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ABSTRACT 

 

Commercial meat-chickens (broilers) have been heavily selected for performance 

traits including high body weights, large breast muscle size, and improved feed 

efficiency. The wooden breast condition (WB) is a consequence of this selection along 

with several other physical and metabolic disorders. WB is currently considered a 

myopathy unique to broilers, causing decreased meat quality. It is not considered a threat 

to bird or consumer health, but inflammatory tissue due to WB is required to be excised 

during processing. The objective of this investigation was to detect molecular 

characteristics of WB through the use of global transcriptome and mitochondrial genome 

based comparative analyses between slow-growth chickens and commercial fast-growth 

broiler breeds. Our first investigation revealed that WB is genetic in origin and likely 

involves multiple organ systems. These findings are based on identification of an age-

dependent transcriptional profile demonstrating altered regulation of cell proliferation 

and glycolysis, and markers of oxidative stress. Through our second investigation we 

observed the impact of dietary omega-6:3 ratio on age and breed related gene expression 

patterns and pinpointed genes specific to broilers and the characteristics of WB. Among 

the top pathways influenced were glycolysis, oxidative phosphorylation, and 

mitochondrial dysfunction, signifying the regulation of energy metabolism as central to 

the pathophysiology of WB. The third study illustrated a nuclear interaction with 

mitochondrial oxidative phosphorylation gene expression and deficiency in 42-day old 

broilers. This deficiency indicates an inability to produce adequate energy to support the 
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high metabolic rate of broilers and provides illumination to the role of the mitochondria 

in WB. Overall, these findings indicate that genes important to energy metabolism, cell 

proliferation and survival, and inflammation have been altered by selective pressure for 

broiler performance traits and their dysregulation has multi-system consequences which 

manifest macroscopically as WB. Functional classification of these genes showed 

commonalities between the genes in these lists suggesting that broilers share the 

biomedical profiles of obesity, diabetes, and cardiovascular disease. 
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NOMENCLATURE 

 

ALA alpha-Linolenic Acid 

CBRO Commercial Broiler Chickens 

DPM Deep Pectoral Myopathy 

FA Fatty Acid 

FGCB   Fast Growth Commercial Broilers 

LA Linoleic Acid 

LAY Layer Chickens 

MT Mitochondria 

ω -3 Omega-3 

ω -6 Omega-6 

R708 Ross 708 Commercial Broiler 

RIN RNA Integrity Number 

RJF Red Jungle Fowl 

ROS Reactive Oxygen Species 

SGHB   Slow Growth Heritage Broilers 

WB Wooden Breast 

WC   Wenchang Breed 

WPR White Plymouth Rock Heritage Broiler 

WRR   White Recessive Rock Breed 

WS White Striping 
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XHH   Xingua Hybrid 1 

XHI   Xinghua Hybrid 1 
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1. INTRODUCTION TO THE MOLECULAR RELATIONSHIPS OF OXIDATIVE 

STRESS AND ENERGY METABOLISM IN WOODEN BREAST  

 

1.1. Abridged History of Myopathies in the Poultry Industry 

For the last 60 years the poultry industry has worked to increase growth rate, muscle 

development, and maturation of broilers in order to maximize production efficiency and 

reduce production costs (Bohren, 1953; Merritt et al., 1962; Jaap, 1963; Skoglund et al., 

1966; Chambers et al., 1981; Fairfull and Chambers, 1984; Remignon et al., 1994; 

Paxton et al., 2010; Elwinger et al., 2016; Tallentire et al., 2018). These improvements 

have been accomplished through selective breeding and carefully maintaining multiple 

generations of broiler breeder flocks. However this has resulted in the genetic diversity 

of current commercial flocks becoming limited, promoting numerous health problems 

(Julian, 2005; Paxton et al., 2010; Tallentire et al., 2018). These problems include 

compromised immunity, vascular insufficiency, skeletal impairment, heat intolerance, 

and a class of disorders termed myopathies, which are generally considered meat quality 

issues rather than bird health concerns (Siller, 1985; Scheele, 1997; Malan et al., 2003; 

MacRae et al., 2006; Kuttappan et al., 2012, 2017a; b; Wideman et al., 2013; Sihvo et 

al., 2014; Mazzoni et al., 2015; Trocino et al., 2015; Tijare et al., 2016; Clark and 

Velleman, 2016; Cruz et al., 2017; Tarrant et al., 2017; Tallentire et al., 2018; Velleman 

et al., 2018; Hubert et al., 2018; Chen et al., 2019). 

Generally, a myopathy constitutes a disorder of the skeletal muscle, often localized 

to a specific muscle tissue, in which cell structure and metabolism is impaired to the 
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level of macroscopic symptoms and muscle dysfunction. Myopathies can occur due to 

inheritance, chronic immune and endocrine disruptions, and environmental stimuli. For 

example, deep pectoral myopathy (DPM) is induced by wing flapping (Siller, 1985). 

Also, antibiotics such as Monensin (Umemura et al., 1984), hormone dysregulation such 

as the inhibition of prostaglandin (McLennan, 1985), and degeneration of mitochondria 

due to feed ingredients such as Senna seeds (Cavaliere et al., 1997) cause myopathies in 

chickens. Inherited (Asmundson and Julian, 1956; Asmundson et al., 1966) and 

nutritional muscular dystrophy (Weinstock et al., 1955) were the first myopathies to be 

investigated and are still seen in chickens. Due to the different modalities of inducing 

myopathies, it is difficult to pinpoint their pathophysiology. However, meat quality 

issues due to myopathies have become a prevalent consumer and economic concern in 

today's fast growth commercial broiler lines, necessitating intense investigation. Recent 

research has focused on the three most commonly observed broiler breast myopathies, 

DPM, white striping (WS), and wooden breast (WB), and a newly documented 

myopathy termed “spaghetti meat” (SM). 

1.1.1. Overview of Current Breast Muscle Myopathies 

Although they all are classified as myopathies of the breast, DPM affects the 

pectoralis minor while WS, WB, and SM affect the pectoralis major. DPM was first 

reported in broilers in 1980 (Richardson et al., 1980) and is commonly referred to as 

green muscle disease due to a characteristic green coloring of the pectoralis minor in 

affected birds. Numerous investigators have concluded that the very large pectoralis 

major of commercial broiler decreases blood flow to the pectoralis minor, resulting in 
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hemorrhage and necrosis of the muscle (Wight and Siller, 1980; Grunder et al., 1984; 

Siller, 1985; Lien et al., 2012; Bailey et al., 2015; Velleman, 2015; Kuttappan et al., 

2016). The green coloring is caused by the release of iron from the hemorrhaged 

erythrocytes as they break down. Wight and Siller (1980) showed anucleated myofibers 

surrounded by fibrous and adipose tissues and disintegration of the sarcoplasmic 

reticulum, mitochondria, and Z-lines. This study suggested that DPM is a result of 

artificial selection for high growth rate and increased breast yield. 

WS is so named based on the appearance of the affected pectoralis major, marked by 

white striations which run parallel to the muscle fibers. The manifestation of WS is not 

only altered appearance but also a decrease in mineral and protein content, water holding 

capacity, and an increase in fat and collagen content (Kuttappan, 2012; Kuttappan et al., 

2012, 2013b; c; a; Petracci et al., 2013, 2014; Sihvo et al., 2014; Owens, 2014; Mazzoni 

et al., 2015; Mudalal et al., 2015; Bailey et al., 2015; Trocino et al., 2015; Vignale et al., 

2017). Histologically it is characterized by variability in fiber size, necrosis of fibers, 

loss of cross striations, multinucleated cells, interstitial inflammation and fibrosis, 

lipidosis, and mononuclear cell infiltration (Kuttappan et al., 2013c; a; Mazzoni et al., 

2015; Trocino et al., 2015). Few studies have investigated the molecular mechanisms of 

WS. Vignale et al. (2017) elucidated the activity of genes related to protein synthesis and 

degradation such as IGF-1, atrogin-1, insulin receptor, and MuRF1. MuRF1 and atrogin-

1, which regulate ubiquitin mediated protein degradation in skeletal muscle, were up-

regulated in WS birds, while IGF-1, an activator of muscle hypertrophy, was down-

regulated. Vignale et al., (2017) suggested that these changes in gene expression 
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indicated that fast growth commercial broilers have a higher rate of muscle degradation, 

which leads to the development of WS. Pampouille et al. (2018) utilized a genome-wide 

association study of quantitative trait loci which identified possible genetic and 

molecular markers for WS and provided evidence for polygenic inheritance of the 

condition. These include several genes involved in muscle structure and metabolism, 

some known to be involved in neuromuscular disorders (Pampouille et al., 2018). 

WB is a significant concern for the poultry industry due to its worldwide occurrence 

and escalating incidence (Mutryn et al., 2015; Bailey et al., 2015; Clark and Velleman, 

2016; Sihvo et al., 2017; Cruz et al., 2017; Petracci et al., 2019). WB is characterized by 

an abnormally hard or “wooden” breast, with hardness originating at the cranial region 

in the least severe cases and extending the full length of the breast, from the cranial to 

the caudal region in the most severe cases. Breasts affected by WB demonstrate altered 

meat quality factors such as texture, shear force, pH and water holding capacity (Sihvo 

et al., 2014, 2017; Coble et al., 2014; Mazzoni et al., 2015; Velleman and Clark, 2015; 

Bailey et al., 2015; Trocino et al., 2015; Soglia et al., 2016; Tijare et al., 2016; 

Kuttappan et al., 2016, 2017b; Clark and Velleman, 2016; Cruz et al., 2017; Velleman et 

al., 2018).    

SM, the most recently described myopathy, also primarily affects the pectoralis 

major. SM manifests as impaired muscle structure resulting in the separation of muscle 

fiber bundles and generally affects the cranial portion of the breast fillet (Baldi et al., 

2018). WS and SM co-occur and share some histological features, but SM has increased 

perimysial and endomysial degradation of connective tissues, abundant infiltration of 
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inflammatory cells, and thin and split fibers surrounded by loose connective tissue (Baldi 

et al., 2018). Collagen of SM affected breasts is less mature compared to normal breast 

fillets, with fewer cross-links (Baldi et al., 2019). Furthermore, SM is higher in moisture 

content, but lower in protein and fat content than WS breasts (Baldi et al., 2018, 2019). 

SM breasts are downgraded for quality and used in further-processed products, resulting 

in economic losses (Baldi et al., 2018, 2019). Nutritional interventions for SM through 

altered arginine:lysine ratios were investigated by Zampiga et al. (2019), resulting in 

reduced incidence of SM (P < 0.01) at the highest arginine:lysine ratio. This reduction in 

SM incidence was hypothesized to be due to enhanced vasodilation and better blood 

flow to the muscle through increased production of nitric oxide through the arginine-

nitric oxide pathway (Zampiga et al., 2019). However, the authors noted that the 

reduction in dietary lysine could also be responsible for the decreased incidence of SM 

as other researchers have shown increases in breast muscle myopathies due to increased 

dietary lysine concentrations (Cruz et al., 2017; Zampiga et al., 2019). 

1.1.2. Significance of Myopathies to Food Production, Quality, and Safety 

Chicken breast is the most consumed meat in the US, and the quality and safety of 

this food commodity is important both from an economic and a food security standpoint. 

Broiler breast myopathies decrease meat quality by altering the muscle ultrastructure, 

which in turn impacts texture, tenderness, and in some cases flavor. With high incidence 

rates, the annual economic losses due to broiler breast myopathies in the U.S. is roughly 

$200 million and increasing (Kuttappan et al., 2016). The pectoralis major is termed the 

breast when discussed as a meat product and is the most purchased cut, while the 
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pectoralis minor is termed the tender. The breast is popular for being high in protein 

content and low in fat. However, due to these myopathies, this desirable protein and fat 

ratio is altered, with increasing concentrations of fat and decreasing concentrations of 

protein (Petracci et al., 2014; Owens, 2014; Mazzoni et al., 2015; Mudalal et al., 2015; 

Soglia et al., 2016; Tijare et al., 2016; Kuttappan et al., 2017a; Tasoniero et al., 2017). 

The percentage of fat increase in breast meat affected by WB is 1.2-1.3% (Soglia et al., 

2016; Tasoniero et al., 2016). Furthermore, as consumers have become aware of these 

myopathies, there is an increasing rejection of WB-affected meat, and a greater presence 

on social media (Gee, 2016; Rainey, 2016; Picchi, 2016; Jones, 2016; Prescott, 2017; 

Elder, 2017; Ngo, 2017; Pellegrini, 2017; Walansky, 2017; Keiger, 2017; Crews, 2017; 

Johnson, 2018; Petreycik, 2019; Versace, 2019; Burginger, 2019). Often, the public is 

misinformed on the source of these undesirable characteristics and misattribute them to 

questionable production practices or confuse them with genetically modified organisms. 

These views contribute to misinformation about animal agriculture and exacerbate food 

waste. Thus, it is imperative to improve public education on these crucial issues, while 

solutions are found and implemented. 

1.2. Chicken Breast Muscle Characteristics 

Although selective breeding of production animals developed around specific 

phenotypes, scientific advances in genetics and nutrition have created the ability to 

maximize the efficiency of selection using genotype data. Utilization of genomic-based 

approaches and the extent of multigenic traits may still be in its infancy, but trait 

heritability has been the basis of selection since roughly the 1980s (Chambers et al., 
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1981; Fairfull and Chambers, 1984). Le Bihan-Duval et al. (2008) reported that growth 

and body composition traits such as body weight and abdominal fat were heritable (h2 = 

0.49 and 0.48 respectively), as were muscle characteristics such as glycolytic potential 

and muscle fiber cross-sectional area (h2 = 0.43 and 0.41 respectively) in broilers. This 

study also reports that glycolytic potential was negatively correlated to the meat quality 

traits pf color, drip loss and shear force, and overall breast muscle weight (Le Bihan-

Duval et al., 2008). 

Chicken breast muscle physiology is well studied as it is the most valuable portion of 

the carcass and has been for more than 30 years. In 1994, Remignon et al. evaluated the 

muscle characteristics of slow-growth and fast-growth chicken lines to isolate muscle 

characteristics specific to growth-rate. This study found no differences in muscle fiber 

type at 55 weeks of age (Remignon et al., 1994). The breast was composed only of Type 

IIB fast-twitch fibers, cross-sectional areas were larger, and more numerous in the fast-

growth line, compared to the slow growth line. However, some studies have identified 

very small percentages (0.5-10%) of Type IIA fibers in slow-growth and laying type 

chickens, especially those which are given room for movement (free-range or cage-free) 

(Remignon et al., 1995; Dransfield and Sosnicki, 1999; Scheuermann et al., 2004; 

MacRae et al., 2006; Velleman, 2007; Branciari et al., 2009; Clark and Velleman, 2016; 

Velleman et al., 2018).  

The characteristics of the chicken breast muscle are primarily responsible for its 

popularity with consumers. It is high in protein and low in fat, while typically low in 

cost. Its stereotypical "taste of chicken" allows it to pair well with most recipes and it is 
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functional as a comminuted product, allowing it to have a variety of further processed 

food products, and is amenable to easy preparation. These desirable attributes are based 

not only on its Type IIB fibers and low-fat content but also the size and density of fibers, 

postmortem pH, and water holding capacity (WHC) (Rosser and George, 1986; Smith 

and Fletcher, 1988; Papa and Lyon, 1989; Dransfield and Sosnicki, 1999; Scheuermann 

et al., 2003; Lonergan et al., 2003; Berri et al., 2007; Fanatico et al., 2007; Le Bihan-

Duval et al., 2008; Petracci and Cavani, 2012; Mazzoni et al., 2015; Petracci et al., 2015; 

Trocino et al., 2015; Baldi et al., 2018; Maxwell et al., 2018; Mueller et al., 2018; Golzar 

Adabi and Demirok Soncu, 2019).  

Specifically, WHC affects the flavor and toughness of the breast through the amount 

of water retained or lost during cooking as well as the ability of the meat to absorb 

marinades and flavorings. WHC is directly affected by postmortem pH, with a low pH 

causing reduced WHC and a high pH causing increased WHC. However, pH only 

accounts for about one-third of WHC, and the other two-thirds is generally considered 

due to steric effects of muscle proteins. During rigor, the myofibrillar proteins form 

irreversible bonds, and muscle contraction occurs, reducing space for water storage. As 

rigor resolves, the contraction reduces, and several other muscle proteins such as z-lines 

have degraded, allowing the charged actomyosin complex to recruit water molecules, 

thus contributing to WHC. The specific combination of fat, functional protein, pH, and 

WHC is mainly responsible for the competence of chicken in comminuted products such 

as chicken nuggets. Deviations of these attributes result in downgrades in product 
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quality, reduced consumer acceptance, and economic losses (Betti et al., 2009; 

Kuttappan, 2012; Pellegrini, 2017; Kato et al., 2018; Petracci et al., 2019). 

1.3. Known Mechanisms of Wooden Breast 

First identified roughly 15 years ago and aggressively investigated during the last 

five years, many etiologies are proposed for WB. The most commonly investigated 

etiologies include nutritional deficiencies and toxicities, exercise induction, and hypoxia 

of the pectoralis major (Guetchom et al., 2012; Velleman and Clark, 2015; Bailey et al., 

2015; Trocino et al., 2015; Soglia et al., 2016; Clark and Velleman, 2016; Cruz et al., 

2017; Papah et al., 2017; Velleman et al., 2018; Sihvo et al., 2018; Bodle et al., 2018; 

Lilburn et al., 2018; Meloche et al., 2018; Livingston et al., 2019a; Chen et al., 2019). 

