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ABSTRACT

This research explores the application of a reduced order modeling technique known as proper

generalized decomposition (PGD) to models commonly employed in nuclear science and engineer-

ing. PGD is an a priori reduced order modeling technique that seeks a separated representation of a

multi-dimensional variable. A separated representation involves decomposing a multi-dimensional

variable into a sum of products of 1-D dimensional functions. It is conjecture that this represen-

tation can significantly reduce the burden of evaluating multi-dimensional linear systems. To in-

vestigate PGD’s capability for this computational expediency and reduction in dimensionality, this

research applies a PGD approach to four different types of problems: nuclear reactor criticality,

multigroup neutron diffusion, neutron transport, and parameterized neutron diffusion. This disser-

tation first discusses the impetus of reduced order modeling and the methodology behind PGD. It

then details the mathematics of the PGD algorithm and its application to several simple examples,

including tailoring the algorithm for heterogeneous domains. The rest of the dissertation discusses

the various new applications of this PGD approach.

In the criticality application, PGD is utilized to reduce the computational burden of evaluat-

ing multigroup neutron diffusion eigenvalue problems. In this application, each multigroup flux

is sought as a finite sum of separable one-dimensional functions. With this representation, PGD

is used to evaluate the linear systems within the power iteration process of the eigenvalue prob-

lem. The dissertation discusses the implementation of PGD to these eigenvalue systems including

a derivation of PGD operators for multigroup neutron diffusion problems with standard power it-

eration and power iteration accelerated with adaptive Wielandt shift. To illustrate PGD’s effective-

ness, the implementation is applied to eigenvalue problems ranging from homogeneous to highly

heterogeneous geometries with one-, two-, and four-group material properties. With comparison

to full-order model evaluation with MOOSE, the effectiveness of PGD is found to be problem-

dependent. PGD always out performs the full-order model with close to homogeneous problems,

but its performance degrades with more realistic reactor problems.
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In the space-energy approach, two different approaches are analyzed that utilize PGD to eval-

uate multigroup neutron diffusion problems, or more generally, coupled diffusion-reaction prob-

lems. This dissertation gives an overview of the PGD methodology and neutron diffusion with

multigroup energy discretization. The first PGD approach performs a space-only decomposition,

where a spatial separated representation is sought for each multigroup flux. The second approach

is a full space-energy decomposition, where the energy dimension is included in the PGD sepa-

rated representation. The dissertation also explores the prospect of performing a decomposition

for different energy regions, effectively creating macro groups that retain fine-group structure. An

algorithm for decomposing the linear operators to create an efficient PGD iteration process is ex-

plained for each of the approaches. The results include two 2-D, two-group examples and a 3-D

seven-group example. When comparing with the full-order model, evaluated using MOOSE, both

PGD approaches prove effective for mildly heterogeneous geometries, but show difficulty when

dealing with more complex geometries. Furthermore, the space-energy representation is much

slower than the space-only approach for the two-group problem, but proves more effective for the

seven-group problem. The results also include a 145-group graphite block example, where PGD

with space-energy separation significantly reduces the computational time compared to a special-

ized deal.II implementation.

In the neutron transport application, two different PGD approaches are utilized to evaluate

the linear systems involved with SN neutron transport. In the first approach, each SN angular

flux is sought as a finite sum of separable one-dimensional functions. In the second appoach, a

space-angle decomposition is investigated, whereby including the angular decomposition in the

separated representation. PGD has been applied extensively to advection-diffusion problems, but

none that include pure advection and scattering-type variable coupling. This discussion discusses

these implementations of PGD to the source iteration strategy for solving the neutron transport

equation. To illustrate the effectiveness of PGD to evaluate these problems, it is applied a two-

dimensional homogeneous example with a volumetric source with various scattering ratios. It is

found that PGD is ineffective for pure absorption problems due to the extensive number of terms
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required in the separated representation, which is verified by singular value decomposition of the

full-order model. However, potential is found in utilizing PGD for problems requiring source

iteration where the difference in two iterations’ solution is much more separable.

In the parameterization application, a PGD approach is employed for uncertainty quantification

purposes. The neutron diffusion equation with external sources, a diffusion-reaction problem, is

used as the parametric model. The uncertainty parameters include the zone-wise constant mate-

rial diffusion and reaction coefficients as well as the source strengths, yielding a large uncertain

space in highly heterogeneous geometries. The PGD solution, parameterized in all uncertain vari-

ables, can then be used to compute mean, variance, and more generally probability distributions of

various quantities of interest. In addition to parameterized properties, parameterized geometrical

variations of 3D models are also considered. To achieve and analyze a parametric PGD solution,

algorithms are developed to decompose the model’s parametric space and semi-analytically inte-

grate solutions for evaluating statistical moments. Varying dimensional problems are evaluated in

order to showcase PGD’s ability to solve high-dimensional problems and analyze its convergence.
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1. INTRODUCTION

1.1 Curse of Dimensionality

One of the most significant contributions to the complexity of computational science and engi-

neering is the multi-dimensional nature of physical systems, or the so called “curse of dimension-

ality". The computational burden of solving highly-dimensional problems is especially prevalent

in nuclear science and engineering. Despite the impressive advances in computer science and nu-

merical modeling, many problems remain intractable. The following itemizes various phenomena

in order of ascending difficulty:

• To simulate physics in a realistic fashion, variables often must be expressed as spatially

dependent quantities. Typically this involves evaluating the variable in a three dimensional

space, (x, y, z) in Cartesian geometries. If this space was discretized with M nodes in each

dimension, the resulting system would involve M3 unknowns. Therefore, if a more accurate

answer is desired, a uniform refinement would increase the size of the system by a factor of

eight at each refinement.

• The neutron transport equation, the gold standard for modeling neutron population behavior,

includes a variable (angular flux) which lives in a phase-space of seven dimensions: three for

position (~r), two for travel direction (~Ω), one for energy (E), and one for time (t). This high-

dimensional physics is often formidable to simulate with the system size easily reaching

into the trillions of unknowns. Furthermore, the time dependence leads to a stiff system of

equations and thus must use implicit time discretization. It is common in nuclear reactor

analysis to remove the angular dependence (~Ω). However, this 4-D+time neutron diffusion

problem often still requires high performance computing resources to solve.

• Mathematical models used to represent physical systems often have many parameters whose

values are not known exactly, but with some level of uncertainty. A technique for gather-

ing the dependence of the solution with these parameters for uncertainty propagation is to
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parameterize the solution, whereby adding the the parameters as extra dimensions to the nat-

ural dimensions, discussed in the previous points. When the number of parameters is large,

the propagation of uncertainty on the system’s output becomes computationally challeng-

ing; this is known as the curse of dimensionality in parametric uncertainty quantification

(UQ). Using common methods like polynomial chaos, a modest uncertain space may require

millions of system evaluations. Further, when the model itself is expensive to evaluate, the

problem as posed may become intractable.

This list is by no means an exhaustive description of all the difficulties in modeling and sim-

ulation of nuclear science and engineering. However, it is meant to show how the complexity of

problems increase dramatically as more realistic and accurate simulations are desired. The purpose

of this dissertation is to investigate the potential of a reduced order modeling technique known as

proper generalized decompositions to alleviate the computation expense of evaluating these prob-

lems.

1.2 Background on Reduced Order Modeling

Reduced order modeling (ROM) is a technique that aims to decrease the size of a system by

extracting the relevant information into a much smaller subspace. Typically, the application of

ROMs reduces the solution space a posteriori, that is, after a full-order (or high-dimensional)

model has been exercised for a range of parameters to determine the proper subspace where the

physics solution evolves. Many techniques for a posteriori ROM exist, one example is Proper

Orthogonal Decomposition (POD) [1, 2, 3]. Some applications of POD include computational

fluid dynamics [4, 5, 6], shallow water [7, 8], and mechanics [9, 10]. Some recent applications

of POD for ROMs in the nuclear engineering community include reactor kinetics [11], particle

transport [12], and criticality [13], for instance. In order to further illustrate the purpose of ROM,

the following subsections gives a brief overview of POD with simple examples.
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1.2.1 Reduced Order Modeling with Proper Orthogonal Decomposition

Suppose, after discretization, that a solution to a given physical system involves K degrees of

freedom. POD finds and truncates an orthogonal basis to this solution such that the number of

degrees of freedom for the truncated system is less than K. For a simple example, suppose there

is a RGB image that is 1186-by-2048 pixels, which equates to a solution with K = 7.3× 106. To

find the ROM of this image, it is restructured as a 2-D array were the columns are RGB values of

the pixels in the y direction and the rows are values in the x direction, shown by the arrayA:

A =



R1,1 R1,2 . . . R1,2048

R2,1 R2,2 . . . R2,2048

...
... . . . ...

R1186,1 R1186,2 . . . R1186,2048

G1,1 G1,2 . . . G1,2048

G2,1 G2,2 . . . G2,2048

...
... . . . ...

G1186,1 G1186,2 . . . G1186,2048

B1,1 B1,2 . . . B1,2048

B2,1 B2,2 . . . B2,2048

...
... . . . ...

B1186,1 B1186,2 . . . B1186,2048



. (1.1)

Singular value decomposition (SVD) is then used to find the orthogonal basis of the array, which is

shown by Equation (1.2a) [14, 15]. U is the left orthonormal basis of size 1186×3-by-2048, V is

the right orthonormal basis of size 2048-by-2048, and Σ is a diagonal matrix containing the 2048

singular values. The ROM is then found by truncating the bases such that some percentage of the

singular values are still present, shown by Equation (1.2b).

A = UΣV T (1.2a)
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A ≈ ŨΣ̃Ṽ T (1.2b)

Assuming Σ is truncated to n singular values, Ũ is then 1186×3-by-n and Ṽ is 2048-by-n. Fig-

ure 1.1 shows an example image and what the image looks like when truncating to various numbers

of singular values. Figure 1.1d shows that when n = 100, the image is visually identical. With this

truncation, the number of values in the resulting reduced order model is a tenth of the number of

values in the original full-order image.

1.2.2 Proper Orthogonal Decomposition for a Physical System

A common application of POD is to produce a ROM of a physical system whose given input

parameters are not known exactly. The idea is that this ROM can be evaluated at arbitrary parameter

values much more quickly than the full-order counterpart. As an example, Equation (1.3) shows a

discretized system with a solution u, operatorL, and source q that depend on the parameter values

~µ with K unknowns.

L(~µ)u(~µ) = q(~µ) (1.3)

The goal is to find a new operator L̃ that is much smaller than L so that the solution can be

evaluated more quickly for different values of ~µ. POD performs this model order reduction by first

solving the solution by evaluating the full-order model at various parameter values or snapshots

(~µi). These solutions are then stored as an array:

A =



u1(~µ1) u1(~µ2) . . . u1(~µn)

u2(~µ1) u2(~µ2) . . . u2(~µn)

...
...

...

uK(~µ1) uK(~µ2) . . . uK(~µn)


, (1.4)

and an orthogonal basis is found by performing SVD on matrix A, shown by Equation (1.2a).

The decomposition is then truncated to ñ based on a percentage of the singular values, shown

by Equation (1.2b), such that ñ < min(n,K). POD makes the assumption that u is a linear
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combination of the columns of Ũ :

ui =
ñ∑
j=1

αjŨij . (1.5)

(a) Original Image

(b) 5 singular values (27%) (c) 20 singular values (39%)

(d) 100 singular values (61%) (e) 500 singular values (90%)

Figure 1.1: Image when performing various POD approximations
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The system defined by Equation (1.3) is then projected onto the subspace described by Equa-

tion (1.5):

ŨTL(~µ)Ũα = ŨTq(~µ) . (1.6)

This system now involves ñ unknowns. This reduced order system, or model, can then be used to

sample more values of ~µ at a significantly reduced computational cost.

These two examples are meant to illustrate the potential of ROM, particularly POD, to reduce

the computational rigor of evaluating large systems for UQ purposes. A major drawback of POD

is that producing an initial basis by taking snapshots of different parameter values can be over-

whelming when the number of unknowns K is very large. Contrary to POD, this research utilizes

an a priori ROM, known as proper generalized decomposition, whereby producing a reduced basis

on-the-fly to system simulation.

1.3 Introduction to Proper Generalized Decomposition

Proper generalized decomposition (PGD) aims at reducing the dimensionality of a system.

To combat the difficulty in evaluating a multi-dimensional system, PGD decomposes the system

solution into a separated representation [16, 17]. PGD represents a multi-variate function as a sum

of products of one-dimensional functions. A D-dimensional solution is sought as N sums of D

products, shown in Equation (1.7a), where N is large enough to represent the solution to a certain

tolerance.

u(x1, x2, ..., xD) =
∞∑
n=1

D∏
j=1

uxjn (xj) ≈
N∑
n=1

D∏
j=1

uxjn (xj) . (1.7a)

For instance, a two-dimensional variable u(x, y) can be decomposed into N sums of products of

functions of x and y, shown in Equation (1.7b).

u(x, y) =
∞∑
n=1

Xn(x)Yn(y) ≈
N∑
n=1

Xn(x)Yn(y) . (1.7b)

As such, the advantage of PGD is readily apparent. If a solution to a problem involves D di-

mensions with M nodes in each dimension, the problem will involve solving a system with MD
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unknowns. With PGD, the number of unknowns would be N × D × M . Put simply, usually

a system size will increase exponentially with the number of dimensions, while PGD increases

linearly. Additionally, if the system is uniformly refined, the system size increases as 2 × D,

while an unreduced system size increases as 2D. One of the disadvantages of PGD is that a linear

problem now requires a non-linear solution process because the solution is sought as products of

one-dimensional solutions.

1.3.1 Current PGD Applications

As stated in the previous section, PGD seeks a separated representation of a multi-dimensional

variable. This representation is not a new concept. This form as been utilized in quantum chemistry

for decades, particularly the Hartee-Fock representation of wave functions [18]. Additionally, a

space-time separated representation has been utilized by Ladeveze’s group in the development of

the LATIN method for nonlinear structural mechanics [19, 20, 21]. However, PGD has only been

developed in the past decade. Despite its adolescence, PGD has been applied to a wide range of

subjects. Some of the first applications of PGD include the multi-bead-spring model of polymetric

fluids [22, 23, 24]. PGD for the separation of physical space has been applied to heat flow [25, 26]

and structural mechanics [27, 28]; especially interesting is the x-y/z separated representation for

plate geometries [28, 29, 30, 31].

One of the hallmarks for the PGD method is its capability to parameterize models by adding

uncertain parameters as extra coordinates. Thus, the dimensionality of a model includes the natural

space and temporal coordinates, but also extra dimensions for each parameter under investigation.

These parameters and types of models investigated using PGD vary widely across literature. Some

of these applications include parametrizations of source locations [32], boundary conditions [27],

geometric parameters [33], and material properties [34]. Most of these applications involve param-

eterizing only one or two properties, where the material properties are homogeneous. One notable

exception can be found in Lamari et al. [35], where a parameterization of the heat conduction

coefficient in every region of a heterogeneous domain is performed, with homogenization as the

ultimate goal of their study. These parameterized models can then be utilized to perform many
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useful types of analyses for physical systems. Some of these include process optimization [36],

shape optimization [33, 37], inverse problems for real-time simulation [29, 32, 38, 39, 40], and

uncertainty quantification [41, 42, 43].

This review is by no means a exhaustive list of current applications and developments of the

PGD method. Luckily, PGD books [16, 44, 45] and review papers [46, 47, 48] have detailed lists

of PGD methods and applications.

1.3.2 PGD in Nuclear Science and Engineering

PGD is a relatively new method and its applications are currently very scarce in the field of nu-

clear science and engineering. There are mainly two publications applying PGD to neutron diffu-

sion models. Gonzalez et al. [49] implemented PGD to solve a 2-D, mono-energetic k-eigenvalue

problem. This paper investigated the use of an Arnoldi-like algorithm within the PGD process

to resolve the eigenvalue problem. Senecal & Wi [50] applied PGD using the MOOSE library

(Multi-physics Object Oriented Simulation Environment) to 2-D steady-state neutron diffusion

problems, including two-group diffusion. This paper is very detailed in the PGD implementation

for two-group diffusion, but no generalized procedure for multigroup problems exists and only

mildly heterogeneous problems have been investigated.

Beyond published manuscripts, there are some presented research on PGD application to tran-

sient diffusion and transport. Alberti & Palmer [51, 52] investigated application to space-time

separation in 1-D transient diffusion, with nonlinear model considerations. Dominesey et al. [53]

investigated space-angle separation for 1-D homogeneous transport problems.

1.4 Objectives of the Dissertation

The goal of this research is to tailor the PGD algorithm for application in nuclear science

and engineering and analyze its capability for reducing the computational cost of evaluating these

models. In achieving this goal, the PGD approach presented in this dissertation is applied to prob-

lems and governing laws that have not been investigated in previous PGD works. The following

subsections describe each of these applications.
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1.4.1 Multigroup Neutron Diffusion Criticality Calculations

In this application, PGD is used to evaluate the linear systems involved in the generalized

eigenvalue problem for nuclear reactor criticality calculations. This application goes beyond the

work by Gonzalez et al. [49] by investigating the multigroup version of the neutron diffusion

problems. This extension to PGD applications is crucial for analyzing the capability of PGD to

solve realistic reactor-physics problems. The research investigates the use of PGD within the

standard power iteration procedure for resolving the nonlinear eigenvalue-eigenvector coupling.

1.4.2 Fixed-Source Neutron Diffusion with Space-Energy Separated Representations

In this application, PGD is used to evaluate fixed-source, steady-state multigroup neutron diffu-

sion problems. These types of problems are subject of the work by Senecal & Wi in [50]. In their

approach, each multigroup flux was separated in space-only, like in Equation (1.7b). The work

presented in this dissertation compares the space-only approach with a full space-energy separa-

tion, whereby including the energy dimension in the PGD separated representation. This approach

has the potential to significantly reduce the computational burden of evaluating fine-group calcula-

tions. This application applies both approaches to heterogeneous multigroup problems, where the

potential of PGD to solve realistic models is analyzed.

1.4.3 Neutron Transport

As stated in Section 1.1, the neutron transport equation lives in a seven-dimensional phase

space, which indicates that PGD could significantly reduce the dimensionality of these problems.

In this research, the capability of PGD to serve as a reduced order model is analyzed by investigat-

ing the separability of a transport solution.

1.4.4 Parameterized Neutron Diffusion

Often parameters of a model are not known exactly, but with some degree of uncertainty. These

parameters can include material properties, geometric features, boundary conditions, etc. Paramet-

ric modeling considers these uncertain parameters by expanding the model in the parameter space.
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Developing parameterized models are important for uncertainty quantification (UQ), which mea-

sures the impact of the uncertainty of a system’s properties. Parameterizing a model can be viewed

as adding many more dimensional coordinates. Typically, the dimensionality of a model includes

space and temporal coordinates. Parametric models include these natural coordinates as well as

the total number of properties being parameterized. Parametric modeling is inherently high dimen-

sional and when the full-order model is expensive to evaluate, the problems as posed may become

intractable. In this work, PGD is utilized to develop a parameterized neutron flux which has un-

ambiguous dependence on the uncertain parameters. This solution can then be used to propagate

uncertainties, compute statistical moments, and perform design optimization with little computa-

tional effort.

1.5 Dissertation Structure

The chapters of this dissertation are as follows:

• Section 2 introduces the PGD solution process. This includes a generalized algorithm that

can be applied to any linear system. Additionally, the chapter includes a methodology to de-

compose material properties for heterogeneous geometries. Several results are also included

that apply PGD to the Poisson equation with method of manufactured solutions (MMS)

for verification purposes. Finally, this chapter includes several diffusion-reaction examples

which compare run-times and error with full-order model evaluation.

• Section 3 involves the PGD application to multigroup neutron diffusion criticality calcu-

lations. Here, the multigroup neutron diffusion equation is presented with descriptions of

various power iteration techniques to evaluate the generalized eigenvalue problem. The tech-

nique in which PGD is applied to the power iteration procedure is also discussed with modi-

fications to the underlying algorithm, including solution compression, eigenvalue projection,

and adaptive enrichment tolerance. Results are presented for several reactor criticality prob-

lems and performance comparisons are made with full-order model evaluation.

• Section 4 involves the PGD application to neutron diffusion with space-energy separated
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representations. This chapter presents the fixed-source, stead-state multigroup neutron dif-

fusion equation. The PGD system construction is also presented for the additional energy

dimension to the PGD solution decomposition. Results are presented for varying number

of energy groups comparing the space-energy representation with space-only PGD and full-

order model evaluation.

• Section 5 investigates PGD’s application to neutron transport problems. This chapter intro-

duces the mono-energetic neutron transport equation with SN discretization of the angular

dimension. Two different PGD approaches are also explained, including space-only decom-

position of each direction’s flux and space-angle decomposition (adding angle into the PGD

separated representation). These approaches are analyzed by observing the separability of

the decomposed solution and convergence of the PGD iteration scheme.

• Section 6 involves utilizing PGD to produce parametric models for neutron diffusion. This

chapter introduces parametric modeling in neutron diffusion and utilizing a parameterized

solution for uncertainty quantification. Application of PGD to these models is described

and the unique construction of PGD operators is explained. The results illustrate the abil-

ity of PGD to evaluate very high dimensional models, otherwise impossible for full-order

evaluation.

• Section 7 makes the concluding remarks on all these applications and remarks on potential

future work.
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2. PROPER GENERALIZED DECOMPOSITION

2.1 PGD Solution Process

Proper generalized decomposition (PGD) is an a priori reduced order modeling technique,

where the subspace is built on-the-fly to system evaluation. This section describes the PGD evalu-

ation process with two approaches: variational form and matrix form. For the sake of exposition,

the governing law is written as,

L(x, y)u(x, y) = q(x, y) , (2.1)

where L(x, y) is a linear operator acting on the solution u and q(x, y) is the source term. The

derivation is restricted to two dimensions for brevity, but higher dimensional systems can easily be

extracted.

2.1.1 Variational Form

As an introduction to the PGD methodology, the PGD solution process is explained for a 2-D

model and thus seek a separated representation of the solution in x and y, as shown in Equa-

tion (2.2a) [16]. In the PGD process, both L and q are decomposed in sums of one-dimensional

operators and source terms:

u(x, y) =
N∑
n=1

Xn(x)Yn(y) , (2.2a)

L(x, y)u(x, y) =
N∑
n=1

L∑
`=1

Lx` (x)Xn(x)Ly` (y)Yn(y) , (2.2b)

q(x, y) =

Q∑
k=1

qxk(x)qyk(y) . (2.2c)

N is again the number of terms needed to represent the solution u to a certain tolerance. L and Q

are the number of terms needed to fully represent the operator and source using products of one-

dimensional operators and sources, respectively. For a homogeneous diffusion-reaction operator in
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2D Cartesian coordinates, Lwould equal 3: one for the diffusion operator in each spatial dimension

and one for the absorption/reaction operator, as shown in Equation (2.3).

Lu(x, y) := −∇ ·D∇u+ Σau =
N∑
n=1

[
−Dd

2Xn

dx2
Yn −DXn

d2Yn
dy2

+ ΣaXnYn

]
. (2.3)

For an operator whose coefficients are dependent on material properties, L and Q are dependent

on the decomposition of the heterogeneous geometry. Section 2.3.1 describes the method used for

obtaining this decomposition.

The solution u is built iteratively, one term in the summation at a time, starting with the first

term, X1(x)Y1(y) all the way to XN(x)YN(y). This process is known as enriching the solution.

For the first enrichment, the solution is assumed to be a direct separation of variables (u(x, y) =

X1(x)Y1(Y )). To evaluateX1(x) and Y1(y), the separated solution is substituted into the governing

law, the equation is multiplied by a test function (v(x, y)), and the equation is integrated over the

full domain,

L∑
`=1

∫
Ωx

dxLx` (x)X1(x)

∫
Ωy

dyLy` (y)Y1(y)v(x, y)

=

Q∑
k=1

∫
Ωx

dxqxk(x)

∫
Ωy

dyqyk(y)v(x, y)dy . (2.4)

Equation (2.4) is now a nonlinear equation between X1(x) and Y1(y). To resolve this nonlinearity,

X1(x) and Y1(y) are solved separately by defining different test functions. When solving for

X1(x), the test function is v(x, y) = X∗(x)Y1(y); and when solving for Y1(y), the test function is

v(x, y) = X1(x)Y ∗(y). Where X∗(x) and Y ∗(y) are the respective 1-D test functions in x and y,

and X1(x) and Y1(y) are the last computed solutions. Applying these test functions, the equations

for X1(x) and Y1(y) are shown by Equations (2.5a) and (2.5b), respectively.

L∑
`=1

βy1,1,`

∫
Ωx

X∗(x)Lx` (x)X1(x)dx =

Q∑
k=1

γy1,k

∫
Ωx

X∗(x)qxk(x)dx , (2.5a)
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L∑
`=1

βx1,1,`

∫
Ωy

Y ∗(y)Ly` (y)Y1(y)dy =

Q∑
k=1

γx1,k

∫
Ωy

Y ∗(y)qyk(y)dy , (2.5b)

where,

βxi,j,` =

∫
Ωx

Xi(x)Lx` (x)Xj(x)dx , (2.6a)

γxi,k =

∫
Ωx

Xi(x)qxk(x)dx , (2.6b)

βyi,j,` =

∫
Ωy

Yi(y)Ly` (y)Yj(y)dy , (2.6c)

γyi,k =

∫
Ωy

Yi(y)qyk(y)dy . (2.6d)

Once X1(x) and Y1(y) have converged to a certain tolerance, the enrichment process continues by

then evaluating X2(x) and Y2(y).

Suppose all terms up to index N − 1 are known, and now enrichment N is being evaluated.

This is done similarly as before by applying the assumed solution u(x, y) =
∑N

i=1 Xi(x)Yi(y),

multiplying by the test function v(x, y) = X∗(x)YN(y) or v(x, y) = XN(x)Y ∗(y), and integrating

over the full domain,

L∑
`=1

βyN,N,`

∫
Ωx

X∗(x)Lx` (x)XN(x)dx =

Q∑
k=1

γyN,k

∫
Ωx

X∗(x)qxk(x)dx

−
N−1∑
j=1

L∑
`=1

βyN,j,`

∫
Ωx

X∗(x)Lxk(x)Xj(x)dx . (2.7a)

L∑
`=1

βxN,N,`

∫
Ωy

Y ∗(y)Ly` (y)YN(y)dy =

Q∑
k=1

γxN,k

∫
Ωy

Y ∗(y)qyk(y)dy

−
N−1∑
j=1

L∑
`=1

βxN,j,`

∫
Ωy

Y ∗(y)Ly` (y)Yj(y)dy . (2.7b)

Note that all the previously computed enrichments (j = 1, . . . , N−1) appeared on the right-hand-

side and are known quantities when solving for enrichment N .
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To summarize, the solution process for PGD involves sequentially adding terms to the sum in

Equation (2.2a), also known as enriching the solution. The first enrichment is a direct separation of

variables (u(x, y) = X1(y)Y1(y)) and each dimension is solved individually using Equation (2.4).

However, this is a nonlinear process because the resulting system for X1(x) depends on Y1(y),

and vice versa. This nonlinear process is resolved using a fixed-point iteration or an alternating

direction strategy [16]. Once resolved, a new enrichment term is added to the decomposed solu-

tion, until the contribution of the latest term is less than a certain tolerance. The PGD process is

shown in Figure 2.1 for the case of a two-dimensional x-y problem. This PGD process, adapted

to heterogeneous domains, is further discussed in Section 2.3.1. For additional details regarding

PGD, see the following PGD books [16, 44, 45] and review papers [46, 47].

Since the PGD solution process involves two nested loops, enrichment and alternating direc-

tion, convergence criteria must be defined. This work defines the enrichment criteria as,

EN
enr =

||XN(x)|| ||YN(y)||∑N
n=1 ||Xn(x)|| ||Yn(y)||

< εenr (enrichment tolerance), (2.8)

and the alternating direction criteria as,

Ep+1
ad =

||Xp+1
N (x)−Xp

N(x)|| ||Y p+1
N (y)− Y p

N(y)||
||Xp+1

N (x)|| ||Y p+1
N (x)||

< εad (fixed-point tolerance), (2.9)

where p is the iteration index.

