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ABSTRACT

Gaussian graphical models (GGMs) are a popular tool to learn the dependence structure in

the form of a graph among variables of interest. Bayesian methods have gained in popularity in

the last two decades due to their ability to simultaneously learn the covariance and the graph and

characterize uncertainty in the selection.

In this study, I first develop a Bayesian method to incorporate covariate information in the

GGMs setup in a nonlinear seemingly unrelated regression framework. I propose a joint predictor

and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search

the joint model space. Furthermore, I investigate its theoretical variable selection properties. I

demonstrate the proposed method on a variety of simulated data, concluding with a real data set

from The Cancer Proteome Atlas (TCPA) project.

For scalability of the Markov chain Monte Carlo algorithms, decomposability is commonly im-

posed on the graph space. A wide variety of graphical conjugate priors are proposed jointly on the

covariance matrix and the graph with improved algorithms to search along the space of decompos-

able graphs, rendering the methods extremely popular in the context of multivariate dependence

modeling. An open problem in Bayesian decomposable structure learning is whether the posterior

distribution is able to select a meaningful decomposable graph that it is “close” in an appropriate

sense to the true non-decomposable graph, when the dimension of the variables increases with the

sample size.

In the second part of this study, I explore specific conditions on the true precision matrix and the

graph which results in an affirmative answer to this question using a commonly used hyper-inverse

Wishart prior on the covariance matrix and a suitable complexity prior on the graph space, both

in the well-specified and misspecified settings. In absence of structural sparsity assumptions, the

strong selection consistency holds in a high dimensional setting where p = O(nα) for α < 1/3. I

show when the true graph is non-decomposable, the posterior distribution on the graph concentrates

on a set of graphs that are minimal triangulations of the true graph.
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NOMENCLATURE

GGM Gaussian Graphical model

BF, PR Bayes factor, posterior ratio

HIW hyper-inverse Wishart distribution/prior

MCMC Markov chain Monte Carlo

SUR seemingly unrelated regression

DAG directed acyclic graph

i.i.d. independent and identically distributed

P probability corresponding to the true data generating
distribution

Gk, Dk k-dimensional graph space, k-dimensional decomposable
graph space

Mt the minimal triangulation space of Gt when Gt is non-
decomposable

a � b C1a ≤ b ≤ C2a for constants C1, C2

a - b a ≤ C3b for a constant C3

A ⊂ B, A 6⊂ B A is a subset of B, A is not a subset of B

A ( B A ⊂ B and A 6= B

|·| absolute value, cardinality of sets or determinant of matrices
by context

π(·), π(· | Y) prior distribution and posterior distribution of graphs

Y, Y T
i , yi n× p data matrix, row of Y, column of Y

ρij , ρij|S correlation and partial correlation between Xi and Xj given
XS
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ρ̂ij , ρ̂ij|S sample correlation and partial correlation betweenXi andXj

given XS

ρL, ρU the lower and upper bound for all ρij|V \{i,j}, where (i, j) ∈ Et

Ci, C(C ), Si, S(S ) clique, set of cliques, separator, set of separators

Gt, Ga, Gc the true graph, any decomposable graph, the complete graph

Gm, G0 the minimal triangulation when Gt is non-decomposable,
empty graph

Ĝ posterior mode in the decomposable graph space

Et, Ea, Ec, E1
a edge set of Gt, Ga, Gc and E1

a = Ea ∩ Et

p, V graph dimension, vertex set, where V = {1, 2, . . . , p}

x, x, x̃ nodes in the graph

i, j determined by context, nodes in the graph or indices of nodes

S, S, S̃ separators in the graph

dS , q cardinality of separator S, prior edge inclusion probability

∆′ε, ∆′ε(n), ∆′′ε (n) probability regions of sample partial correlations

Πxy the set of all sets that separates node x and y, where (x, y) 6∈
Et

G±(x,y)∈Et a graph with/without true edge (x, y)

G±(x,y) 6∈Et a graph with/without false edge (x, y)

G
c→a
i , G̃ t→c

i the ith graph in the sequence from Gc to Ga and Gt to Gc
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1. INTRODUCTION ∗

Probabilistic graphical models provide a helpful tool to describe and visualize the dependence

structures among random variables. Graphical models which describe conditional dependencies

can provide insights into properties and relationships between random variables. A graph com-

prises of vertices (nodes) connected by edges (links or arcs). In a probabilistic graphical model,

the random variables (single or vector) are represented by the vertices and probabilistic relation-

ships between these variables are expressed by the edges. An edge may or may not carry directional

information. In this dissertation we concentrate on undirected Gaussian graphical models (GGMs)

where the edges do not carry any directional information. Furthermore in this model, the variables

follow a multivariate normal distribution with a particular structure on the inverse of the covariance

matrix, called the precision or the concentration matrix.

1.1 Undirected Decomposable Graphs

Denote an undirected graph by G = (V,E) with a vertex set V = {1, 2, . . . , q} and an edge

set E = {(r, s) : ers = 1, 1 ≤ r < s ≤ q} with ers = 1 if the edge (r, s) is present in G and

0 otherwise. We first review some basic terminologies of graph theory. A path of length k in G

from vertex u to v is a sequence of k − 1 distinct vertices of the form u = v0, v1, . . . , vk−1, vk = v

such that (vi−1, vi) ∈ E for all i = 1, 2, . . . , k. The path is a k-cycle if the end points are the same,

u = v. If there is a path from u to v, then we say u and v are connected. A subset S ⊆ V is said to

be an uv-separator if all paths from u to v intersect S. The subset S is said to separate A from B

if it is an uv-separator for every u ∈ A, v ∈ B. A chord of a cycle is a pair of vertices that are not

consecutive on the cycle, but are adjacent in G. A graph is complete if all vertices are joined by an

edge. A clique is a complete subgraph that is maximal, maximally complete subgraph. See [1] for

more graph related terminologies.

∗Reprinted with permission from arXiv, “Bayesian Graph Selection Consistency Under Model Misspecification”,
arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance arXiv
copyright no modifications have been made except formatting.
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We shall focus on decomposable graphs in this dissertation. A graph is decomposable [1] if

and only if its every cycle of length greater than or equal to four possesses a chord. A decom-

posable graph G can be represented by a perfect ordering of its cliques and separators. Refer to

[1] for formal definitions of a clique and a separator, and other equivalent representations. An

ordering of cliques Ci ∈ C and separators Si ∈ S , where C = {Ci}ki=1 and S = {Si}ki=2,

(C1, S2, C2, S3, . . . Ck), is said to be perfect if for every i = 2, 3, . . . , k the running intersection

property [1] (page 15) is fulfilled, meaning that there exists a j < i such that Si = Ci ∩Hi−1 ⊂ Cj

where Hi−1 = ∪i−1
j=1Cj . A junction tree for the decomposable graph G is a tree representation of

the cliques. (For a non-decomposable graph, the junction tree consists of its prime components

that are not necessarily cliques, i.e. complete). A tree with a set of vertices equal to the set of

cliques of G is said to be a junction tree if, for any two cliques Ci and Cj and any clique C on the

unique path between Ci and Cj , we have Ci ∩ Cj ⊂ C. A set of vertices shared by two adjacent

nodes of the junction tree is complete and defines the separator of the two subgraphs induced by

the nodes. Denote by Dk the space of all decomposable graphs on k notes. Figures 1.1 and 1.2

briefly illustrate a decomposable and a non-decomposable graph, both defined on 6 nodes.

1 2

3

4 5

6

G6

1, 2

C1

2

S2

2, 3, 4

C2

3, 4 S3

3, 4, 5, 6 C3

Figure 1.1: G6 is a 6-node decomposable graph and its junction tree decomposition (right) has
3 cliques and 2 separators, i.e. C1 = {1, 2}, S2 = {2}, C2 = {2, 3, 4}, S3 = {3, 4}, C3 =
{3, 4, 5, 6}. Reprinted with permission from arXiv preprint, arXiv:1901.04134.
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1 2

3

4 5

6

G′6

1, 2

P1

2

S2

2, 3, 4

P2

3, 4 S3

3, 4, 5, 6 P3

Figure 1.2: G′6 is a 6-node non-decomposable graph because its cycle of four, 3 − 4 − 5 − 6,
does not have a cord. Its junction tree decomposition (right) has 3 prime components and 2
separators, i.e. P1 = {1, 2}, S2 = {2}, P2 = {2, 3, 4}, S3 = {3, 4}, P3 = {3, 4, 5, 6}. Out of
all prime components only P1 and P2 are cliques. Reprinted with permission from arXiv preprint,
arXiv:1901.04134.

1.2 Gaussian Graphical Models

Assume

y|ΣG, G ∼ Nq(0,ΣG),

where y = (y1, y2, . . . , yq) and Σ−1 = (σij)q×q. The conditional dependencies lie in the precision

matrix which is the inverse of the covariance matrix. Therefore, yi and yj are conditionally inde-

pendent given the rest of the variables if and only if σij = 0, where i 6= j. This property induces a

unique undirected graph corresponding to each multivariate Gaussian distribution. Thus, q random

variables represent q nodes and if G is the adjacency graph pairing to the precision matrix, then

the presence of an off-diagonal edge between two nodes implies non-zero partial correlation (i.e.,

conditional dependence) and the absence of an edge implies conditional independence.

1.3 Literature Review

Graphical models provide a framework for describing statistical dependencies in (possibly

large) collections of random variables [1]. In this dissertation, we revisit the well known problem

of inference on the underlying graph from observed data from a Bayesian point of view. Research

on Bayesian inference for natural exponential families and associated conjugate priors (DY priors)

is pioneered by [2] and has profound impact on the development of Bayesian Gaussian graphi-
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cal models. Consider independent and identically distributed vectors Y1, Y2, . . . , Yn drawn from

p-variate normal distribution with mean vector 0 and a sparse inverse covariance matrix Ω. The

sparsity pattern in Ω can be encoded in terms of a graph G on the set of variables as follows. If the

variables i and j do not share an edge in G, then Ωij = 0. Hence, an undirected (or concentration)

graphical model corresponding to G restricts the inverse covariance matrix Ω to a linear subspace

of the cone of positive definite matrices.

A probabilistic framework for learning the dependence structure and the graphG requires spec-

ification of a prior distribution for (Ω, G). Conditional on G, a hyper-inverse Wishart distribution

[3] on Σ = Ω−1 and the corresponding induced class of distributions on Ω [4] are attractive choices

of DY priors. A rich family of conjugate priors that subsumes the DY class is developed by [5].

Bayesian procedures corresponding to these Letac-Massam priors have been derived in a decision

theoretic framework in the recent work of [6]. The key component of Bayesian structure learning

is achieved through specification of a prior distribution on the space of graphs. There is a need

for a flexible but tractable family of such priors, capable of representing a variety of prior beliefs

about the conditional independence structure. In the interests of tractability and scalability, there

has been a strong focus on the case where the true graph may be assumed to be decomposable.

On the other hand, relatively few papers have considered non decomposable graphs in a Bayesian

set-up; refer to HIW distributions for non-decomposable graphs [7, 8, 9, 10, 11, 12].

In this dissertation, we focus on the HIW distribution for decomposable graphs as this construc-

tion enjoys many advantages, such as computational efficiency due to its conjugate formulation and

exact calculation of marginal likelihoods [13]. The use of HIW prior within a Bayesian framework

for Gaussian graphical models has been well studied for the past decade, see [14, 15, 16, 17]. Al-

though deemed as a restrictive model choice in the space of graphs, as long as the model for the

data allows arbitrarily small interactions, the resulting model assuming decomposability is quite

flexible. Stochastic search algorithms are empirically demonstrated to have good practical perfor-

mance in these models. For detailed description and comparison of various Bayesian computation

methods in this scenario, see [18, 19].
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There has been a growing literature on model selection consistency in Gaussian graphical mod-

els from a frequentist point of view [20, 21, 22, 23]. Beyond the literature on Gaussian graphical

models, there has been a incredible amount of frequentist work in the context of estimating high-

dimensional covariance matrix estimation with rates of convergence of various regularized covari-

ance estimators derived in [24, 25, 26, 27] among others. There is a relatively smaller literature

on asymptotic properties of Bayesian procedures for covariance or precision matrices in graphical

models; refer to [28, 29]. However, the literature on graph selection consistency in a Bayesian

paradigm is surprisingly sparse. In the context of decomposable graphs, the only article we were

aware of is [30] who considered the behavior of Bayesian procedures that perform model selec-

tion for decomposable Gaussian graphical models. However, the analysis is restricted to the fixed

dimensional regime and involves the behavior of the marginal likelihood ratios between graphs

differing by an edge. For general graph selection consistency within a Bayesian framework, refer

to the very recent article [31] in the context of Gaussian directed acyclic graph (DAG) models. The

question of validity of using decomposable graphical models using the HIW prior when the true

graph is in fact non-decomposable is unanswered till date despite its popularity and development

of associated posterior computation techniques over the past 20 years.

1.4 Research Outline

In Chapter 2, we focus on developing a flexible Bayesian framework for simultaneous vari-

able selection and graph learning. We address the variable selection consistency in the proposed

Bayesian framework under moderate conditions. At the end, we combine the data sets from “The

Cancer Genome Atlas (TCGA) project” and “The Cancer Proteome Atlas (TCPA)” project to

demonstrate our proposed method.

In Chapter 3, we study the graph selection consistency theorems for model misspecification

when using decomposable graphs only. We address the connection between sample partial corre-

lations and graph selection consistency. Simulation studies are conducted to replicate the conver-

gence rates for model misspecification along with well-specified case.
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2. BAYESIAN VARIABLE SELECTION IN MULTIVARIATE NONLINEAR REGRESSION

WITH GRAPH STRUCTURES

2.1 Introduction

Most of the existing Gaussian graphical models are used to infer the conditional dependency

structure of stochastic variables ignoring any covariate effects on the variables. In this section we

consider the situation when multiple sets of variables are assessed simultaneously. An example of

such a data structure include various types of genomic, epigenomic, transcriptomic and proteomic

data have become available using array and sequencing based techniques. The variables in these

biological systems contain enormous numbers of genetic markers have been collected at various

levels such as mRNA, DNA, microRNA and protein expressions from a common set of samples.

The interrelations within and among these markers provide key insights into the disease etiology.

One of the crucial questions is to integrate these diverse data-types to obtain more informative and

interpretable graphs representing the interdependencies between the variables. For example, in the

study used in this chapter we consider protein and mRNA expression levels from the same patient

samples have been collected extensively under The Cancer Genome Atlas (TCGA) project. As

the protein expression levels are correlated due to presence of complex biological pathways and

interactions, hence we are interested to develop conditional dependence model for them. However,

in addition to other proteins, it is well-established that transcriptomic-level mRNA expressions

modify the downstream proteomic expressions. This integrating the mRNA expressions as covari-

ates or predictors in the model will produce more precise and refined estimates of the protein-level

graphical structure.

From a modeling standpoint, to incorporate covariates in this graphical modeling framework,

we adopt seemingly unrelated regression (SUR) [32, 33] models where multiple predictors affect

multiple responses, just as in the case of a multivariate regression, with the additional complica-

tion that the response variables exhibit an unspecified correlation structure. Similar SUR model
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has been proposed in [34] which allows different responses to have different predictors. On the

other hand, we assume that all responses have the same predictors. The model we propose has both

theoretical and computational advantages over the SUR model in [34]. In stead of using approxi-

mation for the marginal likelihood as in [34] , regression parameters and error covariance matrices

can be marginalized explicitly in our modeling framework. Furthermore, we develop an efficient

MCMC sampling alogorithm based on the exact conditional posterior distributions. Indeed, this

closed form marginal likelihood enables us to explore the theoretical results for variable selection.

In addition our model is suitable for the problem of interest, identifying the influential gene ex-

pression based drivers for the entire network. We propose a joint sparse modeling approach for

the responses (e.g. protein expressions) as well as covariates (e.g. mRNA expressions). This joint

model simultaneously performs a Bayesian selection of significant covariates [35, 36] as well as

the significant entries in the adjacency matrix of the correlated responses [17]. In the frequentist

setting, similar joint modeling has been recently attempted by [37], [38] and [39] for linear models.

To our best knowledge, the literature on Bayesian estimation of joint covariate-dependent

graphical models is sparse, with the exception of [40]. Our proposed method differs from [40] in

many aspects. In their paper, they used a linear model (for the covariate effects) with independent

priors on the regression coefficients. On the other hand, we develop a nonlinear spline based model

and propose a multivariate version of the well-known Zellner’s g-prior [41] for the regression pa-

rameters. This is a natural extension of the original g-prior from multiple linear regression models

to have a matrix normal structure. In fact, it is also a conjugate prior in this multivariate setup,

hence drastically reduces the computational burden. Moreover, we investigate the Bayesian vari-

able selection consistency of this multivariate regression model with graphical structures. Indeed,

there are a few papers which have considered Bayesian variable selection consistency in a multiple

linear regression framework with univariate responses [42], [43]. However, to our best knowledge,

none of the existing papers investigated these theoretical results for multivariate regression with or

without graphical structures.

To demonstrate our joint model for both variable and graph selection, we conduct a simulation
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study on a synthetic data set. The spline based regression captures the nonlinear structure precisely

and the graph estimation has identified the underlying true graph. We also illustrate the necessity

of incorporating the correct covariate structure by comparing the graph selection with respect to

the null (no covariate) model and the linear regression model. As a result, we discover that the

graph estimator is highly dependent on specifying the correct covariate structure. At the end, we

analyze a data set from The Cancer Proteome Atlas (TCPA) project to identify the mRNA driver

based protein networks.

The rest of this chapter is organized as follows. We introduce our model and prior specification

in Section 2.2. In Section 2.3, we present the stochastic search algorithm for the joint variable

and graph selection. The variable selection consistency results have been presented in Section 2.4.

Some simulation experiments are conducted in Section 2.5. We apply our method on the TCPA

data in Section 2.6. Section 2.7 includes discussions. The detailed proofs of all consistency results

can be found in Appendix A and Appendix B.

2.2 The Model

2.2.1 Hyper-inverse Wishart Distribution

The inverse Wishart distribution which is a class of conjugate priors for positive definite ma-

trices does not have the conditional independencies using to impose graphs. By imposing the

conditional independencies on the inverse Wishart distribution, [14] derived two classes of distri-

butions – “local” and “global”. But only the “local” one induces sparse graphs. This is known

as hyper-inverse Wishart distribution, proposed by [3]. It is the general set of conjugate priors

for positive definite matrices which satisfies the hyper Markov law. Its definition is based on the

junction tree representation. Let JG = (C1, S2, C2, S3, . . . , Ck−1, Sk, Ck) be the junction tree rep-

resentation of a decomposable graph G, then the hyper-inverse Wishart prior for the corresponding

covariance matrix ΣG can be written as a ratio of products of cliques over products of separators

[17],

p(Σ|G) =

∏
C∈C p(ΣC |b,DC)∏
S∈S p(ΣS|b,DS)

, (2.1)
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where C and S are the sets of all cliques and all separators respectively. For each clique C (and

separator S), ΣC ∼ IW(b,DC) with density

p(ΣC |b,DC) =
|DC |

b+|C|−1
2

2
(b+|C|−1)|C|

2 Γ|C|
( b+|C|−1

2

) |ΣC |−
b+2|C|

2 exp

{
− 1

2
tr
(
Σ−1
C DC

)}
, (2.2)

where Γp(·) is the multivariate gamma function.

For a given graph G, let yi ∼ Nq(0,ΣG), i = 1, . . . , n and Y = (y1, y2, . . . , yn)T . If ΣG|G ∼

HIWG(b,D), for some positive integer b > 3 and positive definite matrix D, we have ΣG|Y, G ∼

HIWG(b + n,D + YTY). Therefore, the posterior of ΣG is still a HIW distribution. In the next

section, we will incorporate covariate information in this model in a nonlinear regression frame-

work.

2.2.2 Covariate Adjusted GGMs

We consider the following covariate adjusted Gaussian distribution y ∼ Nq(f(x),ΣG), where

y = (y1, y2, . . . , yq)
T , x = (x1, x2, . . . , xp)

T and the function f : Rp → Rq performs a smooth,

nonlinear mapping from the p-dimensional predictor space to the q-dimensional response space.

ΣG is the covariance structure of y corresponding to the graph G. Linear model developed by [40]

is a particular case of this where f(x) = xTβ. In the nonlinear setup, we choose to use spline to

approximate the nonlinear function f(·). Without loss of generality, we assume all components

of x share the same range, which means we can use the same knot points for all variables which

simplifies the notations. And we also assume all covariates are centered so that the intercept terms

are zero here. Given k knot points, w = (w1, w2, . . . , wk)
T , the spline basis for xi is {(xi −

w1)+, (xi − w2)+, . . . , (xi − wq)+}. So f(x) can be approximated by the linear form uB, where

u1×p(k+1) = {xT , (x − w1)T+, (x − w2)T+, . . . , (x − wk)
T
+} and (x − wi)

T
+ = {(x1 − wi)+, (x2 −
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wi)+, . . . , (xp − wi)+} and B is the coefficient matrix, which has the structure below,

Bp(k+1)×q =



β110 β210 . . . βq10

...
... . . . ...

β1p0 β2p0 . . . βqp0

β111 β211 . . . βq11

...
... . . . ...

β1p1 β2p1 . . . βqp1

β1pk β2pk . . . βqpk
...

... . . . ...

β1pk β2pk . . . βqpk



.

We assume the knot points w’s to be known and prespecified. That way, we have spline-adjusted

model y ∼ Nq(uB,ΣG) which has a linear model structure. Therefore, any variable selection

method for linear regression can be used for the mean structure.

2.2.3 The Bayesian Hierarchical Model

Assuming we have a set of n independent samples Y = (y1, y2, . . . , yn)T , where yi ∼ Nq(f(xi),ΣG)

and let f(X) = (f(x1), f(x2), . . . , f(xn))T . We have

Y ∼ MNn×q(f(X), In,ΣG), (2.3)

where MNn×q(f(X), In,ΣG) is the matrix normal distribution with mean f(X), and In as the

covariance matrix between n rows and ΣG as the covariance matrix between q columns. We

approximate f(·) by f(X) = UB, where U is the spline basis matrix which has the structure

below. And it is equivalent to write out the model as multivariate linear regression, Y = UB + E,

10



where E ∼ MNn×q(0, In,ΣG).

Un×p(k+1) =



x1 x2 . . . xn

(x1 − w1)+ (x2 − w1)+ . . . (xn − wk)+

...
...

... . . .

(x1 − wk)+ (x2 − wk)+ . . . (xn − wk)+



T

To introduce the notion of redundant variables for the variable selection in the mean structure,

we define a binary vector γ = (γ1, . . . , γp)
T , where γi = 0 if and only if βjis = 0, for all

j = 1, . . . , q, s = 0, 1, . . . , k. By following this rule, the spline basis functions are related to

each variable when performing the model selection. It means selecting one variable is equivalent

to select all its related basis functions. Similarly, to introduce the notion of sparsity in the precision

matrix, we define a binary variable Gl, where l = 1, . . . , q(q−1)
2

, the lth off diagonal element in the

adjacency matrix corresponding to the graph G. Diagonal elements of the adjacency matrix are

restricted to one. The number of edges in the graph G is denoted as |E| =
∑

lGl. The Bayesian

hierarchical model is given by

(Y − UγBγ,G)|Bγ,G,ΣG ∼ MNn×q(0, In,ΣG), (2.4)

Bγ,G|γ,ΣG ∼ MNpγ(k+1)×q
(
0, g(UT

γUγ)−1
pγ(k+1),ΣG

)
, (2.5)

ΣG|G ∼ HIWG(b, dIq), (2.6)

γi
i.i.d.∼ Bernoulli(αγ) for i = 1, . . . , pγ , (2.7)

Gl
i.i.d.∼ Bernoulli(αG) for l = 1, . . . ,

q(q − 1)

2
, (2.8)

αγ ∼ U(0, 1), (2.9)

αG = 2/(q − 1), (2.10)

where Uγ is the spline basis matrix with regressors corresponding to γ and b > 3, g, d are fixed

positive hyper parameters. αγ is used to control the sparsity of variable selection and αG is respon-

11



sible for the complexity of graph selection. Also, denote pγ =
∑

i γi.

Equation (2.5) is the extended version of Zellner’s g-prior [41] for multivariate regression. g-

prior in this matrix normal form requires one more parameter than the usual multivariate normal

form to allow the covariance structure between columns. Here, we use ΣG as that parameter.

There are a couple of reasons for this choice. First, it drastically decreases the complexity of

marginalization. By using the same structure as the graph, it gives us the ability to integrate out

the coefficient matrix Bγ,G. That way, we derive the marginal of Y explicitly. Moreover, it allows

the variable selection and the graph selection to borrow strength from each other. Next, we derive

the marginal density of data Y given only γ and graph G in this modeling framework.

By using equation (2.4) and (2.5), we have

Y|γ,ΣG ∼ MNn×q(0, In + gPγ ,ΣG),

where Pγ = Uγ(UT
γUγ)−1UT

γ . In order to calculate the marginal of Y, we need to vectorize Y as

follows,

vec(YT )|γ,ΣG ∼ Nnq(0, (In + gPγ)⊗ ΣG),

where⊗ is the Kronecker product. Next, using the equation (2.6), we integrate out the ΣG to derive

the marginal distribution of Y. The detailed calculation is in Appendix A. Let C and S be the sets

of all cliques and all separators for the given graph G then

f(Y|γ, G) = Mn,G × (g + 1)−
pγ (k+1)q

2

∏
C∈C |dIC + SC(γ)|−

b+n+|C|−1
2∏

S∈S |dIS + SS(γ)|−
b+n+|S|−1

2

, (2.11)

where S(γ) = YT (In − g
g+1

Pγ)Y, SC(γ) and SS(γ) denote the quadratic forms restricted to the

clique C ∈ C and the separator S ∈ S .

The normalizing constant Mn,G has the following factorization which depends only on n and

G, but it is the same for all γ under the same graph G. The advantage of this is when updating γ

12



in the stochastic search, this term cancels out reducing the computational complexity.

Mn,G = (2π)−
nq
2

∏
C∈C

|dIC |
b+|C|−1

2

2−
n|C|
2 Γ|C|

(
b+|C|−1

2

)
Γ−1
|C|

(
b+n+|C|−1

2

)
∏

S∈S
|dIS |

b+|S|−1
2

2−
n|S|
2 Γ|S|

(
b+|S|−1

2

)
Γ−1
|S|

(
b+n+|S|−1

2

) .

2.2.4 Prior Specification for γ and G

We use beta-binomial priors [35] for both variable and graph selection. We control the sparsity

by fixing αG. [18] suggested to use 2
|V |−1

as the hyper parameter for the Bernoulli distribution.

For an undirected graph, it has peak around |V | edges and it will be lower when applying to

decomposable graphs. Additionally, we have other ways to control the number of edges which

will be stated in the next section.