Despite this intense study, the molecular mechanisms and associated disease pathways 

driving WB remain unknown. There is, however, a consensus that WB is associated with 

the selection for fast growth-rate, occurring at highest frequency in the largest birds; 

slow growth varieties are not impacted (Mudalal et al., 2015; Mutryn et al., 2015; 

Velleman and Clark, 2015; Kong et al., 2017; Hubert et al., 2018; Meloche et al., 2018). 

Although similarities between WB and well-known myopathies such as white striping 

(WS) have been recognized, the histological characteristics of WB are well described, 

and include muscle fiber damage, interstitial fibrosis, infiltration of macrophages and an 

increase in fat and collagen content (Sihvo et al., 2014, 2017, 2018; Mazzoni et al., 

2015; Velleman and Clark, 2015; Soglia et al., 2016; Clark and Velleman, 2016; 

Velleman et al., 2018; Lilburn et al., 2018; Meloche et al., 2018; Bowker et al., 2019).  
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At the molecular level, gene expression and metabolomics studies have shown that 

oxidative stress is one of the main features of WB tissue (Mutryn et al., 2015; Abasht et 

al., 2016; Clark and Velleman, 2016; Sihvo et al., 2017; Kong et al., 2017; Hubert et al., 

2018; Papah et al., 2018). Reactive oxygen species (ROS), the free radicals produced in 

vivo by specialized enzymes such as NADPH-oxidase, nitric oxide synthase and 

myeloperoxidase, mitochondrial respiration and the monooxygenase activity of 

cytochrome p450, act as modulators of gene expression, increased cell proliferation, 

prevention of cell division, apoptosis, necrosis and cell death, and are responsible for the 

damage occurring (Weidinger and Kozlov, 2015) in oxidative stress (Halliwell, 2007; 

Bonnard et al., 2008; Mutryn et al., 2015; Netzer et al., 2015). In healthy tissues, ROS 

production is combated by antioxidants, preventing cellular damage. However, in tissues 

under oxidative stress, the ratio of ROS to antioxidants is highly imbalanced, and long-

term cellular damage can occur. An example of this damage is direct modulation of the 

sodium/potassium-ATPase channels, resulting in changes in ion balance, which trigger 

changes in cellular calcium metabolism, causing increased concentrations of intracellular 

free calcium and subsequent cellular impairment (Sims and Muyderman, 2010). This 

characterization provides tremendous insight into the physiological occurrences of WB 

and provides an excellent foundation for the development of further investigations. 

1.3.1. The Role of Selection for Performance in the Development of Wooden Breast 

The poultry industry has made immense progress at increasing growth rate, breast 

yield, and feed efficiency of commercial broilers through careful selective breeding 

regimens and maintenance of pedigree flocks (Siller, 1985; Dransfield and Sosnicki, 
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1999; MacRae et al., 2006, 2007; Fanatico et al., 2007; Petracci and Cavani, 2012; 

Collins et al., 2014; Mazzoni et al., 2015; Velleman and Clark, 2015; Clark and 

Velleman, 2016). However, the quality of the meat produced is directly related to the 

morphological structure of the muscle, and growth-related selection has changed this 

structure. Intense selection has resulted in decreased capillary blood supply to the 

pectoralis major and minor, reduced connective tissue spacing between myofibers and 

muscle fiber bundles, and increased degeneration of myofibers (Scheele, 1997; Mahon, 

1999; Mitchell, 1999; Dransfield and Sosnicki, 1999; MacRae et al., 2006, 2007; Berri et 

al., 2007; Fanatico et al., 2007; Petracci and Cavani, 2012; Kuttappan et al., 2012; Sihvo 

et al., 2014, 2018; Mazzoni et al., 2015; Trocino et al., 2015; Baldi et al., 2018; Lilburn 

et al., 2018; Soglia et al., 2019). Furthermore, myofibers of fast growth commercial birds 

are three to five times larger than those of slower growing birds (Dransfield and 

Sosnicki, 1999; Velleman, 2015). Larger fiber size combined with reduced capillary 

density is likely to impede nutrient/waste transfer to/from the cell affecting cellular 

health and longevity.  

The muscular changes associated with selection for early rapid growth are 

exacerbated in the WB condition (MacRae et al., 2006, 2007; Petracci and Cavani, 2012; 

Mazzoni et al., 2015; Velleman and Clark, 2015; Trocino et al., 2015; Soglia et al., 

2016; Clark and Velleman, 2016; Velleman et al., 2018). Some researchers hypothesized 

as early as 1999 (Mahon, 1999) that poultry growth rates might be hitting a maximum 

threshold at which myofiber metabolism would be compromised by its increased size 

and the inability of oxygen, nutrients, and waste to diffuse across the fiber. This idea has 
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been supported through the demonstration of increased numbers of necrotic, basophilic 

and hyaline fibers, and fibers with NADH rich rims or negative cores, which is 

indicative of mitochondrial dysfunction and altered oxidative metabolism in fast growth 

rate commercial broilers when compared to laying hens (MacRae et al., 2006, 2007). 

Multiple recent histological studies of WB have demonstrated that the same lesions are 

observed in both affected and unaffected birds, but affected birds show significantly 

more lesions (Mazzoni et al., 2015; Velleman and Clark, 2015; Trocino et al., 2015; 

Clark and Velleman, 2016; Sihvo et al., 2017, 2018; Velleman et al., 2018). Three of 

these investigations have surveyed and found an absence of the histological 

characteristics of WB in slow growth broiler or layer lines (Velleman and Clark, 2015; 

Clark and Velleman, 2016; Velleman et al., 2018).   

Others have delved into the pathophysiology of WB through the use of 

transcriptomics, metabolomics, and proteomics. When investigating affected and 

unaffected birds of the same lines, these studies have identified pathways showing 

differential regulation to include those associated with cellular movement, proliferation, 

assembly, function and maintenance, protein synthesis, post-translational modification, 

protein folding and carbohydrate metabolism (Mutryn et al., 2015; Abasht et al., 2016; 

Kong et al., 2017; Kuttappan et al., 2017a; b; Schilling et al., 2017; Cai et al., 2018; 

Hubert et al., 2018; Papah et al., 2018). When comparing both affected and unaffected 

birds of the same fast growth commercial broiler line to a slow-growth variety they have 

observed differential regulation of the same pathways as discussed above, however they 

also observed differential regulation of disease pathways involved in organismal injury 
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or abnormalities and abnormal development and morphology of muscle (Velleman and 

Clark, 2015; Kong et al., 2017; Hubert et al., 2018). Comparison of fast-growth and 

slow-growth varieties indicated that mitochondrial activities such as oxidative 

phosphorylation and the tricarboxylic acid cycle are downregulated in breast muscles of 

fast growth broilers (Kong et al., 2017). These observations support the histological 

characteristics of WB. Furthermore, the molecular signatures of WB are suggestive of 

several diseases and disorders. The most significant included gastrointestinal disease, 

cardiovascular disease, hepatic system disease, neurological disease and cancer (Mutryn 

et al., 2015; Abasht et al., 2016; Kong et al., 2017; Kuttappan et al., 2017a; Hubert et al., 

2018). This indicates that the underlying physiological and cellular processes impacted 

in these diseases are also being impacted in WB. 

Although differences in gene expression and the subsequent alterations to 

physiological pathways can be detected when comparing unaffected and affected WB 

samples, the resolution is weak and cannot provide a definitive pathology. Unaffected 

samples may not have developed the condition at the time of collection or are 

asymptomatic (Abasht et al., 2016; Sihvo et al., 2017; Kuttappan et al., 2017a; b; Hubert 

et al., 2018). Data from these investigations suggest that asymptomatic WB tissue is not 

an adequate negative control for the determination of the molecular characteristics and 

pathophysiology of WB. Utilization of slow growth varieties as a negative control for 

WB investigations will not only provide a clear representation of the associated changes 

but will also allow for an increase in the understanding of genes and pathways which are 
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concurrently important for WB and production traits such as growth rate and feed 

efficiency. 

1.3.2. The Role of Mitochondria and Oxidative Metabolism in Wooden Breast 

The mitochondrion has crucial roles in cellular respiration, as well as several other 

factors specific to WB. As determined by Mutryn et al. (2015), gene expression studies 

of WB affected muscle samples indicate that intracellular calcium accumulation has the 

potential to impair cell membrane integrity. Interestingly, the mitochondria regulate 

cytosolic calcium concentrations, which in turn regulate the cellular reduction-oxidation 

reactions of a variety of transcription factors and cellular enzymatic reactions, control 

cellular, and mitochondrial metabolic pathways, and manage mitochondrial ROS 

production (Wallace, 2013; de Oliveira et al., 2017). Furthermore, calcium overload has 

the potential to activate proteases and lipases within the cell resulting in myofiber 

degeneration, a commonly observed histological feature of WB tissue (Halliwell, 2007; 

Mutryn et al., 2015). To this end, the role of mitochondria in WB occurrence or severity 

remains unclear. This gap in knowledge is surprising due to the mitochondrion's 

significance for muscle energetics, cell signaling, and death, which are all known 

features in WB progression. 

It is well known that mitochondria are commonly called the powerhouse of the cell 

and that they function in oxidative metabolism to provide energy in the form of ATP to 

the body as well as facilitate the removal of wastes and act in cell signaling, 

differentiation and programmed cell death (Bonnard et al., 2008; Irwin et al., 2008; 

Angelini et al., 2009; Sims and Muyderman, 2010; Tuppen et al., 2010; Moreno-
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Loshuertos et al., 2011; Velarde, 2013; Wallace and Chalkia, 2013; Netzer et al., 2015; 

Liao et al., 2015; Muir et al., 2016; Koch, 2016; Latorre-Pellicer et al., 2016; de Oliveira 

et al., 2017). However,  the mitochondrion is the only organelle in the cell with a 

genome (Tuppen et al., 2010; Yarham et al., 2010; Wallace and Chalkia, 2013; Koch, 

2016; Latorre-Pellicer et al., 2016). Mitochondrial DNA (mtDNA) is small, circular, and 

clonally inherited from the mother. It consists of two regions, the non-coding region, 

which controls mtDNA and the coding region, which codes for tRNAs, rRNAs, and 13 

cellular energy production genes, and contains no introns (Takemoto et al., 1999; Wai et 

al., 2008; Tuppen et al., 2010; Moreno-Loshuertos et al., 2011; Wallace and Chalkia, 

2013; Muir et al., 2016; Latorre-Pellicer et al., 2016). Mitochondrial DNA is haploid and 

does not recombine; it is typically stable over time, but due to its few repair mechanisms 

it tends to have a much higher mutation rate than nuclear DNA and mutations are 

commonly deleterious.  

The number of mitochondria in a cell varies significantly by type and tissue, and they 

often have more than one genome sequence, a common condition known as 

heteroplasmy (DiMauro and Schon, 2001; Wai et al., 2008; Tuppen et al., 2010; Payne et 

al., 2013; Wallace and Chalkia, 2013; Abbott et al., 2014; Carelli et al., 2015; Lehmann 

et al., 2015; Luo et al., 2018). This heteroplasmy often acts as a sort of shield for an 

individual carrying mutant mtDNA mutations. Over a lifetime, the percentage of mutant 

mtDNAs increases, resulting in a decline in the individuals bioenergetic capacity below 

the minimum threshold and symptoms of the pathogenic mtDNA mutation ensue 

(Wallace and Chalkia, 2013; Abbott et al., 2014; Carelli et al., 2015; Lehmann et al., 
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2015; Latorre-Pellicer et al., 2016). Due to this unique nature, pathogenic mtDNA 

mutations and the conditions caused by them are widespread, continually arising, can be 

localized to a specific tissue, are familial, and often age-related (Zeviani et al., 1991; 

Weber et al., 1997; Wai et al., 2008; Tuppen et al., 2010; Moreno-Loshuertos et al., 

2011; Lehmann et al., 2015). This description fits the developmental stages observed in 

WB, as it arises at different ages, affects a high percentage, and occurs in varying 

severities throughout a broiler flock. 

A critical trait of WB posing a dilemma for determining its pathology is its apparent 

localization to the breast muscle only. However, diseases caused by mitochondrial 

mutations typically localize to a tissue or region of the body and the observation of both 

histological and molecular markers of oxidative stress and myocyte degeneration, 

reveals their role in the pathogenesis of WB. We can determine the role of mitochondrial 

activities in WB through the use of Next Generation Sequencing (NGS) technologies 

and bioinformatics. However, investigations into human diseases in which mitochondria 

have recently been implicated such as diabetes, obesity, metabolic syndrome, stroke, 

Alzheimer's, and cancer have demonstrated that an understanding of the molecular 

characteristics of the disease is instrumental in determining the involvement of 

mitochondrial-related bioenergetic alterations (Barja and Herrero, 2000; Bonnard et al., 

2008; Angelini et al., 2009; Sims and Muyderman, 2010; Yarham et al., 2010; Moreno-

Loshuertos et al., 2011; D’Souza et al., 2011; Long et al., 2012; Velarde, 2013; Wallace 

and Chalkia, 2013; Muir et al., 2016; Latorre-Pellicer et al., 2016; Glancy et al., 2017; 

Maurya et al., 2018). It is through these unique characteristics of the mitochondria that 
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mitochondrial mutations can have significant physiological impacts; therefore, it is 

necessary to characterize the mitochondrial structure and gene expression related to WB. 

1.4. Genetic and Nutritional Interactions as Potential Drivers of Wooden Breast 

In contrast, based on the evidence for oxidative stress and hypoxia in WB, some 

hypotheses have suggested a genomic and nutritional interaction based on the high 

energy, soy-based diet typical of the commercial broiler (Haug et al., 2007; Koppenol et 

al., 2015; Cruz et al., 2017; Livingston et al., 2019c; Li et al., 2019). Although many 

nutritional interventions were assessed, none have managed to decrease the incidence of 

WB (Guetchom et al., 2012; Trocino et al., 2015; Cruz et al., 2017; Sobotik et al., 2018; 

Bodle et al., 2018; Lilburn et al., 2018; Livingston et al., 2019b; c; a). Still, other 

hypotheses have gone further to implicate endocrine disruptors such as phytoestrogens 

from soybean meal in poultry feed, as a potential driver of genomic/nutritional 

interaction. Phytoestrogens are naturally occurring, plant-derived, biologically active 

compounds which both structurally and functionally mimic estrogens when in humans 

and animals (Bacciottini et al., 2007; Cederroth and Nef, 2009; Patisaul and Jefferson, 

2010; Stevenson et al., 2014). 

Soybean meal, one of the main ingredients in industrial poultry feed, has one of the 

highest concentrations of phytoestrogens among plant-based feed sources (National 

Research Council et al., 1994; Payne et al., 2001; Haug et al., 2007; Stein et al., 2008; 

Cederroth and Nef, 2009; Patisaul and Jefferson, 2010; Gjorgovska et al., 2014; USDA 

ARS, 2016). Due to their similarity to estrogen, and ability to bind to both estrogen 

receptor α and ß, phytoestrogens act as endocrine disrupting compounds (Cederroth and 
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Nef, 2009; Patisaul and Jefferson, 2010; Gjorgovska et al., 2014). As estrogen regulates 

various vital physiological processes such as lipid and glucose metabolism, bone 

development, sexual maturation, and reproduction, perturbations of this suite of 

endocrine functions can potentially alter critical system-wide processes. Therefore, the 

nature and extent to which phytoestrogens drive occurrence and severity of WB deserve 

further attention. 

The implications of high dietary concentrations of phytoestrogens are also relevant to 

mitochondrial cell signaling, and oxidative metabolism (Irwin et al., 2008; Sims and 

Muyderman, 2010; Mauvais-Jarvis, 2011; Velarde, 2013; Sarkar et al., 2015; Liao et al., 

2015). One pathway involves alteration of mitochondrial cell signaling and 

mitochondrial hormonal regulation due to increased exposure to phytoestrogens. Recent 

work has shown the role of mitochondrial estrogen receptor-ß and its implications for 

mitochondrial bioenergetics and tumorigenesis (Velarde, 2013; Liao et al., 2015). 

Additionally, human studies have determined that oxidative stress in skeletal muscle is 

often induced by dysregulation of the metabolism of energy fuel substrates such as lipids 

and glucose, resulting in damage to the mitochondria and an increase in the buildup of 

ROS and fuel substrates (Marco et al., 1961; Bonnard et al., 2008; Irwin et al., 2008; 

Velarde, 2013; Netzer et al., 2015; Liao et al., 2015; de Oliveira et al., 2017). The 

endocrine disrupting actions of phytoestrogens are capable of inducing such a metabolic 

dysregulation, and this is a possible element in the pathogenesis of WB and warrants 

further investigation. 
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1.4.1. Impacts of Dietary Omega-6 and Omega-3 Supplementation to Oxidative 

Stress and Inflammation on Wooden Breast Gene Expression 

Due to the many vital physiological activities of estrogens, the regulators of estrogen 

metabolism have become a popular topic in human and animal health. Currently, the 

most studied are the omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids. They 

boast a myriad of physiological effects including reduction of cholesterol, reduction of 

circulating levels of 17ß-estradiol, reduced binding of estradiol to the estrogen receptor, 

stabilization of electrical activity of cardiac myocytes, increased apoptosis of cancerous 

cells, increased 2-hydroxylation of estradiol, and protection for mitochondria (Marco et 

al., 1961; Lord et al., 2002; Gómez Candela et al., 2011; Cao et al., 2012; Dikshit et al., 

2015; Jeromson et al., 2015; Behling et al., 2015; de Oliveira et al., 2017). These effects 

provide benefits such as reduced risk of cardiovascular and metabolic diseases, and 

reduced risk of multiple cancer types (O’Keefe et al., 1995; Lord et al., 2002; 

Simopoulos, 2002; Betti et al., 2009; Gómez Candela et al., 2011; Cao et al., 2012; 

Dikshit et al., 2015; Lorente-Cebrián et al., 2015; Jeromson et al., 2015; Behling et al., 

2015). 

