2ρ− 6p3

 < 0

holds all ρ in the parameter set. This means M (ρ0) < 0 and M (−ρ0) < 0 for any ρ ∈ [1
2
1], and

thusM(ρ0) +M (−ρ0) < 0. However,

M (ρ0) +M (−ρ0) = [A(−ρ0) +A(ρ0)]TP + P [A(−ρ0) +A(ρ0)]

=

4p1 −4p2

∗ −12p3


cannot be negative definite because of the positive term in left-upper block, which gives a contra-

diction. This concludes that the system is not quadratically stable.

Besides, quadratic stability is very conservative since the Lyapunov function is not depending on

the parameters due to the constant matrix P and it needs to satisfy (2.2)-(2.4) for all elements in

the set of parameters.

With the Definition 5 we can arrive the following result.

Theorem 6. Consider the system (2.5). The following statements are equivalent.

1. The system (2.5) is quadratic stable.

2. There exist a symmetric matrix P > 0 such that

AT (ρ)P + PA(ρ) < 0 (2.20)

holds for all ρ ∈ Dρ.
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Proof. 1→ 2 : First, pre- and post-multiplying (2.20) by xT and x respectively, we get

xT (A(ρ)TP + PA(ρ))x = ẋTPx+ xTP ẋ

=
d

dt
(xTPx) < 0

Integrating on both side from τ = t to τ →∞ we arrive

∫ ∞
τ=t

d

dτ
(x(τ)TPx(τ)) < 0

→ lim
τ→∞

x(τ)TPx(τ)− x(t)TPx(t) < 0.

From the statement 1, we know limτ→∞ x(τ) = 0, and this yields limτ→∞ x(τ)TPx(τ) = 0.

Therefore, we can conclude x(t)TPx(t) > 0 or P > 0, and the statement 2 follows.

2→ 1 : We let V (x) = xTPx. Since P is positive definite, (2.2) and (2.3) are thus automatically

satisfied. Taking time derivative of V we get

V̇ = ẋTPx+ xTP ẋ

= xT (A(ρ)TP + PA(ρ))x.

Therefore, (2.4) renders (2.20) and the system (2.5) is asymptotically stable from Theorem 1.

Finally, from the Definition 5 we can conclude statement 1. �

(2.20) is a semi-infinite dimensional LMI that can be solved in two ways commonly. If the system

is polytopic, i.e. A(ρ) = A0 +
∑nρ

i=1 ρiAi, the LMI (2.20) can be transformed into 2nρ finite-

dimensional LMIs. If the system is generic, we can set up a discretization of parameter set so that

the semi-infinite dimensional LMIs is approximated as a finite dimensional LMIs. In this thesis,

we will be focusing on the gridding approach and will be discussed later.
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2.3 Robust Stability

Rather than a parameter-independent matrix used in the Lyapunov function, P can actually be

more adaptive to the parameters and carry out less conservatism. We thus give the following

definition.

Definition 7. If the continuous differentiable function V (x) is expressed in the form of

V (x) = xTP (ρ)x (2.21)

with P (ρ) > 0 a parameter-dependent matrix, such that (2.2)-(2.4) are satisfied, the system (2.5)

is said to be robustly stable.

Comparing with quadratic stability, robust stability is only a sufficient condition for quadratic

stability, and the quadratic stability is a special case of robust stability where the matrix P is a

constant. Another example in [39] shows the relations.

Example 2. Consider the same example system stated in (2.19), and a parameter-dependent matrix

P (ρ) = P 0 + P 1ρ+ P 2ρ
2 =

p1(ρ) p2(ρ)

∗ p3(ρ)


As previous example we checkM (ρ0) +M (−ρ0) < 0 numerically which renders

P (ρ) =

50 + 6ρ2 16ρ

∗ 1 + 7ρ2

 > 0

Therefore, the system is robustly stable.

Beside, it is obvious to see that a parameter-dependent matrix function gives more freedom on

determination of Lyapunov function and yields less conservatism.
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With the Definition 7, the following result is given.

Theorem 8. Consider the system (2.5). If there there exists a continuous differentiable matrix

function P (ρ) > 0 such that

A(ρ)TP (ρ) + P (ρ)A(ρ) +

nρ∑
i=1

ρ̇i
∂P (ρ)

∂ρi
< 0 (2.22)

for all (ρ, ρ̇) ∈ Dρ ×Dρ̇, the system (2.5) is robustly stable.

Proof. We let V (x) = xTP (ρ)x. Since P (ρ) is positive definite, (2.2) and (2.3) are thus auto-

matically satisfied. Taking time derivative of V we get

V̇ = ẋTP (ρ)x+ xTP (ρ)ẋ+ xT (

nρ∑
i=1

ρ̇i
∂P (ρ)

∂ρi
)x

= xT (A(ρ)TP + PA(ρ) +

nρ∑
i=1

ρ̇i
∂P (ρ)

∂ρi
)x.

Therefore, (2.4) renders (2.22) and the system (2.5) is asymptotically stable from Theorem 1.

Finally, from the Definition 7 the system is robustly stable. �

Different than (2.20), since P (ρ) is infinite-dimensional as well, the LMI (2.22) becomes infinite-

dimensional. Therefore, a further structure of P (ρ) should be defined. For example, for the LPV

system in a polytopic form, one can define P (ρ) as an affine function of ρ and the LMIs can be

solved by substituting extreme values in the parameter set in each dimension. For a general LPV

system, P (ρ) is defined by several basis function of ρ and one can solve it via gridding method as

mentioned before. This is still an open question about the choice of basis functions and grid points

to get an optimal solution.
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‖u‖2 ‖u‖∞ pow(u)

‖y‖2 ‖Ĝ(jω)‖∞ ∞ ∞
‖y‖∞ ‖Ĝ(jω)‖2 ‖Ĝ(jω)‖1 ∞

pow(y) 0 ≤ ‖Ĝ(jω)‖∞ ‖Ĝ(jω)‖∞

Table 2.1: The relationship between different types of inputs and outputs, where u represents input
and y indicates output.

2.4 H2 Performance

In addition to the stability of the system, the performance of the system is also an important factor

to design a controller. In this thesis we are concerning the bounds for desired output given an input

with certain energy. In other words, the extreme value of the output function should be under a

desired quantity. Table 2.1 shows the relationship between inputs and outputs in the norm [1]. To

match our concerning objective, it is obvious to choose H2 norm of the system so that the output

can be bounded. Therefore, in this section we present some analytical results that involves several

conditions for H2 performance of LPV systems.

We consider an autonomous LPV system with disturbances in the form of

Ĝ(jω) :
ẋ = A(ρ)x+B(ρ)w

z = Cz(ρ)x
(2.23)

with an initial condition x(0) = x0, where x ∈ Rnx is the state vector of the system, z is the

vector of desire outputs that we are interested in, w is the vector of the exogenous signals, e.g.

disturbance, sensor noise, reference, A(ρ) : Rnρ → Rnx×nx , B(ρ) : Rnρ → Rnx×m, and Cz(ρ) :

Rnρ → Rnz are the system matrices that are continuous differentiable matrix functions of the

parameters ρ(t). Let the initial condition x(0) = 0 and w is a vector of zero-mean white noise

with an identity power spectrum, then, analogous to (2.8), an H2 norm in time-domain is defined
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as

‖G(t)‖2 := lim
T→∞

1

T
E

[
(

∫ T

0

z(t)Tz(t)dt)

] 1
2

, (2.24)

which can be computed through

‖G(t)‖2 = lim
T→∞

1

T

∫ T

0

tr(C(ρ(t))Lc(ρ(t))CT (ρ(t)))dt

with controllability gramian Lc(ρ(t)) solved by differential matrix Lyapunov equation

L̇c(ρ(t)) = A(ρ(t))Lc(ρ(t)) +Lc(ρ(t))AT (ρ(t)) +B(ρ(t))BT (ρ(t)), (2.25)

or calculated through

‖G(t)‖2 = lim
T→∞

1

T

∫ T

0

tr(B(ρ(t))Lo(ρ(t))BT (ρ(t)))dt

with observability gramian Lo(ρ(t)) solved by

L̇o(ρ(t)) = B(ρ(t))Lo(ρ(t)) +Lo(ρ(t))BT (ρ(t)) +C(ρ(t))CT (ρ(t)).

Furthermore, rather than find a solution to the differential Lyapunov equation, one can solve the

parameter-dependent LMIs via the following result.

Theorem 9. Consider the LPV system (2.23). If there exist two parameter-independent matrices

P = P T > 0 andW = W T > 0 such that

A(ρ(t))X +XAT (ρ(t)) +B(ρ(t))BT (ρ(t)) < 0 (2.26) W C(ρ(t))X

XTCT (ρ(t)) X−1

 > 0 (2.27)
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for all ρ(t) ∈ Dρ, then the system is asymptotically stable and ‖Ĝ(jω)‖2 <
√

tr(W ).

Proof. (2.26) impliesA(ρ(t))X +XAT (ρ(t) < 0, or Y A(ρ(t)) +AT (ρ(t)Y < 0 withX−1 =

Y , so the system Ĝ(jω) is quadratically stable according to Theorem 6, i.e. asymptotically stable.

(2.25) subtracted from (2.26) yields

A(ρ(t))(X −Lc) + (X −Lc)AT (ρ(t)) + L̇c < 0. (2.28)

Since the quadratic stability is a sufficient condition of the robust stability, (2.28) rendersX−Lc >

0 which implies ‖Ĝ(jω)‖2
2 < limT→∞

1
T

∫ T
0

tr(C(ρ(t))XCT (ρ(t))). In addition, (2.27) implies

W > C(ρ(t))XC(ρ(t)), and thus tr(W ) > tr(C(ρ(t))XC(ρ(t))). As a result, the H2 of the

system is bounded by tr(W ) which concludes the result. �

Remark. From the proof, the system is shown to be quadratically stable, which is very conserva-

tive, since two parameter-independent matrices confine the feasible set of (2.26) and (2.27). In

addition, the relationship between Lc,X ,W is

tr(W ) > tr(C(ρ(t))XC(ρ(t)) > tr(C(ρ(t))Lc(ρ(t))C(ρ(t)),

so the upper bound of the norm in Theorem 9 is supremum of tr(C(ρ(t))Lc(ρ(t))C(ρ(t)). More-

over, (2.26) and (2.27) are only sufficient conditions of H2 performance of the system Ĝ(jω).

Therefore, if the system is stable and has a bounded H2 performance, there does not necessarily

exist a solution to (2.26) and (2.27).

To reduce the conservatism, the conditions for H2 performance can be reconsider as parameter

dependence, which yields the following result.

Theorem 10. Consider the LPV system (2.23). If there exist two parameter-dependent matrices
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P (ρ(t)) = P (ρ(t))T > 0 andW (ρ(t)) = W (ρ(t))T > 0 such that

A(ρ(t))X(ρ(t)) +X(ρ(t))AT (ρ(t)) +B(ρ(t))BT (ρ(t))− Ẋ(ρ(t), ρ̇(t)) < 0 (2.29) W (ρ(t)) C(ρ(t))X(ρ(t))

X(ρ(t))CT (ρ(t)) X−1(ρ(t))

 > 0 (2.30)

for all ρ(t) ∈ Dρ and ρ̇(t) ∈ Dρ̇, then the system is asymptotically stable and ‖Ĝ(jω)‖2 <√
limT→∞

1
T

∫ T
0

tr(W (ρ(t))).

Proof. (2.29) implies

A(ρ(t))X(ρ(t)) +X(ρ(t))AT (ρ(t))− Ẋ(ρ(t)) < 0,

or

Y (ρ(t))A(ρ(t)) +AT (ρ(t))(ρ(t)) + Ẏ (ρ(t)) < 0

withX−1(ρ(t)) = Y (ρ(t)) and an identity that

Ẏ (ρ(t)) =

nρ∑
k=1

ρ̇k
∂Y (ρ(t))

∂ρk

=

nρ∑
k=1

ρ̇k
∂X−1(ρ(t))

∂ρk

= −X−1

nρ∑
k=1

ρ̇k
∂X(ρ(t))

∂ρk
X−1, (2.31)

so the system Ĝ(jω) is robustly stable according to Theorem 8, i.e. asymptotically stable.

(2.25) subtracted from (2.29) yields

A(ρ(t))(X(ρ(t))−Lc) + (X(ρ(t))−Lc)AT (ρ(t)) + (L̇c − Ẋ(ρ(t))) < 0. (2.32)
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Since the robust stability has been confirmed, (2.32) renders X(ρ(t)) − Lc(ρ(t)) > 0 which

implies ‖Ĝ(jω)‖2 < limT→∞
1
T

∫ T
0

tr(C(ρ(t)X(ρ(t)CT (ρ(t))))). In addition, (2.30) implies

W (ρ(t)) > C(ρ(t))X(ρ(t))C(ρ(t)), and thus tr(W (ρ(t))) > tr(C(ρ(t))X(ρ(t))C(ρ(t))).

As a result, the H2 of the system is bounded by tr(W (ρ(t))) which concludes the result. �

Remark. Comparing with Theorem 9, the H2 norm bounded by a RMS value of tr(W (ρ(t))) is

less conservative because it is adaptive to the parameters. The stability also involves less con-

servatism since the system is robustly stable. However, the challenge in Theorem 10 will show

up in terms of computation since (2.29) and (2.30) are in infinite dimensional that requires more

computational effort. This will be seen in the later section.

2.5 Linear Quadratic Regulator

In this section, we consider the LPV dynamical system (1.1) and we are interested in a full-state

feedback control u = K(ρ)x that minimizes the cost function

J :=

∫ ∞
0

(xTQx+ uTRu) dt. (2.33)

Based on the objective, we have the following result.

Theorem 11. Consider the LPV system (1.1) with the initial condition x(0) = x0 and control law

u = K(ρ)x. Given two positive definite constant matrices Q and R, if there exists a parameter-

dependent matrix P (ρ) = P T (ρ) > 0 such that

P (ρ) (A(ρ) +B(ρ)K(ρ)) + (•)T P (ρ) +

nρ∑
i

∂P (ρ)

∂ρi
ρ̇i +Q+KT (ρ)RK(ρ) < 0 (2.34)

for all ρ ∈ Dρ and ρ̇ ∈ Dρ, then the system is asymptotically stable 0 < J < V (x0).

Proof. Using standard arguments[52], suppose ∃ V (x,ρ) > 0, which is a scalar function of states,
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such that

dV (x,ρ)

dt
≤ −

(
xTQx+ uTRu

)
, (2.35)

which implies the asymptotic stability sinceQ andR are positive definite. Integrating from [0, T ]

gives us

∫ T

0

dV (x,ρ)

dt
dt ≤ −

∫ T

0

(
xTQx+ uTRu

)
dt,

V (x(T ),ρ(T ))− V (x(0),ρ(0)) ≤ −
∫ T

0

(
xTQx+ uTRu

)
dt.

V (x(T ),ρ(T )) ≥ 0 implies

−V (x(0),ρ(0)) ≤ −
∫ T

0

(
xTQx+ uTRu

)
dt, for all T > 0, (2.36)

or,

V (x(0),ρ(0)) ≥
∫ ∞

0

(
xTQx+ uTRu

)
dt = J. (2.37)

Therefore, (2.35) provides a sufficient condition for upper bound on the cost-to-go, and the control

law is synthesized as an optimization problem that minimizes the upper bound V (x(0)) and is

subject to (2.35).

Regarding the LPV system, we substitute the control law u = K(ρ)x into (2.35), let V (x,ρ) :=

xTP (ρ)x, and take the time derivative of it, then we arrive

V̇ (x,ρ, ρ̇) = sym
(
xT (A(ρ) +B(ρ)K(ρ))T P (ρ)x

)
+ xT Ṗ (ρ, ρ̇)x

= xT

(
sym (P (ρ) (A(ρ) +B(ρ)K(ρ))) +

nρ∑
i

∂P (ρ)

∂ρi
ρ̇i

)
x. (2.38)

Substituting (2.38) into (2.35), we arrive (2.34) which holds for all ρ ∈ Dρ and ρ̇ ∈ Dρ. Finally,
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we conclude the theorem. �

It is a challenge to solve (2.34) directly due to non-convexity. However, it can be convexified by

using LMI techniques, which gives the following result.

Theorem 12. Consider the LPV system (1.1) with the initial condition x(0) = x0 and control

law u = K(ρ)x. Given two positive definite constant matrices Q and R, if a constant matrix

Z = ZT > 0 and two parameter-dependent matrices Y (ρ) = Y T (ρ) > 0 and W (ρ) are

solutions to the optimization

max
Y ,W ,Z

tr(Z) (2.39)

subject to


A((ρ))Y (ρ) +B(ρ)W (ρ) + (•)T −

∑nρ
i

∂Y (ρ)
∂ρi

ρ̇i Y (ρ) W T (ρ)

Y (ρ) −Q−1 0

W (ρ) 0 −R−1

 < 0,

(2.40)

Y (ρ)−Z > 0, (2.41)

ρ(t) ∈ Dρ,

ρ̇(t) ∈ Dρ̇,

where Dρ̇ is the vertices of the setDρ̇, then the control gain determined byK(ρ) = Y −1(ρ)W (ρ)

stabilize the system and minimizes the cost function J .

Proof. First of all, let Y (ρ) = P−1(ρ), and pre and post-multiply (2.34) with Y (ρ), then with
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W (ρ) = K(ρ)Y (ρ) it becomes

sym (A(ρ)Y (ρ) +B(ρ)W (ρ)) + Y (ρ)

nρ∑
i

∂P (ρ)

∂ρi
ρ̇iY (ρ) + Y (ρ)QY (ρ)

+W T (ρ)RW (ρ) < 0.

(2.42)

According to the identity in (2.31), (2.42) can be refined as

A(ρ)Y (ρ) +B(ρ)W (ρ) + (•)T −
nρ∑
i

∂Y (ρ)

∂ρi
ρ̇i + Y (ρ)QY (ρ)

+W T (ρ)RW (ρ) < 0. (2.43)

Applied Schur’s complement to (2.43) yields (2.40). Since (2.40) is affine in ρ̇, only the vertices

of Dρ̇ is needed, i.e. Dρ̇.

