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ABSTRACT 

 

Pathogens are the leading cause of impairment for rivers and streams in the United States. 

Microbial contamination in recreational water bodies was the cause of 510 waterborne disease 

outbreaks in the United States. Water quality standards should prevent these outbreaks from 

occurring, however, in 93% of outbreaks, where water quality information was available, the 

water body was meeting water quality standards at the time of the outbreak.  

The probability of gastrointestinal (GI) illness from recreational exposure to human, 

cattle, and wildlife fecal contamination was calculated in three water bodies impaired by 

microbial contamination by applying Quantitative Microbial Risk Assessment (QMRA) and 

Microbial Source Tracking (MST). Six reference pathogens were used to estimate the probability 

of GI illness: Campylobacter, Cryptosporidium, E. coli O157:H7, Giardia, norovirus, and 

Salmonella. The largest contributor of fecal contamination within the water bodies (wildlife) had 

the least significant impact on human health in all three water bodies. Whereas, human fecal 

sources had the most significant impact on the probability of GI illness, especially through the 

reference pathogen norovirus.  

Non-point source fecal loads were spatially estimated within the Lampasas River 

Watershed using SELECT from three general sources: cattle, human, and non-avian wildlife. 

SWAT was used to simulate source specific in-stream E. coli concentrations from the fecal loads 

estimated by SELECT. SWAT-simulated in-stream E. coli concentrations were used to estimate 

reference pathogen doses which were input into a QMRA to estimate human health risk 

associated with exposure to fecal contamination from contact recreation in impaired waters. 

Across all flow conditions, the WWTP had the most significant impact on human health risk 
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even though it was not the largest contributor to fecal contamination. The probability of GI 

illness associated with the WWTP exceeded the acceptable GI illness rate but the WWTP was 

meeting water quality regulations. 

Water bodies are regulated by developing a total maximum daily load (TMDL) to 

determine the largest contributor of fecal contamination and make appropriate load reductions to 

that contributor. For regulation and remediation to have significant impacts, it should be focused 

on sources that are the riskiest to human health. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Microbial contamination in recreational waters was the cause of 44% more waterborne 

disease outbreaks when compared to contaminated drinking water in the United States between 

1995 and 2005 (Craun et al., 2005). In the United States, 510 outbreaks associated with 

microbial contamination in recreational water occurred over the course of only 12 years from 

2001 to 2012 (Dziuban et al., 2006; Hlavsa et al., 2011; Hlavsa et al., 2014; Hlavsa et al., 2015; 

Yoder et al., 2004; Yoder et al., 2008). The United States Environmental Protection Agency 

(USEPA) microbial water quality guidelines for recreational waters were established to prevent 

these outbreaks from occurring. However, in 93% of outbreaks where the information was 

available, the water quality of a recreational water body was meeting the local water quality 

standards at the time of the outbreak (Craun et al., 2005). 

The purpose of the recreational water quality standard is to provide fecal indicator 

bacteria (FIB) criteria concentrations that correspond to acceptable gastrointestinal (GI) illness 

rates from recreational exposure (Dufour and Ballentine, 1986; USEPA, 2012). Higher 

concentrations of FIB have a direct relationship to higher fecal microbial contamination. 

Epidemiology studies have shown that GI illness can be linked with FIB concentrations in 

recreational water impacted by human sources (Cabelli, 1983; Dufour, 1984; Wade et al., 2003; 

Wu et al., 2011). The link between GI illness and non-human fecal sources such as livestock and 

wildlife is not well established (Field and Samadpour, 2007). Multiple epidemiology studies 

conducted at locations  impacted by non-human fecal sources did not show a link between GI 

illness and FIB concentrations (Calderon et al., 1991; Colford et al., 2007; Colford et al., 2012; 

Mcbride et al., 1998). This suggests that there is less risk of GI illness from recreation in waters 



 

2 

 

contaminated by non-human sources compared to waters contaminated by human sources. 

Currently, the USEPA’s FIB recreational water quality criteria do not differ based on the source 

of contamination. (USEPA, 2012).  

The USEPA recreational water quality standard for marine and fresh waters was 

developed in 1986 and updated in 2012 (Dufour and Ballentine, 1986; USEPA, 2012). The 

USEPA (1986) recreational water quality standard for marine and fresh waters was developed 

based on waters contaminated with human sources, such as treated wastewater treatment plant 

(WWTP) effluents (Cabelli, 1983; Dufour, 1984; Dufour and Ballentine, 1986). The FIB chosen 

for fresh waters are Escherichia coli (E. coli) with a geometric mean not to exceeded 126 

colony-forming units (CFU) per 100 milliliters (Dufour and Ballentine, 1986). Enterococcus was 

chosen as the FIB for salt waters with a geometric mean not to exceed 35 CFU per 100 milliliters 

(Cabelli, 1983). Even though the USEPA updated the recreational water quality criteria, the FIB 

concentration criteria remained the same.  

Differences between the 1986 USEPA standard and the updated 2012 standard are the 

acceptable rate of swimming associated illness and what symptoms constitute a GI illness.  The 

recreational standard for fresh waters was developed using the Dufour (1984) study with an 

acceptable swimming associated gastroenteritis rate of 8 per 1000 swimmers (Dufour and 

Ballentine, 1986). Study participants were considered ill if they showed highly credible 

gastrointestinal symptoms including: vomiting, diarrhea with fever, and stomach ache or nausea 

accompanied by fever (Dufour and Ballentine, 1986).The USEPA updated the recreational water 

quality criteria in 2012. The illness rates upon which the water quality criteria were developed 

were based on the National Epidemiological and Environmental Assessment of Recreational 

Water (NEEAR) definition of GI illness, which does not require fever to be exhibited. The 
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USEPA standard for acceptable illness rate was increased to 36 per 1000 people (0.036) 

participating in primary contact recreation (USEPA , 2012).  

The main purpose of water quality regulations is to protect human health with every other 

consideration being secondary, such as protection of the environment (Field and Samadpour, 

2007). A shortcoming of FIB are that they do not identify the source of the contamination. A 

correlation between FIB and human health risks due to pathogens in human fecal sources has 

been established (Cabelli, 1983; Dufour, 1984; Wade et al., 2003; Wu et al., 2011). However, a 

correlation between FIB and health risks from water impacted by sources other than human has 

not been shown in epidemiology studies (Calderon et al., 1991; Colford et al., 2007; Colford et 

al., 2012; Mcbride et al., 1998). Even though animal feces contains pathogens, the human health 

risk from animal feces is assumed to be less than human fecal sources because many pathogen 

strains are host specific to the infected animal species and therefore not pathogenic to humans 

(Field and Samadpour, 2007). Accurately estimating human health risks from fecal 

contamination requires knowledge of the contribution from human and non-human sources. 

Total Maximum Daily Loads (TMDLs) are used to remediate contamination in water 

bodies in the United States. The TMDL is the maximum amount of pollutant load a water body 

can receive and still meet the Recreational Water Quality Criteria (RWQC) (USEPA, 2008). In a 

TMDL, point and non-point sources contributing microbial contamination in a watershed are 

identified and wasteload or load allocations are determined for each fecal source. All pollutant 

sources are treated equally when developing a TMDL (USEPA, 2008). However, fecal sources 

are not equal in their likelihood to cause human illness and this should be taken into account 

when remediating a water body for pathogens. The TMDL approach solely focuses on 

remediation to meet the numerical FIB water quality standard regardless of the source.  
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Outbreaks are still occuring in recreational waters even when the water quality is meeting 

the local water quality standards at the time of the outbreak. Generally, epidemology studies 

need to be performed to determine the cause of oubreaks or assess the health impacts from 

exposure to potential sources of pathogens. Human enteric viruses, specifically norovirus, were 

suggested as the cause of a majority of GI illnesses from swimming in recreational waters 

impacted by human sources during an epidemiology study in the Great Lakes in 2003 and 2004 

(Soller et al., 2010a). Epidemiology studies are costly and difficult to implement for multiple 

exposure scenarios that can cause negative health impacts. Quantitative microbial risk 

assessment (QMRA) is a tool that can be applied for multiple exposure scenarios to estimate 

associated health risks.  

 QMRA is an approach to estimate the health risk from exposure to infectious 

microorganisms by applying the principles of risk assessment (Haas et al., 2014). QMRA studies 

estimated human health risks from exposure to water contaminated with human and non-human 

sources using FIB concentrations to calculate a pathogen dose (Schoen and Ashbolt, 2010; 

Schoen et al., 2011; Soller et al., 2010a; Soller et al., 2010b; Soller et al., 2014; Soller et al., 

2015). These studies only consider hypothetical FIB concentrations, in particular the recreational 

water quality standards and not the actual FIB concentrations occurring in a watershed.  

QMRA has been used in conjunction with watershed modeling to estimate potential 

human health risks from exposure to simulated FIB concentrations from human and non-human 

sources during rainfall events (Eregno et al., 2016; Liao et al., 2016). These studies were not able 

to include all sources of potential contamination particularly non-avian wildlife. Other QMRA 

studies have modeled the dispersion of pathogens to estimate a potential pathogen dose from 

exposure but there was a single source of contamination (Andersen et al., 2013; Sokolova et al., 
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2012; Sokolova et al., 2015). Additional QMRA studies have also estimated human health risks 

from exposure to water contaminated with a single source by measuring pathogen concentrations 

in the water body to calculate a pathogen dose (Betancourt et al., 2014; McBride et al., 2013; 

Rijal et al., 2011; Wilkes et al., 2013). Routinely monitoring water bodies for waterborne 

pathogens is not feasible because it is technically difficult and costly to culture and identify 

pathogens in water samples (Harwood et al., 2014).  

The distribution of pathogens in environmental waters typically are variable over the area 

of the water body. Pathogens also occur at low concentrations which makes them not readily 

detectable.  However, pathogens are highly infective at low doses having the potential to cause 

negative health impacts from exposure even when they are not able to be detected in 

environmental waters (Field and Samadpour, 2007; Harwood et al., 2014; Scott et al., 2002). 

Because monitoring for all pathogens is not possible in water bodies, FIB are monitored to 

protect human health.  

Microbial source tracking (MST) also known as bacterial source tracking (BST) is a 

method that identifies the sources of fecal bacteria from environmental samples (Field and 

Samadpour, 2007; Meays et al., 2004). The premise behind MST is that certain characteristics in 

the fecal microorganisms from a source are strongly associated with particular hosts. This is an 

identifying trait that can be used as a marker for fecal contamination from the source that can be 

detected in water (Field and Samadpour, 2007; Harwood et al., 2014). An assumption used to 

quantify MST is that identifying markers within the fecal material of a specific species remain 

the same over time and after the feces enters the water. If the markers are quantitatively detected, 

then the proportion of the contribution from each particular source can be estimated (Field and 

Samadpour, 2007). The estimated proportion of each source is applied to identify the sources of 
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FIB, which would aid in identifying the likely pathogens in water bodies. Ultimately, this would 

enable the estimation of human health risk associated with exposure to the water contaminated 

with fecal material from multiple sources (Field and Samadpour, 2007).  

There are multiple methods to identify fecal sources using MST but these methods are 

typically categorized as library-dependent or library-independent methods. A library is a 

collected database which includes a set of bacterial isolates from multiple known fecal sources 

that are tested using a method where patterns or fingerprints unique to the source are identified 

(Field and Samadpour, 2007). The fingerprints of bacterial isolates taken from environmental 

samples are then compared to the library to identify the contributing fecal sources (Field and 

Samadpour, 2007; Harwood et al., 2014). Library-independent methods identify a specific 

bacterial species or type that are host-specific. An environmental sample is analyzed for each 

host specific marker, when applying library-independent methods (Harwood et al., 2014). This 

study will focus on two library-dependent methods; ribotyping and repetitive sequence 

polymerase chain reaction (rep-PCR). 

Ribotyping and rep-PCR are both culture-based, library-dependent deoxyribonucleic acid 

(DNA) fingerprinting techniques (Field and Samadpour, 2007). Ribotyping involves the 

identification of microorganisms through analysis of their highly conserved 16S ribosomal 

ribonucleic acids (rRNA) genes after they have been enzymatically restricted (Meays et al., 

2004; Scott et al., 2002). Unique strains of E. coli for specific host species are identified and the 

16S rRNA genes for those strains are then compared to the genetic fingerprints of bacterial 

isolates from water samples to identify the animal sources of the bacteria occurring in the water 

sample (Meays et al., 2004). Ribotyping is labor intensive and geographically specific (Field and 
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Samadpour, 2007). Advantages of ribotyping are that it is highly reproducible and able to 

classify isolates from multiple sources (Meays et al., 2004). 

 Rep-PCR uses primers corresponding to repetitive intergenic DNA sequences to 

differentiate among sources of fecal pollution to generate specific genomic fingerprints for each 

source (Meays et al., 2004; Scott et al., 2002). The DNA fingerprint patterns in water samples 

are then analyzed using pattern recognition software to identify the fecal sources within that 

water sample (Meays et al., 2004). Similar to ribotyping, a library is required; with rep-PCR, the 

variability increases as the size of the library increases (Field and Samadpour, 2007; Meays et al. 

, 2004). Rep-PCR is a simple and rapid method to identify sources within water samples once a 

library has been established (Meays et al., 2004).  