2.1.2 Matrix Form

This section describes the PGD solution process where the variables and operators are in dis-

cretized form, namely matrix form. The majority of this research utilizes continuous finite elements

(CFEM) to discretize variables. For reference, Equation (2.10) shows the CFEM discretization of

a 2-D variable in a full-order model on a uniform mesh.

u(x, y) ≈ û(x, y) =
I∑
i=1

J∑
j=1

ui,jϕi,j(x, y) , (2.10)
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N = 1

Enrich:
u(x, y) =

∑N−1
n=1 Xn(x)Yn(y) +XN(x)YN(y)

Solve for XN(x):
v(x, y) = X∗(x)YN(y)

Solve for YN(y):
v(x, y) = XN(x)Y ∗(y)

XN(x) and YN(y)
converge?

||XN(x)YN(y)||
< tol

N = N + 1

u(x, y) =
∑N

n=1Xn(x)Yn(y)

no

yes

no

yes

Figure 2.1: Visualization of the PGD solution process when solving a two-dimensional x-y prob-
lem

where ui,j are coefficients and ϕi,j(x, y) are 2-D basis functions, with I and J nodes in x and y,

respectively. Within the PGD framework, each term in Equation (2.2a) is discretized using 1-D

CFEM:

Xn(x) ≈ X̂n(x) =
I∑
i=1

Xn,iϕ
x
i (x) , (2.11a)

Yn(y) ≈ Ŷn(y) =
J∑
j=1

Yn,jϕ
y
j (y) . (2.11b)

The coefficients in Equations (2.10) and (2.11) can be related if the PGD model is designed such

that ϕi,j(x, y) = ϕxi (x)ϕyj (y):

ui,j =
N∑
n=1

Xn,iYn,j . (2.12)

The relation shown by Equation (2.12) is known as projecting the PGD solution into the full-order

space.
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Here, it is convenient to represent the unknowns in vector form, where ui,j → U , Xn,i →Xn,

and Yn,i → Yn. The PGD and full-order model can now be related by,

U =
N∑
n=1

Xn ⊗ Yn , (2.13)

where ⊗ is the Kronecker product. The 2-D governing law, shown in variational form in Equa-

tion (2.1), can now be represented in matrix form:

LU = Q , (2.14)

with corresponding PGD representation:

LU =

(
L∑
`=1

Lx` ⊗L
y
`

)(
N∑
n=1

Xn ⊗ Yn

)
=

N∑
n=1

L∑
`=1

(Lx`Xn ⊗Ly`Yn) , (2.15a)

Q =

Q∑
k=1

Qx
k ⊗Q

y
k . (2.15b)

For information regarding the construction of the multi-dimensional and 1-D matrices with CFEM,

please see [54].

Now, regarding the evaluation of the 1-D PGD coefficient vectors, these unknowns are solved

by the enrichment and alternating direction strategies described in the previous section. Equa-

tion (2.16) shows the matrix form of Equation (2.7).

Mx
NXN = Rx

N , (2.16a)

M y
NYN = Ry

N , (2.16b)

whereM andR are matrices and residual vectors, respectively, defined by,

Mx
n =

L∑
`=1

(Yn ·Ly`Yn)Lx` , (2.17a)
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M y
n =

L∑
`=1

(Xn ·Lx`Xn)Ly` , (2.17b)

Rx
n =

Q∑
k=1

(Yn ·Qy
k)Q

x
k −

n−1∑
j=1

(Yn ·Ly`Yj)L
x
`Xj , (2.17c)

Ry
n =

Q∑
k=1

(Xn ·Qx
k)Q

y
k −

n−1∑
j=1

(Xn ·Lx`Xj)L
y
`Yj . (2.17d)

In this formulation,M andR need to be computed at each alternating direction iteration. However,

if all the Lx, Ly, Qx, and Qy terms are constructed before the PGD process is initiated, then

the computation of M and R involves matrix-vector and vector-vector operations; very efficient

algorithms have been developed for these operations [55, 56].

2.2 PGD for the Poisson Equation

This section analyzes the PGD application to the multi-dimensional Poisson equation,

−∆u(~x) = q(~x) , (2.18)

where ~x is of arbitrary dimensionality: in two dimension ~x ≡ [x, y], in three dimensions ~x ≡

[x, y, z], and in D dimensions ~x ≡ [x1, x2, ..., xD]. The linear operators, described in Equa-

tion (2.2b), for the 2-D Poisson equation are defined as:

Lx1Xn(x)Ly1Yn(y) = −d
2Xn

dx2
Yn (2.19a)

Lx2Xn(x)Ly2Yn(y) = −Xn
d2Yn
dy2

(2.19b)

In the following subsections, PGD is applied to four different Poisson problems. The first is a

2-D and 3-D problem with a homogeneous source, where run-times are compared with full-order

model evaluation. The second and third are problems that involve the method of manufactured so-

lutions (MMS), where error convergence is verified and compared with full-order evaluation. The

fourth problem analyzes PGD withD dimensional Poisson problems. The PGD process, described
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in the previous section, is implemented in MATLAB where the 1-D solution terms are discretized

using CFEM and the linear systems are evaluated using the MATLAB sparse LU solver. The

full-order models are evaluated using the Multiphysics Object Oriented Simulation Environment

(MOOSE), which utilizes a conjugate gradient solver preconditioned with algebraic multi-grid

(AMG). The MOOSE solver is a HYPRE implementation with default numerical parameters.

2.2.1 Homogeneous Poisson Results

2.2.1.1 Visualization of Enrichment Procedure

To illustrate the enrichment procedure, PGD is applied to a 2-D homogeneous Poisson prob-

lem. For comparison purposes, the solution of this problem is decomposed using three different

techniques. The first technique is using PGD to solve the original equation. The second technique

performs SVD on the converged solution. SVD is known to produce the optimal decomposition for

a 2-D array of values [57], see Appendix A for a description on how SVD is used for this purpose.

The third technique uses the 2-D Fourier series representation of the exact solution,

u(x, y) =
∞∑
m=1

∞∑
n=1

4 [1− (−1)m] [1− (−1)n]

π4mn (m2 + n2)
sin(mπx) sin(nπy) , (2.20)

see Appendix B for the derivation of this representation. This representation produces a sum of

separable functions, similar to a PGD formulation, that are orthogonal. Figure 2.2 shows the

enrichment convergence of each of these techniques with the L∞ error at each enrichment step.

The contribution and L∞ error at enrichment n are defined as,

Contribution(n) =
||Xn|| ||Yn||∑n
i=1 ||Xi|| ||Yi||

, (2.21a)

and,

L∞ Error = max
x∈Ωx ,y∈Ωy

∣∣∣∣∣
n∑
i=1

Xi(x)Yi(y)−
N∑
i=1

Xi(x)Yi(y)

∣∣∣∣∣ , (2.21b)

respectively. From Figure 2.2, PGD is far from the optimal decomposition of SVD and the conver-

gence is not uniform. However, the error between each enrichment decreases, which indicates that
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each enrichment term contributes to reducing the error. Furthermore, both PGD and SVD converge

much more quickly than the analytical Fourier series, which implies that orthogonal decomposi-

tion does not necessarily provide the best decomposition. Figures 2.3a and 2.3b show the first six

enrichment terms of PGD for x and y, respectively.

Figure 2.2: Enrichment convergence for PGD, SVD, and the Fourier series representation of the
exact solution to the 2-D homogeneous Poisson equation.

2.2.1.2 Speed Comparison with MOOSE

In order to show the computational efficiency of PGD, a homogeneous two- and three-dimensional

Poisson problem was executed with PGD and MOOSE with various mesh sizes. The linear tol-

erance in MOOSE and PGD enrichment tolerance were set to 10−6. Table 2.1 shows the timing

results for each mesh. These results illustrate how PGD can significantly reduce the computational

effort in evaluating multi-dimensional problems. Additionally, the increase in timing confirms that

PGD scales linearly with number of elements in each dimension (I+J), while the full-order model

scales by the power of the number of dimensions (I × J).
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(a) X`(x) (b) Y`(y)

Figure 2.3: First six 1-D terms in PGD solution, scaled by their L2 norm.

Table 2.1: Homogeneous Poisson problem execution times

Elements Execution Time (sec)
per 2-D 3-D
Dimension PGD MOOSE PGD MOOSE
100 0.0229 0.2649 0.3135 78.662
200 0.0447 1.0974 0.3309 653.08
400 0.0415 4.3070 0.4705 -
800 0.0620 20.392 0.8091 -
1,600 0.0968 81.285 1.4265 -
3,200 0.1827 324.05 1.6930 -
6,400 0.3613 - 4.1863 -
12,800 0.7810 - 11.677 -
25,600 2.1407 - 29.493 -
51,200 6.1579 - 56.872 -
102,400 17.491 - 112.95 -

Results with "-" could not be computed, system did not have enough memory

2.2.2 Method of Manufactured Solutions Results

In order to verify the PGD implementation and compare error convergence with full-order mod-

eling, two different manufactured solutions are constructed and executed with PGD and MOOSE.

The first is shown by Equation (2.22a), which can analytically be decomposed into two terms.
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The second is shown by Equation (2.22b), which cannot be expressed by a finite sum of separable

functions.

u(x, y) = sin(xπ)y2(1− y) + sin(yπ)x2(1− x) (2.22a)

u(x, y) = sin (xyπ) sin(xπ) sin(yπ) (2.22b)

Figures 2.4a and 2.5a shows the L∞ error as a function of mesh refinement for the first and

second manufactured solutions, respectively. These plots show that the PGD implementation has

proper error convergence for first and second order CFEM, even with an inseparable reference

solution. Figures 2.4b and 2.5b show the enrichment convergence for the PGD solution at 256

elements per dimension. These plots also show the relative magnitude of the singular values,

obtained from singular value decomposition (SVD), of the MOOSE solution and the exact solution

projected on the same mesh. SVD of the first MMS shows the separability of the equation, where

both the MOOSE and exact decompositions converge to approximately machine precision after

the second term. However, PGD needs many more enrichments to converge. SVD of the second

MMS shows the inseparability of the resulting solution. Additionally, PGD has more difficulty

converging, compared to the first MMS, which indicates that the performance of PGD is dependent

on the separability of the solution itself.

2.2.3 Results for Poisson with Varying Dimensionality

In this section, PGD is applied to the Poisson equation with various number of dimensions.

The purpose of this analysis is to observe how PGD scales with dimensionality. For the sake of

exposition, the Laplacian operator (∆) in D dimensions is expressed as:

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
D

. (2.23)

The problem was executed with PGD for 2, 3, 4, 5, 10, and 20 dimensions with 100 elements in

each dimension. Included is an 11 dimension result which has 144 elements in 10 dimensions and

22



(a) L∞ Error (b) Enrichment convergence

Figure 2.4: Error and enrichment convergence of first Poisson manufactured solution (Equa-
tion (2.22a)

(a) L∞ Error (b) Enrichment convergence

Figure 2.5: Error and enrichment convergence of first Poisson manufactured solution (Equa-
tion (2.22b)

157 in the other. Table 2.2 details the results of each of PGD simulations including run-times, the

number of enrichments required for a tolerance of 10−5, and a comparison between the size of the

PGD solution and the expanded full-order solution. These results show that PGD does not scale

linearly with the number of dimensions, due to the increase in the number of enrichments required
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when the dimensionality is increased. However, difference between the FOM and PGD solution

size is improved significantly at each increase in dimensionality.

Table 2.2: Results for PGD execution with varying dimensionality of the Poisson equation

Number of Dimensions Run-time (s) Enrichments PGD DOF FOM DOF
2 0.0176 7 1.4e+03 104

3 0.129 17 5.1e+03 106

4 0.427 35 1.4e+04 108

5 1.71 63 3.15e+04 1010

10 1.3e+03 722 7.22e+05 1020

11 1.41e+04 1304 2.08e+06 6.02× 1023

20 5.85e+04 1760 3.52e+06 1040

2.3 PGD for Diffusion Reaction

This section discusses the PGD application for diffusion reaction problems. The purpose of

this application is two-fold. Diffusion-reaction problems involve heterogeneous material prop-

erties, which gives an opportunity for analysis of PGD performance in heterogeneous materials.

Additionally, this application serves as a first step toward application to neutron diffusion, which

is a type of diffusion-reaction problem. The diffusion-reaction equation is defined as,

−∇ ·D(~r)∇φ(~r) + Σa(~r)φ(~r) = Q(~r) , (2.24)

where D is the diffusion coefficient (cm), Σa is the reaction coefficient or the absorption cross

section in neutron diffusion (cm−1), and Q is the source (n·cm−3·s−1). In neutron diffusion, the

solution φ is known as the neutron flux (n·cm−2·s−1).

In the following subsections, the PGD operator construction is discussed where heterogeneous

properties are considered, namely piece-wise constant gridded domains. Furthermore, results are

presented for several diffusion-reaction problems in nuclear reactor-like geometries and an analysis

is performed for PGD performance in varying amounts of heterogeneity.
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2.3.1 Spatial Decomposition of Material Properties

This section discusses how to decompose an operator that contains a spatially dependent ma-

terial property, such that it conforms to separated form in Equation (2.2b). Suppose that a linear

operator is defined as a material constant (k(x, y)) times the solution (u(x, y)). For diffusion reac-

tion, this material constant represents D(x, y), Σa(x, y), and Q(x, y). In order to find the separated

form of the operator, the property must be decomposed as,

k(x, y) =

Lk∑
`=1

kx` (x)ky` (y) . (2.25)

With this description of the material constants, the PGD operator, Equation (2.2b), can be ex-

pressed as,

Lx`XiLy`Yi =
d

dx

[
Dx
` (x)

dXi

dx

]
Dy
` (y)Yi, ` = 1, .., Ld , (2.26a)

Lx`+LdXiLy`+LdYi = Dx
` (x)Xi

d

dx

[
Dy
` (y)

dYi
dy

]
, ` = 1, .., Ld , (2.26b)

Lx`+2Ld
XiLy`+2Ld

Yi = Σx
` (x)XiΣ

y
` (y)Yi, ` = 1, ..., Lσ , (2.26c)

where Ld and Lσ are the number of terms required to represent D and Σa in a separated repre-

sentation, respectively. Consequently, L = 2Ld + Lσ from Equation (2.2b), and more generally in

dim spatial dimensions, L = dimLd + Lσ.

In reactor physics, it is common for material properties to be defined in material zones, i.e.

piecewise constant for separate material zones. Obtaining the decomposed spatial description of a

given material, k(x, y), requires a general decomposition of the property zones. In two dimensions,

this entails finding slices in one dimension that are common in the other dimension. Each product

of the decomposition will have one dimension describing the quantities of the slice, where the other

describes the position of the slice. For instance, if there is a domain describing the cross section

shown in Figure 2.6, then the resulting material decomposition is shown in Equation (2.27), where

H(x) is the Heaviside step function.
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k2 k2 k1

k2 k2 k1
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Figure 2.6: Domain showing property values for an example of property decomposition

Kx
1 (x) = H(2L− x) , (2.27a)

Ky
1 (y) = k2H(2L− x) + k1H(x− 2L) , (2.27b)

Kx
2 (x) = H(x− 2L) , (2.27c)

Ky
2 (y) = k1 . (2.27d)

In three-dimensional geometries, common planes are found for a given dimension; then, the

same two-dimensional decomposition is applied to each of such planes, resulting in a product of the

two-dimensional decomposition and a function describing the position of the plane. This process

is general for any given set of material properties.

The slice decomposition shown by Equation (2.27) is not the only possible choice when deter-

mining a separated representation for a material property. Other approaches include (1) singular

value decomposition (SVD) and (2) PGD decomposition of the material property. As an example,

the resulting decompositions for each of these three approaches in Figure 2.7 for the material lay-

out of Figure 2.6. However, the slice-decomposition approach can yield a significant advantage

when integrating the decomposed operators (right-hand-side of Equation (2.7)); indeed, comput-

ing these inner products is computationally cheaper due to the sparse nature afforded by the use of
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step/Heaviside functions. When many enrichment terms are needed, these integrations take up a

sizable amount of time to evaluate. Additionally, decomposing a 3-D heterogeneous domain is not

as simple when employing SVD and is prone to round-off errors when using a PGD process, thus

this implementation prefers the slice-decomposition process presented here.

(a) Slice Decomposition - first term (b) Slice Decomposition - second term

(c) SVD/PGD - first term (d) SVD/PGD - second term

Figure 2.7: Visualization of terms from decomposition of material properties using analytical
slices, SVD, and PGD methods. The SVD and PGD methods resulted in the exact same decompo-
sition.
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2.3.2 2-D Heterogeneous Diffusion Reaction Results

In this section, the PGD algorithm and the material property decomposition is tested for a het-

erogeneous diffusion reaction problem in a reactor-like geometry. The chosen problem geometry is

based on the IAEA benchmark from the ANL Benchmark Problem Book problem 11-A1 [58]. The

2-D geometry is a cross-section of the core between 20-100 cm along its height where the reflec-

tor is extended to make the domain rectangular, shown in Figure 2.8. The material properties are

described by Table 2.3. To illustrate the material property decomposition used, Figure 2.9 shows

each 1-D function in the decomposition of Σa and the resulting slices each product produces.

1 −→ Fuel 1λ1 λ2

λ3

λ4 λ5

2 −→ Fuel 1 + Rod
3 −→ Fuel 2
4 −→ Reflector

CL

C L

170 cm

17
0

cm

Figure 2.8: Geometry of 2-D IAEA Benchmark problem

Table 2.3: Material properties of 2-D IAEA Benchmark problem

Region Material D Σa Q
1 Fuel 1 0.4 0.085 10
2 Fuel 1 + Rod 0.4 0.13 10
3 Fuel 2 0.4 0.08 10
4 Reflector 0.3 0.01 0
5 Reflector + Rod 0.3 0.055 0
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(a) Σx
a,`(x) (b) Σy

a,`(y)

(c) Σx
a,`(x)Σy

a,`(y)

Figure 2.9: Visualization of terms from decomposition of Σa(x, y) using slice technique for the
IAEA 2-D problem

To illustrate the performance of PGD, the 2-D model was executed with various spatial refine-

ments. The same configurations were solved using standard multi-dimensional FEM techniques in

MOOSE as well. The MOOSE linear tolerance and PGD enrichment tolerance were set to 10−6.

Table 2.4 shows the execution times for the various spatial resolutions and the corresponding L∞

error computed against a highly refined reference solution, obtained using MOOSE. These results

show that PGD performance is poor on the coarse mesh, but surpasses the full-order model evalu-

ation at high refinements because the PGD run-time increase linearly with the number of elements

per dimension, while MOOSE increases quadratically. Figure 2.10 shows the resulting solution
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and relative error at each nodal point for the 2-D problem. The error plot shows that much of

the difference between the MOOSE and PGD occurs at the material discontinuities, indicating the

PGD model has difficulty resolving the heterogeneous regions.

Table 2.4: 2-D IAEA benchmark problem execution times and error comparison

Elements Execution Relative L∞ Difference
per Dim. Time (s) max |φ− φref |/max |φref |
(x, y) PGD MOOSE PGD MOOSE
(34,34) 1.1104 0.1444 4.078E-2 (100) 4.081E-2
(68,68) 2.3357 0.1975 1.498E-2 (121) 1.483E-2
(136,136) 3.1999 0.7727 3.941E-3 (112) 3.917E-3
(272,272) 6.0488 3.1535 1.021E-3 (106) 9.981E-4
(544,544) 10.358 13.604 2.862E-4 (102) 3.431E-4
(1088,1088) 51.120 230.60 1.422E-4 (94)

(·) Indicates the number of enrichment terms needed

(a) PGD solution
(b) Difference from MOOSE model

Figure 2.10: Solution and node-by-node relative difference of 2-D heterogeneous problem with
(136,136) elements.
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2.3.3 3-D Heterogeneous Diffusion Reaction Results

In this section, PGD is applied to the 3-D version of the IAEA benchmark problem described

in the previous section. The 3-D extrusion into the z dimension is shown by Figure 2.11 and the

material properties are desribed by Table 2.3.

1 −→ Fuel 1
2 −→ Fuel 1 + Rod
3 −→ Fuel 2
4 −→ Reflector
5 −→ Reflector + Rod

CL

20 cm

80 cm

260 cm

20 cm

λi

Figure 2.11: Axial geometry for the IAEA 3-D Benchmark

Again, the 3-D model was executed with PGD and MOOSE with various spatial refinements.

The MOOSE linear tolerance and PGD enrichment tolerance were set to 10−6. Table 2.5 shows

the execution times for the various spatial resolutions for the 3-D problem. PGD again performs

worse than MOOSE for coarse meshes, but significantly improves as the mesh is refined. MOOSE,

as expected, scales cubically with the number of elements per dimension, while PGD scales ap-

proximately linearly, slightly better because less enrichments are required at higher refinements.

Additionally, the number of enrichments for the 3-D version is significantly higher than the 2-D

version, which is expected based on the results from Section 2.2.3.
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Table 2.5: 3-D IAEA benchmark problem execution times

Elem. per Dim. Execution Time (s) No. of PGD
(x, y, z) PGD MOOSE Terms
(34,34,38) 157.22 5.6114 350
(68,68,76) 250.40 49.476 339
(136,136,152) 365.22 403.79 311
(272,272,304) 555.22 ∼3200 289
(544,544,608) 770.66 ∼25600 252

Results with "∼" could not be computed, system did not have enough memory. Values are extrapolated based on
AMG scaling properties.

2.3.4 Study of PGD in Heterogeneous Domains

Throughout the results presented thus far, PGD seems to require more terms in the separated

representation (more enrichments) when solving models with heterogeneous domains. This can

easily be seen when comparing the number of enrichments required for 2-D homogeneous Poisson

problem and the 2-D diffusion-reaction problem. This section analyzes the effect heterogeneity

has on PGD. For this study, two different parameters are investigated: contrast of the material

properties and the degree of heterogeneity. Two different problem types are investigated. The first

involves only two material zones in a checkerboard patter, similar to geometries seen in reactor

physics applications, and is meant to study effect of contrast only. The second takes into account

the degree of heterogeneity and contrast.

2.3.4.1 Study of Contrast on a Checkerboard Domain

This study involves a five-by-five checkerboard domain shown by Figure 2.12. Two different

parameters are varied in this experiment: Σa and the diffusion length window. Diffusion length is

defined as Ld =
√
D/Σa. In this experiment, the efect of the variation in D and Σa are studied

independently. The variation of these properties in each zone is defined by a factor κ, for instance,

when varying D,

D1 = κ , D2 =
1

κ
, (2.28a)
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and when varying Σa,

Σa,1 =
1

κ
, Σa,2 = κ . (2.28b)

From these definitions, it is apparent that when κ = 1, the domain is homogeneous and when κ =

10, the property varies by a factor of 100. When varying D or Σa, the counterpart is homogeneous

with a value defined by a set maximum diffusion length (Ld,max).

Figures 2.13a and 2.13b show the number of enrichments required for PGD process to reach an

enrichment tolerance of 10−6 with varying D and Σa, respectively. From these plots, it is imme-

diately apparent that having any type of heterogeneity affects the number of required enrichments

significantly. For the variation in D, the magnitude of κ after 1 has very little impact, while a more

diffusive domain requires more enrichments. This observation indicates that a smoother transition

within the material discontinuities is more difficult to capture with a separated representation, but

the inflection at the boundaries of the discontinuities is inconsequential. For the variation in Σa,

at small diffusion lengths, the the variation does not affect the separability of the solution. This

observation indicates that when a solution has sharp transitions (visually blocky), the difference in

the solution peaks does not affect the separability. However, when the solution is smooth at higher

diffusion lengths, this magnitude affects separability significantly.

Material 1

Material 2

y

x

Figure 2.12: 100-by-100 cm checkerboard geometry, all boundaries are set such that φ = 0.
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(a) Varying D (b) Varying Σa

Figure 2.13: Number of enrichments required for varying contrast in D and Σa with various diffu-
sion length windows.

For a simpler look, the domain was decreased to 4-by-4 cm, where each block is 1-by-1 cm.

D and Σa are varied independently, with definitions described by Equation (2.28). When one

property is heterogeneous, the other is homogeneous with a value of 1. Figure 2.14 shows the

resulting number of enrichments required for various values of κ. This result shows the significant

difference in effect that D and Σa have on the separability of the solution.

Figure 2.14: Number of enrichments required for varying contrast in D and Σa.
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2.3.4.2 Study of Degree of Heterogeneity and Contrast

This study investigates the effect of the degree of heterogeneity as well as the contrast in mate-

rial properties. The degree of heterogeneity is defined as simply the number of different material

zones. For simplicity, this study only involves a 2-D geometry shown by Figure 2.15 with vary-

ing degrees of heterogeneity. The contrast in the material properties is based on the ratio of the

maximum and minimum values of the property between the material zones:

Contrast =
kmax

kmin

− 1 . (2.29)

The value of the property in each zone is picked randomly between the maximum and minimum

values. To reduce uncertainty in the results, each configuration is run 25 times with different

randomly selected material properties.

Material 1

y

x

Material 1

Material 2

Material 1

Material 2

Material 3

4

. . .

Figure 2.15: 2-D geometry with varying degrees of heterogeneity: 1, 2, 4, ... The geometry is
100-by-100 cm with reflecting boundaries along the x and y axis.

For this numerical experiment, the effect of D and Σa are studied independently. For D,

Dmin = 0.2 where Σa and Q are homogeneous with values of 0.1 and 10, respectively. For Σa,

Σa,min = 0.02 where D and Q are homogeneous with values of 0.5 and 10, respectively. The

quantity of interest is the number of enrichments required for an enrichment tolerance of 10−6.

Figure 2.16 shows this quantity as a function of the degree of heterogeneity and contrast for D
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and Σa. It is apparent from these results that heterogeneous domains have a significant effect on

PGD performance. The number of materials have a larger effect than the contrast, but the impact

of contrast increases when more materials are present. Furthermore, having Σa be heterogeneous

is much more impactful than having varying D. If a full-order model was executed on these

models, there would be no difference in system size between each configuration. However, the

configuration could affect the PGD system size by a factor of more than 50.

(a) D is heterogeneous (b) Σa is heterogeneous

Figure 2.16: Number of enrichments required for varying degrees of heterogeneity and contrast.
Each point is the average of 25 different property values.
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2.4 Discussion

This chapter gives an overview of the PGD methodology and the solution process for partial

differential equations. The theory of the PGD solution process is generalized for any given linear

operator and the discretized formulation includes an methodology to maximize the efficiency of the

process. Included are results that apply PGD to the Poisson equation with varying dimensionality

and two manufactured solution. Additionally, PGD is applied to a diffusion-reaction equation,

which serves as a first step towards applying PGD to neutron diffusion problems.

Even from these preliminary results, it is evident that PGD does not scale linearly with di-

mensionality and exhibits poor performance in heterogeneous domains. Although PGD needs

significantly more enrichments to resolve higher dimensional problems, the reduction in solution

size at high dimensions shows PGD is still a highly effective reduced order model. The issue of

heterogeneity for PGD could prove problematic for reactor-physics applications, since the geome-

tries involved are highly heterogeneous with a myriad of different materials. However, the run-time

comparisons with the reactor geometries shows PGD has promise when the mesh is highly refined.
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3. APPLICATION OF PROPER GENERALIZED DECOMPOSITION TO MULTIGROUP

NEUTRON DIFFUSION EIGENVALUE CALCULATIONS

3.1 Introduction

Despite the advances in computer architectures and numerical analysis, eigenvalue calculations

for full-core nuclear reactors are still CPU-intense task, even more so when in the context of

core reload optimization. The computational burden in these computations is partly due to the

dimensionality of the problem, or the size of the phase space. A neutron diffusion eigenvalue

problem involves a four dimensional phase-space, three for space and one for energy.

The multigroup neutron diffusion criticality equations form an eigenvalue problem where the

scalar flux (Φ ≡ [φ1, ..., φG]) is the eigenvector and the neutron multiplication factor (k) is the

eigenvalue [59, 60]. Being an eigenvalue problem, evaluating φ and k requires a nonlinear pro-

cess. A standard approach to evaluating the eigenvalue problem is power iteration. However,

the convergence rate of power iteration is directly related to the dominance ratio (the ratio of

second largest to the first largest eigenvalue), which can be close to unity for nuclear core prob-

lems [61, 62]. Therefore, acceleration techniques are often employed, including utilizing Cheby-

shev polynomials [63, 64, 65] or Wielandt shift [66, 67, 68]. Projection-based approaches, like

the Arnoldi algorithm, are also commonly employed, particularly the implicit restarted Arnoldi

method (IRAM) [69, 70, 71]. Krylov subspace methods are also utilized, including the Davidson

method [72, 73, 74] and Jacobian-free Newton-Krylov approaches [75, 76, 77], which is a Newton-

based method based on Krylov subspaces. Gonzalez et al. in [49] investigated the use of PGD with

a Arnoldi-like process for a single-group k-eigenvalue problem. However, this process does not

guarantee the evaluation of the largest eigenvalue or the convergence of the eigenvector. This work

utilizes standard power iteration accelerated with a Wielandt shift, more specifically, an adaptive

shift [68].

The goal of this work is to analyze and comment on the capability of the PGD approach for
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evaluating criticality problems for reactor-physics calculations. This chapter presents three ex-

tensions to the PGD technique: (1) the application of PGD to accelerated power iterations for

eigenvalue problems, (2) the design of an effective iteration procedure for PGD applied to eigen-

value problems, including compression of the fission integral at each iteration, (3) the construction

of PGD operators for multigroup neutron diffusion in highly heterogeneous configurations and its

effective implementation. The outline of the chapter is as follows: Section 3.2 briefly reviews

multigroup diffusion criticality problems and their numerical solution using accelerated power it-

eration techniques. Section 3.3 discusses the the application of the PGD solution process to power

iterations. Results are presented in Section 3.4.

3.2 Overview of the Multigroup Eigenvalue Problem

This section recalls the multigroup k-eigenvalue problem and discusses the power iteration

and shifted power iteration process. For criticality calculations, the eigenvalue-eigenvector pair of

interest is the one associated with the largest eigenvalue (fundamental mode). The largest value

of k, known as the effective neutron multiplication factor or keff, can be computed using power

iteration, for example, or an accelerated variant of power iteration.