2.3 The Stochastic Search Algorithm

2.3.1 Searching for γ

From equation (2.7), we obtain the prior p(γ|αγ) =
∏p

i=1 p(γi|αγ) = α
pγ
γ (1− αγ)p−pγ . Next,

using equation (2.9), we integrate out αγ , so that the marginal prior for γ is p(γ) ∝ pγ !(p− pγ)!.

The searching for γ proceeds as follows:

• Given γ, propose γ∗ by the following procedure. With equal probabilities, randomly choose

one entry in γ, say γs∗ . If γs∗ = 0, then with probability δ change it to 1 and with probability

1 − δ remain the same; if γs∗ = 1, then with probability 1 − δ change it to 0 and with

probability δ remain the same. Under this setting, δ is the probability of adding one variable

when γs∗ = 0 and 1− δ is the probability of deleting one variable when γs∗ = 1. If γ∗ = γ,

then q(γ|γ∗)
q(γ∗|γ)

=1. If one variable has been added to the model, q(γ|γ∗)
q(γ∗|γ)

= 1−δ
δ

; if one variable

has been deleted from the model, q(γ|γ
∗)

q(γ∗|γ)
= δ

1−δ .

• Calculate the marginal densities under both models p(Y|γ, G) and p(Y|γ∗, G).
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• Accept γ∗ with probability

r(γ,γ∗) = min

{
1,
p(Y|γ∗, G)p(γ∗)q(γ|γ∗)
p(Y|γ, G)p(γ)q(γ∗|γ)

}
.

Notice, under the same graph the normalizing constantMn,G cancels out. Another thing is by using

the parameter δ, we can further control the sparsity of variable selection.

2.3.2 Searching for G

Similar to the calculation for γ, the prior over the graph space is p(G|αG) =
∏q(q−1)/2

l=1 p(Gl|αG) =

α
|E|
G (1−αG)q(q−1)/2−|E|, where |E| is the total number of edges in the graph G and αG = 2/(|V |−

1). The searching for G works as follows:

• Given the current decomposable graph G, propose a new decomposable graph G∗ by the

following procedure. With equal probabilities, randomly select an off-diagonal entry from

the adjacency matrix of graph G, say Gs∗ . If Gs∗ = 0, then with probability η change it to

1 and with probability 1 − η remain the same; if Gs∗ = 1, with probability 1 − η change

it to 0 and with probability η remain the same. So the probability of adding an edge is η

when Gs∗ = 0 and 1 − η is the probability of deleting an edge when Gs∗ = 1. We discard

all proposed graphs which are non-decomposable. In those cases, the chain remains in the

same graph for that iteration. If an edge has been added to the graph, p(G|G∗)
p(G∗|G)

= 1−η
η

; if an

edge has been removed from the graph, p(G|G
∗)

p(G∗|G)
= η

1−η .

• Calculate the marginal densities under both graphs p(Y|γ, G) and p(Y|γ, G∗).

• Accept G∗ with probability

r(G,G∗) = min

{
1,
p(Y|γ, G∗)p(G∗)q(G|G∗)
p(Y|γ, G)p(G)q(G∗|G)

}
.

This procedure is called add-delete Metropolis-Hastings sampler [18]. Another tool for sparsity is

η. By choosing its value to be less than 0.5, it can reinforce sparsity on the graph.
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2.3.3 Conditional Distributions of Bγ,G and ΣG

We integrate out Bγ,G and ΣG to make the stochastic search more efficient. But the conditional

distributions of them both have simple closed forms. In [40], the conditional distribution of ΣG

depends on the coefficient matrix Bγ,G, but by using Zellner’s g-prior it only requires γ and G,

ΣG|Y,γ, G ∼ HIWG(b+ n, dIq + S(γ)).

At each iteration, given γ and ΣG, using the following conditional distribution we can simulate

Bγ,G,

Bγ,G|Y,γ,ΣG ∼ MNpγ(k+1)×q

(
g

g + 1

(
UT
γUγ

)−1
UT
γY,

g

g + 1

(
UT
γUγ

)−1
,ΣG

)
.

2.3.4 Choices of Hyperparameters

For choosing hyperparameters, we need to specify g, b, d. [43] summarized some choices for

g in the g-prior, like g = n [44], g = p2 [45], g = max(n, p2) [42] and other empirical Bayes

methods to choose g. Based on simulations the choice of g is not very critical in our approach. As

long as g satisfies the basic condition g = O(n), there is no significant effect on the results. This

condition is to keep the variances of the prior of coefficients not to be too small as n goes to infinity.

But when the dimension of the predictor space p is large, one can consider to use g = max(n, p2).

The hyperparameter b and d are the two constants which control the hyper-inverse Wishart

distribution. The common choice for the degree of freedom b is 3 which provides a finite moment

for the HIW prior [18, 17]. Based on our experiments d has a big impact on the graph selection

results. Large d results in more sparse graphs. On the other hand, large d also contributes to large

variances for coefficients. After standardizing the variances of responses to be 1, [18] suggested

to use 1/(b + 1) as a default choice of d, since the marginal prior mode for each variance term

is d(b + 1). In our approach we are basically using the residuals after variable selection to fit the

graphical model, hence it is impossible to know the variances. But we find d = 1 works well in
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our simulations.

The common choice for δ and η in the stochastic search is 0.5. Unless strong parsimony

is required, we suggest to use this value. On the other hand, αG can be set to 1/(|V | − 1) or

0.5/(|V | − 1) to achieve more sparsity on graph selection for noisy data.

2.4 Variable Selection Consistency

In this section, we first show the Bayes Factor consistency of the variable selection method

for a given graphical structure. To our best knowledge, there are no results on Bayesian variable

selection consistency for this case. We first define the pairwise Bayes factor consistency for a given

graph, subsequently under moderate conditions, we prove the pairwise Bayes factor consistency.

For some related development in multiple linear regression model with univariate response, see

[43] and [42]. For simplicity, from now on we refer the multivariate regression model as the

regression model or just the model. Without further specification, the model we refer implies the

regression model, not the graphical model.

Let binary vector t = (t1, . . . , tp)
T denote the regression model with respect to the true set

of covariates of size pt =
∑p

i=1 ti and binary vector a = (a1, . . . , ap)
T denote an alternative

regression model of size pa =
∑p

i=1 ai. We use γ to represent any subset of the regression model

space for being consistent with the notation in the early section. Next, we introduce the definition

of pairwise Bayes factor consistency with graph structures.

Definition 2.4.1. (pairwise Bayes factor consistency under a given graph) Let BF(a; t|G) be

the Bayes factor in favor of an alternative model a for a given graph G, such that BF(a; t|G) =

P (Y|a,G)
P (Y|t,G)

. If p limn→∞ BF(a; t|G) = 0, for any a 6= t, then we have pairwise Bayes factor consis-

tency with respect to the true regression model t and the graph G.

Here, “p limn→∞" denotes convergence in probability and the probability measure is the sam-

pling distribution under the true data generating model [43]. Notice that the alternative model

and the true model used in the Bayes factor calculation have the same graph G which may not

be the true underlying graph. To clarify, the Bayes factor in the definition above is for a given
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graph G, where as the actual Bayes factor for the joint model is defined as BF(a; t) = P (Y|a)
P (Y|t) =∫

P (Y|a,G)π(G)dG∫
P (Y|t,G)π(G)dG

, where π(G) is the prior on the graph space. In this paper, the graph G is restricted

to the set of decomposable graphs and the number of nodes q in the graph is finite. Before the main

result, some regularization conditions need to be introduced.

2.4.1 Conditions

Condition 2.4.1. The set of graphs we consider is restricted to decomposable graphs with the

number of nodes q is finite. The number of knots k for the spline basis is also finite.

Condition 2.4.2. Let λmin ≤ · · · ≤ λi ≤ · · · ≤ λmax be the eigenvalues of
(
UT
γUγ

)
pγ(k+1)×pγ(k+1)

.

Assume 0 < cU < λmin
n
≤ λmax

n
< dU <∞, where cU and dU are two positive finite constants.

Condition 2.4.3. Let Ey = UtBt,G. Assume infa6=t tr{ET
y (In − Pa)Ey} > C0n, where Pa is the

projection matrix of an alternative model a and C0 is some fixed constant.

Condition 2.4.4. For the g-prior Bγ,G|γ,ΣG ∼ MN
(
0, g
(
UT
γUγ

)−1
,ΣG

)
as in equation (2.6),

assume g = O(n).

Condition 2.4.5. Let Σ̂−1
γ,G be the MLE of Σ−1

G under any regression model γ and any decom-

posable graph G. Assume Σ̂−1
γ,G converges to some positive definite matrix Σ0

γ,G
−1 which has all

eigenvalues bounded away from zero and infinity. Later, we drop the subscript γ and only use Σ̂−1
G

and Σ0
G
−1.

Condition 2.4.6. The number of total covariates satisfies limn→∞
p
n

= 0, i.e. p = o(n).

Condition 2.4.2 is needed to avoid singularity when the dimension of the model space p in-

creases to infinity as n goes to infinity. Condition 2.4.3 indicates that no true covariate can be

fully explained by the rest of the covariates, which implies that regressing any true covariate on all

others, the coefficient of determination R2 is less than 1. Condition 2.4.4 makes sure we assign a

non-degenerated prior on the coefficient matrix. Condition 2.4.5 imposes restriction on the limit of

Σ̂−1
G or equivalently on the corresponding quadratic forms. It is needed for the given clique and sep-

arator decomposition of the hyper-inverse Wishart prior. For inverse Wishart prior, this condition
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can be relaxed if the corresponding graph is complete. We assume that the MLE converges to a pos-

itive definite matrix Σ0
G
−1. For the true graph this statement holds trivially. The explicit calculation

of the MLE can be done by calculating the MLEs for each clique and separator, then combining

them to form Σ̂−1
G . Given any model γ, for C ∈ C , define Σ̂−1

C =
{

1
n
YT
C(In − g

g+1
Pγ)YC

}−1 and

Σ̂−1
S is defined similarly. The MLE is given by Σ̂−1

G =
∑

C∈C Σ̂−1
C

∣∣
0
−
∑

S Σ̂−1
S

∣∣
0

where the suffix

‘0’ implies that the elements corresponding to the vertices which are not in that subgraph are filled

with zeros to create a q × q matrix [1].

2.4.2 Consistency Results

Lemma 2.4.1. Let (t, G) be the model with true covariates and any finite dimensional graph G.

Assume (a, G) is any alternative model (a 6= t) with the same graph G. Then, for the model given

by (2.4)-(2.6), under Condition 2.4.1-2.4.6, p limn→∞ BF(a; t|G) = 0 for any graph G and any

model a 6= t.

Proof. See Appendix B for details.

That is to say, in the Lemma 2.4.1, we conclude that the pairwise Bayes factor for variable

selection is consistent for any given graph, which is a quite strong result considering the magnitude

of the graph space (here it is restricted to decomposable graph space). Next we show that with finite

dimension graph, the result we have from Lemma 2.4.1 is equivalent to the traditional Bayes factor

for regression models.

Theorem 2.4.1. (pairwise Bayes factor consistency) For model given by (2.4)-(2.10), under Con-

dition 2.4.1-2.4.6, p limn→∞ BF(a; t) = 0 for any model a 6= t.

Proof. Since the number of nodes q in the graph is finite, then let NG(q) <∞ denote the number

of all possible graphs. Therefore, for any alternative model a 6= t, we have

BF(a; t) =
P (Y|a)

P (Y|t)
=

∫
P (Y|a, G)π(G)dG∫
P (Y|t, G)π(G)dG

=

∑NG(q)
i=1 P (Y|a, Gi)π(Gi)∑NG(q)
i=1 P (Y|t, Gi)π(Gi)
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≤ NG(q)P (Y|a, GM)π(GM)

P (Y|t, GM)π(GM)
= NG(q)

P (Y|a, GM)

P (Y|t, GM)
→ 0,

where P (Y|a, GM) = max{P (Y|a, Gi), i = 1, . . . , NG(q)} and π(GM) = max{π(Gi), i =

1, . . . , NG(q)}. Then following the result in Lemma 2.4.1, we have a pairwise Bayes factor con-

sistency for regression models.

Notice that we do not need the number of covariates p to be finite here. As long as the con-

ditions are satisfied, the result of Lemma 2.4.1 and Theorem 2.4.1 hold accordingly. Next, we

discuss the variable selection consistency. For finite dimensional covariate space, the variable

selection consistency is an immediate result.

Corollary 2.4.1. For model given by (2.4)-(2.10), under Condition 2.4.1-2.4.5, if the number of

covariates p is finite, then p limn→∞ P (t|Y) = 1.

Proof.

P (t|Y) =
π(t)P (Y|t)∑
a π(a)P (Y|a)

=

(∑
a

π(a)p(Y|a)

π(t)p(Y|t)

)−1

=

(
1 +

∑
a6=t

π(a)

π(t)
BF(a; t)

)−1

→ 1,

where π(·) is the prior on the regression model. Notice, the last summation has finite number of

terms, since the covariate space is finite. Then the rest follows directly form Theorem 2.4.1.

Therefore, the variable selection is consistent when the model space is finite. Corollary 2.4.1

does not depend on the graph, which means it holds even if we do not identify the true graph.

2.5 Simulation Study

In this section, we present the simulation study for our method considering the hierarchical

model from Section 2.2. In order to justify the necessity for a covariate adjusted mean structure,

we compare the graph estimation among spline regression, linear regression and no covariates

(graph only) assuming an underlying nonlinear covariate structure as the true model.

Considering the hierarchical model in Section 2.2, we choose p = 30, q = 40, n = 700. All

predictors xij , i = 1, . . . , n and j = 1, . . . , p are simulated from uniform distribution (−1, 1). For
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the nonlinear regression structure, we use a relatively simple and smooth function, similar to the

function used in [46],

fi(xj) = hi1 sin(xj5) + hi2 sin(xj11) + hi3xj17 + hi4e
xj24 , i = 1, 2, . . . , q, (2.12)

where xj = (xj1, xj2, . . . , xjp) is the jth sample of data X = (xT1 , x
T
2 , . . . , x

T
q )T . The true set of

predictors is {5, 11, 17, 24}. The coefficients in (2.12) are simulated from exponential distribution

exp(1). Figure 2.1(a) shows the true adjacency matrix for the true graph G. The true covariance

matrix ΣG is generated from HIWG(3, Iq). And the columns of error matrix E are n random draws

from multivariate normal distribution Nq(0,ΣG). Thus Y = F (X) + E, where F (X) =
(
fj(xi)

)
ij

.

For hyperparameters, we use g = n = 700, b = 3, d = 1 and δ = η = 1/2 in the stochastic search

of graphs.

For spline basis functions, we use 10 fixed knot points which divide (−1, 1) evenly into 11

intervals. 100,000 MCMC iterations are performed after 10,000 burn-in steps. We use a similar

true graph as in [40] in the simulation. The results are quite fascinating. For variable selection,

after burn-in iterations, it quickly converges to the true set of predictors. Furthermore for the

variable selection, if we only use the linear regression model to estimate the nonlinear structure, it

misses some important predictors. As shown in the simulation study, the exponential term has not

been identified without the spline regression. Although the linear case selects most of the correct

variables, estimates of mean functions are completely wrong, which misleads the graph estimation

completely as we show next.

Here, we use marginal posterior probability for each edge to choose our final estimation of the

graph. Marginal probabilities are calculated by averaging all adjacency matrices in the MCMC

chain. The cut-off point is 0.5, which means we only select the edge with posterior probability

more than half. The cut-off point can also be varied to accomplish different degrees of sparsity for

the estimated graph.

Figure 2.1(b) shows when using spline regression to capture the nonlinear mean structure, the
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Figure 2.1: Plots of graph selection. (a) The adjacency matrix of the true graphG. In the adjacency
matrix, 1 indicates an edge and 0 indicates no edge. So edges are represented by black bricks. The
diagonal entries are 1 by default. (b), (c) and (d) are the marginal posterior probabilities of each
edge in the estimated graph on a gray scale under spline regression, linear regression and without
covariates, respectively.

major parts of the true graph can be recovered. On the other hand, from Figure 2.1(c), we can see

that the linear regression model fails to estimate the residual terms properly, hence the estimated

graph is completely wrong. It may still capture a few true edges, however a large number of

false edges have been added. Thus, modeling the true mean structure is essential for estimating the

graph. That way, specification of an incorrect mean structure (e.g. using linear function to estimate

nonlinear function, choosing a wrong set of covariates) always leads to a wrong graph estimation.

This can also be illustrated by ignoring the covariates to estimate the graph. Figure 2.1(d) shows

in this scenario the estimated graph is again completely wrong. We plot the receiver operating
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characteristic (ROC) curves for the above three cases in Figure 2.2. As we can see the joint models

(i.e. spline and linear regression model) perform better than no covariates. Furthermore, the ROC

curve of spline regression model is nearly perfect.
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Figure 2.2: Plot of ROC curves for graph selection. The blue, red and yellow lines are spline
regression model, linear regression model and no covariates (graph only) model, respectively.

2.6 Protein-mRNA data

In this section, we apply our method to a protein-mRNA data set from The Cancer Proteome

Atlas (TCPA) project. The major goals of this analysis are (i) to identify the influential gene

expression based drivers, i.e. mRNAs which influence the protein activities and (ii) to estimate

the protein network, simultaneously. The central dogma to our model is the well-known fact

that mRNA which is the messenger of DNA from transcription plays a critical role in proteomics

by a process called translation. Consequently, the protein expressions play a crucial role for the

development of tumor cells. Therefore, to identify which mRNAs dominate this process is the key

component in this oncology study. This also motivates us to regress the protein level data on the

mRNA based data. Multivariate regression is a powerful tool for combining information across

all regressions. One can use an univariate regression model on each protein. However, there are

multiple advantages of our model to apply in this scenario. First, it combines the information
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across all responses, i.e. protein expressions. As we know, proteins tend to work together as a

network. Performing single regression separately on each of them will lose information which lies

in this protein network. Second, by jointly modeling all proteins, we obtain a graph of all proteins

after correcting the mRNA effects from the mean structure. In our analysis, we choose the breast

cancer data which has the largest sample size of 844 among other tumors. Based on different

DNA functions, proteins are categorized into 12 pathways with their corresponding mRNAs. For

more details about these pathways, see [47] and [48]. We apply our model for each pathway

since proteins from the same pathway exhibit similar behaviors. We use spline based regression to

further investigate the different nonlinear relationships among proteins and mRNAs. The results

of the covariate selection and the graph estimation are summarized below.

For the standardized design matrix, we use ten evenly distributed knot points for spline basis

to capture the nonlinearities between proteins and mRNAs. Since the observations of mRNAs

are not uniformly distributed across their ranges, we use the penalized spline regression proposed

by [49] to solve the rank deficiency problem in the g-prior. The selection results along with the

number of proteins and mRNAs used in each pathway are summarized in Table 2.2 below. Four

of those pathways don’t have any influential mRNA which controls the proteins. The rest seven

pathways all have one or more related mRNAs according to the results. For example, the pathway

of Apoptosis is about programmed cell death. The model selects only the mRNA corresponding

to gene BCL2. BCL2 is an anti-cell death gene [50]. Proteins in BCL2 family play an important

role in control of apoptosis. Studies have found that they constitute a life or death decision point

for cells in a common pathway involved in various forms of Apoptosis [50]. In this sense, our

model identifies the correct mRNA that dominates this Apoptosis process. BCL2 also contributes

to the pathway about hormone receptor and signaling. CCNE1 has been selected in the pathway

of cell cycle. It has been found that there is an association between CCNE1 amplification and

breast cancer treatment [51]. CCNE1 is also related to the endometrioid endometrial carcinomas

[52, 53]. CDH1 has been selected in the pathway of core reactive and EMT. Mutations in CDH1

have been observed to be associated with increased susceptibility to develop lobular breast cancer
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[54, 55]. From the selection results, INPP4B is related to PI3K/AKT and hormone receptor and

signaling pathways. Interestingly, there are emerging evidences that INPP4B identified as a tumor

suppressor regulates PI3K/AKT signaling in breast cancer cell lines [56]. For more information

about the relationship between INPP4B and PI3K/ATK pathway, see [57], [58] and [59]. Both

ERBB2 and GATA3 genes have strong influence in breast cancer, see [60], [61], [62], [63] and

[64]. The list of gene names related to each of 12 pathways is in Table 2.1, see [48] for more

details. For the plots of estimated nonlinear functions of each node in all seven pathways, see

Appendix C.

Table 2.1: Gene names corresponding to each of 12 pathways

# Pathway Genes

1 Apoptosis BAK1, BAX, BID, BCL2L11, CASP7, BAD, BCL2, BCL2L1, BIRC2

2 Breast reactive CAV1, MYH11, RAB11A, RAB11B, CTNNB1, GAPDH, RBM15

3 Cell cycle CDK1, CCNB1, CCNE1, CCNE2, CDKN1B, PCNA, FOXM1

4 Core reactive CAV1, CTNNB1, RBM15, CDH1, CLDN7

5 DNA damage response TP53BP1, ATM, BRCA2, CHEK1, CHEK2, XRCC5, MRE11A, TP53, RAD50, RAD51, XRCC1

6 EMT FN1, CDH2, COL6A1, CLDN7, CDH1, CTNNB1, SERPINE1

7 PI3K/AKT AKT1, AKT2, AKT3, GSK3A, GSK3B, CDKN1B, AKT1S1, TSC2, INPP4B, PTEN

8 RAS/MAPK ARAF, JUN, RAF1, MAPK8, MAPK1, MAPK3, MAP2K1, MAPK14, RPS6KA1, YBX1

9 RTK EGFR, ERBB2, ERBB3, SHC1, SRC

10 TSC/mTOR EIF4EBP1, RPS6KB1, MTOR, RPS6, RB1

11 Hormone receptor ESR1, PGR, AR

12 Hormone signaling INPP4B, GATA3, BCL2
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Table 2.2: 12 pathways and mRNA selection results

# pathway names # of proteins # of mRNAs mRNA selected

1 Apoptosis 9 9 BCL2

2 Breast reactive 6 7 -

3 Cell cycle 8 7 CCNE1

4 Core reactive 5 5 CDH1

5 DNA damage response 11 11 -

6 EMT 7 7 CDH1

7 PI3K/AKT 10 10 INPP4B

8 RAS/MAPK 9 10 -

9 RTK 7 5 ERBB2

10 TSC/mTOR 8 5 -

11&12 Hormone receptor&signaling 7 4 INPP4B, GATA3, BCL2

The protein networks for all 12 pathways are shown in Figure 2.3. The number on each edge

is the estimated partial correlation between two proteins it connects. Green edge means positively

partial correlated; red edge means negatively partial correlated. The thickness of the edge repre-

sents the magnitude of the absolute value of partial correlation. Within each network, majority

of the proteins tends to be positively correlated, which means most of the proteins are working

together within each pathway. Proteins which are related to the same gene family have high posi-

tive correlation in the graph. For example, AKTPS and AKTPT (AKT gene family) in PI3K/AKT

pathway, GSK3A and GSK3P (GSK gene family) in PI3K/AKT pathway, and S6PS24 and S6PS23

(RPS6 gene family) in TSC/mTOR pathway. We define the degree of freedom for nodes as the

number of edges connected to them. Then hub nodes are the nodes which have the largest degree

of freedom in each pathway. These are the proteins which have the maximum connectivities and

interact heavily with other proteins. The summary of hub nodes are shown in Table 2.3 below (the

number in the bracket is the degree of freedom of the hub node).
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Table 2.3: Hub nodes in each pathway

pathway hub nodes pathway hub nodes

Apoptosis BAX(7) Breast reactive RAB(5), RBM(5)

Cell cycle CYCLINE1(7) Core reactive CAV(4), ECA(4)

DNA damage response XRC(9) EMT ECA(6), COL(6)

PI3K/AKT ATKPT(9), GSK3P(9) RAS/MAPK CJU(8)

RTK EGFRPY10(6), HER3(6), SHC(6) TSC/mTOR S6PS23(6)

Hormone receptor&signaling INPP4B(6)
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Figure 2.3: Protein networks for all 12 pathways
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2.7 Further Discussion

Our model provides a framework for jointly learning about the nonlinear covariate structure

as well as the dependence graph structures for the Gaussian graphical model. We used fixed knot

splines for estimation of nonlinear functions. This can be extended for adaptive splines or other

adaptive basis functions [46]. We have introduced our model for decomposable graphs but it can be

extended for more general settings. Apart from genomic applications, there are numerous problems

that arise in finance, econometrics, and biological sciences where nonlinear graph models can be

a useful approach to modeling and therefore, we expect our inference procedure to be effective in

those applications. Extension from Gaussian to non-Gaussian models is an interesting topic for

future research.
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3. BAYESIAN GRAPH SELECTION CONSISTENCY UNDER MODEL

MISSPECIFICATION ∗

3.1 Introduction

In this chapter, focusing on the hyper-inverse g-Wishart (g-HIW) distribution on the covariance

matrix and a complexity prior on the graph, we derive sufficient conditions for strong selection

consistency when p = O(nα) with α < 1/3. The key conditions relate to precise upper and

lower bounds on the partial correlation and a suitably complexity prior on the space of graphs. We

emphasize here that we do not need conditions to be verified on all subgraphs, i.e. all assumptions

are easy to understand and relatively straightforward to verify. Regarding our findings, we discover

that g-HIW prior places heavy penalty on missing true edges (false negatives), but comparatively

smaller penalty on adding false edges (false positives). Henceforth in high-dimensional regime a

carefully chosen complexity prior on the graph space is needed for penalizing false positives and

achieving strong consistency.

In the well-specified case, the hierarchical model used here is a subset of [31] since hyper-

inverse Wishart prior is a special case of DAG-Wishart prior proposed in [65] under perfect DAGs.

However, the assumptions in this chapter are distinctly different from those stated in [31]. In par-

ticular, our assumptions are on the magnitude of the elements of partial correlation matrix rather

than on the eigen values of covariance matrix as in [31]. Also, the main focus of this article is to

study the behavior of graph selection consistency under model misspecification, which cannot be

addressed within a DAG framework. To the best of our knowledge, we are the first to show the

strong selection consistency under HIW prior for high-dimensional graphs under model misspec-

ification. In particular, we show that the posterior concentrates on decomposable graphs which

are in some sense closest to the true non-decomposable graph. Interestingly, the pairwise Bayes

factors between such graphs are stochastically bounded. Our result under model-misspecification

∗Reprinted with permission from arXiv, “Bayesian Graph Selection Consistency Under Model Misspecification”,
arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance arXiv
copyright no modifications have been made except formatting.
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is inspired by [30], but extends to the case when p is growing with n and provides a rigorous

proof the convergence of the posterior distribution to the class of decomposable graphs which are

closest to the true one. We also present a detailed simulation study both for the well-specified and

misspecified case, which provides empirical justification for some of our technical results.

