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ABSTRACT

Optical Coherence Tomography (OCT) has been used extensively for many fundamental re-

search and clinical applications since it provides cross-sectional images with high resolution non-

invasively. Moreover, phase-sensitive OCT (PhOCT) technique makes OCT more appealing by

producing functional information such as blood flow, elastic properties, and vibrational informa-

tion. Among them, we are interested in measuring vibration to investigate functions of the middle

and inner ear.

OCT based vibrometry has been explored using a swept-laser source because of its advantages

in acquisition rate and imaging depth compared to an OCT system using a spectrometer. However,

a swept-laser source carries inter- and intra-sweep variability which is a critical problems that

negatively affects image quality and displacement sensitivity. Also, OCT vibrometry is vulnerable

to a significant increase in processing time because of the considerable amount of data as well as

longer processing steps that are required to obtain structural and vibrational information. Longer

processing time can make OCT vibrometry less appealing to biologists and clinicians even though

it provides useful information because of greatly reduced experimental and diagnostic throughputs.

Finally, a theoretical framework has not been established to analyze the effects of additive noise or

an adjacent reflector, either of which is intrinsic in OCT vibrometry, on vibratory measurements.

Without this framework it is hard to evaluate the performance of a OCT vibrometry system and

figure out methods to alleviate those negative effects. Therefore, we proposed methods in this

work to solve these important issues that impede the progress in the use of swept-laser OCT based

vibrometry.

The first problem, intrinsic in a swept-laser source, was tackled by a signal processing ap-

proach that calibrated every sweep of the laser with a complex FIR filter and interpolation. In this

approach, a complex FIR filter was adopted to extract the non-linear wavenumber from a reference

signal in an effective way, and interpolation was employed to calibrate OCT signals to have the

same linear wavenumber for removing intra- and inter-sweep variability. For real time processing,
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the proposed method was implemented on FPGA. This approach was compared to the traditional

IFFT-FFT based spectral calibration and showed the use of less resources in FPGA and as good

or slightly better OCT image quality and displacement sensitivity. Also, it was explored to com-

pensate chromatic variation from a laser source with the complex FIR based approach. Results

demonstrated that this method could correct the variation in real time. Therefore, they suggest its

usefulness to calibrate sweep and power variation for a swept-laser.

The second problem was addressed by proposing an efficient acquisition scheme and imple-

menting required processing steps on GPU. By combining these two methods, new M-scan data

can be acquired through the Alazartech card while transferring and processing the previous one.

This acquisition-processing scheme allowed a series of M-scan data to be acquired and processed

in near real time, showing only a little latency slightly less than acquisition time. Also, this pro-

posed scheme was applied to perform single point M-scan, BM-scan, and volume M-scan in order

to obtain additional vibrational information as well as structures at one axial point (z-axis), over

two dimension (x, z), and over three dimension (x, y, z), respectively. Therefore, it can allow

biologists and clinicians to obtain structural and vibrational information quickly.

To tackle the last problem, the effects of additive noise and an adjacent reflector were derived

in a way that they are separated from an ideal vibrational signal that does not have those effects.

This separation permitted to theoretically figure out how additive noise and an adjacent reflector

affect measuring vibrational amplitude and phase in frequency domain. The derived equations

were verified with MATLAB simulation and then with a piezo electric element using a swept-

source OCT system. It was shown that results from derived equations matched well with those

from experiments. Also, methods to reduce those effects were discussed based on the derivation.

Therefore, the proposed derivation can be used not only to evaluate the performance of an OCT

vibrometry system, but also to find methods to alleviate the effects.
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1. INTRODUCTION

Optical Coherence Tomography (OCT) is a noninvasive imaging technique that can image the

internal structures of a biological tissue in a cross-sectional plane by measuring backscattered

light. These cross-sectional images are resolved highly with 1∼10 µm owing to the use of broad

bandwidth light sources. The ability to obtain cross-sectional images with high resolution enabled

OCT to be used extensively for many fundamental studies and clinical applications. Moreover,

OCT can produce vibrational as well as structural information of a sample with the help of the

phase-sensitive OCT (PhOCT) technique, making it more attractive. This functional extension is

called OCT vibrometry which has revealed new insights into functions of the middle and inner ear

by simultaneously measuring structures and vibrations of said structures. [1, 2, 3].

However, there are some technical problems that hinder the progress in the field of OCT vi-

brometry. The first problem is related to inherent issues in using a swept-laser source. An OCT

vibrometry system was mainly implemented with spectral-domain OCT (SDOCT) in the past

[4, 5, 6]. This is because the sensitivity of vibration measurement is kept stable since there are

no moving parts in SDOCT configuration. However, acquisition speed and imaging depth are

limited with this method due to limited acquisition rate and roll-off inherent in a spectrometer. To

avoid these problems, studies have been conducted to exploit swept-source OCT (SSOCT) because

of its advantages [7, 8, 9, 10]. First, swept-laser sources provide faster sweep rate and long coher-

ence length, increasing acquisition rate and imaging depth. In addition, the SSOCT configuration

offers an opportunity to use a balanced detector by adopting a Mach-zehnder interferometer, im-

proving signal to noise ratio (SNR). In spite of these advantages, SSOCT has intrinsic problems

stemming from the use of a swept-laser source. These problems originate from mechanical tuning

of the wavelength of a swept-laser, which negatively affects the quality of acquired images and the

sensitivity of vibration measurement.

The second problem that an OCT vibrometry system has is an increase in processing time.

This problem originates from the significant amount of required data. A volumetric structural
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image requires three dimensions of data (x, y, k) where x and y are axes for lateral directions

and k is wavenumber. Whereas, one more dimension of time is added to data for a volumetric

structural and vibrational image. This time dimension comes from the M-scan used to measure the

vibration of a sample at a fixed position. And the required number of scans for one M-scan varies

depending on a measurement time and the sweep rate of an adopted swept-laser. For example, if

we measure vibration for 10 ms at each lateral location and a 100 kHz swept-laser source is used,

1000 scans are required for one M-scan. This scales up the size of required data by one thousand

compared to acquiring structural information only. Not only does the large increase in the amount

of data contribute to prolonged processing time. The increased number of processing steps is also

an important factor in prolonging the process. This is because deriving vibrational amplitude and

phase requires extracting, unwrapping and Fourier transforming interferometric phases. Therefore,

without careful implementation of post-processing, it can take a lot of time to acquire meaningful

results from an experiment.

The third problem arises from additive noise and adjacent reflectors inherent in performing

OCT vibrometry. They negatively affect measuring the vibrational amplitude and phase of a sam-

ple of interest, but their effects are not fully understood theoretically. For this reason, there are

no current theoretical supports or criteria to find methods that reduce those inherent effects and

evaluate the performance of an OCT vibrometry system.

These three problems were tackled in this work to advance an OCT vibrometry system. The

first problem, inherent in a swept-laser source, was overcome by implementing an efficient wavenum-

ber calibration algorithm on a field programmable gate array (FPGA) as explained in Chapter 3.

The second problem, related to processing time, was tackled by controlling data acquisition in an

efficient way and by implementing post-processing on graphic processing unit (GPU). Those ef-

forts enabled real-time processing of acquired data to produce structural and vibrational images as

described in Chapter 4. The third problem was dealt with thorough theoretical derivation for the

effects of additive noise and an adjacent reflector. And the derivation was validated with MATLAB

simulation and with experiments using a piezo electric element as detailed in Chapter 5.
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2. BACKGROUND

2.1 Principles of OCT

2.1.1 Introduction

Optical Coherence Tomography (OCT) is a noninvasive imaging technique that can provide

structural information over a lateral range along a few millimeters depth in biological tissues by

measuring backscattered light. The combination of potential penetration and high resolutions of

1∼10µ from the use of broad bandwidth light sources allows OCT to be used for many fundamental

studies and clinical applications.

OCT uses an optical interferometer to make an interferogram for detecting the backscattered

light from a sample. An interferometer is composed of a light source, a reference arm, a sample

arm, and a detector as shown in Fig. 2.1. Light travels from the source to a beamsplitter where it is

separated into two paths; one path is the reference arm, and the other is the sample arm. The light

reflected from the sample/mirror travels back down its respective path to the beam splitter where

the light from each arm is recombined and, depending on the optical pathlengths of both paths,

may interfere. This interference is then converted to an electrical signal by the detector.

In order to derive an interferogram analytically, the transmitted light wave from the light source

is simply expressed as

ELS = s(k, ω)ej(kz−ωt) (2.1)

where ELS and s(k, ω) are the electric field and its amplitude function from the light source, re-

spectively. s(k,ω) is the function of wavenumber k = 2π/λ and angular frequency ω = 2πν where

λ and ν represents the wavelength and the frequency of the light wave.

Assuming that the beamsplitter is wavelength-independent, has the power splitting ratio of 0.5

and one reflector is located at the sample arm, the reflected waves from both arms can be expressed

3



Figure 2.1: Michelson Interferometer in an OCT system. Red and Blue lines express incident and
reflected light waves, respectively.

as
ER =

ELS√
2
rRe

j2kzR

ES =
ELS√

2
rSe

j2kzS

(2.2)

where ER, rR, and zR are the reflected light wave, the reflectivity and the pathlength of the reference

arm, respectively while ES , rS , and zS are those of the sample arm. In Eq. (2.2), 1√
2

term is

multiplied because the light power is split in half at the beamsplitter. Also, the optical pathlength

in each arm is doubled by the round trip of the wave.

Those reflected waves are combined at the beamsplitter and travel to the detector where they

interfere and are converted to a photocurrent. Considering the responsivity of the detector, the
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photocurrent can be express as

I(k) = ρ <
|ER + ES|2

2
>=

ρ

2
< |ER|2 + |ES|2 + ERE

∗
S + E∗RES >

=
ρ

4
< |ELS|2RR + |ELS|2RS + 2|ELS|2

√
RRRS(ej2k(zR−zs) + e−j2k(zR−zs)) >

=
ρ

4
< |ELS|2RR + |ELS|2RS + 2|ELS|2

√
RRRScos(2k(zR − zs)) >

=
S(k)

4
(RR +RS + 2

√
RRRS cos(2k(zR − zs)))

(2.3)

where ρ is the responsivity of the detector, RR and RS are the power reflectivities of reference and

sample arms, and S(k) is the power spectrum of the light source, meaning that S(k) =< |s(k)|2 >.

The angular frequency term ω = 2πν is removed in the final equation because the response time

of a detector cannot keep up with the frequency of light (ν) due to its rapid fluctuation.

Assuming that S(k) is flat over the whole bandwidth, direct and alternating currents (DC and

AC) are generated by interfering reflected waves as shown in Eq. (2.3). Also, it is found that

the pathlength difference is encoded in the frequency of the alternating current. This implies that

Fourier transform in k allows the sample reflectivity to be detected at the position of 2(zr − zs)

after the transform.

2.1.2 Fourier Domain OCT

Early OCT systems measured the sample reflectivity profile in z-domain like an ultrasound

imaging modality. This technique is called time domain OCT (TDOCT) where one A-scan is

measured by moving a reference arm mirror. However, it became possible to detect interferograms

in Fourier (or wavnumber) domain as Fercher et al showed in [11]. This technique is called Fourier

domain OCT (FDOCT) which allows one A-scan to be measured without moving the reference

arm, significantly increasing imaging speed compared to TDOCT. It was also shown theoretically

and experimentally that signal to noise ratio (SNR) of FDOCT was higher than that of TDOCT

[12, 13, 14]. Therefore, these advantages of imaging speed and sensitivity led FDOCT to be a

main technique in the field of OCT.

FDOCT can be classified by an optical configuration into two as depicted in Fig. 2.2: Spectral
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Figure 2.2: Optical configurations of (a) SDOCT and (b) SSOCT.

domain OCT (SDOCT) and Swept-source OCT (SSOCT). SDOCT uses a broadband light source

and a spectrometer to detect interferograms along wavelength. In the spectrometer, light waves are

divided by wavelength, thereby reducing light intensities before they hit a detector. This reduced

light intensity causes decrease in shot noise because its standard deviation is proportional to the

square root of light intensity. Thus, the use of the spectrometer allows sensitivity to be improved

by reducing shot noise compared to TDOCT.

SSOCT adopts a swept-laser source where each wavelength of light is swept over time, and a

photodetector is used to detect interferograms. Since each measurement time corresponds to an

illuminated wavelength, this method allows us to detect interferograms in Fourier or wavelength

domain. The sweep rate of a swept-laser source is generally faster than the acquisition rate of a

spectrometer, which makes SSOCT faster than SDOCT. In addition, a balanced detector can be

used in SSOCT by exploiting Mach–Zehnder interferometry. This balanced detection scheme can-

cels common mode noise and unwanted signals such as DC part and self-interference in a sample

inherent in an interferogram [15]. Therefore, a higher SNR can be achieved with SSOCT compared

to SDOCT. However, the mechanical tuning of a swept-laser negatively affects the performance of

a system, requiring a careful calibration technique. The calibration technique will be explained in

detail in Chapter 3.
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2.2 Principles of functional vibratory measurement with OCT

Advances in OCT techniques have allowed vibrations to be measured on the order of tens of

picometers, enabling many studies on middle and inner ear mechanics. The main technique to

detect vibrations is phase-sensitive OCT (PhOCT) that exploits an interferometric phase.

Figure 2.3: Phase sensitive OCT processing to acquire vibrational amplitude and phase from inter-
ferograms.

Obtaining vibrational amplitude and phase through PhOCT requires certain processing steps

as described in Fig. 2.3. The first step is to acquire interferograms from a vibrating sample along

time at a fixed position, which is called an M-scan. Assuming that there is one vibrating reflector

and the DC part is removed, measured interferograms can be expressed as

I(k, t) =
ρS(k)

√
RRRS

2
cos(2kn(∆z+δz(t))) =

ρS(k)
√
RRRS

2
cos(2kn∆z+2k0nδz(t)) (2.4)

where t is time variable, ∆z is the pathlength difference between reference and sample arms, δz(t)

is the subresolution displacement of a sample, and k0 is the center wavenumber of a laser source.
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Eq. 2.4 shows δz(t) is encoded in the phase of the interferogram, implying δz(t) should be

decoded to derive the vibration of a sample. The next step is to generate A-scans by Fourier

transforming the inteferograms.

i(z, t) =
ρ
√
RRRS

2
s(z ± 2n∆z)e∓j2k0δz(t) (2.5)

where s(z) is equal to Fourier transform of S(k).

Then the inteferometric phase is extracted at the position of the reflector along time. This

extracted phase is unwrapped to suppress abrupt phase jumps and converted to radian to distance

by multiplying by 1/2k0 to have the unit of distance. From Eq. 2.5, the extracted vibrational signal

can be expressed as

1

2k0

6 i(2n∆z, t) = δz(t) = Avibcos(2πfvibt+ θvib) (2.6)

where Avib, fvib, and θvib are vibrational amplitude, frequency, and phase, respectively.

As a final step, the time domain vibrational signal in Eq. 2.6 is transformed to the frequency

domain.

1

k0

6 i(2n∆z, f) = δz(f) = Avibδ(f ± fvib)e∓jθvib

1

k0

6 i(2n∆z, fvib) = δz(fvib) = Avibe
jθvib

(2.7)

After the Fourier transform, the vibrational amplitude and phase are derived from the magni-

tude and the phase at the vibrational frequency as shown in Eq. 2.7. And they are used to provide

functional information of a sample at the axial location where the time domain vibrational signal

is extracted.
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3. HIGH-SPEED SPECTRAL CALIBRATION BY COMPLEX FIR FILTER IN

PHASE-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY∗

3.1 Introduction

There are a variety of extensions of Optical Coherence Tomography (OCT) that take advan-

tage of the interferometric phase to garner additional information. Some example applications

include the measurement of blood flow with Doppler OCT [16, 17, 18] and tissue mechanical

properties with OCT elastography [19, 20]. In particular, we are interested in using a technique

called Phase-sensitive Optical Coherence Tomography (PhOCT) to accomplish vibrometry with

picometer sensitivities. This exquisite sensitivity is enabling 3-D vibrometry in the intact cochlea

of animal models of hearing, revealing new insights into cochlea function. In recent work [2],

we have quantitatively measured differential motion in the mouse Organ of Corti using techniques

collectively called Volumetric Optical Coherence Tomography and Vibrometry (VOCTV).