Multiple studies have investigated increasing ω-3 fatty acid concentrations in 

chicken feed, as an indirect way to increase human ω-3 consumption (Ratnayake et al., 

1989; O’Keefe et al., 1995; Newkirk and Classen, 2002; Rymer and Givens, 2005; Haug 

et al., 2007; Betti et al., 2009; Zuidhof et al., 2009; Koppenol et al., 2015; Carragher et 

al., 2016; Konieczka et al., 2017; Moghadam et al., 2017). A majority of these studies 

utilized fish-based additives as the source of ω-3s. The fish-based ω supplement did 
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increase the ω-3 content of the muscle, but also caused a fishy taste and decreased the 

shelf life of the product (Ratnayake et al., 1989; O’Keefe et al., 1995; Rymer and 

Givens, 2005; Koppenol et al., 2015). More recent studies investigated plant-based 

sources of ω-3s such as flax and canola, however most of these investigations 

demonstrated reduced growth rates and final carcass weights (Newkirk and Classen, 

2002; Haug et al., 2007; Betti et al., 2009; Parveen et al., 2013; Carragher et al., 2016; 

Konieczka et al., 2017). Currently, the soy and corn-rich standard poultry industry diet is 

very high in ω-6s but very low in ω-3s (O’Keefe et al., 1995; Rymer and Givens, 2005; 

Haug et al., 2007; Dikshit et al., 2015). For humans, the recommended ratio of ω-6:3 is 

roughly 5:1. Ratios of 2-3:1 have demonstrated improvements in patients with 

cardiovascular disease, rheumatoid arthritis, asthma and multiple types of cancers while 

ratios of 10:1 have shown adverse effects (Simopoulos, 2002, 2010, 2016; Rymer and 

Givens, 2005; Gómez Candela et al., 2011; Jeromson et al., 2015).  

Balancing the ω-6:3 content of industry broiler feed could have a positive impact on 

several conditions which are currently causing tremendous losses to the poultry industry 

including WB, WS, green muscle disease, and sudden death syndrome (SDS) to name 

only a few. Furthermore, none of these studies have attempted to explain the 

physiological processes which result in the observed changes due to supplemented ω-3s, 

and few have considered differences in gene expression. Investigation of these processes 

utilizing multi-disciplinary approaches will help determine the extent to which 

nutritional modulation of ω-6:3 fatty acid ratios can influence oxidative stress in the 

muscle. 
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1.5. Motivation for the Current Research and Outcomes 

As detailed previously, the most commonly observed theme in WB is a state of 

oxidative stress in the pectoralis major; the origins and implications of the offending 

ROS remain unknown to date. Furthermore, the intracellular calcium buildup and 

NADH displacement indicate dysfunction of the oxidative metabolism machinery and a 

severe threat to cellular health. This work proposes to utilize current "omics" 

technologies to determine both the origins and implications of this oxidative stress and 

its actions in the pathogenesis of WB. In this thesis, I achieved this objective using a 

combination of live-animal experiments, generation of molecular data, as well as 

bioinformatics approaches in a comparative framework. First, I completed a comparative 

analysis including chicken from multiple varieties (differing growth profiles) to explore 

transcriptional and genomic changes due to WB in both nuclear and mtDNA. Second, I 

used live animal experiments to determine the effects of omega ratios on the molecular 

signatures of wooden breast. Through these observations, a clear view of nutritional, 

age, and genetic interactions was developed. Altogether, the new knowledge generated 

here will help in the discovery of solutions for WB. 
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2. INSIGHTS INTO THE MOLECULAR BASIS OF WOODEN BREAST BASED ON 

COMPARATIVE ANALYSIS OF FAST- AND SLOW-GROWTH BROILERS 

2.1. Background 

The domestic chicken (Gallus gallus domesticus) is a major agricultural species and 

a popular source of animal protein around the world. In the United States, chicken breast 

is the most consumed meat – per capita consumption surpassed 41kgs in 2015 (source: 

US Poultry) – and the broiler industry has a substantial economic footprint ($30 

billion/year). Consumption of poultry has increased in step with human population 

growth as well as changes in consumption habits (OECD and FAO, 2017). While 

demand continues to grow, production is under enormous stress due to a variety of 

disorders (ascites, fatty liver disease) and meat quality issues such as green muscle 

disease and wooden breast (Siller, 1985; Scheele, 1997; Kuttappan, 2012; Kuttappan et 

al., 2012, 2013). Of these, wooden breast (WB) is the most recent problem that is 

negatively impacting breast meat quality. WB is a muscle condition which has been 

categorized as a breast myopathy from the well documented history of myopathies in 

broilers. The frequency of WB has risen steadily over the last five years, being reported 

globally with reduced consumer acceptability (Tasoniero et al., 2016) linked to 

economic losses (Tijare et al., 2016; Zambonelli et al., 2016).  WB has become 

prominent within the last decade and has been reported to affect over 50% of 

commercial flocks (Abasht et al., 2016; Sihvo et al., 2017), but accurate estimates of 

global incidence are not known.  
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Pectoral myopathies are not new in broiler poultry species, and broiler chicken 

particularly have a well-documented history of dystrophies and myopathies, including 

pectoral myopathies induced by physical or nutritional stress (Wight and Siller, 1980; 

Randall, 1982; Van Vleet and Valentine, 2007a). For example, Siller et al. (1978) 

reported deep pectoral myopathy in both turkeys and broiler chicken induced by 

exercise. However, WB is different from previously studied pectoral myopathies in some 

important ways; the hallmarks of WB appear to be moderate to severe degenerative 

necrosis, with varying degrees of interstitial fibrosis. While some of these features have 

been previously reported in other myopathies, the co-occurrence of localized pectoral 

myopathy with fibrosis and striations has not been observed previously in broilers. WB 

is often observed in conjunction with white striping (WS), which is characterized by 

white striations that run parallel to the muscle fibers in the breast (Sihvo et al., 2017).  

These white striations can resemble marbling and are associated with increased fat and 

collagen content (Kuttappan et al., 2016). In the past, some pectoral myopathies have 

been assigned etiologies ranging from nutritional deficiency (e.g. selenium), to hypoxia 

or ionophore toxicity (Van Vleet and Valentine, 2007b; a). However, these etiologies 

have not been validated in WB. Despite intensive studies of WB, including 

histopathological analyses, serological studies, dietary interventions, gene expression, 

and metabolomics studies (Mutryn et al., 2015; Abasht et al., 2016; Cruz et al., 2017; 

Radaelli et al., 2017; Papah et al., 2017; Griffin et al., 2018), the causative factors of WB 

remain unknown.  
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Both WB and WS demonstrate varying degrees of severity and have been identified 

in multiple commercial varieties. Recent studies have described WB as a polyphasic 

myodegeneration (Sihvo et al., 2017), presenting lymphocytic phlebitis (Sihvo et al., 

2017; Papah et al., 2017). The only common explanatory factor appears to be the growth 

rate of commercial broilers, with the most severe cases found in the heaviest male birds 

(Velleman, 2015; Griffin et al., 2018). Kuttappan et al (2012) reported that the rapid 

growth rate and high-energy diets both increase incidence of WS. A similar trend is 

observed with WB. Since 2000, average broiler weights have increased by 3 kg (6.5 lbs), 

representing a 55% increase (Source: U.S. Poultry). Due to the high value of breast meat 

in proportion to total carcass, increasing incidence and severity of WB translates into 

greater economic losses (Bailey et al., 2015). 

While selective breeding for performance traits (e.g. growth rate, feed efficiency) 

and advances in nutrition, are largely responsible for growth rate improvements in 

broilers, it is not known whether WB, which is associated with growth rate, has a genetic 

basis. Recent studies have used gene expression (RNAseq) and metabolomics analyses 

to characterize WB (Mutryn et al., 2015; Abasht et al., 2016; Zambonelli et al., 2016), 

but these investigations have not been informative about the  underlying cause(s) of WB. 

Whereas a previous report suggested low heritability for WB (Bailey et al., 2015), a 

recent report by Pampouille et al. (2018) describes the identification of quantitative traits 

loci (QTL) for WS in high-yield broilers, and further concludes that WS is a polygenic 

condition, supporting the hypothesis for a genetic basis for WB and WS.  
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In this study, the objective was to utilize comparative analyses to illuminate the basis 

of WB and to characterize its similarity to other known conditions. This study also 

evaluated the evidence for supposition that WB is a muscle myopathy. We addressed 

this objective by comparative transcriptomic analyses of WB samples against various 

genotypes/phenotypes, followed by pathway analyses and tests for enrichment of 

canonical pathways. This study did not specifically focus on molecular features of 

WB/WS co-occurrence, and hence we do not draw inferences regarding WS. Altogether, 

our study indicates that a) WB is an age-dependent disorder driven by transcriptional 

dysregulation in fast-growth broilers, and b) that WB molecular profiles suggest a 

complex syndrome potentially involving multiple organ systems. These results suggest a 

genetic basis to WB and emphasize the importance of deeper studies of the mechanistic 

basis of WB. These findings also suggest that WB is a condition with potential 

consequences for whole organism health. 

2.2. Materials and Methods 

2.2.1. Study Design and Source of Data 

In this study, transcriptome data was generated from birds exhibiting WB, which was 

then analyzed comparatively with data generated for previous slow- and fast-growth 

broiler gene expression studies and published in the peer reviewed literature. The details 

of these samples, with links to original studies, are provided in Table 2.1. It is important 

to note that these studies focused on breast tissue specific gene expression and to our 

knowledge, WB was not the explicitly stated subject of investigation. However, a subset 

of these studies used modern commercial broilers, therefore we cannot be certain that 
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they were unaffected by WB; and based on the high frequency of WB in commercial 

broiler flocks (Cruz et al., 2017) it is likely that these samples include WB affected 

individuals.  

To determine how the genetic background for growth profile drives the molecular 

signatures of WB, it is necessary to compare expression profiles across ages and genetic 

strains. WB has been reported in fast-growth broilers as early as two weeks of age, but 

with the most dramatic changes in severity occurring in the final three weeks before 

slaughter (Kuttappan et al., 2016; Radaelli et al., 2017). Therefore, we compared gene 

expression of pectoralis major muscle tissue from fast- and slow-growth broilers. While 

WB has been reported from all major commercial broiler strains, WB has not been 

reported in slow-growth and heritage broilers to date.  

Secondly, as WB severity has been reported to increase with age and weight, we 

compared expression profiles among pectoralis muscle tissues from different age 

categories of both fast- and slow-growth. To answer these questions, we used a 

combination of data generated in house (reported above) in addition to reusing publicly 

available sequence data (NCBI Short Read Archive) that matched our analysis criteria. 

In total, nine publicly available datasets from six previously published studies were 

included in these comparisons (Table 2.1). In each instance, we selected studies that 

generated RNAseq data from the breast tissue, were sequenced on the Illumina platform, 

and were not from a pathogen challenge experiment. Three datasets were from an 

environmental ammonia challenge study, using the 42-day old broilers of the Arbor 

Acres strain (Aviagen, sample prefix ARAC). While these treatments influence their 
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gene expression profiles, our analyses showed that these three sample groups cluster 

together with other 42-day old fast-growth broilers. The inclusion of data from this 

experiment did not change the hierarchical clustering and separation of sample 

transcriptome profiles by performance and age profile; hence we retained all three 

datasets in further analyses. 

 
 
 
 
Table 2.1 Summary of data used in comparative analysis, including information of chicken 
breed, tissue type, age of birds at sampling, SRA accession info, and authors of original study. 

SRA 
accession 

ID Chicken Breed/variety Breed Type 
Tissue 
Type 

Age of bird at 
sampling Authors 

PRJNA339
392 Arbor Acres Commercial Broiler 

Pectoralis 
major 42 days 

Yi et al, 2016 
[77] 

PRJNA342
997 WC and WRR Heritage Broilers 

Pectoralis 
major 

120 and 180 
days 

Qui et al, 
2017 [78] 

PRJNA294
010 

Recessive White Rock 
(WRR) & Xinhua Heritage & Indigenous 

Pectoralis 
major 42 days 

Chen et al. 
[79]  

PRJNA273
416 

Ross 708 & Illinois 
Chickens 

Commercial Broiler & 
Legacy Breed 

Pectoralis 
major 6 and 21 days 

Davis et al, 
2015 [80] 

PRJNA266
323 WRR & XH Heritage & Indigenous 

Pectoralis 
major 42 days 

Ouyang et al, 
2015 [81] 

WRR: White Recessive Rock, WC: Wenchang Chicken, XH: Xinghua Chicken 

 
 
 
 
2.2.2. Sample Collection and RNA Extraction 

Live animal studies and euthanasia procedures performed in-house were approved by 

the Texas A&M University’s Animal Care and Use Committee (assurance number 2016-

0065). Breast tissue samples were collected from eight, 42-day old chickens of a high-

yielding commercial broiler strain. Animals for this study were obtained from a 

commercial broiler hatchery. The birds in the study were from an all-male flock and 
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raised on a three-phase industry standard diet. Two birds were randomly sampled from 

each of four replicate pens, containing 40 birds each. Birds were examined by palpation 

of the pectoralis major muscle prior to euthanasia. This approach has been used as a 

diagnostic method in several recent published studies (Mutryn, 2015; Abasht et al., 

2016; Clark and Velleman, 2016). Birds were then euthanized by CO2 exposure 

followed by cervical dislocation and dissected for collection of tissues for genetic 

analysis. The pectoralis major and pectoralis minor muscles were then examined for 

gross lesions and hardness of the muscle. Individual samples were classified as either 

WB+ or WB- based on observed hardness of breast tissue and the absence of other 

visible abnormalities.  

While histological analyses have also been used for WB classification, they are 

perhaps more applicable for resolution of severity, rather than a diagnostic for presence-

absence of WB. Furthermore, histological classification of breast tissue as ‘normal’ has 

not been found to be diagnostic of WB at the molecular level (Sihvo et al., 2017; 

Kuttappan et al., 2017). While it has been noted that WB and WS co-occur frequently, 

this study was focused on WB, and therefore did not specifically classify tissue for WS 

presence or severity. Of the eight individual birds sampled this way, six birds were 

classified as severe (WB+) based on palpation and gross lesions, whereas two other 

samples were less severe cases (WB-). Owing to the poor correlation between 

physical/histological and molecular markers of WB, all birds sampled in this study were 

classified into the WB group. Moreover, as the goal was to compare expression patterns 
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across genotypic backgrounds, this grouping allowed better resolution through increased 

biological replication of the WB group.  

Tissue of size approximately 1cm3 was excised from the distal portion of the 

pectoralis major with a scalpel and immediately stored in RNAlater (Ambion Inc). After 

24 hours of incubation at 40C, the excess RNAlater was removed and samples were 

stored at -800C until further processing. Total RNA was extracted from about 30mg of 

the tissue using the RNEasy Mini Kit (Qiagen Inc). Samples were checked for RNA 

quality and concentration on a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher 

Scientific). 

2.2.3. RNA Sequencing and Transcriptome Analysis 

Total RNA isolates were submitted for library preparation and RNA-sequencing at 

the AgriLife Genomics and Bioinformatics Center (Texas A&M University). Sample 

libraries were prepared by performing DNAse digest, followed by poly-A selection for 

mRNA molecules. Individual mRNA isolates were then pooled into three sample 

libraries – namely one library comprising two WB- samples, and two libraries each 

comprising three WB+ samples.  These three sets of pooled samples were used for strand 

specific library preparation and the libraries were sequenced with 125bp single end 

sequencing.  

The 11 datasets, including the in-house generated and downloaded datasets, were 

then processed identically. In brief, the raw RNAseq data was filtered for adapter 

contamination and quality trimmed using the program Trimmomatic (Bolger et al., 

2014). Reads with average quality scores less than Q30 and/or shorter than 20bp in 
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length were discarded. High-quality reads were mapped to the Gallus gallus genome 

(Version 4.8, Ensembl Release 85, July 2016) using the short-read de-novo splice 

mapper STAR (Dobin and Gingeras, 2015, 2016), followed by counting of transcripts 

mapped to the ‘exon’ features using the tool HTSeq (Anders et al., 2015). The counts 

data for each sample were then compared for statistical significance using the EdgeR 

package on the R statistical platform (Robinson et al., 2010). First, low expressed genes 

across all libraries (CPM <2) were filtered out. Next, normalization factors were 

calculated for differences in library sizes, followed by estimation of common and then 

tagwise dispersion (GLM). We used the package COMBAT to check and correct for 

batch effects (Johnson et al., 2007; Nygaard et al., 2016). The quasi-likelihood based 

‘glmQLFTest’ function was used to perform tests for significance between expression 

values among treatments. The QLF approach is known to provide greater protection 

against Type I error and can handle unbalanced designs better than exact tests.  

A total of 10 pairwise contrasts were performed between WB data (generated in 

house) and downloaded broiler transcriptome data. Following the analyses in EdgeR, 

topTag tables were used interpretation and pathway analyses. For each of the 10 

differential expression results, pathway analyses were performed using the Ingenuity 

Pathway Analysis platform (Qiagen Inc.). Only genes significant at FDR <0.05, and with 

Log2FoldChange smaller than -0.5 or greater than 0.5 were included in pathway 

analyses. Finally, the results from pathway core analyses (10 datasets) were all included 

in a ‘Comparison Analyses’ on the IPA platform, to characterize similarity of 

expression, shared canonical pathways, upstream regulators, and diseases. 
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2.2.4. Differential Expression Between Fast-Growth versus Slow-Growth Broilers 

A secondary differential gene expression analysis was performed by grouping all the 

modern commercial broilers as the Fast-Growth Commercial Broiler (FGCB), and by 

grouping the Weichang (WC) and White Recessive Rock (WRR) samples as the Slow-

Growth Heritage Broiler (SGHB). The Illinois strain and the hybrid WRR-XH crosses 

were left out of this comparison as they are neither a heritage breed nor a commercial 

variety. Differential expression analysis and pathway analysis was performed in the 

same way as described above. 

