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ABSTRACT

Irrigation schedules on traditional irrigation controllers tend to disperse too much water by

design and cause runoff, which results in wastage of water and pollution of water sources. Pre-

vious attempts at tackling this problem used expensive sensors that aren’t applicable to the resi-

dential landscape. In this thesis, we propose Weather-aware Runoff Prevention Irrigation Control

(WaRPIC), a low-cost, practical solution that optimally applies water, while preventing runoff for

each sprinkler zone. WaRPIC involves experiments conducted by homeowners on their landscape

as part of a two-week data collection phase. The gathered data is used to build machine learning

models that can accurately predict the Maximum Allowable Runtime (MAR) for each sprinkler

zone given weather data obtained from a network of weather stations. We have also developed a

low-cost module that can retrofit irrigation controllers in order to modify its irrigation schedule.

We built a neural network-based model that predicts the MAR for any set of antecedent conditions,

using data collected from a sprinkler zone. The model’s prediction is compared with a state-of-the-

art irrigation controller and the volume of water wasted by WaRPIC was only 2.6% of that of the

state-of-the-art. We have deployed our modules at residences and estimate that the average home-

owner can save 38,826 gallons of water over the course of May-Oct 2019, resulting in savings of

$192.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The average US household consumes over 300 gallons of water per day, with roughly 30% of

that water being used outdoors [2]. Outdoor use of water occurs primarily in landscape manage-

ment [3], where a major portion goes toward watering lawns. Lawns are estimated to cover an

area of 128,000 km2 in the United States [4]. In places like California, mandatory water restric-

tions were placed during the severe drought of 2016. Irrigation of lawns had to be curtailed as

it represented a huge portion of the state’s water usage [5]. With less than 1% of Earth’s fresh-

water available for human use [6], and water demand increasing by the year due to a burgeoning

population, it is imperative that we find ways to decrease water usage in all spheres of daily life.

On this note, the potential wastage of water occurring due to improper landscape irrigation

practices is considered. Irrigation of turf has to follow a balanced approach. If the amount of

water applied to turf is too less, turf starts to turn brown and dies. If turf is watered too much,

runoff occurs. Runoff not only wastes water, but carries sediment, chemicals from fertilizers, and

garbage [7] [8] [9] [10], causing non-point source pollution [11]. Homeowners tend to have ir-

rigation schedules that stay the same over the course of the landscape irrigation season. This is

inconsiderate of the potential for runoff from each sprinkler zone as the schedule assumes that

factors such as soil depth, slope, etc. are uniform across the landscape. Another shortcoming of

having fixed irrigation schedules is the possible wastage of water that could occur when turf-grass

is irrigated even though the watering requirements have been met by rainfall caused by local rain-

fall. The watering requirements of turf-grass tend to fluctuate even during the landscape irrigation

season [12]. Thus, having fixed irrigation schedules causes wastage of water and can possibly

pollute water sources.

There have been attempts to conserve water used for landscape irrigation. Irrigation controllers

that use moisture sensors were proposed in [13] [14]. Other strategies include using mechanical
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rain sensors, which are ineffective because of the fact that they are activated after rain has oc-

curred, and do not have the preemptive ability to shut off the irrigation system before predicted

rain. However, these solutions do not consider local weather conditions. Evapotranspiration-based

(ET) controllers are available on the market, such as the ones by Rachio [15], Hunter [16], Rain

Bird [17] that take into account weather conditions using a network of weather stations, but their

prohibitively high cost makes them in-feasible for adoption by homeowners. Also, specifications

for smart irrigation controllers [18] attempt to prevent runoff by defining a Maximum Allowable

Runtime (MAR) for a sprinkler zone. However, they make simplifying assumptions about the na-

ture of soil that renders such definitions ineffective. Irrigation water savings programs, such as

the Water My Yard (WMY) [19] program from Texas A&M AgriLife Extension, that use weather

data to determine the watering needs of turf. The program also notifies homeowners about when

to turn off irrigation via text message/email. However, there is no way of ascertaining whether

the homeowners followed through on the watering recommendations. Thus, previous efforts only

solve a part of the problem, or are expensive solutions inapplicable to the residential landscape.

To address this issue, the Weather-aware Runoff Prevention Irrigation Control (WaRPIC) is

proposed, which aims to maximize water savings in homeowners’ irrigation schedules, taking into

account local weather information and the potential for runoff on a sprinkler zone-by-zone basis.

It is a low-cost, practical solution that is compatible with legacy irrigation controllers. It integrates

with Water My Yard (WMY) for sprinkler runtime recommendations. It also prevents runoff by

using machine learning-based models to predict the Maximum Allowable Runtime (MAR) for

each sprinkler zone. To leverage the predictive ability of the machine learning models, the WMY

module was constructed, which retrofits legacy irrigation controllers and adjusts the water dispersal

by sprinklers dynamically depending on weather data. Thus, WaRPIC is an end-to-end low-cost

solution that can easily integrate with existing irrigation infrastructure.

Data from a site on the campus grounds of Texas A&M University was collected, and a highly

accurate neural network that prevents runoff by predicting the Maximum Allowable Runtime for

any set of antecedent conditions was built. The model was found to have a very low error score

2



(Mean Squared Error) of 0.43. The predictions of the model was compared with a state-of-the-art

smart irrigation controller and found that WaRPIC wasted only 2.6% as much water as that of the

smart irrigation controller over the course of our evaluations.

WMY modules were deployed at 12 residences in the city of College Station. Even though the

modules were used in the basic mode of operation, homeowners stand to save $192 dollars, and

38,826 gallons of water, on average, over the course of the current watering season. These savings,

when compared to the low cost of manufacturing one WMY module ($18.81), represents a huge

return on investment for the homeowners, and commendable water savings for water districts,

public utilities and municipalities. The contributions in this thesis are as follows:

• Development of site-specific machine learning models that can accurately predict the maxi-

mum allowable run-time to prevent runoff for a given sprinkler zone, given weather data and

a history of irrigation.

• Development of a low-cost actuator module that retrofits legacy irrigation controllers. An

irrigation schedule has to be established on the irrigation controller.

• Automated control of legacy irrigation controllers based on the run-time recommendations

generated by a network of weather stations, as well as site-specific data.

1.2 Literature Review

Much of the previous work in this field has focused on deploying wireless sensor networks,

where each node has a soil moisture sensor attached to it, and relays sensor data back to a central

controller. S. Fazackerley et al. [20] created an irrigation control system that deployed wireless

sensors in a municipal green space. The sensors relayed data back to a central controller that had

the ability to interface with a commercial irrigation controller. The controller sent the moisture data

to a central web server, which presented the data in the form of a website. It also had the capability

to by-pass the controller’s irrigation schedule by shutting off irrigation. The system used a modified

adaptive irrigation algorithm that used soil moisture sensors to ascertain the quality of watering.

3



The algorithm, however, did not take into consideration the slope of the field being watered, and

the water drop rate is considered a constant. This doesn’t account for local weather conditions such

as solar radiation, wind speed, humidity.

