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ABSTRACT

More and more heterogeneous devices are getting connected to the Internet, leading us to the

era of Internet of Things. However, this trend is hardly sustainable under today’s Internet, because

of the inefficiency of IP networking for user information and the potential long delay of cloud

services. To address these issues, information centric networking and edge computing have been

proposed in the literature. These two concepts naturally fit into each other, resulting in Informa-

tion Centric Edge, an emerging network architecture where heterogeneous devices are connected

mostly through wireless to nearby edge servers that have computation resources provisioned, and

their inter-networking is centered on user contents. With information centric edge, users can get

what they want faster. However, such network architecture also face challenges including limited

edge resources, strategic users, implementation and so on.

In this dissertation, we address these challenges of realizing Information Centric Edge by de-

signing and implementing systems and algorithms therein. To cope with the limited capacity of

edge servers, we study an dynamic service caching problem and propose an online algorithm with

provable worst-case performance guarantee. We also investigate a content caching problem that

calls for joint optimization of content placement, cache selection, and video version selection,

and present practical distributed algorithms that achieve close to optimal performance in imple-

mentation. To handle strategic users, we design a non-monetary mechanism via efficient cost

allocation which makes distributed individual optimization converge to the global optimum. The

same method is generalized to distribute revenue of a cyber-enabled manufacturing system to its

geo-distributed suppliers. Besides, we are building an Information Centric Edge testbed with a

programmable network stack for intelligent caching, routing, and scheduling algorithms to support

emerging virtual reality applications in the era of Internet of Things.
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1. INTRODUCTION

1.1 Background

Internet of Things (IoT) is turning from a vision to a reality. More and more heterogeneous

devices are getting connected to the Internet every day. Smart home, the concept where home

appliances such as refrigerators, thermometers, light bulbs become smart by connecting to the

Internet, has reached hundreds of millions of households [1]. As for public infrastructure, smart

grid renovates the electricity distribution network by integrating communication networks into the

utility grid. Turning our focus to manufacturing industry, cyber-enabled manufacturing has been

proposed to connect distributed manufacturing devices to a cloud platform to increase the efficiency

of manufacturing process. One key question remains as we enter the era of IoT: is today’s Internet

good enough to meet the needs of IoT users?

We think the answer to the above question is no based on the following two observations. First,

users care about the information they want instead of the IP address, although today’s Internet is

almost exclusively based on IP. Specifically, the dominant usage of Internet is world wide web,

or simply the Web. Information on the Web is identified by its universal resource locator (URL),

which includes a domain name part. To acquire certain information on the Web, we need domain

name service (DNS) to translate the domain name to an IP address of the server hosting the in-

formation. This indirection increases the complexity and decreases the efficiency of the network.

Second, today’s Internet heavily rely on cloud services, which can incur large delay since cloud

data centers are typically far away from the end users. Therefore, it is rather challenging to support

delay sensitive IoT applications in today’s Internet.

Fortunately, there are proposals addressing each of the two aforementioned issues. For the first

issue, information centric networking (ICN) has been proposed to build the network centered on

user demand. Unlike the current Internet architecture where IP is the thin waist, ICN argues that

the thin waist should be content chunks, i.e. the network should focus on delivering content chunks
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users need directly. In this way, user demand can be satisfied in a more direct and efficient fashion.

For the second issue, the concept of edge computing, also known as fog networking, cloudlets, etc.,

has been proposed to push cloud services to the edge of the network, which is closer to mobile users

and thus leads to less delay as well as less backhaul bandwidth usage. Therefore, better quality of

service (QoS) and quality of experience (QoE) can be brought to end users.

It is natural to see that these two concepts fit into each other, resulting in Information Cen-

tric Edge, an emerging network architecture where heterogeneous devices are connected mostly

through wireless to nearby edge servers that have computation resources provisioned, and their

inter-networking is centered on user contents. With information centric edge, users can get what

they want faster. In this dissertation, we would like to study the way of realizing Information

Centric Edge by designing and implementing systems and algorithms therein.

1.2 Challenges and Research Problems

There are quite a few challenges ahead in realizing Information Centric Edge. One of the

fundamental limitation of edge servers is that their capacity is rather limited compared to remote

data centers, since they have to be geographically distributed. For example, it is unreasonable to

assume an edge server would be able to host all cloud services or all contents users want. On the

other hand, user demand is ever changing and not always predictable. Therefore, edge servers need

to dynamically allocate their resources, or “cache” a subset of cloud services or user contents.

We identify two distinct types of caching in Information Centric Edge: service caching and

content caching. Service caching, also known as service migration, or moving functions, refers to

the scenario that cloud services, including their code, database, and state information, are down-

loaded and replicated at the edge server. On the other hand, content caching corresponds to dis-

semination of user contents e.g. video clips. We note that both are different from traditional data

caching (also known as page replacement) problem extensively studied in computer architecture

literature. Traditional data caching typically assumes all requested data are hot and thus cached

to minimize cache misses. However, for service caching, downloading a service usually costs

much more than simply forwarding a request. Hence, when to cache a service needs to be care-
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fully decided. It is of great interest to study optimal algorithms for online service caching. As for

content caching, whether to cache a particular content or not in a particular edge server, which is

the content placement problem, needs investigation, since empirically a lot contents will only be

requested for few times. Content placement has been extensively studied in the literature, while

often assuming the user demand is given. However, we note that in Information Centric Edge, the

decisions of content placement will affect and be affected by user decisions including which cache

to use (cache selection) and which content to request (content selection). These subproblems are

fundamentally intertwined and hence call for a joint optimization approach.

Another big challenge in Information Centric Edge is how to handle strategic users. Wireless

clients typically aim to maximize their own individual utilities, and they are not willing to share

private utility valuation truthfully. On the other hand, system designers would like to maximize the

total utility of the whole system. This conflict of interests raises an interesting question: Can we

make the Nash Equilibrium, where no individual user will deviate unilaterally, also optimal for the

whole system? Existing studies suggest the answer is yes with the help of certain pricing mecha-

nisms, such as auction or direct payment. However, we believe the monetary approach, although

reasonable in economics, can be difficult to realize in Information Centric Edge, due to lack of

monetary exchange infrastructure. A non-monetary approach would better fit Information Centric

Edge. To realize that, we borrow the idea of efficient cost allocation from managing multiple de-

partments in a large corporation. In the edge network, we can potentially allocate the total cost of

the system, such as the total delay of all clients, in an efficient way so as to induce the individual op-

timization to converge to the global optimum. Similarly, it could be possible to distribute revenue

to multiple individual entities in an efficient way to achieve global optimum through distributed

optimization. How to design and enforce such efficient cost allocation or revenue distribution rules

is an interesting research problem.

Besides, there is the challenge of implementation of Information Centric Edge, due to the well

known gap between simulations and real world systems. Existing testbeds often focuses on only

one or two layers of the whole network stack. In contrast, we would like to build an Information
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Centric Edge testbed with a programmable network stack so that we can experiment with intelligent

caching, routing, scheduling algorithms throughput the layers. One key research issue is: Can we

support emerging virtual reality (VR) applications that require high throughput and low latency

while providing high programmability?

Our dissertation attempts to shed lights on the answers to the proposed research problems to

address these big challenges. The rest of this dissertation is organized as follows. Chapter 2 and

Chapter 3 study the service caching problem and the content caching problem respectively. The

efficient cost allocation problem and the efficient revenue distribution problem are investigated

in Chapter 4 and Chapter 5 respectively. We present our Information Centric Edge testbed in

Chapter 6, and conclude the dissertation in Chapter 7.
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2. SERVICE CACHING AT THE EDGE*

Edge servers, which are small servers located close to mobile users, have the potential to greatly

reduce delay and backhaul traffic of mobile Internet applications by moving cloud services to the

edge of the network. Due to limited capacity of edge servers and dynamic request arrival, proper

service caching at the edge is essential to guarantee good performance. This chapter proposes a

tractable online algorithm called retrospective download with least-requested deletion (RED/LED)

that caches services dynamically without any assumptions on the arrival patterns of mobile applica-

tions. We evaluate the competitive ratio of our policy, which quantifies the worst-case performance

in comparison to an optimal offline policy. We prove that the competitive ratio of our policy is lin-

ear with the capacity of the edge server. We also show that no deterministic online policy can

achieve a competitive ratio that is asymptotically better than ours. Moreover, we prove that our

policy is scalable, in the sense that it only needs doubled capacity to achieve a constant competitive

ratio. The utility of our online policy is further evaluated on real-world traces. These trace-based

simulations demonstrate that our policy has better, or similar, performance compared to many

intelligent offline policies.

2.1 Introduction

Many emerging mobile applications rely on cloud computing technology to greatly expand the

capability of resource-constrained mobile devices. In a typical scenario, a mobile device sends a

request, such as a picture containing text in a foreign language, to a remote cloud, which is often

hosted by a remote data center. The remote cloud then generates a response, such as translations of

the text, using its massive computational power and storage. However, the long distance between

mobile devices and remote clouds can result in significant delay and severe burden on the back-

haul connection, which can limit the development of real-time and data-intensive applications. The

*Reprinted with permission from “RED/LED: An asymptotically optimal and scalable online algorithm for service
caching at the edge” by T. Zhao, I.-H. Hou, S. Wang, and K. S. Chan, IEEE J. Sel. Areas Commun., Copyright 2018
IEEE
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concept of edge computing, also known as cloudlets, fog computing, etc., has been proposed to

address this issue [2, 3, 4]. In edge computing, small edge servers are deployed close to mobile

users, such as at the locations of cellular base stations or Wi-Fi access points. These edge servers

can host a small number of popular services, and provide timely response to local user requests di-

rectly without communicating with remote clouds. Edge servers are not necessarily real “servers”.

They can be, for example, home Wi-Fi routers in smart home environment, as suggested in [5].

Edge servers have limited computational power and storage compared to remote clouds. Thus,

they can only “cache” a small number of services, out of all the available services hosted by the

remote cloud [6, 7]. In this chapter, we say that a service is cached at the edge server when the

entire set of code and data required for service execution has been downloaded from the remote

cloud to the edge server. The edge server can fully execute a cached service on its own, without

interacting with the remote cloud. Since the arrivals of service requests from mobile devices can

be highly dynamic, proper service caching at the edge is essential to guarantee good performance,

and it is challenging to find the optimal caching policy that determines which services to cache at

the edge server.

2.1.1 Motivation

While there have been studies on optimal service caching at the edge, most of them assume

either that the edge servers have reasonably good predictions about future requests [8, 9], or that the

arrivals of requests follow a pre-specified stochastic process [10, 11, 12, 13, 14]. These studies then

use predictions or stochastic models to determine the services that the edge servers should cache to

achieve the optimal average performance. However, newly emerging services can be challenging

to predict or model in advance. Besides, as suggested by a real-world trace of requests at the

cloud [15], the request arrival patterns can change frequently over time, which are difficult to timely

predict or model as a known stochastic process. In addition, predictions are generally imperfect.

Algorithms that rely on predictions or stochastic models can result in poor performance for these

systems. Further, many mission-critical systems require “worst-case” performance guarantees,

instead of “average” performance guarantees.
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In this chapter, we study online algorithms that determine which services to cache at the edge

dynamically without making any assumptions on the arrival patterns of requests. We focus on

deterministic policies since they have predictable system behavior and are generally more robust

in practice. We consider an edge server that can cache only a limited number of services. When

a request arrives but its service is not cached at the edge server, the edge server has two options:

It can either forward the request to the remote cloud for processing, or it can download and cache

the service so that it can directly serve the requests for this service in the future. Both options

have a cost, which can reflect the delay and the network bandwidth usage. We assume the cost

of downloading a service is larger than the cost of forwarding a request. This is motivated by the

fact that forwarding a request to a remote cloud for processing has a response time that is usually

within a second, as shown by the experimental results presented in [16]. Downloading a service,

which entails both downloading necessary files and setting up a virtual machine or container, takes

at least several seconds according to recent experimental studies [17, 18, 19].

We aim to design online algorithms that result in a small total cost, including the cost of for-

warding requests and downloading services, for any sequence of request arrivals. As online algo-

rithms have no knowledge about future arrivals, we evaluate the performance of an online policy

by its competitive ratio, defined as the largest possible ratio between the cost of the online pol-

icy and the minimum (optimal) offline cost, under any sequence of arrivals. While this problem

may seem to bear some similarities with the classic data caching problem, we note that the option

of forwarding a request, and the significant difference between the costs of forwarding a request

and downloading a service, make the problem of service caching fundamentally different from the

problem of data caching. In fact, as we will demonstrate in Section 2.9, the Belady’s algorithm, a

well-known optimal offline policy for data caching, performs poorly for service caching.

2.1.2 Main Contribution

We first focus on a homogeneous system where all services require the same amount of com-

putational power and storage, and they have the same forward cost as well as the same download
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cost.1 Using an observation of the optimal offline policy, we propose an online policy, retrospective

download with least-requested deletion (RED/LED), for service caching at the edge, which is easy

to implement in practice. We prove that the competitive ratio of our RED/LED policy only grows

linearly with the capacity of the edge server. We further prove that no deterministic online policy

can achieve a competitive ratio that is sublinear with the capacity of the edge server. Therefore, our

RED/LED policy indeed achieves the optimal asymptotic performance. Moreover, we prove that

our policy is scalable, in the sense that if the capacity of the edge server is doubled for RED/LED,

it can achieve a constant competitive ratio with regard to the optimal offline batch-download policy.

We then address several practical issues of RED/LED. We demonstrate that it can be imple-

mented as an algorithm with linear time complexity. We also propose an extension of RED/LED

for heterogeneous systems where different services may be associated with different costs and

require different amounts of edge-server resources.

We evaluate the performance of our RED/LED policy using real-world traces of service re-

quest arrivals. We compare our policy against a randomized online policy, the optimal offline

batch-download policy, and three other offline policies that correspond to solutions based on dy-

namic programming, stochastic optimization, and data caching respectively. We note that the time

complexity of the optimal offline algorithm is very high, and all the offline policies have complete

knowledge of all future arrivals. Each of the offline policies achieves the optimal performance

under some specific scenarios. Simulation results show that our policy achieves better, or at least

similar, performance compared to all these policies in both homogeneous and heterogeneous sys-

tems.

The rest of the chapter is organized as follows. Section 2.2 reviews related studies. Section

2.3 formally describes the service caching problem. Section 2.4 introduces our online policy based

on a property of the optimal offline policy. Section 2.5 derives the competitive ratio of our pol-

icy. Section 2.6 proves that no deterministic online policy can be asymptotically better than ours.

Section 2.7 shows the scalability of our policy. Section 2.8 addresses practical issues including het-

1The download cost is different from the forward cost.
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erogeneous systems and low complexity implementation. Section 2.9 compares our policy against

several others through trace-based simulations. Finally, Section 2.10 concludes the chapter.

2.2 Related Work

The dramatic increase in network traffic, particularly due to the proliferation of mobile devices

and Internet of Things (IoT), has made it critical to move some computing and storage jobs from

remote data centers to the edge of the network. There have been a number of architecture proposals

of edge computing in the literature [2, 3, 20, 21, 4, 22, 7]. The utility of edge computing has been

demonstrated by various prototypes [23, 24, 5]. Comprehensive surveys on this new paradigm

have been published recently [25, 26].

To address the challenge of managing limited resources of edge servers, some studies rely on

an accurate prediction of future requests. Tadrous et al. [8] have considered systems where one

can predict the popularity of services, so that edge servers can proactively download and replicate

popular services during off-peak hours. Llorca et al. [9] have studied the content placement prob-

lem and proposed an optimal offline policy. Pasteris et al. [27] have proposed an approximation

algorithm for multiple edge servers. Wang et al. [21] have proposed an online algorithm with poly-

nomial time complexity to minimize the long-term average cost. Yang et al. [28] have studied the

joint optimization of service placement and load dispatching. Unlike these existing studies, in this

chapter we investigate online policies which assume no knowledge about future requests.

Besides, there are many studies that employ stochastic optimization for service caching at the

edge. Amble et al. [10] have considered a system where request arrivals follow an independent

and identically distributed (i.i.d.) stochastic process with unknown distribution, and proposed a

stochastic control policy that maximizes the capacity region of the system. Borst et al. [12] have

proposed an algorithm for a static system where the popularity of services does not change over

time. On the other hand, Wang et al. [13] and Urgaonkar et al. [14] have considered dynamic

systems where request arrivals are modeled as a Markov process, and proposed solutions that

achieve the optimal long-term average performance. Qiu et al. [11] have employed Lyapunov

optimization to maximize the performance of edge servers. However, these solutions based on
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stochastic optimization cannot provide “worst-case” performance guarantees with regard to an

optimal offline policy. Our work, on the other hand, addresses such issues.

The problem of service caching at the edge bears some similarities with the classic data caching

problem in computer architecture. In the data caching problem, requests for data arrive sequen-

tially, and a “miss” occurs when the data is not stored in the cache. The requested data is then

downloaded, and a policy needs to decide which data to delete to minimize the total number of

misses. When one has complete knowledge of all future requests, the Belady’s algorithm [29]

achieves the optimal performance. As for online policies without any knowledge of future re-

quests, Sleator and Tarjan [30] have established a least recently used (LRU) policy that is optimal

among all deterministic policies. They have also showed that LRU has a constant competitive ratio

if its cache capacity is a constant factor of that of the optimal offline policy. Achlioptas et al. [31]

have studied the competitive ratios of randomized policies. Bansal et al. have investigated the

weighted case where the download costs vary for different data [32]. Despite the similarities, there

are notable differences between the data caching problem and the service caching problem. In the

data caching problem, one cache miss implies one download with some cost, and forwarding is

disallowed. However, in the service caching problem, forwarding is permitted and incurs a smaller

cost than downloading, and a policy needs to decide whether to download a service in addition to

which service to delete.

2.3 System Model

We consider an edge-cloud system as illustrated in Figure 2.1. An edge server and a back-

end cloud are connected through a backhaul connection. The edge server and the back-end cloud

jointly host a set S of services, numbered as S1, S2, . . . . The services in the system include face

detection, video streaming, translation, smart home services and so on [17, 5]. The back-end cloud

has massive capacity, and can host all services. On the other hand, the edge server has limited

capacity and can only cache K services. Without loss of generality, we assume that, when the

system starts, the edge server caches services S1, S2, . . . , SK .

Requests for services arrive at the edge server sequentially. Requests from different mobile

10



ڮଶݎଵݎ ଵܵڭ Forward ݎ௜: cost = 1
Download ௝ܵ: cost = ௄ܵܯ ॺ = { ଵܵ, ܵଶ, ڮ }

Figure 2.1: An illustration of the edge-cloud system. The back-end cloud can host all services
S, while the edge server can only cache a subset of size K. Requests can incur different costs
depending on which services are cached at the edge. Reprinted with permission from [33].

devices can arrive at and be processed by the edge server either on a first-come-first-served basis,

or based on some other scheduling mechanism using queues/buffers. We use rn ∈ S to denote the

service requested by the n-th request. If rn is cached by the edge server when the request arrives,

then the edge server can serve the request immediately without causing any significant cost. On

the other hand, if rn is not cached by the edge server, then the edge server has two choices: First, it

can forward this request to the back-end cloud for processing. This will cause some delay as well

as some traffic on the backhaul connection. We say that forwarding a request to the back-end cloud

incurs a cost of one unit. Second, the edge server can instead download and replicate the whole

service rn and serve the request. Downloading a service can cause much higher delay and more

traffic. Therefore, we say that each service download incurs a cost of M units, with M ≥ 1. In

practice, we can choose M as the ratio of the average delay of downloading to the average delay

of forwarding. On the other hand, since the edge server caches the service rn after the download,

it can then serve subsequent requests for rn without incurring any costs. The edge server can only

cache K services. Therefore, when it downloads a service, it also needs to delete a service from

its storage.

We aim to minimize the total cost of the system by intelligently reconfiguring the set of services

cached by the edge server. Intuitively, if we know that a service will have a lot of requests in

the near future, we should download this service so that all these requests only incur M units

of cost. Otherwise, we should simply forward all these requests to the back-end cloud without
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downloading the service, and pay one unit of cost for each request. In practice, however, we may

not have accurate prediction for future requests. In such cases, we need to rely on online policies

that assume no information about future requests.

Let OPT be the optimal offline policy that minimizes the total cost of the system, which has

full information about all future request arrivals. Let η be an online policy that makes its decision

solely based on past events. For a given sequence of request arrivals, r1, r2, . . . , let COPT be the

total cost of OPT, and Cη be the total cost of η. Note that the total costs, COPT and Cη, are

functions of the sequence r1, r2, . . . , but we omit the sequence to simplify the notation. There may

be multiple offline policies that achieve the minimum cost. In this case, we let OPT be one that

makes the most downloads among them. We evaluate the performance of an online policy η by its

competitive ratio, which is the largest possible value of Cη/COPT, over all possible sequences of

request arrivals.

Definition 1 (Competitive Ratio). An online policy η is said to be β-competitive, or have a com-

petitive ratio of β, if Cη ≤ βCOPT, for every possible sequence of request arrivals.

An online policy with a low competitive ratio has similar performance with the optimal offline

policy. Therefore, we aim to develop an online policy with a low competitive ratio, as well as a

lower bound of competitive ratios for all online policies.

For brevity, we say that a policy caches a service if, under the said policy, the edge server

caches the service. To facilitate the analysis, let ζ(n) ⊂ S denote the subset of services cached

by a policy ζ , online or offline, after the n-th arrival, for a given sequence of request arrivals,

r1, r2, . . . . Again, note that ζ(n) is a function of the sequence of arrivals. For a service Si, we use

xi(n) := 1{rn = Si} to indicate whether or not the n-th request is for this service. For brevity,

let [n,m] denote the inclusive time interval between the n-th and the m-th arrival.2 Therefore,∑m
l=n xi(l) is the number of requests for Si during [n,m].

Before proceeding to the next section, we note that the system model in this section is a ho-

2Throughout this chapter, [n,m] = {n, n + 1, . . . ,m}. Time refers to indices of request arrivals, which are not
necessarily physical time.
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mogeneous one: All services have the same cost of forwarding requests, and the same cost of

downloading. Moreover, all services require the same amount of edge-server resources. While our

analytical results mainly focus on the homogeneous system, we will show that our policy can be

easily extended to heterogeneous systems in Section 2.8, and it works very well in evaluation in

Section 2.9.

2.4 The RED/LED Online Policy

In this section, we first establish a basic property of OPT, and then use it to develop our online

policy RED/LED.

2.4.1 A Basic Property of OPT

Theorem 1. Suppose we are given a sequence r1, r2, . . . , and OPT(n), which is the subset of

services cached by OPT after the n-th arrival. If there exists an integer m > n, a service Si /∈

OPT(n), and another service Sj ∈ OPT(n) such that:

m∑
l=n+1

xi(l) ≥
m∑

l=n+1

xj(l) + 2M, (2.1)

then OPT downloads at least one service during [n+ 1,m].

Time

ଵ ଶ ଵ ଶ
After the ݊-th arrival,OPT ݊ = { ଵܵ, ܵଶ}

ଶ ଷ ଶ ଷ
Figure 2.2: An example illustrating operations of OPT and RED/LED. The first n arrivals are
S1, S2, . . . , S1, S2, and the next 4M arrivals are S2, S3, . . . , S2, S3. Reprinted with permission
from [33].

Before proving Theorem 1, we first use Fig. 2.2 for illustration. Suppose the first n arrivals are
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S1, S2, . . . , S1, S2, and the edge server can cache two services. After the n-th arrival, OPT caches

S1 and S2. Between the (n+ 1)-th arrival and the (n+ 4M)-th arrivals, we have 2M requests for

S3 and no requests for S1, that is,
∑n+4M

l=n+1 x1(l) = 0, and
∑n+4M

l=n+1 x3(l) = 2M . Theorem 1 then

states that OPT downloads at least one service during [n+ 1, n+ 4M ]. Note that Theorem 1 does

not specify which service to download, and which service to delete from the edge server.

Proof of Theorem 1. We now prove Theorem 1 by contradiction. Suppose OPT does not download

any service, and therefore does not delete any service, during [n + 1,m]. That is, OPT(l) =

OPT(n), for all n+ 1 ≤ l ≤ m.

We construct a different policy ξ as follows: ξ caches the same subset of services as OPT

before the n-th arrival and after the (m + 1)-th arrival, that is, ξ(l) = OPT(l), for all l ≤ n,

and all l ≥ m + 1. After the n-th arrival, ξ downloads Si and deletes Sj so that ξ(n + 1) =

OPT(n) \ {Sj}∪ {Si}. After the m-th arrival, ξ downloads Sj and deletes Si, and then follows the

same decisions that OPT makes so that ξ(m+ 1) = OPT(m+ 1).

We now compare the costs of ξ and OPT. Since ξ and OPT are the same before the n-th arrival

and after the m-th arrival, they incur the same amount of costs in these two durations. Between the

n-th arrival and the m-th arrival, ξ downloads two services and OPT downloads none. Therefore, ξ

needs to pay 2M units of cost. Meanwhile, ξ needs to pay one unit cost for each request for Sj , and

there are
∑m

l=n+1 xj(l) of them, while OPT needs to pay one unit cost for each of the
∑m

l=n+1 xi(l)

requests for Si. The two policies incur the same amount of costs for all other requests. In summary,

we have:

Cξ = COPT + 2M +
m∑

l=n+1

xj(l)−
m∑

l=n+1

xi(l) ≤ COPT,

where the last inequality follows by (2.1). Therefore, ξ also minimizes the total cost. Moreover,

ξ makes two more downloads than OPT. Recall that OPT is defined as the policy that makes the

most downloads among all policies with minimum cost. The existence of ξ therefore contradicts

with assumptions of OPT.
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2.4.2 The RED/LED Online Policy

We now introduce our online policy. The policy needs to consist of two parts: deciding whether

to download a service, and, when a download occurs, deciding which service to delete from the

edge server. We propose the retrospective download with least-requested deletion (RED/LED)

policy that uses a retrospective download (RED) policy for the first part, and a least-requested

deletion (LED) policy for the second part. We use RL(n) to denote the subset of services cached

by RED/LED after the n-th request arrival.