PhOCT has most often been prosecuted with spectrometer based or Spectral-Domain OCT

(SDOCT) systems owing to their inherent phase stability [4, 5, 6, 21, 22]. Nevertheless, there are

several advantages to the swept-laser source or Swept-Source OCT (SSOCT) architecture. For

example, swept laser sources typically have very narrow instantaneous line widths that provide

long coherence length and therefore low sensitivity rolloff as a function of depth. Likewise, they

are compatible with architectures using some variant of the Mach-Zehdner interferometer and

balanced detection. Balanced detection cancels the DC part of the signal and suppresses common

mode noise. Unfortunately, swept laser sources used for OCT typically suffer sweep instabilities

that lead to phase noise and therefore reduced sensitivity.

Specifically, the mechanical wavelength tuning of the laser source causes the wavenumber to be

swept nonlinearly and to vary within subsequent sweeps which are referred to as intra- and inter-

sweep variability, respectively. Several hardware and software approaches have been proposed

∗Reprinted with permission from “High-speed spectral calibration by complex FIR filter in phase-sensitive optical
coherence tomography” by S. Kim, P. D. Raphael, J. S. Oghalai, and B. E. Applegate. 2016. Biomedical optics express
7(4), 1430-1444. Copyright [2016] by The Optical Society of America.
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to mitigate intra/inter-sweep variability. Postaid et al. and Choi et al. [7, 23] utilized a variable

rate optical clock as a sampling clock for the Analog to Digital Converter (ADC) to remove intra-

sweep variability. This method simplifies not only required hardware in the system but also the

necessary post-processing. However, the ADC suffers from clock jitter generated by the variability

of the optical clock. The clock jitter engenders a frequency dependent degradation of the signal-

to-noise ratio (SNR) of the input signal [24]. Since the input signal is an interferometric signal,

its frequency is a function of the optical pathlength difference. Therefore, the signal suffers more

SNR degradation as the optical pathlength difference becomes larger, consequently deteriorating

phase sensitivity as well as image intensity. There are software based approaches to deal with

intra-sweep variability. Huber et al. [25] used a nearest-neighbor check algorithm to linearize the

interferometric signal. This method is very efficient but not accurate. A more accurate algorithm

was proposed by Gora et al. [8]. This method involves linearizing the interferometric signal using

the phase of a reference interferometer. The phase of the reference interferometer is extracted by

Fast Fourier Transform-Inverse Fast Fouirer Transform (FFT-IFFT) based Hilbert transform. This

method is very accurate but requires substantial computation due to the FFT-IFFT process.

Several hardware based approaches have been used to remove inter-sweep variability. Vakoc et

al. [26] and Baumann et al. [9] used a phase reference signal created by additional optics placed in

the sample arm. The phase calibration signal is then used to measure and remove the inter-sweep

variability. However, this approach requires careful adjustment so that the magnitude of the phase

reference signal is sufficient for calibration but weak enough to avoid autocorrelation artifacts. A

new type of hardware approach was proposed by Choi et al. [7]. The method places a Fiber Bragg

Grating (FBG) in the optical system to act as a wavenumber reference signal. The inter-sweep vari-

ability is compensated by using the wavenumber reference signal. However, this method reflects

some portion of the interferometric signal and needs careful selection and alignment of the FBG

to work well. From the software point of view, the inter-sweep variability can be eliminated by a

correlation method used by Braaf et al. [10]. In this method, two adjacent phases of k-clock signals

are correlated with each other to calculate a shift magnitude. The shift magnitude is applied to the
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secondly measured k-clock signal to remove variations between sweeps. This method does not

need additional optical hardware but has a considerable computational load due to the calculation

of correlation between two adjacent sweeps. In summary, hardware only based methods do not

require significant post-processing but they increase hardware and alignment complexities and can

be accompanied by unwanted artifacts or signal degradation. On the other hand, software based

methods require considerable post-processing to guarantee accuracy and additional hardware to

generate a reference interferometer signal, but they do not degrade the signal or introduce artifacts.

In our work which requires very high phase stability, we have adopted an approach similar to

Gora et al. [8], where each sweep of the laser is calibrated by using a reference interferometer. The

Hilbert phase of the reference interferometer is proportional to the instantaneous wavenumber of

the laser and can be used to resample the interferometric signal such that δk is constant. However,

the traditional Fast Fourier Transform-Inverse Fast Fourier Transform (FFT-IFFT) based Hilbert

transform comes with considerable computational overhead. An alternative approach is to use a

complex Finite Impulse Response (FIR) filter to extract the phase of the reference interferometer.

The complex FIR filter is composed of two FIR filters used to generate an analytic signal [27]. The

use of the FIR filter has the advantage of digital hardware efficiency compared to the FFT-IFFT

method [28]. Other methods that have been utilized include the delay element and Hilbert FIR

filter approach [29], and a bandpass and Hilbert FIR filter approach [30]. The complex FIR filter

has been implemented in ultrasound imaging to detect the envelope of a beam formed signal and

in OCT imaging to detect blood velocity [29, 30]. However, to the best our knowledge we present

here the first application of the complex FIR filter to calibrate via a reference interferometer each

sweep of a swept laser for SSOCT. We explicitly consider the accuracy of the phase of the different

FIR based Hilbert transforms. In the context of PhOCT, we consider the impact of phase errors on

phase noise. Furthermore we mitigate the computational load of the FIR filters by utilizing a field

programmable gate array (FPGA) which can reduce processing time by working in parallel with

the digitization [31]. Finally, we make use of the magnitude of the Hilbert transform to calculate

an “ideal” window function, which allows us to carefully control the sidelobes of our axial point
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spread function.

3.2 Method

3.2.1 Proposed architecture

The proposed architecture is composed of two parts: phase extraction and resampling (as

shown in Fig. 3.1). The phase extraction part uses a complex FIR filter to make an analytic signal,

and coordinate rotation digital computer (CORDIC) to calculate the phase of the analytic signal.

CORDIC allows a simple and efficient hardware implementation by using shift and add opera-

tions to calculate trigonometric functions [32]. The resampling part linearizes an interferometric

signal henceforth called the OCT signal, by linearly interpolating it with the extracted reference

interferometer phase and a linearized phase.

Figure 3.1: The proposed architecture for continuous real-time spectral calibration and lineariza-
tion.

3.2.2 Generation and phase extraction of an analytic signal

The phase extraction from the reference interferometer is the most important task in the pro-

posed architecture because it affects the accuracy of the spectral wavenumber calibration. Specif-

ically, if the extracted phase has errors, those errors are propagated through the calculation of

the depth resolved interferometric phase in the PhOCT image and reduces the system sensitivity.

Therefore, it is important to extract the phase from reference interferometer accurately.
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There are several types of FIR filter based methods for generating an analytic signal such as the

delay element and Hilbert FIR approach, the bandpass and Hilbert FIR approach, and the complex

FIR approach as shown in Fig. 3.2. Delay element and Hilbert FIR approach uses a delay element,

Z−d, for the in-phase signal to synchronize with the quadrature signal, and Hilbert FIR to make

the quadrature signal. The bandpass and Hilbert FIR approach utilizes a bandpass FIR not only for

synchronization but also for matching the bandwidth with the quadrature signal. The complex FIR

approach consists of two filters: one from real coefficients, the other from imaginary coefficients.

Ideally, these two filters exhibit an exact π/2 phase relationship as well as a matched frequency

spectrum. The π/2 relationship is important for an analytic signal to be correctly defined as in

Euler’s formula. However, this property is not conserved in the other two FIR based methods,

hence in this respect the complex FIR approach is the most accurate method among them.

In order to analyze and compare the FIR approaches mathematically, a reference interferometer

signal was modeled using the following equation,

IRI =
ρ

4
[s(k(n))(R1 +R2) + 2s(k(n))

√
R1R2cos(2k(n)∆zRI)] (3.1)

where n is the digital time index, k(n) is the wavenumber as a function of time, ρ is the detector

responsivity, s(k(n)) is the power spectrum of the swept laser, ∆ zRI is the optical pathlength

difference in the reference interferometer, R1 and R2 are the reflectivities of the two arms of the

interferometer. If we assume that the power spectrum is constant within the bandwidth, and R1 =

R2 = 1, then Eq. (3.1) can be simplified to

IRI = αA+ Acos(2k(n)∆zRI) (3.2)

where the constant A is equal to ρs(k(n))/2, and α is a weighting factor less than 1 .
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Figure 3.2: Block diagram illustrating several types of FIR filter approaches to generate an analytic
signal (a): Delay element and Hilbert FIR approach (b): Bandpass and Hilbert FIR approach (c):
complex FIR approach. In (a), Z−d is a delay element to delay an input signal by d samples and
Hilbert FIR is Hilbert transform implemented by FIR filter. The complex FIR filter has two kinds
of filter coefficients: real and imaginary coefficients which are described as Complex FIR - Real
and Complex FIR - Imag in (c), respectively.

Eq. (3.2) shows that the reference interferometer has both a bandpass signal and a DC signal.

In principle, the DC signal is cancelled when a balanced detector is used. However, the imperfect

spectral response of the fiber coupler and difference in responsivity of photodetectors in a balanced

detector keep the DC signal from being removed completely. The imperfect DC cancelation is the

origin of the parameter α. The DC component should be removed in order to extract the phase

from the reference interferometer accurately.

Assuming the Hilbert FIR has no delay, the impulse response for the delay and Hilbert FIR

approach in Fig. 3.2(a) can be expressed as

δ(n) + jhHilbert(n) (3.3)
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where δ(n) is the impulse function and hhilbert(n) is the impulse response of the Hilbert FIR filter.

The analytic signal and its phase after going through the delay element and Hilbert FIR filter are

then calculated as

(αA+ Acos(k(n)∆zRI)) ∗ (δ(n) + jhHilbert(n)) = αA+ Acos(k(n)∆zRI) + jAsin(k(n)∆zRI)

with the corresponding phase

tan−1(
Asin(k(n)∆zRI)

αA+ Acos(k(n)∆zRI)
) = tan−1(

sin(k(n)∆zRI)

α + cos(k(n)∆zRI)
)

(3.4)

where ∗ denotes convolution.

As shown in Eq. (3.4), the DC component, αA, included in the reference interferometer signal

is not removed by the delay element and thus ends up with the cosine term in the calculation of

the arctangent and corrupts the phase estimation. On the other hand, the αA term is eliminated by

Hilbert FIR filter whose magnitude response is characteristic of a bandpass filter. The bandpass

and Hilbert FIR approach in Fig. 3.2(b) can overcome this issue and remove the DC component

in the reference interferometer signal. Nevertheless it has an inherent phase error which prevents

it from reproducing the correct π/2 phase relationship between the bandpass and the Hilbert FIR

filters. That is,

H[hBPF (n)] 6= hHilbert(n) (3.5)

where H is the Hilbert Transform operator and hBPF (t) is the impulse response of the bandpass

FIR filter. The independent filter generation process for these two different FIR filters causes them

to not have the correct π/2 phase relationship outside the passband region.

In contrast, the complex FIR approach in Fig. 3.2(c) generates real and imaginary filters de-

pendently to ensure the exact π/2 phase relationship. In order to design the complex FIR filter, a

low pass FIR filter (LPF) is designed first and then multiplied by a complex sinusoidal function.

The resultant impulse response complex FIR filter can be expressed as

hLPF (n)e−j2πf0n = hLPF (n)cos(2πf0n)− jhLPF (n)sin(2πf0n) (3.6)
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where hLPF (n) is the impulse response of the LPF.

As shown in Eq. (3.6), the real and imaginary filters have the same envelope, hLPF (n) and the

exact π/2 phase relationship. The analytic signal and its phase from the complex FIR approach are

obtained using the appropriate hLPF (n) and f0 as

(αA+ Acos(k(n)∆zRI)) ∗ (hreal(n) + jhimag(n)) = Acos(k(n)∆zRI) + jAsin(k(n)∆zRI)

with the corresponding phase

tan−1(
sin(k(n)∆zRI)

cos(k(n)∆zRI)
) = k(n)∆zRI

(3.7)

where hReal(n) and hImag(n) are the impulse responses of real and imaginary filters for the complex

FIR approach, respectively. As shown in Eq. (3.7), the phase is extracted without any artifact due

to the DC component and with the exact π/2 relationship of real and imaginary filters.

3.2.3 Design of complex FIR filter

The proper selection of hLPF (n) and f0 is important to the design of the complex FIR filter.

There are two approaches; a wideband complex FIR filter approach [27] and a narrowband complex

FIR filter approach [30]. The wideband approach sets the passband of hLPF (n) to be close to the

normalized digital frequency of 0.25 and f0 as 0.25. In the narrowband approach the passband

of hLPF (n) and f0 are determined by the bandwidth and the center frequency of an input signal,

respectively. Although the narrowband approach has better SNR by rejecting the out of band noise,

it requires optimization for a given swept laser and reference interferometer. On the other hand,

the wideband approach can cover the total frequency range even though it does not reject the out of

band noise. The SNR of the reference interferometer signal tends to be high, hence the improved

noise rejection in the narrow band case is not particularly helpful. We have chosen to take the

wideband approach for our spectral calibration algorithm since a single set of filter parameters

could readily work for multiple systems and is therefore more general.

In order to design the complex FIR filter, the prevalent Park-McClellan algorithm (equiripple

design) was used. The specifications such as the passband and stopband frequencies (fp and fs),
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the passband ripple (δp), and the stopband attenuation (δs) are first determined. From them, a

specification for hLPF (n) is developed by left-shifting the frequency response of the complex FIR

by the normalized digital frequency of 0.25 as shown in Fig. 3.3.

Figure 3.3: (a): The desired frequency response for complex FIR filter (b): The frequency response
for the prototype LPF after left-shifting (a) by 0.25.

In the wideband approach, two stopband frequencies are easily defined as 0 and 0.5. Two

passband frequencies are set as close to 0 and 0.5 as possible and should have the relationship

between them of fp1=0.5-fp2 in order to make hLPF (n) a real filter. However, getting closer to 0

and 0.5 requires greater filter length, incurring greater computational load and therefore hardware

resources, Therefore, fp1 and fp2 are heuristically set to 0.1 and 0.4, respectively. In order to set (δs),

the desired attenuation of the DC and the negative frequency component must be specified. Reilly

et al. used the stopband attenuation of 0.17% below the passband [27]. By using this value, δs

for both the DC and the negative frequency are reduced to 55 dB below the passband as depicted

in Fig. 3.4. Fig. 3.4(a) shows the simplified frequency response of the reference interferometer

from Eq. (3.2) where α is assumed to be 1 (worst case) generating a DC component 6dB higher

than the frequency component of interest. Thus, δs is set to 0.085% (-61dB) in order to decrease

the DC and the negative frequency components to -55dB and -61dB, respectively, as shown in

Fig. 3.4(b). Since the equiripple design method requires the same ripples in both the passband

and the stopband, δp is set as 0.085%. Using the stated filter specification and Kaiser’s estimation

method [33], the appropriate filter order was found to be 34.
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Figure 3.4: (a): The frequency spectrum of reference interferogram (b): the desired frequency
spectrum of reference interferogram after complex FIR filtering.

