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ABSTRACT 

 

Previous research shows that it is a challenging task to determine the temporal statuses of 

event mentions relative to the document creation time because explicit temporal status 

cues, such as tense and aspect, are often lacking and an event mention's local context may 

be ambiguous. To further improve temporal status identification, we exploit the 

observation that document-level temporal rhythms reflective of story narrative structures 

exist as sequential patterns among the statuses of event mentions in a document. For 

example, a news article often starts by introducing the newsworthy event that may overlap 

with the document creation time, then describes precursory events, and closes by 

describing future implications. Experiments on the Richer Event Description and 

TimeBank corpora show that a simple neural network model aware of an event mention's 

position in a document significantly improves the performance of event temporal status 

identification. We also demonstrate that exploiting temporal rhythms enables data 

efficient transfer learning across document domains. 
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1. INTRODUCTION  

 

1.1 Overview 

Our ability to discern whether an event mentioned in a document has already 

happened, is currently ongoing, or may happen sometime in the future allows us to reason 

about the chronology of events and gives way to our understanding of events’ causal and 

coreference relationships. This skill can also benefit tasks such as news summarization 

(See et al., 2017) and timeline generation (Li and Cardie, 2014; Yan et al., 2011). 

However, discerning an event’s temporal status requires complex semantic understanding 

of language and verse and remains a challenging task for state-of-the-art natural language 

processing methods. 

Formally, we define the temporal status of an event as the status of that event at 

the time of its encompassing document's writing. An event’s status can take on three 

possible values. The BEFORE status indicates the event has already occurred. The 

OVERLAP status indicates the event is occurring at the time of the document’s writing. 

The AFTER status indicates the event has yet to occur. Consider the example in Figure 1 

taken from a news article in the Richer Event Description corpus (O’Gorman et al., 2016). 

Events with the OVERLAP status are italicized and in orange. 
 
 
 

 
Figure 1: Excerpt from a News Article in the Richer Event Description Corpus 
Showing Events with the OVERLAP Status. Events with the OVERLAP Status are 
Italicized and in Orange. 
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A simple systematic method relying on word tense would incorrectly identify five of these 

events as having a BEFORE status. In fact, the only lexical clue in the local context that 

could indicate these events are ongoing is the “governs" event at the beginning of the 

sentence. In this case, local context is insufficient for determining these events’ statuses 

without advanced natural language understanding. 

Alternatively, consider a model with knowledge that the excerpt is positioned in 

the middle of a larger section of text that almost exclusively discusses ongoing events. By 

identifying the location of the events in the document’s narrative, we can use this broader 

context to infer their status. In this new approach, we are taking advantage of an event’s 

status inherently being a relationship between the event and the document-at-large.  

Specifically, we use an event mention's position in a document's text to link it to the global 

document context and to ultimately make more informed event status identification 

decisions. 

To better understand the relationship between an event’s position in a document 

and its status, we introduce the concept of a document’s temporal rhythm. We define a 

temporal rhythm to be a discernible sequential pattern among the statuses of event 

mentions in a document. For example, a news article about an election on election night 

may describe the election results coming in, summarize the precursory campaigns, and 

close by discussing the election’s future implications. While this is an oversimplification 

of the structure of most documents, it provides an illustration of what would be an 

OVERLAP-BEFORE-AFTER temporal rhythm. 

In this thesis, we develop a neural network model that uses events’ positional 

information to learn aggregate temporal rhythms across documents. The model exploits 
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these rhythms to make more informed status identifications. The model also uses a self-

attentive network to capture the local semantic context of an event mention. We perform 

experiments on the Richer Event Description (O’Gorman et al., 2016) and TimeBank 

(Pustejovsky et al., 2003) corpora to identify relative performance improvements resulting 

from the exploitation of temporal rhythms. We also perform experiments on the Richer 

Event Description corpus (O’Gorman et al., 2016) to evaluate the impact the presence of 

temporal rhythms has on transfer learning across document domains. 