RED is used to determine whether to download a service, and is formally defined as follows:

Definition 2 (RED). When a request rn = Si /∈ RL(n−1) arrives, RED downloads and replicates

Si at the edge server if there exists an integer τ and a service Sj such that for all n−τ ≤ l ≤ n−1,

Sj ∈ RL(l) and Si /∈ RL(l), and

n∑
l=n−τ

xi(l) ≥
n∑

l=n−τ

xj(l) + 2M. (2.2)

The intuition of RED comes from Theorem 1. Suppose Sj ∈ OPT(n− τ), Si /∈ OPT(n− τ),

and (2.2) holds. Then Theorem 1 states that OPT downloads at least one service between the

(n − τ)-th arrival and the n-th arrival. RED then downloads Si when, in retrospect, it finds OPT

would have already downloaded a service.

When RED decides to download a service, we need to choose a service to delete from the edge

server. We propose a least-requested deletion (LED) policy as follows:

Definition 3 (LED). Suppose the edge server decides to download a service at the n-th arrival.

For each service Si currently cached by the edge server, let τi be the smallest integer such that

there are at least 2M requests for Si in the past τi arrivals, that is,
∑n

l=n−τi
xi(l) ≥ 2M . LED

deletes the service with the largest τi.

A service with larger τi needs to go further back in time to find at least 2M requests. LED

therefore deletes the service that is least requested starting from n− τi.
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RED/LED uses RED to decide whether to download a service, and LED to decide which

service to delete. We use Fig. 2.2 to illustrate the operation of RED/LED. Suppose RL(n) =

{S1, S2}, that is, RED/LED caches S1 and S2 after the n-th arrival. At the (n + 4M)-th arrival,

we find that
∑n+4M

l=n+1 x3(l) = 2M ≥
∑n+4M

l=n+1 x1(l) + 2M , and RED decides to download S3 at the

(n + 4M)-th arrival. Meanwhile, during [n + 1, n + 4M ], there are 2M requests for S2 and none

for S1. We then have τ1 > τ2, and LED decides to delete S1 to accommodate S3.

2.5 The Competitive Ratio of RED/LED

This section establishes the competitive ratio of RED/LED by proving the following theorem:

Theorem 2. RED/ LED is 10K-competitive, whereK is the number of services that can be cached

by the edge server.

2.5.1 Overview of the Proof

We will compare the performance of RED/LED and OPT. Given OPT and the arrival sequence,

we can divide the arrival sequence into frames, [t1 + 1, t2], [t2 + 1, t3], . . . , so that OPT downloads

services only at the beginning of frames, i.e., after the t1-th, t2-th, . . . , arrivals. Before the first

download under OPT, there must be no download under RED/LED due to its retrospective nature.

Therefore, RED/LED and OPT behave the same during [1, t1], and below we will focus on the

performance in frames [t1 + 1, t2], [t2 + 1, t3], . . . .

Time

ଵ ଶ ଵ ଶ
1st frame 

begins

RED/LED

downloads ܵଷ
ଶ ଷ ଶ ଷ

2nd frame 

begins

ܯߩʹ requests 

for ܵଷʹሺͳ − ܯሻߩ
requests for ܵଷ

Figure 2.3: An example for dividing the costs into frames. Reprinted with permission from [33].

16



We will define the costs of OPT and RED/LED in each frame. We define the cost of OPT in a

frame as the sum of the download cost at the beginning of the frame and all the costs of forwarding

requests to the back-end cloud during the frame. On the other hand, it can be challenging to

define the cost of RED/LED in each frame properly. Consider the example in Fig. 2.3. RED/LED

downloads S3, and incurs M units of download cost, shortly after the second frame begins. The

decision to download S3 actually involves many requests in the first frame. It is then unreasonable

to count all the M units of download cost against the second frame. Instead, we separate the M

units of download cost as follows: Suppose there are only 2ρM , where ρ < 1, requests for S3 in

the second frame when RED/LED downloads it, we say that the download is a partial download

of fraction ρ, and only incurs ρM units of cost. At the same time, another partial download of

fraction (1 − ρ) occurs at the end of the first frame, and incurs (1 − ρ)M units of cost. This

separation does not change the total cost of RED/LED. To further simplify the notation in the next

subsection, we say that, at the end of a frame, all services not cached by RED/LED have a partial

download, possibly with fraction 0. The cost of RED/LED in a frame will then consist of all the

download costs, including those from partial downloads, and all the costs of forwarding requests

to the back-end cloud, in this frame.

Below, we will calculate the costs of OPT and RED/LED in each frame, and prove Theorem 2

by showing that RED/LED incurs at most 10K times as much cost as OPT in each frame.

2.5.2 Costs in a Frame

Without loss of generality, we calculate the costs in a frame [tg + 1, tg+1]. We use COPT(g) and

CRL(g) to denote the costs of OPT and RED/LED in this frame, respectively.3

We first consider a service Si ∈ OPT(tg + 1). In the frame, let Ei ∈ Z be the number of times

RED/LED downloads Si, and Di ∈ Z be the number of times RED/LED deletes Si.4 Note we

have Di ≥ Ei − 1, as a service needs to be deleted first in order to be downloaded again. Let fi,z

be the number of requests for Si that RED/LED forwards to the back-end cloud within the z-th

3There can be partial downloads of services under RED/LED during [1, t1]. In this case, CRL ≤ 1.5COPT during
[1, t1] and the proof is a special case of the latter proof.

4Ei includes partial downloads and each partial download counts as one.
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interval of Si not being cached at the edge server, i.e., after the previous deletion and before the

next download of Si, in this frame. Fig. 2.4 illustrates an example of the downloads and deletions

of Si in a frame, as well as the definition of fi,z. Si then incurs at most

EiM +
∑
z

fi,z (2.3)

units of cost under RED/LED.

Time ௜݂,ଵ requests for ௜ܵ

1st download of ௜ܵ
(possibly a partial one)

1st deletion 

of ௜ܵ
௜ܵ א RLሺ݊ሻ

௜݂,ଶ ≥  requests	ܯʹ

for ௜ܵ

2nd download 

of ௜ܵ
௜ܵ א RLሺ݊ሻ

௜݂,ா೔ requests for ௜ܵ

Last deletion 

of ௜ܵ Last download of ௜ܵ
(possibly a partial one) 

Beginning of the frame End of the frame

௜݂,ா೔ିଵ ≥ ܯʹ requests 

for ௜ܵ

ሺܧ௜−ͳሻth

download of ௜ܵ
௜ܵ ב RLሺ݊ሻ ௜ܵ ב RLሺ݊ሻ ௜ܵ ב RLሺ݊ሻ ௜ܵ ב RLሺ݊ሻ

ሺܧ௜−ʹሻth

deletion of ௜ܵ

Figure 2.4: An example of the downloads and deletions of Si in a frame. Reprinted with permission
from [33].

On the other hand, we have the following lemma for OPT:

Lemma 1. Suppose there exist integers n < m and a service Si such that for all n ≤ l ≤ m,

OPT(l) = OPT(n), Si ∈ OPT(l), and Si /∈ RL(l), then the number of requests that OPT forwards

to the back-end cloud during [n,m] is at least
∑m

l=n xi(l)− 4M .

Proof. See Appendix A.1.

By Lemma 1, if fi,z > 4M for some i, z, then during the time of these fi,z requests for Si,

OPT forwards at least fi,z − 4M requests to the back-end cloud, and incurs at least fi,z − 4M

units of cost. Apply this argument for all z, and we have COPT(g) ≥
∑

z(fi,z − 4M)+ + M ,

where x+ := max{0, x}. The last term M is the download cost at the beginning of the frame. Let

SOPT := {i ∈ Z | Si ∈ OPT(tg + 1)} denote the set of indices of services that are cached by OPT
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in the g-th frame. We now have the first bound on COPT(g):

COPT(g) ≥ max
i∈SOPT

Ei∑
z=1

(fi,z − 4M)+ +M

≥ max
i∈SOPT

(
Ei∑
z=1

fi,z − 4MEi

)
+M =: B1. (2.4)

Next, we consider the deletions of Si. We have the following lemma for OPT.

Lemma 2. Suppose RED/ LED deletes a service Si at the n-th arrival and at the m-th arrival,

n < m, and for all n ≤ l ≤ m, OPT(l) = OPT(m), then OPT forwards at least 2M requests to

the back-end cloud during [n,m].

Proof. See Appendix A.2.

By Lemma 2, for every z > 1, OPT forwards at least 2M requests between the (z − 1)-th

deletion and the z-th deletion of Si. This gives us the second bound on COPT(g):

COPT(g) ≥ max
i∈SOPT

2M(Di − 1) +M

≥ max
i∈SOPT

2MEi − 3M =: B2. (2.5)

Finally, we consider a service Sj /∈ OPT(tg + 1). Let S∁
OPT := {j ∈ Z | Sj ∈ S \OPT(tg + 1)}

denote the set of indices of services that are not cached by OPT in the g-th frame. Suppose there

areAj requests for Sj in this frame. OPT needs to forward all these requests to the back-end cloud,

for all Sj /∈ OPT(tg + 1), which gives us the third bound on COPT(g):

COPT(g) ≥
∑

j∈S∁
OPT

Aj +M =: B3. (2.6)

On the other hand, RED/LED might either forward or download for each request for Sj . With

the concept of partial download, each request for Sj incurs a download cost of at most M
2M

= 0.5

in proportion, since at least 2M requests for Sj in retrospect are needed for RED to make one
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download of Sj . Besides, one request incurs at most one unit of forward cost. Hence, Aj requests

for Sj incur at most

(1 + 0.5)Aj = 1.5Aj (2.7)

units of cost.

Combining (2.3) and (2.7) gives us a bound on CRL(g):

CRL(g) ≤
∑

i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPT

1.5Aj (2.8)

We are now ready to prove Theorem 2.

Proof of Theorem 2.

CRL(g) ≤
∑

i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPT

1.5Aj

≤ K

max
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPT

1.5Aj


≤ K

max
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPT

6.5Aj


= K(B1 + 2.5B2 + 6.5B3) ≤ 10KCOPT(g),

for every frame.

2.6 Lower Bound of the Competitive Ratio

In this section, we prove that the competitive ratio of any deterministic online policy is at least

K. Since the competitive ratio of RED/LED is 10K = Θ(K), this implies that RED/LED is

asymptotically optimal among all deterministic online policies with respect to K, i.e. RED/LED

performs at most a constant factor worse than the best deterministic online policy for large K.

Theorem 3. The competitive ratio of any deterministic online policy is at least K.
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Proof. Given a deterministic online policy η, we construct a sequence of arrivals as follows: When

the system starts, the first N1 arrivals are all requests for a service Z1 /∈ {S1, S2, . . . , SK}. Recall

that the edge server caches services {S1, S2, . . . , SK} when the system starts. Therefore, the ser-

vice Z1 is not initially cached by the edge server. If η never downloads Z1, then we choose N1 to

be arbitrarily large, and the system ends afterN1 arrivals of Z1. In this case, OPT can download Z1

at the first arrival, and only incurs a cost ofM , while η incurs a cost ofN1. The competitive ratio of

η is then N1

M
, which can be made arbitrarily large. From now on, we can assume that η downloads

Z1 after a finite number of requests for Z1, and choose the value of N1 so that η downloads Z1, and

deletes a service, after N1 arrivals of Z1. Let Z2 ∈ {S1, S2, . . . , SK} be the service that η deletes.

Time

downloads , 

and deletes 

Requests for Requests for 

downloads , 

and deletes 

Requests for 

downloads , 

and deletes 

Figure 2.5: An example for the proof of Theorem 3. Reprinted with permission from [33].

We construct the remaining of the sequence of arrivals iteratively: For all k = 2, 3, . . . , K,

there are Nk requests for service Zk after the first
∑k−1

l=1 Nl arrivals. If η never downloads Zk, we

can make the competitive ratio arbitrarily large by choosing Nk to be arbitrarily large. Therefore,

we can assume that η downloads Zk after a finite number of requests for Zk, and choose Nk to be

that number. Let Zk+1 ∈ {S1, S2, . . . , SK , Z1} be the service that η deletes when it downloads Zk.

The system ends after the last NK requests for ZK . Fig. 2.5 illustrates such a sequence.

By the construction of our sequence, η makes K downloads and therefore incurs a cost of at

least KM . On the other hand, there are at most K different services among {S1, S2, . . . , SK , Z1}

that have any requests in this sequence. Therefore, at least one service in {S1, S2, . . . , SK} does

not have any requests. Let Z∗ be that service. An offline policy can then download Z1 and delete

Z∗ when the system starts. This only incurs a cost of M , as all subsequent requests are directly
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served by the edge server. Therefore, the competitive ratio is at least KM
M

= K.

2.7 Scalability of RED/LED

Theorem 3 describes a rather pessimistic result: the competitive ratio of any deterministic on-

line policy at best increases with the capacity of the edge server. In this section, we consider

improving the scalability of online policies by provisioning additional capacity to the edge server.

We show that, by doubling the capacity of the edge server, our RED/LED policy achieves a con-

stant relative cost in comparison with the optimal offline batch-download policy, which will be

defined below.

2.7.1 Definitions

Definition 4 (Batch-download policy). A policy is said to be a batch-download policy if, whenever

it makes a download, it downloads K services to the edge server, and incurs a download cost of

KM .

Definition 5 (OPTb). A policy is an optimal offline batch-download policy and denoted by OPTb, if

it minimizes the total cost of the system under any sequence of request arrivals, with full knowledge

of the request sequence, among all batch-download policies.

Obviously, OPTb cannot be better than OPT. However, it is indeed OPT in the special case

whereK = 1. Moreover, as we will show in Section 2.7.3, there exists a polynomial time algorithm

for finding OPTb, and our trace-based simulations in Section 2.9 suggest that OPTb has similar

performance as OPT in realistic settings.

We now introduce another definition of competitive ratio that takes into account the possibility

of increasing the capacity of the edge server for online policies. For fair comparison under different

capacities, we assume when the system starts, both edge servers cache “pseudo” services that have

no request arrivals.

Definition 6. An online policy η is said to be (α, β)-OPTb-competitive, if Cη ≤ βCOPTb for ev-

ery possible sequence of request arrivals, where Cη and COPTb is the total cost of η and OPTb

respectively, and the capacity of the edge server under η is α times of that under OPTb.
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2.7.2 Competitive Ratio of RED/LED With Additional Capacity

Theorem 4. RED/ LED is (2, 10)-OPTb-competitive.

Throughout this section below, we assume RED/LED operates on an edge server with capacity

2K, while OPTb operates on an edge server with capacity K.

Similar to Section 2.5, we shall divide the arrival sequence into frames so that OPTb downloads

services only at the beginning of frames. We can assume the first frame always starts before any

request arrival, since otherwise it does not increase the cost of OPTb by moving its first download

to the very beginning.5 Then we compare the costs of RED/LED and OPTb in each frame. In the

g-th frame, first consider a service Si that is cached by OPTb. Recall that
∑m

l=n xi(l) is the number

of requests for Si during [n,m]. We have the following lemma for OPTb.

Lemma 3. Suppose there exist integers n < m such that for all n ≤ l ≤ m, OPTb(l) = OPTb(n),

and Si ∈ OPTb(l), but Si /∈ RL(l), then the number of requests that OPTb forwards to the back-

end cloud during [n,m] is at least

K

(
m∑
l=n

xi(l)− 4M

)
. (2.9)

Proof. See Appendix A.3.

Recall that Ei (resp. Di) is the number of times RED/LED downloads (resp. deletes) Si in

the frame, and fi,z is the number of requests for Si that RED/LED forwards to the back-end cloud

within the z-th interval of Si not being cached at the edge server in this frame. By Lemma 3, OPTb

forwards at least K(fi,z − 4M) requests to the back-end cloud. Summing up for all z, we have the

first bound on the cost of OPTb in this frame, COPTb(g), as follows:

5If there is no download under OPTb, then CRL ≤ 1.5COPTb, and the proof is a special case of the later proof.
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COPTb(g) ≥ max
i∈SOPTb

Ei∑
z=1

[K(fi,z − 4M)]+ +KM

≥ max
i∈SOPTb

(
Ei∑
z=1

Kfi,z − 4KMEi

)
+KM =: B′

1, (2.10)

where SOPTb := {i ∈ Z | Si ∈ OPTb(tg + 1)} is the set of indices of services that are cached by

OPTb in the g-th frame. Note that B′
1 has a factor of K compared with B1 in (2.4).

Next, consider the deletions of Si under RED/LED. We have the following lemma:

Lemma 4. Suppose RED/ LED deletes a service Si at the n-th arrival and at the m-th arrival,

n < m, and for all n ≤ l ≤ m, OPTb(l) = OPTb(m), then OPTb forwards at least 2KM

requests to the back-end cloud during [n,m].

Proof. See Appendix A.4.

By Lemma 4, between each two consecutive deletions of Si, OPTb needs to forward at least

2KM requests. Therefore, we obtain the second bound on COPTb(g) as follows:

COPTb(g) ≥ max
i∈SOPTb

2KM(Di − 1) +KM

≥ max
i∈SOPTb

2KMEi − 3KM =: B′
2. (2.11)

Again, note the factor of K in B′
2 due to the fact that RED/LED with double capacity can cache K

more services than OPTb.

Finally, we consider a service Sj /∈ OPTb(tg+1). Let S∁
OPTb := {j ∈ Z|Sj ∈ S\OPTb(tg+1)}

denote the set of indices of services that are not cached by OPTb in the g-th frame. Recall Aj is the

number of requests for Sj in this frame. OPTb needs to forward all these requests to the back-end

cloud, for all Sj /∈ OPTb, which gives us the third bound on COPTb(g):

COPTb(g) ≥
∑

j∈S∁
OPTb

Aj +KM =: B′
3.
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On the other hand, RED/LED downloads Sj at most Aj

2M
times. Sj then at most incurs 1.5Aj

units of cost. Adding the costs of downloading and forwarding for all Si, we have a bound on the

cost of RED/LED in the frame, CRL(g):

CRL(g) ≤
∑

i∈SOPTb

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPTb

1.5Aj (2.12)

We are now ready to prove Theorem 4.

Proof of Theorem 4.

CRL(g) ≤
∑

i∈SOPTb

(
EiM +

∑
z

fi,z

)
+
∑

j∈S∁
OPTb

1.5Aj

≤ K

[
max
i∈SOPTb

(
EiM +

∑
z

fi,z

)]
+
∑

j∈S∁
OPTb

1.5Aj

≤ K

[
max
i∈SOPTb

(
EiM +

∑
z

fi,z

)]
+
∑

j∈S∁
OPTb

6.5Aj

= B′
1 + 2.5B′

2 + 6.5B′
3 ≤ 10COPTb(g),

for every frame.

Theorem 4 demonstrates that RED/LED is indeed scalable, in the sense that it only needs

doubled capacity to achieve a constant competitive ratio.

2.7.3 Implementation of OPTb

OPTb allows polynomial time implementation by dynamic programming. Note that once we

know when OPTb makes the downloads, each download cost is a constant KM , and OPTb will

download the topK popular services between two consecutive downloads to minimize the forward

cost, which is then equal to the number of requests from those non-top-K services. Specifically,

let C(m) be the minimum total cost with batch download for a sequence of m requests. We set

C(0) = 0. Suppose the last download occurs after the n-th arrival, then the total cost C(m) is
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C(m) = C(n) + KM + f(n,m), where f(n,m) is the number of requests from the non-top-K

services during [n+1,m]. If there is no download at all, thenC(m) =
∑m

l=1 1{rl /∈ {S1, . . . , SK}}

is the number of requests whose services are not cached in the beginning. Therefore, the dynamic

programming recursion is:

C(m) = min


min0≤n<mC(n) +KM + f(n,m),∑m

l=1 1{rl /∈ {S1, . . . , SK}}.

For a sequence of N requests, it is easy to check the time complexity is at most O(N2(N +

|S| log |S|)), where |S| is the total number of services in the system.

2.8 Practical Issues

2.8.1 Extensions to Heterogeneous Systems

Our analysis so far has assumed that all services are homogeneous. In practice, however, some

services are very sensitive to delays, while others are not. Different services also require different

amounts of edge-server resources and incur different download costs. We now discuss how to

address these heterogeneous features.

We model the heterogeneous features as follows: Forwarding a request for Si to the back-end

cloud incurs a cost of Fi, and downloading the service Si to the edge server incurs a cost of Mi,

with Mi ≥ Fi > 0. Each service Si requires Wi > 0 units of edge-server resources, and the edge

server only hasK units of resources. Therefore, if the edge server caches a subset T of services, we

then have
∑

i:Si∈TWi ≤ K. Our previous analysis corresponds to the special case where Fi ≡ 1,

Mi ≡M , and Wi ≡ 1.

We have the following theorem for OPT in heterogeneous systems:

Theorem 5. Suppose we are given a sequence r1, r2, . . . , and OPT(n), which is the subset of

services cached by OPT after the n-th arrival. If there exists an integer m > n, a service Si /∈
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OPT(n), and another service Sj ∈ OPT(n) with Wj ≥ Wi such that:

m∑
l=n+1

Fixi(l) ≥
m∑

l=n+1

Fjxj(l) +Mi +Mj, (2.13)

then OPT downloads at least one service during [n+ 1,m].

Proof. The proof is virtually the same as that of Theorem 1.

With the intuition provided by Theorem 5, we can modify RED and LED as follows:

Definition 7. When a request rn = Si /∈ RL(n− 1) arrives, RED downloads and replicates Si at

the edge server if there exists an integer τ and a service Sj such that for all n − τ ≤ l ≤ n − 1,

Sj ∈ RL(l) and Si /∈ RL(l), and

n∑
l=n−τ

Fixi(l) ≥
n∑

l=n−τ

Fjxj(l) +Mi +Mj. (2.14)

Definition 8. Suppose the edge server decides to download a service at the n-th arrival. For each

service Si currently cached by the edge server, let τi be the smallest integer such that
∑n

l=n−τi
Fixi(l) ≥

2Mi. LED sorts all cached services in descending order of τi, and deletes services in this order

until there are enough resources to accommodate the new service.

2.8.2 Implementation and Complexity

This subsection discusses the implementation and complexity of RED/LED. We focus on the

homogeneous system to simplify the notation. However, it is straightforward to extend the imple-

mentation for heterogeneous systems.

We first discuss the implementation of the retrospective download (RED) policy. For all Si ∈

RL(n− 1) and Sj /∈ RL(n− 1), let Sτ := {τ ∈ Z+ |Si ∈ RL(l), Sj /∈ RL(l),∀l ∈ [n− τ, n− 1]},

and define

bij(n) :=

[
max
τ∈Sτ

n∑
l=n−τ

xj(l)−
n∑

l=n−τ

xi(l)

]+
.
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By the definition of RED, a service Sj will be downloaded at the n-th arrival if bij(n) ≥ 2M ,

for some Si ∈ RL(n − 1). Finding the value of bij(n) can be transformed into the well-known

maximum subarray problem as follows: Construct a sequence of integers {an} such that an = 1 if

xj(n) = 1, an = −1 if xi(n) = 1, and an = 0, otherwise. We then have

bij(n) =

[
max
τ∈Sτ

n∑
l=n−τ

al

]+
,

which can be computed easily as follows: If service Si is downloaded at the n-th arrival, set

bij(n) = 0, for all j. Otherwise, bij(n) = [bij(n− 1) + xj(n)− xi(n)]+.

Next, we discuss the implementation of LED. When RED/LED decides to download a service,

LED needs to compute τi for all services Si cached by RED/LED, where τi is chosen so that there

are 2M requests for Si in the last τi requests. In order to obtain τi, each service can maintain the

arrival times of its last 2M requests, which can be easily done by using a queue of size 2M to store

the arrival times of past requests.

It is straightforward to extend the above discussions for heterogeneous systems. The complete

pseudocode of RED/LED for heterogeneous systems is shown in Algorithm 1. It is easy to check

that the time complexity of RED/LED isO(|S|) per request for homogeneous systems andO(K|S|)

per request for heterogeneous systems, where |S| is the total number of services in the system.

The space complexity is O(|S|2). Even when the number of unique services is as large as 104,

the memory footprint of RED/LED is only about 400MB, which is easily manageable for edge

servers.

2.9 Trace-Based Simulations

In this section, we compare the performance of RED/LED against OPTb, three other offline

policies, and one online policy, all using real-world data traces.
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Algorithm 1 RED/LED for Heterogeneous Systems
1: bij ← 0,∀i, j
2: n← 0
3: Initialize a queue, qi, with d2Mi

Fi
e elements of 0, ∀i

4: while a new request arrives do
5: Suppose the request is for service i∗

6: n← n+ 1
7: Push n into qi∗ , and pop out an element
8: if i∗ ∈ RL(n− 1) then
9: Serve this request at the edge server

10: for j /∈ RL(n− 1) do
11: bi∗j ← (bi∗j − Fi∗)

+

12: else
13: c← False // whether to cache i∗

14: for j ∈ RL(n− 1) do
15: bji∗ ← bji∗ + Fi∗

16: if bji∗ ≥Mj +Mi∗ and Wi∗ ≤ K then
17: c← True
18: if c then
19: τj ← n− (head of qj),∀j ∈ RL(n− 1)
20: repeat
21: Delete j in descending order of τj
22: until there are enough resources for i∗

23: Download i∗

24: bi∗j ← 0,∀j
25: for j that has just been deleted do
26: bij ← 0, ∀i
27: else
28: Forward this request to the back-end cloud

2.9.1 Overview of the Trace

We use a data set from a Google cluster [15] to obtain the sequences of service requests.6

This data set registers more than three million request arrivals over seven hours, and the average

inter-arrival time is about 7ms. Each request has a “ParentID” that identifies its service. In this

data set, there are 9,218 unique services. The most popular service has 208,306 requests, while

5,150 services each only have one request. In all the simulations, we partition the data set into ten

6We are not aware of a public data set from deployed edge servers yet.
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non-overlapping parts, and run policies on these ten parts individually. We then report the average

performance of these ten parts.