3.2.4 Linearization of OCT signal

After extracting the phase from reference interferometer, the OCT signal is resampled such that

δk is constant to enable the use of the fast Fourier transform. We have found that linear interpola-

tion is sufficient for our purposes where we typically image near the zero pathlength difference. It

is known that the performance of linear interpolation degrades as the depth approaches the Nyquist

frequency, however the SNR is largely insensitive to the interpolation method [34]. The advantage

of linear interpolation compared to polynomial interpolation methods is its computational simplic-

ity. Assuming that the DC and auto-correlation terms of the signal are removed, the OCT signal

for one reflector can be modeled as,

IOCT =
ρ

2
s(k(n))

√
RRRS cos(2k(n)∆zOCT )] (3.8)

where ∆zOCT is the optical pathlength difference between the reference and sample arm of the

OCT interferometer. Intersweep variability in k(n) leads to an apparent sweep to sweep change

in the phase of the interferogram, i.e. the argument of the cosine in Eq. (3.8). Assuming a fixed

number of samples are collected after the sweep trigger, this variability can also be thought of as a

sweep to sweep change in the center frequency of the laser source. In order to mitigate this issue

the interpolant was fixed and encompassed a range of k that was reliably spanned by each sweep

of the laser. This approach fixes the beginning, ending, and center wavenumber of every sweep at

a predetermined value, thus eliminating the associated phase error.
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3.3 Results and Discussion

3.3.1 Simulation result

The performance of the FIR filter methods was first investigated by MATLAB simulation. For

comparison, three FIR methods in Fig. 3.2 were designed with the same filter order of 34 and the

same passband of 0.1 0.4. Fig. 3.5 shows the magnitude responses in the frequency domain of

the three FIR approaches. Clearly, the DC component is not eliminated and the response is not

flat in the negative frequency range for the delay element and Hilbert FIR approach, Fig. 3.5(a).

Although the DC component is removed in the bandpass and Hilbert FIR approach, Fig. 3.5(b), the

response is not flat in the negative frequency range. On the other hand, the complex FIR approach

not only removes the DC component but also has flat magnitude response in the negative frequency

range as depicted in Fig. 3.5(c). Errors in the estimation of the phase arise both from incomplete

suppression of the DC component and residual negative frequency components.

Figure 3.5: Frequency spetra of three FIR approaches. (a): delay element and Hilbert FIR filter
(b): bandpass and Hilbert FIR filter (c): complex FIR filter

Next we compared the full calibration algorithm using the three different FIR approaches. Raw

data was acquired from an OCT system with an identical architecture as [2] except the laser source

had a 50 kHz sweep rate (SSOCT-1310, Axsun) and the digitizer was a 14-Bit, 250 MS/s Adapter

Module (NI5761, National Instrument). The optical layout resembled a Mach-Zehdner interferom-

eter with an optical circulator in the sample arm to preserve sample signal power. For additional
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details on the hardware setup and signal processing steps see [2]. The raw data consisted of a

set of 300 reference interferograms and the corresponding OCT interferograms that comprised an

OCT B-scan image of a mouse cochlea. Fig. 3.6 shows the frequency spectra of reference inter-

ferograms filtered by delay element and Hilbert FIR, bandpass and Hilbert FIR, and complex FIR

approaches as depicted in Fig. 3.6(c), (d) and (e), respectively. Each plot contains 300 reference

spectral interferograms. The spectra processed with the delay element and Hilbert FIR approach,

Fig. 3.6(c), and the bandpass and Hilbert FIR approach, Fig. 3.6(d), show a strong DC compo-

nent and incomplete suppression of negative frequencies, respectively. In contrast, both DC and

negative frequency components are eliminated in the complex FIR approach as seen in Fig. 3.6(e).

Figure 3.6: (a) Example reference interferogram overlaid with its Hilbert phase. The signal had
a center frequency of 19.36 MHz and 0.0775 in digital frequency. (b) Reference interferograms
in the frequency domain (c): filtered by delay element and Hilbert FIR approach (d): filtered by
bandpass and Hilbert FIR approach (e): filtered by complex FIR approach. These spectra are
obtained from 300 reference interferograms.
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The B-scan images processed via the traditional FFT-IFFT approach and the three FIR ap-

proaches described here are shown in Fig. 3.7. The delay element and Hilbert FIR approach result

in Fig. 3.7(b) shows strong ghost images repeated in depth which result from the high DC compo-

nent as shown in Fig. 3.6(c). The bandpass and Hilbert FIR and complex FIR approaches (Fig. 3.7

(c) and (d)) show similar results that compared well to the traditional FFT-IFFT Hilbert approach

(Fig. 3.7(a)). That is because the negative component is suppressed enough not to adversely affect

the image in bandpass and Hilbert FIR approach. However, in principle the spectrum of the refer-

ence signal can be located at any frequency range. If the frequency of the reference interferometer

falls in a range where the negative components are not well suppressed, artifacts will arise.

Figure 3.7: B-scan images of a mouse cochlea. (a): image from FFT-IFFT Hilbert transform (b):
image from the delay element and Hilbert FIR approach (c): image from the bandpass and Hilbert
FIR approach (d): image from the complex FIR approach. For reference the top of the images are
near zero delay with digital frequency 0.024,and the bottom has a zero delay of 0.292.
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For illustration, the unfiltered reference signal was shifted down by the normalized digital

frequency of 0.03, and A-scans recomputed using the down-shifted reference signal. Fig. 3.8(a)

shows the down shifted reference signal. Fig. 3.8(b) and Fig. 3.8(c) display the filtered signals by

the bandpass and Hilbert FIR, and complex FIR approaches, respectively. Compared to Fig. 3.6(c)

and Fig. 3.6(d), the negative frequency component is increased by about 20 dB for the bandpass

and Hilbert FIR approach while it is essentially unchanged for the complex FIR approach. A-lines

from the FFT-IFFT Hilbert Transform, bandpass and Hilbert FIR and complex FIR approaches

are shown in Figs. 3.8(d)-(f), respectively. In the case of the bandpass and Hilbert FIR approach,

strong artifacts arise at around 3.50 mm and 3.96 mm marked with an arrow in Fig. 3.8(e). These

artifacts are not present in the result using the complex FIR approach which closely matches the

result using the more traditional FFT-IFFT Hilbert transform.

Figure 3.8: Effect of spectral down-shifting of the reference signal: frequency spectra of the down-
shifted reference signal (a) before filtering, (b) bandpass and Hilbert FIR approach and (c) complex
FIR approach. A-scans from (d) FFT-IFFT Hilbert transform, (e) bandpass and Hilbert FIR ap-
proach and (f) complex FIR approach. Red arrow indicates an artifact that arises due to incomplete
suppression of the negative frequencies in the bandpass and Hilbert FIR approach.
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In order to assess the different approaches for making vibratory measurements with PhOCT,

we utilized a piezo electric element driven at 8 kHz. An M-scan consisting of 10000 A-scans

was recorded and the data analyzed using each of the four approaches. The results are shown in

Fig. 3.9.

Figure 3.9: Frequency responses of displacement of a piezo, from (a) FFT-IFFT Hilbert transform
(b) delay element and Hilbert FIR approach (c) bandpass and Hilbert FIR approach (d) complex
FIR approach.

The phase noise of each approach is characterized by its mean ± standard deviation calculated

in the range from 12.5 kHz to 25 kHz. The theoretical shot noise limited phase noise [35, 36] is

25.0±13.1 pm. The result from the traditional FFT-IFFT Hilbert transform, Fig. 3.7(a), showed a

peak at 8 kHz with a magnitude of 221 pm and 29.8±15.4 pm phase noise. The result from the

delay element and Hilbert FIR approach has no discernible peak and considerably worse phase
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noise, 112.5±58.0 pm. The bandpass and Hilbert FIR and complex FIR approaches show similar

results with a 221 pm magnitude peak at 8 kHz and 29.5±15.3 pm and 29.6±15.3 pm phase noise,

respectively. As with the OCT B-scan image, the strong DC component in the delay element FIR

approach severely compromises the results, however incomplete suppression of the negative fre-

quencies in the bandpass filter FIR approach has no discernible impact. Based on the phase noise

results both the bandpass and Hilbert FIR approach and complex FIR approach performed slightly

better than the traditional FFT-IFFT Hilbert transform. The explanation lies in the difference in

the number of data points of transient response between them. The FFT-IFFT Hilbert transform

operation can be thought of as a circular convolution in the time domain with a FIR filter having

the same length as the input signal [27]. Specifically, since we used 2000 data points per one refer-

ence interferogram, there were 1999 transient response data points for FFT-IFFT Hilbert transform

while 34 points for bandpass FIR and complex FIR approaches. As a result, the FFT-IFFT Hilbert

transform ends up with 1965 more unstable data points than the FIR approaches, which negatively

affects the phase extraction of the reference signal. Presumably if we shifted the reference signal

as in Fig. 3.7, the results from bandpass and FIR Hilbert approach would begin to deteriorate.

The bandpass and Hilbert FIR and complex FIR approaches provide comparable performance

for both OCT imaging and OCT based vibrometry, at least to the limitations of the assessment pre-

sented here. Likewise, they have similar computational complexity. Nevertheless, going forward

we have chosen to implement the complex FIR approach because it theoretically is more accu-

rate, conserving the π/2 relationship between the complex components of the analytical signal,

and completely suppresses the negative frequencies thereby mitigating potential problems related

to the frequency of the reference interferometer signal.

3.3.2 FPGA implementation result

Our motivation for exploring the FIR approach to the Hilbert transform was to reduce the

computational load from the traditional FFT-IFFT Hilbert transform. To that end, we have imple-

mented the complex FIR approach on an FPGA and quantitatively compared the resource usage to

our current FFT-IFFT method. The code was implemented on a Virtex-5 SX95T FPGA in an NI
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PXIe-7965R with 18-bit precision. Table 3.1 shows device utilization for the FPGA implementing

post processing using the FFT-IFFT Hilbert and complex FIR approaches. The FFT-IFFT Hilbert

approach is based on the structure in Fig. 3.2(a) where the Hilbert FIR filter is replaced by FFT-

IFFT Hilbert transformation. The values in Table 3.1 include the operations in Fig. 3.2 as well as

linear interpolation and DC subtraction. Since both sets of code were compiled with the same

Device Utilization FFT-IFFT Hilbert approach Complex FIR approach Score
Total Slices 90.3% 73.9%
Slice Registers 64.3% 43.4%
Slice LUTs 60.7% 42.1%
DSP48s 52.2% 33.4%
Block RAMs 36.5% 25%

Table 3.1: Comparison of device utilization of FPGA.

clock frequency, they output data at the same rate however the latency for the FIR approach is 17

clock cycles while that of the FFT-IFFT approach is 12,000 clock cycles. This difference is further

manifest in the resource usage. Since the complex FIR approach requires a smaller number of

additions and multiplications than the FFT-IFFT Hilbert approach, slice registers, slice LUTs and

DSP48s are reduced by around 20%. In addition, since the FFT-IFFT Hilbert approach requires

block RAM in order to match the latency between real and imaginary signals as in Fig. 3.2(a), the

usage of block RAM decreased by 11.5%. The results described here were for a system with a

200 kHz swept laser source. In order to test the implementation, a piezo was driven at 12 kHz

and its displacement was measured using a 200 kHz PhOCT system described in detail in [2]. The

displacement was measured 10 times with 4000 A-scans for each M-scan. Fig. 3.10 shows two

frequency spectra of the measured displacement: one using the FFT-IFFT Hilbert Transform and

the other from the complex FIR approach. The phase noise of each method was calculated as the

square root of an averaged noise energy in the frequency domain along the range of 20 kHz to 100

kHz. The result from the traditional FFT-IFFT Hilbert transform displays a peak at 12 kHz with a
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magnitude of 3.78±0.06 nm and phase noise of 40.2±5.5 pm, where± indicates the standard devi-

ation among the 10 samples. The complex FIR approach showed similar results with a magnitude

of 3.73±0.06 nm and 32.6±2.5 pm phase noise. In agreement with previous results, the complex

FIR approach demonstrated slightly better phase noise than the FFT-IFFT Hilbert transform.

Figure 3.10: Frequency responses of displacement of a piezo, (a) from FFT-IFFT Hilbert transform
(b) from complex FIR approach.

Reducing the number of coefficients used in the FIR filter can reduce the required resources.

Owing to the fairly efficient multiply and addition operations on the FPGA, there is a limited

potential for further gains over what we have shown in Table 3.1. Nevertheless, small reductions in

the resources can be the difference between an FPGA code successfully compiling and not. In order

to explore the limits we have experimented with how few coefficients could be used before the

image quality and/or the phase sensitivity were compromised. We repeated the processing of the

mouse cochlea and piezo using the complex FIR approach systematically reducing the number of

coefficients while retaining the passband and stopband frequencies in order to only affect passband

ripple and stopband atteunuation. Fig. 3.11(a) and Fig. 3.11(b)-(e) show phase noise and B-scan

images at various filter orders, respectively. The phase noise was measured from filter orders

ranging from 4 to 40 and quantified by the root mean square (RMS) in order to simultaneously

consider mean and standard deviation. In Fig. 3.11(a), the phase noise converges to around 33
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pm at the filter order of 8. The plateau above the order of 8 in Fig. 3.11(a) comes from the

fact that the added noise caused by the complex FIR filter is below the system noise. The B-

scan images were processed using the same filter orders as the phase noise measurement. Images

using filter orders, 4, 8, 12 and 18 are displayed in Fig. 3.11(b)-(e), respectively. In these images

there is clearly ghosting at the lower filter orders which essentially completely disappears with

filter order of 18. These results taken together leads us to the conclusion that the filter order can

be reduced to 18 without any noticeable impact. However, decreasing the filter order reduces

the performance of the filter by increasing the passband ripple and the stopband attenuation if

the passband and stopband frequencies are unchanged. Hence, careful selection of the minimum

filter order is required, depending on the relative strength of the DC component to the frequency

components in the reference interferogram.

Figure 3.11: Phase noise and B-scan image in accordance with filter order. (a) shows phase noise
calculated by Root Mean Square (RMS) according to the filter order ranging from 4 to 40. (b), (c),
(d), (e) show B-scan images in accordance with the filter order of 4, 8, 12 and 18, respectively.

We have also explored the accuracy of the magnitude of the Hilbert transform, |H|, as a mea-

sure of the instantaneous swept laser power. We typically use this to calculate a custom window

to be applied to the OCT spectral interferogram before computing the IFFT. The custom window
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is meant to engender the spectral shape of a standard window function to the interferogram. For

instance, if we desired the sideband structure of a Hanning window, we would calculate a custom

window by Wcust=WHann/|H|. We do this to carefully control the sidelobe behavior of our axial

point spread function. The phenomena of phase leakage [37] is well documented and known to

cause errors in the estimation of depth resolved phase in OCT. Careful control of the sidebands

can help mitigate this issue and reduce ambiguity in the interpretation of results of OCT vibratory

measurements. Our standard procedure is to place a mirror reflector in the sample arm of the OCT

interferometer, calculate the Hilbert transform of the OCT spectral interferogram and use the mea-

sured |H| to calculate the Wcust. Since most swept laser sources have a relatively stable power

and spectral shape at least after they have warmed-up we infrequently update this measurement.

Therefore, our primary motivation was to determine if the complex FIR approach was accurate

enough for this task in order to provide for simplicity and consistency in writing the code to run

our system. Nevertheless, we recognized that there could be some advantage to recalculating the

window for every sweep of the laser since any fluctuation in the laser power or spectral shape

would automatically be compensated. Likewise, it would be a nearly trivial addition to the code

already running on the FPGA if we could use the |H| from the reference interferometer instead of

a mirror reflector. In order to test this, the reflection from a mirror was measured using the 200 kHz

PhOCT system. 12 M-scans were collected with 100 signal and reference interferograms. Among

them, the first set of 100 A-scans was used to calculate dispersion compensation coefficients and

a custom window using our standard procedure, as described above. Using this same set of data,

coefficients to compensate for differences in chromatic losses between the signal and reference

interferograms were calculated. In the proposed new algorithm, |H| was calculated and then pro-

cessed by low pass FIR filter (LPF) to remove additive noise before calculating the ideal window.