1.2 Related Work 

Much of the prior research into the temporal properties of events focuses on 

classifying multiple temporal relationships such as the temporal order of event mentions, 

time expressions, and document creation times in tasks such as TempEval (Pustejovsky 

and Verhagen, 2009). Because these various temporal relationships have historically been 

considered together, systems capable of status identification have been designed using 

somewhat complex parsing schemes (UzZaman and Allen, 2010; Llorens et al., 2010). For 

example, the TIPSem system (Llorens et al., 2010) uses lexical, syntactic, and semantic 

features obtained via syntactic parsers (Charniak and Johnson, 2005), semantic role 

labelers (Punyakanok et al., 2004), and other handcrafted rules. Our methods differ with 

these prior approaches by focusing specifically on status identification and by using almost 

entirely deterministic inputs that do not suffer from upstream error propagation. 

Event temporal status is a component of natural language that requires semantic 

knowledge of text to identify. Recent work using the EventStatus Corpus has shown the 

effectiveness of convolutional neural networks for capturing temporal compositionality of 

local context (Huang et al., 2016). More recent work improved upon these findings by 
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filtering the inputs of the neural network to be the words appearing between the event 

mention and the root of a dependency parse tree as well as the words that are governed by 

the mention (Dai et al., 2017). The modified input was intended to capture longer-distance 

information to improve status identification. Both works acknowledged the insufficiency 

of local context for status identification especially with respect to the OVERLAP and 

AFTER statuses, which often require the wider discourse context to resolve (Huang et al., 

2016; Dai et al., 2017). In this thesis, we address these prior methods’ contextual 

deficiencies by emphasizing the global relationship between an event mention and its 

encompassing document. 

1.4 Temporal Rhythms 

Temporal rhythms are emergent phenomena in the narrative structure of 

documents that increase the likelihood a given event has a specific status simply due to 

where it is located in a document. In Figure 2, we include the first quintile of a New York 

Times article from the validation set of the Richer Event Description corpus (O’Gorman 

et al., 2016) to illustrate a temporal rhythm. Event mentions are highlighted in blue, 

orange, and green for BEFORE, OVERLAP, and AFTER statuses, respectively. 
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Figure 2: The First Quintile of a New York Times Article from the Richer Event 
Description Corpus Showing Events and Their Statuses. Events are Highlighted in 
Blue, Orange, and Green for BEFORE, OVERLAP, and AFTER Statuses, 
Respectively. 
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 The document begins with the conviction of a businessman for wire fraud. The 

author then discusses deliberations of privacy laws. This is followed by details of the 

application of privacy laws to information on the Internet. Without understanding the 

chronology of events, it would be difficult to devise the overarching narrative of the article 

using such a general description. Knowing the first section of the excerpt is primarily 

composed of BEFORE events, the next section is primarily AFTER events, and the final 

section is primarily OVERLAP events clearly depicts a narrative centered around 

conflicting privacy laws, an upcoming discussion about potentially changing them, and 

the laws’ issues that are ongoing at the time of the document’s writing. The narrative 

structure in the excerpt could be described as a BEFORE-AFTER-OVERLAP temporal 

rhythm. 
 
 
 

 

Figure 3: Temporal Rhythms for a New York Times Article from the Validation Set 
of the Richer Event Description Corpus. 
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For a temporal rhythm to be useful, contiguous blocks of only one status are not 

necessarily required. For example, there are some OVERLAP events dispersed amongst 

sections of primarily BEFORE and AFTER events. Rather, we are concerned with the 

presence of each status in each section of the narrative without any single status having to 

be dominant in a section. The normalized temporal rhythm for the entire document, of 

which the above excerpt is a part, is shown in Figure 3. The general BEFORE-AFTER-

OVERLAP rhythm identified in the excerpt is visible in the 0 to 0.2 range of the figure. 

The analysis of a single document suggests the position of an event mention in the 

text is a meaningful indicator of the event’s likely status. While this provides valuable 

insight into the manifestation of a temporal rhythm in a document, we also want to analyze 

the aggregate temporal rhythms across multiple documents as they are more directly 

representative of the information being exploited by our proposed model for improving 

status identification. 
 
 
 

 

Figure 4: Aggregate Temporal Rhythms Present in Validation News Documents in 
the Richer Event Description Corpus. 
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Figure 5: Aggregate Temporal Rhythms Present in Validation Forum Documents in 
the Richer Event Description Corpus. 
 
