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ABSTRACT

A parking function can be thought of as a sequence of n drivers, each with a preferred parking

space, wanting to park along a one-way street with n parking spaces. Each driver checks her

preferred parking space and, if it is occupied, parks in the first available space afterwards. One

may consider how the enumeration of these sequences changes if the “parking lot” is made more

complex, a question whose solution this dissertation lays the foundations for and answers in the

case of certain families of graphs.

We begin by generalizing the underlying parking lot to a general digraph and give several

equivalent characterizations. We then start by building on recent work in the case that the parking

lot is a tree with edges directed towards a root. We generalize the notions of “prime” and “increas-

ing” parking functions to give enumerative results concerning both. Additionally, we consider one

of the numerous statistics on classical parking functions, the number of drivers who park in their

desired spot, and show that it connects these tree parking functions that are prime and those that

are both increasing and prime. Finally, we consider miscellaneous results on various families of

trees and enumerate a generalization of Dyck paths in the process.
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NOMENCLATURE

[n] {1, 2, . . . , n}

[n]0 {0, 1, 2, . . . , n}

V (D) The vertex set of digraph D

E(D) The edge set of digraph D

Sn The symmetric group on n elements

Pn The directed path of n vertices upon which classical parking
functions are defined

Tv The maximal subtree of T rooted at vertex v

Tn The set of sink trees with n vertices

T̃n The set of source trees with n vertices

Mn The set of mapping digraphs with n vertices

M̃n The set of inverse mapping digraphs with n vertices

P (D,m) The number of parking functions on digaphD withm drivers

PFn {(T, p) : T ∈ Tn and p is a prime parking function on T}

Fn

∑
T∈Tn

P (T, n)

Pn |PFn|
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1. INTRODUCTION

Konheim and Weiss first introduced parking functions in 1966 when they investigated the prob-

ability that a random hashing function would fill a hash table when linear probing was used to

resolve collisions [13]. One-by-one n drivers, each with a preferred parking space attempt to park

on a one-way street. If their preferred spot is unavailable, the drivers park in the first available

space after their preferred one. If all drivers are able to park, the sequence of their preferences is

called a parking function.

Parking functions have proven to be a fruitful field of study, in large part due to their inter-

connectedness with both trees and Catalan structures (see [19] for a survey on the subject). They

have appeared in many places: chambers in Shi and braid arrangements, maximal chains in the

lattice of noncrossing partitions, symmetric functions, and they even have their own polytope (see

[8, 16, 17, 19] and the references within).

Parking functions can be characterized in multiple ways, which we discuss in Section 2, and

have numerous generalizations as a result. Rational parking functions come from lattice paths [2],

G-parking functions are related to the spanning trees on a digraphG [15], x⃗-parking functions gen-

eralize the growth restriction of the order statistics of a parking function [17], parking sequences

consider cars of different sizes attempting to park along a street [9], and the digraph parking func-

tions we generalize in this dissertation consider a parking lot more complex than a one-way street

[14].

We take the following scenario as our motivation: one-by-one, n users attempt to connect

to servers. If the initial server a user attempts to connect to is busy, the server passes the user

to another server, according to an underlying digraph, until the user finds a free server. We are

interested in how many ways the users can attempts to initially attempt to connect to servers such

that all users can be simultaneously served. This dissertation presents an initial foray into the

subject.

1



2. PRELIMINARIES

This section discusses the definitions and previous theorems appearing in the literature neces-

sary for the following sections. For the rest of this dissertation, we assume any digraph has vertex

set [n], where n is a positive integer, and is connected, unless stated otherwise.

2.1 Graphs

We define the various types of graphs mentioned in the rest of the dissertation. Additionally,

we state a theorem by Hall that gives a necessary and sufficient condition for the existence of a

perfect matching on a bipartite graph.

A graph G is a pair (V,E) where V is the vertex set and E is the edge set. As mentioned,

we take V = [n] and E ⊆ 2V such that all elements of E have cardinality 2. We will denote

V = V (G) and E = E(G) in several places and we let |G| = |V | = n. The neighborhood of u are

the vertices {v : {u, v} ∈ E}. Figure 2.1 is a graph with V = [4] and E = {{3, 4}, {1, 3}, {2, 3}}.

4

3

1 2

Figure 2.1: A graph.

A directed graph has E ⊆ V × V with no elements of the form (v, v). An edge (u, v) is

understood to have an orientation with u being the origin vertex and v the terminal vertex. The edge

is graphically represented by an arrow: u → v. The out-neighborhood of u is {v : (u, v) ∈ E}.

The cardinality of the out-neighborhood of u, denoted by N(u), is called the outdegree.

2



1 2 3 4

Figure 2.2: P4

2.1.1 Trees

Trees are connected graphs with n vertices and n − 1 edges. A rooted tree is a tree with a

distinguished node, called the root. Figure 2.3 is a tree with root 1. We denote the root by drawing

the vertex as concentric circles. We consider two types of trees in this dissertation: sink trees and

source trees. A sink tree is a rooted tree with edges directed towards the root. That is, if (u, v) is

an edge, then v is on the unique path between u and the root. Similarly, a source tree is a rooted

tree with edges directed away from the root. We call v the parent of u if the two are connected by

an edge and v is closer to the root than u is. The edge orientation does not matter. In Figure 2.3,

the vertex 2 is the parent of 7. In this situation, we also call u the child of v. Two vertices with a

common parent are called siblings. We denote Pn to be the rooted tree with n vertices and edges

{(i, i+ 1)}n−1
i=1 . Figure 2.2 is the graph P4.

Additionally, we consider two special types of rooted trees. A caterpillar is a tree on which

there exists a path such that all vertices are distance at most 1 from some vertex on the path. A star

is a caterpillar with n vertices and a vertex of degree n− 1. For this paper and ai ≥ 0 integers, we

let Cat(a1, a2, . . . , an) be the directed caterpillar with root 1, and edges {(i, i + 1}n−1
i=1

n⋃
j=1

{(j, i +

j−1∑
ℓ=1

aℓ)}
aj
i=1. Figure 2.3 shows Cat(1, 3, 0, 2). We call the vertices {1, . . . , n} the spine vertices and

all other vertices leg vertices. We note here that Cat(0, . . . , 0, 1) is the same as Cat(0, . . . , 0, 0, 0)

(both are isomorphic to Pn) as directed graphs, but we will consider them distinct for the purpose

of the results in Chapter 6.

A spider is a rooted tree with at most one vertex of degree 3 or more. For ni ∈ N, we denote

S(n1, n2, . . . , nk) to be the tree formed by joining paths of ni vertices to the root, n = 1+
∑k

i=1 ni.

Let the path associated with n1 have vertices between 1 and n1, traveling away from the root, and

in general the path associated with ni having vertices 1 +
∑i−1

j=1 nj to
∑i

j=1 nj . For simplicity, we

3



1 2 3 4

5 6 7 8 9 10

Figure 2.3: A an example of Cat(1, 3, 0, 2).

call these paths legs. See Figure 2.4 for the graph of S(2, 1, 1).

5 1 2
3

4

Figure 2.4: The spider S(2, 1, 1).

2.1.2 Bipartite Graphs and Hall’s Theorem

A bipartite graph B is an undirected graph whose vertex set may be partitioned into two

disjoint sets X and Y such that for any xi, xj ∈ X or yk, yℓ ∈ Y , {xi, xj} /∈ E(B) and

{yk, yℓ} /∈ E(B). We say that M ⊆ E is a matching that saturates X if, for all x ∈ X, there

is a unique yx ∈ Y such that {x, yx} ∈ M and further there are no distinct x1 6= x2 such that

{x1, y} ∈ M and {x2, y} ∈ M for any y ∈ Y . The following gives a necessary and sufficient

condition for the existence of such a matching M on B.

Theorem 1 (Hall’s Matching Theorem). Let B be a bipartite graph with bipartition (X,Y ). Then

there exists a matching saturating X if and only if for all A ⊆ X we have

|A| ≤ |
⋃
a∈A

N(a)|.

Figure 2.5 shows a bipartite graph on 6 vertices. The graph has a unique matching saturating
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x1

x2

x3

y1

y2

y3

Figure 2.5: A bipartite graph.

Figure 2.6: The Dyck path NNSNNSSS

{x1, x2, x3}, M = {{x1, y1}, {x2, y3}, {x3, y2}}.

2.2 Lattice Paths

In this section, we discuss two lattice paths closely associated with parking functions: Dyck

and Royal paths.

2.2.1 Dyck Paths

A Dyck path of semilength n is a lattice path in Z2 with steps N = (1, 1) and S= (1,−1)

starting from (0, 0) and ending at (2n, 0) such that the path never dips below the x-axis. A Dyck

path is called prime if it only touches the x-axis at (0, 0) and (2n, 0). We can also represent a Dyck

path as a word of length 2n with letters {N,S}. Figure 2.6 gives an example of a prime Dyck path.

The number of Dyck paths of semilength n is well-known to be Cn = 1
n+1

(
2n
n

)
. The numbers

{Cn}n≥0 are called the Catalan numbers and appear throughout combinatorics. If we count the

Dyck paths of semilength n with k peaks, or appearances of “NS” in the word representation,
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Figure 2.7: The Royal path NENNSSS

and sum over k, we get a refinement of the Catalan numbers by the Narayana numbers, Nn,k =

1
n

(
n
k

)(
n

k−1

)
. So,

Cn =
n∑

k=1

Nn,k.

2.2.2 Royal Paths

A Royal path of semilength n is a slightly more general Dyck path; it is a lattice path with steps

N= (1, 1), S= (1,−1), and E= (2, 0) starting at (0, 0), ending at (2n, 0), and never going below

the x-axis. Figure 2.7 gives an example.

Let Sn denote the number of Royal paths of semilength n. The numbers {Sn}n≥0 are called the

large Schröder numbers. After some consideration, we notice that we can turn a Royal path into a

Dyck path by replacing the horizontal step (E) with a peak (NS) and there are precisely 2k Royal

paths that yield a given Dyck path in this manner, where k is the number of peaks in the Dyck path.

We thus can say

Sn =
n∑

i=1

2kNn,k. (2.1)

We briefly note that both Dyck and Royal paths can be generalized further to Motzkin paths by

replacing the E= (2, 0) steps in the Royal path with E= (1, 0). While also fascinating and useful,

we will not discuss Motzkin paths for the remainder of this dissertation.
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2.3 Parking Functions

Here we discuss both classical parking functions as well as recent work done by Lackner and

Panholzer [14] for parking functions on sink trees.

2.3.1 Classical Parking Functions

Parking functions may be described as a sequence of drivers, each with a preferred parking

space, searching for a place to park along a one-way street. Let s ∈ [n]n be the sequence of

preferences and consider the path Pn.

Definition 1 (Parking Process on Pn). The drivers attempt to park according to the following

process:

1) Beginning with i = 1, driver i begins at vertex si.

2) If the current vertex is unoccupied, the driver parks there. If it is occupied and the current

vertex is not n, the driver drives to the vertex in the out-neighborhood of the current one and

repeats Step 2.

3) If she parks, the process continues with driver i + 1 attempting to park at vertex si+1. Oth-

erwise, the process terminates.

If all n drivers parks, the sequence s is called a parking function. Figure 2.2 shows P4 for

which 125 parking functions are defined. A few examples are: 1234, 1111, 3121, 2112, and 4311.

Note that 1334 is not a parking function, because the final driver does not find a place to park.

While intuitive, this characterization does not lend well to mathematical manipulation. Luckily,

we can see after some consideration that if all drivers can park then there is no i such that too many

drivers prefer the vertices {i, i+1, . . . , n}. Alternatively, if such a set exists, then the drivers cannot

all park because they cannot park before their preferred vertex. Hence, we may alternatively define

parking functions:
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Definition 2. A classical parking function of length n is a sequence s ∈ [n]n such that for i ∈ [n],

|{j : sj ≥ i}| ≤ n− i+ 1.

From this definition, it is immediately obvious that the order in which the drivers park does not

affect their ability to do so. This is a useful property that will be preserved when we generalize to

digraphs.

There are several bijections between parking functions of length n and trees with vertex set

[n+1] (see [19] for one involving a tree’s Prüfer code), which means there are (n+1)n−1 parking

functions of length n.

One studied statistic on parking functions is the number of drivers who park in their preferred

parking space.

Definition 3. Let s be a parking function. Driver i is lucky if she parks in spot si.

Gessel and Seo [10] noted that lucky drivers in parking functions were equidistributed with

proper vertices, vertices whose label is smaller than all of their descendants, in rooted trees.