The stopband of LPF was set to the normalized digital frequency of 0.05 because |H| is a baseband

signal with narrow bandwidth. We compared the new algorithm with and without correcting for

chromatic losses to our current algorithm on the remaining 11 sets of data. Fig. 3.12 shows the

results from one data set, in the depth range of the mirror reflection. The results were quantified
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in terms of Full width at half maximum (FWHM) resolution, SNR and Main to Side lobe Ratio

(MSR) for the 1st side lobes on either side. We found no difference for the FWHM resolution

or SNR among the three algorithms. Specifically, the mean±standard deviation of the FWHM

resolution over the 11 data sets was 8.56±0.18, 8.56±0.18 and 8.58±0.19 pixels, for the current

method, without chromatic correction and with chromatic correction, respectively. The FWHM

of the perfect Hanning window, WHann, was 8.38 pixels which compares well with the results

obtained here with the custom window designed to impart the shape of a Hanning window to the

interferogram. Similarly, the SNR was 61.47±1.76, 61.74±1.67 and 61.43±1.73dB, respectively.

However, the MSR is degraded significantly if the chromatic correction is not included. From the

data set in Fig. 3.12 the sidelobes increase by 1.85 dB and 3.44 dB. Likewise, it is fairly obvious

in Fig. 3.12(a) that the sidelobe structure varies significantly when the chromatic correction is not

applied. In contrast the sidelobe structure in Fig. 3.12(b) is faithfully reproduced even beyond the

1st sidelobes. These results indicate that the magnitude of the complex FIR Hilbert transform can

be used to build a custom window and moreover it can be done using the reference interferometer

as long as a chromatic correction is applied. We used a low-pass filter to suppress additive noise

so that we could calculate a custom window on every sweep, however we found that using sim-

ple averaging of ∼100 laser sweeps works equally as well if sweep to sweep variations are not a

concern.

Figure 3.12: Comparison of methods for calculating a custom window. (a): axial point spread func-
tions from current and proposed procedures without chromatic correction (b): axial point spread
functions from current and proposed procedures with chromatic correction. For comparison, the
axial point spread function with no windowing is also shown.
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3.4 Conclusion

In this article we have evaluated several FIR based methods for spectral calibration of every

sweep of a swept laser in real time. We found the complex FIR based approach was the most ro-

bust of the three considered. It provided as good or better results compared to the more traditional

IFFT-FFT based Hilbert transform on OCT image quality and phase sensitivity. Our implemen-

tation on an FPGA also demonstrated that it used fewer hardware resources than the traditional

IFFT-FFT approach. Our FPGA code used a filter order of 34 as recommended by Kaiser’s estima-

tion method. We also explored using lower filter orders and found that we could reduce the order

to as low as 18 without impacting image quality and phase sensitivity. We also explored using

the Hilbert magnitude of the reference interferometer signal as an instantaneous measure of the

spectral power of the swept laser. We used this information to calculate an ideal window function

that carefully controlled the sidelobes on the axial point spread function. We compared results

derived from imaging a mirror with the OCT interferometer and an IFFT-FFT based Hilbert trans-

form to those obtained from the reference interferometer and the complex FIR filter. We found

that after a chromatic correction that accounted for differences in the wavelength dependent atten-

uation between the reference interferometer and the OCT interferometer, we were able to generate

essentially equivalent results using both methods. However, the reference interferometer based

measurement can be done in real time and is independent of the sample being imaged with the

OCT interferometer. In conclusion, the complex FIR approach to the Hilbert transform allows for

highly accurate real time wavelength and magnitude calibration of a swept laser source.
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4. NEAR REAL-TIME VOLUMETRIC OPTICAL COHERENCE TOMOGRAPHY AND

VIBROMETRY

4.1 Introduction

A vibratory measurement using OCT, called OCT vibrometry, uncovers new insights into mid-

dle and inner ear mechanics by simultaneously measuring structures and their vibrations in a cross-

sectional plane over lateral ranges. However, it is vulnerable to a considerable increase in process-

ing time because a significant amount of data are required to volumetrically reconstruct structural

and vibrational information. A volumetric structural image requires three dimensions of data (x,

y, k) where x and y are axes for lateral directions and k is the wavenumber. Whereas, three more

dimensions of frequency (f), intensity (i), and duration time (t) for sound stimulus are added to the

data in OCT vibrometry, representing a 6-D data set (x, y, k, t, f, i). Particularly, the time dimension

(t) can be understood with an M-scan since the vibration of a sample is recorded at a fixed position

for a stimulus duration. The required number of scans for one M-scan varies depending on the

stimulus duration and the sweep rate of an adopted swept-laser. For example, if we use a 100 kHz

swept-laser source to measure vibration for 10 ms with 10 combinations of sound stimuli consist-

ing of 5 frequencies and 2 intensities, we will require 10,000 scans for one M-scan at each lateral

position. This scales up the size of required data by ten thousand compared to acquiring structural

information only. Not only the substantial increase in data size but also more processing steps

contribute to the increase in processing time. This is because deriving vibrational amplitude and

phase requires extracting, unwrapping and Fourier transforming interferometric phases. Therefore,

it could take a lot of time to obtain data for reconstructing necessary information without careful

planning for acquisition and processing.

This problem of increased processing time negatively affects biological and clinical applica-

tions of an OCT vibrometry system. Biological experiments require optimizing experimental con-

ditions to obtain better results. However, the increased processing time can slow down both this
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optimization process and acquisition of meaningful results, lowering experimental throughput.

The lowered experimental throughput necessitates more samples and experimental time, reducing

experimental efficiency. For clinical applications, this increased processing time can cause more

discomfort of patients and delay the application of proper treatments by increasing diagnostic time.

Hence, it is indispensable to reduce processing time for an OCT vibrometry system to be more ap-

pealing to biologists and clinicians.

To achieve this purpose, an architecture that acquire and process data efficiently for an OCT

vibrometry system is proposed which exploits a commercial acquisition card and a GPU. Also, the

proposed architecture is configured to accommodate any of the two different types of swept-lasers:

linearly and non-linearly swept-lasers.

4.2 Method

4.2.1 Proposed architecture

Fig. 4.1 shows the proposed architecture that consists of an Alazartech card (ATS9373, Alazar

Technologies Inc.), an NI digitizer (NI 5761, National Instruments) and an NI FPGA module (NI

PXIe-7965R, National Instruments), Host, and NVIDIA GPU.

Figure 4.1: The proposed architecture for efficient acquisition and processing
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An akinetic swept-laser (Insight Photonic Solutions Inc.) was adopted for a linearly swept-

laser and the Alazartech card acquires a series of OCT signals from an OCT vibrometry system.

For acquiring synchronously with the laser source, clock and sweep trigger signals from the laser

source were connected to the Alazartech card. Also, the trigger enable signal, generated externally

using the sweep trigger signal, was used to inform the Alazartech card of the starting point to

acquire. For a non-linearly swept-laser, the NI digitizer and the NI FPGA module were used. A

sweep trigger signal, OCT and reference signals were sampled by the NI digitizer and then the

relative delay of the OCT signal to the sweep trigger signal was compensated. After the delay

compensation, the OCT signal was calibrated to remove intra/inter sweep variabilities in the NI

FPGA module by manipulating the reference signal as explained in Chapter 3. Once acquisition

or calibration was done, the processed OCT signals were transferred to host memory, and the host

transferred the received signals to the GPU for further processing. GPU hardware was chosen

to reduce the time to process the transferred OCT signals, which can be achieved by processing

each interferogram in a parallel way. The performance advantage is obtained by running the same

piece of code concurrently on multiple data samples, exploiting the efficient GPU’s SIMD (Single

Instruction, Multiple Data) architecture

The software module to control the Alazartech card was coded with C while the NI FPGA

module was implemented with LabView FPGA. Also, post-processing in the GPU was realized

with CUDA C. Those modules were built as dynamic link library (DLL) with standard C external

linkage, ready to be easily consumed within the Windows environment. A Python wrapper module

was implemented to call the DLL functions from the Python program that is used to control the

OCT vibrometry system.

4.2.2 Acquisition scheme

In order to acquire and transfer data to host efficiently, the Alazartech card is controlled as

described in Fig. 4.2. This scheme is derived from the feature of the Alazatech card that it can

acquire current data while transferring the previous one.

The Alazartech card starts to capture data right after detecting the rising edge of the trigger
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Figure 4.2: The acquisition scheme to efficiently acquire and transfer data

enable signal that consists of two time frames such as sound stimulus and overhead. The sound

stimulus is the time when a sound is active to vibrate a sample while the overhead is an extra time

before starting a new acquisition. At the first rising edge of the trigger enable signal, the first M-

scan data are acquired. Since there is no previously acquired data, transfer does not occur. The

Alazartech card starts to transfer the first M-scan data while acquiring the second M-scan data at

the second rising edge of the trigger enable signal. The transferred data is then processed on GPU

to derive vibrational amplitude and phase.

Using this scheme, the time to acquire and process M-scan data can be calculated as follows.

T 1
Mscan = Tacq + Tover + Ttrans + Tproc

T iMscan = Ttrans + Tproc (i > 1)

T totalMscan = NTacq +NTover + Ttrans + Tproc

(4.1)

where Tacq, Tover, Ttrans, and Tproc are acquisition time (or stimulus time), overhead time, transfer

time, and GPU processing time, respectively. TiMscan and TtotalMscan are measured time for acquiring

and processing i-th M-scan data and total M-scan data respectively. N expresses the total number

of M-scans.

Eq. (4.1) assumes the overhead time is determined such that Tacq + Tover is equal to or larger
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than Ttrans + Tproc. That is, it should be defined as,

Tover ≥ Ttrans + Tproc − Tacq (4.2)

Defining the overhead time as shown in Eq. (4.2) guarantees avoidance of buffer overflow error

in the Alarzartech card. This is because the speed of writing the memory in the Alazatech card is

higher than that of reading since acquisition occurs more than transfer if the overhead is smaller

than Ttrans+Tproc-Tacq. Whereas, the overhead time satisfying this condition matches the speed of

memory writing to that of memory reading, causing no buffer overflow error.

If we do not use this scheme, the overhead time should be selected such that

Tover ≥ Ttrans + Tproc (4.3)

As seen in Eq. (4.2) and Eq. (4.3), the proposed acquisition scheme reduces the overhead time

by Tacq, allowing efficient time management.

In order to reduce Tover, it is important to decrease Tproc because Tacq and Ttrans are determined

by stimulus time and the Alazartech card, respectively. This processing time reduction is achieved

by implementing post-processing on GPU since it allows each interferogram in M-scan data to be

processed simultaneously.

4.2.3 GPU processing

GPU was adopted to reduce processing time in order to determine Tover in an efficient way

as described in Eq. (4.2). In GPU processing, a set of transferred OCT signals from the Host to

the GPU goes through the step of valid data extraction first which separates valid data points from

invalid ones. This step is unique to the akinetic swept-laser, hence it is skipped when a non-linearly

swept-laser is used. After the valid data extraction step, OCT signals are processed in the same

way as the PhOCT technique does as explained in Chapter 2. The background signal is subtracted

to remove background noise and dispersion, caused by difference in optics between reference

and sample arms, is compensated. These dispersion compensated inteferograms are converted to
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complex signals by FFT along the wavenumber dimension. From the complex signals, magnitudes

are used to generate structural images, and phases are used to extract vibrational information. In

order to induce vibrational amplitude and phase, the phases of the complex signals are extracted

and unwrapped along time dimension, producing time domain phase signal. This time domain

phase signal is FFTed and then the vibrational amplitude and phase are extracted at the frequency

of interest.

4.3 Results and Discussion

The proposed architecture was tested in a host computer with an Intel Core i7-5930K (3.50

GHz) and NVIDIA Geforce GTX 980. And the akinetic swept-laser, with a 100 kHz sweep trigger

rate, a 1310 nm center wavelength and a 100 nm bandwidth, was used. For a vibrating sample, a

piezo electric element was adopted where a sinusoidal signal was applied to generate a periodic

movement.

Before measuring the vibration of the piezo, Ttrans and Tproc were measured iteratively to

define appropriate Tover as Eq. (4.2) shows.

Tacq (ms) Ttrans (ms) Tproc (ms) Ttrans + Tproc (ms) Duty cycle
10 3.351 5.930 9.281 Max
20 8.562 10.793 19.355 Max
30 13.945 15.359 29.304 Max
40 19.823 19.640 39.463 Max
50 22.552 26.909 49.461 Max

Table 4.1: Measured transfer and processing time in accordance with acquisition time.

Table 4.1 displays measured Ttrans and Tproc resulting from averaging 100 measurements. Each

measurement was made in the host computer against Tacq changing from 10 ms to 50 ms with a

step of 10 ms. As Tacq increased, Ttrans and Tproc also rose, keeping their sum within Tacq. Since

Tover should be larger than or equal to zero, the minimum value of Tover is 0. In this table, duty

cycle means the relative time duration of Tacq over Tacq + Tover expressed as a percentage scale.
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Because the duty cycle was defined to range from 1 to 99 in the host program, it was determined

to be the maximum value of 99 since the minimum value of Tover is 0.

The proposed architecture in Fig. 4.1 was applied to acquire vibrational information at a certain

depth, over a two-dimensional space (x and z), or over a three-dimensional space (x, y, and z).

Those are called single point M-scan, BM-scan and volume M-scan, respectively. The term BM-

scan originated from a B-scan of an M-scan since an M-scan is performed along x-axis similar to

a B-scan which is an A-scan over that axis. Likewise, volume M-scan was named from a volume

scan of an M-scan to express a three dimensional M-scan.

4.3.1 Single point M-scan

Single point M-scan is a method used to investigate vibrations at a specific position in depth.

This method is useful to test a sample with multiple frequencies and multiple intensities of stimulus

as shown in Fig. 4.3.

Single point M-scans require selecting a point in a B-scan image as indicated by the green

arrow in Fig. 4.3(a), which was implemented in the host python program. At the selected point,

a series of M-scans are performed in accordance with stimulus frequencies and expected sound

pressure levels (SPL) which are determined by a user. In this experiment, the piezo was stimulated

for 50 ms with 7 frequencies ranging from 4 kHz to 10 kHz with 1 kHz increment. Also, 12

intensities were used for each frequency, ranging from 60 dB SPL to 71 dB SPL with the step

size of 1 dB SPL. This combination of frequencies and SPLs generated total 84 M-scans. For

this experiment, it was assumed that 0.316 V generated the intensity of 60 dB SPL for the piezo,

and the same voltages were applied along the frequency for simplicity. In reality, a speaker to be

used is calibrated by measuring its intensity with a microphone, and the calibrated value is applied

to generate a required SPL. The 84 M-scan data were processed to extract vibrational amplitude

and phase as depicted in Fig. 4.3(b) and Fig. 4.3(c), respectively. The vibrational amplitudes are

plotted in log scale in accordance with the stimulus frequencies since the applied voltage changes

in dB scale.
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Figure 4.3: Single point M-scan results. (a) is a B-scan image to select a position for single point
M-scan. The selected point is indicated by the green arrow. (b) and (c) are results of single point
M-scan showing vibrational amplitude and phase, respectively along frequencies and intensities.

4.3.2 Two dimensional M-scan (BM-scan)

BM-scans provide information about cross-sectional vibration and structure. It requires a B-

scan image, like the single point M-scan operation, in order to define two dimensional region of

interest as shown in the green box in Fig. 4.4(a).

After selecting the region of interest, the piezo was stimulated by a 4 kHz sinusoidal signal with

an intensity of 60 dB SPL. While stimulating, a series of M-scans were acquired and processed

to generate a B-scan image, vibrational amplitudes and phases over the region. Fig. 4.4(b) shows

the B-scan image while Fig. 4.4(c) and Fig. 4.4(d) are images of vibrational amplitude and phase,

respectively overlaid on the B-scan image. The vibrational amplitudes and phases are colored to

express their values which are around 1.6 nm and -113 degrees, respectively.
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Figure 4.4: BM-scan results. (a) is a B-scan image to select a region of interest for BM-scan. The
selected region is indicated by the green bax. (b), (c), and (d) are results from BM-scan. (b) is a
B-scan image while (c) and (d) show vibrational amplitudes and phases, respectively overlaid on
the B-scan image. The values are expressed in colors in (c) and (d).

4.3.3 Three dimensional M-scan (Volume M-scan)

It has been challenging to acquire and process a three dimensional M-scan due to the large

data size as well as the processing burden. However, the proposed architecture enables three di-

mensional M-scans, or volume M-scans, by efficiently acquiring and processing the required data.