The work done by N.Sales et al. [21] also involved creating a Wireless Sensor and Actuator

Network, dubbed WSAN. The WSAN is a cloud-based solution that acts a framework that can

be used to remotely control a irrigation system, based on information gathered from the sensors

which are deployed as part of the WSAN. It also uses weather information from a 3rd party service

provider. The key metric that is utilized from the weather data is Probability of Precipitation(PoP).

The sensor information, along with PoP, are used as inputs to an irrigation algorithm that controls

sprinkler runtimes. Even though this implementation considered local weather conditions, the

efficiency of its irrigation algorithm largely depends on the accuracy of the moisture sensors, as

well as the communication latencies of the wireless network infrastructure that is chosen. This

solution also doesn’t account for runoff occurring due to long irrigation runtimes.

D.Winkler et al. [22] came up with a solution that creates an optimal irrigation schedule based

on a mathematical model generated by using a network of wireless sensor and actuator nodes. A

partial differential equation(PDE)-based model was developed, and was optimized to help calculate

accurate sprinkler run-times to that would consume the least amount of water. The work done on

generating a site-specific mathematical model to help compute sprinkler run-times is commend-

able, but this work, like previous efforts, suffers from the inaccuracies that arise from trying to

model the real-world through mathematical equations. The parameters in these equations are not

uniform, and it is in-feasible to measure them at each site individually. Many assumptions were

made to simplify the mathematical model so that it was solvable in a practical amount of time.

The cost of each node in the wireless sensor network was also very high, making it in-feasible for

adoption in an irrigation system with a larger number of sprinklers.

In the follow-up work to [22], D.Winkler et al. [23] chose a data-driven approach to precision

irrigation. It used the same hardware setup as the previous work, but the PDE-model was eschewed

in favor of an adaptive approach that involved models trained from sensor data. This enabled the
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system, PICS, to "learn and adapt" to the soil. Long-term and short-term models were developed

to describe the movement of water through soil. We found some issues with the moisture pro-

files presented in [23]. The decay of Volumetric Water Content was shown to be much quicker

than in real-world scenarios. Any model derived from such data is bound to irrigate lightly and

frequently(LF irrigation) and this has been found to be inefficient method of irrigation. There is

also the very high per-node cost of the hardware. The hardware setup requires each sprinkler to

be fitted with an wireless sensor-actuator mote. So the actual cost of the system increases linearly

with the number of sprinklers in the landscape.
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2. BACKGROUND AND MOTIVATION

A typical lawn watering system consists of an irrigation controller, a network of underground

pipes connecting the water supply to the sprinkler valves, and sprinkler solenoids. The irrigation

controller governs water flow to sprinklers via a solenoid that controls water pressure at each

sprinkler head. The irrigation controller can be scheduled to water the lawn automatically by

setting an irrigation schedule. The irrigation controller works as a timer that uses the irrigation

schedule to decide which sprinkler solenoid to activate and deactivate at what time. Irrigation

controllers are runoff-agnostic because the homeowner is tasked with setting the runtimes for each

sprinkler zone. But, the watering requirements for turf, as well as soil’s potential for runoff as a

consequence, change dynamically with the season. The irrigation schedules are inflexible in the

sense that homeowners need to manually disable/enable them to control irrigation.

There have been solutions in research, as well on the market that promise smarter irrigation of

turf. Evapotranspiration-based controllers, which integrate with large networks of weather stations

have been on the market for sometime now. They are pricey solutions, however, and do not provide

site-specific irrigation programs. Also, they cannot be retrofitted into existing irrigation controllers.

The homeowner is tasked with the installation of a brand-new irrigation controller.

Runoff is typically caused by the application of water at a rate faster than unsaturated soil can

absorb it. It is important to note that runoff doesn’t occur instantaneously. Rather, there is a time

interval of water application called Maximum Allowable Runtime (MAR) that determines how

long we can irrigate the soil without runoff.

2.1 Irrigation water management

Water My Yard (WMY) [19] is a program of Texas A&M AgriLife Extension Service that

aims to improve residential water savings by partnering with municipalities and public utilities. It

deploys a network of weather stations that compute Potential Evapotranspiration (PET) on a daily

basis. This helps in the calculation of sprinkler runtime recommendations. The recommendations

6



Figure 2.1: Interaction of atmospheric water with the earth’s surface. Water My Yard computes
the amount of water needed for plants to grow by considering processes such as precipitation and
evapotranspiration.

are sent to homeowners on a weekly basis via email or text message. The methodology used to

compute weekly sprinkler runtime recommendations is called the water balance method [24].

Figure 2.1 shows the interaction of various processes involved when atmospheric water interacts

with the earth’s surface. Evapotranspiration is one these processes.

2.1.1 Evapotranspiration

Water that is used by plants (or evapotranspirators, as they are called) is measured by a quantity

called evapotranspiration. Potential Evapotranspiration (PET or ETo) is a measure of potential

water use by a cool season grass growing 4 inches tall under well-watered conditions. This is a

reference measure that is used to estimate the water requirements of other plants (Tc). PET also

depends on climate, surface conditions, free water, etc. An adjustment factor (Af ) is also applied

to the water requirement to account for “allowable stress”. Allowable stress reflects the degree of

acceptable turf quality with reduced water supply. Thus, the watering requirement (WR)(in.) for
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a sprinkler zone, for a time period of 1 week, is defined by,

WR = ETo × Tc × Af [in.] (2.1)

2.1.2 Effect of rainfall

Rainfall is a major factor that affects the watering requirement of turf-grass. It can be consid-

ered as an application of water, akin to a sprinkler running for a set amount of time. The watering

requirement is adjusted to account for rainfall. The rainfall over the past week in a particular

geographical area is considered as the measure of water added by rainfall (R). However, total

rainfall is weighted by a factor called effective rainfall coefficient, giving us the effective rainfall

(Rf ). This is taken into consideration as a portion of rainwater becomes runoff. So, the watering

requirement is now,

WR = ETo × Tc × Af −Rf [in.] (2.2)

2.1.3 Plant available water

The ability of plants to absorb water from the soil is dictated by the depth of the root zone. The

deeper the root zone, the greater the amount of water available for the plant to absorb. A shallow

root zone can cause problems in the dry season, as water is lost quicker from the the top layers of

soil, and plants need to be irrigated more frequently. The amount of water that can be held by the

soil is defined as Soil Water Holding Capacity (SWHC). SWHC affects the root zone depth, and

consequently sprinkler runtimes. SWHC is mainly influenced by soil type. It is found that fine-

textured soils, such as clays, have high SWHC values, while course-textured soils, like sands, have

lower SWHC. Once water has been applied to soil, various natural processes affect the quantity

that stays in the root zone where it can be absorbed by plants. A factor called Managed Allowable

Depletion (MAD) is also applied to account for the amount of water that can be absorbed from the

soil before the plant shows stress. Thus, Plant Available Water (PAW) is given by,

8



PAW = SWHC ×D ×MAD [in.] (2.3)

2.1.4 Deciding irrigation runtimes and frequency

The irrigation frequency (IF ) need to be determined taking into account the watering require-

ment as well as the utility of the applied water. This is determined by the following calculation,

IF =
WR

PAW
(2.4)

Finally, the water to be applied needs to be interpreted in terms of sprinkler runtime. The metric

that needs to be determined is Precipitation Rate (PR) of the sprinklers. This can be obtained from

manufacturer readings, as well as other means such as the catch-can or meter-reading methods.