From (2.37), the cost function J is upper-bounded by V (x0,ρ(0)), so if V (x0,ρ(0)) is minimized,

J is also minimized. It is known that V (x0,ρ(0)) = xT0P (ρ(0))x0 = xT0Y
−1(ρ(0))x0, so if

one can minimize P (ρ(0)), or maximize Y (ρ(0)). V (x0,ρ(0)) is minimized. However, ρ(0)

is unknown until it is measured, so instead of maximizing Y (ρ(0)), another constant matrix Z is

introduced such that (2.41) holds for all ρ ∈ Dρ. Therefore, maximizing tr(Z) implies minimizing

V (x0,ρ(0)) and so as J , and then the theorem follows. �

Remark. Theorem (12) presents a way to synthesize an LQR control via solving a convex op-

timization problem with parameter-dependent LMIs (2.40) and (2.41). There are two parts of

mechanisms in the problem. One is the sufficient condition (2.40) that ensures there exists an up-

per bound V (x0,ρ(0)) for the cost function J . The other one is the maximization of tr(Z) and

the sufficient condition (2.41) for another upper bound for Y (ρ). Using the parameter-dependent

feedback gain from the Theorem 12, the final controlled system is guaranteed to be optimal in the

sense of states and control efforts.
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2.6 H2 optimal Control

This section considers another LPV control system with a disturbance expressed as

Ĝc(jω) :
ẋ = A(ρ)x+Buu+Bww

z = Cz(ρ)x+Dz(ρ)u,
(2.44)

with a known initial condition x(0) = x0, where x ∈ Rnx is the state vector of the system,

z ∈ Rnz is the vector of desire outputs that we are interested in, w is a vector of zero-mean

white noise with an identity power spectrum, A(ρ) : Rnρ → Rnx×nx , Bu(ρ) : Rnρ → Rnx×nu ,

Bw(ρ) : Rnρ → Rnx×nw , Cz(ρ) : Rnρ → Rnz , and Dz(ρ) : Rnρ → Rnu are the system matrices

that are continuous differentiable matrix functions of the parameters ρ(t). The objective is to find a

full-state feedback control gainK(ρ) such that the desired outputs keep small under disturbances,

which involves two tasks: bounded output and disturbance rejection. Accordingly, the H2 norm

is well suited; that is, under a disturbance with given energy the bounds of the desire outputs are

minimized. The control law thus is u = K(ρ)x, and substituting the feedback control to (2.44)

yields

Ĝc(jω) :
ẋ = (A(ρ) +B(ρ)K(ρ))x+Bww

z = (Cz(ρ) +Dz(ρ)K(ρ))x
(2.45)

which is similar to (2.23).

We firstly apply the Theorem 9 and get the following result.

Theorem 13. Consider the LPV controlled system Ĝc(jω) presented in (2.44). if two parameter-

independent matrices X = XT > 0 and W , and a parameter-dependent matrix Z(ρ) are solu-
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tions to the optimization problem

min
X,Z(ρ),W

tr(W ) (2.46)

subject to A(ρ)X +Bu(ρ)Z(ρ) + (•)T +Bw(ρ)Bw(ρ)T < 0, (2.47)W Cz(ρ)X +Du(ρ)Z(ρ)

(•)T X

 > 0, (2.48)

ρ(t) ∈ Dρ,

the the control u = K(ρ)x with K(ρ) = Z(ρ)X−1 stabilize the system and the H2 norm is

minimized as ‖Ĝc(jω)‖2 <
√

tr(W ).

Proof. With full-state feedback control law, we consider (2.45) and substitute the close-loop sys-

tem into (2.26) (2.27) with Z(ρ) = K(ρ)X , then (2.47) and (2.48) follow. Using the Theorem 9

one can conclude the H2 norm is bounded and minimized by tr(W ). �

Remark. As the discussion of the Theorem 9, the control gain guarantees the quadratic stability

so it is very conservative. Further, the minimization problem with a constant matrix W , which

bounds the H2 norm for all ρ(t) ∈ Dρ, limits the performance of the control system.

In order to improve the performance and reduce the conservatism, X and W in the Theorem 13

are changed to parameter-dependent matrices, and the following result is derived.

Theorem 14. Consider the LPV controlled system Ĝc(jω) presented in (2.44). if three parameter-

dependent matrices X(ρ) = X(ρ)T > 0, W (ρ), Z(ρ) and Y are solution to the optimization
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problem

min
X,Z,W ,Y

tr(Y ) (2.49)

subject to A(ρ)X(ρ) +Bu(ρ)Z(ρ) + (•)T +Bw(ρ)Bw(ρ)T −
nρ∑
i=1

∂X(ρ)

∂ρi
ρ̇i < 0, (2.50)W (ρ) Cz(ρ)X(ρ) +Du(ρ)Z(ρ)

(•)T X(ρ)

 > 0, (2.51)

W (ρ)− Y ≤ 0 (2.52)

ρ(t) ∈ Dρ,

ρ̇ ∈ Dρ̇,

where Dρ̇ is the vertices of the set Dρ̇, then the control u = K(ρ)x with K(ρ) = Z(ρ)X−1(ρ)

stabilize the system and the H2 norm is minimized as

‖Ĝc(jω)‖2 <

√
lim
T→∞

1

T

∫ T

0

tr(W (ρ(t))) ≤
√

tr(Y ). (2.53)

Proof. Similar with the proof of Theorem 13 but instead of using the Theorem 9, here we utilize

the Theorem 10, where Ẋ(ρ, ρ̇) =
∑nρ

i=1
∂X(ρ)
∂ρi

ρ̇i. Since it is affine in ρ̇, only the vertices of Dρ̇ is

needed, i.e. Dρ̇.

Further, W (ρ) − Y ≤ 0 implies tr W (ρ)) − tr (Y ) ≤ 0, so we can conclude that the control

gainK(ρ) stabilizes the system and the H2 norm is bounded and minimized by (2.53). �

Remark. The controller synthesized from the Theorem 14 stabilizes the LPV system with less

conservatism, where the parameter-dependent matrices X(ρ) and Z(ρ) involves larger area of

feasible set than in the Theorem 13. Besides, the parameter-dependent matrix W (ρ) is more

adaptive to the system so that intuitively the performance of the system should be better than

the one with constant W . However, parameter-dependent conditions require more computational

effort on the solution process since the dimension increase as the size of the system goes up. This
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is a challenge in the thesis and we will address this issue later.
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3. LPV QUADRATIC REGULATOR IN POLYNOMIAL CHAOS FRAMEWORK

In this chapter, we present a new theoretical framework for designing linear parameter varying con-

trollers in the polynomial chaos framework1. We assume the scheduling variable to be random and

apply the polynomial chaos approach to synthesize the controller for the resulting linear stochastic

dynamical system. Two algorithms are presented that minimize the performance objective with

respect to the stochastic system. The first algorithm is based on the generalized polynomial expan-

sion and the second algorithm is based on the stochastic collocation.

The same as Section 2.5 of Chapter 2, the LPV system is expressed as

ẋ = A(ρ)x+B(ρ)u, (3.1)

where system matrices depend on unknown parameter ρ(t), which is measurable in real-time

[53, 54]. We assume the parameter ρ(t) is bounded in magnitude and rate, i.e. ρ(t) ∈ Dρ ⊂ Rnρ

and ρ̇(t) ∈ Dρ̇ ⊂ Rnρ . A key aspect of the formulation presented in this chapter is that ρ and

ρ̇ are treated as uncertainties in the LPV control law synthesis. This is similar to the idea pro-

posed by Packard [25], where ρ(t) is treated as a bounded uncertainty. The approach taken uses

the optimally scaled small-gain theorem, and solves the control synthesis problem by reformulat-

ing the existence conditions into a finite-dimensional convex optimization using linear fractional

transformations. The idea of treating ρ(t) as an uncertainty in the LPV design has also been intro-

duced by Fujisaki et. al. [55], where ρ(t) is treated as probabilistic uncertainty. In their work, they

addressed the computational complexity of such problems by presenting a probabilistic approach

to solve these problems, via a sequential randomized algorithm, which significantly reduces the

computational complexity. Here the parameter ρ(t), is treated as a random variable, with a distri-

1 c©2017 IEEE. Part of this chapter is reprinted with permission from "Design of stochastic collocation based
linear parameter varying quadratic regulator." by Shao-Chen Hsu and Raktim Bhattacharya, 2017 American Control
Conference.
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bution fρ(ρ) defined over Dρ. The LPV synthesis problem is solved by sampling Dρ and solving

the sampled LMIs using a sequential-gradient method. As with any probabilistic algorithm, there

is a tradeoff between sample complexity and confidence in the solution. Often, a large number of

samples are required to generate a solution with high confidence.

Inspired by [55], we treat ρ as a set of random-variables, with a given joint distribution. The LPV

controller K(ρ) is determined such E
[
V̇
]
< 0 is guaranteed at every time instant. Since the

condition is satisfied at every time instant, ρ can assume different values at different times, but as

long as E
[
V̇
]
< 0 is satisfied, exponential mean-square stability is guaranteed [56]. The main

contribution is a new LPV regulator synthesis algorithm, in the polynomial chaos framework,

which generates a parameter dependent gain. In this framework, orthogonal basis functions are

determined by polynomial chaos theory. The controller is optimal with respect to a quadratic cost

in states and control. It is noted that this chapter extends the work in [57] where only stability

was considered. We look at the LPV-LQR problem with application to a realistic autopilot missile

control problem in the late chapter.

3.1 Polynomial Chaos Theory

Polynomial chaos (PC) is a deterministic method for the evolution of uncertainty in dynamical

systems when there is probabilistic uncertainty in the system parameters. Polynomial chaos was

first introduced by Wiener [58] where Hermite polynomials were used to model stochastic pro-

cesses with Gaussian random variables. It can be thought of as an extension of Volterra’s theory

of nonlinear functionals for stochastic systems [59, 60]. According to Cameron and Martin [61]

polynomial chaos expansion converges in the L2 sense for any arbitrary stochastic process with

finite second moments. This applies to most physical systems. Xiu et. al. [2] generalized the result

of Cameron-Martin to various continuous and discrete distributions using orthogonal polynomi-

als from the so called Askey-scheme [62] and demonstrated L2 convergence in the corresponding

Hilbert functional space. The PC framework has been applied to applications including stochastic
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fluid dynamics [63, 64, 65], stochastic finite elements [60], and solid mechanics [66, 67], feedback

control [68, 69, 70, 71] and estimation [72]. It has been shown that PC based methods are com-

putationally far superior to Monte-Carlo based methods [2, 63, 64, 65, 73]. See [74] for several

benchmark problems solved by non-intrusive PC expansion and stochastic collocation.

Formally, the PC framework is described as follows. Let (Ω,F , P ) be a probability space, where

Ω is the sample space, F is the σ-algebra of the subsets of Ω, and P is the probability measure. Let

ρ(ω) = (ρ1(ω), · · · ,ρd(ω)) : (Ω,F) → (Rd,Bd) be an Rd-valued continuous random variable,

where d ∈ N, and Bd is the σ-algebra of Borel subsets of Rd.

A general second order process X(ω) ∈ L2(Ω,F , P ) can be expressed by polynomial chaos as

X(t, ω) =
∞∑
i=0

xi(t)φi(ρ(ω)), (3.2)

where ω is the random event and φi(ρ(ω)) denotes the polynomial chaos basis of degree p in

terms of the random variables ρ(ω). In practice, the infinite series is truncated and X(t, ω) is

approximated by

X(t, ω) ≈ X̂(t, ω) =
N∑
i=0

xi(t)φi(ρ(ω)),

and the truncated error can be defined as [75]

et = ‖X(t, ω)− X̂(t, ω)‖L2 ,

which converges in the mean square sense and the convergence rate depends on the stochastic

process and the chosen basis function [2].
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Random Variable ρ φi(ρ) of the Wiener-Askey Scheme
Gaussian Hermite
Uniform Legendre
Gamma Laguerre

Beta Jacobi

Table 3.1: Correspondence between choice of orthogonal polynomials and given distribution of
ρ(ω) [2].

The functions {φi} are a family of orthogonal basis in L2(Ω,F , P ) satisfying the relation

E [φiφj] :=

∫
Dρ
φi(ρ)φj(ρ)fρ(ρ) dρ =


0, if i 6= j,∫
Dρ φ

2
i (ρ)fρ(ρ) dρ, otherwise.

(3.3)

whereDρ is the domain of the random variable ρ(ω), and fρ(ρ) is a probability density function for

ρ. Table 3.1 shows the family of basis functions for random variables with common distributions.

Generally, there are three methods for expanding a random process in the stochastic framework

– intrusive methods, e.g. Galerkin projection, non-intrusiv emethods, e.g. spectral projection,

and stochastic collocation. In this chapter, we choose stochastic collocation method and it offers

no mathematical advantage over other non-intrusive methods. It has been reported that the non-

intrusive methods offer similar accuracy with stochastic collocation [76]. However, the comparison

is implemented through simulations only without any theoratical proof. We will investigate the

advantage of such methods in the LPV controller synthesis problem for our future work. We also

assume components of ρ to be independent, which can be relaxed by utilizing new developments

in polynomial chaos theory [77, 78].
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3.1.1 Polynomial Chaos Expansion

With respect to the dynamical system defined as

ẋ = Acl(ρ)x, (3.4)

the solution can be approximated by the polynomial chaos expansion as

x(t,ρ) ≈ x̂(t,ρ) =
N∑
i=0

xi(t)φi(ρ), (3.5)

where the polynomial chaos coefficients xi ∈ Rn. Define Φ(ρ) to be

Φ ≡ Φ(ρ) :=

(
φ0(ρ) · · · φN(ρ)

)T
, and (3.6)

Φn ≡ Φn(ρ) := Φ(ρ)⊗ In, (3.7)

where In ∈ Rn×n is an identity matrix. Also define matrixX ∈ Rn×(N+1), with polynomial chaos

coefficients xi, as

X =

[
x0 · · · xN

]
.

This lets us define x̂(t,ρ) as

x̂(t,ρ) := X(t)Φ(ρ). (3.8)

Noting that x̂ ≡ vec (x̂), we obtain an alternate form for (3.8),

x̂ ≡ vec (x̂) = vec (XΦ) = vec (InXΦ) = (ΦT ⊗ In)vec (X) = ΦT
nxpc, (3.9)

where xpc := vec (X), and vec (·) is the vectorization operator [79]. This allows us to transform

x̂ from a summation form to a matrix form, which reduces the complexity of the derivations
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presented later.

Since x̂ from (3.9) is an approximation, substituting it in (3.4), introduces a truncated error, i.e.

˙̂x = Acl(ρ)x̂+ e. We thus have the error e, which is given by

e = ˙̂x−Acl(ρ)x̂ = ΦT
n ẋpc −Acl(ρ)ΦT

nxpc. (3.10)

The best L2 approximation is obtained by setting [2]

〈eφi(ρ)〉 := E [eφi] = 0, for i = 0, 1, · · · , N. (3.11)

Combining (3.10) and (3.11) we arrive

E
[
ΦnΦ

T
n

]
ẋpc = E

[
ΦnAclΦ

T
n

]
xpc,

which yields

ẋpc = Apcxpc, (3.12)

where Apc = E
[
ΦnΦ

T
n

]−1
E
[
ΦnAclΦ

T
n

]
, Φn and Acl depend on ρ as defined earlier. Equation

(3.12), is the best finite dimensional approximation of (3.4) in the L2 sense. It is noted that the

methodology to obtain the coefficients in this section is called Galerkin projection.

3.1.2 Stochastic Collocation

The concept of this approach is to pick a set of specific sample points from polynomial chaos basis

functions and enforce the error of approximation at the sample points to be zero. In this approach

41



we first introduce Lagrange interpolating polynomials

li(ρ) =
N∏

j=0,j 6=i

ρ− ρj
ρi − ρj

(3.13)

as basis functions, where ρi are the roots of the polynomial chaos basis of degree N + 1. The

Lagrange polynomials have an important property, i.e.

li(ρk) =


0 k 6= i

1 k = i

,

and the polynomials are orthogonal to each other in the L2 sense, which can be proved using the

Gaussian quadrature rule [80] as follows.

E [lilj] =

∫
Dρ
li(ρ)lj(ρ)fρ(ρ)dρ

=
N∑
k=0

[
li(ρk)lj(ρk)

∫
Dρ
lk(ρ)fρ(ρ)dρ

]
.

Since i 6= j, we can conclude

E [lilj] = 0.

The solution to the dynamical system (3.4) thus can also be approximated as

x(t,ρ) ≈ x̃(t,ρ) =
N∑
i=0

xi,sc(t)li(ρ) = LTnxsc,

where Ln = [l0 . . . lN ]T ⊗ In, and xsc = [x0,sc . . .xN,sc]
T are coefficients determined by solving

ẋi,sc = Acl(ρi)xi,sc. It implies that the solution x̃ is exact at those specified sample points, which

means that the error ẽ = ˙̃x−Acl(ρ)x̃ is forced to be zero at the sample points ρi.
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For a special case whereAcl is an univariate function of ρ ∈ R, we have the following observation.

Theorem 15. Consider a linear system in (3.4), where d = 1 and Acl is linear in ρ, the approx-

imated solution x̂(t,ρ) obtained by Galerkin projection is equivalent to the one x̃(t,ρ) obtained

by stochastic collocation in L2 sense.

Proof. It is known that the stochastic collocation approximation is

x(t,ρ) ≈ x̃(t,ρ) = LTnxsc(t), (3.14)

and

ẽ = ˙̃x−Aclx̃

= LTn ẋsc −AclL
T
nxsc

= LTnAscxsc − AclLTnxsc

= (LTnAsc −AclL
T
n )xsc,

where

Asc =


Acl(ρ0) · · · 0

... . . . ...

0 · · · Acl(ρN)

 .

To prove the equivalence, we need to show x̃ is also the best L2 approximation, i.e. E [Lnẽ] = 0.

E [Lnẽ] = E
[
(LnL

T
nAsc −LnAclL

T
n )xsc

]
=
[
E
[
LnL

T
n

]
Asc − E

[
LnAclL

T
n

]]
xsc. (3.15)
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Because of the orthogonality of the basis, the first term of (3.15) can be expanded as

E
[
LnL

T
n

]
Asc

=E





l0nl0n l0nl1n · · · l0nlNn

l1nl0n l1nl1n · · · l1nlNn
... . . .

lNnl0n lNnl1n · · · lNnlNn




Asc

=E



l20n 0

. . .

0 l2Nn


Asc,

where lin = li ⊗ In.

By the Gaussian quadrature rule,

E
[
l2i
]

=

∫
Dρ
li(ρ)2fρ(ρ)dρ

=
N∑
j=0

l2i (ρj)

∫
Dρ
lj(ρ)fρ(ρ)dρ

=

∫
Dρ
li(ρ)fρ(ρ)dρ

= E [li] .

Therefore, E [l2in] = E [lin] and it implies

E
[
LnL

T
n

]
Asc = E



l0n 0

. . .

0 lNn


Asc = E



l0nA(ρ0) 0

. . .

0 lNnA(ρN)


 . (3.16)
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For the second term of (3.15), it can be expanded as

E
[
LnAclL

T
n

]
= E



lon
...

lNn

Acl

[
lon · · · lNn

]

= E





l0nAcll0n l0nAcll1n · · · l0nAcllNn

l1nAcll0n l1nAcll1n · · · l1nAcllNn
... . . .

lNnAl0n lNnAcll1n · · · lNnAcllNn





= E





l0nl0nAcl l0nl1nA · · · l0nlNnAcl

l1nl0nAcl l1nl1nA · · · l1nlNnAcl

... . . .

lNnl0nAcl lNnl1nAcl · · · lNnlNnAcl




, (3.17)

where

E [linljnAcl] = E



lilj 0

. . .

0 lilj



A11 · · · A1n

... . . . ...

An1 · · · Ann


 .
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Since we can show that

E [liljAkl] =

∫
Dρ
liljAklfρ(ρ)dρ

=
N∑
m=0

li(ρm)lj(ρm)Akl(ρm)

∫
Dρ
lm(ρ)fρ(ρ)dρ (3.18)

=


0 i 6= j

Akl(ρi)
∫
Dρ li(ρ)fρ(ρ)dρ i = j

=


0 i 6= j

E [li]Akl(ρi) i = j

,

it implies that

E [linljnAcl] =



0 i 6= j

E




li 0

. . .