 

Figure 4 shows the aggregate temporal rhythms present in news documents in the 

validation set of the Richer Event Description corpus (O’Gorman et al., 2016). The data 

is normalized for each position partition because we are more interested in the likelihood 

of an event’s status in a given position than we are in the absolute number of events that 

are mentioned in that range. Figure 5 shows the same information as Figure 4 but for forum 

documents in the validation set. 

1.3 Contributions and Outline 

 In Chapter 2, we develop a model capable of exploiting documents’ temporal 

rhythms for improved event temporal status identification. We first describe how to 

represent language and position as input to the model, then we describe the model’s 

architecture and how it differs from a model that does not use positional information. 

 In Chapter 3, we perform a series of quantitative experiments on the Richer Event 

Description (O’Gorman et al., 2016) and TimeBank (Pustejovsky et al., 2003) corpora. 
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We identify relative differences in performance between a model that exploits temporal 

rhythms and a model that does not. We also perform cross-validation experiments to 

evaluate the robustness of our proposed methods. Finally, we assess any benefits the 

presence of temporal rhythms may have on transfer learning across document domains. 

 In Chapter 4, we summarize our findings and discuss possible future directions for 

this area of research. 
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2. MODEL 

 

Our goal is to develop a model that can exploit temporal rhythms for improved 

event status identification. This thesis consists of a series of quantitative experiments 

based on two status identification models. The first is a “Normal” model that does not use 

any positional information. The second is an “Enriched” model that includes positional 

information as input to exploit temporal rhythms. In this chapter, we describe how we 

create language and position representations for our models, and we describe the 

architecture of the Normal and Enriched models. We then provide details for training and 

optimization. 

2.1 Representing Language 

 In order to capture semantic knowledge present in an event mention’s local 

context, we include as input to our models a sequence of tokens centered around the event 

mention whose status we want to identify. Each token consists of the word itself and a 

corresponding part-of-speech tag, both of which are passed through separate embedding 

layers to create dense vector representations. The concatenation of the word embedding 

and the part-of-speech embedding produce a token embedding, 𝑒", for each time step 𝑡. 

The entire sequence of token embeddings in an event mention's local context window is 

denoted by 𝐸. 

2.2 Representing Position 

We define a mention's position to be the location of the mention among all tokens 

in a document. A mention's position vector, 𝑝, is a 1-hot vector where each dimension 

corresponds to a contiguous range of the document. Position is normalized by dividing the 
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index of the token by the number of tokens in the document and subsequently multiplying 

by the number of dimensions in 𝑝. The number of dimensions in 𝑝 varies based on 

document domain and is determined experimentally. 

2.3 Model Architecture 

 The architecture of both the Normal and Enriched models consists of two main 

components (see Figure 6). The context network produces a distributed representation, 𝑢, 

of an event mention's local context. The classification network takes that representation, 

and the position vector in the case of the Enriched model and produces a probability 

distribution across the three event status classes. 
 
 
 

 

Figure 6: Model Architecture. Green Dotted Elements are Only Present in the 
Enriched Model. 
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We use a self-attentive network (Lin et al., 2017) for the context network due to 

its ability to capture multiple semantic views of a sequence. It uses an attention mechanism 

across the hidden representations, 𝐻, produced by a recurrent neural network. Specifically, 

we have chosen a bidirectional recurrent neural network that uses long short-term memory 

(LSTM) units (Hochreiter and Schmidhuber, 1997). For a sequence of length 𝑙, the context 

network is defined as 

 

𝐻 = (ℎ,, ℎ., … , ℎ0) = [LSTM77777777777⃗ (𝐸), LSTM7⃖7777777777(𝐸)]" 

𝐾 = (𝑘,, 𝑘., … , 𝑘0) = tanh	(𝑊C𝐻) 

𝐴 = (𝛼,, 𝛼., … , 𝛼0) = softmax(𝑊K𝐾) 

𝑢 = flatten(𝐴𝐻N) 

 

where 𝐾 is a set of keys produced by an affine transformation, 𝑊C, and a tanh nonlinearity 

and where 𝐴 is a set of similarity scores between the keys in 𝐾and the 𝑟 learned context 

vectors in 𝑊K. The matrix resulting from (ℎ,, ℎ., … , ℎ0) being linearly combined using 

weights (𝛼,, 𝛼., … , 𝛼0) is flattened into a vector, 𝑢. 