2.2.5. Variant Analysis with RNAseq Data 

A total of 54 sequence libraries (.fastq), including the 8 generated for this study, 

were used to generate variant calls and to identify shared and unique SNP variants 

among the breeds included.  The Genome Analysis Toolkit (Van der Auwera et al., 

2013) best practices pipeline for variant calling from RNAseq data was used to generate 

a set of high-quality variants for each sample using hard filtering. Briefly, STAR aligned 

reads (same used for differential expression analysis) were first processed to add read 

information and to mark duplicates using the tool Picard (Horner et al., 2010). Binary 

alignment files were then fed into HaplotypeCaller, followed by selection of SNP 

variants, and variant filtration. SNPs occurring in clusters within 35bp were filtered out, 

as were variant calls with Qual By Depth (QD) score <5, and Fisher strand bias > 35. 

The resultant set of high quality variants obtained this way were passed into the variant 

effect prediction software SnpEff (Cingolani et al., 2012). Variants annotated as having a 

‘High’ impact modifier by SnpEff were used for comparison among samples. Due to the 
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variability in sequencing library size and depth of coverage, differences in number of 

variants were expected. Therefore, to account for potential bias arising from differences 

in sequencing depth, high-impact variants were compared only between the FGCB 

group, and the SGHB group. The combined high-impact variant list was generated by 

pooling all variants by ENSEMBL gene ID and removing duplicates. 

2.3. Results 

2.3.1. Global Gene Expression Patterns Are Explained by Growth Rate and Age 

Across the 10 datasets, a total of 12,202 genes were expressed above threshold 

(CPM=>2) and were included in both the differential expression and pathway analyses. 

An ordination analysis using Non-metric Multidimensional Scaling (NMDS, Figure 2.1) 

showed that fast-growth breeds (ARAC, COB, ROSS and WR-XH Cross) overlapped 

each other, with younger (6 and 21 day old) fast-growth broilers being less proximate to 

WB samples, compared to 42 day old broilers (ARAC), indicating a clear age based 

expression similarity. The Illinois and Ross breeds (6 and 21 day old) both clustered by 

age and also by breed, showing a clear age-based segregation from 42-day old 

commercial broilers. The slow-growth breeds (WC and WRR, 120 day and older) 

formed clusters distinct from the fast-growth broilers. Furthermore, all WB samples 

formed a tight cluster, validating the observation that birds without obviously tangible 

WB symptoms are, nonetheless, not different at the molecular level. Therefore, birds 

from the same genetic background may not be suitable as a negative control (Figure 2.2).  
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Figure 2.1 Non-Metric Multidimensional Scaling plot of the RNAseq datasets in the multi-
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within groups. Commercial fast-growth broilers also appear more proximate to each other and 
are arranged from top to bottom in order of increasing age, while youngest and slowest growth 
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Figure 2.2 Hierarchical clustering heatmap of the top 100 most expressed genes, based on log CPM values, across samples. Clustering shows 
that wooden breast samples fall among Ross 21 day old and ARAC 42 old birds, with slow-growth heritage birds (WC and WRR) forming a 
distinct cluster. 
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2.3.2. Comparison of Pairwise Differential Expression Analyses 

Results from edgeR for each pairwise comparison against WB samples are 

summarized in Table 2.2 and mean-average plots for each comparison is shown in 

Figure 2.3. Complete list of differentially expressed genes with P-values for all pairwise 

comparisons are available in supplementary materials. Overall, the WC120+ and 

WRR120+ slow-growth varieties were most different from WB, based on the total 

number of differentially expressed genes (~2200). This number was approximately twice 

as high as any of the other comparisons. After the WC and WRR breeds, the Illinois 21D 

was most different (1702 genes differentially expressed), and Ross 21D being most 

similar (693 genes differentially expressed), with other comparisons falling in between. 

The three different datasets of 42-day ARAC (3 treatments in original study), were very 

similar to each other in their differences to WB (total of 1243, 1167, and 1330 DEG 

respectively). The top canonical pathways identified were also highly similar, with T-

cell receptor signaling in all three comparisons and IL-8 signaling in comparison to both 

A and C groups of ARAC. Canonical pathways explained by these DE genes showed 

that IL-8 signaling and T-cell receptor signaling were recurrent terms, but all three 

comparisons shared TGFB1 and TNF as the upstream regulators.  
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Table 2.2 Summary of results from pairwise contrasts performed among RNAseq data using edgeR. Table shows the information on 
differentially expressed genes, summary of pathway analysis using IPA, upstream regulators for each dataset, and top disease terms. 

Against Arbor acres 
42Day 

Arbor acres 
42Day 

Arbor acres 
42Day 

WRR-
XHCross WC120D+ WRR120D+ ROSS-21D ROSS-6D ILL-21D ILL-6D 

Group 1 2 3 4 5 6 7 8 9 10 
Up in 
WB 912 855 1001 372 1435 1227 438 686 1131 473 

Down 
in WB 331 312 329 249 849 894 255 482 571 789 
Total 
DE 1243 1167 1330 621 2284 2121 693 1168 1702 1262 
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Figure 2.3 Mean-Average plots for analysis of differentially expressed genes for each 
pairwise comparison performed against the wooden breast sample set. Points in red 
show the genes that were expressed at <-2 logFC or > 2 logFC, with an FDR <0.05 
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Comparing WB to Ross 708 (6 and 21 day old) showed greater differences at 6 days 

than at 21 days, with main pathway terms being CD28 Signaling in T-helper Cells and 

T-cell receptor signaling. Lipopolysaccharide and beta-estradiol were shared upstream 

regulators. Unlike the Ross strain, the Illinois 6- and 21-day old birds were distinct in 

their global expression profile, with greater differences to WB compared to the younger 

Ross strain birds. This observation would fit the known biology of the Illinois strain, 

which is a broiler line with a performance profile from the 1950’s.  However, pathway 

terms for these datasets still included CD28 signaling in T-helper Cells and T-cell 

receptor signaling, which were shared with the Ross strain. Both WC120+ and 

WRR120+ slow-growth breeds were most different from WB samples in the extent of 

differential expression, and with no overlap in the top three pathway terms.  

Pathway analysis of genes differentially expressed in slow growth varieties also 

yielded pathway terms that were not shared with other comparisons. Pathway analyses 

yielded hepatic fibrosis/hepatic satellite cell activation, calcium signaling, eNOS 

signaling, molecular mechanisms of cancer, NRF2 mediated oxidative stress, 

ERK/MAPK signaling, signaling by Rho family GTPases, Tec kinase signaling, and 

PI3K signaling in B lymphocytes as the top terms in ARAC (3 libraries), WRR-XH 

cross, WC120D+, WRR120D+, Ross 6D and 21D, and Illinois 6D and 21D respectively. 

Interestingly, despite the differences in the top canonical pathways identified when 

comparing WB gene expression to that of slow growth varieties rather than fast-growth 

varieties, the upstream regulators suggested by this differential gene expression include 

the same terms. Diseases identified by the differential gene expression of each 
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comparison evaluated included the same terms: Cancer, organismal injury, and 

gastrointestinal disease, with only one comparison indicating neurological disease. 

Finally, the common occurrence of T-cell receptor signaling and IL-8 Signaling suggest 

that molecules activated in these pathways may be suitable as biomarkers for detecting 

WB. 

2.3.3. Multi-sample Comparison Analysis 

The multi-sample comparison analysis allows identification of similarities and trends 

occurring across multiple datasets, specifically, identification of functions 

overrepresented across datasets. Pathways are considered significant if a greater number 

of molecules associated with a pathway are expressed than expected by chance.  Based 

on the pathways with highest -log(P-values) and activation Z-scores, the top shared 

canonical pathways were T-cell receptor signaling, CD28 signaling in T-helper cells, and 

signaling by Rho family of GTPases. The top 50 pathway and disease terms are shown 

in Table 2.3. The top upstream regulators were TGFb1, TNF and TP53 and beta-

estradiol. The comparison feature also generated a list of the top diseases and disorders; 

the top three disease terms that emerged from the consensus of the multi-sample 

comparison were Cancer, Abdominal Neoplasm and Solid Malignant Tumor. None of 

these top 100 disease terms pointed to muscle myopathies or other musculoskeletal 

disorders. Finally, the top disease signaling pathways were Cancer, MAPK and the P53 

pathways. 
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Table 2.3 List of top 50 canonical pathway terms, and diseases and disorders identified from 
comparison analysis. In this analysis, multiple DEG datasets are compared to identify common 
pathway terms that are found more often than expected by chance. 

Ranked by -
log(P) Diseases and Disorders Canonnical Pathways 

1 T Cell Receptor Signaling Cancer 

2 CD28 Signaling in T Helper Cells abdominal neoplasm 

3 Signaling by Rho Family GTPases cancer 

4 Phospholipase C Signaling solid tumor 

5 Axonal Guidance Signaling malignant solid tumor 

6 Tec Kinase Signaling adenocarcinoma 

7 

FcÎ³ Receptor-mediated Phagocytosis in Macrophages and 

Monocytes digestive system cancer 

8 FXR/RXR Activation digestive organ tumor 

9 Germ Cell-Sertoli Cell Junction Signaling abdominal cancer 

10 CTLA4 Signaling in Cytotoxic T Lymphocytes non-melanoma solid tumor 

11 Semaphorin Signaling in Neurons tumorigenesis of tissue 

12 

Regulation of IL-2 Expression in Activated and Anergic T 

Lymphocytes neoplasia of epithelial tissue 

13 Phagosome Formation carcinoma 

14 GP6 Signaling Pathway 

malignant neoplasm of large 

intestine 

15 Role of Tissue Factor in Cancer intestinal cancer 

16 B Cell Receptor Signaling large intestine neoplasm 

17 

Production of Nitric Oxide and Reactive Oxygen Species in 

Macrophages intestinal tumor 

18 Calcium-induced T Lymphocyte Apoptosis large intestine adenocarcinoma 

19 Primary Immunodeficiency Signaling large intestine carcinoma 

20 Colorectal Cancer Metastasis Signaling intestinal carcinoma 

21 Leukocyte Extravasation Signaling gastrointestinal carcinoma 

22 PI3K Signaling in B Lymphocytes gastrointestinal tract cancer 

23 LXR/RXR Activation gastrointestinal neoplasia 

24 Ephrin B Signaling necrosis 

25 Cardiac Î²-adrenergic Signaling cell death 

26 RhoGDI Signaling apoptosis 

27 CXCR4 Signaling organization of cytoskeleton 

28 Protein Kinase A Signaling organization of cytoplasm 

29 Î±-Adrenergic Signaling organismal death 

30 Opioid Signaling Pathway morbidity or mortality 

31 Breast Cancer Regulation by Stathmin1 liver lesion 

32 Integrin Signaling abdominal carcinoma 

33 Acute Phase Response Signaling 

tumorigenesis of epithelial 

neoplasm 

34 iCOS-iCOSL Signaling in T Helper Cells abdominal adenocarcinoma 

35 PKCÎ¸ Signaling in T Lymphocytes 

tumorigenesis of malignant 

tumor 

36 Glioma Invasiveness Signaling tumorigenesis of carcinoma 

37 Paxillin Signaling morphology of cells 

38 ILK Signaling morphology of body cavity 

39 Th1 and Th2 Activation Pathway migration of cells 

40 Role of JAK1 and JAK3 in Î³c Cytokine Signaling cell movement 

41 G-Protein Coupled Receptor Signaling liver carcinoma 
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Table 2.3 Continued 
Ranked by -log(P) Diseases and Disorders Canonnical Pathways 

42 Th2 Pathway liver tumor 

43 Hepatic Fibrosis / Hepatic Stellate Cell Activation liver cancer 

44 Sirtuin Signaling Pathway hepatobiliary system cancer 

45 Hereditary Breast Cancer Signaling breast or colorectal cancer 

46 Superoxide Radicals Degradation genital tract cancer 

47 Fc Epsilon RI Signaling pelvic tumor 

48 GÎ±i Signaling pelvic cancer 

49 Complement System genitourinary tumor 

50 Virus Entry via Endocytic Pathways urogenital cancer 

 

 

 

2.3.4. Fast-Growth versus Slow-growth Differential Expression 

For this analysis, commercial broiler strains (ARAC, ROSS, WB) were included in 

the fast-growth commercial broiler (FGCB) group and the WC120+ and WRR120+ 

strains were grouped into the slow-growth heritage broilers (SGHB) group. This 

particular analysis was designed to separate out those genes that are upregulated or 

downregulated in FGCB irrespective of age, with the supposition that genes associated 

with the onset and progression of WB in fast-growth strains would be found across age 

categories (6 days to 42 days). A total of 11,766 genes were expressed above a threshold 

(CPM=>2), of which 6406 were differentially expressed (FDR<0.05, LogFC < -0.05 and 

>0.05). Of the total differentially expressed genes, 6168 genes were significantly 

downregulated in FGCB. These differentially expressed genes were then analyzed in 

IPA to identify canonical pathways and diseases/disorders. The top three canonical 

pathways based on -log(P) values were Mitotic Roles of Polo-like Kinase, ILK 

Signaling, and ERK/MAPK signaling. As observed with other pairwise comparisons, the 

main disease terms were Cancer, Solid Malignant Tumors, and Gastrointestinal Disease. 
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2.3.5. Variant Discovery from RNAseq Data 

Variant calling and filtering of the datasets yielded average SNP calls of 79,539, and 

83,902 for the FGCB and SGHB groups respectively. The individual variant calls were 

merged using GATK CombineVariants to generate a consolidated (merged) set of 

709,959 and 279,339 high quality SNPs in FGCB and SGHB respectively. This 

difference in total variants was driven mainly by differences in the number of samples 

included in each group - namely 25 and eight for FGCB and SGHB respectively. The 

multi-sample VCFs annotated with snpEff to identify effects of the variants and to 

categorize impacts yielded 395 and 158 high-impact variants in FGCB and SGHB 

respectively. Overall, the proportions of effected features, and functional impacts, were 

evenly matched (Table 2.4) except where noted. Modifier effects (changes outside 

coding regions) was the most frequent effect, which was higher in FGCB compared to 

SGHB. High-impact variants which signify impacts within the coding sequences (e.g. 

frameshift, stop gained, stop lost), were of equal proportion in both groups, whereas both 

moderate, and low-impact variants were more frequent in SGHB.  

Of the total high-impact variants, 37 were shared among all three fast-growth breeds 

(ARAC, Ross, WB), whereas 35 were shared among the two slow-growth breeds 

(WC120+ and WRR120+). Of these 72-total high-impact variants, 14 were found in both 

the slow and fast-growth breeds, leaving 23 unique high-impact variants in FGCB, and 

21 unique high-impact variants in SGHB (Table 2.5). The membership of both lists are 

rich in genes involved in cell signaling, cell proliferation, and cellular response to stress 

(including hypoxia). Particularly notable genes with high-impact variants unique to the 
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FGCB group are SPEG, NPEPPS, and THYN1. These genes are involved in myocyte 

cytoskeletal development, linked to the cellular response to hypoxia, and associated with 

the induction of apoptosis, respectively. Notable genes with high-impact variants in the 

SGHB group were two myosin heavy chain genes (MYH1A, and MYH1B) and dystonin 

(DST). These genes are involved in motor activity and actin filament binding, and the  

assembly of collagen fibrils, respectively. 

 

 

 

Table 2.4 Comparison of variant effect prediction between the slow-growth heritage broilers 
(SGHB), and the fast-growth commercial broilers (FGCB). Results from snpEff based on high-
quality SNP variants are shown. Colored boxes highlight notable differences in predicted 
effects for any category. Green colored boxes show elevated frequency of effects that are less 
likely to be cause negative impacts, whereas red shaded boxes show elevated frequency of 
phenotype-changing effects.   

Group   SGHB FGCB 

  Type   Count   
Percent   Count   

Percent  

Effects by impact 

HIGH  158 0.03% 395 0.03% 

LOW  60566 11.67% 94998 8.01% 

MODERATE  17001 3.28% 30856 2.60% 

MODIFIER  441262 85.02% 1059364 89.35% 

Effects by functional class 

MISSENSE  17021 22.22% 30907 25.17% 

NONSENSE  50 0.07% 97 0.08% 

SILENT  59514 77.71% 91795 74.75% 

Missense - Silent ratio 0.286   0.336696   

 Count by effects 

3 prime UTR variant  53496 10.29% 82491 6.94% 

5 prime UTR premature start codon 

gain variant  
544 0.10% 1302 0.11% 

5 prime UTR variant  3529 0.68% 8050 0.68% 

downstream gene variant  143715 27.65% 292411 24.60% 

initiator codon variant  1 0.00% 6 0.00% 

intergenic region  109334 21.03% 255700 21.51% 

intron variant  70624 13.59% 268782 22.61% 

missense variant  17001 3.27% 30856 2.60% 
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Table 2.4 Continued 
Group   SGHB FGCB 

  Type   Count   
Percent   Count   Percent  

 Count by effects 

non canonical start codon  0 0.00% 1 0.00% 

non coding exon variant  169 0.03% 369 0.03% 

splice acceptor variant  36 0.01% 107 0.01% 

splice donor variant  57 0.01% 152 0.01% 

splice region variant  837 0.16% 3099 0.26% 

start lost  9 0.00% 21 0.00% 

stop gained  50 0.01% 97 0.01% 

stop lost  10 0.00% 25 0.00% 

stop retained variant  24 0.00% 36 0.00% 

synonymous variant  59490 11.44% 91758 7.72% 

upstream gene variant  60901 11.72% 153487 12.91% 

Count by genomic region 

DOWNSTREAM  143715 27.69% 292411 24.66% 

EXON  76508 14.74% 122280 10.31% 

INTERGENIC  109334 21.07% 255700 21.57% 

INTRON  70124 13.51% 266869 22.51% 

SPLICE SITE ACCEPTOR  36 0.01% 107 0.01% 

SPLICE SITE DONOR  53 0.01% 145 0.01% 

SPLICE SITE REGION  747 0.14% 2771 0.23% 

UPSTREAM  60901 11.73% 153487 12.95% 

UTR 3 PRIME  53496 10.31% 82491 6.96% 

UTR 5 PRIME  4073 0.78% 9352 0.79% 

 

 

 

2.3.6. Overlap of High Expression and High-Impact Variants 

Genes with high-impact variants in either FGCB or SGHB were cross referenced 

against the list of significantly differentially expressed genes between the two groups. 