En-route, we develop precise bounds for Bayes factor in favor of an alternative graph with

respect to the true graph. The main proof technique is a combination of a) localization: which

involves breaking down the Bayes factor between any two graphs into local moves, i.e. addition

and deletion of one edge using decomposable graph chain rule and b) correlation association:

which converts the Bayes factor between two graphs differing by an edge into a suitable function

of sample partial correlations. By developing sharp concentration and tail bounds for sample partial

correlation, we obtain bounds for ratios of local marginal likelihoods which are then combined to

yield strong selection consistency results.

The remaining part of this chapter is organized as follows. In Section 3.2, we introduce the

necessary background and notations. Section 3.3 introduces the model with the HIW prior. Section

3.4 describes the main results on pairwise posterior ratio consistency and consistent graph selection

when the true graph is decomposable. Section 3.5 states the main results on consistent graph

selection under model misspecification and results on equivalence of minimal triangulations. In

each of Sections 3.4 and 3.5, the results are presented progressively as follows: First we provide

a non-asymptotic sharp upper bound for pairwise Bayes factor. Next, we state the main theorem

for posterior ratio consistency when p diverges with n with p of the order nα for α < 1/2. Finally,

we state the main theorem on strong graph selection consistency which further requires α < 1/3.

Numerical experiments are presented in Section 3.6 followed by a discussion in Section 3.7.

3.2 Preliminaries

In this section, we define a collection of notations required to describe the model and the

prior. Section 3.2.1 introduces sample and population correlations and partial correlations. Section

3.2.2 contains matrix abbreviations and notations used throughout the dissertation. Section 3.2.3

addresses other notations that are necessary for theorems and proofs. Notice, in this chapter and
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in Appendix D to Appendix G, we use p to denote the dimension of any graph.

3.2.1 Correlation and Partial Correlation

LetXp = (X1, X2, . . . , Xp)
T denote a random vector which follows a p-dimensional Gaussian

distribution and x(1), x(2), . . . , x(n) denote n independent and identically distributed (i.i.d) samples

observations fromXp. Clearly, the n×p matrix formed by augmenting the n-dimensional column

vectors xi, denoted (x1, x2, . . . , xp) is the same as (x(1), x(2), . . . , x(n))T and x̄i = n−1
1
T
nxi, i =

1, 2, . . . , p. Here 1n is an n-dimensional vector with all ones. Let In denote an n × n identity

matrix.

Definition 3.2.1. (Population correlation coefficient). The population correlation coefficient be-

tween Xi and Xj , 1 ≤ i, j ≤ p, is defined as

ρij =
σij√
σii
√
σjj

,

where σii = E(Xi − EXi)
2 and σij = E{(Xi − EXi)(Xj − EXj)}.

Definition 3.2.2. (Sample/Pearson correlation coefficient). The sample correlation coefficient be-

tween Xi and Xj , 1 ≤ i, j ≤ p, is defined as

ρ̂ij =
σ̂ij√

σ̂ii
√
σ̂jj

,

where σ̂ii = (xi − x̄i1n)T (xi − x̄i1n)/n and σ̂ij = (xi − x̄i1n)T (xj − x̄j1n)/n.

Definition 3.2.3. (Population partial correlation coefficient). Let S = {i1, i2, . . . , i|S|}, where

1 ≤ i1, i2, . . . , i|S| ≤ p and |S| is the cardinality of set S. Define XS = (Xi1 ,Xi2 , . . . ,Xi|S|)
T . The

population partial correlation coefficient between Xi and Xj , where i, j 6∈ S and 1 ≤ i, j ≤ p,

holding XS fixed is defined as

ρij|S =
σij|S

√
σii|S
√
σjj|S

,
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where σii|S = σii− σTSiσ−1
SSσSi, σij|S = σij − σTSiσ−1

SSσSj . And σSi = E{(XS −EXS)(Xi−EXi)},

σSS = E{(XS − EXS)T (XS − EXS)}.

Definition 3.2.4. (Sample partial correlation coefficient). Define xS = (xi1 , xi2 , . . . , xi|S|). The

sample partial correlation coefficient between Xi and Xj , where i, j 6∈ S and 1 ≤ i, j ≤ p,

holding XS fixed is defined as

ρ̂ij|S =
σ̂ij|S√

σ̂ii|S
√
σ̂jj|S

,

where σ̂ii|S = σ̂ii − σ̂TSiσ̂
−1
SS σ̂Si, σ̂ij|S = σ̂ij − σ̂TSiσ̂

−1
SS σ̂Sj . And σ̂Si = (xS − x̄S)T (xi − x̄i)/n,

σ̂SS =
{

(xS − x̄S)T (xS − x̄S)/n
}−1, x̄S = (x̄i11n, . . . , x̄i|S|1n).

3.2.2 Matrix Notation

For an n× p matrix Y , YC is defined as the submatrix of Y consisting of columns with indices

in the clique C. Let (y1, y2, . . . , yp) = (Y1, Y2, . . . , Yn)T , where yi is the ith column of Yn×p. If

C = {i1, i2, . . . , i|C|}, where 1 ≤ i1 < i2 < . . . < i|C| ≤ p, then YC = (yi1 , yi2 , . . . , yi|C|). For

any square matrix A = (aij)p×p, define AC = (aij)|C|×|C| where i, j ∈ C, and the order of entries

carries into the new submatrix AC . Therefore, YT
CYC = (YTY)C .

MNm×n(M,Σr,Σc) is an m × n matrix normal distribution with mean matrix M , Σr and Σc

as covariance matrices between rows and columns, respectively.

3.2.3 Miscellaneous

Let P be the probability corresponding to the true data generating distribution. Denote Gk and

Dk as the k-dimensional graph space and k-dimensional decomposable graph space. LetMt be the

minimal triangulation space of Gt when Gt is non-decomposable. a � b denotes C1a ≤ b ≤ C2a

for constants C1, C2. a - b denotes a ≤ C3b for a constant C3. For set relations, A ⊂ B means

A is a subset of B; A ( B means A ⊂ B and A 6= B; A 6⊂ B means A is not a subset of B. | · |

determined by context can be absolute value, cardinality of sets or determinant of matrices. π(·)

and π(· | Y) are the prior distribution and posterior distribution of graphs, respectively.
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3.3 Bayesian Hierarchical Model for Graph Selection

Suppose we observe independent and identically distributed p-dimensional Gaussian random

variables Yi, i = 1, . . . , n. To describe the common distribution of Yi, define a p × p covariance

matrix ΣG that depends on an undirected decomposable graph as defined in Section 1.1. Assume

Yi | ΣG, G ∼ Np(0,ΣG). In matrix notations,

Yn×p | ΣG, G ∼ MNn×p(0n×p, In,ΣG), (3.1)

where Yn×p = (Y1, Y2, . . . , Yn)T and 0n×p is an n×pmatrix with all zeros. The prior used here for

covariance matrix ΣG given a decomposable graph G is the hyper-inverse Wishart prior, described

in Section 2.2.1.

Since the joint density factorizes over cliques and separators,

f(Y | ΣG) = (2π)−
np
2

∏
C∈C |ΣC |−

n
2 etr
(
− 1

2
Σ−1
C YT

CYC

)
∏

S∈S |ΣS|−
n
2 etr
(
− 1

2
Σ−1
S YT

SYS

) (3.2)

in the same way as in Section 2.2.3, and

f(ΣG | G) =

∏
C∈C p(ΣC | b,DC)∏
S∈S p(ΣS | b,DS)

=

∏
C∈C

∣∣1
2
DC

∣∣ b+|C|−1
2 Γ−1

|C|
( b+|C|−1

2

)
|ΣC |−

b+2|C|
2 etr

(
− 1

2
Σ−1
C DC

)
∏

S∈S

∣∣1
2
DS

∣∣ b+|S|−1
2 Γ−1

|S|
(
b+|S|−1

2

)
|ΣS|−

b+2|S|
2 etr

(
− 1

2
Σ−1
S DS

) ,
it is straightforward to obtain the marginal likelihood of the decomposable graph G,

f(Y | G) = (2π)−
np
2

h(G, b,D)

h(G, b+ n,D + YTY)
= (2π)−

np
2

∏
C∈C w(C)∏
S∈S w(S)

,
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where

h(G, b,D) =

∏
C∈C

∣∣1
2
DC

∣∣ b+|C|−1
2 Γ−1

|C|
( b+|C|−1

2

)
∏

S∈S

∣∣1
2
DS

∣∣ b+|S|−1
2 Γ−1

|S|
( b+|S|−1

2

) , w(C) =
|DC |

b+|C|−1
2

∣∣DC + YT
CYC

∣∣− b+n+|C|−1
2

2−
n|C|
2 Γ|C|

( b+|C|−1
2

)
Γ−1
|C|
( b+n+|C|−1

2

) .
Throughout the remainder of this dissertation, we shall be working with the hyper-inverse Wishart

g-prior [17], denoted as

ΣG | G ∼ HIWG(b, gYTY), (3.3)

where g is some suitably small fraction in (0, 1) and b > 0 is a fixed constant. Following the

recommendation in [17], we choose g = 1/n through the remainder of this dissertation. Intuitively,

this choice of g avoids overwhelming the likelihood asymptotically as well as arbitrarily diffusing

the prior. In that case,

w(C) =
(n+ 1)−

|C|(b+n+|C|−1)
2

∣∣YT
CYC

∣∣−n2
(2n)−

n|C|
2 Γ|C|

(
b+|C|−1

2

)
Γ−1
|C|
(
b+n+|C|−1

2

) .
The choice of focusing on the hyper-inverse Wishart g-prior in this dissertation is driven by the

following two reasons. First, we can simplify the edge/signal strength assumption in terms of the

smallest nonzero entries in the partial correlation matrix, which serves as a natural interpretation of

the edge strength compared to assumptions on the eigenvalues of the correlation matrix. Second,

we conjecture that the results stated in Section 3.4 and 3.5 continue to hold for any choice of HIW

prior. The proof techniques under HIW g-prior serve as representations to the principle ideas in

the article and can be easily adapted to other variations of HIW prior.

To complete a fully Bayesian specification, we place a prior distribution π(·) on the decom-

posable graph G. Our theoretical results in Section 3.4 and 3.5 are independent of the prior choice

on G if we consider a fixed p asymptotics. However, for p increasing with n we need a suit-

able penalty on the number of edges of the random graph to penalize the false positives. Here is a

popular example [18, 66, 17, 13, 31] we consider in the dissertation. Considering an undirected de-

composable graph G, we assume the edges are independently drawn from a Bernoulli distribution
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with a common probability q:

π(G | q) ∝
[∏
r<s

qers(1− q)1−ers
]
· 1D(G), (3.4)

where D is the set of all decomposable graphs with |V | = p vertices and q is the prior edge

inclusion probability. We control the parameter q to induce sparsity on the number of edges.

[18] recommends using 2/(|V | − 1) as the hyper-parameter for the Bernoulli distribution. For an

undirected graph, it has peak around |V | edges and the mode is smaller for decomposable graphs.

We outline specific choices in Section 3.4 and Section 3.5 below.

3.4 Theoretical Results In The Well-specified Case

In this section, we present our main consistency results. The proofs of the results are deferred

to Appendix D to Appendix G. Before introducing the assumptions, we need to adapt previous

notations to the high-dimensional graph selection problem. Let Y = (Y1, Y2, . . . , Yn)T and Ω0 =

Σ−1
0 the corresponding precision matrix. Without loss of generality, we assume all column means

of Y are zero. Let Gt = (V,Et) denote the true decomposable graph induced by Ω0, ρij|V \{i,j}

denote the true partial correlation between node i and j given the rest of the nodes V \{i, j}.

Assume ρL and ρU are the smallest and largest in absolute value of the non-zero population partial

correlations, i.e.

ρL = min
1≤i<j≤p
(i,j)∈Et

∣∣ρij|V \{i,j}∣∣ , ρU = max
1≤i<j≤p
(i,j)∈Et

∣∣ρij|V \{i,j}∣∣ ,
Let Ga = (V,Ea) be any alternative decomposable graph other than the true graph Gt. Denote by

E1
a = Et ∩ En

a the set of true edges in Ga. Notice, when Et ( Ea, we have E1
a = Et. Denoting

by | · | the cardinality of a set, |Et| is the number of edges in Gt, |E1
a| is the number of true edges

in Ga. Define Gc = (V,Ec), where Ec = {(i, j) : eij = 1, 1 ≤ i < j ≤ p}, to be the complete

graph such that |Ec| = p(p − 1)/2. By definition, Gc is a decomposable graph. We use Ga 6= Gt

to denote Ea 6= Et; Gn
a 6⊂ Gt to denote Ea 6⊂ Et; Ga ( Gt to denote Ea ( Et. In the following,

we state the main assumptions for graph selection consistency.
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Note: The Appendix D introduces a set of auxiliary results related to the concentration and tail

behavior of partial correlations, following by Appendix E which states bounds for Bayes factor

for local moves required to prove Theorem 3.4.1. Then we provide a proof of Theorem 3.4.1

followed by the proofs of Theorem 3.4.2, Theorem 3.4.3, Corollary 3.4.2, the minimal triangulation

Theorems 3.5.1 and 3.5.2 and Corollary 3.5.1.

3.4.1 Assumptions

Assumption 3.4.1. (Graph size)

p - nα, where 0 < α < 1.

Assumption 3.4.2. (Edge sensitivity and identifiability)

ρL � n−λ, where 0 ≤ λ <
1

2
.

Assumption 3.4.3. (Number of maximum edges in Gn
t )

|Et| - nσ, where 0 ≤ σ ≤ 2α.

Assumption 3.4.4. (Prior edge inclusion probability)

q � e−Cqn
γ

, where 0 < γ < 1, 0 < Cq <∞.

Assumption 3.4.5. (Imperfect linear relationship)

1− ρU � n−k, where k ≥ 0 and ρU 6= 1.

The main results will have additional restrictions on the parameters (α, λ), but it is important

to note that we require ρL to not decrease to 0 too quickly in order to ensure that the graph is
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identifiable. On the other hand, ρU can be allowed to be sufficiently close to 1.

3.4.2 Pairwise Bayes Factor Consistency for Fixed p

In this section, we assume p, ρU and ρL are all fixed constants. As a first step towards model

selection, we investigate the behavior of the pairwise Bayes factor

BF(Ga;Gt) =
f(Y | Ga)

f(Y | Gt)
, (3.5)

where Gt is the decomposable true graph and Ga is any other decomposable graph. In this section,

we shall investigate sufficient conditions on the likelihood (3.2) and the prior on (ΣG, G) given by

(3.3) and (3.4) such that the Bayes factor (3.5) converges to 0 as n→∞ for any graph Ga 6= Gt.

Theorem 3.4.1. (Upper bound for pairwise Bayes factor). Assume the graph dimension p is a fixed

constant and ρU 6= 1. Given any decomposable graph Ga 6= Gt, there exists a set ∆a, such that on

the set ∆a, if n > max{p+ b, 4p}, we have

1. when Gt 6⊂ Ga,

BF(Ga;Gt) < exp
{
− nρ2

L

2
+ δ(n)

}
, (3.6)

2. when Gt ( Ga,

BF(Ga;Gt) <
(
ep

2) · n− 1
2

(|Ea|−|Et|)(1−2/τ∗), (3.7)

and

P(∆a) ≥ 1− 42p2

(1− ρU)2
(n− p)−

1
4τ∗
{ 1

τ ∗
log(n− p)

}− 1
2
,

where τ ∗ > 2 and δ(n) = p2 log n+
√
n log n+ 3p2 log p satisfying δ(n)/n→ 0, as n→∞.

Proof. See Appendix F.2.

The next corollary is the direct result from Theorem 3.4.1.

Corollary 3.4.1. (Finite graph pairwise Bayes factor consistency). Let Ga be any decomposable

graph and Ga 6= Gt. The graph dimension p is a fixed constant. If ρU 6= 1, then BF(Ga;Gt)
P→ 0,
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as n→∞.

When p is fixed, the likelihood is strong enough to consistently recover the graph. One key

aspect of the proof is that Bayes factor in favor of adding a true edge versus the lack of it is

exponentially small, while the Bayes factor in favor for adding a false edge decreases to zero only

at a polynomial rate.

We emphasize here that exponential rate for deletion (of true edges) is only true when the

corresponding population partial correlation or correlation is non-zero. From the global Markov

property, we know if two nodes are adjacent then any partial correlation between them is non-zero

but their correlation can be zero. The polynomial rate for addition (of false edges) is only true

when the corresponding population partial correlation or correlation is zero. When two nodes are

not adjacent, then only the set that separates them will results in a zero partial correlation. We

choose the path of Gt → Gc → Ga which ensures us the exponential decay when missing true

edges and polynomial decay when adding false edges.

3.4.3 Posterior Ratio Consistency for Growing p

Next we examine the convergence of posterior ratio,

PR(Ga;Gt) =
f(Y | Ga)π(Ga)

f(Y | Gt)π(Gt)
, (3.8)

when the dimension of graphs grows with sample size.

Theorem 3.4.2. (High-dimensional graph posterior ratio consistency). Let Ga be any decompos-

able graph and Ga 6= Gt and Assumptions 3.4.1-3.4.5 are satisfied with

0 < α <
1

2
, 0 ≤ λ < min

{
α,

1

2
− α

}
.

By choosing γ in the interval (max{0, 1− 4α}, 1−σ− 2λ) we have PR(Ga;Gt)
P→ 0, as n→∞.

Proof. See Appendix F.3.
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When the graph size grows with n, the partial correlation is no longer a constant. The HIW

prior does not naturally favor parsimonious graphs, so a penalty on the number of edges in the

graph in needed by restricting γ in the above interval. Note also that we do not need any further

restriction on σ in Assumption 3.4.3 meaning that the true graph is allowed to be the complete

graph for the posterior ratio consistency to hold.

3.4.4 Strong Graph Selection Consistency

In this section, we examine the behavior of

π(G | Y) =
f(Y | G)π(G)∑

G′∈D f(Y | G′)π(G′)

as n, p→∞.

Theorem 3.4.3. (Strong graph selection consistency). Let Ga be any decomposable graph and

Ga 6= Gt and Assumptions 3.4.1-3.4.5 are satisfied with

0 < α <
1

3
, 0 ≤ λ < min

{
α,

1− 3α

2

}
.

By choosing γ in the interval (max
{
α, 1− 4α

}
, 1− σ − 2λ), we have

π(Gt | Y)
P→ 1, as n→∞.

Proof. See Appendix F.4.

Strong selection consistency demands all posterior ratio to be converging simultaneously at a

sufficiently fast rate so that the sum is convergent. Since the number of alternative graphs is of the

order 2p
2 , to make the sum convergent, we require further assumptions on the model complexity

and an accompanying stronger penalty π. We achieve this by shrinking the dimension of graph

space (α < 1/3) and inducing a slightly stronger sparsity (by selecting larger γ) on the prior over

the graph space.
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In the proofs of Theorem 3.4.1-3.4.3, by using the decomposable graph chain rule, we traverse

to any decomposable graph from the true graph and thus break down the Bayes factor into local

moves, i.e. addition and deletion of a single edge. The local moves then can be associated with

sample partial correlations and sample correlations, which are the natural criterion of edge selec-

tion by definition. This enables us to transform the problem into a more understandable manner.

In practice, one might be interested in a consistent point estimate rather than the entire posterior

distribution. In Bayesian inference for discrete configurations, a posterior mode provides a natural

surrogate for the MLE. In the following, we investigate the consistency of the posterior mode

obtained from our hierarchical Bayesian model as a simple bi-product of Theorems 3.4.2 and

3.4.3. Define Ĝ to be the posterior mode in the decomposable graph space, i.e.

Ĝ = argmaxG∈Dπ(G | Y).

Then the following in true.

Corollary 3.4.2. (Consistency of posterior mode when Gt is decomposable). Under the assump-

tions of Theorem 3.4.3, the probability which the posterior mode Ĝ is equal to the true graph Gt

goes to one, i.e.

P
(
Ĝ = Gt)→ 1, as n→∞.

Proof. See Appendix F.5.

3.5 Theoretical Results Under Model Misspecification

In this section, we investigate the effect of model misspecification when the underlying true

graph Gt is non-decomposable.

3.5.1 Minimal Triangulations

We begin with some definitions on triangulation and minimal triangulations of a graph. A

triangulation of graph G = (V,E) is a decomposable graph G∆ = (V,E ∪F ). The edges in F are

called fill-in edges. A triangulation G∆ = (V,E ∪ F ) of G = (V,E) is minimal if (V,E ∪ F ′) is
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non-decomposable for every F ′ ( F [67]. A triangulation is minimal if and only if the removal

of any single fill-in edge from it results in a non-decomposable graph [68, 67]. This property

captures the important aspect of minimal triangulations. For a summary of minimal triangulations

of graphs, see [67] for more details. Next, we state two theorems graph selection consistency under

a true non-decomposable graph.

3.5.2 Consistency Results Under Model Misspecification

Theorem 3.5.1. (Convergence and equivalence of minimal triangulations for finite graphs). As-

sume the true graph Gt is non-decomposable. When the graph dimension p is a fixed constant

(ρU , ρU are fixed constants), we have the following:

1. Let Gm be any minimal triangulation of Gt and Ga be any decomposable graph that is not a

minimal triangulation of Gt. If ρU 6= 1, then BF(Ga;Gm)
P→ 0, as n→∞.

2. Let Gm1 and Gm2 be any two different minimal triangulations of Gt (with the same number

of fill-in edges). Then the Bayes factor between them are stochastically bounded, i.e. for any

0 < ε < 1, there exist two positive finite constants A1(ε) < 1 and A2(ε) > 1, such that

P
{
A1 < BF(Gm1 ;Gm2) < A2

}
> 1− ε, for n > p+ max

{
3, b, 6 log

(
10p2/ε

)}
.

3. If ρU 6= 1, we have
∑

Gm∈Mt
π(Gm | Y)

P→ 1, as n → ∞, where Mt is the minimal

triangulation space of Gt.

Proof. See Appendix G.2.

Theorem 3.5.2. (Convergence and equivalence of minimal triangulations for high-dimensional

graphs). Assume the true graph Gt is not decomposable. When the graph dimension p grows with

n, we have the following results.

1. Let Gm be any minimal triangulation of Gt and Ga be any decomposable graph that is not a
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minimal triangulation of Gt. Assume

0 < α <
1

2
, 0 ≤ λ < min

{
α,

1

2
− α

}
, 0 < σ < min

{
2(α− λ), 2(

1

2
− α− λ)

}
.

Choose γ in the interval (max
{

2α, 1 − 2α
}
, 1 − σ − 2λ). Then under Assumptions 3.4.1-

3.4.5, we have PR(Ga;Gm)
P→ 0, as n→∞.

2. Let Gm1 and Gm2 be any two different minimal triangulations of Gt. If the number of fill-in

edges is finite, then the Bayes factor between them are stochastically bounded.

3. If

0 < α <
1

3
, 0 ≤ λ < min

{
α,

1− 3α

2

}
, 0 ≤ σ < min

{
2(α− λ), 2

(1− 3α

2
− λ
)}
.

And we choose γ in the interval (max
{

3α, 1 − 2α
}
, 1 − σ − 2λ), then under Assumptions

3.4.1-3.4.5, we have
∑

Gm∈Mt
π(Gm | Y)

P→ 1, as n → ∞, where Mt is the minimal

triangulation space of Gt.

Proof. See Appendix G.3.

Based on the theorems presented above, the equivalence among minimal triangulations is true

when the number of fill-in edges is finite. Adding infinitely many fill-in edges prompts the minimal

triangulations to drift further away from the true graph. In that case, there are too many possibilities

among the minimal triangulations such that they can be vastly different for each other. It is worth

mentioning that any decomposable subgraph of the true graph is not a good posterior estimate of

the true graph. This is simply due to the fact that such a graph is associated with at least one

edge deletion step following by reciprocal of addition steps from a minimal triangulation. Since

deletion of any true edge results in an exponential decay of the Bayes factor in favor of the deletion

and the reciprocal of additions will be in favor of additions (the minimal triangulations) or neutral

depending on whether the corresponding population partial correlation is zero. Thus, pairwise
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speaking, the posterior mode is among minimal triangulation class.

Analogous to Corollary 3.4.2, when the true graph Gt is not decomposable, we state the behav-

ior of posterior mode in the following corollary under model misspecification.

Corollary 3.5.1. (Consistency of posterior mode when Gt is non-decomposable). Under the as-

sumptions of Theorem 3.5.2, the posterior mode Ĝ is in the minimal triangulation spaceMt of the

true graph Gt with probability converging to one, i.e.

P
(
Ĝ ∈Mt)→ 1, as n→∞.

Proof. See Appendix G.4.

3.6 Simulations

We conduct two sets of simulations for the demonstrate the convergence of Bayes factors in

the well-specified case (Theorem 3.4.1) and in the misspecified case (Theorem 3.5.1) for fixed p.

3.6.1 Simulation 1: Demonstration of Pairwise Bayes Factor Convergence Rate

In this section, we conduct a simulation study inD3 to demonstrate the convergence rate of pair-

wise Bayes factors. Let Gk be the k-dimensional graph space. Since there is no non-decomposable

graph with 3 nodes, D3 is the same as G3. All 8 graphs in D3 are enumerated in Figure 3.1.

1

2 3

G0

1

2 3

G12

1

2 3

G13

1

2 3

G23

1

2 3

G−23

1

2 3

Gt

1

2 3

G−12

1

2 3

Gc

Figure 3.1: Enumerating all 3-node decomposable graphs in D3 with Gt as the true graph, G0

as the null graph and Gc as the complete graph. Reprinted with permission from arXiv preprint,
arXiv:1901.04134.

43



The underlying covariance matrix Σ3 and its precision matrix Ω3 are shown below along with

the correlation matrix R3 and the partial correlation matrix R3. Samples are drawn independent

and identically from N3(0,Σ3). The range of the sample size simulated is from 100 to 10,000

with an increment of 100. The Bayes factor for each sample size is averaged over 1000 simulation

replicates. The degree of freedom b in the HIW g-prior is chosen to be 3. The first six pairwise

Bayes factors in logarithmic scale is shown in Figure 3.2 (a) and the logarithm of BF(Gc;Gt) is

shown separately in Figure 3.2 (b) due to its slower convergence rate. To better understand the

simulation results, asymptotic leading terms of pairwise Bayes factors in logarithmic scale and the

empirically estimated slopes for n or log n are listed in the second and third columns of Table 3.1.

To calculate the leading terms in the logarithm of Bayes factors, the sample partial correlations or

sample correlations are replaced with their population counterparts that do not depend on n. The

leading terms are obtained by following the route we have used in the proof, i.e. Gt → Gc → Ga.

The slopes of logarithms of the first six Bayes factors in Figure 3.2 (a) are calculated in Table

3.1 based on linear regression fit on n. The last slope in Table 3.1 is calculated based on linear

regression on log n; refer to Figure 3.2 (b). Table 3.1 shows that the theoretical asymptotic leading

terms match well with the empirical values.