2.9.2 Baseline Policies

In addition to RED/LED and OPTb, we also implement three different offline policies and one

online policy. The three offline policies are derived from optimal solutions based on data caching,

stochastic optimization, and dynamic programming, respectively. We describe the implementa-

tions of these policies for both homogeneous systems and heterogeneous systems.

Belady Modified. Belady’s algorithm is known to be the optimal offline solution to the data

caching problem in computer architecture. It minimizes cache misses by swapping in a new item

and deleting the item which will be used in the furthest future. To adopt it in the service caching

scenario, we make a small modification: Instead of always downloading a service that is not cached

by the edge server, we forward the request when the next occurrence of the requested service is

further in the future than those of existing edge services.7 With this modification, our version of

Belady’s algorithm takes advantage of the possibility of forwarding without downloading. Belady

Modified then achieves the optimal performance in the special case whereM = 1 for homogeneous

systems. For heterogeneous systems, Belady Modified keeps deleting services whose next request

is furthest in the future until it has enough resources to accommodate the new service.

Offline Static. In homogeneous systems, Offline Static computes the frequency of all service

requests and simply chooses the top K popular services to cache at the edge server. In hetero-

geneous systems, Offline Static caches a subset of services so that their total resource usage is

no more than K, and the sum of their frequencies is maximized, which is a knapsack problem.

When the arrivals of requests follow an i.i.d. stochastic process, most online policies that employ

stochastic optimization will converge to Offline Static.

Offline Iterative. Given the complete trace, it is possible to compute the optimal solution,

OPT, using dynamic programming. However, even for the homogeneous system, the complexity

of dynamic programming is at least O(
(|S|
K

)
) per request. Even when K is as small as 5, our

7We say a service is an edge service if it is cached by the edge server.
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implementation finds that dynamic programming cannot be completed within a reasonable amount

of time. Therefore, we instead implement the following iterative policy for homogeneous systems:

Since the edge server can cache K services, we say that the edge server has K slots, numbered

as L1, L2, . . . , LK , and each of them can cache one service. Offline Iterative algorithm finds the

edge service at each of the K slots iteratively. First, it uses dynamic programming to find services

cached in L1 so as to minimize the total cost assuming the capacity is one. Given the solutions

for L1, L2 . . . , Lk, the policy then uses dynamic programming to find the services cached in Lk+1

so that the total cost is minimized assuming the capacity is k + 1, and L1, . . . , Lk are given. This

policy achieves the optimal performance when K = 1. We only test this policy for homogeneous

systems since it cannot be easily extended for heterogeneous systems.

Online Randomized. We consider an online baseline policy in addition to the above offline

policies. Intuitively, a reasonable policy should download more often when the download cost is

small. When a request whose service is not an edge service arrives, Online Randomized down-

loads the new service with probability 1
M

, or with probability Fi

Mi
in heterogeneous systems. To

accommodate the new service, Online Randomized keeps deleting edge services uniformly at ran-

dom until there are enough resources available. As Online Randomized is a randomized policy, we

report its average performance over 10 i.i.d. simulation runs on each part of the data set.8

2.9.3 Performance Evaluations for Homogeneous Systems

We implement all the above policies and run the algorithms with different K and M for ho-

mogeneous systems. For each pair of K and M , we calculate the total costs over 103 requests and

over 104 requests. The costs, normalized by the number of requests, are compared in Fig. 2.6 and

Fig. 2.7. Due to excessive running time, OPTb is skipped for the case of 104 requests.9

Fig. 2.6 compares the costs of the above algorithms while fixing K = 5. RED/LED performs

very well when compared with other policies. In most settings, OPTb and Offline Iterative are

slightly better than RED/LED, but the difference is very limited. We note that OPTb and Offline

8The average performance over more runs remains the same.
9Over seven hours are required for a single sequence in our simulation.
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Figure 2.6: Cost comparison with different download costs M . Reprinted with permission
from [33].

Iterative are very intelligent policies that require the knowledge of all future arrivals and have

very high complexity. The result that our policy, being an online policy with low complexity, is

only slightly worse than Offline Iterative suggests that it works well in practice. Also note that

RED/LED has much better “real-world” performance than that the theoretical result guarantees

since the competitive ratio is based on a worst-case analysis. Belady Modified achieves better

performance than RED/LED when M = 1, as it is indeed the optimal policy, OPT, in such spe-

cial case. However, as M becomes larger, it quickly becomes much worse than RED/LED. This

highlights the difference of the service caching problem from the data caching problem. Offline

Static can be better than RED/LED when we only evaluate it over 103 requests, but has worse per-

formance than RED/LED when we evaluate it over 104 requests. With more requests, the system

witnesses more variations, and therefore Offline Static becomes worse. Finally, Online Random-

ized performs poorly in all settings.

Fig. 2.7 shows the costs with different K with M = 5. Similar to Fig. 2.6, OPTb and Offline

Iterative are only slightly better than RED/LED in all settings. Note that OPTb and Offline Iterative

both minimize the total cost when K = 1. This result therefore shows that our RED/LED is close

to OPT. Offline Static performs worse than our policy when we evaluate it over 104 requests. Both
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Figure 2.7: Cost comparison with different K. Reprinted with permission from [33].

Belady Modified and Online Randomized are worse than RED/LED under all settings. Fig. 2.7a

also exhibits the good performance of RED/LED with double capacity if we compare, for instance,

the cost of RED/LED when K = 10 and the cost of OPTb when K = 5.

In addition, we also note that OPTb and Offline Iterative have very similar performance in all

settings. This suggests that OPTb may be close to optimal in real-world scenarios.

2.9.4 Performance Evaluations for Heterogeneous Systems

We further evaluate the performance for heterogeneous systems. To create heterogeneity, we

assign different forward costs Fi = 1, 2, 3, download costs Mi = 5, 10, 15, and resource require-

mentsWi = 1, 2, 3 to different services by their IDs. We again run the algorithms over 103 requests

and over 104 requests, and calculate their total costs.

The normalized costs of different policies with different edge-server capacities K are shown in

Fig. 2.8. We can see that RED/LED achieves the minimum cost among all policies under most set-

tings. Although we only establish the competitiveness of RED/LED for homogeneous systems, this

result suggests that RED/LED remains a desirable solution even in heterogeneous systems. Note

that generally the curves are not smooth sinceK takes discrete values, and the non-monotonicity is

due to specific request sequences, heterogeneity of costs and resource requirements, and download
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Figure 2.8: Cost comparison in heterogeneous systems. Reprinted with permission from [33].

policies.

2.10 Conclusions

This chapter studies online algorithms for dynamic service caching at the edge. We introduce a

model that captures the limited capacity of edge servers, the unknown arrival patterns of requests,

and the operational costs of edge servers, including the cost of forwarding requests to the back-end

cloud and the cost of downloading new services. We propose an online policy, RED/LED, that has

a small total cost under any arbitrary sequence of arrivals. We evaluate the competitive ratio of

RED/LED, and prove that it is at most 10K, where K is the capacity of the edge server. Moreover,

we prove that the competitive ratio of any deterministic online policy is at least Θ(K), and therefore

RED/LED is asymptotically optimal with respect to K. In addition, we show that our policy

is (2, 10)-OPTb-competitive and thus scalable. Furthermore, RED/LED can be easily extended

to heterogeneous systems and maintains a low time complexity. The performance of RED/LED

is further evaluated through simulations using traces from real-world data centers. Simulation

results demonstrate that our RED/LED achieves better, or similar, performance compared to many

intelligent policies in all scenarios.

There are several important directions for future research: First, RED/LED is only asymptoti-

34



cally optimal for homogeneous systems. It is of interest to study the optimal online algorithm for

heterogeneous systems. Second, RED/LED is only proved to be asymptotically optimal among

deterministic online policies, and it remains an open question whether RED/LED is still optimal

when randomized policies are taken into account. Third, the scalability result of RED/LED is

established by comparing it against OPTb, which is a more constrained policy than the optimal

offline policy, OPT. Studying the scalability of online algorithms when compared against OPT can

be important future work.
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3. CONTENT CACHING AT THE EDGE*

Information Centric Edge is promising to provide better video streaming services to mobile

users by provisioning computing and storage resources at the edge of the network for video con-

tents, and forwarding packets directly based on video contents. However, due to the diversity of

user interests, user devices, video versions or resolutions, cache sizes, network conditions, etc., it

is challenging to decide where to place the video contents, and which cache and video version a

mobile user device should select. In this chapter, we study the joint optimization of cache-version

selection and content placement for adaptive video streaming in Information Centric Edge. We

propose practical distributed algorithms that operate at each user device and each network cache

to maximize the overall network utility. In addition to proving that our algorithms indeed achieve

the optimal performance, we implement our algorithms as well as several baseline algorithms on

ndnSIM, an ns-3 based Named Data Networking simulator. Simulation evaluations demonstrate

that our algorithms significantly outperform conventional heuristic solutions.

3.1 Introduction

Video streaming has become the dominant application for modern Internet traffic. In order to

provide better quality of service (QoS) and quality of experience (QoE) to mobile users, content

delivery networks (CDNs) have been deployed to store popular videos at cache servers close to

the users. This aligns with the trend of Information Centric Edge, where computing and storage

resources are provisioned at the edge of the wireless network [25]. Meanwhile, as users are access-

ing videos from a variety of devices, ranging from smartphones to 4K televisions (TVs), adaptive

video streaming, which encodes the same video content into multiple versions with different res-

olutions, has been widely used to deliver arguably the best video version to each user based on

device types and network conditions.

*Part of this chapter is reprinted with permission from “Cache-version selection and content placement for adaptive
video streaming in wireless edge networks” by A. Sasikumar, T. Zhao, I.-H. Hou, and S. Shakkottai, in 2019 17th Int.
Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt ’19), Copyright 2019 IFIP
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In this chapter, we study the interplay between three important components for adaptive video

streaming in Information Centric Edge: cache selection, where each user device determines which

cache server to retrieve videos from, version selection, which determines the version that each

user watches, and content placement, which entails the caching strategy of each cache server.

We formulate CaVe-CoP, a Cache-Version selection and Content Placement problem that jointly

optimizes these three components by taking into account the preferred video versions of users, the

communication capacities of network links, and the storage capacities of cache servers. Our goal

is to develop a new network algorithm for CaVe-CoP that is not only provably optimal, but also

practical and implementable.

Our proposed solution is based on the observation that there is a practical timescale separation

between cache-version selection (CaVe) and content placement (CoP), as the former can be up-

dated much more frequently. Hence, we first solve the CaVe problem by fixing the solution to the

CoP problem, and prove the optimality of our CaVe algorithms. We then solve the CoP problem

by considering its influence to solution to the CaVe problem, and prove our CoP algorithms are

optimal when fractional solutions are allowed.

While our algorithms can be practically implemented under the current Internet architecture

with TCP/IP, we demonstrate that our algorithms can also be implemented in a distributed fashion

on Named Data Networking (NDN) [34], a future Internet architecture designed with video stream-

ing applications in mind. Since NDN forwards packets by content names instead of location IDs

such as IP addresses, we present a distributed forwarding strategy that ensures user devices always

obtain their selected video versions from their selected cache server. Moreover, we show that the

overhead of our algorithms is negligible by exploiting local information and built-in caching. We

evaluate our algorithms on ndnSIM [35], an ns-3 based NDN simulator. Simulation results depict

that our algorithms significantly outperform baseline policies that employ conventional heuristic

solutions and subsets of our algorithms.

The rest of the chapter is organized as follows. Section 3.2 introduces our system model and

the formulation of CaVe-CoP. Solutions to the two problems CaVe and CoP are introduced in Sec-
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tion 3.3 and 3.4, respectively. In Section 3.5, we discuss the implementation of our algorithms in

NDN. Section 3.6 demonstrates the simulation results. Section 3.7 reviews some related literature.

Finally, Section 3.8 concludes the chapter.

3.2 System Model

We consider an Information Centric Edge network where a group of network caches jointly host

a set of videos and serve a set of video streaming users.1 Fig. 3.1 illustrates an example of such

a network, which is consistent with the YouTube video delivery system [36]. We use C to denote

the set of network caches, S to denote the set of users, and L to denote the set of communication

links that connect the network caches, routers, and users. We assume there is a route2 between

each user s and each network cache c, and define H l
s,c as the indicator function that link l is on the

route between s and c.

Users

Root

Tertiary
Cache 

Secondary 
Cache 

Edge
Cache 

Figure 3.1: An Information Centric Edge network. The root node holds all videos and there
are three layers of caches. Each edge cache serves a group of users with different user devices.
Reprinted with permission from [37].

1The terms “user” and “user device” are used interchangeably.
2Our model and algorithms can be generalized to the multi-route scenario.
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We consider multi-version video streaming where each video is encoded into multiple versions

for different resolutions of the same video content. We use V to denote the set of all versions of

all videos. For each video version v ∈ V, we use Xv to denote the average bit rate of v and Yv

to denote the file size of v, i.e. the product of Xv and the duration of the video. For the ease of

theoretical analysis, we assume that there exists a null version v0 with Xv0 = 0 and Yv0 = 0. If a

user decides not to watch any video, then we say that the user watches the null version v0. With

the introduction of the null version, we can assume that each user always watches a video version.

Each network cache c ∈ C has a storage of size Bc to store some video versions. Specifically,

let pc,v be the indicator function that v is present in the storage of c, then we have
∑

v Yvpc,v ≤ Bc,

for all c. Each network cache c determines which video versions to store, and thereby determines

the values of pc,v, subject to its storage constraint. We assume that there exists at least a network

cache c with infinite storage Bc = ∞ and stores all video versions, which we call the root node.

Such an assumption is to ensure that at least one copy of each video version exists in the network.

We refer to the problem of determining pc,v as the content placement (CoP) problem.

At the user end, each user s is interested in watching a video. Let Is be the set of video versions

that correspond to the interested video of user s. Each user device s needs to determine which video

version to watch, as well as which network cache to obtain the video version from. Let zs,c,v be the

indicator function that user s decides to watch video version v, and to obtain it from network cache

c. We refer to the problem of determining zs,c,v as the cache-version selection (CaVe) problem.

Since user s needs to obtain exactly one video version, we require that
∑

c,v∈Is zs,c,v = 1, for all s.

Moreover, user s can only obtain video version v from network cache c if c indeed stores v, that is,

pc,v = 1. Hence, we also need zs,c,v ≤ pc,v, for all s, c, v.

Recall that the bit rate of video version v is Xv and H l
s,c = 1 if link l is on the route be-

tween s and c. When user s obtains v from c, it incurs an amount of Xv traffic on each link

along the route between s and c. The total amount of traffic on link l can then be expressed as∑
s,c,vXvH

l
s,czs,c,v. We consider that each link l has a finite capacity of Rl, and hence we require

that
∑

s,c,vXvH
l
s,czs,c,v ≤ Rl, for all l ∈ L.
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Finally, each user obtains some utility based on its perceived video quality. In particular, we

consider that each user s obtains a utility of Us(Xv) when watching a video version with bit rate

Xv. We assume that Us(·) is a non-decreasing and concave function. Different users may have

different utility functions since they may be watching videos on different types of devices. For

example, users watching videos on smartphones typically enjoy lower utility than those watching

videos on TVs.

We aim to maximize the total utility of all users in the network by choosing the optimal p :=

[pc,v] and z := [zs,c,v], subject to all aforementioned constraints. Formally, we have the following

CaVe-CoP optimization problem.3

CaVe-CoP

maximize
∑

s,c,v∈Is

Us(Xv)zs,c,v (3.1a)

subject to
∑
v

Yvpc,v ≤ Bc, ∀c ∈ C, (3.1b)

∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (3.1c)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (3.1d)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (3.1e)

pc,v ∈ {0, 1}, zs,c,v ∈ {0, 1}, ∀s ∈ S, c ∈ C, v ∈ V. (3.1f)

While the utility maximization problem studied in this chapter may look similar to many exist-

ing studies on network utility maximization (NUM), we note that there are two major challenges

that distinguish our problem from other NUM problems: First, most existing studies on NUM

problems assume that the source and destination of each flow is fixed and given. In contrast, mul-

tiple network caches may store the same video version depending on the solution to the content

placement problem. Hence, not only does a user have multiple choices of network caches to ob-

3In practice the CaVe-CoP problem will be solved repeatedly over time with different parameters to cope with
network changes.

40



tain the video version from, but the problem of selecting cache is fundamentally intertwined with

the problem of content placement. Second, although the problem of version selection may seem

to be a special case of the rate control problem, we note that the problem of version selection is

fundamentally intertwined with the problem of selecting cache since each cache may only store a

subset of versions for a given video. The possibility of placing different versions of the same video

at different caches also distinguishes this work from some recent studies on throughput-optimal

algorithms with caches. Araldo et al. [38] studied a similar problem to ours. However, they only

derived heuristics without meaningful performance guarantees.

The decision variables in CaVe-CoP are p and z. We note that there is a practical timescale

separation between the update for p and that for z. When a user device changes its values for z due

to e.g. network congestion, it simply requests new packets from a different network cache and/or

with a different video version. Hence, z can be updated rather frequently, for example, once every

100 milliseconds. On the other hand, when a network cache changes its values for pc,v, it needs to

obtain all video versions with pc,v = 1. Hence, p can only be updated infrequently.

Our proposed solution for CaVe-CoP is based on the observation of the timescale separation

between the update for p and that for z. In Section 3.3, we will first consider the CaVe problem

by finding the optimal z for given p. Next, in Section 3.4, we will consider the CoP problem. In

order to find the optimal p, we will introduce pseudo-variables z′ := [z′s,c,v] and p′ := [p′c,v] that

are updated at the same frequency as p to address the issue with timescale separation.

Finally, we note that CaVe-CoP is an integer programming problem since pc,v and zs,c,v are

integers. To obtain tractable results, we will relax (3.1f) and allow pc,v and zs,c,v to be any real

number between 0 and 1. As we will demonstrate in Section 3.3, our solution to the CaVe problem

will always yield integer values for zs,c,v. We will also discuss how to obtain integer solutions for

pc,v in Section 3.4.

3.3 The Cache-Version Selection Problem (CaVe)

In this section, we study the CaVe problem. We consider that the contents that each network

cache store are given and fixed, and aims to determine both the video version to watch and the
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network cache to obtain contents from for each user. In terms of the optimization problem (3.1a)–

(3.1f), we focus on finding the optimal z := [zs,c,v] to maximize total utility in the network when

p := [pc,v] is given and fixed.

3.3.1 Overview of the Solution

We begin by rewriting the optimization problem (3.1a)–(3.1f) for the CaVe problem. Since p

is given and fixed, constraint (3.1b) no longer applies. Further, we relax the constraint (3.1f) by

allowing zs,c,v to be any real number between 0 and 1. The resulting optimization problem, which

we call CaVe-Primal, can then be described as follows:

CaVe-Primal

maximize
∑

s,c,v∈Is

Us(Xv)zs,c,v (3.2a)

subject to
∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (3.2b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (3.2c)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (3.2d)

0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (3.2e)

We will consider a dual problem to CaVe-Primal. We associate a Lagrange multiplier, λl,

for each link capacity constraint (3.2d), for all l ∈ L. Let λ := [λl] be the vector of Lagrange

multipliers. The Lagrangian is obtained as follows:

L(z,λ)

:=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl

(∑
s,c,v

zs,c,vH
l
s,cXv −Rl

)
(3.3)

The dual objective, D(λ), is defined as the maximum value of L(z,λ) over z subject to

the constraints (3.2b), (3.2c), and (3.2e). We call the underlying optimization problem CaVe-
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Lagrangian. It can be written as follows:

CaVe-Lagrangian

maximize L(z,λ) (3.4a)

subject to
∑
c,v∈Is

zs,c,v = 1, ∀s ∈ S, (3.4b)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (3.4c)

0 ≤ zs,c,v ≤ 1, ∀s ∈ S, c ∈ C, v ∈ V. (3.4d)

Remark 1. In defining the CaVe-Lagrangian problem, we only relax the link capacity constraint

(3.2d), and keep other constraints (3.2b), (3.2c) and (3.2e) intact. This is because the link capacity

constraint (3.2d) can be temporarily violated as packets that cannot be served immediately can be

queued in the buffer. On the other hand, constraints (3.2b) and (3.2c) need to be satisfied at all

time in practical systems.

The dual problem is to minimize D(λ) while ensuring that all Lagrange multipliers λl are

non-negative. We call this the CaVe-Dual and mathematically write it as:

CaVe-Dual

minimize D(λ) (3.5a)

subject to λl ≥ 0, ∀λl ∈ L. (3.5b)

Theorem 6 (Strong Duality). CaVe-Primal and CaVe-Dual have the same optimal value.

Proof. The objective function of CaVe-Primal is a linear function of z, and hence is concave. The

set of z that satisfies the three unrelaxed constraints, namely, (3.2b), (3.2c), and (3.2e), is nonempty

and convex.

Furthermore, the relaxed constraint (3.2d) is linear and thus convex. To get strict inequalities

in (3.2d), we can set zs,c,v to be 1 if c is the root node and v is the null version, and 0 otherwise.
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It is straightforward to see that (3.2b), (3.2c), and (3.2e) are satisfied, while (3.2d) is satisfied with

strict inequalities.

Hence, this theorem holds following Theorem 6.2.4 (Strong Duality Theorem) in [39].

Based on Theorem 6, we can solve the CaVe-Primal problem by solving CaVe-Dual. Solving

CaVe-Dual involves two steps: First, for a given vector λ, we need to find D(λ) by solving CaVe-

Lagrangian. Second, we need to find the optimal λ to solve CaVe-Dual. We introduce our solutions

to these two steps below.

3.3.2 The Solution to CaVe-Lagrangian

We rewrite (3.3) as:

L(z,λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl

(∑
s,c,v

zs,c,vH
l
s,cXv −Rl

)

=
∑
s

∑
c,v∈Is

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)
+
∑
l

λlRl (3.6)

We note that the above expression provides a natural user-by-user decomposition. Specifically,

by defining zs as the vector containing all [zs,c,v] for a given s, and defining

Ls(zs,λ) :=
∑
c,v∈Is

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)
, (3.7)

we have

L(z,λ) =
∑
s

Ls(zs,λ) +
∑
l

λlRl. (3.8)

As λ is given in CaVe-Lagrangian, the last term
∑

l λlRl is a constant. Hence, L(z,λ) is

maximized if one can maximize Ls(zs,λ) for each user s. Moreover, recall that pc,v is the indicator

function that network cache c stores video version v. Therefore, the constraint (3.4c) is equivalent

to saying that zs,c,v needs to be 0 if pc,v = 0. We can now define CaVe-Users as follows:
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CaVe-Users

maximize
∑

c,v:v∈Is,pc,v=1

zs,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λl
)

(3.9a)

subject to
∑

c,v:v∈Is,pc,v=1

zs,c,v = 1, (3.9b)

0 ≤ zs,c,v ≤ 1, ∀c ∈ C, v ∈ V. (3.9c)

It is clear that the optimal vector z that solves CaVe-Users, for all s, is also the optimal vector

that solves CaVe-Lagrangian. To solve CaVe-Users, note that the only decision variable in CaVe-

Users is the vector zs, while Us(Xv), Xv, and λl are all constants. Hence, the following algorithm

solves CaVe-Users: First, find (c∗, v∗) that has the maximum value of Us(Xv) − Xv

∑
l:Hl

s,c=1 λl

among all (c, v) with v ∈ Is and pc,v = 1. Ties can be broken arbitrarily. Second, set zs,c∗,v∗ = 1,

and zs,c,v = 0 for all other (c, v). Alg. 2 summarizes the algorithm. We note that, even though we

have relaxed the constraint and allowed zs,c,v to be any real number between 0 and 1, the optimal

solution produced by Alg. 2 is always an integer one. Besides, note that c∗ and v∗ are updated

iteratively as λ is updated. It means the cache-version selection of each user is dynamic and

adaptive to the network congestion.

Algorithm 2 CaVe-Users Algorithm
Obtain p and λ
zs,c,v ← 0,∀c, v
(c∗, v∗)← argmaxc,v∈Is:pc,v=1 Us(Xv)−Xv

∑
l:Hl

s,c=1 λl
zs,c∗,v∗ ← 1

3.3.3 The Solution to CaVe-Dual

Our solution to CaVe-Dual is shown in Alg. 3, where each link l updates its own λl. We have

the following lemma and theorem.
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Algorithm 3 CaVe-Linkl Algorithm
t← 0, λl ← 0
while true do

Obtain z from Alg. 2

λl ←
[
λl + ht(

∑
s,c,vXvH

l
s,czs,c,v −Rl)

]+
t← t+ 1

Lemma 5. Given λ, let z∗ be the vector that solves CaVe-Users. Then g := [gl] := [Rl −∑
s,c,vXvH

l
s,cz

∗
s,c,v] is a subgradient of D(λ).

Proof. z∗ solves CaVe-Users and thus solves CaVe-Lagrangian. By definition, D(λ) = L(z∗,λ)

for the given λ. Therefore, for any λ̃ := [λ̃l] where λ̃l ≥ 0,

D(λ̃)−D(λ) ≥ L(z∗, λ̃)− L(z∗,λ)

= −
∑
l

(λ̃l − λl)

(∑
s,c,v

z∗s,c,vH
l
s,cXv −Rl

)

= (λ̃− λ)Tg.

Hence, g is a subgradient of D(λ).

Theorem 7. Let {ht} be a sequence of non-negative numbers with
∑∞

t=0 ht =∞ and limt→∞ ht =

0, then Alg. 3 solves CaVe-Dual.

Proof. Note that the objective function of CaVe-Dual is convex in λ, and the feasible region is a

nonempty, convex, closed subset of R|L|. With Lemma 5 and the step size sequence specified in

the theorem, Alg. 3 solves CaVe-Dual following Theorem 8.9.2 in [39].

