
DESIGN AND OPTIMIZATION OF ENERGY EFFICIENT RECURRENT SPIKING NEURAL

ACCELERATORS

A Dissertation

by

YU LIU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peng Li
Committee Members, Yoonsuck Choe

Sebastian Hoyos
Paul Gratz

Head of Department, Miroslav M. Begovic

August 2019

Major Subject: Computer Engineering

Copyright 2019 Yu Liu

ABSTRACT

The liquid state machine (LSM) is a model of recurrent spiking neural networks that provides

an appealing brain-inspired computing paradigm for machine-learning applications such as pattern

recognition. Moreover, processing information directly on spiking events makes the LSM well

suited for cost and energy efficient hardware implementation. The LSM is considered to be a

good trade-off between the ability in tapping the computational power of recurrent SNNs and

engineering tractability. This research work focuses on building bio-inspired energy-efficient LSM

neural processors that enable intelligent and ubiquitous on-line learning. Hardware and algorithm

co-design and co-optimization are explored for great hardware efficiency and decent performance

of the proposed neural processors. The proposed learning models and architectures demonstrated

on the presented FPGA LSM neural accelerators also provide opportunities for developing energy-

efficient spiking neural processors on emerging microsystems such as three-dimensional integrated

circuits (3D ICs).

The conventional LSM consists of a fixed reservoir to avoid the difficulty in training the re-

current network. In this work, we propose the hardware LSM with a trainable recurrent reservoir

to improve its self-adaptability hence provide better learning results. The first explored reser-

voir training scheme is the hardware-friendly spike-timing-dependent-plasticity (STDP) algorithm,

which is implemented with great hardware efficiency and further optimized by runtime power gat-

ing and activity-depend clock gating approaches to minimize dynamic power consumption. With

the sparsity naturally brought in by the STDP and the runtime power optimization approaches, the

proposed LSM neural processor boosts the learning performance by up to 4.2% while reducing

energy dissipation by up to 30.4% compared to a baseline LSM.

In the second reservoir training scheme, an efficient on-chip intrinsic plasticity (IP) based al-

gorithm, offering additional bio-inspired learning opportunities, is explored. We enable feasible

on-chip integration of IP and further optimize its hardware efficiency through both algorithmic and

hardware optimization approaches. A new hardware-friendly IP rule (SpiKL-IFIP) is proposed,

ii

which significantly optimizes the performance gain vs. overhead trade-off of onchip IP on the

hardware recurrent spiking neural processors. On the Xilinx ZC706 FPGA board, LSMs with self-

adapting reservoir neurons using IP boost the classification accuracy by up to 10.33%. Moreover,

the highly-optimized IP implementation reduces training energy by 48.1% and resource utilization

by 64.4% while gracefully trades off the classification accuracy for design efficiency.

Furthermore, this work employs supervised STDP readout training with efficient resource shar-

ing implementation of the LSM such that it delivers good classification performance at the same

time sparsifies network connections to reduce hardware power consumption. FPGA LSM neu-

ral accelerators built on a Xilinx Zync ZC706 platform and trained for the speech recognition task

with the TI46 speech corpus benchmark can achieve up to 3.47% on-line classification performance

boost with great efficiency.

Energy-efficient LSM neural processors have also been developed on monolithic three-dimensional

(M3D) integrated circuits (IC) and demonstrates dramatic power-performance-area-accuracy (PPAA)

benefits with design and architectural co-optimization.

iii

DEDICATION

To my parents and my boyfriend for their love and support.

iv

ACKNOWLEDGMENTS

The four-year PhD study is not only a research journey but also a life lesson that I really

treasure. First and foremost, my greatest respect and gratitude goes to my advisor, Dr. Peng Li,

without whom this dissertation would not have been possible. He has been patiently guided me

with his great insight and expertise in research fields, and set a good example for me to work hard

and pursue higher goals with his enthusiasm, perseverance, and diligence. He is such an incredible

advisor and I feel so lucky and so grateful for being his student from the bottom of my heart.

I would like to thank my committee members, Dr. Sebastian Hoyos, Dr. Paul Gratz, and Dr.

Yoonsuck Choe, for their insightful suggestions on my research, and they are really helpful for this

dissertation.

I would also like to thank all fellow students in my research group for their collaboration,

support, and friendship. To Dr. Qian Wang, Dr. Yingyezhe Jin, Sai Sourabh Yenamachintala, and

Wenrui Zhang, with whom I have been closely worked with on research projects, thanks for the

great teamwork. To Dr. Honghuang Lin, Dr. Ya Wang, Dr. Xin Zhan, and Hanbin Hu, thanks for

all help and suggestions that offered to me in both research and life.

Finally, I would like to thank my mom and dad for their unconditional love and constant sup-

port. Thank you my boyfriend, Chenxi Zhang, for always being there. This journey would have

been much harder without you.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Peng Li, Dr. Paul

Gratz and Dr. Sebastian Hoyos of the Department of Electrical and Computer Engineering, and

Dr. Yoonsuck Choe of the Department of Computer Science and Engineering.

The work presented in Chapter 5 was a collaboration work. In the collaboration, the student

conducted the work for the architecture design and optimization of the presented liquid state ma-

chine (LSM) neural processors. The work of implementing the presented LSMs in 2D and 3D

ASIC design flows was conducted by Bon Woong Ku and Sandeep Samal of School of Electri-

cal and Computer Engineering, Georgia Institute of Technology. The data of neural processors

learning accuracy was provided by Yingyezhe Jin of the Department of Electrical and Computer

Engineering. All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

This dissertation is based upon work supported by the National Science Foundation (NSF)

under Grant No.CCF-1639995 and the Semiconductor Research Corporation (SRC) under Task

2692.001.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xiv

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Bio-inspired Neuromorphic Computing Systems . 2
1.1.1 Biological Motivation . 2
1.1.2 Artificial Neural Networks . 4
1.1.3 Spiking Neural Networks . 9

1.2 Reservoir Computing and the Liquid State Machine (LSM). 11
1.3 LSMs in Emerging Technologies: Monolithic 3D (M3D) LSM . 13

2. ENERGY-EFFICIENT RECURRENT SPIKING NEURAL PROCESSOR OVERVIEW.. 15

2.1 Baseline LSM Neural Processor Architecture . 16
2.2 Hardware Implementation and Optimization of On-chip Training on LSM 18

2.2.1 Energy-efficient Reservoir Training . 18
2.2.1.1 Synaptic Plasticity based Unsupervised Reservoir Training 18
2.2.1.2 Intrinsic Plasticity based Unsupervised Reservoir Training 19

2.2.2 Energy-efficient Readout Training. 21
2.2.3 FPGA Recurrent Spiking Neural Accelerator . 22

2.3 Hardware-efficient Monolithic 3D (M3D) LSM Neural Processors . 23

3. SELF-ADAPTIVE RESERVOIR LEARNING OF LIQUID STATE MACHINES. 25

3.1 Synaptic Plasticity based Reservoir Training and Optimized Implementation 25
3.1.1 Baseline STDP Rules. 26
3.1.2 Hardware-Friendly STDP for Efficient Reservoir Tuning . 27
3.1.3 Implementation of Unsupervised STDP Training . 31

vii

3.1.4 Runtime Energy Optimization with Correlation-based Reservoir Neuron
Gating . 32

3.1.5 Runtime Energy Optimization with Activity-dependent Clock Gating 36
3.1.6 Experimental Settings and Benchmarks . 39
3.1.7 Experimental Results . 41

3.1.7.1 Classification Performance . 41
3.1.7.2 Hardware Overheads . 43

3.2 Intrinsic Plasticity based Reservoir Training and Optimized Implementation 47
3.2.1 Intrinsic Plasticity in SNN Training . 47
3.2.2 Basic SpiKL-IP Learning Rule for LIF Neurons . 49
3.2.3 Hardware-Optimized SpiKL-IP. 51
3.2.4 Hardware-inspired IP Rule for IF Neurons (SpiKL-IFIP) . 52
3.2.5 Hardware Implementation of the Onchip IP . 55

3.2.5.1 LSM Architecture with IP . 55
3.2.5.2 Hardware Optimization Approaches of Onchip IP Implementation 57
3.2.5.3 Hardware Implementation of SpiKL-IFIP . 60
3.2.5.4 Hardware Implementation of SpiKL-IP . 63

3.2.6 Experimental Settings and Benchmarks . 64
3.2.6.1 Training Benchmarks . 64
3.2.6.2 Parameter Settings in LSM Neural Processors. 65

3.2.7 Experimental Results . 65
3.2.7.1 Classification Performances . 66
3.2.7.2 Hardware Overheads . 67

4. READOUT LEARNING AND SPARSIFICATION OF LIQUID STATE MACHINES 70

4.1 Hardware-Friendly Supervised STDP for Readout Training. 71
4.1.1 Baseline Supervised STDP. 72
4.1.2 Supervised STDP Readout Learning Algorithm: CaL-S2TDP 74
4.1.3 Supervised STDP Readout Sparsification Algorithm: CaS-S2TDP 76
4.1.4 Two-step Hardware-Friendly Supervised Readout Training 78

4.2 Implementation of Supervised STDP Readout Training . 79
4.3 Recurrent Spiking Neural FPGA Accelerators Design . 81
4.4 Training Setup and Benchmarks. 83
4.5 Experimental Results . 85

4.5.1 Classification Performance. 85
4.5.2 Hardware Overheads . 86

5. LSM APPLICATION IN EMERGING TECHNOLOGY: MONOLITHIC 3D LSM 89

5.1 Design Flow and Methodlogy . 89
5.2 Tier Partitioning of M3D LSMs . 90
5.3 Design and Architectural Co-Optimization . 93

5.3.1 Synaptic Weight Memory Sharing . 93
5.3.2 Synaptic Model Complexity Reduction . 94
5.3.3 Individual Neuron Results . 95

viii

5.3.4 Full-chip Results. 97
5.4 Application-based Experimental Results . 98

5.4.1 Full-Chip Dynamic Power Breakdown . 100
5.4.2 Power-Performance-Area-Accuracy Analysis . 100

6. CONCLUSION AND FUTURE WORKS . 104

6.1 Conclusion. 104
6.2 Future Work . 105

REFERENCES . 107

ix

LIST OF FIGURES

FIGURE Page

1.1 Biological neuron anatomy. Recreated from [1]. 3

1.2 Nonlinear model of a neuron.. 4

1.3 Feedforward neural network architecture. 7

1.4 A recurrent neural network and the unfolding in time of the computation involved
in its forward computation. 8

1.5 Spiking neuron model. 10

1.6 A model of the liquid state machine. Reprinted with permission from Yu Liu, Sai
Sourabh Yenamachintala and Peng Li c©2019 ACM. 12

2.1 Overall architecture of the proposed recurrent spiking neural processors. 17

2.2 Block design of the digital neuron module (i.e. the RE and the OE). The dashed
module and signals indicate the corresponding subject is optional. 18

3.1 (a) A standard STDP curve. (b) An equilibrium reservoir synaptic weight distri-
bution after applied STDP training. Reprinted with permission from Yu Liu, Sai
Sourabh Yenamachintala and Peng Li c©2019 ACM. 26

3.2 The weight updating process of the uniformly discretized STDP. Reprinted with
permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 28

3.3 The weight updating process of the proposed data-driven STDP. Reprinted with
permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 30

3.4 (a) The design of the learning engine in REs that implements the hardware-friendly
unsupervised STDP reservoir tuning mechanism. (b) An illustration of how time
difference ∆t is computed in the hardware learning engine. Reprinted with per-
mission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM. 32

3.5 A raster plot of the reservoir response. Only a part of the reservoir response is
shown for simplicity. The firing events of two connected neurons 14 and 16 are
highly correlated. Reprinted with permission from Yu Liu, Yingyezhe Jin and
Peng Li c©2018 ACM. 33

x

3.6 Block design of the digital reservoir neuron with correlation-based neuron gating. . . . 35

3.7 Implementation of the correlation-based gating module. Reprinted with modifica-
tions with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 36

3.8 (a) Clock distribution of the LSM. (b) Neural process flow of the LSM. (SIP:
Synaptic input processing, SG: Spike Generation) Reprinted with modifications
with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 38

3.9 The optimal STDP lookup tables for (a) spoken English letter recognition and (b)
segmented image recognition.Reprinted with permission from Yu Liu, Yingyezhe
Jin and Peng Li c©2018 ACM. 39

3.10 (a) The spatiotemporal information of each speech generated by preprocessing; (b)
A street scene of the CityScape dataset. Reprinted with permission from Yu Liu,
Yingyezhe Jin and Peng Li c©2018 ACM. 41

3.11 The performance boosts of the proposed STDP under different levels of correlated-
gated neurons. Reprinted with permission from Yu Liu, Yingyezhe Jin and Peng
Li c©2018 ACM. 43

3.12 Instrinsic plasticity.. 53

3.13 Hardware architecture of the LSM neural processor integrated with onchip IP un-
supervised learning algorithm. 56

3.14 Hardware implementation of the proposed SpiKL-IFIP learning rule. The shaded
blocks are registers for intermediate results that are needed for the following com-
putation steps. 61

3.15 Multiplication-free onchip SpiKL-IFIP implementation. 62

3.16 Flow diagram of optimized IP for LIF neurons. 63

4.1 (a) Proposed D-S2TDP algorithm. The neuron i1 is the desired neuron and i2 is
the undesired neuron. (b) and (c) Weight update under the proposed D-S2TDP
algorithm. The potentiation or depression keeps updating synaptic weights when
a valid spike pair is presented. Besides, By applying CT, the spike event of the
desired neuron happens steadily and periodically. Reprinted with permission from
Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM. 73

xi

4.2 (a) Proposed CaL-S2TDP training algorithm. The neuron i1 is the desired neu-
ron and i2 is the undesired neuron. (b) The calcium-modulated activation range.
(c) and (d) Weight update of desired and undesired neurons. The potentiation or
depression only happens when the postsynaptic calcium level c is in the activation
range. Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala and
Peng Li c©2019 ACM. 76

4.3 (a) The CaS-S2TDP sparsification algorithm. The activity level of the selected
readout neuron i1 is boosted by the sparsity teacher (ST). (b) Stop learning for read-
out synapse sparsification. Reprinted with permission from Yu Liu, Sai Sourabh
Yenamachintala and Peng Li c©2019 ACM. 77

4.4 Implementation of the proposed CaS-S2TDP and CaL-S2TDP algorithm. The
blue path are the control path specified to CaL-S2TDP and the orange path are
specified to CaS-S2TDP . The black paths represent the data and control path
shared by two algorithms. Reprinted with permission from Yu Liu, Sai Sourabh
Yenamachintala and Peng Li c©2019 ACM. 80

4.5 The illustration of the recurrent spiking neural computing system. Reprinted with
permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM. . . . 81

4.6 Handshake between the host and the neural accelerator. 82

5.1 Proposed hierarchical Shrunk-2D flow to enable two-level folding, i.e. neuron level
and top-level. Reprinted with permission from Bon Woong Ku, Yu Liu, Yingyezhe
Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM. 91

5.2 2D and M3D designs of the reservoir and output neuron, and full-chip LSM neuro-
morphic processor floorplans and P&R results. In single neuron layouts, the large
gray block is the register-file memory module. Reprinted with permission from
Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu
Lim c©2018 ACM. 92

5.3 Comparison on 2D vs. M3D LSM neural processors with different synaptic mod-
els. Memory sharing schemes are adopted in all designs. Reprinted with permis-
sion from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and
Sung Kyu Lim c©2018 ACM with minor modification. 96

5.4 Static power and placement&routing results of individual 2D and M3D neuron
with different combinations of architectural optimization approaches. Reprinted
with permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal,
Peng Li, and Sung Kyu Lim c©2018 ACM with minor modification. 97

xii

5.5 Static power and placement&routing results of the full-chip 2D and M3D designs
with different combinations of architectural optimization approaches. Reprinted
with permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal,
Peng Li, and Sung Kyu Lim c©2018 ACM with minor modification. 99

5.6 Vector-based power consumption analysis in different operation steps. Reprinted
with permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal,
Peng Li, and Sung Kyu Lim c©2018 ACM .. 101

xiii

LIST OF TABLES

TABLE Page

2.1 Comparison between software and hardware recurrent spiking nueral network com-
puting systems . 23

3.1 Numbers of FSM states, memory element bits and cycle occupancies inside neu-
rons. Reprinted with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018
ACM. 37

3.2 The identifiers of the image instances extracted from the CityScape dataset. 40

3.3 Classification accuracies and performance boosts of LSM with STDP reservoir tuning 42

3.4 Reservoir synaptic reductions of the proposed STDP. Reprinted with permission
from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 43

3.5 Hardware resource utilization of LSMs with different energy optimization approaches
studied in the work . 44

3.6 Dynamic power/energy dissipation of LSMs with different energy optimization
approaches studied in the work . 46

3.7 Dynamic energy consumption of LSMs with standard clock gating and the pro-
posed clock gating. Both designs have a trainable reservoir and correlation-based
neuron gating. (Unit: mJ) Reprinted with modifications with permission from Yu
Liu, Yingyezhe Jin and Peng Li c©2018 ACM. 46

3.8 Constant parameters settings . 66

3.9 FXP resolutions of neural parameters in the LIF spiking neuron model 66

3.10 FXP resolutions of neural parameters in the IF spiking neuron model 66

3.11 The performances of SNNs trained with different learning algorithms on TI46
speech corpus dataset.. 67

3.12 The performances of SNNs trained with different learning algorithms on TIMIT
speech corpus dataset.. 68

3.13 Hardware overhead of LSM accelerators integrated with different on-chip learning
algorithms . 69

xiv

4.1 Optimized weight discretization and unsupervised STDP. Reprinted with permis-
sion from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM. 84

4.2 Parameter settings of the proposed supervised STDP algorithms. Reprinted with
permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM. . . . 84

4.3 Performances of LSM neural accelerators with different training mechanisms. 86

4.4 Hardware resource utilization of LSM neural accelerators with different training
mechanisms. 87

4.5 Classification training power of different algorithms on LSM neural accelerators.
Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li
c©2019 ACM. 87

5.1 Power × Operation Time Period × Silicon Area ÷ Accuracy (PPAA) benefit of
design and architectural co-optimization proposed in this work. Reprinted with
permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li,
and Sung Kyu Lim c©2018 ACM with minor modification. 103

xv

1. INTRODUCTION AND LITERATURE REVIEW∗

The development in computer architecture and very-large-scale integrated (VLSI) circuits tech-

nology have led the modern computing industry to unprecedented prosperity and made huge im-

pacts in human society nowadays, however, with more and more challenges. The Von Neumann

architecture, which has been the fundamental architecture of modern computers for decades, is

facing growing performance and energy crisis. Moreover, we are fast approaching certain funda-

mental limits in physics which makes the Moore’s law harder and harder to meet.

Many people believe that solutions to this crisis lie in the biological computer engine: brains.

For example, the human brain perceives, memorizes, and responses to the outside world almost

seemingly effortless. The information processing and communication patterns in the nervous sys-

tem offer promising references for building the next generation computing systems to address the

performance and energy crisis currently faced by the computing industry.

The past decades have witnessed an endeavor to develop brain-like computers in both academia

and industry. By using a cascade of many layers of nonlinear processing units, deep learn-

ing algorithms, particularly convolutional neural networks (CNNs) [2] and deep neural networks

(DNNs) [3], have achieved the state-of-the-art performance in a wide range of applications [4, 5, 6].

However, in order to deliver the human level performance on these deep networks, enormous

amounts of resources and training efforts are required [7]. It is also believed that the error back-

propagation schemes in those networks/algorithms are not bio-plausible.

Recently, significant research efforts have been placed on biologically realistic spiking neural

networks (SNNs) which more closely resemble brain behaviors [8, 9]. Moreover, the inherent

event-driven processing nature of SNNs render them ideal models for energy-efficient VLSI neu-

∗ c©2018 ACM. Reprinted, with permission, from Yu Liu, Yingyezhe Jin and Peng Li, “Online adaptation and
energy minimization for hardware recurrent spiking neural networks,” ACM Journal on Emerging Technologies in
Computing Systems, vo. 14, no. 1. ACM, Jan 2018. c©2019 ACM. Reprinted, with permission, from Yu Liu, Sai
Sourabh Yenamachintala and Peng Li, “Energy-efficient FPGA Spiking Neural Accelerators with Supervised and
Unsupervised Spike-Timing-Dependent-Plasticity” ACM Journal on Emerging Technologies in Computing Systems.
ACM, 2019.

1

romorphic computing systems [10, 11, 12, 13, 14]. Despite the progress made [10, 11, 12, 13, 14],

it is commonly agreed that training SNNs to achieve the state-of-the-art performance for wide

classes of real-life applications remains challenging, so is enabling on-chip SSN learning.

To this end, the liquid state machine (LSM), which is a form of reservoir computing, can serve

as a good model of recurrent SNNs to tap its computational power while maintaining engineer-

ing tractability [15, 16]. The LSM consists of a randomly connected recurrent reservoir layer

and a readout layer and is especially competent for classifying spatiotemporal patterns such as

speech recognition [17, 18, 19]. LSM training algorithms and architectures have been explored

recently [19, 20, 21, 22, 23, 24], but either only in the software simulation or with a reservoir with-

out adaptability, which prevents them from fully demonstrating the computing power of recurrent

spiking neural networks.

This dissertation focuses on developing LSM-based bio-inspired neuromorphic processors that

provide powerful computational capability with great hardware energy efficiency. In this disserta-

tion, we propose hardware and algorithm co-design and co-optimization on LSMs, including novel

hardware-friendly on-chip training algorithms and their optimized implementation and runtime en-

ergy minimization approaches. As a result, recurrent spiking neural accelerators with significant

cost and energy efficiency are developed on the FPGA for demonstration at the same time provide

decent classification results on non-trivial real-world tasks such as speech recognition and image

classification. Furthermore, we will show that the special architectural and functional character-

istics of the presented LSM provide great opportunities to leverage emerging VLSI technologies

such as three-dimensional integrated circuits (3D ICs) to build ultra low-power computing systems

based on it.

1.1 Bio-inspired Neuromorphic Computing Systems

1.1.1 Biological Motivation

The brain is a highly complex, nonlinear and parallel information-processing system and has

the capability to organize its structural constituent, known as the neuron, to perform different tasks

2

with remarkable performance and efficiency, such as describing the features of an image, under-

standing sophisticated sentences, adapting to the changing environment and undertaking compli-

cated decision making problems. The brain and the way which it processes information set up

a remarkable reference for building new computing systems and motivates the development in

artificial neural networks.

Dendrite

Nucleus

Soma
(Cell body)

Axon

Node of
Ranvier

Myelin sheath

Schwann cell

Axon Terminal

Direction message travels

Figure 1.1: Biological neuron anatomy. Recreated from [1].

Fig. 1.1 illustrates a typical biological neuron in the human’s nerve system. Most neurons have

a soma (cell body), an axon, and dendrites. The cell body is the heart of the neuron. The axon

extends from the cell body and often gives rise to many smaller branches before ending at nerve

terminals. Dendrites extend from the neuron cell body and receive messages from other neurons.

A neuron may have numerous dendrites while only has one axon. The dendrites and axon act as

the signal receiver and transmitter, respectively.

Information of the nervous system is encoded in the form of a series of voltage pulses com-

3

monly known as action potentials or spikes. Neuron-to-neuron connections are made onto the

dendrites and cell bodies of other neurons. These connections, known as synapses, are the contact

points at which information is carried from the presynaptic neuron to the postsynaptic neuron. In

most cases, information is transmitted in the form of chemical messengers called neurotransmit-

ters. When an action potential travels down an axon and reaches the axon terminal, it triggers the

release of neurotransmitter from the presynaptic neuron. Neurotransmitter molecules then cross

the synapse and bind to membrane receptors on the postsynaptic neuron, conveying an excitatory

or inhibitory signal. A single neuron can receive inputs from many presynaptic neurons. It may

also connect to numerous postsynaptic neurons via different axon terminals.

1.1.2 Artificial Neural Networks

Artificial neural network (ANNs) are brain-inspired computing systems that widely are applied

to applications of intelligent information processing, such as machine learning and pattern recog-

nition [25, 26]. ANNs are built up with artificial neurons, referred to as neurons in the following

context, which are the fundamental information-processing units for neural network operations.

Fig. 1.2 shows the basic neuron model, which has three basic elements:

wi1

wi2

wim

x1

x2

xm

Bias
bi

∑ Input
signals

Synaptic
weights

Summing
junction

Vi φ()φ()

Activation
function

Output
yi

Figure 1.2: Nonlinear model of a neuron.

4

1. A set of synapses, each of which is characterized by a weight or strength of its own. Specif-

ically, a signal xj at the input j is connected to neuron i through a synapse associated with

the synaptic weight wij .

2. An adder for summing the input signals, weighted by the respective synapses of the neuron;

the operations described here constitute a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. It squashes the

permissible amplitude range of the output signal to some finite values.

The neuron model in Fig. 1.2 also includes an externally applied bias, denoted by bi, to apply

an affine transformation to the output uk such that it can be shifted around the origin.

The behavior of the neuron i is mathematically described by the following equations:

ui =
m∑
j=1

wijxj

yi = ϕ(ui + bi),

(1.1)

where xj is the input signal from the presynaptic neuron j, wij the weight of associated synapse,

m the number of total input synapses of a neuron. ui is the linear combiner output due to the input

signals, bi the bias, ϕ(·) the activation function, and yi is the output signal of the neuron.

The activation function ϕ(v) is an important characteristic of a neuron that determines its output

in terms of the induced local field v. There are three most popular activation functions adopted in

neural network models: the step function, the piecewise-linear function, and the sigmoid function.

The step activation function is expressed as:

ϕ(v) =

{
1 if v ≥ 0

0 if v < 0.
(1.2)

Correspondingly, neurons employing such activation functions make binary decisions and pro-

duce only two values. In this model, the output of a neuron takes on the value 1 if the induced

5

local field of it is non-negative, and 0 otherwise. This statement describes the all-or-none property

which was first proposed in the McCulloch-Pitt model [27].

For the piecewise-linear function, we have:

ϕ(v) =

{ 1 if v ≥ 1
2

v if 1
2
> v > −1

2

0 if v ≤ −1
2
,

(1.3)

where the amplification factor inside the linear region of operation is assumed to be unity. The

piecewise-linear activation function can be reviewed as an approximation of a non-linear amplifier.

The sigmoid activation function can be regarded as a smoother version of the piecewise-linear

function and is by far the most common activation function in constructing artificial neurons. An

widely adopted example of the sigmoid function is the logistic function, which is defined as:

ϕ(v) =
1

1 + e−αv
, (1.4)

where α is the slope parameter. Adjusting α allows the sigmoid function to generate different

slopes.

There are various ways to connect neurons to form an ANN, among which the most common

architectures are feedforward and recurrent neural networks. The feedforward neural network

generally exhibits a multi-layer structure as illustrated in Fig. 1.3, which consists of an input layer,

one or more hidden layer(s) and an output layer. Synaptic connections between layers can be either

fully or partially. The communication proceeds layer by layer from the input to the output layers

through the hidden ones.

On the other hand, the recurrent neural network (RNN) is a class of artificial neural network

where connections between nodes form a directed graph along a temporal sequence. This allows

it to exhibit temporal dynamic behavior. Unlike feedforward neural networks, RNNs can use their

internal state (memory) to process sequences of inputs. Fig. 1.4 shows a typical RNN model.