The weekly sprinkler runtime recommendation (RT ) is then calculated using,

RT =
WR× 60

IF × PR
[min.] (2.5)

2.2 Maximum Allowable Runtime (MAR)

We learned in the previous section about the considerations that are taken into account when

computing the total sprinkler runtime on a weekly basis. The challenge, however, is that of en-

suring irrigation takes place without causing runoff. There has been plenty of work on studying

soil behavior in response to the application of water [1] [25], and in determining the amount

of water that can be applied without causing runoff [22], but these models cannot be applied to

residential landscape because of the inherent variation of factors such as soil depth, slope, expo-

sure to sunlight, etc. Many of the solutions for site-specific irrigation derive complex models to

explain moisture movement through soil. However, it is computationally in-feasible and unreliable

to devise a mathematical model to represent moisture movement through the landscape in a resi-

dential setting. Also, it is expensive to deploy and maintain sensors throughout the landscape that

continuously monitor the state of the soil at all times. We will now try to understand the process
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of runoff and the factors that cause it.

The conditions that cause this phenomenon fall under two categories. First, if water is applied

at a rate greater than the soil can absorb the applied water, runoff occurs. This is called infiltration

excess overland flow [26]. Second, if the entire soil profile has reached saturation, applied water

will runoff over the soil surface. This is known as saturation excess overland flow [27].

A property of soil that is critical to the process of runoff is Infiltration capacity. Infiltration

capacity (f ) was defined in [1] as the maximum rate at which water can enter soil. Infiltration

capacity of soil under constant application of water varies with time as shown below:

f = fc + (fo − fc)× ε−k·t [in./hr.] (2.6)

Where fc is the final infiltration capacity, fo is the initial infiltration capacity and k is the

exponential decay constant.

The above equation implies that water applied at a constant rate to soil may not be absorbed

completely over a given time interval. The excess water is lost as surface runoff. The Time to

Ponding (Tp) can be derived from the above equation, for a given precipitation rate (ρ), as:

Tp =
1

k
× ln

fo − fc
ρ− fc

[min.] (2.7)

In Figure 2.2, we’ve depicted the variation in infiltration capacity of soil due to the steady

application of water at the rate of 0.5 in/hr. The initial infiltration capacity starts at 1.5 in/hr and

decays to a saturation value of 0.2 in/hr, with value of the decay constant equal to 0.35. The Tp

is also shown in the figure. The cumulative infiltration, as depicted in the figure, is the amount

of water that enters the soil at t = Tp. Precipitation applied after this point in time will start to

accumulate on the soil surface and start to runoff.

However, this relation does not account for the recovery of infiltration capacity during dry

periods. This was addressed in [28] where the Horton equation was adapted to complex storms.

This was made possible by the incorporation of the concept of soil storage and drainage, introduced
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Figure 2.2: Decay of infiltration capacity with time according to Horton’s equation [1]. At t = Tp,
applied water starts to accumulate on the surface of the soil and begin to runoff

in [29]. The equation below shows the drainage rate (d) of water to lower layers,

d = fc × (1− ε−k·t) [in./hr.] (2.8)

The concepts and relationships detailed above help form the basic idea behind the cycle-and-

soak method of irrigation [30]. In the cycle-and-soak method, the total sprinkler runtime is

broken up into multiple cycles (time allowed for water to disperse) with periods of no irrigation

(soak/absorb) so that applied water can be absorbed completely, and for the infiltration capacity of

the soil to recover. This was also explored in [18], where an upper bound for sprinkler runtime

called Maximum Allowable Runtime (MAR) was proposed. This equation also takes into account

Allowable Surface Accumulation (ASA) and makes a simplifying assumption that the Infiltration

Capacity (IR) is a constant value.

MAR =
60× ASA
PR− IR

[min.] (2.9)
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The above equation could serve as a benchmark for deciding the cycle time in a landscape

irrigation setting. However, the assumption that the initial infiltration capacity (fo) stays constant

is a problematic one. There is a large body of research which has observed that infiltration capacity

varies on a spatiotemporal basis, affecting runoff rates. In [31], it was shown that seasonal changes

in infiltration capacity caused by changes in the soil influences the rate and process of erosion on

hill-slopes. The results from [32] and [33] also showed that spatially variable and temporally

dynamic soil properties affect the erosional response of soil on hill-slopes and in Mediterranean

badlands. Different soils have different responses to the application of water, according to [34],

and this affects the potential of the applied water to be lost as runoff. Even factors such as plant

species diversity and time of day affect the infiltration capacity, as shown by [35] and [36].

A naive approach of water application that might prevent runoff would be to schedule numerous

irrigation cycles where the quantity of applied water is not enough to cause runoff. The problem

with this approach, however, is that it affects the depth of plant roots. Plant roots tend to grow

in relation to a soil moisture gradient. This property is known as hydrotropism [37] and this

enables plants to grow deeper into the soil. If a higher quantity of water is applied to soil in each

irrigation cycle, the applied water seeps deeper into the soil. This is essential during periods of high

evaporation such as in the summer months. This led to better turf quality and in other indicators of

plant health such as root thickness, mat depth, etc.
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2.2.1 Predictive modeling of MAR

We have established that infiltration capacity is a dynamic quantity that varies on a spatiotem-

poral basis. We found that the primary influencing factor that affects the MAR is antecedent soil

moisture. Soil moisture content is highly correlated with the flow of water into soil. Thus, infil-

tration capacity is also affected by the soil moisture content [38]. The antecedent soil moisture

is influenced by past weather conditions (in the local geographic area) as well as previous appli-

cations of water. We consider a time frame of 1 week for this purpose. The following factors

influence antecedent soil moisture, and in turn infiltration capacity at the beginning of an irrigation

cycle:

• Evapotranspiration(Loss of water from the soil) (ETO).

• Antecedent Water Application (AWA) (Sum of water applied via rainfall and previous irri-

gation cycles).

• Last Water Application (LWA) Time since previous irrigation.

We believe that conducting a set of experiments on-site will help us gather the data needed to

solve a supervised learning problem. Thus, we converted the complex problem of estimating the

MAR for a given site, the parameters for which change on a spatiotemporal basis, into a predictive

modeling problem. We need to find a function g that estimates the MAR.

MAR = g(ETO,AWA,LWA) (2.10)
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3. SYSTEM OVERVIEW AND PROTOTYPE DEVELOPMENT

We propose a methodology that aims to prevent runoff due to irrigation of the landscape by

implementing machine learning models trained on site-specific data, eliminating the need for un-

reliable models and expensive sensors and equipment. We delegate the responsibility of mapping

antecedent conditions and the resultant MAR to machine learning models such as Artificial Neu-

ral Networks(ANN) that excel at learning non-linear relationships between parameters in a given

dataset. The models will be used in the predictive modeling of MAR on a zone-by-zone basis,

as well as in the creation of irrigation program on the legacy controller that is customized to the

characteristics of each sprinkler zone present in the landscape.

To help leverage the predictions of the machine learning models, we built the WMY module.