3.3.4 The Solution to CaVe-Primal

We have the following theorem regarding the optimality of z obtained by running Alg. 2 and

Alg. 3 iteratively:

Theorem 8. Let z∗ be the vector that solves CaVe-Primal, λk be the vector produced by Alg. 3

after k iterations, and zk be the vector produced by Alg. 2 when λ = λk. Let z̄t be the weighted
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average of zk after the first t iterations, i.e. z̄t := limT→∞

∑t+T
k=t+1 hkz

k∑t+T
k=t+1 hk

. Then, for any ε > 0, there

exists an integer K such that for every t > K,

1. z̄t satisfies all CaVe-Primal constraints;

2.
∑

s,c,v Us(Xv)z
∗
s,c,v −

∑
s,c,v Us(Xv)z̄

t
s,c,v ≤ ε.

Proof. For 1), first it is straightforward to see that zk for any k satisfies the constraints (3.2b),

(3.2c), and (3.2e), since they are not relaxed when formulating CaVe-Lagrangian and CaVe-Users.

Hence, it is easy to show that z̄t satisfies these three constraints. As for the remaining constraint

(3.2d), Theorem 7 shows that for any ε > 0, there exists an integer K such that for every integer

t > K and for all l, |λtl − λ∗l | < ε/2, where λ∗ is the optimal point of CaVe-Dual. Hence,

for any integer T > 0, λt+T+1
l < λt+1

l + ε. Meanwhile, we know from Alg. 3 that λk+1
l ≥

λkl +hk(
∑

s,c,vXvH
l
s,cz

k
s,c,v−Rl). Therefore, λt+T+1

l ≥ λt+1
l +

∑t+T
k=t+1 hk(

∑
s,c,vXvH

l
s,cz

k
s,c,v−Rl).

So we have ∑t+T
k=t+1 hk(

∑
s,c,vXvH

l
s,cz

k
s,c,v −Rl)∑t+T

k=t+1 hk
<

ε∑t+T
k=t+1 hk

.

That is, ∑
s,c,v

XvH
l
s,c

∑t+T
k=t+1 hkz

k
s,c,v∑t+T

k=t+1 hk
< Rl +

ε∑t+T
k=t+1 hk

.

Let T →∞, and we have ∑
s,c,v

XvH
l
s,cz̄

t
s,c,v ≤ Rl,

for all l. Hence, z̄t satisfies the constraint (3.2d), and 1) is proved. Since we also have λt+T+1
l >

λt+1
l − ε, we know

∑
s,c,vXvH

l
s,cz̄

t
s,c,v ≥ Rl, and thus

∑
s,c,vXvH

l
s,cz̄

t
s,c,v = Rl.

To prove
∑

s,c,v Us(Xv)z
∗
s,c,v −

∑
s,c,v Us(Xv)z̄

t
s,c,v ≤ ε, we note that based on Theorem 6,∑

s,c,v Us(Xv)z
∗
s,c,v = D(λ∗). Because of Theorem 7, for any ε > 0, there exists an integer K such
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that for every integer t > K and for all l, |D(λt)−D(λ∗)| < ε. By definition,

D(λt) =
∑
s,c,v

Us(Xv)z
t
s,c,v −

∑
l

λtl

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

=
∑
s,c,v

Us(Xv)z
t
s,c,v −

∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

+
∑
l

(λ∗l − λtl)

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)

We know that D(λt) ≥ D(λ∗) − ε, |λtl − λ∗l | < ε/2, and
∑

s,c,vXvH
l
s,cz

t
s,c,v − Rl is bounded for

all l, t since 0 ≤ zts,c,v ≤ 1. Let B := |L|
2
maxzt,l,t |

∑
s,c,vXvH

l
s,cz

t
s,c,v −Rl|+ 1. We then have

D(λ∗) ≤
∑
s,c,v

Us(Xv)z
t
s,c,v

−
∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz

t
s,c,v −Rl

)
+ εB.

Taking weighted average of both sides from k = t+ 1 to t+ T , and then letting T →∞, we have

D(λ∗) ≤
∑
s,c,v

Us(Xv)z̄
t
s,c,v

−
∑
l

λ∗l

(∑
s,c,v

XvH
l
s,cz̄

t
s,c,v −Rl

)
+ εB.

Note that
∑

s,c,vXvH
l
s,cz̄

t
s,c,v = Rl. Therefore,

∑
s,c,v

Us(Xv)z
∗
s,c,v = D(λ∗) ≤

∑
s,c,v

Us(Xv)z̄
t
s,c,v + εB,

and this concludes the proof of 2).

3.4 The Content Placement Problem (CoP)

We now discuss the content placement (CoP) problem, which entails deciding pc,v, the indicator

function that network cache c stores video version v, for all c and v. As discussed in Section 3.2, a
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major challenge to our optimization problem (3.1a)–(3.1f) is that the vector p needs to be updated

much less frequently than the vector z. To address this challenge, we introduce pseudo-variables

z′ := [z′s,c,v] and p′ := [p′s,c,v], which can be updated much more frequently than p, to replace z

and p.4 We only update p, the real content placement, after p′ converges. Also, we relax (3.1f) by

allowing p′c,v and z′s,c,v to be any real number between 0 and 1. We can now rewrite (3.1a)–(3.1f)

as:

CoP-Primal

maximize
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v (3.10a)

subject to
∑
v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (3.10b)

∑
c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (3.10c)

z′s,c,v ≤ p′c,v, ∀s, c, v, (3.10d)∑
s,c,v

XvH
l
s,cz

′
s,c,v ≤ Rl, ∀l ∈ L, (3.10e)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (3.10f)

3.4.1 Overview of the Solution

Similar to our solution to the CaVe problem, we will consider a dual problem to the CoP-Primal

problem. Let µ′ := [µ′
s,c,v], and λ′ := [λ′l] be the vectors of Lagrange multipliers associated with

4The pseudo-variables carry state information that needs to be shared between user applications and the network
in the implementation.

49



each constraint in (3.10d) and (3.10e) respectively. The Lagrangian is then

L′(p′, z′,λ′,µ′)

:=
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v −

∑
l

λ′l
(∑
s,c,v

XvH
l
s,cz

′
s,c,v −Rl

)
−
∑
s,c,v

µ′
s,c,v(z

′
s,c,v − p′c,v). (3.11)

The dual objective, D′(λ′,µ′), is defined as the maximum value of L′(p′, z′,λ′,µ′) over p′

and z′ subject to constraints (3.10b), (3.10c) and (3.10f). We call the optimization problem CoP-

Lagrangian:

CoP-Lagrangian

maximize L′(p′, z′,λ′,µ′) (3.12a)

subject to
∑
v

Yvp
′
c,v ≤ Bc, ∀c ∈ C, (3.12b)

∑
c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (3.12c)

0 ≤ p′c,v ≤ 1, 0 ≤ z′s,c,v ≤ 1, ∀s, c, v. (3.12d)

Remark 2. We note that an important difference between CoP-Lagrangian and CaVe-Lagrangian

is that CoP-Lagrangian relaxes the constraint (3.10d) as well. Since the pseudo-variable z′s,c,v

in CoP-Primal bears no physical meaning, this constraint can now be temporarily violated in

practice.

The dual problem, which we call CoP-Dual, is to find the Lagrange multipliers that minimize

D′(λ′,µ′):
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CoP-Dual

minimize D′(λ′,µ′) (3.13a)

subject to λ′l ≥ 0, ∀l ∈ L, (3.13b)

µ′
s,c,v ≥ 0, ∀s ∈ S, c ∈ C, v ∈ V. (3.13c)

It is straightforward to show the following theorem:

Theorem 9. CoP-Primal and CoP-Dual have the same optimal value.

Proof. We use the same justification as in the previous section. The objective function of CoP-

Primal is a linear function, and hence is concave. The set of z′ and p′ that satisfies the three

unrelaxed constraints, namely, (3.10b), (3.10c), and (3.10f), is nonempty and convex.

Furthermore, the relaxed constraints (3.10d) and (3.10e) are linear and thus convex. To get

strict inequalities in (3.10d) and (3.10e), we i) choose 0 < ε < min{minl Rl

|S||V|
mins |Is|−1
maxv Xv

, minc Bc

2
∑

v Yv
}; ii)

set p′c,v to be 1 if c is the root node and v is the null version, and 2ε otherwise; iii) set z′s,c,v to be

1− ε if c is the root node and v is the null version, and ε
|C|(|Is|−1)

otherwise. It is straightforward to

see that (3.10b), (3.10c), and (3.10f) are satisfied, while (3.10d) and (3.10e) are satisfied with strict

inequalities.

Hence, this theorem holds following Theorem 6.2.4 (Strong Duality Theorem) in [39].

We will solve CoP-Primal by solving CoP-Dual. We discuss our solutions to CoP-Lagrangian

and CoP-Dual below.
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3.4.2 The Solution to CoP-Lagrangian

We first rewrite L′(p′, z′,λ′,µ′) as:

L′(p′, z′,λ′,µ′)

=
∑
s

∑
c,v

z′s,c,v

Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′
s,c,v


+
∑
c

∑
v

p′c,v
∑
s

µ′
s,c,v +

∑
l

λ′lRl. (3.14)

Let z′s be the vector containing all [z′s,c,v] for a given s and p′c be the vector containing all

[p′c,v] for a given c. Also, let L̄s(z
′
s,λ

′,µ′) :=
∑

c,v z
′
s,c,v[Us(Xv) − Xv

∑
l:Hl

s,c=1 λ
′
l − µ′

s,c,v],

L̂c(p
′
c,µ

′) :=
∑

v p
′
c,v(
∑

s µ
′
s,c,v), and B(λ′) :=

∑
l λlRl. Then, we have

L′(p′, z′,λ′,µ′)

=
∑
s

L̄s(z
′
s,λ

′,µ′) +
∑
c

L̂c(p
′
c,µ

′) +B(λ′), (3.15)

which gives rise to a natural decomposition among all users and network caches. Specifically,

consider the two subproblems, namely, CoP-Users and CoP-Cachec, below. For fixed vectors λ′

and µ′, CoP-Lagrangian can be solved by solving CoP-Users for each s and CoP-Cachec for each

c.

CoP-Users

maximize
∑
c,v

z′s,c,v
(
Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′
s,c,v

)
(3.16a)

subject to
∑
c,v∈Is

z′s,c,v = 1, (3.16b)

0 ≤ z′s,c,v ≤ 1, ∀c ∈ C, v ∈ V. (3.16c)
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CoP-Cachec

maximize
∑
v

p′c,v
∑
s

µ′
s,c,v (3.17a)

subject to
∑
v

Yvp
′
c,v ≤ Bc, (3.17b)

0 ≤ p′c,v ≤ 1, ∀v ∈ V. (3.17c)

CoP-Users can be solved by the following algorithm: First, find (c∗, v∗) that has the maximum

value of Us(Xv) − Xv

∑
l:Hl

s,c=1 λ
′
l − µ′

s,c,v among all (c, v) with v ∈ Is. Ties can be broken

arbitrarily. Second, set z′s,c∗,v∗ = 1, and z′s,c,v = 0 for all other (c, v). Alg. 4 shows the algorithm.

On the other hand, CoP-Cachec can be solved by the following greedy algorithm: First, sort

all video versions v in decreasing order of
∑

s µ
′
s,c,v

Yv
so that

∑
s µ

′
s,c,1

Y1
≥

∑
s µ

′
s,c,2

Y2
≥ . . . . Second,

starting from v = 1, set pc,v to be the largest possible value without violating any constraints.

Specifically, set p′c,v = min{1, (Bc −
∑

v′<v Yv′p
′
c,v′)/Yv}. It is straightforward to verify that this

greedy algorithm achieves the optimal solution for CoP-Cachec, since it is a fractional knapsack

problem.

Remark 3. Recall that pc,v is the indicator function that c stores v, which needs to be an integer.

The optimal solution to CoP-Cachec may not be integer. However, from the description of our

greedy algorithm, it is obvious that, for each c, there is at most one v with non-integer pc,v. In

practice, we make each network cache c store only video versions with pc,v = 1. Since all but one

version have integer pc,v, this approach is close to optimal.

3.4.3 The Solution to CoP-Dual

The CoP-Dual problem involves two Lagrange multipliers, λ′ and µ′. They are updated as in

Alg. 5 and 6. The following lemma and theorem, whose proofs are omitted due to space constraint,

show that these algorithms solve CoP-Dual.

Lemma 6. Given λ′ and µ′, let z′∗ and p′∗ be the vectors that solve CoP-Users and CoP-Cachec.

Then the vector g′ := [[Rl −
∑

s,c,vXvH
l
s,cz

′∗
s,c,v], [p

′∗
c,v − z′∗s,c,v]] is a subgradient of D′(λ′,µ′).
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Proof. Since z′∗ and p′∗ solves CoP-Users and CoP-Cachec respectively, they jointly solve CoP-

Lagrangian for the given λ′ and µ′. That is, D′(λ′,µ′) = L′(p′∗, z′∗,λ′,µ′). Therefore, for any

λ̃′ := [λ̃′l] and µ̃′ := [µ̃′
s,c,v], where λ̃l ≥ 0 and µ̃′

s,c,v ≥ 0,

D′(λ̃′, µ̃′)−D′(λ′,µ′)

≥ L′(p′∗, z′∗, λ̃′, µ̃′)− L′(p′∗, z′∗,λ′,µ′)

= −
∑
l

(λ̃′l − λ′l)

(∑
s,c,v

z′∗s,c,vH
l
s,cXv −Rl

)

−
∑
s,c,v

(µ̃′
s,c,v − µ′

s,c,v)(z
′∗
s,c,v − p′∗c,v)

= [λ̃′ − λ′, µ̃′ − µ′]Tg′.

Hence, g′ is a subgradient of D′(λ′,µ′).

Theorem 10. Let {ht} be a sequence of non-negative numbers with
∑∞

t=0 ht =∞ and limt→∞ ht =

0, then Alg. 5 and 6 together solve CoP-Dual.

Proof. The proof is virtually the same as that of Theorem 7. Note that the objective function of

CoP-Dual is convex in λ′ and µ′, and the feasible region is a nonempty, convex, closed subset

of R|L|+|S||C||V|. With Lemma 6 and the step size sequence specified in the theorem, Alg. 5 and 6

together solve CaVe-Dual following Theorem 8.9.2 in [39].

Algorithm 4 CoP-Users Algorithm

1: Obtain µ′ and λ′

2: z′s,c,v ← 0, ∀c, v
3: (c∗, v∗)← argmaxc,v∈Is Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l − µ′

s,c,v

4: z′s,c∗,v∗ ← 1

54



Algorithm 5 CoP-Linkl Algorithm

1: t← 0, λ′l ← 0
2: while true do
3: Obtain z′ from Alg. 4

4: λ′l ←
[
λ′l + ht(

∑
s,c,vXvH

l
s,cz

′
s,c,v −Rl)

]+
5: t← t+ 1

Algorithm 6 CoP-Cachec Algorithm

1: t← 0, µ′
s,c,v ← 0

2: while true do
3: Obtain z′ from Alg. 4
4: µ′

s,c,v ←
[
µ′
s,c,v + ht(z

′
s,c,v − p′c,v)

]+ ∀s, v
5: Sort all versions so that

∑
s µ

′
s,c,1

Y1
≥

∑
s µ

′
s,c,2

Y2
≥ . . .

6: B′ ← Bc

7: for v = 1→ |V| do
8: p′c,v ← min{1, B′

Yv
}

9: B′ ← B′ − Yvp′c,v
10: t← t+ 1

3.4.4 The Solution to CoP-Primal

We have the following theorem regarding the optimality of z′ obtained by running Alg. 4,

Alg. 5, and Alg. 6 iteratively:

Theorem 11. Let z′∗ be the vector that solves CoP-Primal, λ′k be the vector produced by Alg. 5

after k iterations, µ′k be the vector produced by Alg. 6 after k iterations, and z′k be the vector

produced by Alg. 4 when λ′ = λ′k and µ′ = µ′k. Let z̄′t be the weighted average of zk after the

first t iterations, i.e. z̄′t := limT→∞

∑t+T
k=t+1 hkz

′k∑t+T
k=t+1 hk

. Then, for any ε > 0, there exists an integer K

such that for every t > K,

1. z̄′t satisfies all CoP-Primal constraints;

2.
∑

s,c,v Us(Xv)z
′∗
s,c,v −

∑
s,c,v Us(Xv)z̄

′t
s,c,v ≤ ε.

Proof. The proof is virtually the same as that of Theorem 8 and thus omitted.
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3.5 Implementation on Named Data Networking

In this section, we discuss the implementation of our algorithms on Named Data Networking

(NDN). We first introduce the NDN architecture briefly, and then show how we implement our

algorithms following the NDN philosophy.

3.5.1 NDN Architecture

NDN is a future Internet architecture where every piece of data is associated with a unique

hierarchical name. When a user wants to obtain a piece of named data, the user device sends

out an interest packet with the name of the data. Note that usually the interest packet does not

specify the destination location. NDN routers have built-in caches. When a router receives an

interest packet, it first checks whether the named data is cached or not. If cached, it directly replies

with the corresponding data packet. Otherwise, it forwards the interest packet to the next hop

according to the employed forwarding strategy. The content producer e.g. video service provider

is responsible for generating data packets for a certain name space. The data packet follows the

reverse route of the interest packet to the user.

3.5.2 Placement of Data

In our implementation, there are three types of data: packets of video contents, decision vari-

ables (z′s,c,v and pc,v), and Lagrange multipliers (λl, λ′l, and µ′
s,c,v). We assign each of them a

unique name. For example, a video version has a name prefix such as /r/file1/v1, and µ′
1,2,3

has /mu2/1_3. Each prefix is appended a sequence number to uniquely identify video packets

and variables in different iterations. Naturally, video contents are placed at network caches accord-

ing to the video versions.5 Decision variables z′s,c,v are stored and updated at the corresponding

user s. Decision variables pc,v and Lagrange multipliers µ′
s,c,v are stored and updated at the corre-

sponding network cache c. Finally, Lagrange multipliers λl and λ′l of link l from node A to B are

stored and updated at node A that is closer to the cache.

5Videos are cached in full rather than at the packet level.
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3.5.3 Implementation of User Algorithms

From Alg. 2 and 4, we can see that each user s needs to know the values of pc,v, λl, λ′l, and

µ′
s,c,v. Each user periodically sends out interest packets for the named data of these variables.

Since the names of these data indicate the entities that store them, routers can easily route the

interest packets to the correct destinations. Further, as data packets traverse in the reverse route of

their corresponding interest packets, each router can cache all latest values of pc,v and λl that pass

through it.

With the information of pc,v and λl, each user s can find the best video version v∗ and cache c∗

via Alg. 2. User s then sends out interest packets for video version v∗ at a rate indicated by Xv∗ .

Note that these interest packets only contain information about the video version v∗, and not the

destination c∗. Nevertheless, the following forwarding strategy ensures the interest packet will be

eventually forwarded to c∗ assuming no link failure or topology change: When a router receives an

interest packet for video version v∗, it finds the network cache c† that has the smallest cost, where

the cost is defined as
∑

l λl over all link l on the path to the network cache c, among those that

store v∗, i.e., pc,v∗ = 1. It then forwards the interest packet to the next router on the path toward c†.

Note that routers store all values of pc,v and λl that pass through it and thus do not need additional

message passing.

With the information of pc,v, λ′l and µ′
l, each user s can decide the video version v∗ and network

cache c∗ such that z′s,c∗,v∗ = 1 via Alg. 4. Each user s then sends out a pseudo-interest packet with

the name of z′s,c∗,v∗ . We call it a pseudo-interest packet since it is used to inform the caches the

changes of zs,c,v instead of requesting information. The replied data packet from cache c∗ carries

no meaning payload and is ignored.

3.5.4 Implementations for Routers and Caches

We now discuss the implementations of Alg. 3, 5, and 6. In Alg. 3, each router needs to know∑
s,c,vXvH

l
c,vzs,c,v to update λl for its links. We note that

∑
s,c,vXvH

l
c,vzs,c,v can be estimated

by the product of the rate of interest packets going through the opposite link to l and video data

57



packet size. As the router knows the rate of interest packets going through l, it can update λl

directly without requesting additional information. Likewise, Alg. 5, and 6 can be carried out if

one knows z′s,c,v. This is achieved by user s sending out a pseudo-interest packet as explained in

Section 3.5.3. Besides, Rl, the maximum achievable video bit rate of link l, is obtained from stress

tests. Table 3.1 gives some examples of Rl for certain labeled link capacities.

Table 3.1: Maximum achievable video bit rates.

Labeled capacity (Mbps) Rl (Mbps)

25 23.722
100 94.900
1000 947.279

3.6 Evaluations

We present our simulation evaluation results in this section. All simulations are conducted on

ndnSIM [35], an ns-3 based NDN simulator.

We consider the Information Centric Edge network in Figure 3.1 for evaluation. Same as

in [36], the topology of network caches follows the three-tier hierarchy of the YouTube video

delivery system. There are 15 network routers with caches in total, including the root node and 8

edge caches. Each edge cache serves 20 users who have different types of devices and are interested

in different videos.

We consider a catalog of 200 different videos, each with 5 different versions. The popularity

of these videos follows the Zipf distribution with the shape parameter equal to 1. The 5 versions

correspond to video resolutions of 360p, 720p, 1080p, 1440p (2K), and 2160p (4K) respectively.6

The data rate of streaming each video version is set based on measurement results for YouTube

videos with H.264 codec [40]. The access link capacities between users and edge caches are

25Mbps each so that one can stream a 4K video. The capacities of links between caches and the
6The aspect ratio is assumed to be 16 : 9 as in YouTube. For example, a 720p video has a resolution of 1280×720.
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root node are 100Mbps each so that the number of concurrent 4K streams is low. We assume each

video is one-hour long, and the file sizes of video versions are calculated accordingly. The root

node holds all video versions. Each edge (or primary), secondary, and tertiary cache is assumed to

be able to hold all versions of one, two, and four videos respectively.

As for user utilities, we categorizes user devices into three types: smartphones, laptops or

tablets, and TVs. The utility function of each user has the form U(Xv) = α lnmin(Xv, X̄), where

α is a scaling factor capturing the effect of the screen size, Xv is the data rate of video version v in

Mbps, and X̄ is a cutoff rate reflecting the limit of the device resolution. For the three types, we set

a scaling factor of 20, 40, 60 and a cutoff rate corresponding to a 1080p, 2K, 4K video respectively.

Besides, we set U(0) = −100, which is much smaller than all regular utilities.

To evaluate the performance of our algorithms, we implement and compare the following four

policies:

• Optimal: This policy tries to find the optimal solution to the CaVe-CoP problem by solving

the integer program numerically via the GLPK toolbox. Note that it is a centralized policy

and involves solving a high-dimensional problem.

• CaVe-CoP: This refers to our algorithms Alg. 2–6.

• CaVe-CAV: In this policy, each user employs our algorithms for CaVe. For content place-

ment, if a network cache decides to store a video version, it needs to cache all versions

(CAV) of the same video. We note that this content placement strategy is consistent with

design practices in commercial CDNs. As a result, each network cache simply stores the

most popular videos, subject to its storage constraint.

• Greedy-CoP: In this policy, each user chooses the version that matches its cutoff rate. Net-

work caches employ our algorithms for CoP.

For each simulation, we use the video contents that each user actually receives to calculate

the total utility of all users and the average % stall time, i.e. the percentage of time that video
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streaming stalls7, of all users. The metrics are calculated at each CaVe iteration, i.e. every 0.1 s.

We run CoP iterations every 0.2 s, and apply content placement results at 20 s.

Fig. 3.2 and Fig. 3.3 present our simulation results. For our simulated scenario, Optimal cannot

find the exact integer solution for utility. Instead, it reports a upper bound from linear programming

(LP) relaxation, and a lower bound by integer programming (IP) heuristics. Note that Optimal

reports ideal utility instead of perceived utility. We can observe that our Cave-CoP policy achieves

near-optimal utility, significantly outperforming the two baseline policies, even though they involve

subsets of our algorithms. Besides, our policy approaches zero stall time. Note that the jumps near

20 s in the figures are due to applying content placement results.
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Figure 3.2: Comparison of total utility. Reprinted with permission from [37].

3.7 Related Work

There has been rich literature on adaptive video streaming. An early work identified a cross

layer framework for adaptive video streaming in IP networks [41]. More recently, experiment-
7Video streaming stalls when all received video contents are consumed.
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Figure 3.3: Comparison of % stall time. Reprinted with permission from [37].

based investigations have been conducted on the YouTube video delivery system [42] as well as

CDNs run by Akamai [43] and Netflix [44]. Liu et al. [45] made a case for a coordinated control

plane across CDNs for video streaming to provide high quality of experience. The performance

has also been investigated on NDN [46]. Wireless edge networks are promising to enhance the

benefits of CDNs for adaptive video streaming [47], where the user scheduling problem has been

studied [48].

Content caching is crucial for practical adaptive video streaming in Information Centric Edge

networks. Considering distributed caches, Ramadan et al. [36] proposed the abstraction of “BIG”

cache to effectively utilize the resources. Applegate et al. [49] studied optimal content placement

of videos with a focus on scalability. There have been many studies on joint optimization of

content caching and packet routing. Yeh et al. [50] proposed a framework for joint forwarding and

caching in NDN. Wang et al. [51] employed stochastic network utility maximization and developed

a distributed forwarding and caching algorithm. Ioannidis and Yeh [52] studied the routing cost

minimization problem of joint routing and caching, where the cost is incurred per link. These
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studies are not directly applicable to multi-version video streaming since different versions of the

same video can be stored in different caches.

Our work formulates the joint cache-version selection and content placement problem as a net-

work utility maximization (NUM) problem, and uses the well-known primal dual approach and

dual decomposition [53]. However, there are notable differences between our work and traditional

NUM research. Existing studies have explored various scenarios including time varying channel

with delay constraints [54], delay sensitive fairness [55], multiple flow classes [56], multiple pro-

tocols [57] and so on, while assuming a static source-destination pair per user (flow). In contrast,

in our work, a user could obtain its desired content from in-network caches as well as the content

producer.