6

input
layer

hidden
layer 1

hidden
layer 2

output
layer

Figure 1.3: Feedforward neural network architecture.

The biological neural network has the ability to learn from the external environment and keep

improving its performance through learning. Accordingly, learning in the context of artificial neu-

ral networks is defined as a process by which the free parameters of the network are adapted

through a process of stimulation from the environment in which the network is embedded. A

prescribed set of well-defined rules for the solution of a learning problem is called a learning al-

gorithm. The type of learning algorithm is categorized by the manner in which the parameter

changes. Basically, there are two fundamental learning paradigms: supervised learning and unsu-

pervised learning.

Supervised learning is the machine learning task of learning a function that maps an input to an

output based on provided input-output pair examples [28]. When it comes to ANN, every training

input is given to the network with a teacher (desired output). The network parameters are adjusted

to produce the outputs as close as possible to the desired correct answers under the combined

influence of the training vector and the error signal. The error signal is defined as the difference

between the desired response and the actual response of the network. The most famous learning

algorithm in this paradigm is the error back-propagation, in which the error at the output layer

propagates back to previous layers in the form of the gradient to update synaptic weights [29, 30].

7

w
s

x

o

Unfold
U

V

U

V

U

V

U

V
w

st-1

xt-1

ot-1

U

V
w

st-1

xt-1

ot-1

U

V

U

V
w

st

xt

ot

U

V
w

st

xt

ot

U

V

U

V
w

st+1

xt+1

ot+1

U

V
w

st+1

xt+1

ot+1

w

Figure 1.4: A recurrent neural network and the unfolding in time of the computation involved in
its forward computation.

To compare, in unsupervised learning, there are no explicit teacher signals to oversee the learn-

ing process. Learning algorithms in this paradigm can be further categorized into two subdivision:

reinforcement learning and unsupervised learning.

In reinforcement learning, the learning is performed through continued interaction with the en-

vironment targeting at optimizing the scalar index of performance. The environment is typically

formulated as a Markov Decision Process (MDP), as many reinforcement learning algorithms for

this context utilize dynamic programming techniques [31, 32, 33]. Famous implementation of re-

inforcement includes the deep reinforcement proposed by Google [34] which can achieve a highly

professional level comparable to human players across a large set of games.

In unsupervised learning, also known as self-organized learning, there is no external teacher

nor criteria either in the learning process. Rather, provision is made for a task-independent measure

of the quality of representation that the network is required to learn. Once the network has become

tuned to the statistical regularities of the input data, it develops the ability to form internal repre-

sentation for encoding features of the input and thereby to create new classes automatically [35]. In

many neural networks trained with an unsupervised algorithm, output units (i.e., neurons) compete

among themselves for activation. As a result, it allows only one output neuron to be activated at

any given time. This phenomenon is referred to as winner-take-all, a common strategy to perform

8

unsupervised learning.

1.1.3 Spiking Neural Networks

While the feedforward multi-layer neural networks such as convolutional neural networks

(CNNs) [2] and deep neural networks (DNNs) [30] have made profound success in a wide range

of applications such as image classification [4] and natural language processing [3], in order to

deliver the human level performance on these deep networks, enormous amounts of resources and

training efforts are required. Besides, they are fundamentally different from real biological brains

in terms of the structure, neural computation methods, and learning rules.

To this end, the spiking neural network (SNN), aiming to bridge the gap between neuroscience

and machine learning with biologically-realistic models of neurons to compute [9], was proposed

and has gathered more and more research efforts. SNNs operate with spikes, which are discrete

events that take place at points in time. The spike encoding scheme provides both firing rate and

firing timing information to SNNs and enables powerful computational models in applications such

as visual processing [36, 37, 38], speech recognition [39, 40, 41] and medical diagnois [42, 43].

Spiking neurons are similar to the conventional artificial neurons as accumulators of input

stimulation. However, spiking neurons utilize spike trains as input and output while the traditional

ones have continuous-valued counterparts. An SNN architecture consists of spiking neurons and

interconnecting synapses that are modeled by trainable weights. According to Fig. 1.5, spikes from

presynaptic neurons multiplied with corresponding synaptic weight is then transferred into some

dynamic inputs to the postsynaptic neuron. The membrane potential of the postsynaptic neuron is

updated with these net inputs based on the adopted model, such as the Hodgkin-Huxley model [44],

the spike response model (SRM) [45] and the leaky integrate-and-fire (LIF) model [46]. The

neuron generates new spikes when its membrane potential exceeds a certain threshold.

In SNNs, learning is realized by adjusting scalar-valued synaptic weights based on local neu-

ral firing activities with or without supervision. One of the bio-plausible learning rules that is

widely adopted in many SNN works is the spike-timing-dependent plasticity (STDP). The stan-

dard nearest-neighbor STDP is an unsupervised Hebbian learning mechanism that realizes synap-

9

w1jx1 w1jx1

w2jx2 w2jx2

wnjxn wnjxn

∑

inputs weights

transfer

function

net input

netj

Vth

V(t)
Vout

time

Leaky Integrate & Fire

Figure 1.5: Spiking neuron model.

tic plasticity based on the relative spiking timing of its pre- and postsynaptic neurons [47]. It can

be represented as:

∆w+ = A+(w) · e−
|∆t|
τ+ if ∆t > 0

∆w− = A−(w) · e−
|∆t|
τ− if ∆t < 0,

(1.5)

where ∆w+ and ∆w− are the weight updates caused by long-term potentiation (LTP) and long-

term depression (LTD), and A±(w) determines the strength of LTP/LTD, respectively. The the

weight update amount relies on temporal difference ∆t = tpost − tpre between the neuron pair.

The standard unsupervised STDP has been explored at both single neuron and network levels,

for example, [48] showed that repeating spatiotemporal patterns can be detected and learned by a

single neuron with STDP, [40] proposed a nonrecurrent SNN with STDP that learned to convert

speech signals into discriminative spike train patterns for speech recognition, and [49] showed the

self-organization of STDP through the winner-take-all (WTA) mechanism to learn the parameters

for a multinomial mixture distribution. Besides, ideas of combining supervision and STDP have

been explored for precisely timed spike pattern reproduction and decision making [50, 51, 52],

however, without demonstrating in real-world applications.

In regard to engineering motivations, spiking neural networks have some advantages over tradi-

10

tional neural networks in VLSI implementation. Due to their power efficiency and inherent event-

driven based information processing scheme, SNNs have been targeted for dedicated silicon-based

implementation on both analog and digital hardware in recent years. For instance, the Neuro-

grid mixed-analog-digital multi-chip system [13] realized neural elements with analog electronic

circuits and transmit the axonal arbors with digital spikes, [14] developed an analog SNN for re-

inforcing the performance of conventional cardiac synchronization therapy devices. While analog

circuits take the advantage of the inherent characteristics of silicon devices and provide low-power

SNNs hardware realization, the computing accuracy is generally limited at this stage, especially for

complex real-world applications such as image classification and speech recognition. On the other

hand, examples of digital VLSI SNN implementations include IBM’s TrueNorth chip [10] and In-

tel’s Loihi [11]. However, both of them hold their own limitations to fully tap the computational

power of spiking neural networks. The TrueNowth chip lacks integrated on-chip training capabil-

ity and can only perform inference on the hardware, and no competitive on-chip training results on

the real-world applications have been demonstrated by the Loihi chip by far. Generally speaking,

while SNNs holding a lot of promise due to their closer resemblance to biological neurons than

older generations of artificial neural networks, enabling efficient on-chip spiking neural networks,

especially recurrent spiking neural networks, training to achieve the state-of-the-art performance

remains a very difficult challenge.

1.2 Reservoir Computing and the Liquid State Machine (LSM)

Increasing interests have been attracted to the concept of reservoir computing, which pro-

vides a bio-inspired computational model for exploiting the capability of recurrent neural net-

works [15, 16]. The liquid state machine (LSM) is one specific form of reservoir computing oper-

ated on spiking neuron and can be envisioned as a good trade-off between the ability in exploiting

the power of recurrent spiking neural networks and engineering tractability. Structurally, the LSM

consists of two major parts (shown in Fig. 1.6). The reservoir, in which a number of spiking neu-

rons are randomly wired up to resemble the recurrent topologies of cortical microcircuits, provides

a complex nonlinear dynamics and maps the input into a high-dimensional response. The read-

11

out layer receives reservoir responses and makes final classification decisions. In the conventional

LSM model, reservoir synapses have fixed weights to relax the challenge of training the com-

plex recurrent reservoir. The LSM is especially competent for spatiotemporal pattern classification

applications such as speech recognition [17, 18, 19].

Reservoir Readout LayerInput Layer

Figure 1.6: A model of the liquid state machine. Reprinted with permission from Yu Liu, Sai
Sourabh Yenamachintala and Peng Li c©2019 ACM.

The unique architectural and functional properties of the LSM have been investigated for VLSI

implementations, which include FPGA based speech recognition processor [23], a VLSI archi-

tecture incorporating a perceptron readout layer and the p-Delta learning algorithm [24], and a

general-purpose LSM architecture for processing multiple applications [20]. All these works are

on the fixed reservoir to avoid the training difficulties. However, it has been argued that randomly

generated fixed reservoirs may not act as an optimized filter for specific applications [53, 54].

In regard to the readout training on LSM, [19] proposes a biologically plausible spike-dependent

readout training algorithm and is implemented on hardware LSM neural processors [55]. How-

ever, a key limitation of the output training algorithms implemented in these works is that good

performance is typically guaranteed only with full connectivity between the reservoir and read-

out. This leads to overall high complexity of the network and also large overhead for hardware

12

implementation.

1.3 LSMs in Emerging Technologies: Monolithic 3D (M3D) LSM

With the advance of technology scaling, the density of integrated circuits (ICs) is continu-

ally growing to meet the Moore’s Law’s prediction and the speed of operation keeps increasing.

However, the rate of interconnect scaling does not keep up with that of technology scaling. As a

result, interconnects account for a significant portion of the total chip capacitance and power hence

remains a major design bottleneck in traditional IC designs. To this end, the three-dimensional

(3D) IC is regarded as a promising solution to solve this problem [56]. 3D integration process

generally involves stacking device tiers with short, vertical interstrata electrical connections, such

as bonded interstrata vias (BISVs) and through-silicon vias (TSVs), to eliminate the long global

interconnects on original large 2D chips as well as long packaging wires between chips in a non-

3D system. Compared to 2D ICS, 3D ICs can lead to many advantages such as a reduction in

form-factor and global wirelength, the realization of heterogeneous integration, and improvement

on memory bandwidth [57, 58].

Currently, there are three major approaches to realize 3D IC’s: chip stacking, wafer stacking

and full monolithic integration. Among them, monolithic 3D (M3D) is an emerging 3D technology

that enables high integration design by integrating two or more tiers of devices sequentially [59].

This technology uses miniscule monolithic inter-tier vias (MIVs) (<100nm diameter, <1fF), which

achieves massive vertical integration density with on silicon-area overhead from 3D vias. These

3D connections help in reducing wirelength and power with potentially better performance and

memory access options [60, 61].

Among many applications of 3D integration, one promising direction is to construct 3D pro-

cessors [62, 63]. However, 3D processors are likely to suffer from more serious thermal issues

as compared to conventional 2D processors, which may hinder the employment or even offset

the benefits of 3D stacking. Therefore, energy efficiency is of great importance in 3D processor

development. To this end, the liquid state machine (LSM) offers great opportunities in building

thermal-aware low-power 3D processors with its unique architectural and functional characteris-

13

tics. The nature of spike processing information in an event-driven manner renders them ideal

models for energy-efficient VLSI neuromorphic implementation. Besides, as part of the overall

bio-inspired computation model, the LSM inherently facilitates the sparse firing activities in its re-

current reservoir, i.e. only a small percentage of reservoir neurons fire at a given time. On the other

hand, M3D IC design in turn offers great benefits in neural network designs to address the problem

that neuromorphic architectures in general have a large number of connections at both intra-neuron

and inter-neuron levels hence lead to large dynamic power consumption and delay. We will show

that M3D LSM is not only improved in power compared to traditional 2D IC implementation but

also reduced in area and delay.

14

2. ENERGY-EFFICIENT RECURRENT SPIKING NEURAL PROCESSOR OVERVIEW∗

The liquid state machine (LSM) is a specific form of reservoir computing that provides an

appealing brain-inspired model for machine-learning applications such as speech recognition and

biomedical information processing. Moreover, processing information directly on spiking events

makes the LSM well suited for cost and energy efficient hardware implementation. Given these, the

LSM is considered to be a good trade-off between the bio-plausibility, engineering tractability, and

the computational power of recurrent SNNs. The research works presented in this dissertation are

aimed to build bio-inspired low-power LSM neuromorphic processors that enable intelligent and

ubiquitous on-line learning in wide ranges of applications with great energy efficiency and learning

performance. In order to achieve that, hardware-algorithm co-design and co-optimization works

have been developed and runtime energy minimization approaches have been proposed as well.

The learning models and architectures developed in proposed LSM neural processors also provide

opportunities for developing spiking neural systems on three-dimensional integrated circuits (3D

ICs).

This chapter provides an overview of the works included in this dissertation, which primarily

focuses on optimizing hardware overhead and energy efficiency of bio-inspired recurrent spiking

neural processors (i.e. LSM neural processors) while maintaining good learning performance.

Challenges of developing a cost-effective recurrent spiking neural processor have been tackled

and solutions have been proposed from both algorithmic and architectural points of views. The

proposed energy-efficient LSM neural processor architecture is also implemented with emerging

VLSI technology, i.e. monolithic 3D (M3D), and demonstrates dramatic power-performance-area-

∗ c©2018 ACM. Reprinted, with permission, from Yu Liu, Yingyezhe Jin and Peng Li, “Online adaptation and
energy minimization for hardware recurrent spiking neural networks,”ACM Journal on Emerging Technologies in
Computing Systems, vo. 14, no. 1. ACM, Jan 2018. c©2019 ACM. Reprinted, with permission, from Yu Liu,
Sai Sourabh Yenamachintala and Peng Li, “nergy-efficient FPGA Spiking Neural Accelerators with Supervised and
Unsupervised Spike-Timing-Dependent-Plasticit”, ACM Journal on Emerging Technologies in Computing Systems.
ACM, 2019. c©2018 ACM. Reprinted, with permission, from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal,
Peng Li, and Sung Kyu Lim, “Design and Architectural Co-optimization of Monolithic 3D Liquid State Machine-based
Neuromorphic Processor”, Proceedings of the 55th Annual Design Automation Conference. ACM, 2018.

15

accuracy (PPAA) benefits with design and architectural co-optimization.

2.1 Baseline LSM Neural Processor Architecture

Figure 2.1 depicts the baseline architecture of the proposed hardware LSM neural processor

studied in this work, which is adopted from [20] and optimized. The reservoir and the readout

layer in Figure 1.6 are implemented by a reservoir unit (RU) and a training unit (TU), respectively.

Each spiking neuron in RU and TU are implemented by a digital neuron module named reservoir

element (RE) and output element (OE), respectively. The synaptic connectivity from the external

input to the RU is randomly generated and specified by the pre-defined input crossbar. The spik-

ing responses generated from REs are registered and sent to OEs through fully connected readout

synapses. Meanwhile, these spikes are also fed back to some random reservoir neurons through

reservoir synapses, the connectivity of which is specified by the reservoir crossbar. Neurons in the

reservoir/readout layer operate in parallel to exploit the inherent parallelism of the LSM architec-

ture and are controlled by the corresponding finite state machine (FSM) at the corresponding layer.

There is also a top-level controller that coordinates the training and inference process between each

layer as well as synchronizes spike propagation.

Generally, the training of LSM processors are executed in two stages. First, the RU is trained

until the synaptic weight distribution converges. Then, the readout training state starts, in which

the TU is trained for the classification tasks. During the readout training stage, the RU is still

activated to provide spike inputs to the RU, but it will maintain its synaptic weights.

The proposed LSM neural accelerator operates through a series of computational steps and

requires a large number of storing elements inside each neuron. As shown in Fig. 2.2, a digital

neuron module (RE or OE) contains three major functional sub-modules: the synaptic input pro-

cessing module, the spike generation module, and the learning module. These three modules are

activated spanning across several well-defined computational steps controlled by the correspond-

ing states associated with the layer-level FSM (i.e. the reservoir or the readout FSM in Fig. 2.1).

Besides, a synaptic weight memory is instantiated inside each neuron to store weights of all its

afferent synapses. We implement the OE weight memory with block RAMs (BRAMs) and the RE

16

Spike
Generation

Feedforward
Functional Blocks

Top Controller

Reservoir
Unit

RE

IB

Input
Spike
Buffer

Input
Spikes

OE

Training
Unit

Output
Spikes

Input
Crossbar

Reservoir
Crossbar

Reservoir
FSM

Output
FSM

Figure 2.1: Overall architecture of the proposed recurrent spiking neural processors.

weight memory with a 2-D array of flip flops (FFs) on the FPGA because of the lower synaptic bit

resolution and fewer input synapses per neuron. The unique architectural and functional properties

of the proposed LSM neural processor naturally lead to well-defined boundaries between these

sub-modules in terms of execution and storage. At each emulation time step, first, the synaptic in-

put processing module computes the synaptic responses with the arrival of spike inputs. Then, the

spike generation module updates the membrane voltage with the synaptic responses and generates

spikes based on the adopted neuron model. At last, the learning module tunes the afferent presy-

naptic weights of the associated neuron. Note that the learning module and the synaptic weight

memory are optional in the RE, depending on the reservoir training scheme of the LSM neural

processor.

17

Synaptic
Input

Processing

Spike
Generation

x

Synaptic Weight
Memory

Wij_new

Layer-level FSM

Wij

Learning

Wij_old

Si

Presynaptic
Spikes

 Spike
Output

Figure 2.2: Block design of the digital neuron module (i.e. the RE and the OE). The dashed module
and signals indicate the corresponding subject is optional.

2.2 Hardware Implementation and Optimization of On-chip Training on LSM

2.2.1 Energy-efficient Reservoir Training

The conventional LSM model consists of a fixed reservoir to avoid difficulties in training

the recurrent network. In this work, we developed two energy-efficient LSM neural processors

with its reservoir trained on-chip based on synaptic plasticity and intrinsic plasticity, respectively.

These two training mechanisms are inspired from different properties of biological brains and both

demonstrate significant benefits on improving the adaptability of the neural networks with great

hardware effectiveness.

2.2.1.1 Synaptic Plasticity based Unsupervised Reservoir Training

The standard STDP is an unsupervised Hebbian learning mechanism based and widely adopted

in SNN training algorithms [64, 21, 65]. Among them, [21] demonstrates that training the reservoir

with unsupervised STDP can supply the readout training thus improve learning performance of the

LSM. Moreover, the self-organizing behavior naturally brought by the STDP sparsifies reservoir

connections and reduce power consumption in the hardware LSM neural processor during training.

18

However, a cost-effective realization of a given STDP on a digital neural processor is challenging.

Straightforward hardware implementation with high digital resolution closely approximates con-

tinuous STDP computation therefore attains good performance boost, however, at a cost of large

area/power overhead. On the other hand, simply reducing the bit resolution in the implementation

is likely to result in an immediate performance drop.

To address this challenge, in this work, a hardware-optimized STDP algorithm is proposed and

implemented on the hardware with extreme low bit resolutions [66]. This leads to a look-up table

based implementation with minimal aggregated discretization error and simple logic. The sparsity

naturally brought in by the STDP-based weight adjusting scheme also amplifies the inherent sparse

firing activities of the recurrent reservoir as part of the overall bio-inspired computation model, and

is leveraged by us to optimize the energy efficiency of hardware LSM neural processors. Further-

more, runtime correlation-based neuron power gating and activity-depend clock gating approaches

are incorporated on the proposed LSM neural processor to minimize its dynamic power consump-

tion and hence improve energy efficiency. The proposed LSM neural processor boosts the learning

performance by up to 4.2% while reducing energy dissipation by up to 30.4% compared to a base-

line LSM with little extra hardware overhead on a Xilinx Virtex-6 FPGA. Chapter 3.1 presents

the aforementioned hardware-friendly STDP reservoir training with its implementation and energy

optimization mechanisms in details.

2.2.1.2 Intrinsic Plasticity based Unsupervised Reservoir Training

Intrinsic Plasticity (IP) is a self-adaptive mechanism in biological brains that plays an essential

role in temporal coding and maintenance of neuron’s homeostasis. From a computational point

of view, it has inspired many research works in artificial neural networks to shape the dynam-

ics of neuron responses [67, 68, 69, 70, 22]. Recently, [22] proposes an intrinsic plasticity rule

SpiKL-IP for the widely-adopted leaky integrate-and-fire (LIF) spiking neuron model [10, 11].

The SpiKL-IP rule is developed based on a rigorous information-theoretic approach and demon-

strates significant learning performance improvements on the classification accuracy for real-world

speech/image classification tasks (i.e. by up to more than 16% accuracy improvement). However,

19

it only experiments on the software simulator with continuous values.

This work presents the on-chip IP learning on the hardware LSM neural accelerator inspired by

the SpiKL-IP rule [22]. This is the first work to advance LSM spiking neural processors by explor-

ing the uncharted territory of efficient on-chip non-Hebbian learning. Different from well-known

Hebbian learning mechanisms, e.g. spike-timing-dependent plasticity (STDP), IP is a biologically-

plausible non-Hebbian mechanism that self-adapts intrinsic neural parameters of each neuron such

as membrane-potential time constant and leakage resistors as opposed to synaptic weights, and

hence offers complimentary opportunities for boosting the SNN learning performance.

However, integrating intrinsic plasticity (IP) to enable per-neuron self-adaptation on chip presents

major challenges. For instance, high-resolution multiplications, divisions, and exponentiations are

required to guarantee the accuracy of SpiKL-IP. Directly mapping these operations onto hardware

will blow up the area overhead of each silicon neuron by several times, let alone the additional

large training latency and power consumption.

In this work, we enable feasible on-chip integration of IP and further improve our neural

processor architecture with reduced area/power overhead through algorithm and hardware co-

optimization. A new hardware-friendly IP rule, i.e. SpiKL-IFIP, is proposed which significantly

optimizes the performance gain vs. overhead trade-off of onchip IP on hardware recurrent spiking

neural processors. The implementation of on-chip IP is further optimized by performing hard-

ware optimization, which are arithmetic-level approximate computing methods including intelli-

gent approximate computing, value lookup and so on. On the Xilinx ZC706 FPGA board, the pro-

posed hardware-friendly IP rule and its optimized implementation dramatically improve the cost-

effectiveness of on-chip IP integration. LSMs with self-adaptive reservoir neurons using IP boost

the classification accuracy by up to 10.33% on the TI46 speech corpus [71] and 8% on the TIMIT

acoustic-phonetic dataset [72] with moderate extra costs. Moreover, the highly-optimized IP im-

plementation reduces training energy by 48.1% and resource utilization by 64.4% while gracefully

trades off the classification accuracy for design efficiency. Details of IP-based reservoir training is

introduced in Chapter 3.2

20

2.2.2 Energy-efficient Readout Training

The readout layer of the LSM is responsible for classification purposes and the training is on

the readout synapses (see Fig. 1.6). [19] proposes a biologically plausible spike-dependent readout

training algorithm and is implemented on hardware LSM neural processors [55]. However, a key

limitation of the output training algorithms proposed in these works is that good performance is

typically guaranteed only with full connectivity between the reservoir and readout. This leads

to overall high complexity of the network and also large overhead for hardware implementation.

Besides, training algorithms applied to the LSM and SNNs in general shall update synaptic weights

only based on local neural firing activities while achieving the end learning objectives. This natural

property of the SNN imposes a significant challenge on the design of learning algorithms, as most

conventional optimization methods do not satisfy it.

The above challenges motivate us to seek an alternative learning algorithm. To this end, STDP

can be considered as a good solution if combined with supervision given that it operates by locally

tuning synaptic weights according to temporal spike correlations and produces self-organizing

behaviors. Recently, [73] proposed the calcium-modulated supervised STDP particularly under

the context of the LSM, which was only evaluated in software simulation with continuous weight

values and STDP learning curves.

This work presents the work of implementing on-chip supervised STDP readout training on

hardware LSM neural accelerators with great hardware overhead and energy efficiency at the same

time maintaining good learning performance. Specifically, a supervised STDP rule [73] is em-

ployed to train the output layer of the LSM such that it delivers good classification performance

at the same time sparsifies network connections to reduce hardware power consumption. The

adopted readout training mechanism is an unifying two-step supervised STDP tuning approach

such that both objectives can be achieved at the same time: the calcium-modulated learning al-

gorithm based on supervised STDP (CaL-S2TDP), to achieve improved performance, and the

calcium-modulated sparsification algorithm based on supervised STDP (CaS-S2TDP), to reduce

hardware power consumption without significantly degrading the learning performance.

21

We also pursue efficient hardware implementation of the two proposed training rules by per-

forming algorithm-level optimization and exploiting the self-organizing behaviors naturally in-

duced by STDP. On our FPGA LSM accelerator, in the readout layer, we design the learning

engine with minimized resource and power overhead by maximizing the resource sharing among

different learning processes. Several FPGA recurrent spiking neural accelerators are built on a

Xilinx Zync ZC-706 platform and trained for speech recognition tasks with the TI46 [74] speech

corpus benchmark. Our results indicate that LSM neural accelerators can achieve up to 3.47%

classification performance boost with both unsupervised and supervised training algorithms com-

pared to the baseline with great hardware efficiency. Details of efficient LSM accelerator readout

training based on supervised STDP is presented in Chapter 4.

2.2.3 FPGA Recurrent Spiking Neural Accelerator

The proposed recurrent spiking neural processors are built as FPGA accelerators on a Xilinx

Zync ZC-706 platform with the ARM microprocessor on the same board serving as the host. The

neural accelerators are trained on-line with different machine learning tasks such as speech recog-

nition and image classification. Spike outputs are collected from the spiking neural networks and

the runtime testing results are analyzed by the host. More details of recurrent neural accelerator

design and the online reference accuracies are reported in Chapter 4.

Table 2.1 compares a representative LSM integrated with proposed unsupervised and super-

vised STDP algorithms and implemented in both software and hardware simulators for the speech

recognition task on TI46 benchmark. From the table, we can see that by building FPGA accelera-

tor, we largely improve the energy efficiency of the liquid state machine neuromorphic processor

with a significantly reduced dynamic training power and faster training speed while achieving the

same level of classification accuracy. The hardware-friendly algorithms as well as hardware imple-

mentation optimization approaches presented in this dissertation demonstrates the overall superior

of the proposed energy-efficient recurrent spiking neural accelerators.

22

Table 2.1: Comparison between software and hardware recurrent spiking nueral network comput-
ing systems

Software Simulator Hardware Accelerator

Running Platform
General-purpose hardware systems
(e.g. Intel Xeon E5-2697A
V4 processors)

Xilinx ZC706 board

Accuracy 94.3±0.5% [73] 95%
Dynamic Power 145W [75] 100 ∼500mW
Training/Inference Speed 3/15 samples @2.6GHz, 5 threads 220/490 samples @100MHz

2.3 Hardware-efficient Monolithic 3D (M3D) LSM Neural Processors

3D integration technology in brings the advantages of high bandwidth, shorter interconnection

designs, and potential high parallelism [76] to solve the interconnect scaling bottleneck in current

integrated circuits. It enables interconnecting circuits on more than a single plan, with vertical

wiring of the plans. Monolithic 3D (M3D) is an emerging 3D technology that enables high inte-

gration design by integrating two or more tiers of devices sequentially [59]. This technology uses

miniscule monolithic inter-tier vias (MIVs) (<100nm diameter, <1fF), which achieves massive

vertical integration density with on silicon-area overhead from 3D vias. These 3D connections

help in reducing wirelength and power with potentially better performance and memory access

options [60, 61].