Fecal pathogens entering surface water are dependent not only on the source of fecal 

matter but also on the transport of those pathogens from the source into water bodies. Curriero et 

al. (2001) found that 51% of waterborne disease outbreaks in the United States were preceded by 

extreme precipitation events. Outbreaks occurring from surface water contamination had the 

strongest correlation with extreme precipitation events during the month of the outbreak 

(Curriero et al., 2001). A study in Canada also showed that extreme rainfall events increase the 

likelihood of a waterborne disease outbreak by a factor of 2.3 (Thomas et al., 2006). 

Contamination of the water source through runoff or inundation following an extreme rain event 

was the most common cause of outbreaks in both developing and developed countries (Cann et 

al., 2013). Surface water bodies are more vulnerable than groundwater to microbial 

contamination caused by runoff from precipitation events. Precipitation events need to be 

included in the analysis when estimating potential health risks from exposure to microbial 

contaminants in surface water bodies.  
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Collecting monitoring data for a water body is time intensive and expensive, especially 

for a long consistent record. The cost to collect additional monitoring data to support total 

maximum daily loads (TMDL) is $17.3 million annually (USEPA, 2001a). Often, water quantity 

and quality monitoring records for a water body are not consistently measured over the period of 

record. Water quantity and quality modeling can be used to fill monitoring data gaps and provide 

a consistent data record for a water body. A model also can be applied to an ungauged watershed 

to provide water quantity and water quality data. Watershed models are a vital tool to supplement 

water quality and quantity monitoring.  

The ideal microbial model should be able to simulate four factors: land use, climate, 

topography, and hydrology (Coffey et al., 2010; Jamieson et al., 2004). Climate, topographical, 

and hydrological factors all play a role in the fate and transport of pathogens over the land 

surface through runoff and infiltration from rainfall events, whereas, land use affects runoff and 

infiltration, but also, the sources and amounts of potential pathogen input (Coffey et al., 2010; 

Jamieson et al., 2004). Many models that simulate in-stream bacteria concentrations utilize 

runoff models to simulate the fate and transport of fecal microorganisms over the land surface 

(Baffaut and Sadeghi, 2010; Coffey et al., 2010; Iudicello and Chin, 2014; Pachepsky et al., 

2006; Srivastava et al., 2007). Wet and dry periods should be differentiated when using these 

models to increase the accuracy of the fecal source inputs. Two popular watershed-scale models 

have incorporated modules to simulate the fate and transport of FIB. These models are 

Hydrologic Simulation Program Fortran (HSPF) (Bicknell et al., 2001) and Soil and Water 

Assessment Tool (SWAT) (Neitsch et al., 2011).  

 HSPF is a watershed-scale model that simulates in-stream bacteria concentrations by 

modeling bacteria fate and transport from runoff events (Pachepsky et al., 2006; Srivastava et al., 
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2007). Bacteria fate and transport in HSPF are modeled for an hourly time step through overland 

flow and interflow of bacteria inputs that are deposited directly to land surfaces (Iudicello and 

Chin, 2014). The bacteria module in HSPF was developed for fecal coliforms therefore, the 

inputs and outputs need to be converted into and from fecal coliforms into other FIB or 

pathogens (Ferguson et al., 2003; Liao et al., 2015). HSPF has had limited success modeling in-

stream bacteria concentrations at the watershed-scale due to high variability associated with 

observed concentrations. A difference of one order of magnitude between simulated and 

observed bacteria concentrations is considered acceptable (Liao et al., 2015). Iudicello and Chin 

(2015) modeled fecal coliform concentrations using HSPF separating modeling results into 

corresponding dry and wet conditions.  This resulted in a majority of model predicted 

concentrations to be within one order of magnitude of the observed fecal coliform concentrations 

for both dry and wet conditions. Liao et al. (2015) was also able to achieve HSPF simulated 

bacteria concentrations to be within one order of magnitude of observed concentrations for both 

in-stream water and sediment bacteria concentrations. However, HSPF is considered more 

difficult to apply compared to other watershed-scale models due to large amounts of data and 

input parameters that are required in order to calibrate HSPF (Ferguson et al., 2007; Saleh and 

Du, 2004; Srivastava et al., 2007).  

Similar to HSPF, SWAT is a watershed-scale model that simulates in-stream bacteria 

concentrations using runoff events to drive the fate and transport of bacteria. SWAT is 

considered an easier model to run compared to HSPF (Saleh and Du, 2004). Bacteria 

concentrations are modeled in SWAT on a daily time step and the fate and transport of bacteria 

are modeled in runoff from land surfaces (Iudicello and Chin, 2014; Pachepsky et al., 2006). 

Modeling FIB with SWAT has resulted in variable success (Baffaut and Sadeghi, 2010; Coffey 
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et al., 2010; Coffey et al., 2013; Frey et al., 2013; Iudicello and Chin, 2014). It is difficult to 

model the actual spatial and temporal loading patterns of bacteria, additionally, observed bacteria 

measurements are highly variable and this contributes to the difficulty in calibrating and 

validating a model (Frey et al., 2013; Pachepsky et al., 2006). Both HSPF and SWAT only have 

modules that predict FIB and they are not able to predict pathogen concentrations (Coffey et al., 

2010; Ferguson et al., 2003). Additionally, both models have difficultly accurately modeling 

bacteria concentrations at extremely low and high flows (Benham et al., 2006; Chin et al., 2009).  

The concentrations of pathogens occurring in a water body have been modeled by 

applying hydrologic and dispersion models (Ferguson et al., 2007; Medema and Schijven, 2001). 

Ferguson et al. (2007) applied a hydrologic model to estimate the mobilization of pathogens 

from land deposited feces due to rainfall (Ferguson et al., 2007). Medema and Schijven (2001) 

applied emission (PROMISE) and dispersion (WATNAT) models to estimate the concentrations 

of pathogens downstream from sewage discharges.  Both of these studies only considered one 

source contributing to the microbial contamination in the water body. For the results to be 

accurate, all potential sources need to be considered when estimating the pathogen 

concentrations in water bodies.  

Spatially Explicit Load Enrichment Calculation Tool (SELECT) is a geographic 

information system (GIS) tool that uses spatial factors such as land use, fecal source population 

densities, and soil to assess potential E. coli loads within a watershed (Teague et al., 2009). 

SELECT is able to estimate E. coli loads for multiple non-point and point sources including: 

livestock, wildlife, on-site wastewater treatment systems (OWTS), dogs, and wastewater 

treatment plants (WWTPs) (Teague et al., 2009; Riebschleager et al., 2012; Borel et al., 2012a).  

SELECT outputs were combined with a simple curve number based runoff model to predict E. 
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coli concentrations occurring in a water body from the transport of fecal material from rain 

events (Borel et al., 2012b). The SELECT model can be used as an input for other rainfall-runoff 

models such as HSPF or SWAT to predict FIB concentrations. The purpose of modeling FIB or 

pathogen concentrations in a water body is to determine if the  modeled concentrations are above 

a water quality standard and if exposure to the fecal contamination will impact human health 

when measured data are not available. 

A limitation to applying QMRA to recreational water bodies is the current lack of 

specific water quality data for pathogens. Also, FIB are typically the only measure of microbial 

water quality and the prevalance of specific pathogens vary considerably depending on the 

source population and seasonality (WHO, 2003). The main advantage of QMRA is the health 

risk for multiple exposure scenarios can be estimated and used for risk management decisions 

without performing costly epidemiology studies that may be infeasible.   

QMRA has been applied extensively in recreational water bodies to determine health risk 

(Andersen et al., 2013; Eregno et al., 2016; Liao et al., 2016; Rijal et al., 2011; Schoen and 

Ashbolt, 2010; Schoen et al., 2011; Soller et al., 2010a; Soller et al., 2010b; Soller et al., 2014; 

Soller et al., 2015; Wilkes et al., 2013). In recreational waters, QMRA has been applied to 

multiple sources but only avian wildlife has been considered in previous studies.  There is a gap 

when it comes to wildlife sources because non-avian wildlife, such as deer, need to be 

considered as a source of fecal contamination. In multiple MST studies performed in Texas, 

wildlife sources contributed a majority of the fecal contamination to the water body (Di Giovanni 

and Casarez, 2006; Gregory et al., 2013; Martin and Gentry, 2014). Estimates of health risk from 

exposure to fecal contamination in a water body cannot be accurately determined if major source 

of fecal contamination is not included in those calculations. Therefore, non-avian wildlife should 
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be included as a source of fecal contamination when applying QMRA to develop a more accurate 

estimate of health risk from exposure to fecal contamination in water bodies.  

One purpose of this dissertation was to address current gaps in QMRA research when 

estimating health risk from exposure to fecal contamination in recreational water bodies. MST 

was incorporated with the QMRA analysis to determine the bacteria contribution from specific 

fecal sources in water bodies to estimate health risk from exposure to fecal contamination in the 

water bodies. Non-avian wildlife was included in QMRA analysis as a source of fecal 

contamination in water bodies to determine health risks from exposure to recreational water 

bodies contaminated with fecal material. SELECT and SWAT were used to estimate E. coli 

concentrations from specific sources to predict health risks related to flow regimes. 

1.1.  Objectives and Hypotheses 

The objective of this dissertation is to determine the health risk, likelihood of illness, from 

exposure to fecal contamination in recreational water bodies using QMRA, MST, SELECT, and 

SWAT. Each objective will focus on a different parameter impacting health risk.  

1.1.1. Apply QMRA and MST to calculate the likelihood of GI illness from exposure in two 

recreational water bodies in Texas to fecal contamination from human, cattle, and non-

avian wildlife sources  

a. Hypothesis: Applying uncertainty ranges to the point inputs of E. coli 

concentration in the water body and fecal source contribution will significantly 

change the resulting health risk.  

b. Hypothesis: Exposure to the reference pathogens norovirus, Cryptosporidium 

parvum, Giardia lamblia, Campylobacter, Salmonella, and E. coli O157:H7 in 

human sources of fecal contamination of recreational waters will result in a higher 
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health risk than exposure to those same reference pathogens in fecal 

contamination of recreational water by wildlife and cattle. 

c. Hypothesis: At the recreational bacterial standard of 126 CFU/100mL E. coli, the 

health risk from all sources will equal the USEPA acceptable illness rate, 0.036. 

1.1.2. Apply SWAT in conjunction with SELECT to simulate source-specific E. coli 

concentrations for input into a QMRA to determine likelihood of GI illness 

Hypothesis: SWAT, SELECT, and QMRA methodologies can be applied together for 

future predictive capabilities to determine health risk in watersheds under specific 

hydrologic conditions. 
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2. ESTIMATING HUMAN HEALTH RISK IN RECREATIONAL WATER BODIES 

IMPACTED BY MULTIPLE FECAL SOURCES 

 

2.1. Introduction 

In 1986 the United States Environmental Protection Agency (USEPA) recommended 

recreational water quality criteria (RWQC) to prevent outbreaks from occurring. However, 

Craun et al. (2005) found that where such information was available, in 93% of outbreaks in 

recreational water bodies the water body was meeting the local water quality standards at the 

time of the outbreak. The purpose of the RWQC is to provide standards for fecal indicator 

bacteria (FIB) concentrations that correspond to acceptable gastrointestinal (GI) illness rates 

from recreational exposure (Dufour and Ballentine, 1986; USEPA, 2012). Epidemiology studies 

have linked GI illness to FIB concentrations in recreational water impacted by human sources, 

most frequently wastewater treatment plants (WWTP) (Cabelli, 1983; Dufour, 1984; Wade et al., 

2003; Wu et al., 2011). Multiple epidemiology studies conducted at locations impacted by non-

human fecal sources were inconclusive in the link between GI illness and FIB concentrations 

(Calderon et al., 1991; Colford et al., 2007; Colford et al., 2012).  However, the non-human fecal 

source of cattle may be as risky as human sources at impacting human health (Mcbride et al., 

1998; USEPA, 2010; USEPA, 2012). As a conservative measure, the USEPA (1986) RWQC for 

marine and fresh waters do not differ based on the source of contamination. (USEPA, 2012).  

The USEPA updated the RWQC in 2012.  The FIB determined for fresh waters, remained 

the same, Escherichia coli (E. coli) with a geometric mean not to exceeded 126 colony-forming 

units (CFU) per 100 milliliters (Dufour and Ballentine, 1986).  The USEPA standard for 

acceptable illness rate was increased from 8 to 36 per 1000 people (0.036) participating in 
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primary contact recreation (USEPA, 2012).  The USEPA (2010) has established eight 

waterborne reference pathogens; norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia 

lamblia, Campylobacter spp., Salmonella spp., and E. coli O157:H7. These reference pathogens 

can be present in human and animal fecal waste as well as in recreational water. The eight 

reference pathogens are representative of other waterborne pathogens, have the ability to survive 

in the environment, and have dose-response relationships 

Currently, water bodies are regulated using Total Maximum Daily Loads (TMDLs), the 

maximum amount of pollutant load a water body can receive while still meeting water quality 

standards (USEPA, 2008). During the process to develop a TMDL, every pollutant source is 

treated equally (USEPA, 2008). While this approach helps to facilitate diverse stakeholder 

involvement, fecal sources vary significantly in their likelihood to cause human illness. As part 

of a TMDL, wasteload allocations and load allocations are determined for each point and non-

point source. If load reductions are necessary in a water body, typically the largest contributing 

source will be targeted for remediation to reduce the pollutant loading in the water body. This 

approach solely focuses on remediation to meet the numerical FIB water quality standard and 

does not take into account the differing health risks associated with the contributing fecal 

sources.  