3.8 Conclusion

In this chapter, we have studied the CaVe-CoP problem, i.e. the joint optimization of cache-

version selection and content placement, for adaptive video streaming in Information Centric Edge

networks. Realizing that there is a practical timescale separation between CaVe and CoP, we have

proposed a set of algorithms that provably optimize CaVe and CoP respectively. Further, we show

that our algorithms can be practically implemented on NDN in a distributed fashion. Simulation

evaluations on ndnSIM demonstrate that our policy significantly outperforms baseline policies with

conventional heuristics.
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4. EFFICIENT COST ALLOCATION*

This chapter proposes a practical non-monetary mechanism that induces the efficient solution

to the optimal rate control problem, where each client optimizes its request arrival rate to maximize

its own net utility individually, and at the Nash Equilibrium the total net utility of the system is also

maximized. Existing mechanisms typically rely on monetary exchange which requires additional

infrastructure that is not always available. Instead, the proposed mechanism is based on efficient

cost allocation, where the cost is in terms of non-monetary metric such as average delay or request

loss rate. Specifically, we present an efficient cost allocation rule for the server to determine the

target cost of each client. We then propose an intelligent policy for the server to control the costs

of the clients to achieve the efficient allocation. Furthermore, we design a distributed rate control

protocol with provable convergence to the Nash Equilibrium of the system. The effectiveness

of our mechanism is extensively evaluated via simulations of both delay allocation and loss rate

allocation against baseline mechanisms with classic control policies.

4.1 Introduction

The mobile Internet market has been enjoying an unprecedented growth in recent years. It is

predicted that the trend will continue, and the global mobile data traffic will increase sevenfold

between 2016 and 2021 [58]. With the growing market, it is of great interest to understand the

economics of the network. In this chapter, we are interested in finding a practical mechanism to

induce the efficient solution to the optimal rate control problem in a network system of multiple

selfish and strategic clients. We consider systems where a server processes requests from multiple

clients, and each client can dynamically adjust its own request arrival rate. Each client obtains

some utility based on its request arrival rate and its own utility function, but also suffers from some

disutility based on some cost such as its experienced delay or request losses. Each client optimizes

*Reprinted with permission from “A non-monetary mechanism for optimal rate control through efficient cost al-
location” by T. Zhao, K. Ray, and I.-H. Hou, IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1418–1431, Jun. 2018,
Copyright 2018 IEEE
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its request arrival rate to maximize its own net utility individually. The server’s goal is to ensure

that the total net utility is maximized at the Nash Equilibrium. Our system model can be applied

to a wide range of networks. For example, the clients might be smartphones, wearable devices,

tablets and so on, and the server can be a cellular base station (e.g. LTE eNodeB) or a Wi-Fi hotspot

which provides Internet services to the clients. Each request corresponds to an LTE subframe or

an IP packet.

The optimal rate control problem, which entails maximizing the total net utility in the system,

is typically convex, and it is thus easy to solve when one has complete information of all the

individual utility functions. In practice, however, the utility functions are often private information

of clients, and a strategic client that aims to maximize its own net utility may not reveal its true

utility function. Further, request rates are directly controlled by clients, instead of the server. Most

existing work employs some auction or pricing scheme that ensures strategic clients reveal their

true functions and follow the assigned rates from the server [54, 59]. However, these schemes

involve additional monetary exchange between clients and the server, which requires additional

infrastructure that is not always available.

In this chapter, we propose a novel non-monetary mechanism for optimal rate control to address

this issue. Note that each client suffers from some disutility based on its experienced delay or

request loss rate, and the server can indirectly adjust such disutility experienced by each client

through its employed control policy. Therefore, the server can potentially steer request rates of

strategic clients toward the optimal point through its control policy. Effectively, the server uses

“delay” or “loss rate” as a kind of “currency.”

In economic terms, there are negative externalities from a client increasing its request rate,

since this increases the overall cost, in the form of delay or loss rate, of all clients. This is an

analogy to a public goods problem [60], in which one client’s consumption choice affects the

utility and payoffs of the other clients. As such, the server’s objective is to design an allocation

scheme such that each client internalizes these negative externalities, thereby leading to efficient

consumption of resources.
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In designing the non-monetary mechanism, we make the following contributions:

1. First, for both the cost of delay and the cost of loss rate, we propose efficient cost allocation

rules through which the server can determine the cost to be allocated to each client.

2. We then design control policies used by the server to allocate costs and adjust disutilities

experienced by the clients. For the cost of delay, we propose a simple scheduling algorithm

and proves that it achieves the efficient delay allocation in the heavy traffic regime.1 For the

cost of loss rate, we propose a simple policy that determines which request to drop when the

server’s buffer is full.

3. Furthermore, we present a distributed rate control protocol where clients update their request

rates based on their experienced costs. The protocol is scalable and lightweight, and is

proved to converge to the Nash Equilibrium where the total net utility of the system is also

maximized.

Altogether, they form our non-monetary mechanism for optimal rate control through efficient cost

allocation.

The rest of the chapter is organized as follows. Section 4.2 reviews the literature related to our

work. Section 4.3 introduces our system model and problem formulation, using delay allocation as

an example. Section 4.4, 4.5, and 4.6 present the efficient delay allocation rule, the efficient delay

scheduling policy, and the distributed rate control protocol for delay allocation respectively. Sec-

tion 4.7 extends the non-monetary mechanism to loss rate allocation. Simulation study is described

in Section 4.8, and we conclude our chapter in Section 4.9.

4.2 Related Work

There has been a considerable amount of literature that studies networks from the respect of

economics. Altman et al. gave a comprehensive survey on networking games [61]. Specifi-

cally for rate control, Kelly et al. analyzed the stability and fairness of pricing based rate control

1Heavy traffic means the total request rate approaches the service rate.
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algorithms [59]. Alpcan and Başar gave a utility-based congestion control scheme for cost mini-

mization and showed its stability for a general network topology [62]. Hou and Kumar presented a

truthful and utility-optimal auction for wireless networks with per-packet deadline constraints [54].

Gupta et al. studied network utility maximization where flows are aggregated into flow classes [56].

Ramaswamy et al. considered the case when a client can choose from a number of congestion con-

trol protocols [57]. Despite the rich literature, most existing mechanisms require additional mon-

etary exchange between clients and the server, and infrastructure for monetary exchange is thus

necessary. However, such infrastructure is not always available in wireless networks, which in turn

limits the applicability of these monetary mechanisms. In contrast, our non-monetary mechanism

exploits existing wireless network properties such as delay or loss rate to realize optimal rate con-

trol. The main advantage is that no additional infrastructure for monetary exchange needs to be set

up or maintained, which can be a substantial cost saving.

The intellectual foundation of our research comes from economics. The early literature began

with problems of creating incentives to reduce free riding in teams, such as in Groves [63]. This

research uses much of the similar logic as our method on the behavior of other agents in a strategic

game. Baldenius et al. [64], Moulin and Shenker [65], and Rajan [66] studied the problem of

cost allocation, namely, how to allocate a common cost to separate corporate departments. Our

contribution is combining a framework that is well utilized in economics and applying it to the

optimal rate control problem in wireless networks. The application to distributed networks is new

to our knowledge.

Besides, our work shares a similar spirit as the standard loss-based TCP congestion control

and delay-based TCP variants, such as TCP Vegas [67], TCP Westwood+ [68, 69], and FAST

TCP [70], in the sense that loss or delay is used as the signal for the clients to adjust their request

rates. However, our mechanism includes not only a rate update protocol but also an efficient cost

allocation rule and a control policy to enforce such rule for optimal rate control.
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4.3 System Model for Delay Allocation

Starting from this section, we first focus on the delay allocation problem for ease of presen-

tation. As will be shown in Section 4.7, the system model and mechanism design can be easily

extended to the loss rate allocation problem.

Consider a system with N clients and a server. Each client i generates requests by some

predefined random process, such as Poisson random process, but it can dynamically adjust its

average request rate, denoted by λi. We use λ := [λi] to denote the vector containing the average

request rates of all clients, and λ−i to denote the vector of average request rates of all clients other

than i.

On the other hand, the server employs some scheduling policy to determine which request to

process. Unserved requests are queued in the system. This corresponds to real systems with suf-

ficiently large buffers, for example, campus Wi-Fi networks. The processing time of each request

is a random variable with mean 1
µ

. If the server’s scheduling policy is work-conserving, which

never idles as long as there is at least one request available for processing, then the average delay

of all requests is a function of the total average request arrival rate, Λ :=
∑

i λi, regardless of

the employed scheduling policy. The average delay function C̄(Λ) is smooth, strictly increasing,

and strictly convex. We assume that the average delay C̄(Λ) can be well fitted by a low-order

polynomial function C(Λ) via, for example, Chebyshev least squares approximation.

Suppose each client obtains some utility based on its request rate λi and suffers from disutility

for every unit delay experienced by each of its request. Specifically, the utility of client i is Ui(λi),

where Ui(·) is a smooth, strictly increasing, and strictly concave function. Let Di(λi, λ−i) be the

average delay that client i experiences for all its requests. The disutility of client i is λiDi(λi, λ−i).

Client i aims to maximize its net utility, Ui(λi)− λiDi(λi, λ−i), by choosing its request rate λi.

The server aims to maximize the total net utility in the system, which can be written as∑
i(Ui(λi) − λiDi(λi, λ−i)). Since the average delay of all requests is the weighted average∑
i λiDi(λi,λ−i)

Λ
≈ C(Λ), we say that the server aims to maximize

∑
i Ui(λi)− ΛC(Λ). The system

model is illustrated in Figure 4.1.
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µ
Server:

max
∑

i Ui(λi)− ΛC(Λ)
where Λ =

∑
i λi

Client 1
λ1

Client i:
maxUi(λi)− λiDi(λi, λ−i)

λi

Client N

λN

...

Figure 4.1: An illustration of the system model. Reprinted with permission from [71].

Note that the average delay of all requests is always infinite when the system is overloaded with

Λ ≥ µ. To simplify discussions, we assume that λ has the properties that Λ =
∑

i λi ≤ (1− ϵ)µ,

where ϵ > 0 is a predetermined value known to the server. We further assume that λi ≥ λδ for

all i, for some predetermined λδ > 0 known to the server. These assumptions are not restrictive

since we can choose ϵ and λδ arbitrarily close to 0. Let Sλ := {λ | Λ ≤ (1− ϵ)µ, λi ≥ λδ} be the

feasible region of λ. The server’s optimization problem is thus formally:

max
λ∈Sλ

N∑
i=1

Ui(λi)− ΛC(Λ). (4.1)

Since Ui(·) is concave, C(·) is convex, and Sλ is a convex set, the problem of maximizing the

total net utility can be easily solved when one has complete information of all these functions. In

practice, however, the function Ui(·) is the private information of client i, and a strategic client may

not reveal its trueUi(·). Now consider a game where, givenλ, the server determines the average de-

lay experienced by each client i, Di(λi, λ−i), with the constraint that
∑

i λiDi(λi, λ−i) ≥ ΛC(Λ).

On the other hand, given λ−i and Ui(·), each client i aims to maximize its own net utility by solving

λ̃i = argmax
λi

Ui(λi)− λiDi(λi, λ−i). (4.2)

Note that we allow
∑

i λiDi(λi, λ−i) to be strictly larger than ΛC(Λ), which can be achieved by
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employing a policy that is not work-conserving and may arbitrarily delay, or drop, requests.

We say that the system reaches a Nash Equilibrium if no client in the system can improve its

own net utility unilaterally.

Definition 9. A vector λ̃ := [λ̃i] is said to be a Nash Equilibrium if λ̃i = argmaxλi
Ui(λi) −

λiDi(λi, λ̃−i),∀i.

Let λ∗ := [λ∗i ] be the vector that maximizes the total net utility. We assume λ∗ lies in the

interior of Sλ to simplify the analysis. This assumption is not restrictive by choosing ϵ and λδ

sufficiently small. The server’s problem is to find the rule that allocates delays, [Di(·)], to induce

optimal choices of [λi].

Definition 10. A rule of allocating delays, [Di(·)], is said to be efficient if λ∗ is the only Nash

Equilibrium.

4.4 Efficient Delay Allocation

In this section, we propose the first building block of our non-monetary mechanism, an efficient

delay allocation rule. The rule will be used by the server to determine how much delay should be

allocated to each client given their request rates λ.

We first study some basic properties of the optimal vector λ∗ = [λ∗i ] that maximizes total net

utility
∑

i Ui(λi)− ΛC(Λ). We have

∂

∂λi

[∑
i

Ui(λ
∗
i )− Λ∗C(Λ∗)

]
= 0. (4.3)

Hence,

U ′
i(λ

∗
i ) =

∂

∂λi
Λ∗C(Λ∗). (4.4)

On the other hand, if λ∗ is also the Nash Equilibrium under some delay allocation rule [Di(·)], then

λ∗i maximizes Ui(λi)− λiDi(λi, λ
∗
−i), and we have

∂

∂λi
[Ui(λ

∗
i )− λ∗iDi(λ

∗
i , λ

∗
−i)] = 0. (4.5)
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Hence,

U ′
i(λ

∗
i ) =

∂

∂λi
λ∗iDi(λ

∗
i , λ

∗
−i). (4.6)

Combining the above equations yields

∂

∂λi
[Λ∗C(Λ∗)− λ∗iDi(λ

∗
i , λ

∗
−i)] = 0. (4.7)

Eq. (4.7) suggests that an efficient rule of delay allocation should ensure that ΛC(Λ)−λiDi(λi, λ−i)

is only determined by λ−i, and is not influenced by λi. It means the sum of the disutilities of all

clients but i should not depend on the request rate of client i. This implication has indeed been

formally stated and proved in [60]:

Proposition 1. [Di(·)] is efficient if and only if there exists functions Ri : RN−1 → R such that for

all i,

λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i), (4.8)

and
N∑
i=1

λiDi(λi, λ−i) = ΛC(Λ). (4.9)

Recall that C(Λ) is a low-order polynomial. Therefore, ΛC(Λ) is also a low-order polynomial,

and can be expressed as ΛC(Λ) = c1Λ + c2Λ
2 + · · ·+ cmΛ

m.

We now define some helpful terminology. First define the sets

P j :=
{
p = [pi]

∣∣ pi is a nonnegative integer,
N∑
i=1

pi = j
}
, (4.10)

P j
i := {p ∈ P j

∣∣ pi = 0}, (4.11)

for j = 1, . . . ,m and i = 1, . . . , N . Next, for p ∈ P j , let G(p) be the number of nonzero

coordinates of p: G(p) :=
∣∣{l ∣∣ pl 6= 0

}∣∣. Note that G(p) is at most j, for all p ∈ P j . Finally,

define
(
j
p

)
:= j!

p1!···pN !
.
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By the multinomial expansion theorem, it holds that

(λ1 + · · ·+ λN)
j =

∑
p∈P j

(
j

p

)
λp11 · · ·λ

pN
N . (4.12)

We now introduce our delay allocation rule. Let

βj
i = cj

∑
p∈P j

i

N − 1

N −G(p)

(
j

p

)
λp11 · · ·λ

pN
N , (4.13)

for j = 1, . . . ,m. We then choose Ri(λ−i) as

Ri(λ−i) =
m∑
j=1

βj
i , (4.14)

and

λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i). (4.15)

(4.15) ensures that Ri(λ−i) is the sum of the disutilities of all clients but i. (4.14) guarantees it

does not depend on λi, which is consistent with the aforementioned implication.

Theorem 12. The rule of delay allocation [Di(·)] as defined by Eq. (4.14) and (4.15) is efficient.

Proof. Since pi = 0 for all p ∈ P j
i , it is obvious that Ri(λ−i) =

∑m
j=1 β

j
i is not influenced by λi.

Next, we check the condition
∑

i λiDi(λi, λ−i) = ΛC(Λ). By Eq. (4.13), for every p ∈ P j ,

the term N−1
N−G(p)

(
j
p

)
λp11 · · ·λ

pN
N appears in βj

i if and only if pi = 0, and there are (N − G(p))

different i with pi = 0. Therefore, the term N−1
N−G(p)

(
j
p

)
λp11 · · ·λ

pN
N appears in [βj

i ] a total number of
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(N −G(p)) times. We then have

N∑
i=1

Ri(λ−i) =
N∑
i=1

m∑
j=1

βj
i

=
m∑
j=1

cj
∑
p∈P j

(N − 1)

(
j

p

)
λp11 · · ·λ

pN
N

= (N − 1)ΛC(Λ), (4.16)

and ∑
i

λiDi(λi, λ−i) = NΛC(Λ)−
N∑
i=1

Ri(λ−i) = ΛC(Λ). (4.17)

Therefore, by Proposition 1, the rule of delay allocation [Di(·)] as defined by Eq. (4.14) and (4.15)

is efficient.

Next, we briefly discuss the time complexity of calculating efficient delay allocation using the

above rule. The most time consuming part is obtaining all the elements of the set P j , whose size

is no more than O(N j), for all j = 1, . . . ,m. We can obtain P j
i as well as G(p) and

(
j
p

)
while

obtaining the elements of P j . Therefore, the total time complexity is O(Nm), where m is a small

constant.

Remark: We note that the allocated delays of some clients following the efficient delay allocation

rule [Di(·)] as in Eq. (4.15) might be unachievable (e.g. negative) in practice, especially when their

request rates are too small compared with others. We call those clients “VIP”, since their allocated

delays are among the smallest. Note there is always at least one non-VIP client in the system. The

above delay allocation rule is efficient only when there are no VIP clients in practical systems. In

the following theoretical analysis, we will focus on the case where all clients in the system are

non-VIP. We will present preliminary simulation studies on VIP clients in Section 4.8.1.3.

4.5 Efficient Delay Scheduling

In this section, we propose an online scheduling policy used by the server to ensure that the

actual delay experienced by each client is the same as its allocated delay, as described in Eq. (4.14)
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and (4.15).

As mentioned before, we focus on non-VIP clients, and assume that gi := λiDi > 0 for all

i. According to Little’s law, gi can be interpreted as the target average queue length (i.e. number

of requests in the system) of client i, which is known to the server. Based on this observation, we

propose the following maximum-relative-queue-length (MRQ) policy:

Definition 11 (MRQ). Let Qi(t) be the queue length of client i at time t. At time t, the MRQ policy

schedules the client with the largest relative queue length, defined as Qi(t)/gi, breaking ties by

scheduling the client with the lowest ID.

The intuition behind MRQ is that by always scheduling the client with the largest relative queue

length, eventually all relative queue lengths are equal on average in steady state, or equivalently,

the average queue length of each client is roughly the same as its target queue length.

Below we will show that the MRQ policy indeed achieves the desirable efficient delay alloca-

tion in the heavy traffic regime.2 In particular, we show that the deviation of the actual average

delay from the target delay is bounded for each client i, regardless of the difference between the

total request rate Λ and the service rate µ. When Λ approaches µ, the actual average delay goes to

infinity, and therefore the deviation becomes negligible compared to the actual average delay. Our

technical approach is similar to the state space collapse results in the queueing theory literature

[72].

Let g := [gi] be the vector of target queue lengths for all clients. Let ĝ := g/
∑

i gi be the

normalized vector of g such that ĝi > 0 is the fraction of target queue length for client i and∑
i ĝi = 1. Define the weighted inner product of two vectors x and y by:

〈x,y〉 :=
N∑
i=1

xiyi
ĝi

,

2On the other hand, if the traffic is light and queues are not built up, it is not quite necessary to employ an advanced
scheduling policy. Nevertheless, MRQ can still be used in light traffic and simulation results suggest that it works
reasonably well. See also Section 4.8.1.2.
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and the norm of a vector x by:

‖x‖ :=
√
〈x,x〉.

Note that ‖ĝ‖ = 1 and thus ĝ is the unit vector in the direction of g.

LetQ(t),A(t), and S(t) be the vector of queue lengths, arrivals, and services respectively for

all clients at time t. To simplify discussions, we assume that time is slotted and the duration of

a time slot is τ . Moreover, in each time slot, each client can generate at most one request, and

the server can serve at most one request. This assumption is not restrictive as we can set τ to be

arbitrarily small. Next we define the generalized projection of Q(t) onto g, denoted by Q∥(t), as

follows:

Q∥(t) := 〈Q(t), ĝ〉ĝ =
N∑
i=1

Qi(t)ĝ.

Since the total queue length is
∑

iQi(t), the queue length of each client i is exactly the i-th element

of Q∥(t) if we allocate queue lengths proportionally to g. Therefore, Q∥(t) can be thought of as

the vector of target queue lengths of all clients under perfect state space collapse.

The deviation Q⊥(t) of actual queue lengths Q(t) from the target queue lengths Q∥(t) is

defined as:

Q⊥(t) := Q(t)−Q∥(t).

Now we introduce a helpful lemma to prove the state space collapse property. Our proof is

based on the Lyapunov drift techniques. First, define the following Lyapunov functions:

V⊥(t) := ‖Q⊥(t)‖,W (t) := ‖Q(t)‖2,W∥(t) := ‖Q∥(t)‖2.

The respective drifts are defined as follows:

∆V⊥(t) := V⊥(t+ τ) − V⊥(t)

∆W (t) := W (t+ τ) − W (t)

∆W∥(t) :=W∥(t+ τ) −W∥(t)
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The following lemma, adapted from Lemma 7 in [72], shows that the drift ∆V⊥(t) can be

bounded by ∆W (t) and ∆W∥(t), and absolutely bounded.

Lemma 7. We have

∆V⊥(t) ≤
1

2‖Q⊥(t)‖
(∆W (t)−∆W∥(t)), (4.18)

and

|∆V⊥(t)| ≤ 2

√
N

ĝmin

, (4.19)

where ĝmin := mini ĝi.

Proof. See Appendix B.1.

Since we are considering a single server system, it is easy to see our MRQ policy stabilizes the

queues of all clients as long as Λ < µ. Therefore, Q(t) converges to a limiting random vector Q̄

in steady state.

Consider the following limiting queueing process: fix a vector ĝ of unit length with ĝi > 0,

we consider all systems whose allocated delays satisfy g/
∑

i gi = ĝ. Each system is indexed by

ε := µ− Λ(ε), where Λ(ε) is the total request arrival rate of the system. We use Q̄(ε) to denote the

random vector of queue lengths in steady state for the system, and use Q̄(ε)
⊥ to denote the deviation

in steady state. The efficiency of MRQ is formally stated in the following theorem:

Theorem 13. The efficient delay allocation rule is enforced by the MRQ scheduling policy in the

heavy traffic regime. That is, there exists a sequence of finite integers {Nr} such that E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤
Nr for all r = 1, 2, . . . and for all ε > 0.

Proof. Below the superscript (ε) is omitted for brevity. By [72, Lemma 1], we only need to show

the Lyapunov drift ∆V⊥(t) is 1. negative when ‖Q⊥(t)‖ is sufficiently large, and 2. absolutely

bounded. Lemma 7 has shown that 2) is satisfied. Moreover, 1) can be reduced to bound ∆W (t)

and ∆W∥(t).
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Consider E[∆W (t) |Q] := E[∆W (t) |Q(t) = Q].

E[∆W (t) |Q]

= E
[
‖Q(t+ τ)‖2 − ‖Q(t)‖2

∣∣Q]
= E

[
‖(Q(t) +A(t)− S(t))+‖2 − ‖Q(t)‖2

∣∣Q]
≤ E

[
‖Q(t) +A(t)− S(t)‖2 − ‖Q(t)‖2

∣∣Q]
≤ 2E[〈Q(t),A(t)− S(t)〉 |Q] +K1,

(4.20)

where (·)+ := max{0, ·} and K1 is a bounded constant. Below we will omit (t) in the derivation

for brevity.

Given a request rate vector λ, define a hypothetical service rate vector µ := λ + εĝ, where

ε > 0. Note that µΣ :=
∑

i µi = Λ + ε = µ. Recall µ is the service rate the server can provide.

Next, we bound the term E[〈Q,A− S〉 |Q] in Eq. (4.20). Without loss of generality, suppose

at time t, client 1 has the largest relative queue length, that is Q1(t)/g1 ≥ Qi(t)/gi for all i. Note

that by the definition of the MRQ scheduling policy,

〈Q,E[S |Q]〉 = Q1

ĝ1
µ ≥ Qi

ĝi
µ.

Therefore,

E[〈Q,A− S〉 |Q] = 〈Q,λ− µ〉+ 〈Q,µ− E[S |Q]〉

= −ε‖Q∥‖ −
N∑
i=1

µi

∣∣∣∣Qi

ĝi
− Q1

ĝ1

∣∣∣∣
≤ −ε‖Q∥‖ − µmin

N∑
i=1

∣∣∣∣Qi

ĝi
− Q1

ĝ1

∣∣∣∣,
(4.21)

where µmin := mini µi.
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Since 0 < ĝi < 1 for all i, we know ĝ2i < ĝi, and thus

N∑
i=1

∣∣∣∣Qi

ĝi
− Q1

ĝ1

∣∣∣∣ ≥
√√√√ N∑

i=1

(
Qi

ĝi
− Q1

ĝ1

)2

≥
∥∥∥∥Q− Q1

ĝ1
ĝ

∥∥∥∥.
Further, we know ‖Q− tĝ‖ ≥ ‖Q⊥‖ for all t ∈ R. Hence,

E[〈Q,A− S〉 |Q] ≤ −ε‖Q∥‖ − µmin

∥∥∥∥Q− Q1

ĝ1
ĝ

∥∥∥∥
≤ −ε‖Q∥‖ − µmin‖Q⊥‖

≤ −ε‖Q∥‖ − δ‖Q⊥‖,

(4.22)

for any δ such that 0 < δ < mini λi.

Substituting Eq. (4.22) to Eq. (4.20), we get

E[∆W (t) |Q] ≤ −2ε‖Q∥‖ − 2δ‖Q⊥‖+K1. (4.23)

Next, we obtain a lower bound of ∆W∥(t). Consider E
[
∆W∥(t)

∣∣Q] := E
[
∆W∥(t)

∣∣Q(t) = Q
]
.

Let Ψ(t) be the unused service at time t such that Q(t+ 1) = Q(t) +A(t)− S(t) +Ψ(t). Note

that 0 ≤ ψi ≤ 1 for all i.