Twenty-three of the total 45 genes were also found to be significantly differentially 

expressed (Table 2.5). Genes that were up- or down-regulated in FGCB were found in 
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both high-impact variant lists. Interestingly, 17 of the 21 genes with high-impact variants 

in SGHB were also significantly differentially expressed, suggesting both a mechanistic 

and functional role for these genes. 

 

 

 

 

Table 2.5 Lists of top high-impact variants in both the fast-growth commercial broilers, and 
slow-growth heritage broiler group. Highlighted genes are those that were also significantly 
differentially expressed in comparison of Fast versus Slow groups. The directionality of 
regulation is also shown highlighted for differentially expressed genes. 

HI Variants Unique 
to FGCB 

DG
E Direction Description Function 

ATAD5 

Not 

DE   

ATPase family AAA domain-containing 

protein 5  Immunoglobulin prouction 

C10orf71 

Not 

DE   chromosome 10 open reading frame 71 Unknown 

CELSR1 

Not 

DE   

Cadherin EGF LAG seven-pass G-type 

receptor 1 Calcium Ion Binding 

CUEDC1 

Not 

DE   CUE domain containing protein Downregulation of Estrogen Receptor 1 

DECR1 

Not 

DE   2,4-dienoyl-CoA reductase 1 fatty acid beta-oxidation 

ENSGALG00000004

746 

Not 

DE   Uncharacterized Unknown 

ENSGALG00000022

316 

Sig 

DE 

Down in 

FGCB C-type lectin family member Fucose/Mannose Binding 

ENSGALG00000023

351 

Sig 

DE 

Down in 

FGCB Small Integral Membrane Protein Unknown 

ENSGALG00000023

846 

Not 

DE   Uncharacterized Unknown 

ENSGALG00000026

688 

Not 

DE   Uncharacterized Unknown 

KIFC1 

Not 

DE   Kinesin-like protein KIFC1 ATPase activity 

MYCBPAP 

Not 

DE   MYCPG-Associated Protein Cell differentiation 

NES 

Sig 

DE   NEST Protein intermediate filament binding 

NPEPPS 

Not 

DE   Puromycin-sensitive aminopeptidase Cellular response to hypoxia 

OGFR 

Not 

DE   Opioid growth factor receptor Regulation of cell growth 

PKD1 

Not 

DE   

polycystin 1, transient receptor potential 

channel interacting Regulation of calcium channels 

RFC4 

Not 

DE   replication factor C subunit 4 DNA-dependent ATP-ase activity 

SPEG 

Sig 

DE 

Up in 

FGCB SPEG Complex locus Myocyte cytoskeletal development 

STAT1 

Sig 

DE 

Up in 

FGCB 

Signal transducer and transcription 

activator Mediates cell viability in response to stress 

THYN1 

Sig 

DE 

Up in 

FGCB Thymocyte Nuclear Protein Induction of apoptosis 

TMEM108 

Sig 

DE 

Down in 

FGCB Transmembrane Protein 

cellular response to brain-derived 

neurotrophic factor stimulus 

tvb 

Not 

DE   TNF-related apoptosis inducing ligand 

Tumor necrosis factor-activated receptor 

activity 

WIPI1 

Not 

DE       
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Table 2.5 Continued 
HI Variants Unique 

to SGHB DGE Direction Description Function 

BFIV21 

Not 

DE   MHC Class 1 component Metal ion binding 

Blec2 

Sig 

De 

Up in 

FGCB C-type Lectin Like Receptor 2 Inhibition of natural killer cytotoxicity 

C2CD5 

Sig 

DE 

Up in 

FGCB 

C2 Calcium Dependent 

Domaning Containg 5 

Calcium bion binding and calcium-dependent 

phospholipid binding 

CASP10 

Sig 

DE 

Up in 

FGCB 

Cystein-Aspartic Acid protease 

family Regulation of apoptosis 

CCNL1 

Sig 

DE 

Up in 

FGCB Cyclin gene family member 

pre-mRNA splicing and regulation of RNA 

polymerase II 

CIRH1A 

Not 

DE   Ribosome biogenesis factor nucleolar processing of pre-18S rRNA 

DST 

Sig 

DE 

Up in 

FGCB Dystonin  Cytoskeletal linker protein 

ENSGALG000000020

67 

Sig 

DE 

Down in 

FGCB Mannosyltranferase activity Mannosylation of lipid-linked oligosaccharides 

ENSGALG000000218

35 

Sig 

DE 

Up in 

FGCB Uncharacterized Unknown 

ENSGALG000000285

51 

Sig 

DE 

Up in 

FGCB Glutathione transferase Cellular defense against toxic compounds 

Lpin1 

Not 

DE   Lipin 1 phospatidate phosphatase Fatty acide metabolism, transcription regulation 

MYH1A 

Sig 

DE 

Down in 

FGCB 

myosin, heavy chain 1A, skeletal 

muscle 

Microtubule motor activity, actin filament 

binding 

MYH1B 

Sig 

DE 

Down in 

FGCB 

myosin, heavy chain 1B, skeletal 

muscle 

Microtubule motor activity, actin filament 

binding 

RPL12 

Not 

DE   
ribosomal protein L12 

Ribosomal large subunit assembly 

SLC9A2 

Sig 

DE 

Up in 

FGCB 

solute carrier family 9 member 

A2 

Proton extrusion, regulation of pH, sodium 

absorption 

STAMBP 

Sig 

DE 

Down in 

FGCB 
STAM binding protein 

Zinc metalloprotease activtity 

STRN3 

Sig 

DE 

Up in 

FGCB 
striatin 3 

Calcium dependent calmodulin binding 

SULT1E1 

Not 

DE   
Sulfotransferase 

Sulfate conjugation of estradiol and estrone 

TLN1 

Sig 

DE 

Down in 

FGCB 
talin-1 

actin filament binding 

WRAP73 

Sig 

DE 

Down in 

FGCB 

WD repeat containing, antisense 

to TP73 Regulation of mitotic spindle assembly 

ZDHHC5 

Not 

DE   
palmitoyltransferase ZDHHC5 

Palmitoyltransferase activity 

 

 

 

2.4. Discussion 

The hierarchical clustering  of the pairwise differential expression analysis, and the 

100 top pathway terms shared across the 10 comparisons showed that there is a clear age 

based clustering pattern; all 42 day old broilers (ARAC) cluster together, and based on 

the Z-score and P-values, are more similar to WB+ tissue in their gene expression 
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profiles and the pathways they activate. On the other hand, younger birds (6 and 21 day 

old) of slow and fast-growth breeds, and older birds of slow-growth breeds cluster 

together and separately from the 42-day old broilers. Interestingly, these results show 

that young broilers (Ross and Illinois 6 and 21 day old) and the slow-growth varieties 

(WC, WRR strains) appear to have a similar gene expression pattern, in contrast to 42-

day old broilers. In summary, the comparison of pathways from multiple pairwise 

comparisons show that age, first, and then growth rate (broiler strain) are the main 

functional differentiators of WB tissue. The differentiation of the 120+ day old slow-

growth broilers and 6 and 21 day old fast-growth broilers is especially notable, as they 

show that a) molecular signatures associated with WB are unique to older, fast-growth 

broilers, and b) that 21 day old modern broilers (Ross 708) are less similar to 21 day old 

Illinois breed than to 42 day old commercial broilers. These two points suggest an age-

dependent transcriptome dysregulation in WB, which progresses with age, somewhere 

between the first and third week of life. This conclusion is similar to that reached by 

Griffin et al. (2018).  

While gene expression and ontology analyses show which specific genes and 

molecular functions are involved in WB, design of appropriate remediation strategies 

requires a better resolution of the similarity of WB to known diseases. A clear 

understanding of diseases and conditions explained by gene expression patterns is 

necessary to narrow down specific endogenous as well as environmental factors driving 

WB. Specifically, we wanted to answer whether WB tissue expression patterns point to 

muscle myopathies, or whether such patterns are indicative of other conditions. While 
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genes important in muscle growth and cell differentiation are up-regulated in WB tissue, 

the totality of expressed genes and pathways show little support for myopathy as the 

underlying condition.   

One notable cause for concern is the repeated occurrence of regulators and pathways 

that suggest neoplastic disorders. Upregulation of glycolysis, which was observed as the 

main pathway classifier in the same-background comparison is considered a “near-

universal property” of primary and metastatic cancers (Gatenby and Gillies, 2004; 

Ganapathy-Kanniappan and Geschwind, 2013; Sajnani et al., 2017; Han et al., 2017). 

Oxidative stress and impaired glycolysis can both arise due to mitochondrial 

dysfunction. Multiple studies have confirmed the transcriptomic (Mutryn et al., 2015; 

Zambonelli et al., 2016) and metabolomic signatures of oxidative stress in WB (Abasht 

et al., 2016), and have also suggested mitochondrial dysfunction (Kong et al., 2017). 

Furthermore, genes important in glycolysis, angiogenesis, and apoptosis (up-regulated in 

WB) are transcriptionally regulated in hypoxic conditions (Brown and Wilson, 2004; 

Pouysségur et al., 2006), that are typical of tissue under oxidative stress.  

The individual and comparison pathway analyses provided many of the same terms 

as being important among comparisons. The top pathways based on activation Z-score 

were T-cell receptor signaling, CD28 signaling in T-helper cells, and signaling by Rho 

family of GTPases. CD28 is involved in stimulation of T-cell activation and 23 

molecules involved in this pathway were identified in the transcriptome data. CD28 

signaling is involved in glucose metabolism, activation of T-cells, and costimulation of 

immune responses (Boomer and Green, 2010). T-cell receptors bind to antigenic 
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peptides presented by antigen presenting cells and are known to respond to various 

signal transduction pathways. They may be invoked to regulate cell proliferation, 

apoptosis, and cytotoxic killing (Mitsiades et al., 2002; Zhou et al., 2007). These 

processes may be activated in woody breast in response to apoptosis and necrosis 

occurring in breast tissue. Finally, the Rho family of GTPases are involved in regulating 

various processes, including reorganization of the actin cytoskeleton in response to 

growth factors and cytokines (Moorman et al., 1999; Kjoller and Hall, 1999; Schmitz et 

al., 2000). These pathway terms indicating abnormal expression patterns that together 

affect cell signaling, cytoskeletal organization, and inflammation have all been identified 

as features of WB. As it has been previously shown through histological and enzymatic 

assay that WS/WB does not have an infectious origin (Kuttappan et al., 2013), these 

immune responses are likely directed against endogenous cell proliferation and apoptotic 

processes (resembling neoplasms). 

The disease terms from the multi-group comparison analysis in IPA also found the 

same top conditions as those found in pairwise comparisons. Many of these terms also 

invoke the digestive system (intestine, colon, liver, abdomen etc.), which is surprising 

considering all the analyses were based on differentially expressed genes in the 

pectoralis major tissue. While pathway analysis relies on over-representation or 

functional class scoring, they still rely on accurate annotations, cell specific information, 

and well described pathways for the accuracy of results (Khatri et al., 2012; García-

Campos et al., 2015). Therefore, while it is possible that other organs may be involved, 

validation of that question will depend on additional sampling and wet-lab based 
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approaches. Other locations of organismal injury notwithstanding, these terms still 

suggest some important syndromes that can be considered very concerning. The major 

diseases and disorders explained by expression patterns also suggest abnormal cell 

proliferation and cell signaling mechanisms. The comparative analysis showed that over 

80% of the top diseases identified by the pathway analyses indicate tumors, cancers and 

neoplastic conditions. Even as some caution is necessary in interpreting pathway 

analysis for chicken datasets, due to the majority of pathways described being from 

mammalian models, it has been shown repeatedly that pathway signatures do predict 

disease outcomes accurately based on shared molecular features (Yu et al., 2007; Ma and 

Kosorok, 2010; Aran et al., 2015; Shchetynsky et al., 2017). The reasons and basis for 

this similarity of WB to neoplastic disorders deserves further investigation.  

Top canonical pathways emerging from the comparison between FGCB and SGHB 

groups indicated altered activity of multiple serine/threonine kinases including polo-like 

kinase (Plk), integrin-linked kinase (Ilk), and extracellular signal regulated 

kinase/mitogen-activated protein kinase (Erk/Mapk). All three pathways are implicated 

in the regulation of the cell cycle and cell survival. Specifically, Plk is induced by 

mitogens and is most abundant during metaphase of mitosis with activities including 

chromosome segregation, centrosome maturation and spindle assembly (Nigg, 1998; Liu 

and Erikson, 2003). Plk also functions in other stages of mitosis including inactivation of 

the anaphase-promoting complex and regulation of nuclear envelope breakdown during 

prophase (Nigg, 1998; Liu and Erikson, 2003; Strebhardt and Ullrich, 2006). It has also 

been shown that depletion of Plk in cancer cells induces apoptosis and it is now 
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considered a high potential target for intervention (Liu and Erikson, 2003; Strebhardt 

and Ullrich, 2006). Ilk impacts the cell cycle and survival through activation of key 

signaling pathways and stimulation of downstream effector proteins, while Erk/Mapk is 

similarly involved by activating a number of growth factors, cytokines and transcription 

factors (Bonni et al., 1999; Wu and Dedhar, 2001; Zhang and Liu, 2002; Qian et al., 

2005). Erk/Mapk further promotes cell survival by phosphorylating and thus inhibiting 

the pro-apoptotic protein BAD (Bcl2 associated agonist of cell death) while also 

inducing the expression of cell survival genes (Bonni et al., 1999). Finally, of 

considerable interest is the ability of Ilk to anchor actin filaments to cell matrix contact 

sites, regulating changes in cell shape, cell migration, cell adhesion, as well as the ability 

to phosphorylate myosin in smooth muscle cells (Wu and Dedhar, 2001; Qian et al., 

2005). Each of these pathways plays an essential role in the regulation of cell 

proliferation, maintenance, and death which are all physiological activities that have 

been identified as perturbed in the WB condition and thus this analysis provides a 

focused framework for further investigating the underlying mechanisms of the condition. 

2.4.1. Molecular Basis of Wooden Breast 

In studies of WB, it has been observed that few live bird or carcass quality variables 

are accurately predictive of the presence of WB (Athrey et al, unpublished). For 

example, in replicate flocks of broilers of the same breed raised under identical 

conditions, no combination of rearing or dietary variables has been found to prevent WB 

occurrence (Trocino et al., 2015; Radaelli et al., 2017). Furthermore, the severity of WB 

varies within the same flock under identical conditions (Kuttappan et al., 2013). Based 
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on these observations, it appears likely that nutritional interventions, while perhaps 

useful for ameliorating severity, may be of limited utility in eliminating wooden breast. 

On the other hand, these data suggest a genetic basis underlying WB. This hypothesis 

has received recent support with the identification of QTL for WS (Pampouille et al., 

2018). While the relationships between WB and WS are not fully resolved, the co-

occurrence of these two conditions make it more likely that WB has a genetic basis.  

In this study we identified highly expressed genes that contained high-impact 

variants. This small subset of genes is involved in important cell proliferation and 

signaling functions. The identification of genes with high-impact variants that are also 

differentially expressed point towards a genetic basis that links the changes at the DNA 

level to functional expression. Such DNA variants, that are associated with expression 

differences are called Cis-acting regulatory variants, and are known to explain a 

substantial amount of phenotypic variation, as well as having a role in disease etiology 

(Pastinen and Hudson, 2004; Ongen et al., 2014; Brandler et al., 2018). In this study we 

identified a total of 44 high-impact variants, of which 21 were also significantly 

differentially expressed genes. While not all of these 21 genes may be directly affecting 

WB occurrence or severity, their expression patterns and the type of SNP modification 

make their involvement in WB highly probable. Particularly noteworthy genes identified 

in this analysis were MYH1A, MYH1B (high-impact variants in SGHB), the pair of 

which are myosin heavy chain genes. Both of these genes had ‘splice acceptor variants’ 

that may result in a different mature mRNA product and protein. These genes are 

members of a larger group of myosin genes which regulate development and function of 
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avian skeletal muscle (Camoretti-Mercado et al., 1993). Interestingly, MYH1B was also 

identified as a candidate gene for white striping in a QTL mapping study by Pampouille 

et al. (2018).  

Another pair of notable genes with high-impact variants were DST (dystonin) and 

TMEM108 (Transmembrane protein). DST was modified in SGHB, whereas TMEM108 

was modified in FGCB. DST is a cytoskeletal linker protein, which is involved in 

collagen trimerization and formation of scar tissue following injury (Dalpé et al., 1998). 

DST is known to interact with TMEM108, a gene that regulates the stability of 

microtubules, by recruiting TMEM108 for the transport of endosomal vesicles (Liu et 

al., 2007). Mutations in the DST gene have been identified as being responsible for 

hereditary neuropathy and dystonia (abnormal muscle tone) in mouse models (Ferrier et 

al., 2015). The high-impact variants and differential expression of these genes may be 

associated with the rigidity, collagen content, and microscopic features observed in WB.  