Σ3 =


0.7119 −0.4237 0.1695

−0.4237 0.8475 −0.3390

0.1695 −0.3390 0.6356

 , Ω3 =


2 1 0

1 2 0.8

0 0.8 2

 .

R3 =


1.0000 −0.5456 0.2520

−0.5456 1.0000 −0.4619

0.2520 −0.4619 1.0000

 , R3 =


1 0.5 0

0.5 1 0.4

0 0.4 1

 .
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Table 3.1: Asymptotic leading terms and simulation slopes of Bayes factors in logarithmic scale.
Reprinted with permission from arXiv preprint, arXiv:1901.04134.

Bayes factors asymptotic leading term simulation slope

BF(G0;Gt)
{

log
(
1− ρ2

12

)
+ log

(
1− ρ2

23

)}
· n/2 = −0.2967 · n −0.2963

BF(G13;Gt)
{

log
(
1− ρ2

12

)
+ log

(
1− ρ2

23|1
)}
· n/2 = −0.2639 · n −0.2637

BF(G23;Gt) log
(
1− ρ2

12

)
· n/2 = −0.1767 · n −0.1765

BF(G−12;Gt) log
(
1− ρ2

12|3
)
· n/2 = −0.1438 · n −0.1439

BF(G12;Gt) log
(
1− ρ2

23

)
· n/2 = −0.1120 · n −0.1198

BF(G−23;Gt) log
(
1− ρ2

23|1
)
· n/2 = −0.0872 · n −0.0873

BF(Gc;Gt) −0.5 · logn −0.5106

From the simulation results, we can see missing at least one true edge of Gt in Ga will result

in the Bayes factor converging to zero exponentially. This is perfectly illustrated by all six Bayes

factors in Figure 3.2 (a). On the other hand, adding false edges in Ga results in a Bayes factor

going to zero at a polynomial rate which is much slower than missing a true edge, see Figure 3.2

(b). These discoveries are consistent with Table 3.1 and our proofs.

Next we compare the different types of rates in the convergence of the first six Bayes factors.

The convergence rate associated with missing two edges ofGt is faster than missing only one edge,

i.e. BF(G0;Gt) vs. BF(G23;Gt) and BF(G0;Gt) vs. BF(G12;Gt). The convergence rate is faster

when the missing edge of Gt corresponds to a larger partial correlation (or correlation) in absolute

value, i.e. BF(G−12;Gt) vs. BF(G−23;Gt) and BF(G23;Gt) vs. BF(G12;Gt). One interesting fact

is although G0 and G13 are both missing two edges of Gt, with G13 having an additional false edge

of Gt compared to G0, the convergence rate of the Bayes factor for G13 is slower than that for G0.

The reason is clear from Table 3.1. As the absolute value of correlation between node 2 and 3

(|ρ23| = 0.4619) is larger than the absolute value of partial correlation between them given node
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1 (|ρ23|1| = 0.4), the leading term of BF(G0;Gt) is smaller than that of BF(G13;Gt). The effect

due to false edges (polynomial rate) is overwhelmed by the leading term (exponential rate). It is

evident that HIW prior places higher penalties on false negative edges compared to false positive

edges. Hence in the high-dimensional case, a prior on graph space is needed for penalizing false

positive edges. Similar conclusions can be made comparing BF(G23;Gt) and BF(G−12;Gt), also

from comparing BF(G12;Gt) and BF(G−23;Gt).
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Figure 3.2: Simulation results of pairwise Bayes factors of D3 in logarithmic scale. (a) Six Bayes
factors whereGt 6⊂ Ga (at least missing one edge inGt). (b) WhenGt ( Ga = Gc (only addition).
Reprinted with permission from arXiv preprint, arXiv:1901.04134.

3.6.2 Simulation 2: Examination of Model Misspecification

In this section, we illustrate the stochastic equivalence between minimal triangulations when

the true graph is non-decomposable. The smallest non-decomposable graph is a cycle of length 4

without a chord. So we focus our simulation in D4. Since the number of decomposable graph in-

creases exponentially with the dimension of graphs, we only select 5 alternative graphs inD4 other

than the minimal triangulations, see Figure 3.3. The true covariance matrix Σ4 and its precision

matrix Ω4 are listed below along with the correlation matrix R4 and the partial correlation matrix
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R4. All simulation settings are the same as in the simulation of D3.

Σ4 =



1.8364 −1.0909 0.8909 −1.3636

−1.0909 1.0606 −0.7273 0.9091

0.8909 −0.7273 0.9273 −0.9091

−1.3636 0.9091 −0.9091 1.6364


, Ω4 =



2 1.2 0 1

1.2 3 1.2 0

0 1.2 3 1

1 0 1 2


.

R4 =



1.0000 −0.7817 0.6827 −0.7866

−0.7817 1.0000 −0.7334 0.6901

0.6827 −0.7334 1.0000 −0.7380

−0.7866 0.6901 −0.7380 1.0000


, R4 =



1 0.49 0 0.50

0.49 1 0.40 0

0 0.40 1 0.41

0.50 0 0.41 1


.
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Figure 3.3: Some selected graphs in G4, includingGt as the true graph which is non-decomposable.
Gm1 and Gm2 are two minimal triangulations of Gt. Reprinted with permission from arXiv
preprint, arXiv:1901.04134.

Since the true graph Gt is non-decomposable, the two minimal triangulations of Gt act like the

pseudo-true graphs. So we plot the first four pairwise Bayes factors where Gmi 6⊂ Ga, i = 1, 2 for

Gm1 and Gm2 in logarithmic scale together in Figure 3.4 (a) and (b), respectively. The logarithm

of Bayes factor between two minimal triangulations is in Figure 3.4 (c). Finally, we plot the Bayes
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factors of one triangulation (i.e. Gc, not minimal) of Gt against both minimal triangulations in

Figure 3.4 (d).

From Figure 3.4 (a) and (b), we can see the behavior of two minimal triangulations is the

same as what we observed in the case where Bayes factors against the true decomposable graph,

i.e. missing true edges causes exponential decay of pairwise Bayes factors. And in the case of

false positive edges, i.e. Figure 3.4 (c), the rate is what we expected if Gm1 and Gm2 are the true

graph, polynomial rate. Based on the simulation result in Figure 3.4 (c), we can see the Bayes

factor between two minimal triangulations neither converges to zero nor diverges to infinity. And

they are stochastically bounded. In this case, it is closely to 1 which means these two minimal

triangulations of Gt are almost the same in this case (in terms of posterior probability). It is also

demonstrated by Figure 3.4 (a), (b) and (d) where the curves between Gm1 and Gm2 are almost

identical.
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Figure 3.4: Simulation results of pairwise Bayes factors of D4 in logarithmic scale. (a) When
Gm1 6⊂ Ga (missing true edges). (b) When Gm2 6⊂ Ga (missing true edges). (c) The Bayes factor
between two minimal triangulations of Gt, i.e. BF(Gm2 ;Gm1). (d) When Gmi ( Ga = Gc,
i = 1, 2 (only addition). Reprinted with permission from arXiv preprint, arXiv:1901.04134.

3.7 Discussion

In this chapter, we provide a complete theoretical foundation for high-dimensional decompos-

able graph selection under model misspecification. When the graph dimension is finite, Fitch,

Jones and Massam [30] present pairwise Bayes factor consistency results and stochastic equiva-

lence among minimal triangulations. We provide more general results of both pairwise consistency

and strong selection consistency in high-dimensional scenario. To the best of our knowledge, these

are the first complete results on this topic so far.
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In our results, the graph dimension can not be equal to or exceed n1/2 and n1/3 for pairwise

consistency and strong selection consistency, respectively. The limitation of the growth rate of

the graph dimension is caused by the convergence rate of sample partial correlations and sample

correlations. With the current techniques, without further investigating the relationship among

sample partial correlations, these results cannot be improved. Observe that in i.i.d. case without

any sparsity assumptions, it is well-known that the MLE is consistent under “p/n small”, the Fisher

expansion for the MLE is valid under “p2/n small” while the Wilks and asymptotic normality

results apply under “p3/n small” [69, 70]. We conjecture that it may not be possible to relax

the growth rate of p for achieving strong selection consistency using the current formulation of

the HIW prior. This is simply because HIW does not penalize false edges significantly enough

so that in high dimension a prior on graph space is needed to achieve both pairwise and strong

selection consistency. Also any other sparsity restriction on the elements of the precision matrix is

not supported by the HIW prior due to its inability to enforce sufficient shrinkage conditional on

the graph. This limits extending the technical results to ultra-high-dimensional case by enforcing

additional sparsity assumptions on the elements of the precision matrix. This apparent “flaw” lies

in the construction of the HIW prior itself and can not be improved by adding any reasonable

penalty on the graph space.

For technical simplicity, our results are based on HIW g-prior only. We conjecture that the con-

sistency results continue to hold for general HIW prior. Moreover, extensions to non-decomposable

graphical models can be done by using G-Wishart prior, but major bottlenecks are expected stem-

ming from the lack of a closed form for the normalizing constant for the general HIW prior. Recent

work [71] on the development of approximation results for the normalizing constant may prove to

be useful in this regard.
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4. SUMMARY AND ONGOING RESEARCH

4.1 Summary

In this dissertation, I first developed a Bayesian method to incorporate covariate information

in Gaussian graphical models by adding a linear or nonlinear framework in the mean structure of

the Gaussian distribution. In order to select the important covariates, I applied a Bayesian variable

selection scheme to the covariate structure assumed. It enables us to simultaneously estimate the

graph structure and select the influential variable to the same graph. To examine the property of

variable selection in this scenario, I studied the consistency of variable selection. The theorems

conclude that under moderate conditions the consistency can be achieved with graph selection

even if the underlying graph chosen is not the true graph. This guarantees the convergence of the

stochastic search algorithm. I also developed an efficient collapsed Gibbs sampler algorithm to

search the joint model space, i.e. covariate space and graph space. The simulation results confirm

the theoretical finding which is that variable selection is not affected by graph selection and it

converges fast. This method can be applied to estimate protein networks with the ability to identify

influential mRNAs. I applied the proposed method to analyze gene and protein expression data

acquired from The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas (TCPA). The

results are consistent with some biological properties of the selected mRNAs.

In the second part of this dissertation, I studied the graph selection consistency for model

misspecification when using decomposable graphs only. By unveiling the connection between

sample partial correlations and single edge selection consistency, I was able to show the selection

consistency when the true graph is decomposable. Using minimal triangulation graphs as a bridge

in the model misspecification case, theoretical results can be derived. By proving the equivalence

between minimal triangulations of any nondecomposable graph under certain assumptions, we are

able to uncover the structure of minimal triangulation space. One crucial character of HIW priors is

that it does not enforce heavy penalty on false positive edges which means it also does not induce
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any sparsity on the decomposable graph space. Therefore, a sparse prior on the decomposable

graph space or on edges is the necessary regularization to induce sparsity. Although only HIW-g

Wishart prior is considered in this dissertation due to its simplicity, all theorems in Chapter 3 can be

extended to any form of HIW priors with little changes in the assumptions. Simulation studies are

conducted to replicate the convergence rates for model misspecification along with well-specified

case. The results are consistent with the theorems I proposed. The theoretical convergence rates

are almost the same as we calculated from the simulation studies.

4.2 Future Topics

There are many ways to incorporate covariate information in the graph. The way I proposed

in this dissertation is to let only the covariates affect the mean structure of the Gaussian graphical

models. The covariance structure of Gaussian distributions can also be affected by the covariates.

Factor models are designed to accomplish this goal in a parametric way. But a fundamental limita-

tion is that it is not very flexible and it is easy to mis-specify the underlying true structure. Future

work can be done by discovering nonparametric methods to achieve this such as partition methods,

for example, classification and regression trees. The nonparametric model is flexible in its nature

and can deal with model misspecification. Variable selection consistency can be studied as well,

but more advanced tools are needed to solve the proof of corresponding consistency theorems.

Furthermore, I only used HIW prior for the covariance matrix. It is not hard to extend this to G-

Wishart priors in the future. One crucial bottle neck is that the normalizing constant of G-Wishart

distributions does not have a analytic form. This fact alone causes problems in marginalization and

computation.

For graph selection consistency, although I studied the property of HIW priors thoroughly, it

is impossible to apply the techniques presented here onto the G-Wishart priors. The non-analytic

form of the normalizing constants of the G-Wishart priors creates a challenging problem to the

current proving techniques. Besides this, there are more scenarios to be considered when the graph

travels outside the decomposable space. The enumerations become extremely complicated due to

the loss of decomposability. The above two reasons are the main causes why developing a result
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of selection consistency is nearly impossible for the G-Wishart priors.

Another way to study the selection consistency for all undirected graphs is to abandon the exist-

ing framework. Future research can focus on using a pseudo-likelihood functions for multivariate

Gaussian distributions. The graph selection consistency can be transformed into a problem related

to the traditional variable selection consistency. Pseudo-likelihood functions also enjoy some good

properties, such as more flexible and computationally efficient. Other current existing Bayesian

shrinkage methods can also be incorporated into the pseudo-likelihood framework. Since pseudo-

likelihood functions are approximations to Gaussian likelihood functions, model misspecification

must be studied comprehensively.
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APPENDIX A

MARGINAL DISTRIBUTION OF Y GIVEN γ AND G

In this appendix, we provide the detail calculation for the conditionally marginal density of Y

given only γ and graph G. Given the hierarchical model in Section 2.2,

(Y − UγBγ,G)|γ,ΣG ∼ MNn×q(0, In,ΣG),

Bγ,G|γ,ΣG ∼ MNpγ(k+1)×q(0, g(UT
γUγ)−1

pγ(k+1),ΣG),

ΣG|G ∼ HIWG(b, dIq),

where Y is n×q, Uγ is n×pγ(k+1), Bγ,G is pγ(k+1)×q, ΣG is q×q. First, we can marginalize

out the coefficient matrix Bγ,G due to the conjugacy of its prior to the likelihood of Y. We have

Y|γ,ΣG ∼ MNn×q(0, In + gUγ(UT
γUγ)−1UT

γ ,ΣG).

Next, we vectorize Y to prepare for integrating out ΣG. So,

vec(YT )|γ,ΣG ∼ Nnq(0, (In + gPγ)⊗ ΣG), (A.1)

where Pγ = Uγ(UT
γUγ)−1UT

γ and ⊗ is the Kronecker product operation.

We use the Sylvester’s determinant theorem to further simplify the density of vec(YT ). If A

and B are matrices of size m× n and n×m respectively, then |Im +AB| = |In +BA|. We have

|In+gPγ | = |In+gUγ(UT
γUγ)−1UT

γ | = |Ipγ(k+1)+g(UT
γUγ)−1(UT

γUγ)| = (g + 1)pγ(k+1). (A.2)

By the Sherman-Morrison-Woodbury (SMW) identity, assuming A, C and (C−1 +DA−1B) to
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be nonsingular,

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1,

we have

(In + gPγ)−1 =
{
In + gUγ(UT

γUγ)−1UT
γ

}−1
= In −

g

g + 1
Pγ . (A.3)

Simplifying the density of (A.1) using (A.2) and (A.3),

f(vec(YT )|γ,ΣG) = (2π)−
nq
2 |In + gPγ |−

q
2 |ΣG|−

n
2

exp

[
− 1

2
{vec(YT )}T

{
(In + gPγ)−1 ⊗ ΣG

−1

}
{vec(YT )}

]
= (2π)−

nq
2 (g + 1)−

pγ (k+1)q

2 |ΣG|−
n
2

exp

[
− 1

2
{vec(YT )}T

{(
In −

g

g + 1
Pγ

)
⊗ ΣG

−1

}
{vec(YT )}

]
.

Matrix vectorization and trace operation have the following relationship. Suppose that A is an

r × s matrix and B is s × r, then tr(AB) = {vec(A)}Tvec(BT ) = {vec(AT )}Tvec(B). So we

can further reduce the complexity of the exponential term in the density above.

{vec(YT )}T
{(

In −
g

g + 1
Pγ

)
⊗ ΣG

−1

}
{vec(YT )}

= {vec(YT )}T ·

{(
In −

g

g + 1
Pγ

)
⊗ ΣG

−1 · vec(YT )

}

= {vec(YT )}T · vec
{

Σ−1
G YT

(
In −

g

g + 1
Pγ

)}
= tr

{
YT

(
In −

g

g + 1
Pγ

)
YΣ−1

G

}
= tr{S(γ)Σ−1

G },

where S(γ) = YT
(
In− g

g+1
Pγ
)
Y. Eventually, by factorizing the density f(Y|γ,ΣG) correspond-
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ing to the hyper-inverse Wishart prior, we have

f(Y|γ,ΣG) = (2π)−
nq
2 (g + 1)−

pγ (k+1)q

2 |ΣG|−
n
2 etr

{
− 1

2
S(γ)Σ−1

G

}

= (2π)−
nq
2 (g + 1)−

pγ (k+1)q

2

∏
C∈C |ΣC |−

n
2 etr

{
− 1

2
SC(γ)Σ−1

C

}
∏

S∈S |ΣS|−
n
2 etr

{
− 1

2
SS(γ)Σ−1

S

} . (A.4)

Since ΣG|G ∼ HIWG(b, dIq), then

f(ΣG|G) =

∏
C∈C

|dIC |
b+|C|−1

2

2
(b+|C|−1)|C|

2 Γ|C|

(
b+|C|−1

2

) |ΣC |−( b
2

+|C|)etr(−1
2
dICΣ−1

C )

∏
S∈S

|dIS |
b+|S|−1

2

2
(b+|S|−1)|S|

2 Γ|S|

(
b+|S|−1

2

) |ΣS|−( b
2

+|S|)etr(−1
2
dISΣ−1

S )

= H (b, dIq, G) ·
∏

C∈C |ΣC |−( b
2

+|C|)etr(−1
2
dICΣ−1

C )∏
S∈S |ΣS|−( b

2
+|S|)etr(−1

2
dISΣ−1

S )
, (A.5)

where

H (b, dIq, G) =

∏
C∈C

|dIC |
b+|C|−1

2

2
(b+|C|−1)|C|

2 Γ|C|

(
b+|C|−1

2

)
∏

S∈S
|dIS |

b+|S|−1
2

2
(b+|S|−1)|S|

2 Γ|S|

(
b+|S|−1

2

) .
Next, we integrate out ΣG by (A.4) and (A.5),

f(Y|γ, G) =

∫
f(Y|γ,ΣG)f(ΣG|G)dΣG

= (2π)−
nq
2 (g + 1)−

pγ (k+1)q

2 H (b, dIq, G)

∫ ∏
C∈C |ΣC |−( b+n

2
+|C|)etr[−1

2
(dIC + SC(γ))Σ−1

C ]∏
S∈S |ΣS|−( b+n

2
+|S|)etr[−1

2
(dIS + SS(γ))Σ−1

S ]
dΣG

= (2π)−
nq
2 (g + 1)−

pγ (k+1)q

2 H (b, dIq, G)H −1(b+ n, dIq + S(γ), G)

= (2π)−
nq
2 (g + 1)−

pγ (k+1)q

2 H (b, dIq, G)

∏
C∈C

|dIC+SC(γ)|−
b+n+|C|−1

2

2−
(b+n+|C|−1)|C|

2 Γ−1
|C|

(
b+n+|C|−1

2

)
∏

S∈S
|dIS+SS(γ)|−

b+n+|S|−1
2

2−
(b+n+|S|−1)|S|

2 Γ−1
|S|

(
b+n+|S|−1

2

)
= Mn,G × (g + 1)−

pγ (k+1)q

2

∏
C∈C |dIC + SC(γ)|−

b+n+|C|−1
2∏

S∈S |dIS + SS(γ)|−
b+n+|S|−1

2

, (A.6)
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where

Mn,G = (2π)−
nq
2

∏
C∈C

|dIC |
b+|C|−1

2

2−
n|C|
2 Γ|C|

(
b+|C|−1

2

)
Γ−1
|C|

(
b+n+|C|−1

2

)
∏

S∈S
|dIS |

b+|S|−1
2

2−
n|S|
2 Γ|S|

(
b+|S|−1

2

)
Γ−1
|S|

(
b+n+|S|−1

2

)
is a constant which depends only on n and G, but it is the same for all γ under the same graph G.

This makes possible for the cancellation in Metroplis-Hasting step for variable selection, which

leads to faster in computation. SC(γ) and SS(γ) are the corresponding quadratic form similar to

S(γ) but restricted to sub-graphs denoted by C and S (i.e. cliques and separators).
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APPENDIX B

THE PROOF OF VARIABLE SELECTION CONSISTENCY

We now show the complete proof of Lemma 2.4.1 in this appendix. The main idea is, if the

alternative model a does not contain the true model, the likelihood part drives the Bayes factor

to zero exponentially, as a cannot fit the true mean adequately. If a contains true model then the

difference in the likelihood becomes negligible but the prior penalizes for the extra dimensions and

the Bayes factor goes to zero as n goes to infinity.

B.1 Preparation

By (A.6), the Bayes factor in favor of alternative model a under any graph G is

BF (a; t|G) =
f(Y|a, G)

f(Y|t, G)

= (g + 1)−
(pa−pt)(k+1)q

2 ×
∏

C∈C

( |dIC+SC(a)|
|dIC+SC(t)|

)− b+n+|C|−1
2

∏
S∈S

( |dIS+SS(a)|
|dIS+SS(t)|

)− b+n+|S|−1
2

:= (g + 1)−
(pa−pt)(k+1)q

2 ×
∏

C∈C

{
∆C(a, t)

}− b+n+|C|−1
2∏

S∈S

{
∆S(a, t)

}− b+n+|S|−1
2

:= I× II(a, t), (B.1)

where S(a) = YT
(
In− g

g+1
Pa
)
Y, S(t) = YT

(
In− g

g+1
Pt
)
Y , and SC and SS denote the quadratic

forms restricted to clique C ∈ C and separator S ∈ S ; furthermore, we denote ∆C(a, t) =

|dIC+SC(a)|
|dIC+SC(t)| and ∆S(a, t) = |dIS+SS(a)|

|dIS+SS(t)| . Let ∆(a, t) = |dIq+S(a)|
|dIq+S(t)| be the version of ∆(a, t) for the

whole graph G.

Lemma B.1.1. ∆(a, t) =
∣∣∣Iq + 1

d
g
g+1

(
1
n
At

)− 1
2
{

1
n
YT
(
Pt − Pa

)
Y

}(
1
n
At

)− 1
2
∣∣∣, where At = Iq +

1
d
YT
(
In − g

g+1
Pt
)
Y .
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Proof.

∆(a, t) =
|dIq + S(a)|
|dIq + S(t)|

=
|Iq + 1

d
S(a)|

|Iq + 1
d
S(t)|

=
|Iq + 1

d
YT
(
In − g

g+1
Pa
)
Y|

|Iq + 1
d
YT
(
In − g

g+1
Pt
)
Y|

=
|Iq + 1

d
YT
(
In − g

g+1
Pt
)
Y + 1

d
YT
(
In − g

g+1
Pa
)
Y − 1

d
YT
(
In − g

g+1
Pt
)
Y|

|Iq + 1
d
YT
(
In − g

g+1
Pt
)
Y|

=
|Iq + 1

d
YT
(
In − g

g+1
Pt
)
Y + 1

d
g
g+1

YT
(
Pt − Pa

)
Y|

|Iq + 1
d
YT
(
In − g

g+1
Pt
)
Y|

=
|At + 1

d
g
g+1

YT
(
Pt − Pa

)
Y|

|At|

=
∣∣∣Iq +

1

d

g

g + 1
A
− 1

2
t YT

(
Pt − Pa

)
YA

− 1
2

t

∣∣∣
=
∣∣∣Iq +

1

d

g

g + 1

( 1

n
At

)− 1
2
{ 1

n
YT
(
Pt − Pa

)
Y
}( 1

n
At

)− 1
2
∣∣∣.

Remark B.1.1. Lemma B.1.1 is with respect to the whole graph G, but the same result holds for

every clique C and separator S. And similarly we have ACt and ASt for clique C and separator

S, respectively. For simplicity, we will not show the results for cliques and separators. In the next

several lemmas, we only show the results with respect to the whole graph G, but they all hold for

any subgraphs of G, i.e. cliques and separators.

Next we split Bayes factor BF(a; t|G) into two parts BF(a;a ∪ t|G) and BF(a ∪ t; t|G) and

show them both converge to zero as n→∞. But before that, we need to introduce several lemmas.

Lemma B.1.2. Under Condition 2.4.1, p limn→∞
YT (In−Pt)Y

n
= ΣG∗ , where ΣG∗ is the true co-

variance matrix with respect to the true graph G∗.

Proof. Since Y |t,ΣG∗ ∼ MNn×q(UtBt,G∗ , In,ΣG∗) and In − Pt is symmetric and idempotent, by

Corollary 2.1 in [73], we have YT (In−Pt)Y
n

∼ Wq(n − rt,
1
n
ΣG∗) and the non-central parameter

is zero here. Let ỹij(n), i, j = 1, . . . , q denote the entries of YT (In−Pt)Y
n

and ỹij(n) = ỹji(n).
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Further more, let σ∗ij, i, j = 1, . . . , q be the entries of ΣG∗ , and σ∗ij = σ∗ji. Since E
{YT (In−Pt)Y

n

}
=

(1− rt
n

)ΣG∗ → ΣG∗ , then E
{
ỹij(n)

}
= (1− rt

n
)σ∗ij → σ∗ij and V ar

{
ỹij(n)

}
= 1

n
(σ∗2ij +σ∗iiσ

∗
jj)→ 0.

Thus for any ε > 0, there exist Mε, when n > Mε, such that |(1 − rt
n

)σ∗ij − σ∗ij| < ε/2, then

Pr(|ỹij(n)− σ∗ij| > ε) ≤ Pr(|ỹij(n)− E{ỹij(n)}| > ε/2) ≤ 4V ar{ỹij(n))}
ε2

=
4(σ∗2ij +σ∗iiσ

∗
jj)

nε2
→ 0. So

ỹij(n)
p−→ σ∗ij in probability, for all i, j = 1, . . . , q. Therefore, YT (In−Pt)Y

n

p−→ ΣG∗ as n→∞.

Lemma B.1.3. Under Condition 2.4.1, 2.4.2, 2.4.4, p limn→∞
1
n
At = ΣG∗ , where ΣG∗ is the true

covariance matrix with respect to the true graph G∗.

Proof. First, we show p limn→∞
1
n

1
g+1

YTPtY = 0q×q. Let yi be the ith column of Y. Note

that limn→∞ E( 1
n

1
g+1

yTi Ptyi) = 0 and limn→∞ V ar(
1
n

1
g+1

yTi Ptyi) = 0, so 1
n

1
g+1

yTi Ptyi → 0 in

probability. Hence,
∑q

i=1
1
n

1
g+1

yTi Ptyi → 0 in probability. Therefore, the sum of eigenvalues

of matrix 1
n

1
g+1

YTPtY goes to zero in probability. Let λti be the ith eigenvalue of 1
n

1
g+1

YTPtY,

i = 1, 2, . . . , q. So λti goes to zero in probability as the matrix is non-negative definite. Using

spectral decomposition, 1
n

1
g+1

YTPtY =
∑q

i=1 λ
t
iuiu

T
i , where ui’s are orthonormal eigenvectors,

each of the entries of 1
n

1
g+1

YTPtY goes to zero in probability and our claim follows.