Quantitative Microbial Risk Assessment (QMRA) is an approach to estimate the health 

risk from exposure to infectious microorganisms by applying the principles of risk assessment 

(Haas et al. , 2014). QMRA studies estimated human health risks from exposure to water 

contaminated with human and non-human sources using FIB concentrations to calculate a 

pathogen dose (Schoen and Ashbolt, 2010; Schoen et al., 2011; Soller et al., 2010b; Soller et al., 

2014; Soller et al., 2015). These studies only consider hypothetical FIB concentrations, in 



 

16 

 

particular the recreational water quality standards and not the actual FIB concentrations 

occurring in a watershed. Additionally, the non-human sources used in these studies are 

agricultural animals or avian wildlife (seagulls). This study aims to address these gaps by 

applying the actual FIB concentrations occurring in a water body and to take non-avian wildlife 

into consideration to determine human health risks.  

2.1.1. Objectives and Hypotheses 

The hypotheses of this study are threefold: (1) applying uncertainty ranges to the point 

inputs of E. coli concentration in the water body and fecal source contribution will significantly 

change the resulting health risk.  (2) exposure to the reference pathogens norovirus, 

Cryptosporidium parvum, Giardia lamblia, Campylobacter, Salmonella, and E. coli O157:H7 in  

human sources of fecal contamination of recreational waters will result in a higher health risk 

than exposure to those same reference pathogens in fecal contamination of recreational water by 

wildlife and cattle, and (3) at the recreational bacterial standard of 126 CFU/100mL E. coli the 

health risk from all sources will equal the USEPA acceptable GI illness rate, 0.036.  

The objective of this study is to use QMRA and MST to calculate the likelihood of GI 

illness from exposure in two recreational water bodies in Texas to fecal contamination from 

human, cattle, and non-avian wildlife sources. 

2.1.2. Study Areas 

Two watersheds in Texas were selected for this study: one rural, the Lampasas River 

Watershed, and one urban, the Salado Creek Watershed.  Watershed selection was based on 

impairment and previous MST studies (Di Giovanni and Casarez, 2006; Gregory et al., 2013). 

The Lampasas River Watershed is 3,231 square kilometers (1,247 square miles) primarily 

situated in rural and agricultural areas (Figure 2-1) (Prcin et al., 2013). The Salado Creek 
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Watershed encompasses an area of 565 square kilometers (218 square miles) with the middle and 

lower parts of the watershed located in dense urban areas (Figure 2-2) (Atkins, 2011). 

 

 

 

Figure 2-1. Location of the Lampasas River Watershed with MST sites and WWTP 

outfalls. 
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Figure 2-2. Location of the Salado Creek Watershed with MST sites and WWTP outfalls. 

 

2.2. Methodology 

QMRA was used to estimate the human health risk from recreational exposure, 

specifically accidental ingestion from swimming in impaired water bodies, associated with 

microbial contamination from human, cattle, and non-avian wildlife sources.  

Of the eight waterborne reference pathogens established by USEPA (2010) only six were 

used in the QMRA as described below. Adenovirus was not used because there is currently no 

published ingestion dose- response relationship (USEPA, 2010).  Rotavirus can be shed by 

calves and piglets but the strains are host specific and not likely to infect humans (Martella et al., 
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2010; USEPA, 2010). Therefore, rotavirus was also excluded as a reference pathogen in this 

study.  

Measured E. coli concentrations (CFIB) in the water bodies were used to estimate 

reference pathogen (rp) doses, 𝜇𝑟𝑝
𝑆 , from each of three fecal source (s): human, cattle, and non-

avian wildlife for each of the six reference pathogens: norovirus, Cryptosporidium spp., Giardia 

lamblia, Campylobacter spp., Salmonella, and E. coli O157:H7 using equation 2-1 which Gitter 

(2016) modified from Schoen and Ashbolt (2010).  The human sources were assumed to include 

both secondary disinfected effluent and raw sewage. Cattle sources were assumed to be fresh 

manure. The wildlife sources were limited to deer and feral hogs also known as wild boar or feral 

swine. 

The reference pathogen dose, 𝜇𝑟𝑝
𝑆 , (number of pathogens or genomes) was calculated as: 

μrp
S =

CFIB×FS

RFIB
S ×100

× Rrp
S × prp

S × Irp
S × V   (2-1) 

CFIB is the E. coli concentration in the water body measured by a culture-based 

method (CFU/100mL) 

FS is the fraction of E. coli from source S 

RFIB
S  is the E. coli concentration in feces (wet mass) (CFU/g) or in sewage from 

source S (CFU/L) 

Rrp
S  is the concentration of pathogen species in feces (wet mass) (number of 

pathogens or genomes/g) or in sewage from source S (number of pathogens or 

genomes/L) 

prp
S  is the fraction of human-infectious pathogenic strains from source S 
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Irp
S is the prevalence of infection in the non-human source, i.e. cattle and non-avian 

wildlife, S (proportion of animals shedding the pathogen) 

V is the volume of water ingested (mL) 

Two values of CFIB were used in the analysis of each watershed; the geometric mean of 

the measured E. coli concentrations sampled during the MST sampling period (Table 2-1) and 

the regulatory standard for recreational water bodies of 126 CFU/100mL. The fraction of the E. 

coli concentration (FS) from each source was determined using the MST data from two sites for 

each watershed in the study (Table 2-1).   

 

Table 2-1. CFIB and FS from MST results for 2 study watersheds. 

Location CFIB FS
 (%) Reference 

 cfu mL-1 Humana  Cattleb Wildlifec  

Lampasas River      Gregory et al., 2013 

Site 15762 162 27 6 60  

Site 15770 158 12 0 77  

Salado Creek     Di Giovanni and Casarez, 2006 

Site 12876 299 28 28 44  

Site 12698 498 34 37 29  
a Unidentified sources have been combined with human to represent a worst-case scenario 

b Other domesticated animals were added to cattle in the Salado Creek Watershed, but not the Lampasas River Watershed. Also includes pets for 

the Salado Creek Watershed. 
c Avian wildlife also included in the Salado Creek Watershed wildlife Fs. 

 

 

The MST results for two sites (15762 and 15770) in the Lampasas River Watershed 

consisted of human, cattle, other domesticated animals, wildlife, and unidentified (Gregory et al., 

2013). Unidentified was combined with human sources to represent a worst-case scenario. 

Domesticated animals were kept separate from cattle because one of the sites had 0% cattle 

contribution.  

The Salado Creek watershed contained two MST sites, 12876 located on the main stem 

and Walzem Creek site 12698 located on a tributary. The MST results for the Salado Creek 
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watershed comprised of sewage, cattle, pet, other livestock non-avian, other livestock avian, 

wildlife non-avian, wildlife avian, and unidentified (Di Giovanni and Casarez, 2006). Pet and 

other livestock were included with cattle for the cattle MST source inputs. In order to be 

consistent with the Lampasas River watershed MST results, both non-avian and avian wildlife 

percentages were included as non-avian wildlife for the Salado Creek watershed.  

Concentrations of E. coli (Table 2-2) and the concentrations of reference pathogens in 

human waste (Table 2-3), cattle (Table 2-4) and wildlife (Table 2-5) were taken from the 

literature.  The range of values of E. coli concentrations (RFIB
S ) and pathogen concentrations 

( Rrp
S ) in the source waste represent the lowest value and highest values reported for each source.  

The RFIB
S  values for human waste takes its low from reported values of secondary chlorinated 

effluent and its high from primary sewage (Table 2-2 and 2-3).  

 

Table 2-2. Concentration of E. coli in source waste (RS
FIB). 

Fecal Source  Low High Reference 

Human  CFU/L 3.16 100,000,000 (Soller et al., 2010b) 

Cattle  CFU/g  335 17,400,000 (Padia et al., 2012; USEPA, 

2010) 

Wildlife Deer CFU/g 46,000 26,900,000 (Gallagher, 2012) 

Feral 

Hog 

CFU/g 79,500 41,600,000 (Gallagher, 2012) 
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Table 2-3. Concentration of reference pathogens in human waste (RS
rp). 

Organism Low High Reference 

Norovirus (genomes/L) 158 1,000,000 (Soller et al., 2010b) 

Giardia (cysts/L) 0.1 10,000 (Soller et al., 2010b) 

Cryptosporidium (oocysts/L) 0.1 398 (Soller et al., 2010b) 

Salmonella (CFU/L) 0 1,000 (Soller et al., 2010b) 

Campylobacter (CFU/L) 0 199.5 (Soller et al., 2010b) 

E. coli O157:H7 (CFU/L) 0 1995 (Soller et al., 2010b)  
 

The concentration and prevalence values of reference pathogens in cattle feces (Table 2-4) were 

assumed to be from fresh manure similar to the USEPA (2010) and Soller et al. (2010) 

recreational QMRA studies.  

 

Table 2-4. Concentration (RS
rp) and prevalence (IS

rp) of reference pathogens in cattle feces. 

Organism Low(mean)* High(st dev)* Prevalence (%) References 

Giardia  

(cysts/g) 

1.58 3162 0.2 - 37 (USEPA, 2010) 

Cryptosporidium  

(oocysts/g) 

0.5 1585 0.6 - 23 (USEPA, 2010) 

Campylobacter 

 (cfu/g) 

63 31,623 5 - 38 (USEPA, 2010) 

Salmonella  

(cfu/g) 

398 39,811 5 - 18 (USEPA, 2010) 

E. coli O157:H7*  

(cfu/g) 

(1202) (30.9) 9.7 - 28 (USEPA, 2010) 

*lognormal distribution 

 

 

Only Giardia and Cryptosporidium Rrp
S  were available for deer fecal matter and only 

Campylobacter and Salmonella Rrp
S  were available for feral hog fecal matter. Therefore, the 

pathogen doses from the wildlife source, μrp
W , for Giardia and Cryptosporidium were based on 

deer only and the pathogen doses from wildlife source for Salmonella and Campylobacter were 

based on feral hogs only.  Insufficient data were available relating pathogen concentration of E. 
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coli O157:H7 in either deer or feral hog fecal matter, so E. coli O157:H7 was not included in the 

wildlife calculations. 

There are a limited number of studies quantifying the concentration of Giardia and 

Cryptosporidium in deer fecal matter, none of which were located in the United States (Castro-

Hermida et al., 2011; Cox et al., 2005; Garcia-Presedo et al., 2013; Heitman et al., 2002a; 

Paziewska et al., 2007). Heitman et al. (2002) conducted a study in Alberta, Canada which 

measured a mean number of 1168 of Giardia cysts per gram and 12 Cryptosporidium oocysts per 

gram of deer feces. In Spain, two studies provided ranges of Giardia and Cryptosporidium 

pathogen concentrations in roe deer fecal matter with ranges of 5-320 and 5-47 of Giardia cysts 

per gram and 5-225 and 5-200 of Cryptosporidium oocysts per gram (Castro-Hermida et al., 

2011; Garcia-Presedo et al., 2013). The geometric mean concentrations of Giardia and 

Cryptosporidium in roe deer fecal matter were measured as 1.1 and 1.3 Giardia cysts per 

milliliter and 1.8 and 3 Cryptosporidium oocysts per milliliter in Poland (Paziewska et al., 2007). 

The lowest and highest concentrations of each reference pathogen from these studies, Rrp
S ,were 

used as the range for these pathogens in Table 2-5 (Garcia-Presedo et al., 2013; Heitman et al., 

2002a; Paziewska et al., 2007).  The lowest and highest concentrations for Salmonella and 

Campylobacter came from an unpublished study by Brooks (2017), where concentrations were 

measured in the fecal matter of three feral hogs using two approaches, enrichment combined 

with quantitative polymerase chain reaction (qPCR) and traditional cultivation (Table 2-5). 

Giardia and Cryptosporidium prevalence in deer fecal matter were measured in multiple 

studies (Castro-Hermida et al., 2011; Garcia-Presedo et al., 2013; Hamnes et al., 2006; Heitman 

et al., 2002a; Lalle et al., 2007; Ng et al., 2011; Paziewska et al., 2007; Rickard et al., 1999; 

Santin and Fayer, 2015; Trout et al., 2003). Amongst all of the studies the prevalence of Giardia 
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ranged from 0.15% to 21.2% (Heitman et al., 2002a; Ng et al., 2011). Cryptosporidium 

prevalence in deer fecal matter ranged from 0.15% to 14.4% (Heitman et al., 2002a; Paziewska 

et al., 2007).  

Multiple studies in the United States and Europe measured the prevalence (Irp
S ) of 

Salmonella and Campylobacter in feral hog fecal matter using an isolate test (Diaz-Sanchez et 

al., 2013; Jay‐Russell et al., 2012; Magnino et al., 2011; Thakur et al., 2011; Vieira-Pinto et al., 

2011; Wacheck et al., 2010; Wahlstrom et al., 2003; Zottola et al., 2013). The prevalence of 

Salmonella ranged from a low of 0% and a high of 22% (Vieira-Pinto et al., 2011; Wahlstrom et 

al., 2003). The prevalence of Campylobacter was measured in four studies as 0%, 12%, 40% and 

66%, resulting in a range of 0% to 66% (Diaz-Sanchez et al., 2013; Jay‐Russell et al., 2012; 

Wacheck et al., 2010; Wahlstrom et al., 2003). 

 

Table 2-5. Concentration (RS
rp) and prevalance (IS

rp) of reference pathogens in wildlife 

feces. 

