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ABSTRACT 

 Extreme precipitation and increased urban land cover have increased the 

frequency and severity of urban flooding events in recent years. Accurate precipitation, 

streamflow, and floodplain inundation forecasts are necessary to decrease the damage 

from these events via reservoir operations planning, evacuation of residents, and 

mobilization of relief efforts. In this study, Quantitative Precipitation Forecasts (QPFs) 

developed by the National Weather Service (NWS) were analyzed for their skill in 

predicting precipitation in Brays Bayou in Houston, Texas. This forecasted data were 

used to force the Distributed Hydrological Soil and Vegetation Model (DHSVM), a 

physically-based, distributed hydrological model, and the resulted streamflows were 

assessed for accuracy. Then, a 2-dimensional hydraulic model, Flood2D-GPU, was 

employed to produce forecasted floodplains, also with skill assessment. This study 

focuses on three major flood events in the last decade with an emphasis on Hurricane 

Harvey. Results were focused on three aspects: 1) identifying changes in forecast 

accuracy with increased lead time; 2) quantifying skill scores of the forecasts through the 

flood forecasting system; and 3) comparing DHSVM forecasts with those used by the 

West Gulf River Forecasting Center (WGRFC) to identify optimal forecasting lead time 

during extreme events. 
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1. INTRODUCTION 

 Extreme precipitation events are occurring with greater frequency and intensity in 

recent years due to climate change (Lehmann et al. 2015). Severe flooding is one of the 

most devastating consequences of these events and can result in massive environmental 

and economic losses and even loss of life. In the last 30 years, the average number of 

weather fatalities caused by floods was second only to heat fatalities in the United States 

(NWS 2017a) and the floods have caused an estimated $275 billion in damages in 2016 

dollars (OECD 2017). Furthermore, flood damages in the United States continue to 

increase over time despite engineered efforts to combat them (Pielke et al. 2002). 

Floodwaters can move sediment and contaminate water supplies, posing an additional 

threat to the environment and human life.  

 Because floods occur in a relatively short period of time and have the potential to 

cause massive amounts of destruction, it is important to be able to predict when and 

where floods will occur in advance. Hydrological forecasting can be used as a tool to 

effectively plan for and mitigate emergency situations. Hydrological forecasting before 

and during extreme weather events can be used to aid in strategic planning for first 

responders and to determine resident evacuation needs (Selvanathan et al. 2018). 

Additionally, reservoir operations can be assessed, and pre-releases can be made to make 

room for additional water from ongoing precipitation to avoid dam failure (Chen et al. 

2017). Thus, it is important to study flood forecasting systems to determine (and 

therefore utilize in practice) the longest skillful lead time to provide useful information 

about the impending and ongoing event.  
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 However, the usefulness of flood forecasts to mitigate the effects of flooding is 

dependent upon the quality and accuracy of the three types of forecasts that are being 

made throughout the flood forecasting system: precipitation, streamflow, and floodplain 

inundation forecasts. It has been shown that the uncertainty in precipitation forecasts is 

the main source of uncertainty in flood forecasting systems (Zappa et al. 2011). As 

Steenbergen and Willems (2014) indicated in their study of the Rivierbeek catchment in 

Belgium, about 30 percent of streamflow forecast uncertainty could be explained by 

rainfall input data uncertainty. Further, the errors from the precipitation forecasts will be 

propagated and exacerbated through the streamflow and flood inundation forecasts 

(Cluckie and Xuan 2008, Cloke and Pappenberger 2009, Rossa et al. 2011, Steenbergen 

and Willems 2014) due to model, input, and initial condition uncertainty (Cloke and 

Pappenberger 2009, Zappa et al. 2011). Thus, it is important to study the quality and 

accuracy of forecasts throughout the flood forecasting system to determine their 

usefulness. 

 Streamflow forecasts are produced using computerized hydrological models that 

simulate the hydrological cycle, including the movement of water over the land and 

infiltration into the soil. While lumped models spatially average the key characteristics of 

the watershed, distributed models discretize the watershed into distinct cells with varying 

characteristics. This is an advantage for the distributed model, as it can capture the spatial 

heterogeneity of the watershed conditions, including incoming precipitation, land surface 

cover, and soil type. Thus, distributed models are considered to generally produce more 

realistic and accurate streamflow results that reduce model error when compared with 

lumped model results (Koren et al. 2003, Zhang et al. 2004, Carpenter and Georgakakos 



 

3 

 

 

2006). Furthermore, the streamflow outputs from the hydrological models can be used to 

drive hydraulic models that produce simulated floodplains. Like the difference between 

lumped and distributed hydrological models, 1D hydraulic models represent the cross 

sections of a stream only, while 2D hydraulic models include a computational mesh or 

digital elevation model (DEM) on which the model is calculated. Studies acknowledge 

that it is difficult to determine whether or not the results from 2D models are improved 

over the results of 1D models (Horritt and Bates 2002, ShahiriParsa 2016). However, the 

additional details captured by 2D models are generally thought to be useful in areas of 

complex topology and can reduce errors in modeling flood extent (Cook and Merwade 

2009).  

 To quantify the errors in flood forecasting systems, it is common practice to 

calculate statistical skill scores of the various forecasts: precipitation, streamflow, and 

flood inundation. Skill scores indicate the quality and appropriateness of these forecasted 

results. The skill scores of the data and simulations are typically reported based on the 

lead time of the forecasts. Generally, with increased lead time, the skill scores, and thus 

ability to provide useful information, of each type of forecast decline (Voisin et al. 2011, 

Shukla et al. 2012, Nguyen et al. 2015, Seo et al. 2016). These studies indicate the 

uncertainties associated with precipitation forecasting and follow this uncertainty through 

the other components of flood forecasts in an effort to analyze the effectiveness of flood 

forecasting systems.  

 Hurricane Harvey was a catastrophic event that caused major flooding in and 

around Houston, Texas, and affected many of the coastal states on the Gulf of Mexico, 

including Louisiana, Mississippi, as well as Tennessee, and Kentucky. With a return 
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period estimated to be greater than 9,000 years (van Oldenborgh et al. 2017), Hurricane 

Harvey was considered the most significant tropical cyclone rainfall event in United 

States history, both in scope and peak rainfall amounts (Blake and Zelinsky 2018). This 

category 4 hurricane made landfall in Texas on August 25, 2017 and had direct effects on 

Houston from August 25 – 30, 2017. According to the National Hurricane Service report 

on Hurricane Harvey, the hurricane caused $125 billion in damage, mostly due to 

extreme flooding. This is more damage than any single storm in US history except for 

Hurricane Katrina in 2005. It is estimated that 203,000 homes were damaged or 

destroyed, and 68 people died from the direct effects of the storm (Blake and Zelinsky 

2018). Infrastructure suffered severe damage, including washed out roads and collapsed 

bridges. The safe operation of dams upstream of the city was also affected. The 

ramifications of this storm will be experienced for years, as the city and surrounding 

areas will need time and investment to rebuild and recover. 

 For advance warning of flooding in Houston and its surrounding areas, the 

National Weather Service (NWS) West Gulf River Forecast Center (WGRFC) provides 

river forecasts up to 12 hours in advance under normal circumstances. Quantitative 

Precipitation Forecasts (QPFs) produced by the National Centers for Environmental 

Prediction (NCEP) Weather Prediction Center (WPC) are used to produce these forecasts. 

The WPC QPFs are based on NWS ensemble weather forecasts and are manually 

adjusted by modelers based on their experience and judgement 

(https://www.wpc.ncep.noaa.gov/html/fam2.shtml#qpf). The QPFs, which are sometimes 

manually adjusted a second time by WGRFC modelers, are used to drive the Community 

Hydrologic Prediction System's Flood Early Warning System (CHPS-FEWS model). The 

https://www.wpc.ncep.noaa.gov/html/fam2.shtml#qpf
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CHPS-FEWS model is a lumped hydrological model that is used to produce deterministic 

streamflow forecasts. Then, rating curves from the United States Geologic Survey 

(USGS) are used to convert the forecast streamflow into flood stage. During extreme 

events, including Hurricane Harvey, the WGRFC modelers' judgement resulted in 

extending their hydrological forecast lead time from 12 to 48, and then to 72 hours. 

However, it is not quantified if this lead time extension resulted in skillful streamflow 

predictions and flood warning during extreme events like Hurricane Harvey. 