3.2.1 Multigroup Eigenvalue Problem

The multigroup neutron diffusion k-eigenvalue equations are

−∇ ·Dg∇φg + Σg
tφ

g =
G∑

g′=1

Σg←g′
s φg

′
+

1

k
χg

G∑
g′=1

νΣg′

f φ
g′ , g = 1, ..., G . (3.1)

Each term in this equation is defined as:

G - total number of energy groups

φg - multigroup scalar neutron flux

Dg - multigroup diffusion coefficient

Σg
t - total macroscopic cross section
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Σg←g′
s - macroscopic scattering cross section from group g′ to group g

χg - fraction of neutrons generated in group g from fission (fission spectrum)

νΣg′

f - product of the macroscopic fission cross section and the average number of neutrons emit-

ted per fission in group g′

The equations in (3.1) can then be written into matrix form,

(D +A− S) Φ =
1

k
FΦ , (3.2)

where

(Φ)g = φg , (3.3a)

(D)gg′ = −∇ ·Dg∇δgg′ , (3.3b)

(A)gg′ = Σg
t δgg′ , (3.3c)

(S)gg′ = Σg←g′
s , (3.3d)

(F )gg′ = χgνΣg′

f . (3.3e)

The neutron diffusion criticality equations form a generalized eigenvalue problem, which can be

written in operator notation as:

AΦ =
1

k
BΦ , (3.4)

with

A = D +A− S and B = F .

This is a nonlinear problem for the eigenpair (k, Φ). Numerous methods have been devised to

solve this eigenproblem; see, for instance, the references cited in the introduction. This work will

focus on the application of power iteration and shifted power iteration.

40



3.2.2 Power Iteration and Shifted Power Iteration

The standard power iteration process proceeds as follows. Given a previous iterate ` for the

pair (k, Φ), the new iteration is obtained by solving

AΦ`+1 =
1

k`
BΦ` , (3.5a)

for the new estimate of the eigenvector; the next estimate of the eigenvalue is then computed using

k`+1 =

〈
Φ`+1,BΦ`+1

〉
〈Φ`+1,AΦ`+1〉

=

∑G
g=1

∫
D(Φ`+1)g(BΦ`+1)gd~r∑G

g=1

∫
D(Φ`+1)g(AΦ`+1)gd~r

, (3.5b)

where ` is the iteration index and the definition of k is known as the (inverse of the) Rayleigh

quotient [78]. This iterative technique is simple to implement, but suffers from slow convergence

behavior in reactor physics where the dominance ratio can be close to one [61]. Shifted power

iteration is an example of accelerated power iterations whereby a shifting parameter is introduced

to move the dominance ratio away from unity. This shift is applied as

(
A− σ`B

)
Φ`+1 =

(
1

k`
− σ`

)
BΦ` , (3.6)

where k`+1 is computed using Equation (3.5b). The parameter σ is known as the Wielandt shift.

Selecting σ = 0 would equate to a standard power iteration process. Application of shift can

greatly improve the convergence of the iteration procedure, a value of σ closest to the value of

1
keff

is optimal [78]. The Rayleigh quotient iteration uses a shift equal to the last computed eigen-

value, i.e., σ` = 1/k`. This choice of the Wielandt shift can result in a cubic convergence of the

eigenvalue, while a constant shift converges linearly [79]. However, since the eigenvector typi-

cally converges more slowly than the eigenvalue, the system defined in Equation (3.6) can become

ill-conditioned before the eigenvector is fully converged. Yee et. al [68] analyzed several other

41



adaptive approaches for σ, the one chosen for this work is defined as,

σ` = max

(
1

k`
− c1

∣∣∣∣ 1

k`
− 1

k`−1

∣∣∣∣− c0,
1

kmax

)
, (3.7)

where c1, c0, and kmax are tuning parameters chosen to be 10, 0.01, and 3, respectively, in this

paper. These specific values for the parameters were chosen for analysis in [68]. Different values

may prove to be more optimal for specific eigenvalue problems, but finding these optimal values is

beyond the scope of this work.

The systems of equations defined by Equations (3.5a) and (3.6) are linear systems that can

be represented in the form LΦ = q. Solving such systems requires an inversion of the operator

L, given a source q. It is at this stage that the PGD method is applied. PGD seeks a separated

representation as an approximation to Φ. As discussed earlier, there are iterative steps associated

with PGD, (1) solving for the various one-dimensional components of the separated representation

and (2) enrichment of the representation with enough terms. These PGD iterations will thus be

nested inside the power iteration process. The nesting of power iteration and PGD solver, as well

as special considerations regarding the PGD operator decompositions, are discussed in the next

section.

3.3 Proper Generalized Decomposition

So far, this chapter discussed the derivation multigroup criticality as a generalized eigen-

value problem and the power iteration procedure to resolve the nonlinearities of the eigenvalue-

eigenvector pair. This section discusses the application of PGD within a power iteration. Figure 3.1

illustrates the design of this application.

As stated earlier, PGD seeks a separated representation, as shown in Equation (1.7b), for the

solution of a system. For brevity, PGD process is described in the case of a two-dimensional

problem, but the 3-D derivation can easily inferred from this exposé. Note that once a solution

is approximated (and sought) as products of one-dimensional functions, it is advantageous from

an implementation point-of-view to represent the operators in a similar manner. This operator
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Operator
Construction

Linear System
Evaluation

Solution
Compression

Eigenvalue
Projection

Figure 3.1: Design of PGD application to power iteration procedure

decomposition is discussed in Section 3.3.1. After the operator has been defined and a certain

iteration’s solution established, the resulting linear system can be solved using the PGD technique,

discussed in Section 3.3.2. Once a solution from the linear system is resolved, the separated form

can be compressed in order to alleviate the cost of eigenvalue evaluation and source construction.

PGD compression is explained in Section 3.3.3. Finally, Section 3.3.4 discusses the computation

of the eigenvalue after a PGD projection step; the error definitions for the iteration procedures are

also introduced at that moment.

3.3.1 Operator Decomposition

In the case of a two-dimensional problem, a PGD representation (decomposition) of the eigen-

vector as given by Equation (3.8a) [16].

Φ(x, y) =
N∑
i=1

Xi(x)Yi(y) . (3.8a)

The operators of the generalized eigenvalue problem can be similarly decomposed:

A(x, y) =
A∑
j=1

Axj (x)Ayj (y) . (3.8b)

B(x, y) =
B∑
j=1

Bxj (x)Byj (y) . (3.8c)
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The generalized eigenvalue problem of Equation (3.4) can be re-written using a PGD representa-

tion:
N∑
i=1

A∑
j=1

Axj (x)Xi(x)Ayj (y)Yi(y) =
1

k

N∑
i=1

B∑
j=1

Bxj (x)Xi(x)Byj (y)Yi(y) , (3.8d)

where A and B are the number of terms needed to fully decompose the A and B operators,

respectively. Details on the formulation of these operators is discussed in Section 3.3.5.

3.3.2 Linear System Solves using PGD

At each power iteration (Equations (3.5) and (3.6)), one needs to solve a linear system, where

the source term is the lagged fission integral from the previous power iteration. These linear sys-

tem can be generalized by Equation (2.1) with the corresponding PGD representation in Equa-

tion (2.2b). In the context of shifted power iteration, these decomposed operators are defined as

Lx,`+1
m Ly,`+1

m =

 A
x
mAym m = 1, .., A

−σ`+1Bxm−AB
y
m−A m = A+ 1, ..., A+B

, (3.9a)

qx,`+1
n qy,`+1

n = BxjX`
i (x)ByjY `

i (y) , n = (i− 1)B + j . (3.9b)

The total number of terms in the linear operator is then L = A + B. It should be noted that

Equation (3.9a) applies for the shifted power iteration approach; in the unshifted case (σ = 0)

the terms due to B are not present and thus L = A. The total number of terms in the source is

Q = B×N , which can become quite large if N is large, which can occur in highly heterogeneous

media. Decreasing N in a power iteration decreases the computational effort for future iterations.

Methods for minimizing N are discussed in Section 3.3.3. The rest of the PGD solution process is

discussed in detail in Section 2.1, which can be applied directly here.

3.3.3 Solution Compression

In the power iteration process, the latest iterate is used to compute the next fission source. Here,

the latest iteration is a PGD-decomposed solution and may not be optimal in terms of the number

of expansion terms when used to compute the fission integral. Therefore, there is an opportunity
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to compress the PGD solution, i.e., find a new decomposition such that the number of summation

terms, N in Equation (3.8a), is reduced. This compression would reduce the number of terms in

the source term of the next power iteration (Q in Equation (2.2c)) resulting in faster evaluation of

all the terms in Equation (3.9b) and the right-hand-side of Equation (2.7). An obvious candidate

for PGD compression is employing Singular Value Decomposition (SVD) on the two-dimensional

array representation of the full solution; SVD is known to yield an optimal decomposition [57].

However, SVD is only applicable to two-dimensional array representations and requires the full-

order solution, which PGD attempts to avoid in the first place. Another possibility is to use a PGD

approach to compress the PGD solution (see, for instance, Chapter 3 of [16]). This work utilizes

the latter approach.

To compress the current power iteration iterate obtained from the PGD process described in

Section 3.3.2, the PGD process from Section 2.1 is utilized, but applied to a purely algebraic

equation this time:
Ñ<N∑
i=1

X̃i(x)Ỹi(y) =
N∑
i′=1

Xi′(x)Yi′(y) . (3.10)

The right-hand-side of Equation (3.10) is known and the terms on left-hand-side are solved pro-

gressively through the aforementioned alternating direction and enrichment process. For instance,

when evaluating the term X̃Ñ(x), a test function of v(x, y) = X∗(x)ỸÑ(y) is applied and inte-

grated over the domain, resulting in:

∫
Ωx

X∗(x)X̃Ñ(x)dx

∫
Ωy

ỸÑ(y)ỸÑ(y)dy =
N∑
i′=1

∫
Ωx

X∗(x)Xi′(x)dx

∫
Ωy

ỸÑ(y)Yi(y)dy

−
Ñ−1∑
i=1

∫
Ωx

X∗(x)X̃i(x)dx

∫
Ωy

ỸÑ(y)Ỹi(y)dy . (3.11)

Noticeably, Equation (3.11) involves no differential operators, thus the strong form of this equation

for X̃Ñ can be written as,

βy
Ñ,Ñ

X̃Ñ(x) =
N∑
i′=1

γy
Ñ,i′

Xi′(x)−
Ñ−1∑
i=1

βy
Ñ,i
X̃i(x) , (3.12a)
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where β and γ are scalars defined as,

βyi,j =

∫
Ωy

Ỹi(y)Ỹj(y)dy , (3.12b)

γyi,j =

∫
Ωy

Ỹi(y)Yj(y)dy . (3.12c)

An equation for ỸÑ can be found similarly. The additional computational effort in evaluating this

compressed solution is minuscule relative to cost of a single power iteration solve since Equa-

tion (3.12a) only requires the evaluation of 1-D integrals and does not result in a linear system of

equations.

3.3.4 Eigenvalue Projection

This section describes the projection step of the PGD solution, whereby each term in the PGD

solution is rescaled optimally. This projection is similar to the projection described in early PGD

works [22, 27, 49]; for this application, this projection is exploited too obtain an improved eigen-

vector through a reduced eigenvalue problem. In this projection, one attempt at improving the PGD

decomposition by assuming the optimal separated representation is a linear combination of the one

found from the enrichment process. Using this methodology, the solution found from enrichment

and compression is defined as Φ`+1/2 and the projected solution as:

Φ`+1(x, y) =
N∑
i′=1

αi′X
`+1/2
i′ (x)Y

`+1/2
i′ (y) , (3.13)

where the α coefficients are to be determined. To compute the α coefficients, Equation (3.13) is

applied to the generalized eigenvalue problem Equation (3.5a). Multiplying by different enrich-

ment terms from the current PGD solution (X`+1/2
i (x)Y

`+1/2
i (y)) and integrating over space, an

eigenvalue problem appears for these coefficients:

Āα =
1

k`+1
B̄α , (3.14)
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where

(α)i = αi , (3.15a)

(Ā)ii′ =
A∑
j=1

∫
Ωx

X
`+1/2
i AxjX

`+1/2
i′ dx

∫
Ωy

Y
`+1/2
i AyjY

`+1/2
i′ dy , (3.15b)

(B̄)ii′ =
B∑
j=1

∫
Ωx

X
`+1/2
i BxjX

`+1/2
i′ dx

∫
Ωy

Y
`+1/2
i ByjY

`+1/2
i′ dy , (3.15c)

i = 1, ..., N , i′ = 1, ..., N .

The eigenvalue problem given in Equation (3.14) is much smaller than the full-order version be-

cause the spatial variables have been integrated out; it is therefore significantly cheaper to evalu-

ate than a single PGD linear system solve. After this projection step, the improved PGD solution

(Φ`+1) is the latest power iteration solution and it is employed to obtain the latest eigenvalue (k`+1).

With the combination of the PGD solution process and the power iteration technique, vari-

ous nested iterations are present. To summarize the resulting iteration loops next: (1) eigenvalue

(power) iteration, (2) PGD enrichment, and (3) alternating direction iteration for a given PGD

enrichment step. The power iteration convergence criteria is defined as,

E`+1
k =

|k`+1 − k`|
k`

< εk (eigenvalue tolerance), (3.16a)

E`+1
φ =

||Φ`+1 − Φ`||
||Φ`||

< εφ (eigenvector tolerance), (3.16b)

and the enrichment and alternating direction criteria are defined by Equations (2.8) and (2.9),

respectively. Because of the nested iteration, it may be beneficial to tighten the inner iteration

tolerances as the power iteration converges, allowing for looser convergence checks in the earlier

stages of the power iteration process. This “inexact” approach to the PGD solution process prevents

“over solving" each power iteration. Therefore, the enrichment error in this work for a particular

power iteration is defined as:

ε`+1
enr = 0.01×max

(
E`
k, E

`
φ

)
. (3.17)
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The resulting procedure for shifted power iteration with PGD is shown by Algorithm 1.

Algorithm 1 2D Generalized Eigenvalue Problem using PGD
1: procedure [Φ,k] = PGDEIGENVALUE(A,B)
A := [Ax1 , ...,AxA;Ay1, ...,A

y
A]

B := [Bx1 , ...,BxB;By1 , ...,B
y
B]

2: Initialization: ` = 0, E`
k = 1, E`

φ = 1, σ` = 1/kmax

3: Define initial eigenvector: Φ`

4: Compute eigenvalue: k` ← Equation (3.5b)
5: while E`

k < εk and E`
φ < εφ do

6: Build linear operator: L` ← Equation (3.9a)
7: Build linear source: q` ← Equation (3.9b)
8: Define enrichment tolerance: ε`enr ← Equation (3.17)
9: Solve linear system: Φ`+1/2 :=

∑N
i=1 Xi(x)Yi(y)←Figure 2.1

10: Compress eigenvector: Φ`+1/2 :=
∑Ñ≤N

i=1 Xi(x)Yi(y)← Equation (3.10)
11: Project solution and compute eigenvalue: k`+1 , Φ`+1 ← Equation (3.14)
12: Compute shift: σ`+1 ← Equation (3.7)
13: ` = `+ 1
14: end while
15: end procedure

3.3.5 PGD for Multigroup Neutron Diffusion

This section discusses the application of PGD to the operators and variables in the case of

multigroup equations. Generally speaking, the application of the PGD process to the multigroup

setting is relatively straightforward, just like extending a traditional one-group solver to the multi-

group case, as in [80, 81], for instance. To begin, the scalar neutron flux and the linear operators is

described as a decomposed spatial variable for each group (using a 2D example for brevity),

φg(x, y) =
N∑
i=1

Xg
i (x)Y g

i (y) , (3.18a)

−∇ ·Dg(x, y)∇ = −
Nd∑
j=1

[
Dg,y
j (y)

∂

∂x
Dg,x
j (x)

∂

∂x
+Dg,x

j (x)
∂

∂y
Dg,y
j (y)

∂

∂y

]
, (3.18b)
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Σg
t (x, y) =

Nt∑
j=1

Σg,x
t,j (x)Σg,y

t,j (y) , (3.18c)

Σg←g′
s (x, y) =

Ns∑
j=1

Σg←g′,x
s,j (x)Σg←g′,y

s,j (y) , (3.18d)

νΣg
f (x, y) =

Nf∑
j=1

νΣg,x
f,j (x)νΣg,y

f,j (y) . (3.18e)

The decomposed description of the material properties are described in Section 2.3.1. Note that

the number of terms in each expansion (N,Nd, Ns, Nf ) is independent of the group or group pair.

Therefore, the number of terms for each group property description is equal to the number of terms

of the group that has the largest expansion. In this work, the fission spectrum χg is independent of

the material zone.

The one-dimensional variables for this work are discretized using CFEM. With this framework,

the multigroup flux and operators can be represented in matrix notation:

Xg
i (x)Y g

i (y)→ (Xi)g ⊗ (Yi)g , (3.19a)

∂

∂x
Dg,x
j (x)

∂

∂x
→ (Kx

j )g ⊗M y ,
∂

∂y
Dg,y
j (y)

∂

∂y
→Mx ⊗ (Ky

j )g , (3.19b)

Σg,x
t,j (x)Σg,y

t,j (y)→ (Mx
t,j)gg ⊗ (M y

t,j)gg , (3.19c)

Σg←g′,x
s,j (x)Σg←g′,y

s,j (y)→ (Mx
s,j)gg′ ⊗ (M y

s,j)gg′ , (3.19d)

χgνΣg′,x
f,j (x)νΣg′,y

f,j (y)→ (Mx
f,j)gg′ ⊗ (M y

f,j)gg′ . (3.19e)

The group structure of the resulting matrices are equivalent to the ones described in Equation (3.3).
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One can now easily define the eigenvalue problem operators described in Equation (3.8):

Axj =



Kx
j j = 1, ..., Nd

Mx j = Nd + 1, ..., 2Nd

Mx
t,j−2Nd

j = 2Nd + 1, ..., 2Nd +Nt

Mx
s,j−2Nd−Nt j = 2Nd +Nt + 1, ..., 2Nd +Nt +Ns

, (3.20a)

Ayj =



M y j = 1, ..., Nd

Ky
j−Nd j = Nd + 1, ..., 2Nd

M y
t,j−2Nd

j = 2Nd + 1, ..., 2Nd +Nt

M y
s,j−2Nd−Nt j = 2Nd +Nt + 1, ..., 2Nd +Nt +Ns

, (3.20b)

Bxj = Mx
f,j , j = 1, ..., Nf , (3.20c)

Byj = M y
f,j , j = 1, ..., Nf . (3.20d)

Using these discretized operators for the multigroup neutron diffusion equation, the generalized

eigenvalue problem can be evaluated using Algorithm 1.

3.4 Results

To illustrate the capability of our PGD algorithm for multigroup criticality problems, it is ap-

plied to four different problems. The first is a bare homogeneous cube with four-group cross sec-

tions, which is meant to verify the implementation with an analytic solution. The second example

is a mildly heterogeneous 2-D two-group problem that Senecal & Wi analyzed as a fixed source

problem in [50]. The third and final problems use the geometry and material properties of the

BIBLIS benchmark [82], the analysis includes the one-group version from [49] and the two-group

benchmark version.

The PGD method was implemented in MATLAB and utilizes first-order CFEM for the 1D so-

lutions. The linear systems in the PGD iteration process are evaluated using MATLAB’s sparse LU

solver. To produce a reference solution and compare performance with a full-order model, each
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problem was also implemented in the MOOSE. The MOOSE implementation also uses first-order

CFEM and linear solvers are performed using algebraic multi-grid techniques from the HYPRE

package with default numerical parameters. Both PGD and MOOSE solve each problem on the

same uniform meshes with rectangular elements. The meshes are uniformly refined for each prob-

lem to gauge accuracy versus run-time, these refinements are identified by the number of elements

in the x and y dimensions, the total number of elements is therefore this number squared.

3.4.1 Four-Group Bare Homogeneous Reactor

This first example is a 3-D four-group, homogeneous reactor, which has an derivable analytical

solution. The reactor is 300× 300× 300 cm with cross-section values described in Table 3.1. The

analytical keff is 1.13530390 and eigenfunction is

φg(x, y, z) = Cg cos
( π

300
x
)

cos
( π

300
y
)

cos
( π

300
z
)
, (3.21)

where Cg are group-dependent constants.

Table 3.1: Material property values for homogeneous bare reactor

Group Dg Σg
r νΣg

f χg Σg←1
s Σg←2

s Σg←3
s Σg←4

s

1 2.500 0.0668 0.00835 0.75 0 0 0 0
2 1.050 0.0623 7.89e-4 0.25 0.668 0 0 0
3 0.676 0.0707 0.0101 0 4.77e-4 0.0630 0 0.00161
4 0.379 0.0909 0.117 0 0 3.0e-6 0.0482 0

The full-order model, evaluated using MOOSE, was run with 10 to 40 elements per dimension,

and the PGD model was run with 10 to 160 elements per dimension. The eigenvalue and eigenvec-

tor convergence tolerance (εk,εφ) were set to 10−9. Figure 3.2 shows the resulting eigenvalue and

eigenvector error for MOOSE with power iteration and PGD with and without adaptive Wielandt

shift. These errors show that both the full-order and PGD models have proper error convergence

when the spatial mesh is refined. Figure 3.3 shows the resulting run-time for each simulation.
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For this problem, PGD shows far superior performance compared to MOOSE evaluation. Since

the exact solution is analytically separable, only one or two enrichments are needed as the power

iteration converges, making this a computationally trivial problem for the PGD method. Table 3.2

shows the relative computational efficiency of linear system evaluation for each spatial refinement

for the unshifted PGD model and full-order MOOSE model. The efficiency of a numerical scheme

is defined as

Efficiency =
1

keff Error× CPU Time per PI
. (3.22)

Efficiency is higher for methods with low error and low CPU time. Because unaccelerated and

accelerated power iterations are employed, the efficiency values use the average CPU time per

power iteration. Table 3.2 shows the efficiency of the MOOSE solver and the PGD unshifted

solver, relative to that of the PGD with shift approach. The efficiency of the unshifted PGD solver

is greater than that of the shifted one is because the shifted operator appearing on the left-hand-side

is more complex due to the Wiedlandt shift acting on the fission operator, making the unshifted

PGD operator quicker to invert. The relative efficiency of the unshifted PGD scheme also increases

with mesh refinement because the PGD solver spends less time in the tight enrichment tolerance

range, due to the decrease in power iterations needed. When compared with the full multi-D solves

performed using MOOSE, the PGD approaches become significantly more efficient as the mesh is

refined.

Table 3.2: Relative computational efficiency for unshifted PGD and MOOSE, homogeneous four-
group problem (baseline is the PGD method with shift; values< 1 denote a less efficient technique)

Elements per Dim. PGD MOOSE
10 1.3002 0.3919
20 1.3826 0.0528
40 1.5803 0.0103
80 1.7943 —

160 1.9274 —

52



Figure 3.2: Relative eigenvalue and L2 eigenvector error for the homogeneous four-group problem

Figure 3.3: Run-time in seconds for each simulation of the homogeneous four-group problem

3.4.2 2-D Two-Group Problem

This next example is a simple heterogeneous 2-D, two-group example based on Problem 5.7

from [83]; a fixed-source version of this problem was analyzed in [50]. Figure 3.4 shows the ge-
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ometry of the problem and the material properties can be found in Table 3.3. The full-order model,

evaluated using MOOSE, was run with 35 to 1,120 elements per dimension, and the PGD model

was run with 35 to 2,240 elements per dimension. The eigenvalue convergence tolerance (εk) was

set to 10−9. A MOOSE model with 2,240 elements per dimension was used for the reference eigen-

value and eigenvector with keff = 0.99010305; this solution required high performance computing

to evaluate, so the performance results for this simulation are not included.

0

40 cm

350 cm

0 40 cm 350 cm

Material 1

Material 2

φg = 0

φg = 0 ∂φg

∂x = 0

∂φg

∂y = 0

Figure 3.4: Geometry of 2-D two-group problem (figure not to scale)

Figure 3.5 shows the resulting eigenvalue and eigenvector error for MOOSE with power itera-

tion and PGD with and without adaptive Wielandt shift. These errors show that both the full-order

and PGD models have proper error convergence when the spatial mesh is refined. The eigenvalue

errors in the last two refinements begin to deviate slightly between each method. This is most

likely due to the fact that the error at these points are relatively close to the tolerance set for the

power iteration. Figure 3.6 shows the resulting run-time for each simulation. For this problem,
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Table 3.3: Material properties of 2-D two-group problem

Material Group Dg (cm) Σg
a (cm−1) νΣg

f (cm−1) Σg←1
s (cm−1)

1
1 1.264 7.86e-4 4.562e-3 0.0
2 0.9328 4.10e-3 0.0 7.368e-3

2
1 1.310 0.0 0.0 0.0
2 0.8695 2.117e-4 0.0 1.018e-2

χ1 = 1.0, χ2 = 0.0

PGD shows far superior performance compared to MOOSE execution. Since this problem has

very little heterogeneity, it is another relatively simple problem for PGD. Figure 3.7 shows the

contribution of each enrichment for the PGD runs at 560 elements per dimension and the magni-

tude of each term of the SVD of the full-order model solution. Both the SVD and PGD enrichment

convergence shows that a relatively few number of terms are needed to represent the converged

solution to the iteration tolerance. The shifted PGD requires more enrichments than the unshifted

simulation because the last power iteration had a tighter enrichment tolerance for the shifted sim-

ulation. This is due to the adaptive enrichment tolerance procedure defined by Equation (3.17).

Table 3.4 shows the relative computational efficiency for each refinement of the unshifted PGD

model and full-order MOOSE model. The unshifted PGD efficiency shows the same trend as in

the previous example. As noted earlier, the efficiency of the full multi-D solves (using MOOSE)

decreases significantly as the mesh is refined, compare to that of PGD-based approaches.

Table 3.4: Relative computational efficiency for unshifted PGD and MOOSE, 2-D two-group prob-
lem (baseline is the PGD method with shift; values < 1 denote a less efficient technique)

Elements per Dim. PGD MOOSE
70 0.3901 0.2598

140 0.4544 0.0447
280 0.6578 0.0260
560 0.5371 0.0135

1120 0.7804 0.0072
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Figure 3.5: Relative eigenvalue and L2 eigenvector error for the 2-D two-group problem

Figure 3.6: Run-time in seconds for each simulation of the 2-D two-group problem

Figure 3.7: Enrichment contribution of converged PGD solutions and SVD of the full-order solu-
tion 2-D two-group problem
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3.4.3 BIBLIS Benchmark Problem

These next two examples use a geometry based on the BIBLIS benchmark problem, which is

shown in Figure 3.8. This problem is meant to illustrate PGD performance for highly heteroge-

neous geometries and compare between mono-energetic and multigroup systems. The first of these

examples is the single-group version and second is the two-group version.
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Figure 3.8: BIBLIS benchmark geometry: each block is 23.1226 cm × 23.1226 cm

3.4.3.1 One-Group Version

The material property values for one-group version of the BIBLIS benchmark can be found in

Table 3.5. The full-order model, evaluated using MOOSE, was run with 34 to 1,088 elements per

dimension, and the PGD model was run with 34 to 2,176 elements per dimension. The eigenvalue

convergence tolerance (εk) were set to 10−9. A MOOSE model with 2,176 elements per dimension

was used for the reference eigenvalue and eigenvector with keff = 0.618502168; this solution

required high performance computing to evaluate, so the performance results for this simulation

are not included.
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Table 3.5: Material properties for one-group BIBLIS benchmark problem

Material D (cm) Σa (cm−1) νΣf (cm−1)
1 1.4360 0.0095042 0.0058708
2 1.4366 0.0096785 0.0061908
3 1.3200 0.0026562 0.0000000
4 1.4389 0.0103630 0.0074527
5 1.4381 0.0100030 0.0061908
6 1.4385 0.0101320 0.0064285
7 1.4389 0.0101650 0.0061908
8 1.4393 0.0102940 0.0061908

Figure 3.9 shows the resulting eigenvalue and eigenvector error for MOOSE with power itera-

tion and PGD with and without adaptive Wielandt shift. These errors show that both the full-order

and PGD models, again, have proper error convergence when the spatial mesh is refined. To com-

pare the solution between each model, Figure 3.10 shows the full-order solution at 272 elements

per dimension with the difference from the PGD models at the same refinement. These plots show

that the MOOSE and PGD evaluations converge to approximately the same solution in the power

iteration process.

Figure 3.9: Relative eigenvalue and L2 eigenvector error for one-group BIBLIS problem
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(a) Full-order solution

(b) PGD unshifted solution difference (c) PGD shifted solution difference

Figure 3.10: Full-order (MOOSE) solution and difference from PGD solutions at 272 elements per
dimension, one-group BIBLIS problem

Figure 3.11 shows the resulting run-time for each simulation. These run-time results show

that PGD has more marginal performance than the previous problem, which is mainly due to the

increase in the number of enrichment terms needed to represent the converged solution. Table 3.6

shows the relative computational efficiency for each refinement of the unshifted PGD model and

full-order MOOSE model, definition of these numbers are described in Section 3.4.1. It can be seen

here that the unshifted PGD efficiency is far smaller than the shifted one, this due to the fact that

there is no group coupling and inverting the shifted operator is essentially the same as inverting the
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unshifted one. As noted previously, the multi-D solve efficiency gets worse with mesh refinement.

Figure 3.12 shows the contribution of each enrichment for the PGD runs at 272 elements per

dimension and the magnitude of each term of the SVD of the full-order model solution. The PGD

enrichment contributions follow very closely with the SVD reference, but significantly more terms

are needed fully characterize the solution when compared to the previous problem.