Unlike the single point M-scan and BM-scan, a volume M-scan requires a volume image in order

to define the volume region of interest on xy-plane.

A volume image is acquired by scanning a mirror over two orthogonal lateral ranges of (x, y),

and is displayed in Fig. 4.5. Fig. 4.5(a) and Fig. 4.5(b) show one of B-scan images and a xy-plane

image, respectively. The B-scan image is utilized not only to depict a cross-sectional profile, but

also to determine z step and z range in Fig. 4.5(a) which define the starting and ending z indexes.

Using those z indexes, xy-plane images are extracted and averaged along the z-axis to produce the
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Figure 4.5: Selection of the volume region of interest for volume M-scan. (a) B-scan image defined
on xz-plane. (b) xy-plane image. The blue arrow in (a) is used to indicate the selected depth to
generate the xy-plane image. The green box in (b) is for defining the volume region of interest and
the yellow horizontal line expresses the location on y-axis where the B-scan image is extracted.

xy-plane image in Fig. 4.5(b). The volume region of interest is selected on this xy-plane image.

The yellow line in Fig. 4.5(b) moves in accordance with the y step bar in Fig. 4.5(a), showing a

B-scan image at that location. After selecting the volume region, the piezo was stimulated with 4

kHz sinusoidal signal with the intensity of 70 dB SPL for 10 ms at each lateral position. The total

lateral steps were 3,584: 56 steps for x-axis and 64 steps for y-axis, resulting in the total raw data

size of 28.67 GB around three times higher than the Alazartech card memory (8 GB).

Fig. 4.6 displays the volume M-scan results on the selected volume region. Vibrational ampli-

tudes and phases are mapped on the B-scan image as shown in Fig. 4.6(b) and Fig. 4.6(d), showing

around 5 nm and -113 degrees, respectively. The xy-plane image in Fig. 4.6(c) was generated using

the same method as that described for Fig. 4.6(b) and shows coincidence with the selected region.

The B-scan image can be swept in accordance with y step bar to display corresponding structural

and vibrational B-scan images.

4.4 Conclusion

We proposed a method to acquire and process M-scan data in an efficient way in order to reduce

the time to obtain results. The proposed method utilized the feature of the Alazartech card that
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Figure 4.6: Volume M-scan results. (a) is a B-scan image while (b) and (d) display vibrational
amplitudes and phases on the B-scan image, respectively. (c) is a xy-plane image generated using
z range and z step in (a). The green horizontal line in (a) indicates selected z step while the yellow
horizontal line in (c) indicates the location on y-axis where the B-scan image is extracted.

acquires data while transferring. This feature allows an efficient acquisition scheme by transferring

and processing previous data while acquiring new data. Also, post-processing was implemented

on GPU to reduce processing time. Both the acquisition scheme and the implementation on GPU

enabled the sum of transfer and processing time to be within one acquisition, minimizing the

overhead time necessary between acquisitions.

The proposed architecture was applied to perform a single point M-scan, BM-scan, and volume

M-scan in order to obtain additional vibrational information at one axial point (z-axis), over two

dimensions (x, z), and over three dimensions (x, y, z), respectively.

Therefore, not only does it improve experimental and diagnostic throughputs, but it also pro-
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vides additional diagnostic information about the middle and inner ear by offering both structural

and vibrational information. Moreover, the proposed method is not restricted to the field of OCT

vibrometry and can be applicable to other fields that garner interferometric phases such as Doppler

OCT and OCT elastography.
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5. NOISE AND ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY BASED

VIBROMETRY

5.1 Introduction

There is growing interest in using Optical Coherence Tomography (OCT) for highly sensi-

tive vibrational measurements in the auditory system. This is motivated by the ability to spatially

resolve the vibratory response with subnanometer sensitivity. The detailed functional images gen-

erated have been used as a tool to probe fundamental auditory biomechanics and investigated as

potential clinical diagnostics. These applications and more promise to drive the continued devel-

opment of this nascent field.

A clear understanding of the fundamental noise statistics as well as inherent artifact due to

adjacent reflectors is key to interpreting results and pushing the sensitivity limit of this technology

for scientific and clinical applications. While various aspects have been investigated and reported

in the literature there has not been a detailed and complete derivation with consistent notation and

assumptions. The sensitivity for vibrometry is fundamentally linked to the noise statistics of the

OCT signal, hence we start from the spectral interferogram and derive the noise statistics through

the entire processing chain.

Before beginning we offer a brief review of the literatures surrounding this topic. Most of the

work is not directly linked to OCT based vibrometry, but rather other related techniques that make

use of the interferometric phase in OCT. The noise statistics for optical coherence tomography have

been derived previously [12, 13, 14] to demonstrate the advantages of spectral interferometry over

time-domain interferometry for OCT. These were derived for shot-noise, defining the fundamental

limit to OCT sensitivity. Shortly thereafter, researchers began to develop techniques which ex-

ploited the phase-sensitivity inherent to spectral interferometry. In the context of spectral domain

phase microscopy, Choma et al. [38] noted that the displacement sensitivity is proportional to

(2SNR)−1/2, where SNR is the signal to noise ratio and we have corrected a factor of 2 multiplier.
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Joo et al. [39] showed a similar result along with experimental verification of the distribution. Both

results are for the time-domain phase. The noise statistics in the frequency domain were in part

derived by Szkulmowski et al. [40] who noted the Rician distribution that arises for the magnitude

of the phase for flow velocity estimation. Many of the relevant statistical arguments we will make

have also been addressed in the context of Magnetic Resonance Imaging [41].

The artifacts induced by adjacent reflectors on interferometric phase measurements were ad-

dressed in the context of spectral domain phase microscopy by Ellerbee et al. [37]. They also

provided compensating methods to avoid measurement distortion caused by an adjacent static ob-

ject. More recently, Lin et al. [42] analytically and experimentally explored the phase retreival

problem in OCT vibrometry. However, they did not handle the phase leakage problem in a general

way in their derivation by only considering the case that the distance between neighboring and

interesting reflectors is so small and an interferogram has a constant amplitude. Moreover, it is

hard to see the effect of an error caused by an adjacent reflector only in both groups’ derivation

because they expressed equations to include both ideal and erroneous signals.

In this chapter the effect of additive noise on vibrometry was analyzed by considering the noise

statistics through the entire processing chain with results for both the time-domain and frequency-

domain phase. Likewise, we consider the artifact generated by adjacent reflectors, where over-

lapping sidebands lead to errors in magnitude, phase, and in some circumstances, the generation

harmonics of the driving frequency. These are shown to be consistent with both numerical simula-

tion and experiments with a swept-source OCT system.

5.2 Additive noise in OCT vibrometry

We will start by assuming all of the noise is additive since the main noise sources such as shot-

noise, thermal noise, and relative intensity noise (RIN) are additive [43, 44, 45]. This is slightly

more general, but consistent with prior derivations which assumed additive shot-noise. In order to

determine the effect of additive noise on the extraction of the vibratory response, it is necessary to

understand how the additive noise in the k-domain propagates through each mathematical opera-

tion, starting with the spectral interferogram H(k) and ending with the magnitude, |v(z, f)|, and
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phase, 6 v(z,f), of the vibratory response. A flow chart showing the processing steps along with the

statistical results, e.g. the mean and standard deviation, is shown in Fig. 5.1. We define signal to

noise ratio (SNR) for the OCT system in the conventional way, signal power divided by the second

moment of the noise, i.e. SNR = (s/n)2 or on a dB scale SNR = 20log(s/n), where s is the

signal energy and n is the second moment of the noise.

Figure 5.1: A flow chart showing the processing steps along with the statistical results such as
distribution, mean and standard deviation.
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A time series of spectral interferograms, H(k,t) is collected synchronously with sound output.

We assume the DC term is subtracted from H(k,t) since H(k,t) is commonly preprocessed to remove

it. Considering a single vibrating reflector and neglecting any autocorrelation,

H(k, t) =
ρ

b
S(k)

√
RRRS cos(2kn∆z + 2k0nδz(t)) + nk(k, t) (5.1)

where k is the wavenumber, n is a refractive index, k0 is the center wavenumber, ρ is the detector

responsivity, S(k) is the power spectrum of the light source, RR and RS are the reflectivities of

sample and reference arms of the interferometer, respectively, ∆z is the pathlength difference

between sample and reference arms, and δz(t) is the subresolution displacement of the reflector.

The additive noise term, nk(k,t), is independent, identically distributed (i.i.d) white Gaussian noise

with zero mean and standard deviation of σk. It is also assumed that its statistical properties do not

change over time, i.e. it is a stationary process.

The constant, b takes on the value 1 if both sides of the interferometer are collected and 2 if

only one side is detected. In practice most swept-source based systems collect both sides using a

balanced detector which has the added benefit of canceling the majority of the DC component and

autocorrelation artifact. The remaining small DC component is typically subtracted in the prepro-

cessing step noted above. Most spectrometer based systems only collect one side. In this case, the

autocorrelation artifact remains and a large DC component must be subtracted in preprocessing.

Next we take the inverse Fourier transform of the interferometric signal, Eq. (5.1), to generate

the complex signal, h(z,t), where z is the optical pathlength difference, related to the tissue depth

(∆z) by z=2n∆z. The magnitude, |h(z, t)|, is the time series of A-scans or line images which

are typically plotted against ∆z. We would commonly take the mean along time and display the

resulting line image |h(z)| as the structural image.

The remaining processing steps are completed identically at each depth, hence for simplicity

let us consider the interferometric signal at a single depth. Then, the L point discrete Fourier
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transform (DFT) yields,

h(z = 2n∆z, t) =
ρs(0)

√
RRRS

2b
ej2k0nδz(t) + nz(z = 2n∆z, t) (5.2)

where s(0) =
∑N

i=1 S(ki), N is total number of spectral channels, and nz(z,t) is the complex

noise in z-domain transformed from nk(k,t). The noise statistics of the magnitude of Eq. (5.2) will

follow a Rician distribution, as shown previously [40, 41]. The shape of the Rician distribution

changes rapidly with the relative magnitude of signal over noise (S/N) where S and N are signal and

noise magnitudes, respectively. When the S/N is greater than 3, the distribution is approximately

Normal, leading to the mean and standard deviation of |h(z, t)| shown in Fig. 5.1. This is the

limit in which the OCT SNR is commonly derived, see for instance equation 7 in reference [13].

However when the signal is exactly zero, i.e. RS is zero, the distribution nz(z) has a Rayleigh

distributed magnitude and a random phase with probability distribution that is uniform over 2π

radians. The Rayleigh distribution arises because the real and imaginary components of nz(z) are

independent and normally distributed about 0 with a variance of Nσ2
k/2, [46]. For completeness

the mean and standard deviation of |h(z, t)| in the Rayleigh limit are also shown in Fig. 5.1. These

results can be arrived at by simple variable substitution into Eq. (5.3) of reference [41], hence a

detailed derivation is omitted.

Small scale vibrations (subresolution) of the reflector (δz) induce small changes in the phase

of h(z) over time. The effect of the noise, nz(z), on the phase of h(z), can be illustrated by complex

domain analysis as shown in Fig. 5.2.

It can be seen from Fig. 5.2 that nz(z) distorts the ideal phase with the phase noise, φnoise(z),

given by

φnoise(z) = tan−1

(
|nz(z)| sin(φn−i(z))

|h(z)|+ |nz(z)| cos(φn−i(z))

)
(5.3)

In the limit that |h(z, t)| >> |nz(z, t)| Eq. (5.3) simplifies to
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Figure 5.2: Graphical phase noise analysis in the complex domain. |i(z)| and φi(z) are the magni-
tude and the phase of the ideal A-scan without noise. |nz(z)| and φn(z) are the magnitude and the
phase of the noise, |nz(z)|. φn−i(z) is the phase difference between the noise and ideal A-scan.

φnoise(z) ≈ |nz(z)| sin(φn−i(z))

|h(z)|
(5.4)

Assuming that the intensity of the reflector of interest does not change over time, the mean of

the phase noise is

E[φnoise(z, t)] ≈ E

[
|nz(z, t)| sin(φn−i(z, t))

|h(z, t)|

]
=
E[|nz(z, t)|(sin(φn(z, t)) cos(φi(z, t)) + cos(φn(z, t)) sin(φi(z, t)))]

|h(z)|

=
E[|nz(z)|]E[sin(φn(z))]E[cos(φi(z, t))]

|h(z)|

+
E[|nz(z)|]E[cos(φn(z))]E[sin(φi(z, t))]

|h(z)|
= 0

(5.5)

In Eq. (5.5), expected values of |nz(z, t)|, cos(φn(z, t)), sin(φn(z, t)) and φi(z, t) are separated

because they are independent of one another. Since nz(z,t) and φn(z,t) are stationary in the statis-

tical sense, the time dependence is dropped in calculating expectations of |nz(z, t)|, cos(φn(z, t)),

and sin(φn(z, t)). The noise phase is distributed uniformly over 2π [41], hence expected values of

cos(φn(z, t)) and sin(φn(z, t)) are zero, leading to zero mean for the phase noise.
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The standard deviation of the phase noise is expressed as

√
E[φ2

noise(z, t)] ≈

√
E[|n2

z(z, t)|sin2(φn−i(z, t))]

|h(z, t)|2

=

√
E[|n2

z(z, t)|]− E[|n2
z(z, t)|]E[cos(2φn(z, t)− 2φi(z, t))]

2|h(z, t)|2

=

√
E[|n2

z(z)|]
2|h(z)|2

=

√
Nσ2

k

2|h(z)|2
=

1√
2SNRz

(5.6)

where |h(z)|2 and Nσ2
k are energies of the signal and noise in z-domain, respectively, and SNRz is

the signal to noise ratio in z-domain.

The uniformly distributed phase of the noise causes the cosine term to become zero, leaving

the averaged noise energy in the numerator. The averaged noise energy is easily derived from the

second moment of the Rayleigh distribution [41]. As seen in Eq. (5.5), the phase noise is expressed

as the weighted sum of real and imaginary components of nz(z) which are stationary zero mean

uncorrelated white Gaussian random processes. Therefore, the probability density function (PDF)

of the phase noise is also stationary zero mean uncorrelated white Gaussian random process since

it is the weighted sum of those processes [47], having a variance of 1/(2SNRz). These results are in

agreement with those of Joo et al. [39] derived in the context of spectral domain optical coherence

phase microscopy.

The next step is to compute the Fourier transform of 6 h(z,t) along time to yield the magnitude

and phase of the vibratory response as a function of depth and frequency. Again, since the same

processing is done for each depth, we will explicitly consider the phase at only a single depth, (zr)

i.e. φ(zr, t), without losing any generality. The time dependent phase at zr is then

φ(t) = 2k0nδz(t) + nt(t) = 2k0nAvib cos(2πfvibt+ θvib) + nt(t) (5.7)

where t is the time index, Avib, fvib, and θvib are vibrational amplitude, frequency, and phase,

respectively, nt(t) is the time domain phase noise, and we have dropped the zr to simplify notation.

The time domain phase in Eq. (5.7) is described with a sinusoidal function to express an ideal
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vibration [48]. Generally, any sound can be represented by a sum of sinusoidal waves, hence this

does not significantly limit the applicability of the derivation. As shown above, nt(t) is a stationary

white Gaussian noise that has a zero mean and standard deviation of the square root of 1/2SNRz.

The next step is to take the Fourier transform of φ(t) to yield the complex vibratory response,

φ(f) at zr. Assuming M samples in the time series, the frequency domain vibrational signal is

expressed as

φ(f) = 2k0nδz(f) + nf (f) = Mk0nAvibδ(f ± fvib)e∓jθvib + nf (f) (5.8)

where nf (f) is the frequency domain phase noise transformed from nt(t). The real and imaginary

components of nf (f) are also stationary zero mean uncorrelated white Gaussian since they are

simply a weighted sum of nt(t). Their variances are Mσ2
t /2 [46] where σ2

t is the variance of nt(t).