E
[
∆W∥(t)

∣∣Q] =E
[
〈ĝ,Q+A− S +Ψ〉2 − 〈ĝ,Q〉2

∣∣Q]
=E

[
2〈ĝ,Q〉〈ĝ,A− S〉+ 〈ĝ,A− S〉2

+2〈ĝ,Q+A− S〉〈ĝ,Ψ〉+ 〈ĝ,Ψ〉2Q
]

≥2〈ĝ,Q〉〈ĝ,λ− E[S |Q]〉

− 2E[〈ĝ,S〉〈ĝ,Ψ〉 |Q]

≥2〈ĝ,Q〉〈ĝ,λ− E[S |Q]〉 −K2,

(4.24)

where K2 := 2N2 considering Si ≤ 1 and ψi ≤ 1 for all i. The first term can be further reduced
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as follows:

2〈ĝ,Q〉〈ĝ,λ− E[S |Q]〉 = 2‖Q∥‖(Λ− µ) = −2ε‖Q∥‖.

Therefore,

E
[
∆W∥(t)

∣∣Q] ≥ −2ε‖Q∥‖ −K2. (4.25)

By taking expectation of Eq. (4.18), and substituting Eq. (4.23) and (4.25) into it, we have

E[∆V⊥(t) |Q] ≤ −δ + K1 +K2

2‖Q⊥‖
,

which establishes the negative drift of E[∆V⊥(t) |Q]. Along with the absolute boundness provided

by Lemma 7, we can conclude that the conditions for Lemma 1 of [72] are satisfied, and thus there

exists a sequence of finite integers {Nr} such that E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤ Nr for all r = 1, 2, . . . .

Remark: Since the constants in these bounds are all independent of ε, the deviation of the limiting

queue length vector Q̄(ε) from the target queue length vector g becomes negligible as ε → 0.

Therefore, we observe the state space collapse behavior of relative queue lengths, and the efficient

delay allocation rule is enforced by our MRQ scheduling policy in the heavy traffic regime.

4.6 Distributed Rate Control Protocol

Theorem 12 has shown that our proposed delay allocation rule in Section 4.4 is efficient. That

is, suppose there is a unique vector λ∗ = [λ∗i ] that maximizes total net utility
∑

i Ui(λi)− ΛC(Λ)

in Eq. (4.1), then λ∗ is also the unique vector of Nash Equilibrium under our delay allocation rule.

Theorem 13 further proves that our MRQ scheduling policy enforces the delay allocation rule,

that is each client experiences its own allocated delay in the heavy traffic regime. In this section,

we propose a distributed rate control protocol for clients to dynamically adjust their rates so as to

converge to the Nash Equilibrium.

Our protocol is based on the projected gradient method [73], a simple yet effective method

to solve convex optimization problems. The projected gradient method consists of two steps:

initialization and iterative update. In the initialization step, the method arbitrarily chooses a vector
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λ(0) ∈ Sλ. Recall that Sλ is the feasible region for λ. In each subsequent iteration k, the projected

gradient method updates λ by:

λ̂(k + 1) = λ(k) + κ(k)∇

[
N∑
i=1

Ui(λi)− ΛC(Λ)

]
,

λ(k + 1) = P(λ̂(k + 1)),

where κ(k) > 0 is the step size at the k-th iteration, and P is the projection to the convex set

Sλ. Note that the index k of iteration should not be confused with the time slot for scheduling.

We assume a time scale separation, where rate update happens in a more coarse time scale than

scheduling, so that there is sufficient time for the scheduling policy to steer the clients and enforce

the efficient delay allocation rule. [73] has shown that the projected gradient method converges to

the unique optimal solution, and therefore also converges to the Nash Equilibrium.

Proposition 2. If κ(k) satisfies
∑∞

k=0 κ(k) = ∞ and
∑∞

k=0 κ
2(k) < ∞, then the projected gra-

dient method either stops at some iteration k, or the infinite sequence {λ(k)} generated by the

method converges to the optimal point.

Note that stopping at some iteration k means the method reaches the optimality in finite steps.

However, the projected gradient method is a centralized algorithm. In particular, calculating the

projection λ(k + 1) = P(λ̂(k + 1)) requires the knowledge of all elements in λ̂(k + 1). Below,

we propose a distributed rate control protocol that is inspired by the projected gradient method.

Since
∂

∂λi
[ΛC(Λ)] =

d[ΛC(Λ)]

dΛ

∂Λ

∂λi
=

d

dΛ
[ΛC(Λ)],

λ̂(k + 1) can be acquired by each client updating its own request rate:

λ̂i(k + 1) = λi(k) + κ(k)

[
U ′
i(λi(k))−

d[ΛC(Λ)]

dΛ

]
.

Note that, to facilitate the update, the server only needs to broadcast the value of κ(k) and d[ΛC(Λ)]
dΛ
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in each iteration to all clients.

To ensure that λ(k+1) satisfies Λ(k+1) ≤ (1− ϵ)µ and λi(k+1) ≥ λδ, each client i further

chooses

λi(k + 1) = min{max{λ̂i(k + 1), λδ}, λi(k)
(1− ϵ)µ
Λ(k)

}.

This step ensures that λδ ≤ λi(k + 1) ≤ λi(k)
(1−ϵ)µ
Λ(k)

, and therefore Λ(k + 1) ≤ Λ(k) (1−ϵ)µ
Λ(k)

=

(1 − ϵ)µ. We also note that, to facilitate this step, the server only needs to broadcast the value of

Λ(k) in each iteration. Figure 4.2 illustrates the different projection behaviors of the centralized

projected gradient method and our distributed rate control protocol. Note that distributed projection

requires the constraints of the optimization problem are either decoupled for each client or in

a summation form, while centralized projection works with a general convex set as the feasible

region.

(λδ, λδ)
λ1

λ2

Λ
=
(1
−

ǫ)µ

λ(k)

λ̂(k + 1)

Centralized:
λ(k+1)

Λ
=
Λ(k)

λ1(k)
(1−ǫ)µ
Λ(k)

λ2(k)
(1−ǫ)µ
Λ(k)

Distributed:
λ(k+1)

Figure 4.2: Centralized vs. distributed projection. Reprinted with permission from [71].

The complete distributed protocol is summarized in Protocol 1. Compared with the centralized

method, our distributed protocol is more scalable and lightweight, since it utilizes the broadcast
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nature of wireless channel and requires less resource of the server and the channel.

Protocol 1: Distributed rate control protocol

Server: on convergence of relative queue lengths:

1. k ← k + 1

2. Broadcast Λ(k), κ(k), and d[ΛC(Λ)]
dΛ

Client i: on reception of server broadcast message:

1. Update: λ̂i ← λi + κ(k)
[
U ′
i(λi)−

d[ΛC(Λ)]
dΛ

]
2. Projection: λi ← min{max{λ̂i, λδ}, λi (1−ϵ)µ

Λ
}

We can prove that our distributed protocol also converges to the Nash Equilibrium. This prop-

erty will also be verified by simulations in Section 4.8.

Theorem 14. If κ(k) satisfies
∑∞

k=0 κ(k) = ∞ and
∑∞

k=0 κ
2(k) < ∞, then the distributed rate

control protocol either stops at some iteration k, or the infinite sequence {λ(k)} generated by the

protocol converges to the Nash Equilibrium of the system.

Proof. See Appendix B.2.

4.7 Non-Monetary Protocol with Efficient Loss Rate Allocation

Our non-monetary mechanism can be extended to deal with different costs other than delay

itself. In this section, we consider loss rate allocation in a finite-buffer system as an example. This

is more practical for real systems with only small buffers where packet losses are more common,

for example, mobile hotspots set up by cellphones.

4.7.1 System Model for the Loss Rate Allocation Problem

Similar to Section 4.3, suppose that there are N clients and a server in the system. Each client

i controls its request arrival rate λi, and the service time needed by each request is a sequence
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of i.i.d. random variables with mean 1
µ

. On the other hand, we assume that the server serves all

requests in a first-in-first-out (FIFO) fashion, and that the server only has a finite buffer that can

hold B unfinished requests, including the one being served. When the buffer is full and there is

another request arrival, the server needs to drop a request to accommodate the new request, and the

corresponding client experiences a loss.3

Since the service times of all requests have the same probability distribution, the request loss

rate, defined as the average number of dropped requests per unit time, is a function of total request

arrival rate, Λ =
∑

i λi. We denote the request loss rate by L̄(Λ), and note that L̄(Λ) = ΛPB(Λ),

where PB(Λ) is the blocking probability of the queueing system. We assume that L̄(Λ) can be well

fitted by a low-order polynomial function L(Λ), which is strictly increasing and strictly convex.

Each client obtains some utility Ui(λi) based on its own request rate, and suffers from some

disutility that equals its own loss rate. We use li(λi, λ−i) to denote the loss rate of client i. Hence,

the net utility of client i is Ui(λi)− li(λi, λ−i).

Obviously, we have
∑

i li(λi, λ−i) = L̄(Λ) ≈ L(Λ). The goal of the server is to maximize

the total net utility in the system, which can be approximated by
∑

i Ui(λi) − L(Λ), while each

client i aims to maximize its own net utility Ui(λi) − li(λi, λ−i). The server can allocate the loss

rate li(λi, λ−i) of each client i through its policy of dropping requests, subject to the constraint that∑
i li(λi, λ−i) = L(Λ).

Similar to delay allocation, we can define Nash Equilibrium and efficient allocation rule for

loss rate allocation as follows:

Definition 12. A vector λ̃ := [λ̃i] is said to be a Nash Equilibrium for loss rate allocation if

λ̃i = argmaxλi
Ui(λi)− li(λi, λ̃−i),∀i.

Definition 13. A rule of allocating loss rates, [li(·)], is said to be efficient if λ∗ is the only Nash

Equilibrium.
3The dropped request can be the newly arriving one, or some request already in the buffer.
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4.7.2 Mechanism Design for Efficient Loss Rate Allocation

Our results of efficient allocation rule in Section 4.4 can be easily extended to loss rate alloca-

tion. In particular, we have the following proposition:

Proposition 3. [li(·)] is efficient if and only if there exists functions Ri : RN−1 → R such that for

all i,

li(λi, λ−i) = L(Λ)−Ri(λ−i), (4.26)

and
N∑
i=1

li(λi, λ−i) = L(Λ). (4.27)

For the allocation rule, redefine ci to be the coefficients of L(Λ) instead of ΛC(Λ) in Sec-

tion 4.4. Then setting

li(λi, λ−i) = L(Λ)−Ri(λ−i), (4.28)

is efficient, where Ri(λ−i) has the same form as in (4.14).

Next, we discuss how to design a policy that ensures the actual perceived loss rate of each

client i is close to the desirable li(λi, λ−i). Suppose at time t, the server’s buffer is full and one

more client request arrives. Let l̄i(t) be the perceived loss rate of client i till time t for all i. On

the other hand, li is the allocated loss rate according to the above allocation rule. We propose the

following drop-smallest-relative-loss-rate (DropSRLR) policy:

Definition 14 (DropSRLR). Suppose the server’s buffer is full and a new request arrives at time t,

the DropSRLR policy drops a request from the client with the smallest relative loss rate, defined as

l̄i(t)/li, breaking ties by choosing the client with the lowest ID.

The intuition of our dropping policy is that by always selecting the client with the smallest

relative loss rate, over a long term all relative loss rates tend to be the same, which is equivalent to

say each client obtains a loss rate as allocated. The efficiency of the policy will be demonstrated

in the simulations in Section 4.8.
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Moreover, we can extend our distributed rate control protocol to loss rate allocation. The

complete distributed protocol is summarized in Protocol 2. Note that there is no upper limit for

the total request rate to make the finite-buffer system stable. Therefore, the distributed protocol is

essentially the same as its centralized counterpart, and its convergence is straightforward to show.

Protocol 2: Distributed rate control protocol for loss rate allocation

Server: on convergence of relative loss rates:

1. k ← k + 1

2. Broadcast κ(k) and L′(Λ(k))

Client i: on reception of server broadcast message:

1. Update: λ̂i ← λi + κ(k) [U ′
i(λi)− L′(Λ(k))]

2. Projection: λi ← max{λ̂i, λδ}

4.8 Simulations

In this section, we evaluate the performance of our overall design via simulations. We will

present the simulations for delay allocation and loss rate allocation respectively.

4.8.1 Simulations of Delay Allocation

For delay allocation, we validate the polynomial approximation assumption for the average de-

lay function, the state space collapse behavior of relative queue lengths through the MRQ schedul-

ing policy, and the convergence to the Nash Equilibrium of our distributed rate control protocol.

For comparison, we also consider a baseline mechanism with the classic FIFO policy for schedul-

ing and centralized projected gradient method for rate control. Note that with FIFO scheduling,

each client experiences the same average delay, i.e. Di(λi, λ−i) = C(Λ).

In our simulations, we consider two systems each with N = 10 clients and one server. Both

systems have Poisson arrivals of requests from all clients. The service time distribution of one

system is exponential, and the other is deterministic. Hence, the two systems correspond to an
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M/M/1 queue and an M/D/1 queue respectively. Each system has an average service rate µ =

1× 103 s−1 and an initial total average request rate Λ = 0.95µ = 0.95× 103 s−1. Request rates

will be updated by clients over time. We round up all inter-arrival times between two consecutive

requests and service times of requests to the nearest microsecond. Given the above average service

rate, we make about 103 scheduling decisions every second.

4.8.1.1 Polynomial Approximation of Average Delay Function

First, we evaluated the assumption that the average delay function can be well approximated

by a polynomial C(Λ). There are two methods to obtain the average delay function: One is via the

theoretical formula, and the other is via simulations. Here, we use the first method. For the M/M/1

queue, the theoretical average delay function is:

C̄(Λ) =
1

µ− Λ
.

For the M/D/1 queue, it is:

C̄(Λ) =
1

µ
+

Λ

2µ(µ− Λ)
.

In our simulations, we fit C̄(Λ) with ten samples in our most interested heavy traffic region,

where Λ/µ ∈ [0.9, 0.99], to get the polynomial C(Λ). Recall that the total disutility in terms of

total average queue length is ΛC(Λ). The total disutility functions before and after approximation

are compared in Figure 4.3, labeled as “Theory” and “Approx” respectively. We can observe that

the polynomial approximation fits the theoretical functions very well. In fact, the order of the

polynomial C(Λ) is as small as six, and the largest relative error of the approximation is only

about 2.66%.
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Figure 4.3: Polynomial approximation of total disutility functions ΛC(Λ). Reprinted with permis-
sion from [71].

4.8.1.2 Scheduling Policy

We implemented our MRQ scheduling policy and validated the state space collapse behavior

in the simulations. We use a new metric, the relative difference of queue lengths, defined as:

(
max

i

Qi(t)

gi
−min

i

Qi(t)

gi

)/∑
i

Qi(t)

gi

to evaluate the state space collapse performance. Theorem 13 has shown that, given the target

queue length gi of each client i, our MRQ policy ensures that the relative difference of queue

lengths converges to 0 in the heavy traffic regime.

Figure 4.4 shows the evolution of the relative difference of queue lengths for both systems for

two sets of initial request rates, “Same rate” and “Diff rates”. “Same rate” means all ten clients

have the same request rate λ = Λ/N = 95 s−1, while in “Diff rates” we have two groups of request

rates: λi = 95.6 s−1 for i = 1, 2, . . . , 5 and 94.4 s−1 for i = 6, 7, . . . , 10. We initialize the queue

length of client i to be i2 to exhibit the convergence of relative queue lengths more clearly. We can

86



see that the relative difference of queue lengths converges to 0 quickly for each scenario.
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Figure 4.4: State space collapse of relative queue lengths. Reprinted with permission from [71].

Figure 4.5 depicts the state space collapse behavior in light traffic, where the total load of each

system is only 0.1. Here “Same rate” means all ten clients have the same request rate λ = Λ/N =

10 s−1, while in “Diff rates” the two groups of request rates are: λi = 10.6 s−1 for i = 1, 2, . . . , 5

and 9.4 s−1 for i = 6, 7, . . . , 10. Similar to Figure 4.4, the queue length of client i is initialized

to be i2. We observe that the relative difference of queue lengths also quickly decreases to a low

level initially where there are enough requests to schedule. However, there is no further decrease

afterwards since too few requests are in the system to achieve exact allocation of queue lengths

and delays.

4.8.1.3 Nash Equilibrium

Furthermore, we evaluated our distributed rate control protocol in the simulations. We set the

utility functions for both systems to be Ui(λi) = αwi log λi, where α = 100 is the common scaling

coefficient for all clients, and wi’s are different weights for different clients. We set the weights
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Figure 4.5: State space collapse in light traffic. Reprinted with permission from [71].

to be in two groups: wi = 0.99 for i = 1, 2, . . . , 5 and 1.01 for i = 6, 7, . . . , 10. Therefore, the

evolution of request rates of all the clients can be captured by those of Client 1 and Client 10. For

the step size, we let κ(k) = 10/k for all k.

Figure 4.6 shows the rate convergence performance for the two systems respectively. We can

see that for each system, the request rates converge to two distinct values after tens of iterations.

Observe that the distributed rate control protocol (“Dist” in the figure) has almost the same rate

updates as the projected centralized gradient method (“Cent” in the figure). It validates that the

request rates converge to the optimal rates λ∗, and the distributed rate control protocol achieves

the Nash Equilibrium of the system.

Figure 4.7 shows the convergence performance in terms of total net utility for the two systems.

The total net utility settles down quickly with our distributed protocol (“MRQ, Dist” in the fig-

ures), and the evolution is again almost the same as the centralized method (“MRQ, Cent” in the

figures). It means the total net utility converges to the optimal value of the optimization problem,

and confirms the convergence of our distributed rate control protocol. In these figures we also plot

the performance of the baseline mechanism with the FIFO scheduling policy for comparison. We
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can see that under the baseline mechanism, the total net utility converges to a suboptimal value. It

indicates that the delay allocation rule of the baseline mechanism is not efficient.

We also conduct preliminary studies on the impact of VIP clients via simulations. We assume

VIP clients experience zero delay and update their request rates accordingly. We consider two

scenarios where VIP clients exist. One is that there are VIP clients at the Nash Equilibrium. In the

simulation, we set the weights in the utility functions to be wi = 0.7 for i = 1, 2, . . . , 5 and 1.3

for i = 6, 7, . . . , 10 so that Clients 1–5 will be VIP at the Nash Equilibrium. Figure 4.8 depicts

the evolution of total net utility for the M/M/1 system in this scenario. Observe that under our

protocol, the total net utility oscillates over time. However, our mechanism still outperforms the

baseline mechanism. The other scenario uses the same utility functions as those in Figure 4.7, but

sets the initial request rates to be λi = 100 s−1 for i = 1, 2, . . . , 5 and 90 s−1 for i = 6, 7, . . . , 10

so that initially Clients 6–10 are VIP. We find that Clients 6–10 remain VIP clients in the first two

iterations. However, all clients are non-VIP afterwards. Figure 4.9 shows the convergence perfor-

mance of total net utility for the M/M/1 system. Note that it converges to the same optimal value

as in Figure 4.7a under our mechanism. Therefore, in this case the system eventually converges to

the original optimal Nash Equilibrium.

4.8.2 Simulations of Loss Rate Allocation

For loss rate allocation, we will show the validity of polynomial approximation for the loss rate

function, the convergence of relative loss rates under our DropSRLR policy, and the convergence

of the distributed rate control protocol in Protocol 2. As for the baseline mechanism, we use the

well-known DropTail policy that always drops the newly arriving request when the buffer is full.

Note that under DropTail, each client has the same blocking probability, and thus li(λi, λ−i) =

λiL(Λ)/Λ.

Similar to delay allocation, we simulate two systems each with N = 10 clients and one server

for loss rate allocation. The two systems correspond to an M/M/1/B queue and an M/D/1/B queue

respectively. That is to say, the request arrival processes are both Poisson, while the service time

distributions are exponential and deterministic respectively. The buffer size B is fixed to be 10 for
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Figure 4.6: Convergence performance of request rates for delay allocation. Reprinted with permis-
sion from [71].
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Figure 4.7: Convergence performance of total net utility for delay allocation. Reprinted with
permission from [71].
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Figure 4.8: Total net utility evolution with VIP clients at the Nash Equilibrium. Reprinted with
permission from [71].
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Figure 4.9: Total net utility convergence with VIP clients at initial arrival. Reprinted with permis-
sion from [71].
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each system. Besides, we set the average service rate µ = 1× 103 s−1, and the initial total average

request rate Λ = 0.99µ = 0.99× 103 s−1.

4.8.2.1 Polynomial Approximation of Loss Rate Function

First, we evaluated the assumption that the loss rate function can be well approximated by a

polynomial L(Λ). Similar to delay allocation, we use theoretical results to obtain the loss rate

function L̄(Λ). Recall that L̄(Λ) = ΛPB(Λ). For the M/M/1/B queue, the blocking probability

PB(Λ) is given by the following formula:

PB(Λ) =
(Λ
µ
)B∑B

i=0(
Λ
µ
)i
.

For the M/D/1/B queue, PB(Λ) can be calculated by the procedure described in [74]. Therefore,

we can get PB(Λ) and L̄(Λ) for any given Λ.

In our simulations, we fit PB(Λ) with ten samples where Λ/µ ∈ [0.7, 1.3] to be a 6-order

polynomial. The total disutility functions in terms of loss rate L(Λ) before and after approximation

are compared in Figure 4.10, labeled as “Theory” and “Approx” respectively. Similar to delay

allocation, the polynomial approximation can be observed to match the theoretical functions very

well. The largest relative error is only about 1.57%.

4.8.2.2 Dropping Policy

We implemented our DropSRLR dropping policy for loss rate allocation and validated the

convergence of relative loss rates via simulations. To quantify the convergence performance, we

introduce the relative difference of loss rates, defined as

(
max

i

l̄i(t)

li
−min

i

l̄i(t)

li

)/∑
i

l̄i(t)

li
.

Figure 4.11 shows the evolution of the relative difference of loss rates for both systems for two sets

of initial request rates. Similar to delay allocation, “Same rate” means all ten clients have the same

request rate λ = Λ/N = 99 s−1. On the other hand, for “Diff rates” in loss rate allocation we set
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Figure 4.10: Polynomial approximation of loss rate functions. Reprinted with permission
from [71].

λi = 100 s−1 for i = 1, 2, . . . , 5 and 98 s−1 for i = 6, 7, . . . , 10. The initial loss rate of client i is set

to be i. From the figure, we can see that the relative difference of loss rates converges to 0 quickly

for both systems and both sets of initial request rates. It shows that our DropSRLR dropping policy

ensures that the loss rates experienced are as allocated and the policy is thus efficient.

4.8.2.3 Distributed Protocol

We also validated the convergence of our distributed rate control protocol for loss rate alloca-

tion, Protocol 2, in our simulations. Similar to delay allocation, the utility function of client i is

Ui(λi) = αwi log λi. We set α = 50 as the common scaling coefficient for all clients. We set

the weights to be in two groups: wi = 1 − 5× 10−3 for i = 1, 2, . . . , 5 and 1 + 5× 10−3 for

i = 6, 7, . . . , 10. For the step size, we let κ(k) = 80/k for all k.

Figure 4.12 shows the rate convergence performance for the two finite-buffer systems. In our

setup, the rate evolution of Client 1 and Client 10 depicts the rate evolution of all the ten clients.

We can see that for each system, the request rates converge to two distinct values after tens of

iterations. Figure 4.13 shows the convergence performance in terms of total net utility for the two
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Figure 4.11: Convergence performance of relative loss rates. Reprinted with permission from [71].

systems. The total net utility settles down quickly with our distributed protocol (“DropSRLR”

in the figure). Note that the centralized method is omitted since it is essentially the same as the

distributed protocol for loss rate allocation. Therefore, under our distributed protocol, the request

rates of all clients converge to the Nash Equilibrium, and the total net utility converges to the

optimal value of the rate control problem. On the other hand, under the baseline mechanism with

the DropTail dropping policy the total net utility converges to a suboptimal value for each system.

Hence, the loss rate allocation of the baseline mechanism is not efficient.

We also conduct sensitivity analysis on the buffer sizeB via simulations. The results are plotted

in Figure 4.14, and they clearly show diminishing returns. The total net utility, i.e. the objective

value of the rate control problem, increases as the buffer size B increases. This is consistent with

the intuition that larger buffer size leads to smaller loss rates. However, the marginal increase in

total net utility decreases and the total net utility becomes saturated when B is large.

4.9 Conclusions

We have presented our non-monetary mechanism for optimal rate control through efficient

cost allocation to address the challenge of strategic users in Information Centric Edge. First, we
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Figure 4.12: Convergence performance of request rates for loss rate allocation. Reprinted with
permission from [71].
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focus on delay allocation. We give our delay allocation rule and prove its efficiency based on

multinomial expansion. Then we propose our MRQ scheduling policy that can enforce the delay

allocation rule effectively in the heavy traffic regime. Besides, we design a distributed rate control

protocol which can lead the system to the Nash Equilibrium. Furthermore, we show that our non-

monetary mechanism can be extended to handle loss rate allocation as well. Finally, simulation

results depict the effectiveness of our mechanism. We will conduct further study on VIP clients for

future work. We would like to obtain nontrivial sufficient conditions for clients to become VIPs

and for our mechanism to still achieve efficient cost allocation considering VIP clients.
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5. EFFICIENT REVENUE DISTRIBUTION*

This chapter presents a revenue distribution method to encourage manufacturing device sup-

pliers to participate in an Internet-based platform enabled by cyber infrastructure. Considering a

group of suppliers (e.g. 3D printing service providers) sign up to an e-commerce platform to fulfill

the order of customers, it is very much desirable for the platform operator to distribute the revenue

in a way that the total net utility of the platform and the net utility of the individual suppliers are

optimized. Based on the game theory approach, a nonlinear revenue distribution rule is designed

to achieve Nash Equilibrium of the system. Simulation studies show that, compared to the pro-

portional and equal distribution rules, the proposed distribution rule indeed yields the highest net

utility for all. While efficient algorithms to reduce computational costs can be further investigated,

the present work demonstrates an approach to promote broader participation of manufacturing

activities.