Developing 3D processors is a very promising 3D integration application and is attacting more

and more research and industry interests [62, 63]. However, 3D processors are more likely to suffer

from thermal issues as compared to conventional 2D processors, which may hinder the employ-

ment or even offset the benefits of 3D stacking. Therefore, energy efficiency is of great importance

for 3D processors. To this end, the liquid state machine (LSM) offers great opportunities in build-

ing thermal-aware low-power 3D processors with its unique architectural and functional charac-

teristics. The nature of spike processing information in an event-driven manner renders them ideal

models for energy-efficient VLSI neuromorphic implementation. Besides, as part of the overall

bio-inspired computation model, the LSM inherently facilitates the sparse firing activities in its

23

recurrent reservoir, i.e. only a small percentage of reservoir neurons fire at a given time. On the

other hand, M3D IC design, in turn, offers great hardware benefits in neural network designs, in-

cluding energy efficiency and area and latency reduction, by improving connection wirelengths

at both intra-neuron and inter-neuron levels, which can be huge in neuromorphic architectures in

general.

In this work, we present the first work that explores M3D IC designs of LSM neural proces-

sors. Design and architectural co-optimization is carried out to further improve the area-energy

efficiency of LSM-based neural processor with M3D technology. The major contributions of this

work include (1) We carry out ASIC design for LSM neural processors in 2D and monolithic 3D IC

with detailed design comparison. (2) We explore the impact of different synapse models and mem-

ory distributions on the power-performance-area-accuracy benefit of M3D LSM neural proces-

sors. (3) We conduct vector-based functional verification and power-performance-area-accuracy

(PPAA) analysis for the real-world task of speech recognition. In training and classification tasks

using spoken English letters from TI46 [74] subset, we obtain up to 70% PPAA savings over 2D

ICs. We also show that M3D LSM is not only improved in power compared to traditional 2D IC

implementation but also reduced in area and delay.

24

3. SELF-ADAPTIVE RESERVOIR LEARNING OF LIQUID STATE MACHINES∗

The standard LSM model consists of a fixed reservoir to avoid the difficulty in training the

recurrent network. In this chapter, we present two energy-efficient hardware LSM neural pro-

cessors with its reservoir trained on-chip effectively and efficiently: a sparse and self-organizing

LSM training by hardware-friendly STDP, and a self-adaptive LSM training by hardware-friendly

IP. The architecture and training approaches of both LSMs are bio-inspired and address different

behaviors that are studied in biological neurons to help form brain-like efficient spiking neural pro-

cessors. Both LSMs demonstrate significant benefits on improved adaptability hence classification

performance with great hardware energy and overhead efficiency.

3.1 Synaptic Plasticity based Reservoir Training and Optimized Implementation

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time,

in response to increases or decreases in their activity [77]. Synaptic plasticity reveals the adaption

of neurons during the learning process and is one of the important neurochemical foundations for

bio-inspired learning patterns in artificial neural networks.

Being a bio-inspired learning model, the training algorithms on SNNs in general should follow

the principle that synaptic weights shall be updated only based on the local neural firing activities

while achieving the end-learning objectives. This imposes a significant challenge on the design of

training algorithms on SNNs, as most conventional optimization methods do not satisfy it. To this

end, the spike-timing-dependent plasticity (STDP) [47] rule can be considered as a good solution

due to its simplicity and locality. It is simple, event-driven and highly amenable for hardware

implementation [78, 11, 66, 79].

∗ c©2016 IEEE. Reprinted, with permission, from Yingyezhe Jin, Yu Liu and Peng Li, “SSO-LSM: A Sparse and
Self-Organizing architecture for Liquid State Machine based neural processors” Proceedings of the 2016 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH). IEEE, July 2016. c©2018 ACM. Reprinted,
with permission, from Yu Liu, Yingyezhe Jin and Peng Li, “Online adaptation and energy minimization for hardware
recurrent spiking neural networks,” ACM Journal on Emerging Technologies in Computing Systems, vo. 14, no. 1.
ACM, Jan 2018. c©2019 ACM. Reprinted, with permission, from Yu Liu, Sai Sourabh Yenamachintala and Peng Li,
“Energy-efficient FPGA Spiking Neural Accelerators with Supervised and Unsupervised Spike-Timing-Dependent-
Plasticity” ACM Journal on Emerging Technologies in Computing Systems. ACM, 2019.

25

3.1.1 Baseline STDP Rules

The standard nearest-neighbor STDP is a unsupervised Hebbian learning mechanism that re-

alizes synaptic plasticity based on the relative spiking timing of its pre- and postsynaptic neu-

rons [47]. For a given synapse connected from neuron j to neuron i, the weight update happens

at the arrival of both pre- and postsynpatic spikes, and the the weight update amount relies on

temporal difference ∆t = tj − ti between the neuron pair:

∆w+ = A+(w) · e−
|∆t|
τ+ if ∆t > 0

∆w− = A−(w) · e−
|∆t|
τ− if ∆t < 0, (3.1)

where ∆w+ and ∆w− are the weight updates caused by long-term potentiation (LTP) and long-

term depression (LTD), and A±(w) determines the strength of LTP/LTD, respectively. A typical

STDP characteristics is plotted in Fig. 3.1(a).

0 2 4 6 8

10

20

30

(b)

Weight

0
t (ms)

 w

+A

−A

ijijww

prepre

postpost +

−

+

|| t

eA

−

−

−

|| t

eA

(a)

%

Figure 3.1: (a) A standard STDP curve. (b) An equilibrium reservoir synaptic weight distribution
after applied STDP training. Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala
and Peng Li c©2019 ACM.

26

By nature, STDP introduces self-organizing behaviors to the reservoir by inducing competition

among the afferent synapses of the neuron. This can lead to two potential benefits: 1) boosting

the learning performance via the self-adaptation of recurrent connections, and 2) a refined sparse

network topology which can be exploited to build an energy-efficient hardware neural processor.

To give an impression on obtained sparse structure, we apply standard STDP on the reservoir

and plot the converged synaptic weight distribution in Fig. 3.1(b). As a common setting, only exci-

tatory reservoir synapses are tunable with STDP whereas inhibitory synapses are fixed to maintain

the stabilized network dynamics. The resulting bimodal weight distribution indicates a consid-

erable amount of zero-valued and low-valued synapses, which can be turned off to save training

power on the hardware.

3.1.2 Hardware-Friendly STDP for Efficient Reservoir Tuning

Implementing STDP on digital LSM neural processors with efficient hardware overhead while

achieving good learning performance presents an interesting challenge. Both synaptic weights and

the learning curve need to be discretized in order to be mapped on chip, which introduces aggre-

gated quantization errors. A straightforward realization of STDP in high resolution can closely

reflect the desired continuous STDP characteristics in hardware and hence produce good perfor-

mance. However, doing so can lead to an inhibitory cost as STDP shall be applied to all neurons in

a reservoir. Furthermore, the realization of (3.1) with a high bit resolution produces diminishingly

small weight updates as the temporal difference ∆t increases, and the number of such updates can

be very large. The combined effects of the two result in many synaptic events with small weight

update values, jeopardizing the runtime energy efficiency of the neural processor. On the other

hand, simply reducing hardware overhead by using a low resolution can lead to an immediate

performance hit.

One intuitive realization of a B−bit STDP is to uniformly discretize the weight value into 2B

levels: {wd1, wd2, · · · , wd2B}, and similarly discretizing the weight change ∆wc of the continuous

STDP rule within the activation window. In this and the following sections, the weight and weight

change with superscript d stand for discretized values, while those with the superscript c represents

27

the continuous ones. As illustrated in Fig. 3.2, a spike timing difference ∆t triggers a discretized

synaptic change of ∆wd determined by the discretized STDP curve, which is then added up to the

current (old) discretized weight wdold and rounded into the wdnew:

wdnew = round(wdold + ∆wd(∆t))

= round(round(wcold) + ∆wd(∆t)),

(3.2)

where round(·) rounds its argument to its nearest discretized level, and wcold (wcnew) is the current

(new) continuous value if synaptic weights and STDP were implemented in real numbers.

��������	
�����

� � ��

��������	
�����

� � ��

����
�

�
��

�

�
���

�

����������������	�

�����

���

�

����� ��	

�����

����� ��
���� ��	

����

�
�����

������ �
���

� ����

�
� �����

�

��

� ��

� ��

� �	

�

�
�

� �
�

� �
�

� �
	

�

Figure 3.2: The weight updating process of the uniformly discretized STDP. Reprinted with per-
mission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

A careful investigation of the above updating process uncovers two key disadvantages. On

one hand, an adder is required to perform each add operation (see Fig. 3.2), introducing large

hardware overhead. On the other hand, the computation of wdnew in Fig. 3.2 suffers from two types

of rounding error: discretization of the real-valued weight wc and quantization of the continuous

weight update ∆wc. The specific example shown in Fig. 3.2 well explains this. The continuous

weight update (∆wc) should be 0.8 when ∆t = 2. Given the current weight (wcold = 1.3), the new

continuous weight wcnew is 2.1. However, the weight discretization rounds wcold down to wdold = 0

28

and the discretized weight update ∆wd is 1. Finally, the discretized updated weight wdold + ∆w is

rounded to 0. Overall, the naive discretization of STDP produces a very large quantization error of

2.1 under low bit resolutions.

To minimize the above two aggregated quantization errors, the key innovation in the proposed

hardware-optimized STDP algorithm [66] is to discretize the synaptic weights and the learning

curve collaboratively in a data-driven manner so as to match realistic synaptic events in the con-

tinuous software simulation at the same time minimize overall quantization error on a large set

of STDP updates. This is achieved through two optimization aspects: 1) discretizing continuous

synaptic weights such that the equilibrium weight distribution is well represented, and 2) discretiz-

ing the STDP curve to match the characteristics of synaptic updates in realistic workloads given

the spike timing difference ∆t and the continuous weight change ∆w.

The pseudo code of the hardware-friendly STDP algorithm is presented below. The weight w

and weight change ∆w with superscript d refer to the discretized values, while those with the su-

perscript c represent the continuous ones. The synaptic weight resolution B is usually chosen to be

very small for resource and power efficiency. Besides, to balance the potentiation and depression,

a constraint is added that areas under LTD and LTP portion of the STDP curve are identical. In this

way, the STDP curve is mapped to a look-up table (LUT) for weight update in the hardware. This

optimization problem can be solved offline given the small design space.

Fig. 3.3 shows an example of the weight update process of the proposed data-driven STDP. It

can be seen that our approach results in a very smaller overall discretization error of 0.1. Compared

with the uniform discretization scheme presented in 3.2, the proposed STDP largely reduce the

discretization error hence maintain the good learning performance of continuous STDP.

Specially, the use of the LUT in the proposed hardware-friendly STDP is to minimize the

discretization error over the continuous STDP data collected in Step 1. Each LUT entry serves

as a discretized resulting weight obtained under the proposed STDP rule. With the quantized

weight levelswdj ’s, we first map {∆t, wcold, wcnew} to {∆t, wdold, wcnew} for each recorded continuous

synaptic event, where wdold is chosen to be the closest digitized weight level of wcold. In the LUT,

29

ALGORITHM 1: Hardware-friendly STDP Algorithm
begin

STEP 1: Profile continuous STDP:
Run continuous STDP simulation with typical inputs, collect synaptic events:
{∆tk,∆wck, wcold,k, wcnew,k}, k ∈ [1, N], and weight distribution

STEP 2: Optimize weight discretization:
Set digital reservoir synaptic weight resolution B
foreach wck do

minimize
wd

j

∑
k min

wdj

{(wck − wdj)2}, wdj ∈ [wmin, wmax], j ∈ [1, 2, · · · , 2B]

end
STEP 3: Optimize STDP learning curve:
Set digital reservoir synaptic weight resolution B
foreach {wdold,k,∆tk} do

minimize
wd

new,k

∑
k min
wdnew,k

{(wcnew,k − wdnew,k)2}, wdnew,k ∈ {wd1, wd2, · · · , wd2B}

end
end

��������	
�����

����
� �

���

�

�

�����

� � � �

� � � �

�����

����������������	�

���

���

� � � �
�����

�

�

�

�

�

���

����

�
�����

	

�
�� �
���

� ����

�
� �����

�
�

� �
�

� �
�

� �
	

�

Figure 3.3: The weight updating process of the proposed data-driven STDP. Reprinted with per-
mission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

30

this synaptic event is mapped to entry Lmn at the m-th row and n-th column which is indexed by

{∆t, wdold} (see Fig. 3.3). After this mapping is done for all collected data, each entry Lmn of the

LUT now has its own set of the mapped continuous events, noted as set(Lmn). Our goal is to find

an optimal value of each Lmn for discretizing wcnew such that the aggregated error over all wcnew’s

in set(Lmn) is minimized:

minimize
Lmn

∑
k

(wcnew,k − Lij)2

subject to Lmn ∈ {wd1, wd2, · · · , wd2B}

{wcnew,k} ∈ set(Lmn).

(3.3)

Essentially, the above optimal solution minimizes the summed squared root error for all continuous

STDP updates that fall into a certain LUT entry. Again, this optimization problem can be easily

solved offline due to the small design space.

3.1.3 Implementation of Unsupervised STDP Training

The learning module in the RE (in Fig. 2.2) implements the proposed hardware-friendly STDP

reservoir tuning mechanism and its circuit is depicted in Fig. 3.4. We adopt the combinational

logic STDP implementation proposed in [80] and further simplify it. In the implementation, shift

registers (SRs) are used to calculate the ∆t in (3.4) so that a heavily loaded and frequently switch-

ing global clock counter can be avoided to save power. Assuming the number of afferent synapses

of a postsynaptic neuron is m, the presynaptic shift registers SR1 to SRm tracks the associated

presynaptic spikes and the postsynaptic shift register (i.e., SR0) is used for tracking firing events of

the neuron itself in which the learning module is instantiated. The depths of pre- and postsynaptic

shift registers is decided by time windows for LTP and LTD, respectively.

At each biological time step, the learning module checks each shift register in a serial manner

and updates the synapse weight if a valid spike pair presents. The time difference of a spike pair

is calculated by comparing the location of “spikes" in the shift register. When a neurons fires, the

most significant bit (MSB) of its affiliated shift register is set to ‘1’ and the register shifts one bit

31

m
-to

-1
 M

U
X

Spost

SR0

Spost

SR0

Spre_1

SR1

Spre_1

SR1

Spre_2

SR2

Spre_2

SR2

Spre_m

SRm

Spre_m

SRm

CMP Δt STDP

LUT

Wi_new

SEL

Wi_old

Synapse

Weight

Addr

i

j

11SRi

SRj

t

1 11

1

t + 1 t + 2
Spike_i

Spike_j
t t + 1 t + 2

1

1

Δt = 2

(a) (b)

Figure 3.4: (a) The design of the learning engine in REs that implements the hardware-friendly
unsupervised STDP reservoir tuning mechanism. (b) An illustration of how time difference ∆t is
computed in the hardware learning engine. Reprinted with permission from Yu Liu, Sai Sourabh
Yenamachintala and Peng Li c©2019 ACM.

to the right at every biological step of the network. All shift registers in the reservoir neurons are

driven by the global clock for spike synchronization. By examining the relative position of “spikes"

in shift registers, the temporal difference ∆t between pre- and postsynaptic spikes can be easily

inferred. As the example in Fig. 3.4(b) explains, for the considered spike pair, ∆t = tpost − tpre =

tj − ti = 2. Note that the potential weight update only happens when there is(are) ‘1’(s) at the

MSB of the shift register(s), which indicates a new firing event of the pre- or postsynaptic neuron

at the current biological time step.

3.1.4 Runtime Energy Optimization with Correlation-based Reservoir Neuron Gating

The rich dynamics in the reservoir is critical for good learning performance. However, the

generation of such dynamically changing responses can be power-consuming, since each active

neuron carries out a series of operations at each emulation time step. Instead of randomly pruning

reservoir neurons to save dynamic power, which might result in a significant performance loss, we

propose a novel runtime reservoir neuron gating approach based on the correlation between neuron

firing activities with little impact on performance. This correlation-based neuron gating approach

can amplify the energy efficiency brought by the naturally sparse firing activities of the recurrent

32

reservoir and optimize the energy efficiency of proposed LSM neural processors.

Our key observation is that two reservoir neurons or more may produce correlated firing ac-

tivities as depicted in the spike raster plot in Fig. 3.5. Note that the correlation between firing

activities reveals the redundancy among the corresponding neurons with respect to the objective of

discriminating different input samples. In other words, a redundant neuron that replicates the spike

train of another neuron does not actually contribute to the separability of different input patterns.

In a pair of connected neurons, activities of the postsynaptic neuron may be identified to be highly

correlated with the presynaptic one. If so, we bypass the computational steps of the postsynaptic

neuron and set its spike output by directly copying from its presynaptic counterpart.

100 200 300 400 500
Time (ms)

5

10

15

20

25

30

N
eu

ro
n

In
de

x

Figure 3.5: A raster plot of the reservoir response. Only a part of the reservoir response is shown for
simplicity. The firing events of two connected neurons 14 and 16 are highly correlated. Reprinted
with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

Implementing this approach in hardware entails efficient monitoring of correlation of firing

activities on neuron pairs. For each pair of connected neurons, we compute the Hamming distance

of the spike trains between them and sum it up over consecutive input samples as a measure of

correlation:

33

ρ =
N∑
i=1

|sp − sq| (sp, sq ∈ {0, 1}n), (3.4)

where sp and sq are the binary firing event sequences of length n of two connected neurons p and

q, respectively, and N is the number of input samples. If the correlation measure ρ is smaller than

a pre-defined threshold ρth, we consider the firing activities of two neurons as correlated.

With the unsupervised STDP reservoir training and correlation-based neuron gating integrated,

the learning process of an LSM neural processor is executed in three separate phases in time order:

the reservoir training phase, the correlation-based gating phase, and the readout training phase.

First, in the reservoir training phase, RU in Fig. 2.1 is trained by the proposed STDP algorithm

until the synaptic weight distribution converges. The gating phase then takes place, during which

the reservoir neurons fix their synaptic weights, take input spikes and count the occurrence of

correlated pre- and postsynaptic responses throughout the phase. After all input patterns have

been fed to the neural processor, the gating decision will be made inside each neuron. At last,

during the readout training phase, TU is trained by a biologically plausible supervised spike-based

algorithm [19] to perform the classification. RU continues to be activated to provide spike inputs to

TU while maintaining its synaptic weights and gating decisions during the readout training phase.

Fig. 3.6 shows the architecture of reservoir neurons that adopted the correlation-based gating

scheme, which is developed on top of the baseline digital neuron module shown in Fig. 2.2. Now,

the postsynaptic spike (Si in Fig. 3.6) generated from the spike generation module is sent to the

neuron gating module first. Depending on the correlation result, the correlated spike Scorr is as-

signed with either the original postsynaptic spike or one of the presynaptic spike. This correlated

spike is then taken as the current step firing event of the postsynaptic neuron sent to the weight

update functional module and out.

Fig. 3.7 depicts the logic circuit inside the neuron gating module. During the gating phase,

which is executed between the reservoir training and the readout training, reservoir synapses main-

tained their converged weight distribution and the correlation between the pre- and postsynaptic

neuron is monitored whenever spike events appear on either end of an afferent synapse. In Fig. 3.7,

34

Synaptic
Input

Processing

Spike
Generation

x

Synaptic Weight
Memory

Wij_new

Layer-level FSM

Wij

Weight
 Update

Wij_old

Si

Presynaptic
Spikes

 Spike
Output

Neuron
Gating

ena
S_corr

Figure 3.6: Block design of the digital reservoir neuron with correlation-based neuron gating.

assuming there are up to 16 afferent reservoir synaptic connection per reservoir neuron, Si repre-

sents the presynaptic spikes selected from Spre_1 to Spre_16 that is currently being checked and Spost

is the postsynaptic spike. If the spike events differ on the two ends of a synapse, in other words,

either the pre- or postsynaptic neuron fires while the other one does not, the comparison of Si with

Spost in leads to a logic “1" for ∆s. Otherwise, a logic “0" is produced. The comparison result ∆s

is then added to the current value of the corresponding correlation counter. After all input patterns

have been fed to the neural processor, in each neuron, the correlation counters are compared with

the threshold ρth defined in (3.4) serially. If a correlation counter value is less than ρth, the gating

control signal ena is set to 0, meaning that a correlated presynaptic neuron has been identified.

This will turn off all other three functional modules in Fig. 3.6 of the same neuron during the

readout training and the inference phase. At the same time, the spike output Scorr of the current

neuron is wired to the presynaptic spike of the identified presynaptic neuron. With one correlated

presynaptic neuron found, other correlation counters in the same neuron are not checked.

35

1
6

-to
-1

M

U
X

Spost

Spre_1

Spre_2

Spre_16

CMP +
Spost

Si cnti_new

cnti_old 1
6

-to
-1

M

U
X

1
6

-to
-1

M

U
X

cnt1

cnt2

cnt16
CMP

ρth

Correla-
tion

Counter

Sel[3:0]

S_corr

ena

Δs

corr_idx

cnti

Figure 3.7: Implementation of the correlation-based gating module. Reprinted with modifications
with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

3.1.5 Runtime Energy Optimization with Activity-dependent Clock Gating

Neural processors are typically memory intensive in general, so as the LSM targeted in this

work. The large amount of storage spanning across the design heavily load the clock distribution

network and their clock-induced toggling activities take a significant portion of the total dynamic

power dissipation. On the FPGA platform, for example, with a global clock driving extensive reg-

isters and on-chip memories through a dedicated clock tree, more than 60% of the total processor

dynamic power would be dissipated by the clock tree and switching activities of the registers and

memories.

To this end, we recognize that the architectural and functional regularity of the proposed LSM

processor mentioned in Section 2.1 provides well-defined boundaries within which storage ele-

ments reside. Each stage in the neural process flow (Fig. 3.8(b)) corresponds to a module inside a

neuron element shown in Fig. 3.6, which is only active during its corresponding stage. For exam-

ple, with the optimized reservoir that integrated with correlation-based neuron gating functionality

introduced in Section 3.1.4, the four processing stages in RE and three processing stages in OE

36

take various numbers of clock cycles and involve different subsets of the registers and memories as

shown in Table 3.1. This nature of the proposed LSM processor architecture allows us to partition

the on-chip storage in each neuron into different groups that are activated at different stages, lead-

ing to a fine-grained activity-dependent clock gating at the granularity of memory elements inside

each neuron.

Table 3.1: Numbers of FSM states, memory element bits and cycle occupancies inside neurons.
Reprinted with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

of States # of Memory Bits Stage Clock Cycles Active Bits

LE
14 247

Synaptic Input Processing 49 40
Action Potential Generation 3 11
Learning 32 36
Neuron Gating 80 160

OE 10 1,166
Synaptic Input Processing 271 64
Action Potential Generation 3 13
Learning 405 1,089

Fig 3.8(a) illustrates the clock distribution of the proposed LSM processor architecture. As

shown in the figure, memory elements inside each neuron are driven by leaf nodes of the clock

tree. On the FPGA, which is chosen as our demonstration platform, dedicated routing resources

are responsible for distributing clock signals to ensure low-skew clock delivery across the design.

Under this circumstance, directly gating the clock signal may jeopardize the low-skew performance

ensured by the dedicated clock routing since it involves unconstrained flip flops and look-up tables.

With this constraint in mind, instead, we lower the clock power contribution by utilizing clock

enable signals to reduce the clock-triggered switching activities within memory elements. In each

neuron, the memory elements inside the same module shown in Fig 3.8(a) share a common clock

enable signal. If the memory elements are implemented with flip flops, this clock enable signal

will be connected to the local clock enable (CE) signal of corresponding slices, which are the

basic logic blocks of the FPGA. For the memory implemented storage elements, the clock enable

signals directly enable or disable the memory clock inputs. For both REs and OEs, the activity-

37

dependent clock enable signal of each module is encoded from the current state of the associated

global controller (FSM), which defines process flows in each training stage.

Global Clock Buffer

RU

LE OE

TU

RE RE RE RERERERE OE OE OE OE OE OE OE

SGSIP Learning LearningGating SGSIP

(a)

Time (Hardware Time)

Flow diagram of reservoir training phase

RE SIP RE SG
RE

Learning

St
e

p
 (

B
io

lo
gi

ca
l

T
im

e
) t

t + 1
RE SIP RE SG

RE
Learning

(b)

Time (Hardware Time)

RE SIP RE SG RE Gating

St
e

p
 (

B
io

lo
gi

ca
l

T
im

e
)

t

t + 1

 Flow diagram of correlation-based gating phase

RE SIP RE SG RE Gating

Time (Hardware Time)
St

e
p

 (
B

io
lo

gi
ca

l
T

im
e

)

t

t + 1

Flow diagram of readout training phase

RE SIP
RE
SG

OE SIP OE SG
OE

Leaning

RE SIP
RE
SG

OE SIP OE SG
OE

Leaning

Figure 3.8: (a) Clock distribution of the LSM. (b) Neural process flow of the LSM. (SIP: Synaptic
input processing, SG: Spike Generation) Reprinted with modifications with permission from Yu
Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

One thing to mention is that the on-chip storage partitioning scheme is based on the unique ar-

chitectural and functional characteristics of the proposed LSM processors and largely independent

of the specific implementation platform. Therefore, the proposed activity-dependent clock gating

technique can be exploited by an LSM processor in general and similar power benefits would be

expected across different platforms. Moreover, the above clock enabling approach does not reduce

the power dissipated by the clock tree itself due to the limitation on FPGA platforms. Since ASIC

implementations are not restricted by the aforementioned FPGA clock routing constraints, direct

gating on the clock signal may be added on top of the proposed activity-dependent clock enabling

approach to further optimize power consumption.

38

3.1.6 Experimental Settings and Benchmarks

Using the approaches described in [19], several digital LSMs are set up with different reservoir

sizes and readout synaptic resolutions and simulated by the software simulator to fully judge the

performance boost and sparsity resulting from the proposed STDP reservoir training. A 5-fold

cross validation scheme is adopted to assess learning performance. The classification decision is

made by the LSM right after each testing sample is presented and the class label of the readout

neuron with the highest firing rate is deemed to be the classification decision. In order to measure

the impacts of proposed techniques on hardware overhead and energy consumption, a representa-

tive LSM neural processor is implemented with 135 reservoir neurons and the number of output

neurons depends on the number of classes to be classified in the adopted dataset. The reservoir

synaptic weights are set to be 2 bits to minimize the hardware overhead of the on-chip STDP

reservoir training, and the resulting optimal STDP lockup tables are visualized in Fig. 3.9(a) and

Fig. 3.9(b), respectively.

��� ���

Figure 3.9: The optimal STDP lookup tables for (a) spoken English letter recognition and (b)
segmented image recognition.Reprinted with permission from Yu Liu, Yingyezhe Jin and Peng Li
c©2018 ACM.