0 li



Acl(ρi) i = j

=


0 i 6= j

E [lin]Acl(ρi) i = j

.

(3.17) thus becomes

E
[
LnAclL

T
n

]
= E



l0nAcl(ρ0) 0

. . .

0 lNnAcl(ρN)


 . (3.19)

Substituting (3.16) and (3.19) into (3.15), we can conclude E [Lnẽ] = 0, which means that x̃ is

also the best L2 approximation as x̂. Therefore, x̃ and x̂ are identical. �
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Remark. The theorem is an independent observation. It is noted that the equivalence only exists

in a linear system and the system is linear in univariate random variable. We can justify this by

following lemma.

Lemma 16. Consider two Lagrange polynomials li(ρ) and lj(ρ) , and a scalar function g(ρ),

where ρ ∈ R then

E [li(ρ)lj(ρ)g(ρ)] ≈


0, i 6= j

E [li] g(ρi), i = j

, (3.20)

which is equivalent if g(ρ) is a first order polynomial.

Proof.

E [li(ρ)lj(ρ)g(ρ)] =

∫
Dρ
li(ρ)lj(ρ)g(ρ)fρ(ρ)dρ

≈
N∑
m=0

li(ρm)lj(ρm)g(ρm)

∫
Dρ
lm(ρ)fρ(ρ)dρ

=


0 i 6= j

g(ρi)
∫
Dρ li(ρ)fρ(ρ)dρ i = j

=


0 i 6= j

E [li] g(ρi) i = j

,

According to the Gaussian quadrature rule, the expression is exact when li(ρ)lj(ρ)g(ρ) is a poly-

nomial of degree at most 2N + 1. It is known that the Lagrange interpolations are N-th order

polynomials, so we can conclude that if g is a first order polynomial (3.20) is exact. �

Using Lemma 16, we can ensure that (3.18) must be exact since A(ρ) is linear in single random

variable; otherwise, it becomes an approximation and two solutions are not identical. Therefore,
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for a linear stochastic system with single variable, one could choose either approximation for

controller parameterizations and arrive at the same result.

3.2 Optimal Controller Synthesis

Recall the LQR derivations in Section 2.5, where a parameter-dependent convex optimization is

formulated. However, in this chaper, we treat ρ as a vector of random variables and satisfy (2.35)

in the mean-sense, i.e.

E

[
dV

dt

]
≤ −E

[
xTQx+ uTRu

]
, (3.21)

which upper-bounds

E

[∫ ∞
0

(xTQx+ uTRu) dt

]
, (3.22)

i.e.

E [V (x(0))] ≥ E

[∫ ∞
0

(
xTQx+ uTRu

)
dt

]
. (3.23)

Satisfying (3.21) for all times, ensures the Lyapunov function decreases in the mean-sense, and

consequently guarantees stability in the exponentially mean-square sense [81].

Although we assume Dρ and Dρ̇ to be compact, which is satisfied by all realistic systems, the

framework presented here allows ρ and ρ̇ to be unbounded that can be for example modeled as

Gaussian uncertainty. For such systems, we can guarantee exponential mean-square stability in

this framework, which is not possible in the worst-case formulation.

Here we use polynomial chaos theory to determine the expectation operator in (3.21). We apply

both polynomial chaos expansion and stochastic collocation techniques, and derive control syn-

48



thesis problem in the respective frameworks, for the system considered in (3.1). We will see later,

the polynomial chaos is more accurate than stochastic collocation technique, but results in more

complex synthesis problems with increased computational time.

Before we proceed, we need the following result in the rest of the chapter.

Proposition 17. For any vector v ∈ RN+1 and matrixM ∈ Rm×n

M (vT ⊗ In) = (vT ⊗ Im)(IN+1 ⊗M ), (3.24)

where I∗ is identity matrix with indicated dimension.

Proof.

M (vT ⊗ In) = (1⊗M )(vT ⊗ In)

= vT ⊗M = (vTIN+1)⊗ (ImM )

= (vT ⊗ Im)(IN+1 ⊗M).

�

3.2.1 Galerkin Projection Based Formulation

Here we present the control synthesis formulation in the polynomial chaos framework, where the

expectation is computed using exact integration of the corresponding function. Combining the idea

with sufficient condition (3.21) yields the following result.

The following theorem poises the problem in terms of matrix variablesP (ρ) andK(ρ) as arbitrary

function of ρ. Later we present a result that solves the problem in the polynomial chaos framework.

Theorem 18. Controller gain K(ρ) := W (ρ)Y −1(ρ) minimizes (3.22) if ∃ Y (ρ) = Y T (ρ) >
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0 ∈ Rn×n andW (ρ) ∈ Rm×n, which are the solutions of the optimization problem

max tr E [Y (ρ)] (3.25)

subject to

E
[
sym

(
YΦnA

TΦT
n +WTΦmB

TΦT
n

)
+ YΦnQΦT

nY +WTΦmRΦT
mW

]
+ XΦnΦ

T
n ≤ 0,

(3.26)

ρ̇ ∈ Dρ̇ (3.27)

where Dρ̇ is the vertices of the set Dρ̇, Y := IN+1 ⊗ Y (ρ), X := IN+1 ⊗ X(ρ, ρ̇), W :=

IN+1 ⊗W (ρ), and sym (·) := (·) + (·)T . The matrix functions Y (ρ) andX(ρ, ρ̇) are related by

X(ρ, ρ̇) := −
nρ∑
i=1

E

[
∂Y (ρ)

∂ρi

]
ρ̇i.

Proof. We proceed by formulating an optimization problem that minimizes the upper-bound on

the cost-to-go. In the following derivation, we simplify the notation by not showing explicit de-

pendence on ρ at every step of the derivation.

Let V (x) := xTP (ρ)x,P (ρ) = P T (ρ) > 0 ∈ Rn×n. Therefore, (3.21) can be written as

E
[
xT
(
sym

(
(A+BK)TP

)
+ S(ρ, ρ̇) +Q+KTRK

)
x
]
≤ 0,

or

E
[
xT
(
sym

(
ATP +KTBTP

)
+ S(ρ, ρ̇) +Q+KTRK

)
x
]
≤ 0, (3.28)
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where

S(ρ, ρ̇) :=

nρ∑
i=1

∂P (ρ)

∂ρi
ρ̇i. (3.29)

The above condition is not convex in P and K. We can convexify the constraint using standard

substitution [52], P := Y −1 and x := Y z, in the above quadratic form, to get

xT
(
sym (PA+ PBK) + S +Q+KTRK

)
x

= zTY
(
sym

(
Y −1A+ Y −1BK

)
+ S +Q+KTRK

)
Y z

= zT
(
sym (AY +BKY ) + Y SY + Y QY + Y KTRKY

)
z

= zT
(
sym(AY +BW ) + Y SY + Y QY +W TRW

)
z

withW := KY .

Substituting P := Y −1 in the definition of S(ρ, ρ̇) we get,

S(ρ, ρ̇) :=

nρ∑
i=1

∂P (ρ)

∂ρi
ρ̇i,

= −
nρ∑
i=1

Y −1∂Y (ρ)

∂ρi
Y −1ρ̇i.

Therefore,

Y SY = −
nρ∑
i=1

∂Y (ρ)

∂ρi
ρ̇i := X(ρ, ρ̇).

Therefore, the condition in (3.28) is equivalent to

E
[
zT
(
sym(AY +BW ) +X + Y QY +W TRW

)
z
]
≤ 0. (3.30)
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Assuming z(t,ρ) is a second order process, we can represent

z(t,ρ) :=
∞∑
i=0

zi(t)φi(ρ) = ΦT
n (ρ)zpc(t), (3.31)

and get

zTpcE
[
Φn

(
sym

(
Y AT +W TBT

)
+X + Y QY +W TRW

)
ΦT
n

]
zpc ≤ 0,

or

E
[
sym

(
ΦnY A

TΦT
n + ΦnW

TBTΦT
n

)
+ ΦnXΦT

n + ΦnY QY ΦT
n + ΦnW

TRWΦT
n

]
≤ 0.

Using (3.24) we can write ΦnY = YΦn, ΦnX = XΦn, and ΦnW
T = WTΦm, where Y :=

IN+1⊗Y (ρ), X := IN+1⊗X(ρ, ρ̇),W := IN+1⊗W (ρ), and sym (·) := (·)+(·)T . Substituting

them, we get

E

[
sym

(
YΦnA

TΦT
n +WTΦmB

TΦT
n +

1

2
XΦnΦ

T
n

)
+ YΦnQΦT

nY +WTΦmRΦT
mW

]
≤ 0.

Since we only treat ρ as random variables, X can be taken out of the expectation and we arrive

the constraint (3.26) in the optimization problem. Notice that (3.26) is affine in ρ̇, so to obtain all

element in the set Dρ̇ only the vertices of the set are required.

Since x0 is given, with no initial condition uncertainty, the upper bound of the cost function can

be written as

E
[
xT0P (ρ)x0

]
= xT0 E [P (ρ)]x0 = xT0 E

[
Y −1(ρ)

]
x0.

If P ∗ is the optimal solution, then P ≥ P ∗ for any P > 0, or in terms of Y := P−1, Y ≤ Y ∗ for

any Y > 0. Therefore, for a given x0, minxT0 E [P (ρ)]x0 is achieved by max tr E [Y (ρ)]. �

Remark. Note that we have included infinite terms in the polynomial expansion as expression
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in (3.31), and thus the representation is exact. The theory is presented with the exact, infinite

term, polynomial chaos expansion. When the computation is needed in practice, the finite term

truncation is obtained.

The matrix variables Y (ρ) and W (ρ) in (3.26) are infinite dimensional, since they are functions

of ρ, which is computationally intractable. For computational tractability, we consider N th order

approximation of Y (ρ) andW (ρ) using polynomial-chaos matrix-expansion. For the parameteri-

zation of Y (ρ) = Y (ρ)T > 0, we use the result on sum-of-square (SOS) representation of matrix

polynomials [82], given by the following lemma.

Lemma 19. (Lemma 1 in [82]) The polynomial matrix Y (ρ) of dimension n × n is SOS with

respect to the monomial basis Ψ(ρ) iff there exists a symmetric matrix Ȳ such that

Y (ρ) = (Ψ(ρ)⊗ In)T Ȳ (Ψ(ρ)⊗ In) = ΨT
n (ρ)ȲΨn(ρ), and Ȳ ∈ Rn(N+1)×n(N+1) ≥ 0.

(3.32)

Proof. See Lemma 1 in [82]. �

Therefore, Ȳ = Ȳ
T ≥ 0 =⇒ Y (ρ) = Y T (ρ) ≥ 0, ∀ρ. However, a positive definite matrix

which contains polynomial basis functions is needed here so we modify Lemma 19 as follows.

Corollary 20. The polynomial matrix Y (ρ) of dimension n× n is positive definite with respect to

the polynomial basis Φ(ρ) iff there exists a symmetric matrix Ȳ such that

Y (ρ) = ΦT
n (ρ)Ȳ Φn(ρ), and Ȳ ∈ Rn(N+1)×n(N+1) > 0. (3.33)

Corollary 20 yields a special structure of parameterization of the positive definite matrix Y (ρ) and

the following result describes its dimension of the space that would be helpful for the controller

synthesis. The following result quantifies the exact degree of freedom in the parameterization of

Y (ρ).
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Corollary 21. Ȳ in (3.32) is in a linear space of dimension n(n+ 1)(N + 1)(N + 2)/4.

Proof. Partition Ȳ as

Ȳ :=


Ȳ 00 · · · Ȳ 0N

...
...

Ȳ N0 · · · Ȳ NN

 , (3.34)

where Ȳ ij = Ȳ
T
ji ∈ Rn×n. Therefore,

Y (ρ) := ΦT
n Ȳ Φn =

∑
ij

φi(ρ)φj(ρ)Ȳ ij. (3.35)

But, Y (ρ) = Y (ρ)T

=⇒ Ȳ ij = Ȳ
T
ij. (3.36)

Combining (3.34) and (3.36) we observe that Ȳ admits a linear space of dimension n(n+ 1)(N +

1)(N + 2)/4. �

From (3.35), we can write

Y (ρ) =
∑
ij

φi(ρ)φj(ρ)Ȳ ij, (3.37)

=
(
ψT (ρ)⊗ In

)
V Ȳ = ψT

n (ρ)V Ȳ , (3.38)
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where

ψ(ρ) :=



φ2
0(ρ)

2φ1(ρ)φ0(ρ)

...

2φN(ρ)φN−1(ρ)

φ2
N(ρ)


and

V Ȳ :=



Ȳ 00

Ȳ 10

...

Ȳ N(N−1)

Ȳ NN


(3.39)

Matrix variable W (ρ) is parameterized to be linearly dependent on polynomial chaos basis func-

tions φi(ρ), i.e.

W (ρ) =
N∑
i=0

W iφi(ρ),

=

[
φ0(ρ)Im · · · φN(ρ)Im

]
W 0

...

WN


︸ ︷︷ ︸

VW

, (3.40)

= ΦT
m(ρ)V W . (3.41)

Substituting (3.38) intoX(ρ, ρ̇) one can obtained its paramaeterization as

X(ρ, ρ̇) = −
nρ∑
i=1

∂ψT
n (ρ)

∂ρi
ρ̇iV Ȳ . (3.42)
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From the definition of Y

Y := IN+1 ⊗ Y (ρ)

= IN+1 ⊗
(
ψT
n (ρ)V Ȳ

)
=
(
IN+1 ⊗ ψT

n (ρ)
)

(IN+1 ⊗ V Ȳ ),

=
(
IN+1 ⊗ ψT

n (ρ)
)
VȲ . (3.43)

Similarly,

W = IN+1 ⊗
(
ΦT
m(ρ)V W

)
,

=
(
IN+1 ⊗ ΦT

m(ρ)
)

(IN+1 ⊗ V W ),

=
(
IN+1 ⊗ΦT

m(ρ)
)
VW . (3.44)

and

X = IN+1 ⊗ (−
nρ∑
i=1

∂ψT
n (ρ)

∂ρi
ρ̇iV Ȳ ) (3.45)

= −
(
IN+1 ⊗

nρ∑
i=1

∂ψT
n (ρ)

∂ρi
ρ̇i

)
(IN+1 ⊗ V Ȳ ),

=
(
IN+1 ⊗

nρ∑
i=1

∂ψT
n (ρ)

∂ρi
ρ̇i

)
VȲ . (3.46)

We next present the synthesis algorithm for the particular parameterization considered here.

Theorem 22. Controller gain

K(ρ) =

(
N∑
i=0

W iφi(ρ)

)(
ΦT
n (ρ)Ȳ Φn(ρ)

)−1
,

minimizes (3.22) if matrices Ȳ = Ȳ
T
> 0 ∈ Rn(N+1)×n(N+1) and W i ∈ Rm×n, are the solution
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of the following optimization problem

max
Ȳ ,W i

tr

(
N∑
i=0

E
[
φ2
i (ρ)

]
Ȳ ii

)

subject to (3.47)
sym

(
VT
Ȳ
M 1 + VTWM 2

)
+M 5VȲ VT

Ȳ

√
M 3 VTW

√
M 4

√
M 3VȲ −I 0

√
M 4VW 0 −I

 ≤ 0, (3.48)

ρ̇ ∈ Dρ̇ (3.49)

where Dρ̇ is the vertices of the set Dρ̇, VȲ := IN+1 ⊗ V Ȳ ,VW := IN+1 ⊗ V W , V Ȳ and V W

are functions of Ȳ andW i defined in (3.39) and (3.40) respectively,

M 1 := E
[
(IN+1 ⊗ψn)ΦnA

TΦT
n

]
, (3.50)

M 2 := E
[
(IN+1 ⊗Φm)ΦmB

TΦT
n

]
, (3.51)

M 3 := E
[
(IN+1 ⊗ψn)ΦnQΦT

n (IN+1 ⊗ψT
n )
]
, (3.52)

M 4 := E
[
(IN+1 ⊗Φm)ΦmRΦT

m(IN+1 ⊗ΦT
m)
]
, (3.53)

M 5 := IN+1 ⊗

(
nρ∑
i=1

E

[
∂ψn(ρ)

∂ρi
ΦnΦ

T
n

]
ρ̇i

)
(3.54)

with the principal square roots of the respective matrices
√
M 3 and

√
M 4.

Proof. Recall from (3.37), Y (ρ) =
∑

ij φi(ρ)φj(ρ)Ȳ ij . Noting that E [φi(ρ)φj(ρ)] = 0, for

i 6= j, the cost function in (3.25) is then

tr E [Y (ρ)] = tr
( N∑
i=0

E
[
φ2
i (ρ)

]
Ȳ ii

)
. (3.55)
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From (3.43) and (3.44), we can substitute Y andW in (3.26) to get

sym
(
VTȲM 1 + VTWM 2

)
+ VTȲM 5 + VTȲM 3VȲ + VTWM 4VW ≤ 0.

Applying Schur complement we get the LMI in (3.48). Since (3.54) is affine in ρ̇, only the vertices

of Dρ̇ is needed, i.e. Dρ̇. �

3.2.2 Stochastic Collocation Based Formulation

In this section we solve the synthesis problem derived in Theorem 18 in the stochastic collocation

framework. In this framework, we can parameterize the matrix variables in (3.30) as

z(ρ) = Ln(ρ)Tzsc, (3.56)

Y (ρ) = LTn (ρ)Ỹ Ln(ρ), (3.57)

W (ρ) = LTm(ρ)VW̃ , (3.58)

where Ln =


l0(ρ)

...

lN(ρ)

⊗ In, Ỹ =


Ỹ 00 · · · Ỹ 0N

... . . . ...

Ỹ N0 · · · Ỹ NN

, and V W̃ =


W̃ 0

...

W̃N

. Using this parame-

terization, we have the following optimization problem for synthesis.