We will also consider special types of parking functions.

Definition 4 (Increasing and Prime Parking Functions). A parking function s ∈ [n]n is increasing

if si ≤ si+1 for 1 ≤ i ≤ n− 1.

We say p ∈ [n]n is a prime parking function if, for all 2 ≤ i ≤ n, we have

|{j : sj ≥ i}| < n− i+ 1.

Notice the similarities in the definitions of regular and prime parking functions. Prime parking

functions represent those for which too many drivers attempt to park in the vertices labeled [k] for

k < n. There are (n− 1)n−1 prime parking functions of length n and Cn-many increasing parking

functions (see [18], problem 5.49).

Parking functions are intimately connected to Dyck paths. As their count suggests, increasing

8
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4 1

3

Figure 2.8: A labeled Dyck path

parking functions are in bijection with Dyck paths. One bijection is, given a Dyck path, the number

of drivers preferring i is the number of N-steps immediately before the ith S-step. For example, the

Dyck path in Figure 2.6 corresponds to the parking function s = 1122. Classical parking functions

are in bijection with Dyck paths whose runs of N-steps are labeled by subsets of [n] . Given a

parking function s′, the corresponding Dyck path has a run of |{i : s′i = j}| N-steps labeled with

the set {i : s′i = j} immediately before the j th S-step. For example, Figure 2.8 corresponds to the

parking function s′ = 2121. Finally, prime parking functions are those whose associated labeled

Dyck path is prime.

The final parking function variant we must consider is one in which m ≤ n drivers attempt to

park. This causes no problems with parking and only requires a slight change to the definition of a

parking function:

Definition 5 (Parking Functions). An (n,m)-parking function is a sequence s ∈ [n]m such that for

i ∈ [n],

|{j : sj ≥ i}| ≤ n− i+ 1.

If m = n, we will suppress the (n, n) in most cases.

2.3.2 Tree Parking Functions

Lackner and Panholzer were first to study parking functions on sink trees [14]. For sink trees,

since the outdegree of each vertex is at most one, the process described in Definition 6 is still well-
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defined. Thus, we say s ∈ [n]m is an (n,m)-parking function on sink tree T if the parking process

works on T .

Let Fn be the number of parking functions on all sink trees with |T | = n and define the formal

power series F (x) =
∑
n≥1

Fn
xn

n!
. Then the authors of [14] showed that F (x) satisfied

F (x) = T (2x) + ln

(
1− T (2x)

2

)
, (2.2)

where T (x) =
∑
n≥1

nn−1x
n

n!
is the tree function. Further, an explicit count of Fn was determined:

Theorem 2 ([14], Corollary 3.4).

Fn = ((n− 1)!)2 ·

(
n−1∑
i=0

(n− i) · (2n)i

i!

)
.

2.4 Formal Power Series and a Useful Theorem

We introduce formal power series and state a formula useful for extracting coefficients.

2.4.1 Formal Power Series

For a function f : N0 → C we associate the formal power series F (x) =
∑
n≥0

f(n)xn, called

the ordinary generating function of f . Rather than using the functional notation, we may write

f(n) = fn = [xn]F (x), depending on which is convenient. If we use generating functions to

count an object, sometimes adjustment in the generating function proves useful. We say F̂ (x) =∑
n≥0

fn
xn

n!
is the exponential generating function of f . While factors other than 1/n! appear, they

are significantly less common.

2.4.2 Lagrange Inversion

We state here a theorem useful for extracting coefficients in some situations.

Theorem 3 (Lagrange Inversion Formula). Let F (x) and G(x) be ordinary generating functions

10



such that F (x) = xG(F (x)) and G(0) 6= 0. Then for n ≥ 1,

[xn]F (x) =
1

n
[xn−1]G(x)n.

11



3. PARKING FUNCTIONS ON DIGRAPHS1

This section is an expansion of Section 2 of [11].We begin by giving a general definition that

is similar to Definition 1, but allows for parking on all directed graphs, rather than only those with

maximum outdegree 1. Let drivers park according to the following process:

Definition 6 (Parking Process). Pick n,m such that 0 ≤ m ≤ n. Let s ∈ [n]m and D be a digraph

with vertex set [n].The m drivers attempt to park according to the following process:

1) Beginning with i = 1, driver i begins at vertex si.

2) If the current vertex is unoccupied, the driver parks there. If it is occupied, the driver chooses

a vertex in the out-neighborhood of the current one and drives there.

3) The driver repeats step 2) until she either parks, and the next driver enters, or is unable to

find an available parking space, and the process terminates.

In general, the maximaum outdegree of a vertex in D is larger than 1, so drivers will have to

choose along which edges to travel in their search for a parking spot. We will consider the situation

in which drivers could work cooperatively in order to allow everyone to park.

Definition 7. For a sequence s ∈ [n]m and digraph D, we say that s is a parking function on D if

it is possible for all m drivers to park following the parking process. If s is a parking function on

D, we call the pair (D, s) an (n,m)-parking function.

Figure 3.1 gives an example of a parking function. Drivers 2 and 5 are the only drivers who

may make a choice and all drivers can park as long as at least one of those drivers uses the edge

(1, 4) during parking.

While Definition 7 is clearly a generalization of the classical case, it is rather intractable for

applications. We seek a more workable definition and thus define a quasiorder �D on the vertices

1Reprinted with permission from “Parking Functions on Oriented Trees” by W. King and C. H. Yan, 2018. Sémi-
naire Lotharingien de Combinatoire, 80B, Copyright 2018 by W. King and C.H. Yan.
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45

Figure 3.1: A digraph with parking function s = (1, 1, 3, 2, 1).

of D by v �D w if and only if there exists a directed path in D from v to w. We say by definition

v �D v and if w ≺D v, then this means w �D v but w 6= v. For each vertex v, we define the set of

vertices reachable from v by

RD(v) = {w ∈ [n] : v �D w}.

More generally, for A ⊆ [n], we define the reachable set of A as

RD(A) =
⋃
v∈A

RD(v).

We can now give an alternative characterization of a parking function on D.

Theorem 4. Let D be a digraph and s ∈ [n]m. Let C = {C1, . . . Cm} be the set of cars, indexed

such that Ci prefers spot si for each i ∈ [n]. Then s is a parking function on D if and only if for all

A ⊆ C we have

|A| ≤ |
⋃

si:Ci∈A

RD(si)|.

Proof. If we let B be the bipartite graph with vertex set C ∪ [n] where {Ci, j} ∈ E(B) if and only

if si �D j, then by Hall’s Theorem (Theorem 1), we are claiming that s is a parking function if and

only if there exists a matching onB that saturates C. If s is a parking function, then park the drivers

in some manner and suppose Ci is parked on vi for each i. Then, since we must have si �D vi, the
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edge {Ci, vi} is in B. These edges define a matching.

The other direction is not as clear because the parking process requires drivers to park in the

first empty spot they find. We use a matching M = {{Ci, vi}}mi=1 to determine a (not necessarily

unique) way of parking on D.

The iterative process is the same for each Ci, starting at i = 1. At step i, pick any x with

si �D x �D vi such that there exists a path si = y0 → y1 → . . .→ yk → x such that the yj’s are

spots occupied by cars in previous iterations for 0 ≤ j ≤ k < i. If no such y0 exists, then x = si.

Park Ci in x and delete {Ci, vi} from M . If {Cj, x} ∈ M for some j > i, then replace this edge

with {Cj, vi}. Now repeat with Ci+1.

In each step, the vertex x is the first unoccupied vertex along some walk between si and the

vertex with which Ci is matched. At least one such x exists because, at the start of step i, Ci is

matched with a vertex which is not occupied by any car. At the end of step i, we know the updated

M is a matching saturating {Cℓ}ℓ>i because we know sj �D vj = x from the edge {Cj, vj} and

x �D vi by our choice of x. Thus, sj �D vi, so the edge {Cj, vi} is in B.

Stated plainly, Theorem 4 says that matching all drivers with spots they could potentially park

at (given their preferred spot) is both necessary and sufficient to conclude that (D, s) is a parking

function. We can also characterize parking functions in terms of the number of drivers preferring

vertices in the various reachable sets, RD(B), in the graph.

Corollary 1. Let D be a digraph and s ∈ [n]m. Then s is a parking function on D if and only if

for all B ⊆ [n] we have

|{Ci : si ∈ RD(B)}| ≤ |RD(B)|.

Proof. Let s be a parking function on D and B ⊆ [n]. Let A = {Ci : si ∈ RD(B)}. Because s is

a parking function, we know |A| ≤ |
⋃

si:Ci∈A
RD(si)|, but also by the definition of RD(B), we have⋃

si:Ci∈A
RD(si) ⊆ RD(B).

On the other hand, suppose for all B ⊆ [n] we have |{Ci : si ∈ RD(B)}| ≤ |RD(B)| and let
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A ⊆ C. Let B =
⋃

Ci∈A
{si}. By definition RD(B) =

⋃
Ci∈A

RD(si) and so

|A| ≤ |{Ci : si ∈ RD(B)}| ≤ |RD(B)| = |
⋃
Ci∈A

RD(si)|,

thus s is a parking function.

From these set definitions, it is immediately clear that the order of the preference sequence s

does not matter, a property shared with classical parking functions.

Corollary 2. Let (D, s) be a parking function and σ ∈ Sm. Then sσ = (sσ(1), sσ(2), . . . , sσ(m)) is

also a parking function on D.

Additionally, we can alternatively characterize the reachable sets in terms of the quasiorder to

see how many exist.

Remark 1. The number of distinct RD(B) is the same as the number of filters of the quasiorder

�D, which is likely to be much less than 2n.

For example, there are 7 distinct RD(B) in Figure 3.1, which is indeed less than 25 = 32.

We now give some definitions and notation that will be utilized throughout the subsequent

sections. For a digraph D we define the number of parking functions on D to be given by

P (D,m) = |{(D, s) : s ∈ [n]m is a parking function on D}|.

Recall the two notions of classical parking functions given in Definition 4. In their spirits, we

define a prime parking function and a parking distribution on a digraph D.

Definition 8 (Prime Parking Function). A parking function (D, s) is called prime if, for every

non-empty A ⊆ [n] such that RD(A) 6= [n], we have

|{Ci : si ∈ RD(A)}| < |RD(A)|.
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Definition 9 (Parking Distribution). Let f : [n] → [m]0 such that
∑n

i=1 f(i) = m. Then we say

(D, f) is a parking distribution if for all A ⊆ [n], we have

∑
i∈RD(A)

f(i) ≤ |RD(A)|.

For a parking distribution, f(i) is understood to be the number of drivers preferring vertex i.

We call them distributions, rather than increasing parking functions, for both precedential reasons

[4] and to emphaize the distribution of driver preferences rather than the ordering of the preferences

in a sequence.
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4. PRIME PARKING FUNCTIONS ON SINK TREES12

This section is partially contained in [12] and is an expansion of Section 3 of [11]. In this

section, we assume all trees are sink trees and all parking functions are (n, n)-parking functions.

Parking functions on such trees were initially studied by Lackner and Panholzer [14] and serve as

an appropriate launching pad for our investigation into digraph parking functions.

We let Tv be the maximal subtree rooted at v. For T , the maximal outdegree of a vertex

is bounded above by 1, thus the order and location in which drivers park following the parking

process of Definition 6 is well-defined. In the case of sink trees, it is convenient to characterize

parking functions as those which have excess drivers preferring certain regions, rather than the

“extra space” characterization seen in Corollary 1.

Proposition 1. The pair (T, s) is a parking function if and only if for all v ∈ [n], we have |Tv| ≤

|{i : si ∈ Tv}|.

Proof. If (T, s) is a parking function, then for Bv = [n] \ V (Tv), by Corollary 1 we have

n− |{i : si ∈ Tv}| = |{i : si ∈ RT (Bv)}| ≤ |RT (Bv)| = |Bv| = n− |Tv|.

On the other hand, for any B ⊆ [n], the digraph induced by [n] \ RT (B) is a forest with roots

{ρi}ri=1. Then

n− |{i : si ∈ RT (B)}| =
r∑

j=1

|{i : si ∈ Tρj}| ≥
r∑

j=1

|Tρj | = n− |RT (B)|.