At the frequency of the stimulus (fvib) the vibrational amplitude (Avib) and phase (θvib) are

given by

φ(fvib)

Mk0n
= Avibe

jθvib +
nf (fvib)

Mk0n

=

(
Avib cos(θvib) +

nf−real(fvib)

Mk0n

)
+ j

(
Avib sin(θvib) +

nf−imag(fvib)

Mk0n

) (5.9)

where we have scaled the phase by the factor Mk0n to convert to nanometers from radians,

nf−real(f) and nf−imag(f) are the real and imaginary component of nf (f).

The measured vibrational amplitude, Amea, is the magnitude of Eq. (5.9). As can be seen in

Eq. (5.9), the measured amplitude differs from true amplitude, Avib, due to noise, i.e.

Anoise = Amea − Avib (5.10)

where Anoise is the amplitude detection noise.

The statistical properties of Anoise depends on the magnitude of Avib. When Avib is equal to 0,

Amea is Rayleigh distributed [41], hence Anoise follows the Rayleigh distribution. The sensitivity

of an OCT vibrometry system is typically defined in this limit by observing the noise of a frequency
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band where there is no vibration. In this case, the square root of the second moment of Anoise, i.e.√
µ2 + σ2, is

√
E[A2

noise] =
σt

k0n
√
M

(5.11)

Eq. (5.11) shows the root mean square (RMS) value of Anoise and can be used to predict the

performance of vibratory measurements given SNR in z-domain. The real and imaginary compo-

nents ofAnoise are independent and normally distributed with zero mean and the standard deviation

of σt/k0n
√

2M when Avib = 0.

When Avib 6= 0, the noise is Rician distributed, however it can be approximated as a Gaussian

distribution in the limit that the signal is larger than the standard deviation of the noise. It has

been shown previously that a s/n > 3 (i.e. Avib ≥ 3σt/k0n
√

2M ) was sufficient to allow this

approximation [41]. In OCT vibrometry, a measured displacement signal is typically in the range

of few to one hundred nanometers [1, 2, 6, 49] while noise standard deviations are commonly less

than one nanometer [2, 49]. Practically, the majority of measurements will have s/n that satisfy this

criteria. Thus, the distribution of the detected magnitude in OCT vibrometry can be considered to

be Gaussian whose mean and standard deviation are the square root of A2
vib + σ2

t /2Mk2
0n

2 and

σ2
t /2Mk2

0n
2, respectively [41], leading Anoise to the results in Eq. (5.12).

E[Anoise] = E[Amea − Avib] = E[Amea]− Avib =

√
A2
vib +

σ2
t

2Mk2
0n

2
− Avib√

E[(Anoise − E[Anoise])2] =
√
E[(Amea − µmea)2] =

σt

k0n
√

2M

(5.12)

where µmea is the mean of Amea.

The noise in extracting the phase of the vibration, θvib, in the frequency domain is derived using

Eq. (5.5) and Eq. (5.6) since the time domain phase noise is additive zero mean white Gaussian,
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yielding

E[θnoise] = 0√
E[θ2

noise] =
1√

2SNRf

=

√
Mσ2

t

2(Mk0nAvib)2
=

σt

Avibk0n
√

2M

(5.13)

where θnoise is the phase detection noise. The phase detection noise is also Gaussian distributed,

and its standard deviation is the same as that of Anoise, Eq. (5.12), except for the Avib term in the

denominator.

5.3 Artifacts due to adjacent reflectors, phase leakage

It is well known that adjacent reflectors can influence the measured interferometric phase at

their respective peaks [37]. Since the vibrational amplitude and phase are derived from the inter-

ferometric phase, the interaction of adjacent reflectors can introduce systematic errors that are not

accounted for in the statistical noise arguments made above. In order to investigate these artifacts

theoretically we start by restating Eq. (5.1) for two adjacent reflectors, i.e

H(k, t) =
ρ

b
S(k)

[√
RRRS1 cos(2kn1∆z1 + 2k0n1δz1)) +

√
RRRS2 cos(2kn2∆z2 + 2k0n2δz2))

]
(5.14)

where RS1, n1, ∆z1, and δz1 are the reflectivity, the refractive index, the pathlength difference, and

the displacement of a reflector of interest while RS2, n2, ∆z2, and δz2 are of an adjacent reflector.

Considering L point DFT, the complex signal h(z) at a single depth can be expressed in the

same way as Eq. (5.2), yielding

h(z = 2n1∆z1) =
ρs(0)

√
RRRS1

2b
ej2k0n1δz1+

ρ|s(2n1∆z1 − 2n2∆z2)|
√
RRRS2

2b
e
6 s(2n1∆z1−2n2∆z2)+j2k0n2δz2

(5.15)

where |s(z)| and 6 s(z) are the magnitude and the phase of s(z), and 6 s(0) is removed because s(0)

is the DC component of s(z) which has only real component.
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The vibrational signal from the reflector of interest is extracted by detecting the phase of

h(z=2n1∆z1). However, as Eq. (5.15) suggests, extracting the phase is affected by the additional

term originated from the adjacent reflector. In order to analyze the effect of the adjacent reflector,

the phase error is derived in the same way as shown in Fig. 5.2 to yield

φ(2n1∆z1) = tan−1


√

RS2

RS1
|s(∆z1−2)| sin(6 s(∆z1−2) + 2k0(n2δz2 − n1δz1))

|s(0)|+
√

RS2

RS1
|s(∆z1−2)| cos(6 s(∆z1−2) + 2k0(n2δz2 − n1δz1))


≈ tan−1

(
|s(∆z1−2)| sin(6 s(∆z1−2) + 2k0n(δz2 − δz1))

|s(0)|+ |s(∆z1−2)| cos(6 s(∆z1−2) + 2k0n(δz2 − δz1))

)
≈ |s(∆z1−2)|

|s(0)|
sin(6 s(∆z1−2) + 2k0n(δz2 − δz1))

(5.16)

where ∆z1−2 is 2n1∆z1 − 2n2∆z2, the relative pathlength difference between the adjacent reflec-

tors.

In Eq. (5.16), the initial term is approximated by assuming thatRS1 ≈ RS2, nS1 ≈ nS2 because

those values are similar in the same tissue, and that |s(0)| >> |s(∆z1−2)| for simple expression.

The angle of s(∆z1−2) included in the sine function is constant with respect to time as long as

the spectral shape of a source does not change during the measurement. Within a vibrating tissue,

reflectors of interest and their nearest neighbors exhibit similar vibrational amplitude and phase

[42, 2], meaning that δz1 ≈ δz2. In this case, Eq. (5.16) approaches the following form.

φerror(t) =
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2)) (5.17)

where the time index of t is added to express the phase error along time, |s(0)| is the magnitude

of an interesting reflector while |s(∆z1−2)| and 6 s(∆z1−2) are the magnitude and the phase of

an adjacent reflector at the position of the interesting one. Eq. (5.17) shows that the phase error is

expressed as constant with respect to time, changing the DC level of a vibrational signal in the time

domain. This constant phase error centers at 0 Hz in the frequency domain, being separated from

a vibrational signal in that domain. This separation makes the extraction of vibrational magnitude
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and phase not affected.

Another important case is when δz1(t) and δz2(t) are not similar as seen in [37]. In this case, the

vibrational amplitude of the combined vibrational signal, δz2(t)−δz1(t), is large, where Eq. (5.16)

needs to be further derived with the assumption that δz2(t) − δz1(t) = Acvib cos(2πfvibt + θcvib).

This assumption is appropriate because a vibrating tissue oscillates with the same frequency as

stimulus [2, 42].

φerror(t) =
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2) + 2k0n(δz2(t)− δz1(t)))

=
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2) + 2k0nAcvib cos(2πfvibt+ θcvib))

=
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2)) cos(2k0nAcvib cos(2πfvibt+ θcvib)

+
|s(∆z1−2)|
|s(0)|

cos( 6 s(∆z1−2)) sin(2k0nAcvib cos(2πfvibt+ θcvib)

=
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2))

×

[
J0(2k0nAcvib cos(θcvib)) +

∞∑
m=2l

2Jm(2k0nAcvib cos(θcvib))(−1)l cos(2πmfvibt)

]

×

[
J0(2k0nAcvib sin(θcvib)) +

∞∑
m=2l

2Jm(2k0nAcvib sin(θcvib)) cos(2πmfvibt)

]

+
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2))

[
∞∑

m=2l−1

2Jm(2k0nAcvib cos(θcvib))(−1)l+1 sin(2πmfvibt)

]

×

[
∞∑

m=2l−1

2Jm(2k0nAcvib sin(θcvib))cos(2πmfvibt)

]

+
|s(∆z1−2)|
|s(0)|

cos( 6 s(∆z1−2))

[
∞∑

m=2l−1

2Jm(2k0nAcvib cos(θcvib))(−1)l+1 cos(2πmfvibt)

]

×

[
J0(2k0nAcvib sin(θcvib))

∞∑
m=2l

2Jm(2k0nAcvib sin(θcvib))cos(2πmfvibt)

]

− |s(∆z1−2)|
|s(0)|

cos( 6 s(∆z1−2))
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×

[
J0(2k0nAcvib cos(θcvib)) +

∞∑
m=2l

2Jm(2k0nAcvib cos(θcvib))(−1)l cos(2πmfvibt)

]

×

[
∞∑

m=2l

2Jm(2k0nAcvib sin(θcvib)) sin(2πmfvibt)

]
(5.18)

where Acvib and θcvib are the combined vibrational amplitude and phase, respectively and Jm(x) is

the Bessel function of the first kind.

To express Eq. (5.18) in a more simple way, θcvib is assumed to be zero, yielding

φerror(t) =
|s(∆z1−2)|
|s(0)|

sin(6 s(∆z1−2))

[
J0(2k0nAcvib) +

∞∑
m=2l

2Jm(2k0nAcvib)(−1)l cos(2πmfvibt)

]

+
|s(∆z1−2)|
|s(0)|

cos(6 s(∆z1−2))
∞∑

m=2l−1

2Jm(2k0nAcvib)(−1)l+1 sin(2πmfvibt), l = 1, 2, 3, · · ·

(5.19)

As seen in Eq. (5.19), harmonic components of the vibrational signal will be generated by an

adjacent reflector. However, in the limit that Acvib is small, J0(2k0nAcvib) approaches 1 and the

infinite sums over higher orders approach zero, hence Eq. (5.19) simplifies to Eq. (5.17). This

analysis is in agreement with findings from [42] that the larger differential displacement shows

more harmonic signals while the small one rarely displays them. When the adjacent reflector is

a static object, δz2(t) becomes constant and is grouped to 6 s(δz1−2) in Eq. (5.16). In this case,

harmonic components of the phase error depend only on δz1(t) since it solely determines Acvib and

θcvib of the combined vibrational signal. This means that harmonic components become dominant

as the vibrational amplitude of an interesting reflector increases while they become attenuated as

it decreases.

The fundamental frequency component (k=1) in Eq. (5.18) has the greatest impact on the mea-

sured vibrational amplitude and phase at the stimulus frequency. If we truncate the infinite series
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of Eq. (5.18) after k=1, then we can simply Eq. (5.18) to

φerror(t) ≈ GerrJ0(2k0nAcvib sin(θcvib))2J1(2k0nAcvib cos(θcvib)) cos(2πfvibt)

−GerrJ0(2k0nAcvib cos(θcvib))2J1(2k0nAcvib sin(θcvib)) sin(2πfvibt)

≈ 2k0nGerrAcvib[cos(θcvib) cos(2πfvibt)− sin(θcvib) sin(2πfvibt)]

= 2k0nGerrAcvib cos(2πfvibt+ θcvib), /Gerr =
|s(∆z1−2)|cos( 6 s(∆z1−2))

|s(0)|

(5.20)

where θcvib is the combined phase of δz2(t)− δz1(t), and Gerr is the gain of the phase error applied

to the combined vibrational signal.

In Eq. (5.20), the time domain phase error is simplified to the fundamental component, and

then is further approximated using the characteristic of the Bessel function of the first kind that

J0(x) ≈ 1 and 2J1(x) ≈ x when x is small. Analyzing the effect of the phase error in Eq. (5.20)

in the frequency domain using Fig. 5.2, the vibrational amplitude error is

Aerror =
√
A2
vib + (GerrAcvib)2 + 2GerrAcvibAvib cos(θcvib − θvib)− Avib (5.21)

In the same way, the error that occurs when extracting the vibrational phase in the frequency

domain is calculated as

θerror = tan−1

(
GerrAcvib sin(θcvib − θvib)

Avib +GerrAcvib cos(θcvib − θvib)

)
(5.22)

Assuming Avib >> GerrAcvib, minimum and maximum values for the magnitude of each error

are determined as

0 ≤ |Aerror| ≤ GerrAcvib

0 ≤ |θerror| ≤ tan−1

(
GerrAcvib
Avib

) (5.23)

In Eq. (5.23), the maximum amplitude detection error is achieved when θcvib = θvib or θcvib =

θvib ± π while the minimum one is when Acvib = 0 or θcvib = cos−1(−GerrAcvib/2Avib) + θvib
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where GerrAcvib/2Avib ≤ 1. Also, the minimum phase detection error is calculated by making the

numerator term zero whereas the maximum one is achieved when θcvib is perpendicular to θvib. It is

seen from Eq. (5.23) that both Gerr and Acvib affect amplitude and phase detection errors, and the

relative magnitude of Avib over Acvib plays important role in determining the phase detection error.

Since Avib and Acvib are not controllable, a convenient method to reduce both detection errors is to

increase the relative magnitude of the reflector of interest over the adjacent one, which is usually

done by careful selection of window function.

5.4 Results

5.4.1 Simulation Results

Next we decided to numerically simulate an M-scan of a vibrating reflector. This allowed us,

in a very controlled setting where we know for certain that all of the noise is additive, to verify that

the equations we have derived hold. The simulation was executed in MATLAB (Mathworks, Inc).

The set of inteferograms were modeled using Eq. (5.1) such that ρS(k)
√
RRRS/b = 1, ∆z = 1.713

mm, k0 = 2π/1310 nm, n = 1. The wavelength bandwidth and the total number of spectral channels

(N) were set to be 100 nm and 2000, respectively. The vibrational signal δz(t) was modeled using

Eq. (5.7) to have that Avib = 10 nm, θvib = 30 degree. And the vibrational frequency fvib was defined

to be the digital frequency of 0.1 which means fvib = 0.1×A-scan rate. The number of points for

the vibrational signal (M) was set to be 1000 points. This vibrational signal was embedded into

the modeled interferograms to make one set of M-scan data as shown in Eq. (5.1). The k-domain

noise nk(k, t) in Eq. (5.1) was shaped to be additive Gaussian which has zero mean and standard

deviation (σk) ranging from 0 to 0.1, and to be stationary so that each interferogram has the same

statistical properties. The change in the standard deviation (σk) was intended to see the effects of

additive noise on vibratory measurements.

Fig. 5.3(a) shows one of the modeled interferograms, H(k, t), in the time-series with a k-

domain noise standard deviation of 0.1. Fig. 5.3(b) displays the magnitude response of the fast

Fourier transform of that signal, |h(z, t)|, where a reflector is located at index 200 and has a s/n of
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Figure 5.3: (a) One of modeled interferograms with additive noise. (b) A-scan of (a). (c) Time
domain vibrational signal extracted from a set of A-scans. (d) Frequency domain vibrational signal
transformed from (c).

40.97 dB calculated from 20log10(s/n). From the complex signal the time-domain phase, φ(200, t),

can be extracted at the location of the reflector to yield the trace in Fig. 5.3(c). At this stage the

sinusoidal vibration of the reflector is apparent. A fast Fourier transform yields the magnitude

response of the vibration |φ(200, f)| shown in Fig. 5.3(d), and vibrational amplitude and phase

are extracted at the normalized digital frequency of 0.1, |φ(200, f = 0.1)|, showing 9.99 nm and

29.86◦, respectively. Note, the displacement in Fig. 5.3(d) was placed on a log-scale in order to

make the noise more visible. The k-domain noise was generated with the MATLAB function of

randn multiplied by the desired standard deviation to generate Gaussian distributed random num-

bers with zero mean. For one M-scan data set, the noise was generated 1000 times with the same

mean and standard deviation to be added to each modeled interferogram as seen in Eq. (5.1). These

M-scan data were iteratively acquired to calculate statistical properties of experimental amplitude
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and phase detection noises. Then the theoretical mean and standard deviation of the amplitude,

|φ(z, f)|, were calculated for comparison to simulation results.