The classification network is a simple 1-layer neural network with a SoftMax 

nonlinearity. The network's input in the Normal model is the distributed representation, 𝑢, 

produced by the context network. The network's input in the Enriched model is [𝑢, 𝑝], the 

concatenation of the context vector and the mention's position vector. In the case of an 

Enriched model being trained on multiple domains (e.g. the Richer Event Description 

corpus has two domains), 𝑝 may be the concatenation of multiple position vectors where 
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each vector corresponds to one domain. Given a context vector, 𝑢, and a position vector, 

𝑝, the classification network is defined as 

 

𝑠 = softmax(𝑊Q[𝑢, 𝑝]) 

 

where 𝑠 is a 3-dimensional vector representing a probability distribution for the given 

event across the three event status classes. 

2.4 Training Details 

 The input sequence to the context network is composed of 𝑙 = 15 lowercase tokens 

centered around the event mention under consideration. The words, part-of-speech tags, 

and indices for the tokens are obtained using Stanford CoreNLP (Manning et al., 2014). 

Zero-padding is used for those token sequences where the window size is smaller than 𝑙. 

We use 300-dimensional GloVe vectors pretrained on 42 billion Common Crawl tokens 

for word embeddings (Pennington et al., 2014). Part-of-speech embeddings are 20 

dimensions and learned from scratch during training. 

 All models are trained using cross-entropy loss and the Adam optimizer (Kingma 

and Ba, 2014) with a learning rate of 0.005. Each time the performance on the validation 

set drops below the best recorded performance, the batch size is doubled (Smith et al., 

2018). The initial batch size is 32. After performance has dropped below the best recorded 

performance four times, training stops early. The context and classification networks have 

dropout (Srivastava et al., 2014) of 0.3 and 0.5, respectively. 

Hidden states for the recurrent neural network are 50 dimensions in each direction 

so that each ℎ" has 100 dimensions. Because 𝑊C is an affine transformation, each 𝑘" also 
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has 100 dimensions. There are 𝑟 = 4 hops of attention in 𝑊K leading to 𝑢 being a 400-

dimensional vector. Position vectors have 15 and 30 dimensions for news and forum 

documents, respectively. All hyperparameters are tuned using Richer Event Description 

(O’Gorman et al., 2016) validation documents. 
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3. EXPERIMENTS 

 

We have designed a series of experiments to evaluate the relative performances of 

Normal and Enriched models for event temporal status identification. In Section 3.1 and 

Section 3.2, we describe the corpora and the metrics we use to train and evaluate the 

models. In Section 3.3 and Section 3.4, we describe experiments for discovering the 

presence and robustness of any performance improvements that result from exploiting 

temporal rhythms. Finally in Section 3.5, we detail an experiment to uncover any 

advantages in data efficiency for transfer learning made possible by temporal rhythms. 

3.1 Data 

 We train, tune, and evaluate the Normal and Enriched models on 8,568 event 

mentions from the Richer Event Description corpus (O’Gorman et al., 2016) and 1,105 

mentions from the TimeBank corpus (Pustejovsky et al., 2003). The breakdown of both 

corpora by status is shown in Table 1. The Richer Event Description corpus consists of 45 

forum and 50 news documents. We use the train, validation, and test splits suggested in 

the corpus. The TimeBank corpus consists of 183 news documents. 
 
 
 

Status # Mentions % Mentions 
Richer Event Description 

BEFORE 4,375 51.0 
OVERLAP 2,977 34.7 

AFTER 1,234 14.4 
TimeBank 

BEFORE 582 52.7 
OVERLAP 421 38.1 

AFTER 102 9.2 
Table 1: Breakdown of the Richer Event Description and TimeBank Corpora by 
Status. 
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 Some preprocessing of both corpora is required to make their annotations suitable 

for the event status task. Each event in the Richer Event Description corpus (O’Gorman 

et al., 2016) has been annotated with a “DocTimeRel” that links the event to the document 

creation time. Notably, the dataset distinguishes between an OVERLAP DocTimeRel, 

which refers to events happening at the time of the document’s writing, and a 

BEFORE/OVERLAP DocTimeRel, which refers to events that have some clearly 

indicated start time before the document’s time of writing and continue through the 

document’s time of writing. We combine the OVERLAP and BEFORE/OVERLAP 

DocTimeRel categories into a single OVERLAP category. The BEFORE and AFTER 

DocTimeRel annotations are equivalent to the BEFORE and AFTER statuses used in our 

experiments. 