 Therefore, the key objectives of this study are to quantify the skills of forecasts 

through a flood forecasting system and determine the effect of lead time on forecasts 

during storm events. The study will analyze the three most extreme flood events in 

Houston in the last decade (i.e., the Memorial Day flood (2015), the Tax Day flood 

(2016), and Hurricane Harvey (2017)), with a focus on Hurricane Harvey. The following 

questions will be answered: 

1) What is the magnitude of error throughout the flood forecasting system? What 

types of events have more or less errors in their forecasts? 

2) Do forecasts with lead times beyond 12 hours provide useful information to 

forecasters? Are there certain characteristics for storm events that provide more 

useful forecasts? 

3) Does a distributed hydrological model provide improved forecasts when 

compared with the forecasts from a lumped hydrological model? 
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2. STUDY AREA 

 The state of Texas has experienced multiple extreme storms that have resulted in 

massive flooding damages and deaths in the past few decades. In the year 2017, Texas 

had more flood-related deaths than any other state (NWS 2017b). In particular, the city of 

Houston has experienced multiple severe flooding events in the last few decades. Since 

2000, there have been five major flood events: Tropical Storm Allison (2001, 35 inches), 

the west side flood (2009), the Memorial Day Flood (2015, 11 inches), the Tax Day 

Flood (2016, 17 inches), and Hurricane Harvey (2017, 50-60+ inches). Damage to 

property and infrastructure has been devastating, as well as the toll on human life.  

 The Brays Bayou watershed is located in southwest Houston and is mostly in 

Harris County, with the southwestern-most part belonging to Fort Bend County, as shown 

in Figure 1 (29.37-29.45°N, 95.16-95.41°W). Brays Bayou watershed includes three 

primary streams: Brays Bayou, Keegans Bayou, and Willow Waterhole Bayou. 

According to the Harris County Flood Control District, the drainage area of the watershed 

is 329 km2, with 195 km open stream. The elevation in the watershed ranges from -0.12 

to 49.72 meters, with the land sloping downward from west to east as the watershed 

approaches the coast (Figure 2a). On the northwestern side, outside of the watershed, is 

Barker Reservoir, which is used for flood control purposes, and makes releases to Buffalo 

Bayou to the north of Brays Bayou. 
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Figure 1 Map of the study area, including locations of USGS streamflow gages and FEMA map of the 

floodway, 100-year, and 500-year floodplain. Adapted from Bass et al. (2017). 

 

The climatology of the watershed is generally wet and subtropical, characterized 

by humid, warm summers and mild winters. The average rainfall is 1,415 mm per year 

with July and August being the wettest months, on average (Figure 3). The average daily 

temperature is 22.3°C and the average relative humidity is 76.1%. The primary land 

cover type is urban land (Figure 2b) and the primary soil type is clay. Clay has a very low 

hydraulic conductivity. Thus, the water does not easily infiltrate into the soil, making the 

area prone to flooding.  

 

a)                                                                b)  

 

Figure 2 Spatial distribution of data in the watershed, including (a) digital elevation model (DEM) in 

meters and (b) land use/land cover data. Sources: (a) USGS 3D Elevation Program (3DEP) and (b) National 

Land Cover Database (NLCD) 2011. 
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Figure 3 Monthly average rainfall in Brays Bayou. Data is spatially averaged over the watershed from 

2003-2017. The error bars represent the maximum and minimum monthly rainfall. Source: National 

Centers for Environmental Protection (NCEP) Stage IV Quantitative Precipitation Estimates (ST4 QPE). 

 

 

 In recent years, Brays Bayou (and the city of Houston in general) has been 

experiencing increased urbanization and population growth. According to the 2017 Metro 

Houston Population Forecast, the population in the city is projected to almost double 

between 2010 to 2050. Brays Bayou is a heavily urbanized area with a population of over 

0.7 million in the Harris County portion of the watershed (U.S. Census 2010 cited in 

HCFCD website). While Brays Bayou is primarily composed of urbanized land (95.9% 

urbanized, Figure 2b), additional population growth will result in further urbanization in 

the watershed. The effect of urbanized land on the hydrological cycle is primarily tied to 

increased impervious surface area, which results in less water infiltration into the ground, 

and thus more runoff. Increased runoff has been shown to result in increased flooding 
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when compared to natural landcover (Olivera and DeFee 2007, Zhao et al. 2016, Muñoz 

et al. 2018).  

 Brays Bayou has experienced flooding from each of the major storm events in 

Houston listed above. Particularly in the Meyerland area, which sits adjacent to the Brays 

Bayou stream, many houses have flooded repeatedly during these storm events. During 

Hurricane Harvey, 26,752 structures experienced damage (HCFCD 2018). Figure 1 

shows that a large portion of the watershed is included in the 100-year Federal 

Emergency Management Agency (FEMA) floodplain. Thus, it is important to be able to 

spatially and temporally forecast flooding events in this watershed. 
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3. DATA AND METHODS 

 This section introduces the precipitation data, hydrological and hydraulic models, 

and methods for assessing precipitation, streamflow, and floodplain forecasting skills. 

3.1     Precipitation Data 

 In this study, two types of precipitation data were used: Stage IV Quantitative 

Precipitation Estimates (ST4 QPEs) and NWS QPFs. The ST4 QPE product served two 

purposes in this study: 1) to evaluate QPF performance, and 2) to drive the DHSVM 

model with observed precipitation. ST4 QPEs were taken as the "ground truth" in this 

study. ST4 QPEs are produced from the National Weather Center (NWC) River Forecast 

Centers (RFCs) Stage 3 data (Lin 2011) and were originally developed to be assimilated 

into atmospheric forecast models to produce improved QPFs (Lin and Mitchell 2005). 

The ST4 QPEs are available in an hourly time step over 4 km grids from 2002 to present. 

The data is produced in near-real time, as it becomes available within 1 hour of receiving 

data from the RFCs. These are gage-corrected radar data with manual quality control 

from the RFCs and have been used in many studies to represent estimated precipitation 

(Sapiano and Arkin 2009, Ashouri et al. 2014, Nelson et al. 2015, Kao et al. 2019).  

 QPFs from the National Weather Service were analyzed for skill and then used to 

drive the DHSVM model to produce streamflow forecasts. The QPFs were acquired in 

GRIB format from ftp://ftp.hpc.ncep.noaa.gov/qpf_archive/. QPFs provide precipitation 

forecasts over the continental U.S. in 6-hour and 48-hour increments with spatial 

resolutions of 2.5 and 5 km, depending on the forecast. The 6-hour product provides 

forecasts until 84 hours in the future; the 48-hour accumulation product is available up to 

168 hours into the future. The 6-hour product was used in this study in order to assess 

ftp://ftp.hpc.ncep.noaa.gov/qpf_archive/
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model performance on a relatively short-range, fine temporal scale. Furthermore, the 

WGRFC uses the 6-hour product to monitor for flood alerts. Weather Prediction Center 

(WPC) modelers use their experience and guidance from operational and ensemble 

models to determine which models produce a reasonably likely amount of precipitation 

and then make manual adjustments. NWS QPFs consistently earn higher threat scores 

than other forecasted models, including the North American Mesoscale Forecast System 

(NAM), the Global Forecast System (GFS), and the European Center for Medium-Range 

Weather Forecasts (ECMRWF) 

(https://www.wpc.ncep.noaa.gov/html/hpcverif.shtml#medmin). Thus, NWS QPFs were 

used in this study to determine their forecasting skill and appropriateness for use in a 

flood forecasting system. 

3.2     DHSVM 

 The Distributed Hydrology Soil and Vegetation Model (DHSVM) was employed 

in this study to simulate streamflow in Brays Bayou. As explained in Wigmosta et al. 

(1994), the model is fully-distributed and physically-based with high spatial (10-200 

meters) and temporal resolution (hourly to subdaily/daily time steps). Hydrological 

processes such as evapotranspiration, infiltration, snowmelt, and urban area detention are 

represented in the model. The energy and water balance are solved at each grid cell for 

every time step. The evapotranspiration algorithm is based on the Penman–Monteith 

method (Shuttleworth 1992). Water movement is determined by topography via a high-

resolution DEM, with cells draining to and receiving water from other cells. Unsaturated 

and saturated water movement are governed by Darcy's Law. The kinematic runoff 

routing method is used to route overland flow to the channel. This method employs a 

https://www.wpc.ncep.noaa.gov/html/hpcverif.shtml#medmin
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simplification of the Saint Venant equations and finite difference solution scheme. The 

linear reservoir routing method is used to represent streamflow through the river reach. 