Theorem 23. Controller gain

K(ρ) =
(
LTm(ρ)VW̃

) (
LTn (ρ)Ỹ Ln(ρ)

)−1

,

minimizes (3.22) if ∃ matrices Ỹ = Ỹ
T
> 0 ∈ Rn(N+1)×n(N+1) and W̃ i ∈ Rm×n, that solves the
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following optimization problem

max
Ȳ ,W i

tr

(
N∑
i=0

E [Lin] Ỹ ii

)

subject to (3.59)
M 11,i M 12,i M 13,i

MT
12,i −I 0

MT
13,i 0 −I

 ≤ 0 for i = 0, 1, · · · , N ; (3.60)

ρ̇ ∈ Dρ̇ (3.61)

where

M 11,i :=sym
(
Ỹ

T

iiE [Lin]AT (ρi) + W̃
T

i B
T (ρi)

)
− E [Lin]

nρ∑
j=1

(
∂LTn,i
∂ρi

Ỹ Ln,i +LTn,iỸ
∂Ln,i
∂ρi

)
ρ̇j, (3.62)

M 12,i :=Ỹ
T

ii

√
E [Lin]Q, (3.63)

M 12,i :=W̃
T

i

√
E [Lin]R, (3.64)

Dρ̇ is the vertices of the set Dρ̇, andLin = li ⊗ In, and ρi are the roots of the polynomial chaos

basis of degree N + 1.
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Proof. Substituting (3.57) into (3.25) and applying Lemma 16, we have

tr E [Y (ρ)] = tr E
[
LTn (ρ)Ỹ Ln(ρ)

]
= tr (E

[
N∑
i=0

N∑
j=0

LinỸ ijLjn

]
)

≈ tr (E [L0n] Ỹ 00 + E [L1n] Ỹ 11 + · · ·+ E [LNn] Ỹ NN)

= tr (
N∑
i=0

E [Lin] Ỹ ii),

which is the cost function we have to maximize. Then, substituting (3.56)-(3.58) into (3.30) yields

E
[
zTscLn

(
sym

(
LTn Ỹ LnA

T+ V T
W̃
LmB

T
)
−

nρ∑
j=1

(
∂LTn
∂ρi

Ỹ Ln +LTn Ỹ
∂Ln
∂ρi

)
ρ̇j+

LTn Ỹ LnQL
T
n Ỹ Ln + V T

W̃
RLTmV W̃

)
LTnzsc

]
≤ 0

or

E
[
Ln

(
sym

(
LTn Ỹ LnA

T+ V T
W̃
LmB

T
)
LTn Ỹ LnQL

T
n Ỹ Ln + V T

W̃
RLTmV W̃

)
LTn

]
−

nρ∑
j=1

E

[
Ln

(
∂LTn
∂ρi

Ỹ Ln +LTn Ỹ
∂LTn
∂ρi

)
Ln

]
ρ̇j ≤ 0. (3.65)

Applying the Lemma 16, (3.65) can be represented as

E


L0n

. . .

LNn




G0

. . .

GN

−

H0

. . .

HN


 ≤ 0, (3.66)
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where

Gi ≈sym
(
LTn,iỸ Ln,iA(ρi)

T + V T
W̃
Lm,iB(ρi)

T
)

+LTn,iỸ Ln,iQL
T
n,iỸ Ln,i + V T

W̃
RLTm,iV W̃

=sym
(
Ỹ iiA

T (ρi) + W̃
T

i B
T (ρi)

)
+ Ỹ iiQỸ ii + W̃

T

i RW̃ i,

and

H i ≈
nρ∑
j=1

(
∂LTn,i
∂ρi

Ỹ Ln,i +LTn,iỸ
∂Ln,i
∂ρi

)
ρ̇j

We use the notations Ln,i := Ln(ρi), Lm,i := Lm(ρi) and
∂LT

n,i

∂ρi
:= ∂LT

n

∂ρi
(ρi)to simplify the above

expressions. Since (3.66) is in a diagonal form, it can be separated into N + 1 constraints.

E [Lin]

[
sym

(
Ỹ iiA

T (ρi) + W̃
T

i B
T (ρi)

)
−

nρ∑
j=1

(
∂LTn,i
∂ρi

Ỹ Ln,i +LTn,iỸ
∂Ln,i
∂ρi

)
ρ̇j

+Ỹ iiQỸ ii + W̃
T

i RW̃ i

]
≤ 0

(3.67)

for i = 0, · · · , N . Applying Schur complement to (3.67) we obtain N + 1 final parameter-

dependent LMIs as (3.60). Since (3.67) is affine in ρ̇, only the vertices of Dρ̇ is needed, i.e.

Dρ̇. �

It is noteworthy, that in (3.62) the rate term is coupled with all the elements in Ỹ . In a special

case, when Y is not parameter dependent and consequently ρ̇ doesn’t appear in V̇ (x), the LMIs

become independent to each other.

Comparing two optimization problem in the frameworks between Galerkin projection and Stochas-

tic collocation one can see the benefit of stochastic collocation. While (3.48) requires much com-

putation effort for calculating expected value of each element in matrices, LMIs in (3.60) only
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needs to be calculated by substituting sample points into the matrices. This difference becomes

more with increasing parameter dimension and approximation order.

3.2.3 Stability Concern Due to Finite Term Polynomial Chaos Expansion

Theorem 18 presents the optimization problem for synthesis assuming infinite term polynomial

chaos expansion of x(t,ρ). There are no approximations in that problem formulation. How-

ever, we solve this problem using finite terms in the expansion, for both Galerkin projection and

stochastic collocation framework. The problem formulations in Theorem 22 and 23 are based

on finite term expansion of x(t,ρ) ≈ x̂(t,ρ) :=
∑N

i=0 xi(t)φi(ρ). Therefore, optimal control

of x̂(t,ρ) does not necessarily imply optimal control of x(t,ρ). In fact, we cannot conclude

limt→∞ E [‖x̂(t,ρ)‖2
2] → 0 =⇒ limt→∞ E [‖x(t,ρ)‖2

2] → 0. That is, we cannot guarantee

exponential mean square stability (EMS) of x(t,ρ) from the EMS of x̂(t,ρ).

To circumvent this problem, we guarantee stability of x(t,ρ) in the worst-case sense by imposing

the following additional constraints,

sym (A(ρwc)Y (ρwc) +B(ρwc)W (ρwc)) < 0, (3.68)

where ρwc represents the worst-case values from Dρ. See [83] and [84] for more detail. Therefore,

the results presented in this chapter can be interpreted as synthesis of parameter dependent gain

K(ρ) that stabilizes the system in (3.1) in the worst-case sense and optimizes the performance,

using Theorem 22 and 23, based on the first N modes of x(t,ρ).

Another approach has been developed recently by Lucia et. al. [85]. In this technique, errors in

the first and second moment between the approximated system and original system are analytically

computed and the bounds on errors are used to design the feedback control, so that the EMS of the

original system is guaranteed even with truncation. Without considering the worst-case conditions,

this approach has a potential benefit that the system can be stabilized in a less conservative sense.
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We will consider this approach in the LPV formulation, in our future work.
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4. DIRECT INTERPOLATION WITH SPARSE GRID

In the Chapter 2, several controller syntheses are presented, where all optimization problems con-

tain various parameter-dependent LMIs establishing either sufficient or necessary conditions for

stability and performance of LPV systems. We denote that solving the optimization problems pre-

sented in the Chapter 2 is still a challenge due to the nonlinearities in the system matrices and

infinite dimension of the unknown matrices if there exist. The common approaches to handle with

the problem is either to make the problem polytopic or utilize gridding technique. However, poly-

topic systems render the controller design significantly conservative and the gridding approach

requires tremendous computation effort if a high confidence design is needed. See the Section 1.1

for further discussion of the polytopic design and the gridding method.

This chapter is focusing on the gridding method, which requires proper amount of sample points

and those locations so that the parameter-dependent LMIs can be satisfied for all elements in the

parameter sets. Generally speaking, the more sample points chosen from the set, the higher chance

to ensure conditions for the whole set. However, there is no theoretical analysis that can guarantee

the conditions with nonlinear terms, but we can give an exam of conditions for a sample set as finer

as possible or test the control system via simulations. Recently, Bandeira et. al. [46] and Araujo

et. al. [47] has proposed a new technique based on Haar wavelet transformation for the gridding

method that guarantees the stability of the LPV system, which inspires the method we develop in

the chapter.

The control syntheses presented in this chapter are based on sparse grid technique or so called

Smolyak algorithm, which produces an approximation of the optimization problem and requires

much less samples than the conventional gridding methodology. The approach proposed in this

chapter solves the infinite dimensional LPV problem which contains all sample points in one large

size optimization problem. More detail will be described below.
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4.1 Polynomial Interpolation

4.1.1 Univariate Interpolation

Starting from the simplest case, we consider a univariate case, i.e. a continuous differentiable

function of a one-dimensional variable f(x) : [−1, 1] → R. Using (3.13) and selecting N sample

points, the approximation of f(x) can be formulated as

U(f) =
N∑
i=1

f(xi)li(x),

where xi is the user chosen points between -1 and 1, f(xi) is the function value at the point xi, and

li(x) : R → R is the Lagrange polynomial defined in (3.13). Although the set [−1, 1] is assumed

for the function f(x), any compact set can be linearly transformed into it, and thus [−1, 1] can

be considered as a general case. According to Lebesgue theorem [86, 87, 88], the error of the

approximation U(f) is bounded in terms of infinity norm by

‖f − f ∗‖∞ ≤ ‖f − U(f)‖∞ ≤ (Λ + 1)‖f − f ∗‖∞, (4.1)

where f ∗ is the best approximation of f and the Lebesgue constant Λ is determined by

Λ = max
x∈[−1,1]

N∑
i=1

|li(x)|.

As Λ is turning smaller, the upper bound of the approximation error goes smaller.

It is known that the accuracy is highly depending on the choices of the interpolation sample points.

In particular, using Chebyshev nodes

xj = − cos
π(j − 1)

N − 1
, j = 1, · · · , N (4.2)
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(b) Interpolation with Chebyshev nodes.

Figure 4.1: Lagrange interpolation of Runge function shows the divergence for higher order ap-
proximation.

which are determined by the roots or extrema of the Chebyshev polynomial, is a better option than

using equidistant points, although both types are not optimal in the sense of error approximation.

Furthermore, Using Chebyshev nodes avoids Runge’s phenomenon, which shows the divergence of

the polynomial interpolation near the end of the interpolation points as the order of the polynomials

increases. This can be seen in Fig. 4.1, which shows the interpolation of the Runge function f(x) =

1
1+25x2 . As the order of the Lagrange polynomial increase, the approximation with equidistant

points is closer to the Runge function in the middle but diverging near the end points x = −1 and

x = 1, while the interpolation with Chebyshev nodes efficiently stabilizes the approximation near

the edges. This is because of the characteristic of the Chebychev nodes that are provided more

when approaching to the boundaries.

4.1.2 Tensor Product

Extending the interpolation to a more general case, we consider a multivariate function f(x) :

[−1, 1]d → R. The most intuitive way to interpolate a multivariate function is to utilize the uni-

variate interpolation and extend to multivariate case, that is, a tensor product of the univariate case.
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Specifically, N Chebyshev nodes are determined in (4.2) for each dimension which contains Nd

sample points, then the tensor product is formulated as

I(f) :=
(
U i1 ⊗ · · · ⊗ U id

)
(f) =

N∑
j1=1

· · ·
N∑
jd=1

f
(
xi1j1 , · · · , x

id
jd

)
·
(
li1j1 ⊗ · · · ⊗ l

id
jd

)
, (4.3)

where ik indicates k-th dimension of the variable set X ik ⊂ [−1, 1], xikmk
∈ X ik indicates m-th

sample point for k-th dimension of the variable set , and likjm is m-th Lagrange polynomial for k-th

dimension of the variable. The tensor product (4.3) is easy to formulate due to its straightforward

logic and the numerical programming is thus very accessible. However, the number of required

sample points becomes a nightmare when the dimension d increases. From (4.3), it is easy to see

the total number of nodes is Nd, which can exponentially grow with increasing d. This is known

the curse of dimensionality.

4.2 Smolyak Algorithm

To avoid the curse of dimensionality, this section presents a sparse grid approach by Smaolyak

algorithm, which was first introduced in [89] and is a linear combination of product formulation.

With the algorithm, much less samples need to be considered but the interpolation property for

univariate case is still preserved for multivariate case.

Following the logic in [90], we define

∆i = U i − U i−1

with U0 = 0 for i ∈ {i1, · · · , id}, denote |i| = i1 + · · · + id for i = (i1, · · · , id)Zd. Then, the

Smolyak algorithm is given by

A(k, d) =
∑
|i|≤k+d

(
∆i1 ⊗ · · · ⊗∆id

)
(4.4)
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for k ≥ 0, where k stands for the "level" of the approximation. Identically, (4.4) can be rewritten

as

A(k, d) =
∑

k+1≤|i|≤k+d

(−1)d+k−|i| ·

 d− 1

d+ k − |i|

 · (U i1 ⊗ · · · ⊗ U id) , (4.5)

which is the most common expression in the literature. To compute A(k, d), we only need to

calculate function values at the sparse grid defined as

H(k, d) = ∪
k+1≤|i|≤k+d

(
X i1 × · · · × X id

)
.

We follow the choice made in [90] sine it has been investigated in many research effort [91, 92, 93].

Thus, the chosen grid points are based on the Chebyshev nodes

xij = − cos
π(j − 1)

mi − 1
, j = 1, · · · ,mi (4.6)

where mi is the number of nodes used for the univariate interpolation U i. It is noted that the

number of nodes used for each dimension is no longer assumed to be equal to each other, which is

different than tensor product presented before. To obtain nested sets of grid points, i.e. X i ⊂ X i+1,

we choose

m1 = 1 and mi = 2i−1 + 1 for i > 1. (4.7)

This also implies nested sets of grid for different level k, i.e. H(k, d) ⊂ H(k + 1, d). The nested

set is an essential property so that the amount of the samples can be efficiently reduces. Besides,
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Figure 4.2: Comparison between sparse grid and tensor product in terms of sample points for the
dimension of d = 2.

the total number of nodes can be calculated by [94]

η =
∑

k+1≤|i|≤k+d

d∏
n=1

r(in), where r(i) :=


1 if i = 1

2 if i = 2

2i−2 if i > 2

. (4.8)

Calculating the total number from (4.8) yields Table 4.1, which compares the number of sample

points between sparse grid and tensor product grid and shows a significant improvement in terms

of the size of sample points. In particular, Fig. 4.2 shows the location of each node of tensor

product and sparse grid with the level k = 4 for the dimension d = 2, which can visually realize

the advantage of the sparse grid.

Regarding the error analysis of the Smolyak algorithm, Barthelmann et. al. [90] has proposed the

result of the upper bound for Smolyak algorithm with Chebyshev nodes as follows by using the

well-known Jackson estimate.

Theorem 24. For the space F cd = {f : [−1, 1]d → R|Dαf continuous if αi ≤ c for all i} we
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d k Sparse Grid Tensor Product ((2k + 1)d for k > 1)
2 1 5 9

2 13 25
3 29 81
4 65 289

10 1 21 59049
2 66 9765625
3 286 3.5× 109

20 1 41 3.5× 109

2 841 9.5× 1013

50 1 101 7.2× 1023

2 5101 8.9× 1034

Table 4.1: Comparison of total number of sample points between sparse grid and tensor product.

obtain

‖Id −A(k, d)‖∞ ≤ Cd,c ·M−c · (logM)(c+2)(d−1)+1,

where Id is the identity operator in a d-dimensional space, M is the total number of nodes that are

used by A(k, d), and Cd,c denote constants that depend on d and c.

Although the explicit expression of the constant Cd,c is not shown in [90], the convergence of the

error is guaranteed as the amount of samples is increasing to the infinity.

Numerically, although the Smolyak algorithm notably diminishes the calculation of the function

value at the grid points, many univariate interpolations U i still needs to be used repeatedly accord-

ing to (4.5), where the linear combination of many repeat elements are implemented. Therefore,

such inefficient and expensive structure has been improved by Judd et. al. [95] who proposed a

more efficient implementation of the Smolyak algorithm to avoid the repetitions of univariate in-

terpolations. The main idea is to replace the conventional nested sets with equivalent dis-joint sets,

which are used for both Chebyshev nodes and Smolyak basis functions, and hence the convectional

formulation (4.5) can be changed to a canonical Lagrange interpolation.
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We again consider a multivariate function f(x) : [−1, 1]d → R and define an approximation of the

function f(x) as

f̂(x) :=
M∑
i=1

biΨi(x), (4.9)

where Ψi(x) : Rd → R is a d-dimensional basis function with associated coefficient bi. In this

thesis, we opt to use Chebyshev polynomials the same as in [95]. After selecting M grid points

according to the rule stated in (4.6) and (4.7), we calculate the function value f(x) at each node

and formulate a linear system


f(x1)

...

f(xM)

 =


Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)



b1

...

bM

 , (4.10)

which makes the approximation function f̂(x) equal to actual function f(x) at each grid point.

Provided that the matrix consist of basis functions has full rank, the coefficient bi is obtained by


b1

...

bM

 =


Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1 

f(x1)

...

f(xM)

 . (4.11)

Substituting (4.11) into (4.9) yields a complete approximation. Comparing with (4.5), this formu-

lation is more compact and easy to implement in a systematic manner.

This work can also be extended to a generalized approximation, i.e. interpolations of vectors or

matrices. Thus, here we consider a matrix F (x) : [−11]d → Rn×m, where each element in the

matrix is a function of x. Then, an approximation of the matrix can be defined as

F̂ (x) :=
M∑
i=1

BiΨi(x) = ΨT
n (x)BSG, (4.12)
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where Ψn(x) = [ψ1, · · · , ψM ]T ⊗ In, and BSG = [B1, · · ·BM ]T with Bi ∈ Rn×m. Similarly, a

linear system is formulated such that F̂ (x) is equivalent to F (x) at Smolyak grid points, that is


F (x1)

...

F (xM)

 =


F̂ (x1)

...

F̂ (xM)

 =


Ψ1(x1)In · · · ΨM(x1)In

... . . . ...

Ψ1(xM)In · · · ΨM(xM)In

BSG, (4.13)

and the coefficient matrices are obtained from

BSG =


Ψ1(x1)In · · · ΨM(x1)In

... . . . ...

Ψ1(xM)In · · · ΨM(xM)In


−1 

F (x1)

...

F (xM)



=




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ In



F (x1)

...

F (xM)

 . (4.14)

Instead of directly taking derivative of the big matrix in (4.13), one can simply use the same

inverse matrix to calculate the coefficient matrice BSG. In addition, since the inverse matrix is not

depending on the function value F (xi), we only need to compute the inverse matrix once after the

grid points are chosen.

4.3 Controller Synthesis

This section presents two types of LPV controllers that are developed in the Chapter 2 - linear

quadratic regulator and H2 control. Recall that the optimization problems for these problems

are built based on some parameter-dependent LMIs, where the unknown matrices are infinite-

dimensional. Therefore, the Smolyak algorithm is going to be used to approximate those ma-

trices and the coefficient matrices are solved through a large size problem that contains various

parameter-independent LMIs.
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4.3.1 Linear Quadratic Regulator

From the Theorem 12, our aim is to parameterize Y (ρ) : Dρ → Rn×n and W (ρ) : Dρ → Rm×n

and determine the associated coefficients. We thus let

Y (ρ) = ΨT
n (ρ)Y SG (4.15)

and

W (ρ) = ΨT
m(ρ)W SG. (4.16)

and substitute the above parameterization into (2.40) and (2.41), then we arrive the following

optimization problem

max
Y SG,WSG,Z

tr(Z) (4.17)

subject to
sym(A((ρi))Ψ

T
n (ρi)Y SG+B(ρi)Ψ

T
m(ρi)WSG)−

∑nρ
j

∂ΨT
n (ρi)

∂ρj
Y SGρ̇j ΨT

n (ρi)Y SG W T
SGΨm(ρi)

ΨT
n (ρi)Y SG −Q−1 0

ΨT
m(ρi)W SG 0 −R−1

 < 0

(4.18)

ΨT
n (ρi)Y SG −Z > 0 (4.19)

Z > 0 (4.20)

ρ̇(t) ∈ Dρ̇,

for i = 1, · · · ,M , where ρi is the i-th grid point determined by the rule stated in (4.6) and

(4.7). Substituted with all the grid points, the above optimization includes M2nρ+1 + 1 parameter-

independent LMIs, so this can be simply solved via general LMI solvers, e.g. CVX, YALMIP.
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Then, the solution to the optimization problem is taken to formulate the coefficients of (4.15) and

(4.16).