5.1 Introduction

Manufacturing is typically a capital and skill intensive industry. With the advances in manu-

facturing technologies and cyber infrastructure, the barrier-to-entry into manufacturing, however,

has been significantly eased. Today, it is possible for a company to establish a manufacturing fa-

cility with computer numerical control machines (CNCs) or 3D printers, conduct business through

Internet, and supply parts to customers across the country and around the world. Therefore the

development of a pervasive manufacturing environment consists of providers and customers of

manufacturing technologies, services, and products can be enabled by an Internet-based platform.

The platform can be perceived as the Uber, Airbnb or Amazon of manufacturing for time sharing

of manufacturing equipment (e.g. 3D printers) and transaction of manufactured goods.

For the success of a pervasive manufacturing environment described above, it is critical that the

*Part of this chapter is reprinted with permission from “An efficient revenue distribution method in a cyber-enabled
manufacturing system” by T. Zhao, I.-H. Hou, V. J. Leon, K. Ray, and J. Wang, Manufacturing Letters, Copyright
2018 Elsevier
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customers seeking for manufacturing services and the participating manufacturers find it beneficial

and profitable to use the cyber-enabled platform. This chapter focuses on the interaction between

the numerous manufacturers and the platform. One way the platform can encourage manufacturers’

participation would be to provide each participant with a suitable portion of the revenue obtained

from selling to customers. Specifically, a revenue sharing methodology is presented that illustrates

how the platform owner could optimally distribute a portion of its revenue among all manufacturing

service suppliers to maximize total net utility achieved by the platform and the manufacturers while

at the same time optimizing the individual net utility for each manufacturer.

The literature on revenue-sharing is extensive for traditional supply chains and more recently

for supply chains under e-commerce [75, 76, 77, 78]. However, there is notable lack of theoretic

publications on this topic with explicit consideration to characteristics unique to manufacturing

service suppliers, and even less in the context of cyber-enabled supply chains. This chapter presents

initial results aimed at filling this research gap.

5.2 Theory

Assuming convexity, the problem of maximizing the total net utility can be easily solved by

convex optimization toolboxes when one has complete information of all the reward and cost func-

tions. In practice, however, the cost functions are private information of suppliers, and a strategic

supplier may not reveal its true cost function. Therefore, game theoretical approach is necessary.

Consider a cloud platform that connects a massive number of designers/customers and n man-

ufactured part suppliers, as shown in Fig. 5.1. The platform assigns the arriving tasks to different

suppliers to fully utilize available manufacturing equipment/resources. Let µi denote the perfor-

mance of the i-th supplier, which can be measured as the number of basic parts that can be manu-

factured in unit time. Let µ := [µi] denote the performance vector of all suppliers, and µ−i denote

the performance vector of all suppliers other than the i-th supplier.

From the perspective of the cloud platform, the overall system performance is µΣ :=
∑

i µi.

We assume the overall system performance is bounded so that µΣ ∈ [0, µ̄Σ]. Suppose such perfor-

mance generates a revenue of Rtot(µΣ) := R0(µΣ) + R(µΣ) to the cloud platform, where R0(µΣ)
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Figure 5.1: Cyber-enabled manufacturing platform.

is the net profit of the platform itself, and R(µΣ) is the revenue to be distributed to the n suppliers.

For instance, the platform can choose R0(µΣ) to be a certain percentage of Rtot(µΣ). It is assumed

that the functionR(·) is strictly concave, non-decreasing, satisfiesR(0) = 0, and can be well-fitted

by an (n− 1)-order polynomial R̂(µΣ) via, for example, Chebyshev least squares approximation.

Suppose each supplier receives a revenue of ri(µi, µ−i) after the distribution. As it is desired

to maintain (approximate) budget balance for the revenue distribution,
∑

i ri (µi, µ−i) ≈ R (µΣ) .

The formal definition is as follows:

Definition 15. A rule of distributing revenue, [ri(·)], is said to converge to budget balance in n if

lim
n→∞

sup
µ

∣∣∣∣∣
n∑

i=1

ri (µi, µ−i)−R (µΣ)

∣∣∣∣∣ = 0 (5.1)

To maintain a certain level of performance µi, the supplier i needs to invest on raw materials,

energy, device maintenance, and so on, which will incur a cost denoted by Ci(µi). The cost

functions are assumed to be convex. Now for supplier i, since the revenue is ri(µi, µ−i) and the

cost is Ci(µi), the net utility is therefore ri(µi, µ−i)−Ci(µi). Each supplier i aims to maximize its

own net utility. As such, the system reaches a Nash Equilibrium if no supplier in the system can

improve its own net utility unilaterally.
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Definition 16. A vector µ̃ := [µ̃i] is said to be a Nash Equilibrium if

µ̃i = argmax
µi

ri(µi, µ̃−i)− Ci(µi),∀i (5.2)

The platform aims to maximize the total net utility in the system, which can be written as∑
i ri(µi, µ−i) − Ci(µi). Due to approximate budget balance, It can be stated that the platform

aims to maximize R (µΣ) −
∑

iCi (µi) . Let µ∗ := [µ∗
i ] be the vector that maximizes the total

net utility, then the platform’s problem is to find the rule that distributes revenue, [ri(·)], to induce

optimal choices of [µi].

Definition 17. A rule of distributing revenue, [ri(·)], is said to be efficient if µ∗ is the only Nash

Equilibrium.

Intuition of an efficient revenue distribution rule can be revealed by some basic properties of the

optimal vectorµ∗ = [µ∗
i ]. Since the algorithm maximizes the total net utilityR (µΣ)−

∑
iCi (µi) ,

it holds that
∂

∂µi

R(µ∗
Σ) = C ′

i(µ
∗
i ). (5.3)

On the other hand, if µ∗ is also the Nash Equilibrium under some revenue distribution rule

[ri(·)], then µ∗
i maximizes ri(µi, µ

∗
−i)− Ci(µi), and thus

∂

∂µi

ri(µ
∗
i , µ

∗
−i) = C ′

i(µ
∗
i ). (5.4)

Combining the above equations yields

∂

∂µi

[R (µ∗
Σ)− ri(µ∗

i , µ
∗
−i)] = 0 (5.5)

The above equation suggests that an efficient rule of revenue distribution should ensure that

R (µΣ) − ri(µi, µ−i) is only determined by µ−i, and is not influenced by µi. This implication has

indeed been formally stated and proved by Ray & Goldamis [60].
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Proposition 4. [ri(·)] is efficient if and only if there exists functions Ei : Rn−1 → R such that for

all i,

ri (µi, µ−i) = R (µΣ)− Ei(µ−i) (5.6)

Recall that R (µΣ) can be fitted by an (n−1)-order polynomial, R̂(µΣ) = a1µΣ+a2µ
2
Σ+ . . .+

an−1µ
n−1
Σ . To better introduce the revenue distribution rule, some helpful terminology is defined:

P j :=

{
p = [pi]

∣∣∣∣∣pi is a nonnegative integer,
n∑

i=1

pi = j

}
(5.7)

P j
i :=

{
p ∈ P j

∣∣pi = 0
}

(5.8)

for j = 1, . . . , n − 1 and i = 1, . . . , n. Next, for p ∈ P j, let G(p) be the number of nonzero

coordinates of p, i.e. G (p) := |{l|pl 6= 0}| . Note that G(p) is at most j, for all G(p). Finally,

define
(
j
p

)
:= j!

p1!···pn! .

The designed revenue distribution rule is given as follows. Let

βj
i = aj

∑
p∈P j

i

n− 1

N −G(p)

(
j

p

)
µp1
1 · · ·µpn

n (5.9)

for j = 1, . . . , n− 1. Let

Ei(µ−i) =
n−1∑
j=1

βj
i (5.10)

Then

ri (µi, µ−i) = R (µΣ)− Ei (µ−i) (5.11)

where ri (µi, µ−i) is the revenue distributed to each supplier i.

Theorem 15. The rule of revenue distribution [ri(·)] as defined above is efficient and converges to

budget balance in n.

Proof. The proof that the revenue distribution rule [ri(·)] as defined above is efficient is virtually
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the same as that of Theorem 12 in Chapter 4. Specifically, we know
∑
Ei(µ−i) = (n− 1)R̂(µΣ).

As for the convergence of budget balance, the proof is similar to that of Proposition 3 in [60].

Specifically, for Chebyshev approximation, there exists a B < ∞ such that |R(µΣ) − R̂(µΣ)| <

B lnn
n2 for µΣ ∈ [0, µ̄Σ]. Hence,

lim
n→∞

sup
µ

∣∣∣∣∣
n∑

i=1

ri (µi, µ−i)−R (µΣ)

∣∣∣∣∣ = lim
n→∞

sup
µ

∣∣∣(n− 1)(R(µΣ)− R̂(µΣ))
∣∣∣

= lim
n→∞

sup
µ

B(n− 1) lnn

n2

= 0.

Note that if the revenue function R (µΣ) is indeed an (n − 1)-order polynomial, then exact

budget balance is achieved. In summary, the amount for each manufacturer participant can be

calculated using the following Revenue Distribution Procedure:

Efficient Supplier Revenue Distribution Procedure (ESRD):

1. Determine coefficients a1, a2, . . . , an−1 from an (n−1)-order polynomial approximation of

the given R (µΣ).

2. Calculate βj
i and Ei(µ−i) using (5.9) and (5.10), respectively.

3. Determine the revenue distribution for each supplier using (5.11).

5.3 Results and Discussions

Simulation studies were conducted in two example scenarios with high and low performance

variations between manufacturing suppliers respectively. Each scenario has n = 10 suppliers. The

performance µi for all suppliers for both scenarios are listed in Tables 5.1 and 5.3 respectively.

For the high variation scenario, they are generated from the uniform distribution in [40, 160]. For

the low variation scenario, they are generated from the uniform distribution in [80, 120]. Both

scenarios have a revenue function (µΣ) = α0
√
µΣ , where α0 = 1. The individual cost functions

are Ci (µi) = αiµ
2
i , where the values of αi, are also listed in Tables 5.1 and 5.3 respectively.
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Table 5.1: Parameters for high variation scenario. Reprinted with permission from [79].

i µi αi

1 64 7.33E-04
2 157 1.23E-04
3 136 1.64E-04
4 137 1.58E-04
5 157 1.23E-04
6 45 1.39E-03
7 81 4.53E-04
8 103 2.68E-04
9 82 4.19E-04

10 58 8.84E-04

Table 5.3: Parameters for low variation scenario. Reprinted with permission from [79].

i µi αi

1 100 2.78E-04
2 82 4.56E-04
3 115 2.30E-04
4 117 2.26E-04
5 86 3.93E-04
6 95 3.40E-04
7 103 2.65E-04
8 113 2.25E-04
9 85 4.16E-04

10 115 2.15E-04

103



The efficient revenue distribution rule was compared against two practical baseline rules. One

is a proportional distribution rule (PDR), where each supplier i receives its revenue proportional to

its performance, i.e. ri (µi, µ−i) =
µi

µΣ
R (µΣ) . The other is a simple equal distribution rule (EDR),

where each supplier i receives an equal share of distributed revenue, i.e. ri (µi, µ−i) =
R(µΣ)

n
.

Fig. 5.2 summarizes the simulation results for revenue, cost, and total net utility at Nash Equi-

librium for the high variation scenario under the three proposed revenue distribution rules.

Figure 5.2: Results of the simulation. Reprinted with permission from [79].

As expected, the proposed ESDR is optimal yielding the highest net utility when compared

with the PDR and EDR. PDR yields the highest revenue but at the expense of higher costs; this is

a proportional revenue distribution rule that the resulting distribution is biased by revenue. On the

other hand EDR yields the minimum cost but at the expense of suboptimal revenue. The results

for the low performance variation data were similar, and the results are omitted for brevity.

The calculated distributed revenues for each manufacturer for high and low variation scenar-

ios are summarized in Fig. 5.3 and 5.4. It can be observed that the proposed ESDR adjusts the

appropriate revenue for each manufacturer according to their performance. Interestingly, from a

manufacturer’s point of view, the distributed revenue depends not only on its own performance, but

also on the performance of other participants. Thus, the ESDR promotes the cooperative nature of
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the cyber-enabled manufacturing environment.

Figure 5.3: Distributed revenue for high variation scenario. Reprinted with permission from [79].

Figure 5.4: Distributed revenue for low variation scenario. Reprinted with permission from [79].

5.4 Distributed Edge Servers

We extend our work on efficient revenue distribution to consider multiple distributed edge

servers. More specifically, suppose we have M servers, numbered as j = 1, 2, · · · ,M . On the
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other hand, we have N suppliers, numbered as i = 1, 2, · · · , N . Each supplier i can dynamically

adjust its performance denoted by µi. Each supplier can connect to a nonempty subset of servers,

and each server can be reached by a nonempty subset of suppliers. Each supplier i can further

decide its performance distribution across the servers, µij so that µi =
∑

j µij . To simplify the

notation, let µi := (µi1, . . . , µiM). We say µij ≡ 0 if supplier i cannot reach server j.

On the other hand, each server j has a revenue ofRj(
∑

i µij) to be distributed to each supplier i.

We assume the function Rj(·) is smooth, strictly increasing, strictly concave, and can be well fitted

by a low-order polynomial function via, for example, Chebyshev least squares approximation. To

simplify the notation, we let Ψj :=
∑

i µij , ψj := (µ1j, . . . , µNj), and µ−i,j denote the vector of

average request rates of all suppliers other than i at server j.

Suppose each supplier i obtains some revenue and incurs some cost based on its performance

µi. Specifically, the cost of supplier i is Ci(µi) = Ci(µi1, . . . , µiM), where Ci(·) is a smooth,

strictly increasing, and strictly convex function. Let rij(ψj) = rij(µ1j, . . . , µNj) be the revenue

that supplier i obtains from server j. Note that rij(·) only depends on performance available at

the server j. The utility of supplier i is
∑

j rij(µ1j, . . . , µNj). Supplier i aims to maximize its net

utility,
∑

j rij(ψj)− Ci(µi) by choosing its performance distribution µij .

We aim to maximize the total net utility in the system, which can be written as
∑

i

∑
j rij(ψj)−

Ci(µi). Since the total revenue to be distributed is
∑

j Rj(Ψj), we say that the system aims to

maximize
∑

j Rj(Ψj)−
∑

iCi(µi).

Let Sµ := {µ | µij ≥ 0} be the feasible region of µ. The system’s optimization problem is

thus formally:

max
µ∈Sµ

∑
j

Rj(Ψj)−
∑
i

Ci(µi) (5.12)

Since Ri(·) is concave, Cj(·) is convex, and Sµ is a convex set, the problem of maximizing the

total net utility can be easily solved when one has complete information of all these functions. In

practice, however, the functionCi(·) is the private information of supplier i, and a strategic supplier

may not reveal its true Ci(·). Besides, the servers are geographically distributed areas and it incurs

106



additional costs to share Rj(·).

Now consider a game where, given µ1j, . . . , µNj , the server j determines the revenue dis-

tributed to each supplier i, rij(µ1j, . . . , µNj), with the constraint that
∑

i rij(µ1j, . . . , µNj) =

Rj(Ψj). On the other hand, given Ci(·), rij , and µi′j for all i′ 6= i and j, each supplier i aims

to maximize its own net utility by solving

µ̃i = argmax
µi

∑
j

rij(ψj)− Ci(µi) (5.13)

We say that the system reaches a Nash Equilibrium if no supplier in the system can improve its

own net utility unilaterally.

Definition 18. A matrix µ̃ := [µ̃ij] is said to be a Nash Equilibrium if µ̃i = argmaxµi

∑
j rij(ψj)−

Ci(µi),∀i.

Let µ∗ := [µ∗
ij] be the matrix of request rates that maximizes the total net utility of the system.

The system’s problem is to find the rule that distributes revenue at each server j, [rij(·)], to induce

optimal choices of [µij].

Definition 19. A rule of distributing revenue, [rij(·)], is said to be efficient if µ∗ is the only Nash

Equilibrium.

Proposition 5. [rij(·)] is efficient if and only if there exists functions Ei : Rn−1 → R such that for

all i, j,

rij (µij, µ−i,j) = Rj(Ψj)− Ei(µ−i,j) (5.14)

Proof. The proof is virtually the same as that of Proposition 1 in [60].

Theorem 16. The revenue distribution rule generated by each edge server executing ESRD dis-

tributedly is efficient to the whole system.

Proof. The proof is virtually the same as that of Theorem 12.
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Remark 4. Distributed execution of ESRD at each server and individual optimization at each

supplier leads to the global optimal solution of the whole system.

5.5 Conclusions

With the advances in manufacturing technology and cyber infrastructure, it is conceivable that

a cloud platform can be developed to connect customers and suppliers of manufacturing services

in a way similar to a ride-share platform connecting riders and drivers. For such a pervasive

cyber-manufacturing system to succeed, a massive number of customers and suppliers is required.

This chapter presents a nonlinear revenue distribution method to promote broad participation of

suppliers. Based on the game theory approach, the method optimizes the net utility of the platform

and individual suppliers to achieve the Nash equilibrium of the system. The simulation results

show that, with the proposed method, the revenue distribution depends not only on individual

supplier’s performance, but also on the performance of other participants in the system. One future

enhancement of the present work is to develop fast approximations that will address scalability

issues and allow online implementation with a large number of suppliers.
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6. INFORMATION CENTRIC EDGE TESTBED

This chapter introduces our Information Centric Edge testbed with a programmable network

stack. More specifically, we have built a testbed with programmable application, network, and

MAC layers so that intelligent caching, routing, and scheduling algorithms can be implemented

upon. Practical algorithms can be implemented in high level programming languages, which are

easy to add, modify, and update. Both distributed and centralized algorithms are supported, consid-

ering that in some cases distributed algorithms lead to suboptimal solution. Centralized algorithms

are enabled by software defined networking (SDN).

6.1 Related Work

There are quite a few existing testbeds related to Information Centric Edge. ParaDrop [5] is

a testbed which envision home Wi-Fi routers as edge servers that host popular mobile Internet

services. It provides application programming interface (API) for new mobile Internet services

to deploy to home Wi-Fi routers, and uses virtualization for isolation between services. Besides,

Furion [80] implements an edge system where a Unity-based virtual reality (VR) application acts

as a game client and prefetches the background scenes of neighboring in-game locations from a

nearby edge server. It has experimental multi-player support with Photon cloud providing location

information of other players in real time. On the other hand, PULS [81], a testbed based on the

LabVIEW software and USRP hardware, focuses on PHY and MAC layers. It can achieve low-

latency (within 1ms) packet delivery while providing programmable MAC scheduling. In addition,

there is a Docker based testbed [82] which focuses on mobility and handover support.

As mentioned before, the NDN project has an open source codebase, where NFD, the NDN for-

warding daemon, has built-in caching and packet forwarding API. Currently in the NDN codebase,

caching is implemented as “content store”, an in-memory database, in NDN forwarding daemon

(NFD). One can inherit the base class to add new caching policies. Besides, ndn-cxx, the base

library, makes it easy to develop NDN applications. There are a great number of Named Data
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Networking (NDN) based testbeds. However, to our knowledge, none of the NDN based testbeds

support programmable MAC scheduling.

SDN has been proposed to replace traditional Ethernet switches or routers with vendor-specific

control interface by a more open and vendor-neutral approach. In SDN, there is a centralized con-

troller node that commands all switches and routers in the network via an open protocol OpenFlow.

The controller also opens up a general programmable platform for network control applications or

middleware, including monitoring, firewall and so on. There has been a great number of imple-

mentations of SDN controller, such as ONOS and Ryu. Besides, there are also software switches

that can communicate SDN controllers via OpenFlow, including Open vSwitch1, BOFUSS [83],

etc.

6.2 Integration of LabVIEW, NDN, and VR Application

It is natural to see that by integrating LabVIEW, NDN, and the VR application, we would have

a programmable network stack, including the MAC layer, network layer, and application layer. Al-

though it appears straightforward, the integration is in fact challenging because these components

run on different operating systems (OSs), written in different programmable languages, speak-

ing different protocols, and having interfacing mismatch. Beside, the original PULS testbed was

implemented on an outdated platform as of today (LabVIEW NXG 1.0 on Windows 7).

The first challenge of integrating NDN and LabVIEW is that NDN code is Unix-only while

LabVIEW NXG 2 only runs on Windows 10. To make the two components run on the same

host PC, we make use of the Windows Subsystem for Linux, and install the Ubuntu 16.04 app

in Microsoft Store to Windows 10. NDN code, including both the base library ndn-cxx and the

forwarding daemon NFD, can then be installed successfully inside the Ubuntu app.

The next challenge of integrating NDN and LabVIEW is their interfacing mismatch. We utilize

local UDP sockets to connect NFD, which implements the NDN network layer, to the LabVIEW

MAC layer, since UDP is the only interface available in LabVIEW to connect to other applications.

LabVIEW code uses two separate UDP sockets, one for incoming traffic and the other for outgoing,

1https://www.openvswitch.org/
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to write to and read from other applications respectively, Therefore, it is natural to use two UDP

sockets for NFD to talk to LabVIEW, one for reception and the other for transmission. However,

this conflicts with the NFD philosophy that data packets follow the reverse path of interest packets.

Specifically, when LabVIEW forwards an interest packet from another host to NFD, NFD will

reply with the corresponding data packet back to the same UDP socket. LabVIEW, however, does

not listen on the socket and ignores the data packet. The mismatch is also depicted in Fig. 6.1.

LabVIEW NDN

Interest

Data

I hear
nothing.

Figure 6.1: Interfacing mismatch between LabVIEW and NDN.

To address the interfacing mismatch, we hacked NFD to redirect the data packets to a separate

UDP socket that LabVIEW listens. The details are as follows. First, NFD sets up a special UDP

socket upon startup to the port LabVIEW listens, and we let LabVIEW forward interest packets

to a special UDP port (e.g. 60001) NFD listens. Then, whenever NFD is going to send out a data

packet on a particular connection, it checks whether the connection is on a regular UDP socket,

and the NFD endpoint is that special UDP port (e.g. 60001). If so, NFD will move the data packet

to the special UDP socket LabVIEW listens. LabVIEW will then send the data packet out via

wireless.

We also enable multi-client support for our LabVIEW + NDN integration, meaning that one

NDN producer node serves multiple NDN consumer nodes on top of LabVIEW. We note that this

is not available in LabVIEW base implementation, nor original PULS. Our approach to enable that

is to assign one set of UDP sockets per client. One set means two one-way UDP sockets in our
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implementation. To facilitate that, we need a mechanism that maps from UDP port numbers to

client IDs and further to MAC addresses. Fig. 6.2 illustrates our assignment of UDP ports to two

client nodes. For simplicity, we let the last digit of UDP port numbers match the client ID.

Client 1

Client 2

63631

63632

60001

60002

12001

12002
LabVIEW NDN

*

**

Figure 6.2: Multi-client support for LabVIEW + NDN integration. * and ** denote random port
numbers used by LabVIEW to send packets to NDN.

Next, we integrate NDN with the VR application developed by Furion. In Furion, the VR app

talks to an edge server via a TCP socket over commercial 802.11ac Wi-Fi. For integration, we let

the VR app talk to an NDN consumer via a local TCP socket. The VR app sends out the NDN

name of the video frame files it needs to prefetch to the NDN consumer, and the NDN consumer

then put it in an interest packet and sends that out. For example, /vikingvillage/3_2048.

mp4,163_512.mp4 is a name for two video frame files of the Viking Village VR game, where

the first video frame has an ID of 3 and a width of 2048 px. The interest packet will be forwarded to

an NDN producer on another host. The NDN producer incorporates the main logic of Furion edge

server application, including preloading video frames, parsing incoming packet, and assembling

data packet with requested video frames. Since video frames typically contain many bits, the

resulting data packet is usually fairly large. It will be fragmented into 4KB chunks by NFD before

sending to LabVIEW, since the MAC layer packet has a size limit of 4061B.

We can demonstrate the integration of LabVIEW, NDN, and the VR app live in our testbed.

The interface at the client node is shown in Fig. 6.3, and the communication of components of a

client node and an access point (AP) node is shown in Fig. 6.4. The message flow initialized by
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Figure 6.3: Client node interface of our testbed.

the VR app prefetching video frames of neighboring in-game locations is as follows:

1. The VR app requests new video frames files from the NDN consumer via a local TCP socket.

2. The NDN consumer listens for requests and sends out interest packets.

3. NFD forwards interest packets to LabVIEW via a local UDP socket.

4. LabVIEW sends out interest packets to the AP node via USRP wirelessly.

5. AP LabVIEW pushes interest packets to NFD.

6. NFD forwards interest packets to the NDN producer on the same host.

7. The NDN producer prepares data packets with video frames.

8. NFD fragments data packets to 4KB chunks for LabVIEW.

9. LabVIEW sends data packets to the client node via USRP wirelessly.

10. Client LabVIEW pushes data packets to NFD and then the NDN consumer.

11. The NDN consumer sends data packet payload to the VR app.
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12. The VR app decodes and plays the new video frames when the player moves.

AP Node

LabVIEW

NFD

UDP

Producer

Video Frames

USRP

Client Node

LabVIEW

NFD

UDP

Consumer

USRP

VR App

TCP

Figure 6.4: Communication of components in the integrated testbed.

6.3 Integration with Software Defined Networking

Next, we bring centralized control to the testbed via SDN. Our integration with SDN is illus-

trated in Fig. 6.5. In our testbed, a network administrator can use any device with a web browser

for controlling the testbed. The web browser sends HTTP requests to a standard SDN controller.

The SDN controller runs on its own host PC, and communicates with a software switch on an AP

node via OpenFlow. The software switch acts as a proxy, and is further connected to LabVIEW

and NDN on the same host. The communication between the software switch and LabVIEW/NDN

is via UDP. With this design, LabVIEW or NDN does not need to know OpenFlow. Instead, the

software switch forwards commands to LabVIEW or NDN based on the command type. Besides,

the SDN controller can manage external standard SDN switches or routers to form a larger testbed.