While the short list of genes identified in this study have a high likelihood of being 

explanatory of WB, and even as potential diagnostic biomarkers for  the condition, we 

stop short of calling these candidate genes; population level analyses such as association 

testing (GWAS) would be necessary to confirm if variants in these genes are causative 

of WB. However, these findings do lend support for a polygenic basis for WB, but 

perhaps occurring in conjunction with regulatory mechanisms that are yet to be 

identified and confirmed. Whether a putative genetic basis for wooden breast can be 

traced to linked loci under selection for growth traits or is a result of de novo mutations 

and structural variants, remains to be established.  
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The high frequency of WB within flocks is suggestive of underlying causes that are 

not highly variable among individuals of a flock. Any variation in severity could, 

therefore, be a result of particular genotypes, and the resulting allele-specific growth 

traits and nutritional interactions. Such a pattern is consistent with multi-genic traits, 

alleles for which may segregate in populations as heterozygotes, and the occurrence and 

severity of the condition may be driven by allele specific expression patterns 

(Dermitzakis, 2008; Lappalainen, 2015). A similar pattern would also be explained by de 

novo mutations. 

The results from our multi-sample comparison analysis show that WB has an age-

dependent expression pattern, with molecular signatures and phenotypic markers 

becoming more obvious in older birds. Such a phenomenon, called age-dependent 

penetrance, has been frequently observed in various heritable diseases. Recent studies 

have shown that some features of WB are observable as early as 2 weeks of age (Papah 

et al., 2017; Griffin et al., 2018), and therefore would explain our observation of 21-day 

old Ross birds being more similar to the older WB affected group. The inherited human 

neurodegenerative disorder, Huntington’s Disease, is known to manifest in middle to 

later life, and gene expression studies show age-dependent expression and dysregulation 

of various signaling genes (Nguyen et al., 2008). Age-dependent disorders may also 

include heritable genetic mechanisms such de novo mutations, or as somatic mutations 

(Veltman and Brunner, 2012; Goldmann et al., 2016; Acuna-Hidalgo et al., 2016) that 

may affect genome organization, or repair mechanisms and increase penetrance of 

diseases in later life (Zane et al., 2014; Win et al., 2017). Further investigations of 
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genome organization, frequency of de novo mutations, or breakdown of repair 

mechanisms in fast-growth broilers is necessary to illuminate whether and how these 

processes may be important in WB. 

2.5. Conclusions 

Our study used transcriptomic datasets to compare pectoralis tissue from commercial 

broilers with wooden breast against multiple genotypic backgrounds and confirmed the 

previously reported molecular signatures in addition to previously unreported molecules 

and pathways. The comparison of tissue from fast-growth genetic backgrounds to those 

from slow-growth genetic backgrounds and different age classes suggests a genetic basis 

for WB that elicits age-dependent expression patterns in fast-growth broiler strains. The 

functional analyses of pathways from comparative data suggest that WB is a potentially 

polygenic, complex syndrome, with molecular similarities to neoplastic disorders. 

Through analysis of high-impact variants among the studied breeds, we identified a short 

list of genes with high-impact variants that are also significantly differentially expressed, 

suggesting Cis-Regulatory processes involving important developmental and 

cytoskeletal genes. This result underscores the need for deeper analyses to investigate 

the role of these genes, basis of these disease pathways, and similarities to complex 

disorders. 
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3. TRANSCRIPTOMIC SIGNATURES OF WOODEN BREAST AND 

PERFORMANCE TRAITS OF BROILERS IN RESPONSE TO DIETARY OMEGA-

6:3 RATIOS 

3.1. Background 

Poultry plays a major role in reducing global hunger through both meat and egg 

production, due to the ease of production and smaller environmental footprint compared 

to other livestock species. Over roughly the last 60 years, selection for body weight, feed 

efficiency and carcass traits, and improvements in nutrition and management strategies 

have greatly increased its production efficiency, expanding its availability and reducing 

cost. With these improvements, however, a variety of growth-rate related health and 

welfare issues have arisen. Specifically, breast muscle myopathies, a collection of 

conditions which decrease meat quality of the highest value portion of the carcass, have 

risen to an annual economic loss of roughly $200 million in the U.S. alone, with 

incidence rates continuing to increase (Kuttappan et al., 2016; Cruz et al., 2017). 

Currently, several breast muscle myopathies are affecting the poultry industry including 

wooden breast, white striping, and spaghetti meat (Baldi et al., 2018; Soglia et al., 2019; 

Petracci et al., 2019). 

Myopathies are generally classified as localized disorders of the skeletal muscles, 

demonstrating cell structure and metabolic impairment, resulting in macroscopic 

symptoms and muscle dysfunction. In the case of a recent breast muscle myopathy 

called wooden breast (WB), these macroscopic symptoms include abnormal hardness, 

petechiae, and a viscous exudate resulting in increased shear force, reduced water 
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holding capacity, grainy texture (Sihvo et al., 2014; Velleman and Clark, 2015; Soglia et 

al., 2016; Clark and Velleman, 2016; Kuttappan et al., 2017b; Tasoniero et al., 2017; 

Meloche et al., 2018a). Molecular aspects most observed include inflammation, 

oxidative stress, and dysregulated glucose metabolism (Mutryn et al., 2015; Abasht et 

al., 2016; Sihvo et al., 2017; Kong et al., 2017; Kuttappan et al., 2017a; Papah et al., 

2017, 2018; Cai et al., 2018; Hubert et al., 2018). These changes have led to a reduction 

in consumer acceptance as well as USDA FSIS requirements for removal of 

inflammatory tissue associated with these conditions (Brambila et al., 2017; Velleman et 

al., 2018; Aguirre et al., 2018; Soglia et al., 2018; Maxwell et al., 2018; USDA FSIS, 

2018). WB is now being observed worldwide in commercial broiler flocks at high 

incidence - from 85% incidence in the U.S., 15% in Brazil and 60% in Italy (Mutryn et 

al., 2015; Abasht et al., 2016; Clark and Velleman, 2016; Sihvo et al., 2017; Cruz et al., 

2017; Kuttappan et al., 2017b; Petracci et al., 2019). Understanding the molecular 

development of WB is necessary in order to determine methods of reducing the 

incidence and decreasing the economic impacts of this condition. Numerous 

investigations have observed deficiencies, toxicities, exercise induction and hypoxia as a 

means to identify the underlying pathology of WB, but definitive solutions remain 

elusive. 

Transcriptome, proteome, and metabolome studies have demonstrated that WB is 

ubiquitous in fast-growth commercial lines (Mutryn et al., 2015; Velleman and Clark, 

2015; Trocino et al., 2015; Abasht et al., 2016; Clark and Velleman, 2016; Kong et al., 

2017; Kuttappan et al., 2017a; Schilling et al., 2017; Cai et al., 2018; Hubert et al., 2018; 
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Livingston et al., 2019b) (Hubert et al., unpublished data). Specifically, comparisons 

between fast- and slow-growth genetic backgrounds, and of several age categories, have 

demonstrated an age-dependent gene expression pattern unique to commercial fast-

growth lines (Kong et al., 2017; Hubert et al., 2018). The history of broiler myopathies 

has shown that, in addition to the decrease in time to slaughter age and increased breast 

muscle size, muscle fibers of fast-growth commercial birds are three to five times larger 

than that of slower growing birds, have reduced connective tissue spacing between 

myofiber bundles, increased degeneration of myofibers, and decreased capillary blood 

supply to the pectoralis major and minor (Remignon et al., 1995; Mahon, 1999; Mitchell, 

1999; Dransfield and Sosnicki, 1999; MacRae et al., 2006; Fanatico et al., 2007; Petracci 

and Cavani, 2012; Velleman and Clark, 2015). These features are exacerbated in WB 

affected birds (WB+), but have been observed in unaffected birds, and also in those 

given a WB score of zero (WB-) (Kuttappan et al., 2013b; Mazzoni et al., 2015; 

Velleman and Clark, 2015; Trocino et al., 2015; Clark and Velleman, 2016; Sihvo et al., 

2017; Velleman et al., 2018). Furthermore, these studies have all identified molecular 

indicators of inflammation and immune response.   

To date, the features of WB has not been found in slow-growth broiler and layer 

lines (Velleman and Clark, 2015; Clark and Velleman, 2016; Kong et al., 2017; 

Velleman et al., 2018; Hubert et al., 2018). The high frequencies (>85%) of WB in 

commercial broiler genotypes under standard rearing conditions mean that the same 

genotypes are not suitable as a control group (Velleman and Clark, 2015; Kong et al., 

2017; Papah et al., 2017; Hubert et al., 2018)(Hubert et al., unpublished data). Various 
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lines of evidence show that WB- are asymptomatic rather than devoid of the condition. 

The data from these previous studies indicate that WB is genetic in origin and little 

impact to incidence can be made through altered management practices without a 

reduction in growth rate. Therefore, broiler genotypes that are not selected for high feed 

conversion ratio (FCR) are likely to offer insights into the causative mechanisms. Based 

on the observations of oxidative stress and muscle fiber degradation in WB, many 

proposed nutritional interventions include altered amino acid levels and antioxidant 

compounds like vitamin C (Cruz et al., 2017; Bodle et al., 2018; Meloche et al., 2018c; 

Livingston et al., 2019a). Inflammation and oxidative stress have been the focus of 

recent investigations of mechanism, as well as the search for solutions. As these features 

of WB can be regulated both by the genotype, as well as dietary factors, in this study, we 

investigated the relative contribution of diet and genotype. In case of the diet, we 

focused on fatty acids that have a role in ameliorating inflammation, while at the same 

time comparing fast and slow growth genotypes. 

The omega-6 (ω-6) and omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are well 

known essential fatty acids (EFAs) and their physiological impacts are well studied in 

both human and animal health. The ω-6 and ω-3 PUFAs are best known for their 

modulation of inflammation, with ω-6 PUFAs being pro-inflammatory while ω-3 

PUFAs are anti-inflammatory. These impacts on inflammation are elicited through the 

production of prostaglandins and leukotrienes and the regulation of gene expression 

either by indirectly altering signaling pathways which initiate at the plasma membrane or 

by directly interacting with nuclear receptors (Calder, 1998, 2001, 2003, 2006; Miles 
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and Calder, 1998; Simopoulos, 2002; Stulnig, 2003; Gómez Candela et al., 2011; 

Komprda, 2012; Wiktorowska-Owczarek et al., 2015). The standard high-energy corn-

soy based broiler diets are high in ω-6 PUFAs but low in ω-3 PUFAs (National Research 

Council et al., 1994; Aviagen, 2014a; b; Cobb, 2015, 2018). The NRC Nutrient 

Requirements of Poultry (1994) recommends the ω-6 Linoleic acid (LA) as 1% of the 

diet but has no recommendation for the ω-3 œ-Linolenic acid (ALA) (National Research 

Council et al., 1994). These two EFAs often have antagonistic physiological activities 

and are metabolically competitive, but numerous studies have demonstrated that they are 

both necessary for normal growth and development and that the ratio in which they are 

found in the diet plays an important role (Simopoulos, 2002, 2010, 2016; Burdge and 

Calder, 2005; McNamara et al., 2007; Gómez Candela et al., 2011; Cherian, 2015; 

Koppenol et al., 2015; Pusceddu et al., 2015; Jeromson et al., 2015; Dias et al., 2015; 

Wiktorowska-Owczarek et al., 2015; Nobili et al., 2016; Baker et al., 2016; Moatt et al., 

2017). 

To our knowledge no studies have addressed the impact of the ratio of ω-6:3 on 

inflammation in relationship to WB. However, several have investigated the 

physiological functions of PUFAs in chicken, mainly to increase the EFA composition 

of poultry products for human consumption (Ratnayake et al., 1989; Lin et al., 1989; 

Fritsche et al., 1991; O’Keefe et al., 1995; Rymer and Givens, 2005; Haug et al., 2007; 

Betti et al., 2009; Zuidhof et al., 2009; Dikshit et al., 2015; Cherian, 2015; Koppenol et 

al., 2015; Carragher et al., 2016; Ravindran et al., 2016; Willson et al., 2017).  
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Furthermore, comparative analyses of the impact of dietary ω-6:3 ratios on the body 

weight and gene expression of both a fast-growth commercial broiler and a slow-growth 

heritage broiler would provide useful insights into the genetic impacts of selection for 

broiler performance traits. For this aspect of the study, we compared the fast-growing 

commercial broiler (Ross 708 breed) against the White Plymouth Rock (WPR) breed. 

The WPR is a slow-growth heritage broiler is a foundational breed for the modern 

commercial broiler, picked for its large final body size and white feathering and crossed 

with the Cornish for its large muscles and wide-set legs. Although the growth-rate of 

WPR is very slow compared to that of the modern broiler, which reaches slaughter 

weight around 6-8 weeks, its final body size is similar at 3-4 kg. The WPR have not been 

selectively bred in recent years and are typically seen only in backyard flocks, keeping 

their genetic variation similar to those used in the original cross. Therefore, we expect 

the WPR to be a genetic contrast where there is a divergent selection for fast growth 

(feed conversion ratio), but not on final body weight. This study aimed to utilize 

comparative analyses between fast-growth commercial broilers and their progenitor, the 

WPR, to filter out body weight specific gene expression, measure the impact of 

nutrition, and narrow down on genes associated with WB. 

3.2. Materials and Methods 

3.2.1. Animals 

In this study, we used Ross 708 broilers to represent the fast-growth commercial 

broiler chickens and White Plymouth Rock heritage broiler chickens. A total of one 

hundred and twenty straight run birds of each breed were divided randomly into two 
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treatment groups - a high ω-3 diet, a low ω-3 diet - and a control group. All birds were 

raised in a single open-sided barn at the Texas A&M University Poultry Center in floor 

pens. Pens were divided by breed and diet, in a randomized block design with duplicate 

pens for each group. Food and water were provided ad libitum, with birds reared under 

an industry standard lighting program as recommended by the Aviagen Broiler 

Handbook (Aviagen, 2014b). 

3.2.2. Diet 

Experimental diets were formulated based on the Aviagen Ross 708 nutritional 

guidelines (Aviagen, 2014a). Starter, grower, and finisher feeds were calculated to 

maximum energy and nutritional requirements. Treatment diet formulations were 

energetically equivalent to the control, with the replacement of soy oil with canola oil or 

a canola/soy blend in order to alter the ω-6:3 ratio of each diet. Nutrient composition and 

calculation of the ω-6:3 ratio of the diet was based on the USDA ARS National Nutrient 

Database for Standard Reference (USDA ARS, 2016a; b; c; d). A complete basal diet 

formulation is included in Table A-1. Specifically, the ω-6:3 ratio of the control diet (C) 

which contained only soy oil was calculated as 20:1, while treatment diet 1 (T1) which 

contained only canola oil was calculated as 5:1 and treatment diet 2 (T2) which 

contained both soy and canola oil was calculated as 11:1 (Table A-2). Starter, grower, 

and finisher phase diets were made in individual batches roughly three days before the 

feed change date. Feed was delivered in hanging feeders, and birds were checked on 

twice daily. 
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3.2.3. Tissue Collection 

We sampled birds for dissection and WB scoring at two-time points until the age of 

market weight - namely at day 11 and day 42. We chose these intervals to observe the 

effects of age and body weight on gene expression in addition to the impact of the 

treatment diets. WB was scored by a single trained individual on a scale of 0-3, with 0 

having no macroscopic signs of WB and 3 demonstrating severe WB. At the time of 

euthanasia, ten birds were haphazardly selected from each breed and treatment group 

and CO2 gas was administered according to AUP IACUC 2016-0065. 

Immediately following euthanasia, individual body weights were recorded, and then 

each sampled bird was scored for WB through visual appraisal and physical palpation of 

the excised pectoralis major. These methods of examination are widely accepted and 

utilized as an adequate means of determining the presence of WB in a variety of 

investigations (Kuttappan et al., 2013a; b, 2016; Sihvo et al., 2014, 2017, 2018; Mutryn 

et al., 2015; Tijare et al., 2016; Cruz et al., 2017; Papah et al., 2017; Cai et al., 2018; 

Aguirre et al., 2018; Maxwell et al., 2018; Norring et al., 2018). Breast tissue samples 

were collected using sterile dissection procedures within 30 minutes of euthanasia and 

stored in RNALater following the manufacturer’s protocol (Ambion Inc, ThermoFisher 

Scientific) at a 5:1 ratio. Tissue samples were then stored at 4°C for a minimum of 24 

hours, removed from the RNALater, and stored at -80°C until RNA isolation. 

3.2.4. RNA Extraction and Quality Control 

Total RNA was extracted using TRIzol Reagent following the manufacturer’s 

protocol (ThermoFisher Scientific, Waltham, MA). Quality was assayed with the Agilent 
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Bioanalyzer 2100 RNA 6000 Nano chip kit (Agilent Technologies, Santa Clara, CA). 

Only samples with RNA Integrity Number (RIN) > 8 were used for library prep. RNA 

isolates of sufficient quality were quantified with the Qubit Fluorometer (ThermoFisher 

Scientific). Also, DNA contamination was estimated using the Qubit dsDNA Broad 

Range analysis kit before further processing. 

3.2.5. RNA Sequencing 

Library preparation for RNA sequencing (RNAseq) with Illumina was performed in-

house with the Lexogen QuantSeq 3’mRNA Library Prep Kit (Lexogen, Vienna, 

Austria). For each library 2 µg of total RNA was used, and a total of 96 single-indexed 

libraries were prepared. The quality of library generation was checked with the Agilent 

TapeStation D1000 DNA ScreenTape and concentration was determined using the Qubit 

dsDNA High Sensitivity Kit (ThermoFisher Scientific). 72 libraries (n=6) were of 

sufficient quality and quantity for sequencing. Individually barcoded libraries were 

pooled in equimolar proportions and submitted to the Texas A&M University Institute 

for Genome Sciences and Society (TIGSS, College Station, TX) for sequencing on the 

Illumina NextSeq (Illumina, San Diego, CA) platform. Single end reads of 75 bp were 

generated with an average of 4.8 million reads. The R package ssizeRNA (1.3.1) was 

used to perform a Power Analysis for this study, which showed that the replication was 

sufficient to provide in 99% power at FDR < 0.05 (Bi and Liu, 2016). 