1Reprinted with permission from “Prime Parking Functions on Rooted Trees” by W. King and C. H. Yan, 2019.
Journal of Combinatorial Theory, Series A, 1-25, Copyright 2019 by Elsevier. This version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

2Reprinted with permission from “Parking Functions on Oriented Trees” by W. King and C. H. Yan, 2018. Sémi-
naire Lotharingien de Combinatoire, 80B, Copyright 2018 by W. King and C.H. Yan.
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Thus, to check if (T, s) is a parking function, we need only check n inequalities, an improve-

ment over those given in Theorem 4 and Corollary 1. Re-stating Definition 8 in these terms gives

Definition 10. A parking function (T, s) is prime if, for every non-root vertex v ∈ [n], we have

|Tv| < |{i : si ∈ Tv}|.

Figure 4.1 gives an example of a prime parking function.

5

4

32

1

Figure 4.1: T with prime p = (1, 3, 2, 3, 1).

We can understand |Tv| < |{i : si ∈ Tv}| as an excess of drivers wanting to park in Tv. This

means some driver must leave Tv during the parking process, so let us say

Definition 11. For a parking function (T, s), we say that an edge e is used by s if there exists some

driver who, after failing to park at her preferred spot, crosses e during her search for an unoccupied

spot.

Figure 4.2 shows a classical parking function in which the used edges are solid and the unused

edges are dotted.

1 2 3 4 5

Figure 4.2: Solid edges are used by s = (1, 3, 4, 4, 1)
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By considering the conditions under which an edge is used, we arrive at another characteriza-

tion of prime parking functions.

Proposition 2. Given a parking function (T, s), an edge e = (u, v) is used by s if and only if

|Tu| < |{i : si ∈ Tu}|. Thus, (T, s) is prime if and only if all edges are used by s.

Proof. Suppose e = (u, v) is used by s. Then at least one driver preferring Tu does not park in

Tu. No cars preferring a vertex outside Tu can park inside, as Tu consists of all vertices w such

that w �T u. The pair (T, s) is a parking function, so it follows that |Tu| < |{i : si ∈ Tu}|. On

the other hand, if |Tu| < |{i : si ∈ Tu}|, then as s is a parking function on T , at least one driver

preferring Tu must park outside. This driver must cross e in order to do so.

We wish to arrive at a result similar to Theorem 2 for prime parking functions, so we define the

set

PFn = {(T, p) : |T | = n and p is a prime parking function on T},

and we set Pn = |PFn|. We give two proofs to the following theorem:

Theorem 5. The total number of prime tree parking functions Pn for n ≥ 1 is given by

Pn = (2n− 2)!

4.1 A Proof of Theorem 5 via Generating Functions

Recall Theorem 2. We define the formal power series

F (x) =
∑
n≥1

Fn
xn

(n!)2
and P (x) =

∑
n≥1

Pn
xn

(n!)2
,

For a parking function (T, s), we consider a decomposition of T into a “core" component

supporting a prime parking function, (T0, s(0)), and some collection of general parking functions,

(Ti, s
(i)), attached to the core component. Let T0 be the subtree of T containing the root and all

vertices connected to the root via edges used by s. Let s(0) be the subsequence of s defined by
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drivers preferring vertices in T0. Notice that s(0) is a prime parking function by construction. The

other subtrees Ti are the connected components remaining after deleting edges (u, v) unused by s,

where v ∈ V (T0) and u /∈ V (T0), and s(i) are the subsequences of s consisting of drivers preferring

vertices in Ti.

Figure 4.3 gives a general overview of this decomposition. Dashed edges are those unused by

s but connected to the “core" component T0. In Figure 4.2, the “core" component is the subtree

induced by vertex set {4, 5} while s(0) = (4, 4). The one other component is the subgraph induced

by vertices {1, 2, 3} (identical to P3) with s(1) = (1, 3, 1). Notice that (1, 3, 1) is not a prime

parking function on P3.

T0

T1 T2 T3 Tr. . .

Figure 4.3: Decomposition into components.

In this way, we can construct any parking function (T, s) with |T | = n by choosing a prime

parking function (T0, s
(0)) with |T0| = k0 and r-many other regular parking functions {(Ti, s(i))}ri=1

with ki = |Ti| ≥ 1 and
∑r

i=0 ki = n. From there, we can attach each Ti to T0 in one of k0-many

places to form T . What remains is to choose the labels on T and choose which indices in s each

s(i) is assigned. The 1/r! accounts for the order in which the Ti are chosen and attached. This

means
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Fn =
∑
r≥0

1

r!

∑
r∑

i=0
ki=n

Pk0Fk1 · · ·Fkr

(
n

k0, k1, . . . , kr

)2

(k0)
r.

Since F1 = 1, summing over n ≥ 1, we get the relationship

F (x) = P
(
xeF (x)

)
. (4.1)

Using (2.2),

P
(
xeF (x)

)
= T (2x) + ln

(
1− T (2x)

2

)
. (4.2)

Setting z = z(x) = xeF (x), y = y(x) = T (2x)
2

, and using the relation T (x) = xeT (x), we notice

from Equation (2.2) that

z = y(1− y).

Solving the quadratic equation gives

y = zC(z),

where C(x) =
∑
n≥0

Cnx
n is the ordinary generating function for the Catalan numbers with analytic

expression

C(x) =
1−
√
1− 4x

2x
.

Since z(0) = 0 and z1 6= 0, the formal power series z(x) has a compositional inverse. Rewriting

Equation (4.2) and plugging in the inverse, we get

P (x) = 2xC(x) + ln(1− xC(x)).

The Catalan generating function C(x) satisfies the recursion C(x) = 1 + xC(x)2 and thus C ′(x)
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satisfies

C ′(x) =
C(x)2

1− 2xC(x)
.

After some algebra, we can see

C(x)

(xC(x))′
=

1− 2xC(x)

1− xC(x)
. (4.3)

Then taking the derivative of P (x) and using (4.3), we have

P ′(x) = 2(xC(x))′ − (xC(x))′

1− xC(x)

= (xC(x))′
(
1− 2xC(x)

1− xC(x)

)
= C(x).

Therefore,

P (x) =
∑
n≥1

Cn−1

n
xn =

∑
n≥1

(2n− 2)!
xn

(n!)2
.

Hence, Pn = (2n − 2)! as claimed. Such a simple number demands a bijective proof, which we

give in the next section.

4.2 A Bijective Proof of Theorem 5

In order to determine Pn, we define a bijection on prime parking functions ψ : (T, p) 7→ (σ, P )

where σ ∈ Sn and P is an ordered tree with n vertices whose non-root vertices are labeled by

[n − 1]. An ordered tree, also called a plane tree, is a rooted tree for which siblings are given a

linear order.

To describe ψ, we first give a definition. Recall post-order labeling: given an ordered tree T ,

travel around the left border of the tree starting from the root, labeling in increasing order as one
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reaches the right side of a vertex. See the final picture in Figure 4.4 for a tree labeled by post-order.

Definition 12. For an ordered tree T with |T | = n and sequence p ∈ [n]n, we say the pair (T , p)

is a standardized restricted prime parking function if

1. (T , p) is a prime parking function when T is considered an unordered tree.

2. For any pair of sibling vertices, {u, v} ⊆ V (T ), the vertex v is ordered to the right of u if

and only if the edge (v, w), where w is the parent vertex, is used by some driver before the

edge (u,w) is used during the parking procedure.

3. T is labeled via post-order.

We denote the set of standardized restricted prime parking functions on n vertices by SRPn. If

T is an ordered tree, we say (T , p) is a prime parking function when the pair is a parking function

if the ordering on T is forgotten.

The bijection ψ is constructed from two bijections, ϕ : (T, p) 7→ (σ, (Tσ, pσ)) where (Tσ, pσ) ∈

SRPn, and α : (Tσ, pσ) 7→ P , where P is the aforementioned ordered tree with non-root vertices

labeled by [n − 1]. The unlabeled ordered trees on n vertices are counted by the Catalan number

Cn−1, so including the labellings there are Cn−1(n−1)!-many such P . Combining these two steps,

we conclude that Pn = n!Cn−1(n− 1)! = (2n− 2)!.

4.2.1 The Bijection ϕ

We prove

Proposition 3. For n ≥ 1, we have

Pn = n!|SRPn|.

Proof. Let (T, p) ∈ PFn. We induce an ordering on T by using p. Since the parking function

is prime, every edge must be crossed by some driver after failing to park at her preferred spot.

Additionally, since there is only one path a driver may travel in search of a spot and because
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drivers must park at the first available spot they encounter, the order in which edges are initially

crossed is well-defined. Then, consider T as an ordered tree by ordering vertices to match property

2 in Definition 12.

For a σ ∈ Sn, let Tσ be the tree obtained by relabeling the vertices of T , v 7→ σ(v). Likewise,

let pσ = (σ(p1), σ(p2), . . . , σ(pn)). Then we define

ϕ((T, p)) = (σ, (Tσ, pσ)),

where σ is the unique permutation such that Tσ is labeled by post-order. This means (Tσ, pσ) ∈

SRPn.

Since any two relabellings of an ordered tree are distinct, for (T̃ , p̃) ∈ SRPn, the preim-

age ϕ−1((σ, (T̃ , p̃)) is the prime parking function (T̃σ−1 , p̃σ−1), where the ordering on the tree is

forgotten.

1

4

5 3

2

p = (2, 5, 3, 5, 2)

1

4

53

2

p = (2, 5, 3, 5, 2)

5

4

32

1

pσ = (1, 3, 2, 3, 1)

σ = 51243

−→ −→
Order siblings Relabel

by post-order

Figure 4.4: An example of ϕ.

Figure 4.4 shows an application of ϕ. In the left tree, the edge (5, 4) is first used by the fourth

driver, while the edge (3, 4) is not used until the fifth driver. Thus, the vertex 5 is placed to the

right of vertex 3, which gives the ordered tree in the middle of the figure. The right tree is obtained
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from the middle one by relabeling via post-order, which gives the permutation σ. We now turn our

attention to |SRPn|.

4.2.2 The Bijection α

We define α : SRPn → {ordered trees with non-root vertices labeled by [n − 1]}. The main

observation necessary for the construction of α is a decomposition of (T , p) ∈ SRPn into an

ordered collection of components, each a relabeling of a standardized restricted prime parking

function, based on the edges used by the first n − 1 drivers. We use T to emphasize that T is an

ordered tree. First, we give a proposition about where the final driver must park for prime parking

functions, which also applies to parking functions in SRPn.

Proposition 4. Let (T, p) ∈ PFn. Then the final driver parks at the root node.

Proof. Let ω be the vertex the final driver parks at. If ω is not the root, it has a parent vertex v.

Since drivers must park at the first empty vertex they arrive at, the edge (ω, v) can not be used by

any driver prior to the final one, since ω is unoccupied. Since the final driver also does not use

(ω, v), it remains unused. However, p is a prime parking function on T , so all edges must be used.

Thus, there can be no edge (ω, v), and so ω is the root of T .

We first describe the recursive construction of α, then prove it is a bijection. Begin with

(T , p) ∈ SRPn. We use the tree in Figure 4.5 as a running example.

Base Case. If T is a singleton, then α((T , p)) is an unlabeled singleton as |SRP1| = 1.

Step 1. Park all except the final driver, highlighting edges as they are used. Delete the non-

highlighted edges and the root, marking the terminal vertex of any edge deleted and the vertex with

label pn.

Since p is a prime parking function on T , the non-highlighted edges must lie on the path

P between the vertex labeled pn and the root. The highlighted edges define some collection of

subtrees {Ti}ri=1, linearly ordered by the order in which they are a part of P . Since the root is

always isolated, as the final driver is the only one to cross the edge connected to the root, we may

ignore it. Let p(i) be the subsequence of (p1, . . . , pn−1) consisting of all pj such that pj ∈ V (Ti).
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p = (6, 4, 1, 3, 3, 1, 6, 7, 2)

9

8

7

6

5

4

3

2

1

Figure 4.5: A (T , p) ∈ SRPn.

By construction, p(i) is a prime parking function on Ti satisfying conditions 1 and 2 in Definition

12. See Figure 4.6 for this step applied to our running example. The non-highlighted edges are

dotted and the marked vertices are shaded.

p = (6, 4, 1, 3, 3, 1, 6, 7, 2)

9

8

7

6

5

4

3

2

1

−→

p(1) = (1, 1)
2

1

p(2) = (4, 3, 3)

5

4

3

p(3) = (6, 6, 7)
8

7

6

Figure 4.6: Step 1, decomposing.

Step 2. For each (Ti, p(i)), let Ai = {j ∈ [n− 1] : pj ∈ V (Ti)}. For 1 ≤ i ≤ r, if the marked

vertex on Ti has the kth smallest label among vertices in Ti, mark the kth smallest element in Ai.