However, since the LMIs in (4.18) and (4.19) are highly decoupled for i = 1, · · · ,M , the com-

putational cost is expensive, which becomes nontrivial if the parameter set is high dimensional.

Hence, we reformulate the optimization in the form of

max
Y 1,··· ,Y M

Ẏ 1,··· ,Ẏ M
W 1,··· ,WM

Z

tr(Z) (4.21)

subject to
sym (A((ρi))Y i +B(ρi)W i)−

∑nρ
j Ẏ jρ̇j Y i W T

i

Y i −Q−1 0

W i 0 −R−1

 < 0 (4.22)

Y i −Z > 0 (4.23)

Ẏ j =




∂Ψ1(x1)
∂ρj

· · · ∂ΨM (x1)
∂ρj

... . . . ...

∂Ψ1(xM )
∂ρj

· · · ∂ΨM (xM )
∂ρj




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1


Y 1

...

Y M

 for j = 1, · · · , nρ

(4.24)

Z > 0 (4.25)

ρ̇(t) ∈ Dρ̇,

for i = 1, · · · ,M , where Y i, Ẏ i and W i are parameter-independent matrices that are deter-

mined by solving the optimization. It is obvious to see that (4.22) and (4.23) turn into decoupled

constraints for different sample points. Besides, the equality constraints in (4.24) describe the

relationship between Y (ρ) and Ẏ (ρ), which are vital due to the assumption in the optimization

that Y i and Ẏ i are separately defined and considered as independent variables. Using (4.14) the

74



coefficient matrices of Y (ρ),W (ρ) are obtained by

Y SG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ In



Y 1

...

Y M

 , (4.26)

and

W SG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ Im



W 1

...

WM

 . (4.27)

One should notice that the controller synthesized through the above optimization does not guar-

antee the stability and performance for all the elements in the parameter set, since the problem

is formulated by the interpolations that produce approximation error and hence violate the con-

straints. Therefore, some stress is introduced to the LMIs in (4.22) and (4.23) so that the LMIs

keep away from the infeasible region. In particular, we add extra constants to the LMIs in the
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above optimization problem and arrive

max
Y 1,··· ,Y M

Ẏ 1,··· ,Ẏ nρ

W 1,··· ,WM
Z

tr(Z) (4.28)

subject to
sym (A((ρi))Y i +B(ρi)W i)−

∑nρ
j Ẏ jρ̇j Y i W T

i

Y i −Q−1 0

W i 0 −R−1

 < αiI2n+m (4.29)

Y i −Z > βiIn (4.30)

Ẏ j =




∂Ψ1(x1)
∂ρj

· · · ∂ΨM (x1)
∂ρj

... . . . ...

∂Ψ1(xM )
∂ρj

· · · ∂ΨM (xM )
∂ρj




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1


Y 1

...

Y M

 (4.31)

Z > 0 (4.32)

ρ̇(t) ∈ Dρ̇,

for j = 1, · · · , nρ and i = 1, · · · ,M , such that the maximum approximation error does not affect

the feasibility. There is no analytic approach to choose αi > 0 and βi > 0 in the current state of

art, so we introduce an ad-hoc algorithm as follows.

1. Pick the level k of the Smolyak algorithm and the associated grid points according to the

rule in (4.6) and (4.7).

2. Pick positive small values for αi and βi from i = 1, · · · ,M .

3. Solve the problem (4.28)-(4.32) and check the feasibility for finer grids.

4. If the controller is infeasible, increase the values of k or αi and βi and resolve the problem

until the solution is feasible for the finer grids.
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The optimization contains M2nρ+1 + nρ + 1, so the amount of the LMIs increases exponentially

as the number of grid point grows up. Besides, The feasible region of the optimization problem

is shrinking as αi and βi increase, and the conservatism thus is somehow introduced. Therefore,

one should check the performance index even if the solution is feasible because it is impractical to

obtain a solution that has too much conservative performance.

To reduce the conservatism of relaxation ,we can keep increasing the order of the expansion and

sample points according to the algorithm. However, the computational cost will be growing up

exponentially as well. To resolve this problem, we can separate the order of the expansion and the

number of the sample points. In particular, we can decrease the expansion to lower order N and

increase the amount of sample points to M which is greater than N . By doing this, although the

number of samples will cost the computation, we reduce the complexity of the expansion. As a

result, the optimization in (4.28)-(4.32) can solved more efficiently. Observing (4.31), the inverse

matrix is invalid due to rank deficiency, so a least-square solution is obtained.

4.3.2 H2 Control

Based on the Theorem 13, we reformulate the problem with the same logic as previous subsection

and arrive the following optimization for control synthesis.

min
X,W

Z1,··· ,ZM

tr(W ) (4.33)

subject to sym (A(ρi)X +Bu(ρi)Zi) +Bw(ρi)Bw(ρi)
T < αi, (4.34)W Cz(ρi)X +Du(ρi)Zi

(•)T X

 > βi, (4.35)

for i = 1, · · · ,M . The above optimization (4.33) - (4.35) only contains 2 ∗M LMIs since X is

not depending on the parameter and no rate term is needed in(4.34). As the amount of the samples

raises, the size of the problem linearly increases. Similar to (4.26) and (4.27), the coefficient of
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Z(ρ) is obtained by

ZSG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ Im



Z1

...

ZM

 . (4.36)

Besides, the same algorithm stated before can be implemented to solve the problem.

Regarding the Theorem 14, we parameterize all the unknown matrices

X(ρ) = ΨT
n (ρ)XSG (4.37)

Z(ρ) = ΨT
m(ρ)zSG (4.38)

W (ρ) = ΨT
nz(ρ)W SG, (4.39)
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and formulate an optimization problem as follows.

min
X1,··· ,XM

Ẋ1,··· ,Ẋnρ

W 1,··· ,WM
Z1,··· ,ZM

tr(Y ) (4.40)

subject to sym (A(ρi)X i +Bu(ρi)Zi) +Bw(ρi)Bw(ρi)
T −

nρ∑
j=1

Ẋj ρ̇j < αi, (4.41)W i Cz(ρi)X i +Du(ρi)Zi

(•)T X i

 > βi, (4.42)

W i − Y ≤ γi (4.43)

Ẋj =




∂Ψ1(x1)
∂ρj

· · · ∂ΨM (x1)
∂ρj

... . . . ...

∂Ψ1(xM )
∂ρj

· · · ∂ΨM (xM )
∂ρj




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1


X1

...

XM


(4.44)

ρ̇ ∈ Dρ̇,

for j = 1, · · · , nρ and i = 1, · · · ,M , which contains M2nρ+2 + nρ constraints. Accordingly, the

coefficients of the associated matrices are determined by

XSG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ In



X1

...

XM

 ,

ZSG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ Im



Z1

...

ZM

 ,
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and

W SG =




Ψ1(x1) · · · ΨM(x1)

... . . . ...

Ψ1(xM) · · · ΨM(xM)


−1

⊗ In



W 1

...

WM

 ,

and using the proposed algorithm yields a controller that satisfies Theorem 14.

Observing (4.40) to(4.40), we can expect the size of the problem will grow up exponentially as the

number of the grid points increases. Although the curse of dimensionality is inevitable, the method-

ology proposed in this chapter still renders solution to the parameter-dependent optimization with

significantly less samples comparing with the conventional gridding approach. Furthermore, by

choosing appropriate stress constants to the LMIs the controller may result in conservatism, but

this can be resolved by introducing high level of the Smolyak algorithm.
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5. MODELING OF TENSEGRITY SYSTEMS IN AN LPV FRAMEWORK

A tensegrity system is an arrangement of axially-loaded elements (no element bends, even though

the overall structure bends), that we loosely characterize as a network of bars and cables. The bars

take compressive axial loads and the cables handle tensile loads. Since failure due to axial stresses

happens at higher loads than at bending, a tensegrity structure has a higher strength-to-weight

ratio. Famous architect Buckminster Fuller in the 60’s coined the term tensegrity, combining the

words tensile and integrity. Since then, tensegrity principles have found applications in diverse

domains. Tensegrity systems have been widely adopted in architecture. Donald E. Ingber [96]

explained the behavior of cells by modeling them as tensegrity structures. He further showed that

tensegrity structures exist at all detectable scales of the human body. Tensegrity icosahedrons are

used to model biologic organisms from viruses to vertebrates, their cells, systems, and subsystems.

Biotensegrity [97, 98, 99, 100] is quite an active area of research. Beyond architecture and biology,

tensegrity principles are gaining popularity in robotics. NASA is considering a new terrestrial robot

design based on tensegrity principles [101]. Tensegrity structures, through use of pre-stresses in

the bars and cables, can also achieve controlled stiffness in the structure, which makes it attractive

in applications such as soft-robotics [102], robotic locomotion [103, 104], and prosthetics [105]. In

essence, tensegrity principles can be applied in the design of any structure where mass is premium,

a high strength-to-weight ratio is critical, and structural stiffness needs to be tailored in both space

and time. These include several applications from various engineering sectors such as aerospace

(morphing airframes), energy (wind turbine blades, off-shore structures) as well as biomedical

engineering (stents, minimally invasive surgical tools) and many more. Clearly, a framework is

required that can efficiently model the dynamics of tensegrity structures directly from the topology

of bars and cables.

The dynamics of tensegrity systems is governed by multi-body dynamics, given by a set of or-

dinary differential equations. This chapter develops a Lagrangian formulation for deriving these
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differential equations directly from the given topology of members (bars and strings), and their

mass and geometric properties. Three key features of classical tensegrity systems are a) actuations

only occur via cables, b) bar-to-bar connections are pin joints, and c) the bars do not spin about

their longitudinal axis. These properties are exploited to simplify the equations of motion. How-

ever, the Lagrangian framework presented here is general enough to allow modeling of general

multi-body systems with actuated joints. Our work of dynamics developement in this chapter is

similar to a recent result from Goyal and Skalton [106], who have developed equations of motion

for tensegrity systems by using Newton’s second law.

The demand for more accurate simulating tools for multi-body dynamics is being challenged quite

positively by the open-source community. Physics engines such as Bullet[107] and the Open Dy-

namics Engine (ODE)[108] have become common in robotics applications. NASA’s Tensegrity

Robotics Toolkit (NTRT)[109] is based on the Bullet engine. They rely on non-minimal coor-

dinate descriptions, while other popular engines, e.g. Simscape Multibody[110], MuJoCo[111],

DART[112] and Simbody[113] favor using generalized coordinates for describing the kinematics

of bodies. This is because they mostly focus on robotics applications, where the configuration

space is naturally reduced in the presence of joints and other constraints[114]. However, we have

opted to use the Cartesian coordinate system to describe the motion of bodies, most notably, for

two reasons. Skelton observed[115] that in three dimensions, a minimal coordinates approach is

prone to singularities developed in the mass matrix, and therefore, the dynamics necessitates an ex-

cess coordinates description. Additionally, non-minimal descriptions of vector kinematics allows

us to write elegant differential-algebraic equations (DAE), free of trigonometric terms.

To fully express a rigid body motion in Cartesian coordinates, equations describing constraints

are written at the acceleration level and augmented to the equations of motion to develop a mass-

descriptor form of a set of index-1 DAEs. Since only acceleration level constraints are tackled

in the equations, position and velocity level constraints are violated due to errors from numerical

integration. Numerous advances have been made in the past few decades addressing this very

82



issue. A prominent method is that of generalized coordinates partitioning [48, 116] in which,

utilizing Gauss-Jordan reduction, independent variables are identified and integrated numerically

while dependent variables are preserved through the constraint equations. Baumgarte[117], on

the other hand, instead of bypassing the problem, introduced two extra terms to the constraint

equations so that the violations can be stabilized in the sense of Lyapunov. This method has

been studied in different frameworks, such as in adaptive mechanisms [118], optimal sense [119],

and digital control theory [120]. Stabilization allows for greater computational speed whereas

coordinate partitioning is known for its superior error control characteristics, and methods that

combine these two techniques [121, 122] to tap into these advantages have been developed as well.

However, parameter selection in the Baumgarte technique is a challenging task [123, 124], as

systems implemented with the wrong feedback parameters have been found to become unstable.

Therefore, other methods were looked into, the most common being one in which constraint vio-

lation is eliminated directly by adding appropriate correction terms to the generalized coordinates

after each numerical integration. Using geometric and energy conservation constraints, Yoon et

al. chose corrected positions (constrained through geometry) and velocities (constrained through

energy) to be linear in the Jacobian of the constraints[125]. Yu and Chen developed an algorithm

to obtain the corrected terms with the constraints at position and velocity level (both constrained

through geometry) by using the Moore-Penrose inverse[126]. Citing inconsistency of units and di-

mensions in generalized coordinates, Blajer added an inverse of the mass matrix to the corrections

of [125] as a weight matrix [127]. However, Zhang et al. compared the above two formulations in

benchmark examples showing that the violation of constraints performed in the same order [128].

Furthermore, compared with the Baumgarte technique, the applied direct correction method per-

forms more efficiently in the context of constraint violations at the position and velocity level[129,

130, 128]. However, the extent of inaccuracy in the motion, which can be determined from the vi-

olations of the energy constraints is still unclear [131, 127, 125]. Therefore, inspired by [129] and

[126], one of the contributions of this thesis is to present a novel methodology that attains explicit
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elimination of not only position and velocity constraints, i.e. holonomic constraints, but also en-

ergy variations, i.e. nonholonomic constraints. The Lagrangian formulation lends itself favorably

to an equilibrium analysis of the motion and any corresponding violations in energy conservation.

Instead of considering corrected terms of position and velocity separately, we formulate a set of

equations linear in these variables with energy constraints and solve the variables simultaneously

in the sense of minimal norm.

This chapter is going to introduce a mathematical model of multibody dynamics in the LPV frame-

work. The chapter describes the LPV formulation and simulations of multibody motions in much

greater detail: the nomenclature used in developing the equations, the Lagrangian method for de-

riving the governing DAEs in the presence of constraints, an elaborate description of the holonomic

constraint equations, the direct correction method deployed to ensure that these constraints are not

violated at any given time, the proposed energy correction algorithm to nullify energy gain/loss

occurring numerically, the coordinate partitioning method to remove the redundant states, the LPV

model transformation. The results for several examples are compared with those from Simscape

Multibody (MATLAB’s multi-body package) and presented at the end to discuss the validity of the

formulation and the benefits of the approaches proposed in the chapter. The results in this chapter

will be used in Chapter refchap:example as one of the numerical examples of LPV control design.

5.1 Derivation of Tensegrity Dynamics

5.1.1 Nomenclature

The notations used in the derivation of the multibody dynamics are defined as follows.

1. Let ni ∈ R3×1 be the position of the ith node.
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2. LetN ∈ R3×n be the nodal matrix defined by

N :=

[
n1 n2 · · · nn

]
,

where n is the number of nodes in the tensegrity system.

3. Let C ∈ Rm×n be the connectivity matrix that defines the tensegrity system, where m

members are defined by connecting n nodes. Specifically, if the kth member is defined by

connecting nodes ni and nj , then

C(k, i) = −1, C(k, j) = 1, and C(k, ·) = 0 otherwise.

Moreover, we can partition the m members to bars and strings, resulting in a partitioned

connectivity matrix

C :=

Cb

Cs

 ,
where Cb ∈ Rnb×n defines the nb bar connections and Cs ∈ Rns×n defines the ns string

connections.

Observing the connectivity matrix Cb, we derive a matrix Lpm ∈ Rnpm×n describing loca-

tions of npm point masses. These masses are placed at nodes where only strings connect.

Specifically, if the kth point mass is positioned at the node ni, then

Lpm(k, i) = 1, and Lpm(k, ·) = 0 otherwise.

4. The bars, strings and point masses are then defined as

B := NCT
b ∈ R3×nb ,S := NCT

s ∈ R3×ns , and P := NLTpm ∈ R3×npm .

The kth column of B represents the kth bar, denoted by bk. Similarly, the kth column of S
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represents the kth string, denoted by sk, and the kth column of P represents the kth point

mass, denoted by pk. Let θk, ψk, and φk be vectors in Rnb , Rns , and Rnpm respectively with

the kth elements equal to one and the rest zero. Therefore, we can compactly write

bk := NCT
b θk =

(
(θTkCb)⊗ I3

)
vec(N ) = Xkq,

b̄k :=
1

2

(
(θTk |Cb|)⊗ I3

)
vec(N ) = X̄kq,

sk := NCT
sψk =

(
(ψT

kCs)⊗ I3

)
vec(N ) = Y kq,

pk := NLTpmφk =
(
(φTkLpm)⊗ I3

)
vec(N ) = P kq,


(5.1)

where

Xk :=
(
(θTkCb)⊗ I3

)
, (5.2)

X̄k :=
1

2

(
(θTk |Cb|)⊗ I3

)
, (5.3)

Y k :=
(
(ψT

kCs)⊗ I3

)
, (5.4)

P k :=
(
(φTkLpm)⊗ I3

)
, (5.5)

and q := vec(N ) represents the Cartesian coordinates.

5. Let F ∈ R3×n be the non-conservative force matrix defined by

F :=

[
f 1 f 2 · · · fn

]
,

where f i ∈ R3 is the total force acting on the ith node, and accordingly, the force matrix

can be vectorized as f := vec (F ) ∈ R3n. Here we assume a general condition where all

the nodes have external forces acting on them. In practice, all nodes may not be loaded. We

can set those fi to zero in the above expression. These external forces can be used to model

disturbances and other loads acting on the tensegrity structure.
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5.1.2 Kinematics

Consider the motion of kth bar defined by nodes bk := njk − nik . The center of mass of the bar is

given by

b̄k :=
njk + nik

2
, (5.6)

and its velocity is given by

˙̄bk :=
Ṅ jk + Ṅ ik

2
. (5.7)

To determine the angular velocity of the bar we first relate the velocities of njk and nik using

ṅjk = ṅik + ωk × bk,

or

ḃk := ṅjk − ṅik (5.8)

= ωk × bk. (5.9)

Taking cross product with bk on both sides we get

bk × ḃk = bk × (ωk × bk).

Using the result from triple cross product

a× (b× c) = b(a · c)− c(a · b),

we get
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bk × ḃk = ωk(bk · bk)− bk(ωk · bk). (5.10)

For tensegrity systems, ωk · bk = 0, i.e. the bar does not spin about its body axis. This is an

important difference between tensegrity systems and general multi-body systems.

Therefore, for tensegrity systems, we can write the expression for angular velocity

ωk =
bk × ḃk
bTk bk

. (5.11)

Noting that bTk bk = L2
k, where Lk is the length of the bar and is a constant, we can write

ωk =
bk × ḃk
L2
k

. (5.12)

Let the body axis be defined by (b̂k, b̂2, b̂3). We can then write the angular velocity in terms of the

body axis of the bar as ωk := ω2b̂2 + ω3b̂3 where ω2, ω3 are respective components.