It is a wireless actuator node, built to be low-cost, and have a small footprint. It can retrofit legacy

irrigation controllers via the rain sensor port or across the common wire that is connected to all

the sprinkler valves. This enables the module to shut off irrigation, akin to a rain sensor. However,

unlike traditional rain sensors, the module’s actuations can be controlled based on accurate runtime

recommendations generated by the network of stations that are part of the WMY program.

To complement the capabilities of the WMY actuator node and the predictive ability of the neu-

ral network, we implemented the Runoff-aware Decision Engine (RaDE), which is a cloud-based

control system that controls irrigation on a zone-by-zone basis. An irrigation program is created on

the irrigation controller that maximizes the ability of RaDE to enable and disable irrigation during

runtime of the sprinklers. The irrigation program also ensures that enough time is given for the

application of water to soak into soil before applying water again. Control is then handed over to

RaDE, which ensures irrigation occurs in timely manner and with an aim to prevent runoff from

irrigation.
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3.1 Weather-aware Runoff Prevention Irrigation Control (WaRPIC)

We illustrated in the previous section, the predictive modeling problem for MAR that takes

into account past weather conditions and applications of water. In this section, we present the

Weather-aware Sprinkler Control (WaRPIC), a low-cost solution for landscape irrigation where

control of legacy irrigation controllers is driven by machine learning models built on site-specific

data. The models are trained on data gathered from experiments conducted on-site. Figure 3.1

shows an overview of WaRPIC. WaRPIC does not involve a deployment of sensors in the ground

as we found that accurate moisture sensors tend to be very expensive, and hard to maintain. It

involves two phases:

• Zone-wise data collection and training: In order to construct machine learning models,

WaRPIC requires data for each sprinkler zone. During this phase, the homeowner will ob-

serve the application of water to soil in each zone, and report the MAR at the end of each

water application. At the end of this stage, we develop MAR-predict, a set of machine learn-

ing models that predict MAR on a zone-by-zone basis. Then, an irrigation schedule for the

landscape is created that maximizes the capabilities of WaRPIC.

• Deployment: The Runoff-aware Decision Engine (RaDE) handles the actuation of sprin-

klers during the irrigation schedule. The decisions of RaDE are influenced by past weather

data, as well as data about previous irrigation cycles. We also aim to keep the homeowner in

the loop by having them report back to us about the performance of RaDE to further fine-tune

its performance.

Most commercial irrigation controllers available on the market today are runoff-agnostic, in

the sense that the run-times chosen for sprinklers in each zone is either arbitrarily chosen by the

homeowner or is based on a generic recommendation that isn’t zone-specific or considerate of past

weather conditions. The solutions presented by Rachio [16] and Hunter [15] do have the feature

of shutting off watering when rainfall is predicted in the future, but they are expensive solutions,

and do not provide the degree of customization needed for site-specific irrigation.
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Figure 3.1: Overview of WaRPIC

Table 3.1: Summarized features of state-of-the-art vs. WaRPIC

Feature Hunter Rachio WaRPIC
Low-cost - - +
Runoff-aware schedule - - +
Weather forecasts + + -

A summary of features of the Rachio Generation 2 and Hunter HC-6 and in comparison with

WaRPIC is shown in Table 3.1.

3.1.1 MAR-Predict

We propose MAR-predict, which uses the predictive ability of machine learning models to

influence irrigation scheduling decisions. The key advantage of MAR-predict is that it is trained

on site-specific data, lending a level of personalization to the irrigation schedule that cannot be

provided by a generic model. We present a high-level overview of the procedure by which MAR-

predict is generated for a typical residence:

• Conduct experiments on-site and site survey to collect data.

• Train site-specific machine learning models that can accurately predict MAR.
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3.1.2 Site survey and zone-wise data collection

The occurrence of runoff is dependent on certain factors, which are intrinsic to the soil and

don’t change with time, such as soil texture, composition, slope, etc. It is also dependent on the

amount of water that has been applied to the soil previously. This is known as antecedent soil

moisture. Authors of previous works [23] [22] that address the problem of runoff advocate the use

of moisture sensors that will be deployed in each sprinkler zone, and base scheduling decisions on

sensor inputs. However, this approach is very expensive in terms of equipment and time required

to set up. We propose an approach that involves conducting experiments on-site, on a zone-by-

zone basis, and understand soil behavior to the extent that we can accurately predict the MAR for

a given set of antecedent conditions.

The experiments involve the measurement of MAR at various stages of topsoil saturation, thus

giving us a complete picture in terms of the potential of soil for runoff at different moisture levels.

The data gathered from these experiments is used to build site-specific machine learning-based

models that can accurately predict the MAR for any set of antecedent conditions. It is advisable to

conduct these experiments during the summer/dry weather conditions as rain tends to drive the soil

to saturation at a faster rate (a volumetric water content where soil cannot absorb any more water).

Each experiment has two phases which are as follows.

Determination of MAR: The sprinklers in each zone are allowed to run until an appreciable

quantity of ponding is visible on the soil surface. The sprinklers are allowed to run up to the

point where adding any more water to the soil will result in runoff. This means that the infiltration

capacity of the soil is lesser than precipitation rate, and the water on the soil’s surface has reached

ASA. This is the MAR for the given set of conditions.

Infiltration capacity probing: The soil’s infiltration capacity is allowed to recover. To de-

termine the minimum amount of time to wait before starting another irrigation cycle, we probe

the infiltration capacity of the soil. This is done by allowing the sprinklers to run for a very short

time period (10 seconds) and having the homeowner observe the state of the applied water. If the

applied water remains on the surface of the soil, then infiltration capacity hasn’t recovered to the
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Figure 3.2: The machine learning pipeline that is used in our methodology.

point where the soil can absorb more water and we have to wait for more time. If the water has

been absorbed, then this means we have waited long enough for the soil to recover. We conduct

this “infiltration capacity probe” periodically (5 minutes), and thus determine the absorption time

for an irrigation cycle.

An evaluation was conducted at one of the grounds at Texas A&M University’s campus, using

the methodology described above. We found the best approach to be to conduct experiments on a

daily basis for a week. Each day, the experiment is to run as many cycles as possible. Once the soil

is saturated, we allow the soil to drain away the water for a few days. Next week, we conducted

the same experiments, but the time difference between experiments is increased. This is continued

until 15-20 experiments are conducted.

The approach also demands that the homeowner conduct a site survey to ensure the sprinklers

on-site are working and are dispersing water evenly. A catch-can or flow-meter test should be

conducted to measure the precipitation rate of the sprinklers as this is important for server-side

computations.

3.1.3 Machine learning pipeline

Our goal of eschewing the traditional parameter-heavy approach to MAR prediction and mod-

elling the problem through a predictive modeling approach allows us to leverage the predictive

ability of machine learning algorithms to perform highly accurate predictions of MAR. Now we

describe the WaRPIC machine learning pipeline. An illustration of the methodology followed is
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shown in Figure 3.2.

3.1.3.1 Data pre-processing

Firstly, the dataset is standardized by converting it to a distribution with zero mean and unit

variance. Then, it is divided into training and testing sets, using a 70/30 split. This is a re-sampling

procedure that can help evaluate the final model that we will use. Since this is a predictive modeling

problem, the best model/algorithm is the one that performs best on unseen data.