39

In this work, we choose two non-trivial real-world tasks to thoroughly assess the learning per-

formance and energy efficiency of the LSM neural processor integrated with hardware-optimized

STP reservoir training. The first adopted benchmark is a subset of the TI46 speech corpus [74],

which contains spoken utterances of English letters from “A” to “Z”, ten for each letter. There are

260 samples in this benchmark from a single speaker. The continuous temporal speech signals

are preprocessed by Lyon’s ear model [81] and Fig. 3.10(a) visualizes the input speech patterns

acquired after the preprocessing stage. The preprocessed signals are then encoded into 78 spike

trains using the BSA algorithm [82]. Each obtained input spike train is sent to 32 randomly se-

lected reservoir neurons with a fixed weight randomly chosen to be 2 or−2. 26 output neurons are

implemented for this task.

Fig. 3.10(b) illustrates the second benchmark we adopted from the CityScape dataset [83],

which contains images of the semantic urban scenes taken in several European cities. We select 18

different types of objects listed in Table 3.2, segment them from the street scene and remap them

into images of size 15 × 15. There are 60 instances for each labeled object and 1080 images in

total in the dataset. For a remapped image, 225 input spike trains are generated from a Poisson

process with the probability proportional to the pixel value of each image. Each input spike train

is connected to 4 randomly chosen reservoir neurons with a fixed weight to be 8 or −8 randomly.

Table 3.2: The identifiers of the image instances extracted from the CityScape dataset.

Class ID 0 1 2 3 4 5
Object Name sidewalk wall building fence pole traffic light
Class ID 6 7 8 9 10 11
Object Name traffic sign vegetation terrain sky person rider
Class ID 12 13 14 15 16 17
Object Name car train motocycle bicycle bus truck

40

������

Figure 3.10: (a) The spatiotemporal information of each speech generated by preprocessing; (b) A
street scene of the CityScape dataset. Reprinted with permission from Yu Liu, Yingyezhe Jin and
Peng Li c©2018 ACM.

3.1.7 Experimental Results

3.1.7.1 Classification Performance

Following the experimental settings in Section 3.1.6, we report learning performance and hard-

ware overhead of the proposed STDP reservoir training. Impacts on energy efficiency improvement

of the proposed optimization approaches introduced in Section 3.1.4 and 3.1.5 are also discussed

in this section.

Given the considered design space, the recognition accuracies of LSMs with STDP tuning as

well as their performance boosts compared to the corresponding LSM with the same network set-

ting but has a fixed reservoir are reported in Table 3.3 [84]. It shows that the best performance of the

LSM neural processor with STDP tuning is 93.1% for speech recognition on TI46 benchmark [74]

and 97.9% for image recognition on CiteScape benchmark [83]. Besides, the performance boost

compared to an LSM without reservoir training can be up to 4.2% for TI46 and 1.9% for CiteScape,

and the average performance boost of the two applications are 1.96% and 1.25%, respectively. The

results in Table 3.3 demonstrates that unsupervised STDP tuning on the reservoir can supply the

readout training and boost the learning performance of LSM by introducing the self-organizing

behavior.

41

Table 3.3: Classification accuracies and performance boosts of LSM with STDP reservoir tuning

TI46
Bit Resolution of Readout Synapses

Reservoir Size 10 9 8 7 6 5

135 91.9%
(+ 1.9%)

91.9%
(+ 1.9%)

93.1%
(+ 2.7%)

92.7%
(+ 3.9%)

91.8%
(+ 2.6%)

91.2%
(+ 2.0%)

90 86.9%
(-0.8 %)

87.3%
(+0.8%)

88.1%
(+ 2.3%)

88.1%
(+ 1.2%)

86.5%
(+ 2.3%)

85.7%
(+ 1.5%)

72 86.1%
(+ 1.9%)

87.3%
(+ 4.2%)

87.7%
(+ 4.2%)

86.9%
(+ 4.2%)

85.8%
(+ 3.1%)

82.7%
(+ 2.3%)

63 88.5%
(+ 1.6%)

88.8%
(+ 2.6%)

88.5%
(+ 0.4%)

86.9%
(+ 1.0%)

86.2%
(+ 0.4%)

81.2%
(-1.5%)

45 82.3%
(+ 1.5%)

81.9%
(+ 3.1%)

81.5%
(+ 2.3%)

81.5%
(+ 0.7%)

81.5%
(+ 3%)

74.2%
(+ 1.5%)

CityScape
Bit Resolution of Readout Synapses

Reservoir Size 10 9 8 7 6 5

135 97.5%
(+ 0.9%)

97.9%
(+ 1.4%)

97.7%
(+ 1.1%)

97.4%
(+ 0.8%)

97.2%
(+ 0.8%)

96.8%
(+ 1.2%)

90 97.3%
(+ 1.3%)

97.0%
(+ 0.9%)

97.1%
(+ 1.2%)

96.9%
(+ 1.0%)

96.8%
(+ 1.6%)

96.0%
(+ 0.8%)

72 96.8%
(+ 1.9%)

96.5%
(+ 1.6%)

96.8%
(+ 1.6%)

96.6%
(+ 1.5%)

96.9%
(+ 1.6%)

95.6%
(+ 0.7%)

63 94.9%
(+ 0.8%)

95.4%
(+ 1.8%)

95.1%
(+ 1.3%)

94.8%
(+ 1.5%)

95.0%
(+ 1.5%)

93.4%
(+ 1.1%)

45 93.8%
(+ 0.9%)

93.9%
(+ 1.5%)

94.0%
(+ 1.5%)

93.9%
(+ 1.3%)

93.2%
(+ 1.0%)

92.2%
(+ 1.3%)

In the work, the reservoir sparsity achieved by the proposed STDP rule is measured by percent-

ages of zero-valued synaptic weights after reservoir tuning. And the results are shown in Table 3.4

of LSM processors with various reservoir sizes. The sparsified connections provide the potential

opportunity that the training power of hardware LSM neural processors could be reduced, which

will be demonstrated in Section 3.1.7.2.

With the proposed reservoir tuning scheme applied, we examine the recognition performance

boosts compared to the baseline of a representative LSM processor with 135 reservoir neurons

and 10-bit readout resolution. Performance boosts with different numbers of bypassed reservoir

42

Table 3.4: Reservoir synaptic reductions of the proposed STDP. Reprinted with permission from
Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

Spoken Letter Recognition
Reservoir Size 135 90 72 63 45

Reduction 27.2% 28.9% 28.7% 29.2% 27.5%

Segmented Image Recognition
Reservoir Size 135 90 72 63 45

Reduction 21.9% 20.2% 22.6% 23.9% 18.0%

neurons are plotted in Fig. 3.11. As seen here, up to 30% of reservoir neurons whose activities are

correlated can be powered off while still enhance performance compared to the baseline, which

improves the overall energy efficiency.

Figure 3.11: The performance boosts of the proposed STDP under different levels of correlated-
gated neurons. Reprinted with permission from Yu Liu, Yingyezhe Jin and Peng Li c©2018 ACM.

3.1.7.2 Hardware Overheads

To illustrate the impacts on the hardware overhead and energy consumption of the proposed

STDP training as well as optimization approaches introduced in Section 3.1.4 and 3.1.5, we im-

plement three LSM neural processors targeted at Xilinx Virtex-6 FPGA platform and they incor-

43

porate different combinations of the proposed energy optimization techniques. Among them, the

“baseline LSM" serves as a reference which is constructed with a fixed reservoir and does not im-

plement any energy optimization technique; the “adaptive LSM" integrates the hardware-friendly

STDP training on the reservoir and also the activity-dependent clock-gating; the “adaptive LSM

with correlation-based gating" incorporates all three techniques described in this paper. Table 3.5

shows the comparison of the hardware resource overhead in terms of slice flip flops (FFs) and

slice LUTs. The results show that implementing extra energy optimization techniques in general

does not cost too much extra resource overhead. Especially, if considering the overall available

resources on the targeted FPGA platform, we still have an efficient hardware utilization for all

LSMs.

Table 3.5: Hardware resource utilization of LSMs with different energy optimization approaches
studied in the work

FFs LUTs Normalized FFs Normalized LUTs

Basline LSM 10519 40274 1.00 1.00

Adaptive LSM 10920 48419 1.04 1.20

Adaptive LSM with
corrlation-based gating 10938 50317 1.04 1.25

Dynamic training and inference power and energy of three studied LSM neural processors

are reported in Table 3.6. The power number is analyzed by the Xilinx Power Analyzer given

the activity-based simulation result, and the energy is for training and classifying a representative

example based on calculated from the corresponding power result. We also report the amounts

of energy reduction of the proposed energy-optimized SNN neural processors compared to the

baseline. To get good learning performance, 25 epochs of reservoir training and 250 epochs of

readout training are conducted for each example in both applications. The correlation-based gating

and the inference phase are executed for only one iteration. The training energy is the sum of the

44

energies consumed for the reservoir training, the correlation-based gating and the readout training

stage. The adaptive LSM with correlation-based gating neural processor has 20% reservoir neurons

gated, which boosts performance noticeably by up to 1.2% over the baseline. Since the baseline

LSM processor has a fixed reservoir, the reservoir training phase does not apply to it.

From Table 3.6, it is clear that the cooperation of three techniques introduced in this paper can

effectively reduce the energy consumption of the LSM neural processor by a considerable amount.

The results have shown that the proposed LSM neural processor is up to 29% more energy efficient

for training and 30% more energy efficient for inference than the baseline. Note that the power

consumption of the correlation-based gating phase itself is non-negligible. However, applying

the correlation-based gating largely benefits the readout training and classifying power as can be

seen from the table. Considering that the readout training takes the majority of training time, the

total training energy will be significantly reduced with a smaller readout training power, so is the

inference energy.

Moreover, we are aware that the Xilinx design tools offer a standard intelligent clock gating in

general [85] by preventing logic not used in a given clock cycle from toggling. To better illustrate

the energy efficiency of the proposed clock gating approach, we apply the standard clock gating

provided by Xilinx ISE and our proposed activity-dependent clock gating respectively on top of the

LSM processor that has the adaptive reservoir and the correlation-based gating scheme and com-

pare the energy results in Table 3.7. The results show that our proposed clock gating outperforms

the standard clock gating in energy efficiency. It is reported that the clock gating implemented

by the Xilinx tool only applies clock enable signals to the weight storage elements (i.e. weight

registers in REs and BRAMs in OEs), which suggests that the unique regularities of the LSM

architecture are not recognized and exploited. In comparison, the proposed clock gating method

takes full advantage of the unique architectural and functional properties of the LSM processor and

implements fine-grained clock enable signals for all storage elements in each neuron.

45

Table 3.6: Dynamic power/energy dissipation of LSMs with different energy optimization ap-
proaches studied in the work

TI46

Dynamic Power @100MHz (mW) Dynamic Energy (mJ)
Reservoir
Training

Correlation
Gating

Readout
Training Inference Training Inference

Basline LSM / / 232 249 269.51 0.53

Adaptive LSM 224 / 186 209
216.71

(-19.6%)
0.44

(-16.9%)
Adaptive LSM
w/ Correlation-
based Gating

226 362 166 185
194.09

(-28.0%)
0.39

(-26.4%)

CityScape

Dynamic Power @100MHz (mW) Dynamic Energy (mJ)
Reservoir
Training

Correlation
Gating

Readout
Training Inference Training Inference

Baseline LSM / / 242 246 246.26 0.16

Adaptive LSM 222 / 196 193
202.78

(-17.6%)
0.36

(-21.7%)
Adaptive LSM
w/ Correlation-
based Gating

214 387 169 170
175.42

(-28.8%)
0.32

(-30.4%)

Table 3.7: Dynamic energy consumption of LSMs with standard clock gating and the proposed
clock gating. Both designs have a trainable reservoir and correlation-based neuron gating. (Unit:
mJ) Reprinted with modifications with permission from Yu Liu, Yingyezhe Jin and Peng Li
c©2018 ACM.

Spoken Letter Recognition
Training Classifying

Standard Clock Gating 227.31 0.45
Proposed Clock Gating 194.09 0.39

Segmented Image Recognition
Training Classifying

Standard Clock Gating 213.76 0.34
Proposed Clock Gating 175.42 0.32

46

3.2 Intrinsic Plasticity based Reservoir Training and Optimized Implementation

Intrinsic plasticity (IP) in biology is the persistent modification of a neuron’s intrinsic electrical

properties by neuronal or synaptic activity. It is mediated by changes in the expression level or

biophysical properties of ion channels in the membrane and can affect diverse processes such as

synaptic integration, sub-threshold signal propagation, spike generation, spike backpropagation,

and meta-plasticity. Behaviors of IP have been discovered in brain areas of many species and IP

has been shown to be crucial in shaping the dynamics of neural circuits [67]. In particular, [86]

observed the exponentially distributed neuron responses in visual cortical neurons. Such responses

may aim at allowing neurons to transmit the maximum amount of information, e.g. measured

by the highest entropy, to their outputs with a constrained level of firing activity. Discovered

in individual biological neurons, IP changes the excitability of neurons through modification of

voltage-gated channels [87].

3.2.1 Intrinsic Plasticity in SNN Training

While most works on the SNN focus on developing learning rules based on the synaptic plas-

ticity of neural networks [11, 88, 89], the neural plasticity, which is a form of non-Hebbian self-

adaptive mechanism, has received more and more research interests in recent years as it is impor-

tant to the brain’s adaptability in response to environment stimuli. As one of such self-adaptive

mechanisms, intrinsic plasticity (IP) plays an important role in temporal coding and maintenance of

neuron’s homeostasis and has inspired many research works in artificial neural networks to shape

the dynamics of neuron responses. Among them, [90] presents an approach that empirically maps

the IP rule designed for the sigmoid neuron model [91] to the spiking neuron. However, the prop-

erty of this transplanted IP rule is elusive when dealing with the firing activities of spiking neurons

due to the significant difference between spiking neurons and sigmoid neurons. [70] proposes an

IP rule based on the inter-spike-interval (ISI), but it only constraints the ISI into a certain range and

does not have a rigorous target for adapting the output response. Recently, [22] proposes an intrin-

sic plasticity rule SpiKL-IP targeted at the widely-adopted leaky integrate-and-fire (LIF) spiking

47

neuron model [10, 11]. The SpiKL-IP rule is developed based on a rigorous information-theoretic

approach and demonstrates significant learning performance improvements on the classification

accuracy for real-world speech/image classification tasks. However, it only experiments on the

software simulator with continuous values.

The work presented in this section advancing LSM spiking neural processors by exploring the

uncharted territory of efficient on-chip non-Hebbian learning. The proposed LSM spiking neural

processor design work is motivated by the recent intrinsic plasticity (IP) rule SpiKL-IP [22], which

is proposed based on the widely-adopted leaky integrate-and-fire (LIF) neuron model [10, 11] and

a rigorous information-theoretic perspective. The SpiKL-IP rule is able to improve classification

accuracy for real-world speech/image classification tasks significantly, by up to more than 16%, in

software implementation. Different from well-known Hebbian learning mechanisms, e.g. spike-

timing-dependent plasticity (STDP), IP is a biologically-plausible non-Hebbian mechanism that

self-adapts intrinsic neural parameters of each neuron such as membrane-potential time constant

and leakage as opposed to synaptic weights, and hence offers complimentary opportunities for

boosting the SNN learning performance.

However, integrating intrinsic plasticity (IP) to enable per-neuron self-adaptation on chip presents

major challenges. For instance, high-resolution multiplications, divisions, and exponentiations are

required to guarantee the accuracy of SpiKL-IP. Directly mapping these operations onto hardware

will blow up the area overhead of each silicon neuron by several times, let alone the additional

large training latency and power consumption.

In this work, we enable feasible on-chip integration of IP through both algorithmic and hard-

ware optimization approaches and further improve our neural processor architecture with reduced

area/power overhead. Main contributions of this work are:

• Demonstrate the first work on performance boost of SNNs via cost-effective integration of

IP;

• Significantly optimize the performance gain vs. overhead trade-off of onchip IP by develop-

ing a new hardware-friendly IP rule, i.e. SpiKL-IFIP;

48

• Optimize the on-chip IP hardware implementation with reduced area/power overhead by per-

forming intelligent approximate computing, value lookup and so on, leading to the multiplication-

free integration of IP for integrate-and-fire (IF) neurons.

3.2.2 Basic SpiKL-IP Learning Rule for LIF Neurons

The (software) SpiKL-IP intrinsic plasticity rule [22] is based on the widely used leaky integrate-

and-fire (LIF) spiking neural model[92]:

τm
dV

dt
= −V +Rx, (3.5)

where V is the membrane potential, τm the membrane-potential leaky time constant, R the effec-

tive leaky resistance, and x the input current. The neuron generates a spike once V exceeds the

firing threshold Vth. A refractory period of duration tr is applied after a spike during which V is

maintained at its resting level.

The key idea of the SpiKL-IP rule is maximizing the information transfer from the input firing

rate distribution to the output firing rate distribution, hence boosting the learning performance of

the network. From the information-theoretic point of view, this means that a neuron adapts itself

to maximize the mutual information about the input obtained from the output:

I(Y,X) = H(Y)−H(Y |X), (3.6)

whereH(Y) is the entropy of the output andH(Y |X) indicates the amount of entropy (uncertainty)

of the output not coming from the input. Assuming that the output noise N is additive and there

is no input noise, which means the output y = f(x) + N , then the conditional entropy H(Y |X)

can be simplified to H(N) [22, 93] and it does not depend on the neural parameters and inputs.

Thus, maximizing I(Y,X) is equivalent to maximizingH(Y). It is instrumental to note here that if

the mean of a distribution remains constant, the exponential distribution corresponds to the largest

entropy among all probability distributions of a non-negative random variable. As a result, the

exponential distribution with a targeted mean shall be the optimal distribution for the output firing

49

rate. In this work, all neurons are implemented using the noiseless neuron model (i.e. LIF or IF)

and no noise is added explicitly to the neuronal dynamics, which means that H(N) = 0 [92].

The SpiKL-IP rule performs tuning of τm andR of each spiking reservoir neuron by minimizing

the Kullback-Leibler divergence (KL-divergence) from a targeted exponential distribution to the

actual output firing rate distribution. Besides, the SpiKL-IP rule is tuned online in a way analogous

to the stochastic gradient descent (SGD) method with a batch size of one.

As a result, the update of τm and R in each neuron can be described as:

R =

 R + η1
2yτmVth−W−Vth− 1

µ
τmVthy

2

RW
, y > ∆

R + α1, y ≤ ∆

τm =

 τm + η2
2try−1− 1

µ
(try2−y)

τm
, y > ∆

τm − α2, y ≤ ∆

(3.7)

where y is the average output firing rate of the neuron at a certain time point, µ the desired mean

output firing rate, η1 and η2 the learning rates, ∆ a fixed low-firing rate threshold, andW a function

of y:

W =
Vth

e(
1
τm

(1
y
−tr)) − 1

. (3.8)

When y is low, i.e. y ≤ ∆,R and τm are adapted steadily to bring up the neuron’s firing activity

at a fixed step of α1 and α2, respectively, before IP tuning is activated. This further improves the

robustness of the IP tuning rule.

The simulation of the continuous-time LIF model and IP tuning rule is actually running with a

fixed discretization time step, 1ms as a particular example, according to which all neural activities

are evaluated. To measure the average output firing rate of each neuron as a continuous-value

quantity over time under a constant of varying input, we use the intracellular calcium concentration

50

Ccal(t) as an indicator, which is defined by filtering output spikes over a given time scale:

dCcal(t)

dt
= −Ccal(t)

τcal
+
∑
i

δ(t− ti), (3.9)

where τcal is the time constant and ti is an output spike time. According to (3.9), the calcium

concentration increases by one unit when an output spike is generated, and decays with a time

constant τcal [94]. Then, the average output firing rate y is measured by the normalized calcium

concentration:

y(t) =
Ccal(t)

τcal
. (3.10)

3.2.3 Hardware-Optimized SpiKL-IP

Implementing the original SpiKL-IP (i.e. (3.7) and (3.8)) straight forward on the hardware

LSM accelerator is too costly or even formidable as it involves complicated multiplication, divi-

sions and the exponentiation. We optimize the algorithm to enable a feasible implementation of

the proposed SpiKL-IP rule and maximize its hardware efficiency.

First, implementing the exponentiation in (3.8) directly on hardware is costly. Common expo-

nentiation approximation practices include lookup tables (LUTs), interpolation, and series expan-

sion. In our work, a statistics-driven approximation methodology for targeted IP rules is proposed,

which will be introduced in more details in Section 3.2.5.2. As part of it, to implement the ex-

ponentiation on the hardware LSM neural accelerator with great efficiency, we first run software

simulation to profile numerical ranges of the arguments of the exponential function, i.e. τm and y,

to decide which practice works best in our case. The result indicates that both arguments change

widely and require relatively high bit resolutions. As a result, the inputs to the LUT, which are the

combination of these two arguments, have many possible values thus the lookup mapping logic

is expected to be complicated. As for interpolation, we need to first calculate 1
τm

, 1
y

and their

product, which increases the design complexity. On the other side, we recognize that the expo-

nent 1
τm

(
1
y
− tr

)
is a small fractional number based on the simulation result and expanding the

51

exponential function near 0 gives a simple polynomial representation. Therefore, we decide to

approximate W with the Taylor’s expansion near the point 0 :

W =
Vth

e(
1
τm

(1
y
−tr)) − 1

=
Vth

−1 + 1 + 1
τm

(
1
y
− tr

)
+ 1

2
· (1

τm
)2 · (1

y
− tr)2 + · · ·

≈ Vth
1
τm

(1
y
− tr)

,

(3.11)

in which the higher order polynomial terms are ignored given their small values.

Substituting y forW in (3.7) and dropping the small-valued term
tr− 1

y(n)

R(n)τm(n)
, the original SpiKL-

IP algorithm (i.e. (3.7)) is discretized and simplified as:

R(n+ 1) =

{
R(n) + η1 ·

tr
µ
y2(n)−(2tr+ 1

µ
)y(n)+1

R(n)
, y(n) > ∆

R(n) + α1, y(n) ≤ ∆

τm(n+ 1) =

{
τm(n) + η2 ·

− tr
µ
y2(n)+(2tr+ 1

µ
)y(n)−1

τm(n)
, y(n) > ∆

τm(n)− α2, y(n) ≤ ∆

(3.12)

(3.12) is the optimized SpiKL-IP rule for efficient hardware implementation that is integrated

in our LSM hardware neural processor. We also apply the hardware optimization approaches and

explore runtime sparsity introduced in Section 3.2.5.2 to further improving its implementation

efficiency. The resulting hardware overhead and energy consumption of on-chip SpiKL-IP are

reported in Section 3.2.7.

3.2.4 Hardware-inspired IP Rule for IF Neurons (SpiKL-IFIP)

The optimized SpiKL-IP rule (i.e. (3.12)) still costs too much when implemented on hard-

ware LSM neural processors, which we will demonstrate in Section 3.2.7. The complicated and

highly dependent computational steps in updating R and τm majorly contribute to the overhead

52

and latency. Besides, the multiplication is executed by FPGA DSP slices in our design, which is

in general a limited resource. For example, the number of DSPs is limited to 900 on our targeted

FPGA board.

In this section, we propose a more hardware-friendly IP rule, called SpiKL-IFIP, that explores

optimization at the neural computation level. The proposed SpiKL-IFIP is based on integrate-and-

fire (IF) neurons as opposed to more complex LIF neurons, leading to a very favorable tradeoff

between design overhead and learning performance.

We revisit the LIF model (3.5) and recognize that by ignoring the leaky terms −V and τm, we

can derive a much-simplified IP learning rule with only one intrinsic variable. With this consider-

ation in mind, we propose the novel IP rule, SpiKL-IFIP for IF neurons as follows.

The IF model and its firing-rate transfer function under the constant input can be described as:

dV

dt
= Kx, (3.13)

and

y =
1

tr + Vth
Kx

, Kx > Vth. (3.14)

where K is the reciprocal of effective leaky resistance, and all other variables are defined in the

same way as in the LIF model.

Figure 3.12: Instrinsic plasticity.

53

As in Figure 3.12, the key idea in deriving this new SpiKL-IFIP rule is to self-tune K to maxi-

mize the information transfer from the input to the output firing rate distribution[22]. Importantly,

the exponential distribution of the output firing rate attains the maximum entropy under a fixed

mean firing rate among all probability distributions of a non-negative random variable. The expo-

nential distribution is given by

fexp(x) = µexp(−µx), x >= 0, (3.15)

where µ is the mean of the distribution.

Thus, SpiKL-IFIP minimizes the Kullback-Leibler (KL) divergence D from the output firing

rate distribution fy(y) to the exponential distribution fexp with a mean firing rate µ:

D = d (fy(y)||fexp)

=

∫
fy(y)log

(
fy(y)

1
µ
exp(−y

µ
)

)
dy

=

∫
fy(y)log(fy(y))dy +

∫
fy(y)

(
y

µ

)
dy +∫

fy(y)logµdy

= E

[
log(fy(Y)) +

Y

µ

]
+ logµ.

(3.16)

Then, minimizing the KL-DivergenceD reduces to minimize the Expected value of log(fy(Y))+

Y
µ

in (3.16). The integration in D is over all occurrences of y during the time. In analog to stochas-

tic gradient descent (SGD) with a batch size of one, we can make SpiKL-IFIP amenable for online

training by discretizing the entire training process into multiple small time intervals properly. The

input to the spiking neuron at each time point is considered as an individual observation or train-

ing example. In this way, the parameters can be adjusted as the neuron experiences a given input

example at each time point in an online manner, which is similar to the SpiKL-IP rule. Then, we

can obtain the following online loss function L from D at each time point t:

54

L(t) = log(fy(y(t))) +
y(t)

µ
. (3.17)

Based on (3.13) and (3.14) and the fact that the input firing rate distribution is unrelated to K,

the partial derivatives of L with respect to K at each time point is given by:

∂L

∂K
=

∂

∂K

(
log

(
fx(x)
∂y
∂x

)
+
y

µ

)

=
∂

∂K

(
−log

(
∂y

∂x

)
+
y

µ

)
=

2try + y−y2tr
µ
− 1

K

≈
(2tr + 1

µ
)y − 1

K
.

(3.18)

In (3.18), we drop the term y2tr given that y2tr � y. Similar to LIF neurons, K adapts steadily to

bring up the firing activity when y ≤ ∆. This finally gives rise to:

K(n+ 1) =

{
K(n) + η3

1−(2tr+ 1
µ
)y(n)

K(n)
, y(n) > ∆

K(n) + α3, y(n) ≤ ∆
(3.19)

The proposed SpiKL-IFIP rule follows the rigorous information-theoretic perspective while

addressing the high computational complexity of the reference SpiKL-IP rule. Compared to the

LIF-based SpiKL-IP rule, SpiKL-IFIP rule significantly improves the efficiency of corresponding

hardware implementation while still performs a decent learning performance.

3.2.5 Hardware Implementation of the Onchip IP

3.2.5.1 LSM Architecture with IP

The proposed LSM architecture in this work, which is shown in Fig. 3.13, is based upon adapt-

ing reservoir neurons using proposed onchip IP rules (i.e. SpiKL-IP or SpiKL-IFIP) on top of the

55

baseline architecture shown in Fig. 2.1. In each RE, first, the synaptic input processing module

computes the total input synaptic response/current x. Then, in the spike generation module, the

IP update sub-module updates the intrinsic neural parameters tuned by the corresponding IP rule,

i.e. τm and R for SpiKL-IP and K for SpiKL-IFIP, and generates the membrane potential update

∆V of the current emulation time step. Following that, the spike generation module updates the

membrane potential V and decides whether to generate a spike or not accordingly. Finally, Ccal

gets updated.