Figure 3.11: Run-time in seconds for each simulation of the one-group BIBLIS problem

Table 3.6: Relative computational efficiency for unshifted PGD and MOOSE, one-group BIBLIS
problem (baseline is the PGD method with shift; values < 1 denote a less efficient technique)

Elements per Dim. PGD MOOSE
34 0.3737 6.0264
68 0.3384 1.7264

136 0.3699 0.4959
272 0.3441 0.0613
544 0.2971 0.0282

1088 0.2633 0.0089
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Figure 3.12: Enrichment contribution of converged PGD solutions and SVD of the full-order solu-
tion, one-group BIBLIS problem

3.4.3.2 Two-Group Version

To illustrate the performance of PGD for a multigroup example with more realistic reactor het-

erogeneities, the PGD algorithm is applied to the two-group version of the BIBLIS benchmark.

The material property values for this problem can be found in Table 3.7. The full-order model,

evaluated using MOOSE, was run with 34 to 1,088 elements per dimension, and the PGD model

was run with 34 to 2,176 elements per dimension. The eigenvalue convergence tolerance (εk) were

set to 10−9. A MOOSE model with 2,176 elements per dimension was used for the reference eigen-

value and eigenvector with keff = 1.02510305; this solution required high performance computing

to evaluate, so the performance results for this simulation are not included.

Figure 3.13 shows the resulting eigenvalue and eigenvector error for MOOSE with power itera-

tion and PGD with and without adaptive Wielandt shift. These errors show that both the full-order

and PGD models, again, have proper error convergence when the spatial mesh is refined. To com-

pare the solution between each model, Figure 3.14 shows the full-order solutions at 272 elements

per dimension with the difference from the PGD models at the same refinement. These plots show

that the MOOSE and PGD evaluations converge to approximately the same solution in the power

iteration process.
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Table 3.7: Material properties of two-group BIBLIS benchmark problem

Material Group Dg (cm) Σg
a (cm−1) νΣg

f (cm−1) Σg←1
s (cm−1)

1
1 1.4360 0.0095042 0.0058708 0
2 0.3635 0.0750580 0.0960670 0.017754

2
1 1.4366 0.0096785 0.0061908 0
2 0.3636 0.0784360 0.1035800 0.017621

3
1 1.3200 0.0026562 0 0
2 0.2772 0.0715960 0 0.023106

4
1 1.4389 0.0103630 0.0074527 0
2 0.3638 0.0914080 0.1323600 0.017101

5
1 1.4381 0.0100030 0.0061908 0
2 0.3665 0.0848280 0.1035800 0.017290

6
1 1.4385 0.0101320 0.0064285 0
2 0.3665 0.0873140 0.1091100 0.017192

7
1 1.4389 0.0101650 0.0061908 0
2 0.3679 0.0880240 0.1035800 0.017125

8
1 1.4393 0.0102940 0.0064285 0
2 0.3680 0.0905100 0.1091100 0.017027

χ1 = 1.0, χ2 = 0.0

Figure 3.13: Relative eigenvalue and L2 eigenvector error for two-group BIBLIS problem
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Figure 3.14: Full-order (MOOSE) solution and difference from PGD solutions at 272 elements per
dimension, two-group BIBLIS problem. Left column: group 1 flux. Right column: group 2 flux.
Top row: solution. Middle row: unshifted PGD difference. Bottom Row: shifted PGD difference
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Figure 3.15 shows the resulting run-time for each simulation. These run-time results show that

PGD has even more marginal performance than the one-group version. Table 3.8 shows the relative

computational efficiency for each refinement of the unshifted PGD model and full-order MOOSE

model. Figure 3.16 shows the contribution of each enrichment for the PGD runs at 272 elements

per dimension and the magnitude of each term of the SVD of the full-order model solution. SVD

has similar enrichment convergence as the one-group version, but PGD does not show the same

convergence. From the poorer convergence of the shifted PGD model, the difference from SVD

appears to be caused by the coupling between group fluxes in the PGD linear system evaluation.

The unshifted operator only has scattering, coupling from group 1 to 2, for a given source term;

while the shifted operator has scattering and fission, coupling both groups together. The group-1

convergence is better than the group-2 for unshifted operator because group 1 is independent, but

they are approximately the same for the shifted operator.

Figure 3.15: Run-time in seconds for each simulation of the two-group BIBLIS problem
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Table 3.8: Relative computational efficiency for unshifted PGD and MOOSE, two-group BIBLIS
problem (baseline is the PGD method with shift; values < 1 denote a less efficient technique)

Elements per Dim. PGD MOOSE
34 1.2906 138.3303
68 0.8220 25.4305

136 0.5271 5.9563
272 0.9528 6.5240
544 1.4271 2.4053

1088 1.2823 0.9485

Figure 3.16: Enrichment contribution of converged PGD solutions and SVD of the full-order solu-
tion, two-group BIBLIS problem

3.4.4 Analysis of PGD Algorithm

The purpose of this section is to analyze some of the features of the implemented PGD algo-

rithm. These include the shifting parameter, solution compression, eigenvalue projection, and the

adaptive enrichment tolerance. The two-group version of BIBLIS example from Section 3.4.3 with

34 elements per dimension will be used for this analysis.

3.4.4.1 Wielandt Shift

As stated in Section 3.2.2, there are many different choices for the Wielandt shift parameter

σ. In the previous sections, an adaptive shift was utilized, defined by Equation (3.7). Here the

65



adaptive shift results are compared with fixed shifts:

• No shift: σ0 = 0

• Adaptive shift: σadapt ←− Equation (3.7)

• Maximum keff: σmin = 1/kmax = 1/3

• Maximum infinite medium: σ∞ = 1/max(k∞) = 0.8525

max(k∞) is determined by the material zone with the largest k∞ Table 3.9 shows the number

of iterations required for 10−7, eigenvalue and eigenvector error, eigenvalue tolerance, total run-

time, and number of enrichments required for the last power iteration. These results show that the

adaptive shift is the best method for this problem, with a tenth of the number of power iterations

compared to no shift. However, these results also indicate that having a shift for this problem

increases the run-time per power iteration significantly, due to the increase in the number of en-

richment evaluations per power iteration. It is also worth noting that the number of enrichments

increases as the efficiency of the shift improves.

Table 3.9: Performance results of PGD with various shifting parameters for two-group BIBLIS
problem

Shift Type P.I. keffError Φ Error Run-time (s) No. of Enrichments
σ0 117 0.0001906 0.005983 1031 73
σadapt 11 0.0001906 0.005003 149.9 175
σmin 96 0.0001907 0.006334 1523 89
σ∞ 28 0.0001906 0.005100 423.9 108

This is by no means an exhaustive list of all the possible shifting parameters. See [78] and

[68] for more options and analysis, especially for criticality problems. It is also important to note

that a shift based on the Rayleigh quotient was attempted, explained in Section 3.2.2, but the PGD

systems became severely ill conditioned after a few power iterations.
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3.4.4.2 Solution Compression, Eigenvalue Projection, and Adaptive Enrichment Tolerance

In Sections 3.3.3 and 3.3.4, several methods are explained to potentially improve PGD perfor-

mance for generalized eigenvalue problems. This analysis attempts to quantify how much these

methods improve our PGD algorithm. Five different variations were run with no shift:

• Type 1 - All methods implemented

• Type 2 - No compression, projection, or adaptive tolerance

• Type 3 - No compression

• Type 4 - No projection

• Type 5 - No adaptive tolerance

Table 3.10 shows the number of iterations required for 10−7, eigenvalue and eigenvector error,

eigenvalue tolerance, difference in run-time from Type 1, and number of enrichments required for

the last power iteration. These results show that each of the methods implemented improve PGD

performance significantly, without affecting the final error of the solution. Most significant is the

adaptive enrichment tolerance, which shows that the method prevents “over-solving".

Table 3.10: Performance results of PGD with various efficiency methods turned off for two-group
BIBLIS problem. The run-time for the Type 1 simulation is 1031 s.

Type P.I. keffError Φ Error ∆ Run-time (s) No. of Enrichments
1 117 0.0001906 0.005983 0 73
2 139 0.0001906 0.005823 +7586 (+736%) 143
3 117 0.0001906 0.006157 +260 (+25%) 73
4 139 0.0001906 0.005957 +769 (+75%) 77
5 117 0.0001906 0.005970 +4143 (+402%) 143
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3.5 Discussion

This chapter investigates the implementation of PGD to multigroup neutron diffusion critical-

ity problems. The eigenproblems are solved using standard power iteration and accelerated power

iteration with an adaptive Wielandt shift. PGD is utilized as a linear system solver to obtain the

eigenvector at each iteration. The theory sections discuss the PGD solution process and its imple-

mentation within the power iteration process. In order to avoid re-evaluating the PGD operators

for each spatial dimension, a PGD-favorable decomposition of the multigroup diffusion operators

is discussed for an efficient implementation of the technique. This is particularly needed for highly

heterogeneous geometries, such as the ones of found in modern nuclear cores. Because the itera-

tive PGD process is located in the innermost loop (power iteration being the traditional outer loop),

several techniques to reduce the computational burden of the PGD iterations have been proposed,

including compression of the current PGD iteration, solution projection to optimize the current

PGD solution, and adaptive tolerance criteria.

The results for this chapter involve four different criticality problems. For comparison pur-

poses, a non-PGD approach is also employed, solved using the MOOSE FEM library. The first

test case is a four-group 3D homogeneous bare cube. PGD shows far superior performance com-

pared to MOOSE; this problems admits an (analytical) solution that is separable in space, so the

PGD evaluation requires very few terms to converge. The second problem is a two-group, 2-D

two-material geometry. The domain is large and mostly consists of one material. Again, PGD

shows superior performance compared to MOOSE for this problem because relatively few number

of enrichments are needed to represent each power iteration’s eigenvector; this problem was used

in previous PGD applications [50]. The third and fourth problems have the same highly hetero-

geneous 2D geometry, representative of a more realistic core layout. For these problems, PGD

shows a much more marginal performance compared to the previous examples, especially for the

two-group version (fourth problem).

The difference in the PGD performance for these more heterogeneous problems highlights that

the effectiveness of PGD may hinge on the problem’s heterogeneity. The material-layout depen-
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dence is evident when comparing the results from the two-material problem and the two-group

BIBLIS problem. Both of the eigenvectors have a similar enrichment convergence, as assessed by

an SVD analysis. This is compounded in the multigroup case, for example when comparing the

1-g and 2-g BIBLIS results where about 4 times more enrichments are needed in the PGD pro-

cess than the ideal value (computed by performing an SVD of the solution). This increase in the

number of enrichments renders PGD slower because added enrichments require more alternating

direction iterations, each one being more computationally demanding than the previous one (resid-

ual evaluation with more terms). In addition, the multigroup coupling dependence is evident when

comparing the one-group and two-group versions of the BIBLIS problem. The SVD convergence

for these problems are very similar. However, the PGD enrichment convergence for the two-group

version is much slower than the one-group version.

To conclude, PGD can be an effective technique for a certain class of neutron diffusion prob-

lems. Some intuition must be applied concerning the nature of the resulting solution in order to

determine if PGD will have better performance than a full multi-D model evaluation. In general,

this PGD approach performs more poorly for highly heterogeneous geometries. For more homo-

geneous geometries, PGD appears to always outperform its full-order modeling counterpart in a

significant manner.
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4. SPACE-ENERGY SEPARATED REPRESENTATIONS FOR MULTIGROUP NEUTRON

DIFFUSION USING PROPER GENERALIZED DECOMPOSITION

4.1 Introduction

In this chapter, the PGD methodology is formulated to include the energy dimension of neutron

diffusion into the PGD separated representation. This application serves as an extension to the PGD

approaches from Chapter 3 and the work of Senecal & Wi [50]. The model problem in this work

is the fixed-source, steady-state multigroup neutron diffusion equation. The variable of interest

is the space-energy dependent neutron flux (φ(~r, E)). The work by Senecal & Ji used the PGD

methodology to seek a space-only separated representation for each group flux. This work takes

a different approach, whereby seeking a full space-energy separated representation. The chapter

analyzes the properties of such a phase-space PGD decomposition and provide results for various

energy discretizations, from 2 groups to 145 groups.

This chapter includes three key extensions of the PGD method. Firstly, it includes a derivation

of the construction of a PGD operator for space-energy separated representation that decomposes

the four-dimensional (space× group) cross sections. This operator construction allows for the

construction of 1-D linear systems before the PGD solution process is initiated; this is especially

optimized for highly heterogeneous two- and three-dimensional spatial geometries. Second, PGD

is applied to a variety of multigroup neutron diffusion problems, ranging from a course two-group

problem to a fine-group problem on the order of 100 energy groups. Finally, this chapter includes

a characterization of the performance of PGD for these problems, remarking on its capability for

realistic calculations.
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4.2 PGD for Neutron Diffusion

The model problem for this work is the steady-state neutron diffusion equation with a fixed-

source, shown in Equation (4.1).

−∇ ·D(~r, E)∇φ(~r, E) + Σt(~r, E)φ(~r, E) =

∫ ∞
0

Σs(~r, E
′ → E)φ(~r, E ′)dE ′

+ χ(E)

∫ ∞
0

νΣf (~r, E
′)φ(~r, E ′)dE ′ +Q(~r, E) . (4.1)

The most common discretization technique for the energy dimension is multigroup, whereby sep-

arating the flux and cross sections into energy groups:

φ(~r, E) = φg(~r) , E ∈ [Eg, Eg−1] . (4.2)

With this discretization, Equation (4.1) becomes the multigroup neutron diffusion equations:

−∇ ·Dg(~r)∇φg(~r) + Σg
t (~r)φ

g(~r) =
G∑

g′=1

Σg←g′
s (~r)φg

′
(~r)

+ χg
G∑

g′=1

νΣg′

f (~r)φg
′
(~r) +Qg(~r) , g = 1, ..., G . (4.3)

For brevity in the remaining sections and without loss of generality, all the reaction terms are

combined into a single cross section,

Σgg′(~r) = Σg
t (~r)δgg′ − Σg←g′

s (~r)− χgνΣg′

f (~r) . (4.4)

The multigroup neutron diffusion equations then become:

−∇ ·Dg(~r)∇φg(~r) +
G∑

g′=1

Σgg′(~r)φg
′
(~r) = Qg(~r) , g = 1, ..., G . (4.5)

With multigroup discretization, there are two different ways to perform the PGD separation of
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variables: First, one may perform PGD for each multigroup flux separately,

φg(x, y) =
N∑
i=1

Xg
i (x)Y g

i (y) , g = 1, ..., G , (4.6a)

or the entire phase-space (spatial coordinates + energy variables) can be treated with PGD all at

once

φ(x, y, E) =
N∑
i=1

Xi(x)Yi(y)Ei(E) ,E = [EG, ..., E1] (4.6b)

Equation (4.6a) represents a PGD representation in space only, this type is implemented in the

previous chapter, for example. The representation in Equation (4.6b) is a full dimensional decom-

position and is the subject of analysis in this work. The following sections detail the construction

of a PGD operator for the multigroup neutron diffusion with space-energy separation.

4.2.1 Operator Construction for Space-Only Separation

This section gives a brief overview on the construction of PGD operators for space-only sepa-

rated multigroup neutron diffusion (Equation (4.6a)). In this representation, each group-by-group

operator must be decomposed separately in the form of Equation (2.2b). Utilizing the method of

decomposing material properties in Section 2.3.1, the linear operator for group g′ to g becomes:

Lgg′(x, y)φg
′
(x, y) =

N∑
i=1

Lgg
′∑

`=1

Lgg
′,x

` (x)Xg′

i (x)Lgg
′,y

` (y)Y g′

i (y) =

−
N∑
i=1


Mg
d∑

`=1

[
Dg,x
`

d2Xg
i

dx2
Dg,y
` Y g

i +Dg,x
` Xg

iD
g,y
`

d2Y g
i

dy2

]
δgg′

+

Mgg′
σ∑
`=1

Σgg′,x
` Xg′

i Σgg′,y
` Y g′

i

 . (4.7)

The group solution and group-by-group operator can then be concatenated to construct a single

system:

(L)gg′ = Lgg′ =
Lgg

′∑
`=1

Lgg
′,x

` ⊗ Lgg
′,y

` , (4.8a)
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(Φ)g = φg =
N∑
i=1

Xg
i ⊗ Y

g
i . (4.8b)

With this multigroup construction of the PGD operator, and similarly for the source, the PGD

solution process from Section 2.1 can be applied directly.

4.2.2 Operator Construction for Space-Energy Separation

This section gives an overview on the construction of PGD operators for space-energy sep-

arated multigroup neutron diffusion (Equation (4.6b)). In order represent the operator shown in

Equation (2.2b), the domain describing each material property must be decomposed in products

of one-dimension functions, similarly to the flux representation of Equation (4.6b). For a space-

energy dependent material property, the separated representation is,

k(x, y, E) =
M∑
i=1

kx,yi (x, y)kei (E) =
M∑
i=1

(
Mi∑
j=1

kxj (x)kyj (y)

)
kei (E) . (4.9)

In this representation, kei (E) is the energy-dependent property value of material zone i and kx,yi (x, y)

describes the position of that zone. kx,yi (x, y) is obtained by utilizing the process in Section 2.3.1

with material property in zone i set to 1 and all others to 0. In the simple example of Figure 2.6,

one can readily obtain the spatial representation of k1, i.e., kxy1 from Equation (4.9) by setting

k1 = 1 and k2 = 0. For the application of multigroup material properties, kei becomes a matrix

of size G × G. For the diffusion coefficient: (kei )gg′ → Dg
i δgg′ . For the combined cross section:

(kei )gg′ → Σgg′

i .

The resulting description of the linear operator is shown in Equation (4.10), where M̂ is the

number of terms required to fully represent each material property, M̂ =
∑M

i=1Mi from Equa-

tion (4.9). Consequently, L = 3M̂ from Equation (2.2b), and more generally in dim spatial dimen-

sions, L = (dim + 1)× M̂ .

Lx`XiLy`YiL
e
`Ei = − d

dx

[
Dx
` (x)

dXi

dx

]
Dy
` (y)YiD`Ei, (4.10a)
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Lx
`+M̂

XiLy`+M̂YiL
e
`+M̂
Ei = −Dx

` (x)Xi
d

dy

[
Dy
` (y)

dYi
dy

]
D`Ei, (4.10b)

Lx
`+2M̂

XiLy`+2M̂
YiLe`+2M̂

Ei = Σx
` (x)XiΣ

y
` (y)YiΣ`Ei, (4.10c)

with

` = 1, ..., M̂ .

In multigroup discretization, the energy dimension operators D` and Σ` are matrices describing

the within group and cross group material properties:

(D`)gg′ = Dg
i δgg′ , (4.11a)

(Σ`)gg′ = Σg
t,iδgg′ − Σg←g′

s,i − χgνΣg′

f,i , (4.11b)

for
i−1∑
i′=1

Mi′ < ` ≤
i∑

i′=1

Mi′ .

With this space-energy separated construction of the PGD operator, and similarly for the source,

the PGD solution process from Section 2.1 can be applied directly.

4.2.3 Multi-Space-Energy Separation

This section introduces multi-space-energy PGD, which is where different space-energy sep-

arated representations are sought for the neutron flux for different energy ranges. The impetus of

this modified decomposition is that the spatial profile of the neutron flux can vary significantly

for different energy groups. The worst case scenario is that each group flux has a completely dif-

ferent separated representation, which would require an unwieldy number of enrichments while

using a unique space-energy decomposition. In the four-group problem in [84] there is a signifi-

cant difference in the spatial profile between the fast and thermal energy ranges. In [85] there is

a difference between the fast, epithermal, and thermal energy ranges. However, the fact that, for

energy groups within a certain energy range, the flux spectrum exhibits similar profiles provides an

opportunity for space-energy decomposition to prove effective, especially as the number of energy
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groups increases.

For instance, the energy-dependent neutron flux can be separated into fast and thermal energy

ranges, which is analogous to multigroup:

φ(~r, E) =

 φfst(~r, E) E ∈ fast range

φth(~r, E) E ∈ thermal range
. (4.12)

A space-energy separation is then sought for each of these energy ranges, which in multigroup

discretization looks like:

φfst(x, y, E) =
N∑
i=1

X fst
i (x)Y fst

i (y)E fst
i (Efst) ,Efst = [Efst, ..., E1] , (4.13a)

φth(x, y, E) =
N∑
i=1

Xth
i (x)Y th

i (y)E th
i (Eth) ,Eth = [EG, ..., Eth] , (4.13b)

where Efst is the lowest energy group of the fast region and Eth is the highest energy group of the

thermal region. The linear operator is defined by combining the methodologies from Section 3.3.5

and Section 4.2.2. A separate linear operator is found for each energy region and the coupling

between them, in the form similar to Equation (4.10). These operators are then concatenated

similarly to Equation (4.8). Thus, the PGD solution process in Section 2.1 can be applied.

It should be noted that the differentiation between fast and thermal energy ranges is for illustra-

tion; separation into any number of energy ranges is possible and is straightforward to infer from

the above example.

4.3 Results

In order to test our PGD implementation with space-energy separation, five different examples

are applied. The first example is a mildly heterogeneous 2-D two-group problem that is analyzed

as a criticality problem in Section 3.4.2. The second example is a 2-D, two-group heterogeneous

reactor geometry based on the IAEA benchmark in the ANL Benchmark Problem book [58]. The

third and fourth examples are 3-D, seven-group problems based on an example from [86]. Each
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of these four problems were evaluated using three different techniques: full-order modeling using

MOOSE [87], PGD with space-only separation (PGD-MG, Equation (4.6a)), and PGD with space-

energy decomposition (PGD-DE, Equation (4.6b)). The fifth example is a 3-D 145-group graphite

block with an embedded AmBe source. This fourth example only analyzes the PGD-DE technique

and full-order model is evaluated using the deal.II library, more details on this implementation

are in Section 4.3.4.

The PGD implementations use CFEM for each of its 1-D spatial functions. The full-order

model (FOM) is applied with an equivalent multi-dimensional CFEM discretization. The linear

systems incurred by the PGD solution process are evaluating using MATLAB’s LU solver. The

MOOSE linear solves are performed using the generalized minimal residual method (GMRES)

with algebraic multi-grid (AMG) techniques from the HYPRE package with default numerical

parameters.

Two different types of error are analyzed in the following results. One is a full phase-space error

defined in Equation (4.14a). The other is a group dependent error, defined by Equation (4.14b).

Error =

∑G
g=1 ||φg − φ

g
ref ||L2∑G

g=1 ||φ
g
ref ||L2

, (4.14a)

ε(E) =
||φg − φgref ||L2

||φg||L2

, E ∈ [Eg, Eg−1] . (4.14b)

4.3.1 2-D Two-Group Problem

This example is a simple heterogeneous 2-D, two-group example based on Problem 5.7 from

[83]; the criticality version of this problem was analyzed in Section 3.4.2. The geometry is shown

by Figure 3.4. The material properties can be found in Table 3.3 with the addition of a group

one source term in Material 1, Q1 = 0.01. The full-order model and both PGD models involve

a uniform mesh and run with various levels of refinement, ranging from 35 to 2240 elements in

the x and y dimensions. The MOOSE linear tolerance was set to 10−5 and the PGD enrichment

tolerance was set to 10−6. To compute error, a reference solution (φgref) is used from evaluating the
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full-order model on a 2240-by-2240 element mesh.

Table 4.1 shows the error of each simulation and number of enrichments required for the PGD

methods. Figure 4.1 shows the run-time for each simulation. All the methods show very similar

error, but the run-times for PGD-MG are significantly lower than the MOOSE and PGD-DE eval-

uations. Although both PGD methods are significantly faster than MOOSE at higher refinements,

the space-energy separated PGD suffers heavily from the increase in required enrichments. The

increase in the number of enrichments is due to the addition of the energy dimension and this

two-group addition does not significantly decrease the dimensionality of the PGD solution.

Table 4.1: Resulting error and number of enrichments required for 2-D two-group example

Elem. per Dim. MOOSE PGD-MG PGD-DE
(x, y) Error Error Enrichments Error Enrichments
(35,35) 0.002067 0.002068 14 0.001941 237
(70,70) 0.0005192 0.0005197 17 0.0004721 282
(140,140) 0.0001297 0.0001305 16 7.778e-05 222
(280,280) 3.207e-05 3.245e-05 12 2.788e-05 197
(560,560) 7.637e-06 9.029e-06 12 6.598e-06 241
(1120,1120) 1.527e-06 3.72e-06 15 9.045e-07 246

4.3.2 Two-Group Reactor Geometry

This example involves a 2-D heterogeneous reactor geometry with two-group cross sections.

The chosen problem geometry is based on the ANL Benchmark Problem Book problem 11-A1

[58]. The one-group version of this problem is analyzed in Section 2.3.2. The 2-D geometry is

shown in Figure 2.8. The two-group material properties are detailed in Table 4.2.

The system was evaluated with the three techniques on various levels of spatial refinement.

Figure 4.2 shows the run-time for each method and each refinement level. Table 4.3 details result-

ing error for each evaluation, compared to a highly refined full-order solution, as well as number of

enrichments required for the PGD methods. As expected, the MOOSE run-times have a quadratic

dependence on the number of spatial elements per dimension, while the PGD methods have a linear
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Figure 4.1: Run-time results for 2-D two-group example

Table 4.2: Material properties of two-group, 2-D IAEA Benchmark problem

Material Group D Σr Σ2←1
s χ1νΣ2

f Q

Fuel 1
1 1.5 0.03

0.02 0.135
0

2 0.4 0.22 10

Fuel 1 + Rod
1 1.5 0.03

0.02 0.135
0

2 0.4 0.265 10

Fuel 2
1 1.5 0.03

0.02 0.135
0

2 0.4 0.215 10

Fuel 1 + Rod
1 2.0 0.04

0.04 0
0

2 0.3 0.01 0

dependence. Although both PGD methods are significantly faster than MOOSE at higher refine-

ments, the space-energy separated PGD suffers heavily from the increase in required enrichments,

due to addition of the energy dimension in the decomposition.

4.3.3 3-D Seven-Group Example

These next two examples are based on the problem in Section 4.3 of [86], where the geometry

and material properties can be found. Because the multiplicity for this problem is greater than

1, all the fission cross sections are halved to avoid negative flux values. Two different instances
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Figure 4.2: Runtime results for the 2-D IAEA Problem

Table 4.3: Relative error of fast group flux for various refinements. Error defined by Equa-
tion (4.14a)

Elm. per Dim. Error
(x, y) MOOSE PGD-MG PGD-DE
(34,34) 1.229E-2 1.227E-2 (99) 1.229E-2 (161)
(68,68) 4.059E-3 4.076E-3 (118) 4.001E-3 (177)
(136,136) 1.263E-3 1.193E-3 (112) 1.330E-3 (149)
(272,272) 4.634E-4 3.903E-4 (97) 6.391E-4 (137)
(544,544) 2.761E-4 3.759E-4 (91) 3.756E-4 (136)

(·) Indicates the number of enrichment terms needed

of the geometry are considered. First, the fuel region is identical, but the reflector is extended to

make the geometry rectangular. Second, to see how PGD performs in a more homogeneous 3-D

geometry, the fuel region is homogenized so that the entire region consists of only Material 1. The

full-order model and both PGD models involve a uniform mesh and run with various levels of

refinement. The full-order model was run with (17,17,20) to (68,68,80) elements in (x, y, z). The

PGD models were run with (17,17,20) to (136,136,160) elements. The MOOSE linear tolerance

was set to 10−5 and the PGD enrichment tolerance was set to 10−6. To compute error, a reference

solution (φgref) is used from evaluating the full-order model on a 272-by-272-by-320 element mesh.

Due to the burden of evaluating this reference model, it was run on a high performance computer
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with 8 processors; consequently, the performance of this evaluation is not included.

Table 4.4 shows the error of each simulation and number of enrichments for the fully hetero-

geneous fuel region example. Figure 4.3a shows the run-time for each simulation in this geometry.

For this example, MOOSE greatly out performs the PGD methods because the number of enrich-

ments required for PGD to evaluate is quite large, especially for the PGD-DE method. However,

if extrapolating the MOOSE run-time for higher refinements based on AMG scaling properties,

PGD would have eventually out performed MOOSE. The difference in run-time between PGD-

MG and PGD-DE is marginal. In this seven-group example, PGD-DE reduces the dimensionality

significantly for a given enrichment term. However, the larger number of enrichments required for

PGD-DE eliminates any run-time savings from this reduction.

Table 4.5 shows the error of each simulation and number of enrichments for the homogeneous

fuel region example. Figure 4.3b shows the run-time for each simulation in this geometry. The

MOOSE performance for this example is identical to the previous example because the size of the

system is unchanged. However, the performance of PGD is significantly improved because this

more homogeneous material requires less enrichments to evaluate. Furthermore, the difference

in the number of enrichments between PGD-DE and PGD-MG is smaller, which is the reason

PGD-DE is faster in this example.