3.1.3.2 Model selection

WaRPIC uses 5-fold cross validation on the training data to compare the performance of various

models on the training data, with mean squared error as the scoring metric. Cross validation is also

a re-sampling procedure that subjects the model to different splits of the training data. It provides

a population of performance measures, thus giving us an idea about the average predictive ability

of the prediction algorithm for the given data distribution. Ridge Regression had the best score

in cross validation for the experimental data collected from the site at Texas A&M University’s

campus. We used Scikit-learn’s machine learning library [39] for the data pre-processing, cross

validation and standard machine learning models.

3.1.3.3 Pseudo-labeling

Even though Ridge Regression had the best performance in cross validation, it is hard to justify

its predictive ability as the number of samples is very low. To overcome this shortage of data we

use a Semi-Supervised Learning (SSL) technique called Pseudo-labeling [40]. Pseudo Labeling

is a method used to increase the number of training data samples available to a learner. The steps

involved in the pseudo-labeling procedure are as follows:

1. Train a model using the labeled (smaller) dataset.

2. Use the trained model to make predictions on the unlabeled data

3. Retrain another model on the augmented dataset in order to get better predictions.
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Figure 3.3: The neural network architecture that performs MAR prediction

WaRPIC also uses unlabeled data to perform pseudo-labeling. For this, weekly evapotranspira-

tion and rainfall data from the nearest weather station to the homeowner’s residence is used. This

is historical data containing evapotranspiration and rainfall volumes. Pseudo-labeling augments

the number of data samples using the best performing model from cross validation. To evaluate the

performance of the regressor trained on the combined labeled and unlabeled dataset, a hold-out/test

set is used.

3.1.3.4 Neural network training

The size of the augmented dataset makes it a suitable application of artificial neural networks

(ANN). ANNs have proven to be excellent at mapping non-linear relationships between input

features over the past few years, in diverse fields such as computer vision, banking and retail,

medicine, etc. ANNs perform very well at the task of recognizing patterns in data thanks to hid-

den layers of computational units called ‘neurons’ whose behavior is inspired from their biolog-

ical counterparts. When combined with the ability of optimization algorithms such as gradient

descent [41] and the Adam optimizer [42] to quickly converge to a solution, means that neural net-
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Algorithm 1: Algorithm for irrigation schedule creation
Input: Z, A, H, N, Sinitial

Output: {S}, {W}
1 for z ∈ [1, 2, . . . , Z] do
2 Wz ← windowOp(Mz, H)

3 S0 ← Sinitial

4 for i ∈ [1, 2, . . . , N − 1] do
5 Si ← Si−1 +

∑
z∈Z Wz + A

6 return S,W
7 Function windowOp(model, history):
8 m← ∅
9 for sample ∈ history do

10 m← m ∪model(sample)
11 return max(m)

works can be trained quickly and achieve high accuracy compared to traditional machine learning

algorithms. The shortage of data points preventeds us from using ANNs for this application, but

the pseudo-labeling technique solves this problem by increasing the size of the dataset. WaRPIC

uses a neural network architecture on the augmented dataset that outperformed all other machine

learning models such as Support Vector Regression, Ridge Regression, etc. The results are dis-

cussed in greater detail in Chapter 4. The neural network architecture is shown in Figure 3.3. We

used the Python deep learning library Keras [43] to construct the neural network and train it.

3.1.4 Irrigation schedule creation

Once WaRPIC creates accurate machine learning models for each sprinkler zone, the home-

owner needs to assist in leveraging the predictions of the models to affect landscape irrigation and

prevent runoff. As we will explain in Section 3.2, the relay on the WMY module allows us to

control the activation of sprinkler valves. However, the WMY module cannot, by itself, trigger the

sprinkler solenoids on its own. The irrigation controller must be in the midst of an irrigation sched-

ule. This serves as a window-of-opportunity during which the WMY module can enable/disable

irrigation by controlling the state of the relay. Thus, there is a need for an irrigation schedule that
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maximizes the ability of the WMY module to control irrigation, while also allowing for sufficient

absorption of the water applied to each zone. The key considerations for the irrigation schedule

creation are presented below:

As we established in 2.2, the cycle-and-soak methodology is the preferred irrigation program

for the prevention of runoff. It ensures that each application of water to the soil doesn’t cause

runoff and allows for the recovery of infiltration capacity between cycles. The time allowed for the

applied water to soak into the soil and reach the root zone is known as absorption time. If water

is applied too soon, we run the risk of adding water to saturated topsoil and cause runoff. Most

modern irrigation controllers enable cycle-and-soak by adding the feature of multiple start times

to the irrigation schedule. This means that at each start time, the valves selected for the particular

schedule will run in sequential order. While designing a cycle-and-soak irrigation schedule, the

start times must be spaced out enough that each zone is soaked well enough before water is applied

to it.

We present an algorithm, shown in Algorithm 1 on the preceding page, for the creation of

an irrigation program that uses the results from the simulation of machine learning models on

historical data as well as experimental data gathered on-site. The inputs to the algorithms are a set

of zone-specific machine learning models (Z), the absorption time between irrigation cycles (A),

historical data from the nearest weather station (H), number of start times that can be set on the

irrigation controller (N ) and an appropriately chosen initial start time (Sinitial). The initial start

time is obtained from public utility recommendations (typically early morning before sunrise).

The algorithm creates the irrigation program by constructing a set of start times (S) and a set

of windows-of-opportunity (W ). The window-of-opportunity is a specific window during which

sprinkler valves can be controlled by the WMY module. The window must be chosen in such a way

that irrigation can be enabled for the entire duration of MAR, but also not too long that, in case of

a failure on the part of the WMY module, irrigation does not continue to the point where it affects

the plants’ health. To achieve this, WaRPIC uses historical weather data from WMY for the nearest

weather station to the homeowner’s residence. The machine learning model is developed through
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Algorithm 2: Real-time control of WMY modules (advanced mode)
1 Function sprinklerControl(RR,Z, S,R, cycle):
2 ETO,RFA,RFT ← queryWMY()
3 ST ← Scycle

4 for z ∈ [1, 2, . . . , Z] do
5 SWA, SWT ← queryLocal(z)
6 LWA← max(RFT, SWT )
7 AWA← SWA+RFA
8 δ ← min(RRz, getMAR(Mz, ETO,LWA,AWA) )
9 EnableIrrigation(z, ST, ST + δ)

10 RRz ← RRz − δ
11 ST ← ST +Rz

12 sprinklerControl(RR,Z, S,R, cycle+ 1)

the machine learning pipeline, which tunes its parameters so that it has the least generalization

error. WaRPIC performs a simulation by using the machine learning models to predict the MAR

for each instance of the historical data. The results of the simulation helps choose the window of

opportunity. This is shown by the function windowOp() in Algorithm 1 on page 21. The maximum

value in the set of MARs predicted by the model is chosen as the runtime for the sprinkler zone in

the irrigation schedule created by the homeowner.