Therefore,

p lim
n→∞

1

n
At = p lim

n→∞

1

n

{
Iq +

1

d
YT
(
In −

g

g + 1
Pt
)
Y

}
= p lim

n→∞

1

n
Iq + p lim

n→∞

1

d

YT
(
In − Pt

)
Y

n
+ p lim

n→∞

1

d

1

g + 1

YTPtY

n

= 0q×q + ΣG∗ + 0q×q = ΣG∗ .

Lemma B.1.4. Let λ̃ai , i = 1, . . . , q be the eigenvalues of 1
n
S(a) and λ̃a∪ti , i = 1, . . . , q be the

eigenvalues of 1
n
S(a∪ t), where S(a) = YT

(
In− g

g+1
Pa
)
Y and S(a∪ t) = YT

(
In− g

g+1
Pa∪t

)
Y.

Under Condition 2.4.1, 2.4.2, 2.4.4, 2.4.6, Pr(λ̃ai > C̄) → 0 and Pr(λ̃a∪ti > C̄) → 0, i =

1, . . . , q, as n→∞, where C̄ is some fixed positive constant.

Proof. Let yi be the ith column of Y and bi be the ith column of Bt,G∗ . Then vi := Utbi is the ith
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column of UtBt,G∗ , i = 1, . . . , q. Next, we have

tr
{S(a)

n

}
= tr

{ 1

n
YT
(
In −

g

g + 1
Pa

)
Y
}

= tr
{ 1

n
YT
(
In − Pa

)
Y
}

+ tr
{ 1

n

1

g + 1
YTPaY

}
=

q∑
i=1

tr
{ 1

n
yTi

(
In − Pa

)
yi

}
+

q∑
i=1

tr
{ 1

n

1

g + 1
yTi Payi

}
.

Let ra = rank(Ua). Since yi ∼ Nn(vi, In), i = 1, . . . , q, we have

yTi

(
In − Pa

)
yi ∼ χ2

n−ra(φn−ai ),

yTi Payi ∼ χ2
ra(φai ),

where φn−ai = 1
2
vTi (In−Pa)vi, φai = 1

2
vTi Pavi. By Condition 2.4.2, we have 1

n
φn−ai = 1

2n
vTi (In−

Pa)vi ≤ 1
n
vTi vi = bTi

UTt Ut
n

bi ≤ λmax
n
‖bi‖2

2 < bMdU, where bM = max{‖bi‖2
2, i = 1, . . . , q} <∞.

Similarly, φai = 1
2
vTi Pavi ≤ bMdU. Next,

E
[ 1

n
yTi

(
In − Pa

)
yi

]
=

1

n
(n− ra + φn−ai ) ≤ 1 +

1

n
φn−ai < 1 + bMdU,

V ar
[ 1

n
yTi

(
In − Pa

)
yi

]
=

1

n2
(2n− 2ra + 4φn−ai ) ≤ 1

n

(
2 +

4

n
φn−ai

)
<

1

n

(
2 + 4bMdU

)
→ 0.

Analogously, by Condition 2.4.4 and 2.4.6,

E
[ 1

g + 1

1

n
yTi Payi

]
=

1

g + 1

1

n
(ra + φai ) <

1

g + 1
bMdU → 0,

V ar
[ 1

g + 1

1

n
yTi Payi

]
=

1

(g + 1)2

1

n2
(2ra + 4φai ) <

1

(g + 1)2

1

n

(
2 + 4bMdU

)
→ 0,

So for any ε̄ > 0, we have Pr
{

1
n
yTi
(
In − Pa

)
yi > 1 + bMdU + ε̄

}
→ 0 and Pr

{
1
g+1

1
n
yTi Payi >

ε̄
}
→ 0, i = 1. . . . , q, as n→ 0. By combining the two results together,

Pr
{ 1

n
yTi

(
In −

g

g + 1
Pa

)
yi > 1 + bMdU + 2ε̄

}
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=Pr
{ 1

n
yTi

(
In − Pa

)
yi +

1

g + 1

1

n
yTi Payi > 1 + bMdU + ε̄+ ε̄

}
≤Pr

{ 1

n
yTi
(
In − Pa

)
yi > 1 + bMdU + ε̄

}
+ Pr

{ 1

g + 1

1

n
yTi Payi > ε̄

}
→ 0.

Therefore,

Pr
{
λ̃ai > q(1 + bMdU + 2ε̄)

}
≤ Pr

{ q∑
i=1

λ̃ai > q(1 + bMdU + 2ε̄)
}

=Pr
{
tr
(S(a)

n

)
> q(1 + bMdU + 2ε̄)

}
=Pr

{ q∑
i=1

1

n
yTi

(
In −

g

g + 1
Pa

)
yi > q(1 + bMdU + 2ε̄)

}
≤Pr

{
∪qi=1

( 1

n
yTi

(
In −

g

g + 1
Pa

)
yi > 1 + bMdU + 2ε̄

)}
≤

q∑
i=1

Pr
{ 1

n
yTi

(
In −

g

g + 1
Pa

)
yi > 1 + bMdU + 2ε̄

}
→ 0.

Let ε̄ = 0.5 and C̄ = q(2 + bMdU), we have Pr(λ̃ai > C̄) → 0, i = 1, . . . , q, as n → 0. Same as

the proof above, we can show Pr(λ̃a∪ti > C̄)→ 0, i = 1, . . . , q, as n→ 0.

Lemma B.1.5. Under Condition 2.4.1, 2.4.2 and 2.4.6, when a * t,

1. If pa is bounded, the largest eigenvalue of YT
(
Pa∪t − Pt

)
Y is Op(1);

2. If pa is unbounded, the largest eigenvalue of YT
(
Pa∪t − Pt

)
Y is at most Op(ra∪t).

Proof. As we know Pa∪t − Pt is idempotent, then follow the same notations as in Lemma B.1.4,

we have tr{YT
(
Pa∪t − Pt

)
Y} =

∑q
i=1 yTi (Pa∪t − Pt)yi, and yTi (Pa∪t − Pt)yi ∼ χ2

ra∪t−rt . If

pa is bounded, then ra∪t − rt = O(1). In this case, tr{YT
(
Pa∪t − Pt

)
Y} = Op(1), which

means the largest eigenvalue of YT
(
Pa∪t − Pt

)
Y is Op(1). By Condition 2.4.2, Ua∪t has full

column rank, then ra∪t = pa∪t(k + 1). If pa is unbounded, then ra∪t − rt � Op(ra∪t). So

tr{YT
(
Pa∪t − Pt

)
Y} � Op(ra∪t), which means the largest eigenvalue of YT

(
Pa∪t − Pt

)
Y is at

most Op(ra∪t). By Condition 2.4.6 we know ra∪t
n

= op(n).
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Lemma B.1.6. Let λ̃a∪t−aM denote the largest eigenvalue of 1
n
YT
(
Pa∪t − Pa

)
Y. Under Condition

2.4.1, 2.4.3, Pr(λ̃a∪t−aM > ¯̄C)→ 1, as n→∞, where ¯̄C is some fixed positive constant.

Proof. Follow the same notations as in Lemma B.1.4, tr
{

1
n
YT
(
Pa∪t−Pa

)
Y
}

=
∑q

i=1
1
n
yTi
(
Pa∪t−

Pa
)
yi. Then,

yTi
(
Pa∪t − Pa

)
yi ∼ χ2

ra∪t−ra(φa∪t−ai ),

where φa∪t−ai = 1
2
vTi (Pa∪t−Pa)vi = 1

2
vTi (In−Pa)Ptvi = 1

2
vTi (In−Pa)vi and ra∪t− ra ≤ rt <

∞. As in Lemma B.1.4, we know 1
n
φa∪t−ai ≤ 1

n
vTi vi ≤ bMdU. Next, by Condotion 2.4.3,

E
[
tr
{ 1

n
YT
(
Pa∪t − Pa

)
Y
}]

=

q∑
i=1

E
[ 1

n
yTi
(
Pa∪t − Pa

)
yi

]
=

q∑
i=1

1

n
(ra∪t − ra + φa∪t−ai )

≥ 1

2n

q∑
i=1

vTi (In − Pa)vi =
1

2n
tr{ET

y (In − Pa)Ey} > C0/2,

V ar
[ 1

n
yTi
(
Pa∪t − Pa

)
yi

]
=

1

n2
(2ra∪t − 2ra + 4φa∪t−ai ) ≤ 1

n

( 1

n
2rt +

1

n
4φa∪t−ai

)
≤ 2rt

n2
+
bMdU

n
→ 0, i = 1, . . . , q.

Then, V ar
[
tr
{

1
n
YT
(
Pa∪t−Pa

)
Y
}]
≤
∑q

i=1

∑q
j=1

√
V ar

[
1
n
yTi
(
Pa∪t − Pa

)
yi

]
V ar

[
1
n
yTj
(
Pa∪t − Pa

)
yj

]
→

0, as n → ∞. So Pr
{
tr
{

1
n
YT
(
Pa∪t − Pa

)
Y
}
> C0/4

}
→ 1. Let λ̃a∪t−ai , i = 1, . . . , q be the

eigenvalues of 1
n
YT
(
Pa∪t − Pa

)
Y, therefore

Pr
(
λ̃a∪t−aM >

C0

4q

)
≥ Pr(

q∑
i=1

λ̃a∪t−ai > C0/4) = Pr
{
tr
{ 1

n
YT
(
Pa∪t − Pa

)
Y
}
> C0/4

}
→ 1.

Let ¯̄C = C0/4q, then we have Pr(λ̃a∪t−aM > ¯̄C)→ 1, as n→∞.

B.2 Combining Two Cases

Lemma B.2.1. Under Condition 2.4.1, 2.4.2, 2.4.4 and 2.4.6, p limn→∞ BF(a∪t; t|G) = 0, when

a * t.
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Proof. Case 1: If pa is bounded, by Lemma B.1.3, we know 1
n
At converges in probability to a

positive definite constant matrix. So for large n, all eigenvalues of
(

1
n
At
)− 1

2 are positive andOp(1).

By Lemma B.1.5, the largest eigenvalue of YT
(
Pa∪t−Pt

)
Y is positive andOp(1). Since g = O(n)

and d = O(1), we have the largest eigenvalue of 1
d

g
g+1

(
1
n
At
)− 1

2
{

1
n
YT
(
Pa∪t − Pt

)
Y
}(

1
n
At
)− 1

2 is

positive Op(
1
n
). Therefore,

∆(a ∪ t, t) =

∣∣∣∣Iq +
1

d

g

g + 1

(
1

n
At

)− 1
2
{

1

n
YT
(
Pt − Pa∪t

)
Y

}(
1

n
At

)− 1
2
∣∣∣∣ � {1−Op

(
1

n

)}h
,

where h is the number of nonzero eigenvalues of matrix 1
d

g
g+1

(
1
n
At

)− 1
2
{

1
n
YT
(
Pt−Pa∪t

)
Y
}(

1
n
At

)− 1
2
.

Since the result also holds for every clique and separator, we have

II(a∪t, t) =

∏
C∈C

{
∆C(a ∪ t, t)

}− b+n+|C|−1
2∏

S∈S

{
∆S(a ∪ t, t)

}− b+n+|S|−1
2

�
∏

C∈C

{
1−Op

(
1
n

)}−O(n){
1−Op

(
1
n

)}O(n)
=

{
1−Op

(
1

n

)}−O(n)

,

where θ is a constant. So II(a ∪ t, t)→ some constant, as n→∞. Then

BF(a ∪ t, t|G) = I× II(a ∪ t, t) = {O(n) + 1}−
(pa∪t−pt)(k+1)q

2 × constant→ 0.

Case 2: If pa is unbounded, similarly, we have

∆(a∪ t, t) =

∣∣∣∣Iq +
1

d

g

g + 1

(
1

n
At

)− 1
2
{

1

n
YT
(
Pt−Pa∪t

)
Y

}(
1

n
At

)− 1
2
∣∣∣∣ � {1−Op

(
ra∪t
n

)}h

and

II(a∪t, t) =

∏
C∈C

{
∆C(a ∪ t, t)

}− b+n+|C|−1
2∏

S∈S

{
∆S(a ∪ t, t)

}− b+n+|S|−1
2

�
∏

C∈C

{
1−Op

(
ra∪t
n

)}−O(n){
1−Op

(
ra∪t
n

)}O(n)
=

{
1−Op

(
ra∪t
n

)}−O(n)

.

Then,

log{BF(a ∪ t, t|G)} � −(pa∪t − pt)(k + 1)q

2
log{O(n) + 1} −O(n)log

{
1−Op

(
ra∪t
n

)}
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� −Op(ra∪t)log{O(n) + 1} −Op(ra∪t)Op

(
n

ra∪t

)
log

{
1−Op

(
ra∪t
n

)}
= −Op(ra∪t)log{O(n) + 1} → −∞(as log(1 + x)/x→ 1, as x→ 0).

Therefore, BF(a ∪ t; t|G)→ 0, as n→∞.

Lemma B.2.2. Under Condition 2.4.1-2.4.6, p limn→∞ BF(a;a ∪ t|G) = 0, when t * a.

Proof. Let Σ̂−1
G be the MLE of Σ−1

G under model a, then f(Y|a,ΣG) ≤ f(Y|a, Σ̂G) for any

positive definite matrix ΣG under the given graph G. The explicit calculation of the MLE can be

done by calculating the MLEs of cliques, separators and combining them. We assume that the MLE

converges to a positive definite matrix Σ0
G
−1. For the true graph G∗, this statement holds trivially.

Under supremum norm for each clique and separator, given 0 < ε < 1, we have a ε′-neighborhood

Nb(ε′) of Σ0
G
−1, where 0 < ε′ < ε, which satisfies Nb(ε′) = {Σ−1

G : ‖Σ−1
G − Σ0

G
−1‖∞ < ε′} and

Pr{Nb(ε′)} > δ′ > 0 under HIW prior, such that |Σ−1
G Σ0

G| < 1 + ε, |ΣGΣ0
G
−1| < 1 + ε. For large

n, we also have Σ̂−1
G ∈ Nb(ε′). So |Σ̂−1

G Σ0
G| < 1+ ε, |Σ̂GΣ0

G
−1| < 1+ ε and ‖Σ̂−1

G −Σ0
G
−1‖∞ < ε′.

Now dividing numerator and denominator of BF(a;a∪ t|G) by f(Y|a, Σ̂G), the likelihood at

MLE under model a,

BF(a;a ∪ t|G) =

∫
f(Y|a,ΣG)f(ΣG|G)dΣG∫

f(Y|a ∪ t,ΣG)f(ΣG|G)dΣG

=

∫ f(Y|a,ΣG)

f(Y|a,Σ̂G)
f(ΣG|G)dΣG∫ f(Y|a∪t,ΣG)

f(Y|a,Σ̂G)
f(ΣG|G)dΣG

<

∫
f(ΣG|G)dΣG∫

Nb(ε′)
f(Y|a∪t,ΣG)

f(Y|a,Σ̂G)
f(ΣG|G)dΣG

=
(g + 1)

(pa∪t−pa)(k+1)q
2∫

Nb(ε′)
|ΣGΣ̂−1

G |−
n
2 exp

[
− 1

2
tr{S(a ∪ t)Σ−1

G − S(a)Σ̂−1
G }
]
f(ΣG|G)dΣG

=
(g + 1)

(pa∪t−pa)(k+1)q
2∫

Nb(ε′)
|ΣGΣ0

G
−1|−n2 |Σ0

GΣ̂−1
G |−

n
2 exp

[
− 1

2
tr{S(a ∪ t)Σ−1

G − S(a)Σ̂−1
G }
]
f(ΣG|G)dΣG

=
(g + 1)

(pa∪t−pa)(k+1)q
2 (1 + ε)n∫

Nb(ε′)
exp
[
− 1

2
tr{S(a ∪ t)Σ−1

G − S(a)Σ̂−1
G }
]
f(ΣG|G)dΣG

.
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Next, let α be a q × 1 vector, where α ∈ Rq, such that αT S(a)−S(a∪t)
n

α = λ̃a∪t−aM . Let β =

Σ0
G
−1/2

α and bβ = ‖β‖2
2 <∞. Denote λ′M be the largest eigenvalue of Σ0

G
−1/2 S(a)−S(a∪t)

n
Σ0
G
−1/2,

then βTΣ0
G
−1/2 S(a)−S(a∪t)

n
Σ0
G
−1/2

β = λ̃a∪t−aM ≤ λ′M‖β‖2
2. By Lemma B.1.6, Pr(λ′M > ¯̄C/bβ)→

1, as n→∞.

By Lemma B.1.4 and Lemma B.1.6, we have

Pr
(
λ′M −

∣∣∣tr{S(a ∪ t)
n

(Σ̂−1
G − Σ0

G
−1

)
}∣∣∣− ∣∣∣tr{S(a)

n
(Σ0

G
−1 − Σ̂−1

G )
}∣∣∣ > ¯̄C/bβ − 2qεC̄

)
→ 1.

Then, by choosing ε <
¯̄C

2qbβC̄
, we know λ′M −

∣∣∣tr{S(a∪t)
n

(Σ̂−1
G − Σ0

G
−1

)
}∣∣∣ − ∣∣∣tr{S(a)

n
(Σ0

G
−1 −

Σ̂−1
G )
}∣∣∣ > ¯̄C/(2bβ) in probability.

So, we have

− 1

2
tr{S(a ∪ t)Σ−1

G − S(a)Σ̂−1
G }

=
n

2

[
tr
{

Σ0
G
−1S(a)− S(a ∪ t)

n

}
− tr

{S(a ∪ t)
n

(Σ̂−1
G − Σ0

G
−1

)
}
− tr

{S(a)

n
(Σ0

G
−1 − Σ̂−1

G )
}]

≥ n

2

[
tr
{

Σ0
G
−1/2S(a)− S(a ∪ t)

n
Σ0
G
−1/2

}
−
∣∣∣tr{S(a ∪ t)

n
(Σ̂−1

G − Σ0
G
−1

)
}∣∣∣− ∣∣∣tr{S(a)

n
(Σ0

G
−1 − Σ̂−1

G )
}∣∣∣]

≥ n

2

[
λ′M −

∣∣∣tr{S(a ∪ t)
n

(Σ̂−1
G − Σ0

G
−1

)
}∣∣∣− ∣∣∣tr{S(a)

n
(Σ0

G
−1 − Σ̂−1

G )
}∣∣∣].

Then Pr
{
− 1

2
tr{S(a ∪ t)Σ−1

G − S(a)Σ̂−1
G } > C̃n

}
→ 1, as n → ∞, where C̃ is some fixed

constant.

Since BFa,a∪t <
(g+1)

(pa∪t−pa)(k+1)q
2 (1+ε)n∫

Nb(ε′) exp
[
− 1

2
tr{S(a∪t)Σ−1

G −S(a)Σ̂−1
G }
]
f(ΣG|G)dΣG

, then Pr
{
BFa,a∪t < (g +

1)
pt(k+1)q

2 (1 + ε)ne−C̃n
}
→ 1. Therefore, p limn→∞ BF(a;a ∪ t|G) = 0.

By combining the results from Lemma B.2.1 and B.2.2, we have

p lim
n→∞

BF(a; t|G) = p lim
n→∞

BF(a;a ∪ t|G) · p lim
n→∞

BF(a ∪ t; t|G) = 0,

for any model a 6= t.
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APPENDIX C

PLOTS OF ESTIMATED NONLINEAR FUNCTIONS
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Figure C.1: Posterior mean of the nonlinear functions for proteins in apoptosis pathway, mRNA
selected is BCL2.
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Figure C.2: Posterior mean of the nonlinear functions for proteins in cell cycle pathway, mRNA
selected is CCNE1.
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Figure C.3: Posterior mean of the nonlinear functions for proteins in core reactive pathway, mRNA
selected is CDH1.
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Figure C.4: Posterior mean of the nonlinear functions for proteins in EMT pathway, mRNA se-
lected is CDH1.
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Figure C.5: Posterior mean of the nonlinear functions for proteins in PI3K/AKT pathway, mRNA
selected is INPP4B.
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Figure C.6: Posterior mean of the nonlinear functions for proteins in RTK pathway, mRNA selected
is ERBB2.
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Figure C.7: Posterior mean of the nonlinear functions for proteins in hormone receptor&signaling
pathway, mRNA selected is INPP4B.
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Figure C.8: Posterior mean of the nonlinear functions for proteins in hormone receptor&signaling
pathway, mRNA selected is GATA3.
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Figure C.9: Posterior mean of the nonlinear functions for proteins in hormone receptor&signaling
pathway, mRNA selected is BCL2.
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APPENDIX D

SOME RESULTS ON SAMPLE CORRELATION AND SAMPLE PARTIAL CORRELATION

COEFFICIENTS ∗

D.1 Tail Behavior of Sample Partial Correlation

Theorem D.1.1. (When the population correlation is zero [74]). Assume we have n i.i.d. samples

from a multivariate Gaussian distribution. If the population correlation between Xi and Xj is

zero, i.e. ρij = 0, the density of the corresponding sample correlation coefficient ρ̂ij as defined in

Definition 3.2.2 is

fn(r | ρij = 0) =
Γ
{

1
2
(n− 1)

}
Γ
{

1
2
(n− 2)

}√
π

(1− r2)
1
2

(n−4).

Theorem D.1.2. (When the population correlation is nonzero [75]). The sample correlation coef-

ficient in a sample of n from a bivariate normal distribution with population correlation coefficient

ρ is distributed with density

fn(r | ρ) =
n− 2√

2π

Γ(n− 1)

Γ(n− 1
2
)
(1− ρ2)

1
2

(n−1)(1− r2)
1
2

(n−4)(1− ρr)−n+ 3
2F
(1

2
,
1

2
;n− 1

2
;
1 + ρr

2

)
,

where n > 2, −1 ≤ r ≤ 1 and F (·, ·; ·; ·) is the hypergeometric function. When ρ = 0, the density

becomes the same as in Theorem D.1.1.

Proposition D.1.1. (Mill’s ratio). Let φ(·) and Φ(·) be the pdf and cdf of the standard normal

distribution, respectively and Φ̃(x) = 1− Φ(x). Then, we have φ(x)
(

1
x
− 1

x3

)
≤ Φ̃(x) ≤ φ(x)

x
, for

all x > 0.

Proposition D.1.2. (Watson’s inequality [76, 77]).

√
x+

1

4
<

Γ(x+ 1)

Γ(x+ 1
2
)
≤
√
x+

1

π
<

√
x+

1

2
, for all x ≥ 0.

∗Reprinted with permission from arXiv.org, “Bayesian Graph Selection Consistency Under Model Misspecifica-
tion”, arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance
arXiv copyright no modifications have been made except formatting.
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Theorem D.1.3. (Tail behavior of sample correlation coefficient). Let ρ̂ij be the sample correlation

coefficient between Xi and Xj with n samples from a p-dimensional normal distribution and the

corresponding population correlation coefficient is ρij , where 0 ≤ |ρij| < 1. Then

P
(
|ρ̂ij − ρij| > ε

)
<

21

(1− |ρij|)2

exp(−nε2/4)

ε
√
n

, for any 0 < ε < 1− |ρij| , n > 2.

Proof. First, let r = ρ̂ij and ρ = ρij , then by Theorem D.1.2, fn(x | ρ) is the pdf of r. Define

Pn(r0, ρ) = P (r > r0) =

∫ 1

r0

fn(x | ρ)dx, −1 ≤ r0 ≤ 1.

By [75], we have

Pn(r0, ρ) =
(n− 2)Γ(n− 1)√

2πΓ(n− 1
2
)

[
M0 +

2M0 −M1

4(2n− 1)
+

9(4M0 − 4M1 +M2)

32(2n− 1)(2n+ 1)
+ . . .

]

=
(n− 2)Γ(n− 1)√

2πΓ(n− 1
2
)

(M0 +R),

where

Mk =

∫ 1

r0

(1− ρ2)
1
2

(n−1)(1− x2)
1
2

(n−4)(1− ρx)−n+k+ 3
2dx, k = 0, 1, 2, . . . ,

R =
2M0 −M1

4(2n− 1)
+

9(4M0 − 4M1 +M2)

32(2n− 1)(2n+ 1)
+ . . . ,

and we know that the first term M0 and the rest of the terms have the following inequality [75],

2(2n− 1)
1− |ρ|
3− |ρ|

≤ M0

R
≤ 4(2n− 1)

1− |ρ|
3− |ρ|

.

Let δρ = 1−|ρ|
3−|ρ| . Since 0 ≤ |ρ| < 1, then 0 < δρ ≤ 1

3
. We can bound the residual term R by a

fraction of M0,

R ≤ M0

2δρ(2n− 1)
<
M0

6δρ
,
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Therefore,

Pn(r0, ρ) <
(n− 2)Γ(n− 1)√

2πΓ(n− 1
2
)

(
1 +

1

6δρ

)
M0.

Next, we further simplify the bound of Pn(r0, ρ). By Proposition D.1.2, we have

Γ(n− 1)

Γ(n− 1
2
)
<

1√
n− 5

4

<
1√
n− 2

.

Thus,

Pn(r0, ρ) <

√
n− 2

2π

(
1 +

1

6δρ

)
M0 <

1√
π

(
1 +

1

6δρ

)√
nM0.

Let r0 = ρ + ε > ρ, where 0 < ε ≤ 1 − ρ. Next, we calculate the upper bound of
√
nM0 for

0 ≤ ρ < 1 and −1 < ρ < 0 separately. But first, when −1 < ρ < 1 and ρ < ρ + ε ≤ x ≤ 1, then

1− ρx > 0. Observe that,

√
nM0 =

√
n

∫ 1

ρ+ε

( 1− x2

1− ρx

) 1
2

(n−4)( 1− ρ2

1− ρx

) 1
2

(n−1) 1

1− ρx
dx.

(I) When 0 ≤ ρ < 1. Since ρ < ρ + ε ≤ x ≤ 1 and ρ ≥ 0, we have (1 − ρ2)−1 < (1 − ρx)−1 ≤

(1− ρ)−1. Then

√
nM0 ≤

√
n

1− ρ

∫ 1

ρ+ε

(
1− x2 − ρx

1− ρx

) 1
2

(n−4)(
1 +

ρx− ρ2

1− ρx

) 1
2

(n−1)

dx.