Notice that the elements of Ai are precisely those j such that pj appears in p(i). The marked
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vertices and elements track how the Ti are connected to each other in T . Figure 4.7 shows this

step. The elements of Ai are represented by Cj instead of j to emphasize that j is an index from p,

rather than a vertex of T .

p = (6, 4, 1, 3, 3, 1, 6, 7, 2)

8

7

6

5

4

3

2

1
A1 = {C3, C6}

A2 = {C2, C4, C5}

A3 = {C1, C7, C8}

Figure 4.7: Step 2, tracking p and the shape of T .

Step 3. Relabel each (Ti, p(i)) so that its labels are in post-order, meaning (T i, p
(i)) ∈ SRPn.

Apply α to each (T i, p
(i)).

In Figure 4.8, we show components after they have been relabeled and apply α to each.

p̄(1) = (1, 1)
2

1

p̄(2) = (2, 1, 1)
3

2

1

p̄(3) = (1, 1, 2)
3

2

1

−→

α
(
(T 1, p̄

(1))
)

1

α
(
(T 2, p̄

(3))
)

2 1

α
(
(T 3, p̄

(3))
)

2

1

Figure 4.8: Step 3, applying α on the components.

Step 4. For each ordered tree α((T i, p
(i))), label the root with the marked element of Ai and
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relabel the rest of the vertices with the unmarked elements of Ai, preserving relative ordering.

Denote these trees by {Pi}ri=1. Attach their roots to an unlabeled vertex and arrange the subtrees

so that the subtree Pi is to the left of Pj if i < j. This is α((T , p)).

Figure 4.9 shows the relabeling and Figure 4.10 shows the final result of the running example.

We constructed α to prove the following lemma.

A1 = {C3, C6}

α
(
(T 1, p

(1))
)

1

A2 = {C2, C4, C5}

α
(
(T 2, p

(3))
)

2 1

A3 = {C1, C7, C8}

α
(
(T 3, p

(3))
)

2

1

−→

P1

6

3

P2

2

5 4

P3

8

7

1

Figure 4.9: Step 4, relabeling the trees from Figure 4.8 with the sets from Figure 4.7.

p = (6, 4, 1, 3, 3, 1, 6, 7, 2)

9
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7
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4
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α ((T, p))

6 2 8

3 5 4 7

1

Figure 4.10: The result of α.

Lemma 1. For n ≥ 1

|SPFn| = Cn−1(n− 1)!
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Proof. There are Cn−1(n − 1)! ordered trees with n vertices with non-root vertices labeled by

[n−1]. Therefore, it is sufficient to show that α is a bijection, which we do inductively. In the case

that |T | = 1, the only pair is (T, 1) and α ((T, 1)) is an unlabeled singleton.

Now suppose α is a bijection for all parking functions in SRPk with k < n and let (T , p) ∈

SRPn. Run the parking procedure on T for all but the final driver. Since p is a prime parking

function, all edges except for some on the path P from pn to the root have been used. Deleting

these unused edges creates a collection of trees which are naturally ordered by the order their

vertices appear on P . Since we know the root component is a singleton by Proposition 4, we may

ignore it and label the other components {Ti}ri=1 for some r.

We claim that Ti has smallest vertex label 1 +
∑i−1

j=1 |Tj| and largest label |Ti| +
∑i−1

j=1 |Tj|.

Further, if
∑i−1

j=1 |Tj| is subtracted from each vertex, the resulting tree will be labeled by post-order.

This means if we consider the subsequence of p, denoted p(i), consisting of drivers preferring Ti,

the pair (Ti, p(i)) is a relabeling of a parking function in SRP |Ti|.

Proof of claim. Because the edge leaving the root of every Ti is not used until the very last driver

and (T , p) ∈ SRPn, the roots of the Ti’s, denoted {ρi}ri=1, must lie on the left border of the tree.

By post-order labeling, a vertex is not labeled before all vertices below and all of its left siblings

are given a label. Since all vertices below ρ1 belong to T1, all other vertices of T1 are labeled before

ρ1. No vertex in T2 is labeled before ρ1 since ρ1 is on the left border of the tree, to the left of any

of its siblings. Hence, T1 is labeled first and is in post-order.

In general, as ρi−1 is on the left border of T , the vertices below ρi−1 are labeled before any

vertex in Ti. Thus, Ti has vertices labeled 1+
∑i−1

j=1 |Tj| to |Ti|+
∑i−1

j=1 |Tj|. Subtracting
∑i−1

j=1 |Tj|

from each vertex is the same as labeling, via post-order, the maximal subtree with root ρi and

vertices below ρi−1 (inclusive) deleted, as this deletion removes a branch on the left side of the tree

that is labeled before any other vertex.

Let A1, . . . , Ar be a partition of [n− 1] such that j ∈ Aℓ if and only if pj is a vertex in Tℓ. Ai is

the set of indices of the drivers preferring the component Ti, meaning |Ai| = |Ti|. For each deleted

edge (u, v), except for when v is the root, if v is the kth smallest vertex in its component, Tj , mark
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the kth smallest element in Aj . For A1, let v = pn. These marked elements track both the final

driver’s preference and how to reconstruct the tree from its components. The collection {Ai}ri=1

partitions [n− 1] and will become the set of labels on the resulting ordered tree.

Relabel {(Ti, p(i))}ri=1 by post-order (notice this is the same as subtracting
∑i−1

j=1 |Tj| from v ∈

V (Ti)), denoting them {(T i, p
(i)}ri=1. Use the inductive hypothesis to obtain the trees {α

(
(T i, p

(i))
)
}ri=1.

Label the root of α
(
(T i, p

(i))
)

with the marked vertex of Ai, then relabel the remaining vertices

with the unmarked elements ofAi, preserving relative order. This is possible because |Ai| = |Ti| =

|α
(
(T i, p

(i))
)
|. Attach the roots of these trees to an unmarked vertex and order them so that the

tree using the labels in Ai is ith-from-the-left. This tree is α ((T , p)).

To reverse, let P be an ordered tree with non-root vertices labeled by [n− 1]. Deleting the root

yields several components, denoted left-to-right as Pi for 1 ≤ i ≤ r. The set Ai is the set of labels

of Pi where the root of Pi is the marked element. Let ki denote the relative size of the marked

element in Ai. For each, delete the root’s label and relabel using [|Pi| − 1], preserving relative

order, and apply α−1 to get the collection {(T i, p
(i))}ri=1. To each v ∈ T i and letter of p(i), add∑i−1

j=1 |T j| to recover the pairs (Ti, p(i)).

Then for 1 ≤ i ≤ r − 1, attach the root of Ti to the vertex labeled ki +
∑i−1

j=1 |Tj|, placing it to

the left of any siblings. These vertices are those marked in Step 1 of the description of α. Attach

the root of Tr to a singleton with label n, the root of T . Let the sequence {ij} be the increasing

sequence of the elements of Ai. Then let pij = p
(i)
j to recover p.

Finally, we combine results to prove Theorem 5.

Proof of Theorem 5. Let (T, p) be a prime parking function, if ϕ((T, p)) = (σ, Tσ, pσ), we define

ψ(T, p) = (σ, α((Tσ, pσ)).

The function ψ is a bijection by Proposition 3 and Lemma 1, so we conclude that

Pn = n!|SRPn| = n! · (n− 1)! · Cn−1 = (2n− 2)!.
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4.3 Preimages of Paths Under α

We investigate special families of trees and parking functions of interest.

4.3.1 Preimage of Paths

We study what kinds of parking functions (T, p) appear under α−1 when we restrict the domain

to trees which are paths. Such paths will have n+ 1 nodes with the non-root nodes labeled by [n].

Definition 13. We denote the paths in the domain of α−1 by Pσ, where σ ∈ Sn is the permutation

obtained by reading labels traveling away from the root.

For a tree of size n + 1, there are n! such paths. Recall that Pn is the path of n vertices upon

which classical parking functions are defined.

Proposition 5. Let (Pn+1, s) be a parking function satisfying s1 = 1 and si ≤ i − 1 for i ≥ 2.

Then α(Pn+1, s) is one of the n! paths with non-root vertices labeled by [n].

Proof. That s is prime is easily checked. Since s1 = 1, we may delete s1 and consider s′ =

(s2, s3, . . . , sn+1). Since s′i = si+1 ≤ i, we have |{i : s′i ≤ k}| ≥ k for any k ∈ [n], so s′ is a

parking function on Pn. Further, s′i may be one of i-many choices, so there are n!-many s′, and

thus s.

Park the drivers in order. The first driver takes spot 1 and since s2 = 1, the second driver

takes spot 2, crossing the edge from 1 to 2. Next, since s2 ≤ 2, and spots 1 and 2 are taken,

the third driver takes spot 3, crossing the edge from 2 to 3. Continuing this, the ith driver always

parks at, but never prefers, spot i. When the final driver parks, all spots except for n + 1 are filled

and every edge has been used except the one between n and n + 1. Thus, by the construction

of α, the root of α(s,Pn+1) has one child. The inductive step in the proof of Lemma 1 tells us

that the shape of the tree obtained by deleting the root from α(s,Pn+1) is the same as that of

α ((1, s1, . . . , sn−1),Pn). But (1, s1, . . . , sn−1) is a prime parking function on Pn with the same

growth property as s. Therefore, its root also has one child. Iterating this argument, we see that the
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image of such parking functions under α consists of paths with non-root vertices labeled by [n].

Since α is a bijection and there are n! choices for s, all n!-such paths must appear.

It will prove useful to have a characterization of the si in terms of the labels of α(Pn+1, s).

Lemma 2. Let (Pn+1, s) be a prime parking function such that s1 = 1 and si ≤ i− 1 for 2 ≤ i ≤

n+ 1 and let Pσ = α(Pn+1, s) for σ ∈ Sn. Then for 2 ≤ i ≤ n+ 1, we have

si = |{j > n+ 2− i : σj < σn+2−i}|+ 1.

Proof. By the construction of α in Lemma 1, we know σ1 = sn+1 and so σ2 is the element in

[n] \ {σ1} larger than exactly sn − 1 others (the sth
n smallest element). In general, σi is the sth

n+2−i

smallest element in [n] \ {σ1, σ2, . . . , σi−1}. Thus, for i ≥ 2, si is given by the relative size of

σn+2−i in the set [n] \ {σ1, σ2, . . . , σn+1−i}. We may write this as si = |{j > n + 2 − i : σj <

σn+2−i}|+ 1.

Example 1. Consider the classical prime parking function p = (1, 1, 2, 3, 3, 1) and tree P6. That

si ≤ i− 1 for i ≥ 2 means the root of α((P6, p)) has only one child. Further, as the final driver has

preference 1, the tree α((P6, p)) is constructed by labeling the root of α((P5, (1, 1, 2, 3, 3)) with 1

and re-labeling the other nodes to preserve relative order.

To determine σ2, we note that the root child of α((P5, (1, 1, 2, 3, 3))) is 3 because the final

driver prefers 3. But for α((P6, p)), we must adjust to account for the 1 used and in order to

preserve relative order. Therefore, σ2 is the 3rd smallest in [6] \ {1}, which is 4.

Continuing this trend, σ3 is the label of the root child of α((P4, (1, 1, 2, 3))) adjusted to account

for the labels 1 and 4 already having been used. The final driver prefers 3, so σ3 is the third smallest

in the set [6] \ {1, 4}, which is 5. Determining σi for i ≥ 4 proceeds in a similar fashion.

Figure 4.11 presents α((P6, p)) and α((P4, (1, 1, 2, 3))). Note that the leaf of α((P6, p)) and its

two generations of parents have the same relative order as the labeled vertices in α((P4, (1, 1, 2, 3))).

Of particular interest are the increasing parking functions that obey this growth restriction.
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Figure 4.11: Applying α to several classical parking functions.

We now examine which labellings σ appear for α((Pn+1, s)) with s an increasing prime parking

function.

4.3.2 Image of Classical Increasing Parking Functions

Borie [3] gives a bijection between Sn(132), the permutations of length n which avoid a 132

pattern, and classical increasing parking functions of length n. Let σ ∈ Sn(132). Define for

m ∈ [n]:

fσ(m) = |{i : |{j : j < i, σj > σi}| ≥ m}|.

We briefly note that our fσ(m) is equivalent to the function mmp(0,m, 0, 0)(σ) in [3], which we

have shortened for readability. Set

ϕ(σ) = (fσ(n) + 1, fσ(n− 1) + 1, . . . , fσ(1) + 1).