3.1.5 Runoff-aware Decision Engine (RaDE)

The Runoff-Aware Decision Engine (RaDE) is a sub-module of WaRPIC that coordinates the

actuations of sprinklers installed in irrigation systems retrofitted with WMY modules. It manages

sprinkler actuations to provide water to the turf in accordance with local weather conditions while

ensuring that runoff doesn’t occur. It communicates with WaterMyYard’s REST API that provides

accurate weather information as weekly sprinkler runtime recommendations. WaRPIC stores site-

specific machine learning-based models that estimate the MAR on a zone-by-zone basis. It also

communicates with the deployed WMY modules via the MQTT protocol. Once the irrigation

program has been created on the homeowner’s irrigation controller, the module can then work with

the watering recommendations of WMY on a week-by-week basis to optimally apply water with
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Figure 3.4: A typical irrigation schedule set on a irrigation controller by a homeowner. Each zone
has a start time and window-of-opportunity determined by the irrigation schedule. WaRPIC adjusts
the water dispersion by enabling and disabling the valve during the window-of-opportunity

the goal of preventing runoff. RaDE has two modes of operation which give it varying degrees of

control over the application of water to turf:

3.1.5.1 Basic mode

This mode allows a greater degree of freedom to the homeowner in terms of choosing the ir-

rigation schedule. The WMY module serves in a manner similar to that of a rain sensor whose

actuations are controlled by RaDE. In this mode, the WMY module simply shuts off irrigation

when the rainfall over the past 7 days has exceeded the watering requirements of turf. The sig-

nal to enable/disable irrigation are sent to the module on a daily basis by RaDE, upon checking

the watering recommendations from WMY for the nearest weather station to the location of the

homeowner’s residence.

3.1.5.2 Advanced mode

In this mode, we see the effect of the predictive ability of the site-specific prediction models

that have been trained on on-site data. The database on the cloud-based server stores information

regarding the start times as well as the window of opportunity for each zone during which the
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Figure 3.5: The WMY module post-installation (1) at homeowner’s residence. The module can
function as a solitary add-on to the irrigation controller (2) or in tandem with a rain sensor (3)

module can enable/disable irrigation. Using this information, as well as the highly accurate pre-

dictions of zone-specific models that take into account antecedent conditions, RaDE can perform

precision control of irrigation at the homeowner’s residence. The real-time control of sprinklers

is shown in Algorithm 2. RaDE obtains the recommended weekly runtime recommendation (RR)

at beginning of the week. RaDE stores the set of machine learning models (Z), start times (S),

and set of windows-of-opportunity (W ). The response from API endpoint also contains a 7-day

weather summary. This helps us derive the evapotranspiration (ETO), rainfall (RFA) and time

since rainfall (RFT ). Data about past irrigation(Sprinkler Water Application (SWA), time since

sprinkler watering (SWT )) is stored in the local database. The function then proceeds to obtain

the MAR using the queried data. Finally, irrigation is enabled for the time period of MAR. The

function then proceeds in a recursive manner to control the next cycle and so on.

3.2 Prototype Development

The WMY module, depicted in Figure 3.5, is a low-cost and practical solution that can auto-

mate functioning of legacy irrigation controllers. It has the following features:
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• It can retrofit legacy irrigation controllers via the rain-sensor port or through the common

wire connecting that acts as the ground for all the sprinkler valves.

• It can be setup by the homeowner through a captive portal and upon entering WiFi creden-

tials, the module connects to the home’s WiFi access point.

• It communicates with the cloud-based central server via the MQTT protocol, which enables

functionality such as log-file uploads, firmware updates, and remote actuation of GPIO pins.

3.2.1 Hardware design

3.2.1.1 Power

The requirement of the WMY module to retrofit into existing sprinkler controllers requires it to

use the same power source as the irrigation controller, which is 24-28V AC. A rectifier and a buck

converter is used to step down the high AC voltage to a safe DC voltage for the voltage-sensitive

micro-controller and sensing modules. The buck converter regulates the DC voltage as well, as 5V

DC is the supply voltage for the rest of circuit.

3.2.1.2 Computation

The computation unit consists of an ESP8266 micro-controller which is responsible for coor-

dinating communication, sensing and actuation, as well as the initial setup of the system at the

homeowner’s residence. The ESP8266 is a low-cost, low-power microchip that has full WiFi ca-

pabilities with a full TCP/IP stack [44]. It interfaces with the relay to change its state when sent

a command to do so. The micro-controller also keeps a log of all the commands that were sent to

it, along with information about outages in communication, like when it loses a connection with

the WaRPIC server. It measures the signal strength of the wireless signal of the Access Point(AP)

during an outage, which helps in pinpointing the source of the outage.

3.2.1.3 Actuation

The actuation component brings about control of the irrigation controller’s schedule. Most ir-

rigation controllers have a rain sensor port, which is meant to disable the controller when the rain
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Figure 3.6: The actuator circuit that retrofits the irrigation controller.

sensor has been activated by rain. We delved into the methodology with which these rain sensors

are activated and realized that they a rain sensor is a mechanically activated switch. The switch is

activated by the force of water weighing down upon a contact. This activation causes the rain sen-

sor circuit to become an open circuit. The irrigation controller detects the open circuit, and when

it does, halts irrigation. Any irrigation schedules that are supposed to run don’t proceed unless the

rain sensor circuit becomes a closed circuit again. We realized that this behavior can be mimicked

by a electro-mechanical relay. An electro-mechanical relay is nothing but a electrically activated

switch, whose activation is caused by the application of a voltage across an electro-magnetic coil.

A relay, when activated, creates a closed circuit with null resistance. When deactivated, the circuit

is opened, causing infinite resistance. Upon detection by the irrigation controller, the irrigation

schedule is immediately halted. The WMY module uses this principle to take control of the irriga-

tion schedule. The circuit design for the actuator is shown in Figure 3.6.
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3.2.2 Software design

3.2.2.1 Firmware

The software running on the device is responsible for coordinating communication with the

central server, as well as performing other activities such as actuation, timekeeping, logging and

updating firmware.

Config mode: The WMY module needs a working Internet connection to be able to communi-

cate with the central server. So, upon booting up for the first time, the module creates an Wireless

Access Point (AP) so that the homeowner can connect to it. The AP has a captive portal which

functions as a Doman Name Service (DNS) and Hyper Text Transfer Protocol (HTTP) server. The

user is directed to enter their WiFi credentials on a form in the portal’s web server. The module

then proceeds to shut down the AP, and goes to STA mode. If the module cannot connect to the

home’s WiFi due to mis-typed credentials, it will go back to AP mode, and the homeowner will

have to enter the credentials again.

STA mode: Once the module connects to the home’s WiFi, it attempts to connect with the cen-

tral server. We choose the Message Queuing Telemetry Transport (MQTT) protocol as the basis

of communication between the central server and WMY modules. MQTT is a messaging protocol

well-suited for low-bandwidth, resource-constrained devices. It registers itself with the message

broker, and the broker assigns a client ID to it. The broker uses this client ID to communicate with

the device. If the connection is lost, the device attempts to reconnect to the broker, and is assigned

a new client ID. MQTT is based on the publish-subscribe paradigm, where the broker (WaRPIC

server) and the clients (WMY modules) communicate via communication channels called ’topics’.