Organism Low High 

Prevalence 

(%) References 

Giardia 

(cysts/g) 

1.1 1168 0.15-21.2 (Heitman et al., 2002a; Paziewska et 

al., 2007) 

Cryptosporidium 

(oocysts/g) 

1.8 225 0.15-14.4 (Garcia-Presedo et al., 2013; 

Paziewska et al., 2007) 

Salmonella 

(MPN/dry g enrichment) 

0 11 0-22 (J. Brooks, personal communication, 

February 2, 2017) 

Campylobacter 

(MPN/dry g enrichment) 

0 420 0-66 (J. Brooks, personal communication, 

February 2, 2017) 

 

  For human sources, the fraction of human-infectious pathogenic strains from each source 

(prp
S ) and prevalence of infection (Irp

S ) was both assumed to be 1.0.  The fraction of human-

infectious pathogenic strains (prp
S ) in sources other than human were estimated qualitatively as 



 

25 

 

low (0-33%), medium (34-66%), and high (67%-100) (Table 2-6).  These percentages were 

applied as a fraction and uniform distribution. USEPA (2010) and Soller et al. (2010) assigned 

low, medium, and high values to describe the ability of zoonotic-derived reference pathogens to 

infect humans in livestock. These values were chosen as low for all reference pathogens in 

wildlife because deer and feral hogs are not considered major hosts of human-pathogenic strains 

of Cryptosporidium, Giardia, Salmonella, and Campylobacter (USEPA, 2009).   

 

Table 2-6. Human infectious potential of reference pathogens (pS
rp) from cattle and 

wildlife. 

Organism Cattle Wildlife 

Giardia H L 

Cryptosporidium H L 

Campylobacter H L 

Salmonella M L 

E. coli O157:H7 H NA 

 

The parameters used to calculate pathogen dose contain a large amount of uncertainty 

therefore a Monte Carlo process using 10,000 simulations was used to produce distributions for 

the pathogen dose from each source.  The Monte Carlo simulations were generated using Crystal 

Ball Pro® software (Oracle Corp., Redwood Shores, CA).  

Harmel et al. (2016) examined measurement uncertainty for in stream E. coli 

measurements considering sample collection, storage, and laboratory analysis. They determined 

under a “good” scenario E. coli concentrations had ±34% uncertainty associated with the 

measurements (Harmel et al., 2016). To describe the measured E. coli concentrations (CFIB) 

probabilistically, ±34% of the geometric mean of the measured E. coli concentrations for each 
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sampling site and of the regulatory standard were used as the upper and lower bounds of the 

uniform distribution.  

The average rate of correct classification (RCC) was used to estimate the uncertainty of 

the fecal source contributions from the MST results. It was suggested that an average RCC of 

67% is more accurate and conservative than the published RCCs associated with the Lampasas 

River Watershed MST report (T. Gentry, personal communication, February 26, 2018). 

Therefore, to describe the MST source percentage probabilistically, each MST source percentage 

was multiplied by ±33% to create the upper and lower bounds of a uniform distribution.  

Variables provided as a range of numbers (RFIB
S , Rrp

S , Irp
S , prp

S ) were approximated as 

uniform distributions with the minimum and maximum values used as the  and  bounds.  The 

volume of water ingested (V) was approximated as a lognormal distribution for an adult during 

an hour swimming event with a mean of 25 milliliters and a standard deviation of 5 milliliters  

(Dufour et al., 2006; Sunger and Haas, 2015). 

Four scenarios were run varying the in-stream E. coli concentration and the MST results: 

1) the regulatory standard as the in-stream E. coli concentration input with the measured MST 

source percentages as point number inputs, 2) the regulatory standard and the measured MST 

source percentages with uncertainty applied to the point numbers, E. coli concentration and fecal 

source contribution, to create a range of numbers, 3) measured geometric mean in-stream E. coli 

concentration input with the measured MST source percentages as point number inputs, and 4) 

measured geometric mean in-stream E. coli concentration input with the measured MST source 

percentages with uncertainty applied to the point numbers, E. coli concentration and fecal source 

contribution, to create a range of numbers.  
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2.2.1. Estimating health risk 

 The risk of illness was estimated using the pathogen dose and the corresponding 

dose response model for the reference pathogen in Table 2-7. The norovirus dose-response 

model used was simplified from a hypergeometric function to a beta-binomial function because 

Crystal Ball Pro® software (Oracle Corp., Redwood Shores, CA) was unable to calculate a 

hypergeometric function.  

The risk of illness from exposure to all of the reference pathogens associated with each 

fecal source was estimated using equation 2-2 (Soller et al., 2015).  

𝑃𝑖𝑙𝑙𝑆
= 1 − ∏ (1 − 𝑃𝑖𝑙𝑙𝑟𝑝

)𝑟𝑝                                            (2-2) 

where: 

𝑃𝑖𝑙𝑙𝑆
 is the total probability of illness from the fecal source, S 

𝑃𝑖𝑙𝑙𝑟𝑝
 is the probability of illness from the reference pathogen, rp, associated with 

the fecal source, S  

The probability of illness associated from exposure to all of the sources for each individual 

reference pathogen and for all of the reference pathogens was estimated using equation 2-3 

(Gitter, 2016).  

𝑃𝑖𝑙𝑙 = 1 − ∏ (1 − 𝑃𝑖𝑙𝑙𝑆
)𝑆                                                 (2-3) 

where: 

 𝑃𝑖𝑙𝑙 is the total probability of illness associated with all fecal sources 

 𝑃𝑖𝑙𝑙𝑆
 is the probability of illness associated with the fecal source, S 
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Table 2-7. Reference pathogen dose response models. 

Reference 

Pathogen 

Dose-Response 

Model 

Dose-Response Equations Model 

Parameters 

Parameter 

Values 

Morbidity Reference 

Norovirus Hypergeometric 

as Beta 

binomial 

𝑃𝑖𝑛𝑓 = 1 −
𝐵(𝛼, 𝛽 + 𝑑𝑜𝑠𝑒)

𝐵(𝛼, 𝛽)
 

alpha 

beta 

0.04 

0.055 

60% (McBride et al., 

2013; Teunis et al., 

2008a) 

Cryptosporidium Exponential 𝑃𝑖𝑛𝑓 = 1 − exp(−𝑟 × 𝑑𝑜𝑠𝑒) r 0.09 50% (USEPA, 2006) 

Giardia lamblia Exponential 𝑃𝑖𝑛𝑓 = 1 − exp(−𝑟 × 𝑑𝑜𝑠𝑒) r 0.0199 45% (Rose and Gerba, 

1991) 

Campylobacter Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.145 

7.59 

28% (Medema et al., 1996; 

USEPA, 2010) 

Salmonella Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.3126 

2884 

20% (Haas et al., 1999) 

E. coli O157:H7 Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.4 

45.9 

28% (Teunis et al., 2008b) 
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2.2.2. Sensitivity Analysis 

The sensitivity of each input parameter was calculated to determine if changes to any one 

input would have a significant impact on the results.  The sensitivity analysis was performed 

using Crystal Ball Pro® (Oracle Corp., Redwood Shores, CA) while applying 10,000 Monte 

Carlo simulations. Spearman rank correlation coefficients, Spearman’s ρ, were computed 

between all inputs and predictions in Crystal Ball while the simulations were running (Oracle 

Corporation, 2008). Spearman’s ρ is a nonparametric measure of correlation ranging from -1 to 1 

(USEPA, 2001b). A value of ±1 indicates a perfect monotonic linear relationship between two 

variables, with a value of -1 indicating a perfect negative relationship and 1 indicating a perfect 

positive relationship (Hamby, 1994; Pirie, 1988; USEPA, 2001b). Zero indicates the variables 

are independent (Hamby, 1994; Pirie, 1988). 

 The sensitivity analysis performed by Crystal Ball Pro® (Oracle Corp., Redwood Shores, 

CA) of the measured + uncertainty scenario for each sampling site was examined to determine 

the significance of each input parameter to impact the total probability of illness and the total 

probability of illness excluding norovirus. The measured + uncertainty scenario was analyzed to 

account for the largest variation associated with all of the input parameters. Spearman’s ρ was 

calculated for 84 input parameters, comprising of each input variable in Equation 2-1 for each 

source and reference pathogen.  

2.3. Results 

The probability of illness (Pill) for four scenarios was estimated for both watersheds each 

containing two sites where MST and water quality measurements were taken (Figures 2-3-2-6). 

The addition of uncertainty to the E. coli concentration in the water body (CFIB) and the MST 
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source fractions (FS) did not impact the health risk estimates for any sites at the two study areas 

(Figure 2-3-2-6).  

 

Figure 2-3. Lampasas River Watershed site 15762 total probability of illness associated 

with all fecal sources per reference pathogen for all run scenarios. 
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Figure 2-4. Lampasas River Watershed site 15770 total probability of illness associated 

with all fecal sources per reference pathogen for all run scenarios. 
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Figure 2-5. Salado Creek Watershed site 12876 total probability of illness associated with 

all fecal sources per reference pathogen for all run scenarios. 
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Figure 2-6. Walzem Creek Watershed site 12698 total probability of illness associated with 

all fecal sources per reference pathogen for all run scenarios. 

 

Among all sites and run scenarios, the total probability of illness associated with all fecal 

source and reference pathogens exceeded the acceptable GI illness rate of 0.036 (Figures 2-3-2-

6). Norovirus was the overwhelming driver of risk amongst all sites and run scenarios. The 

acceptable GI illness rate of 0.036 was exceeded even at the regulatory standard at all sampling 

sites due to the contribution of norovirus. The probability of illness between the 25 and 75 

percentiles associated with all of the reference pathogens other than norovirus was well below 

0.036.  

To better examine the impacts on risk between all of the sources, the total probability of 

illness associated with all sources and reference pathogens and the total probability of illness 

associated with only the human source were both calculated omitting norovirus at all sampling 
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sites (Figures 2-3-2-6). The total probability of illness associated with all reference pathogens did 

not exceed the acceptable GI illness rate once norovirus was omitted (Figures 2-3-2-6). Giardia 

was the driver of health risk once norovirus was omitted. The health risk for the other reference 

pathogens, with the exception of Salmonella, were within one order of magnitude of the health 

risk associated with Giardia. 

The total probability of illness from the human source and the cumulative total 

probability of illness associated from all of the fecal sources was calculated excluding norovirus 

(Figures 2-3-2-6). Because norovirus was the overwhelming driver of risk and only associated 

with the human fecal source, it was excluded from the total probability of illness to enable a 

better comparison between the fecal sources impacting health risk through reference pathogens 

associated with all of the fecal sources. Once norovirus was excluded from the total probability 

of illness associated with both only human and all fecal sources, none of the sampling sites 

exceeded the acceptable GI illness rate of 0.036. The human source remained the driver of risk 

for both sampling sites located in the Lampasas River Watershed. However, once norovirus was 

excluded from the probability of illness associated with the human source, cattle and human 

were equally the drivers of risk for the sampling sites located in the Salado Creek Watershed 

(Figures 2-5 and 2-6). The majority of the MST measured fecal contribution was from wildlife 

for the Lampasas River watershed, but the wildlife source contributed the least to the probability 

of GI illness across all of the study areas and sampling sites (Figures 2-3 and 2-4).  

The total probability of GI illness associated with all fecal sources per reference pathogen 

for the measured (Figure 2-7) and regulatory standard (Figure 2-8) scenarios were compared 

among the sampling sites. 
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Figure 2-7. The total probability of GI illness from all associated fecal sources per 

reference pathogen at each sampling site for the measured scenario. 
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Figure 2-8. The total probability of GI illness from all associated fecal sources per 

reference pathogen at each sampling site for the regulatory standard scenario. 

 

For all four sampling sites, norovirus was the driver of total health risk and the only 

reference pathogen to exceed the acceptable GI illness rate. The probability of illness associated 

with norovirus and the total of all reference pathogens was within one order of magnitude across 

all four sampling sites. However, the probability of illness for both Lampasas River watershed 

sites for the measured scenario was below one order of magnitude compared to the other 

sampling sites associated with five reference pathogens: Campylobacter, Cryptosporidium, E. 

coli O157:H7, Giardia, and Salmonella (Figure 2-7). For the regulatory standard scenario, only 

the probability of illness associated with the Lampasas River site 15770 was below one order of 

magnitude compared to the other sampling sites associated with the same five reference 

pathogens (Figure 2-8).  
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The total probability of GI illness associated with all reference pathogens per fecal 

sources for the measured (Figure 2-9) and regulatory standard (Figure 2-10) scenarios were 

compared among the sampling sites. 

 

 

Figure 2-9. The total probability of GI illness from all associated reference pathogens per 

fecal source at each sampling site for the measured scenario. 
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Figure 2-10. The total probability of GI illness from all associated reference pathogens per 

fecal source at each sampling site for the regulatory standard scenario. 

 

 The probability of illness for human sources and the total of all sources excluding 

norovirus did not exceed the acceptable GI illness rate for the 0 to 75 percentiles across all 

sampling sites for both measured and regulatory standard scenarios (Figures 2-9 and 2-10). 

When norovirus was excluded from the probability of illness calculations, the probability of 

illness for cattle, human, and the total of all sources were within one order of magnitude of each 

other across all four sampling sites with the exception of the Lampasas 15770 site for the cattle 

fecal source. The probability of illness associated with the wildlife fecal source differed from the 

other fecal sources by more than one order of magnitude lower across all four sampling sites for 

both the measured and regulatory standard scenarios, suggesting that wildlife fecal sources have 

the least impact on health risk (Figure 2-9 and 2-10). 
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2.3.1. Sensitivity Analysis 

 Across all of the sampling sites, the five input parameters associated with calculating the 

dose of norovirus had the most significant impact on the total probability of illness associated 

with all sources and reference pathogens (Figure 2-11).  