Assuming, the bar to be a cylinder with radius rk and length Lk, the moment of inertia of the rod

in this body-fixed principal frame is

Ibk
k := diag

[
mbkr

2

2

mbk
12

(3r2
k + l2bk)

mbk
12

(3r2
k + L2

k)

]
.
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The angular momentum hk of the bar is therefore

hk := Ibk
k

[
0 ω2 ω3

]T
(5.13)

=
mbk

12
(3r2

k + l2bk)(ω2b̂2 + ω3b̂3) (5.14)

=
mbk

12
(3r2

k + l2bk) ωk, (5.15)

=
(3r2

k + l2bk)mbk

12l2bk
bk × ḃk. (5.16)

If rk can be ignored, then

hk ≈
mbk

12
bk × ḃk. (5.17)

Often, hollow cylinders are used. In that case, we can substitute the appropriate inertia matrix in

the expression for angular momentum.

The inertial position coordinates of kth point mass are given by:

pk := nik (5.18)

and its velocity given by:

ṗk := ṅik (5.19)

5.1.3 Dynamics Using Lagrangian Approach

Let L := T −V be the Lagrangian, defined over coordinates q, with components qi. The equations

of motion are then given by
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d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
− λT (t)

∂R(q)

∂qi
= fT

∂q

∂qi

whereR(q) : R3n 7→ Rm = 0 depict ideal constraints that satisfy the principle of D’Alembert, first

stated by Lagrange [132]. On the right, f is the non conservative force acting on the system such

as externally applied forces, damper forces or disturbances. From the definition of the coordinate

q, one can notice that ∂q
∂qi

is the ith column of an identity matrix I3n. We can therefore write the

equation of motion as
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi
− λT (t)

∂R(q)

∂qi
= fi,

where fi is the ith element of f .

Substituting L := T − V , we get the equations of motion

d

dt

(
∂T

∂q̇i

)
+

∂

∂qi

(
V − λTR(q)

)
= fi, (5.20)

for i = 1, · · · , 3n; or in terms of q as

d

dt

(
∂T

∂q̇

)
+

∂

∂q

(
V − λTR(q)

)
= fT . (5.21)

5.1.3.1 Total Kinetic Energy

Total kinetic energy of the system is

T :=

nb∑
k=1

(
1

2
mbk

˙̄bk · ˙̄bk +
1

2
hk · ωk

)
+

npm∑
k=1

(
1

2
mpk ṗk · ṗk

)
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The kinetic energy of the kth bar is

Tbk =
1

2

(
mbk

˙̄bTk
˙̄bk +

Ibk
L4
k

(bk × ḃk) · (bk × ḃk)
)
,

where Ibk :=
mbk

12
(3r2

k + l2bk). Simplifying

(bk × ḃk) · (bk × ḃk) = (bk · bk)(ḃk · ḃk)− (bk · ḃk)(ḃk · bk) = l2bk(ḃk · ḃk),

we get

Tbk =
1

2

(
mbk

˙̄bk · ˙̄bk +
Ibk
l2bk
ḃk · ḃk

)
.

Using (5.1), we can write Tbk in terms of q̇ as

Tbk =
1

2
q̇T

[
mbkX̄

T
k X̄k +

Ibk
l2bk
XT

kXk

]
︸ ︷︷ ︸

:=Mbk

q̇ =
1

2
q̇TM bk q̇.

The kinetic energy of the kth point mass is

Tpk =
1

2
(mpk ṗk · ṗk)

Using (5.1), we can write Tpk , in terms of q̇ as

Tpk =
1

2
q̇T
[
mpkP

T
kP k

]︸ ︷︷ ︸
:=Mpk

q̇ =
1

2
q̇TM pk q̇
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=⇒ T =

nb∑
k=1

Tbk +

npm∑
k=1

Tpk

=
1

2
q̇T

(
nb∑
k=1

M bk

)
︸ ︷︷ ︸

:=Mb

q̇ +
1

2
q̇T

(
npm∑
k=1

M pk

)
︸ ︷︷ ︸

:=Mp

q̇

=
1

2
q̇T (Mb +Mp)︸ ︷︷ ︸

:=M

q̇

=
1

2
q̇TMq̇. (5.22)

5.1.3.2 Gravity Potential Energy

Total gravitational potential energy of the system is

Vg := −
nb∑
k=1

mbk(g · b̄k)−
npm∑
k=1

mpk(g · pk) = − gT
(

nb∑
k=1

mbkX̄k +

npm∑
k=1

mpkP k

)
︸ ︷︷ ︸

:=GT

q = −GTq,

(5.23)

where g :=

[
0 0 −9.806

]T
is the gravity vector.

5.1.3.3 Potential Energy of Strings Modeled as Springs

We can model the strings as springs. In this case, the spring energy is

Vs :=
1

2

ns∑
k=1

Kk (‖sk‖ − Lk)2 , (5.24)

adds to the potential energy of the system. In this case, lsk is the natural length of the spring and

Kk is the spring constant. In this formulation, we have to be mindful about ‖sk‖− lsk ≥ 0, because

the strings can only exert tensile force (unidirectional), unlike regular springs. Force density σk, is
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defined as

σk := Kk

(
1− lsk
‖sk‖

)
, (5.25)

which is the control variable. In the implementation, if the condition ‖sk‖− lsk ≥ 0 is violated for

any string at any point in time, the corresponding force density is set to zero at that instant.

The spring energy in terms of σk can be written as

Vs : =
1

2

ns∑
k=1

(
σ2
k

Kk

)
‖sk‖2

=
1

2

ns∑
k=1

(
σ2
k

Kk

)
sTk sk

=
1

2
qT

(
ns∑
k=1

σ2
k

Kk

Y T
kY k

)
q

=
1

2
qT

[Y T
1Y 1 · · · Y T

ns
Y ns

]
︸ ︷︷ ︸

:=Y

(
σ2

K
⊗ I3n

) q,
=

1

2
qTY

(
σ2

K
⊗ I3n

)
q (5.26)

where σ2 :=

[
σ2

1 · · · σ2
ns

]T
,K :=

[
K1 · · · Kns

]
.

5.1.3.4 Damper force

We assume a damper force between two nodes where the string/spring exists and the force is

proportional to the changing rate of the string/spring length. Thus the kth damper can be modeled
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as

f d,k = −cd‖sk‖
dt

sk
‖sk‖

, (5.27)

= −cs
T
k ṡk
‖sk‖

sk
‖sk‖

, (5.28)

= −c(ṡTk sk)sk
sTk sk

(5.29)

where c is the damping coefficient and the direction of the force is always parallel to the string

(spring). One should notice that the damper force disappears whenever the string is slack, that is

f d,k = 0 if ‖sk‖ − lsk ≤ 0, but the damper force always exists in the spring. To represent the total

damper force acting on a node, one can utilize (5.4) and obtain f d =
∑ns

k=1 Y
T
k f d,k. Considering

damper force as one of the members in external force, it can be added to f in (5.21).

5.1.3.5 Equations of Motion

We are now ready to derive the equations of motion. From (5.22), we have

d

dt

(
∂T

∂q̇

)
= q̈TM ,

from (5.23), we have
∂Vg
∂q

= −GT ,

94



and finally from (5.26), we have

∂Vs
∂q

=
∂

∂q

(
1

2

ns∑
k=1

σ2
k

Kk

sTk sk

)

=
1

2

ns∑
k=1

(
∂

∂q

(
σ2
k

Kk

)
sTk sk + 2

σk
2

Kk

sTk
∂sk
∂q

)
=

1

2

ns∑
k=1

(
2lskσk

sTk
‖sk‖3

Y k‖sk‖2 + 2
σk

2

Kk

sTk
∂sk
∂q

)
=

ns∑
k=1

(
lskσk

sTk
‖sk‖

Y k +
σk

2

Kk

sTk
∂sk
∂q

)
=

ns∑
k=1

σk

(
lsk

sTk
‖sk‖

+

(
1− lsk
‖sk‖

)
sTk

)
Y k

=
ns∑
k=1

σkq
TY T

kY k

= qTY (σ ⊗ I3n) (5.30)

Therefore, the equations of motion are given by

q̈TM −GT + qTY (σ ⊗ I3n)− λT ∂R
∂q

= fT ,

or with transpose

Mq̈ −
(
∂R

∂q

)T
λ = −(σT ⊗ I3n)Y Tq +G+ f . (5.31)
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We next look at the constraint equationR(q) = 0, and compute

d2R(q)

dt2
=

d

dt

(
dR(q)

dt

)
,

=
d

dt

(
∂R

∂q
q̇

)
,

=

(
∂R

∂q

)
q̈ +


q̇T
(
∂2R1

∂q2

)
q̇

...

q̇T
(
∂2Rm

∂q2

)
q̇

 ,

where
(
∂R
∂q

)
is a Jacobian ofR(q) and

(
∂2Ri

∂q2

)
is the Hessian of Ri(q).

Therefore, d
2R(q)
dt2

= 0 implies

−
(
∂R

∂q

)
q̈ =


q̇T
(
∂2R1

∂q2

)
q̇

...

q̇T
(
∂2Rm

∂q2

)
q̇

 . (5.32)

Combining (5.31) and (5.32), we get the final equation

 M −
(
∂R
∂q

)T
−
(
∂R
∂q

)
0


q̈
λ

 =



−(σT ⊗ I3n)Y Tq +G+ f

q̇T
(
∂2R1

∂q2

)
q̇

...

q̇T
(
∂2Rm

∂q2

)
q̇


. (5.33)
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Defining,

Rq :=
∂R

∂q
,

ξ1 := −(σT ⊗ I3n)Y Tq +G+ f ,

ξ2 :=


q̇T
(
∂2R1

∂q2

)
q̇

...

q̇T
(
∂2Rm

∂q2

)
q̇

 ,

we can analytically express q̈ and λ as

q̈ = M−1
[
ξ1 −RT

q

(
RqM

−1RT
q

)−1 (
ξ2 +RqM

−1ξ1

)]
= ξ(q, q̇,σ,f), (5.34)

λ = −
(
RqM

−1RT
q

)−1 (
ξ2 +RqM

−1ξ1

)
. (5.35)

In this formulation, numerical difficulties may occur when solving the above equations of motion.

Here we assume that the mass matrix M is invertible since the kinetic energy is always positive.

Small inertia can also cause numerical ill conditioning. In addition, redundant constraints can also

cause singularity inRqM
−1RT

q .

5.1.3.6 Ideal Constraints

Ideal constraints, as stated earlier, are those that satisfy D’Alembert’s principle. In the current

derivation, we only consider holonomic constraints, that is, they reduce the dimension of the space

of accessible configurations, but do not restrict motion and paths within the reduced dimension

[133]. Mathematically, the constraint equations can be expressed as R(q) = 0, where q is a

function of time. Commonly constraints will include bar-length constraints that are quadratic in

q, and boundary conditions on q that will be linear in q. Bar length constraints are of the type

bTk bk − l2bk = 0, which in terms of q are qTXT
kXkq − l2bk = 0.
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Therefore, for these two cases

R(q) :=



Aq − b

qTXT
1X1q − l2b1

...

qTXT
nb
Xnb

q − l2bnb


= 0. (5.36)

Therefore,

Rq :=

(
∂R

∂q

)
=



A

2qTXT
1X1

...

2qTXT
nb
Xnb


, (5.37)

and


q̇T
(
∂2R1

∂q2

)
q̇

...

q̇T
(
∂2Rm

∂q2

)
q̇

 =



0

2q̇TXT
1X1q̇

...

2q̇TXT
nb
Xnb

q̇


.

5.2 LPV Model Transformation

This section develops the tensegrity dynamical system from equations of motion to a standard

quasi-LPV system. There are two crucial techniques we use for the transformation. One is to

utilize coordinate partitioning to remove the redundant states and the other one is to define virtual

scheduling parameter such that the nonlinear dynamics is transformed to an LPV model.
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Expending and rearranging (5.34) yields

q̈ = M̂Ŷ u−M−1Rq(RqM
−1RT

q )−1ξ2q̇ − M̂ (G+ f), (5.38)

where u = σ is a control vector,

M̂ =
[
M−1RT

q (RqM
−1RT

q )−1RqM
−1 −M−1

]
and Ŷ ∈ R3n×nu such that vec

(
Ŷ
)

= Y Tq, which is a rearrangement of the elements of column

vector Y Tq into a matrix of dimension 3n × nu. The rearrangement of the equation implies that

(5.38) is affine in the control variable u and G+ f . This is comparable to the standard LPV

model stated in (2.44), whereG+ f is considered as exogenous disturbances w.

Since the controller designed in previous chapters is not valid for a control system that is rep-

resented in a non-minimum set of coordinates, e.g. Cartesian coordinates , used in this chapter,

the model reduction is necessary to achieve such that the model is described in a minimum set of

coordinate. Here we utilize the coordinate partitioning method [48] to (5.38) so that the chosen

independent coordinates is used to formulate a minimal realization in a state space form.

A a set of independent coordinates qi is determined by Gaussian elimination such that

q =

qd
qi

 , (5.39)

where qd is a dependent coordinates vector. In particular, the Jacobian matrix (5.37) is transformed

to the echelon form, where the states corresponding to the full rank matrix with dimensionality of

m×m is dependent coordinates qd and the rest of states are called independent coordinates qi. One

should notice that the dimension of qi is the same as the degree of freedom of the system, since

it is the minimum coordinates to describe the dynamics. Moreover, the original set of coordinates

may not be stack as (5.39), so some of the matrices describing the bars and cables are affected but
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the main structure of the dynamical model does not change. This can be corrected by adjusting the

matrices in (5.2)-(5.5).

Taking a time derivative of the constraints, i.e.

Ṙ = Rqq̇ = Rqd q̇d +Rqi q̇i = 0,

we can express the dependent coordinates in terms of the independent coordinates as

q̇d = −R−1
qd
Rqi q̇i,

whereRqd has full rank if there is no redundant constraint, or we can state

q̇ =

−R−1
qd
Rqi

I

 q̇i (5.40)

Substituting (5.40) into (5.38) we get

q̈ = M̂Ŷ u−M−1Rq(RqM
−1RT

q )−1ξ2

−R−1
qd
Rqi

I

 q̇i − M̂ (G+ f). (5.41)

Since the first and second term on the right hand side of (5.41) is affine in u and q̇i respectively,

introducing the parameters ρ = x yields the system in an quasi-LPV form, i.e.

q̇
q̈

 =


0

−R−1
qd
Rqi

I


0 A22(ρ)


qi
q̇i

+

 0

M̂Ŷ

u+

 0

M̂

w, (5.42)

where A22 = −M−1Rq(RqM
−1RT

q )−1ξ2

−R−1
qd
Rqi

I

 and w = G+ f is considered as dis-
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turbances that contain the gravity field and external forces. It is noted that (5.42) is a mapping

from the independent coordinates to non-minimum coordinates which contain both independent

and dependent coordinates. Therefore, we can extract the needed terms and associated matrices

out to get a state-space in terms of independent coordinates only.

Therefore, defining x =

qi
q̇i

 we arrive a final quasi-LPV form of

ẋ =

0 I

0 Ā22(ρ)

x+

 0

Bu
2(ρ)

u+

 0

Bw
2 (ρ)

w
=A(ρ)x+Bu(ρ)u+Bw(ρ)w, (5.43)

where Ā22 ∈ R3n−m×3n−m is the last 3n − m rows of A22, Bu
2 ∈ R3n−m×ns is the last 3n − m

rows of M̂Ŷ andBw
2 ∈ R3n−m×nw is the last 3n−m rows of M̂ .

The above equation depicting the motion of the system is in the minimal realization. One should

notice that the minimal realization is for controller design only and the simulation of structure

dynamics is described by the original equations of motion (5.33) in terms of non-minimum set of

coordinates. Furthermore, the system matrices in (5.43) consists of highly nonlinear terms, e.g.

polynomials and polynomial fractions, and there is no trigonometric function in the matrices. This

is a benefit of non-minimum coordinates based formulation that reduces the complexity of the

model.

5.3 DAE Correction

The holonomic constraints are converted to differential equations by differentiating them twice.

This results in constraints on acceleration, which are satisfied exactly. However, the position and

velocity constraints get violated due to errors in numerical integration. In addition to the con-

straints, numerical errors also violate energy conservation. For this reason, inspired by the direct
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correction approach in [129] and [126], we use the idea of constraint variations and derive a system

of linear equations to correct for errors in numerical integration. To account for energy conserva-

tion, we also include variation in the total system energy in the formulation.

Considering the vector of coordinates and its time derivative that need to be corrected for the

original constraints,

qc = qu + δq, (5.44)

where qu denotes the uncorrected position, obtained from numerical integration, qc the corrected

position, and δq is the correction required to satisfy the constraint. Therefore

R(qc) = R(qu + δq) = R(qu) +Rqδq = 0, (5.45)

whereRq is a Jacobian matrix defined in (5.37).

Similarly, the time derivative of the holonomic constraint should satisfy

dR

dt
=
∂R

∂q
q̇ = 0. (5.46)

With

q̇c = q̇u + δq̇, (5.47)

we get

[
Rq(q

u) +
∂Rq

∂q
δq

]
(q̇u + δq̇) = 0, (5.48)
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where ∂Rq
∂q

is a third-order tensor and can be represented in a matrix form

∂Rq

∂q
δq =

[
∂Rq

∂q1

δq · · · ∂Rq

∂q3n

δq

]
.

Ignoring higher order terms in (5.48), we get

Rqq̇
u +Rqδq̇ +

(
∂Rq

∂q
δq

)
q̇u = 0, (5.49)

where the third term can be reformulated as

(
∂Rq

∂q
δq

)
q̇u =

[
∂Rq

∂q1

δq · · · ∂Rq

∂q3n

δq

]
q̇u,

=
3n∑
i=1

∂Rq

∂qi
q̇ui δq,

=

(
3n∑
i=1

∂Rq

∂qi
q̇uαi

)
δq,

= Qδq,

whereQ :=
(∑3n

i=1
∂Rq
∂qi
q̇uαi

)
, and αi is the ith column of the identity matrix I3n.

Then (5.49) becomes

Rqq̇
u +Rqδq̇ +Qδq = 0. (5.50)

Combining (5.45) and (5.50), we obtain the following system of linear equations

Rq 0

Q Rq


δq
δq̇

 =

 −R
−Rqq̇

u

 . (5.51)

Since the matrix in (5.51) has fewer rows than columns (2m < 6n), it doesn’t have full column
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rank and there exist infinite solutions. In [129], the author applied Moore-Penrose inverse to mini-

mize the 2-norm of the solution. However, the corrections in δq and δq̇ from such a formulation,

modifies the potential and kinetic energy of the system and violates the conservation of mechanical

energy. In this work, we extend the work in [129], by explicitly constraining the energy change,

due to δq and δq̇, to be zero. This will result in an additional linear equation in δq and δq̇. The

derivation of that constraint equation is as follows. We consider a general formulation, where the

work done by external forces are accounted for.