Table 4.4: Resulting error and number of enrichments for 3-D seven-group example with hetero-
geneous fuel region. Error defined by Equation (4.14a)

Elm per Dim. MOOSE PGD-MG PGD-DE
(x, y, z) Error Error Enrichments Error Enrichments
(17,17,20) 0.08994 0.07162 333 0.07178 1537
(34,34,40) 0.05564 0.02382 468 0.02396 1737
(68,68,80) 0.004522 0.006574 492 0.007089 1577
(136,136,160) — 0.001518 501 0.003165 1727

Values with — could not be run because system did not have enough memory
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Table 4.5: Resulting error and number of enrichments for 3-D seven-group example with homoge-
neous fuel region. Error defined by Equation (4.14a)

Elm per Dim. MOOSE PGD-MG PGD-DE
(x, y, z) Error Error Enrichments Error Enrichments
(17,17,20) 0.07073 0.07073 192 0.07098 633
(34,34,40) 0.02295 0.02295 264 0.02298 790
(68,68,80) 0.006109 0.006116 277 0.006555 413
(136,136,160) — 0.001321 285 0.002162 506

Values with — could not be run because system did not have enough memory

(a) Heterogeneous fuel region (b) Homogeneous fuel region

Figure 4.3: Run-time results for 3-D seven-group examples

4.3.4 145-Group Graphite Block with AmBe source

This example involves a 3-D graphite block with 145-group cross sections, the source of

neutrons comes from a small AmBe block embedded in the graphite. The geometry is shown

in Figure 4.4. The materials assumed to have no fission, total cross section is shown in Fig-

ures 4.5a and 4.5b, and the AmBe source spectrum is shown in Figure 4.5c.

The full-order model solution was evaluated using a specialized deal.II implementation

[88], most similar to the step-28 tutorial, which is described in [86]. Typically, this type of sim-

ulation utilizes a block Gauss-Seidel iteration to resolve the thermal upscattering. However, this

81



Graphite
AmBe

xCL

y

CL

z CL0
0.5

cm
50

cm

00.5 cm50 cm 0 5 cm 7 cm 200 cm

Figure 4.4: 3-D graphite block geometry (not to scale)

technique’s spectral radius for the corresponding infinite medium version of this problem is ap-

proximately 0.99. Therefore, we elected to utilize the two-grid acceleration method, which has a

corresponding spectral radius of 0.53 [89, 90]. The full-order model utilizes a conjugate gradient

(CG) solver for each group flux with an AMG preconditioner. The PGD implementation uses a

direct LU solver for the energy dimension linear system evaluation.

Four types of PGD separation are implemented for this problem: full space-energy decom-

position (Equation (4.6b), PGD-DE) and three different mult-space-energy decomposition (Equa-

tion (4.13), PGD-MSE). The three different range separations for PGD-MSE are:

1. Separation of pure down-scattering and upscattering regions. The down-scattering region is

defined as groups 1 through 39 (11.0 MeV ≥ E > 316 eV) and the upscattering region is

defined as groups 40 through 145 (316 eV ≥ E > 0 eV).

2. Separation of the graphite resonance region and thermal region. The resonance region is

defined as groups 1 through 26 (11.0 MeV ≥ E > 0.562 MeV) and the thermal region is

defined as groups 27 through 145 (0.562 MeV ≥ E > 0 MeV).

3. Separation of resonance region, pure down-scattering region, and upscattering region: 1

through 26 (11.0 MeV ≥ E > 0.562 MeV), groups 27 through 39 (0.562 MeV ≥ E > 316
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eV), and groups 40 through 145 (316 eV ≥ E > 0 eV).

The geometry was discretized using a uniform grid of 100 elements in the x and y direction and

400 in the z direction. The two-grid accelerated Gauss-Seidel iteration tolerance for the full-order

model was set to 10−6, which resulted in 21 thermal upscattering iterations, with a total of 2,286

single-group diffusion solves for the entire problem. The PGD enrichment tolerance was set to

10−7 for all types. The full-order evaluation was performed with domain decomposition across 12

processors. The PGD evaluation was performed on a single processor in MATLAB.

(a) Total cross section (b) Total cross section in fast region

(c) AmBe source spectrum

Figure 4.5: Material properties for graphite block example
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Table 4.6 details the performance of each method and the error for each of the PGD methods.

Error is a comparison between the full-order deal.II solution (FOM) and the resulting PGD

solutions. From these results, all PGD methods show far superior performance compared to the

deal.II evaluation. All the errors are lower than tolerance set for the Gauss-Seidel iteration and

the run-time is less than 10% of the full-order evaluation. Additionally, without two-grid acceler-

ation, the full-order evaluation would have likely required an order of magnitude more diffusion

solves and increasing the run-time to the scale of weeks. However, there appears to be no sig-

nificant difference in the performance between each of the PGD methods for this problem. The

PGD-MSE approaches indicate that PGD has an exorbitant amount of difficulty resolving the fast

region, requiring four to five times the number of enrichments as the thermal region. Furthermore,

splitting between the graphite resonance and slowing down regions actually impairs PGD perfor-

mance significantly, indicated by the Type 2 and 3 results. To further the analysis, the individual

multigroup flux errors across the spectrum are inspected.

Table 4.6: Performance and error comparison of full-order model evaluation and PGD with space-
energy separation for 145-group graphite problem. Number of enrichments are for each energy
range. Error computed with FOM solution as φref .

System Enrichment Run-time Error Number of
Evaluation Type Tolerance (sec) Equation (4.14a) Enrichments
FOM — 1.61e+05 — —

PGD-DE
10−5 197 6.387e-05 289
10−6 1860 5.595e-06 1027
10−7 7920 8.159e-07 2337

PGD-MSE Type 1
10−5 252 2.992e-05 320, 90
10−6 1305 3.935e-06 898, 162
10−7 7490 9.996e-08 2290, 402

PGD-MSE Type 2
10−5 339 3.099e-05 277, 253
10−6 2443 4.290e-06 710, 883
10−7 1.14e+04 6.862e-07 1695, 2017

PGD-MSE Type 3
10−5 312 2.186e-05 277, 252, 71
10−6 1723 3.599e-06 710, 548, 117
10−7 9070 1.245e-07 1695, 1367, 389
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Figures 4.6a and 4.6b show the resulting space integrated spectrum for the full energy range

and fast region, respectively. The integrated spectrum is defined as:

φ̄(E) =

∫
Ωx

∫
Ωy

∫
Ωz
φg(x, y, z)dxdydz

Ωx × Ωy × Ωz

1

∆Eg
, E ∈ [Eg, Eg−1] . (4.15)

Figures 4.6c and 4.6d show the multigroup flux errors in the corresponding regions. These results

show that all the PGD methods have the same difficulty resolving the fast region, which is where

PGD-MSE spends most of its time solving. Each method especially has difficulty solving the flux

at very specific energies. The peaks in error in Figure 4.6d align with the graphite resonances

(Figure 4.5b) and the dips in the flux spectrum (Figure 4.6b). The peaks in the thermal spectrum

align with the AmBe resonances in Figure 4.5a. The flux in the thermal region is more accurate

when utilizing PGD-MSE. Additionally, the thermal region solution is improved when separating

between pure down-scattering and upscattering regions versus thermal-resonance separation.

The PGD-MG approach was also attempted for this 145-group problem, but the process took

too long to produce viable results. One enrichment with this method took 3 hours and evaluating

only the group 1 flux required 100 enrichments. Therefore, a very conservative estimate for the

run-time with PGD-MG is about two weeks. Thus, a PGD approach which includes the energy

dimension is a significantly more efficient approach than a PGD solution tackling only the spatial

coordinates, for large number of energy groups.

4.4 Discussion

This chapter introduces and investigates the utilization of proper generalized decomposition

to evaluate multigroup neutron diffusion problems with space-energy separation. The theory sec-

tion discusses two types of decomposition for the multigroup neutron flux: space-only and space-

energy separated representation. The former is utilized for criticality problems in Section 3 and

the latter is the subject of analysis in this work. The chapter also discussed how to decompose the

multigroup linear operators for both types of flux representations which is generalized for hetero-

geneous media. Finally, the section introduced the multi-space-energy decomposition of the flux
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(a) Full spectrum (b) Fast region spectrum

(c) Full spectrum error (d) Fast region error

Figure 4.6: Visualization of 145-group graphite block spectrum and PGD error. Error defined by
Equation (4.14a) with FOM solution as φref

which allows for different separated representation for different regions of the energy domain.

In order to test the PGD implementations, they are applied to five different examples: two 2-D

two-group examples with mildly heterogeneous and reactor geometries, two based on a 3-D seven-

group reactor geometry, and a 3-D 145-group graphite block. For performance comparison, the

examples also employ a full-order model equivalent, evaluated using MOOSE and deal.II. The

results from the two-group problems show that PGD performance surpasses the full-order evalua-

tion when the mesh is highly refined. The space-only representation is much better for this problem

than the space-energy representation. This is due to the fact that the addition of the energy dimen-

86



sion does not reduce the dimensionality of the problem significantly, since it is only two-group,

and this representation requires significantly more enrichments to evaluate to fully represent the

multigroup solution. The third and fourth examples are differentiated by heterogeneous and homo-

geneous fuel regions. In the heterogeneous version, the PGD approaches have nearly identical per-

formance and significantly slower than MOOSE. In the homogeneous version, PGD performance

is significantly improved and the space-energy approach proves most effective. These results indi-

cate that PGD has the best performance when the geometry is more homogeneous, which requires

less enrichments to evaluate in the solution process. The space-energy decomposition also shows

the best results in more homogeneous geometries and improves on the performance when more en-

ergy groups are discretized. The final example investigates the multi-space-energy representation.

The results of this 145-group problem showed that the space-energy decomposition was a far more

efficient technique than the full-order evaluation, even with iteration acceleration and parallel pro-

cessing. The results also showed that the multi-space-energy representation did not significantly

affect the global error or the run-time. However, the MSE technique did affect the spatial error in

different energy regions. In general, PGD had difficulty resolving the flux at the resonance ener-

gies and the errors in the fast region were unaffected by the MSE technique. However, separation

of fast and thermal energies reduced the error in the thermal region and required significantly less

enrichments.

The results presented in this chapter show that PGD is a highly efficient method and the space-

energy separation is especially effective for fine-group calculations. For the fine-group results, the

global error for PGD was impressive, but some of the multigroup flux errors were large. If these

fluxes need to be more accurate, significantly more enrichments are required, which may deem

PGD ineffective. The multi-space-energy representation helps the error in the thermal regions, but

does not affect the fast region. Since the full-order evaluation is very efficient in the fast region, a

possible alternative would be to use the full-order model in this region and PGD with space-energy

decomposition in the upscattering region.
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5. INVESTIGATING THE APPLICATION OF PROPER GENERALIZED

DECOMPOSITION TO NEUTRON TRANSPORT

5.1 Introduction

Modeling and simulation of neutron transport problems is often a daunting task due to the

high dimensionality of its phase-space. Steady-state, mono-energetic neutron transport has a five-

dimensional phase-space: three for spatial description and two for particle direction. Due to its

large phase-space, neutron transport suffers heavily from the “curse of dimensionality". This chap-

ter investigates the capability of PGD to reduce the dimensionality of this phase space. Two differ-

ent PGD approaches are investigated: space-only decomposition of each directional angular flux

and full space-angle decomposition. For reference, the model equation is shown in Equation (5.1).

~Ω · ∇ψ(~r, ~Ω) + Σt(~r)ψ(~r, ~Ω) =
1

4π
Σs(~r)φ(~r) +

1

4π
Q(~r) . (5.1)

This chapter is broken up into two sections. Section 5.2 utilizes PGD for the spatial decompo-

sition of the SN neutron transport equations. This section includes different PGD operator formu-

lations and analysis of various angular quadratures and scattering ratios. Section 5.3 explores the

prospect of space-angle decomposition. Dominesey et al. in [53] provide an analysis for 1-D trans-

port problems; therefore, this work focuses on extending the implementation to multi-dimensional

transport problems. PGD is not directly applied to these problems; however, a formulation of the

PGD operators is presented and a SVD analysis on 2-D problems is included. In this work, the

investigation is limited to pure absorption and isotropic scattering problems with unaccelerated

source iteration.

5.2 Space-Only Decomposition of Neutron Transport

The model problem for this work is the steady-state, mono-energetic neutron transport equa-

tion, shown in Equation (5.1). A common discretization technique for the angular dimensions
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utilizes discrete ordinates or SN , where the angular flux (ψ) is evaluated at discrete directions [91].

The resulting approximation to the angular flux is then:

ψ(~r, ~Ω) =
N∑
n=1

ψn(~r)δ(~Ω− ~Ωn) , (5.2a)

φ(~r) =
N∑
n=1

wnψ
n(~r) . (5.2b)

With this discretization, Equation (5.1) is then converted into an equation for each direction (N

total):

~Ωn · ∇ψn(~r) + Σt(~r)ψ
n(~r) =

1

4π
Σs(~r)φ(~r) +

1

4π
Q(~r) , n = 1, .., N . (5.3)

With this model equation, PGD with space-only decomposition represents each SN angular flux

and scalar flux as spatially decomposed variables,

ψn(x, y) =
Rn∑
i=1

Xn
i (x)Y n

i (y) , (5.4a)

φ(x, y) =
N∑
n=1

wn

Rn∑
i=1

Xn
i (x)Y n

i (y) . (5.4b)

The rest of this section presents the PGD operator formulation necessary to apply the PGD solution

process to Equation (5.4a), operator symmeterization typically used for unsymmetrical operators,

source iteration approach, and several results.

5.2.1 Operator Construction

This section describes the “Galerkin" operator formulation specifically for neutron transport

with heterogeneous properties, shown by Equation (5.3), where the cross section and source term

are spatially dependent (e.g., piece-wise constant per zone). In order to represent the operator

shown in Equation (2.2b), the domain describing each material property must be decomposed into

products of one-dimension functions, similarly to the flux representation of Equation (5.4a). For a
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space-dependent cross section, the separated representation is,

Σ(x, y) =
Rσ∑
j=1

Σx
j (x)Σy

j (y) . (5.5)

The resulting description of the linear operator is shown in Equation (5.6). Consequently,

L = 2 +Rσ from Equation (2.2b), and more generally in dim spatial dimensions, L = dim + Rσ.

Lx1XiLy1Yi = Ωx
∂Xi

∂x
Yi , (5.6a)

Lx2XiLy2Yi = ΩyXi
∂Yi
∂y

, (5.6b)

Lx`+2(Xi)Ly`+2(Yi) = Σx
t,`(x)XiΣ

y
t,`(y)Yi, ` = 1, ..., Rσ . (5.6c)

Acquiring the one-dimensional material property functions for the description of the material

zones requires decomposition of the heterogeneous media. This technique is described in Sec-

tion 2.3.1. With this description of the PGD-decomposed operator, the process from Section 2.1

can be directly applied here. However, the “Galerkin" formulation described from this section can

cause convergence difficulties in the solution process because of the asymmetry of the differential

operator. The following subsection describes a technique to symmeterize PGD operators.

5.2.2 Residual Minimization

The differential operators described by Equation (5.6) produce a non-symmetric system of

equations. PGD applications to these types of systems show very poor convergence of PGD al-

ternating direction iterations [16, 17]. Therefore, techniques to symmetrize the PGD operator

are often employed to overcome this difficulty. Gonzalez et al. in [92] utilizes the streamline-

upwind/Petrov-Galerkin (SUPG) method to perform the symmetrization on advection-diffusion

problems. A more generic method is the residual minimization technique. The minimal residual

technique is used exclusively in the LATIN multiscale method [20, 19]. However, for more general

PGD applications, the method was proposed in [93] and further investigated in [34, 94, 95].

Residual minimization entails finding the minimum of the Euclidean norm of the residual. The
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PGD residual for enrichment R is defined as:

Res =
L∑
`=1

Lx`XRLy`YR −
J∑
j=1

Rx
jR

y
j , (5.7)

where J = Q+ L×R and,

Rx
j =

 qxk , j = k

−Lx`Xi , j = k + `+ L(i− 1)
, (5.8a)

Ry
j =

 qyk , j = k

Ly`Yi , j = k + `+ L(i− 1)
. (5.8b)

The euclidean norm (|| · ||) of this residual is then defined as:

||Res||2 =
L∑
`=1

L∑
`′=1

(〈Lx`XR,Lx`′XR〉 〈Ly`YR,L
y
`′YR〉)−

2
L∑
`=1

J∑
j=1

(〈
Lx`XR,Rx

j

〉 〈
Ly`YR,R

y
j

〉)
+

J∑
j=1

J∑
j′=1

(〈
Rx
j ,Rx

j′

〉 〈
Ry
j ,R

y
j′

〉)
, (5.9)

where 〈·, ·〉 is defined as an integration over the one-dimensional phase space,

〈a(x), b(x)〉 =
∫

Ωx
a(x)b(x)dx , 〈c(y), d(y)〉 =

∫
Ωy
c(y)d(y)dy . (5.10)

This residual is then minimized dimension by dimension, an alternating direction approach, by

setting the derivative of the residual norm with respect to variable being solved equal to zero:

∂||Res||2
∂XR

= 0 and ∂||Res||2
∂YR

= 0 . (5.11)

With this formulation, a system of equations can be written for XR and YR. For instance, the
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system for XR is then:

L∑
`=1

L∑
`′=1

β̂y`,`′ 〈L
x
` ,Lx`′XR〉 =

L∑
`=1

J∑
j=1

γ̂y`,j
〈
Lx` ,Rx

j

〉
, (5.12)

where,

β̂y`,`′ = 〈Ly`YR,L
y
`′YR〉 (5.13a)

γ̂y`,j =
〈
Ly`YR,R

y
j

〉
. (5.13b)

The equation for YR can be derived similarly.

Although this derivation is complete, it is quite tedious to implement. Another approach is to

redefine the linear operator L and source q in its PGD residual minimization form. This is done by

multiplying each side of Equation (2.1) by the adjoint of L. The new PGD operators, L̂xˆ̀ and L̂yˆ̀,

and source, q̂x
k̂

and q̂y
k̂
, are then defined as:

L̂xˆ̀Xi L̂yˆ̀Yi = Lx,†` L
x
`′Xi Ly,†` L

y
`′Yi ,

ˆ̀= `+ L(`′ − 1) , (5.14a)

q̂x
k̂
q̂y
k̂

= Lx,†` qxk L
y,†
` qyk , k̂ = `+ L(k − 1) , (5.14b)

where † signifies the adjoint of the operator. In discrete form, the adjoint is simply the transpose

of the operator matrix. With this definition of the linear operators and source, the process from

Section 2.1 can be applied directly. However, the number of terms in the decomposed operators

becomes L2, which could become quite taxing for the PGD process.

This work utilizes both the “Galerkin" and residual minimization formulations for the SN trans-

port operator and compares their convergence. For more information regarding the residual mini-

mization approach, see Chapter 6 of [16] or Section 3.4 of [17].
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5.2.3 Source Iteration

Although the neutron transport equation represented by Equation (5.3) is linear, an iteration

scheme is required to evaluate the angular fluxes effectively, due to the integral scattering operator.

Source iteration is the most traditional and historically robust iteration technique. The source

iteration scheme is represented by,

~Ωn · ∇ψn,k+1(~r) + Σt(~r)ψ
n,k+1(~r) =

1

4π
Sk(~r) , (5.15)

where k is the iteration index and,

Sk(~r) = Σs(~r)φ
k(~r) +Q(~r) . (5.16)

The convergence of this iteration technique is dependent on the scattering ratio (c = Σs/Σt), which

is often very close to unity. There are many types of acceleration methods, including diffusion syn-

thetic acceleration (DSA) [96], nonlinear diffusion acceleration (NDA) [97], and nonlinear Krylov

acceleration (NKA) [98], see [99] for an overview of common acceleration schemes. However, this

work will only address the performance of PGD with straight source iteration without acceleration.

Due to the versatility of the PGD methodology, there are numerous theoretical techniques to

perform this type of iteration within the PGD solution process. This section will discuss two such

techniques, which are described in the following subsections.

5.2.3.1 PGD Source Iteration: Type 1

The first type of source iteration with PGD is essentially using the full PGD solution process as

a linear system evaluation method. This is done by evaluating the system defined by Equation (5.6)

with a source term defined by the previous iteration’s scalar flux. The resulting angular flux from

this evaluation is then,

ψn,k+1(x, y) =

Rk+1
n∑
i=1

Xn,k+1
i (x)Y n,k+1

i (y) , (5.17)
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which is computed from the source term,

Sk(x, y) =
N∑
n=1

wn

Rσ∑
`=1

Rkn∑
i=1

Σx
s,`(x)Xn,k

i (x)Σy
s,`(y)Y n,k

i (y) +

Rq∑
`=1

qx` (x)qy` (y) . (5.18)

5.2.3.2 PGD Source Iteration: Type 2

This second type of source iteration with PGD attempts to optimize the linear system evaluation

discussed in the previous section. The idea is to utilize the information gained from the previous

iteration’s solution to ease the evaluation of future iterations. This is done by defining the next

iteration’s angular flux as:

ψn,k+1 = ψn,k + δψn,k+1 =
k∑

k′=1

Rk
′
n∑

i=1

Xn,k′

i Y n,k′

i +

Rk+1
n∑
i=1

Xn,k+1
i Y n,k+1

i . (5.19)

In this scheme, the PGD process is only solving for δψn,k+1 which presumably requires signifi-

cantly less separated terms than ψn,k+1, and therefore requires less enrichments to solve for. This

scheme starts every PGD evaluation in the source iteration process by assuming all the previous

iterations are part of solution, then enriching from there.

5.2.4 Results

To analyze the performance of PGD, it is applied to a simple 2-D example, a homogeneous

geometry with a volumetric source. Two different instances of this problem are analyzed: a purely

absorbing media where the solution in a single direction is evaluated and a scattering material

where the two different source iteration techniques are employed. The performance metric for

PGD is based on the number of enrichments that are required to evaluate. Although PGD does

not have a rigorous definition of the rate of enrichment convergence, singular value decomposition

(SVD) is used to illustrate the optimal convergence. Diamond difference discretization is used for

each 1-D variable in the PGD solution. SVD is performed on the same mesh but with a full-order

model (FOM) solution.
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5.2.4.1 Pure Absorber

In this example, PGD and SVD are used to decompose 2-D angular flux in a homogeneous,

purely absorbing geometry with volumetric source. Two different instances of the domain are

chosen: a domain consisting of 1 mean free path between each edge and a domain with 10 mean

free paths. These problems employ the “Galerkin" and residual minimization operator construction

with diamond difference discretization. Application of PGD to this problem is meant for analysis

of the different operator formulations and enrichment convergence.

A single simulation was run for each operator construction on a uniform mesh with 1000 uni-

form nodes in each dimension. Since this problem is purely advective, only a single angle was

considered with Ω =
[

1√
3
, 1√

3
, 1√

3

]
. An analytic solution is also available utilizing ray tracing. To

portray a optimized decomposition, this solution was projected on the same mesh and decomposed

using SVD. The resulting angular fluxes are shown by Figure 5.1.

(a) Domain with 1 mean free paths (b) Domain with 10 mean free paths

Figure 5.1: Visualization of angular flux for pure absorber problem

Figure 5.2 shows the normalized contribution of each enrichment term for each of the methods

in both geometries. Figure 5.2a shows that PGD has very poor convergence for this problem. After

1000 enrichments, the PGD solution is no longer a reduced order model, as the size of the solution
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is larger than the full order solution. This poor convergence is caused by the fact that the full order

solution is non-separable, which is indicated by the poor convergence of SVD on the analytical

solution. Figure 5.2b shows an improved convergence for both PGD and SVD. It is also important

to note that the residual minimization approach allows for better convergence of the alternating

direction iteration, but more sporadic convergence of the enrichment procedure.

(a) Domain with 1 mean free path (b) Domain with 10 mean free paths

Figure 5.2: Enrichment convergence for PGD and SVD techniques

5.2.4.2 Isotropic Scattering

In this example, PGD is utilized within the source iteration process to evaluate angular flux in

a isotropic scattering material. The domain with 10 mean free paths was chosen for this analysis.

The purpose is to see how both source iteration techniques perform and analyze the separability

of the solution with various scattering ratios and angular quadratures. Nine different scenarios are

presented including S2, S4, and S8 angular discretizations and scattering ratios of 0.1, 0.5, and

1.0. The PGD functions use a 1-D diamond difference discretization with 100 elements in each

dimension. The FOM uses 2-D diamond difference on an equivalent mesh.

Figure 5.3 shows the number of enrichments required to solve for an enrichment error of 10−6
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at each source iteration. Enrichment error is defined as:

εenr =
||XR|| ||YR||∑R
i=1 ||Xi|| ||Yi||

. (5.20)

The FOM ψ and δψ results are meant to show the SVD equivalent to the type 1 and 2 source

iteration techniques, respectively. Figure 5.4 shows the L2 error of the scalar flux at each source

iteration (k), where the reference is the fully converged flux at iteration K. From these plots, one

can conclude that the type 2 source iteration is a much more efficient process than type 1. The

separability of the flux does not seem to be dependent on the amount of scattering, the number

of discrete ordinates, or the number of source iterations. However, δψ is highly dependent on all

these quantities. In general, PGD type 2 performs best with a more refined angular quadrature and

larger scattering ratio.

5.2.5 Discussion

This section introduces the prospect of utilizing PGD for two-dimensional SN transport. It

presents an overview of the PGD solution process in its “Galerkin" formulation and introduce

residual minimization to symmeterize the PGD operator, which is common in advection-diffusion

PGD applications. The main difference in this transport application is that the problems are purely

advective. Two techniques are also introduced to incorporate the PGD process within source iter-

ation procedure in order to resolve the angular coupling in the scattering term.

To investigate the implementation, PGD is applied to a 2-D homogeneous, isotropic scattering

domain with a fixed volumetric source. Two types of problems are applied: pure absorption and

isotropic scattering. Analysis of the pure absorbing application shows that PGD convergence is

very poor for both “Galerkin" and residual minimization formulations in a small domain. Utiliz-

ing SVD on the analytical solution indicates that the cause of the poor convergence is the non-

separability of the solution. However, convergence of enrichment terms significantly improves

with a larger domain. The scattering application investigates nine different cases with various an-

gular quadratures and scattering ratios. The results indicate that the amount of scattering does not

97



affect the separability of the angular flux, but the separability of δψ, computed from source itera-

tion, is vastly improved through the source iteration procedure. Therefore, evaluating δψ instead

of ψ using PGD could prove effective.

(a) S2, c=1.0 (b) S2, c=0.5 (c) S2, c=0.1

(d) S4, c=1.0 (e) S4, c=0.5 (f) S4, c=0.1

(g) S8, c=1.0 (h) S8, c=0.5 (i) S8, c=0.1

Figure 5.3: Number of enrichments required for an enrichment tolerance of 10−6 at each source
iteration, averaged over all angular flux solutions.
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(a) S2, c=1.0 (b) S2, c=0.5 (c) S2, c=0.1

(d) S4, c=1.0 (e) S4, c=0.5 (f) S4, c=0.1

(g) S8, c=1.0 (h) S8, c=0.5 (i) S8, c=0.1

Figure 5.4: Scalar flux error at each source iteration. Error is computed relative to the fully con-
verged FOM solution.

5.3 Space-Angle Decomposition for Neutron Transport

In this section, the solution ψ(~r, ~Ω) is decomposed in both space and angle. The differentiation

between space-only and space-angle decomposition is similar to that of the space-energy decom-

position in Section 4. Now, there are several possible representations that serve this purpose. The

least intrusive technique is to only separate space and angle as,

ψ(~r, ~Ω) ≈
R∑
i=1

Xi(~r)Oi(~Ω) . (5.21a)
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The next technique is to perform a full spatial decomposition,

ψ(~r, ~Ω) ≈
R∑
i=1

Xi(x)Yi(x)Zi(z)Oi(~Ω) . (5.21b)

However, based on the results of the previous section, this decomposition would most likely prove

ineffective. The angular dimensions are typically represented as ~Ω = [µ, ϕ], where µ is the cosine

of the polar angle and ϕ is the azimuthal angle. If the discrete ordinate grid is uniform in these

angles, then the PGD representation of these angular dimensions can be split into 1-D functions,

ψ(~r, ~Ω) ≈
R∑
i=1

Xi(~r)Mi(µ)Φi(ϕ) . (5.21c)

From these descriptions of the angular flux, any type of discretization technique for the angular

dimensions is feasible. For this work, SN is utilized where the µ dimension uses Gauss-Legendre

quadrature and ϕ uses Chebyshev quadrature [91].

These three representations include the angular variables in the separated representation, re-

sulting in a full space-angle decomposition. However, in order to account for boundary conditions

in a Cartesian mesh, there needs to be a different PGD solution for each octant of the angular do-

main. The solution for the angular flux in the octant where Ωx > 0, Ωy > 0, and Ωz > 0 is then

ψ(~r, ~Ω > [0, 0, 0]) ≈
R+++∑
i=1

X+++
i (~r)O+++

i (Ω+++) , (5.22a)

for the Equation (5.21a) representation and

ψ(x, y, z, ~Ω > [0, 0, 0]) ≈
R+++∑
i=1

X+++
i (x)Y +++

i (y)Z+++
i (z)O+++

i (Ω+++) , (5.22b)

for the Equation (5.21b) representation. where Ω+++ ⊂ [~Ω1, ..., ~ΩN ]. The (+ + +) superscripts

indicate that the solution lives in the all positive octant; the solution where it is (+ + −) lives
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where Ωz < 0. For the Equation (5.21c) representation,

ψ(~r, µ > 0, 0 < ϕ < π/2) ≈
R+++∑
i=1

X+++
i (~r)M+++

i (µ+)Φ+++
i (ϕ++) , (5.22c)

where µ+ ⊂ [µ1, .., µN ] and ϕ++ ⊂ [ϕ1, ..., ϕN ].