RU

Input
Spikes

TU

Output
Spikes

Excitatory RE

Inhibitory RE

OE

Fetch Input Spike

Fetch Weight

Update Synaptic
Current

IP Update

ΔV y

Synaptic Input
Processing Module

Spike Generation
Module

x Sout

Update V

Update Spike Out

Update CcalUpdate CcalUpdate Ccal

Figure 3.13: Hardware architecture of the LSM neural processor integrated with onchip IP unsu-
pervised learning algorithm.

Realizing an IP rule onchip on our digital FPGA neural accelerator requires discretization of

the corresponding neural model and the continuous-valued IP rule. For the LIF neuron, discretizing

(3.5) leads to:

V (n+ 1) = V (n)− V (n)

τm(n)
+
R(n) · x(n)

τm(n)
, (3.20)

where n (n+1) specifies the n-th (n+1-th) emulation time step. Similarly, the update of membrane

voltage in the hardware IF model is represented as:

56

V (n+ 1) = V (n)− V (n)

K(n)
+K(n) · x(n). (3.21)

And the calcium concentration update in both models is discretized from (3.9):

Ccal(n+ 1) = Ccal(n)− Ccal(n)

τcal
+
∑
i

δ(t− ti). (3.22)

3.2.5.2 Hardware Optimization Approaches of Onchip IP Implementation

The proposed SpiKL-IFIP (3.19) is more hardware-friendly compared to the SpiKL-IP rule

(3.12). However, it still possesses inherent computational density and complexity of the intrinsic

plasticity. A number of multiplications and divisions are involved and requires complicated logic

circuits in each digital reservoir neuron when implemented on the FPGA LSM neural accelerator.

Non-optimized implementations can result in huge hardware resource and power overheads. To

this end, we further explore architecture-level optimization and run-time sparsification to enable

cost-effective IP implementation and graceful tradeoffs between the design overhead and learning

performance.

First, to reduce the overhead of onchip IP implementation in the best way possible, we adopt a

statistics-driven methodology which performs offline profiling of the ranges of numerical values of

various operands, terms and functional values in the targeted IP rule. The statistics collected over

realistic workloads in software simulation allows us to conduct the following data-level approxi-

mations:

• Representing neural parameters with minimized bit resolution in the Fixed-Point (FXP) for-

mat while maintaining a good classification accuracy;

• Dropping small-valued arithmetic terms in calculation considering both workload-based

simulation results and resolutions of targeted variables;

• Approximating all constant multipliers or divisors using powers of 2 such that the corre-

sponding calculations can be realized by shifting operations on the hardware;

57

The above data-level approximation approaches are repeatedly applied in the implementation

of SpiKL-IFIP.

Second, we notice that divisions are fairly expensive to implement on chip. Simple hardware

division realization includes restoring and non-restoring algorithms which convert the division into

substations and compute it iteratively. Though the simple design complexity, these implementing

approaches trade off in computation latency and do not favor the overall training speed and energy.

Therefore, we choose faster division algorithms instead and propose to significantly reduce the

overhead by realizing efficient approximate divisions inspired by the GoldSchmidt’s algorithm [95,

96], which approximates the division by a series expansion. Let b, the divisor, equals 1 + X

(0.5 ≤ b < 1.0). Then,

1

b
=

1

1 +X

≈ 1−X +X2 −X3 +X4 −X5 · · ·

≈ 1−X +X2.

(3.23)

Most works on GoldSchmidt’s dividers implement the expansion with iterative multiplications

for accurate results [97]. However, in our work (3.23), with aforementioned statistic-driven data-

level approximation adopted, we drop the higher order terms considering the constrained resolution

of the quotient and the inherent small value of Xp when p is large. Therefore, the proposed

approximate divider can be implemented with just one multiplication.

When implementing the approximate divider, the original divisor b is normalized by 2mb such

that 2mb−1 < b ≤ 2mb . This can be realized efficiently by shift registers on hardware and is

inspired by the aforementioned power of 2 data-level approximation idea. A lookup table for mb is

implemented with b as its input, and the size of the lookup table is decided based on the numerical

range of the corresponding b from simulation results. At last, we denormalize by shifting mb bit(s)

again towards the same direction to get the actual division result. One thing to mentions is that, the

aforementioned optimization techniques including the approximate divider design are also adopted

in the onchip SpiKL-IP implementation as a reference to show the effectiveness of the proposed

58

SpiKL-IFIP in improving the learning performance vs. hardware overhead tradeoff, and we show

the hardware overhead and energy results of both algorithms in Section 3.2.7.

Last, the runtime sparsity is explored as a tailored approach for the SpiKL-IP algorithm to

reduce its dynamic training power consumption. A key component of SpiKL-IP is the use of the

calcium concentration Ccal to measure the average firing rate y. To further improve the energy

efficiency of the LSM processor, we propose a runtime energy reduction approach for calculating

C2
cal: the squaring of Ccal is only triggered when the post-synaptic neuron fires. This approach

takes the advantage of the observed firing sparsity in the reservoir and can reduce up to 16.7% of

multiplications for a reservoir neuron.

Assuming a neuron’s last firing time is tj . Then, at time tj + 1:

C2
cal(tj + 1) = (Ccal(tj)−

Ccal(tj)

τc
)2

= C2
cal(tj)−

2C2
cal(tj)

τc
+
C2
cal(tj)

τ 2c

≈ C2
cal(tj)−

C2
cal(tj)
1
2
τc

,

(3.24)

where the small-valued higher order term is dropped following the data-level approximation. Sim-

ilarly,

C2
cal(tj + 2) ≈ C2

cal(tj + 1)− 2C2
cal(tj + 1)

τc

=

(
C2
cal(tj)−

2C2
cal(tj)

τc

)
− 2C2

cal(tj)

τc
+

2C2
cal(tj)

τ 2c

≈ C2
cal(tj)−

C2
cal(tj)
1
4
τc

.

(3.25)

Therefore, we can reuse the value of C2
cal(tj) to calculate C2

cal(tj + i) before the neuron’s next

firing time tj + s:

C2(tj + i) ≈ C2(tj)−
C2(tj)

1
2i
τc

, for i<s. (3.26)

Typically, we have s ∈ [5, 10] based on our simulations such that a good percentage of squaring

59

operations can be skipped.

3.2.5.3 Hardware Implementation of SpiKL-IFIP

As had been mentioned, based on the realistic numerical range of neural variables, specific

design decisions are made to exploit the data-level approximation in the best way possible to

optimize the implementation efficiency of SpiKL-IFIP. First, the fixed point(FXP) resolution for

each neural parameter is determined based on the specific application. Then, we adopt the proposed

approximate divider design for calculating 1
K(n)

. The normalization on K is realized by shifting

left or right mK bit(s) depending on whether K is greater or less than 1. Last, the product of

−(2tr + 1
µ
)Ccal is read from a pre-calculated lookup table rather than an accurate DSP multiplier

to save the resource overhead. This is based on the observation that both tr and µ are constant

coefficients and Ccal has a relative small FXP bit resolution, therefore the corresponding lookup

table is easy to generate and small in size. Besides, this lookup-based multiplication calculation

only considers the integer value of Ccal and the decimal part is ignored following the data-level

approximation principles.

Figure 3.14 shows the implementation of SpiKL-IFIP on our LSM neural accelerator. The MK

LUT represents the lookup table from which mk is fetched. Based on whether K(n) is greater

or smaller than 1, it looks up either the integer or fractional part of K(n) and generate the cor-

responding result. The C LUT is the lookup table to calculate the term −(2tr + 1
µ
)Ccal and its

depth depends on the bit resolution of Ccal. All computational steps in the IP update submodule

are controlled and synchronized by the local finite state machine (FSM) shown in the figure. Mul-

tiplications are executed by the DSP slice on the FPGA, which is individually instantiated in each

reservoir neuron. After the synaptic current x(n) is updated, the IP update module is enabled and

the inputs to the multiplier are selected by the multiplexer in order. Besides, intermediate results of

some multiplication steps are registered and sent back to the input of the multiplier to be used for

the following steps. The IP update FSM also controls the communication between the IP update

submodule and the spike generation module, the latter implements basic neuron model behaviours

such as updating the membrane potential and generates the output spike. A flag signal (i.e. finish

60

>>τc

>>mk

Mk

LUT

+

-

1

+

A

B

P

M
U
L

FSM

C(n-1)

x(n)

0 1

ΔV

1

0

2

1

>>mk

δc

K(n-1)

K(n)

0

1

2

0

1

2

0

1

2

0

1

2

>

>=
1

dirmk

α3

C
LUT

finish

Figure 3.14: Hardware implementation of the proposed SpiKL-IFIP learning rule. The shaded
blocks are registers for intermediate results that are needed for the following computation steps.

in Figure 3.14) is generated by the IP submodule when the update K is finished at the current

time step. When the spike generation module receives this signal, it takes the membrane potential

change ∆V = K(n) · x(n) and updates the membrane potential V .

The implementation of SpiKL-IFIP shown in Figure 3.14 involves several arithmetic opera-

tions such as multiplications and additions, which makes its data path logic relatively complex.

Besides, the implementation of the SpiKL-IFIP rule in this way is in general limited by the avail-

able DSP resources on chip due to the requirement of multiplications. To address these issues,

we present a further simplified multiplication-free SpiKL-IFIP implementation to make the best

effort on reducing the hardware overhead of IP implementation for IF spiking neurons. In the pro-

posed multiplication-free SpiKL-IFIP implementation, we apply the data-level approximation in

a more aggressive manner to completely get rid of multiplications by approximating the variable

operands of all multiplications and divisions using powers of 2. The resulting multiplication-free

SpiKL-IFIP implementation is depicted in Figure 3.15.

61

First, we follow the implementation in Figure 3.14 that the calculation of product term involv-

ing Ccal is realized by a lookup table (i.e. C LUT in Figure 3.15). In the proposed multiplication-

free SpiKL-IFIP implementation, K(n) is approximated by the power of 2, denoted by 2m
′
k . We

define that 2m
′
K < K(n) ≤ 2m

′
K+1 and m′k is read from a lookup table similar to that in the imple-

mentation of the standard SpiKL-IFIP shown in Figure 3.14. Then, dividing and multiplying K(n)

in (3.19) and (3.21) are realized by shifting m′K bit(s), the direction of which is controlled by the

dir signal in Fig. 3.15 depending on whether K(n) is greater or less than 1. This multiplication-

free implementation finish the update of K(n) in a single clock cycle and benefits the training

latency hence training energy of the proposed SpiKL-IFIP, which further improves its hardware

implementation efficiency. The m′k and dir signals are sent out to the spike generation module to

update the membrane voltage V , which is also implemented through the shifting operation instead

of applying multiplication directly.

C(n-1)

δc

>>(τc±mk)>>(τc±mk)

M’k
LUT

K(n-1)

0

1

α3

K(n) m’k

>

>= >= 1

dir

mkdir
C

LUT

Figure 3.15: Multiplication-free onchip SpiKL-IFIP implementation.

62

3.2.5.4 Hardware Implementation of SpiKL-IP

Integrating all hardware optimization and run-time sparsification approaches mentioned in

Sec. 3.2.5.2, the flow diagram of the optimized on-chip IP for LIF neurons is depicted in Fig. 3.16,

which is realized in the reservoir neuron IP modules in the LSM integrated with the SpiKL-IP algo-

rithm. After finishing IP update at the current time step, ∆V will be taken by the spike generation

module to update the membrane potential V . The IP update module for SpiKL-IP algorithm adopts

the similar logic designs for SpiKL-IFIP to implement basic calculations, for example multiplica-

tions and divisions, with additional logics that are necessary. Notice that we do not implement the

SpiKL-IP rule in a multiplication-free manner since the resulting performance degrade is too much

due to the aggressive approximation.

x(n+1), V(n), C(n), s(n)

Update

Update

𝑪(𝒏 + 𝟏)𝟐 = (𝑪 𝒏 + 𝟏)𝟐 𝑪(𝒏 + 𝟏)𝟐 = 𝑪𝒓
𝟐 −

𝑪𝒓
𝟐

𝝉𝒄 𝟐𝒊

𝑪𝒓
𝟐 = 𝑪(𝒏 + 𝟏)𝟐 𝒊 − −

s(n) == 1?

Register , reset i

Update Update

Update

Update R(n+1)

Update

∆𝑽 = 𝑽 𝒏 + 𝑹(𝒏) ∙ 𝒙(𝒏)
𝟏

𝝉𝒎(𝒏)

𝟏

𝝉𝒎(𝒏)

𝑨 =
𝟏

𝟏𝟐𝟖
𝑪(𝒏)𝟐 −

𝟏

𝟐
𝑪 𝒏 + 𝟏

𝝉𝒎(𝒏 + 𝟏)

Figure 3.16: Flow diagram of optimized IP for LIF neurons.

63

3.2.6 Experimental Settings and Benchmarks

We measure the performance gain vs. hardware overhead tradeoffs of the optimized on-chip IP

as part of an LSM neural processor. The readout layer of the LSM is trained by a spike-dependent

supervised algorithm [19]. The classification performances reported in this paper are evaluated by

software simulations with a one-to-one mapping of digital computations with the corresponding

FXP bit resolutions. FPGA prototypes of LSM neural accelerators are designed on the Xilinx Zynq

ZC706 platform for hardware overhead and power/energy results.

3.2.6.1 Training Benchmarks

In this work, LSM neural processors are trained and tested on two real-world speech recog-

nition tasks. The first benchmark is a subset of the TI46 speech corpus [71] which contains spo-

ken utterances of English letters from "A" to "Z". We adopt two subsets with 260 (from a single

speaker) and 520 (from two speakers) speech examples respectively and use 5-fold cross-validation

to measure the test accuracy. Original time domain speech signals are preprocessed by Lyon’s ear

model [81] and then encoded into 78 spike trains using the BSA algorithm[82] before applied to

hardware LSMs. For this benchmark, we build neural processors with 135 reservoir neurons and

26 output neurons.

The second benchmark is the widely-studied TIMIT acoustic-phonetic dataset [72] and we also

adopt two subsets of it. In the first subset, there are in total 600 training and 200 testing examples

[54] and the LSM neural processor is trained to classify four "vowel" phonemes, i.e. "iy", "eh",

"ah" and "axr", with 50 reservoir and 4 output neurons. In the preprocessing which is carried out

offline in the software simulator, the phoneme WAV files are first converted into 13 Mel frequency

cepstral coefficients (mfccs) following [54] and then converted to firing rates according to:

Ratei(t) =
mfcci(t)− ωi

Ωi − ωi
·Ratemax, (3.27)

where mfcci(t) is the ith mfcc value at time t, Ratei(t) the corresponding firing rate for input

64

neuron i, ωi the minimum value of the ith mfcc, and Ωi the maximum value of the ith mfcc.

Ratemax is a constant value which is set to 200Hz in our simulation. Then, input spike trains are

generated from the firing rates following the Poisson distribution.

The second subset of the TIMIT benchmark contains 8, 157 training and 2, 884 testing exam-

ples for three different "vowel" phonemes: "aa", "ih" and "ow". For this subset, we follow the

network settings and data preprocessing methods introduced in [98] for a fair comparison. The

LSM with 27 reservoir neurons and 3 readout neurons is trained for this subset.

3.2.6.2 Parameter Settings in LSM Neural Processors

As mentioned in Sec. 3.2.5, we perform statistics-driven data-level approximation in which

all constant multipliers or divisors are approximated to powers of 2. Table 3.8 lists the constant

values adopted in the proposed IP learning rules in which we report both the original continuous-

valued parameters using in the software simulation and the approximated values after optimization

that are implemented on the hardware. In order to maximize the cost-effectiveness of the on-chip

IP implementation, we also carefully determine the resolution of each neural parameter for its

FXP representation on hardware neural processors based on the numerical data distribution from

the realistic simulation results. Table 3.9 and Table 3.10 report the chosen resolutions of neural

parameters in the LIF and the IF neuron respectively which maximize the cost-effectiveness of

on-chip IP training on targeted architectures and applications. Note that the optimal resolution

for the same neural parameter could be different in different models. In these two tables, IB and

FB denote the number of integer and fractional bits, respectively. All variables except for V are

unsigned numbers, and an extra 1-bit sign bit is applied to V in both neuron models.

3.2.7 Experimental Results

With the experimental settings introduced in Section 3.2.6, in this section, we report the speech

recognition performance and hardware overheads of LSM neural accelerators with proposed onchip

IP learning rules.

65

Table 3.8: Constant parameters settings

Parameter Value Parameter Value Approx. Value

Vth 20mV τcal 64ms N/A
tr 2ms µ 0.2KHz 0.25KHz
α1 0.5Ω η1 5 4
α2 0.5ms η2 5 4
α3

1
64

η3
1
64

N/A

Table 3.9: FXP resolutions of neural parameters in the LIF spiking neuron model

Variable IB FB
V 5 8
Ccal 5 7
τm 9 7

R 9 6

Table 3.10: FXP resolutions of neural parameters in the IF spiking neuron model

Variable IB FB
V 5 0
Ccal 5 7
K 3 10

3.2.7.1 Classification Performances

We train and test LSM neural processors integrated with IP on two real-world speech recog-

nition tasks and report the inference accuracies in Table 3.11 and Table 3.12 for TI46 and TIMIT

benchmarks, respectively. We also compare the proposed on-chip IP training with some exist-

ing works on the same dataset and network size [84, 54, 98]. Note that the accuracy results of

SDSM LSM [54] and SpikeProp [98] in Table 3.12 are from software simulator while all other

results in the two tables are based on hardware neural accelerator. In both tables, the dataset

size considers both training and testing samples. The baseline represents an LSM with a fixed

66

LIF-based reservoir and MF SpiKL-IFIP refers to the LSM neural processors integrated with the

proposed multiplication-free SpiKL-IFIP implementation. The testing accuracies shown in both

tables demonstrate that self-adapting reservoir neurons using IP can robustly boost the recognition

performance and be a powerful complimentary of the Hebbian-based readout training algorithms.

Compared to the baseline LSM with a fixed reservoir, up to 10.33% and 8% performance gain

can be achieved for TI46 [71] and TIMIT [72] dataset, respectively. Compared to the LSM neural

processor with reservoir tuned by the STDP based learning mechanism, the reservoir tuned by IP

outperforms by up to 4.91% performance boost for the TI46 benchmark. Moreover, for the TIMIT

benchmark, we outperform up to 38.05% than reference works [98].

Table 3.11: The performances of SNNs trained with different learning algorithms on TI46 speech
corpus dataset.

Dataset size: 260,
Network size:
135 RES, 26 OES

Dataset size: 520,
Network size:
135 RES, 26 OES

Baseline 91.54% 81.59%

STDP LSM [84] 92.40% N/A

SpiKL-IP 97.31% 91.92%

SpiKL-IFIP 96.54% 91.15%

MF SpiKL-IFIP 95.38% 89.23%

3.2.7.2 Hardware Overheads

In Table 3.13, we compare the resource utilization and training energy consumption of different

onchip IP rules. For each benchmark studied in this work, we take a representative network size

and implementing all proposed hardware IP rules on the corresponding FPGA LSM accelerator to

see the tradeoffs between the performance gain and hardware overhead. The resource overhead

is reported in terms of slice flip flops (FFs) and LUTs as well as the percentages of usage with

respect to the overall available resources on the targeted Xilinx ZC706 FPGA. The power numbers

67

Table 3.12: The performances of SNNs trained with different learning algorithms on TIMIT speech
corpus dataset.

Dataset size: 800,
Network size:
50 REs, 4 OEs

Dataset size: 11041,
Network size:
27 REs, 3 OEs

SDSM LSM [54] 49% N/A

SpikeProp [98] N/A 45.39%

Baseline 67% 77.80%

SpiKL-IP 75% 83.44%

SpiKL-IFIP 72.5% 82.52%

MF SpiKL-IFIP 71.5% 81.22%

are estimated by the Xilinx Power Analyzer given the application-specific post-implementation

simulation results. The training latency and training energy are for training a representative input

sample of the corresponding dataset for one iteration. The clock frequency in all considered cases

is 100MHz. We also report the normalized resource utilization averaging between LUTs and FFs

results, and the normalized energy result.

From Table 3.13, it can be seen that the proposed SpiKL-IFIP algorithm and its optimized

implementation dramatically reduces the cost of onchip implementation of intrinsic plasticity.

The LSM neural accelerator with multiplication-free SpiKL-IFIP implementation can save up to

48.1% training energy and 64.4% resource utilization compared to that with SpiKL-IP implemen-

tation, which is in the case of LSMs with 50 reservoir neurons and 4 readout neurons. Mean-

while, based on results given in Table 3.11 and Table 3.12, the tradeoff on performance gain of

the multiplication-free SpiKL-IFIP can be as graceful as 2.69%. Moreover, when comparing the

LSM neural accelerator implemented with the multiplication-free SpiKL-IFIP with the baseline

neural processor, we can see that the proposed implementation of on-chip IP largely boosts the

testing performance with a decent hardware extra cost. The extra overhead and energy cost of

multiplication-free SpiKL-IFIP is as small as 11% compare to the baseline while the performance

boost reaches up to 7.64% for TI46 and 4.5% for TIMIT. The proposed hardware-friendly SpiKL-

68

IFIP and its optimized implementation provides a solution to achieve good performance gain vs.

overhead tradeoffs to advance spiking neural accelerators by enabing per-neuron self-adaption on

chip.

Table 3.13: Hardware overhead of LSM accelerators integrated with different on-chip learning
algorithms

Network: 135 REs, 26 OEs; Dataset: TI46

Baseline SpiKL-IP SpiKL-IFIP MF SpiKL-IFIP

Resource
Utilization

LUTs 35072
(16.04%)

92432
(42.86%)

52939
(24.22%)

37108
(16.93%)

FFs 12527
(2.86%)

33452
(7.63%)

22787
(5.21%)

14417
(3.30%)

Training Power (mW) 97 170 128 107

Training Latency (ms) 4.85 4.98 4.92 4.86

Training Energy (uJ) 470.45 846.60 629.76 520.02

Norm. Resource 1.00 2.65 1.66 1.10

Norm. Energy 1.00 1.80 1.34 1.10

Network: 50 REs, 4 OEs; Dataset: TIMIT

Baseline SpiKL-IP SpiKL-IFIP MF SpiKL-IFIP

Resource
Utilization

LUTs 9514
(4.35%)

31092
(14.22%)

16184
(7.40%)

10186
(4.66%)

FFs 3706
(0.85%)

11457
(2.62%)

7507
(1.72%)

4406
(1.01%)

Training Power (mW) 24 58 37 31

Training Latency (ms) 1.96 2.09 2.03 1.97

Training Energy (uJ) 47.04 121.22 75.11 61.07

Norm. Resource 1.00 3.18 1.86 1.13

Norm. Energy 1.00 2.58 1.60 1.30

69

4. READOUT LEARNING AND SPARSIFICATION OF LIQUID STATE MACHINES∗

As demonstrated in previous chapters, the LSM is a good trade-off between the ability in tap-

ping the power of recurrent spiking neural networks and engineering tractability. Recently, the

unique architectural and functional properties of the LSM have been leveraged for cost-effective

hardware implementations with integrated efficient on-chip learning mechanisms to tune the reser-

voir and the readout layer [55, 19, 99]. Particularly, [19] proposes a biologically plausible spike-

dependent readout training algorithm and is implemented on hardware LSM neural processors [55,

99]. However, a key limitation of the output training algorithms implemented in these works is that

good performance is typically guaranteed only with full connectivity between the reservoir and

readout. This leads to overall high complexity of the network and also large overhead for hardware

implementation. Besides, training algorithms that applied to the LSM and SNNs in general shall

update the synaptic weights only based on the local neural firing activities while achieving the end

learning objectives. This natural property of the SNN imposes a significant challenge on the design

of learning algorithms, as most conventional optimization methods do not satisfy it.

The above challenges motivate us to seek an alternative learning algorithm. Section 3.1 demon-

strates the benefits of unsupervised STDP in reservoir training, which inspires us that it can be

considered as a good solution if combined with supervision given that it operates by locally tuning

synaptic weights according to temporal spike correlations and produces interesting self-organizing

behaviors. In fact, ideas of combining supervision and STDP have been explored for precisely

timed spike pattern reproduction and decision making [50, 51, 52], however, without demonstrat-

ing in real-world applications. More recently, [73] proposed the calcium-modulated supervised

STDP particularly under the context of the LSM, which was only evaluated in software simulation

with continuous weight values and STDP learning curves.

This chapter presents the work of exploring STDP mechanisms to train liquid state machine

∗ c©2019 ACM. Reprinted, with permission, from Yu Liu, Sai Sourabh Yenamachintala and Peng Li, “Energy-
efficient FPGA Spiking Neural Accelerators with Supervised and Unsupervised Spike-Timing-Dependent-Plasticity”
ACM Journal on Emerging Technologies in Computing Systems. ACM, 2019.

70

models with supervision on a hardware LSM accelerator. We employ a supervised STDP rule

to train the output layer of the LSM such that it delivers good classification performance at the

same time sparsifies network connections to reduce hardware power consumption. A unifying

two-step supervised STDP tuning approach is adopted to achieve both objectives at the same

time: the calcium-modulated learning algorithm based on supervised STDP, denoted as CaL-

S2TDP , to improve learning capability, and the calcium-modulated sparsification algorithm based

on supervised STDP, denoted as CaS-S2TDP , to reduce hardware power consumption without

significantly degrading the learning performance.

We also pursue efficient hardware implementation of FPGA LSM accelerators which allows for

on-chip training and inference by performing hardware optimization of the two proposed training

rules and exploiting the self-organizing behaviors naturally induced by STDP. In the readout layer,

we design the learning engine with minimized resource and power overhead by maximizing the

resource sharing among different learning processes. The runtime on-chip learning accuracy as

well as the hardware implementation overhead of the LSM neural processors are reported in this

chapter.

Several FPGA recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform

with the ARM microprocessor on the same board serving as the host. These neural accelerators are

trained for the non-trivial speech recognition task with the TI46 [74] speech corpus benchmark.

Our results indicate that the LSM neural accelerators can achieve up to 3.47% classification per-

formance boost with unsupervised reservoir training (introduced in Chapter 3.1) and supervised

readout training algorithms compared to the baseline. Besides, we also show that both unsuper-

vised and supervised STDP algorithms can be implemented on the hardware with great efficiency.

4.1 Hardware-Friendly Supervised STDP for Readout Training

In SNNs, information is encoded and processed in the form of local spikes. This enforces

synaptic weights to be updated locally based on neural firing activities when training SNNs. Under

this consideration, STDP, which by nature locally tunes the synaptic weight according to temporal

spike correlations of a neuron pair, can serve as a good alternative to train SNNs towards certain

71

learning objectives. However, how to apply supervision on the by-default unsupervised STDP

mechanism needs carefully study, which we present in this section.

4.1.1 Baseline Supervised STDP

Classification decisions made by the LSM can be inferred from the associated class label of the

output neuron with the highest firing frequency. Given that, we describe the target of a supervised

training algorithm on spiking neural networks as: maximizing the firing frequency of the readout

neuron whose class label corresponds to the presented input sample, referred to as the “desired

neuron”, and at the same time minimizing the firing frequency of all other readout neurons, referred

to as “undesired neurons”.