In our testbed, we choose Ryu as the SDN controller software because of its modular design and

BOFUSS as the software switch because of its simplicity. Ryu is a Python application and thus

can run on Windows directly. BOFUSS, on the other hand, is Linux only and cannot even run on

the Ubuntu app on Windows. Hence, we run it in a Ubuntu virtual machine created in Oracle VM
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VirtualBox2 on Windows 10.

We extend the OpenFlow protocol3 to support control of wireless functionalities in LabVIEW

and the network layer management in NDN in our testbed. We use the Experimenter Message

of the OpenFlow protocol to carry customized commands between the SDN controller and the

software switch.

SDN
Controller

HTTP

Admin

Software
Switch

OpenFlow

AP Node

LabVIEW

NDN

UDP

Figure 6.5: Integration with SDN.

Figure 6.6: Integration of SDN and LabVIEW.

We can demonstrate the integration of SDN and LabVIEW by changing the modulation coding
2https://www.virtualbox.org/
3The OpenFlow version we are based on is 1.3.
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scheme (MCS) in LabVIEW for wireless transmission on the fly from a web page. Fig. 6.6 shows

the system setup, where an AP node running LabVIEW is in the upper half of the figure, to the

bottom left is another host running the SDN controller, and to the bottom right is a laptop acting

as the administrator device. We can set the target MCS to be e.g. 0 in the web page. After clicking

the “Send” button, the MCS will be updated in the LabVIEW front panel. Since we enable RF

loopback in LabVIEW for this demo, we can also observe the changes in the constellation plot

and the RX throughput value. What happen behind the scene are as follows. The command in

the web page is sent to the SDN controller via an HTTP REST API. The controller then sends

a corresponding command to the software switch via OpenFlow. The software switch parses the

command and forwards it to LabVIEW via UDP. Finally, LabVIEW parses the command and acts

accordingly.

6.4 Future Work

Our Information Centric Edge testbed is work in progress.4 In this section, we outline several

directions for future work.

In terms of the integration of LabVIEW and NDN, for now we use two separate UDP sockets

for each client. However, one UDP socket can be used for bidirectional communication. Hence,

it is desirable to use just one socket per client for NDN communicating with LabVIEW. This

simplifies the interface and is consistent with the NDN philosophy that data packets traverse the

reverse path of interest packets. A potential design is as follows:

1. NDN listens on a special UDP port e.g. 60001 on startup.

2. LabVIEW creates a new UDP socket with local port e.g. 12001 and remote port 60001 on

startup.

3. LabVIEW then sends a hello packet to indicate the LabVIEW link layer is available.

4. NDN, upon hearing hello, creates a special UDP socket to LabVIEW.

4Currently we have 14 Git repositories and over 22 wiki pages on https://github.tamu.edu/NDN-WEN.
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5. Both NDN and LabVIEW read and write on this socket.

Another potential improvement to the integration of LabVIEW and NDN is to let NFD see the

remote LabVIEW endpoint. In our current implementation, NFD treats the local LabVIEW as the

remote endpoint for a connection, and is not aware of the real remote endpoint on another host.

Although it is not essential for an edge testbed, it will become necessary if we would like to route

packets to different upstream routers. To achieve that, a new abstract connection type for NDN, the

LabVIEW face, can be introduced. The local (resp. remote) endpoint of such face is identified by

the MAC address used by LabVIEW on the local (resp. remote) host. Such abstraction is seen by

packet forwarding and upper layers, while local UDP sockets and wireless communication are still

used for the underlying link. Particularly, we need to establish the local UDP socket when creating

a new LabVIEW face.

Regarding the integration of NDN and the VR app, we are working on supporting the multi-

player version of the VR game. Prior to the integration, the multi-player game relies on a cloud

service called Photon to update players’ locations. One key challenge of the integration is how to

replace Photon with an edge service, preferably over NDN.

As for the integration with SDN we are working on enabling changing MAC scheduling policy

and NDN caching policy from the SDN controller, as well as designing an SDN control application

in the web page as the front end of our testbed. We would like to extend the OpenFlow protocol to

handle capabilities, configuration, events, and statistics for changing various policies in our wire-

less testbed, while preserving the compatibility of standard wired SDN networks. To allow SDN to

control NDN network management, we will create custom commands based on OpenFlow between

the SDN controller and the software switch. The software switch then forwards such commands

to a special NDN consumer that translates the custom commands to NDN interest packets for net-

work management. Existing NFD management functions include changing forwarding strategies

and forwarding/routing table entries, gathering events and statistics from given connections and so

on. We are extending the API to support reporting available caching policies and changing caching

policies from the SDN controller.
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Besides, it is preferable that the testbed is easy to use from the tester’s perspective. It should be

made easy to configure all nodes in the testbed globally given a particular setup. It would be helpful

to collect important state information and performance metric and display them in a central place

for real-time monitoring and evaluation. Below is the test workflow we are working on realizing:

1. Start a test with a given setup in a control panel in a web page.

2. All test nodes configure themselves according to control commands and start running soft-

ware applications.

3. All test nodes report their state information (e.g. queue length) and metrics (e.g. cost)

periodically to the control panel.

4. Stop the test in the control panel.

5. All test nodes report final metrics and terminate applications.

6. Repeat the above with a different setup.
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7. SUMMARY AND CONCLUSIONS

In this dissertation, we have presented our research on networking at the Information Centric

Edge. We have worked on the dynamic service caching problem and proposed an online algorithm

with provable order optimality and good performance against real-world traces. We have studied

the joint optimization of content placement, cache selection, and video version selection, and pro-

posed practical distributed algorithms that achieve close to optimal performance in evaluations.

To handle strategic users, we have designed a non-monetary mechanism that drives distributed

optimization of individual clients to converge to the global optimum via efficient cost allocation.

The same method can be applied to cyber-enabled manufacturing to solve the efficient revenue

distribution problem. In addition, we are building an Information Centric Edge testbed with a pro-

grammable network stack which enables virtual reality applications in real wireless environment.
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APPENDIX A

APPENDIX FOR SERVICE CACHING

A.1 Proof of Lemma 1

This section provides a proof for Lemma 1. By assumptions of the lemma, OPT(l) 6= RL(l),

for all n ≤ l ≤ m. Therefore, there must exist some service that is in RL(l) but not in OPT(l).

OPT needs to forward requests for these services to the back-end cloud. We will count the number

of requests for these services.

Since the edge server can cache K services, we say that the edge server has K slots, numbered

as Lk for k = 1, 2, . . . , K. We use Lk[r] to denote the r-th service cached at slot Lk during [n,m].

We use dk[r] to denote the time after which Lk[r] is deleted and Lk[r + 1] is downloaded. We set

dk[0] = n − 1, for all k. If Lk[r] is the last service cached at Lk before the m-th arrival, we set

dk[r] = m. To simplify the notation, let δk[r] := dk[r − 1] + 1. Therefore, the service Lk[r] is

cached at Lk during [δk[r], dk[r]] for all r.

Lemma 8. Suppose Lk[r] = Sj , then
∑dk[r]

l=δk[r]
xj(l) ≥

∑dk[r]
l=δk[r]

xi(l)− 2M .

Proof. We prove this by contradiction. By the assumption of Lemma 1, Si /∈ RL(l), for all

δk[r] ≤ l ≤ dk[r]. If
∑dk[r]

l=δk[r]
xj <

∑dk[r]
l=δk[r]

xi − 2M , then RED/LED would have downloaded Si

before the dk[r]-th arrival.

We classify all services that are in RL(l) but not in OPT(l), for all l ∈ [n,m], into two types:

Definition 20. Suppose Lk[r] = Sj /∈ OPT(n), then we say that Sj is of type I if
∑dk[r]

l=n xj(l) ≥∑dk[r]
l=n xi(l)− 4M , and say that Sj is of type II if there exists some τ ≥ n such that

∑dk[r]
l=τ xj(l) ≥∑dk[r]

l=δk[r]
xi(l).

By this definition, OPT needs to forward at least
∑dk[r]

l=n xi(l) − 4M requests for Lk[r] if it is

of type I, and at least
∑dk[r]

l=δk[r]
xi(l) requests for Lk[r] if it is of type II. It is possible for a service
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to be of both type I and type II. We first prove that a service Lk[r] /∈ OPT(n) is of either type I or

type II.

Lemma 9. Suppose Lk[r] = Sj /∈ OPT(n), then Sj is of either type I or type II.

Proof. If r = 1, then δk[r] = n, and we have
∑dk[r]

l=n xj(l) ≥
∑dk[r]

l=n xi(l)−2M >
∑dk[r]

l=n xi(l)−4M

by Lemma 8. In this case, Sj is of type I.

Next, we consider the case r > 1. Sj is downloaded by RED/LED after the (dk[r − 1])-th

arrival. By the design of RED/LED, there exists a service Sj∗ and τ such that Sj∗ ∈ RL(l), for all

τ ≤ l ≤ dk[r − 1], and
dk[r−1]∑
l=τ

xj(l) ≥
dk[r−1]∑
l=τ

xj∗(l) + 2M. (A.1)

If τ ≥ n, then we have

dk[r]∑
l=τ

xj(l) =

dk[r−1]∑
l=τ

xj(l) +

dk[r]∑
l=δk[r]

xj(l)

≥
dk[r−1]∑
l=τ

xj∗(l) + 2M +

dk[r]∑
l=δk[r]

xi(l)− 2M

≥
dk[r]∑

l=δk[r]

xi(l),

and Sj is of type II. On the other hand, if τ < n, then we have

n−1∑
l=τ

xj(l) <
n−1∑
l=τ

xj∗(l) + 2M, (A.2)

or Sj would have been downloaded earlier. Combining (A.1) and (A.2) yields
∑dk[r−1]

l=n xj(l) ≥
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∑dk[r−1]
l=n xj∗(l). Therefore,

dk[r]∑
l=n

xj(l) =

dk[r−1]∑
l=n

xj(l) +

dk[r]∑
l=δk[r]

xj(l)

≥
dk[r−1]∑
l=n

xj∗(l) +

dk[r]∑
l=δk[r]

xi(l)− 2M

≥
dk[r]∑

l=δk[r]

xi(l)− 4M,

and Sj is of type I.

We are now ready to prove Lemma 1.

Time

Downloaded 

after this request 

௞భܮ ଵݎ ∈ RLሺ݊ሻ
Beginning of the frame

Deleted after the ݀௞భ[ݎଵ]-th request

௞మܮ ଶݎ ∈ RLሺ݊ሻܮ௞య ଷݎ ∈ RLሺ݊ሻܮ௞ర ସݎ ∈ RLሺ݊ሻ
End of the frame

OPT forwards at least ∑ ௜ሺ݈ሻௗೖభ[௥భ]௟ୀ௡ݔ − ܯ4 OPT forwards at least ∑ ௜ሺ݈ሻ௠௟ୀௗೖభݔ ௥భ ାଵ
Figure A.1: An example for the proof of Lemma 1. Reprinted with permission from [33].

Proof of Lemma 1. Let Lk1 [r1] be the type I service with the largest dk[r]. Since OPT(l) 6=

RL(l),∀l ∈ [dk1 [r1] + 1,m], we can find a set of type II services {Lk2 [r2], Lk3 [r3] . . . } such that

the union of [dkj [rj − 1] + 1, dkj [rj]] covers [dk1 [r1] + 1,m]. Fig. A.1 illustrates an example of

finding Lk1 [r1], Lk2 [r2], . . . . By the definition of type II service, the total number of requests that

OPT needs to forward for these services is at least
∑m

l=dk1 [r1]+1 xi(l). Also, OPT needs to forward
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at least
∑dk1 [r1]

l=n xi(l)− 4M requests for Lk1 [r1]. Therefore, in total, OPT needs to forward at least∑m
l=n xi(l)− 4M requests.

A.2 Proof of Lemma 2

Proof of Lemma 2. By the first condition of RED, there are at least 2M requests for Si during

[n,m]. Otherwise, Si cannot be downloaded during [n,m], and therefore cannot be deleted at the

m-th arrival.

When Si is to be deleted at the m-th arrival, it must have the largest τi among all services

currently cached by RED/LED, where τi is defined in Def. 3. Since there are at least 2M requests

for Si during [n,m], all services in RL(m) have at least 2M requests during [n,m].

First, consider the case RL(m − 1) 6= OPT(m − 1). There must exist a service Sj such that

Sj ∈ RL(m− 1), but Sj /∈ OPT(m− 1). OPT needs to forward all requests for Sj during [n,m],

and there are at least 2M of them.

Next, consider the case RL(m − 1) = OPT(m − 1). At the m-th arrival, RED/LED deletes

Si in order to download another service Sj /∈ RL(m − 1) = OPT(m − 1). By the design of

RED/LED, there exists τ and a service Si∗ ∈ RL(m − 1) such that the conditions in Def. 2 are

satisfied. In particular,
∑m

l=m−τ xj(l) ≥
∑m

l=m−τ xi∗(l) + 2M . If m − τ ≥ n, then there are at

least 2M requests for Sj during [n,m], and OPT needs to forward all of them. On the other hand,

consider the case m − τ < n. Since RED/LED does not download Sj until the m-th arrival, we

have
∑n−1

l=m−τ xj(l) <
∑n−1

l=m−τ xi∗(l)+2M , and therefore
∑m

l=n xj(l) ≥
∑m

l=n xi∗(l) ≥ 2M . OPT

still needs to forward at least 2M requests.

A.3 Proof of Lemma 3

Note that Lemma 8 still holds. For RED/LED with double capacity, there are at leastK services

that are in RL(l) but not in OPTb(l) for any n ≤ l ≤ m. These services are either of type I or type

II:

Definition 21. Suppose Lk[r] = Sj /∈ OPTb(n), then we say that Sj is of type I if
∑dk[r]

l=n xj(l) ≥∑dk[r]
l=n xi(l)− 4M , and say that Sj is of type II if there exists some τ ≥ n such that

∑dk[r]
l=τ xj(l) ≥
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∑dk[r]
l=δk[r]

xi(l).

Lemma 10. Suppose Lk[r] = Sj /∈ OPTb(n), then Sj is of either type I or type II.

Proof. The proof is virtually the same as the proof of Lemma 9.

We are now ready to prove Lemma 3.

Proof of Lemma 3. Recall that we can findK services that are not cached by OPTb but by RED/LED

after each arrival during [n,m], and they are either of type I or type II. Since the exact location of

a service in the 2K slots does not affect the policy, we can think of the K services as packed in the

first K rows out of the 2K slots during [n,m], and assume the unchanged services between con-

secutive arrivals stay in their row. Because there will be at most one download after each request

arrival, the sets of K services differ at most by one element between any consecutive arrivals. If

a service in these K rows is deleted, we relabel the service so that it appears to be a new service

afterwards. Note that the relabeling does not change the decision or the cost of RED/LED and

OPTb.

For each of the K rows, we can count the number of requests that OPTb needs to forward for

the services in the row in a similar fashion as in the proof of Lemma 1. Let Lk1 [r1] be the type

I service with the largest dk[r]. The rest services in this row are of type II. By the definition of

type II service, the total number of requests that OPTb needs to forward for these services is at

least
∑m

l=dk1 [r1]+1 xi(l). Besides, OPTb needs to forward at least
∑dk1 [r1]

l=n xi(l) − 4M requests for

Lk1 [r1]. Therefore, in total, OPTb needs to forward at least
∑m

l=n xi(l) − 4M requests. Note the

result holds for extreme cases with only type I services or only type II services in one row.

With service relabeling, the services in each row will not appear in any other row, and thus

there is no duplicate in summing up the cost of all K rows. Therefore, in total, OPTb needs to

forward at least K(
∑m

l=n xi(l)− 4M) requests.

A.4 Proof of Lemma 4

Proof of Lemma 4. By the first condition of RED as in Def. 2, there are at least 2M requests for Si

during [n,m]. Otherwise, Si cannot be downloaded during [n,m], and therefore cannot be deleted
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at the m-th arrival.

When Si is to be deleted at the m-th arrival, it must have the largest τi among all services

currently cached by RED/LED, where τi is defined in Def. 3. Since there are at least 2M requests

for Si during [n,m], all services remaining in RL(m) have at least 2M requests during [n,m].

Now consider RL(m − 1). There must exist at least K services Sj1 , Sj2 , . . . , SjK such that

Sjk ∈ RL(m − 1), but Sjk /∈ OPTb(m − 1), for all k = 1, 2, . . . , K. OPTb needs to forward all

requests for these K services during [n,m], and there are at least 2KM of them.
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APPENDIX B

APPENDIX FOR EFFICIENT COST ALLOCATION

B.1 Proof of Lemma 7

Proof. The proof of Eq. (4.18) is omitted since it is virtually the same as the proof of Lemma 7 in

[72].

The proof of Eq. (4.19) is stated below:

|∆V⊥(t)| = |‖Q⊥(t+ τ)‖ − ‖Q⊥(t)‖|

≤ ‖Q⊥(t+ τ)−Q⊥(t)‖

= ‖Q(t+ τ)−Q(t)−Q∥(t+ τ) +Q∥(t)‖

≤ ‖Q(t+ τ)−Q(t)‖+ ‖Q∥(t+ τ)−Q∥(t)‖.

The vector in the second term is exactly the projection ofQ(t+τ)−Q(t) onto g. Due to Pythagoras

theorem,
∥∥Q∥(t+ τ)−Q∥(t)

∥∥ ≤ ‖Q(t+ τ)−Q(t)‖. Hence,

|∆V⊥(t)| ≤ 2(‖Q(t+ τ)−Q(t)‖)

= 2

√√√√ N∑
i=1

1

ĝi
(Ai(t)− Si(t))2

≤ 2

√
N

ĝmin

,

where the last inequality follows because we assume that there is at most one request arrival and

one request service in each time slot.

B.2 Proof of Theorem 14

We will use a descent lemma in [73]:
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Lemma 11. Let f : Rn 7→ R be continously differentiable, and let x and y be two vectors in Rn.

Suppose that

‖∇f(x+ ty)−∇f(x)‖ ≤ Lt‖y‖,∀t ∈ [0, 1],

where L is some scalar. Then

f(x+ y) ≤ f(x) + yT∇f(x) + L

2
‖y‖2.

Proof. See Proposition A.24 of [73].

Proof of Theorem 14. First, note the distributed protocol is possible to stop at some iteration k, if

λ(k) = λ∗. Since ∇f(λ∗) = 0, λ∗ is stationary between successive iterations. In such case, the

optimal point is reached in finite iterations. Below we will focus on the case where we have an

infinite sequence {λ(k)}.

Let f(λ) := ΛC(Λ) −
∑

i Ui(λi) be the opposite to the objective function of the server’s

optimization problem in (4.1). Easy to check f is smooth, strictly convex, and bounded on Sλ.

Therefore, ∇f is Lipschitz-continous, i.e. there exists L < ∞ such that ‖∇f(x) − ∇f(y)‖ ≤

L‖x− y‖,∀x,y ∈ Sλ.

By Lemma 11, we have

f(λ(k + 1))− f(λ(k)) ≤∇Tf(λ(k))(λ(k + 1)− λ(k))

+
L

2
‖λ(k + 1)− λ(k)‖2 (B.1)

We can rewrite the iterative update in the distributed protocol in vector form:

λ̂(k + 1) = λ(k)− κ(k)∇f(λ(k)), (B.2)

λ(k + 1) = Pk(λ̂(k + 1)), (B.3)
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where Pk is the projection to the convex set Sk
λ := {λ | λδ ≤ λi ≤ λi(k)

(1−ϵ)µ
Λ(k)

,∀i = 1, 2, . . . , N}.

Easy to see Sk
λ ⊂ Sλ,λ(k) ∈ Sk

λ, and λ(k + 1) ∈ Sk
λ.

By the Projection Theorem (See [73, Proposition 2.1.3]),

(
λ̂(k + 1)− λ(k + 1)

)
(λ− λ(k + 1)) ≤ 0,∀λ ∈ Sk

λ.

Let λ = λ(k), and substitute in (B.2). We then have

(λ(k)− κ(k)∇f(λ(k))− λ(k + 1)) (λ(k)− λ(k + 1)) ≤ 0.

Hence,

∇Tf(λ(k))(λ(k + 1)− λ(k)) ≤ − 1

κ(k)
‖λ(k + 1)− λ(k)‖2 (B.4)

Substituting (B.4) to (B.1), we get

f(λ(k + 1))− f(λ(k)) ≤
(
L

2
− 1

κ(k)

)
‖λ(k + 1)− λ(k)‖2 (B.5)

Since κ(k) satisfies
∑∞

k=0 κ
2(k) < ∞, there must exist some integer K1 > 0 such that for all

k ≥ K1, κ(k) < 2
L

. Therefore,

f(λ(k + 1)) ≤ f(λ(k)), ∀k ≥ K1.

By assumption, there is a bounded optimal value for the server’s optimization problem at λ∗.

Hence, {f(λ(k))} is monotonically decreasing and lower bounded by f(λ∗). Therefore, {f(λ(k))}

converges as k → ∞. Taking the limit of (B.5), the left hand side goes to 0, and the right hand

side is nonpositive. Therefore, ‖λ(k + 1) − λ(k)‖ → 0 as k → ∞. Since {λ(k)} is bounded in

Sλ, the sequence must converge to some point in Sλ.

Let λ̄ ∈ Sλ be the limit point of {λ(k)} as k → ∞. We shall show λ̄ = λ∗ by contradiction.

Suppose λ̄ 6= λ∗, which implies ∇f(λ̄) 6= 0. Hence, limk→∞‖∇f(λ(k))‖ = ‖∇f(λ̄)‖ > 0.
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Since the sequence {λ(k)} is infinite, ‖∇f(λ(k))‖ > 0 for all k. Therefore, there exists ς1 > 0

such that ‖∇f(λ(k))‖ > ς1 > 0 for all k.

Let Γ(Λ) := ΛC(Λ). Γ(Λ) is strictly convex and thus Γ′(Λ) is strictly increasing. Besides,

since Ui(·) is strictly concave, U ′
i(·) is strictly decreasing. Consider λ(k) and Λ(k) =

∑
i λi(k)

for large k, the following are all the possible cases:

1. Λ(k) = (1 − ϵ)µ. We know Λ(k) > Λ∗, and therefore Γ′(Λ(k)) ≥ Γ′(Λ∗). There must

be some client i such that λi(k) > λ∗i , and thus U ′
i(λi(k)) < U ′

i(λ
∗
i ). Hence, U ′

i(λi(k)) −

Γ′(Λ(k)) < U ′
i(λ

∗
i ) − Γ′(Λ∗) = 0, and the update substep will have λ̂i(k + 1) < λi(k).

Since λi(k) > λ∗i > λδ, the distributed projection allows λi to decrease. Therefore, after one

iteration we have λi(k + 1) < λi(k) = λi(k)
(1−ϵ)µ
Λ(k)

. For all j 6= i, λj(k + 1) ≤ λj(k)
(1−ϵ)µ
Λ(k)

.

Therefore, Λ(k + 1) < (1− ϵ)µ.

2. Λ(k) < (1− ϵ)µ, and there is some i such that λi(k) = λδ. Recall that under efficient delay

allocation, ∂
∂λi
λiDi(λi, λ−i) =

∂
∂λi

ΛC(Λ) = Γ′(Λ). We have

− ∂

∂λi
f(λ(k)) = U ′

i(λδ)− Γ′(Λ(k))

= U ′
i(λδ)−

∂λiDi

∂λi
(λδ, λ−i(k)) > 0,

where the last inequality is due to the assumption that the Nash Equilibrium is in the interior

of the feasible set Sλ. The update substep will then have λ̂i(k + 1) > λi(k). Note that∑
k κ

2(k) < ∞ implies limk→∞ κ(k) = 0. Besides, ∂
∂λi
f(λ(k)) is bounded. Since λi(k) <

λi(k)
(1−ϵ)µ
Λ(k)

, for sufficiently large k, λδ < λ̂i(k + 1) < λi(k)
(1−ϵ)µ
Λ(k)

. After one iteration, we

have λδ < λi(k + 1) < λi(k)
(1−ϵ)µ
Λ(k)

. Hence, Λ(k + 1) < (1− ϵ)µ and λi(k + 1) > λδ,∀i.

3. Λ(k) < (1 − ϵ)µ and λi(k) > λδ, ∀i. In this case, λ(k) lies in the interior of Sk
λ. Note that

limk→∞ κ(k) = 0, and ‖∇f(λ(k))‖ is bounded. Therefore, for sufficiently large k, λ̂(k+1)

also lies in the interior of Sk
λ. In this case, λ(k + 1) = P k(λ̂(k + 1)) = λ̂(k + 1). Hence,

Λ(k + 1) < (1− ϵ)µ and λi(k + 1) > λδ,∀i.
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Therefore, we can conclude that there exists an integer K2 > 0, such that for all k ≥ K2,

Λ(k) < (1 − ϵ)µ, and λi(k) > λδ,∀i. λ(k + 1) = λ̂(k + 1) = λ(k) − κ(k)∇f(λ(k)). Using

Lemma 11 again, we have

f(λ(k + 1))− f(λ(k)) ≤− κ(k)‖∇f(λ(k))‖2

+
L

2
κ2(k)‖∇f(λ(k))‖2

=− κ(k)
(
1− L

2
κ(k)

)
‖∇f(λ(k))‖2 (B.6)

Let K3 := max{K1, K2}. For all k ≥ K3, κ(k) < 2
L

, and there exists some ς2 > 0 such that

1− L
2
κ(k) > ς2. Recall ‖∇f(λ(k))‖ > ς1 > 0. Substituting into (B.6), we have

f(λ(k + 1))− f(λ(k)) < −ς21 ς2κ(k),∀k ≥ K3. (B.7)

Let ς := ς21 ς2. Taking the telescopic sum of (B.7) from K3 to some k̄ > K3, we get

f(λ(k̄))− f(λ(K3)) < −ς
k̄∑

k=K3

κ(k).

Let k̄ →∞. We have

f(λ̄)− f(λ(K3)) < −ς
∞∑

k=K3

κ(k).

The left hand side is bounded, while the right hand side is−∞ since
∑

k κ(k) =∞. This results in

a contradiction. Hence, it is impossible that λ̄ 6= λ∗. In other words, λ(k)→ λ∗ as k →∞.
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