Since 0 < x2−ρx
1−ρx ≤ 1 and 0 < ρx−ρ2

1−ρx ≤ ρ, we have

√
nM0 ≤

√
n

1− ρ

∫ 1

ρ+ε

exp
(
− n

2

x2 − ρx
1− ρx

+ 2
x2 − ρx
1− ρx

)
exp

(n
2

ρx− ρ2

1− ρx
− 1

2

ρx− ρ2

1− ρx

)
dx

≤ e2
√
n

1− ρ

∫ 1

ρ+ε

exp
(
− n

2

x2 − ρx
1− ρx

)
exp

(n
2

ρx− ρ2

1− ρx

)
dx

≤ e2
√
n

1− ρ

∫ 1

ρ+ε

exp

{
− n(x− ρ)2

2(1− ρ2)

}
dx.
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Thus, by Proposition D.1.1,

√
nM0 ≤ e2

√
2π

√
1 + ρ

1− ρ
Φ̃

(
ε
√
n√

1− ρ2

)

≤ e2
√

2π(1 + ρ)
φ
(

ε
√
n√

1−ρ2

)
ε
√
n

≤ exp(2 + ρ/2)

1− ρ
· exp(−nε2/4)

ε
√
n

.

(II) When −1 < ρ < 0. Since ρ < ρ+ ε ≤ x ≤ 1 and ρ < 0, we have (1− ρ)−1 ≤ (1− ρx)−1 <

(1− ρ2)−1. Then

√
nM0 ≤

√
n

1− ρ2

∫ 1

ρ+ε

(
1− x2 − ρx

1− ρx

) 1
2

(n−4)(
1 +

ρx− ρ2

1− ρx

) 1
2

(n−1)

dx := M.

(II.1) When ρ+ ε < 0,

M =

√
n

1− ρ2

{∫ 0

ρ+ε

+

∫ 1

0

(
1 +

ρx− x2

1− ρx

) 1
2

(n−4)(
1− ρ2 − ρx

1− ρx

) 1
2

(n−1)

dx

}

:= A+B.

Since 0 ≤ ρx−x2
1−ρx ≤

(
1−
√

1−ρ2
ρ

)2

and 0 < ρ2−ρx
1−ρx ≤ ρ2 when ρ < x ≤ 0,

A ≤
√
n

1− ρ2

∫ 0

ρ+ε

exp
(n

2

ρx− x2

1− ρx
− 2

ρx− x2

1− ρx

)
exp

(
− n

2

ρ2 − ρx
1− ρx

+
1

2

ρ2 − ρx
1− ρx

)
dx

≤ e
ρ2

2
√
n

1− ρ2

∫ 0

ρ+ε

exp
(n

2

ρx− x2

1− ρx

)
exp

(
− n

2

ρ2 − ρx
1− ρx

)
dx

≤ e2− ρ
2
√
n

1− ρ2

∫ 0

ρ+ε

exp

{
− n(x− ρ)2

2(1− ρ)

}
dx, since 0 <

ρ2

2
< −ρ

2
.

Since 0 ≤ x2−ρx
1−ρx ≤ 1 and 0 < ρ2 ≤ ρ2−ρx

1−ρx ≤ −ρ when ρ < 0 ≤ x ≤ 1,

B ≤
√
n

1− ρ2

∫ 1

0

exp
(
− n

2

x2 − ρx
1− ρx

+ 2
x2 − ρx
1− ρx

)
exp

(
− n

2

ρ2 − ρx
1− ρx

+
1

2

ρ2 − ρx
1− ρx

)
dx

≤ e2− ρ
2
√
n

1− ρ2

∫ 1

0

exp
(
− n

2

x2 − ρx
1− ρx

)
exp

(
− n

2

ρ2 − ρx
1− ρx

)
dx
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≤ e2− ρ
2
√
n

1− ρ2

∫ 1

0

exp

{
− n(x− ρ)2

2(1− ρ)

}
dx,

Hence, when −1 < ρ < 0 and ρ+ ε < 0, by Proposition D.1.1 we have

√
nM0 ≤ e2− ρ

2

√
2π

√
1− ρ

1− ρ2
Φ̃

(
ε
√
n√

1− ρ

)
≤ e2− ρ

2

√
2π

1 + ρ

φ
( √

nε√
1−ρ

)
√
nε

≤ exp(2− ρ/2)

1 + ρ
· exp(−nε2/4)

ε
√
n

.

(II.2) When ρ+ ε ≥ 0, similar to B, we still have

√
nM0 ≤

e2− ρ
2
√
n

1− ρ2

∫ 1

ρ+ε

exp

{
− n(x− ρ)2

2(1− ρ)

}
dx ≤ exp(2− ρ/2)

1 + ρ
· exp(−nε2/4)

ε
√
n

.

So when −1 < ρ < 1 and ρ < ρ+ ε < 1,

P (r > ρ+ ε) <
1√
π

(
1 +

1

6δρ

)
exp(2 + |ρ| /2)

1− |ρ|
· exp(−nε2/4)

ε
√
n

<
7

1− |ρ|

(
1 +

1

6δρ

)
exp(−nε2/4)

ε
√
n

<
10.5

(1− |ρ|)2

exp(−nε2/4)

ε
√
n

, for any 0 < ε < 1− ρ.

For Pn(r0, ρ), we only need to consider when r0 > ρ, i.e. r0 = ρ + ε. For the case which r0 < ρ,

i.e. −1 < r0 = ρ− ε < ρ, we have the following equality,

P (r < ρ− ε) = 1− P (r > ρ− ε)

= 1−
∫ 1

ρ−ε
fn(−x | −ρ)dx

= 1−
∫ ε−ρ

−1

fn(x | −ρ)dx

= P (r > −ρ+ ε)

<
10.5

(1− |ρ|)2

exp(−nε2/4)

ε
√
n

, for any 0 < ε < 1 + ρ.
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Therefore,

P (|r − ρ| > ε) <
21

(1− |ρ|)2

exp(−nε2/4)

ε
√
n

, for any 0 < ε < 1− |ρ| .

Theorem D.1.4. (The CDF of sample partial correlation coefficient [74]). If the cdf of sample cor-

relation coefficient ρ̂ij based on n samples from a normal distribution with population correlation

coefficient ρij is denoted by F (r | n, ρij), then the cdf of the sample partial correlation coefficient

ρ̂ij|s+1,...,p, where i, j < s + 1, based on n samples from a p-dimensional normal distribution with

population partial correlation coefficient ρij|s+1,...,p is F (r | n− p+ s, ρij|s+1,...,p).

The next corollary is an immediate result from Theorem D.1.3 and D.1.4.

Corollary D.1.1. (Tail behavior of sample partial correlation coefficient). Let ρ̂ij|S be the sample

partial correlation coefficient between Xi and Xj , where i, j 6∈ S, holding XS fixed based on

n samples from a p-dimensional normal distribution and the corresponding population partial

correlation coefficient is ρij|S , where 0 ≤
∣∣ρij|S∣∣ < 1 and |S| = dS < p. Then

P
( ∣∣ρ̂ij|S − ρij|S∣∣ > ε

)
<

21

(1−
∣∣ρij|S∣∣)2

exp
{
− (n− dS)ε2/4

}
ε
√
n− dS

, 0 < ε < 1−
∣∣ρij|S∣∣ .

D.2 Finding High Probability Region

Before introducing the next three lemmas, we first define some notations which are used by

them and will be carried on using in the following proofs. Let Rij|S =
{ ∣∣ρ̂ij|S − ρij|S∣∣ ≤ ε

}
.

If (i, j) 6∈ Et, denote the set of all subsets (of V ) which separate node i and j as Πij =
{
S ⊆

V \{i, j} : ρij|S = 0, (i, j) 6∈ Et
}

, 1 ≤ i < j ≤ p. Define

∆′ε =
{
∩(i,j)∈Et Rij|V \{i,j}

}⋂{
∩(i,j)6∈Et,
∀S∈Πij

Rij|S

}
, when p <∞,

∆′ε(n) =
{
∩(i,j)∈Et Rij|V \{i,j}

}⋂{
∩(i,j)6∈Et,
∀S∈Πij

Rij|S

}
, when p grows with n,
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∆′′ε (n) =
{
∩(i,j)∈Et Rij|V \{i,j}

}⋂{
∩(i,j)6∈Et

(
∩S∈Πij Rij|S

)}
, when p grows with n,

where ∩(i,j)6∈Et, ∀S∈Πij means intersection of Rij|S over all pairs of (i, j) 6∈ Et and for each pair any

set of S ∈ Πij can be used. The n in the bracket means the number of intersections depends on n.

(When p grows with n, the number of edges in the true graph depends on n also.)

Lemma D.2.1. (Sample partial correlation simultaneous bounds for pairwise Bayes factor in finite

graphs). When the graph dimension p is finite, assume ρU 6= 1. Let ε1(n) =
√

log(n−p)
τ(n−p) . If τ > 0,

then P
(
∆′ε1
)
→ 1 as n→∞.

Proof. For finite p, ρU 6= 1 is a positive constant which does not depend on n. By Corollary D.1.1,

we have

P
(
∆′ε1
)
≥ 1− P

{
∪(i,j)∈Et R

C
ij|V \{i,j}

}
− P

{
∪(i,j)6∈Et,
∀S∈Πij

RC
ij|S

}
≥ 1− 21

{
|Et|

(1− ρU)2
+ p2 − |Et|

}
(n− p)−

1
4τ

{1

τ
log(n− p)

}− 1
2

→ 1, as n→∞.

Lemma D.2.2. (Sample partial correlation simultaneous bounds for posterior ratio in high-dimensional

graphs). Under Assumption 3.4.1, i.e. the graph dimension p = O(nα) grows with sample size n,

where 0 < α < 1. Let ε2(n) = (n − p)−β . If 0 < β < 1
2
, under Assumption 3.4.5, then

P
{

∆′ε2(n)
}
→ 1 as n→∞.

Proof. By Corollary D.1.1, we have

P
{

∆′ε2(n)
}
≥ 1− P

{
∪(i,j)∈Et R

C
ij|V \{i,j}

}
− P

{
∪(i,j)6∈Et,
∀S∈Πij

RC
ij|S

}
≥ 1− 21

{
|Et|

(1− ρU)2
+ p2 − |Et|

}
(n− p)β−

1
2 exp

{
− 1

4
(n− p)1−2β

}
→ 1, as n→∞.
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Proposition D.2.1. (Lower and upper bound of binomial coefficient).

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
,

where k ≤ n and k, n are positive integers.

Lemma D.2.3. (Sample partial correlation simultaneous bounds for strong selection consistency

in high-dimensional graphs). Under Assumption 3.4.1, i.e. the graph dimension p = O(nα) grows

with sample size n, where 0 < α < 1. Let ε3(n) = (n − p)−β , where 0 < β < 1
2
. If α + 2β < 1,

under Assumption 3.4.5, then P
{

∆′′ε3(n)
}
→ 1 as n→∞.

Proof. By Corollary D.1.1, we have

P
{

∆′′ε3(n)
}
≥ 1− P

{
∪(i,j)∈Et R

C
ij|V \{i,j}

}
− P

{
∪(i,j) 6∈Et

(
∪S∈Πij R

C
ij|S
)}

≥ 1−
∑

(i,j)∈Et

P
(
RC
ij|V \{i,j}

)
−
∑

(i,j)6∈Et

p−2∑
|S|=0

(
p− 2

|S|

)
P
(
RC
ij|S
)

≥ 1− |Et|P
(
RC
ij|V \{i,j}

)
−
∑

(i,j)6∈Et

p−2∑
|S|=0

(2e)p/2P
(
RC
ij|S
)

≥ 1− 21

{
|Et|

(1− ρU)2
+ p3ep

}
(n− p)β−

1
2 exp

{
− 1

4
(n− p)1−2β

}
→ 1, as n→∞.

Proposition D.2.2. (Sharp bounds for Beta CDF [78]). Assume Z ∼ Beta(a, b), then

P (Z ≤ z) <
za(1− z)b

B(a, b){a− (a+ b)z}
, z <

a

a+ b
,

P (Z > z) <
za(1− z)b

B(a, b){(a+ b)z − a}
, z >

a

a+ b
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

.
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Theorem D.2.1. (Exact convergence rate of sample correlation coefficient when population corre-

lation coefficient is zero). Let ρ̂ij be the sample correlation coefficient between Xi and Xj with n

samples from a p-dimensional normal distribution. Assume its corresponding population correla-

tion coefficient ρij is zero. For any 0 < ε < 1/2, there exist two finite constant 0 < M1(ε) < 1/4

and M2(ε) > 3, such that

P
(
ρ̂2
ij <

M1

n

)
< ε, P

(
ρ̂2
ij >

M2

n

)
< ε, for any n > 3.

Proof. By Theorem D.1.1, we know ρ̂2
ij ∼ Beta

(
1
2
, n−2

2

)
. For any given ε, where 0 < ε < 1

2
, let

M1 =
(

ε
ε+1

)2
< 1

4
and M2 = 6 log

(
5
ε

)
> 3. Thus, M1

n
< 1/2

1/2+(n−2)/2
and M2

n
> 1/2

1/2+(n−2)/2
. By

Proposition D.2.2,

P
(
ρ̂2
ij <

M1

n

)
<

(
M1

n

) 1
2
(
1− M1

n

)n−2
2

B
(

1
2
, n−2

2

)(
1
2
− n−1

2
M1

n

)
<

Γ
(
n−1

2

)
Γ
(
n−2

2

)√
π

√
M1

n
exp

(
− M1

2

n− 2

n

)(1

2
− M1

2

n− 1

n

)−1

<

√
n− 2

2n

√
M1

π

(1

2
− M1

2

)−1

<

√
M1

1−
√
M1

= ε,

P
(
ρ̂2
ij >

M2

n

)
<

(
M2

n

) 1
2
(
1− M2

n

)n−2
2

B
(

1
2
, n−2

2

)(
n−1

2
M2

n
− 1

2

)
<

Γ
(
n−1

2

)
Γ
(
n−2

2

)√
π

√
M2

n
exp

(
− M2

2

n− 2

n

)(M2

2

n− 1

n
− 1

2

)−1

<

√
M2

2π
exp

(
− M2

6

)(M2

2

1

2
− 1

2

)−1

< 5 exp
(
− M2

6

)
= ε.
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The next corollary is an immediate result from Theorem D.1.4 and D.2.1.

Corollary D.2.1. (Exact convergence rate of sample partial correlation coefficient when popula-

tion partial correlation coefficient is zero). Let ρ̂ij|S be the sample partial correlation coefficient

between Xi and Xj , where i, j 6∈ S, holding XS fixed based on n samples from a p-dimensional

normal distribution. Assume its corresponding population partial correlation coefficient ρij|S is

zero. For any 0 < ε < 1/2, there exist two finite constant 0 < M1(ε) < 1/4 and M2(ε) > 3, such

that

P
(
ρ̂2
ij|S <

M1

n− dS

)
< ε, P

(
ρ̂2
ij|S >

M2

n− dS

)
< ε, for any n > dS + 3, dS = |S|.

Lemma D.2.4. (Sample partial correlation simultaneous sharp bounds when population partial

correlations are zero). When the graph dimension p is finite, for any 0 < ε < 1/2, there exist two

finite constant 0 < M1(ε) < 1/4 and M2(ε) > 3, define

R0
ij|S =

{
M1

n
< ρ̂2

ij|S <
M2

n− p

}
, ∆0

ε = ∩(i,j) 6∈Et,
∀S∈Πij

R0
ij|S,

such that P
(
∆0
ε

)
> 1− ε, when n > p+ 3.

Proof. For any 0 < ε < 1/2, let

M1 =
( ε/p2

ε/p2 + 2

)2

, M2 = 6 log
(10p2

ε

)
.

By Theorem D.2.1 and Corollary D.2.1,

P
(
ρ̂ij|S <

M1

n

)
<

ε

2p2
, P

(
ρ̂ij|S >

M2

n− p

)
<

ε

2p2
,
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for all ρ̂ij|S such that (i, j) 6∈ Et and S ∈ Πij . Therefore,

P
(
∆0
ε

)
≥ 1−

∑
(i,j) 6∈Et,
∀S∈Πij

P
(
ρ̂2
ij|S <

M1

n

)
−

∑
(i,j)6∈Et,
∀S∈Πij

P
(
ρ̂2
ij|S >

M2

n− p

)

> 1− p2 · ε

2p2
− p2 · ε

2p2
= 1− ε.

Corollary D.2.2. When the graph dimension p grows with n, for any 0 < ε < 1/2 and any positive

integer δ, there exist two finite constant 0 < M1(ε) < 1/4 and M2(ε) > 3, define

R0
ij|S =

{
M1

n
< ρ̂2

ij|S <
M2

n− p

}
, ∆0+

ε = ∩(i,j,S)∈EtR
0
ij|S,

where

Et =
{

(i, j, S) : (i, j) 6∈ Et, S ∈ Πij, |Et| = δ <∞
}
,

we have P
(
∆0+
ε

)
> 1− ε, when n > p+ 3.

Proof. Let

M1 =
( ε/δ

ε/δ + 2

)2

, M2 = 6 log
(10δ

ε

)
.

The rest of the proof proceeds the same as Lemma D.2.4.
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APPENDIX E

ENUMERATIONS OF ADDITION AND DELETION ∗

E.1 Enumerating Bayes Factors in the Deletion Case

Theorem E.1.1. (Condition of proper deletion while maintaining decomposability [79, 1, 15, 80]).

Removing an edge (x, y) from a decomposable graph G will result in a decomposable graph if and

only if node x and y are contained in exactly one clique.

For the rest of this appendix, we use lower-case letter x, y alone or with subscripts to represent

nodes in the graph. We use the term “deletion” only in the case of deleting true edges. And true

edges are the edges in the true graphGt. LetG+(x,y)∈Et andG−(x,y)∈Et be any decomposable graph

with and without the true edge (x, y), respectively. The remaining edges (excepting the true edge

(x, y)) stays the same. (NoticeG+(x,y)∈Et does not need to be the true graph, except just containing

the true edge (x, y).) Thus G−(x,y)∈Et can be seen as the result of deleting the true edge (x, y) from

G+(x,y)∈Et . From Theorem E.1.1, we know node x and y are contained in exactly one clique of

G+(x,y)∈Et . The following Lemma E.1.1 provides upper and lower bound for Bayes factor in favor

of deleting a true edge.

Lemma E.1.1. (Bayes factor of deleting one single true edge). Denote C to be the only clique in

G+(x,y)∈Et that contains node x and y. Let S = C\{x, y}. Then,

(
1 +

1

g

)√
b+ dS − 1

2

b+ n+ dS

(
1− ρ̂2

xy|S
)n

2 < BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
<

(
1 +

1

g

)√
b+ dS

b+ n+ dS − 1
2

(
1− ρ̂2

xy|S
)n

2 ,

where dS = |S| < p. When S = ∅, dS = 0 and the sample partial correlation coefficient ρ̂xy|S
∗Reprinted with permission from arXiv.org, “Bayesian Graph Selection Consistency Under Model Misspecifica-

tion”, arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance
arXiv copyright no modifications have been made except formatting.
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becomes the sample correlation coefficient ρ̂xy.

Proof. To proof this lemma, we enumerate all scenarios and calculate the Bayes factor above for

every case. Similar enumeration also appears in [81].

CASE 1: Node x and y are contained in one clique C of G+(x,y)∈Et which only has node x and

y. In other words, removing edge (x, y) will result in adding an empty separator to the junction

tree and also disconnecting clique C1 and C2, where C1 is the clique before C and C2 is the clique

after C. They remain unchanged after deleting edge (x, y). This is the special scenario of CASE

2 where S = ∅. Figure E.1 illustrates the result of deleting edge (x, y) from G+(x,y)∈Et . Only

the parts which are relative to the deletion are shown, the rest of the junction tree is omitted and

will remain unchanged after the deletion. We use ellipses to denote cliques and squares to denote

separators in the junction tree.

x, y
C

x yx, C1\{x}

C1

y, C1\{y}

C2

ww� after deleting the edge between x and y

∅x, C1\{x}

C1

y, C2\{y}

C2

G+(x,y)∈Et

G−(x,y)∈Et ...

...

...

...

Figure E.1: Node x and y are in only one clique of G+(x,y)∈Et that only contains themselves.
Reprinted with permission from arXiv preprint, arXiv:1901.04134.

BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
=
f(Y | G−(x,y)∈Et)

f(Y | G+(x,y)∈Et)
=

1
w({x,y})

w({x})·w({y})

=
w({x}) · w({y})

w({x, y})
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=

(
1 +

1

g

)
Γ2( b+1

2
)Γ2( b+n

2
)

Γ2( b
2
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2
)

( ∣∣YT
xyYxy
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y Yy
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)n

2

=

(
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2
)

Γ( b
2
)Γ( b+n+1

2
)

(
YT
xYx · XT

y Yy − (YT
xYy)

2

YT
xYx · XT

y Yy

)n
2

=

(
1 +

1

g

)
Γ( b+1

2
)Γ( b+n

2
)

Γ( b
2
)Γ( b+n+1

2
)

(
1− ρ̂2

xy

)n
2 .

By Proposition D.1.2,

√
b− 1

2
+

1

4
<

Γ
(
b+1

2

)
Γ
(
b
2

) <

√
b

2
,

1√
b+n

2

<
Γ
(
b+n

2

)
Γ
(
b+n+1

2

) < 1√
b+n−1

2
+ 1

4

.

Thus,

(
1 +

1

g

)√
b− 1

2

b+ n

(
1− ρ̂2

xy

)n
2 < BF

(
G−(x,y)∈Et ;G+(x,y)∈Et

)
<

(
1 +

1

g

)√
b

b+ n− 1
2

(
1− ρ̂2

xy

)n
2 .

CASE 2: Node x and y are contained in only one clique C of G+(x,y)∈Et which consists of node

x, y and a non-empty set S.

x, y, S

C

G+(x,y)∈Et ... ...

Figure E.2: When S is a non-empty set in G+(x,y)∈Et . Reprinted with permission from arXiv
preprint, arXiv:1901.04134.

CASE 2.1: Both {x, S} and {y, S} are not separators inG+(x,y)∈Et . The cliques containing {x, S}

and {y, S} are exactly {x, S} and {y, S} after the deletion in G−(x,y)∈Et , respectively [81]. Figure

E.3 illustrates this scenario.
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x, y, S

C

ww� after deleting the edge between x and y

Sx, S y, S

G+(x,y)∈Et

G−(x,y)∈Et

... ...

... ...

Figure E.3: Both {x, S} and {y, S} are not in other cliques of G+(x,y)∈Et . Reprinted with permis-
sion from arXiv preprint, arXiv:1901.04134.

Let

Σ̂SS = YT
SYS,

ĤS = YS(YT
SYS)−1YT

S ,

Σ̂xx|S = YT
xYx − YT

x ĤSYx,

Σ̂yy|S = YT
y Yy − YT

y ĤSYy,

Σ̂xy|S = YT
xYy − YT

x ĤSYy.

Then we have

∣∣YT
xySYxyS

∣∣ =

∣∣∣∣∣∣∣∣∣∣
YT
xYx YT

xYy YT
xYS

YT
y Yx YT

y Yy YT
y YS

YT
SYx YT

SYy YT
SYS

∣∣∣∣∣∣∣∣∣∣
=
∣∣YT

SYS

∣∣ ·
∣∣∣∣∣∣∣
YT
xYx − YT

x ĤSYx YT
xYy − YT

x ĤSYy

YT
y Yx − YT

y ĤSYx YT
y Yy − YT

y ĤSYy

∣∣∣∣∣∣∣
=
∣∣∣Σ̂SS

∣∣∣ · (Σ̂xx|SΣ̂yy|S − Σ̂2
xy|S
)
,

∣∣YT
xSYxS

∣∣ =

∣∣∣∣∣∣∣
YT
xYx YT

xYS

YT
SYx YT

SYS

∣∣∣∣∣∣∣ =
∣∣YT

SYS

∣∣ · ∣∣∣YT
xYx − YT

x ĤSYx

∣∣∣ =
∣∣∣Σ̂SS

∣∣∣ · Σ̂xx|S,

∣∣YT
ySYyS

∣∣ =

∣∣∣∣∣∣∣
YT
y Yy YT

y YS

YT
SYy YT

SYS

∣∣∣∣∣∣∣ =
∣∣YT

SYS

∣∣ · ∣∣∣YT
y Yy − YT

y ĤSYy

∣∣∣ =
∣∣∣Σ̂SS

∣∣∣ · Σ̂yy|S.
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BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
=
f(Y | G−(x,y)∈Et)

f(Y | G+(x,y)∈Et)
=

w({x,S})·w({y,S})
w(S)

w({x, y, S})
=
w({x, S}) · w({y, S})
w(S) · w({x, y, S})

=

(
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1
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)
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)(Σ̂xx|SΣ̂yy|S − Σ̂2
xy|S

Σ̂xx|SΣ̂yy|S

)n
2

=

(
1 +

1

g

)
Γ
(
b+dS+1

2

)
Γ
(
b+n+dS

2

)
Γ
(
b+dS

2

)
Γ
(
b+n+dS+1

2

)(1− ρ̂2
xy|S
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2 .

By Proposition D.1.2,

√
b+ dS − 1

2
+

1

4
<

Γ
(
b+dS+1

2

)
Γ
(
b+dS

2
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√
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2
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1√
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<
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b+n+dS

2

)
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(
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2
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2
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4

.

Thus,

(
1 +

1

g

)√
b+ dS − 1

2

b+ n+ dS

(
1− ρ̂2

xy|S
)n

2 < BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
<

(
1 +

1

g

)√
b+ dS

b+ n+ dS − 1
2

(
1− ρ̂2

xy|S
)n

2 .

CASE 2.2: Only one of {x, S} and {y, S} is a separator in G+(x,y)∈Et . The cliques containing

{x, S} or {y, S} are a superset of {x, S} or {y, S} after the deletion in G−(x,y)∈Et , respectively

[81]. Figure E.4 shows when {x, S} is in other cliques (only one of those supersets is shown here

which is {x, S, P} and P 6= ∅, others are omitted for simplicity), thus {x, S} is a separator in

G+(x,y)∈Et . Figure E.5 shows when {y, S} is in other cliques (which is {y, S,Q} and Q 6= ∅), thus

{y, S} is a separator in G+(x,y)∈Et .
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x, Sx, S, P x, y, S

C

ww� after deleting the edge between x and y

Sx, S, P y, S

G+(x,y)∈Et

G−(x,y)∈Et

...

...

...

...

Figure E.4: Only x and S are in a superset {x, S, P} of G+(x,y)∈Et . Reprinted with permission
from arXiv preprint, arXiv:1901.04134.

y, Sx, y, S

C

y, S, Qww� after deleting the edge between x and y

Sx, S y, S, Q

G+(x,y)∈Et

G−(x,y)∈Et

...

...

...

...

Figure E.5: Only y and S are in a superset {y, S,Q} of G+(x,y)∈Et . Reprinted with permission
from arXiv preprint, arXiv:1901.04134.

BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
=
w({x, S}) · w({y, S})
w(S) · w({x, y, S})

.

This is the same as CASE 2.1.