Mathematically, this is to solve the following optimization problem:

max
fi
j

N∑
i=1

(f ic(i)(Xi,W)−
C∑

j 6=c(i)

f ij(Xi,W)), subject tof ij ≥ 0, (4.1)

where N is the total number of training samples, C the total number of input classes, and Xi the

ith input sample that belongs to class c(i). f ij is the firing frequency of the jth readout neuron under

the ith input, and W is the the readout synapse weight vector.

In (4.1), for each input sample, we want to maximize the distance of firing rate between the

desired neuron and undesired neurons so as to optimize the classification error over the entire

training dataset. However, solving it in a mathematically exact manner is formidable.

Therefore, instead of solving (4.1) directly, we propose the deterministic supervised STDP al-

gorithm, referred to asD−S2TDP , which is a feasible solution exploiting the local weight update

characteristics of STDP (Fig. 4.1(a)). The main idea of the D-S2TDP is based on the observation

that the standard STDP rule works by adjusting the strength of the synaptic connection between

a neuron pair based on their relative firing timing. This can be leveraged to control the firing ac-

tivities of the postsynaptic neuron, in our case the desired output neuron, to an expected level if a

well-defined supervisory signal is given. The supervisory signal, i.e., classification teacher (CT)

signal in Fig. 4.1(a), is an injected positive current to force the desired neuron to fire frequently

72

and hence invoke enough weight updates. Under the mediation of the STDP, afferent synapses

of the desired output neuron form a stronger connection which in turn further increases the like-

lihood of the postsynaptic neuron to fire in presence of its presynaptic spikes. As illustrated in

Fig. 4.1(b), with the CT presented, the desired neuron i1 generates more spikes in response to a

presynaptic spike, resulting in further potentiation of wi1 . The presence of CT also robustly bring

up the learning process when the initial weights are very small.

In terms of undesired neurons, we want to prevent them from firing when unassociated input

samples are presented. To achieve this, a novel depressive STDP rule is proposed (see Fig. 4.1(a))

to depress afferent synapses so that the chance of postsynaptic firing is reduced. As depicted in

Fig. 4.1(c), when the undesired postsynaptic neuron i2 fires in response to a causal spike pattern,

the afferent synaptic weight wi2 is decreased to discourage it to fire again.

The depression induced by the anti-causal (i.e., post-before-pre) spike pairs still applies to both

desired and undesired neurons. This enables competition among plastic synapses such that a sparse

structure can be learned [88].

jj

i1

i1i1
ww
i1

w i2i2
ww
i2

w

(b) (c)

j

i2

(a)

j
i2i2

i1i1

wwi2i2wi2

i1i1wwi1w

Classification
Teacher (CT)

+

Depressive
STDP

Depressive
STDP

Normal
STDP

Δw

Δt

Δw

Δt

Δw

Δt

Δw

Δt

CT CT

Figure 4.1: (a) Proposed D-S2TDP algorithm. The neuron i1 is the desired neuron and i2 is
the undesired neuron. (b) and (c) Weight update under the proposed D-S2TDP algorithm. The
potentiation or depression keeps updating synaptic weights when a valid spike pair is presented.
Besides, By applying CT, the spike event of the desired neuron happens steadily and periodically.
Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

73

4.1.2 Supervised STDP Readout Learning Algorithm: CaL-S2TDP

The proposed D-S2TDP effectively serves the supervised training purposes on spiking neu-

rons. However, the deterministic weight update scheme could result in several known issues such

as poor memory retention, weight saturation and large dynamic hardware power consumption.

To address these problems, we optimize the supervised STDP algorithm with the proposed CaL-

S2TDP algorithm.

In D-S2TDP , the desired output neuron maintains a high firing frequency and hence fre-

quently update its synaptic weights. However, the number of weight levels is limited by the finite

resolution representation when implemented on the hardware. As a result, the learning ends up

in a way that most recent information presented to the neuron are learned better than the past in-

formation [100, 101]. This issue is known as the memory retention. Moreover, when training on

the hardware, the frequent weight update results in frequent switching activities of the associated

signals and logic cells as well as intensive weight memory access, which leads to high dynamic

power consumption. To this end, we adopt the probabilistic weight update scheme in [21] to slow

down the learning process for better learning performance and hardware power efficiency.

Moreover, without any stop-learning mechanism, readout synapses are continuously tuned by

the supervised STDP with the on-going reservoir responses and the synaptic weights are pushed to

a bimodal distribution (Fig. 3.1) by STDP by nature. Ultimately, readout neurons will be unable

to respond to any new stimuli since most of their afferent synapses are saturated at the maxi-

mum/minimum weight values.

To solve the weight saturation problem, we disable the potentiation of a synapse when its

postsynaptic neuron is very active. Similarly, the depression stops when the postsynaptic neuron

is already silent. Inspired by [102], in our work, the internal calcium concentration of a neuron is

used to indicate its average firing level over a long time interval and to manage the activation of

74

the learning. The calcium concentration c(t) is defined as:

dc(t)

dt
= −c(t)

τc
+
∑
i

δ(t− ti), (4.2)

where τc is the time constant and ti is the time when the postsynaptic neuron fires. The internal

calcium concentration level of the neuron increases with its firing frequency.

Given above considerations, we integrate the calcium-modulated weight update in the super-

vised STDP readout training algorithm. First, a calcium threshold cθ is defined to separate active

neurons from inactive ones. Then, an activation margin δ is set. Synapse potentiation is allowed

when c < cθ + δ and depression is allowed when c > cθ − δ. Following the principle of Hebbian

learning, we also define the lower bound of the potentiation activation range and the upper bound

of c for depression. Combining the stop-learning mechanism and probabilistic weight updates, the

CaL-S2TDP algorithm is defined as:

w ← w + d w/ prob. ∝|∆w+|, if ∆t > 0 &&cθ < c < cθ + δ

w ← w − d w/ prob. ∝|∆w−|, if ∆t < 0 &&cθ > c > cθ − δ, (4.3)

where ∆w+/∆w− are the weight adjustments determined by the STDP rule. They further deter-

mine the probabilities of a weight update for LTP and LTD, respectively.

For the undesired neuron, since the depressive STDP is employed for both causal and anti-

causal spike pair patterns, the first equation in (4.3) is changed from w + d to w − d as well when

∆t > 0. The weight update in CaL-S2TDP algorithm is illustrated in Fig. 4.2(c) and (d), where,

unlike D-S2TDP as shown in Fig. 4.1(b) and (c), no weight update is allowed if the calcium level

is too low or too high.

75

 +C

LTP

LTD

Stop Learning

 −C

C

(b)(a)

j
i2i2

i1i1

wwi2i2wi2

i1i1wwi1w

Classification
Teacher (CT)

+

Depressive
STDP

Depressive
STDP

Normal
STDP

Stop Learning

i1

i2i2
ww
i2

w

(c) (d)

j

i2

Δw

Δt

Δw

Δt

Δw

Δt

Δw

Δt

CT CT

𝐶𝜃 + 𝛿

𝐶𝜃

i1i1wwi1w

𝐶𝜃

𝐶𝜃 − 𝛿

Figure 4.2: (a) Proposed CaL-S2TDP training algorithm. The neuron i1 is the desired neuron
and i2 is the undesired neuron. (b) The calcium-modulated activation range. (c) and (d) Weight
update of desired and undesired neurons. The potentiation or depression only happens when the
postsynaptic calcium level c is in the activation range. Reprinted with permission from Yu Liu, Sai
Sourabh Yenamachintala and Peng Li c©2019 ACM.

4.1.3 Supervised STDP Readout Sparsification Algorithm: CaS-S2TDP

In an LSM, synapses from the reservoir to the readout layer are fully connected and their

weight resolutions are usually high to achieve good learning results. This could result in two prob-

lems: over-fitting due to the high model complexity, and large hardware implementation overhead.

However, randomly dropout readout synapses can significantly degrade the learning performance.

Therefore, an algorithm that smartly prunes readout synapses while maintaining classification per-

formance needs to be developed. The major difference between a sparsification algorithm from

a classification algorithm is that the objective of the sparsification algorithm is to allow sufficient

competition among synapses rather than to learn certain input patterns.

We realize that the STDP algorithm by nature mediates afferent synapses of a neuron to charac-

terize competitions among them. Some synapses are strengthened while others are weakened [88].

As a result, it leads to a bimodal weight distribution (see Fig. 3.1 as an example) out of which

many zero-valued or small-valued synapses can be pruned out. Therefore, the tuning mechanism

76

of STDP can be leveraged in our work to develop a supervised readout sparsification algorithm.

Moreover, in order to embed the sparsification into real-world classification tasks, the designed

algorithm should take spatiotemporal structures in the training samples into consideration such

that the discovered sparse patterns fit well with the features represented by the reservoir responses.

Working towards this target, we recognize that it is only necessary to instruct each readout neuron

to learn the sparse structure of the input subset of its associated class. This leads to the maxi-

mum sparsity and the information from other classes will not be mistakenly learned through the

sparsification process.

(b)

 +C

LTP

Stop Learning

LTD

Stop Learning

 −C

LTD

Stop Learning

 −C

(a)

j
i2i2

i1i1

wwi2i2wi2

i1i1wwi1w

Sparsification
Teacher (ST)

+

Normal
STDP

Inactivated

Figure 4.3: (a) The CaS-S2TDP sparsification algorithm. The activity level of the selected read-
out neuron i1 is boosted by the sparsity teacher (ST). (b) Stop learning for readout synapse sparsifi-
cation. Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019
ACM.

Given above considerations, we proposed the CaS-S2TDP algorithm for readout sparsifica-

tion learning. The external supervised sparsification teacher (ST) signal (Fig. 4.3(a)) is introduced

in CaS-S2TDP to ensures that only the afferent synapses of the desired output neuron are under

sparsification learning at a time and also bring up initial firing events of each readout neuron.

To maintain good learning performance, the stop-learning mechanism is also included in the

CaS-S2TDP algorithm as shown in Fig. 4.3(b). However, compared to CaL-S2TDP , the acti-

vation range of calcium concentration is more relaxed for both LTP and LTD to maximize sparsity

77

at the same time avoid undesirable bias in calcium regulation. In conclusion, the resulting CaS-

S2TDP sparsification algorithm is summarized as:

w ← w + d w/ prob. ∝|∆w+|, if ∆t > 0 &&c < cθ + δ

w ← w − d w/ prob. ∝|∆w−|, if ∆t < 0 &&cθ − δ < c.

(4.4)

4.1.4 Two-step Hardware-Friendly Supervised Readout Training

Combining CaS-S2TDP with CaL-S2TDP algorithms, we propose a unifying supervised

STDP readout training approach executed in two steps seamlessly. First, CaS-S2TDP is applied

to the output layer. At the end of the sparsification, the zero-weight synapses are removed and the

remaining synapses are trained by the CaL-S2TDP .

In the proposed readout training algorithm, CaS-S2TDP learns to capture the spatiotemporal

structures of the input spikes through the self-organizing behavior of STDP. Therefore, unlike

random synapse dropout, the discovered sparsity from the sparsification step can be passed to the

classification training step thus degrade the learning performance as little as possible.

Realizing CaS-S2TDP and CaL-S2TDP on hardware entails efficient implementation of

the STDP learning curve and the stochastic weight update scheme. Inspired by the realization of

the unsupervised STDP algorithm in the reservoir, for the proposed supervised STDP algorithms,

the weight update probability calculation is implemented by a lookup table whose entry values

are carefully chosen offline according to the associated learning curve. In our design, there is

a lookup table for LTD and LTP process respectively. Moreover, to minimize the resource and

power overhead of the supervised STDP implementation, we use the same learning engine for both

sparsification and classification training in each readout neuron. This involves resource sharing and

execution time interleaving of CaS-S2TDP and CaL-S2TDP , which will be introduced in more

detail in Section 4.2.

78

4.2 Implementation of Supervised STDP Readout Training

In this section, we discuss the cost-effective hardware implementation of the presented readout

training mechanism.

When implementing the supervised STDP learning mechanism in the OE, we make the fol-

lowing two observations. First, CaS-S2TDP and CaL-S2TDP share the principles in the weight

update scheme including the basics of STDP learning mechanism, probabilistic weight update, and

the calcium-modulated stop-learning rule. Second, in the readout training stage, the sparsification

training under CaS-S2TDP and classification training under CaL-S2TDP are executed in two

phases in order without overlap. This gives us an opportunity to explore the resource sharing of

logic cells and memories when implementing these two algorithms to optimize the resource uti-

lization and power efficiency. As shown in Fig. 4.4, the entire data path, including arithmetic logic

cells and STDP learning lookup tables (LUTs), are shared by both algorithms. Moreover, in CaL-

S2TDP implementation, the “potentiation” in the depressive STDP rule for undesired neurons is

implemented by the same LTP LUT as the regular STDP LTP curve for calculating update prob-

ability. To realize the depression update, instead, we inverse weight update value from +∆W to

−∆W when ∆t > 0, which is controlled by the CT as shown in Fig. 4.4. As such, we maximize

the resource reuse to build an overhead and energy efficient readout learning engine.

In the learning engine in the OE, first, we follow the implementation in the RE that computes

the spike timing differences using shift registers. As shown in Fig. 4.4, SR0 is the postsynaptic

shift register and SR1 to SRm are the presynaptic shift registers, assuming m is the number of

presynapses per readout neuron. In OEs, the value of m is generally much larger than that in the

LE due to the full connectivity of the readout synapses.

After the spike timing difference ∆t is computed, first, its signed bit is examined to deter-

mine whether this is an LTP or LTD update. LTP and LTD lookup tables store the weight update

probability which is related to the time difference. In general, a smaller |∆t| indicates a stronger

relation between the pre- and postsynaptic neuron thus leads to a higher weight update probability

according to the STDP tuning mechanism. The entries of both look-up tables are optimized offline

79

n
-to

-1
 M

U
X

Spost

SR0

Spre_1
SR1

Spre_2

SR2

Spre_m

SRm

CMP
Δt

Sel

Weight
Mem

Addr

prob.
CMP

RNGRNG

ENA

sgnsgn

STST

STST

LTP
LUT
LTP
LUT
LTP
LUT

LTD
LUT
LTD
LUT
LTD
LUT

Wi_old

CT

+ΔW

-ΔW 0

1

0

1

0

1

0

1
+

Wi_new

sg
n
(Δ
t)

sgn(Δt)

Calcium

Figure 4.4: Implementation of the proposed CaS-S2TDP and CaL-S2TDP algorithm. The blue
path are the control path specified to CaL-S2TDP and the orange path are specified to CaS-
S2TDP . The black paths represent the data and control path shared by two algorithms. Reprinted
with permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

to get good learning performance. At each biological time step, at most one LUT is enabled. The

LUTs are implemented with the distributed RAM on the FPGA with zero read latency. The weight

update probability output from the LUT is then compared it with the output from the random num-

ber generator (i.e., RNG in Fig 4.4), which is implemented by a linear-feedback shift register that

generates a different pseudo-random number at each biological time step. If the generated random

number is smaller than the probability threshold, and at the same time the calcium concentration

is in the activation range, then the corresponding synaptic weight is updated. Similar to the RE,

the calculation of ∆t and ∆w in OE are executed in serial in the order of synapse index in each

neuron.

Note that during the readout sparsification phase, only the afferent synapses of the desired

readout neuron are enabled for weight update. Therefore, the ST signal in Fig. 4.4 serves as an

enable signal for the STDP LUTs and the following data path. If ST equals to 0, the entire weight

update logic stays inactivated.

80

Input spike
buffer

Output spike
buffer

Config
Registers

R-SNN

Accelerator

SinSin

SoutSout

req_input

input_vld

output_rdy
output_ack

SinSin

SoutSout

req_input

input_vld

output_rdy
output_ack

ARM

Processor

Host

AXI infterface

Input spike
buffer

Output spike
buffer

Config
Registers

R-SNN

Accelerator

Sin

Sout

req_input

input_vld

output_rdy
output_ack

Sin

Sout

req_input

input_vld

output_rdy
output_ack

ARM

Processor

Host

AXI infterface

Figure 4.5: The illustration of the recurrent spiking neural computing system. Reprinted with
permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

4.3 Recurrent Spiking Neural FPGA Accelerators Design

In this work, several LSM neuromorphic processors are built on a Xilinx Zync ZC-706 platform

as FPGA accelerators. The onboard ARM Cortex-A9 MPCore microprocessor serves as the host

for the neural accelerator to provide input data and to receive the output spikes and analyze the

classification performance. Fig. 4.5 shows the recurrent spiking neural processing system.

The LSM neural accelerator communicates with the host through a high-speed 32-bit AMBA

AXI interface in a hand-shaking manner, the process of which is explained in Fig. 4.6. When the

host receives a request for a new input (i.e. req_input) from the LSM accelerator, it writes the input

pattern of the current biological time step to the input spike buffer located inside the interface. The

depth of the input buffer is 1 and the width equals the number of spike channels of the input data.

The original input files are stored in an SD card which can only be directly accessed by the host.

After the input spike write is done, the host asserts an input valid signal (i.e. input_vld) in the

configuration registers (config registers in Fig. 4.5). This bit will be seen by the LSM accelerator

and it then takes the spikes from the input buffer and starts processing. The neural accelerator

81

is also responsible for cleaning the input_vld bit after reading input spikes. Before the input_vld

signal is deasserted by the LSM accelerator, the host is blocked from executing any other function.

In terms of training the neural accelerator, first, the reservoir layer is trained until the synaptic

weight distribution converges. Then, the readout training stage starts, which can be further divided

into the sparsification training phase and classification training phase, in which the readout layer is

trained by the CaS-S2TDP and CaL-S2TDP algorithm, respectively. At the end of the readout

sparsification training phases, the zero-values readout synapses will be dropped out as the network

continues to the classification training phase. These dropped out synapses are not used for infer-

ence as well. During the entire readout training stage, the reservoir is activated to provide spike

inputs to the readout layer while maintaining its synaptic weights.

Start

wait for host initialization initialize accelerator

init?

NO

accelerator initialization

request new input

wait for new input

process start

process end

wait for output
acknowledgement

wait for next input request

update input register

assert input valid flag

wait for output spikes

take output spikes

assert output acknowledgement

YES

req_input

request input?

NO

YES

input valid?

NO

YES

output ready?

NO

YES
output_rdy

output ack?
NO

YES

update output register

Neural Accelerator Host

Figure 4.6: Handshake between the host and the neural accelerator.

82

During the inference stage, the host takes the output spikes generated from the LSM neural ac-

celerator to analyze the classification accuracy. After the LSM neural processor finishes processing

the current input, it asserts the output_ready signal to cofiguration registers. The host keeps pool-

ing the configuration registers for this signal. When the host sees the signal asserted, it takes the

spikes out from the output spike buffer and updates the spike counts of each output neurons accord-

ingly. At the end of each input sample, the host interprets the classification decision by selecting

the corresponding class label of the output spiking neuron that fires most during the presence of

the current input sample. This classification decision is then compared with the ground truth label

to see if it is correct. At the end of the inference stage, the host will report the overall classification

accuracy as the performance of the LSM neural processor.

4.4 Training Setup and Benchmarks

In the LSM neural accelerator implemented in this work, there are 135 reservoir neurons set up

on a 3D grid using the approach described in [19]. 80% of the reservoir neurons are excitatory and

the rest are inhibitory. The number of readout neurons is decided by the number of classes to be

classified in the benchmark, which is 26 in our case.

In the reservoir layer of the proposed recurrent spiking neural processor, we adopt the opti-

mized hardware-friendly unsupervised STDP training from [66]. To minimize hardware imple-

mentation cost, the reservoir synaptic weights is set to 2 and weight changes are only executed

when |∆t| ≤ 3. Table. 4.1 shows the lookup table that is implemented in the LSM neural acceler-

ator.

For the supervised STDP readout training approach, the parameters of the algorithms are se-

lected by exploring the design space to a certain level and we present the chosen values of the

key parameters in Table 4.2. To optimize the hardware overhead and at the same time guarantee a

good learning performance, the readout synaptic weight is set to 10-bit signed integers. The initial

weights are random values between the maximum and minimum values that can be represented un-

der the targeted resolution. The depths of both LTD and LTP LUTs are set to 16 and the LUTs are

tuned offline in the software simulator such that a good classification performance can be achieved.

83

Table 4.1: Optimized weight discretization and unsupervised STDP. Reprinted with permission
from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

wd1 = 0 wd2 = 2 wd3 = 6 wd4 = 8
∆t = −3 wd1 wd2 wd3 wd4
∆t = −2 wd1 wd1 wd2 wd3
∆t = −1 wd1 wd1 wd1 wd2
∆t = 0 wd1 wd2 wd3 wd4
∆t = 1 wd3 wd4 wd4 wd4
∆t = 2 wd2 wd3 wd4 wd4
∆t = 3 wd1 wd2 wd3 wd4

Table 4.2: Parameter settings of the proposed supervised STDP algorithms. Reprinted with per-
mission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

Parameter Value
A+ 3.0
A− 1.5
τ+ 4.0
τ− 8.0
∆W 1
cθ 5.0
δ 3.0
τc 64.0

The adopted benchmark is a subset of the TI46 speech corpus [74], which contains utterances

of English letters from “A” to “Z”. There are 260 samples in this benchmark, ten for each letter,

recorded from a single speaker. The time domain speech signals are first preprocessed by Lyon’s

passive ear model [81] and then encoded into 78 spike trains using the BSA algorithm [82].

During the readout sparsification phase, theCaS-S2TDP is iterated for a sufficient number un-

til the distribution of the readout synaptic weight reaches a steady state. Based on our observation,

the iteration times is set to 20, which is same as the number of iterations of the unsupervised STDP

reservoir training. This will lead to 25% readout synapses to be sparsified. Then, the readout layer

is trained by the proposed CaL-S2TDP algorithm for another 250 iterations, during which the

84

zero-weight output synapses will not be considered for weight update. A 5-fold cross-validation

scheme is adopted when evaluating the recognition performance.

4.5 Experimental Results

With the experimental settings introduced in Section 4.4, in this section, we report the learning

performance and hardware overhead of the LSM neural accelerators with the proposed supervised

training algorithm.

4.5.1 Classification Performance

Given the considered design space, the on-chip learning performances of several recurrent

spiking neural processors for the speech recognition task with the TI46 corpus benchmark are

reported in Table 4.3. In the table, we also show the performance boost of each training mechanism

compared to the baseline design. The neural accelerators are implemented with different reservoir

and readout training mechanisms as described in the table. The “X+Y” by default means applying

X training mechanism to the reservoir layer and Y to the output layer of the corresponding LSM

neural accelerator. The “baseline” output training algorithm is a competitive non-STDP supervised

spike-dependent training algorithm proposed in [19]. In the fixed reservoir, synapses weights are

not changeable and are set to 1 for excitatory synapses and −1 for inhibitory ones. The “Unsupv

STDP” represents the proposed hardware-friendly unsupervised STDP reservoir training algorithm

introduced in Section 3.1.

From the results, it is evident that both unsupervised STDP reservoir training and supervised

STDP readout training algorithm can noticeably improve the classification accuracy of the LSM

neural accelerator. By simply training the reservoir with the proposed hardware-friendly unsuper-

vised STDP algorithm, we can get a performance boost of 1.93% on top of the baseline design.

When applying only the CaL-S2TDP on the readout layer, the performance boost is up to 2.7%.

And when we combine the STDP-based reservoir training and the readout training, we can get a

major performance improvement of 3.47% on the final classification. The table also shows that

with a sparsified readout connection brought by CaS-S2TDP , the LSM neural processor can still

85

Table 4.3: Performances of LSM neural accelerators with different training mechanisms.

Classification
Accuracy

Performance
Boost

Fixed + Baseline 91.53% /

Unsupv STDP +
Baseline 93.46% 1.93%

Fixed + CaL-S2TDP 94.23% 2.70%

Unsupv STDP +
CaL-S2TDP

95.00% 3.47%

Fixed +
CaL-S2TDP+
CaS-S2TDP

91.92% 0.39%

Unsupv STDP +
CaL-S2TDP+
CaS-S2TDP

93.84% 2.31%

deliver a decent learning performance which is higher than the baseline. This outperforms the

LSM neural processors with randomly dropped readout synapses, in which an apparent perfor-

mance degradation is observed according to the results reported in [73].

4.5.2 Hardware Overheads

In this section, we compare the overhead of implementing different training mechanisms on

the LSM neural accelerators in terms of resource utilization and dynamic power consumption.

Table 4.4 shows the hardware resource utilizations of LSM neural processors implemented with

different learning mechanisms in terms of slice flip flops (FFs) and slice LUTs as well as their

percentages of usage with respect to the available resources on the targeted FPGA board. Here we

only consider the resource usage of the LSM neural processor accelerator itself and the overhead of

the AXI interface is not included because the interface only takes a small portion of the design and

is the same among different LSM neural processors. Similarly, in Table 4.5, we report the dynamic

training power consumption of different spiking neural accelerators which is estimated by the

Xilinx Power Analyzer given the activity-based simulation results. The power results are estimated

86

under the 100MHz clock frequency, which is consistent with the working clock frequency of the

physical hardware accelerator.

Table 4.4: Hardware resource utilization of LSM neural accelerators with different training mech-
anisms.

FFs
(% of utilization)

LUTs
(% of utilization)

Fixed + Baseline 12694 (2.90%) 43975 (20.18%)
Unsupv STDP +

Baseline 12717 (2.91%) 45785 (20.95%)

Unsupv STDP +
CaL-S2TDP

19841 (4.54%) 57581 (26.34%)

Unsupv STDP +
CaL-S2TDP+
CaS-S2TDP

19844 (4.54%) 57788 (26.43%)

Table 4.5: Classification training power of different algorithms on LSM neural accelerators.
Reprinted with permission from Yu Liu, Sai Sourabh Yenamachintala and Peng Li c©2019 ACM.

Fixed +
Baseline

Unsupv STDP +
Baseline

Unsupv STDP+
CaL-S2TDP

Unsupv STDP+
CaS-S2TDP &
CaL-S2TDP

Training for Classifi-
cation Power (mW) 161 195 237 229

Table 4.3, Table 4.4 and Table 4.5 in together show the trade-off between the learning accu-

racy and the hardware implementation overhead on the recurrent spiking accelerator of different

training algorithms. From Table 4.4 and Table 4.5, we can tell that implementing the supervised

STDP readout training required an extra overhead for both on-chip resources and power. The extra

overhead is mainly due the cost of computing the spike timing difference ∆t of pre- and postsy-

naptic neurons for all readout synapses. In order to achieve a decent classification performance,

87

the time windows and correspondingly depths of shift registers reserved in proposed supervised

STDP algorithms, CaS-S2TDP and CaL-S2TDP , are set to 12 for both LTP and LTD. This is

much larger than that in the reservoir for the unsupervised STDP which is set to 3. Moreover,

a full connectivity between the reservoir and the readout layer required a large number of flip

flops to be utilized for implementing supervised STDP algorithms, which contributes majorly to

the extra resource and dynamic power overhead. However, considering that the extra overhead

of implementing unsupervised and supervised training mechanism on the LSM neural accelerator

is relatively small compared to its learning accuracy boost over the baseline, and that the power

and resource utilization is overall low compared to the training cost on the software simulator, the

training efficiency of the hardware LSM neural accelerator is still noteworthy.