 

 

Figure 2-11. Maximum Spearman rank correlation coefficients for dose input parameters 

to calculate the total probability of illness across all sampling sites. 

 

The five input parameters used to calculate the norovirus dose were: concentration of 

norovirus in human sewage (Rnoro
H ), E. coli concentration in human sewage (R𝐸.𝑐𝑜𝑙𝑖

H ), fraction of 

E. coli from human source (FH), E. coli concentration in the water body (CFIB), and volume of 

water ingested (V). These input parameters were the only parameters that had a Spearman’s ρ 

greater than ± 0.03 for all sampling sites to the total probability of illness associated with all 

sources and reference pathogens (Figure 2-11). The input parameters R𝑛𝑜𝑟𝑜
H  and R𝐸.  𝑐𝑜𝑙𝑖

H  had 

maximum Spearman’s ρ over ±0.5 across all sampling sites. The three remaining parameters (FH, 

CFIB, and V) were less significant with a maximum Spearman’s ρ less than ±0.2.  
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 Once norovirus was excluded from the total probability of illness calculations at all of the 

sampling sites, fourteen input parameters had Spearman’s ρ equal to or greater than ±0.1 for at 

least one out of the four sampling sites (Figures 2-12 and 2-13).  

 

 

Figure 2-12. Maximum Spearman's rank correlation coefficient for dose input parameters 

associated with the human fecal source to calculate the total probability of illness excluding 

norovirus across all sampling sites. 

 

Out of the fourteen input parameters with Spearman’s ρ equal or greater than ±0.1, only 

four input parameters had Spearman’s ρ equal to or greater than ±0.1 across all four sampling 

sites (Figure 2-12). The input parameters, RE.coli 
H and R𝐺𝑖𝑎𝑟𝑖𝑑𝑎,

H  for the human source associated 

with calculating the dose for Giardia were the most significant parameters contributing to 

variance with Spearman’s ρ greater than or equal to ±0.45 (Figure 2-12). The four input 

parameters with Spearman’s ρ greater than ±0.1 across all four sampling sites were only 

associated with the human fecal source. The input parameters associated with cattle had a 
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Spearman’s ρ of 0 for the Lampasas 15770 sampling site because there was a 0 percent 

contribution of cattle at that site.  

 Only input parameters associated with human and cattle fecal sources received 

Spearman’s ρ values greater than ±0.1. These parameters were mostly associated with the 

pathogens, Cryptosporidium, Giardia, and Campylobacter, while only one parameter was 

associated with E. coli O157:H7. The results of the sensitivity analysis indicated that wildlife and 

Salmonella were not significant drivers of risk. 

 

 

Figure 2-13. Maximum Spearman's rank correlation coefficient for dose input parameters 

associated with the cattle fecal source to calculate the total probability of illness excluding 

norovirus across all sampling sites. 

 

2.4. Discussion  

Adding measurement uncertainty to the E. coli concentration in the water body (CFIB) and 

the fraction of source in the water body (FS) did not appear to impact the risk results therefore, 

the hypothesis that adding measurement uncertainty would significantly impact the health risk 
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results was not supported. The sensitivity analysis showed that these parameters were not 

significant to the results across all four of the sampling sites compared to the E. coli 

concentration in feces or in sewage from the source (RFIB
S ) and the concentration of reference 

pathogen in feces or in sewage from the source (Rrp
S ). This is likely why the risk results were not 

impacted when these input variables were adjusted. Currently, fresh water bodies are regulated 

solely on the E. coli concentration in the water body and remediated based on E. coli loads of the 

highest contributing fecal sources. Therefore, it was extremely surprising that the E. coli 

concentration in the water body and the fraction of source in the water body did not significantly 

impact health risk. 

Norovirus was the overwhelming driver of risk even though it was the only pathogen that 

was applied to a singular source, human, that contributed less than half of the fecal 

contamination to the water bodies. Human fecal matter was the most significant source 

impacting the total probability of illness associated with all of the fecal sources and reference 

pathogens because norovirus was only associated with human fecal sources, therefore the second 

hypothesis of this work was supported. MST results across all of the sampling sites showed 

human fecal sources contributed as little as 12% to as much as 34% of the total E. coli 

contamination. Yet the probability of GI illness associated with norovirus exceeded the 

USPEA’s acceptable level of risk (0.036) for all of the run scenarios at all four sampling sites. 

The acceptable level of risk was exceeded for norovirus even when the E. coli concentration in 

the water body met the regulatory standard. This did not support the third hypothesis that the 

health risk associated with all of the fecal sources would equal the USEPA’s acceptable level of 

risk at the regulatory standard. 
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Norovirus was excluded from the total probability of illness calculations associated with 

all other reference pathogens and all fecal sources to further compare the impact of the individual 

fecal sources on health risk. Giardia was the main driver of risk once norovirus was excluded, 

but other reference pathogens, with the exception of Salmonella, were within one order of 

magnitude of Giardia. Salmonella did not significantly impact the total probability of illness 

even though it was included for all of the fecal sources, unlike norovirus and E. coli O157:H7.  

Human fecal sources were still the main driver of risk once norovirus was excluded from 

the total probability of illness calculations. However, cattle fecal sources were also a significant 

driver of risk in addition to human fecal sources. Even though wildlife fecal sources were the 

largest contributor to E. coli contamination in the water bodies, with a contribution of 77% at one 

sampling site, wildlife did not significantly impact the total probability of illness for any 

pathogens associated with wildlife fecal sources.  

For remediation of water bodies contaminated with microbial pollutants, pathogen 

TMDLs are a flawed approach. Pathogens are regulated in water bodies through FIB water 

quality criteria. Therefore, TMDLs are solely focused on lowering the FIB load within a 

watershed through the largest contributing source. This approach diverges from the purpose of 

the water quality criteria which is to protect human health. The results of this study showed that 

the largest contributing source (wildlife) can have no impact on human health. Meanwhile, the 

lowest contributing source (human) can still have a significant impact on human health, 

particularly if present due to the infectivity of the pathogens associated with that source. For 

remediation to have significant impacts, it should be focused on sources that are the riskiest to 

human health instead of those contributing the largest FIB load. Remediation of water bodies 
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contaminated with microbial pollutants should move away from focusing on meeting a numerical 

FIB standard and instead focus on meeting the acceptable illness rate.  

2.5. Conclusions 

The probability of GI illness from exposure to fecal matter originating from human, 

cattle, and wildlife sources was calculated in three water bodies. The probability of GI illness 

was calculated by applying QMRA and MST using four different run scenarios. The source 

contributing the largest percentage of fecal matter into the water body (wildlife) did not have a 

significant impact on human health. Meanwhile, human fecal sources contributed as little as 12% 

to the microbial contamination in a water body, but were the overwhelming driver of risk. 

Remediation efforts aimed at improving human health should focus on the riskiest sources 

impacting human health.  

 

 



 

45 

 

3. COUPLING THE SOIL AND WATER ASSESSMENT TOOL WITH QUANTITATIVE 

MICROBIAL RISK ASSESSMENT TO ESTIMATE HEALTH RISK FROM EXPOSURE TO 

FECAL CONTAMINATION IN RECREATIONAL WATER BODIES FROM POINT AND 

NON-POINT SOURCES 

 

3.1. Introduction 

Pathogens are the primary cause of impairment for rivers and streams in the United States 

(USEPA , 2019). A water body is considered impaired by pathogens if it is exceeding the 

Recreational Water Quality Criteria (RWQC) of the Fecal Indicator Bacteria (FIB) 

concentration. For fresh waters, the RWQC FIB is Escherichia coli (E. coli) with a geometric 

mean of 126 colony-forming units (CFU) per 100 milliliters (mL) (Dufour and Ballentine, 1986). 

The purpose of the RWQC is to protect human health with the assumption that the FIB 

concentration corresponds to an acceptable gastrointestinal (GI) illness rate of 36 per 1000 

people (0.036) from exposure through contact recreation to microbial contamination (Dufour and 

Ballentine, 1986; USEPA, 2012). The USEPA standard FIB concentrations are strongly linked to 

GI illness from exposure to water bodies contaminated with human sources (Cabelli, 1983; 

Dufour, 1984; Wade et al., 2003; Wu et al., 2011). The connection between FIB concentrations 

and GI illness was inconclusive for epidemiology studies in recreational water contaminated with 

non-human sources, but pathogens from cattle may result in similar health risks as human 

sources (Calderon et al., 1991; Colford et al., 2007; Mcbride et al., 1998; USEPA, 2010). 

Additionally, FIB are not the cause of waterborne disease but an indication fecal contamination 

which may contain pathogens that directly cause waterborne disease. The RWQC do not differ 

based on the source of contamination (USEPA, 2012).   
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Total Maximum Daily Loads (TMDLs) are used to remediate contamination in water 

bodies in the United States. The TMDL is the maximum amount of pollutant load a water body 

can receive and still meet the RWQC (USEPA, 2008). In a TMDL, point and non-point sources 

contributing microbial contamination in a watershed are identified and wasteload or load 

allocations are determined for each fecal source. All pollutant sources are treated equally when 

developing a TMDL (USEPA, 2008). However, fecal sources are not equal in their likelihood to 

cause human illness and this should be taken into account when remediating a water body for 

pathogens. The TMDL approach solely focuses on remediation to meet the numerical FIB water 

quality standard regardless of the source.  

Quantitative Microbial Risk Assessment (QMRA) is an approach to estimate the health 

risk from exposure to infectious microorganisms by applying the principles of risk assessment 

(Haas et al. , 2014). QMRA has been used in conjunction with watershed modeling to estimate 

potential human health risks from exposure to simulated FIB concentrations from human and 

non-human sources during rainfall events (Eregno et al., 2016; Liao et al., 2016). These studies 

applied the watershed-scale model Hydrological Simulation Program-FORTRAN (HSPF) and 

were not able to include all sources of potential contamination particularly non-avian wildlife. 

Soil and Water Assessment Tool (SWAT) is a watershed-scale model that simulates in-stream 

bacteria concentrations using runoff events to drive the fate and transport of bacteria (Saleh and 

Du, 2004). Spatially Explicit Load Enrichment Calculation Tool (SELECT) is a geographic 

information system (GIS) tool that uses spatial factors such as land use, fecal source population 

densities, and soil properties to predict potential E. coli loads within a watershed (Teague et al., 

2009). SELECT can be used as the bacterial source input for rainfall-runoff models such as 

HSPF or SWAT to predict in stream FIB concentrations (Borel et al., 2012b). Other QMRA 
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studies have modeled the dispersion of pathogens to estimate a potential pathogen dose from 

exposure but only included  a single source of contamination (Andersen et al., 2013; Sokolova et 

al., 2012; Sokolova et al., 2015). The aim of this study is to address these gaps by using model 

simulated E. coli concentrations from model predicted human and non-human source loads 

including non-avian wildlife to predict QMRA human health risks.  

The objective of this study is to test the hypothesis that SWAT in conjunction with 

SELECT can be used to simulate source-specific E. coli concentrations for input into a QMRA to 

determine the likelihood of GI illness from exposure by contact recreation to fecal contamination 

in a water body. If successful the methodology proposed by this study can be applied to predict 

health risk under a range of hydrologic conditions from contact with pathogens associated with 

fecal contamination in watersheds. 

3.1.1. Study Area 

The Lampasas River (Figure 3-1) flows southeast for 121 kilometers (75 miles) into the 

Stillhouse Hollow Reservoir (Gregory et al., 2013). The river was listed on the 2008 Texas 

303(d) list for elevated levels of bacteria exceeding the water quality criteria for contact 

recreation use (TCEQ, 2015). The Lampasas River Watershed is 3,231 square kilometers (1,247 

square miles) with the majority of land used for rangeland and grasslands (Gregory et al., 2013; 

Prcin et al., 2013). 

That Lampasas River Watershed contains three United States Geological Survey (USGS) 

gauging stations, two Texas Commission on Environmental Quality (TCEQ) water quality 

monitoring stations, and two WWTP outfalls which are all located in the southern portion of the 

watershed (Figure 3-1). Both TCEQ water quality monitoring stations are located on the main 

stem of the Lampasas River and at the same location as a USGS gauging station. Fecal coliform 
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and E. coli monitoring was conducted at both TCEQ stations. At TCEQ station 11897 fecal 

coliform and E. coli data were collected from 1988 to the present, resulting in 133 data points of 

fecal coliform and E. coli concentrations with 117 unique days tested. USGS station 8103800 is 

co-located with TCEQ station 11897 and has a continuous record of daily discharge ranging 

from 1962 to the present. TCEQ station 11896 has a corresponding location with USGS station 

8103940, however, there were not enough continuous matching data to use this station.  

 

 

Figure 3-1. Location of the Lampasas River Watershed with USGS gauging stations, 

TCEQ water quality stations, and WWTP outfalls. 
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3.2. Methodology 

Non-point source fecal loads were spatially estimated within the Lampasas River 

Watershed using SELECT from three general sources: cattle, human, and non-avian wildlife. 

SWAT was used to simulate source specific in-stream E. coli concentrations from the fecal loads 

estimated by SELECT. SWAT-simulated in-stream E. coli concentrations were used to estimate 

reference pathogen doses which were input into a QMRA to estimate human health risk 

associated with exposure to fecal contamination from contact recreation in impaired waters 

(Figure 3-2). 

 

 

Figure 3-2. Flowchart to estimate health risk using SELECT and SWAT. 