Then ϕ(σ) is a classical increasing parking function and we have the following theorem due to

Borie:

Theorem 6 (Theorem 3.3, [3]). ϕ is a bijection between Sn(132) and increasing parking functions

of length n.

We will show
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Theorem 7. For σ ∈ Sn(132), ϕ(σ) is the parking function obtained after deleting the leading 1

from α−1(Pσ).

Proof. Fix σ ∈ Sn(132) and let (Pn+1, p
′) = α−1(Pσ). By Proposition 5, we know we may write

p′ = (1, p1, p2, . . . , pn), where p = (p1, p2, . . . , pn) is a classical increasing parking function. For

brevity, define for m ∈ [n]:

Am = {j : j > m and σj < σm},

and

Bm = {i : |{j : j < i, σj > σi}| ≥ m}

= {i > m : σi smaller than at least m of {σ1, . . . , σi−1}}.

Since |Bm| = fσ(m), we have ϕ(σ) = (|Bn| + 1, |Bn−1| + 1, . . . , |B1| + 1). From Lemma 2

we have pi = p′i+1 = |An+1−i| + 1, so it is sufficient to show that |Am| = |Bm| for m ∈ [n]. We

show the sets are the same.

Fix m ∈ [n] and let k ∈ Am. By definition, m < k and σk < σm. For i < m, if σi < σk, then

σ has the 132 pattern σiσmσk, which is not possible. Hence, σk < σi for 1 ≤ i ≤ m, so k ∈ Bm.

On the other hand, let j ∈ Bm. If σj < σm, then j ∈ Am, so suppose σj > σm. Since

σ ∈ Sn(132), σi < σj for m + 1 ≤ i ≤ j − 1. Thus, for indices smaller than j, only elements

from {σ1, σ2, . . . , σm−1} may be larger than σj . However, |{σ1, σ2, . . . , σm−1}| = m − 1 < m,

contradicting that j ∈ Bm. Therefore σj < σm, so j ∈ A.

4.4 Lucky Drivers

Recall Definition 3. For a parking function (T, s), let L((T, s)) be the number of lucky drivers.

Define the enumerator
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PTLn(t) =
∑

(T,p)∈PFn

tL((T,p)).

We prove

Theorem 8. When n ≥ 2, the number of prime parking functions, (T, p), with |T | = n and k lucky

drivers is given by

n!(n− 1)!Nn−1,k,

where Nn−1,k =
1

n−1

(
n−1
k

)(
n−1
k−1

)
, a Narayana number.

Proof. For n ≥ 1, let (T, p) ∈ PFn. We claim L((T, p)) is the number of leaves in the tree

α((Tσ, pσ)), the second component of ψ(T, p). When n = 1, there is precisely one prime parking

function and one lucky driver and the only tree under α is a singleton, which has one leaf.

For n ≥ 2, suppose the claim is true for m < n. Recall from Proposition 4 that the final driver

must park at the root, but can not prefer the root, and thus is not lucky. Therefore, L((T, p)) =∑r
i=1 L((T i, p

(i))) where {(T i, p
(i))}ri=1 are the standardized parking functions from Step 3 in the

description of α. Since |T i| < n, the inductive hypothesis tells us that L((T i, p
(i))) is the number

of leaves in α((T i, p
(i))). The shape of α((Tσ, pσ)) is obtained by attaching the roots of the trees

{α((T i, p
(i)))}ri=1 to a new root, so L((T, p)) is indeed the number of leaves in α((Tσ, pσ)).

By Lemma 1, there are (n−1)!-many choices of parking functions (T ′, p′) such that α((T ′, p′))

has the same shape as α((Tσ, pσ)). Proposition 3 tells us there are n!-many choices of parking

functions whose representative in SRPn is (Tσ, pσ). Finally, the Narayana number Nn−1,k counts

the number of ordered plane trees with n vertices and k leaves.

Summing over k, we can determine the enumerator PTLn(t).
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Corollary 3. PTL1(t)=t and for n ≥ 2, we have

PTLn(t) = n!(n− 1)!
n−1∑
k=1

Nn−1,kt
k

= n!(n− 2)!
n−1∑
k=1

(
n− 1

k

)(
n− 1

k − 1

)
tk.

Using the parking function and corresponding plane tree in Figure 4.10, we note that α((T, p))

has 4 leaves while the first four drivers are the four lucky drivers.

4.5 Parking Distributions

Following the decomposition in Section 4.1, we let F̃n be the total number of parking distribu-

tions on trees with n vertices, and P̃n be the corresponding number of prime parking distributions.

Set

F̃ (x) =
∑
n≥1

F̃n
xn

n!
and P̃ (x) =

∑
n≥1

P̃n
xn

n!
.

Notice that these are exponential generating functions, unlike F (x) and P (x). Decomposing a

parking distribution (T, s) into the “core” prime component and collection of r other components,

as in Section 4.1, we get

F̃n =
∑
r≥0

1

r!

∑
r∑

i=0
ki=n

P̃k0F̃k1 · · · F̃kr

(
n

k0, k1, . . . , kr

)
(k0)

r.

Summing over n, we find

F̃ (x) = P̃
(
xeF̃ (x)

)
, (4.4)

which is the same relationship for parking functions in Equation (4.1). We then turn our attention

to prime parking distributions and prove

Theorem 9. The total number of prime parking distributions on trees with n ≥ 1 vertices is given
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by

P̃n = (n− 1)!Sn−1,

where {Si}i≥0 are the large Schröder numbers.

Proof. We let P ∗
n be the total number of tuples (T, p, v), called marked prime parking distributions,

where (T, p) is a prime parking distribution and v is a leaf of T . Define the exponential generating

function

P ∗(x) =
∑
n≥1

P ∗
n

xn

n!
.

We count P ∗
n in two ways in order to determine the coefficients of P̃ (x). We may construct a

marked prime parking distribution from a prime parking distribution (T, p) with |T | = n − 1 by

“growing" the marked leaf from some vertex in T . We choose one vertex w in T which has j ≥ 1

drivers preferring it, select a label for the marked leaf v (out of n choices), add 1 to the label of

any vertex with label greater than or equal to the label chosen for v, attach v as a child of w, add

a driver preferring v, and change i drivers, for some 1 ≤ i ≤ j, preferring w to prefer v instead.

The number of choices we can make for v’s parents and number of drivers whose preferences we

change is
∑

w∈V (T )

|{i : pi = w}| = n− 1.

On the other hand, any marked prime parking distribution can be changed to a regular prime

parking distribution by deleting the marked vertex v, deleting one driver preferring it, and changing

the preference of other drivers preferring v to instead prefer v’s parent. Since the marked parking

distribution is prime, at least two drivers prefer the marked leaf. Figure 4.12 has two examples

where the shaded vertex is added and marked letters of p are drivers whose preference was changed.

This means for n ≥ 2,

P ∗
n = n(n− 1)P̃n−1,

so noting P ∗
0 = 0 and P ∗

1 = 1 and summing over n, we get
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P ∗(x) = x+ x2P̃ ′(x). (4.5)

7

6

5 4

3

2 1

p = (1, 1, 2, 2, 3, 5, 5)

7

6

5 4

3

2 1

8

p = (1, 1, 2, 2, 3, 5, 8, 8)

−→ or

7

6

5 4

3

2 1 8

p = (1, 1, 2, 2, 5, 5, 8, 8)

Figure 4.12: Two possibilities when adding the marked leaf.

For the second equation, we decompose a marked prime parking distribution (T, p, v) as in

Section 4.2.2: park all drivers except for one preferring v. For a general picture, see Figure 4.13.

Dashed edges denote those unused before the final driver. As before, the edges which have not yet

been used define r + 1, for some r ≥ 0, components of size ki with prime parking functions, one

of which is marked. Accounting for the edges connecting the components, the label of the root,

and the labels on the components, we have for n ≥ 2,

P ∗
n = n

∑
r≥0

∑
∑

ki=n−1

(
n− 1

k0, k1, . . . , kr

)
P ∗
k0
P̃k1 · · · P̃krk1k2 · · · kr,

so multiplying by xn

n!
and summing over n ≥ 2, we get
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∑
n≥2

P ∗
n

xn

n!
= x ·

∑
n≥2

∑
r≥0

∑
∑

ki=n−1

P ∗
k0

k0!
· P̃k1

(k1 − 1)!
· · · P̃kr

(kr − 1)!
xn−1

= x ·
∑
n≥2

n−1∑
k0=1

P ∗
k0

k0!
· [xn−1−k0 ]

1

1− xP̃ ′(x)
xn−1.

After changing indices and noting P ∗
0 = 0 and P ∗

1 = 1, we see

P ∗(x) = x+
xP ∗(x)

1− xP̃ ′(x)
. (4.6)

P ∗
k0 P̃k1 P̃kr

v

. . .

Figure 4.13: Decomposition based on final driver’s movement.

Combining Equations (4.5) and (4.6), we see

x
(
P̃ ′(x)

)2
+ (x− 1)P̃ ′(x) + 1 = 0,

and so as P̃ ′(0) = 1,

P̃ ′(x) =
1− x−

√
x2 − 6x+ 1

2x
,
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which is the ordinary generating function for the large Schröder numbers. Hence,

P̃ ′(x) =
∑
n≥0

n!Sn
xn

n!
,

meaning

P̃ (x) =
∑
n≥1

(n− 1)!Sn−1
xn

n!
.

As mentioned in Section 2.2.2, the large Schröder numbers count royal paths and the large

Schröder number Sn−1 has the formula

Sn−1 =
n−1∑
k=0

Nn−1,k2
k.

We have seen something like this before! From Corollary 3, it immediately follows that

Corollary 4. For n ≥ 1, we have

PTLn(2) = n!P̃n.

In addition to the relationship in Equation (4.4), we can let F ∗
n denote the total number of

parking distributions on trees with n vertices with one leaf marked and let

F ∗(x) =
∑
n≥1

F ∗
n

xn

n!
.

Constructing a parking distribution counted by F ∗
n by “growing" it from a parking distribution

counted by F̃n−1 gives n choices for the leaf label, n − 1 choices of nodes to attach the marked

leaf to without reassigning drivers, and n − 1 choices for attaching the marked leaf to a node and

reassigning at least one driver from the parent node. Thus, F ∗
n = 2n(n− 1)F̃n−1, so

F ∗(x) = x+ 2x2F̃ ′(x). (4.7)
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On the other hand, if a parking distribution on a marked tree with n vertices is decomposed by

considering the final unfilled node when the drivers on the marked leaf park last, the final node is

of one of three types: the root, the marked leaf, or neither. Therefore, we have for n ≥ 2

F ∗
n =

∑
r≥0

n

r!

∑
r∑

i=0
ki=n−1

(
n− 1

k0, . . . , kr

)
F ∗
k0
F̃k1 · · · F̃kr

+ n(n− 1)Fn−1

+ δn≥3

∑
r≥0

n

r!

∑
k+

r∑
i=0

ki=n−1

(
n− 1

k0, . . . , kr, k

)
F ∗
k0
F̃k1 · · · F̃kr F̃kk,

where δn≥3 is 1 if n ≥ 3 and 0 otherwise. Summing over n we get

F ∗ = x+ xF ∗eF + x2F ′ + x2F ∗F ′eF . (4.8)

Combining Equations (4.7) and (4.8) proves

Theorem 10. The exponential generating function of parking distributions on trees, F̃ (x), satisfies

the differential equation

F̃ ′ = eF̃ (1 + xF̃ ′)(1 + 2xF̃ ′),

with initial condition F̃ (0) = 0

We note that the generating function for general tree parking functions, F (x), satisfies the

similar equation

F ′ = eF (1 + xF ′)2.

For details, see Equation (7) in [14].
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5. SOURCE TREES AND INVERSE MAPPING DIGRAPHS1

This section is an expansion of Section 4 of [11]. We now combine the subject matters of

Sections 3 and 4 to investigate parking functions on source trees.

If T is a sink tree, let T̃ be the source tree obtained by reversing the orientation of all the edges.

Similarly, if Mf is the digraph obtained from f : [n] → [n] by letting V (Mf ) = [n] with edge set

E = {(i, f(i))}ni=1, we let M̃f be the digraph obtained from Mf by reversing edge orientations.

That is, E(M̃f ) = {(f(i), i)}ni=1. We will call these mapping and inverse mapping digraphs,

respectively. Define the sets

Tn = {T : |V (T )| = n and T is a sink tree},

Mn = {M :M is the mapping digraph of some f : [n]→ [n]}.