This section is meant to introduce the possibility of performing a space-angle decomposition

of a multi-dimension angular flux. Making an informed decision of the best type of decomposition

would require extremely extensive analysis and any type of conclusion on this question would be

premature at this stage of PGD application. Consequently, this chapter focuses on investigating the

possibility of using a space-angle decomposition to serve as a reduced order model. Therefore, the

following section utilizes the least intrusive decomposition of Equation (5.21a) and investigate the

separability of simple angular flux solution in this form.

5.3.1 Results

To investigate the separability of a angular flux solution, these results utilize the same geometry

from Section 5.2.4 with a domain of 10 mean free paths. Two different instances are considered:

pure absorption and pure isotropic scattering. For this analysis, a full-order model is executed

with varying angular quadratures and a diamond-difference discretization. These solutions are

then decomposed using SVD to determine the optimal decomposition for the representation by

Equation (5.21a). Figures 5.5a and 5.5b shows the convergence of the SVD execution for the pure

absorption and pure scattering cases, respectively. These results show that optimal separability

of the space-angle decomposition, thus PGD will undeniably perform worse. The convergence of

each angular quadrature shows a steep dive at the enrichment equal to the number of directions per

quadrature, which is where the separated representation is no longer a reduced order model. Only

the S50 and S82 have an enrichment error below 10−6 before this threshold. However, at least 250

enrichments are needed for this error. In the PGD process, approximately 50 alternating directions

are needed for this difficult, asymmetric problem for each enrichment, meaning a total of 12,500

2-D sweeps are required, conservatively. Therefore, performing the full-order model evaluation
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would be significantly faster than a PGD implementation.

(a) Pure absorption case (b) Pure scattering case

Figure 5.5: Enrichment convergence for space-angle SVD with various angular quadratures
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6. PARAMETRIC UNCERTAINTY QUANTIFICATION USING PROPER GENERALIZED

DECOMPOSITION APPLIED TO NEUTRON DIFFUSION 1

6.1 Introduction

Mathematical models used to represent physical systems often have many parameters whose

values are not known exactly, but with some level of uncertainty. When the number of parameters is

large, the propagation of uncertainty on the system’s output becomes computationally challenging;

this is known as the curse of dimensionality in parametric uncertainty quantification. Further, when

the model itself is expensive to evaluate, the problem as posed may become intractable. Surrogate

models, or ROMs, are often sought to reduce the computational cost of the full-order physical

models, while retaining its parametrization, i.e., its dependency on the input parameters. Typically,

the application of ROMs aims at reducing the solution space a posteriori, that is, after a full-order,

or high-dimensional, model has been exercised for a range of parameters to determine the proper

subspace where the physics solution evolves. Section 1.2.2 gives a simple application of POD.

This chapter presents a different perspective, whereby parameterizing a model can be viewed

as adding extra dimensions, in addition to the standard spatial and temporal dimensions typically

present in governing laws. Thus, the dimensionality of a model includes the natural space and tem-

poral coordinates, but also extra dimensions for each parameter under investigation. The solution

from such a model lives, by definition, in a high dimensional space. With PGD, a high-dimensional

problem is solved through a series of one-dimensional problems. When the extra dimensions in-

clude model parameters, PGD can be viewed as an a priori ROM method. This chapter applies

PGD to uncertainty quantification for a diffusion-reaction (neutron diffusion) problem often em-

ployed in nuclear reactor physics. One of the features of nuclear reactor core modeling is that the

physical domain is highly heterogeneous, with often a large number of material zones. Each ma-

terial zone can have different properties, each of them only known within a certain accuracy due

1Reprinted with permission from “Parametric uncertainty quantification using proper generalized decomposition
applied to neutron diffusion" by Z. M. Prince and J. C. Ragusa, 2019. International Journal for Numerical Methods
in Engineering, Copyright 2019 by John Wiley and Sons.
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to uncertainty in nuclear models and experimental data. Furthermore, strong neutron absorbers

may be inserted in localized zones of the nuclear core, resulting in strong solution gradients. The

main goal of this chapter is to assess the ability of PGD to handle large heterogeneous physical

domains and to carry out uncertainty propagation with PGD for a certain number of input/model

parameters.

So far, the PGD methodology for decomposing natural coordinates is presented in detail, with

a separated representation similar to Equation (6.1a). A parametric model would add more dimen-

sions to the decomposition. For example, parameterizing a property k present in the model results

in a four-dimensional solution variable u(x, y, z, k). The PGD separated representation of that

variable is sum of products of functions of x, y, z, and k, shown in Equation (6.1b). In that sense,

PGD can be seen as an a priori ROM technique, whereby the solution u is explicitly parameterized

in the uncertain model parameters. Once the PGD representation is obtained, evaluating u at any

point x, y, z in space and for any value of k is a straightforward application of Equation (6.1b).

u(x, y, z) =
∞∑
i=1

Xi(x)Yi(y)Zi(z) ≈
N∑
i=1

Xi(x)Yi(y)Zi(z) , (6.1a)

u(x, y, z, k) =
∞∑
i=1

Xi(x)Yi(y)Zi(z)Ki(k) ≈
N∑
i=1

Xi(x)Yi(y)Zi(z)Ki(k) . (6.1b)

The main advantage to the representation given by Equation (6.1b) is that the resulting PGD solu-

tion will have an unambiguous dependence on the parameterized properties, resulting in a trivial

post-processing step for Uncertainty Quantification (UQ) purposes.

The model problem for this work is represented by the one-group, steady-state, neutron dif-

fusion equation with an external source, given by Equation (2.24). Parameterizing this model

involves including D, Σa, and Q as extra dimensions in the PGD solution process. In a homoge-

neous domain, this parameterization yields the following solution decomposition:

φ(~r,D,Σa, Q) ≈
N∑
i=1

Xi(x)Yi(y)Zi(z)Di(D)Si(Σa)Qi(Q) . (6.2)
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In reactor physics, the material properties (diffusion coefficient, absorption cross section) and

sources are typically piece-wise constant per material zone (for instance, when fuel assemblies

are loaded with different fissile contents, or when neutron absorbers are locally inserted). In such

situations, the PGD expansion of Equation (6.2) needs to be amended to reflect the heterogeneous

character of the material layout in the domain; this is further discussed in Section 6.2. For the

reader interested in the generation of material properties for neutron diffusion, please see Chapter

5 of the textbook by Duderstadt and Hamilton [59]. For the purpose of this dissertation, a 3-D

heterogeneous nuclear core layout and the associated (possibly uncertain) material properties are

assumed given.

Having a parameterized solution, as shown in Equation (6.2), is advantageous for uncertainty

quantification and design of nuclear reactors. Several important quantities of interest (QOI) can be

readily obtained as functional of the solution and model parameters can be optimized for a desired

QOI. Some examples of QOIs in reactor physics include (1) the average flux solution over a region

of interest, (2) the maximum value of the flux in the domain (the “peaking factor”), and (3) the

total neutron population in the core (proportional to the volume integral of the flux). These QOIs

are obviously dependent upon model parameters. With a PGD expansion that accounts for the

parameters, uncertainty quantification for these QOIs is straightforward.

Parametrizing models has become a hallmark of the PGD method, with applications to a myriad

of problems, see 1.3.1 for a detailed overview. Most of these applications involve parameterizing

only one or two properties, where the material properties are homogeneous. One notable exception

can be found in Lamari et al. [35], where a parameterization of the heat conduction coefficient in

every region of a heterogeneous domain is performed, with homogenization as the ultimate goal

of their study. The work presented here is similar to this parameterization of material properties.

The key differences in this work are the subject of application and the capability of parameterizing

select and discontinuous material zones. Furthermore, none of the neutronic applications from

Section 1.3.2 involve the investigation of a parametric model with PGD. This chapter includes

three key extensions of the PGD method. First, this chapter presents an application of PGD to a
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high-dimensional uncertainty quantification problem. Second, this work applies parametric PGD

to a model problem not considered previously. Finally, it presents an algorithm for decomposing

parametric material properties that allows for the construction of 1-D linear systems before the

PGD solution process is initiated; this is especially optimized for highly heterogeneous two- and

three-dimensional geometries.

The outline of the remainder of the chapter is as follows. In Section 6.2, the PGD process

is expanded upon to include extra dimensions to enable parametric studies for neutron diffusion

problems. Section 6.3 describes the uncertain quantification procedures performed in the chap-

ter, including descriptions of the quantities of interest and the integration method for computing

mean and variance. Section 6.4 describes the decomposition of material properties for paramet-

ric models, so that the 1-D matrices of the PGD-decomposed multi-D operator can be computed

once and for all. Results are presented in Section 6.5; a one-dimensional parametric neutron dif-

fusion problem (for which an analytical solution can be obtained) is presented first, followed by a

more complex and realistic parametric model for a full 3-D nuclear reactor core. Conclusions and

outlook are proposed in Section 6.6.

6.2 PGD for Parametric Models

The equation of interest in this work is the parameterized one-group neutron diffusion equation,

shown in Equation (2.24), where its solution φ is the neutron flux, D is the diffusion coefficient,

Σa is the absorption cross section, and Q is a neutron source. In the case of a homogeneous do-

main, the parameterized solution, φ, can be expressed as φ(~r,D,Σa, Q). The expression for the

resulting decomposed solution in a three-dimensional domain is given in Equation (6.2). However,

for the vast majority of applications, and the problems at hand here, the physical domain is not ho-

mogeneous and material variations should be accounted for. Here, it is assumed that the material

properties are piece-wise constant in each material zone. In this case, the parameterized solution is

expressed as φ(~r,D1, ..., DMd
,Σa,1, ...,Σa,Mσ , Q1, ..., QMq). The subscripts of the material prop-

erties are the indices for the material zones, with Md, Mσ ,Mq materials for D ,Σa, and Q. The
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resulting decomposed flux is represented by Equation (6.3) :

φ(~r,D1, ..., DMd
,Σa,1, ...,Σa,Mσ , Q1, ..., QMq) =

N∑
i=1

(
Xi(x)Yi(y)Zi(z)

Md∏
j=1

DDji (Dj)
Mσ∏
j=1

Sσji (Σa,j)

Mq∏
j=1

Qqji (Qj)

)
. (6.3)

The dimensionality of the parametric problem is now 3+Md+Mσ+Mq (3 for x, y, and z andMd+

Mσ+Mq for the model parameters). The PGD process, described in Section 2.1, is applied here, but

on a higher dimensional space. The weak forms for each decomposed spatial term (Xi, Yi, Zi) yield

three 1-D neutron diffusion equations, as before. The weak forms for the decomposed parameter

terms (Di, Si,Qi) result in purely algebraic equations due to the lack of derivative operators. They

are obtained by integrating the three spatial dimensions and the other parameter dimensions. The

parameter basis functions are simply finite volume (order-0 discontinuous Galerkin method). For

instance, a simple example for a one-dimensional homogeneous heat conduction equation is given

in Chapter 5 of Chinesta et al. [16].

6.3 Uncertainty Quantification

Uncertainty quantification (UQ) is an integral part of computational science and engineering.

This section describes several ways a PGD solution can apply to UQ. In general, UQ applies to

a set of quantities of interest (QOIs). For example, a QOI, either evaluated at a point in space or

over a region of interest, will depend on the input/model parameters of a system. This process is

depicted below for a generic QOI (denoted by I), in the case of a homogeneous 1-D single-material

neutron diffusion problem:

φ(x, y, z,D,Σa, Q) =
N∑
i=1

Xi(x)Yi(y)Zi(z)Di(D)Si(Σa)Qi(Q) −→ I(φ) ≡ I( ~D, ~S, ~Q) , (6.4)

with

~D = [D1,D2, ...,DN ] , ~S = [S1,S2, ...,SN ] , ~Q = [Q1,Q2, ...,QN ] .
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Once the parametric PGD solution is obtained, sampling for any QOI only involves a trivial eval-

uation of each decomposed term in the PGD decomposition for I . The parametric description for

the QOI, as represented by the expression for I , is often straightforward to derive, as discussed in

[100]. In cases where it is not, an alternate approach based on regression techniques can be used;

see [101], for instance. This latter approach is more general but has not been pursued in this work.

6.3.1 Mean and Variance

Statistical moments (such as mean and variance) of an uncertain QOI can be computed using

the PGD solution as well, without the need for Monte Carlo sampling of the distribution. Denoting

a given joint probability distribution for the uncertain parameters by f(D,Σa, Q), the mean and

variance of a QOI (µI and σ2
I ) can be computed as follows:

µI = E [I] , (6.5a)

σ2
I = E

[
(I − µI)2

]
= E[I2]− µ2

I , (6.5b)

where the expectation for a generic function is given by

E [g(D,Σa, Q)] =

∫ ∞
−∞

dD

∫ ∞
−∞

dΣa

∫ ∞
−∞

dQ g(D,Σa, Q) f(D,Σa, Q) . (6.5c)

In the case of independent uncertain parameters,

f(D,Σa, Q) = fD(D)fΣa(Σa)fQ(Q) , (6.6)

and the expectation becomes

E [g(D,Σa, Q)] =

∫ ∞
−∞

dDfD(D)

∫ ∞
−∞

dΣafΣa(Σa)

∫ ∞
−∞

dQfQ(Q) g(D,Σa, Q) . (6.7)
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Now, if the QOI is based on a PGD expansion of the solution as shown below

I(D,Σa, Q) =
N∑
i=1

αiDi(D)Si(Σa)Qi(Q) , (6.8)

where αi are scalar coefficients, then the mean and variance expressions can be obtained through

one-dimensional integrations:

µI =
N∑
i=1

αi

∫ ∞
−∞

dDDi(D)fD(D)

∫ ∞
−∞

dΣaSi(Σa)fΣa(Σa)

∫ ∞
−∞

dQ(Q)QifQ(Q) , (6.9a)

σ2
I =

N∑
i=1

N∑
j=1

αiαj

∫ ∞
−∞

dDDi(D)Dj(D)fD(D)

∫ ∞
−∞

dΣaSi(Σa)Sj(Σa)fΣa(Σa)×∫ ∞
−∞

dQQi(Q)Qj(Q)fQ(Q)− µ2
I . (6.9b)

Equation (6.9) indicates that the mean and variance from a PGD-evaluated parametric quantity can

be computed from straight integration of the separated solution. In this chapter, these integrations

are performed on the same finite-volume grid used for the parameter discretization. The calculation

of the statistical moments using the separated representation of the parameter distribution and QOI

is discussed more generally in [100].

Alternatively, a standard Monte Carlo sampling technique [102] can be used to obtain these

statistical moments, by sampling from the joint probability distribution fD(D)fΣa(Σa)fQ(Q) and

evaluating Equation (6.8) at these samples.

Finally, recall that the above expressions have been provided in the case of a homogeneous

domain. Starting from the parameterized PGD solution for a heterogeneous domain (see Equa-

tion (6.3)), the same procedure can be repeated here. The numerical results for heterogeneous

cases employ such expressions (they are omitted here for brevity but are straightforward to derive).

109



6.3.2 Quantities of Interest

Defining quantities of interest is pivotal for uncertainty quantification and design optimization.

QOIs in reactor analysis typically include zone-averaged flux values, peaking factors, and total

neutron population (other QOIs are used in the field but this exposition is limited to a few of

these). The average flux in a region of interest (ROI) is given by:

φ̄RoI =

∫
RoI φ(~r)d3r∫

RoI d
3r

. (6.10)

When the ROI is the entire domain (ROI= Ω), this simply denoted as φ̄. The peaking factor is the

ratio of the largest flux in the spatial domain to the average flux:

Pf =
max~r∈Ω φ(~r)

φ̄
. (6.11)

Also of interest is the change in the total neutron population, say, for example, when an absorber

material (labelled “rod” here) is introduced in the core. A good measure for this quantity is the

difference in the average fluxes:

∆φ̄ = φ̄0 − φ̄rod , (6.12)

where φ̄0 denotes the average flux before the absorber rod insertion and φ̄rod denotes the average

flux after insertion.

With these quantities of interest defined, one can now specialize Equation (6.8) and formulate

their PGD expressions, using the separated representation of the solution shown Equation (6.2), as

follows:

φ̄(D,Σa, Q) =
N∑
i=1

αxi α
y
iα

z
iDi(D)Si(Σa)Qi(Q) , (6.13a)

Pf (D,Σa, Q) =
max(x,y,z)∈Ω

[∑N
i=1Xi(x)Yi(y)Zi(z)Di(D)Si(Σa)Qi(Q)

]
∑N

i=1 α
x
i α

y
iα

z
iDi(D)Si(Σa)Qi(Q)

, (6.13b)
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with

αxi α
y
iα

z
i =

∫
Ωx
Xi(x)dx∫
Ωx
dx

×

∫
Ωy
Yi(y)dy∫
Ωy
dy

×
∫

Ωz
Zi(z)dz∫
Ωz
dz

. (6.13c)

For the change in total neutron population, the material zones received the absorber rod must be pa-

rameterized separately. Here, it is assume that only the absorption cross section value is affected by

the presence of the inserted rod. Thus, the functional representation for functions S is as follows,

S(Σa) → S fuel(Σfuel
a )S rod(Σfuel

a ) when the rod is not present and S(Σa) → S fuel(Σfuel
a )S rod(Σrod

a )

when it is inserted. This yields the following expression for the change in total neutron population:

∆φ̄ =
N∑
i=1

αxi α
y
iα

z
iDi(D)S fuel

i (Σfuel
a )Qi(Q)

[
S rod
i (Σfuel

a )− S rod
i (Σrod

a )
]
. (6.14)

Statistical moments (e.g., mean and variance) of QOIs based on flux averages (i.e., for φ̄ and ∆φ̄)

can be computed directly with 1-D integrations in the parameter dimensions.

6.4 Material Property Decomposition

This section describes the construction of the PGD operator for neutron diffusion (diffusion+reaction)

in the form shown in Equation (2.2). It is first worth noting that, in the parametric model, the mate-

rial properties not only depend on space, but also on the magnitude of the property in each material

zone. Therefore, a material property in a 3-D domain with M material zones will have M + 3

independent variables. In order to formulate the separated form of the operator, shown in Equa-

tion (2.2), these material properties must be decomposed similarly to the solution. This formulation

allows for the 1-D matrices and source vectors to be constructed before the PGD process is started,

instead of being re-computed on-the-fly during the PGD iterations. The number of terms used in

the decomposition of a given material property (i.e.,Nd,Nσ,Nq) depends on the number of material

zones and the heterogeneity of the domain. A simple example is shown in Equation (6.15) for a

generic property labeled k. Here, k corresponds to either D, Σa, or Q and Mk corresponds to the

number of material zones for property k, (e.g., Md ,Mσ, or Mq). The goal is to find a material

property decomposition K(~r, k1, ..., kM) in a PGD manner; the argument kj denotes the magni-
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tude of property k in material zone j. The PGD decomposition reads as a product of a spatial

description of the material zone and the magnitude of the material property itself.

K(~r, k1, ..., kMk
) =

Mk∑
j=1

Kxyz
j (x, y, z)kj , (6.15a)

where Kxyz
j describes the spatial position of material zone j. This characteristic function for

material j is obtained via a PGD decomposition as follows :

Kxyz
j (x, y, z) =

Nxyz
j∑
n=1

Kx
j,n(x)Ky

j,n(y)Kz
j,n(z) =

 1 if (x, y, z) ∈ material zone j

0 otherwise
,

(6.15b)

where Nxyz
j is the number of terms needed to decompose it.

The methodology for finding Kxyz
j (x, y, z) can be found in Section 2.3.1. This process is

general for any given set of material properties. In the simple example of Figure 2.6, one can

readily obtain the spatial representation of k1, i.e., Kxyz
1 from Equation (6.15b) by setting k1 = 1

and k2 = 0. An algorithm for decomposing a material property in a general domain is shown

in Algorithm 2. This process consists of two parts. The first is to find the decomposed form of

the property in the regions that are not parameterized (material property values are known). The

second part finds the spatial description of each parameterized material zone (uncertain material

property values).

6.4.1 Parameterized Insertion of an Absorber Rod

In order to assess the change in the total neutron population when an absorber is inserted

locally by a certain amount (length) in the core, the section parameterizes that insertion length in

a three-dimensional model. Parameterizing such control rod length is important in understanding

the absorbing strength of the rod versus its location in the reactor. Parameterizing the insertion

length is akin to a parametric geometrical condition. The decomposed form of the flux for this
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Algorithm 2 Parameterized Material Property Decomposition

1: procedureK = PARAMETERIZEDDECOMPOSITION(G,P ,~k)
G→ Grid with M material zones
P ⊂ [1, ...,M ]→ Zones to be parameterized
~k := [k1, ..., kM ]→ Nominal values of material properties
K :=

∑Nk
i=1

(
Kx
i (x)Ky

i (y)Kz
i (y)

∏
j∈P K

kj
i (kj)

)
→ Output of decomposed parameter func-

tion
2: i = 0
3: Set kj = 0, j ∈ P
4: (2.27) −→

∑Nxyz
0

n=1 K̃x
n(x)K̃y

n(y)K̃z
n(z) . Decompose known (non-parametric) material

properties.
5: for all n← 1, Nxyz

0 do . Transfer decomposition to output
6: i = i+ 1
7: Kx

i (x) = K̃x
n(x) , Ky

i (y) = K̃y
n(y) , Ky

i (y) = K̃y
n(y)

8: K
kj
i (kj) = 1, j ∈ P . All parametric dimensions are 1 for these terms

9: end for
10: for all m ∈ P do . Loop over parameterized zones
11: Set km = 1
12: Set kj = 0, j 6= m

13: (2.27) −→
∑Nxyz

m

n=1 K̃x
n(x)K̃y

n(y)K̃z
n(z) . Spatial description of material zone

14: for all n← 1, Nxyz
m do . Transfer decomposition to output

15: i = i+ 1
16: Kx

i (x) = K̃x
n(x) , Ky

i (y) = K̃y
n(y) , Ky

i (y) = K̃y
n(y)

17: K
kj
i (kj) = 1, j ∈ P, j 6= m . Parametric dimensions not in zone m

18: Kkm
i (km) = km . Zone m dimension

19: end for
20: end for
21: Nk = i
22: end procedure

parameterized problem is described then given by:

φ(~r, λ1, ..., λM) =
N∑
i=1

Xi(x)Yi(y)Zi(z)
M∏
j=1

Λj
i (λj) . (6.16)

λj is the insertion length of control rod j, where there are M rods in total. This solution rep-

resentation is analogous to the representation in Equation (6.3), except that it replaces the terms

dependent on material property values with terms dependent on the insertion length. Again, this
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solution decomposition requires that the material properties be similarly decomposed, as in Equa-

tion (6.15a). Since the insertion of a control rod is typically done along the z-dimension of the

reactor, a material property can be decomposed as a sums of products of functions in x, y with

functions in z:

K(~r, λ1, ..., λM) = K0(x, y, z) +
M∑
j=1

Kj(x, y)χj(z, λj) . (6.17)

K0(x, y, z) is the decomposition of the material properties with all rods fully extracted. Kj is the

x-y description of the position of rod j, it does not have a z component. χj represents the change

in the material properties due to the addition of the rod at location z, dependent on the insertion

length of control rod j. These values can then be described explicitly as:

K0(x, y, z) =

N0∑
i=1

Kx
0,i(x)Ky

0,i(y)Kz
0,i(z) = kno rod(x, y, z) , (6.18a)

Kj(x, y) =

Nxy
j∑
i=1

Kx
j,i(x)Ky

j,i(y) =

 1 if (x, y) ∈ rod j location

0 otherwise
, (6.18b)

χj(z, λj) =

Nzλ
j∑
i=1

χzj,i(z)χλj,i(λj) =

 (krod − kno rod) if z ≤ λj

0 if z > λj

. (6.18c)

The number of terms required to represent χj , i.e., N zλ
j , is relatively large since it may be equal to

the number of axial layers in the z-dimension for the discretization of λj . If the variable λj is dis-

cretized using finite volume with N zλ
j intervals (~λj = [λ̃j,1, ..., λ̃j,Nzλ

j
]), the resulting decomposed

form of χj is

χzj,i(z) = H(z − λ̃j,i−1/2)−H(z − λ̃j,i+1/2) , i = 1, ..., N zλ
j , (6.19a)

χλj,i(λj) = (krod − kno rod)H(λj − λ̃j,i+1/2) , i = 1, ..., N zλ
j , (6.19b)

where λ̃j,i+1/2 and λ̃j,i−1/2 are the nodes of interval i in the “insertion length” parametric dimen-

sion.
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6.5 Results

To illustrate the ability to perform parametric modeling and uncertainty quantification for neu-

tron diffusion with PGD, this section presents four different problems. First, a 1-D homogeneous

example, for which an analytical solution is available and used in order to verify the parametric

solution. Second, a 1-D two-region problem, where the exact solution is also available, which is

used to investigate how heterogeneity affects a PGD parametric solution. The third problem in-

creases the problem complexity by employing a 2-D heterogeneous nuclear core geometry in order

to analyze the ability to parameterize multiple material zones. Finally, a 3-D nuclear core geome-

try is used to showcase the PGD implementation for a problem that would be quite demanding for

traditional uncertainty propagation methods. Each of these applications performs an error analysis

of the PGD solution against either an analytical solution or a solution to the non-parametric model

(the non-parametric situation is a much lower dimensional problem and can be solved effectively

with traditional techniques and PGD equally). The application of the 3-D example goes further by

parameterizing the insertion of control rods, which is only possible for 3-D geometries.

6.5.1 One-Dimensional Homogeneous Example

To begin the analysis of parameterizing properties in the neutron diffusion equation, PGD was

applied to a parametric one-dimensional homogeneous problem. The neutron diffusion equation

and its boundary conditions are given in Equation (6.20).

−Dd
2φ

dx2
+ Σaφ = Q , x ∈ [0, 10] , φ(x = 0) = φ(x = 10) = 0 . (6.20)

The analytical solution is provided in Equation (6.21), where the A and B constants depend on the

boundary conditions and material properties.

φ(x,D,Σa, Q) = Aexp

(√
Σa

D
x

)
+Bexp

(
−
√

Σa

D
x

)
+
Q

Σa

, (6.21a)
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with

A = − Q

Σa

(
exp

(
10

√
Σa

D

)
+ 1

)−1

, (6.21b)

B = − Q

Σa

(
exp

(
−10

√
Σa

D

)
+ 1

)−1

. (6.21c)

The parametersD, Σa, andQ are uncertain and can range between 0.1 and 10 (in units of cm, cm-1,

and n/cm3·s, respectively). The probability distribution for each parameter can either be uniform

or normal. The total number of dimensions in the parametric model is four (one for the physical

space x, and three for the uncertain space in D,Σa, and Q). First-order continuous finite elements

are used for the x dimension with 100 elements, while a finite volume discretization is used for the

parameter dimensions, with 100 elements in each dimension, spanning 0.1 to 10. The enrichment

tolerance is set to 10−6 and 119 enrichment terms are required to satisfy that tolerance value. The

resulting decomposition to the neutron flux is shown by Equation (6.22). Figure 6.1 shows the

solution evaluated for some material property values; the analytical solution is also plotted.

φ =
N∑
i=1

φi =
119∑
i=1

Xi(x)Di(D)Si(Σa)Qi(Q) . (6.22)

Figure 6.2a shows the relative error of the PGD solution as a function of the full parameter space.

This error plot illustrates where, in the parameter space, the PGD solution deviates from the exact

solution. We note an independence of the error with respect to the source strength Q, as expected

because the problem is linear in that parameter. The error is greater for large values of D and

small values of Σa as the the solution has a steeper spatial variation for such values. Figure 6.2b

shows the enrichment error (current enrichment level compared to current solution) and cumulative

solution error at each enrichment step, respectively defined as:

εenr
e =

||φe||
||
∑e

i=1 φi||
, and εsol

e =
||
∑N

i=1 φi −
∑e

i=1 φi||
||
∑N

i=1 φi||
.
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Figure 6.1: Flux solution for some chosen property values, PGD parametric model and analytical
solution

(a) Relative error |φ−φexact|φexact
for the full parameter

space at x = 5

(b) Enrichment error and solution error at each en-
richment step

Figure 6.2: Convergence of the parameterized PGD solution for homogeneous 1-D example.
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The magnitude of the enrichment error for each enrichment step is an important point of compari-

son for higher dimensional and more complex problems in the following sections. The cumulative

solution error is monotonically decreasing for each additional enrichment. Figure 6.3 shows four

different normalized enrichment terms for each dimension. The first, second, fifth, and hundredth

enrichment terms were selected for comparison to show how the terms evolve through the enrich-

ment process. The legend of these plots show the L2 of each enrichment function, illustrating how

these functions decay as a function of the enrichment level.

(a) Xi(x) (b) Di(D)

(c) Si(Σa) (d) Qi(Q)

Figure 6.3: 1-D enrichment terms at 1, 2, 5, and 100 enrichments for each dimension for homoge-
neous 1-D example.

118



6.5.1.1 Uncertainty Quantification for 1-D Homogeneous Diffusion

This section shows the UQ analysis for the homogeneous neutron diffusion example using both

the PGD and the analytical (exact) solutions, Equations (6.22) and (6.21). Two QOIs (average flux

and peak flux) are sampled with a standard Monte Carlo technique, assuming either a uniform or a

normal distribution for the uncertain material parameters. The parameter distributions are defined

as:

f(D,Σa, Q) ∼ U(µD − σD, µD + σD)U(µΣa − σΣa , µΣa + σΣa)U(µQ − σQ, µQ + σQ) , (6.23a)

f(D,Σa, Q) ∼ N (µD, σD)N (µΣa , σΣa)N (µQ, σQ) , (6.23b)

where U(a, b) is the uniform distribution in the interval [a, b] and N (a, b) is the normal distribu-

tion with mean a and standard deviation b. In our numerical tests, we have chosen µD = µΣa =

µQ = 5.0 and σD = σΣa = σQ = 2.5. Table 6.1 provides the mean and variance for the QOIs.