Each WMY module has two topics that it is associated with. The module is assigned a serial num-

ber while flashing its firmware, and this serial number is stored in Read-only Memory (ROM). This

is done to ensure that the module’s serial number stays the same across multiple reboots. The serial

number helps the module identify the topics it has to subscribe and publish to. The commands sent

by the broker to the module are executed as asynchronous event callbacks. These include control
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Figure 3.7: The progressions of the WMY module through versions 1, 2 and 3. Version 1 was built
using off-the-shelf components. We designed a PCB for Version 2. The design was further refined
for Version 3 of the WMY module

of General Purpose Input/Output (GPIO) pins, firmware updates, file handling/uploads,etc. The

firmware updates are via HTTP, and the log files are uploaded to a remote server using File Trans-

fer Protocol (FTP). The PubSubClient library for the ESP8266 was used to implement the MQTT

protocol on the device-end.

3.2.3 Cloud-based central server software design

The server-end software is responsible for sending and receiving messages from the modules

deployed in homes across a large geographical region. It also needs a web-based portal that can be

used to send commands to the modules manually. IoT services such as AWS IoT [45] are mostly

aimed at more powerful IoT devices which run some version of embedded Linux/FreeRTOS [46].

Hence, we decided to implement the MQTT broker and web portal using Node.js and host on an

AWS EC2 instance.

The MQTT broker is hosted using a library called Mosca that acts as a wrapper around the

MQTT.js library. Mosca can use databases to log messages, which helps it scale easily. We used
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MongoDB for storing MQTT packets,session information,etc. The broker maintains connections

between the devices and itself, and allows them to publish, and subscribe to designated topics

for communication. Another key aspect of the server-side software was a dashboard-like web

portal that helps administrators manually communicate with the deployed WMY modules on their

respective channels and monitor their behavior. The web portal connects to the MQTT broker

and the message database. The web server was setup using Express, the standard web application

framework for Node.js.

The web server also hosts the binary images of the WMY firmware so that the WMY modules

can update their firmware Over-The-Air (OTA) via HTTP. The automated control of the modules

on a daily basis is brought about by a cron job that runs on the EC2 instance which uses the MQTT

broker to send messages to the modules based on the nearest WaterMyYard weather station. When

each module comes online for the first time, it is associated with a weather station. This association

is used by the script to ping the WaterMyYard API, and gather the latest watering recommendation.

It makes a decision based on the runtime recommendation to turn on/off the irrigation controller,

and communicates the same to the module.
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4. PERFORMANCE EVALUATION

4.1 Site description

The site where we conducted experiments and gathered data to perform site-specific irrigation

was situated on the grounds of Texas A&M University. The site contained a row of spray sprinklers

which could be operated from an irrigation control station. There is appreciable coverage of grass

over the site’s area. The variety of turf was determined to be Bermudagrass. Upon examination of

the site, we determined that only a small area of the land that could be irrigated by the sprinkler

was useful for experiments, as many of the sprinkler heads were broken. We performed area

measurements, and catch can tests to measure precipitation rate of the sprinklers. The terrain was

mostly uniform and had a very slight slope associated with it. The site is exposed to a lot of

sunlight owing to its distance from buildings, trees, etc.

4.2 Machine learning pipeline

4.2.1 Model selection through cross validation

As explained in 3.1.3.2, model selection is a comparison procedure performed through cross-

validation that evaluates the performance of different machine learning algorithms on the training

data. The results of 5-fold cross validation of different models are presented in Figure 4.1. The

scoring metric chosen for model selection was Mean Squared Error(MSE). The model that per-

formed best in the model selection procedure was Ridge Regression with a mean squared error of

1.47 and a standard deviation of 1.04.

Table 4.1: Comparing different machine learning models using K-fold cross validation

Model Mean Squared Error
Ridge Regression 1.47
Bayesian Ridge Regression 1.66
ElasticNet Regression 1.70
KNearestNeighbors Regression 2.07
Linear Regression 1.92
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Table 4.2: Comparison of various machine learning models on pseudo-labled data in terms of
mean-square-error (MSE), mean-absolute-error (MAE), coefficient of determination (R2) score,
and explained-variance-score (EVS).

Model MSE MAE R2 EVS
Neural Network 0.43 0.50 0.63 0.75
Ridge Regression 0.63 0.64 0.45 0.70
Support Vector Regression 0.66 0.65 0.42 0.70
Linear Regression 0.63 0.64 0.45 0.71
Lasso Regression 0.64 0.64 0.44 0.71

4.2.2 Semi-supervised learning

We needed unlabeled data to perform pseudo-labeling. For this, we used weekly evapotran-

spiration and rainfall data from the WMY weather station for College Station. The data contained

evapotranspiration and rainfall amounts for the years 2015-2018. The number of unlabeled points

numbered 202. We used the above methodology to augment the number of data samples using

the best performing model from cross validation. Thus, the size of the training set increased from

15 to 220. To evaluate the performance of the regressor trained on the combined labeled and un-

labeled dataset, we had separated a hold-out/test set before. We saw a boost in the performance

of Ridge Regression trained on the combined dataset versus the smaller dataset as expected. The

mean squared error (MSE)on the test set improved from 0.64 to 0.63. We then trained other models

on the augmented dataset. The results of the same are presented in Table 4.2.

4.2.3 Neural network training

The biggest advantage of applying semi-supervised learning was the augmentation of the train-

ing data. This enabled us to train an Artificial Neural Network(ANN), and leverage its ability

to map non-linear relationships between features. There are many factors that affect the predic-

tive ability of a neural network and they need to be tuned to maximize predictive ability. These

factors are called hyper-parameters and the process of finding optimal hyper-parameters is called

hyper-parameter tuning. The hyper-parameters we chose to optimize were number of input neu-

rons, batch size and the number of training epochs. Other parameters were kept constant, such
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Figure 4.1: Effect of different parameters of ANN on the actual performance

as the type of optimizer and the learning rate. We used the Adam optimizer and a learning rate

of 0.001. The activation function used over the entire network was ReLU. All evaluations of the

neural network were validated over 20 iterations.

Number of hidden neurons: We varied the number of neurons in the first hidden layer of the

neural network and the results of the tuning are shown in Figure 4.1a. Hidden layers are the most

important part of a neural network. They perform the function of distilling patterns from data that

cannot be performed by off-the-shelf machine learning algorithms. The number of hidden neurons

plays an active role in the determining the predictive ability of the neural network. We varied the

number of neurons from 8 to 64. Higher number of neurons lead to a higher average Mean Squared

Error(MSE). As seen from the figure, we found that having 8 neurons in the first hidden layer gave

us the best scores on the test set.

Batch size: Since the size of the dataset is large, we divide the dataset into batches that are

passed through the network. Finding the right batch size ensures we have a good representation of

the dataset and prevents over-fitting. We varied the batch size from 8 to 14 and report the resultant

average error rate in Figure 4.1b. We observe that a batch size of 8 is optimal with an average error

rate of 0.55. Larger batch sizes leads to the presence of outliers.