CASE 2.3: Both {x, S} and {y, S} are separators in G+(x,y)∈Et . The cliques containing both

{x, S} and {y, S} are supersets of them after the deletion in G−(x,y)∈Et [81]. Figure E.6 shows
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{x, S} in superset {x, S, P} and {y, S} in superset {y, S,Q}, where P,Q 6= ∅ and P ∩ Q = ∅,

thus {x, S} and {y, S} are separators in G+(x,y)∈Et .

x, y, S

C

x, S y, Sx, S, P y, S, Qww� after deleting the edge between x and y

Sx, S, P y, S, Q

G+(x,y)∈Et

G−(x,y)∈Et

...

...

...

...

Figure E.6: {x, S} and {y, S} are in superset {x, S, P} and {y, S,Q} of G+(x,y)∈Et , respectively.
Reprinted with permission from arXiv preprint, arXiv:1901.04134.

BF
(
G−(x,y)∈Et ;G+(x,y)∈Et

)
=
w({x, S}) · w({y, S})
w(S) · w({x, y, S})

.

This is also the same as CASE 2.1.

E.2 Enumerating Bayes factors in the addition case

Theorem E.2.1. (Condition of proper addition while maintaining decomposability [79, 15, 80]).

Adding an edge (x, y) to a decomposable graph G will result in a decomposable graph if and only

if x and y are unconnected and contained in cliques that are adjacent in some junction tree of G.

Notice we use the term “addition” only in the case of adding false edges, i.e., edges which

are not in the true graph Gt. Let G+(x,y) 6∈Et and G−(x,y)6∈Et be any decomposable graph with and

without the false edge (x, y), respectively. And except the false edge (x, y), the rest of them are

the same. (G−(x,y) 6∈Et does not need to be the true graph, except not having the false edge (x, y).)

Therefore, G+(x,y)6∈Et can be seen as the result of adding the false edge (x, y) to G−(x,y)6∈Et . By

Theorem E.2.1, we know node x and y are contained in cliques that are adjacent in at least one

junction tree of G−(x,y) 6∈Et . Thus we have the following lemma.
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Lemma E.2.1. (Bayes factor of adding one single false edge). Let C1 and C2 be the cliques which

contain x and y, respectively. Assume C1 and C2 are two adjacent nodes in at least one junction

tree of G−(x,y) 6∈Et . Let S = C1 ∩ C2. Then,

(
g

g + 1

)√
b+ n+ dS − 1

2

b+ dS

(
1− ρ̂2

xy|S
)−n

2 < BF
(
G+(x,y)6∈Et ;G−(x,y)6∈Et

)
<

(
g

g + 1

)√
b+ n+ dS
b+ dS − 1

2

(
1− ρ̂2

xy|S
)−n

2 ,

where dS = |S| < p. When S = ∅, dS = 0 and the sample partial correlation coefficient ρ̂xy|S

becomes the sample correlation coefficient ρ̂xy.

Proof. Similar to the deletion case, we enumerate all scenarios and calculate the corresponding

Bayes factors. The addition case can be partially seen as the reversion of the deletion case, only

the edge added here is not a true edge. Same enumeration can be found in the appendix of [15].

CASE 1: Clique C1 and C2 are disconnected in G−(x,y)6∈Et , i.e. node x and y are not adjacent

and not connected. (The graph can be seen as two separate subgraphs.) In other words, adding

edge (x, y) will result in creating a new clique to the current junction tree of G−(x,y)6∈Et , and also

connecting clique C1 and C2. They remain unchanged after adding edge (x, y). This is the special

scenario of CASE 2 where S = ∅. Figure E.7 illustrates the result of adding a false edge (x, y) to

G−(x,y) 6∈Et . Here P = C1\{x} and Q = C2\{y}, thus P ∩Q = ∅ and P,Q 6= ∅.
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∅x, P

C1

y, Q

C2

... ...ww� after adding an edge between x and y

x, yx yx, P

C1

y, Q

C2

... ...G+(x,y)6∈Et

G−(x,y)6∈Et

Figure E.7: Clique C1 and C2 are disconnected in G−(x,y)6∈Et . Reprinted with permission from
arXiv preprint, arXiv:1901.04134.

BF
(
G+(x,y)6∈Et ;G−(x,y)6∈Et

)
=
f(Y | G+(x,y)6∈Et)

f(Y | G−(x,y)6∈Et)
=
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By Proposition D.1.2,
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CASE 2: CliqueC1 andC2 are connected by a non-empty separator S inG−(x,y)6∈Et and P∩Q = ∅.

Sx, S, P

C1

y, S, Q

C2

... ...G−(x,y)6∈Et

Figure E.8: When S is a non-empty separator inG−(x,y) 6∈Et . Reprinted with permission from arXiv
preprint, arXiv:1901.04134.

CASE 2.1: When P , Q are both empty sets, i.e. clique C1 contains only {x, S} and clique C2

contains only {y, S} in G−(x,y)6∈Et . In this case, adding an edge between x and y will consolidate

C1 and C2 to create a single clique which consists of x, y and S. Figure E.9 shows this scenario.

Sx, S

C1

y, S

C2

... ...ww� after adding an edge between x and y

x, y, S... ...

G−(x,y)6∈Et

G+(x,y)6∈Et

Figure E.9: When P,Q = ∅, i.e. C1 = {x, S} and C2 = {y, S} in G−(x,y)6∈Et . Reprinted with
permission from arXiv preprint, arXiv:1901.04134.

BF
(
G+(x,y) 6∈Et ;G−(x,y) 6∈Et

)
=
f(Y | G+(x,y)6∈Et)

f(Y | G−(x,y)6∈Et)
=
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By Proposition D.1.2,
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(
1− ρ̂2
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CASE 2.2: One of P , Q is an empty set, i.e. clique C1 contains only {x, S} or clique C2 contains

only {y, S} in G−(x,y) 6∈Et . In this case, adding an edge between node x and y will not create a new

clique, but extending the original separator S by node x or y. Figure E.10 shows when P 6= ∅ and

Q = ∅, where C1 = {x, S, P}, C2 = {y, S} in G−(x,y)6∈Et . Figure E.11 shows when Q 6= ∅ and

P = ∅, where C1 = {x, S}, C2 = {y, S,Q} in G−(x,y)6∈Et .
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Sx, S, P

C1

y, S

C2

... ...ww� after adding an edge between x and y

x, Sx, S, P x, y, S... ...

G−(x,y) 6∈Et

G+(x,y) 6∈Et

Figure E.10: P 6= ∅ and Q = ∅, where C1 = {x, S, P}, C2 = {y, S} in G−(x,y)6∈Et . Reprinted with
permission from arXiv preprint, arXiv:1901.04134.

Sx, S

C1

y, S, Q

C2

... ...ww� after adding an edge between x and y

y, Sx, y, S y, S, Q... ...

G−(x,y)6∈Et

G+(x,y)6∈Et

Figure E.11: Q 6= ∅ and P = ∅, where C1 = {x, S}, C2 = {y, S,Q} in G−(x,y)6∈Et . Reprinted with
permission from arXiv preprint, arXiv:1901.04134.

BF
(
G+(x,y)6∈Et ;G−(x,y)6∈Et

)
=

w({x, y, S}) · w(S)

w({x, S}) · w({y, S})
.

This is the same as CASE 2.1.

CASE 2.3: When P , Q are both non-empty sets and P ∩ Q = ∅, i.e. C1 = {x, S, P}, C2 =

{y, S,Q} in G−(x,y)6∈Et . In this case, adding an edge between x and y will create a new clique
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{x, y, S} and two new separators {x, S} and {y, S}. Figure E.12 illustrates this case.

Sx, S, P

C1

y, S, Q

C2

... ...ww� after adding an edge between x and y

x, y, Sx, S y, Sx, S, P y, S, Q... ...

G−(x,y)6∈Et

G+(x,y)6∈Et

Figure E.12: P,Q 6= ∅ and P ∩ Q = ∅, where C1 = {x, S, P}, C2 = {y, S,Q} in G−(x,y)6∈Et .
Reprinted with permission from arXiv preprint, arXiv:1901.04134.

BF
(
G+(x,y)6∈Et ;G−(x,y)6∈Et

)
=

w({x, y, S}) · w(S)

w({x, S}) · w({y, S})
.

This is also the same as CASE 2.1.
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APPENDIX F

PAIRWISE BAYES FACTOR CONSISTENCY AND POSTERIOR RATIO CONSISTENCY –

ANY GRAPH GA VERSUS THE TRUE GRAPH GT
∗

F.1 Preparation

Lemma F.1.1. (Decomposable graph chain rule [1]). Let G = (V,E) be a decomposable graph

and let G′ = (V,E ′) be a subgraph of G that also is decomposable with |E\E ′| = k. Then there is

an increasing sequence G′ = G0 ⊂ G1 · · · ⊂ Gk−1 ⊂ Gk = G of decomposable graphs that differ

by exactly one edge.

Assume Gt 6⊂ Ga, then |Et| > |E1
a|. By Lemma F.1.1, there exists a decreasing sequence of

decomposable graphs from Gc to Ga that differ by exactly one edge, say
{
G
c→a
i

}|Ec|−|Ea|
i=0

, where

Gc = G
c→a
0 ) G

c→a
1 ) · · · ) G

c→a
|Ec|−|Ea|−1 ) G

c→a
|Ec|−|Ea| = Ga. There are |Ec| − |Ea| steps for

moving from Gc to Ga. Let
{
ρxiyi|Si

}|Ec|−|Ea|
i=1

be the corresponding population partial correlation

(or correlation, when Si = ∅) sequence and
{

BF(G
c→a
i ;G

c→a
i−1 )

}|Ec|−|Ea|
i=1

be the corresponding

Bayes factor sequence for each step. By that, we mean in the ith step, edge (xi, yi) is removed;

ρxiyi|Si and BF(G
c→a
i ;G

c→a
i−1 ) are the population partial correlation and the Bayes factor accord-

ingly, i = 1, 2, . . . , |Ec| − |Ea|. Si is the specific separator corresponding to the ith step. Among

them |Et| − |E1
a| steps are removal of true edges that are deletion cases; |Ec| − |Ea| − |Et|+ |E1

a|

steps are removal of false edges that can be seen as the reciprocal of addition cases.

Lemma F.1.2. (Origin of the exponential rate in the deletion case). Assume Gt 6⊂ Ga. In{
ρxiyi|Si

}|Ec|−|Ea|
i=1

, among all population partial correlations that are corresponding to the removal

of true edges, at least one is non-zero and it is not a population correlation (Si 6= ∅).

Proof. There are many sequences of {(xi, yi)}
|Ec|−|Ea|
i=1 (in different orders) that can achieve mov-

ing from Gc to Ga and still maintaining decomposability along the way. Let (x∗, y∗) ∈ Et\E1
a .

∗Reprinted with permission from arXiv.org, “Bayesian Graph Selection Consistency Under Model Misspecifica-
tion”, arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance
arXiv copyright no modifications have been made except formatting.
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Thus (x∗, y∗) ∈ {(xi, yi)}
|Ec|−|Ea|
i=1 . Choose (x1, y1) = (x∗, y∗). This means the first step is

the removal of a true edge in Et\E1
a from Gc. Let S∗ be the corresponding separator. Thus

we know S∗ = V \{x∗, y∗} 6= ∅, since (x∗, y∗) is removed from Gc. In fact, the removal

of any edge from a complete graph still maintains decomposability, i.e. G
c→a
1 is a decompos-

able graph. Since (x∗, y∗) ∈ Et, by the pairwise Markov property, ρx∗,y∗|V \{x∗,y∗} 6= 0. And

ρL ≤
∣∣ρx∗,y∗|V \{x∗,y∗}∣∣ ≤ ρU . Therefore, we complete the proof of this lemma.

Lemma F.1.3. (The inheritance of separators). LetG = (V,E) andG′ = (V,E ′) be two undirected

graphs (not necessary to be decomposable). Assume E ⊆ E ′. If S ( V separates node x ∈ V

from node y ∈ V in G′, where (x, y) 6∈ E ′, then S also separates them in G.

Proof. Assume S does not separate x from y in G. By the definition of separators, there exists a

path from x to y in G, say x = v0, v1, . . . , vl−1, vl = y and vi 6∈ S, for all i = 0, 1, . . . , l. Since

E ⊆ E ′, the path from x to y, {vi}l−1
i=1, is still a path from x to y in G′. By the definition of

separators again, we know that S does not separate x from y in G′. But this contradicts with the

assumption in the lemma. Therefore, S separates x from y in G.

Assume Gt ( Ga, thus |Et| = |E1
a|. By Lemma F.1.1, there exists an increasing sequence of

decomposable graphs from Gt to Ga that differ by exactly one edge, say
{
G̃ t→a
i

}|Ea|−|Et|
i=0

, where

Gt = G̃ t→a
0 ( G̃ t→a

1 ( . . . ( G̃ t→a
|Ea|−|Et|−1 ( G̃ t→a

|Ea|−|Et| = Ga. There are |Ea| − |Et| steps

for moving from Gt to Ga. All of them are addition of false edges that are addition cases. Let{
ρx̃iỹi|S̃i

}|Ea|−|Et|
i=1

be the corresponding population partial correlation (or correlation, when S̃i = ∅)

sequence and
{

BF(G̃ t→a
i ; G̃ t→a

i−1 )
}|Ea|−|Et|
i=1

be the corresponding Bayes factor sequence for each

step. By that, we mean in the ith step, edge (x̃i, ỹi) 6∈ Et is added; ρx̃i,ỹi|S̃i and BF(G̃ t→a
i ; G̃ t→a

i−1 )

are the population partial correlation and the Bayes factor accordingly, i = 1, 2, . . . , |Ea| − |Et|.

S̃i is the specific separator corresponding to the ith step.

Lemma F.1.4. (Origin of the polynomial rate in the addition case). AssumeGt ( Ga. For any edge

sequence {(x̃i, ỹi)}|Ea|−|Et|i=1 from Gt to Ga described above, all population partial correlations in{
ρx̃iỹi|S̃i

}|Ea|−|Et|
i=1

are zero. (or correlation, when S̃i = ∅)
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Proof. Assume in the ith step, we add edge (x̃i, ỹi) 6∈ Et to graph G̃ t→a
i−1 and S̃i is the corresponding

separator, where 1 ≤ i ≤ |Ea| − |Et|.

S̃ix̃i, S̃i, P

Cx̃i

ỹi, S̃i, Q

Cỹi

... ...G̃ t→a
i−1

Figure F.1: G̃ t→a
i−1 before adding edge (x̃i, ỹi) 6∈ Et where S̃i 6= ∅. Reprinted with permission from

arXiv preprint, arXiv:1901.04134.

First, when S̃i 6= ∅. Since edge (x̃i, ỹi) 6∈ Et is added in the ith step, by Lemma E.2.1, Cx̃i and

Cỹi are adjacent in some junction tree of G̃ t→a
i−1 where Cx̃i and Cỹi are the cliques that contain x̃i

and ỹi, respectively. And S̃i is the separator between them, i.e. S̃i = Cx̃i ∩Cỹi . By the property of

junction trees, we know S̃i separates x̃i from ỹi in G̃ t→a
i−1 . Since

{
G̃ t→a
i

}|Ea|−|Et|
i=0

is an increasing

sequence by edge, by Lemma F.1.3, we know S̃i also separates x̃i from ỹi in G̃ t→a
0 = Gt. By the

global Markov property, ρx̃iỹi|S̃i = 0.

∅x̃i, P

Cx̃i

ỹi, Q

Cỹi

... ...G̃ t→a
i−1

Figure F.2: G̃ t→a
i−1 before adding edge (x̃i, ỹi) 6∈ Et where S̃i = ∅. Reprinted with permission from

arXiv preprint, arXiv:1901.04134.

Next, when S̃i = ∅, we show ρx̃iỹi = 0. By the property of junction trees, we know node

x̃i and ỹi are disconnected. Furthermore, in the current graph G̃ t→a
i−1 , nodes before clique Cx̃i

(including nodes in Cx̃i) and nodes after clique Cỹi (including nodes in Cỹi) are disconnected.

Since Gt ( G̃ t→a
i−1 , then this is also true in Gt. Thus, nodes before clique Cx̃i (including nodes in

Cx̃i) and nodes after clique Cỹi (including nodes in Cỹi) are disconnected in Gt. We can rearrange
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the precision matrix ofGt into a block matrix such that the block which x̃i is in and the block which

ỹi is in are independent. Therefore, node x̃i and ỹi are marginally independent in Gt, ρx̃iỹi = 0.

Notice when Ga = Gc this lemma still holds.

For the rest of proofs, when Gt 6⊂ Ga, moving from Gc to Ga is restricted to the order of delet-

ing edges in Lemma F.1.2 (deleting a true edge at the beginning); when Gt ( Ga, moving from Gt

to Ga (or Gc) can be any order of adding edges (as long as decomposability is satisfied) according

to Lemma F.1.4. Following the notations in Lemma F.1.2 and F.1.4, we have the decomposition of

Bayes factor in favor of Ga as follows.

When Gt 6⊂ Ga,

BF(Ga;Gt) =
f(Y | Ga)

f(Y | Gt)
=
f(Y | Ga)

f(Y | Gc)
· f(Y | Gc)

f(Y | Gt)

=
p(Y | Ga)

p(Y | G c→a
|Ec|−|Ea|−1)

p(Y | G c→a
|Ec|−|Ea|−1)

p(Y | G c→a
|Ec|−|Ea|−2)

. . .
p(Y | G c→a

2 )

p(Y | G c→a
1 )

p(Y | G c→a
1 )

p(Y | Gc)

× p(Y | Gc)

p(Y | G̃ t→c
|Ec|−|Et|−1)

p(Y | G̃ t→c
|Ec|−|Et|−1)

p(Y | G̃ t→c
|Ec|−|Et|−2)

. . .
p(Y | G̃ t→c

2 )

p(Y | G̃ t→c
1 )

p(Y | G̃ t→c
1 )

p(Y | Gt)

=

|Ec|−|Ea|∏
i=1

BF(G
c→a
i ;G

c→a
i−1 ) ·

|Ec|−|Et|∏
i=1

BF(G̃ t→c
i ; G̃ t→c

i−1 )

= BFc→a · BFt→c.

Therefore,

PR(Ga;Gt) =
p(Ga | Y)

p(Gt | Y)
=
f(Y | Ga)π(Ga)

f(Y | Gt)π(Gt)
= BF(Ga;Gt)

π(Ga)

π(Gt)

= BFc→a · BFt→c ·
(

q

1− q

)|Ea|−|Et|
.

BFc→a contains |Ec| − |Ea| terms, in which |Et| − |E1
a| terms are deletion cases and |Ec| − |Ea| −

|Et| + |E1
a| terms are the reciprocal of addition cases. BFt→c has |Ec| − |Et| terms that are all

addition cases.
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When Gt ( Ga,

BF(Ga;Gt) =

|Ea|−|Et|∏
i=1

BF(G̃ t→a
i ; G̃ t→a

i−1 ) = BFt→a,

PR(Ga;Gt) = BFt→a ·
(

q

1− q

)|Ea|−|Et|
.

F.2 Proof of Theorem 3.4.1

First, for any τ ∗ > 2, let ε1,n =
√

log(n−p)
τ∗(n−p) . Then define

R′ij|S =
{
|ρ̂ij|S − ρij|S| < ε1,n

}
.

Given any decomposable graph Ga 6= Gt, when Gt 6⊂ Ga, by Lemma F.1.2, we have the edge

sequence {(xi, yi)}
|Ec|−|Ea|
i=1 for moving from Gc to Ga and let (x1, y1) = (x∗, y∗) be the first in

the sequence where a true edge is deleted from Gc. Let {(x̃i, ỹi)}|Ec|−|Et|i=1 and {S̃i}|Ec|−|Et|i=1 be the

edge sequence and the corresponding separator sequence for moving from Gt to Gc according to

Lemma F.1.4. Let

∆t6⊂a,ε1 =
(
R′x∗y∗|V \{x∗,y∗}

)⋂(
∩|Ec|−|Et|i=1 R′

x̃iỹi|S̃i

)
.

Since ρU 6= 1, by the proof of Lemma D.2.1, we have

P(∆t6⊂a,ε1) ≥ P(∆′ε1) ≥ 1− 42p2

(1− ρU)2
(n− p)−

1
4τ∗
{ 1

τ ∗
log(n− p)

}− 1
2
.

WhenGt ( Ga, let {(x̃i, ỹi)}|Ea|−|Et|i=1 and {S̃i}|Ea|−|Et|i=1 be the edge sequence and the corresponding

separator sequence for moving from Gt to Ga according to Lemma F.1.4. (Notice here we use the

same edge and separator notations as in Gt to Gc for consistency reason and Gt to Ga can be seen
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as a part of Gt to Gc.) Let

∆t(a,ε1 =

|Ea|−|Et|⋂
i=1

R′
x̃iỹi|S̃i

.

Since ρU 6= 1, by the proof of Lemma D.2.1, we also have

P(∆t(a,ε1) ≥ P(∆′ε1) ≥ 1− 42p2

(1− ρU)2
(n− p)−

1
4τ∗
{ 1

τ ∗
log(n− p)

}− 1
2
.

Thus, ∆a,ε1 = ∆t6⊂a,ε1 whenGt 6⊂ Ga and ∆a,ε1 = ∆t(a,ε1 whenGt ( Ga. For the following proof,

we restrict it to the event ∆a,ε1 . Next, we consider two scenarios for Bayes factor consistency, i.e.

Gt 6⊂ Ga and Gt ( Ga.

First, when Gt 6⊂ Ga and Gt 6= Gc, we have |Et| > |E1
a| and |Ec| > |Et|. We begin by

simplifying the upper bound of BFt→c. (for Gt = Gc, BFt→c = 1) By Lemma E.2.1 and F.1.4,

BFt→c =

|Ec|−|Et|∏
i=1

BF(G̃ t→c
i ; G̃ t→c

i−1 )

<

|Ec|−|Et|∏
i=1

( g

g + 1

)√b+ n+ dS̃i
b+ dS̃i −

1
2

(1− ρ̂2
x̃iỹi|S̃i

)−
n
2

<
( 2

n

) |Ec|−|Et|
2

{
1− log(n− p)

τ ∗(n− p)

}−(|Ec|−|Et|)n2
, when n > b+ p

<
( 2

n

) |Ec|−|Et|
2

exp

(
n

n− p− 1/τ ∗ log n
· |Ec| − |Et|

2τ ∗
· log n

)
<
( 2

n

) |Ec|−|Et|
2

exp
( |Ec| − |Et|

τ ∗
· log n

)
, when n > 4p

< exp

{
p2 −

(1

2
− 1

τ ∗

)
(|Ec| − |Et|) log n

}
.

Next, we examine BFc→a. Based on Lemma F.1.2 and its proof, we divide it into two parts, i.e

deletion cases and the reciprocal of addition cases. For deletion cases, we use {(x di , y di )}|Et|−|E
1
a|

i=1

to denote the sequence of true edges and {S d

i }
|Et|−|E1

a|
i=1 are the corresponding separator sequence.

For addition cases, we use {(x ai , y ai )}|Ec|−|Ea|−|Et|+|E
1
a|

i=1 and {S a

i }
|Ec|−|Ea|−|Et|+|E1

a|
i=1 . Since p is finite,
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by the definition of ρL, then ρL is a positive finite constant.

BFc→a =

|Ec|−|Ea|∏
i=1

BF(G
c→a
i ;G

c→a
i−1 )

<

|Et|−|E1
a|∏

i=1

(
1 +

1

g

)√√√√ b+ d
S
d
i

b+ n+ d
S
d
i
− 1

2

(1− ρ̂2

x di y
d
i |S

d
i

)
n
2

×
|Ec|−|Ea|−|Et|+|E1

a|∏
i=1

(
1 +

1

g

)√ b+ dS ai
b+ n+ dS ai −

1
2

(1− ρ̂2
x ai y

a
i |S

a
i
)
n
2

<
{

2p(n+ 1)
} |Ec|−|Ea|

2 (1− ρ̂2
x∗y∗|V \{x∗,y∗})

n
2 , wlog assume p > b

<
{

2p(n+ 1)
} |Ec|−|Ea|

2

{
1−

(
ε1 −

∣∣ρx∗y∗|V \{x∗,y∗}∣∣ )2
}n

2

<
{

2p(n+ 1)
} |Ec|−|Ea|

2 exp
(
− nρ2

L

2
+ nε1 −

nε21
2

)
<
{

2p(n+ 1)
} |Ec|−|Ea|

2 exp
{
− nρ2

L

2
+
√
n log n− 1

2τ ∗
log(n− p)

}
, when n > 2p

< exp
{
− nρ2

L

2
+ p2 log n+

√
n log n− 1

2τ ∗
log(n− p) + 2p2 log p

}
, when n > 1.

Let δ(n) = p2 log n+
√
n log n+ 3p2 log p and δ(n)/n→ 0 as n→∞. Hence,

BF(Ga;Gt | Gt 6⊂ Ga) = BFc→a · BFt→c < exp
{
− nρ2

L

2
+ δ(n)

}
.

When Gt ( Ga, by Lemma E.2.1 and F.1.4 we have

BF(Ga;Gt | Gt ( Ga) =

|Ea|−|Et|∏
i=1

BF(G̃t→a
i ; G̃t→a

i−1 )

< exp

{
p2 −

(1

2
− 1

τ ∗

)
(|Ea| − |Et|) log n

}
.
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F.3 Proof of Theorem 3.4.2

From γ > 1− 4α, we have 1−γ
2
< 2α; from λ < 1

2
− α, we have α + λ < 1

2
; from λ < α, we

have α + λ < 2α. For any β∗ that satisfies

max
{
α + λ,

1− γ
2

}
< β∗ < min

{1

2
, 2α
}
,

let ε2,n = (n− p)−β∗ . Then define

R′′ij|S =
{
|ρ̂ij|S − ρij|S| < ε2,n

}
.

Given any decomposable graph Ga 6= Gt, when Gt 6⊂ Ga, by Lemma F.1.2, we have the edge

sequence {(xi, yi)}
|Ec|−|Ea|
i=1 for moving from Gc to Ga and let (x1, y1) = (x∗, y∗) be the first in

the sequence where a true edge is deleted from Gc. Let {(x̃i, ỹi)}|Ec|−|Et|i=1 and {S̃i}|Ec|−|Et|i=1 be the

edge sequence and the corresponding separator sequence for moving from Gt to Gc according to

Lemma F.1.4. Let

∆t6⊂a,ε2(n) =
(
R′′x∗y∗|V \{x∗,y∗}

)⋂(
∩|Ec|−|Et|i=1 R′′

x̃iỹi|S̃i

)
.

Since 0 < β∗ < 1
2

and Assumption 3.4.5, by Lemma D.2.2, when n→∞,

P
{

∆t6⊂a,ε2(n)
}
≥ P

{
∆′ε2(n)

}
≥ 1− 42p2

(1− ρU)2
(n− p)β∗−

1
2 exp

{
− 1

4
(n− p)1−2β

}
→ 1.