3.2.6. Data Analysis 

Individual body weights for each breed and diet treatment from each dissection age 

were evaluated by one-way ANOVA (RStudio Team, 2015; R Core Team, 2019). We 
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performed a Wilcoxon signed-rank test to determine significant differences in WB 

severity and a chi-square test for WB incidence with the MASS package (version 7.3-

51.3) in the R statistical platform (Venables and Ripley, 2002; RStudio Team, 2015). For 

both analyses, we considered differences to be statistically significant at p-value < 0.05.  

RNAseq data obtained from TIGSS was quality checked with FastQC version 0.11.6 

and MultiQC version 1.4.Lexogen specific adapter sequences were trimmed with 

Trim_Galore version 0.4.3 (Martin, 2011; Ewels et al., 2016; Babraham Institute, 2018a; 

b). Also, reads shorter than 35 bp or with an average quality score less than Q30 were 

removed. After quality check, four samples showing higher than 75% sequence 

duplication were removed from further analysis (WPR 11d: 13 T2 - 82%, 30 C - 75.4%; 

R708 11d 51 T1 - 82%; WPR 42d 208 C - 81%). The remaining samples were aligned to 

the Gallus gallus genome (Version 4.8, Ensembl Release 85, July 2016) with the short- 

read de-novo splice mapper STAR (version 020201) and reads mapping to exons were 

counted with HTseq-Count (version 0.9.1) (Dobin et al., 2013; Anders et al., 2015; 

Dobin and Gingeras, 2015). The EdgeR program (version 3.22.1) in the R statistical 

platform (3.5.2) was used for statistical analysis of differential gene expression 

(Robinson et al., 2010; McCarthy et al., 2012; RStudio Team, 2015; R Core Team, 

2019). Normalization factors were calculated for differences in library sizes and 

common and tagwise dispersions were estimated (GLM). The likelihood ratio test 

‘glmLRT’ function was used to test for significant differential expression between 
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groups at an FDR < 0.05. Genes identified as significantly differentially expressed were 

further investigated through gene ontology and pathway analysis using the Ingenuity 

Pathway Analysis (IPA) program (Qiagen, Hilden, Germany). Differentially expressed 

(DE) genes for each comparison were also filtered into unique and common genes 

between comparisons using Venny 2.1.0 in order to identify breed, age, and WB specific 

gene expression (Oliveros, 2007). These data sets were then annotated with IPA. 

3.3. Results 

3.3.1. Body Weight and Wooden Breast Incidence and Severity 

The ω-6:3 ratio (represented by C, T1, T2 diets) did not have a significant impact on 

body weights at sampling time points for either broiler breed based on a one-way 

ANOVA (Figure 3.1). The body weights showed high consistency within the control and 

T2 treatments for the R708 broilers, whereas the T1 treatment showed more variability. 

Body weights were similar for all diets in the WPR broilers. The R708 broiler growth-

rate matched the performance expected in Ross 708 Broiler: Performance Objectives 

which is indicated by the red line in Figure 3.1 (!2 = 0.064, P = 0.8) (Aviagen, 2014c). 

The most recent performance objective manual for WPR found was published in 1926 

by University of Illinois, and the average body weight at that time for similar ages is 

shown by the blue line in Figure 3.1 (Mitchell et al., 1926). The WPR broilers in this 

study averaged 107g at 11 days of age and 480 g at 42 days of age, indicating that the 

growth-rate of WPRs has increased since the 1920s (!2 = 11.004, P= 0.0009).  

WB incidence was significantly different at 21 and 31 days of age between the three 

diets, based on a !2 test (P < 0.01), but not at 42 days of age, as all diets were at 100% 
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incidence in the Ross 708 breed. At no time point did the WPR breed demonstrate any of 

the diagnostic criteria for WB, whereas the R708 broilers had a WB incidence of zero 

for all diets only at 11 days of age. WB severity varied between both ages and diets, but 

at no time point was there a significant difference in severity of WB between the diets 

based on Wilcoxon signed-rank tests for each age (Figure 3.2). WB percent incidence by 

age and diet for each breed is displayed in Table 3.1. 

 
 

 



 

92 

 

Figure 3.1 Box plots demonstrating the body weights in grams for WPR and R708 at 11, 21, 31, and 42 days of age for each diet. 
Growth-rate for R708 matched that specified in the Aviagen management guide (red line) and WPR exceeded its published growth-rate 
from 1926 (blue line).  
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Figure 3.2 Violin plot of WB severity (scored 0-3) by diet at 21, 31, and 42 days of age. At no 
point was severity significantly different between diets. Only R708 are represented as WB did 
not occur in WPR. 
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Table 3.1 Summary table of percent incidence of WB for each breed and diet at 11, 21, 31, and 
42 days of age. 

WB Incidence (%) 

Breed Age (days) T1 T2 C 

WPR 

11d 0 0 0 

21d 0 0 0 

31d 0 0 0 

42d 0 0 0 

R708 

11d 0 0 0 

21d 30 0 40 

31d 70 60 80 

42d 100 100 100 

 

 

 

3.3.2. Pairwise Comparisons of Differential Gene Expression 

Global analysis of expression counts data for the entire transcriptome dataset (all 

breeds, diets, and time points) had a low common dispersion estimate of 0.15 (Robinson 

et al., 2010; McCarthy et al., 2012; Anders et al., 2013). Estimates of tagwise dispersion 

showed that 75% of the data had a biological coefficient of variation (BCV) under 0.76 

(Figure B-1), with lowly expressed genes showing higher dispersion. A total of 12,135 

total genes were detected (at CPM >1), and across our comparisons we saw from 1 - 

29% of DE genes. All the comparisons between ages, or groups showed hundreds of 

differentially expressed genes, whereas limited or no differences in gene expression 

(FDR < 0.05) were seen when comparing between diets within each age and within each 

breed (i.e. WPR 11d T1 v C, and etc.) (Figure B-2). For this reason, these results are not 

discussed further.  
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A summary of differential gene expression for all other comparisons made is 

presented in Table 3.2. Figure 3.3 shows the comparison of gene expression between 

breast tissue sampled from birds 11 days of age and 42 days of age for each breed and 

each diet, e.g. R708 C 11d v 42 (n=~6). For the R708 breed on the control diet, 267 

genes were significantly differentially expressed at FDR < 0.05 between 11 days of age 

and 42 days of age (Figure 3.3A). In contrast, the R708 T1 comparison found 618 DE 

genes between 11 and 42 days of age (Figure 3.3C), which is about 2.5x greater than the 

DE genes observed for the control diet comparison between ages, and interestingly the 

R708 T2 comparisons showed 850 DE genes for this comparison.  

Similarly, for the WPR, 115 genes and 172 genes were differentially expressed in the 

C and T1 diets between 11 and 42 days of age respectively (Figures 3.3B&D). Although 

differential gene expression was expected to be observed in these comparisons due to 

growth, these results shows a diet x age interaction on gene expression. We found this 

interactive effect (diet x age) on gene expression to be statistically significant, based on a 

!2 test in both varieties (P < 0.0001). In summary, our results show that diet had a 

differential effect on age-based differential gene expression. 

When comparing gene expression between varieties for each diet (n=~12) (Figure 

3.4) ignoring age, we found 1,674, 1,337, and 1,218 genes were differentially expressed 

for T1, T2 and C diets respectively, between WPR and R708. The T1 and T2 diet 

(Figure 3.4A&B) elicit greater differential gene expression between the two varieties 

than the control diet (Figure 3.4C), indicating that diet may be uniquely altering gene 



 

96 

 

expression in each breed. The diet x breed interactive effect was statistically 

significantly based on !2 test (P = 3.16 E -20).  

Finally, we compared gene expression between ages within and between broiler 

varieties (n=~18) (Figure 3.5) - ignoring the diets. This post-hoc comparison was based 

on the observation that dietary treatments did not elicit dramatic differences in gene 

expression profiles within ages. This analysis showed 1,169 and 2,425 DE genes 

between 11 and 42 days of age for WPR and R708 varieties respectively (Figures 

3.5A&C) and 2,496 and 3,504 DE genes between WPR and R708 varieties at 11 days of 

age and 42 days of age respectively (Figures 3.5 B&D). 

 

 

Table 3.2 Summary table of differentially expressed genes from pairwise contrasts performed 
among RNAseq data using edgeR. 

Contrast Control DE Up DE Down Total DE Percent DE 
R708 42d C R708 11d C 137 130 267 2 

R708 42d T1 R708 11d T1 358 260 618 5 

R708 42d T2 R708 11d T2 537 313 850 7 

WPR 42d C WPR 11d C 35 80 115 1 

WPR 42d T1 WPR 11d T1 61 111 172 1 

WPR 42d T2 WPR 11d T2 78 219 297 2 

R708 C WPR C 740 478 1218 10 

R708 T1 WPR T1 960 714 1674 14 

R708 T2 WPR T2 686 651 1337 11 

R708 11d WPR 11d 1214 1282 2496 21 

R708 42d WPR 42d 2183 1321 3504 29 

WPR 42d WPR 11d 488 681 1169 10 

R708 42d R708 11d 1450 975 2425 20 
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Figure 3.3 Mean abundance plots (logFC by logCPM) of differential gene expression by diet for both breeds between 11 and 42 days of 

age. Purple stars indicate genes FDR < 0.05 while blue lines indicate logFC 2 and -2. Plots A, C, and E represent R708 gene expression, 

while plots B, D, and F represent WPR gene expression between ages for the C, T1, and T2 diets respectively. R708 showed more 

differentially expressed genes than WPR, as did T1 and T2 diets. 
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Figure 3.4 Mean abundance plots (logFC by logCPM) of differential gene expression by diet 
between breeds ignoring age. Purple stars indicate genes FDR < 0.05 while blue lines indicate 
logFC 2 and -2. Plots A, B, and C represent gene expression due to diet between breeds for the 
T1, T2 and C diets respectively. The T1 and T2 diets showed more differentially expressed 
genes than the C diet. 

 



 

99 

 

 
Figure 3.5 Mean abundance plots (logFC by logCPM) of differential gene expression. Purple stars indicate genes FDR < 0.05 while blue 
lines indicate logFC 2 and -2. Plots A and C represent age-based gene expression by breed, while plots B and D represent gene 
expression between breeds at 11 and 42 days of age respectively. R708 showed more differentially expressed genes than WPR between 11 
and 42 days of age. Also, the 42d of age comparison showed more differentially expressed genes than the 11d comparison. 
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3.3.3. Pathways Activated by Differentially Expressed Genes 

The results of differential gene expression analysis (from edgeR) were used in Core 

Pathway analysis in IPA considering only the DE genes (FDR < 0.05). The Core 

Pathway analysis returned Top Canonical pathways demonstrating oxidative stress and 

dysregulated energy metabolism, cell cycle regulation, and immune response. Several of 

the specific canonical pathways identified were repeatedly observed over all 13 pairwise 

comparisons. This was also true of the upstream regulators and diseases and disorders 

identified by IPA (Table A-3). The identified terms from the 13 pairwise comparisons 

are reported as a histogram (Figure 3.6). The most observed upstream regulators include 

TP53 and TGFB1 (Figure 3.6B), while the most observed Canonical Pathways are 

oxidative phosphorylation and sirtuin signaling (Figure 3.6C). Finally, organismal injury 

and abnormalities, cancer, gastrointestinal disease, and endocrine system disorders 

topped the disease and disorders list (Figure 3.6D). 
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Figure 3.6 Summary of the number of differentially expressed genes and core pathway analyses by IPA for each pairwise comparison. A 
table (A) is used to represent the up, down, and total differentially expressed genes (FDR < 0.05). Histograms (B, C, and D) represent the 
frequency of results observed from the IPA core pathway analyses as many terms for Upstream Regulators, Canonical Pathways, and 
Diseases and Disorders, respectively, were repetitive between the pairwise comparisons. 
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3.3.4. Unique and Shared Gene Lists for Diet, Age, Breed, Inflammation, and WB 

 Comparison of Differential Gene Expression Due to Diet between Broiler 

Breeds 

To narrow down the list of genes associated with age, diet, and WB status 

differences, we generated lists of shared and unique genes from pairwise comparisons. 

First, we focused on filtering out the genes associated with the impact of diet on gene 

expression between broiler breed. A three-way comparison (Figure 3.4, WPR v R708 by 

diet) was used to generate unique and shared gene lists to identify these differences. The 

10 most DE (by logFC) and 10 most abundant genes unique to the T1 diet regardless of 

breed and shared among all diets are shown in Figure 3.7. The shared list helped identify 

breed-specific gene expression (Figure 3.7B&D).  

Of interest in the shared list are multiple genes associated with cellular development 

and function of skeletal and cardiac muscle (ACE, CSRP3, MUSTN1, MYH6, SCN5A, 

UCP3, AK1, CAVIN4, MYBPH, PHKG1, RHOBTB1, METTL21E), glucose 

metabolism (PKM, TPI1, GAPDH, PHKG1), energy metabolism (AK1, UCP3), 

regulation of the cell cycle and gene expression (RBM38, METTL21E, CSRP3), and 

immune function (KPNA7, ATP6V0C). Among the members of the shared list, the DE 

genes were uniformly higher in WPR than in R708 (Figure 3.7D). We also observed that 

expression (logCPM) in WPR was uniformly higher than R708 breed in members of the 

shared list (Figure 3.7C), except for RPL7A.  

The list unique to the T1 diet (Figure 3.7A&C), regardless of breed, included genes 

associated with neurotransmission (CHRNA6, FSHR, GPI ), cellular structure (CFAP73, 
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MAGI1, NCLN, TJP3), hypoxia (CHCHD2), glucose metabolism (GPI, PGM1), 

mitochondrial transport and signaling (SLC25A30, CHCHD2), muscle function 

(TNNC1, TNNI2, TNNT3), regulation of gene expression (ESRP2, FSHR, PPP4R4, 

RPL6, RPL7A, RPS28) and cytoplasmic calcium concentrations (SLC8A1). 

Interestingly, the members of the unique list all showed decreased expression in the T1 

diet, regardless of broiler breed (Figure 3.7A). 
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Figure 3.7 Bar plots showing the (logCPM) ten most differentially expressed and the ten most abundant differentially expressed genes 
(FDR < 0.05) unique to the T1 diet or shared by all diets between breeds. Plots A and C represent genes which were only differentially 
expressed in the T1 diet between WPR and R708, while plots B and D represent gene which were differentially expressed in all diets 
between WPR and R708. 
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 Differential Expression Patterns in Diet x Age Combinations 

To identify shared and unique DE gene lists based on diet and age combinations, we 

performed a six-way intersection analysis of the DGE results (Figure 3.3). Seven genes 

were associated with age in WPR, 124 in R708, whereas 11 were shared in both breeds. 

These results are summarized in Figure 3.8. Of the 11 DE genes identified as shared 

between all comparisons, only five were annotated in IPA (Figure 3.8A) and these 

include genes involved in cytokine control of granulocytes and macrophages and 

inflammation (CSF2RA), intracellular transport and motility (BC048507), mitochondrial 

creatine biosynthesis (GATM), regulation of translation (IGF2BP3) and metabolic and 

growth processes and cardiac function (NRP3). Regardless of broiler breed, expression 

of BC048507, GATM, and IGF2BP3 decreased with age, while expression of CSF2RA 

and NPR3 increased with age.  

The 10 most DE genes unique to R708 (Figure 3.8B) include activities such as 

glycosaminoglycan metabolism (CRYL1), histamine metabolism (HNMT) and 

regulation of inflammation and immune response (PTX3, RGS1), 

metalloaminopeptidase activity (LVRN), modulation of Rho family GTPases (MCF2), 

the TCA cycle and the malate-aspartate shuttle (MDH1), muscle structure and function 

(MYH6, MYOM3, RGS1), and neuronal development (TTLL7). Here too, regardless of 

broiler breed, the expression of CRYL1, HNMT, MCF2, MDH1, and TTL7 decreased 

with age, although the decrease of expression is much less pronounced in CRYL1, 

MCF2, MDH1 and TTL7 for the WPR than the R708. LVRN increased with age 

regardless of broiler breed, however its increase is more pronounced in R708 than WPR. 
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MYH6, MYOM3, PTX3, and RGS1 increased with age in R708 broilers but decrease 

with age in WPR. Of the seven genes identified as unique to the WPR breed, six were 

annotated (Figure 3.8C) and they all function in cell and muscle development (ACE, 

FRAS1, MYH2, NRG4, TNMD, TUBA1B). The expression of all these genes (ACE, 

FRAS, MYH2, TNMD, and TUBA1B) decreased with age regardless of broiler breed, 

except NRG4 which increased with age in WPR but remains constitutively expressed in 

R708. 
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Figure 3.8 Bar plots showing the (logCPM) most differentially expressed genes (FDR < 0.05) between ages unique to each breed and 
shared between breeds. Plot A represents the five genes which were differentially expressed between 11 and 42 days of age in both 
breeds, while plots B and C represent the top ten, and six total genes only expressed in the R708 and WPR respectively. 
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 Differential Gene Expression Related to Performance Traits 

To narrow down on bodyweight and performance related gene expression, the top 

100 most variable genes for each breed by age, was merged into a list of the average 

abundance in logCPM. The absolute value of the difference between day 11 and day 42 

was sorted to identify the top 25 highly variable genes for each breed. These 25 

candidate genes for each breed were then compared using the merge function from the 

reshape2 package in R (Wickham, 2007; RStudio Team, 2015; R Core Team, 2019) and 

confirmed using the Venn diagram tool Venny (Oliveros, 2007) to generate three lists of 

candidate performance-associated genes. In total, 18 genes were identified for each 

breed as “unique” or not being shared, while they shared seven genes (shared). 