Figure 5.4: Comparison of statistical properties of amplitude detection noise. (a) and (b) are
acquired from 300 measurements while (c) and (d) from 3000 measurements. (a), (c) and (b), (d)
show comparison of amplitude detection noise mean and standard deviation, respectively. Red line
means the result from Eq. (5.12) whereas blue one means from experimentally acquired detection
noise.

The mean and standard deviation of the amplitude detection noise (Anoise), the measured vi-

brational amplitude at φ(200, f = 0.1) subtracted by the true vibrational amplitude Avib, were

calculated from the modeled interferograms and plotted in Fig. 5.4 as a function of k-domain noise

standard deviation, σk. The bottom x-axis on each plot is σk with the corresponding SNR plotted
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on the top x-axis. Note that the SNR is always well above 9.5 dB (s/n=3), so we are in the normal

distribution limit. The y-axis is the noise mean in Fig. 5.4(a,c) and noise STD in Fig. 5.4(b,d). The

top and bottom rows in the figure differ by the number of M-scans used to generate the statistics,

300 top and 3000 bottom. A qualitative comparison of the top and bottom rows shows the expected

trend: as we increase the number of samples used to generate the statistic, the results of the sim-

ulation more closely match the theory. The noise mean oscillates above and below the theoretical

values. The standard deviation likewise oscillates above and below the theoretical line and clearly

follows the same trend. Also, it is shown that mean and standard deviation of amplitude detection

noise increases as expected with an increase in the k-domain noise standard deviation. This is due

to increase in the standard deviation (σt) of the time domain phase noise nt(t) in Eq. (5.7) caused

by decrease in SNR in z-domain. However, the degree of the increase differs from each other: the

amplitude detection noise standard deviation is high while the amplitude detection noise mean is

low. This is because time domain noise has less effect on the calculation of mean because the true

vibrational amplitude (Avib) is dominant in the square root operation while it has more on standard

deviation since the noise directly affects the standard deviation, as shown in Eq. (5.12).

The phase detection noise (θnoise) was calculated by subtracting the true vibrational phase

(θvib) from the measured one (θmea = 6 φ(200, f = 0.1)), and its mean and standard deviation

was plotted in Fig. 5.5 in accordance with sigmak. As seen in the results of Anoise in Fig. 5.4,

the mean and standard deviation of θnoise match the theory more closely as the number of used

samples increases. Both mean and standard deviation shows the same trend while fluctuating

slightly about the theory. Also, the standard deviation of the phase detection noise grows more

rapidly in accordance with the k-domain noise standard deviation compared to the mean. This

shows the same trend as the amplitude detection noise because time domain phase noise directly

affects the standard deviation while it has no effect on the mean as seen in Eq. (5.13). As seen

in the amplitude detection noise plots, the increase in the standard deviation of θnoise results from

the decrease in SNR since this brings about rise up of σt. Therefore, these MATLAB simulation

results give us confidence that the derived equations are correct within the assumptions of additive
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Figure 5.5: Comparison of statistical properties of phase detection noise. (a) and (b) are acquired
from 300 measurements while (c) and (d) from 3000 measurements. (a), (c) and (b), (d) show
comparison of phase detection noise mean and standard deviation, respectively. Red line means
the result from Eq. (5.13) whereas blue one means from experimentally acquired detection noise.

noise and the statistical stationary state.

In order to verify Eq. (5.21) and Eq. (5.22), a set of interferograms were generated by assuming

two reflectors. The interferogram of a reflector of interest was modeled using Eq. (5.14) such that

ρS(k)
√
RRRS1/b = 1, ∆z1 = 1.713 mm, k0 = 2π/1310 nm, n = 1 to have the same specification as

the one in Fig. 5.3(a). And the interferogram of an adjacent reflector was created in a way that has

different intensity and axial position in z-domain such as ρS(k)
√
RRRS1/b = 1/3 and ∆z2 = 1.733

mm.

Fig. 5.6(a) shows an interferogram with a pair of adjacent reflectors. The corresponding A-

scan is shown in Fig. 5.6(b) where A-scans of total and each reflector are displayed with different
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Figure 5.6: (a) One of modeled interferograms (b) A-scan of (a) where there are two signals: a
reflector of interest (S1) and an adjacent one (S2). The vibrational signal of interest is extracted at
the red arrow.

colors. For this A-scan, a zero padded 10,000 point FFT was used to better sample the reflectors,

showing the side-bands which strongly overlap from both reflectors. The vibrational signal from

S1 was chosen to have an amplitude, Avib = 20 nm, and phase, θvib = 0 and 2000 time samples.

The interferometric phase was extracted at the peak position of S1 as indicated by the red arrow in

Eq. (5.6).

In order to observe the effect due to vibrational amplitude only, the vibrational amplitude of

S2 was varied from 0 to 120 nm while keeping the vibrational phase the same as S1. Under

these conditions the theoretical amplitude and phase detection errors as described in Eq. (5.21) and

Eq. (5.22) are compared to simulated values as seen in Fig. 5.7. The simulated values were calcu-

lated by subtracting the ideal vibrational amplitude or phase from the measured one. In Fig. 5.7(a)

and Fig. 5.7(b) the theoretical errors were calculated using non-approximated equation, Eq. (5.16).

In Fig. 5.7(c) and Fig. 5.7(d), theoretical detection errors were calculated using approximated ones

of Eq. (5.21) and Eq. (5.22). Both are shown to provide the reader with a sense of how the approx-

imation holds up as vibrational amplitude of the adjacent reflector grows. As seen in Fig. 5.7(a)

and Fig. 5.7 7(c), the displacement detection error decreases as the vibrational amplitude of S2 ap-

proaches the value of S1 (20 nm) and increases as the vibrational amplitude moves from the value

of S1 up to 120 nm. This behavior was expected since Eq. (5.17) shows that when the vibrational
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amplitude of neighboring reflectors are equal (i.e. δz1(t) = δz2(t)), there is no error in vibrational

amplitude. As implied in Eq. (5.21), the measured vibrational amplitude comes closer to the ex-

pected one as the combined vibrational amplitude attenuates while the measured one goes away

from the expected one, as the combined one rises. Phase detection errors are seen in Fig. 5.7(b)

and Fig. 5.7(d) where theoretical and measured detections errors are zero. This is because the

combined vibrational phase was kept the same as the expected one, making phase detection error

zero as implied in Eq. (5.22).

Figure 5.7: Comparison of amplitude and phase detection errors in accordance with the vibra-
tional amplitude of the adjacent reflector. Theoretical results in (a) and (b) are acquired using the
non-approximated equation in Eq. (5.16) while (c) and (d) are acquired using the approximated
equations in Eq. (5.21) and Eq. (5.22). (a), (c) and (b), (d) show comparison of amplitude and
phase detection errors, respectively.

Next, the vibrational phase (θvib) of the adjacent reflector (S2) was swept from 0◦ to 180◦ while

fixing the vibrational amplitude of it at 20 nm to see the effect of the vibrational phase of S2 only.
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Fig. 5.8(a) and Fig. 5.8(b) displays results using the non-approximated equation of Eq. (5.16) while

Fig. 5.8(c) and Fig. 5.8(d) shows using approximated equations of Eq. (5.21) and Eq. (5.22). The

theoretical and experimental results in Fig. 5.8 were calculated in the same way as those in Fig. 5.7.

As shown in Fig. 5.8(a) and Fig. 5.8(c), the displacement detection error (Aerror) becomes larger

as θvib of S2 increases. This result is related to the increase in the combined vibrational amplitude

(Acvib). When θvib of S2 is equal to zero, Acvib becomes zero since the vibrational signal of S2 is

the same as that of S1. This makes Aerror zero by making the squared root term in Eq. (5.21) the

same as the vibrational amplitude (Avib) of S1. On the other hand, as θvib of S2 increases toward

180◦, Acvib is elevated and becomes two times larger than Avib when θvib of S2 reaches 180◦. This

increase in Acvib induces more displacement error by growing the square root term in Eq. (5.21)

where the cosine term is negligible since Gerr is as small as −2.763 × 10−3 in this simulation.

Unlike the displacement detection error, the phase detection error θerror increases as θvib of S2

moves from 0◦ to 90◦ whereas it decreases as θvib moves away from 90◦ towards 180◦ as seen in

Fig. 5.8(b) and Fig. 5.8(d). This result can be explained with Eq. (5.22). When θvib of S2 changes

from 0◦ to 90◦, the cosine term in the denominator decreases while the sine term in the numerator

increases, raising up θerror. On the contrary, when θvib of S2 is swept from 90◦ to 180◦, the cosine

term increases while the sine term decreases, reducing θerror. When θvib of S2 is equal to 90◦, the

maximum θerror is achieved since cosine and sine terms become 1 and 0, respectively, as shown in

Eq. (5.23).

5.4.2 Experimental Results

In order to verify the derived equations under normal experimental conditions, the movement

of a piezo electric element was measured with a swept laser system described in [50]. The piezo

was driven sinusoidally at 4 kHz and measured with A-scan (laser sweep) rate of 128.04 kHz over

50 ms, acquiring 6403 A-scans per M-scan. Two neutral density (ND) filters were used to change

the incident light power on the piezo. Using this setup, A-scans with 3 different SNRs could be

acquired by using no ND filter, 1 ND filter, or 2 ND filters. The resulting SNRs on the piezo were

57.89 dB, 48.81 dB, 21.21 dB, respectively. True vibrational amplitude and phase were estimated
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Figure 5.8: Comparison of amplitude and phase detection errors in accordance with the vibra-
tional phase of the adjacent reflector. Theoretical results in (a) and (b) are acquired using the
non-approximated equation in Eq. (5.16) while (c) and (d) are acquired using the approximated
equations in Eq. (5.21) and Eq. (5.22). (a), (c) and (b), (d) show comparison of amplitude and
phase detection errors, respectively.

by averaging 100 sets of M-scan data with the highest A-scan SNR (no ND filter) which are 2.788

nm and -144.556◦, respectively.

Fig. 5.9 shows A-scans in root mean square (RMS) values and frequency domain vibrational

responses from 100 M-scans measured with the piezo. And 1st, 2nd, and 3rd columns of Fig. 5.9

display results from the use of no ND, 1 ND and 2 ND filters, respectively. Fig. 5.9(d), Fig. 5.9(e),

and Fig. 5.9(f) show frequency domain vibrational responses calculated from A-scans seen in

Fig. 5.9(a), Fig. 5.9(b), and Fig. 5.9(c). To obtain frequency domain vibrational responses, time

domain vibrational signals were extracted at peak locations red-arrowed in Fig. 5.9(a), Fig. 5.9(b),

and Fig. 5.9(c). As can be seen in Fig. 5.9, the more ND filter is applied, the more the peak of

the A-scan reduces and the farther it moves due to the increased optical pathlength caused by the
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ND filter. Also, the RMS value of the frequency domain noise was acquired for each case with

magnitudes ranging from 6 kHz to 10 kHz extracted along 100 M-scan data set by calculating√
µ2 + σ2 with their mean and standard deviation. It becomes higher such as 6.40 pm, 9.89 pm,

and 288.44 pm shown in Fig. 5.9(d), Fig. 5.9(e), and Fig. 5.9(f), respectively.

Figure 5.9: A-scans in root mean square (RMS) values and frequency domain vibrational responses
measured from 100 M-scan with a piezo electric element driven by 4 kHz. (a) and (d) are A-scan
and 100 frequency domain vibrational responses, respectively when no ND filter is used while (b),
(e) and (c), (f) are from the use of 1 ND and 2 ND filters, respectively. In (d), (e), and (f), thick
black line shows the RMS value of the frequency domain noise.

Experimental mean and standard deviation of amplitude and phase detection noises are calcu-

lated from the 3 sets of 100 M-scan data and compared to theoretical ones as displayed in Fig. 5.10.

In this figure, experimental results follow the trend of theoretical ones, showing slightly larger

values than them. To investigate the difference between theoretical and experimental results in

Fig. 5.10 in more detail, the percentage errors of Anoise and θnoise were calculated and displayed

in Fig. 5.11. In this figure, the second moments or RMS values of those detection errors were used

to derive errors in order to consider the mean and the standard deviation simultaneously.
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Figure 5.10: Mean and standard deviation of amplitude and phase detection noises in accordance
with A-scan SNR. (a) and (b) show in pico meter scale mean and standard deviation of amplitude
detection noise while (c) and (d) display in degree those of phase detection noise. Blue and red
lines represent theoretical results calculated using Eq. (5.12) and Eq. (5.13), and experimentally
measured ones, respectively.

It is shown in Fig. 5.11 that errors grow in accordance with the increase of SNR, meaning that

experimental results are deviated more from theoretical ones. In this experiment, theoretical results

were computed with SNR in z-domain since the SNR can be converted to the standard deviation

of the time domain phase noise (σt). This means that theoretical results consider the noise existing

in z-domain only which is transformed from k-domain. As seen in Fig. ?? (d) and Fig. ?? (e),

however, other noise exists in the low frequency region while it is not seen in Fig. ?? (f). From

this observation, it can be thought that additive noise in k-domain is dominant when SNR is low

whereas other noise residing in an interferometric phase has more effect when SNR is high, causing

more deviation of experimental results from theoretical ones.

Therefore, the piezo experiment with an OCT vibrometry system demonstrated that the derived

equations work well within the assumption of additive noise in k-domain while they show more
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Figure 5.11: RMS errors of amplitude and phase detection noises in accordance with A-
scan SNR. (a) and (b) show percentage errors of amplitude detection noise and phase
detection noise, respectively. RMS error was calculated by |TheoreticalRMS −
ExperimentalRMS|/TheoreticalRMS × 100 where RMS was computed by the square root
of mean squared plus standard deviation squared.

error when other noise is added to an interferometric phase.

The derived detection errors of an adjacent reflector were verified with the same OCT system

and piezo as those used for additive noise. In this setup, the vibration of the piezo was measured

with 4 kHz stimulus at two different depths: one is for the reflector of interest and the other is for

the adjacent one. And then the measured data with different depths were added together because

exact vibrational amplitudes and phases of interesting and neighboring reflectors are required to

use derived equations. Also, different voltages were applied to the piezo for the adjacent reflector

to vibrate around 1, 9, and 36 times larger than the interesting one. To minimize the effect of

additive noise, 100 trials of M-scan data were acquired for each measurement and then averaged

along the trial number to generate one M-scan.

Fig. 5.12(a), Fig. 5.12(b), and Fig. 5.12(c) show A-scans averaged along time from the gener-

ated M-scan data. From the peak location shown in violet lines in Fig. 5.12(a), Fig. 5.12(b), and

Fig. 5.12(c), time domain vibrational signals were extracted and transformed to frequency domain

vibrational responses as seen in Fig. 5.12(d), Fig. 5.12(e), and Fig. 5.12(f)

Theoretical amplitude and phase detection errors in Eq. (5.21) and Eq. (5.22) were calculated

with required parameters obtained from A-scans and vibrational signals shown in Fig. 5.12. And it
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Figure 5.12: Averaged A-scans and frequency domain vibrational responses measured with a piezo
electric element driven by 4 kHz. (a), (b) and (c) display A-scans while (d), (e), and (f) show
frequency domain vibrational responses. Left, middle, and right columns are acquired when an
adjacent reflector is stimulated to vibrate around 1, 9, 36 times larger than the reflector of interest,
respectively. The interesting reflector (S1), the adjacent reflector (S2), and combined one (S1+S2)
are shown with blue, red, and yellow colors, respectively. Also, measured vibrational amplitudes
are displayed in (d), (e), and (f).

is compared to experimental ones as seen in Fig. 5.13. When the ratios of the vibrational amplitude

of S2 to S1 are between 0 and 10, theoretical errors look similar or slight different compared to

experimental ones. However, more difference are shown when the ratio is around 36. This is be-

cause, as explained in Simulation Result section, the combined vibrational amplitude increases in

accordance with that of S2, making approximated equations deviate more from non-approximated

ones. Therefore, Eq. (5.21) and Eq. (5.22) work well with the case when the ratio of the vibrational

amplitude of S2 to S1 is not high while Eq. (5.17) is preferred in other cases.
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Figure 5.13: Amplitude and phase detection errors in accordance with the ratio of the vibrational
amplitude of S2 to S1. (a) and (b) show amplitude and phase detection errors, respectively. Blue
line represents theoretical results calculated using Eq. (5.21) and Eq. (5.22) while red line is for
experimentally measured ones.