 An advantage of the DHSVM is that it has an urban module which can represent 

the effects of impervious cover and detention on hydrological processes (Cuo et al. 

2008). This is especially important in this highly urban watershed. In the module, two 

aspects of urban storm water management are represented: runoff generated from 

impervious surfaces and storage due to detention basins in manmade channels. The 

precipitation that falls on impervious surfaces in the watershed becomes surface runoff in 

the module. However, depending on the land cover type, a portion of the runoff is routed 

directly to the channel, while the rest of the runoff is released slowly to the channel 

following linear storage theory. This slow release mimics storm water detention that 

exists in most manmade channels with detention basins. There are two land cover types 

in the model that allow this type of relationship: dense urban and light urban. In this 

study, 80% and 40% impervious cover for dense urban and light urban land, respectively, 

were used during the calibration and validation processes. Additionally, the user can 

specify the percentage of water to be stored in flood detention and released slowly 

according to the linear storage theory. 

 Input data to the model includes the DEM, soil type, land use/land cover, and 

meteorological forcing data. The input data were resampled to 20 m resolution and 

summarized in Table 1 below. 
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Table 1 Data and sources used as input to DHSVM. 

Type of Data Source Spatial Resolution 

1/3 Arc-Second Digital 

Elevation Model 

National Elevation 

Dataset 

Resampled to 20 

meters 

Soil Type 
SSURGO Database 

from NRCS and USDA 

Resampled to 20 

meters 

Land Use Land Cover 

Data for 2011 

National Land Cover 

Database 

Resampled to 20 

meters 

Meteorological Forcing 

Data (other than 

precipitation) 

North America Land 

Data Assimilation 

System (NLDAS) 

1 kilometer, averaged 

over the watershed 

 

 

 

 A DEM with 10-meter resolution was obtained from the USGS’s 3D Elevation 

Program (3DEP) (https://viewer.nationalmap.gov/basic/). The 3DEP used LIDAR to map 

elevation data for the coterminous United States. The data was projected into the NAD 

1983 UTM Zone 15N coordinate system and resampled to 20 meters. The DEM was used 

to create the basin mask and flow direction in ArcGIS 10.4. Then, Python code utilized 

the DEM and basin mask to generate the stream network and soil depth files (Duan 

2018).  

 Soil type spatial data was acquired from the United States Department of 

Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey 

Geographic Database (SSURGO). This dataset was created through both field 

observations and laboratory sample analysis. Due to the data’s spatially detailed nature, it 

is used in this study to identify soil type in each grid cell. Based on the soil type 

identified from this dataset, the other soil parameters are specified in the DHSVM 

configuration file. The spatial soil data was also processed to the correct projection and 

spatial resolution. 
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Land use-land cover data for the year 2011 was obtained from the Multi-

Resolution Land Characteristics Consortium (MRLC) National Land Cover Database 

(NLCD) (https://www.mrlc.gov/). Data for 2011 was the most current data available from 

this source at the time of this work. Since land use/land cover does not change 

dramatically from year to year, this data is sufficient to represent the current land use in 

the watershed. NLCD 2011 utilizes Landsat satellite data and conducts a decision-tree 

classification to differentiate land cover types into 16 classifications at a 30-meter spatial 

resolution. The data was re-projected into the appropriate coordinate system and 

resampled to 20 meters using the majority resampling method. These land cover types 

were then reclassified into DHSVM classifications (Figure 2b).  

In addition to precipitation data (Section 3.1), other meteorological forcing data 

are required to drive the DHSVM model, including air temperature, wind speed, relative 

humidity, and incoming shortwave and longwave radiation. These data were obtained 

from the National Land Data Assimilation Systems-2 (NLDAS-2) dataset. They are 

available hourly in 1/8-degree spatial resolution and were aggregated over the watershed 

in Google Earth Engine. These variables have less spatial heterogeneity than other model 

inputs (i.e., precipitation, land use/land cover, soil) and affect the water budget to a 

smaller extent. The wind speed was calculated from the horizontal and vertical wind 

components, and relative humidity was calculated from specific humidity and air 

temperature data. The same meteorological forcing data was used for each precipitation 

station across the watershed. 

For each timestep, DHSVM outputs the current timestep’s baseflow and the 

previous timestep’s streamflow. This mismatch in calculation timing could affect the total 
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streamflow produced by the model, particularly during large events where baseflow has 

an impact on the total streamflow. Thus, the DHSVM output was manually adjusted to 

shift the total streamflow by 1 timestep.  

3.2.1 Calibration and Validation of DHSVM 

 USGS observed 3-hourly streamflow data collected at the three most downstream 

gages (Figure 1, Stations 08074810, 08075000, and 08075110) were used to calibrate and 

validate the model. Since the most upstream gage only captures a small portion of the 

watershed area, its data were not used for evaluating the model. Specifically, streamflow 

data from 2017 were used to calibrate the model while those from 2015-2016 were used 

for validation. Simulations during 2014 were used for spin up. In this study, a spatial 

resolution of 20 meters was selected in order to capture the spatial variability of the 

watershed and a temporal resolution of 3 hours was used to represent temporal variability 

of the floods.  

 To calibrate DHSVM, soil and vegetation parameters were adjusted to produce 

optimal error statistics and reliable validation results. The model calibration and 

validation were assessed with traditional statistical methods against USGS streamflow 

data, including coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), and 

Relative Bias (RB) calculations after equations 1, 2, and 3 below:  

𝑅2 = 1 −
∑ (𝑆𝑡 − 𝑂𝑡)2

𝑡

∑ (𝑆𝑡 − 𝑆̅)2
𝑡

, 

 

(1) 

𝑁𝑆𝐸 =  1 −
∑ (𝑆𝑡 − 𝑂𝑡)2

𝑡

∑ (𝑂𝑡 − 𝑂̅)2
𝑡

, 
 

(2) 

 

𝑅𝐵 =
(𝑆̅ − 𝑂̅)

𝑂̅
, 

 

(3) 
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where 𝑆𝑡 represents the simulated value and 𝑂𝑡 represents the observed value at time 𝑡, 

and 𝑆̅ and 𝑂̅ represent the average of the simulated and observed values over the whole 

time series. 

 

  

Figure 4 Results of 3-hourly calibration (2017) and validation (2015-2016) in Brays Bayou by USGS gage: 

a) USGS 08074810, b) USGS 08075000, and c) USGS 08075110. The first listed statistic describes the 

calibration; the second listed statistic describes the validation. Note that gage USGS 08075110 has an 

incomplete dataset. 

 

 

 

 Figure 4 compares the simulated streamflow against the gage data during both the 

calibration and validation periods. Note that USGS gage 08075110 has an incomplete 

dataset and only has recorded data during storm events. USGS gage 08075000 appears to 
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perform the best across all metrics except for relative bias, and all the gages show good 

agreement with the gage data. The calibration results are better than the validation results, 

which is to be expected in modeling. Therefore, the 3-hourly DHSVM model can be used 

for streamflow simulations. 

 Furthermore, the 3-hourly DHSVM simulations for each of the three storm events 

of interest are evaluated at USGS gage 08075000, which is located near the WGRFC’s 

output location for streamflow simulations in Brays Bayou. Figure 5 shows that the 

model underestimates the peak for the Memorial Day and Tax Day floods but 

overestimates the peak for Hurricane Harvey. Overall, the error statistics (Table 2) are 

very high, indicating high correlation between the gage data and the simulated 

streamflow. With the exception of the high relative bias for the Memorial Day flood, the 

error statistics have more favorable values for these events than for the 3-year calibration 

and validation period. Thus, this analysis suggests that the model can robustly represent 

the hydrological processes during flood events in Brays Bayou. 
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Figure 5 Evaluation of DHSVM at gauge 08075000 across three storm events of interest: a) Memorial Day 

Flood results, b) Tax Day Flood results, and c) Hurricane Harvey results. 