 The TimeBank corpus (Pustejovsky et al., 2003) similarly annotates temporal 

relationships between events and their encompassing document’s DCT, or document 

creation time. However, the DCT annotation is restricted to only those events whose stems 

occur twenty or more times in the corpus. The mapping between TimeBank DCT relations 

and our status categories is shown in Table 2. 
 
 
 

Status Event to DCT Temporal Relation Labels 
BEFORE BEFORE / IBEFORE / ENDED_BY 

OVERLAP DURING / INCLUDES / IS_INCLUDED / SIMULTANEOUS 
AFTER AFTER / IAFTER 

Table 2: TimeBank Annotation Mappings Between Events and the Document 
Creation Time. 
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3.2 Evaluation Metrics 

 The performance of each model for each event status category is evaluated using 

recall, precision, and F1 scores defined as 

 

recall =
True	Positives

True	Positives + False	Negatives 

precision =
True	Positives

True	Positives + False	Positives 

F1	score = 2 ×
recall × precision
recall + precision 

 

for an individual status. To compute a model’s performance across the three classes, both 

micro and macro averages for recall, precision, and F1 scores are computed. Because 

micro-average metrics are affected by class imbalances, we use the macro-average F1 

scores, the average of the computed F1 scores across the three status classes, as the 

evaluation metric for tuning hyperparameters and determining whether to double the batch 

size during training as detailed in Section 2.4. 

3.3 The Impact of Positional Information 

 The primary objective of this experiment is to identify any relative performance 

improvements that result from exploiting documents’ temporal rhythms. The Normal and 

Enriched model are both trained and evaluated on the Richer Event Description corpus 

(O’Gorman et al., 2016). In the first part of the experiment, the models are trained on both 

the news and forum domains present in the corpus. The Enriched model uses a 

concatenated position vector to learn separate aggregate rhythms for each domain. In the 
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second part of the experiment, we evaluate four distinct model instances by training the 

Normal and Enriched models independently on each domain. 

3.3.1 Results 

As shown in Table 3, our Normal model achieves a comparable and slightly better 

macro F1-score than the convolutional neural network (CNN) baseline used in previous 

work (Huang et al., 2016). We also observe the CNN overfits the BEFORE class resulting 

in higher micro performance than the Normal model due to the class imbalance favoring 

the BEFORE status. The Enriched event status model that exploits temporal rhythms 

significantly outperforms the Normal model, especially on identifying OVERLAP and 

AFTER statuses. By breaking out the results by domain, we observe the Enriched model 

is able to effectively exploit the rhythms in both the news and forum domains. On both 

domains, the Enriched model outperforms the Normal model across all metrics and status 

classes, save a single metric (news BEFORE precision with a 1.2% drop). 
 
 
 

 BEFORE OVERLAP AFTER MACRO MICRO 
CNN 87.2/76.0/81.2 46.6/63.0/53.6 38.4/40.9/39.6 57.4/60.0/58.1 69.2/69.2/69.2 

Normal 73.1/85.9/79.0 54.4/55.1/54.8 57.1/32.9/41.8 61.6/58.0/58.5 65.6/65.6/65.6 
Enriched 79.3/85.7/82.4 55.4/63.3/59.1 61.6/36.7/46.0 65.4/61.9/62.5 70.0/70.0/70.0 

News Domain Only 
Normal 75.2/88.3/81.2 39.6/37.7/38.6 55.0/24.4/33.8 56.5/50.2/51.2 66.6/66.6/66.6 

Enriched 80.8/87.1/83.8 46.4/55.3/50.5 58.5/27.6/37.5 61.9/56.7/57.3 71.9/71.9/71.9 
Forum Domain Only 