 

 

3.2.1. Estimating E. coli surface loads with SELECT 

Daily fecal production densities (kg/ha/day) for non-point sources such as livestock, non-

avian wildlife, and failing Onsite Wastewater Treatment Systems (OWTS) were estimated using 

SELECT. SELECT uses GIS to spatially distribute potential sources within a watershed. 
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SELECT was used to spatially distribute the daily fecal production densities for each non-point 

source across unique subwatershed and land use areas. The livestock sources located in the 

watershed and the animal counts were determined using the U.S. Department of Agriculture 

(USDA) National Agricultural Statistic Service (NASS) Census of Agriculture (USDA NASS, 

2012). The Lampasas River Watershed contained cattle, goats, sheep, and horses as likely 

livestock sources. Census of Agriculture livestock animal counts are provided on a county basis, 

therefore animal counts within the Lampasas River watershed were estimated using the 

proportion of the watershed that was within each county and summed to estimate the proportion 

of livestock within the watershed. A livestock density within each county area in the watershed 

was calculated by distributing the livestock on suitable areas of land cover they are found on 

within the watershed using the National Land Cover Database (NLCD) (Homer et al., 2015).  

The non-avian wildlife sources of deer and feral hogs were chosen based on the 

availability of animal density estimations and the likelihood of being significant wildlife sources 

of fecal contamination.  Deer densities within the Lampasas River watershed were estimated 

from deer densities associated with two resource management units (RMUs) located in the 

Lampasas River Watershed (Lockwood, 2006). The deer population for the two RMUs within 

the Lampasas River Watershed was distributed across corresponding suitable areas in the 

watershed. The feral hog density determined by the Lampasas River Watershed stakeholders, 

local land owners and governmental agency employees, was distributed on suitable riparian areas 

within 100 meters of a stream (Borel et al., 2012a; Prcin et al., 2013). Fecal production densities 

per source were calculated per subwatershed by dividing the animal count and the animal daily 

fecal production rate by the suitable habitat area (Borel et al., 2015; Wagner and Moench, 2009). 
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The distribution of failing OWTS across the watershed was estimated using the Python 

SELECT (pySELECT) potential E. coli load GIS module (Borel et al., 2017). The number of 

people using OWTS was estimated from census blocks (USCB, 2012) and by removing the areas 

serviced by sanitary sewer systems determined from the certificate of convenience and necessity 

(CCN) (Public Utility Commission of Texas, 2017). The number of failing OWTS was estimated 

using the drain field limitation class for soils (USDA-NRCS , 2016) by applying a failure rate to 

the classes of soils (Borel et al., 2017). Daily fecal production rate (L/day) from failing OWTS 

was calculated per subwatershed by dividing  the number of people on failing OWTS and the 

volume of wastewater produced per person (265 L/person/day) (Riebschleager et al., 2012) by 

the areas within each subwatershed not serviced by sewer (Borel et al., 2017). The City of 

Lampasas Wastewater Treatment Plant (WWTP) was the only WWTP in the Lampasas 

Watershed located upstream from the sampling station. As a conservative measure, it was 

assumed the City of Lampasas WWTP was meeting the regulatory discharge standard for 

WWTPs of 126 CFU per 100 mL of E. coli (TCEQ, 2009). Therefore, the regulatory standard 

was the bacteria estimation input into SWAT at the subwatershed location for the City of 

Lampasas WWTP. 

The fecal coliform density for each source was multiplied by the fecal coliform to E. coli 

conversion factor of 0.63 to calculate the E. coli density per source (Borel et al., 2017; Borel et 

al., 2015; USEPA, 2001c; Wagner and Moench, 2009). The fecal coliform to E. coli conversion 

factor was determined dividing the primary contact recreation regulatory standard for surface 

waters for fecal coliform, 200 colony forming units (CFU) per 100 milliliters, into the primary 

contact recreation regulatory standard for E. coli, 126 CFU per 100 mL (Dufour and Ballentine, 

1986).  
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3.2.2. SWAT Setup and Hydrology Calibration 

 The SWAT model inputs for the Lampasas River Watershed were setup in Hydrologic 

and Water Quality System (HAWQS) to ease input data collection and formatting (Spatial 

Sciences Laboratory Texas A&M Agrilife Research, 2017). The SWAT model was calibrated 

using Sequential Uncertainty Fitting (SUFI-2) with SWAT Calibration Uncertainty Programs 

(SWAT-CUP) (Abbaspour, 2015; Arnold et al., 2012). The sixteen SWAT parameters: 

ALPHA_BF, GW DELAY, CN2, SOL_AWC, ESCO, RCHRG_DP, REVAPMN, GW_REVAP, 

ALPHA_BF_D, CH_K(2), CH_K(1), SLSOIL, LAT_TTIME, CNCOEF, ICN, and GWQMN 

were adjusted to calibrate the model on a monthly time step with monthly average USGS 

streamflow measurements at the 8103800 USGS gauge located in the Lampasas River Watershed 

(Appendix A). SWAT was calibrated for streamflow from 2008-2014 on a monthly time step 

resulting with a Nash-Sutcliffe Efficiency (NSE) coefficient of 0.86 and a coefficient of 

determination (R2) of 0.87.  

3.2.3. SWAT Bacteria Calibration 

Measured E. coli concentrations were collected as grab samples, or single sample 

measurements taken at a specific time, on a monthly or quarterly time step. Therefore, to account 

for the variability in the E. coli samples, calibration of the measured E. coli concentrations was 

performed in three ways, on the exact day of measurement, and after the days prior to and 

following the day the measurement was taken, and the best calibration scenario was chosen. 

Calibrating against the day prior to the day on which the measurement was taken resulted in the 

best values of the objective functions, an NSE of 0.84 and R2 of 0.87. SWAT was calibrated 

from 2008 to 2014 with 44 observed E. coli concentrations on a daily time step using fecal 

source inputs from cattle, goats, sheep, horses, deer, feral hogs, and OWTSs and WWTPs 
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estimated by SELECT.  SELECT calculated fecal production rates associated with all sources 

per land use type and subwatershed were input into the SWAT model using SWAT Editor.  The 

fecal production rates were entered into SWAT as daily grazing operations as part of the 

management parameters to distribute the fecal matter over the land surface. SWAT was 

calibrated using SUFI-2 in SWAT-CUP with the nine parameters: BACTKDQ, BACTKDDB, 

THBACT, BACT_SWF, WDPRCH, WDPF, WOF_P, BACTMX, and BACTMINP (Appendix 

A) (Thilakarathne et al., 2018). The values of the nine parameters input into SWAT-CUP 

associated with the best simulation out of 1000 simulations were input into the SWAT model 

using SWAT Editor as the calibrated model. After the SWAT simulated E. coli concentrations 

were calibrated using all fecal source inputs, they were partitioned into source-specific E. coli 

concentrations for the individual sources: OWTSs, WWTPs, cattle, feral hogs, and deer. The 

previous SELECT calculation fecal production rates associated with all sources were cleared 

from the model using SWAT Editor. Then the SELECT calculated fecal production rates 

associated with each particular source were input individually per land use type and 

subwatershed per source and the model was run individually for each source. This resulted in 

source-specific E. coli concentrations for each individual source.  

3.2.4. Quantitative Microbial Risk Assessment (QMRA) 

Human health risk was estimated from the SWAT simulated source-specific E. coli 

concentrations by applying QMRA. Reference pathogen doses associated with exposure from 

fecal contamination three fecal sources (s): human, cattle, and non-avian wildlife in recreational 

water bodies were estimated using Equation 3-1 modified from Schoen and Ashbolt (2010).  The 

reference pathogens used to represent pathogens in fecal matter that cause waterborne illness in 

humans were: norovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter spp., 
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Salmonella, and E. coli O157:H7. Eight waterborne reference pathogens were established by 

USEPA (2010) however, only six were used in the QMRA as described below. There is currently 

no published ingestion dose- response relationship for adenovirus, therefore adenovirus was not 

included (USEPA, 2010). Rotavirus can be shed by calves and piglets but the strains are host 

specific and not likely to infect humans, so rotavirus was excluded from this study (Martella et 

al., 2010; USEPA, 2010).  

Human fecal sources included OWTSs and WWTPs as raw sewage and secondary 

disinfected effluent, respectively. For livestock fecal sources, only cattle were considered in the 

health risk calculations due to a lack of data available related to pathogen concentrations, 

prevalence, and infectivity in the other livestock fecal sources. Non-avian fecal sources included 

both deer and feral hogs.  

The reference pathogen (rp) dose (μrp
S ) (number of pathogens or genomes) was calculated 

as: 

                                                 μrp
S =

CFIB
S

RFIB
S ×100

× Rrp
S × prp

S × Irp
S × V                                      (3-1) 

CFIB
S  is the source-specific(S) SWAT simulated E. coli concentration in the water 

body (CFU/100mL) for a particular FIB. 

RFIB
S  is the E. coli concentration in feces (wet mass) (CFU/g) or in sewage from 

source S (CFU/L) 

Rrp
S  is the concentration of pathogen species in feces (wet mass) (number of 

pathogens or genomes/g) or in sewage from source S (number of pathogens or 

genomes/L) 

prp
S  is the fraction of human-infectious pathogenic strains from source S 
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Irp
S is the prevalence of infection in the non-human source, i.e. cattle and non-avian 

wildlife, S (proportion of animals shedding the pathogen) 

V is the volume of water ingested (mL) 

The input parameters into the dose equation (Equation 3-1) contain a large degree of 

uncertainty, therefore 10,000 Monte Carlo simulations were generated with Crystal Ball Pro® 

software (Oracle Corp., Redwood Shores, CA) to produce distributions for the pathogen dose 

with each source.  Load Duration Curves (LDCs) were developed using SWAT simulated daily 

streamflow and source-specific E. coli concentrations at the calibration site from 2008-2014. The 

LDCs were divided into five flow regimes: high flows (0-10%), moist conditions (10-40%), mid-

range flows (40-60%), dry conditions (60-90%), and low flows (90-100%) (USEPA, 2007). 

CFIB
S  are the source-specific daily SWAT simulated E. coli concentrations within each flow 

regime and were input as a left skewed triangular distribution. The triangular distribution within 

each flow regime was calculated by determining the minimum, maximum, and likeliest values. 

The minimum and likeliest values were zero across all flow regimes and fecal sources, and 

therefore they were not included in Table 3-1, whereas the maximum and mean values differed 

across all flow regimes and fecal sources (Table 3-1). 
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Table 3-1. Mean and maximum values of SWAT simulated E. coli concentrations (CS
FIB) 

(CFU/100 mL). 

Source  

High 

Flows 

Moist 

Conditions 

Mid-

Range 

Flows 

Dry 

Conditions 

Low 

Flows 

WWTP 
Maximum 5.64 4.24 0.74 0.45 0.46 

Mean 0.19 0.06 0.09 0.11 0.22 

OWTS 
Maximum 20.11 11.02 1.12 0.40 0.02 

Mean 0.43 0.03 0.01 0.0009 0.0001 

Cattle 
Maximum 511.9 308.9 74.27 8.09 0.32 

Mean 13.31 0.76 0.47 0.03 0.002 

Wildlife 
Maximum 5.62 4.13 0.56 0.05 0.004 

Mean 0.13 0.01 0.0023 0.0001 0.00002 

All 

Sources 

Maximum 47340 30390 7689 836 31 

Mean 1261 81 48 2.99 0.71 

 

The variables: RFIB
S , Rrp

S , prp
S , Irp

S  were estimated as uniform distributions with the 

minimum and maximum values used as the α and β bounds (Table 3-2). The volume of water 

ingested (V) was an adult during a one hour swimming event approximated as a lognormal 

distribution with a mean of 25 mL and a standard deviation of 5 mL (Dufour et al., 2006; Sunger 

and Haas, 2015). 
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Table 3-2. Reference pathogen dose input parameters 

Fecal Source RFIB
S  

(cfu/g or L) 

Reference 

Pathogen 
Rrp

S  

(pathogens/g or L) 

prp
S  𝐼𝑟𝑝

𝑆  References 

Human WWTP 3.16-10,000 norovirus 47-7,499 100% 100% (Katayama et al., 2008; Lodder and 

de Roda Husman, 2005; Soller et 

al., 2010b; USEPA, 2010) 
Giardia 0.1-126 100% 100% 

Cryptosporidium 0.1-32 100% 100% 

OWTS 5,010,000-

100,000,000 

norovirus 1,000-1,000,000 100% 100% (Soller et al., 2010b; USEPA, 2010) 

Giardia 6-10,000 100% 100% 

Cryptosporidium 1-398 100% 100% 

Salmonella 3-1,000 100% 100% 

Campylobacter 1-200 100% 100% 

E. coli O157:H7 1-1,995.0 100% 100% 

Livestock Cattle 335-

17,400,000 

Giardia 1.58-3162 67-100% 0.2-37% (Padia et al., 2012; Soller et al., 

2010b; USEPA, 2010) Cryptosporidium 0.5-1,585 67-100% 0.6-23% 

Salmonella 398-39,811 34-66% 5-18% 

Campylobacter 63-31,623 67-100% 5-38% 

E. coli O157:H7* 1202,30.9* 67-100% 9.7-28% 

Wildlife Deer 46,000-

26,900,000 

Giardia 1.1-1,168 0-33% 0.15-21.2% (Gallagher, 2012; Garcia-Presedo et 

al., 2013; Heitman et al., 2002b; Ng 

et al., 2011; Paziewska et al., 2007) 
Cryptosporidium 1.8-225 0-33% 0.15-14.4% 

Feral 

Hogs 

79,500-

41,600,000 

Salmonella 0-11 0-33% 0-22% (Brooks, 2017; Diaz-Sanchez et al., 

2013; Gallagher, 2012; Vieira-Pinto 

et al., 2011; Wacheck et al., 2010; 

Wahlstrom et al., 2003) 

Campylobacter 0-420 0-33% 0-66% 

*lognormal distribution mean and standard deviation
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The risk of GI illness stated as the probability of GI illness, was estimated using the 

reference pathogen dose and the corresponding dose response model in Table 3-3. The 

hypergeometric function used for the norovirus dose-response model was simplified to a beta-

binomial function because Crystal Ball Pro® software (Oracle Corp., Redwood Shores, CA) was 

unable to calculate a hypergeometric function (McBride et al., 2013; Van Abel et al., 2017).   