We similarly define T̃n and M̃n for the source trees and inverse mapping digraphs.

Recall that P (D,m) = |{(D, s) : s ∈ [n]m is a parking function on digraph D}|, the number

of (n,m)-parking functions on D. We begin by finding upper and lower bounds for P (T̃ ,m).

5.1 Extremal Values for Source Trees

Proposition 6. Let T̃ be a source tree, u a non-root vertex, v the parent of u, and w such that

v �T̃ w and w /∈ T̃u. Let T̃ ′ be the tree obtained by removing the edge (v, u) and adding the edge

(w, u). Then P (T̃ ,m) ≤ P (T̃ ′,m).

Proof. To clarify which tree we are considering, we denote by x′ the vertex in T̃ ′ with label x. Let

(T̃ , s) be an (n,m)-parking function. By Corollary 1, we must check |{i : si ∈ T̃ ′
x′}| ≤ |T̃ ′

x′| for

all x ∈ V (T̃ ′). By the construction of T̃ ′, |{i : si ∈ T̃ ′
y′}| = |{i : si ∈ T̃y}| and |T̃ ′

y′ | = |T̃y| for all

y′ not satisfying v′ ≺T̃ ′ y′ �T̃ ′ w′.

Therefore, let y′ be a vertex satisfying v′ ≺T̃ ′ y′ �T̃ ′ w′. We thus have:

1Reprinted with permission from “Parking Functions on Oriented Trees” by W. King and C. H. Yan, 2018. Sémi-
naire Lotharingien de Combinatoire, 80B, Copyright 2018 by W. King and C.H. Yan.
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|{i : si ∈ T̃ ′
y′}| = |{i : si ∈ T̃y}|+ |{i : si ∈ T̃u}|

≤ |T̃y|+ |T̃u|

= |T̃ ′
y′ |.

As a result, we obtain an upper and lower bound on P (T̃ ,m).

Corollary 5. The number of (n,m)-parking functions is maximized when T̃ is a directed path and

minimized when T̃ is a star, meaning

m∑
i=0

(
n− 1

m− i

)(
m

i

)
(m− i)! ≤ P (T̃ ,m) ≤ (n−m+ 1)(n+ 1)m−1.

Proof. For a path, the parking functions, up to vertex labeling, are classical (n,m)−parking func-

tions, and thus number (n−m+ 1)(n+ 1)m−1.

On a star, for 0 ≤ i ≤ m, when i drivers prefer the root, there are
(
n−1
m−i

)
ways to choose the

preferred non-root vertices,
(
m
i

)
ways to place the drivers preferring the root in s, and (m − i)!

ways to order the drivers preferring non-roots in s.

5.2 Tree and Inverse Mapping Parking Functions

Define the following for n ≥ 1:

Fn,m =
∑
T∈Tn

P (T,m), and Mn,m =
∑

M∈Mn

P (M,m).

Similarly, define F̃n,m and M̃n,m for source trees and inverse mappings.

Lackner and Panholzer [14] proved n · Fn,m =Mn,m. In fact, this relationship still holds when

the edge orientations are reversed. We first prove this claim when n = m, then we will show the

more general case. While the general idea of the proofs are similar to their counterparts in [14],
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there are some technical difficulties on source trees that are not present on sink trees. For source

trees, the drivers no longer necessarily have a unique path along which to search for a parking

spot, so we must instead identify edges that are not necessary for some successful parking. This

is simple enough on trees using the characterization of Corollary 1, but it is not immediately clear

for inverse mapping digraphs. So, we first prove that at least one cycle edge on each component of

an inverse mapping digraph is not needed for parking.

Lemma 3. Let (M̃f , s) be a parking function. Then there exists at least one edge in each cycle of

M̃f that can be deleted such that all drivers can still park.

Proof. It is sufficient to prove the claim for an inverse mapping digraph with only one component,

and thus one cycle. Suppose such an edge does not exist. Label the vertices of the cycle {ui}ri=1

such that u1 is the minimal among the cycle vertices and the edge ei := (ui−1, ui) is an edge in

the graph. Denote by Ti,f the tree rooted at ui obtained by deleting edge ei. By assumption, the

sequence s is no longer a parking function on Ti,f for any i. Begin by deleting e1. Thus, there

is some A ⊆ [n] such that |RT1,f
(A)| < |{i : si ∈ RT1,f

(A)}|. Corollary 1 tells us that we

may consider A = RT1,f
(i) for some i ∈ [n]. Since the viewable set of a non-cycle vertex is not

affected by the deletion of a cycle edge, we know i must be a cycle vertex. Therefore, let k1 be the

index of the cycle vertex with maximal distance following the cycle orientation from u1 such that

|RT1,f
(uk1)| < |{i : si ∈ RT1,f

(uk1)}|.

Next, we consider the tree Tk1,f and choose index k2 in a similar fashion, of maximal distance

from uk1 . We claim k2 < k1. Suppose not. We cannot have k1 = k2 as then |RTk1,f
(uk2)| = n ≥

|{i : si ∈ RTk1,f
(uk2)}|. Therefore, let k2 > k1. This implies that dist(u1, uk1) < dist(u1, uk2)

along the cyle, so by our choice of k1, we know |RT1,f
(uk2)| ≥ |{j : sj ∈ VT1,f

(uk2)|. Hence we
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have

|RTk1,f
(uk2)| = |RT1,f

(uk2)|+ |RTk1,f
(u1)|

≥ |{j : sj ∈ RT1,f
(uk2)|+ |{j : sj ∈ RTk1,f

(u1)}|

= |{j : sj ∈ RTk1,f
(uk2)}|,

contradicting how we chose k2.

Further, we show k2 6= 1. Supposing they are the same, we have

n = |RTk1,f
(uk2)|+ |RT1,f

(uk1)|

< |{j : sj ∈ RTk1,f
(uk2)|+ |{j : sj ∈ RT1,f

(u1)}|

= n,

which is clearly false.

We use this base case to inductively prove that ki+1 < ki, so assume this holds for all i < m.

Because RTkm,f
(ukm) = [n], we know km+1 6= km, so suppose km+1 > km and suppose further

that there is some 0 ≤ α ≤ m − 1 such that kα+1 < km+1 < kα, where we take k0 = 1. Figure

5.1 shows a sketch of the tree Tkm,f , where the vertex ui is labeled i for readability. The dashed

red vertices and edges are those associated with RTkα,f
(ukm+1), while the dotted blue ones are

associated with RTkm,f
(ukα). Together, the vertices form RTkm,f

(ukm+1).

In this case we have dist(ukα , ukm+1) > dist(ukα , ukα+1) and dist(ukm , ukα) > dist(ukm , ukm+1)

and so we can use our inductive hypothesis to write

|RTkm,f
(ukm+1)| = |RTkα,f

(ukm+1)|+ |RTkm,f
(ukα)|

≥ |{j : sj ∈ RTkα,f
(ukm+1)|+ |{j : sj ∈ RTkm,f

(ukα)}|

= |{j : sj ∈ RTkm,f
(ukm+1)}|,
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kα . . .

km − 1

km

. . .

k(α+1). . .

k(m+1)

. . .

kα − 1

Figure 5.1: A view of the “cycle” vertices of Tkm,f if km+1 > km.

which is also a contradiction. Our final case is if km+1 = kℓ for some 0 ≤ ℓ < m. Similar to the

k2 case, we have

n =
m∑
i=ℓ

|RTki,f
(uki+1

)|

<
m∑
i=ℓ

|{j : sj ∈ RTki,f
(uki+1

)}|

= n,

which is still false.

Hence, we must have a strictly decreasing sequence k1 > k2 > k3 > . . . which cannot indefi-

nitely continue. Therefore, there must be some km such that (Tkm,f , s) is a parking function.

Figure 5.2 gives an example of this process which terminates at k2. For simplicity ui has label

i. If e1 is deleted, the two drivers preferring 4 are not able to both park, and as dist(1, 4) is maximal

among cycle vertices, we must have k1 = 4. Next, delete edge e4 instead. Only two drivers prefer
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1

2

3

4

5

67

e1
e2

e3e4

Figure 5.2: A mapping digraph with parking function s = (2, 2, 2, 3, 3, 4, 4)

{3, 7}, so this is no issue. However, 5 drivers prefer {2, 3, 6, 7}, which means s is not a parking

function when e4 is deleted and that k2 = 2. After some inspection, we see that everyone is able

to park even after e2 is deleted, thus we have found one unnecessary cycle edge. In this case, the

unnecessary edge is unique. However, it need not be.

Professor Chun-Hung Liu suggested the following, simpler proof of Lemma 3.

Second Proof of Lemma 3. We induct on the number of vertices in a cycle. Let (M̃f , s) be an

(n, n)-parking function. Without loss of generality, we may assume there is only one component

of M̃f and thus a unique cycle in the graph. If only one vertex is in the cycle, then there is an edge

of the form (u, u) which is useless for parking and may be deleted.

Now suppose the cycle has length r > 1. Furthermore, suppose without loss of generality

that the vertices of the cycle are labeled by [r], f(r) = 1, and f(i) = i + 1 for i ∈ [r − 1]. Let

M be the graph obtained by deleting all cycle edges. Define for 1 ≤ i ≤ r, Vi := |RM(i)| and

αi := |{j : sj ∈ RM(i)}|. These are the numbers of vertices in and drivers preferring the subtree

induced by the vertex i along with all i �M̃f
v for v non-cycle vertices in M̃f .

If αi < Vi for all i ∈ [r], then there are strictly fewer than n drivers attempting to park,

contradicting the assumption that (M̃f , s) is an (n, n)-parking function. Hence, we know αi ≥ Vi

for some i. Since s is a parking function on M̃f , at least one driver prefers i (otherwise, too many

drivers prefer non-cycle vertices). We construct an (n− 1, n− 1)-parking function by contracting

the edge (i, i − 1) to identify the vertices i − 1 and i as a single vertex (with label i − 1) to form
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the digraph M ′, deleting the first instance of i from s, and changing all others to i− 1 to form the

sequence s′. For non-cycle vertex v, |RM̃f
(v)| = |RM ′(v)|, as are the number of drivers preferring

each set. If v is instead a cycle vertex, then n = |RM̃f
(v)| = |RM ′(v)| + 1, while n drivers prefer

RM̃f
(v) and n − 1 drivers prefer RM ′(v). Thus, (M ′, s′) is a parking function with r − 1 vertices

in the cycle. By the inductive hypothesis, there exists an edge e that can be deleted from M ′. We

claim this same edge in M̃f is not necessary for parking via s.

Let T be the digraph obtained by deleting e from M̃f and T ′ be obtained by deleting e from

M ′. Since (T ′, s′) is a parking function, we know for any v ∈ T ′, we have |{j : s′j ∈ RT ′(v)}| ≤

|RT ′(v)|. We now check the vertices of T to determine if (T, s) is a parking function.

Case 1: i− 1 ≺T v. We have

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RT ′(v)| ≤ |RT ′(v)| = |RT (v)|.

Case 2: v ≺T i. Then,

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RT ′(v)|+ 1 ≤ |RT ′(v)|+ 1 = |RT (v)|.

Case 3: v = i gives

|{j : sj ∈ RT (i)}| = |{j : sj ∈ RT ′(i− 1)|+ 1 ≤ |RT ′(i− 1)|+ 1 = |RT (i)|.

Case 4: v = i− 1. Using the fact that −αi ≤ −Vi, we know

|{j : sj ∈ RT (i− 1)}| = |{j : sj ∈ RT ′(i− 1)|+ 1− αi

≤ |RT ′(i− 1)|+ 1− Vi

= (|RT (i− 1)|+ Vi − 1) + 1− Vi

= |RT (i− 1)|.
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5

67

e
e

s = (1, 1, 2, 2, 3, 3, 3)

←→

s′ = (1, 1, 2, 2, 2, 2)

4

2

1

5

67

Figure 5.3: Identifying a deletable edge e by contracting (3, 2).

Case 5: all other v. Since v is not a cycle vertex in M̃f and s is a parking function on M̃f , the

deleting of e does not affect the reachable set of v. Thus,

|{j : sj ∈ RT (v)}| = |{j : sj ∈ RM̃f
(v)}| ≤ |RM̃f

(v)| = |RT (v)|.

So (T, s) is indeed a parking function and we know the edge e is not necessary for parking on

M̃f .

Figure 5.3 gives an example of the contraction to M ′ with i = 3. We identify a deletable e on

M ′, which gives a deletable e on M̃f . We now use Lemma 3 to prove

Theorem 11. For n ≥ 1, we have the relationship

n · F̃n,n = M̃n,n.