Normal 65.3/73.6/69.2 60.9/68.1/64.3 59.6/41.5/48.9 62.0/61.0/60.8 62.2/62.2/62.2 
Enriched 73.5/78.3/75.8 63.5/69.6/66.4 60.3/46.1/52.2 65.8/64.6/64.8 66.2/66.2/66.2 

Table 3: Experimental Results on Richer Event Description Test Data for Models 
Trained Jointly on Both Document Domains. Each Cell Shows Recall/Precision/F1-
Score. 
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 The results of the second part of the experiment, shown in Table 4, indicate the 

Enriched model outperforms the Normal model when trained independently on each 

domain as well. We first note that performance across all statuses is lower in this 

individual scenario than in the previous joint scenario. This suggests the context network 

benefits from the larger amount of data available to the models when they are trained on 

both domains. 
 
 
 

 BEFORE OVERLAP AFTER MACRO MICRO 
News Domain Only 

Normal 74.8/84.5/79.3 35.7/36.4/36.0 56.1/26.4/35.9 55.5/49.1/50.4 65.2/65.2/65.2 
Enriched 77.1/86.8/81.7 39.3/40.0/39.6 58.5/27.9/37.8 58.3/51.6/53.0 67.8/67.8/67.8 

Forum Domain Only 
Normal 75.5/65.5/70.1 51.8/65.1/57.7 50.0/40.8/45.0 59.1/57.2/57.6 59.4/59.4/59.4 

Enriched 76.5/70.1/73.2 66.4/66.4/66.4 46.6/55.1/50.5 63.2/63.9/63.4 65.9/65.9/65.9 
Table 4: Experimental Results on Richer Event Description Test Data for Models 
Trained Independently Across Both Document Domains. Each Cell Shows 
Recall/Precision/F1-Score. 
 
 

Comparing Table 3 to Table 4 also gives us a more granular understanding of the 

interplay in the Enriched model between a mention’s local context and its position. 

Notably, there is a 3.5% relative underperformance in forum AFTER recall in the 

independent scenario (see Table 4) that is not present in the joint scenario (see Table 3). 

Conversely, the relative overperformance in news BEFORE precision present in the 

independent scenario (see Table 4) does not occur in the joint scenario (see Table 3). These 

observations suggest training in a single domain may result in the Enriched model being 

especially precise compared to the Normal model. This is to say, the Enriched model 

trained on both domains favors increased recall more so than the Normal model. 
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3.4 The Robustness of Temporal Rhythms 

 Because the test set of the Richer Event Description corpus (O’Gorman et al., 

2016) contains only ten of the ninety-five documents in the corpus, we conduct additional 

experiments to confirm the broad applicability of exploiting temporal rhythms. We 

perform a 5-fold cross-validation on the training documents from the corpus. The folds 

are stratified so that they contain an approximately equal number of documents from both 

the news and forum domains. We also perform an additional 5-fold cross-validation using 

the TimeBank corpus (Pustejovsky et al., 2003). 

3.4.1 Results 

The results of the 5-fold cross-validation experiments shown in Table 5 verify the 

exploitability of temporal rhythms is robust and not specific only to the Richer Event 

Description (O’Gorman et al., 2016) test set. On both corpora, the Enriched model 

outperforms the Normal model across all metrics and status classes. In fact, the relative 

performance improvements for BEFORE and OVERLAP are nearly identical between the 

two corpora while the relative improvements in AFTER metrics for TimeBank 

(Pustejovsky et al., 2003) are even greater in magnitude. 
 