5.5 Discussion

5.5.1 Sensitivity

The sensitivity of OCT for vibrometry is clearly tied to the signal to noise ratio of the OCT

system, i.e. σt = (2SNR)−1/2. The ultimate limit to the OCT system SNR is shot-noise, σk =

(2ρRrSB)1/2, where B is the noise equivalent bandwidth and S is the source average power. Using

the magnitude of Eq. (5.2) and recognizing that s(0) = NS for an ideal flat-top laser power

profile, the SNR can be shown to be, (|h(z)|/E[|n(z)|2] = NρSRs/(4b
2B)). This is equivalent

to the result in [13] for b=1. Assuming an anti-aliasing filter has been used, then B is half of the

sampling frequency and the SNR can be rewritten in terms of the sweep frequency (fsweep) and

duty cycle (D) or sweep time (∆t),

SNR =
ρSRs

2b2

D

fsweep
=
ρSRs

2b2
∆t (5.24)

A similar equation can be derived for spectrometer based systems [13, 12, 14] where ∆t is the

camera integration time. The SNR of the OCT system goes up with higher power on the sample

(S↑ ) and slower sweep rate (higher integration time, ∆t ↑), hence the sensitivity of the vibrometer

improves as well. For every 10 dB improvement in the system SNR, the time-domain phase noise,
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nt(t), is reduced by 1/
√

10 for a 3 fold improvement. Equivalently, for a 3-fold improvement in

s/n, the phase noise is reduced by 1/3.

While we have focused on revealing the statistical properties of the signals in OCT based

vibrometry we have not directly addressed sensitivity. In our work [2, 51, 52] we typically use

µfR + 3σfR as a threshold. In other words, any signal below this threshold is neglected. This

metric has the advantage that it can readily be measured in each acquisition by considering the

mean and standard deviation in a frequency region near the stimulus frequency and it corresponds

to 98% confidence interval of the Rayleigh distribution. In terms of the relationships of Fig. 5.1

the sensitivity is,

sens = µfR + 3σfR =

(√
π + 3

√
4− π

4k0n

)
(M · SNR)−1/2 (5.25)

where M, the number of time samples, and SNR are the only variables for a given system.

For every 100 fold increase in M, the sensitivity is improved by a factor of 10. Likewise a 20

dB improvement in SNR, improves the sensitivity by a factor of 10. If we consider the shot noise

limit, Eq. (5.24) can be substituted into Eq. (5.25) to get

sens =

(√
π + 3

√
4− π

4k0n

)√
2b2

ρSRs∆tM
(5.26)

Fundamentally, an increase in the sample reflectivity (Rs) or the total acquisition time (∆tM )

improves the system sensitivity. Likewise there is a fundamental advantage to using a shorter

wavelength of light (larger k0) for vibrometry. Obviously, that advantage is offset by the larger

scattering cross-section at shorter wavelengths which will result in lower SNR at depth in the

tissue.

OCT systems are commonly specified by the signal to noise ratio expected for a perfect reflector

(Rs = 1) on a decibel scale. For instance, the maximum SNR of the swept laser system used to

collect the data above was 107 dB. The theoretical shot-noise limit was 110 dB. Developing a

similar metric for vibrometry performance would be helpful in comparing systems with different
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architectures and newly developed algorithms for extracting the vibratory response. Assuming

n=M=1 and using Eq. (5.25) and Eq. (5.26), this system has a potential sensitivity of 8.4 pm based

on measured SNR and 5.9 pm in the shot-noise limit. Tissue reflectivity is typically in the range of

-40 to -80 dB, hence in order to realize the 8.4 pm sensitivity M would need to be set in the range

104˘108. For our 128.04 kHz system, that corresponds to an acquisition time of 78 ms – 13 min.

5.5.2 Impact of system vibration and motion artifact

Small changes in the optical pathlength due to a wide range of sources, e.g. air-currents and

building vibrations, introduce phase-noise to the system. These tend to be concentrated in the low

frequency range, producing an 1/f dependence. Obviously, this deviates from our assumption of

Gassian white noise, however at some frequency, the mean and standard deviation will become

approximately constant with increasing frequency. For our system that limit is 2 kHz, as shown

above. Beyond this limit our experimental measures match well with the derived equations because

the noise is approximately Gaussian white. It is possible to suppress this low frequency phase noise

using an interferometer where the reference and sample arm largely co-propagate so that the small

scale vibrations are common to both, i.e. a common mode interferometer. Larger scale changes in

the optical pathlength can be introduced by patient/sample motion during data acquisition. Again,

this will introduce phase-noise and could violate the condition of a stationary state utilized in

the derivation of noise statistics. As we have noted elsewhere, [50] under these circumstances,

a broad band increase in phase-noise can be observed, however time-domain averaging of the

interferometric phase substantially lowers the phase-noise since the motion artifact is incoherent.

5.5.3 Impact of windowing

A window function is typically used in an OCT vibrometry to reduce sidelobes of other fre-

quency components. This is because these sidelobes can deviate vibrational amplitude and phase

of the frequency component of interest when they are strong. For this purpose, a window function

is applied to the time domain phase signal in Eq. (5.7) and has an impact on statistical properties

of amplitude and phase detection noises since it changes intensities of signal and noise in the time
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domain. Considering the effect of the window function, Eq. (5.11) is expressed as

√
E[A2

noise] =

√
Ewσ2

t

2k2
0n

2W 2(0)
=

σt
√
Ew

k0nW (0)
(5.27a)√

E[A2
noise] =

1.225σt

k0n
√
M

for hanning window (5.27b)

where Ew is the total energy of the window function calculated from Ew =
∑M

i=1 w
2(ti) and W(0)

is the DC component of W(f) calculated from W0 =
∑M

i=1 w(ti).

Eq. (5.27a) shows the second moment of Anoise for general case while Eq. (5.27b) displays

when hanning window is used. Compared to Eq. (5.11), the second moment of using the hanning

window increases by 1.225 times because the energy of the interesting phase signal (2k0nδz(t)) is

reduced more than that of the time domain phase noise (nt(t)) by the hanning window. Statistical

properties of Anoise and θnoise are easily converted by replacing M with W 2(0)/Ew.

5.5.4 Equivalence of measuring the phase noise as a function of frequency or time

It is shown from the derivation that the time domain phase noise (nt(t)) in Eq. (5.7) is white

Gaussian and the magnitude of the frequency domain noise (nf (f)) is Rayleigh distributed when

Avib is equal to 0. Since the noise energy is preserved between these domains, their second mo-

ments have the relationship of E[n2
t (t)] = 1/M ∗ E[n2

f (f)], meaning that E[n2
f (f)] can be pre-

dicted by calculatingE[n2
t (t)]. This relationship assumes that other noise sources that induce small

changes in the optical pathlength are not included. Thus, it is important to process data to reduce

the effects of other noise sources not only to have the consistent relationship between nt(t) and

nf (f) but also to increase measurement accuracy.

The preprocessing (second step in Fig. 5.1) typically done is the subtraction of a background

signal to remove the constant term, which will appear at z=0. The side-lobes from a strong signal

at z=0 can sometimes overlap with signals of interest. We typically measure the background as

the mean over a large number of acquisitions and bandpass filter. It is essentially noise free and

therefore does not appreciably contribute to the noise. We also typically preprocess the time-
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domain phase, φ(z, t), before calculating the Fourier transform to get φ(z, f). At a minimum we

calculate and then subtract the mean of φ(z, t), to suppress the signal at 0 Hz. This approach

is fast and does not contribute to the noise above 0 Hz. In post-processing where computational

time is not critical, we sometimes will instead fit φ(z, t) to a polynomial and subtract the fit from

φ(z, t). This suppresses the signal at 0 Hz and removes some of the low frequency drift again

without introducing noise. Some researchers have taken the derivative by computing ∆φ(z, t) =

φ(z, t2)− φ(z, t1). This similarly removes the 0 Hz portion of the signal, however it introduces an

additional
√

2 noise so that σt = (4SNR)−1/2.

5.5.5 How to reduce the effect of additive noise

From now on, methods to reduce those effects are discussed where it is assumed that a laser

source is given since it depends on an application. In order to reduce the effect of additive noise,

the amount of the noise should be reduced above all. In a simple way, this can be achieved by

selectively attenuating the reference arm power in an interferometer because it allows the noise

to be close to shot noise limit while reducing RIN [43]. Also, balanced detection can be adopted

with Mach-Zehnder interferometer to suppress RIN [53]. Secondly, the effect of additive noise

can be attenuated by raising time duration for M-scan. This means increase in M in Eq. (5.11),

diminishing amplitude and phase detection noise. Finally, it can be helpful to acquire multiple

M-scans at the same location to average time domain phase signal in Eq. (5.7). This is because

averaging forces the time domain phase noise nt(t) in Eq. (5.7) to approach zero. However, the

second and the third methods requires careful selection of the duration time and the number of

M-scans depending on a sample. If a sample is stationary, the duration time and the number

can be easily determined depending on an experimental environment. On the other hand, if a

sample moves in a way that its axial location changes, this movement induces artifacts in A-scans

which deteriorates extraction of time domain phases. Therefore, it is important to optimize those

parameters for this type of sample.
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5.5.6 How to reduce the effect of an adjacent reflector

Reducing the effect of an adjacent reflector can be simplified to decreasing the relative mag-

nitude of an adjacent reflector over an interesting one, |s(∆z1−2)|/|s(0)| as shown in Eq. (5.16).

This means that the effect is not related to M and k0 in Eq. (5.11), exhibiting the difference from

the effect of additive noise. Lowering |s(∆z1−2)|/|s(0)| is achieved by selecting a widow function

carefully to be multiplied to acquired interferograms. For this purpose, the use a rectangular win-

dow should be avoided since it has the largest sidelobes compared to others [33]. The commonly

used window function in measuring mechanical responses of a sample with OCT is hanning win-

dow [2, 54, 55]. This is from the fact that not only has hanning window the lower first sidelobes

but also the other sidelobes decrease progressively along depth [33]. Along with careful section

of a window function, it is recommended to pick a vibrational signal at the peak of reflector of

interest since the relative magnitude is usually low at this point [42]. An additional advantage of

selecting the peak signal is that the effect of additive noise is reduced due to high SNR.

5.6 Conclusion

In this article the effects of additive noise and adjacent reflectors are analyzed to investigate how

they affect detecting vibrational amplitude and phase in the frequency domain. For this purpose,

time domain phase noise and time domain phase error are separated from time domain phase signal

to see their effects only.

The derived equations were checked with MATLAB simulation and then verified with a piezo

electric element using a swept-source OCT system. The results show that derived equations allow

the effects of additive noise and an adjacent reflector to be predicted when detecting vibrational

amplitude and phase in the frequency domain. Also, those equations provide theoretical support

to find methods that reduce those effects. Either can be used for reducing the effect of additive

noise with a given laser, to increase the number of A-scan for one M-scan or to average time do-

main phase signals by acquiring many M-scans as well as optimizing the reference arm power.

And careful design of windowing is required to reduce the effect of an adjacent reflector by in-
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creasing the relative magnitude of the reflector of interest over the adjacent one. In conclusion,

the derivation in this chapter allows for predicting the performance of an OCT vibrometry system

in measuring vibrational amplitude ans phase, and for figuring out ways to reduce those inherent

effects theoretically.
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6. SUMMARY AND CONCLUSIONS

In this work, we tackled three main problems that hindered the use of swept-source OCT

(SSOCT) based vibrometry. The SSOCT based vibrometry has advantages in acquisition speed

and imaging depth over spectral-domain OCT (SDOCT) which originates from features of a swept-

laser source such as fast sweep rate and long coherence length. In spite of those benefits, the swept-

laser source suffers problems: non-linear wavenumber sweeping, and different starting wavenum-

ber between sweepings called intra - and inter-sweep variability, respectively. This was the problem

we addressed at first because the most important features, such as image quality and displacement

sensitivity, were not guaranteed without solving this issue. To deal with this problem, we proposed

complex FIR based spectral calibration to calibrate every sweep of the interferogram in real time.

In this method, every swept wavenumber was extracted from a reference signal and used to cal-

ibrate the OCT signals to have the same linear wavenumber for removing intra- and inter-sweep

variability. The method was compared to the traditional IFFT-FFT based spectral calibration. The

results showed that the proposed approach required less hardware resources in FPGA and demon-

strated as good or slightly better results on OCT image quality and displacement sensitivity. Also,

we explored compensating chromatic variation from a laser source with the magnitude of a ref-

erence signal extracted from the complex FIR based approach. And the result showed that this

method could correct the variation in real time, suggesting its usefulness for a laser suffering chro-

matic variation. Therefore, the complex FIR based method removes inherent problems in swept-

laser sources effectively and efficiently, expanding the use of swept-source OCT for functional

imaging.

After solving the swept-laser issue, the next problem that needed to be addressed was the signif-

icant increase in processing time. This problem occurs due to the considerable amount of required

data and the longer processing steps needed to obtain volumetric, structural and vibrational image.

To deal with this problem, an efficient acquisition scheme was proposed along with a method to re-

duce processing time. In the acquisition scheme, the Alazartech card was exploited to acquire new
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data while transferring previous one to host. Also, processing time was reduced by implementing

on GPU so that the total time of transfer and processing was within acquisition time, allowing

efficient use of the Alazartech card memory. The proposed method was applied to perform a single

point M-scan, BM-scan, and volume M-scan in order to obtain additional vibrational and structural

information at one axial point (z-axis), over two dimensions (x, z), and over three dimensions (x, y,

z), respectively. And it was demonstrated that a series of M-scan data were acquired and processed

in near real time, showing only a little latency slightly less than acquisition time. Therefore, it can

provide biologists and clinicians with structural and vibrational information at a single point, over

a B-scan region or over a volume region with improved throughputs. In addition, it can be ap-

plicable to functional imaging that garners interferometric phases such as Doppler OCT and OCT

elastography.

The last issue that we faced was determining how to theoretically analyze the effects of additive

noise and adjacent reflectors, inherent in OCT vibrometry, on measuring vibrational amplitude and

phase. This analysis was important because it was able to provide theoretical supports to evaluate

the performance of an OCT vibrometry system and to find methods to reduce measurement errors.

In the analysis, phase noise and phase error caused by additive noise and an adjacent reflector

were separated from the phase signal of interest which was converted to a vibrational signal by

scaling. This separation allowed us to easily figure out how phase noise and phase error affect the

detection of a vibrational signal in the frequency domain. The derived equations were checked

with MATLAB simulation and then verified with a piezo electric element using a swept-source

OCT system. It was shown that results from derived equations matched well with those from

experiments, suggesting they can be used to predict the performance of a system. In addition,

they provided a theoretical framework to find methods that reduce those effects. Either it can be

used for reducing the effect of additive noise with a given laser, to increase the number of A-scans

for one M-scan or to average the time domain phase signals by acquiring many M-scans. Also

it is required to optimize the reference arm power for achieving an optimal SNR with a given

laser power. Whereas, careful design of windowing is required to reduce the effect of an adjacent
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reflector by increasing the relative magnitude of the reflector of interest over the adjacent one. This

analysis is not restricted to the field of OCT vibrometry. It can be applied to imaging methods that

exploit interferometric phases.
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