 

3.3     Flood2D-GPU 

 The computationally enhanced version of the 2D hydraulic model Flood2D-GPU 

(Marshall et al. 2018) was employed in this study to generate the maximum floodplain 

inundation under forecasted streamflow conditions. The hydraulic model was originally 

developed at the University of Utah and is described in Kalyanapu et al. (2011). A first-

order upwind difference scheme that solves the non-linear hyperbolic shallow water Saint 

Venant equations, which were derived from the Navier-Stokes equations, is used.   

a) Memorial Day Flood 

R2 = 0.97 
NSE = 0.96 

RB = 16.4% 

 

b) Tax Day Flood 

R2 = 0.94 
NSE = 0.94 

RB = 6.3% 

 

c) Hurricane Harvey 

R2 = 0.95 

NSE = 0.95 

RB = 0.4% 
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 A 20-meter DEM that extended downstream of the watershed, along with model 

default Manning's surface roughness (n = 0.035) served as the base setup for the flood 

model. The stream network from DHSVM was utilized to identify channel segments 

across the entire watershed. Inflow locations for the flow hydrographs are shown in 

Figure 7. The input flow hydrographs extended for 10 days and captured the peak of the 

event at the end of the 5th day. The dates for each model run are given in Section 4.3. 

Outputs were saved at a 30-minute step across the entire computational domain (Figure 

6).  

 

 

Figure 6 Watershed and computational domain used in Flood2D-GPU simulations. 

 

 

 

3.3.1 Performance of Flood2D-GPU Model 

 To analyze the performance of the Flood2D-GPU model in the study domain, 

comparisons were first made between the baseline simulation and the 100-year FEMA 
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flood map (Zone A/AE; Wing et al. 2017, Gangrade et al. in review). The hydrographs 

from the DHSVM baseline run were rescaled to match the 100-year peak discharge value 

for the watershed obtained from the FEMA Flood Insurance Study (FIS) Report, 2017 at 

USGS gage 08075000. The Flood2D-GPU model outputs driven by the rescaled baseline 

hydrographs were the compared to the FEMA 100-year floodplain (Figure 7). Visual 

inspection reveals that the Flood2D-GPU simulation underestimates inundation extent in 

the upstream part of the watershed. This could be due to the low upstream streamflow 

predicted by DHSVM. The simulation has the most agreement in the central part of the 

watershed. However, the Flood2D-GPU simulation overestimates inundation extent in 

the downstream part of the watershed. This could be due the flat topography in the 

watershed, the highly urban land cover, which leads to overestimation of flood 

inundation, backwater effects from the extent of the DEM used in the study, and 

overestimation of the DHSVM hydrographs in the downstream portion of the watershed.  
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Figure 7 Validation of Flood2D-GPU model run with 100-year FEMA floodplain. Image in upper left 

shows inflow points used in the simulations. 

 

 

 

 A binary classification system –as defined in Table 2– was used to identify cells 

as either flooded or not flooded in the Flood2D-GPU simulation and the FEMA 100-year 

flood map, respectively. The statistics to analyze the performance of the Flood2D-GPU 

100-year flood simulation against the 100-year FEMA flood map are summarized in 

Table 3. These include the Hit Rate (HR), False Alarm Rate (FAR), Critical Success 

Index (CSI), and Error (E).  The HR indicates the 68% of cells that are correctly 

identified as flooded. The FAR indicates 47% of the cells are falsely reported as flooded. 

The CSI measures the overall fit of the spatial data with penalties for 

under/overprediction. In this simulation, the CSI of 0.42 is lower than desired (i.e., 0.5-
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1.0), but is acceptable. The E value of 1.89 indicates that the model has a tendency to 

overpredict the flooding extent.   

 

Table 2 Contingency table for cell identification.  

Cells Wet in Model (M1) Dry in Model (M0) 

Wet in Baseline (B1) M1B1 M0B1 

Dry in Baseline (B0) M1B0 M0B0 

 

 

 
Table 3 Flood2D-GPU performance statistics compared with 100-year FEMA floodplain and HCFCD 

maximum inundation map during Hurricane Harvey. Adapted from Wing et al. (2017).  

Criterion Formula Range Description 

Comparison 

with 100-year 

FEMA 

Floodplain 

Comparison 

with HCFCD 

maximum 

inundation 

map 

Hit rate 

(HR) 

M1B1 / 

(M1B1+M0B1) 
0 – 1 

Measure of tendency of 

model to accurately 

predict the benchmark 

flood extents 

0.68 0.83 

False 

alarm 

ratio 

(FAR) 

M1B0 / 

(M1B0+M1B1) 
0 – 1 

Measure of tendency to 

overpredict flood extent 
0.47 0.67 

Critical 

success 

index 

(CSI) 

M1B1 / 

(M1B1+M0B1

+M1B0) 

0 – 1 

Measure of fit with 

penalty for 

overprediction and 

underprediction 

0.42 0.31 

Error (E) M1B0 / M0B1 
0 – 

infinity 

Measure of tendency 

toward overprediction 

or underprediction 

1.89 9.97 

 

 

 

 Additionally, statistics were calculated to validate the performance of the 

Flood2D-GPU simulation during Hurricane Harvey with a maximum inundation map 

from the Harris County Flood Control District (HCFCD) in Brays Bayou. Results are also 

summarized in Table 3. While the HR shows good agreement, the FAR is high, CSI is 
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low, and the error is high. Thus, the Flood2D-GPU model overestimates the flooding 

extent during Hurricane Harvey as well.  

3.4     Methods for Assessing Precipitation, Streamflow, and Floodplain Forecasting 

Skills 

 The methods for assessing precipitation, streamflow, and floodplain forecasting 

skills are summarized in Figure 8. Throughout each assessment, uncertainty analysis 

(skill score calculations) were conducted in order to demonstrate the uncertainty and skill 

of each forecast throughout the flood forecasting process.  

 

 

Figure 8 Schematic overview of QPF, hydrological modeling, and hydraulic modeling evaluation 

procedures. 
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3.4.1  QPF Skill Quantification to Test for the Accuracy of NWS QPF Data by Lead 

Time 

 In this study, the QPFs were first assessed to determine their spatial and temporal 

accuracy with respect to ST4 QPE data via skill score calculation under scenarios defined 

by forecast lead time. The QPF data for the years 2015 and 2016 have a spatial resolution 

of 5 km, while the QPF data for 2017 has a spatial resolution of 2.5 km. In order to be 

compared with the ST4 QPE data (whose spatial resolution is 4 km), QPF data was 

compared with the closest ST4 QPE grid cell, based on the distance between the 

centroids of the grids of both sets of data. Thresholds were set to determine the distance 

threshold between two grids that were too far apart to be compared with accuracy. The 

threshold was 2 km (included 89% of points) for 2015-2016 and 1.3 km (73% of points) 

for 2017. Additionally, the ST4 QPE data was processed to a 6-hourly time step in order 

to be comparable with the QPF data. Data for the storm events extended from May 23 to 

May 29, 2015 for the Memorial Day flood, from April 15 to April 21, 2016 for the Tax 

Day flood, and August 21 to September 3, 2017 for Hurricane Harvey. 

  The skill scores for precipitation forecasts were adopted from Seo et al. (2018), 

which include: hit rate (HR), false alarm rate (FAR), and frequency bias (FB; Equation 

4). Additionally, the Critical Success Index (CSI) was used as an indicator of the overall 

performance of the forecasts. These skill scores were determined by counting the number 

of QPF grid cells identified as true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) when compared to the ST4 QPE data, according to the definitions 

in Table 4. These scores were calculated for each 6-hourly forecast from 6 hours to 84 
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hours after the forecast was published. The results were used to analyze the effect that 

lead time has on precipitation forecasting skills. 

 

Table 4 Contingency table after Seo et al. (2018) to determine QPF grid cell designations.  

Cells Wet in Forecast  Dry in Forecast  

Wet in Observation  TP FN 

Dry in Observation  FP TN 

 

 

 

 
𝐹𝐵 =

𝑇𝑃 +  𝐹𝑃

𝑇𝑃 +  𝐹𝑁
 

 

(4) 

   

 

 The HR is equivalent to the Probability of Detection (POD) and represents the 

probability of correctly identifying cells with precipitation, with a value of 1 being 

optimal. The FAR measures forecast failure and indicates the proportion of incorrectly 

forecasted grid cells to the total number of grid cells. The FB measures the 

over/underestimation of precipitation on a spatial scale. The CSI measures the overall 

performance of the data with a penalty for overprediction and underprediction. Thus, 

these skill scores determine the accuracy of the spatial distribution of forecasted 

precipitation but do not assess the accuracy of the forecasted precipitation depth.  

 In terms of analyzing the skills of the forecasted rainfall depth, the ST4 QPE and 

QPF data were compared for each time step by lead time in a graphical manner. This 

allows for visually representing the overestimation/underestimation of the QPF data by 

lead time.  
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3.4.2  Streamflow Forecast Design and Methods to Test the Effect of Lead Time on 

Streamflow Forecasts   

 In this section, the design of the streamflow forecasts is described as well as the 

methods to assess forecasting skill by lead time. 