 
 

RED BEFORE OVERLAP AFTER MACRO MICRO 
CNN 74.5/75.4/75.0 51.1/61.4/55.8 48.9/35.2/41.0 58.2/57.3/57.3 62.3/62.3/62.3 

Normal 72.9/77.1/74.9 54.2/60.9/57.4 50.2/34.9/41.2 59.1/57.6/57.8 62.7/62.7/62.7 
Enriched 73.9/78.9/76.3 59.9/62.2/61.0 50.9/40.5/45.1 61.6/60.5/60.3 65.8/65.8/65.8 

TimeBank BEFORE OVERLAP AFTER MACRO MICRO 
Normal 74.2/77.9/76.0 67.1/61.8/64.3 41.8/47.0/44.2 61.1/62.2/61.5 68.7/68.7/68.7 

Enriched 75.5/81.2/78.2 73.5/63.7/68.3 47.8/64.0/54.7 65.6/69.6/67.1 72.2/72.2/72.2 
Table 5: Experimental Results of 5-Fold Cross-Validation on the Richer Event 
Description and TimeBank Corpora. Each Cell Shows Recall/Precision/F1-Score. 
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3.5 Transfer Learning Across Domains 

 Transfer learning is a valuable technique in machine learning that can reduce the 

amount of data required to train a model by initializing its weights with those from another 

model that has already been trained in a similar task or domain. Recent work in language 

modeling has shown the effectiveness of using pre-trained models for improved 

performance on a variety of natural language processing tasks (Devlin et al., 2018; 

Radford et al., 2018). With respect to status identification, we seek to uncover if the 

exploitation of temporal rhythms can enable data efficient transfer learning across 

document domains. 

 By separately encoding domain-specific temporal rhythms, our proposed Enriched 

model has the potential to enable data efficient transfer learning. We first train an Enriched 

model using all data from a source Domain X.  We then clear the model’s position weights 

and continue training using data from a target Domain Y. We determine the amount of 

data from Domain Y necessary for the adapted Enriched model to achieve performance 

parity with another Enriched model trained from scratch on all data in Domain Y. We 

perform this experiment on the Richer Event Description corpus (O’Gorman et al., 2016) 

in both directions where (X = news, Y = forum) and where (X = forum, Y = news). The 

experiment is performed twice in each direction so Domain Y documents are chosen by 

document length in either ascending or descending order. 

 The weights used to initialize the models in Domain X before continuing training 

in Domain Y are those obtained from training in the individual scenario in Section 3.3. 
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3.5.1 Results 

 Table 6 shows the Enriched model can quickly adapt across document domains by 

requiring fewer in-domain documents. It is notable that the Enriched model can adapt to 

the news domain much more efficiently than it can adapt to the forum domain. This is 

unsurprising as news documents are often much more structured and contain fewer 

narratives compared to forum documents which can contain disjoint statements from 

multiple authors. 
 
 
 

Forum à News # Docs % Mentions 
Longest Docs 1st 5 20.9 
Shortest Docs 1st 25 47.8 
News à Forum # Docs % Mentions 
Longest Docs 1st 11 61.8 
Shortest Docs 1st 34 80.1 

Table 6: The Number of Documents and Percentage of Mentions Required to Adapt 
from One Domain to Another in the Richer Event Description Corpus. 
 
 

The results also show using longer documents is an important factor for the 

efficiency of transfer learning. For example, using the shortest documents in the news 

domain requires 5x as many documents, or 2.3x as much data, as using the longest 

documents to adapt the model. The advantage of using longer documents lies in the 

increased positional granularity that corresponds to more detailed temporal rhythms than 

what are available in shorter documents. 
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4. CONCLUSIONS 

 

We introduced the concept of document-level temporal rhythms and the use of an 

event mention's position as a way of connecting the event to the global document context. 

Our experiments showed using positional information allows a neural network model to 

exploit temporal rhythms for improved event temporal status identification. These 

improvements were found to be robust across document domains and across multiple 

corpora as well as when the models were trained both jointly and independently across 

document domains. 

We also showed temporal rhythms allow for efficient transfer learning across 

document domains. As a result of our transfer learning experiments, it was revealed using 

longer documents is more effective for learning temporal rhythms due to their increased 

positional granularity. Finally, models more easily adapted to news documents than forum 

documents which suggests increased narrative structure corresponds to more easily 

learned temporal rhythms. 

4.1 Future Work 

In this thesis, we connected events to the global document context by using their 

position and our models used this positional information to learn aggregate temporal 

rhythms. The next step in applying these methods might be to develop a model that can 

learn multiple unique, rather than aggregate, temporal rhythms. However, this and 

additional methods that use discourse-level properties to identify events’ statuses would 

require the more challenging joint consideration of events across a document’s narrative. 
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