The source specific risk of illness from exposure to all reference pathogens associated 

with a source was estimated using Equation 3-2 (Soller et al., 2010b). 

𝑃𝑖𝑙𝑙𝑆
= 1 − ∏ (1 − 𝑃𝑖𝑙𝑙𝑟𝑝

)𝑟𝑝                                            (3-2) 

where: 

𝑃𝑖𝑙𝑙𝑆
 is the total probability of illness from the fecal source, S 

𝑃𝑖𝑙𝑙𝑟𝑝
 is the probability of illness from the reference pathogen, rp, associated with 

the fecal source, S  

 

The total probability of illness from exposure to all of the sources was calculated using Equation 

3-3 (Gitter, 2016; Soller et al., 2014).  

𝑃𝑖𝑙𝑙 = 1 − ∏ (1 − 𝑃𝑖𝑙𝑙𝑆
)𝑆                                                 (3-3) 

where: 

 𝑃𝑖𝑙𝑙 is the total probability of illness associated with all fecal sources 

 𝑃𝑖𝑙𝑙𝑆
 is the probability of illness associated with the fecal source, S 
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Table 3-3 Reference pathogen dose response models. 

Reference 

Pathogen 

Dose-Response 

Model 

Dose-Response Equations Model 

Parameters 

Parameter 

Values 

Morbidity Reference 

Norovirus Hypergeometric 

as Beta 

binomial 

𝑃𝑖𝑛𝑓 = 1 −
𝐵(𝛼, 𝛽 + 𝑑𝑜𝑠𝑒)

𝐵(𝛼, 𝛽)
 

alpha 

beta 

0.04 

0.055 

60% (McBride et al., 

2013; Teunis et al., 

2008a) 

Cryptosporidium Exponential 𝑃𝑖𝑛𝑓 = 1 − exp(−𝑟 × 𝑑𝑜𝑠𝑒) r 0.09 50% (USEPA, 2006) 

Giardia lamblia Exponential 𝑃𝑖𝑛𝑓 = 1 − exp(−𝑟 × 𝑑𝑜𝑠𝑒) r 0.0199 45% (Rose and Gerba, 

1991) 

Campylobacter Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.145 

7.59 

28% (Medema et al., 1996; 

USEPA, 2010) 

Salmonella Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.3126 

2884 

20% (Haas et al., 1999) 

E. coli O157:H7 Beta-Poisson 
𝑃𝑖𝑛𝑓 = 1 − [1 +

𝑑𝑜𝑠𝑒

𝛽
]

−𝛼

 
alpha 

beta 

0.4 

45.9 

28% (Teunis et al., 2008b) 
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3.2.5. Sensitivity Analysis 

The sensitivity of each input parameter was calculated to determine the ability of each 

input parameter to impact the total probability of illness and the total probability of illness 

excluding norovirus. The sensitivity analysis was performed using Crystal Ball Pro® (Oracle 

Corp., Redwood Shores, CA) while applying 10,000 Monte Carlo simulations. Spearman rank 

correlation coefficients, Spearman’s ρ, were computed between all inputs and predictions in 

Crystal Ball (Oracle Corporation, 2008). Spearman’s ρ is a nonparametric measure of correlation 

ranging from -1 to 1 (USEPA, 2001b). A value of ±1 indicates a perfect monotonic linear 

relationship between two variables and zero indicates the variables are independent (Hamby, 

1994; Pirie, 1988; USEPA, 2001b). Spearman’s ρ was calculated for 75 input parameters (i.e. 

each input variable in Equation 3-1 for each source and each reference pathogen).  

3.3. Results 

The probability of GI illness (Pill), or health risk, associated with all QMRA fecal sources 

(WWTP, OWTS, cattle, deer, and feral hogs) was estimated for each flow regime. The total 

probability of illness associated with all fecal sources and reference pathogens exceeded the 

RWQC of 36 per 1000 people (0.036) across all flow regimes (Figures 3-2 and 3-3). For all flow 

regimes, norovirus was the overwhelming driver of health risk. The RWQC was exceeded across 

all flow regimes for norovirus. The probability of GI illness between the 25th and 75th percentiles 

for all reference pathogens other than norovirus was well below the RWQC (Figure 3-3).  

The total probability of GI illness associated with all fecal sources was calculated 

excluding norovirus to better compare the health risk amongst all sources because norovirus is 

only associated with human sources. Additionally, the source specific health risk associated with 

all reference pathogens for total human sources, OWTS, and WWTP was calculated excluding 
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norovirus (Figure 3-4). The total probability of GI illness excluding norovirus did not exceed 

RWQC. Once norovirus was excluded, Cryptosporidium and Giardia were the reference 

pathogens most significantly contributing to the health risk. Cryptosporidium and Giardia had 

health risk results within the same order of magnitude of each other but were four orders of 

magnitude less than norovirus. The health risks associated with Campylobacter and E. coli 

O157:H7 were within the same order of magnitude and one order of magnitude less than 

Cryptosporidium and Giardia. Salmonella was the reference pathogen that had the least impact 

on health risk and was seven orders of magnitude less than norovirus (Figure 3-3).  

The probability of illness between the flow conditions differs considerably between high 

flows and low flows. The total health risk and the total excluding norovirus health risk differ 

from high flows to low flows by an entire order of magnitude. The difference between the 

probability of illness during high flows and low flows associated with norovirus, Giardia, and 

Cryptosporidium was one order of magnitude. The bacteria reference pathogens (Campylobacter, 

E. coli O57:H7, and Salmonella) had health risk results that differed by three orders of 

magnitude from high flows to low flows (Figure 3-3).
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Figure 3-3. The total probability of GI illness from all associated fecal sources per reference pathogen for each flow condition. 
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The probability of illness associated with the WWTP is within the same order of 

magnitude across all flow regimes. However, once norovirus was excluded the probability of 

illness associated with the WWTP differed by one order of magnitude from high flows to low 

flows. All other fecal sources (OWTS, OWTS excluding norovirus, cattle, deer, and feral hogs) 

had a difference of three orders of magnitude for health risk from high flows to low flows 

(Figure 3-4).  

The probability of GI illness associated with the WWTP for all reference pathogens 

exceeded the RWQC across all flow regimes (Figure 3-4). The health risk associated with 

OWTS for all reference pathogens only exceeded the RWQC between the 25th and 75th 

percentiles for high flows and moist conditions. All sources other than human (cattle, feral hogs, 

and deer) had a probability of GI illness below the RWQC across all flow conditions (Figure 3-

4). Once norovirus was excluded, the WWTP and OWTS fecal sources did not exceed the 

RWQC between the 25th and 75th percentiles.  

The probability of GI illness associated with WWTP was within the same order of 

magnitude as the total probability of GI illness associated with all fecal sources across all flow 

regimes, suggesting that the WWTP fecal source is the main driver of health risk. The health risk 

associated with OWTS varied from one order of magnitude to three orders of magnitude less 

than the total health risk associated with all sources from high flows to low flows. The 

probability of illness associated with cattle during high flows and low flows was four to six 

orders of magnitude lower than the total probability of illness associated with all sources. Both 

wildlife sources contributed the least to health risk. Total probability of illness for feral hogs was 

ten to twelve orders of magnitude and deer ranged between eight to ten orders of magnitude 

lower than the total health risk associated with all sources (Figure 3-4).  
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Once norovirus was excluded from the probability of GI illness estimations, the health 

risk associated with the WWTP fecal source was also within the same order of magnitude as the 

total health risk associated with all sources across all flow regimes. This suggests that the 

WWTP source was the main contributor to health risk once norovirus was excluded. From high 

flows to low flows, the probability of GI illness associated with cattle was one to three orders of 

magnitude lower than the total probability of illness associated with all sources. The health risk 

associated with OWTS was two to four orders of magnitude lower than the total health risk 

associated with all sources from high flows to low flows. Wildlife remained the least 

contributing source when norovirus was excluded, ranging from five to seven orders of 

magnitude less than the total health risk (Figure 3-4).
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Figure 3-4. The total probability of GI illness from all associated reference pathogens per fecal source for each flow condition. 
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3.3.1. Sensitivity Analysis 

Across all flow regimes, the input parameters associated with calculating the dose of 

norovirus had the greatest impact on the total probability of GI illness associated with all fecal 

sources and reference pathogens (Figure 3-5). The seven input parameters used to calculate the 

dose of norovirus were: concentration of norovirus in raw sewage (Rnoro
O ), E. coli concentration 

in raw sewage (RE.  coli
O ), OWTS E. coli concentration in the water body (CFIB

O ), WWTP E. coli 

concentration in the water body (CFIB
W ), concentration of norovirus in secondary disinfected 

effluent (Rnoro
W ), E. coli concentration in secondary disinfected effluent (RE.  coli

W ), and the volume 

of water ingested (V). These seven input parameters were the only input parameters with 

Spearman’s ρ greater than or equal to ±0.1 for at least one flow regime. The input parameters 

Rnoro
W , RE.  coli

W , and CFIB
W  had Spearman’s ρ greater than ±0.3 across all flow regimes. Three input 

parameters, 𝐶𝐹𝐼𝐵
𝑂 , 𝑅𝑛𝑜𝑟𝑜

𝑂 , and 𝑅𝐸.  𝑐𝑜𝑙𝑖
𝑂 , had Spearman’s ρ greater than ±0.2 only for high flows and 

moist conditions, while the other flow conditions for these parameters had Spearman’s ρ less 

than or equal to ±0.05. The input parameter V had Spearman’s ρ greater than or equal to ±0.1 for 

all flow regimes except high flows.  
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Figure 3-5. Spearman rank correlation coefficients for dose input parameters to calculate 

the total probability of illness. 

 

Once norovirus was excluded from the total probability of GI illness associated with all 

reference pathogens and fecal sources, eight input parameters had Spearman’s ρ values greater 

than ±0.1 for at least one flow regime (Figure 3-6). The input parameter of the WWTP E. coli 

concentration in the water body (CFIB
W ) had the most significant impact on the total probability of 

GI illness, with Spearman’s ρ values greater than or equal to ±0.5 across all flow regimes. Four 

input parameters associated with the WWTP had Spearman’s ρ values greater than ±0.1 across 

all flow regimes. These four input parameters were E. coli concentrations in secondary 

disinfected effluent (RE.  coli
W ) associated with calculating the dose of Cryptosporidium and 

Giardia, the concentration of Cryptosporidium in secondary disinfected effluent (RCrypto
W ), and 

the concentration of Giardia in secondary disinfected effluent (RGiardia
W ). The two input 

parameters of the cattle E. coli concentration in the water body (CFIB
C ) and the E. coli 
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concentration in cattle feces (RE.  coli
C ) associated with calculating the dose of Cryptosporidium 

had Spearman’s ρ values greater than ±0.1 for only high flows, moist conditions, and mid-range 

flows. The input parameter of the E. coli concentration in cattle feces (RE.  coli
C ) associated with 

calculating the dose of Giardia had Spearman’s ρ values greater than ±0.1 for only high flows 

and mid-range flows.  

 The input parameters associated with WWTP and cattle fecal sources were the only 

parameters that had Spearman’s greater than ±0.1. Additionally, these input parameters were 

only associated with the reference pathogens of Cryptosporidium and Giardia. This sensitivity 

analysis suggests that the wildlife fecal source and the bacteria reference pathogens 

(Campylobacter, E. coli O157:H7, and Salmonella) were not significant contributors to health 

risk.   

Flow condition does not appear to greatly impact the sensitivity related with the input 

parameters associated with the WWTP because the Spearman’s ρ do not vary considerably 

between flow conditions (Figure 3-5 and 3-6). However, the Spearman’s ρ associated with the 

OWTS (Figure 3-5) and cattle (Figure 3-6) input parameters decreased considerably from high 

flows to low flows which suggests that flow condition had a large impact on the sensitivity of the 

input parameters associated with OWTS and cattle. This suggests that changes in flow conditions 

have a larger impact on non-point sources (OWTS and cattle) than point sources (WWTP). 
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Figure 3-6. Spearman rank correlation coefficients for dose input parameters to calculate 

the total probability of illness excluding norovirus. 