These sampled means and variances are also compared against the analytical integration of the sta-

tistical moments of the PGD solution and the exact solution, see Equation (6.9) for the integration

technique. Figure 6.4 shows the probability distribution functions for the QOIs, obtained using

106 samples. There is an excellent agreement between the distributions obtained using the exact

solution and those computed with the PGD solution. For this example, the uncertainty quantifica-

tion with a parameterized PGD solution can yield accurate results. Generating a large number of

samples from a PGD solution is a fast process, even in a high dimensional uncertain pace.

6.5.2 One-Dimensional Two-Region Example

To further the analysis of parameterizing properties in the neutron diffusion equation, PGD was

applied to a parametric one-dimensional two-region problem. The neutron diffusion equation and

its boundary conditions are given in Equation (6.24).

−D1
d2φ1

dx2
+ Σa,1φ = Q1 , x ∈ [0, 2.5] , (6.24a)

−D2
d2φ2

dx2
+ Σa,2φ = Q2 , x ∈ [2.5, 5] , (6.24b)
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Table 6.1: Mean and variance for average flux and peaking factor (106 samples) for homogeneous
1-D example.

Average Flux φ̄ Peaking Factor Pf
Uniform Normal Uniform Normal

µ σ µ σ µ σ µ σ
Sampling - Exact 0.8624 0.3541 1.0447 1.0836 1.2349 0.0471 1.2377 0.0805
Sampling - PGD 0.8624 0.3543 1.0444 1.0785 1.2351 0.0471 1.2379 0.0805
Integration - Exact 0.8623 0.3545 1.0449 1.0865
Integration - PGD 0.8637 0.3591 1.0445 1.0785

(a) Average flux, φ̄ (b) Peaking Factor, Pf

Figure 6.4: Probability distributions for average flux and peaking factor(106 samples) for homoge-
neous 1-D example.

dφ1

dx

∣∣∣∣
x=0

= φ2(5) = 0 , (6.24c)

φ1(2.5) = φ2(2.5),
dφ1

dx

∣∣∣∣
x=2.5

=
dφ2

dx

∣∣∣∣
x=2.5

. (6.24d)

The parameters D1,2, Σa,1,2, and Q1,2 are uncertain and have uniform probability in the range

between 0.1 and 10 cm, cm-1, and n/cm3·s, respectively. The resulting decomposition to the neutron
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flux is shown by Equation (6.25).

φ =
1000∑
i=1

φi =
1000∑
i=1

Xi(x)
2∏
j=1

Ddji (Dj)S
σj
i (Σa,j)Q

qj
i (Qj) . (6.25)

In a 1DM -region domain, the PGD system contains 2M linear spatial operators (one for diffu-

sion in x in each region, one for reaction in x in each region). The total number of dimensions on

the parametric model is 3M + 1 (one for the physical space x, and three for the uncertain space in

D,Σa, and Q for each region). First-order continuous finite elements are used for the x dimension

with 100 elements, while a finite volume discretization is used for the parameter dimensions, with

100 elements in each dimension spanning from 0.1 to 10. The enrichment process was stopped at

1000 terms, which resulted in a final enrichment error of ∼ 10−5. Four snapshots of the solution

were taken of the PGD parametric solution: one homogeneous and three heterogeneous. Table 6.2

details these snapshots and the resulting L2 error from the exact solution. Figure 6.5 shows the

resulting solutions from the snapshots; the analytical solution is also plotted. These global er-

rors show that the accuracy of the PGD parametric solution is highly dependent on the inputted

parameter values.

Table 6.2: Cases chosen to compute relative difference from exact solution

Case D1 D2 Σa,1 Σa,2 Q1 Q2 ||φ− φref||/||φref||
1 5.0 5.0 5.0 5.0 5.0 5.0 0.000155867
2 9.2 7.6 0.8 7.8 5.7 3.4 0.0709736
3 2.9 3.9 0.6 9.4 4.7 1.7 0.0734167
4 7.6 5.7 5.4 1.3 0.2 8.0 0.0979055

To confer the results from the snapshots, the following shows how error depends on the full

parameter space. Figures 6.6a and 6.6b show the error of the PGD solution as function of the

diffusion coefficient and absorption in each region, respectively. This error plots are meant to

show where in the parameter space the PGD solution deviates from the exact solution. These
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Figure 6.5: Flux solution for some chosen property values for two-region 1-D example, PGD
parametric model and analytical solution

profiles indicate that error is highest when D is large and Σa is small, with a dip where the two

regions’ values are equivalent. This observation demonstrates two features of the accuracy of the

PGD solution. First, the locations of highest error show that error from the spatial discretization is

evident. Second, the dip where the two regions’ properties equal indicate that the PGD solution is

highly dependent on the degree of heterogeneity of the material.

(a) D1,2 error, Σa and Q set to Case 1 (b) Σa,1,2 error, D and Q set to Case 1

Figure 6.6: Relative error |φ−φexact|
φexact

for the full parameter space at x = 5 for 1-D two-region
problem
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To illustrate the applicability of the parametric PGD, we perform a UQ analysis of the 1D

neutron diffusion example using the analytical (exact) solution and the PGD solution. As stated

previously, the probability for each parameter is uniformly distributed between 0.1 and 10. Fig-

ures 6.7a and 6.7b show the probability density functions for average flux and changed flux, respec-

tively, computed from sampling 106 times. The center region (x ∈ [0, 2.5]) is the rod region. The

uncertainty distribution from sampling the PGD solution a million times has reasonable agreement

with the distribution of the exact solution with the same samples. If more accuracy is needed, then

more enrichment terms would be required. However, even for this example, the later enrichments

converge quite slowly: about an order of magnitude more terms for another order of magnitude of

accuracy. This issue is only exacerbated as the number of uncertain space dimensions (i.e., number

of material regions) is increased [103].

(a) Average flux, φ̄ (b) Change in neutron population, ∆φ̄

Figure 6.7: Probability distributions for average flux and change in neutron population (106 sam-
ples) for two-region 1-D example.
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6.5.3 2-D IAEA Benchmark Problem

In this second case, we apply PGD to a heterogeneous 2-D configuration in order to examine its

performance with a more complex geometry. The chosen problem is based on the ANL Benchmark

Problem Book problem 11-A1 [58] (the 3-D version of this benchmark problem is analyzed in the

next section). The 2-D geometry layout is shown in Figure 2.8, where the numbers indicate the the

material index. Only a quarter core is represented, with symmetry lines at the top and left. Each

square cell (of size 20 cm× 20 cm) contains one material. There are four material types in the 2-D

version of the problem.

6.5.3.1 Parameterizing 2-D IAEA Problem

Parameterizing the properties of this geometry results in a PGD decomposition in 13 dimen-

sions: two in space (x and y), four for the diffusion coefficient of the different materials, four for

the absorption cross section, and three for neutron source (there are no sources in the reflector

zones). After decomposing the material properties in a manner suitable for a fast PGD process, the

neutron diffusion operator contained a total of 66 linear operators (L in Equation (2.2b)) in each

dimension. The spatial and parameter dimensions are discretized using continuous finite elements

and finite volume, respectively. Table 6.3 provides discretization details for each parameter (mini-

mum and maximum value in each of the 13 dimensions). The resulting PGD solution is given by

the expression shown in Equation (6.26):

φ(x, y,D1, ..., D4,Σ1, ...,Σ4, Q1, ..., Q3) =

2000∑
i=1

Xi(x)Yi(y)
4∏
j=1

DDji (Dj)
4∏
j=1

Sσji (Σa,j)
3∏
j=1

Qqji (Qj) . (6.26)

The PGD solution required 2000 enrichment terms, for an enrichment error of approximately

10−4. The memory consumed by the PGD solution is 23 MB, while a non-PGD solution in a

13-dimensional space would likely consume twenty orders more. Table 6.4 shows the parameter

values of four arbitrary cases chosen to illustrate how well the parameterized PGD solution per-
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Table 6.3: Details on the discretization of the PGD parametric model

Dimension No. of Elements Min. Max.
x (cm) 170 0 170
y (cm) 170 0 170
D1, D2, D3 (cm) 100 0.2 0.8
D4 (cm) 100 0.15 0.6
Σa,1 (cm−1) 100 0.0425 0.17
Σa,2 (cm−1) 100 0.065 0.26
Σa,3 (cm−1) 100 0.04 0.16
Σa,4 (cm−1) 100 0.005 0.02
Q1, Q2, Q3 (n/cm3·s) 100 5.0 20

forms against a non-parametric solution; the relative error between the PGD parametric solution

and a reference, non-parametric solution, are also provided. Figure 6.8 shows the parametric so-

lution from the four cases as well as their relative errors when compared against non-parametric

solutions. The non-parametric counterparts are computed using the PGD method with just a spatial

decomposition of the flux (i.e., a 2-dimensional problem only), the material properties being set to

the specific case values.

Table 6.4: Cases chosen to compute relative difference from non-parametric solution

Value in Material Zone Relative Error
Case Prop. 1 2 3 4 ||φ− φref||/||φref||

D 0.4 0.4 0.4 0.3
1 Σa 0.085 0.13 0.08 0.01 2.760e-3

Q 10 10 10 0
D 0.23 0.53 0.77 0.3

2 Σa 0.085 0.13 0.08 0.01 3.287e-3
Q 10 10 10 0
D 0.4 0.4 0.4 0.3

3 Σa 0.049 0.075 0.154 0.01 5.460e-3
Q 10 10 10 0
D 0.23 0.53 0.77 0.3

4 Σa 0.049 0.075 0.154 0.01 7.185e-3
Q 10 10 10 0
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(a) Case 1 Solution (b) Case 1 Difference

(c) Case 2 Solution (d) Case 2 Difference

(e) Case 3 Solution (f) Case 3 Difference

Figure 6.8: Parametric solutions and relative errors compared to non-parametric solutions
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(g) Case 4 Solution (h) Case 4 Difference

Figure 6.8: Continued

The errors given in Table 6.4 and Figure 6.8 show that the spatial error is approximately an

order of magnitude higher than the enrichment error. Using the enrichment convergence rate shown

in Figure 6.9, one can infer that reducing the enrichment error by another order of magnitude would

require another order of magnitude in number of enrichments. This slow rate of convergence is due

to the high-dimensionality of the problem; see also [103] for another such instance. However, in

the context of UQ for neutronic applications, the uncertainty due to the parameters are often much

larger than this level of convergence error.

Figure 6.10 shows how the parameterized PGD solution varies as a function of the material

property only. To obtain these one-dimensional functions, an integration is performed over all other

dimensions (space and the other parameters); the resulting one-dimension functions are normalized

for plotting convenience. As expected, the dependence of the solution of the source parameter is

linear; see Figure 6.10c. The rest of these one-dimensional functions are meant to give a qualitative

relative sensitivity of the average flux with respect to each material property. Figure 6.10a shows

that the closer the material zone is to the outer edge of the domain, the greater the effect the

uncertainty of diffusion coefficient has on the flux average. Figure 6.10b shows that effect of the

absorption cross-section uncertainty is directly related to the volume of each material zone.
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Figure 6.9: Enrichment error at each enrichment step

(a) D (b) Σa

(c) Q

Figure 6.10: Relative norm of flux as a function of material variation
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6.5.3.2 Uncertainty Quantification of 2-D Heterogeneous Problem

This section details the relevant UQ results from the obtained PGD solution of 2-D IAEA

benchmark problem. The quantities of interest for this analysis are the average neutron flux and

the change in total neutron population. The uncertain parameters are, again, assumed to be inde-

pendent variables, thus the joint probability distribution function is the product of the univariate

probability distribution functions. Uniform and normal probability distributions are employed.

The mean for each parameter distribution is set to Case 1 of Table 6.4 and the standard deviation σ

is chosen to be 33% of the mean. Figure 6.11 shows the probability distribution as a result of sam-

pling the PGD solution as well as a normal distribution with mean value and variance computed

using Equation (6.9) (direct integration of the PGD solution).

(a) Average Flux (b) Change in Total Neutron Population

Figure 6.11: Probability distributions for average flux and changed population. Sampling results
computed using 105 samples. PGD results are a normal distribution with the mean and variance
computed using Equation (6.9).

The results in Figure 6.11 are meant to illustrate the ability of the PGD solution to generate

a probability distribution for some quantities of interest and estimate the propagated uncertainty.

The normal distributions in Figure 6.11 are meant to visually compare the actual probability dis-
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tributions obtained from sampling against Gaussian distributions that have means and variances

calculated using Equation (6.9). For the change in the total neutron population distribution, a

Gaussian distribution would be an appropriate fit to the the actual probability distribution assump-

tion. For the average flux QOI, the obtained probability distribution deviates significantly from a

Gaussian distribution.

6.5.4 3-D IAEA Benchmark Problem

This fourth and final case examines the effectiveness of PGD for a 3-D heterogeneous problem,

the 3-D version of the ANL Benchmark problem used in the previous section. The x–y layout of the

2-D geometry of Figure 2.8 is extruded in the z direction. This extrusion is shown in Figure 2.11

with the addition of a fifth material region. Material properties in each region of the domain

are parameterized. Additionally, in Section 6.5.4.3, the position of the each control rod is also

parameterized (the x–y locations of the control rods can be found in Figure 2.8).

6.5.4.1 Parameterizing 3-D IAEA Problem Material Properties

Parameterizing the properties of this geometry results in a PGD process in 16 dimensions:

three in space, five zones for the diffusion coefficient, five zones for the absorption cross sec-

tion, and three zones for the neutron source The PGD system contains 116 linear operators (L in

Equation (2.2b)) in each dimension. The spatial and parameter dimensions are discretized using

continuous finite elements and finite volume, respectively. Table 6.3 and 6.5 provide discretization

details for each dimension. The PGD solution is given by Equation (6.27):

φ(x, y, z,D1, ..., D5,Σ1, ...,Σ5, Q1, ...Q3) =

1300∑
i=1

Xi(x)Yi(y)Zi(z)
5∏
j=1

DDji (Dj)
5∏
j=1

Sσji (Σa,j)
3∏
j=1

Qqji (Qj) . (6.27)

The solution contains 1300 enrichment terms, with in a relative enrichment error of approxi-

mately 5 × 10−4. The memory consumed by the PGD solution is 21 MB, while a full solution in
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Table 6.5: Details on the discretization of the 3-D PGD parametric model

Dimension No. of Elements Min. Max.
z (cm) 380 0 380
D5 (cm) 100 0.15 0.6
Σa,5 (cm−1) 100 0.0275 0.11

16 dimensions would consume many orders of magnitude more. Table 6.6 shows the parameter

values of four arbitrary cases chosen to illustrate how accurate the parameterized solution against a

non-parametric solution. Figure 6.12 shows the parametric solution from the one of the four spec-

ified cases and its error when compared against a non-parametric solution. The non-parametric

solutions are obtained using the PGD technique over spatial coordinates only, while the material

properties are set to the values for each specific case.

The errors reported in Table 6.6 and Figure 6.12 show a performance similar to the 2-D results.

The convergence shown in Figure 6.13 shows approximately the same convergence as for the 2-D,

while the dimensionality of the problem (16 dimensions now, as opposed to 13 in the 2-D case) in-

creased only slightly. One may infer that, for this type of problems, the rate of convergence is more

dependent on the total number of dimensions in the problem rather than the number of expansion

terms needed in the decomposition of the linear operator (the value of L in Equation (2.2b)).

6.5.4.2 Uncertainty Quantification for 3-D IAEA Problem

This section details the relevant UQ results from the obtained PGD solution of the 3-D IAEA

benchmark problem. The quantities of interest and parameter distributions are the same as for the

2-D example in Section 6.5.3.2. Figure 6.14 shows the probability distributions for two QOIs,

obtained from sampling the PGD solution. Gaussian distributions with the mean and variance

computed directly from the PGD solution (Equation (6.9)) are also included in the graph. The

graph legends display the mean and variance values, obtained from Monte Carlo sampling or direct

integration of the PGD solution.

The results in Figure 6.14 are meant to exemplify the ability of sampling multiple times a

PGD solution in a cost-effective manner, hence generating well-resolved probability distribution
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for the quantities of interest and propagating uncertainty. These distributions show a very similar

behavior as the 2-D results, with the same conclusions on the accuracy of the Gaussian distribution

assumptions.

Table 6.6: Cases chosen to compute relative difference from non-parametric solution

Value in Material Zone Relative Error
Case Prop. 1 2 3 4 5 ||φ− φref||/||φref||

D 0.4 0.4 0.4 0.3 0.3
1 Σa 0.085 0.13 0.08 0.01 0.055 4.515e-3

Q 10 10 10 0 0
D 0.23 0.53 0.77 0.3 0.3

2 Σa 0.085 0.13 0.08 0.01 0.055 5.343e-3
Q 10 10 10 0 0
D 0.4 0.4 0.4 0.3 0.3

3 Σa 0.049 0.075 0.154 0.01 0.055 1.142e-2
Q 10 10 10 0 0
D 0.23 0.53 0.77 0.3 0.3

4 Σa 0.049 0.075 0.154 0.01 0.055 1.366e-2
Q 10 10 10 0 0

(a) Case 1 Solution (b) Case 1 Difference

Figure 6.12: Parametric solution and relative error compared to non-parametric solution
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Figure 6.13: Enrichment error at each enrichment step

(a) Average Flux (b) Change in Total Neutron Population

Figure 6.14: Probability distributions for the average flux and change in total neutron population.
Sampling results computed using 105 samples. PGD results are a normal distribution with the
mean and variance computed using integration method.

6.5.4.3 Parameterized Control Rod Movement

This section presents results from parmeterizing the insertion length of each control rod for the

3-D IAEA problem. The insertion length for control rod i is λi, where the index for each rod is
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labeled in Figure 2.8 and the length is the distance from the top of the fuel height, as shown in

Figure 2.11. Parameterizing this geometry results in eight dimensions: three for space and one

for each of the five control rods, shown in Equation (6.28). The spatial dimensions are discretized

similarly to those of the previous sections, the parameter dimensions are discretized using 18 finite

volume elements spanning the entire length of the fuel region (340 cm). The resulting PGD system

contains 118 linear operators in each dimension (L in Equation (2.2b)). The PGD solution contains

1000 enrichment terms, with an enrichment relative error of approximately 5 × 10−5. Table 6.7

shows the parameter values of four arbitrary cases chosen to illustrate the solution and compute

the relative difference from a reference, non-parametric solution. Figure 6.15 shows the z-direction

profile of the parameterized and reference solution for each of the four cases in Table 6.7.

φ(x, y, z, λ1, ..., λM) =
1000∑
i=1

Xi(x)Yi(y)Zi(z)
5∏
j=1

Λj
i (λj) . (6.28)

Table 6.7: Cases chosen to compute the relative error between parametric and non-parametric
solutions

Rod Insertion Length (cm) Relative Error
Case 1 2 3 4 5 ||φ− φref||/||φref||
1 80 140 120 260 300 1.192e-3
2 80 100 360 140 60 1.702e-3
3 60 180 200 360 100 1.358e-3
4 140 160 200 60 200 1.076e-3

The errors reported in Table 6.7 (and also given in Figure 6.15) show that the PGD solution is

quite accurate compared to a non-parametric solution, with errors less than 0.17%. The accuracy

of these results surpass those of the material property parameterizations of Section 6.5.4 while

using a smaller number of enrichment terms. This observation seems to indicate that the number

of linear operators, the value of L in Equation (2.7) (118 terms for 3-D rod movement parameteri-
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Figure 6.15: Axial profiles for parametric and reference solutions with different rod insertions.

zation versus 66 for 2-D property parameterization), may not directly impact the number of PGD

enrichments terms necessary (∼1000 for the 3-D rod parameterization versus ∼1300 for the 2-D

material parameterization).

An important metric for reactor design is the change in neutron population depending on the

insertion depth of each control rod. Figure 6.16 shows this quantity (∆φ̄) for each control rod.

To compute ∆φ̄ for rod i, φ̄0 was computed by extracting all the rods (λj = 0), then φ̄rod was

computing by extracting all rods except rod i. The worth in Figure 6.16 are scaled by the number

of each rod in the entire reactor. The results in Figure 6.16 are meant to illustrate the ability

of a PGD approach to produce design-relevant results in much simpler manner than traditional

methods, which would require a full 3-D evaluation for every possible configuration of the control

rods’ layout and insertion length.
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Figure 6.16: Change in total neutron population for each control rod location (i = 1, . . . , 5 and all
rods together).

6.6 Discussion

In this chapter, uncertainty quantification (UQ) and design optimization have been performed

using PGD techniques applied to neutron diffusion problems. The neutron diffusion equation with

external sources, a diffusion-reaction problem with forcing terms, is used as the parametric model.

For heterogeneous domains, the dimensionality of the uncertain space can become quite large.

Thus, a parameterized PGD solution is sought in a high dimensional space, the natural spatial

coordinates as well as each zone-dependent material property. This PGD solution, parameter-

ized in all uncertain variables, can then be used to compute mean, variance, and more generally

probability distributions of various quantities of interest. In addition to parameterized properties,

parameterized geometrical variations of 3D models have also been considered in this work.

The theory section of this chapter shows an in-depth derivation of the PGD system for para-

metric heterogeneous problems. The linear operators are decomposed into zone-dependent 1-D

operators; although this system construction seems complex, it is purely analytical and completely

contained in the pre-processing stage, ultimately resulting in a efficient solution process. The the-

ory section also discusses the utilization of a PGD solution for uncertainty quantification. It shows

how a resolved PGD solution can be sampled trivially with a Monte Carlo technique and also dis-
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cuss how a PGD solution can be directly integrated to compute the mean and variance of some

quantities of interest, given specific types of parameter probability distributions. Finally the sec-

tion discusses the quantities of interest analyzed for this application of neutron diffusion, including

the average solution (average flux), the maximum of the solution (peaking factor), and change in

the total neutron population.

In the results section, parametric PGD solutions are applied to four different geometries. The

first and second are 1-D problems with a known analytical solution, meant to verify the PGD sys-

tem construction and solution process. The error and basis functions of the resulting PGD solution

show that the solution follows the physics of the problem quite well, but are somewhat depen-

dent on the heterogeneity of the geometry. UQ results are also presented for these problems and

show that evaluating the parameterized PGD at sampled values of the uncertain parameters yield

accurate results. The third and fourth geometries involve 2-D and 3-D heterogeneous domains, re-

spectively. The results obtained using these models illustrates the applicability of PGD techniques

to propagate uncertainties effectively in such high dimensional problems, a task often impractical

with traditional methods. The 3-D application also investigates parameterizing control rod inser-

tion for design optimization considerations. All of these application also show the behavior of the

enrichment convergence for highly-dimensional problems. It is observed that convergence of the

PGD solution depends noticeably on the total number of dimensions in the parametric problem.

In summary, this PGD application to parameterized neutron diffusion models shows promising

results for practical application of realistic uncertainty propagation and design optimization. Con-

siderations for the future development of this work would include increasing the complexity of the

governing law, e.g., including application to multigroup criticality neutron diffusion and neutron

transport problems. In addition, there is also a need to better understand enrichment convergence

in highly dimensional spaces for UQ calculations.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this work, a proper generalized decomposition approach was implemented and investigated

for various nuclear science and engineering applications. The goal of the research was to tailor

the PGD algorithm for neutron diffusion and transport problems and asses the viability of the

method to reduce the computational burden of evaluating these multi-dimensional systems. These

applications include,

1. Multigroup neutron diffusion eigenvalue calculations

2. Fine-group neutron diffusion problems

3. Neutron transport problems

4. Parametric uncertainty quantification for neutron diffusion

The detailed conclusions for each these applications can be found in their corresponding chapters.

However, several general conclusions can be made based on collective observations.

Broadly speaking, PGD is an highly efficient method and its ability to reduce the dimensionality

of certain multi-dimensional models is without question. PGD performance is impressive when

compared to its full-order counterpart for many of the problems presented in this dissertation and

in the myriad of other PGD works. However, it is apparent from these applications that PGD

performance is heavily dependent on several features of the models at hand: number of dimensions,

heterogeneity of the domain, and separability of the full-order solution. Admittedly, these factors

are not independent, but it is difficult to correlate them quantitatively.

Contrary to the idealistic vision of PGD, the burden of evaluating a model with PGD is not

linearly dependent on the number of dimensions, as the number of enrichments required increases

significantly when dimensionality is increased. However, the resulting run-time and system size

when compared to the full-order model improves continuously with increasing dimensions, if a

138



reasonably accurate solution is desired. The efficiency of PGD evaluation suffers heavily if highly

accurate solutions are needed. PGD can be highly useful if only a rough picture of the model is

needed, which is generally the purpose of reduced order models.

A recurring theme throughout this dissertation is that PGD performance suffers heavily in its

application to highly heterogeneous domains. PGD dependence on heterogeneity seems to be the

primary drawback of its application to reactor physics. The domains involving nuclear reactors,

especially for high fidelity simulations, contain multitudinous materials with severe discontinuities

in property values. For these models, utilizing full-order evaluation methods is most likely the best

approach. However, simplified models exist and are common practice for reactor analysis, these

simplifications is where PGD can prosper.

The performance of PGD ultimately hinges on the separability of the model’s solution, that

is the number of separated terms, or enrichments, required to represent the solution to a certain

accuracy. If the optimal decomposition of a solution requires a certain amount of terms, then

PGD requires at least that many enrichment evaluations, most likely more. In the analysis of this

dissertation, the separability of 2-D models is quantified using SVD, which provides the optimal

decomposition. It is observed that PGD follows the SVD convergence closely for the first few

enrichments, but diverges significantly when more terms are added. Furthermore, solutions that

contain discontinuities or non-smoothness not aligned with any of the coordinates requires an

exorbitant number of enrichments, to the point where the separated representation is no longer a

reduced order model. These kind of solutions are especially prevalent in transport solutions, where

no diffusion is present. To conclude, a decent amount of knowledge about the physics and the

domain is needed in order to determine, a priori, if PGD will be an effective technique.

The PGD methodology is still very much in its adolescence, especially in its application to

nuclear science and engineering. For the applications presented in this dissertation, PGD shows

a great amount of promise as a reduced order modeling technique and a method for reducing the

computational burden for neutron diffusion problems. However, much more development and

analysis is required to conclusively determine the proper place in which PGD can reside in the
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nuclear community. The decomposition of spatial dimensions is a huge crux in the PGD method-

ology; more promising is the decomposition of other coordinates including energy, angle, time,

and parametric dimensions, where PGD can truly serve its purpose.

7.2 Recommendations for Future Work

The main recommendation for future work with PGD is to apply it to more complex examples

and perform more analysis on its convergence. This section details potential avenues of PGD for

each of the applications presented in this dissertation. The following subsections itemizes these

recommendations.

7.2.1 Mulitgoup Criticality

For PGD in criticality calculations, more analysis and verification is needed on PGD for

reactor-physics problems including more complex geometries and finer-group problems, which

usually exist in realistic reactor benchmarks. Although, it is expected this PGD approach will have

much more difficulty evaluating highly heterogeneous geometries. Some advanced PGD tech-

niques exist that could mitigate this difficulty, including adaptive subspace methods [104], AMG

methods [105], and domain decomposition [106], for instance. Furthermore, PGD algorithms

should be compared with more traditional reactor physics codes, like TRIVAC and PARCS, as

examples.

7.2.2 Space-Energy Decomposition

PGD with space-energy decomposition showed very promising results, especially when the

domain was only mildly heterogeneous. To eliminate the performance ambiguity with heterogeity,

a possile approach would be to remove the decomposition in space, where the solution has a sepa-

ration of the 3-D spatial dimension and energy. Furthermore, since PGD seemed to have difficulty

resolving the fast-resonance region in the fine-group calculation, a full-order model could be used

for this region, since no Gauss-Seidel iteration is required, and use PGD for the thermal region.

Additionally, different energy discretizations could be explored including multiband methods [107]

and finite element methods [108, 109]. Since the evaluation of the energy dependent variables in
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the PGD space-energy separation involve an algebraic equation, continuous energy representation

is also feasible.

7.2.3 Neutron Transport

The results from Section 5 show that transport, in general, is a very difficult problem to capture

using PGD with space separation. Using PGD by itself may not be viable method to improve

performance for these problems. However, it is feasible that PGD could be used as a corrective

measure to improve source iteration convergence. For instance, using a FOM evaluation technique

for the uncollided flux, then using PGD for source iteration, due to the separability of δψ. PGD

could also be used as an accelerator, solving for δψ between each FOM source iteration using a

small number of enrichments to correct the solution. Finally, the Residual Monte Carlo technique

could also be utilized in conjunction with PGD, whereby performing a very coarse PGD evaluation

then using Monte Carlo methods to correct the residual [110].