3.4.2.1 Streamflow Forecast Design 

 The QPF precipitation were used to construct various lead time forcing scenarios 

for driving DHSVM, with the resulting streamflow mimicking the five-day forecasts 

produced by the WGRFC. This is because the operational WGRFC forecasts for Brays 

Bayou only included 72-hour forecasts during Hurricane Harvey, and 12- and 24-hour 

forecasts during the Memorial Day and Tax Day flood events. By generating a suite of 

results at a full spectrum of lead times, the optimal lead time(s) for an event can be 

identified. Specifically, DHSVM simulations were set up using 10 days of previous 

observed precipitation, forecasted precipitation for the duration of forecast interest, and 

the remaining time steps have no precipitation for a total of 5 days. Table 5 uses 

Hurricane Harvey as an example to show the streamflow forecast set-up for each lead 

time from 6 to 72 hours (at a 6-hour interval) for forecasts from 8/25/2017-01 to 

9/1/2017-00. Similarly, forecasts under each of these 12 lead time scenarios were also 

generated from 5/23/2015 to 5/29/2015 for the Memorial Day flood, from 4/15/2016 to 

4/21/2016 for the Tax Day flood, and from 8/21/2017 to 9/3/2017 for Hurricane Harvey. 

These forecasts were compared directly with the WGRFC forecast outputs and are 

described in Section 3.4.4. 

 During the time periods listed above for each storm event, the DHSVM forecasts 

were synthesized to produce hydrographs composed fully of forecasts with consistent 
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lead times. This was achieved by constructing new hydrographs out of only the 

forecasted time periods of the hydrographs, not including the periods driven by ST4 QPE 

data or the 0 precipitation data. Additionally, the hydrographs were pieced together with 

consistent lead times such that at the end of 1 forecast, another begins. For example, in 

the 6-hour lead time hydrograph, the first 6 hours are from forecast 1 followed by the 

next 6 hours from forecast 2 … until the end of the time period. These synthesized 

hydrographs allowed for analysis that isolated the forecasted lead time. 

 

Table 5 Modeling of forecasted streamflow design using Hurricane Harvey as an example. All dates are for 

the year 2017 and hours are included on pertinent dates for disambiguation. 

Forecast Lead 

Time (hours) 

Dates of Observed 

Precipitation 

Dates of Forecasted 

Precipitation 

Dates of 0 

Precipitation 

6 08/15-01 to 08/25-00 08/25-01 to 08/25-06 08/25-07 to 08/30-00 

12 08/15-01 to 08/25-00 08/25-01 to 08/25-12 08/25-13 to 08/30-00 

18 08/15-01 to 08/25-00 08/25-01 to 08/25-18 08/25-19 to 08/30-00 

24 08/15-01 to 08/25-00 08/25-01 to 08/26-00 08/26-01 to 08/30-00 

30 08/15-01 to 08/25-00 08/25-01 to 08/26-06 08/26-07 to 08/30-00 

36 08/15-01 to 08/25-00 08/25-01 to 08/26-12 08/26-13 to 08/30-00 

42 08/15-01 to 08/25-00 08/25-01 to 08/26-18 08/26-19 to 08/30-00 

48 08/15-01 to 08/25-00 08/25-01 to 08/27-00 08/27-01 to 08/30-00 

54 08/15-01 to 08/25-00 08/25-01 to 08/27-06 08/27-07 to 08/30-00 

60 08/15-01 to 08/25-00 08/25-01 to 08/27-12 08/27-13 to 08/30-00 

66 08/15-01 to 08/25-00 08/25-01 to 08/27-18 08/27-19 to 08/30-00 

72 08/15-01 to 08/25-00 08/25-01 to 08/28-00 08/28-01 to 08/30-00 

 

 

3.4.2.2 Streamflow Forecast Skill Quantification 

 A DHSVM baseline run (driven by ST4 QPE) for each storm event was compared 

with forecasted streamflow outputs to assess the streamflow forecasting skill under 

different lead times. The skill statistics that were employed include R2, NSE, RB of the 
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mean streamflow, Relative Root Mean Square Error (RRMSE; Equation 5), RB of peak 

streamflow, and mean streamflow.  

𝑅𝑅𝑀𝑆𝐸 =
1

𝑂̅
√

∑ (𝑆𝑡 − 𝑂𝑡)2
𝑡

𝑛
, 

 

(5) 

  

where 𝑆𝑡 represents the simulated value and 𝑂𝑡 represents the observed value at time 𝑡, 𝑂̅ 

represents the average of the observed values over the whole time series, and 𝑛 represents 

the number of observations. 

3.4.3  Forecasted Inundation Mapping Skill Quantification   

 Forecasted inundation maps were generated only for Hurricane Harvey, not for 

the other two events (Memorial Day and Tax Day floods). This is due to the lack of 

improvement in skill of the streamflow forecasts as the lead time was extended. Thus, it 

can be assumed that the floodplain forecasts would not have improved skill with 

increased lead time either. The skill of the forecasted floodplains during Hurricane 

Harvey were assessed against a baseline floodplain simulate by the Flood2D-GPU (with 

input hydrographs adopted from DHSVM results driven by ST4 QPE). The metrics used 

to quantify the skill of the forecasts include hit rate (HR), false alarm rate (FAR), critical 

skill index (CSI) and error (E), as described in Section 3.3.1. 

3.4.4  Streamflow Forecast Comparison with WGRFC Forecasts  

 The forecasted streamflow results from the DHSVM model were compared 

against those from the lumped CHPS-FEWS model utilized by the NWS WGRFC to 

generate flooding forecasts during the three flood events. Output from the CHPS-FEWS 

model can be accessed through the NWS WGRFC website. Forecasts are only published 

when the streamflow approaches the Action Stage (for Brays Bayou, this is 38 feet; Kris 
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Lander, personal communication, March 7, 2019). Thus, there were 2, 6, and 18 forecasts 

for Brays Bayou (USGS station 08075000) during the Memorial Day flood, the Tax Day 

flood, and Hurricane Harvey, respectively. It is important to note that the forecasts reflect 

manual adjustments made by the NWS forecasters. One common adjustment is to utilize 

the observed precipitation (ST4 QPE) for the first time step, rather than the forecasted 

precipitation (QPF). Therefore, the modeler has the advantage of using the observed 

precipitation rather than the forecast. In this study, QPF’s were used for each timestep in 

to drive the DHSVM model.  

 The comparisons of the DHSVM streamflow forecasts with the available WGRFC 

forecasts during the three storm events help evaluate if WGRFC had selected the 

appropriate forecast lead time in each case. Because WGRFC operational forecasts only 

provided results at one given lead time per forecast, the suite of DHSVM results (with set 

up described in Table 5) can fill in the missing scenarios to facilitate such analysis.  Skill 

statistics (including R2, NSE, and RB) are calculated for 12-hour, 24-hour, 48-hour, and 

72-hour forecasts simulated via DHSVM versus the gage data, the 72-hour DHSVM 

forecasts versus the 72-hour RFC forecasts, and the gage data versus the 72-hour RFC 

forecasts. Thus, the lead time of the best streamflow forecasts can be identified. 
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4. RESULTS 

 In this section, the results of the precipitation, streamflow, and inundation 

analyses as well as the comparison with the WGRFC forecasts are presented.  

4.1  QPF Skill Quantification Results by Lead Time 

 The QPF skill statistics against ST4 QPE for the Memorial Day flood, the Tax 

Day flood, and Hurricane Harvey in Brays Bayou are shown in Figure 9. QPFs from the 

Memorial Day flood have the worst skill, while the Tax Day flood and Hurricane Harvey 

have better and generally comparable skill statistics. This is likely due to the majority of 

the precipitation from the Memorial Day flood occurring over a time period of 10 hours, 

while the other two events were more prolonged (23+ hours for the Tax Day flood and 

108 hours for Hurricane Harvey). Inspection of the QPF and ST4 QPE data revealed that 

the forecasts for the Memorial Day flood underestimated the rainfall intensity and instead 

forecasted a more prolonged event with less rainfall at each timestep. In general, Figure 9 

shows that, as lead time increases, the QPF skill statistics tend to worsen. One notable 

exception is the HR: as lead time increases, the hit rate approaches 1. This is likely due to 

the uncertainty in the forecasts at longer lead times. These forecasts tend to overestimate 

the number of timesteps with precipitation, as evidenced in the general increase in FB 

with lead time. However, the FAR, FB, and CSI generally worsen with increased lead 

time. The values of CSI above 0.5 indicate that more than 50% of the precipitation was 

correctly forecasted in a spatial sense. The Tax Day flood and Hurricane Harvey have 

CSI values above 0.5 for almost the entire forecast horizon, while the Memorial Day 

flood only has a CSI value above 0.5 at the 6-hour lead time. Therefore, for the events of 

longer duration, the QPFs are more skillful than for those of shorter duration.  
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Figure 9 a) Hit rate (HR), b) false alarm rate (FAR), c) frequency bias (FB), and d) critical success index 

(CSI) of QPF data for the dates of the Memorial Day flood, Tax Day flood, and Hurricane Harvey. 