WhenGt ( Ga, let {(x̃i, ỹi)}|Ea|−|Et|i=1 and {S̃i}|Ea|−|Et|i=1 be the edge sequence and the corresponding

separator sequence for moving from Gt to Ga according to Lemma F.1.4. (Notice here we use the

same edge and separator notations as in Gt to Gc for consistency reason and Gt to Ga can be seen

as a part of Gt to Gc.) Let

∆t(a,ε2(n) =

|Ea|−|Et|⋂
i=1

R′′
x̃iỹi|S̃i

.
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Since 0 < β∗ < 1
2

and Assumption 3.4.5, by Lemma D.2.2, when n→∞,

P
{

∆t(a,ε2(n)
}
≥ P

{
∆′ε2(n)

}
≥ 1− 42p2

(1− ρU)2
(n− p)β∗−

1
2 exp

{
− 1

4
(n− p)1−2β

}
→ 1.

Thus, ∆a,ε2(n) = ∆t6⊂a,ε2(n) when Gt 6⊂ Ga and ∆a,ε2(n) = ∆t⊆a,ε2(n) when Gt ( Ga. For the

following proof, we restrict it to the event ∆a,ε2(n). Similar to the proof of Theorem 3.4.1, we

consider two scenarios here for posterior ratio consistency, i.e. Gt 6⊂ Ga and Gt ( Ga.

First, when Gt 6⊂ Ga and Gt 6= Gc, we have |Et| > |E1
a| and |Ec| > |Et|. (for Gt = Gc,

BFt→c = 1) By Lemma E.2.1 and F.1.4,

BFt→c =

|Ec|−|Et|∏
i=1

BF(G̃ t→c
i ; G̃ t→c

i−1 )

<
( 2

n

) |Ec|−|Et|
2

{
1− (n− p)−2β∗

}−(|Ec|−|Et|)n2
, when n > b+ p

<
( 2

n

) |Ec|−|Et|
2

{
1 +

2

(n− p)2β∗

}(|Ec|−|Et|)n2
, when n > max{2p, 21/(2β∗)+1}

< exp

{
np2

(n− p)2β∗
− |Ec| − |Et|

4
log n

}
, when n > 4.

Similar to the proof of Theorem 3.4.1, we have

BFc→a =

|Ec|−|Ea|∏
i=1

BF(G
c→a
i ;G

c→a
i−1 )

<
{

2p(n+ 1)
} |Ec|−|Ea|

2
(
1− ρ̂2

x∗y∗|V \{x∗,y∗}
)n

2 , when p > b

<
{

2p(n+ 1)
} |Ec|−|Ea|

2 exp
(
− nρ2

L

2
+ nε2 −

nε22
2

)
<
{

2p(n+ 1)
} |Ec|−|Ea|

2 exp

{
− nρ2

L

2
+

n

(n− p)β∗
− 1

2
n1−2β∗

}
< exp

{
− nρ2

L

2
+

n

(n− p)β∗
− 1

2
n1−2β∗ + 3p2 log n

}
.
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When n > 3 exp{(1− 2β∗)−2}, we have n(n− p)−2β∗ > 3 log n. Hence,

BF(Ga;Gt | Gt 6⊂ Ga) < exp

{
− nρ2

L

2
+

n

(n− p)β∗
− 1

2
n1−2β∗ +

2np2

(n− p)2β∗

}
.

Therefore, when Gt 6⊂ Ga, for n > (log 2/Cq)
1/γ ,

PR(Ga;Gt | Gt 6⊂ Ga) < exp

{
−nρ

2
L

2
+

n

(n− p)β∗
−1

2
n1−2β∗+

2np2

(n− p)2β∗
+
(
|Ea|−|Et|

)
log(2q)

}
.

By the construction of β∗, we have

1− 2λ > 1 + 2α− 2β∗ > max{2α, 1− 2β∗, 1− β∗},

and 1 − 2λ > σ + γ. Therefore, −nρ2
L/2 is the leading term in the upper bound of PR(Ga;Gt |

Gt 6⊂ Ga). Thus, PR(Ga;Gt)→ 0, as n→∞ when Gt 6⊂ Ga.

When Gt ( Ga, by Lemma E.2.1 and F.1.4 we have

BF(Ga;Gt | Gt ( Ga) < exp

{(|Ea| − |Et|)n
(n− p)2β∗

}
.

So

PR(Ga;Gt | Gt ( Ga) < exp

{(|Ea| − |Et|)n
(n− p)2β∗

+
(
|Ea| − |Et|

)
log(2q)

}
.

Since β∗ > 1−γ
2

, then
(
|Ea|−|Et|

)
log(2q) is the leading term above and |Ea|−|Et| > 0. Therefore,

PR(Ga;Gt|Gt ( Ga)→ 0, as n→∞.

F.4 Proof of Theorem 3.4.3

From γ > α, we have 1−γ
2
< 1−α

2
; from γ > 1− 4α, we have 1−γ

2
< 2α; from λ < 1

2
(1− 3α),

we have α + λ < 1−α
2

; from λ < α, we have α + λ < 2α. For any β# satisfies

max
{
α + λ,

1− γ
2

}
< β# < min

{1− α
2

, 2α
}
,
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let ε3,n = (n− p)−β# . Then define

R′′′ij|S =
{
|ρ̂ij|S − ρij|S| < ε3,n

}
.

Denote

∆′′ε3(n) =
{
∩(i,j)∈Et R

′′′
ij|V \{i,j}

}⋂{
∩(i,j) 6∈Et

(
∩S∈Πij R

′′′
ij|S
)}
.

Since 0 < α < 1
3
, thus 0 < β# < 1−α

2
< 1

2
. By Assumption 3.4.5 and Lemma D.2.3,

P
{

∆′′ε3(n)
}
→ 1, as n→∞.

For any decomposable graph Ga, there exists a set ∆a,ε3(n) defined in Theorem 3.4.2, such that

∆′′ε3(n) ⊂ ∆a,ε3(n). For the following proof, we restrict it to the event ∆′′ε3(n). Thus, the upper

bound of Bayes factors derived under ∆′′ε3(n) is a uniform upper bound for all decomposable graphs

that are not Gt. Following the proof of Theorem 3.4.2, when Gt 6⊂ Ga,

PR(Ga;Gt | Gt 6⊂ Ga) < exp
{
−nρ

2
L

2
+

n

(n− p)β#−
1

2
n1−2β#

+
2np2

(n− p)2β# +
(
|Ea|−|Et|

)
log(2q)

}
.

By the construction of β#, we have

1− 2λ > 1 + 2α− 2β# > max{2α, 1− 2β#, 1− β#},

and 1 − 2λ > γ + σ. Therefore, −nρ2
L/2 is the leading term in the upper bound of PR(Ga;Gt |

Gt 6⊂ Ga). For simplicity, only the leading term is used in the following calculation.

When Gt ( Ga,

PR(Ga;Gt | Gt ( Ga) < exp

{(|Ea| − |Et|)n
(n− p)2β# +

(
|Ea| − |Et|

)
log(2q)

}
.
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Since β# > 1−γ
2

, then
(
|Ea| − |Et|

)
log(2q) is the leading term above and |Ea| − |Et| > 0. Thus,

when n is sufficiently large, for any decomposable graph Ga 6= Gt, we have

PR(Ga;Gt | Gt 6⊂ Ga) < exp
(
−D1nρ

2
L

)
,

PR(Ga;Gt | Gt ( Ga) < exp
{
−D2n

γ
(
|Ea| − |Et|

)}
,

where D1 and D2 are two positive finite constants.

∑
Gt 6⊂Ga

PR(Ga;Gt) =

|Et|−1∑
|E1
a|=0

(
|Et|
|E1

a|

) |Ec|−|Et|∑
|Ea|−|E1

a|=0

(
|Ec| − |Et|
|Ea| − |E1

a|

)
PR(Ga;Gt | Gt 6⊆ Ga)

< exp(p2 log 2) exp(−D1nρ
2
L)→ 0, as n→∞.

∑
Gt(Ga

PR(Ga;Gt) =

|Ec|∑
|Ea|=|Et|+1

(
|Ec| − |Et|
|Ea| − |Et|

)
PR(Ga;Gt | Gt ( Ga)

<

|Ec|−|Et|∑
i=1

(
|Ec| − |Et|

i

)(
e−D2nγ

)i
= (1 + e−D2nγ )|Ec|−|Et| − 1

< exp
{(
|Ec| − |Et|

)
e−D2nγ

}
− 1→ 0, as n→∞.

(i) When Gt = G0, where G0 is the null graph with no edges.

∑
Ga 6=G0

PR(Ga;G0) =
∑
G0(Ga

PR(Ga;G0)→ 0, as n→∞;

(ii) When Gt 6= G0 and Gt 6= Gc,

∑
Ga 6=Gt

PR(Ga;Gt) =
∑
Gt 6⊂Ga

PR(Ga;Gt) +
∑
Gt(Ga

PR(Ga;Gt)→ 0, as n→∞;
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(iii) When Gt = Gc,

∑
Ga 6=Gc

PR(Ga;Gc) =
∑
Gc 6⊂Ga

PR(Ga;Gc)→ 0, as n→∞.

Therefore,

π(Gt | Y) =
1

1 +
∑

Ga 6=Gt PR(Ga;Gt)
→ 1, as n→∞.

F.5 Proof of Corollary 3.4.2

According to the proof of Theorem 3.4.3, in the set ∆′′ε3(n), all Bayes factors in favor of Ga

converge to zero uniformly. Thus, we have

P
{

max
Ga 6=Gt

π(Ga | Y) < π(Gt | Y)
}
→ 1, as n→∞.

Therefore,

P
(
Ĝ = Gt

)
→ 1, as n→∞.
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APPENDIX G

PROOFS UNDER MODEL MISSPECIFICATION ∗

G.1 Preparation

LetGm = (V,Em) be any minimal triangulation ofGt, whereEm = Et∪F , F 6= ∅. In hereGa

denotes any decomposable graph other than minimal triangulations of Gt. Since Gm is a minimal

triangulation, then Ea 6= Et ∪ F ′, where F ′ ⊆ F . Different from when Gt is decomposable,

there are three cases here: (1) |E1
a| < |E1

m| = |Et|, thus Gm 6⊂ Ga; (2) |E1
a| = |E1

m| = |Et| and

Gm ( Ga; (3) |E1
a| = |E1

m| = |Et| and Gm 6⊂ Ga. But in case (3) there exists at least one minimal

triangulation of Gt which is a subset of Ga. And in both (2) and (3), we have |Em| < |Ea|.

For case (1), when |E1
a| < |E1

m| = |Et|, i.e. one of the two cases where Gm 6⊂ Ga, we

inherit all notations from Lemma F.1.2, {xi, yi}
|Ec|−|Ea|
i=1 is the edge sequence from Gc to Ga and

{ρxiyi|Si}
|Ec|−|Ea|
i=1 is the corresponding population partial correlation sequence. And Lemma F.1.2

still holds here, i.e. at least one population partial correlation in {ρxiyi|Si}
|Ec|−|Ea|
i=1 corresponding

to the removal of a true edge is non-zero and it is not a correlation. The proof carries out the same

as in Lemma F.1.2, just let the first step of moving from Gc to Ga be the deletion of one true edge

which is missing in Ga. For case (3), where |E1
a| = |E1

m| = |Et| but Gm 6⊂ Ga, when moving from

Gc to Ga, all steps are the reciprocal of addition cases. There is no deletion case here since Ga has

all the true edges in Gt.

For case (2), when Gm ( Ga and |E1
a| = |E1

m| = |Et|, we still use {(x̃i, ỹy)}|Ea|−|Em|i=1 to

denote the sequence of edges which are added in each steps from Gm to Ga and {ρx̃iỹi|S̃i}
|Ea|−|Em|
i=1

is the corresponding population partial correlation sequence. A similar version of Lemma F.1.4

still holds here.

Lemma G.1.1. For any edge sequence {(x̃i, ỹi)}|Ea|−|Em|i=1 from Gm to Ga describe above, all pop-

∗Reprinted with permission from arXiv.org, “Bayesian Graph Selection Consistency Under Model Misspecifica-
tion”, arXiv preprint arXiv:1901.04134, 2019, by Niu, Yabo and Pati, Debdeep and Mallick, Bani K. In accordance
arXiv copyright no modifications have been made except formatting.
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ulation partial correlations in {ρx̃iỹi|S̃i}
|Ea|−|Em|
i=1 are zero. (or correlation, when S̃i = ∅)

Proof. This proof follows similarly to the proof of Lemma F.1.4. Assume in the ith step we add

edge (x̃i, ỹi) 6∈ Et to graph G̃m→a
i−1 and S̃i is the corresponding separator.

When S̃i 6= ∅. Since adding edge (x̃i, ỹi) 6∈ Et to graph G̃m→a
i−1 maintains the decomposability

of graph G̃m→a
i . By Lemma E.2.1, x̃i and ỹi are in two cliques which are adjacent in the current

junction tree of G̃m→a
i−1 . Thus by the property of junction trees, we know S̃i separates x̃i from ỹi in

G̃m→a
i−1 . Since this is an increasing sequence in terms of edges from Gm to Ga, thus Gm ( G̃m→a

i−1 .

And due to the minimal triangulation, Gt ( Gm ( G̃m→a
i−1 . By Lemma F.1.3, S̃i separates node x̃i

from ỹi in Gt, ρx̃iỹi|S̃i = 0.

When S̃i = ∅, x̃i and ỹi are disconnected in the current graph G̃m→a
i−1 . Then they are also

disconnected in Gt. Thus, they are marginally independent in Gt, ρx̃iỹi = 0.

Remark G.1.1. For |E1
a| = |Et| and |Ea| − |E1

a| = 0, . . . , |F | − 1, no decomposable Ga exists;

for |E1
a| = |Et| and |Ea| − |E1

a| > |F |, at least one decomposable Ga exists; but for |E1
a| < |Et|

and |Ea| − |E1
a| ≥ 0, a decomposable Ga may not exist. The Bayes factor BF(Ga;Gm) under

|E1
a| < |Et| and |Ea| − |E1

a| ≥ 0 is only valid when a decomposable Ga exists, otherwise it is

defined to be zero.

G.2 Proof of Theorem 3.5.1

Part 1. For any given decomposable graph Ga that is not a minimal triangulation of Gt, let

τ ∗ > max

{
2,

2(|Ec| − |Em|)
|Ea| − |Em|

}
.

The construction of ∆a,ε1 is the same as in the proof of Theorem 3.4.1. After that, we restrict the

following proof to the set ∆a,ε1 . For case (1), when |E1
a| < |E1

m| = |Et|, we have

BFm→c < exp
{
p2 −

(1

2
− 1

τ ∗

)
(|Ec| − |Em|) log n

}
→ 0,

BFc→a < exp
{
− nρ2

L

2
+ p2 log n+

√
n log n− 1

2τ ∗
log(n− p) + 2p2 log p

}
→ 0.
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Hence,

BF(Ga;Gm | Gm 6⊂ Ga, |E1
a| < |E1

m|) = BFc→a · BFm→c → 0.

For case (2), when Gm ( Ga, i.e. |E1
a| = |E1

m| = |Et| and |Ea| > |Em|, we have

BF(Ga;Gm | Gm ( Ga) < exp
{
p2 −

(1

2
− 1

τ ∗

)
(|Ea| − |Em|) log n

}
→ 0.

For case (3), when |E1
a| = |E1

m| = |Et| and Gm 6⊂ Ga, also |Ea| > |Em|, we have

BFm→c < 2p
2

n−
|Ec|−|Ea|

2 exp

[
−
{
|Ea| − |Em|

2(|Ec| − |Em|)
− 1

τ ∗

}
(|Ec| − |Em|) log n

]
,

BFc→a < (4p)p
2

n
|Ec|−|Ea|

2 , when n > 1.

Hence,

BF(Ga;Gm | Gm 6⊂ Ga, |E1
a| = |E1

m|)

< (8p)p
2

exp

[
−
{
|Ea| − |Em|

2(|Ec| − |Em|)
− 1

τ ∗

}
(|Ec| − |Em|) log n

]
→ 0.

Therefore, BF(Ga;Gm)→ 0, as n→∞.

Part 2. Let {ρ̂m1,i}
|Ec|−|Em1 |
i=1 and {ρm1,i}

|Ec|−|Em1 |
i=1 be the sample and population partial corre-

lation sequence corresponding to each step from Gm1 to Gc. By Lemma G.1.1, ρm1,i = 0,

i = 1, 2, . . . , |Ec| − |Em1|. By Lemma D.2.4, for any 0 < ε < 1, there exist 0 < M1(ε) < 1/4

and M2(ε) > 3 (the choice of M1 and M2 is the same as in the proof of Lemma D.2.4), we have

P(∆0
ε) > 1− ε/2, for n > p+ 3. Let

Rm1,i =

{
M1

n
< ρ̂2

m1,i
<

M2

n− p

}
,
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and denote

∆m1 =

|Ec|−|Em1 |⋂
i=1

Rm1,i.

Then

P(∆m1) ≥ P(∆0
ε) ≥ 1− ε/2.

By Lemma E.2.1, when n > b+ p, we have

( 1

2n

) |Ec|−|Em1 |
2

|Ec|−|Em1 |∏
i=1

(1− ρ̂2
m1,i

)−
n(|Ec|−|Em1 |)

2 < BF(Gc;Gm1)

<
( 2

n

) |Ec|−|Em1 |
2

|Ec|−|Em1 |∏
i=1

(1− ρ̂2
m1,i

)−
n(|Ec|−|Em1 |)

2 .

Under the event ∆m1 , when n > p+M2,

(eM1

2n

) |Ec|−|Em1 |
2

< BF(Gc;Gm1) <
(2e2M2

n

) |Ec|−|Em1 |
2

.

Thus we have

P

{(eM1

2n

) |Ec|−|Em1 |
2

< BF(Gc;Gm1) <
(2e2M2

n

) |Ec|−|Em1 |
2

}
> 1− ε

2
.

Similarly,

P

{(2e2M2

n

)− |Ec|−|Em1 |
2

< BF(Gm2 ;Gc) <
(eM1

2n

)− |Ec|−|Em1 |
2

}
> 1− ε

2
.

Therefore, let A1 = 1
4
e−M2 and A2 = 4e2M2p2 ,

P
{
A1 < BF(Gm1 ;Gm2) < A2

}
> 1− ε.

Part 3. Let Gm1 , Gm2 , . . . , Gml be all the minimal triangulations of Gt, where l is a positive finite
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integer, since the graph dimension is finite. By Part 1, on the set ∆a,ε1 ,

BF(Gmi ;Ga)→∞, i = 1, 2, . . . , l,

where Ga 6∈ Mt. Therefore,

∑
Gm∈Mt

π(Gm | Y) =

∑l
i=1 p(Y | Gmi)∑l

i=1 p(Y | Gmi) +
∑

Ga 6∈Mt
p(Y | Ga)

=
1

1 +
∑

Ga 6∈Mt

p(Y|Ga)∑l
i=1 p(Y|Gmi )

=
1

1 +
∑

Ga 6∈Mt

1∑l
i=1 BF(Gmi ;Ga)

→ 1, as n→∞.

G.3 Proof of Theorem 3.5.2

Part 1. From γ > 1− 2α, we have 1−γ+2α
2

< 2α; from λ < 1
2
− α, we have α + λ < 1

2
; from

λ < α, we have α + λ < 2α; from γ > 2α, we have 1−γ+2α
2

< 1
2
. Let β∗ satisfy

max
{
α + λ,

1− γ + 2α

2

}
< β∗ < min

{1

2
, 2α
}
,

then follow the construction of ∆a,ε2(n) in the proof of Theorem 3.4.2 using β∗ specified above.

After that, we restrict the following proof to the set ∆a,ε2(n). For case (1), when |E1
a| < |E1

m| =

|Et|, by the construction of β∗, we have

1− 2λ > 1 + 2α− 2β∗ > max{2α, 1− 2β∗, 1− β∗},

and 1− 2λ > σ + γ. Thus,

PR(Ga;Gm | Gm 6⊂ Ga, |E1
a| < |E1

m|)

< exp
{
− nρ2

L

2
+

n

(n− p)β∗
− 1

2
n1−2β∗ +

2np2

(n− p)2β∗
+
(
|Ea| − |Em|

)
log(2q)

}
→ 0.
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For case (2), when Gm ( Ga, i.e. |E1
a| = |E1

m| = |Et| and |Ea| > |Em|, since β∗ > 1−γ
2

, we have

PR(Ga;Gm | Gm ( Ga) < exp

{
(|Ea| − |Em|)n

(n− p)2β∗
+
(
|Ea| − |Em|

)
log(2q)

}
→ 0.

For case (3), when |E1
a| = |E1

m| = |Et| and Gm 6⊂ Ga, also |Ea| > |Em|, since β∗ > 1−γ+2α
2

, we

have

PR(Ga;Gm | Gm 6⊂ Ga, |E1
a| = |E1

m|)

< {2p(n+ 1)}
|Ec|−|Ea|

2 exp

{
(|Ec| − |Em|)n

(n− p)2β∗
+
(
|Ea| − |Em|

)
log(2q)

}
→ 0.

Therefore, PR(Ga;Gm)→ 0, as n→∞.

Part 2. Since the number of fill-in edges is finite, then the number of cycles length greater than

3 without a chord in Gt is finite and the length of the longest cycle without a chord is also finite.

Thus instead of adding one chord for each of those cycles that are length greater than 3 in Gt,

we can complete the subgraphs induced by those cycles with finite number of edges. Let Gmc be

the graph after completing all subgraphs induced by those cycles. Then Gmc is decomposable and

|Emc| − |Et| is finite. We also know Gm1 , Gm2 ( Gmc . Let δc = |Emc| − |Em1| = |Emc | − |Em2|.

Let {ρ̂m1,i}
|Emc |−|Em1 |
i=1 and {ρm1,i}

|Emc |−|Em1 |
i=1 be the sample and population partial correla-

tion sequence corresponding to each step from Gm1 to Gmc . By Lemma G.1.1, ρm1,i = 0,

i = 1, 2, . . . , |Emc| − |Em1 |. By Corollary D.2.2, for any 0 < ε < 1, there exist 0 < M1(ε) < 1/4

and M2(ε) > 3 (the choice of M1 and M2 is the same as in the proof of Corollary D.2.2), we have

P (∆0+
ε ) > 1− ε/2, for n > p+ 3. Let

R′m1,i
=

{
M1

n
< ρ̂2

m1,i
<

M2

n− p

}
,

and denote

∆′m1
=

|Emc |−|Em1 |⋂
i=1

R′m1,i
.
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Then

P(∆′m1
) ≥ P(∆0+

ε ) ≥ 1− ε/2.

By Lemma E.2.1, when n > b+ p, we have

( 1

2n

) δc
2

δc∏
i=1

(1− ρ̂2
m1,i

)−
nδc
2 < BF(Gmc ;Gm1) <

( 2

n

) δc
2

δc∏
i=1

(1− ρ̂2
m1,i

)−
nδc
2 .

Under the event ∆′m1
, when n > p+M2,

(eM1

2n

) δc
2
< BF(Gmc ;Gm1) <

(2e2M2

n

) δc
2
.

Thus we have

P

{(eM1

2n

) δc
2
< BF(Gmc ;Gm1) <

(2e2M2

n

) δc
2

}
> 1− ε

2
.

Similarly,

P

{(2e2M2

n

)− δc
2
< BF(Gm2 ;Gmc) <

(eM1

2n

)− δc
2

}
> 1− ε

2
.

Therefore, let A1 = 1
4
e−M2δc and A2 = 4eM2δc ,

P
{
A1 < BF(Gm1 ;Gm2) < A2

}
> 1− ε.

Part 3. From γ > 1 − 2α, we have 1−γ+2α
2

< 2α; from λ < 1−3α
2

, we have α + λ < 1−α
2

; from

λ < α, we have α + λ < 2α; from γ > 3α, we have 1−γ+2α
2

< 1−α
2

. Let β∗ satisfy

max
{
α + λ,

1− γ + 2α

2

}
< β∗ < min

{1− α
2

, 2α
}
,

then follow the construction of ∆′′ε3(n) in the proof of Theorem 3.4.3 using β∗ specified above.

After that, we restrict the following proof to the set ∆′′ε3(n). Let Gm1 , Gm2 , . . . , Gmh be all the
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minimal triangulations of Gt, where h is a positive integer that depends on n. By Part 1, we have

PR(Ga;Gm | Gm 6⊂ Ga, |E1
a| < |E1

m|) < exp
(
−D1nρ

2
L

)
,

PR(Ga;Gm | Gm ( Ga) < exp
{
−D2n

γ
(
|Ea| − |Em|

)}
,

PR(Ga;Gm | Gm 6⊂ Ga, |E1
a| = |E1

m|) < exp
{
−D3n

γ
(
|Ea| − |Em|

)}
,

where D1, D2, D3 are three positive finite constants. And

∑
Ga 6∈Mt,
Gm1 6⊂Ga,
|E1
a|<|E1

m1
|

PR(Ga;Gm1) < exp(p2) exp
(
−D1nρ

2
L

)
→ 0,

∑
Ga 6∈Mt,
Gm1(Ga

PR(Ga;Gm1) <

|Ec|−|Em1 |∑
i=1

(
|Ec| − |Em1|

i

)(
e−D2nγ

)i
< exp

{
(|Ec| − |Em1 |)e−D2nγ

}
− 1→ 0,

∑
Ga 6∈Mt,
Gm1 6⊂Ga,
|E1
a|=|E1

m1
|

PR(Ga;Gm1) <

|Ec|−|Em1 |∑
i=1

(
|Ec| − |E1

m1
|

|Em1| − |E1
m1
|+ i

)(
e−D3nγ

)i

< exp(p2) exp
(
−D3n

γ
)
→ 0.

Thus

∑
Ga 6∈Mt

1∑h
i=1 PR(Gmi ;Ga)

<
∑

Ga 6∈Mt

1

PR(Gm1 ;Ga)

=
∑

Ga 6∈Mt,
Gm1(Ga

PR(Ga;Gm1) +
∑

Ga 6∈Mt,
Gm1 6⊂Ga

PR(Ga;Gm1) +
∑

Ga 6∈Mt,
Gm1 6⊂Ga,
|E1
a|=|E1

m1
|

PR(Ga;Gm1)→ 0.
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Therefore,

∑
Gm∈Mt

π(Gm | Y) =
1

1 +
∑

Ga 6∈Mt

1∑h
i=1 PR(Gmi ;Ga)

→ 1, as n→∞.

G.4 Proof of Corollary 3.5.1

Under the event ∆′′ε3(n) in the proof of Theorem 3.5.2, given any Gm ∈ Mt, all Bayes factors

in favor of Ga converge to zero uniformly. Thus, we have

P
{

max
Ga 6∈Mt

π(Ga | Y) < min
Gm∈Mt

π(Gm | Y)
}
→ 1, as n→∞.

Therefore,

P
(
Ĝ ∈Mt

)
→ 1, as n→∞.
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