The results from Table 4.4 and Table 4.5 also shows that the proposed CaS-S2TDP reduces

the power consumption of the readout classification training stage compared to the case when

only the CaL-S2TDP is applied. Besides, the additional overhead to implement CaS-S2TDP is

very small. This indicates that by sharing the resources in the learning engine in readout neurons,

we can efficiently implement the supervised STDP readout training for both sparsification and

classification at the same time.

88

5. LSM APPLICATION IN EMERGING TECHNOLOGY: MONOLITHIC 3D LSM∗

Three-dimensional integrated circuits (3D ICs) promise to provide many advantages over tradi-

tional 2D ICs, including increased bandwidth, integrated heterogeneous systems, improved power

efficiency and so on. Monolithic 3D (M3D) is an emerging 3D technology that enables highly

integrated design by integrating two or more tiers of devices sequentially [59]. This technology

makes use of miniscule monolithic inter-tier vias (MIVs) (<100nm diameter, <1fF) to achieve

massive vertical integration density with on silicon-area overhead from 3D vias. These 3D con-

nections help in reducing wirelength and hence power with potentially better performance and

memory access options [60, 61]. In particular, M3D IC design offers great benefits in hardware

neural processors design as neural networks in general have a large number of connections at both

intra-neuron and inter-neuron levels hence long overall wirelength.

Recently, the LSM architecture has been leveraged to build energy-efficient M3D processors

and the benefits offered by M3D ICs in LSM neural processors compared to the conventional

2D IC designs has been explored for the first time [103]. This chapter presents part of the work

in [103] which focuses on the design and optimization of M3D LSM architecture and show the

corresponding results in terms of power-performance-area-accuracy tradeoffs for the real-world

speech recognition task.

5.1 Design Flow and Methodlogy

In this work, both 2D and M3D LSM neural processors are built with 135 reservoir neurons

and 26 readout neurons. The targeted LSM architecture is depicted in Fig. 2.1 and the train-

ing algorithms and on-chip implementation of the neural processor are introduced in Section 3.1.

For the 2D LSM design, a conventional full-chip RTL-to-GDSII ASIC design flow is adopted

using commercial 28nm process design kit at the block-level to reduce the design complexity

∗ c©2018 ACM. Reprinted, with permission, from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng
Li, and Sung Kyu Lim, “Design and Architectural Co-optimization of Monolithic 3D Liquid State Machine-based
Neuromorphic Processor”, Proceedings of the 55th Annual Design Automation Conference. ACM, 2018.

89

and facilitate IP reuse. For the M3D IC design, a state-of-the-art M3D IC design flow, Shrunk-

2D [60], is adopted and further extended to build the optimized top-down hierarchical M3D LSM.

In this flow, a pseudo-3D design called Shrunk2D is built, where the dimensions of the cells, wire

pitches/widths and footprint are scaled down to match the footprint reduction in 3D IC. The elec-

trical properties of cells and interconnects are maintained as in the original PDK to account for the

impact of wirelength reduction on timing and power optimization in 3D IC while using the same

timing and power information of the standard cell as in the original technology.

Fig. 5.1 illustrates the design flow of Shrunck-2D LSMs adopted in this work [103]. The

optimized placement result of the Shrunk2D design is the reference for partitioning the design into

two tiers, which is carried out on both the individual neuron level and the top (full-chip) level.

The Shrunk-2D flow is applied on each neuron to build a folded two-tier M3D neuron module,

and the top-level Shrunk2D design is built from the per-neuron Shrunck2D modules. Besides, in

the design process, MIV planning is carried out by using 3D metal stack and defining cell pins

in proper layers based on the tier location. Optimized MIV locations are determined given the

provided partitioning solution. As a result, GDSII files are generated for the targeted M3D LSM

neuromorphic processor, and M3D timing and power analysis proceeds.

5.2 Tier Partitioning of M3D LSMs

In order to enable M3D LSM designs, the conventional 2D ICs need to be folded, in which

cells and pins are partitioned into two tiers. In this work, different partitioning schemes for the

reservoir and the output neuron module are proposed based on their architectural and functional

characteristics in our proposed LSM processor to maximize the area and power benefit leveraged

from M3D ICs.

For reservoir neurons, all functional cells in the synaptic input processing module and the spike

generation module (defined in Section 2.1) are placed on the top tier so that they are close to the

global nets and the external connections to package pins. Then, we separate the reservoir spike

input pins, 16 bits in our case, evenly into two groups and put the lower bits of the reservoir

spike inputs and their peripheral logic cells on the bottom tier. All other input and output pins are

90

Top-level Floorplanning

MIV Planning

Shrunk2D - P&R

Tier Par��oning

Block Timing Budge�ng

Neuron M3D Design

Neuron MIV Port Punching

M3D �ming & Power AnalysisTier-by-�er Rou�ng

MIV Planning

Shrunk2D - P&R

Tier Par��oning

Tier-by-�er Rou�ng

Top-level M3D DesignTech/Macro LEF Shrinking

Shrunk2D Design LEF / LIB

Neuron Spli�ng

Final GDSII Genera�on

Figure 5.1: Proposed hierarchical Shrunk-2D flow to enable two-level folding, i.e. neuron level
and top-level. Reprinted with permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep
Samal, Peng Li, and Sung Kyu Lim c©2018 ACM.

assigned to the top tier for simplicity. Since the reservoir spike input pins are connected to the

synaptic input processing module, by having half of the reservoir spike inputs on the bottom tier,

we increase the vertical connections inside each neuron.

As for output neurons, the primary consideration is that the synaptic weight memory (in Fig. 2.2),

which is implemented by the register-file memory module inside each output neuron, takes a large

part of the layout and that the routing across the memory is costly. Therefore, we put the weight

memory and its peripheral logic cells on the bottom tier while all other cells are on the top tier.

Similar to the RE block, we partition the spike input pins of an OE block into two evenly sized

groups, one on each tier, to increase the vertical connections.

Figure 5.2 shows the resulting M3D and 2D LSM designs. In full-chip floorplans, reservoir

neurons are represented by blue blocks while output neurons are in yellow. Considering that each

output neuron is connected with all reservoir neurons, the 26 output neurons are uniformly arranged

in the center of the floorplan.

91

2D Floorplan
(770um X 915um)

M3D Floorplan
(544um X 646um)

2D IC

M3D IC

2D Output Neuron
(89.0um X 52.8um)

2D Reservoir Neuron
(52.8um X 36.0um)

M3D Output Neuron
(62.8um X 37.5um)

M3D Reservoir Neuron
(37.3um X 26.0um)

Figure 5.2: 2D and M3D designs of the reservoir and output neuron, and full-chip LSM neuromor-
phic processor floorplans and P&R results. In single neuron layouts, the large gray block is the
register-file memory module. Reprinted with permission from Bon Woong Ku, Yu Liu, Yingyezhe
Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM.

92

5.3 Design and Architectural Co-Optimization

In this section, we propose two design and architectural co-optimization approaches to improve

the overall power-performance-area-accuracy benefit of M3D LSM neural processors.

5.3.1 Synaptic Weight Memory Sharing

In the proposed LSM architecture, a large number of memory resources are required for weight

storage. Therefore, an efficient memory design scheme is important for the overall hardware over-

head and energy efficiency. The straightforward way is to instantiate individual memory module

inside each postsynaptic neuron. The depth of the memory depends on the number of presynapses

of the neuron, which is 16 for reservoir neurons and 135 for readout neurons in our case. The mem-

ory width represents the synaptic weight bit resolution, which is set to 2 and 8 for the reservoir

and readout synapses, respectively. The synaptic weight bit resolutions are optimized for hardware

efficiency while guaranteeing a good classification accuracy at the same time.

Although the distributed memory architecture is easy to implement, it would result in overall

large peripheral overhead due to the large number of memory modules instantiated in the network.

To improve memory efficiency, we replace the individual memory inside each neuron with a shared

memory at the reservoir and the output layer, respectively. This is based on the observation that,

at each emulation time step, all neurons at the same layer work in parallel; the synaptic weights

are accessed in serial following the same order based on their index. This means that, in any state,

neurons at the same layer are actually accessing the same address of their own memory. Given that,

in the shared memory architecture, we store all synaptic weight values in a row that are previously

at that same address in the distributed memory, and the values are associated with different neurons

by the bit index. When updating the weight value to the memory, the updated synaptic weights

from all neurons will first be concatenated to one row then write to the intended address. When

reading the weights, different slices of the memory output are assigned to their targeted neurons.

The width of the implemented share reservoir and readout synaptic weight memories are 135×

2 = 270, and 26 × 8 = 208, respectively. The depth of the shared memory is unchanged from

93

the individual counterpart. All synaptic weight memories are realized by register file modules

generated using a commercial memory compiler for the 28nm technology node.

5.3.2 Synaptic Model Complexity Reduction

In the synaptic input processing module (in Fig. 2.2), the second-order dynamic synaptic re-

sponse [19] is calculated upon arrival of each spike input. Excitatory and inhibitory synapses have

their own state variables:

EP (t+ 1) = EP (t)(1− 1/τEP) +
∑
wi · S+(i)

EN(t+ 1) = EN(t)(1− 1/τEN) +
∑
wi · S+(i)

IP (t+ 1) = IP (t)(1− 1/τIP) +
∑
wi · S−(i)

IN(t+ 1) = IN(t)(1− 1/τIN) +
∑
wi · S−(i),

(5.1)

where EP (t + 1) (EP (t)) and EN(t + 1) (EN(t)) are excitatory state variables of a neuron at

the (t+ 1)-th (t-th) biological time step, while IP and IN are inhibitory ones. τEP , τEN , τIP , τIN

are the decay time constants of the corresponding state variables, wi the synaptic weight and Si the

spike of the i-th synapse.

After the synaptic responses are updated for all presynapses, the membrane potential Vmem is

updated with the responses based on the widely used leaky integrate-and-fire (LIF) model:

Vmem(t+ 1) = Vmem(t)(1−1/τm) +
EP (t+ 1)− EN(t+ 1)

τEP − τEN
− IP (t+ 1)− IN(t+ 1)

τIP − τIN
, (5.2)

where Vmem(t+ 1) (Vmem(t)) is the membrane potential at the (t+ 1)-th (t-th) biological time step

and τm is the decay time constant of the membrane voltage.

In this work, we reduce the synaptic model from the second-order dynamics to the first-order

dynamics to optimize the overall power-performance-area-accuracy benefit. In the first-order

synapse model, there is only one state variable E in each neuron, which represents the overall

synaptic response among all its input spikes:

94

E(t+ 1) = E(t)(1− 1/τE) +
∑
i

wi · Si, (5.3)

where E(t + 1) (E(t)) is the first-order state variable at the (t + 1)-th (t-th) biological time step

and τE is the associated decay time constant.

The neuron membrane voltage now updates with the first-order synaptic model:

Vmem(t+ 1) = Vmem(t)(1− 1/τm) +
E(t+ 1)

τE
(5.4)

Fig. 5.3 shows the floorplan and layout of 2D and M3D LSM neural processors with different

synaptic complexity models. The red block in the middle is the shared memory for reservoir

neurons (shown in yellow), and the green block is the shared memory for readout neurons (shown

in blue). From the figure we can see that, with reduced synaptic model complexity, the area

overhead of each neuron module gets reduced hence the overall area of the entire chip.

5.3.3 Individual Neuron Results

In this and the following subsection, we present the area and static power benefits brought by

the two aforementioned architectural and design co-optimization approaches.

First, we compare the shared memory with the distributed memory architecture on the 2D neu-

ron design with the second-order synaptic model. Compared to the distributed memory scheme, in

the shared memory architecture, the storage element is packed together at the top-level hierarchy,

leading to 14% and 54% footprint area savings for the reservoir and the readout neuron, respec-

tively. The removal of the synaptic weight storage from inside of the neuron results in 24% and

48% internal power savings, respectively. The power results here are static power theoretically cal-

culated by the tool with typical parameters, which represent general cases and are independent of

specific applications. In addition, the footprint saving inside each neuron brings another 15% and

95

2D, 2nd-order synaptic complexity

M3D, 2nd-order synaptic complexity

2D, 1st-order synaptic complexity

M3D, 1st-order synaptic complexity

Figure 5.3: Comparison on 2D vs. M3D LSM neural processors with different synaptic models.
Memory sharing schemes are adopted in all designs. Reprinted with permission from Bon Woong
Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM with minor
modification.

23% static power saving for the reservoir and the readout neuron, respectively. Besides, for output

neurons, eliminating the register-file memory module not only helps to reduce the huge internal

power but also removes the routing blockage over the memory module and allows more efficient

routing.

Furthermore, the neuron implemented with reduced synaptic complexity requires fewer logic

cells hence end up with a more compact design. As a result, 57% and 75% footprint area and

65% and 69% static power can be saved for the reservoir and the readout neuron compared to the

baseline which has second-order synaptic models.

At last, we observe that M3D ICs bring extra savings over traditional 2D designs in terms of

footprint and power consumption on top of architectural optimization benefits. Assuming no sil-

icon area overhead, 50% footprint savings in M3D leads to additional 9% and 4% static power

savings for the reservoir neuron and 15% and 4% for the output neuron in two different archi-

tectures (i.e. distributed memory and shared memory) , respectively, as shown in Fig. 5.4. It is

96

noteworthy that the LSM with shared memory architecture and the second-order synaptic model

have the maximal M3D power savings in both reservoir and readout neurons. This is because neu-

rons with the first-order synaptic model have larger timing margin in the path and can meet timing

requirements under the targeted clock frequency, which is set to 1GHz, easily without the need

for inserting buffer. Since the neuron designs are pin-capacitance and internal power dominant,

reducing the buffer count in M3D design plays an important role in power saving.

20

W
ire

le
n

g
th

 (m
m

)

10

0

5

15

F
o

o
tp

ri
n

t
(u

m
) 5000

0

1250

2500

3750

2

0.0

0.8

0.6

0.4

0.2

To
ta

l
P

o
w

e
r

(m
W

)

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Reservoir Neuron Output Neuron

Footprint Wirelength

Leakage Power Switching Power Internal Power

Figure 5: Individual 2D and M3D neuron design results with
the architectural combinations of the proposed memory
sharing and the synaptic model complexity reduction.

At the top-level, M3D ICs have clear wirelength savings from the
2D counterparts at the same architecture thanks to a large number
of inter-neuron connectivities. In every architecture, M3D designs
offer more than 24% inter-neuron wirelength savings. However,
we observe that this inter-neuron wirelength savings do not guar-
antee the huge full-chip switching power savings because of the
sparse communications between the neurons in the LSM processer.
Nonetheless, combining all the power savings from both individual
neurons and the top-level, we find that both architectural optimiza-
tion approaches help to increase the M3D power savings from 9%
to 13%.

5 APPLICATION-BASED ANALYSIS
We carry out the real-world application of speech recognition on
the implemented LSM neural processors and explore the practical
3D IC benefits. The benchmark is adopted from the TI46 speech
corpus [7], which contains read utterances from 16 speakers of the
English letters ‘A’ through ‘Z’. Without loss of generality, we select
one representative speech for the letter ‘R’ and evaluate the power
dissipation in our designs. The continuous temporal samples are
preprocessed by Lyon’s ear model [4] and encoded into 78-channel
spike trains using the BSA algorithm [6]. The labeled 26 output
neurons correspond to the 26 letters in the English alphabet and
the output spike trains of the intended output neuron (‘R’ in this
case) is observed as expected.

5.1 Full-Chip Power Breakdown
Figure 7 shows the power consumption results for the reservoir
and output training, and classification of the letter ’R’ from three-
different architecture presented in this work. Thanks to the clock
gating implementation, the different activation of reservoir and
training unit effectively reduces the total power consumption. In

0.0

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Footprint Area (mm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

15

30

45

60

75

90

105

120

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Wirelength (m)2

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Sta!c Power (mW)

Output Neurons Reservoir Neurons Top-level

Leakage Power Switching Power Internal Power

Figure 6: The impact of sharedmemory and synapticmodels
on the full-chip design results.

the reservoir training phase, there is no power consumption of
the training unit as its clock is completely gated out. During the
output training and testing phases, the power of reservoir unit is
much smaller than the reservoir training phase because reservoir
synaptic weights do not change. Architectural optimization has a
great impact on the total power savings. Compared to 2D ICs with
distributed memory, 2D shared memory design with 2nd- and 1st-
order architecture offer 36% and 57% power savings for reservoir
training, and 4% and 27% for output training, and 7% and 38% for
testing, respectively.

The major source of these huge power savings are derived from
the individual reservoir neuron optimization. Regarding the M3D
power savings, we find that M3D designs always reduce the top-
level power consumption by more than 20%. However, as a part of
the overall bio-inspired computation models, the recurrent SNN
inherently operated with sparse firing activities, therefore power
savings at the top-level inter-neuron communications have been
generally consistent and small. Another benefit from M3D is the
output neuron power savings. We observe that the training unit
have a maximum of 12% power savings in M3D compared to the
2D counterpart, and this leads to clear power savings in M3D for
output training and actual classification.

5.2 Power-Performance-Area-Accuracy Benefit
The energy dissipation is dependent on the power as well as the
number of clock cycles of operation. Although the shared memory
architecture offers huge footprint and power savings, the shared
reservoir memory requires additional clock latency to access com-
pared to the flip-flops in the distributed reservoir weight storage.
The design with 1st-order synaptic model also largely saves the
power and footprint, but this hurts the classification accuracy from

Figure 5.4: Static power and placement&routing results of individual 2D and M3D neuron with
different combinations of architectural optimization approaches. Reprinted with permission from
Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM
with minor modification.

5.3.4 Full-chip Results

Fig. 5.5 shows the results of the proposed architectural optimization approaches on the full-chip

footprint, wirelength and static power consumption. Compared to the baseline LSM neural proces-

97

sor with distributed memory architecture and the second-order synaptic model, LSMs with shared

memory save 21% and 53% full-chip footprint with the second-order and the first-order synap-

tic model, respectively. However, in the shared memory second-order architecture, this footprint

saving does not lead to large wirelength saving due to the extra routing overhead from the shared

memory to the individual neurons in the same layer. Nevertheless, the shared memory helps to re-

duce the full-chip internal power by 23%, which leads to 18% of total static power savings. On the

other hand, the shared memory LSM with the first-order synaptic model can save the wirelength

and static power by 35% and 55%, respectively.

From Fig. 5.5, it is clear that M3D ICs have significant wirelength savings compared to the 2D

counterparts thanks to a large number of inter-neuron connectivities. However, we observe that

this inter-neuron wirelength saving does not guarantee the equivalent level of full-chip switching

power savings because of the sparse spike transfers between neurons in the LSM. The sparsity of

firing activities is an inherent nature of LSM as a bio-inspired spiking neural network and further

amplified by the reservoir training algorithms (i.e. hardware-friendly STDP as introduced in Sec-

tion 3.1). Nonetheless, combining all the power savings from both individual neurons and the top

level, we find that the proposed architectural optimization approaches help to increase the M3D

static power savings from 9% to 13%.

5.4 Application-based Experimental Results

To further evaluate the benefits of the proposed design and architectural co-optimization ap-

proaches, we carry out the real-world task of speech recognition on the implemented LSM neural

processors and measure the application-specific dynamic power and energy. The adopted bench-

mark is a subset of TI46 speech corpus [74], which contains read utterances from a single speaker

of the English letters ‘A’ through ‘Z’. Without loss of generality, we select one representative

speech of the letter ’R’ and evaluate the power dissipation of training and testing the example. The

continuous temporal speech sample is preprocessed by Lyon’s ear model [81] and encoded into

78-channel spike trains using the BSA algorithm [82] before sent to the neural processors. The

labeled 26 output neurons correspond to the 26 letters in the English alphabet and the output spike

98

20

W
ire

le
n

g
th

 (m
m

)

10

0

5

15

F
o

o
tp

ri
n

t
(u

m
) 5000

0

1250

2500

3750

2

0.0

0.8

0.6

0.4

0.2

To
ta

l
P

o
w

e
r

(m
W

)

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

Sh
a

re
d

.

2
n

d
 O

rd
e

r

Sh
a

re
d

.

1
st

 O
rd

e
r

D
is

t.

2
n

d
 O

rd
e

r

Sh
a

re
d

.

2
n

d
 O

rd
e

r

Sh
a

re
d

.

1
st

 O
rd

e
r

Reservoir Neuron Output Neuron

Footprint Wirelength

Leakage Power Switching Power Internal Power

Figure 5: Individual 2D and M3D neuron design results with
the architectural combinations of the proposed memory
sharing and the synaptic model complexity reduction.

At the top-level, M3D ICs have clear wirelength savings from the
2D counterparts at the same architecture thanks to a large number
of inter-neuron connectivities. In every architecture, M3D designs
offer more than 24% inter-neuron wirelength savings. However,
we observe that this inter-neuron wirelength savings do not guar-
antee the huge full-chip switching power savings because of the
sparse communications between the neurons in the LSM processer.
Nonetheless, combining all the power savings from both individual
neurons and the top-level, we find that both architectural optimiza-
tion approaches help to increase the M3D power savings from 9%
to 13%.

5 APPLICATION-BASED ANALYSIS
We carry out the real-world application of speech recognition on
the implemented LSM neural processors and explore the practical
3D IC benefits. The benchmark is adopted from the TI46 speech
corpus [7], which contains read utterances from 16 speakers of the
English letters ‘A’ through ‘Z’. Without loss of generality, we select
one representative speech for the letter ‘R’ and evaluate the power
dissipation in our designs. The continuous temporal samples are
preprocessed by Lyon’s ear model [4] and encoded into 78-channel
spike trains using the BSA algorithm [6]. The labeled 26 output
neurons correspond to the 26 letters in the English alphabet and
the output spike trains of the intended output neuron (‘R’ in this
case) is observed as expected.

5.1 Full-Chip Power Breakdown
Figure 7 shows the power consumption results for the reservoir
and output training, and classification of the letter ’R’ from three-
different architecture presented in this work. Thanks to the clock
gating implementation, the different activation of reservoir and
training unit effectively reduces the total power consumption. In

0.0

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Footprint Area (mm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

15

30

45

60

75

90

105

120

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Wirelength (m)2

2
D

M
3

D

2
D

M
3

D

2
D

M
3

D

D
is

t.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

2
n

d
 O

rd
e

r

S
h

a
re

d
.

1
st

 O
rd

e
r

Sta!c Power (mW)

Output Neurons Reservoir Neurons Top-level

Leakage Power Switching Power Internal Power

Figure 6: The impact of sharedmemory and synapticmodels
on the full-chip design results.

the reservoir training phase, there is no power consumption of
the training unit as its clock is completely gated out. During the
output training and testing phases, the power of reservoir unit is
much smaller than the reservoir training phase because reservoir
synaptic weights do not change. Architectural optimization has a
great impact on the total power savings. Compared to 2D ICs with
distributed memory, 2D shared memory design with 2nd- and 1st-
order architecture offer 36% and 57% power savings for reservoir
training, and 4% and 27% for output training, and 7% and 38% for
testing, respectively.

The major source of these huge power savings are derived from
the individual reservoir neuron optimization. Regarding the M3D
power savings, we find that M3D designs always reduce the top-
level power consumption by more than 20%. However, as a part of
the overall bio-inspired computation models, the recurrent SNN
inherently operated with sparse firing activities, therefore power
savings at the top-level inter-neuron communications have been
generally consistent and small. Another benefit from M3D is the
output neuron power savings. We observe that the training unit
have a maximum of 12% power savings in M3D compared to the
2D counterpart, and this leads to clear power savings in M3D for
output training and actual classification.

5.2 Power-Performance-Area-Accuracy Benefit
The energy dissipation is dependent on the power as well as the
number of clock cycles of operation. Although the shared memory
architecture offers huge footprint and power savings, the shared
reservoir memory requires additional clock latency to access com-
pared to the flip-flops in the distributed reservoir weight storage.
The design with 1st-order synaptic model also largely saves the
power and footprint, but this hurts the classification accuracy from

Figure 5.5: Static power and placement&routing results of the full-chip 2D and M3D designs with
different combinations of architectural optimization approaches. Reprinted with permission from
Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM
with minor modification.

99

trains of the desired output neuron (‘R’ in this case) is observed as expected.

5.4.1 Full-Chip Dynamic Power Breakdown

Figure 5.6 shows the power consumption for the reservoir training, the output training, and the

classification stage of three LSM with different architectures presented in this work. Note that in

the reservoir training phase, there is no power consumption in the readout layer (training unit) as

it is completely gated off. During the output training and the testing stage, the power consumption

on the reservoir unit is much smaller than that of the reservoir training phase because reservoir

synaptic weights do not change. The results show that the proposed architectural optimization

approaches can largely improve the energy efficiency of LSM neural processors. Compared to 2D

LSMs with distributed memory, 2D LSMs of shared memory with second- and first-order synapses

offer 36% and 57% power savings for reservoir training, 4% and 27% for output training, and 7%

and 38% for inference, respectively.

In terms of M3D IC power benefit, though it saves more than 20% top-level power consump-

tion, the top-level inter-neuron communications power only takes a small part in overall dynamic

power consumption thus the overall power reduction has been generally consistent and small. This

is because the recurrent SNN inherently operated with sparse firing activities as a part of the overall

bio-inspired computation models. Nevertheless, M3D benefits the output neuron power savings by

up to 12%, and this leads to overall power savings in M3D for readout training and inference.

5.4.2 Power-Performance-Area-Accuracy Analysis

The proposed architectural optimization approaches introduce a large amount of footprint re-

duction and power saving in both 2D and M3D LSM neural processors, however, at costs of

training latency or classification accuracy. For example, the shared reservoir memory, which is

implemented with a register-file memory module, requires additional clock cycles to access com-

pared to the flip-flops in the distributed reservoir weight storage. LSM neural processors with the

first-order synaptic model see a classification performance drop from 92.3% to 91.9%. Therefore,

we compare the final power-performance-area-accuracy benefit of the design and architectural co-

100

90

80

70

60

50

40

30

20

10

0

Po
w

er
 C

on
su

m
p�

on
 (m

W
)

2D M
3D 2D M
3D 2D M
3D 2D M
3D 2D M
3D 2D M
3D 2D M
3D 2D M
3D 2D M
3D

Di
st

.
2n

d
O

rd
er

Sh
ar

ed
.

2n
d

O
rd

er

Sh
ar

ed
.

1s
t O

rd
er

Di
st

.
2n

d
O

rd
er

Sh
ar

ed
.

2n
d

O
rd

er

Sh
ar

ed
.

1s
t O

rd
er

Di
st

.
2n

d
O

rd
er

Sh
ar

ed
.

2n
d

O
rd

er

Sh
ar

ed
.

1s
t O

rd
er

Reservoir Training Readout Training Classifica�on

Training Unit Reservoir Unit Top-level

Figure 5.6: Vector-based power consumption analysis in different operation steps. Reprinted with
permission from Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu
Lim c©2018 ACM

optimization in LSM neural processors to comprehensively assess the overall cost-effectiveness

among different design criteria.

In this work, we calculate the average energy consumption for training and classifying a rep-

resentative speech sample, which is calculated based on the power consumption for training and

testing the example letter “R” from Section 5.4.1. To get good learning performance over the en-

tire benchmark, 25 epochs of reservoir training and 250 epochs of output training are conducted

and these numbers of iterations are taken into account when calculating the corresponding training

latency. Targeting at 1GHz clock operation, Table 5.1 summarizes the overall energy consumption

101

for 2D and M3D LSM neuromorphic processors with different memory architecture and synaptic

model complexity. The LSM with distributed memory architecture and the second-order synap-

tic model serves as the baseline in the table. Although the reservoir training energy is larger in

shared memory architecture, it has little impact on the total energy dissipation considering its

small training latency compared to the readout training. Also, the power and footprint savings

are significantly large over the accuracy degradation with the first-order synaptic model. On av-

erage, for the targeted LSM neural processors, M3D IC design gives up to 16.1% less energy

consumption than its 2D IC counterparts for training and inference of a speech sample. Over-

all, we observe 70% power-performance-area-accuracy benefit from using design and architectural

co-optimization compared to the 2D baseline design.