The total energy of the system is defined as

E(q, q̇) := T (q̇) + Vs(q) + Vg(q), (5.52)

and energy conservation states that the total energy at any time t is the sum of the total energy at

initial time and the work done by non conservative forces, i.e.

E(q, q̇) = E(q0, q̇0) +

∫
C

f · dq, (5.53)

where (q0, q̇0) is the initial condition, f is the external force, which can be either state or time

dependent, and the integration is done over path C connecting q0 to q.

Let the work done by force f be Wf , i.e.

Wf =

∫
C

f · dq,

=

∫ t

t0

fT
dq(τ)

dτ
dτ. (5.54)

Here we treat Wf as an additional state variable, and augment the state-dynamics in (5.34), with

Ẇf = fT ˙q(t). (5.55)
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Integration of (5.55) results in the time evolution of Wf , which will also incur errors due to nu-

merical integration, and hence must be corrected like q, and q̇. Similar to the correction for q and

q̇, we consider

W c
f = W u

f + δWf . (5.56)

Due to numerical errors in integration of dynamics and (5.54), (5.53) will not be satisfied. There-

fore, the corrections δq, δq̇, and δWf must be such that (5.53) is satisfied with the corrected

quantities qc, q̇c, and Wfc , i.e,

E(qc, q̇c) = E(q0, q̇0) +W c
f . (5.57)

Substituting qc, q̇c, in T (q̇c), Vg(qc), Vs(qc), and retaining linear terms only, we get

T (q̇c) = T (q̇u + δq̇) ≈ T (q̇u) +
∂T

∂q̇

∣∣∣∣
q̇u
δq̇ (5.58)

Vg(q
c) = Vg(q

u + δq) ≈ Vg(q
u) +

∂Vg
∂q

∣∣∣∣
qu
δq, (5.59)

Vs(q
c) = Vs(q

u + δq) ≈ Vs(q
u) +

∂Vs
∂q

∣∣∣∣
qu
δq. (5.60)

Therefore, (5.57) becomes

[(
∂Vg
∂q

∣∣∣
qu

+ ∂Vs
∂q

∣∣∣
qu

)
∂T
∂q̇

∣∣∣
q̇u
−1

]
δq

δq̇

δWf

 = E(q0, q̇0)− E(qu, q̇u) +W u
f . (5.61)
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Combining (5.51) and (5.61), we arrive at a final linear system of equations


Rq 0 0

Q Rq 0(
∂Vg
∂q

∣∣∣
qu

+ ∂Vs
∂q

∣∣∣
qu

)
∂T
∂q̇

∣∣∣
q̇u
−1


︸ ︷︷ ︸

:=Ac


δq

δq̇

δWf

 =


−R

−Rqq̇
u

E(q0, q̇0)− E(qu, q̇u) +W u
f


︸ ︷︷ ︸

:=bc

, (5.62)

and the minimum norm corrections δq, δq̇, and δWf are determined using pseudoinverse of Ac,

i.e. 
δq

δq̇

δWf

 = AT
c (AcA

T
c )−1bc. (5.63)

These corrections are done after every integration in each time step once the 2-norm of the con-

straints violations or the energy violation is greater than a given threshold γ. Further, since the

constraints and energy equation are approximated through linearization, the solution to (5.62) does

not fully satisfy the nonlinear equations (5.36) and (5.53) depending on the error coming from the

integration. So, an iteration method presented in Algorithm 1 is used to ensure the performance of

the corrections.

Algorithm 1: An iteration method to minimize the constraints and energy violations.
input : uncorrected terms qu, q̇u and W u

f

output: corrected terms qc, q̇c and W c
f

while ‖R‖2 > γ or E − E0 −Wf > γ do
implement (5.63);
update qc, q̇c and W c

f by (5.44),(5.47), (5.56);
update ‖R‖2, E and Wf with corrected term;

end

106



5.4 Example

In this section, we model a simple tensegrity structure in 2 dimensions as an example to demon-

strate the accuracy of the constraints and motion trajectories using the proposed approach. We also

compare our results with those obtained using a commercial tool, i.e. Simscape [110]. In addition,

a robotic arm and a ball based on tensegrity structures as two examples are presented to show the

efficiency of the method applied to models with higher complexity. In particular, corrected nu-

merical integration is utilized by Matlab to these different models. The equation of motion (5.33)

is integrated based on the Dormand-Prince method [134, 135] with relative and absolute toler-

ances of 10−10, both constraint correction and energy correction turned on, and the given threshold

γ = 10−10.

First of all, a 2D tensegrity structure built using 2 bars and 4 springs shown in Figure 5.1a is used,

where the nodes at the bottom are fixed and the left and right springs are pre-stressed at 90% of

the rest length of the springs. Secondly, a robotic arm built from 3 sets of squares is shown in

Figure 5.1b, where strings made of nylon are prestressed so that the structure is in equilibrium

under gravity. An external force of a time-dependent sinusoidal function is applied vertically to

the tip of the arm. Thirdly, a 3D ball with a payload is shown in Figure 5.1c, where 6 bars and 32

strings are used. Here too, strings are prestressed so that the structure can be in equilibrium under

gravity. A time-dependent external force of a sinusoidal function is given to the top 3 nodes in

different directions, i.e. along x,y,z axes respectively (in order of numbering).

Figure A.1a shows the discrepancies between the motion trajectories obtained using the proposed

approach and the minimum realization, where we consider the latter as the benchmark since the

equations of motion are derived using generalized coordinates that preserve the geometric con-

straints and the relative and absolute tolerance of numerical integration is 2.2 × 10−14∗ and 10−14

respectively, while Figure A.1b shows the differences between Simscape and minimum realiza-

∗This is the minimum value of relative tolerance that can be chosen in Matlab.
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(c) A ball in 3 dimensions.

Figure 5.1: Structures of the examples where red lines indicate strings, black lines indicate rigid
bars, squares indicate point masses, black dots are fixed nodes, white dots are free nodes, and
numbers are node notations.

Attribute
Model

T-Bar Arm Ball

Gravity (m/s2) 0 -9.806 -9.806
Bars: Length (m) 5 1 1
Bars: Radius (m) 0.05 0.01 0.01
Bars: Density (kg/m3) 500 1300 1300
Springs: Stiffness (N/m) 100 - -
Springs: Rest Length Percentage (% of initial) 90 (vertical only) - -
Strings: Young’s Modulus (GPa) - 2 2
Strings: Radius (m) - 0.001 0.001
External Force (N ) 0 300sin(t) 300sin(t)

Table 5.1: User-defined properties of the 3 models

tion, where Simscape is with the same numerical method and tolerance as minimum realization.

Comparing the figures, we observe that our proposed method produces the motion 107 times closer

to the benchmark than Simscape, which indicates a significant improvement in accuracy. Figures

A.2a, A.2b and A.3 present the magnitude of constraint violations in bar length and total energy,

which shows that the proposed method of constraint correction reduces the violation of the en-

ergy to around 10−11 and keeps the bar length constraint violations at about 10−12 simultaneously.

One can observe that the bar length violations in the simulation produced using Simcape are of

a smaller magnitude. This is because it utilizes generalized coordinates, thereby automatically
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satisfying the bar length constraints. The differences in motion seem to be increasing in time,

but in fact, simulating for very long durations would show them to be within bounds, as can also

be said by observing the total energy variation. Since the energy is always stable from Figure

A.3, the motion must be stable and therefore, the differences are all bounded. The attached video

TEST_TBAR.mp4 demonstrates the motions of the 2-bar structure with 3 approaches in real time.

It is important to note here that, when simulating tensegrity systems with non-minimum coordi-

nates at machine-level precision tolerance settings (at the expense of speed), the user might be

tempted to do away with correction altogether. However, the solution, while still being accurate

in its motion trajectory for short time lengths, drifts away from the constraint space and conse-

quently, tends to become inaccurate if simulated for long durations. As Yoon[136] points out, it is

a necessary condition for accurate simulation that both geometric and energy constraints be satis-

fied during integration. Hence, it would be advisable to keep the correction algorithm turned on

at all times. Figure A.4a shows how accurately the non-minimum formulation performs without

the need for correction at the tolerance settings of 10−14, and the constraint and energy violations

as presented in Figure A.4b, A.4c, and A.4d present the extent of the associated constraint drift.

Figure A.5 shows the plot for computation times for the T-bar example, simulated at different

tolerance settings ranging from 10−6 to 10−14. This goes to show that if computation speeds are

a higher priority than accuracy, it would be much more prudent to perform simulations at lower

tolerance settings like 10−9 or 10−10 with correction turned on than to do it at 10−14 without any

correction at all.

To investigate the impact of the energy preservation scheme of the T-bar, we simulated the T-bar

example at 2 different tolerance settings (10−6 and 10−10), and at 3 different rest lengths(50%, 70%,

and 90%). We found a considerably stronger effect at a higher tolerance setting than at a lower one,

for the same rest length 50%, as indicated by the order of magnitude of motion errors in Figures

A.7a and A.6a respectively. Figures A.6c, A.6d, A.7c and A.7d demonstrate the consistency of the

direct constraint correction scheme in stabilizing geometric constraint violations below a specified

109



norm bound, despite a large difference in the order of magnitude of tolerance. In Figure A.8a and

A.8b, the T-bar example is simulated at a tolerance of 10−10 for rest lengths of 50%, 70%, and 90%.

Evidently, larger deformations in the 50% case bring energy correction into play more effectively.

For the example of the robotic arm, Figure A.9a shows the motion of node 5, node 8 and node 10

for 20 seconds. Since we’ve simulated the structure with nylon strings (Young’s modulus: 2 GPa),

the structure appears to be chattering intermittently. Figures A.10 and A.11 show the constraint

violations of bar length and energy. The order of the violations testifies to the stability of the con-

straints for problems involving intricate geometries. One can observe that the bar length constraints

of bars #3, #6, #11 amd #14 are violated more than others in the observed time period and nodes

#4,#7,#12,#14 in Figure A.9b are vibrating in higher frequencies, which implies a positive corre-

lation between constraint variations and motion frequencies. Figure A.12a depicts the motion of

the 3-dimensional ball which is in accordance with the high stiffness of the strings. Preserving the

order of constraint violations as observed in the second example, Figure A.13 and A.12b demon-

strate the ability of the implemented correction method to maintain stability of the constraints

despite an increase in complexities associated with 3 dimensions. The videos TEST_ARM.mp4

and TEST_BALL.mp4 capture the real-time motion of the arm and the ball respectively.
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6. NUMERICAL EXAMPLE

This chapter will present two different applications of LPV dynamical system control. The first

example is a low dimensional autopilot missile system developed in [3], where we apply linear

parameter varying quadratic regulator to the system. Two approaches presented in Chapter 3, i.e.

in stochastic framework, and Chapter 4, i.e. direct interpolation, are used and compared together

with conventional gridding-based LPV control and linear control in terms of performance and the

trajectories. The other application is relatively high dimensional tensegrity structures proposed in

terms of the dynamical model developed in Chapter 5, where we applyH2 control to a robotic arm.

Similarly, the result of direct interpolation with Smolyak algorithm will be shown.

6.1 Autopilot Missile System

Consider an autopilot design for a nonlinear missile model [3] using the results presented in the

Chapter 3 and 4 and benchmark it with existing techniques. The dynamics of the missile model is

given by

α̇ = KαMCn(α, δ,M) cos(α) + q, (6.1)

q̇ = KqM
2Cm(α, δ,M), (6.2)

where

Cn(α, δ,M) = α

[
an|α|2 + bn|α|+ cn

(
2− M

3

)]
+ dnδ,

Cm(α, δ,M) = α

[
am|α|2 + bm|α|+ cm

(
−7 +

8M

3

)]
+ dmδ,

are the aerodynamic coefficients, α is angle of attack in degrees, q is pitch rate in degrees per

second, δ that denotes control variable is tail deflection angle in degrees, and M is Mach number.
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Parameter Value Unit note
Kα 0.7P0S

mvs

Kq 0.7P0Sd
Iy

Kz 0.7P0S
m

Ax 0.7P0SCa

m

P0 973.3 lbs
ft2

static pressure at 20000 ft
S 0.44 ft2 surface area
m 13.98 slug mass
vs 1036.4 ft

s
speed of sound at 20000 ft

d 0.75 ft diameter
Iy 182.5 slug · ft2 pitch moment of inertia
Ca −0.3 drag coefficient
ζ 0.7 actuator damping ratio
ωa 150 rad

s
actuator undamped natural frequency

an 0.000103 deg−3

bn −0.00945 deg−2

cn −0.1696 deg−1

dn −0.034 deg−1

am 0.000215 deg−3

bm −0.0195 deg−2

cm 0.051 deg−1

dm −0.206 deg−1

Table 6.1: Coefficients of missile model. [3]

The system parameters are defined in Table 6.1. The objective is to design a full state feedback

controller K(ρ) that stabilizes the missile system such that −20deg ≤ α ≤ 20deg and |α̇| ≤

10deg/sec while minimizing the cost-to-go function with

Q =

0.2 0

0 0.2

 , R = 1.
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6.1.1 Univariate Case

We first consider M = 2.5 to be a constant for simplicity, and transform the nonlinear dynamics

to a quasi-LPV system by introducing ρ := α,

α̇
q̇

 =

KαM
[
an|ρ|2 + bn|ρ|+ cn

(
2− M

3

)]
cos(ρ) 1

KqM
2
[
am|ρ|2 + bm|ρ|+ cm

(
−7 + 8M

3

)]
0


α
q

+

KαMdn cosρ

KqM
2dm

 δ. (6.3)

= A(ρ)x+B(ρ)δ (6.4)

5 types of control syntheses are presented as follows

• Globally Optimal Control: We design classic LQR for the dynamics (6.4) at every instant

time and feedback to the missile system. Therefore, the control gainKLTI is designed in real

time. This is considered as a benchmark design.

• Polynomial Chaos: The parameter ρ is considered as random variable uniformly distributed

over [−20, 20], so we define ρ ∈ U[−20,20]. From Theorem 22, the controllerKPC is obtained

with different order polynomial chaos expansions.

• Stochastic Collocation: Similar with KPC, the controller KSC is obtained with different

polynomial chaos expansions by solving the optimization problem in Theorem 23.

• Conventional Gridding Method: According to the LPV system (6.4), we set Y LPV(ρ) :=

Y 0 +
∑3

i=1 fi(ρ)Y i > 0,Y i = Y T
i , and W LPV(ρ) := W 0 +

∑3
i=1 fi(ρ)W i, and the

controller KLPV(ρ) = W LPV(ρ)Y −1
LPV(ρ) is obtained by solving the optimization problem

below with N sample points equidistant in [−20, 20], where fi(ρ) are user defined functions,
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Controller Synthesis Time (sec) J
KLTI 103.8635
KPC (3rd order PC) 17.9557 104.0577
KPC (4th order PC) 133.0689 104.0129
KPC (5th order PC) 176.9519 103.9172
KSC (5th order SC) 0.6864 108.9585
KSC (9th order SC) 1.3416 107.3185
KSC (12th order SC) 1.7628 104.1266
KLPV (10 samples) 1.9812 118.5069
KLPV (100 samples) 11.8561 118.7867
KLPV (500 samples) 55.9108 118.5196
KSG (k = 3 αi = 0.15) 0.4281 281.2174
KSG (k = 6 αi = 0.08) 0.5956 231.8533
KSG (k = 9 αi = 0.1) 9.0174 240.6945

Table 6.2: Comparison of controller performances and synthesis times.

i.e. f1 := ρ, f2 := ρ2 and f3 := cos ρ in this example.

max
Y 0,Y 1,W 0,W 1

tr (ZLPV ), subject to
sym

(
Y LPV(ρk)A

T (ρk) +W T
LPV(ρk)B

T (ρk)
)
Y LPV(ρk) W T

LPV(ρk)

Y LPV(ρk) −Q−1 0

W LPV(ρk) 0 −R−1

 ≤ 0,

Y LPV (ρk)−ZLPV ≥ 0,

for k = 1, · · · , N and ZLPV > 0.

• Direct Interpolation: The controller KSG = W SG(ρ)Y −1
SG(ρ) is obtained by solving the

optimization problem stated in (4.28)-(4.32) and implementing the algorithm in the Section

4.3.1. The coefficients of Y SG and W SG(ρ) are determined by (4.26) and (4.27) respec-

tively, and then we can formulate the interpolation matrices from (4.15) and (4.16).

Table 6.2 compares the value of cost function computed from (2.33) and computation time in the
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respective optimization problem. Undoubtedly,KLTI has the lowest cost function and it is obvious

to see that KPC, which gives a cost function close to KLTI, dominates the others, but KSC has

similar performance with much less computational cost.

However, by checking the negative definiteness of (2.40) with the solution Y PC(ρ) and W PC(ρ),

or Y SC(ρ) and W SC(ρ), for a dense grid, we found that they do not really satisfy the sufficient

condition. This is due to the difference of the problem setting. The polynomial chaos expansion

and stochastic collocation are used in the stochastic framework, where we opt to satisfy the ex-

pectation condition (3.21), while the original LPV problem is deterministic and without expected

values. In other words, even though the controller designed in the stochastic framework yields a

better performance in this example, it is not guaranteed to have such good result for other case due

to the lack of analytical relationship between (3.21) and (2.35). After all, (3.21) and (2.35) are only

sufficient conditions that are not necessarily satisfied to get a controller having good performance.

Regarding the controllers based on conventional gridding method and sparse grid interpolation,

Table 6.2 shows that they are both computationally efficient. This is because the example system

is a lower dimensional problem, where the dimensionality issue of the gridding method is imper-

ceptible. If the dimension of the parameter set is much greater than 1, it is almost impossible

to implement gridding approach. Although the gridding method performs better than sparse grid

based interpolation with respect to the cost function J as shown in Table 6.2, the feasibility of the

condition (2.40) may not satisfy. Fig 6.1 shows, for ρ̇ = 10, the amount of checking points, where

(2.40) is infeasible, in the number of samples used for gridding method, which implies that the

feasibility region is growing up as we increase the amount of sample points. However, this is again

impractical for high dimensional problem.

On the other hand, we checked the infeasible region of (2.40) with Smolyak algorithm based

approach and the conditions are all satisfied even for low level k with less sample points. However,

comparing with other types of controller, the sparse grid based control does not show any advantage

in terms of the cost function index J . We infer that the sparse grid based control does not render
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Figure 6.1: # of infeasible condition of (2.40),which is measured in 2000 points between -10 and
10, versus # of sample points for controller synthesis.

better performance than others but it easily guarantees the sufficient conditions for the stability and

performance.

Fig.(B.1) to Fig.(B.4) plot the trajectories of states and control for different orders of their own

types of controllers. The plots look similar among different orders which accord with the cost

index J in the Table 6.2. Fig.(B.5) compares the trajectories with different types of controller,

where the state trajectories does not have much difference but the value of control effort for each

controller does agree with the performance trend shown in the Table 6.2. Finally, Fig.(B.6) shows

the trajectories of the rate of angle of attack implying that the required bounds are achieved.