Epochs: As discussed previously, the dataset is divided into batches that are passed through

the ANN. A neural network is said to be trained through one epoch when the entire dataset, di-
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vided into batches, has been passed through the ANN as part of forward propagation, and the

network’s weights have been adjusted by the optimization algorithm. Training the network on

very few epochs leads to under-fitting, and training it on too many epochs leads to over-fitting.

We experimented with the total number of epochs used for training and the results are shown in

Figure 4.1c.

4.3 Comparison with state-of-the-art irrigation controller

4.3.1 Configuring Rachio

The irrigation controller we chose for evaluation was the Rachio Generation 2. Rachio has a

feature where information about a sprinkler zone can be customized. This helps Rachio personalize

the runtime for each sprinkler zone. Using data gathered from our site survey , we ensured that

the parameters in Rachio’s ‘Advanced Zone Configuration’ was as personalized as possible. It

must be noted that the Rachio has types of irrigation schedules, with varying degrees of control

given to Rachio’s weather-aware decision-making system called ‘Weather IntelligenceTM’ over the

irrigation schedule. The ‘manual’ mode is one that is most similar to that of legacy irrigation

controllers, where a fixed schedule runs irrespective of weather conditions. The ‘Flex monthly’

schedule accommodates for changes in watering frequency and duration on a monthly basis. The

‘Flex daily’ schedule is considered to be the most optimized of the three schedule types. However,

it dynamically changes the watering frequency on a daily basis and holds off watering if rainfall

is predicted in the near future. We found that this interfered with our ability to conduct evaluation

at the site thanks to inclement weather during the time-frame of evaluation. So we used the ‘Flex

Monthly’ schedule, which only skipped irrigation if rain had occurred previously and the soil was

deemed to be saturated, as the basis for evaluation against WaRPIC.

4.3.2 Comparing MAR and water usage

We conducted four evaluations where the MAR as predicted by WaRPIC and Rachio were

compared along with estimations of water usage. The ground truth measurement of the same was

used as a yardstick to determine the efficiency of the water application. The results are presented in
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Figure 4.2. It is clear from the figure that the predictions of WaRPIC come very close to the ground

truth whereas those of Rachio, despite the advanced sprinkler zone configuration, are much higher.

In some cases, it must be noted, that the ground truth value was higher than WaRPIC’s prediction.

This could mean the application of water was less than efficient. However, since the magnitude of

error was very less, we feel that the effect of the application of water wouldn’t be too different from

that of the ground truth. We also estimated the potential water usage of applying water according

to both strategies. Upon consultation with an irrigation specialist, we were informed that the valves

used on the site where we conducted experiments were 5/8" valves, and used 40 IPS PVC pipes.

We used the table for calculating flow (F ) given friction losses for PVC pipes as given in [47].

Thus, we obtain the volume of water wasted as runoff, known as Runoff Volume (RV ). The value

of F used in our calculations was 12 gallons/minute. The equation used: RV = F × (PR−GT )

Where PR is the predicted runtime, while GT is the ground truth. We computed the RV for

WaRPIC and Rachio and found that, over the course of our trials, WaRPIC would’ve lost 4.08

gallons of water, while Rachio would’ve wasted 156.72 gallons. It is clear from the results of

our evaluation that the water wastage on a cycle-by-cycle basis is much lower for WaRPIC when

compared to Rachio (2.6%).

4.4 Household deployments

We deployed WMY modules in the residences of 12 homeowners based in College Station,

Texas. An irrigation specialist from Texas A&M AgriLife Extension installed the WMY modules

at the residences. The modules were set up in the basic mode of operation. A site survey was

conducted of each home’s landscape. Data was collected about each sprinkler zone such as the

plant type, sprinkler head type, sprinkler runtime, watering days ,etc. This helped us estimate the

water savings resulting from the installation of the WMY module at the homeowner’s residence.

As described previously in 3.1.5.1, in the basic mode of operation, the module shuts off irrigation

before runtime when Water My Yard predicts that watering is not required. This serves as a guar-

antee of water saving when compared to the previous method of sending text messages/emails with

no feedback on whether residents followed through on the watering recommendations.
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Figure 4.2: Comparison of runtimes predicted by WaRPIC and Rachio vs. ground truth

To estimate potential water savings, we used last year’s watering recommendations from Water

My Yard for the watering season (May-Oct). Last year, for 15 out of 24 weeks of the watering

season, Water My Yard did not recommend watering (NW ). Using data from the site surveys, we

estimated the Total Weekly Sprinkler Runtime (TWR) for each resident. Making the assumption

that all the homes that are a part of our deployment using 5/8" valves and 40 IPS PVC pipes, we

estimate flow (F ) to be 12 gallons/minute. We can then estimate potential water savings (PWS)

for each home using the following equation: PWS = F ×NW × TWR

After obtaining the potential water savings, we use the water rates for residential customers

shown in the utilities website for College Station [48] to compute the potential money saved for

each customer. The results of our evaluation are presented in Table 4.3.

4.5 Manufacturing cost

WMY has been pitched as a low-cost, practical solution that retrofits legacy irrigation con-

trollers. We present the potential savings that can be brought about by the installation of WMY at

36



Table 4.3: Projected water and cost savings of household customers for watering season (May-Oct
2019)

Average water savings 38,826 gallons
Average money savings $ 192.52692

Water Savings 8,640 - 111,780 gallons
Money Savings $ 20.74 - 587.96

Table 4.4: Manufacturing Cost

Component Cost
Antenna $ 3.99
Enclosure $ 3.72
Micro-controller $ 2.36
PCB $ 2.58
Misc. electronic components $ 6.16

Total $ 18.81

a residence. The return on investment, the amount of money saved versus the cost of installation

of the module, is analyzed here. Table 4.4 shows the manufacturing cost for one WMY module,

with the biggest contributors listed. It must be noted that since a small number of WMY modules

were manufactured, the costs are much higher than on per-module basis compared to large-scale

manufacturing. We believe that economies of scale can drastically reduce costs even further. It

can be stated that the WMY module has a huge return on investment thanks to the high volume of

water saved each watering season.
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5. CONCLUSIONS AND FUTURE WORK

We proposed an Internet-of-Things-based, low-cost solution which control sprinklers to op-

timally disperse water depending on the sprinkler zone,soil type, weather conditions, etc. We

developed modules that can be retrofitted to legacy irrigation controllers. We developed machine

learning models trained on data gained from human feedback on runoff. After an initial trial of

two weeks, the system learns sufficiently to cope with any weather condition. The system creates

an optimal site-specific schedule that considers soil type, slope, soil depth, etc. We trained a ma-

chine learning model on data gathered from a site at Texas A&M University’s campus. The model

is highly accurate and saves more water than a state-of-the-art irrigation controller. We also de-

ployed the modules at residences in College Station, Texas. The homeowners are projected to save

around 38,826 gallons of water, worth $192, on average over the course of the watering season

(May-Oct 2019).

Some directions for future work include: (1) Adding the ability of triggering solenoids to the

WMY module. (2) Integrating weather predictions to the scheduling by RaDE, making it on-par

with state-of-the-art in terms of features offered. (3) Adding more security to the WMY module,

such as encrypting WiFi password and securing communication via MQTT. (4) Integration with

voice-activated services such as Amazon Alexa and smart home platforms.
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