 

 

 Because the precipitation during Hurricane Harvey lasted for such a prolonged 

period of time, it was of interest to determine if the beginning, middle, and end of the 

event showed varying forecasting skills. The event was thus divided into three time 

periods (beginning: August 21 to 24, middle: August 25 to 29, and end: August 30 to 

September 3), and the skill statistics were calculated for each time period. Figure 10 

shows that the middle of the event had the best skill statistics, while the beginning and 

end have the worst skill statistics. This indicates that, as the event progressed and it 

became evident that the storm was going to last multiple days, the precipitation forecasts 

were more accurate in terms of timing. This could be indicative of accuracy in the 
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climatic models coupled with the forecaster’s manual adjustments used to produce the 

QPFs. It is interesting to note that in the last period, the QPF generally overpredicted the 

time periods with precipitation. Thus, the FB for the latter lead times is generally high 

and increasing, with the exception of the 84-hour forecast. Additionally, the CSI shows 

very desirable values (and thus skillful forecasts) during the middle period only. The CSI 

values are low at the beginning of the event and are 0 during the end of the event due to 

the lack of precipitation (the numerator of the calculation is 0). 

 

 

 
Figure 10 a) Hit rate (HR), b) false alarm rate (FAR), c) frequency bias (FB), and d) critical success index 

(CSI) for three periods of Hurricane Harvey event (Beginning, Middle, and End). 

 

 

 Figures 11-13 compare the forecasted precipitation amount with the ST4 QPE 

under different lead times (i.e., 12-, 24-, 48-, and 72-hour) for each storm event. The 
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regression line of best fit in each case shows that the QPF, on average, underestimates the 

amount of rainfall for each 6-hourly timestep and does not capture the magnitude of the 

peak rainfall. This is in agreement with Sukovich et al. (2014), which found that the 

NWS QPFs for the contiguous United States underestimated rainfall in events of extreme 

precipitation. In fact, the negative bias is more pronounced for extreme precipitation 

events than for events of lesser magnitude. Furthermore, the regression line of best fit 

generally declines as the lead time increases, which indicates that the magnitude of the 

precipitation forecast is less accurate as lead time increases.  

 

 
Figure 11 Discrepancy in precipitation amounts for Hurricane Harvey by lead time: a) 6-hour, b) 12-hour, 

c) 24-hour, and d) 72-hour lead times. Each data point represents 6-hour accumulated precipitation. 
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Figure 12 Discrepancy in precipitation amounts for the Tax Day flood by lead time: a) 6-hour, b) 12-hour, 

c) 24-hour, and d) 72-hour lead times. Each data point represents 6-hour accumulated precipitation. 
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Figure 13 Discrepancy in precipitation amounts for the Memorial Day flood by lead time: a) 6-hour, b) 12-

hour, c) 24-hour, and d) 72-hour lead times. Each data point represents 6-hour accumulated precipitation. 

 

 

 The R2 values for the 6-hour forecast for both Hurricane Harvey and the Tax Day 

flood are very high (0.78 and 0.80 respectively), indicating that the fit between the QPF 

and ST4 precipitation data is good. However, the best R2 value for the Memorial Day 

flood is 0.57, also for the 6-hourly forecast. This indicates that even the best Memorial 

Day flood forecast is not as accurate as for the other events. Figure 13 shows that the 

rainfall is most underpredicted in the case of the Memorial Day flood, even in the 
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shortest-range forecasts. Again, this can be attributed to the short duration and intensity 

of the event that was not captured by the QPFs, which predicted a longer event of smaller 

intensity. Thus, it is the most difficult event to capture by the precipitation forecasts. 

 Overall, the results of the precipitation analysis indicate that the forecasts with 

shorter lead times generally produce more accurate QPF in terms of timing and amount of 

rainfall. Additionally, the events with longer duration tend to have higher forecasting 

skills. However, the NWS QPFs as a whole tend to underestimate the amount of rainfall 

for extreme storm events.  

4.2  Streamflow Forecast Skill Quantification Results by Lead Time   

 Figure 14 shows the skill statistics for the streamflow forecasts by lead time when 

compared with the baseline model run for each storm event. The skill statistics at the two 

USGS gages (08074810 and 08075000; 08075110 has an incomplete dataset and thus 

will not be analyzed in this section) follow largely the same trends. The skill statistics 

generally worsen as the lead time increases. This is in agreement with the worsening of 

precipitation QPF skill statistics with increased lead time. The underestimation of the 

QPFs is also reflected in the streamflow forecasts, particularly in the relative bias 

statistics. However, since the streamflow forecasts are generated with ST4 QPE prior to 

the forecasted precipitation, the RB is higher than it would be if QPFs were used for the 

entire simulation. Additionally, the skill statistics for Hurricane Harvey are the best, 

while the Memorial Day flood skill statistics are the worst. This is also a reflection of the 

quality of the QPFs for those two events. Further, the finer spatial resolution of the QPF 

data for Hurricane Harvey likely contributes to the higher skill statistics of the 

streamflow forecasts.  
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Figure 14 Skill statistics of the forecasted streamflow by lead time for gages 08074810 and 08075000: a) 

R-Squared (R2), b) Nash-Sutcliffe Efficiency (NSE), c) Relative Bias (RB), d) Relative Root Mean Square 

Error (RRMSE), and e) Peak Relative Bias (Peak RB). 
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 The correlation statistics (R2 and NSE) indicate that the very short-term forecasts 

perform fairly well and then drop off significantly thereafter (Figure 14a and b). Moriasi 

et al. (2007) note that R2 values greater than 0.5 are acceptable for watershed simulations 

and NSE values greater than 0 are acceptable. By those standards for the R2, the forecasts 

for the Memorial Day flood are acceptable only for the 6 to 24 hour forecasts and 

unacceptable for longer forecasts, while the forecasts for the Tax Day flood are 

acceptable from 6 to 60 hours and are unacceptable thereafter (gage 08075000; Figure 

14a). The forecasts for Hurricane Harvey are acceptable during the entire forecast 

horizon (Figure 14a). In addition, the NSE values for all of the events are greater than 0 

and are thus considered acceptable (Figure 14b). The RB is negative for all lead times 

except for 6-18 hour lead times at gage 08075000. This positive RB is due to forecast 

overestimation of streamflow at the beginning and end of the event. The peak RB is 

negative for all of the flooding events, indicating that the peaks are underestimated by the 

streamflow forecasts at all lead times (Figure 14e). Figure 14d shows that the RRMSE 

becomes quite large for the Memorial Day flood, reflecting the loss in forecast accuracy 

with increased lead time. The RRMSE also increases for the Tax Day flood and 

Hurricane Harvey, but to a lesser extent. 
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Figure 15 Forecasted mean streamflow compared with baseline mean streamflow for USGS stations a) 

08074810 and b) 08075000. 

 

 Figure 15 shows the forecasted mean streamflow as compared to the baseline 

model mean streamflow for each time period for the two USGS gage locations. The mean 

streamflow for the Tax Day and Memorial Day floods are underestimated for all lead 

times at both gage locations. For Hurricane Harvey, the mean streamflow is 

underestimated at all lead times for gage 08074810. However, the mean streamflow is 

overestimated at short lead times (6-18 hours) and is underestimated for the longer lead 

times at gage 08075000. This suggests that the negative bias of the QPF data is driving 

the hydrological simulations as the lead time gets longer, as forecasts at longer lead times 

are driven by longer time periods of low QPF data when compared to the shorter lead 

times that are driven by fewer time periods of the QPF data. 