6.1.2 Multivariate Case

We extend the previous example to a multivariate LPV system by letting the Mach number varying

between 2 and 4 and |Ṁ | ≤ 1. Therefore, we let ρ := [α,M ]T and the same LPV model as (6.4)
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is used. In order to have a reasonably realistic Mach trajectory, we set the Mach by

Ṁ(t) =
1

vs

[
−|η(t)| sin(|α(t)|) + AxM

2(t) cos(α(t))
]

with M(0) = 3, where

η = KzM
2

[
anα

2 + bn|α|+ cn(2− M

3
)

]
cos(α) +KαMdn cos(α)δ

Similarly, we design 5 types of controller accordingly as follows.

• Linear Control: The design is exactly the same as shown in the previous section since it is

independent of parameters.

• Polynomial Chaos: The parameter ρ is considered as a set of random variables uniformly

distributed over [−20, 20]× [2, 4], so we define ρ ∈ U[−20,20]×[2,4] From the Theorem 22, the

controllerKpc is obtained with different order polynomial chaos expansions.

• Stochastic Collocation: Similar with KPC, the controller KSC is obtained with different

polynomial chaos expansions by solving the optimization problem in Theorem 23.

• Conventional Gridding Method: According to the LPV system (6.4), we set Y LPV(ρ) :=

Y 0 +
∑5

i=1 fi(ρ)Y i > 0,Y i = Y T
i , and W LPV(ρ) := W 0 +

∑5
i=1 fi(ρ)W i, and the con-

troller KLPV(ρ) = W LPV(ρ)Y −1
LPV(ρ) is obtained by solving the same optimization problem

in the previous section with N2 grid points in the sample space [−20, 20] × [2, 4], where

fi(ρ) are user defined functions, i.e. f1 := Mρ, f2 := Mρ2, f3 := M cos ρ, f4 := M and

f5 := M2 in this example.

• Direct Interpolation: The method to obtainKSG is the same as the previous section, where

the grid points are chosen based on the Smolyak algorithm. We set the level of sparse grid

to k = 8 for 1537 grid points and the level k = 3 for 29 basis functions. The constants in the

constraints are αi = 0.15.
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Controller synthesis Time J
KLTI 114.2306
Kpc (3rd order) 6043.4 236.8949
Ksc (3rd order) 0.3350 122.0233
Ksc (5th order) 5.1995 116.7951
Ksc (7th order) 97.2259 115.7800
KLPV (10^2 samples) 19.0789 208.5167
KLPV (20^2 samples) 86.0034 213.5322
KLPV (30^2 samples) 212.6450 217.5059
KSG (k = 8) 17.5620 203.2555

Table 6.3: Comparison of controller performances and synthesis times for multivariate case.

In the 2-dimension case, the Table 6.3 evidently shows that the computational cost of polynomial

chaos expansion is significantly increasing even it is only 3rd order expansion. This can be realized

by analyzing the dimension of the LMI in (3.48), the PC based approach is hence not suitable

for multivariate problems. The stochastic collocation, on the other hand, shows its advantage

on the computational efficiency and its performance close to the benchmark design. Since the

system in this example has explicit and simple expressions, one can easily find basis functions for

gridding method. However, it is still an open question about the choices of basis functions, so

the performance of the gridding method is varying and unpredictable. Regarding the sparse grid

based controller, its performance is not remarkable in terms of the cost function J in the Table 6.3

because of the choice of basis function and the constant αi introduced in the algorithm, but the

synthesis time is speedy.

With respect to the feasibility of the constraint for the parameter sets, Fig.(B.7) to Fig.(B.9) show

the feasibility region of each controller, where only KSG satisfies the conditions for all the ele-

ments in the parameter set. Therefore,KSG has less region to find an optimal solution while other

controllers are synthesized by searching an optimal solution in a larger region,which contains both

infeasible and feasible region. Again, since the conditions (2.40) are only sufficient, a controller

that does not satisfies the constraints for all the elements in the parameter sets may still stabilize

the system and even performs better, although it is not guaranteed.
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In fact, the constants αi and βi in the constraint can be applied to conventional gridding method as

well, so that the KLPV can satisfy the conditions for whole parameter space and the conservatism

is introduced. Fig.(B.10) shows the feasibility region where the amount of sample points is the

same as we use in Fig.(B.8).

Fig.(B.11) and Fig.(B.12) plot the states and control trajectories for stochastic collocation based

and gridding based control respectively, which show very similar result for different orders or the

number of sample points. Fig.(B.13) compares all controllers together and it shows the sparse grid

based control yields faster stabilization but large control effort so that the cost function J is high

among these controllers as shown in the Table 6.3. Finally, Fig.(B.14) and Fig.(B.15) show the

trajectories of the rate of angle of attack and Mach number implying that the required bound are

achieved.

6.2 Tensegrity Structure

This section will demonstrate two applications based on tensegrity structures achieving some de-

sired locomotion under disturbances, so intuitively an H2 control will be utilized to the control

system. The mathematical model and the associated simulation used in this section was developed

in Chapter 5, where a minimum set of coordinates used. In this section, we only focus on sparse

grid based method, since the dimensionality is too high to implement either stochastic frameworks

or conventional gridding method.

6.2.1 Robotic Arm

Fig.(6.2) shows the configuration of a 2 dimensional tensegrity structure, where node 1 is assigned

to be the origin (0, 0), and the objective is to let the tip of the arm track two desired trajectories, i.e.

two circles intersecting with each other,where the disturbance and noise rejections are achieved.
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The model is of the form

ẋ = A(ρ)x+Bu(ρ)u+Bw(ρ)w

y = Cyx+ n

z = Czx+Du(ρ)u,

where ρ := x, x = [qi, q̇i]
T with a minimum set of coordinates qi, the system matrices are derived

in Chapter 5 according to the configuration in Fig.(6.2), u ∈ R10 is control variables indicating

the force density of the cables, y is the measurement, n denoting sensor noise is the zero-mean

white noise,w denoting external disturbance is zero-mean white noise as well, and z denoting the

desire output contains the states and the control variables. It is obvious to see that the system has

6 degrees of freedom, so x ∈ Dx ⊂ R12, and we assign a minimum set of coordinates as

qi =

[
x4 x6 y6 x8 x11 y11

]
.

In particular, the desire output contains

z =

[
x4 20x6 20y6 x8 x11 y11 ẋ4 ẋ6 ẏ6 ẋ8 ẋ11 ẏ11

u
200

]T
,

since we opt to keep the nodes as close to the reference trajectories as possible, especially the tip

of the structure described by x6 and y6, and relax the control effort. In addition, we consider two

accelerometers installed on the node 6 and node 11 to measure the accelerations in both x and y

directions, and two rotary encoders attached on the node 11 to measure the positions of the node

4 and node 8 based on the angles. Besides, we assume that all disturbances and sensor noises are

uncorrelated and

E
[
w(t+ τ)wT (t)

]
= Qδ(τ), E

[
n(t+ τ)nT (t)

]
= Rδ(τ)
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Figure 6.2: The configuration of the system at initial position where black dots denote fixed points,
black lines denote rigid bars, red lines denote cables, the numbers index the nodes and the dotted
circles are desired trajectories.

where Q = 18.75I and R = 0.0033I , because the disturbances are assumed to be uniformly

distributed between -7.5 and 7.5 and the noises are uniformly distributed between -0.1 and 0.1.

Based on the control objective, we utilize H2 control to the system, which was developed in

the Theorem 13 and 14, and by using extended Kalman filter, which is a famous state estima-

tor for nonlinear systems, we can estimate the full states x̂ and apply it to the feedback control.

Since the the parameter set is in 12-dimensional, it is impossible to apply the method based on

stochastic framework and conventional gridding method for such a high dimensional problem.
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Therefore, the Smolyak algorithm introduced in Chapter 4 and revealing a benefit of significant

grid points reduction is used to solve the H2 problem. More specifically, the optimization prob-

lem (4.33) to (4.34) are solved based on the algorithm in the Section 4.3.1 and the controller

K(ρ) = W (ΨT
m(ρ)zSG)−1, where zSG is obtained from (4.36).

Regarding the tracking problem, we consider a time based circular trajectory shown in Fig.(6.2),

where the mathematical description of the trajectories for node 6 is

qr(t) =



2− 0.5 cos(t)

0.5 sin(t)

 for small circle

2.3− 0.8 cos(t)

0.8 sin(t)

 for large circle

(6.5)

We let the node 6 tracks the small circle first starting from the initial position and then change it to

large circle and have a "small-large-small" loop. Accordingly, the trajectories for other nodes can

be formulated similar to (6.5) but in different location.

Another concern is the physical limits of the cable which does not sustain compression, so we need

to set up a pre-stress condition for the system and ensure the cables always work in tension during

the tracking motion. In particular, consider a trajectory xr(t) that satisfies

ẋr(t) = A(ρr)xr +B(ρr)ur,

then we can solve the equation with the pre-stress constraint ur ≥ up where up is given by 50

in the example. Moreover, the total control effort becomes u = K(ρ)(x̂ − xr) + ur, i.e. the

reference control for tracking problem plus the H2 control for disturbance and noise rejection.

Fig.(B.16) shows the motion trajectory of the node 6 with the given control u developed above,

where the actual output tracks the reference very well except for the motion close to trajectory
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transition. Fig.(B.17) plots the control effort of the system, which shows that the control does not

violate the physical rule of the cable, and the high value of the control in Fig.(B.17) is due to the

needs for pulling the arm forward and backward.

We have also checked the feasibility of the constraints stated in the Theorem 13 with the solution

to the optimization problem (4.33)- (4.34) and the solution actually does not satisfy the constraints,

although the tracking control problem is solved. Again, the constraints are sufficient condition, so

it is not necessary to ensure the feasibility. If one can find a solution satisfies all the constraints, it

is always guaranteed to stabilize the system and achieve the performance. Increasing the level of

Smolyak algorithm may achieve the feasibility for all the element in the parameter set. However, it

is not practical for a high-dimensional problem because the extremely large amount of LMIs needs

to be solved simultaneously according to (4.8). Observing all kinds of LPV control including the

existing controls and the proposed control methods, we remark that sparse grid based methodology

is the most suitable one to handle problems with high dimensions.
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7. CONCLUSION

In this thesis, we first give a brief overview of LPV systems. This includes the reasons on the

LPV system development, the benefit of LPV control rather than the gain-scheduling approach.

We have survey some notable research about LPV systems including modeling and control design.

The goal of modeling is to transform an original nonlinear system to a standard LPV or quasi-LPV

model by either approximation methods or function substitutions. Different kinds of LPV control

has been reviews and discuss the benefits and the drawbacks of each method, where the gridding

approach is the main direction we are focusing on in the thesis. We have also discuss the needs

and potential of the dynamical systems described in term of non-minimum set of coordinates and

the gridding based LPV control design.

Regarding the stability of the LPV systems, we have introduced quadratic stability and robust

stability and developed the associated conditions that needs to be satisfied such that the stability

is guaranteed. Other than the stability of the LPV systems, the H2 performance has also been

investigated, where a set of LMIs has been formulated so that the H2 is bounded. In particular,

parameter-independent or parameter-dependent unknown matrices are solved so that the system

is guarantted to be stable and achieve the H2 performance, where parameter-dependent matrices

yield less conservatism. We have further investigated the optimal LPV control systems in terms of

the cost-to-go function and theH2 norm of the system. More specifically, a linear quadratic regular

for LPV systems has been developed such that the cost function is optimized and an H2 control,

which guarantees the H2 norm performance of the control system, has also been investigated.

Both methods yields a parameter-dependent optimization which is convex if the parameter is fixed.

Clearly, there is a tradeoff between problem size and conservatism in the design.

In the thesis, inspired by Fujisaki [55], we presented a new framework for synthesizing LPV con-

trollers using polynomial chaos framework. This framework builds on the probabilistic represen-
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tation of the scheduling variables. The parameter is treated as a random variable with a given

distribution, so we consider the expected value of the cost function instead of the original one,

which is the key difference from the conventional LPV control design. We have taken this ap-

proach to develop new algorithms for synthesis of linear quadratic regulators. We pursued two

approaches: polynomial chaos expansion and stochastic collocation to develop the necessary the-

oretical framework, which results in a convex optimization problem.

Other than stochastic framework, we have studied the conventional LPV approach, i.e. gridding

method, which requires extremely large amount of samples to ensure the feasibility of the con-

straints for either system analysis or controller design. Due to this drawback, we have developed

a series of controller syntheses and an algorithm to solve the parameter-dependent optimization

problems. The key mechanism is the sparse grid based on Smolyak algorithm that significantly

reduces the number of sample points and increase the efficiency of the controller synthesis. This

is one of the main results in the thesis.

In addition to controller design, the equations of motion for tensegrity structures were developed

in Cartesian coordinates, i.e. a nonminimum set of coordinates, using Lagrangian mechanics. The

equations of motion have further been transformed into a quasi-LPV model by using coordinate

partitioning method. With respect to the simulation of constrained dynamics, since states at the

position and velocity levels may drift away from the constraint space due to numerical computa-

tions, the direct correction approach was used so that the violations in both geometric constraints

and total mechanical energy are eliminated. A simple tensegrity structure has been simulated with

different parameters to show the improvement of the accuracy by using the proposed approach.

Besides, we have shown that the differences between numerical simulation performed with and

without correction become more prominent when a structure has larger motion or when the error

of numerical integration is increasing. We have also simulated tensegrity structures with signifi-

cantly more complex geometries to demonstrate the consistency of the proposed method towards

constraint stabilization.

125



To evaluate the proposed method stated in this thesis we have shown examples of a missile system

and a tensegrity based robotic arm that are controlled by LPV controllers. In the example of the

missile system, we have compared the optimality of each LQR controller, i.e. polynomial chaos

expansion, stochastic collocation, convectional gridding method, and Smolayk algorithm. In ad-

dition, the feasibility of the constraints from different controllers implies that Smolyak algorithm

based control is able to satisfy the sufficient condition that guarantees the stability and performance

but the actual cost function is not the optimal one among others. We have discussed some expla-

nations for this results. Another example of tensegrity system is a high dimensional problem, so

only sparse grid method is suitable due to the limits of the computation for controller synthesis.

Although the feasibility does not hold, the simulation results have shown good performance of a

tracking problem.

It is known that the algorithm stated in the Chapter 4 is just ad-hoc. There still exist many open

questions in it. For example, there is no theoretical analysis to choose the approximation level and

relaxation of the constraints so that the parameter-dependent conditions can hold for sure. A possi-

ble solution is to analyze the upper bound of the approximation error and utilize the bound to relax

the constraint. This is similar to the ad-hoc algorithm but the choices of the associate relaxation

coefficients are determined automatically depending on the level of the Smolyak algorithm. The

related research on error analysis of Smolyak algorithm is found in [90, 94]. Another future chal-

lenge is the curse of dimensionality. It is known that the computation cost hikes up significantly

if the dimension raise too much. Even for Sparse grid method, the number of the grid points will

sill be very huge that the solution to the problem becomes impractical due to the limitation of the

numerical computation. Therefore, the investigation on this topic will be a benefit for a large size

system.
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APPENDIX A

PLOTS IN SECTION 5.4 OF Chapter 5
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Figure A.1: Difference in motion of node 3 between minimum realization, the proposed method
and Simscape Multibody in the example of the 2-bar structure shown in Figure 5.1a.
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Figure A.2: Bar Length constraint violations observed in the example of the 2-bar structure de-
scribed in Figure 5.1a.
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Figure A.3: Energy violation (5.53) observed in the example of the 2-bar structure shown in Figure
5.1a.
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Figure A.4: Motion error, constraint and energy violations if simulated at 10−14 tolerance without
any correction in the example of the 2-bar structure shown in Figure 5.1a.
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Figure A.5: Computation Times for the 2-bar structure example, simulated at different tolerances.
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Figure A.6: Motion error, constraint and energy violations if simulated at 10−10 tolerance with and
without energy correction in the example of the 2-bar structure shown in Figure 5.1a.
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Figure A.7: Motion error, constraint and energy violations if simulated at 10−6 tolerance with and
without energy correction in the example of the 2-bar structure shown in Figure 5.1a.
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(a) Motion error in X of Node 3. (b) Motion error in Z of Node 3.

Figure A.8: Motion error of Node 3 if simulated at 10−10 tolerance with and without energy cor-
rection at different rest lengths in the example of the 2-bar structure shown in Figure 5.1a.
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Figure A.9: Motion trajectories of the particular nodes in the example of the arm shown in Figure
5.1b.
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Figure A.10: Bar length errors in the example of the arm shown in Figure 5.1b, where the value of
zero is set to the minimum positive double precision number.
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Figure A.11: Energy violation (5.53) of the arm shown in Figure 5.1b.
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(b) Energy violation of (5.53).

Figure A.12: Motion and energy violations in the example of the ball shown in Figure 5.1c.
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Figure A.13: Bar length errors in the example of the ball shown in Figure 5.1c, where the value of
zero is set to the minimum positive double precision number.
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APPENDIX B

PLOTS IN CHAPTER 6
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Figure B.1: State and control trajectories for the missile autopilot by applyingKpcLPV control with
different order polynomial chaos expansion.
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Figure B.2: State and control trajectories for the missile autopilot by applying KscLPV with differ-
ent order stochastic collocation expansion.
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Figure B.3: State and control trajectories for the missile autopilot by applyingKLPV with different
amount of sample points.
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Figure B.4: State and control trajectories for the missile autopilot by applying KSG with different
levels.
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Figure B.5: State and control trajectories for the missile autopilot by applying types of controllers.

153



0 1 2 3 4 5 6 7 8 9 10

time(sec)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

PC
SC
Gridding
SG
LTI

Figure B.6: Trajectories of the rate of angle of attack for the missile autopilot by applying types of
controllers.
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Figure B.7: Mesh plot of a finer grid to check the feasibility of conditions for Ksc with 7-th order
expansion, where yellow indicates infeasible region and blue means feasible region.
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Figure B.8: Mesh plot of a finer grid to check the feasibility of conditions for KLPV with 900
sample points, where yellow indicates infeasible region and blue means feasible region.
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Figure B.9: Mesh plot of a finer grid to check the feasibility of conditions for KLPV with level
k = 6, where yellow indicates infeasible region and blue means feasible region.
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Figure B.10: Mesh plot of a finer grid to check the feasibility of conditions for KLPV with 900
sample points and relaxation α = 0.01, where yellow indicates infeasible region and blue means
feasible region.

157



0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

(d
eg

)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20
q(

de
g/

se
c)

0 1 2 3 4 5 6 7 8 9 10

time(sec)

-10

0

10

(d
eg

re
e)

3rd
5th
7th

Figure B.11: State and control trajectories for the missile autopilot by applying KscLPV with dif-
ferent order stochastic collocation expansion for multivariate case.
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Figure B.12: State and control trajectories for the missile autopilot by applyingKLPV with different
amount of sample points for multivariate case.
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Figure B.13: State and control trajectories for the multivariate missile autopilot by applying types
of controllers.
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Figure B.14: Trajectories of the rate of angle of attack for the multivariate missile autopilot by
applying types of controllers.
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Figure B.15: Trajectories of the rate of Mach number for the multivariate missile autopilot by
applying types of controllers.
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Figure B.17: The trajectory of control for the system, where each two numbers indicate a cable
between two nodes.
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Figure B.16: The motion trajectories of the tip, i.e. node 6.
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