 

3.4. Discussion 

SWAT, SELECT, and QMRA models were successfully applied together to estimate 

health risk associated with different hydrologic conditions. Previous studies integrating 

hydrodynamic models with QMRA focused solely on the impact of heavy rainfall events on 

health risk associated with contact with sewage which concluded an increased health risk after 

heavy rainfall events (Andersen et al., 2013; Eregno et al., 2016). This study found similar 

conclusions showing an increased health risk associated with E. coli concentrations during high 

flows compared to low flows particularly for non-point sources (OWTS, cattle, feral hogs, and 

deer). However, the riskiest source (WWTP) was not impacted by flow conditions due to it being 

a point source, suggesting that flow conditions only impact the associated health risk of non-

point sources.  
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Norovirus was the reference pathogen with the largest contribution to health risk even 

though it was only contained in two out of five sources. Norovirus was also the only reference 

pathogen that exceeded the RWQC. The human source (WWTP and OWTS) input parameters 

associated with calculating the norovirus dose were the only significant input parameters that 

impacted the total probability of GI illness associated with all fecal sources and reference 

pathogens.   

The norovirus dose-response model used was simplified from a hypergeometric function 

to a beta-binomial function because Crystal Ball Pro® software (Oracle Corp., Redwood Shores, 

CA) was unable to calculate a hypergeometric function. The use of this simplified norovirus 

dose-response model may have impacted the risk estimates for the probability of illness due to 

exposure to norovirus. The beta-binomial dose-response model predicts a higher risk at low 

doses compared to the hypergeometric dose-response model (Van Abel et al., 2017).  Typically, 

the overestimation of risk at low doses would have a greater impact on a study examining 

drinking water instead of recreational water due to the increased level of contamination in 

recreational water. There is not a universally accepted best application of the norovirus dose-

response model, so whichever application is chosen will impact the final results. 

In addition to the dose-response model used, the reference pathogens chosen can 

significantly impact the results, especially for human enteric viruses, such as norovirus. Human 

enteric viruses were suggested as the cause of a majority of GI illnesses from swimming in 

recreational waters impacted by human sources during an epidemiology study in the Great Lakes 

in 2003 and 2004 (Soller et al., 2010a). Adenovirus was included as a USEPA (2010) reference 

pathogen to represent the fate and transport of waterborne diseases in recreational water bodies. 

However, adenovirus was not included in this study because there is not a corresponding 
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ingestion dose-response model for adenovirus. The inclusion of adenovirus and other enteric 

viruses would show if the driver of risk is specifically norovirus or human enteric viruses in 

general.   

Once norovirus was excluded, Giardia and Cryptosporidium were the main drivers of 

health risk. However, the other reference pathogens were within one order of magnitude of 

Giardia and Cryptosporidium with the exception of Salmonella. The WWTP remained the main 

contributor to health risk once norovirus was excluded. Cattle were a larger driver of health risk 

than OWTS, the other human source. Wildlife sources (deer and feral hogs) contributed the least 

to health risk for both the total health risk and the total health risk excluding norovirus.  

The means of the SWAT-simulated source-specific E. coli concentrations were below the 

E. coli regulatory standard of 126 CFU per 100 mL across all flow regimes (Table 3-1). 

However, the probability of GI illness associated with all fecal sources and reference pathogens 

exceeded the RWQC across all flow regimes. Additionally, the means of the SWAT-simulated E. 

coli concentrations associated with all of the SELECT input sources exceeded the E. coli 

regulatory standard only during high flows. The E. coli concentration in the water body is the 

sole factor considered for the regulation of fresh water bodies. Therefore, based on the SWAT-

simulated E. coli concentrations, this water body would not be regulated even though the RWQC 

is exceeded.  

Furthermore, cattle were the only fecal source that had SWAT-simulated source-specific 

maximum E. coli concentrations that exceeded the E. coli regulatory standard, but the health 

risks associated with cattle did not exceed the RWQC for any flow regime. The WWTP was the 

main contributor to health risk, but the SWAT-simulated source-specific maximum E. coli 

concentrations for WWTP were well below the E. coli regulatory standard across all flow 



 

72 

 

regimes. Moreover, the E. coli concentration input into SWAT at the WWTP location upstream 

from the sampling site was the E. coli regulatory standard. Therefore, this WWTP effluent was 

meeting the regulations for bacteria (TCEQ, 2009). Currently, the remediation of water bodies 

focuses on decreasing the source that has the highest E. coli load contribution, which in this case 

would be cattle. However, this approach would not effectively impact health risk, which is the 

ultimate goal of regulations and remediation efforts.  

3.5. Conclusions 

TMDLs and current water quality regulations are solely focused on meeting a numerical 

FIB concentration by lowering the FIB load of the largest contributing source. The results of this 

study show that this approach does not protect human health, which is the main purpose of water 

quality regulations. TMDLs are not an effective approach to remediate water bodies 

contaminated with microbial pollutants. Instead remediation efforts should be focused on sources 

that are the riskiest to human health instead of those contributing to the largest FIB load. 

Remediation efforts for water bodies contaminated with microbial pollutants should account for 

the health risk impacts of specific sources instead of meeting a numerical FIB standard 

regardless of the source of microbial contamination.  

Previous studies have shown that avian wildlife are large contributors to fecal 

contamination and a significant contributor to human health risk (Liao et al., 2016; Schoen and 

Ashbolt, 2010). Additional research should include other sources of fecal contamination such as 

avian wildlife and pet waste for a better representation of the fecal source contribution into a 

water body.  This study assumed a direct relationship between E. coli concentration and infective 

pathogen dose in a water body. Future research should take into account the survival time of 

pathogens in a water body compared to the survival time of FIB, such as E. coli, when estimating 
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health risks. A better understanding of the relationship between FIB and pathogens would aid in 

the ability to more accurately predict health risk. There is no way to validate the health risk 

estimates from this study, therefore, further research can be performed applying this 

methodology along with an epidemiology study to assess the accuracy of the health risk results.  
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4. CONCLUSIONS 

 

The purpose of this dissertation was to address the flaws of the microbial recreational 

water quality criteria (RWQC) and remediation by applying Total Maximum Daily Loads 

(TMDLs) at protecting human health and to provide an alternative method. The current 

remediation approach of TMDLs only focuses on meeting a numerical FIB RWQC regardless of 

the source of contamination. Outbreaks associated with microbial contamination are still 

occurring in water bodies where the water quality is meeting the regulatory standards (Craun et 

al., 2005). This research focused on addressing this by taking into account health impacts of the 

particular sources of contamination (Chapter 2) and the fate and transport of microbial 

contamination during different hydrologic conditions (Chapter 3).  

Fecal Indicator Bacteria (FIB) criteria concentrations are used as RWQC to regulate 

water bodies for microbial contamination. The RWQC does not differ based on the source of 

contamination, however, studies have not been able to establish a correlation between FIB from 

sources other than human and health risk (Calderon et al., 1991; Colford et al., 2007; Colford et 

al., 2012; Mcbride et al., 1998). Additionally, FIB only show that fecal contamination is present 

but not the source of the contamination. However, FIB must be used in place of pathogens 

because measuring pathogens is technically difficult and costly and therefore infeasible to 

routinely monitor (Harwood et al., 2014). In order to address the contribution from human and 

non-human sources to estimate health risk, this research (Chapter 2) applied Microbial Source 

Tracking (MST) in conjunction with Quantitative Microbial Risk Assessment (QMRA). Previous 

QMRA studies were not able to include all sources potential fecal contamination particularly, 
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non-avian wildlife, or they were only able to include one source of contamination. This study 

included multiple sources of fecal contamination, including non-avian wildlife.  

The probability of GI illness from exposure to fecal matter originating from human, 

cattle, and wildlife sources was calculated in three water bodies. The probability of GI illness 

was calculated by applying QMRA and MST using four different run scenarios. The source 

contributing the largest percentage of fecal matter into the water body (wildlife) did not have a 

significant impact on human health. Meanwhile, human fecal sources contributed as little as 12% 

to the microbial contamination in a water body, but were the overwhelming driver of risk.  

Waterborne disease outbreaks are not only related to the source of contamination but also 

the transport of fecal matter by rainfall events. Curriero et al. (2001) found that outbreaks 

occurring from surface water contamination had a strong correlation with extreme precipitation 

events. Therefore, the fate and transport of fecal contamination during rainfall events should be 

taken into account when estimating health risk. Load Duration Curves (LDCs) are often a used as 

a tool when developing TMDLs to assess pollutant loads at different hydrologic conditions. The 

fate and transport of microbial contamination associated with multiple fecal sources was 

modeled using Spatially Explicit Load Enrichment Calculation Tool (SELECT) to spatially 

distribute the fecal matter of sources overland and the Soil and Water Assessment Tool (SWAT) 

to model the fate and transport into the water body. 

SWAT, SELECT, and QMRA were applied together to estimate the probability of 

gastrointestinal (GI) illness from exposure to fecal contamination due to a Wastewater Treatment 

Plant (WWTP), Onsite Wastewater Treatment Systems (OWTS), cattle, and non-avian wildlife 

during different flow conditions. The WWTP had the most significant impact on health risk 

across all five flow conditions but was not the largest contributor (cattle) to fecal contamination. 
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The hydrologic flow conditions considerably impacted the health risk associated with the non-

point sources (OWTS, wildlife, and cattle) but did not impact the point source (WWTP).  

The source of fecal contribution had a more significant impact on health risk compared to 

the hydrologic conditions. However, the hydrologic conditions are more significant for non-point 

sources at determining health risk. Fecal source contributions in a watershed can be estimated by 

using MST or SELECT and SWAT to determine the riskiest sources impacting health risk. 

Water quality regulations and remediation efforts should take into account the impacts of a fecal 

contamination source on health risk. Current water quality regulations are not effective at 

protecting human health because the acceptable rate of GI illness was exceeded for both studies 

even when the E. coli concentrations in the water body were meeting the regulatory standard.  

The fecal source contributions resulting from MST and SELECT and SWAT differed 

considerably within the same watershed (Lampasas River Watershed). Additional research could 

compare the results between the MST and SWAT source contributions. This research was not 

able to take into account all fecal sources contributing fecal contamination, particularly avian 

wildlife and domestic pets. Future research can apply these fecal sources in addition to the other 

sources applied in this study.  

Across both studies (Chapter 2 and Chapter 3), norovirus and human sources were the 

drivers of risk despite having low fecal contributions. This dissertation assumed a prevalence and 

infectivity of norovirus to be 100% in both wastewater effluent and raw sewage. Additional 

research relating FIB densities and enteric viruses, such as norovirus, density concentrations in 

wastewater effluent and sewage is needed to improve the pathogen dose estimation. Overall, a 

better understanding of the relationship between FIB and pathogens would improve our ability to 

determine the impact of both FIB and pathogens on human health. 
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The only enteric virus included in this study was norovirus because there was no 

published ingestion dose-response model for adenovirus. Further research to develop an 

ingestion dose-response model for adenovirus would enable another enteric virus to be included 

in this research. The choice of reference pathogens used to estimate the probability of illness 

significantly impacts the results. If an enteric virus other than norovirus were included in this 

study, then the impact of norovirus as the main contributor to risk could examined to determine 

if other enteric viruses are similar drivers of risk.  

Lastly, the health risk results of these studies (Chapter 2 and Chapter 3) are not able to be 

confirmed. Future research could include an epidemiology study to be conducted in addition to 

the MST measurements or SELECT and SWAT modeling. The watersheds used for this research 

(Chapter 2 and Chapter 3) were chosen because preexisting MST studies were conducted in the 

water bodies. An assessment of the how people are using a water body should be performed to 

determine if the assumed exposure scenario used in the QMRA is accurate. These studies 

(Chapter 2 and Chapter 3) assumed that swimming was the exposure scenario however, if people 

are not swimming in these watersheds then the risk estimates would not apply to them. To 

perform a successful epidemiology study, large numbers of people should be actively recreating 

within the water body. A water body where large numbers of people are known to recreate 

within should be chosen to perform an epidemiology study. Ideally, the collection of MST data 

and FIB and pathogen concentration data would occur concurrently with an epidemiology study 

and watershed modeling.  
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APPENDIX A SWAT CALIBRATION PARAMETERS 

 

ALPHA_BF Baseflow alpha factor (1/days) 

GW_DELAY Groundwater delay time (days) 

CN2 Initial SCS runoff curve number for moisture condition II 

SOL_AWC Available water capacity of the soil layer (mm H2O/mm Soil) 

ESCO Soil evaporation compensation factor 

RCHRG_DP Deep aquifer percolation fraction 

REVAPMN Threshold depth of water in the shallow aquifer for “revap” or percolation 

to the deep aquifer to occur (mm H2O) 

GW_REVAP Groundwater “revap” coefficient 

ALPHA_BF_D Alpha factor for groundwater recession curve of the deep aquifer (1/days) 

CH_K(2) Effective hydraulic conductivity in mail channel alluvium (mm/hr) 

CH_K(1) Effective hydraulic conductivity in tributary channel alluvium (mm/hr) 

SLSOIL Slope length for lateral subsurface flow (m) 

LAT_TTIME Lateral flow travel time (days) 

CNCOEF Plant ET curve number coefficient 

ICN Daily curve number calculation method 

GWQMN Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm H2O) 

BACTKDQ Bacteria soil partitioning coefficient 

BACTKDDB Bacteria partition coefficient 

THBACT Temperature adjustment factor for bacteria die-off/growth 
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BACT_SWF Fraction of manure applied to land areas that has active colony forming 

units 

WDPRCH Die-off factor for persistent bacteria in water bodies at 20°C (1/day) 

WDPF Die-off factor for persistent bacteria on foliage at 20°C (1/day) 

WOF_P Wash-off fraction for persistent bacteria 

BACTMIX Bacteria percolation coefficient (10 m3/Mg) 

BACTMINP Minimum daily bacteria loss for persistent bacteria (# cfu/m2) 

 

 

 

 