 Therefore, it is concluded that the negative bias of the QPF data results in 

underestimated streamflow forecasts. This negative bias is exacerbated in forecasts as the 

lead time increases. This is because those streamflow forecasts are more affected by the 

accumulation of the QPF errors as time goes on, while the benefit of initializing the 

model using the ST4 QPE data becomes less significant. The forecasted streamflow for 
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extended precipitation events have the best skill statistics (Hurricane Harvey), whereas 

the shorter-term events have the worst skill statistics (Memorial Day flood). This can also 

be most likely attributed to the higher skill of the QPF data for extended events as well as 

the higher spatial resolution of the QPF data for Hurricane Harvey. 

4.3 Results from Inundation Forecasts in Terms of Lead Time 

 Selected streamflow forecasts with 12- and 72-hour lead times were used to drive 

the Flood2D-GPU model to generate floodplains at three points during Hurricane 

Harvey: before the event began, the rising limb, and the flood peak. Thus, the effect of 

extending the lead time during extreme events could be analyzed at each of the three 

points during the event. These 8 forecasted inundation cases are summarized in Table 6, 

among which the control run (Case 2) – whose streamflow is based on ST4 QPE data – 

provides a baseline against which the other forecasts were compared.  

Table 6 Inundation forecast cases used in Flood2D-GPU. 

Case Description 

Forecast 

Duration (hours) Hydrograph Dates  

1 100-year flood  - - 

2 Hurricane Harvey control run - 08/22-03 to 09/01-03 

3 Forecast beginning from 

08/25/2017-01 

12 08/20-12 to 08/30-12 

4 Forecast beginning from 

08/25/2017-01 

72 08/22-12 to 09/01-12 

5 Forecast beginning from 

08/26/2017-01 

12 08/21-12 to 08/31-12 

6 Forecast beginning from 

08/26/2017-01 

72 08/22-06 to 09/01-06 

7 Forecast beginning from 

08/27/2017-01 

12 08/22-06 to 09/01-06 

8 Forecast beginning from 

08/27/2017-01 

72 08/22-06 to 09/01-06 
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Figure 16 Results of inundation model. Cases correspond to Table 6. 
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Table 7 Evaluation metrics for forecasted floodplains using Case 2 as benchmark. 

Criterion Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Hit rate (HR) 0.02 0.47 0.33 0.70 0.87 0.90 

False alarm ratio (FAR) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

Critical success index 

(CSI) 0.023 0.47 0.33 0.70 0.87 0.90 

Error (E) 0.0000 0.0000 0.0000 0.0001 0.0001 0.0005 

 

 

 According to Case 3 (12-hour forecast) in Figure 16, it can be seen that the 

inundation model did not predict flooding, as the streamflow forecast was so low. 

However, extending the forecast to 72 hours (Case 4) produced a more useful depiction 

of the flooding to come (Figure 16). For each forecast, the hit rate (HR) and critical 

success index (CSI), increased significantly with the extension of the forecast from 12 to 

72 hours. However, the FAR and E are very close to 0. This is due to the underestimated 

streamflow forecasts when compared to the baseline streamflow. Thus, cells did not fill 

with water in the forecasts that were not filled with water in the baseline. Thus, it is clear 

from the above results that increasing the lead time of the forecasts during Hurricane 

Harvey produced skillful results in the inundation forecasts throughout the event. 

However, it would be useful to produce forecasted floodplains for the end of the event as 

well to determine if the forecasts are still skillful with increased lead time as the event 

ends. 

4.4  Comparison between WGRFC Streamflow Forecasts and DHSVM Forecasts to 

Determine Optimal Lead Time 

 To compare the DHSVM streamflow forecasts with the WGRFC streamflow 

forecasts produced by the CHPS-FEWS model (hereafter referred to as RFC forecasts), 
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17 72-hour streamflow forecasts for Brays Bayou during Hurricane Harvey were 

obtained from the WGRFC website (Table 8). The 18th available RFC forecast is a 24-

hour forecast and, for consistency, were not be evaluated in this section. Streamflow 

under alternate lead times (12-, 24-, and 48-hours) were simulated using the DHSVM 

model to analyze the effect of extended forecasts on the forecasts’ accuracy and 

usefulness during extreme events. The available forecasts for the Memorial Day flood 

and the Tax Day flood were also obtained and analyzed; however, due to their short 

duration, the statistical skill of the forecasts was not improved as lead time increased 

beyond 12 hours. Thus, this section focuses on analyzing the forecasts for Hurricane 

Harvey. 

Table 8 WGRFC 72-hour forecasts for Brays Bayou during Hurricane Harvey. 

Forecast 

Number Issuance Date (CDT) 

Starting Time of 

Forecasted 

Precipitation (CDT) 

1 08/25 at 02:15 pm 08/25 at 12:00 pm 

2 08/25 at 08:36 pm 08/25 at 06:00 pm 

3 08/26 at 02:01 am 08/26 at 12:00 am 

4 08/26 at 08:30 am 08/26 at 06:00 am 

5 08/26 at 02:23 pm 08/26 at 12:00 pm 

6 08/26 at 03:09 pm 08/26 at 12:00 pm 

7 08/26 at 08:30 pm 08/26 at 06:00 pm 

8 08/26 at 11:38 pm 08/26 at 06:00 pm 

9 08/27 at 07:55 am 08/27 at 06:00 am 

10 08/27 at 02:17 pm 08/27 at 12:00 pm 

11 08/27 at 08:51 pm 08/27 at 06:00 pm 

12 08/28 at 02:21 am 08/28 at 12:00 am 

13 08/28 at 08:27 am 08/28 at 06:00 am 

14 08/28 at 01:55 pm 08/28 at 12:00 pm 

15 08/28 at 08:01 pm 08/28 at 06:00 pm 

16 08/29 at 02:45 am 08/29 at 12:00 am 

17 08/29 at 08:22 am 08/29 at 06:00 am 

 

 Figure 17 depicts the results of the 17 forecasts (Table 8) from a total of six pairs 

of comparisons (four comparing gage data with DHSVM forecasts at different lead times, 
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one comparing gage data with RFC forecasts at a 72-hour lead time, and one comparing 

the 72-hour DHSVM forecasts with the 72-hour RFC forecasts) in terms of the R2, NSE, 

and RB, respectively. The last row of each figure represents the statistics for the 72-hour 

RFC forecast versus the 72-hour DHSVM forecast. Since the statistics are very good 

(high R2 and NSE, low RB) for each forecast in this scenario, it suggests that the 

DHSVM forecasts can be used as a substitute for the RFC forecasts at lead times that 

were not provided by the RFC (12-, 24-, and 48-hour forecasts).  

 The results in Figure 17 indicate that generally, at the beginning and middle of the 

event, the R2 and NSE increase with increased lead time. Towards the end of the event 

(starting around forecast 12), the R2 and NSE generally decrease as lead time increases. 

From the beginning to the middle of the event, the R2 and NSE first increase, then 

decrease, and later improve again at the end of the event. This is likely due to the 

duration of the event: the QPF performed well in the middle of the event and had very 

high frequency bias towards the end of the event. At the very end of the event, when it 

was apparent that the precipitation had ended, the streamflow forecasts perform very 

well.  
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a) 

 

b) 

 

c) 

 

Figure 17 a) R2, b) NSE, and c) Relative Bias (RB) for comparison of forecasts with different lead times 

during Hurricane Harvey by issuance time. The x-axis refers to the RFC forecasts (Table 8). 

 

 

 In Figure 17c, the trend of the RB is such that, in general, the DHSVM and RFC 

forecasts are negatively biased in comparison to the gage data in the beginning and 

middle of the event. At the end, the models are positively biased. This is likely due to 
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QPF underestimation of the event in the beginning and middle of the event, and 

overestimation of precipitation frequency at the end of the event, as evidenced by the 

high FB of the QPF data at the end of the event. Bias is generally lowest for shortest lead 

times. This is likely due to the forecast design: after the short period of forecasted 

precipitation data, the rest of the 5-day period has 0 precipitation. From Figure 18, it is 

apparent that the QPF underestimated the volume of rainfall, as the forecasted streamflow 

is mostly underestimated, including the peaks.  

 

 
Figure 18 Selected forecasts for (a-b) beginning, (c-d) middle, and (e-f) end of Hurricane Harvey: a) 

Forecast 2, b) Forecast 5, c) Forecast 8, d) Forecast 10, e) Forecast 13, f) Forecast 17. Forecast numbers 

correspond to those in Table 8.  
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 Forecasts 15 and 16 show anomalous results when comparing the gage data 

versus the 72-hour RFC forecast (Figure 17). Both forecasts predict streamflow that is 

positively biased when compared with the gage data and DHSVM forecasts. One 

possibility for this is the modeler judgement that was used to adjust the QPF data. 