102

Table 5.1: Power × Operation Time Period × Silicon Area ÷ Accuracy (PPAA) benefit of design
and architectural co-optimization proposed in this work. Reprinted with permission from Bon
Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep Samal, Peng Li, and Sung Kyu Lim c©2018 ACM
with minor modification.

Distributed
Second-order

Shared
Second-order

Shared
First-order

2D M3D
(∆ %) 2D M3D 2D M3D

Silicon Aream (um) 704550
702848
(-0.2%) 558011

537912
(3.6%) 327250

325920
(-0.4%)

Latency (ms) 1.35 3.42
Power (mW) 87.76 76.93 56.39 53.68 37.84 35.52Reservoir

Training Energy (mJ) 0.119
0.104

(-12.6%) 0.193
0.184

(-4.7%) 0.129
0.121

(-6.2%)
Latency (ms) 109.40 109.41
Power (mW) 35.92 33.70 34.46 28.70 26.17 23.28Readout

Training Energy (mJ) 3.929
3.687

(-6.2%) 3.770
3.140

(-16.7%) 2.863
2.547

(-11.0%)

Training Energy (mJ) 4.048
3.791

(-6.3%) 3.963
3.323

(-16.1%) 2.993
2.668

(-10.9%)
Latency (ms) 0.21 0.24
Power (mW) 46.37 41.85 43.22 36.92 28.85 26.05Inference
Energy (mJ) 0.009

0.008
(-11.1%) 0.010

0.001
(-10.0%) 0.007

0.006
(-14.2%)

Total Energy (mJ) 4.058
3.799

(-6.38%) 3.973
3.333

(-16.1%) 2.999
2.674

(-10.8%)
Accuracy 92.3% 91.9%

Normalized PPAA 1 0.93 0.77 0.62 0.34 0.30

103

6. CONCLUSION AND FUTURE WORKS

6.1 Conclusion

The liquid state machine (LSM) is a model of recurrent spiking neural networks (SNNs)

and provides an appealing brain-inspired computing paradigm for machine learning applications.

Moreover, the LSM is amenable to energy efficient hardware implementation due to its inher-

ent event-driven mannered information processing scheme. This dissertation presents the work

of design and optimization of energy efficient LSM neural processors that enable intelligent and

ubiquitous on-line learning with great hardware efficiency and decent performance.

The work presented in this work includes efficient bio-inspired onchip training on both the re-

current reservoir and the readout layer, which is achieved through hardware-algorithm co-design

and co-optimization. For efficient reservoir training, a hardware-friendly spike-timing-dependent-

plasticity (STDP) algorithm is implemented with great hardware overhead and energy efficiency

and further optimized by correlation-based power gating and activity-depend clock gating to min-

imize runtime power consumption. The proposed LSM neural processor effectively boosts the

learning performance while reducing energy dissipation compared to a baseline LSM with a fixed

reservoir. Moreover, efficient on-chip non-Hebbian learning based on intrinsic plasticity (IP) is

explored, in which optimization approaches on the complex IP learning mechanisms are pro-

posed from both algorithmic and hardware design points of view. Among them, a new hardware-

friendly IP rule is proposed for the integrate-and-fire neuron and leads to an extremely efficient

multiplication-free onchip implementation. Using two different types of real-world speech recog-

nition applications to benchmark, we have shown that the proposed hardware-friendly on-chip IP

gives a decent classification performance vs. hardware overhead tradeoff.

For the readout training, the dissertation presents the work of employing supervised STDP for

learning and sparsification purposes at the same time with efficient resource sharing implementa-

tion of the LSM. The resulting LSM neural processors deliver good classification performance at

104

the same time reduce hardware power consumption with a sparsified network connection. Sev-

eral FPGA recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform and

trained for the non-trivial speech recognition task with a subset of the TI46 speech corpus bench-

mark. LSM neural accelerators can achieve up to a noticeable on-line classification performance

boost with great efficiency.

Energy-efficient LSM neural processors are also developed on monolithic 3D (M3D) integrated

circuit with design and architectural co-optimization approaches, which lead to overall power-

performance-area-accuracy (PPAA) benefits.

6.2 Future Work

The future extension of the work could be hardware spiking neural processor design and opti-

mization with error back-propagation algorithms. While the works introduced in this dissertation

demonstrated good learning results on several benchmarks, for a large dataset like MNIST, the

performance of bio-plausible spike-dependent readout training algorithms[19, 73] are still far from

state-of-the-art accuracy that can be easily achieved by CNNs and DNNs. The main reason for

that is the lack of well-defined cost functions in the spike-dependent algorithms which makes

overall optimal weight adjust difficult. Recently, more and more back-propagation on SNNs have

emerged. Among them, [104] proposes a hybrid macro/micro level backpropagation (HM2-BP)

algorithm for training multi-layer SNNs, which addresses the aforementioned issues. HM2-BP

precisely captures the temporal behavior of the SNN at the microscopic level and directly com-

putes the gradient of the rate-coded loss function w.r.t tunable parameters. As a result, HM2-

BP demonstrates the state-of-the-art learning performances on widely adopted SNN benchmarks

such as MNIST [2] and Neuromorphic-MNIST (N-MNIST) [105], outperforming all other existing

BP algorithms based on the leaky integrate-and-fire model. However, it is fairly costly to be di-

rectly implemented in the hardware due to the complex computation involved and high-resolution

weights that are required in backpropagation. It can be a promising direction for co-designing the

HM2-BP and probably some other back-propagation based training algorithms and the hardware

architecture with on-chip training capability to obtain a good trade-off between the high perfor-

105

mance, efficiency and hardware cost.

106

REFERENCES

[1] W. Commons, “Neuron hand-tuned https://commons.wikimedia.org/wiki/

File:Neuron_Hand-tuned.svg.” Accessed: 2019-04-22.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[3] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”

Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in neural information processing systems, pp. 1097–

1105, 2012.

[5] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep

neural networks with multitask learning,” in Proceedings of the 25th international confer-

ence on Machine learning, pp. 160–167, ACM, 2008.

[6] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple neural

nets for handwritten digit recognition,” Neural computation, vol. 22, no. 12, pp. 3207–3220,

2010.

[7] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning with

cots hpc systems,” in International conference on machine learning, pp. 1337–1345, 2013.

[8] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian thalamocortical

systems,” Proceedings of the national academy of sciences, vol. 105, no. 9, pp. 3593–3598,

2008.

[9] W. Maass, “Networks of spiking neurons: the third generation of neural network models,”

Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

107

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg
https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

[10] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,

Y. Nakamura, P. Datta, G.-J. Nam, et al., “Truenorth: Design and tool flow of a 65 mw 1

million neuron programmable neurosynaptic chip,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[11] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,

N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor with on-chip learn-

ing,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[12] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and

bistable synapses with spike-timing dependent plasticity,” IEEE transactions on neural net-

works, vol. 17, no. 1, pp. 211–221, 2006.

[13] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bus-

sat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-

analog-digital multichip system for large-scale neural simulations,” Proceedings of the

IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[14] Q. Sun, F. Schwartz, J. Michel, Y. Herve, and R. Dal Molin, “Implementation study of an

analog spiking neural network for assisting cardiac delay prediction in a cardiac resynchro-

nization therapy device,” IEEE transactions on neural networks, vol. 22, no. 6, pp. 858–869,

2011.

[15] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states:

A new framework for neural computation based on perturbations,” Neural computation,

vol. 14, no. 11, pp. 2531–2560, 2002.

[16] M. LukošEvičIus and H. Jaeger, “Reservoir computing approaches to recurrent neural net-

work training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[17] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout, “Isolated word recog-

nition with the liquid state machine: a case study,” Information Processing Letters, vol. 95,

no. 6, pp. 521–528, 2005.

108

[18] A. Ghani, T. M. McGinnity, L. P. Maguire, and J. Harkin, “Neuro-inspired speech recogni-

tion with recurrent spiking neurons,” in Artificial Neural Networks-ICANN 2008, pp. 513–

522, Springer, 2008.

[19] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with biologically inspired

learning and its application to speech recognition,” IEEE transactions on neural networks

and learning systems, vol. 26, no. 11, pp. 2635–2649, 2015.

[20] Q. Wang, Y. Jin, and P. Li, “General-purpose LSM learning processor architecture and theo-

retically guided design space exploration,” in Biomedical Circuits and Systems Conference

(BioCAS), 2015 IEEE, pp. 1–4, IEEE, 2015.

[21] Y. Jin and P. Li, “AP-STDP: A novel self-organizing mechanism for efficient reservoir com-

puting,” in Neural Networks (IJCNN), 2016 International Joint Conference on, pp. 1158–

1165, IEEE, 2016.

[22] W. Zhang and P. Li, “Information-theoretic intrinsic plasticity for online unsupervised learn-

ing in spiking neural networks,” Frontiers in neuroscience, vol. 13, 2019.

[23] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout, “Compact hardware

liquid state machines on fpga for real-time speech recognition,” Neural networks, vol. 21,

no. 2-3, pp. 511–523, 2008.

[24] S. Roy, A. Banerjee, and A. Basu, “Liquid state machine with dendritically enhanced read-

out for low-power, neuromorphic vlsi implementations,” IEEE transactions on biomedical

circuits and systems, vol. 8, no. 5, pp. 681–695, 2014.

[25] J. M. Zurada, Introduction to artificial neural systems, vol. 8. West publishing company St.

Paul, 1992.

[26] A. K. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: A tutorial,” Computer,

no. 3, pp. 31–44, 1996.

[27] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activ-

ity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

109

[28] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited„ 2016.

[29] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations by back-

propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[30] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–166,

1994.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[32] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[33] M. van Otterlo and M. Wiering, “Reinforcement learning and markov decision processes,”

in Reinforcement Learning, pp. 3–42, Springer, 2012.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[35] S. Becker, “Unsupervised learning procedures for neural networks,” International Journal

of Neural Systems, vol. 2, no. 01n02, pp. 17–33, 1991.

[36] M.-J. Escobar, G. S. Masson, T. Vieville, and P. Kornprobst, “Action recognition using a bio-

inspired feedforward spiking network,” International Journal of Computer Vision, vol. 82,

no. 3, p. 284, 2009.

[37] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation and edge detection based on spik-

ing neural network model,” Neural Processing Letters, vol. 32, no. 2, pp. 131–146, 2010.

[38] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks for au-

diovisual information processing,” Neural Networks, vol. 23, no. 7, pp. 819–835, 2010.

110

[39] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT: a spiking neural net-

work training algorithm for classification problems,” IEEE Transactions on Neural Net-

works, vol. 21, no. 11, pp. 1817–1830, 2010.

[40] A. Tavanaei and A. S. Maida, “A spiking network that learns to extract spike signatures from

speech signals,” Neurocomputing, vol. 240, pp. 191–199, 2017.

[41] B. J. Kröger, J. Kannampuzha, and C. Neuschaefer-Rube, “Towards a neurocomputa-

tional model of speech production and perception,” Speech Communication, vol. 51, no. 9,

pp. 793–809, 2009.

[42] N. K. Kasabov, “NeuCube: A spiking neural network architecture for mapping, learning and

understanding of spatio-temporal brain data,” Neural Networks, vol. 52, pp. 62–76, 2014.

[43] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural networks for eeg classification

and epilepsy and seizure detection,” Integrated Computer-Aided Engineering, vol. 14, no. 3,

pp. 187–212, 2007.

[44] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its

application to conduction and excitation in nerve,” The Journal of physiology, vol. 117,

no. 4, pp. 500–544, 1952.

[45] R. Jolivet, J. Timothy, and W. Gerstner, “The spike response model: a framework to predict

neuronal spike trains,” in Artificial Neural Networks and Neural Information Processing-

ICANN/ICONIP 2003, pp. 846–853, Springer, 2003.

[46] A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe, “SpikeNET: A simulator for mod-

eling large networks of integrate and fire neurons,” Neurocomputing, vol. 26, pp. 989–996,

1999.

[47] G.-q. Bi and M.-m. Poo, “Synaptic modification by correlated activity: Hebb’s postulate

revisited,” Annual review of neuroscience, vol. 24, no. 1, pp. 139–166, 2001.

[48] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features through spike

timing dependent plasticity,” PLoS computational biology, vol. 3, no. 2, p. e31, 2007.

111

[49] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive STDP-based spike pattern

learning,” Neural computation, vol. 21, no. 5, pp. 1259–1276, 2009.

[50] F. Ponulak and A. Kasinski, “Supervised learning in spiking neural networks with ReSuMe:

sequence learning, classification, and spike shifting,” Neural Computation, vol. 22, no. 2,

pp. 467–510, 2010.

[51] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal spike-timing-dependent

plasticity for precise action potential firing in supervised learning,” Neural computation,

vol. 18, no. 6, pp. 1318–1348, 2006.

[52] J.-M. P. Franosch, S. Urban, and J. L. van Hemmen, “Supervised spike-timing-dependent

plasticity: A spatiotemporal neuronal learning rule for function approximation and deci-

sions,” Neural computation, vol. 25, no. 12, pp. 3113–3130, 2013.

[53] E. Goodman and D. Ventura, “Effectively using recurrently-connected spiking neural net-

works,” in Proceedings. 2005 IEEE International Joint Conference on Neural Networks,

2005., vol. 3, pp. 1542–1547, IEEE, 2005.

[54] D. Norton and D. Ventura, “Improving liquid state machines through iterative refinement of

the reservoir,” Neurocomputing, vol. 73, no. 16-18, pp. 2893–2904, 2010.

[55] Q. Wang, Y. Li, and P. Li, “Liquid state machine based pattern recognition on FPGA with

firing-activity dependent power gating and approximate computing,” in Internatioal Sympo-

sium of Circuits and Systems (ISCAS), 2016 IEEE, pp. 361–364, IEEE, 2016.

[56] K. Cao, J. Zhou, T. Wei, M. Chen, S. Hu, and K. Li, “A survey of optimization techniques

for thermal-aware 3D processors,” Journal of Systems Architecture, 2019.

[57] J.-Q. Lu, “3-D hyperintegration and packaging technologies for micro-nano systems,” Pro-

ceedings of the IEEE, vol. 97, no. 1, pp. 18–30, 2009.

[58] D. Zhang and J. J.-Q. Lu, “3D integration technologies: An overview,” in Materials for

Advanced Packaging, pp. 1–26, Springer, 2017.

112

[59] P. Batude, et al, “3-D Sequential Integration: A Key Enabling Technology for Heteroge-

neous Co-Integration of New Function With CMOS,” IEEE Journal on Emerging and Se-

lected Topics in Circuits and Systems, vol. 2, no. 4, pp. 714–722, 2012.

[60] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Design and CAD Methodologies for Low

Power Gate-Level Monolithic 3D ICs,” in ISLPED, pp. 171–176, Aug 2014.

[61] W.-T. J. Chan, S. Nath, A. B. Kahng, Y. Du, and K. Samadi, “3DIC Benefit Estimation and

Implementation Guidance from 2DIC Implementation,” in DAC, pp. 30:1–30:6, June 2015.

[62] M. B. Healy, K. Athikulwongse, R. Goel, M. M. Hossain, D. H. Kim, Y.-J. Lee, D. L.

Lewis, T.-W. Lin, C. Liu, M. Jung, et al., “Design and analysis of 3D-MAPS: A many-core

3D processor with stacked memory,” in IEEE Custom Integrated Circuits Conference 2010,

pp. 1–4, IEEE, 2010.

[63] Z. Wang, H. Gu, Y. Chen, Y. Yang, and K. Wang, “3D network-on-chip design for embedded

ubiquitous computing systems,” Journal of Systems Architecture, vol. 76, pp. 39–46, 2017.

[64] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-Mompeán, and J. V.

Francés-Víllora, “Simplified spiking neural network architecture and stdp learning algo-

rithm applied to image classification,” EURASIP Journal on Image and Video Processing,

vol. 2015, no. 1, p. 4, 2015.

[65] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction based long-term short-

term stochastic synapse for a spiking neural network with on-chip stdp learning,” Scientific

reports, vol. 6, p. 29545, 2016.

[66] Y. Jin, Y. Liu, and P. Li, “SSO-LSM: A sparse and self-organizing architecture for liquid

state machine based neural processors,” in Nanoscale Architectures (NANOARCH), 2016

IEEE/ACM International Symposium on, pp. 55–60, IEEE, 2016.

[67] E. Marder, L. Abbott, G. G. Turrigiano, Z. Liu, and J. Golowasch, “Memory from the dy-

namics of intrinsic membrane currents,” Proceedings of the national academy of sciences,

vol. 93, no. 24, pp. 13481–13486, 1996.

113

[68] M. Stemmler and C. Koch, “How voltage-dependent conductances can adapt to maximize

the information encoded by neuronal firing rate,” Nature neuroscience, vol. 2, no. 6, p. 521,

1999.

[69] J. Triesch, “A gradient rule for the plasticity of a neuron’s intrinsic excitability,” in Interna-

tional Conference on Artificial Neural Networks, pp. 65–70, Springer, 2005.

[70] X. Li, W. Wang, F. Xue, and Y. Song, “Computational modeling of spiking neural network

with learning rules from stdp and intrinsic plasticity,” Physica A: Statistical Mechanics and

its Applications, vol. 491, pp. 716–728, 2018.

[71] M. Liberman, R. Amsler, K. Church, E. Fox, C. Hafner, J. Klavans, M. Marcus, B. Mercer,

J. Pedersen, P. Roossin, D. Walker, S. Warwick, and A. Zampolli, “TI 46-word LDC93S9,”

1991.

[72] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “Darpa timit

acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1,” NASA STI/Recon

technical report n, vol. 93, 1993.

[73] Y. Jin and P. Li, “Calcium-modulated supervised spike-timing-dependent plasticity for read-

out training and sparsification of the liquid state machine,” in Neural Networks (IJCNN),

2017 International Joint Conference on, pp. 2007–2014, IEEE, 2017.

[74] TI46, “The TI46 speech corpus. http://catalog.ldc.upenn.edu/LDC93S9.”

Accessed: 2014-06-30.

[75] Intel, “The engine for digital transformation in the data center - Intel Xeon proces-

sor E5-2600 v4 product family. https://www.intel.com/content/www/us/en/

processors/xeon/xeon-e5-brief.html.”

[76] V. F. Pavlidis, I. Savidis, and E. G. Friedman, Three-dimensional integrated circuit design.

Newnes, 2017.

[77] J. R. Hughes, “Post-tetanic potentiation,” Physiological reviews, vol. 38, no. 1, pp. 91–113,

1958.

114

http://catalog.ldc.upenn.edu/LDC93S9
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-brief.html

[78] P. U. Diehl and M. Cook, “Efficient implementation of stdp rules on spinnaker neuromorphic

hardware,” in 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4288–

4295, IEEE, 2014.

[79] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-

Barranco, “STDP and STDP variations with memristors for spiking neuromorphic learning

systems,” Frontiers in neuroscience, vol. 7, p. 2, 2013.

[80] A. Cassidy, A. G. Andreou, and J. Georgiou, “A combinational digital logic approach to

STDP,” in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, pp. 673–

676, IEEE, 2011.

[81] R. F. Lyon, “A computational model of filtering, detection, and compression in the

cochlea,” in Acoustics, Speech, and Signal Processing, IEEE International Conference on

ICASSP’82., vol. 7, pp. 1282–1285, IEEE, 1982.

[82] B. Schrauwen and J. Van Campenhout, “BSA, a fast and accurate spike train encoding

scheme,” in Proceedings of the International Joint Conference on Neural Networks, vol. 4,

pp. 2825–2830, IEEE Piscataway, NJ, 2003.

[83] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,

S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in

Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[84] Y. Liu, Y. Jin, and P. Li, “Online adaptation and energy minimization for hardware recurrent

spiking neural networks,” ACM Journal on Emerging Technologies in Computing Systems

(JETC), vol. 14, no. 1, p. 11, 2018.

[85] Xilinx, “Xilinx intelligent clock gating. https://www.xilinx.

com/support/documentation/application_notes/

xapp790-7-series-clock-gating.pdf.”

[86] R. Baddeley, L. F. Abbott, M. C. Booth, F. Sengpiel, T. Freeman, E. A. Wakeman, and E. T.

Rolls, “Responses of neurons in primary and inferior temporal visual cortices to natural

115

https://www.xilinx.com/support/documentation/application_notes/xapp790-7-series-clock-gating.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp790-7-series-clock-gating.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp790-7-series-clock-gating.pdf

scenes,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 264,

no. 1389, pp. 1775–1783, 1997.

[87] N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, “Plasticity in the intrinsic excitability

of cortical pyramidal neurons,” Nature neuroscience, vol. 2, no. 6, p. 515, 1999.

[88] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning through spike-

timing-dependent synaptic plasticity,” Nature neuroscience, vol. 3, no. 9, p. 919, 2000.

[89] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, “Heb-

bian learning in spiking neural networks with nanocrystalline silicon tfts and memristive

synapses,” IEEE Transactions on Nanotechnology, vol. 10, no. 5, pp. 1066–1073, 2011.

[90] C. Li and Y. Li, “A spike-based model of neuronal intrinsic plasticity,” IEEE Transactions

on Autonomous Mental Development, vol. 5, no. 1, pp. 62–73, 2013.

[91] C. Li, “A model of neuronal intrinsic plasticity,” IEEE Transactions on Autonomous Mental

Development, vol. 3, no. 4, pp. 277–284, 2011.

[92] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plas-

ticity. Cambridge university press, 2002.

[93] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation

and blind deconvolution,” Neural computation, vol. 7, no. 6, pp. 1129–1159, 1995.

[94] P. Dayan, L. F. Abbott, and L. Abbott, “Theoretical neuroscience: computational and math-

ematical modeling of neural systems,” 2001.

[95] S. F. Obermann and M. J. Flynn, “Division algorithms and implementations,” IEEE Trans-

actions on computers, vol. 46, no. 8, pp. 833–854, 1997.

[96] R. E. Goldschmidt, Applications of division by convergence. PhD thesis, Massachusetts

Institute of Technology, 1964.

116

[97] I. Kong and E. E. Swartzlander, “A goldschmidt division method with faster than quadratic

convergence,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,

no. 4, pp. 696–700, 2011.

[98] A. Ourdighi, S. Lacheheb, and A. Benyettou, “Phonetic classification with spiking neural

network using a gradient descent rule,” in Computer and Electrical Engineering, 2009. IC-

CEE’09. Second International Conference on, vol. 2, pp. 36–40, IEEE, 2009.

[99] Y. Liu, Y. Jin, and P. Li, “Exploring sparsity of firing activities and clock gating for energy-

efficient recurrent spiking neural processors,” in 2017 IEEE/ACM International Symposium

on Low Power Electronics and Design (ISLPED), pp. 1–6, IEEE, 2017.

[100] D. J. Amit and S. Fusi, “Constraints on learning in dynamic synapses,” Network: Computa-

tion in Neural Systems, vol. 3, no. 4, pp. 443–464, 1992.

[101] D. J. Amit and S. Fusi, “Learning in neural networks with material synapses,” Neural Com-

putation, vol. 6, no. 5, pp. 957–982, 1994.

[102] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural network with

spike-driven synaptic dynamics,” Neural computation, vol. 19, no. 11, pp. 2881–2912, 2007.

[103] B. W. Ku, Y. Liu, Y. Jin, S. Samal, P. Li, and S. K. Lim, “Design and architectural co-

optimization of monolithic 3D liquid state machine-based neuromorphic processor,” in 2018

55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.

[104] Y. Jin, W. Zhang, and P. Li, “Hybrid macro/micro level backpropagation for training deep

spiking neural networks,” in Advances in Neural Information Processing Systems, pp. 7005–

7015, 2018.

[105] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image datasets

to spiking neuromorphic datasets using saccades,” Frontiers in neuroscience, vol. 9, p. 437,

2015.

117

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION AND LITERATURE REVIEW
	Bio-inspired Neuromorphic Computing Systems
	Biological Motivation
	Artificial Neural Networks
	Spiking Neural Networks

	Reservoir Computing and the Liquid State Machine (LSM)
	LSMs in Emerging Technologies: Monolithic 3D (M3D) LSM

	Energy-Efficient Recurrent Spiking Neural Processor Overview
	Baseline LSM Neural Processor Architecture
	Hardware Implementation and Optimization of On-chip Training on LSM
	Energy-efficient Reservoir Training
	Synaptic Plasticity based Unsupervised Reservoir Training
	Intrinsic Plasticity based Unsupervised Reservoir Training

	Energy-efficient Readout Training
	FPGA Recurrent Spiking Neural Accelerator

	Hardware-efficient Monolithic 3D (M3D) LSM Neural Processors

	Self-adaptive reservoir learning of liquid state machines
	Synaptic Plasticity based Reservoir Training and Optimized Implementation
	Baseline STDP Rules
	Hardware-Friendly STDP for Efficient Reservoir Tuning
	Implementation of Unsupervised STDP Training
	Runtime Energy Optimization with Correlation-based Reservoir Neuron Gating
	Runtime Energy Optimization with Activity-dependent Clock Gating
	Experimental Settings and Benchmarks
	Experimental Results
	Classification Performance
	Hardware Overheads

	Intrinsic Plasticity based Reservoir Training and Optimized Implementation
	Intrinsic Plasticity in SNN Training
	Basic SpiKL-IP Learning Rule for LIF Neurons
	Hardware-Optimized SpiKL-IP
	Hardware-inspired IP Rule for IF Neurons (SpiKL-IFIP)
	Hardware Implementation of the Onchip IP
	LSM Architecture with IP
	Hardware Optimization Approaches of Onchip IP Implementation
	Hardware Implementation of SpiKL-IFIP
	Hardware Implementation of SpiKL-IP

	Experimental Settings and Benchmarks
	Training Benchmarks
	Parameter Settings in LSM Neural Processors

	Experimental Results
	Classification Performances
	Hardware Overheads

	Readout Learning and Sparsification of liquid state machines
	Hardware-Friendly Supervised STDP for Readout Training
	Baseline Supervised STDP
	Supervised STDP Readout Learning Algorithm: CaL-S2TDP
	Supervised STDP Readout Sparsification Algorithm: CaS-S2TDP
	Two-step Hardware-Friendly Supervised Readout Training

	Implementation of Supervised STDP Readout Training
	Recurrent Spiking Neural FPGA Accelerators Design
	Training Setup and Benchmarks
	Experimental Results
	Classification Performance
	Hardware Overheads

	LSM Application in Emerging Technology: Monolithic 3D LSM
	Design Flow and Methodlogy
	Tier Partitioning of M3D LSMs
	Design and Architectural Co-Optimization
	Synaptic Weight Memory Sharing
	Synaptic Model Complexity Reduction
	Individual Neuron Results
	Full-chip Results

	Application-based Experimental Results
	Full-Chip Dynamic Power Breakdown
	Power-Performance-Area-Accuracy Analysis

	Conclusion and Future Works
	Conclusion
	Future Work

	REFERENCES