Proof. Let (T̃ , s) be a parking function for source tree T̃ , and pick v ∈ V (T̃ ). We define a

bijection ψ such that ψ
(
(T̃ , s, v)

)
= (M̃f , s) for some appropriate inverse mapping digraph M̃f ,

constructed by identifying edges in T̃ that can be manipulated without affecting the ability of the

cars to park. The sequence s will not change.

Let (u,w) be an edge in T̃ . If |{i : si ∈ T̃w}| = |T̃w|, then for any successful parking, no car

may cross (u,w) as otherwise too many cars would attempt to park in the subtree T̃w. Additionally,
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at least one driver must prefer w, as one driver must park in w and no driver may use the edge

(u,w). These two observations will allow us to select edges to manipulate in T̃ .

Consider the path root(T̃ ) = v1 → v2 → . . . → vk = v for some k ≥ 1. We first identify

the edges that are freely manipulatable, then we use the order of s to choose a subset of those. For

1 ≤ i ≤ k, let vi ∈ A if and only if |{j : sj ∈ T̃vi}| = |T̃vi |. Since T̃v1 = T̃ , A is nonempty.

By the second observation above, all vi ∈ A appear as preferences in s. The edge (vi−1, vi) is not

used by any driver, so we may manipulate it (even delete it) without affecting parking. Next, for

the vi ∈ A, we define the rank d(vi) to be the index of the first appearance of vi in s. We now let

B ⊆ A be given by the elements {vi : ∀j < i, d(vj) < d(vi)}. That is, the elements of B are those

in A that appear in s after their ancestors from A. Note that B 6= ∅ as root(T̃ ) = v1 ∈ B.

Consider the unique sequence {vij}
|B|
j=1 such that vij ∈ B and ij < ij+1. For j > 1, remove the

edge (vij−1, vij) and add the edge (vij−1, vi(j−1)
). Finally, add the edge (v, vi|B|) (if v is the root,

this will be a loop as then vi1 = v). The resulting graph is an inverse mapping digraph, M̃f , where

f(i) is the unique j such that (j, i) is an edge. In particular, the new edges are {(f(vij), vij)}
|B|−1
j=1 ∪

{(f(vi|B|), vi|B|)}.

3

6 1

2 7 4

5

s = (2, 3, 4, 1, 3, 5, 1), v = 5

−→

3

6 1

2 7 4

5

Figure 5.4: Turning a source tree into an inverse mapping digraph.

Figure 5.4 gives an example of ψ. In it, A = {1, 3, 4, 5} and B = {1, 3, 5}, with vi1 = 3,

vi2 = 1, and vi3 = 5.
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Remark 2. In each component, the vertex appearing in B has the highest rank among all other

vertices appearing in the cycle of that component. Further, if an edge was necessary for parking

on T̃ , it is still necessary for parking on M̃f .

For the inverse, we know by Lemma 3 that at least one edge in each cycle of the graph is

not necessary for parking. We let the set Â be the set of vertices in the cycles of M̃f that are

the terminal vertices of an edge that is not necessary for parking. Define B̂ ⊆ Â as the set of

vertices which have the highest rank in each cycle. By Remark 2, if (M̃f , s) = ψ
(
(T̃ , s, v)

)
, we

know B = B̂. Label these elements of B̂ by {bi}|B̂|
i=1 such that d(b1) < d(b2) < . . . < d(b|B̂|). For

1 ≤ i ≤ |B̂|−1, remove the edge (f(bi), bi) and add the edge (f(bi), bi+1). Finally, delete the edge(
f(b|B̂|), b|B̂|

)
and mark f(b|B̂|). The resulting tree is T̃ , so ψ−1

(
(M̃f , s)

)
= (T̃ , s, f(b|B̂|)).

As promised, we can extend this result to (n,m)-parking functions.

Theorem 12. Let n ∈ N and 0 ≤ m ≤ n. Then

n · F̃n,m = M̃n,m.

Proof. Let s ∈ [n]m be a parking function on T̃ ∈ T̃n, and let v ∈ V (T̃ ). Our goal is to extend s to

s′ ∈ [n]n in a reversible manner, then apply ψ. We must do so in a way that is not affected by the

change in edges caused by ψ, which suggests we avoid using edges along the path root(T̃ )→ v.

To this end, drivers choose to park as follows. We recursively define {Ai}mi=1 so that A1 =

{s1} and in general Ai are the spots that driver i could park at so that the remaining drivers may

successfully park and given the first i − 1 drivers are parked. Let Bi ⊆ Ai be the vertices of Ai

that are reachable from si by utilizing a minimal number of edges in the path root(T̃ ) → v. From

there, driver i parks at the vertex with label min(Bi). Once driver i is parked, we construct Ai+1

and continue until all drivers have parked.

Let {xi}n−m
i=1 be the unoccupied spaces after the drivers have parked in this manner, ordered in
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an increasing manner. We then define s′ as follows:

s′i =


si if i ≤ m

xj if i = m+ j

Then, we apply ψ to (T̃ , s′, v). Since s′ does not change under ψ and is a parking function, s is

also a parking function on the resulting mapping digraph M̃f . In order to reverse, we must be able

to extend s to s′ on M̃f . Because the edges on the path between root(T̃ ) and v become the cycle

edges, drivers park as defined in the first paragraph, but instead of utilizing a minimal number of

path edges, they use a minimal number of cycle edges.

5.3 Source Trees vs Sink Trees

We consider the relationship, if any, between P (T,m) and P (T̃ ,m). If m = 0, 1, then the two

are equal as there is only one parking function with 0 cars and the first car parks regardless of the

underlying graph. We begin with the third-easiest case and let m = n and we prove

Theorem 13. Let T ∈ Tn. Then

P (T, n) ≤ P (T̃ , n)

with equality if and only if T is a path.

Proof. Let (T, s) be a parking function on sink tree T . We give a process to determine an involution

τ ∈ Sn such that τ(s) = (τ(s1), τ(s2), . . . , τ(sn)) is a parking function on the source tree T̃ . Park

cars on T following the parking procedure, highlighting an edge if it is used by a driver after failing

to park at her preferred spot. Since T is a sink tree, each vertex has outdegree at most 1, so parking

is deterministic. We define τ by individually considering the components connected by highlighted

edges. So without loss of genreality, we may assume that every edge in T is highlighted.

We define a collection of length ≥ 2 “paths” in T , one for each leaf, whose vertices form a

partition of the vertices of T . The purpose of these “paths” is to identify a section of the tree where
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we can “flip” the edge orientations and driver preferences and still guarantee each driver a spot to

park.

Let {vi}, for 1 ≤ i ≤ k be the leaves of T indexed such that the labels vi < vi+1. We

recursively define the sets Pi: the set Pi is the smallest set of vertices of the path between vi and

the root such that no vertices from Pj, j < i are in Pi, there are |Pi| drivers preferring Pi, and all

vertices of Pi are connected to vi through vertices in {Pj}ij=1. For example, in Figure 5.5, we have

sets P1 = {1, 2, 3, 5} and P2 = {4, 6}. Two drivers prefer the leaf {1}, three drivers prefer the

vertices {1, 2}, four drivers prefer {1, 2, 3} and {1, 2, 3, 5}, so the latter is P1. When determining

P2, we skip over vertices in previously-chosen paths, in this case the vertex labeled 5.

6

5

43

2

1

p = (1, 4, 4, 2, 1, 3)

−→

6

5

43

2

1

τ(p) = (5, 6, 6, 3, 5, 2)

Figure 5.5: Constructing a parking function on T̃ from one on T . τ = (15)(23)(46)

The collection {Pi}ki=1 must partition the vertices of T . Suppose it does not and let v /∈ Pi for

any i be such that v is the only vertex in Tv, the subtree rooted at v, with this property. The vertex

v is not a leaf of T , as all leaves are in the sets {Pi}ki=1 by construction, and thus is the terminus

of at least one edge, (u, v). Since none of the “paths” corresponding to leaves of Tv contain v and

because all cars can park, all cars preferring spots w �T u can park without occupying v. This

means the edge (u, v) is not used by any driver after failing to park in her preferred spot, which

contradicts our assumption that this was true of all edges. Therefore, such a v can not exist.

For each i, let ni = |Pi| and label the elements of Pi by wi,j such that wi,1 = vi �T wi,2 �T

. . . �T wi,ni
. Finally, we define τ(wi,j) = wi,ni+1−j . This reverses the driver preference along the
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“path” so that when the edge orientation is flipped for T̃ , the drivers may park as they did on T .

We can recover the Pi from (T̃ , τ(s)) using the exact same method. Thus, we can invert

the process. In Figure 5.5, zero drivers prefer {1}, one driver prefers {1, 2}, two drivers prefer

{1, 2, 3}, and four drivers {1, 2, 3, 5}, so this is P1. For P2, no drivers prefer {4}, we skip over 5

as it is already in P1, and two drivers prefer {4, 6}.

If T is not a path, then this process is not surjective because the parking function in which all n

drivers prefer the root of T̃ is not obtainable in this manner as at least one driver prefers each leaf

vertex.

Summing over all T ∈ Tn gives us

Corollary 6. For n ≥ 1,

Fn,n ≤ F̃n,n,

with equality only when n ∈ {1, 2}.

When we replace n by m < n in Theorem 13, the result does not necessarily hold. For the

tree in Figure 5.6 with root vertex 4, P (T, 2) = 15, as any sequence except (4, 4) parks. However,

P (T̃ , 2) = 14 as neither (1, 1) nor (2, 2) are parking functions.

4

3

1 2

Figure 5.6: A tree for which P (T, 2) > P (T̃ , 2).
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6. MISCELLANEOUS STRUCTURES

In this final section of results, we consider parking distributions on source caterpillars and both

parking functions and parking distributions on source and sink spiders. All parking functions here

are (n, n)-parking functions.

6.1 Caterpillars

We recall from Section 2.1.1 the definition of a caterpillar. Butler, Graham, and Yan [4] give

a bijection between parking distributions on sink caterpillars and lattice paths in Z2 with steps

{(0, 1), (1, 0)}, avoiding a certain region. In this subsection, we give a bijection between source

caterpillars and more complex lattice paths in Z2 that generalize Dyck paths.

Theorem 14. The parking distributions on Cat(a1, a2, . . . , an) are in bijection with the lattice

paths in Z2 weakly above the x-axis, starting at (0, 0), ending at (
∑n

i=1(ai + 2), 0), with down

steps (1,−1), and where the j th up-step has the form (1 + an−j+1 − ij, 1 + ij) and is colored one

of
(
an−j+1

ij

)
colors for some 0 ≤ ij ≤ an−j+1.

Proof. Consider a caterpillar C = Cat(a1, a2, . . . , an), set N := n+
n∑

i=1

ai, and let f : [N ]→ [N ]

be a parking distribution on C. For 1 ≤ i ≤ n, let {vi,j}aij=1 be the non-spine children of vi. We

construct a lattice path with the above properties from C and f .

For the j th up-step of the path, ij = an+1−j −
an+1−j∑
k=1

f(vn+1−j,k), the number of leaf children of

vn+1−j which no drivers prefer. The color of the up-step corresponds to one of the
(
an+1−j

i

)
ways

to select these spots. The number of downs-steps following the j th up-step is given by f(vn+1−j).

We must show this path is weakly above the x-axis and ends at (
∑n

i=1(ai + 2), 0).

First, we consider the ending x-coordinate of the path. Knowing that
∑
v∈D

f(v) = N and

summing up the x-components of the up and down-steps,
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n∑
j=1

(1 + (an−j+1 − ij)) +
n∑

j=1

f(vj) = n+
n∑

j=1

an+1−j∑
k=1

f(vn+1−j,k) +
n∑

j=1

f(vj)

= n+N

= 2n+
n∑

j=1

aj

=
n∑

j=1

(aj + 2).

We now show that the path ends at height y = 0. The final height is given by

n∑
k=1

(
1 + an+1−k −

an+1−k∑
ℓ=1

f(vn+1−k,ℓ)

)
−

n∑
k=1

f(vn+1−k) = N −N = 0.