 In summary, the decision to extend streamflow forecasts from 12 hours to 48 

hours and then 72 hours during extreme events, like Hurricane Harvey, results in skillful 

gains at the beginning and middle of the event. Towards the end of the event, the QPFs 

overestimated the frequency and amount of precipitation, thus losing skill in the 

streamflow forecasts. This was not found to be the case for the Memorial Day flood and 

the Tax Day flood, which were shorter, less intense events. This finding would need to be 

tested on additional hurricane-level events to determine if this is true for all extreme, 

hurricane-level events under the current WGRFC flood forecasting system.  
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5. DISCUSSION 

 This study demonstrated the added value in extending the lead time for 

streamflow forecasts used by the WGRFC flood forecasting system for hurricane-level 

events. It also revealed the issues of underestimations in QPF data and thus error in the 

flood forecasting system. To the best of our knowledge, this is the first study to evaluate 

the benefit of extending the lead time in the WGRFC system.  The methods and 

framework developed in this study are generally applicable to any geographical region 

where flood forecasting is critical. 

 An important limitation in this study is the difference in spatial resolution 

between the QPF data and the ST4 QPE data. The QPF data has 5 km resolution for the 

Memorial Day and Tax Day floods, and 2.5 km resolution for Hurricane Harvey, while 

the ST4 QPE data has 4 km resolution. To analyze the accuracy of the precipitation 

forecasts, a threshold was used to compare the QPF grids with the ST4 QPE grids. Thus, 

uncertainty is inherent in this method of comparison, as the grids do not overlap 

perfectly. The skill scores that are reported for the QPF data therefore have a level of 

uncertainty due to this method of comparison. Additionally, the skill scores for the QPF 

data during Hurricane Harvey are likely positively influenced by the higher spatial 

resolution of the QPF data.  

 Furthermore, input data and the initial model conditions in the hydrologic and 

hydraulic models are sources of uncertainty in the streamflow and floodplain forecasts 

(Cloke and Pappenberger 2009, Zappa et al. 2011). While precautions were taken to use 

high-quality input data (e.g. 10-meter DEM resampled to 20 meters, high resolution soil 

and precipitation data), all datasets introduce sources of error into the modeling process. 
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Specifically, the errors associated with the DEM could be exacerbated by the flat 

topography in the watershed, which could lead to errors in the streamflow and floodplain 

modeling. Furthermore, for the streamflow modeling, the initial model states were saved 

from a long model run and used to drive the forecasts. However, these model states are a 

product of the model, which itself makes approximations and has errors. In the case of 

the hydraulic model, the model initializes from a dry state. Since this was not the case for 

Hurricane Harvey (the watershed had received rain before the event and thus would have 

had higher soil moisture content), there are errors associated with this modeling setting. 

 In addition, uncertainty and errors from the model input data and initial conditions 

are exacerbated throughout the flood forecasting system, as the forecasted precipitation is 

used to drive the hydrological model to produce forecasted streamflow, which is in turn 

used to drive the hydraulic model (Cloke and Pappenberger 2009). Because models 

introduce errors associated with model physics and numerical solution methods, our 

evaluation could be affected. Thus, the contributions of model errors in the streamflow 

forecasts produced by DHSVM and the floodplain forecasts produced by Flood2D-GPU 

need to be acknowledged. To recognize the effects of such model errors on results 

analysis, the output for baseline simulations were compared against USGS gage data (for 

the streamflow modeling) and FEMA floodplain maps (for the floodplain modeling).  

 Furthermore, DHSVM models urban detention and runoff but does not explicitly 

account for urban stormwater sewage systems. Therefore, it can be concluded that there 

are errors associated with this omission, as this watershed is highly urbanized with a 

complex stormwater system. However, because the magnitude of the selected storm 

events is very large, the effect of the stormwater system is likely relatively minor. The 



 

50 

 

 

simulated streamflow performs well when compared against the USGS gage data in the 

calibration and validation processes; thus, the model performs robustly enough to 

simulate the major hydrological processes in the watershed for these selected storm 

events.  

 There are a few extensions of this work that would provide valuable insights from 

other perspectives. One such extension would be to study the effect that increased 

urbanization has on the forecasted streamflow and floodplains in Brays Bayou during 

these storm events. Since population is expected to continue growing in the watershed, 

quantification of the forecasts with increased impervious cover would allow for studying 

the quality of the forecasts under the new conditions. It is possible that the low bias in 

QPF data would be exacerbated by increasing urbanization in the streamflow and 

inundation forecasts.  

 Another extension of this work would be to use ensemble precipitation and 

streamflow forecasts to produce probable maximum flood inundation forecasts. As Cloke 

and Pappenberger (2009) assert, ensemble forecasting is generally agreed upon to 

improve hydrological forecasts over deterministic forecasting, particularly in regard to 

early flood warning systems, as model outputs from the ensemble members can be 

analyzed as a whole to assess the likelihood of flooding events. Thus, it would be useful 

to see if the effect of extending lead time that was found in this study also pertains to an 

adjusted flood forecasting system that utilizes ensemble forecasts. Furthermore, it would 

be important to determine if the WGRFC flood forecasting system could be improved as 

a whole if the system were to use ensemble precipitation data to produce ensemble 

streamflow forecasts and probable maximum flood inundation forecasts. 
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 Lastly, one of the capabilities of the Flood2D-GPU model is to produce the flood 

depth in addition to the flood extent. While not analyzed in this study, the flood depth 

would provide important information about the magnitude of the flooding forecast. Thus, 

we believe that analyzing the flood depth would be an important extension of this work. 
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6. CONCLUSIONS 

 In this study, the flood forecasting system used by the WGRFC was analyzed in 

Brays Bayou for three of the largest storm events in Houston, TX in the last decade: the 

Memorial Day flood, the Tax Day flood, and Hurricane Harvey. Skill statistics were 

calculated throughout the flood forecasting system: QPF data for forecasted precipitation, 

streamflow forecasts produced by driving the DHSVM model with the QPF data, and 

forecasted floodplains produced by driving the 2D hydraulic model, Flood2D-GPU, with 

forecasted streamflow. Then, forecasted streamflow comparisons were made between the 

DHSVM forecasts and the RFC forecasts (from the lumped CHPS-FEWS model) to 

determine the performance of the models as well as the effect of lead time to produce 

skillful forecasts. The key conclusions are: 

1. The QPFs for shorter, less intense events (e.g., Memorial Day flood) have worse 

skill statistics than the QPFs for longer, more intense events (e.g., Hurricane 

Harvey). The skill of the QPF data generally decreases with increased lead time 

and the QPF data is negatively biased.  

2. The negative bias of the QPF data is reflected in the generally underestimated 

forecasted streamflow results, as the forecasted streamflow relies on the accuracy 

of the QPF data. Thus, the forecasted streamflow also shows decreased skill with 

increased lead time. For the extended event (Hurricane Harvey), the streamflow 

skill scores are higher than for the shorter events. This could be due to the long 

duration of the event, the uniform precipitation coverage of the watershed, and the 

better ability of the QPF data to forecast the depth of the rainfall in this event.  
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3. The forecasted floodplain results show increased skill when increasing the lead 

time from 12 hours to 72 hours during Hurricane Harvey.  

4. The QPF data is the key factor in determining the forecasting skills, as the 

precipitation data is the key input for the streamflow model, which in turn is the 

key input for the floodplain model. Therefore, the quality of the streamflow and 

floodplain forecasts is dependent upon the quality of the QPF data. 

5. Increasing the lead time for streamflow forecasts improved the skill scores at the 

beginning and middle of the event for Hurricane Harvey. However, at the end of 

the storm event, the forecasts overestimated the amount of streamflow that 

occurred. Therefore, we conclude that the decision by the RFC to extend the 

streamflow forecasts from 12 hours to 48 hours and then to 72 hours is a skillful 

and useful forecasting decision for hurricane-level events. However, it does not 

add value to shorter, smaller-scale event forecasts, as the spatial and temporal 

variability is difficult to accurately predict in the forecasting system.  

6. The benefits of extending forecast lead time in hurricane-level events should be 

tested on similar events in the Brays Bayou watershed to confirm our results. 

Furthermore, they should be tested on similar events in other watersheds to 

determine if this finding can be extended to other watersheds.  
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