7.2.4 Parameterized Neutron Diffusion

In this chapter, PGD proved to be effective for producing parameterized solutions for very

high-dimensional problems. The work only used these solutions for the purposes of rudimentary

UQ. Therefore, potential avenues of future would be to apply these PGD parametric solutions

for realistic and more useful engineering purposes. A very promising and exciting research in-

volves the dynamic data-driven application system (DDDAS) [38, 39, 100, 111, 112]. DDDAS is

real-time simulation tool that is able to represent physical models under real-time perturbations,

develop data-driven models, and consider control environments. Including these functionalities in-

dividually is commonly employed with traditional computing platforms, but embracing all of them

is significantly more difficult and a possible avenue of relief is utilizing PGD. In addition to UQ

and data-based simulation, PGD can also be applied to more complex nuclear engineering mod-

els including multigroup problems, criticality calculations, and the megalomaniac that is neutron

transport.
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APPENDIX A

PRODUCING A SEPARATED REPRESENTATION USING SINGULAR VALUE

DECOMPOSITION

In many of the results throughout this dissertation, PGD is compared to SVD for analysis on

the separability of a 2-D solution. This appendix explains explicitly how SVD is used to produce a

separated representation of a full-order solution. To begin, it is assumed that the full-order solution

is known and has the discretized form described by,

u(x, y) ≈
K∑
k=1

ukϕk(x, y) . (A.1)

In all of the applications presented, the domain is discretized with a uniform mesh, that is the

solution can be defined as,

u(x, y) ≈
I∑
i=1

J∑
j=1

ui,jϕ
x
i (x)ϕyj (y) , (A.2)

where I and J are the number of nodes in the x and y dimension, respectively, and K = I × J .

Now, the unknown coefficients (uk) are combined into a vector u. In a uniform grid, this vector

can be rearranged into a J-by-I matrix:

A =



u1,1 u2,1 . . . uI,1

u1,2 u2,2 . . . uI,2
...

... . . . ...

u1,J u2,J . . . uI,J


. (A.3)
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Without loss of generality, the full-order solution on a uniform mesh can be described as,

u(x, y) =
∞∑
n=1

Xn(x)Yn(y) ≈
∞∑
n=1

(
I∑
i=1

Xn,iϕ
x
i (x)

)(
J∑
j=1

Yn,jϕ
y
j (y)

)
. (A.4)

The coefficients Xn,i and Yn,j are combined into the vectors Xn and Yn, respectively. The array

A can then be described as,

A =
∞∑
n=1

YnX
T
n . (A.5)

To relate each termXn and Yn to the matrixA, SVD is performed on the matrix, which produces,

A = UΣV T , (A.6)

where U is a J-by-N array, Σ is a diagonal N -by-N array, V is a I-by-N array, and N =

min(I, J). The coefficients Xn,i and Yn,j can then be related toA by,

Xn,i = (V )i,n

√
(Σ)n,n , n = 1, ..., N , i = 1, ..., I , (A.7a)

Yn,j = (U)j,n

√
(Σ)n,n , n = 1, ..., N , j = 1, ..., J , (A.7b)
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APPENDIX B

DERIVATION OF FOURIER SERIES REPRESENTATION OF HOMOGENEOUS POISSON

PROBLEM

This appendix section shows the derivation of the Fourier series solution to the 2-D homoge-

neous Poisson problem. The problems is defined as,

−∆u(x, y) = 1 , x ∈ [0, 1] y ∈ [0, 1] (B.1a)

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 (B.1b)

To begin, the source term is expanded into a 2-D Fourier series:

1 =
∞∑
m=1

∞∑
n=1

Fmn sin(mπx) sin(nπy) , (B.2a)

where,

Fmn = 4

∫ 1

0

sin(mπx)dx

∫ 1

0

sin(nπy)dy =
4

π2mn
[1− (−1)m] [1− (−1)n] . (B.2b)

With this representation for the source, it is easy to see that the solution must take the form:

u(x, y) =
∞∑
m=1

∞∑
n=1

Umn sin(mπx) sin(nπy) . (B.3)

This representation already satisfies the boundary conditions, so to find the coefficients Umn Equa-

tions (B.2) and (B.3) are substituted into Equation (B.1a):

∞∑
m=1

∞∑
n=1

(
(mπ)2 + (nπ)2

)
Umn sin(mπx) sin(nπy) =

∞∑
m=1

∞∑
n=1

Fmn sin(mπx) sin(nπy) . (B.4)
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Relating the coefficients:

Umn =
4 [1− (−1)m] [1− (−1)n]

π4mn (m2 + n2)
. (B.5)
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APPENDIX C

COMPARING CONTRIBUTION-BASED AND RESIDUAL-BASED PGD CONVERGENCE

Most of the results throughout this dissertation showed a spurious convergence of enrichment

contribution, which was used as the stopping criteria for the enrichment process. Another common

criteria in PGD works is to use a residual based approach. Here, these approach are compared to

determine if the residual-based approached produces a more uniform convergence. For exposition,

the contribution-based error estimator is defined as:

Enrichment Magnitude(n) =
||Xn|| ||Yn||∑n
i=1 ||Xi|| ||Yi||

, (C.1)

and the residual-based error estimator is defined as:

Residual Magnitude(n) =
||Resn||∑n

i=1 ||Xi|| ||Yi||
, (C.2a)

where,

Resn = q(x, y)− L(x, y)un(x, y) =

Q∑
k=1

qxk(x)qyk(y)−
L∑
`=1

n∑
i=1

Lx`XnLy`Yn , (C.2b)

and,

||Resn||2 =

∫
Ωx

∫
Ωy

[q(x, y)− L(x, y)un(x, y)]2 = 〈q, q〉 − 2 〈q,Lun〉+ 〈Lun,Lun〉

=

Q∑
k=1

Q∑
k′=1

〈qxk , qxk′〉 〈q
y
k , q

y
k′〉 − 2

Q∑
k=1

L∑
`=1

n∑
i=1

〈qxk , Lx`Xi〉 〈qyk , L
y
`Yi〉+

L∑
`=1

n∑
i=1

L∑
`′=1

n∑
i′=1

〈Lx`Xi,Lx`′Xi′〉 〈Ly`Yi,L
y
`′Yi′〉 . (C.2c)
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The convergence of these quantities is studied for the 2-D homogeneous Poisson problem. Fig-

ure C.1a shows the contribution-based convergence and Figure C.1b shows the residual-based

convergence. These results show that the residual-based convergence is just as spurious as the

contribution-based one used throughout the results of the dissertation. This observation indicates

that a residual-based enrichment tolerance is most likely a no better error estimator than a the

contribution-based one.

(a) Contribution-based convergence (b) Residual-based convergence

Figure C.1: 2-D Homogeneous Poisson enrichment convergence for PGD, SVD, and Fourier se-
ries.
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APPENDIX D

PGD DERIVATION FOR SPECIFIC APPLICATIONS

This appendix is meant to show the specific derivations of the PGD algorithm of the governing

laws specified in this dissertation. For the sake of exposition and brevity, the materials are homo-

geneous and the domain is 2-D. The weak form for each dimension’s solve is presented for the

N th enrichment. For additional brevity, the one dimensional integrals are represented by:

〈a, b〉r =

∫
Ωr

ab dr, (D.1)

where r is the dimension being integrated over, x, y, or E for instance.

D.1 Multigroup Neutron Diffusion Criticality

This section presents the PGD derivation for space-only decomposition of the multigroup neu-

tron diffusion equation within the power iteration process, described by Equation (3.1). For the

N th enrichment and the `+ 1 power iteration, the solution is assumed to be,

φg,`+1(x, y) =
N`+1∑
i=1

Xg,`+1
i (x)Y g,`+1

i (y) , g = 1, ..., G . (D.2)

Solving for Xg,`+1
i (x):

Dg

〈
dX∗

dx
,
dXg,`+1

N

dx

〉
x

− DgX∗
dXg,`+1

N

dx

∣∣∣∣∣
Ωx

0

〈Y g,`+1
N , Y g,`+1

N

〉
y

+
〈
X∗, Xg,`+1

N

〉
x

Dg

〈
dY g,`+1

N

dy
,
dY g,`+1

N

dy

〉
y

− DgY g,`+1
N

dY g,`+1
N

dy

∣∣∣∣∣
Ωy

0


+ Σg

t

〈
X∗, Xg,`+1

N

〉
x

〈
Y g,`+1
N , Y g,`+1

N

〉
y
−

G∑
g′=1

Σg←g′
s

〈
X∗, Xg′,`+1

N

〉
x

〈
Y g,`+1
N , Y g′,`+1

N

〉
y
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=
1

k`

N`∑
i=1

χg
G∑

g′=1

νΣg′

f

〈
X∗, Xg′,`

N

〉
x

〈
Y g,`+1
N , Y g′,`

N

〉
y

−
N−1∑
j=1

Dg

〈
dX∗

dx
,
dXg,`+1

j

dx

〉
x

− DgX∗
dXg,`+1

j

dx

∣∣∣∣∣
Ωx

0

〈Y g,`+1
N , Y g,`+1

j

〉
y

+
〈
X∗, Xg,`+1

j

〉
x

Dg

〈
dY g,`+1

N

dy
,
dY g,`+1

j

dy

〉
y

− DgY g,`+1
N

dY g,`+1
j

dy

∣∣∣∣∣
Ωy

0


+ Σg

t

〈
X∗, Xg,`+1

j

〉
x

〈
Y g,`+1
N , Y g,`+1

j

〉
y

−
G∑

g′=1

Σg←g′
s

〈
X∗, Xg′,`+1

j

〉
x

〈
Y g,`+1
N , Y g′,`+1

j

〉
y

]
, g = 1, ..., G , (D.3a)

Solving for Y g,`+1
i (y):

Dg

〈
dXg,`+1

N

dx
,
dXg,`+1

N

dx

〉
x

− DgXg,`+1
N

dXg,`+1
N

dx

∣∣∣∣∣
Ωx

0

〈Y ∗, Y g,`+1
N

〉
y

+
〈
Xg,`+1
N , Xg,`+1

N

〉
x

Dg

〈
dY ∗

dy
,
dY g,`+1

N

dy

〉
y

− DgY ∗
dY g,`+1

N

dy

∣∣∣∣∣
Ωy

0


+ Σg

t

〈
Xg,`+1
N , Xg,`+1

N

〉
x

〈
Y ∗, Y g,`+1

N

〉
y
−

G∑
g′=1

Σg←g′
s

〈
Xg′,`+1
N , Xg′,`+1

N

〉
x

〈
Y ∗, Y g′,`+1

N

〉
y

=
1

k`

N`∑
i=1

χg
G∑

g′=1

νΣg′

f

〈
Xg,`+1
N , Xg′,`

N

〉
x

〈
Y ∗, Y g′,`

N

〉
y

−
N−1∑
j=1

Dg

〈
dXg,`+1

N

dx
,
dXg,`+1

j

dx

〉
x

− DgXg,`+1
N

dXg,`+1
j

dx

∣∣∣∣∣
Ωx

0

〈Y ∗, Y g,`+1
j

〉
y

+
〈
Xg,`+1
N , Xg,`+1

j

〉
x

Dg

〈
dY ∗

dy
,
dY g,`+1

j

dy

〉
y

− DgY ∗
dY g,`+1

j

dy

∣∣∣∣∣
Ωy

0


+ Σg

t

〈
Xg,`+1
N , Xg,`+1

j

〉
x

〈
Y ∗, Y g,`+1

j

〉
y

−
G∑

g′=1

Σg←g′
s

〈
Xg′,`+1
N , Xg′,`+1

j

〉
x

〈
Y ∗, Y g′,`+1

j

〉
y

]
, g = 1, ..., G , (D.3b)
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D.2 Space-Only Multigroup Neutron Diffusion

This section presents the PGD derivation for space-only decomposition of the multigroup neu-

tron diffusion equation described by Equation (4.5). For the N th enrichment, the solution is as-

sumed to be,

φg(x, y) =
N∑
i=1

Xg
i (x)Y g

i (y) , g = 1, ..., G . (D.4)

Solving Xg
N(x):

(
Dg

〈
dX∗

dx
,
dXg

N

dx

〉
x

− DgX∗
dXg

N

dx

∣∣∣∣Ωx
0

)
〈Y g

N , Y
g
N〉y

+ 〈X∗, Xg
N〉x

(
Dg

〈
dY g

N

dy
,
dY g

N

dy

〉
y

− DgY g
N

dY g
N

dy

∣∣∣∣Ωy
0

)
+

G∑
g′=1

Σgg′
〈
X∗, Xg′

N

〉
x

〈
Y g
N , Y

g′

N

〉
y

=
〈
X∗,

√
Q
〉
x

〈
Y g
N ,
√
Q
〉
y
−

N−1∑
j=1

[(
Dg

〈
dX∗

dx
,
dXg

j

dx

〉
x

− DgX∗
dXg

j

dx

∣∣∣∣Ωx
0

)〈
Y g
N , Y

g
j

〉
y

+
〈
X∗, Xg

j

〉
x

(
Dg

〈
dY g

N

dy
,
dY g

j

dy

〉
y

− DgY g
N

dY g
j

dy

∣∣∣∣Ωy
0

)

+
G∑

g′=1

Σgg′
〈
X∗, Xg′

j

〉
x

〈
Y g
N , Y

g′

j

〉
y

]
, g = 1, ..., G , (D.5a)

Solving Y g
N(y):

(
Dg

〈
dXg

N

dx
,
dXg

N

dx

〉
x

− DgXg
N

dXg
N

dx

∣∣∣∣Ωx
0

)
〈Y ∗, Y g

N〉y

+ 〈Xg
N , X

g
N〉x

(
Dg

〈
dY ∗

dy
,
dY g

N

dy

〉
y

− DgY ∗
dY g

N

dy

∣∣∣∣Ωy
0

)
+

G∑
g′=1

Σgg′
〈
Xg
N , X

g′

N

〉
x

〈
Y ∗, Y g′

N

〉
y

=
〈
Xg

1 ,
√
Q
〉
x

〈
Y ∗,

√
Q
〉
y
−

N−1∑
j=1

[(
Dg

〈
dXg

N

dx
,
dXg

j

dx

〉
x

− DgXg
N

dXg
j

dx

∣∣∣∣Ωx
0

)〈
Y ∗, Y g

j

〉
y

+
〈
Xg
N , X

g
j

〉
x

(
Dg

〈
dY ∗

dy
,
dY g

j

dy

〉
y

− DgY ∗
dY g

j

dy

∣∣∣∣Ωy
0

)

+
G∑

g′=1

Σgg′
〈
Xg
N , X

g′

j

〉
x

〈
Y ∗, Y g′

j

〉
y

]
, g = 1, ..., G . (D.5b)
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D.3 Space-Energy Multigroup Neutron Diffusion

This section presents the PGD derivation for space-energy decomposition of Equation (4.5).

For the N th enrichment, the solution is assumed to be,

φ(x, y, E) =
N∑
i=1

Xi(x)Yi(y)Ei(E) . (D.6)

Solving XN(x):

(〈
dX∗

dx
,
dXN

dx

〉
x

− X∗
dXN

dx

∣∣∣∣Ωx
0

)
〈YN , YN〉y 〈EN ,DEN〉E

+ 〈X∗, XN〉x

(〈
dYN
dy

,
dYN
dy

〉
y

− YN
dYN
dy

∣∣∣∣Ωy
0

)
〈EN ,DEN〉E

+ 〈X∗, XN〉x 〈YN , YN〉y 〈EN ,ΣEN〉E = 〈X∗, 1〉x 〈YN , 1〉y 〈EN ,QEN〉E

−
N−1∑
j=1

[(〈
dX∗

dx
,
dXj

dx

〉
x

− X∗
dXj

dx

∣∣∣∣Ωx
0

)〈
YN , Y

g
j

〉
y
〈EN ,DEj〉E

+ 〈X∗, Xj〉x

(〈
dYN
dy

,
dYj
dy

〉
y

− YN
dYj
dy

∣∣∣∣Ωy
0

)
〈EN ,DEj〉E

+ 〈X∗, Xj〉x 〈YN , Yj〉y 〈EN ,ΣEj〉E
]
. (D.7a)

Solving YN(y):

(〈
dXN

dx
,
dXN

dx

〉
x

− XN
dXN

dx

∣∣∣∣Ωx
0

)
〈Y ∗, YN〉y 〈EN ,DEN〉E

+ 〈XN , XN〉x

(〈
dY ∗

dy
,
dYN
dy

〉
y

− Y ∗
dYN
dy

∣∣∣∣Ωy
0

)
〈EN ,DEN〉E

+ 〈XN , XN〉x 〈Y
∗, YN〉y 〈EN ,ΣEN〉E = 〈XN , 1〉x 〈Y

∗, 1〉y 〈EN ,QEN〉E

−
N−1∑
j=1

[(〈
dXN

dx
,
dXj

dx

〉
x

− XN
dXj

dx

∣∣∣∣Ωx
0

)
〈Y ∗, Yj〉y 〈EN ,DEj〉E

〈XN , Xj〉x

(〈
dY ∗

dy
,
dYj
dy

〉
y

− Y ∗
dYj
dy

∣∣∣∣Ωy
0

)
〈EN ,DEj〉E

164



+ 〈XN , Xj〉x 〈Y
∗, Yj〉y 〈EN ,ΣEj〉E

]
. (D.7b)

Solving EN(E):

(〈
dXN

dx
,
dXN

dx

〉
x

− XN
dXN

dx

∣∣∣∣Ωx
0

)
〈YN , YN〉y 〈E

∗,DEN〉E

+ 〈XN , XN〉x

(〈
dYN
dy

,
dYN
dy

〉
y

− Y ∗
dYN
dy

∣∣∣∣Ωy
0

)
〈E∗,DEN〉E

+ 〈XN , XN〉x 〈YN , YN〉y 〈E
∗,ΣEN〉E = 〈XN , 1〉x 〈YN , 1〉y 〈E

∗,QEN〉E

−
N−1∑
j=1

[(〈
dXN

dx
,
dXj

dx

〉
x

− XN
dXj

dx

∣∣∣∣Ωx
0

)
〈YN , Yj〉y 〈E

∗,DEj〉E

〈XN , Xj〉x

(〈
dYN
dy

,
dYj
dy

〉
y

− Y ∗
dYj
dy

∣∣∣∣Ωy
0

)
〈E∗,DEj〉E

+ 〈XN , Xj〉x 〈YN , Yj〉y 〈E
∗,ΣEj〉E

]
. (D.7c)

With multigroup discretization of the energy dimension, the integrals in energy are defined as:

〈Ei,DEj〉E =
G∑
g=1

Egi DgEgj , (D.8a)

〈Ei,ΣEj〉E =
G∑
g=1

G∑
g′=1

Egi Σgg′Eg
′

j , (D.8b)

〈Ei,QEj〉E =
G∑
g=1

Egi QgEgj , (D.8c)

where Egi is defined by:

Ei(E) = Egi , E ∈ [Eg, Eg−1] . (D.9)

Finally, the basis function E∗(E) = 1.
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D.4 Space-Only Neutron Transport

This section presents the PGD derivation for space-only decomposition of the SN neutron trans-

port equation described by Equation (5.3). For the N th enrichment of k + 1 source iteration, the

angular flux is assumed to be,

ψn,k+1(x, y) =

Rn,k+1∑
i=1

Xn,k+1
i (x)Y n,k+1

i (y) (D.10)

Solving for Xn,k+1
Rn,k+1

(x):

√
1− µ2 cos(ϕ)

〈
X∗,

dXn,k+1
Rn,k+1

dx

〉
x

〈
Y n,k+1
Rn,k+1

, Y n,k+1
Rn,k+1

〉
y

+
√

1− µ2 sin(ϕ)
〈
X∗, Xn,k+1

Rn,k+1

〉
x

〈
Y n,k+1
Rn,k+1

,
dY n,k+1

Rn,k+1

dy

〉
y

=
Σs

4π

N∑
n′=1

wn′

Rn′,k∑
i=1

〈
X∗, Xn′,k

i

〉
x

〈
Y n,k+1
Rn,k+1

, Y n′,k
i

〉
y

+
Q

4π
〈X∗, 1〉x

〈
Y n,k+1
Rn,k+1

, 1
〉
y

−
Rn,k+1−1∑

j=1

[√
1− µ2 cos(ϕ)

〈
X∗,

dXn,k+1
j

dx

〉
x

〈
Y n,k+1
Rn,k+1

, Y n,k+1
j

〉
y

+
√

1− µ2 sin(ϕ)
〈
X∗, Xn,k+1

j

〉
x

〈
Y n,k+1
Rn,k+1

,
dY n,k+1

j

dy

〉
y

 (D.11a)

Solving for Y n,k+1
Rn,k+1

(y):

√
1− µ2 cos(ϕ)

〈
Xn,k+1
Rn,k+1

,
dXn,k+1

Rn,k+1

dx

〉
x

〈
Y ∗, Y n,k+1

Rn,k+1

〉
y

+
√

1− µ2 sin(ϕ)
〈
Xn,k+1
Rn,k+1

, Xn,k+1
Rn,k+1

〉
x

〈
Y ∗,

dY n,k+1
Rn,k+1

dy

〉
y

=
Σs

4π

N∑
n′=1

wn′

Rn′,k∑
i=1

〈
Xn,k+1
Rn,k+1

, Xn′,k
i

〉
x

〈
Y ∗, Y n′,k

i

〉
y

+
Q

4π

〈
Xn,k+1
Rn,k+1

, 1
〉
x
〈Y ∗, 1〉y
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−
Rn,k+1−1∑

j=1

[√
1− µ2 cos(ϕ)

〈
Xn,k+1
Rn,k+1

,
dXn,k+1

j

dx

〉
x

〈
Y ∗, Y n,k+1

j

〉
y

+
√

1− µ2 sin(ϕ)
〈
Xn,k+1
Rn,k+1

, Xn,k+1
j

〉
x

〈
Y ∗,

dY n,k+1
j

dy

〉
y

 (D.11b)

D.5 Parameterized Neutron Diffusion

This section presents PGD derivation of the parameterized version of the mono-energetic neu-

tron diffusion equation. For the N th enrichment, the solution is assumed to be:

φ(x, y,D,Σa, Q) =
N∑
i=1

Xi(x)Yi(y)Di(D)Si(Σa)Qi(Q) (D.12)

Solving for XN(x):

(〈
dX∗

dx
,
dXN

dx

〉
x

− X∗
dXN

dx

∣∣∣∣Ωx
0

)
αyN,Nα

D
N,Nα

Σa
N,Nα

Q
N,N + 〈X∗, XN〉x β

y
N,Nβ

D
N,Nβ

Σa
N,Nβ

Q
N,N

+ 〈X∗, XN〉x γ
y
N,Nγ

D
N,Nγ

Σa
N,Nγ

Q
N,N = 〈X∗, 1〉x δ

y
Nδ

D
Nδ

Σa
N δQN

−
N−1∑
j=1

[(〈
dX∗

dx
,
dXj

dx

〉
x

− X∗
dXj

dx

∣∣∣∣Ωx
0

)
αyN,jα

D
N,jα

Σa
N,jα

Q
N,j + 〈X∗, Xj〉x β

y
N,jβ

D
N,jβ

Σa
N,jβ

Q
N,j

+ 〈X∗, Xj〉x γ
y
N,jγ

D
N,jγ

Σa
N,jγ

Q
N,j

]
. (D.13a)

Solving for YN(y):

αxN,N 〈Y ∗, YN〉y α
D
N,Nα

Σa
N,Nα

Q
N,N + βxN,N

(〈
dY ∗

dy
,
dYN
dy

〉
y

− Y ∗
dYN
dy

∣∣∣∣Ωy
0

)
βDN,Nβ

Σa
N,Nβ

Q
N,N

+ γxN,N 〈Y ∗, YN〉y γ
D
N,Nγ

Σa
N,Nγ

Q
N,N = δxN 〈Y ∗, 1〉y δ

D
Nδ

Σa
N δQN

−
N−1∑
j=1

[
αxN,j 〈Y ∗, Yj〉y α

D
N,jα

Σa
N,jα

Q
N,j + βxN,j

(〈
dY ∗

dy
,
dYj
dy

〉
y

− Y ∗
dYj
dy

∣∣∣∣Ωy
0

)
βDN,jβ

Σa
N,jβ

Q
N,j

+γxN,j 〈Y ∗, Yj〉y γ
D
N,jγ

Σa
N,jγ

Q
N,j

]
. (D.13b)
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Solving for DN :

αxN,Nα
y
N,N 〈D

∗, DDN〉D α
Σa
N,Nα

Q
N,N + βxN,Nβ

y
N,N 〈D

∗, DDN〉D β
Σa
N,Nβ

Q
N,N

+ γxN,Nγ
y
N,N 〈D

∗,DN〉D γ
Σa
N,Nγ

Q
N,N = δxNδ

y
N 〈D

∗, 1〉D δ
Σa
N δQN

−
N−1∑
j=1

[
αxN,jα

y
N,j 〈D

∗, DDj〉D α
Σa
N,jα

Q
N,j + βxN,jβ

y
N,j 〈D

∗, DDj〉D β
Σa
N,jβ

Q
N,j

+γxN,jγ
y
N,j 〈D

∗,Dj〉D γ
Σa
N,jγ

Q
N,j

]
. (D.13c)

Solving fo SN :

αxN,Nα
y
N,Nα

D
N,N 〈S∗,SN〉Σa α

Q
N,N + βxN,Nβ

y
N,Nβ

D
N,N 〈S∗,SN〉Σa β

Q
N,N

+ γxN,Nγ
y
N,Nγ

D
N,N 〈S∗,ΣaSN〉Σa γ

Q
N,N = δxNδ

y
Nδ

D
N 〈S∗, 1〉Σa δ

Q
N

−
N−1∑
j=1

[
αxN,jα

y
N,jα

D
N,j 〈S∗,Sj〉Σa α

Q
N,j + βxN,jβ

y
N,jβ

D
N,j 〈S∗,Sj〉Σa β

Q
N,j

+γxN,jγ
y
N,jγ

D
N,j 〈S∗,ΣaSj〉Σa γ

Q
N,j

]
. (D.13d)

Solving for QN :

αxN,Nα
y
N,Nα

D
N,Nα

Σa
N,N 〈Q

∗,QN〉Q + βxN,Nβ
y
N,Nβ

D
N,Nβ

Σa
N,N 〈Q

∗,QN〉Q

+ γxN,Nγ
y
N,Nγ

D
N,Nγ

Σa
N,N 〈Q

∗,QN〉Q = δxNδ
y
Nδ

D
Nδ

Σa
N 〈Q

∗, Q〉Q

−
N−1∑
j=1

[
αxN,jα

y
N,jα

D
N,jα

Σa
N,j 〈Q

∗,Qj〉Q + βxN,jβ
y
N,jβ

D
N,jβ

Σa
N,j 〈Q

∗,Qj〉Q

+γxN,jγ
y
N,jγ

D
N,jγ

Σa
N,j 〈Q

∗,Qj〉Q
]
. (D.13e)

Where α, β, γ, and δ are coefficients defined as:

αxi,j =

〈
dXi

dx
,
dXj

dx

〉
x

− Xi
dXj

dx

∣∣∣∣Ωx
0

, βxi,j = γxi,j = 〈Xi, Xj〉x , δ
x
i = 〈Xi, 1〉x (D.14a)
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βyi,j =

〈
dYi
dy

,
dYj
dy

〉
y

− Yi
dYj
dy

∣∣∣∣Ωy
0

, αyi,j = γyi,j = 〈Yi, Yj〉y , δ
y
i = 〈Yi, 1〉y (D.14b)

αDi,j = βDi,j = 〈Di, DDj〉D , γDi,j = 〈Di,Dj〉D , δDi = 〈Di, 1〉D , (D.14c)

αΣa
i,j = βΣa

i,j = 〈Si,Sj〉Σa , γ
Σa
i,j = 〈Si,ΣaSj〉Σa , δ

Σa
i = 〈Si, 1〉Σa , (D.14d)

αQi,j = βQi,j = γQi,j = 〈Qi,Qj〉Q , δQi = 〈Qi, Q〉Q . (D.14e)
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APPENDIX E

SOLUTIONS TO SELECT PROBLEMS

This appendix is meant to show the solutions to select problems presented in the dissertation

that were not already disclosed. These results are not meant for analysis or draw any conclusions,

they are included for the sake of exposition.

(a) First manufactured solution (Equation (2.22a)) (b) First manufactured solution (Equation (2.22b))

Figure E.1: Visualization of both Poisson manufactured solutions

170



Figure E.2: Full-order (MOOSE) solution and difference from PGD solutions at 170 elements per
dimension, two-group two-region eigenvalue problem. Left column: group 1 flux. Right column:
group 2 flux. Top row: solution. Middle row: unshifted PGD difference. Bottom Row: shifted
PGD difference
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Figure E.3: Full-order (MOOSE) solution and difference from PGD solutions at 170 elements
per dimension, two-group two-region fixed-source problem. Left column: group 1 flux. Right
column: group 2 flux. Top row: solution. Middle row: PGD-MG difference. Bottom Row: PGD-
DE difference

172



Figure E.4: Full-order (MOOSE) solution and difference from PGD solutions at 136 elements per
dimension, 2-D IAEA multigroup problem. Left column: group 1 flux. Right column: group 2
flux. Top row: solution. Middle row: PGD-MG difference. Bottom Row: PGD-DE difference
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(a) Group 1 (b) Group 5 (c) Group 7

Figure E.5: Visualization of 3-D seven-group fixed-source problem with heterogeneous fuel region

(a) Group 1 (b) Group 5 (c) Group 7

Figure E.6: Visualization of 3-D seven-group fixed-source problem with homogeneous fuel region
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(a) Group 10

(b) Group 30

(c) Group 100

Figure E.7: Visualization of 145-group graphite block flux
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(a) S8, c = 1 (b) S8, c = 0.5

(c) S8, c = 0.1

Figure E.8: Visualization of scalar flux for isotropic scattering problem
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