Next, we show that the path is weakly above the x-axis by assuming there is some down-step

that brings the path below the x-axis, occurring in the sequence of down steps appearing after the

j th up-step in the path. The height of the path immediately before the (j + 1)st up-step is given by

j∑
k=1

(
1 + an+1−k −

an+1−k∑
ℓ=1

f(vn+1−k,ℓ)

)
−

j∑
k=1

f(vn+1−k),

so
j∑

k=1

(1 + an+1−k) <

an+1−k∑
ℓ=1

f(vn+1−k,ℓ) +

j∑
k=1

f(vn+1−k). (6.1)

However, the left hand side of Equation (6.1) is |RC(vn+1−j)| and the right hand side is the number

of drivers preferring that subtree. This contradicts the assumption that f is a parking distribution,

thus there can be no steps below the x-axis.

On the other hand, given such a path with n up-steps, we may recover both f and the structure

of C. The value of an+1−j is obtainable from the dimensions of the j th up-step, say (x, y). Then

an+1−j = x+ y− 2. Thus, we know C = Cat(a1, a2, . . . , an). The number of down-steps after the

j th up-step tells us f(vn+1−j), and the color of the j th up-step tells us which of {f(vn+1−j,k)}
an+1−j

k=1
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are 0 and which are 1. We must now show the resulting f is a parking distribution on C.

Since C is a source tree, it is sufficient to only check the number of drivers preferring the

maximal subtrees rooted at each vertex. If v is a leaf, then by the above correspondance, we know

f(v) ≤ 1. Now consider spine vertex vj . The height of the path immediately before the (n − j)th

up-step is
n−j+1∑
k=1

(
1 + an+1−k −

an+1−k∑
ℓ=1

f(vn+1−k,ℓ)

)
−

n−j+1∑
k=1

f(vn+1−k).

Changing indices and noting that the quantity is non-negative, we know

n∑
k=j

(
f(vk) +

ak∑
ℓ=1

f(vk,ℓ)

)
≤

n∑
k=j

(ak + 1).

The left hand side is the number of drivers preferring a spot inRC(vj) and the right hand side is

|RC(vj)|. This holds for all spine vertices vj , so indeed the constructed f is a parking distribution

on C.

s = (1, 1, 1, 2, 2, 3, 3, 4, 7, 10)

1 2 3 4

5 6 7 8 9 10

(0,1)
∅ (0,1,0)

(0)

Figure 6.1: A parking distribution (represented as a weakly increasing sequence) on Cat(1, 3, 0, 2)
and corresponding lattice path.
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Figure 6.1 gives an example of a parking distribution on Cat(1, 3, 0, 2) and its corresponding

lattice path. We choose to represent the color of the up-step (α, β)→ (α+an+1−j+1−ij, β+ij+1)

by an an+1−j-tuple with entries from {0, 1} and exactly ij-many 0s. The tuple represents, from

smallest to largest label, the leaves whose labels appear in s (the 1s) and those which do not (the

0s).

The exact number of such paths are difficult to count, but if we impose some regularity on the

caterpillars, the problem becomes tractable. Let Catn,k = Cat(k, k, . . . , k), the caterpillar with n

spine vertices and k leg vertices attached to each spine vertex. Then simplifying the statement of

Theorem 14, we get:

Corollary 7. The parking distributions on Catn,k are in bijection with the lattice paths in Z2 weakly

above the x-axis, starting at (0, 0), ending at (n(k + 2), 0), with down steps (1,−1), and up steps

of the form (k + 1− i, 1 + i), colored one of
(
k
i

)
colors, for some 0 ≤ i ≤ k.

Let an,k be the number of such paths and let Ak(x) = 1+
∑
n≥1

an,kx
n be the ordinary generating

function.

Theorem 15. The generating function Ak(x) satisfies the differential equation

Ak(x) = 1 + x (Ak(x))
2 (1 + Ak(x))

k ,

and so for n ≥ 1,

an,k =
1

n

n−1∑
j=0

(
2n

j

)(
kn

n− 1− j

)
2n(k−1)+j+1.

Proof. We decompose a path counted by an,k for n ≥ 1 to get a recurrence relation. Given such a

path, consider the first step on the path. It has the form (0, 0)→ (k + 1− i, i + 1) and one of
(
k
i

)
colors for some 1 ≤ i ≤ k. Then, for each 0 ≤ j ≤ i, consider the first down step taking the path

from height j + 1 to height j. For appropriate αj , these steps are (αj, j + 1) → (αj + 1, j). Set

αi+1 = k− i. For any j, the segment of the path between x = αj+1 +1 and x = αj must be a path

counted by anj ,k for nj =
αj−1 − αj − 1

k + 2
when j ≥ 1, and n0 =

n(k + 2)− α0 − 1

k + 2
.
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The sequence (n0, n2, . . . , ni+1) satisfies
i+1∑
j=0

nj = (n− 1), so we may write

an,k =
k∑

i=0

(
k

i

) ∑
∑

nj=(n−1)

i+1∏
j=0

anj ,k.

Figure 6.2 gives an example of this decomposition. Multiplying by xn, summing over n, and

adding a0,k = 1 gives

Ak(x) = 1 + x
k∑

i=0

(
k

i

)
(Ak(x))

i+2

= 1 + x (Ak(x))
2 (1 + Ak(x))

k .

We now extract coefficients. Let Gk(x) = Ak(x)− 1, so

Gk(x) = x (Gk(x) + 1)2 (2 +Gk(x))
k ,

letting ϕ(λ) = (1 + λ)2(2 + λ)k, we see by Lagrange inversion for n ≥ 1 that

an,k = [xn]Gk(x) =
1

n
[λn−1](1 + λ)2n(2 + λ)kn

=
1

n

n−1∑
j=0

(
2n

j

)(
kn

n− 1− j

)
2n(k−1)+j+1.

We note that when k = 0, the caterpillar is a path, so any parking distribution is an increasing

classical parking function. We should have an,0 = Cn. Indeed, when k = 0, the only nonzero term

in the sum is for j = n− 1, so an,0 =
1

n

(
2n
n−1

)
= Cn, as expected. This result is a generalization of

the results in [6], which presents several solutions for the k = 1 case.
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i+ 1

i

1

αi αi−1 α0

· · ·

an(i+1),k

ani,k

a0,k

Figure 6.2: The decomposition of an,k.

6.2 Spiders

Recall our definition of and notations concerning spiders from Section 2.1.1. We consider the

number of parking distributions and functions on an abritrary spider considered as either a sink

and a source tree.

Theorem 16. Let S = S(n1, n2, . . . , nk) for k ≥ 1. Let PFS , PDS , PFS , and PDS be the number

of parking functions and distributions on sink and source tree S, respectively. Then:

PDS =
k∏

i=1

C(ni+1), (6.2)

PDS =
k∏

i=1

Cni
+

k∑
j=1

(C(nj+1) − Cnj

)
·
∏

i∈[k]\{j}

Cni

 , (6.3)
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PFS =
n∑

j=1

 ∑
∑

i ñi=n−j
0≤ñi≤ni

(
n

j, ñ1, ñ2, . . . , ñk

) k∏
i=1

(ni + 1− ñi)(ni + 1)ñi−1

 , (6.4)

PFS =

(
n

1, n1, n2, . . . , nk

) k∏
i=1

(ni + 1)(ni−1)

+
k∑

j=1

( n

n1, . . . , nj + 1, . . . , nk

)
((nj + 2)nj − (nj + 1)nj)

∏
i∈[k]\{j}

(ni + 1)(ni−1)

 . (6.5)

Proof. For Equation (6.2), consider parking distributions for k paths of length ni+1: {(Pi, fi)}ki=1.

Identify the roots, denoted ρ, with each other to form the spider. Define the parking distribution f

as follows:

f(v) =


fi(v) if v 6= ρ and v ∈ V (Pi)

1− k +
∑k

i=1 fi(ρ) if v = ρ

The functions fi are recoverable by letting fi(ρ) = ni −
∑

v∈V (Pi)\{ρ}
f(v) and fi(v) = f(v) for

other v ∈ V (Pi).

For Equation (6.3), if a driver prefers the root, then there are
∏k

i=1Cni
choices for the drivers

preferring the legs. On the other hand, suppose no driver prefers the root. Then one of the legs

of S has an additional driver. Suppose it is the one associated with nj . That leg has a parking

distribution of length nj + 1 but the final spot can not be preferred, so we must subtract these Cnj

options. For the other legs, choose a parking distribution of length ni. Finally, sum over 1 ≤ j ≤ k.

For Equation (6.4), we choose 1 ≤ j ≤ n drivers to prefer the root. We then must select

0 ≤ ñi ≤ ni drivers to prefer each leg such that
∑k

i=1 ñi = n− j. Therefore for each leg, we select

an (ni, ñi)-parking function on a path of length ni. There are (ni+1−ñi)(ni+1)ñi−1-many choices

for such parking functions. Then, we must arrange the sequences in one of
(

n
j,ñ1,...,ñk

)
-many ways.

Finally, for Equation (6.5), if a driver prefers the root, then we select parking functions for

each leg and arrange the sequences in
(

n
1,n1,...,nk

)
-many ways. On the other hand, suppose no driver
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prefers the root. One of the legs must have an extra driver attempting to park. For this leg, we

choose a parking function of length nj +1 and subtract out the cases where some driver prefers the

root. If a driver prefers the root, there are (nj + 1)-many places for her in the line of cars and the

remaining cars must constitute a parking function of length nj , giving (nj + 1)nj -many choices.

For the other legs, we select a parking function of length ni.

It is good to check that these results match known ones. In the case of S(n−1), we should have

PDS = PDS = Cn and PFS = PFS = (n + 1)(n−1). These are all immediate except perhaps PFS ,

which follows from the Binomial Theorem. Figure 6.3 shows an example of S(2, 1, 1). Using

the formulae above, we have PDS = 20, PDS = 9, PFS = 631, and PFS = 500. The parking

distributions are simple enough to check by hand and the parking functions can be checked by

counting the permutations of the parking distributions.

5 1 2
3

4

Figure 6.3: A labeling of S(2, 1, 1).

The formula for PDS is the simplest of the four, so let us consider summing over all choices of

S such that S has n vertices and then sum over n. Define PDs(x) := x+
∑
n≥2

n−1∑
k=1

∑
k∑

i=1
ni=n−1,

1≤ni

PDSxn.

Corollary 8. We have

PDs(x) =
x

2− (C(x))2
,

where C(x) =
1−
√
1− 4x

2x
, the Catalan generating function.
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Proof. Since C(x) = 1 + x(C(x))2, we know
C(x)− 1− x

x
= (C(x))2 − 1. Substituting, we

have

PDs(x) = x+
∑
n≥2

n−1∑
k=1

∑
k∑

i=1
ni=n−1,

1≤ni

k∏
j=1

Cnj+1x
n

= x+
∑
n≥2

n−1∑
k=1

x[xn−1]

(
C(x)− 1− x

x

)k

=
∑
n≥1

n−1∑
k=0

x[xn−1]

(
C(x)− 1− x

x

)k

= x
∑
k≥0

(
(C(x))2 − 1

)k
=

x

1− ((C(x))2 − 1)
.

PDS(x) appears in queueing theory as the mixing moments for the waiting time in a M/G/1

waiting queue [1].

63



7. CONCLUSION AND FINAL REMARKS

This dissertation gives a new generalization of parking functions to directed graphs that opens

many new avenues for research, particularly through Theorem 4. In this section, we expand on

several of these possibilities.

In Section 4, we discussed the “lucky drivers” statistic, the number of drivers who park in their

preferred spot. Several other statistics we may consider are the total distance driven by drivers, the

number of distinct driver preferences and the number of spots the most unlucky driver had to check

before parking. For digraphs with maximal outdegree larger than 1, one would likely have to define

these statistics as the maximal or minimal value among all valid parkings. Another statistic that

may yield interesting results is the number of complete squares between the x-axis and the path in

a classical parking function’s Dyck path representation. In the case of prime parking functions on

sink trees, through Theorem 9 and Corollary 4, it seems likely we can associate a prime parking

function with a Royal path and two permutations. One may then ask what the area under the Royal

path counts or if it is equidistributed with other statistics, as in the classical case.

We discussed partial (or incomplete) parking functions in Section 5, but we could extend that

even further to m ∈ N0 drivers attempting to park and k failing to do so. In the classical setting,

the number of such parking functions gives a proof of a special case of Abel’s Binomial Identity,

namely

(a+ b)b =
b∑

i=0

(
b

i

)
· a · (a+ i)i−1 · (b− i)i−1

when a, b ∈ N0. See [5] for details.

Finally, we may ask, given a digraph D, what an “average” or random parking function on D

looks like. How many drivers are expected to prefer a given vertex or how many distinct pref-

erences do we expect to see? See [7] for a treatment of similar questions on classical parking

functions.
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