Interestingly 13 of the 18 genes unique to R708 are related to cell growth and 

differentiation, muscle function and development, or intracellular ion concentration 

while only 8 out of the 18 unique WPR genes are related to the same biological 

functions. It is also to be noted that 6 of the 7 shared top 25 most highly variable genes 

between the two breeds are related to these biological functions as well (Table A-4).  

The boxplots of gene abundance (Figure 3.9) show that the 7 shared genes exhibit a 

decreasing trend between day 11 and day 42 while the median of the same genes in the 

WPR remains approximately the same but has a smaller range at day 42 than on day 11 

(Figure 3.9A). It is also of interest to note that he unique R708 genes demonstrate an 

overall increasing abundance trend from day 11 to day 42 (Figure 3.9B), while the 

unique WPR genes exhibit an overall slightly decreasing abundance trend. The boxplots 

of the absolute value of the difference between days 11 and 42 for breed (Figure 
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3.10A&B) show that for both the shared and unique genes the median logCPM for the 

R708 is at least 0.75 logCPM greater than that of the WPR. 

 

 

 
 
Figure 3.9 Box plots of shared and unique broiler performance-associated gene abundance 
(logCPM) in both breeds at 11 and 42 days of age. Plot A shows the expression variance of the 
genes which were differentially expressed in both breeds while plot B shows the expression 
variance of genes which were differentially expressed unique to each breed. 
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Figure 3.10 Box plots of the absolute value of the difference between highly variable shared 
genes and unique genes for each breed. Plot A shows the variance of the expression of the 
shared genes between breeds, while plot B shows the variance of the expression of the genes 
unique to each breed. 
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 Wooden Breast Specific Differential Expression 

To filter out genes specific to WB, we compared the DGE lists of four pairwise 

comparisons, namely the 11d WPR v R708, 42d WPR v R708, WPR 11d v 42d and 

R708 11d v 42d DE genes (Figure 3.5). This yielded a list of 262 DE genes shared by 

the three data sets used in this comparison containing R708 samples (11d WPR v R708, 

42d WPR v R708 and R708 11d v 42d). As 100% of 42d R708 birds were affected by 

WB, we expect all samples in this category to share WB associated expression. WB has 

been observed in commercial fast-growth broilers as early as 14 days of age; therefore, 

we expect 11 day old R708 broilers to also be displaying expression profiles indicative 

of WB (Papah et al., 2017, 2018; Chen et al., 2019).  

The resulting lists of shared and unique genes were annotated for function with IPA 

(Figure 3.11). Also, the frequencies of gene product types (Figure 3.11C) and the 

location in the cell (Figure 3.11D) for the entire WB DE gene list were identified. 

Functions of these genes include cellular development and differentiation (CSRP3, 

IQCA1), nuclear protein import (IPO7), calcium and pH-dependent gap junction 

channels (GJA8), modulation of inflammation (HPGD), muscle structure and function 

(LMOD2, MYH6, MYOM3, UCP3, AK1, CAMK2G, LIMCH1, MUSTN1), energy 

metabolism (NDUFB10, PGK1), iron storage and transport (FTH1), amino acid 

synthesis (PHGDH), and regulation of the cell cycle and gene expression (METTL21E, 

KLHL31).  
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 Influence of Diets on Inflammation Observed in Wooden Breast 

We performed intersection analysis to identify the effects of the diets on 

inflammation associated gene expression patterns. The DE results generated from 

pairwise comparisons of broiler breed x diet (Figure 3.4) were utilized with the 

Bioprofiler function in IPA to identify chemokines, cytokines, leukotrienes, interleukins, 

prostaglandins, and glucocorticoids, as these genes are known to play a role in immune 

and inflammatory processes. Only four genes were found to be DE between breeds for 

this analysis (Figure 3.12). Of these four genes, all were DE in T1 and C, while only 

CXCL14 was DE for all diets. Furthermore, expression for three of the four 

inflammation-associated genes demonstrated increased expression in R708 compared to 

WPR. HPGD was the only gene from this list with elevated expression in WPR.  
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Figure 3.11 Bar plots showing the (logCPM) ten most differentially expressed and the most abundant differentially expressed genes 
(FDR < 0.05) (plots A and C) and histograms of their type and location frequency (plots B and D) between ages associated with WB. 
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Figure 3.12 Bar plot showing the (logCPM) four differentially expressed genes (FDR < 0.05) 

from breed x diet pairwise comparisons associated with inflammation. The number of sections 

per bar indicates that the gene was differentially expressed in multiple diets (e.g. three sections 

in a bar means the gene was differentially expressed in all three diets, while two sections in a 

bar means the gene was differentially expressed in only two diets). Three of the four genes were 

differentially expressed in the C and T1 diet, while only one gene was differentially expressed in 

all three diets. 

 

 

 

 

Inflammation-associated genes that were significantly DE were all of high relevance 

to the symptoms of WB. Interestingly, CXCL14 is known to have antimicrobial activity 

and chemotactic activity for monocytes but not for dendritic cells, macrophages, 

neutrophils, or lymphocytes. IL2RG, is required for execution of IL9 activities, which 
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stimulate cell proliferation and prevents apoptosis. HPGD is a dehydrogenase which acts 

in prostaglandin metabolism and its pathways also include transcriptional mis-regulation 

in cancer, while PTGFRN is a receptor inhibitor for prostaglandin F2. 

3.4. Discussion 

Historically, several breast muscle myopathies have been nutrition/management 

induced (Weinstock et al., 1955; Umemura et al., 1984; Siller, 1985; McLennan, 1985; 

Cavaliere et al., 1997). Also, considering the specificity of the current nutritional 

guidelines for broiler chickens and as WB is most commonly observed in the largest and 

fastest growing birds, a nutritional etiology has been a very popular area for 

investigation (Guetchom et al., 2012; Trocino et al., 2015; Cruz et al., 2017; Meloche et 

al., 2018b; c; Bodle et al., 2018; Zampiga et al., 2018; Livingston et al., 2019a). 

Although the diets did not impact WB severity or incidence at slaughter age in this 

investigation, we found that specific dietary oil sources with varying ω-6:3 ratios 

impacted gene expression. Furthermore, through comparative analyses of breeds and 

diets, we narrowed down the genes impacted by selection for performance traits in 

modern fast-growth commercial broilers, and specifically those that stand out in WB.   

3.4.1. Pathways Perturbed by Diet and Age 

The pairwise comparisons of age and diet by breed (Figure 3.3) provided insights 

into the differences in growth and metabolism due to broiler breed. Regardless of diet, 

R708 11d v 42d canonical pathways were largely shared, whereas the WPR 11d v 42d 

canonical pathways varied highly by diet and were dissimilar to the those for the R708 

comparisons (Table A-3). Mitochondrial dysfunction, oxidative phosphorylation and 
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sirtuin signaling were the only three pathways shared across all 6 pairwise comparisons. 

As these comparisons were between 11 and 42 days of age those genes indicating 

alteration of these pathways are most likely due to the natural aging process and not 

necessarily indicative of disease. All of these pathways are involved in energy 

metabolism, cell cycle progression and aging and are interrelated.  

The Sirtuins are a seven member family of enzymes described as histone 

deacetylases and its members inhabit different locations of the cell and perform several 

important activities for normal development and the processes of aging and disease (Zee 

et al., 2010; Verdin et al., 2010; Bonda et al., 2011; Schug and Li, 2011; Jing et al., 

2011; Corbi et al., 2013; Gonzalez Herrera et al., 2015; Ren et al., 2017; Mendes et al., 

2017). Sirtuin 3 is localized to the mitochondrion, regulates skeletal muscle metabolism 

and insulin sensitivity through deacetylation of acetyl-CoA synthase 2 and glutamate 

dehydrogenase, and plays a role in hepatic lipid metabolism (Zee et al., 2010; Verdin et 

al., 2010; Jing et al., 2011; Mouchiroud et al., 2013). Sirtuin 1, although localized to the 

nucleus, controls mitochondrial function through the deacetylation of FOXO and PGC-

1! (Zee et al., 2010; Verdin et al., 2010; Jing et al., 2011; Mouchiroud et al., 2013). A 

recent study on chicken sirtuins showed that Sirtuin 3 was predicted to be located in the 

nucleus, whereas Sirtuin 1 was predicted to be both nuclear and cytoplasmic (Ren et al., 

2017).  

In Ren et al.’s study (2017), predicted activities were also different with sirtuin 3 

acting in amino acid biosynthesis. While sirtuins 1, 2, 5, and 6 were predicted to act in 

central intermediary metabolism, and sirtuin 4 is predicted to function in transcription 
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regulation (Ren et al., 2017). Sirtuin 7 is predicted to have no enzymatic activities in 

chicken (Ren et al., 2017). Ren et al. (2017) investigated the expression of the sirtuins in 

ten chicken tissues, finding that all seven sirtuins were expressed in all ten tissues, with 

sirtuin 2 and 7 being the most highly expressed in pectoralis muscle. Also, age related 

changes in sirtuin expression of liver tissue demonstrated that sirtuin 1, 3, 4, 6, and 7 

increase in expression with age while sirtuin 5 remains constitutively expressed (Ren et 

al., 2017). These findings require deeper investigation as they indicate that activities of 

individual sirtuins in chicken may not be analogous to the known activities in humans.  

Pairwise comparisons of the impact of the diet on gene expression between the two 

broiler breeds provided insights regarding overall metabolic differences between WPR 

and R708 (Figure 3.4). No pathways were shared between all comparisons, but C and T1 

diets both impacted protein kinase A signaling and the NRF2-mediated oxidative stress 

response, while C and T2 diets impacted glycolysis I. T1 and T2 diets impacted Actin 

Cytoskeletal signaling (Table A-3). As the T1 diet and the control diet were the most 

different, the sharing of activated pathways in these two treatments are most likely 

demonstrative of gene expression differences due to broiler breed rather than an impact 

of diet. The alteration of Glycolysis I pathway in both the C and T2 may be indicative of 

the higher ω-6:3 ratio in these two diets, as increasing ω-3 concentrations has been 

shown to decrease glucose metabolism (Jump et al., 1994; Andrade-Vieira et al., 2013; 

Flachs et al., 2014). Many studies have demonstrated that higher ω-6:3 ratios lead to 

insulin resistance and dysregulation of food intake (Simopoulos, 2002, 2010, 2016; 

Sartorelli et al., 2010; Gómez Candela et al., 2011; Li et al., 2014; Jeromson et al., 2015; 
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Wanders et al., 2019). The alteration of Actin Cytoskeleton signaling in T1 and T2 may 

be due to the higher inclusion of ω-3s in these diets. ω-3s are recognized for their 

modulation of the Actin Cytoskeleton due to their roles in the normal development of 

cell structures and survival, the brain, retina, as well as T-cell activation (Plowman et al., 

2005; Mazelova et al., 2009; Hou et al., 2012, 2016; Schmidt et al., 2015). These results 

indicate that the diets modulated gene expression differences in limited but crucial ways.  

The pairwise comparisons focusing on gene expression due to age (Figure 3.5) 

further provided insights into metabolic and growth-related differences between the two 

breeds. Pathways identified between 11d and 42d regardless of breed again included 

mitochondrial dysfunction, oxidative phosphorylation and sirtuin signaling, further 

supporting suggesting that these pathways may have notable roles in normal growth and 

development (Table A-3). Interestingly, this age comparison for the WPR showed 

alteration of cholesterol biosynthesis pathways, while it also showed alteration of 

gluconeogenesis I and NRF2-mediated oxidative stress responses for the R708. The 

comparisons of gene expression differences at 11d and 42d between the two breeds 

shared only one pathway, namely the NRF2-mediated oxidative stress response. 

Myocyte degradation observed as a feature of WB is predicted to be a response to high 

levels of oxidative stress and NRF-2 may be a potential target for amelioration. The 

other pathways observed (Table A-3) perturbed between 11d WPR v R708 and 42d 

WPR v R708 are all associated with cell proliferation and are most likely representative 

of the drastic differences in growth-rate and body size between the two breeds (Figure 

3.1) at these two ages. 
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These breed/age comparisons also provided insights into the pathogenesis of WB. 

Oxidative stress is a defining molecular feature of WB and in this study, the NRF2-

mediated oxidative stress response pathway showed up in four of five total WPR v R708 

comparisons, as well as the R708 11d v 42d comparison. NRF2 is a cytosolic 

transcription factor for phase II detoxifying genes, which is activated in response to high 

levels of oxidative stress (Itoh et al., 1999; Ishii et al., 2000; Kang et al., 2005; Nguyen 

et al., 2009; Singh et al., 2010; Ungvari et al., 2011; Lee et al., 2018). During redox 

homeostasis, NRF2 is tethered to KEAP1, a cytoskeleton anchoring protein, and actin 

filaments which assist KEAP1 in retaining NRF2 in the cytosol (Itoh et al., 1999; Kang 

et al., 2005; Nguyen et al., 2009; Singh et al., 2010).  

Several genes are upregulated in response to NRF2-antioxidant responsive element 

activation and are categorized based on their functions in glutathione homeostasis, drug 

metabolism, excretion/transporter, and iron metabolism or stress response protein (Kang 

et al., 2005; Singh et al., 2010). These genes include Glutathione-S-Transferase, "-

glutamyl-cysteinyl-glycine (aka GSH), NADPH quinone oxidoreductase-1, UDP-

glucuronosyltransferases, Microsomal epoxide hydrolase, Ferritin, and Heme 

oxygenase-1, to name only a few (Kang et al., 2005; Singh et al., 2010). Furthermore, as 

inflammation is a natural immune response, NRF2 plays a role in the regulation of 

inflammation by inhibiting the NF-kB-dependent proinflammatory genes (Kang et al., 

2005; Singh et al., 2010; Ungvari et al., 2011; Lee et al., 2018). Based on these activities 

and NRF2 deficient animal studies, NRF2 has been linked to several diseases including 

Alzheimer’s, Parkinson’s, Huntington’s, cardiovascular disease, pulmonary disease, and 
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cancer (Chan et al., 2001; Cho et al., 2006; Liu et al., 2010; Singh et al., 2010; Ungvari 

et al., 2011). NRF2-antioxidant response element mechanisms have been proposed as 

therapeutic intervention candidates for these conditions based on the ability to directly or 

indirectly alter the NRF2/KEAP1 pathway (Nguyen et al., 2009; Singh et al., 2010). 

Better understanding of the structure of the NRF2-mediated pathway and their regulation 

in broilers will likely be informative for remedying the cascade of inflammatory 

processes observed in WB. 

3.4.2. Differential Gene Expression Specific to Breed and Age 

Considering the previous growth performance curves (R708 v WPR growth, Figure 

3.1) the genes identified here assist in illuminating the differences in growth-rates 

between the two breeds, and partially demonstrate at a molecular level how commercial 

broilers are able to increase their muscle mass at a faster rate when compared to the 

heritage breeds. Six genes, MUSTN1 (Musculoskeletal, Embryonic Nuclear Protein 1), 

MYH15 (Myosin Heavy Chain 15), MYH1A (Myosin Heavy Chain 1A), MYH1B 

(Myosin Heavy Chain 1B), MYH1D (Myosin Heavy Chain 1D), and ONCM2 

(Oncomodulin) code proteins for musculoskeletal growth and homeostasis with the first 

four being highly variable only in R708’s and the remaining two being highly variable 

only in WPR’s. Additionally, Gene ontology of 5 out of the 7 shared genes, CA3 

(Carbonic Anhydrase III), HBAD (HBM; Hemoglobin Subunit Mu), PROCA1 (Protein 

Interacting with Cyclin A1), HBE1 (Hemoglobin Subunit Epsilon 1), and HBAA 

(HBA1; Hemoglobin Subunit Alpha 1) reveals a shared function; acting through iron-
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iron and oxygen binding. These functions play critical roles in transporting nutrients, 

such as iron and oxygen, in support of developing and maintaining skeletal muscle. 

Mitochondrial proton leak through uncoupling proteins of the electron transport 

chain has associated with low feed efficiency. Uncoupling protein 3 (UCP3) expression 

is increased in WPR vs R708 and further increased by administration of the T1 diet 

(Figure 3.7B). This trend was also reported by Zhou et al. (2015) when comparing high 

feed efficiency broilers to low feed efficiency broilers. They reasoned that this, 

combined with other factors they observed may be explanatory of the increased levels of 

oxidative stress in the high feed efficiency broilers (Zhou et al., 2015). They also noted 

that lipid metabolism was decreased in high feed efficiency broilers. UCP3 is 

predominantly expressed in the skeletal muscle (Rousset et al., 2004; Bezaire et al., 

2005; Fritz et al., 2006; De Marchi et al., 2011; Harmancey et al., 2015; Oliveira et al., 

2016; Fan et al., 2016; Tang et al., 2017). Increased UCP3 expression has been 

correlated to increased fatty acid oxidation and increases in UCP3 expression reduces 

intramuscular fatty acid storage, increases fatty acid transport at the plasma and 

mitochondrial membranes (Bezaire et al., 2005; Nowinski et al., 2015; Oliveira et al., 

2016; Fan et al., 2016; Tang et al., 2017). The reduced UCP3 expression in high feed 

efficiency broilers may be an indicator of decreased lipid metabolism. 

Interestingly, UCP3 expression is requisite for proper mitochondrial function, and 

lowered UCP3 expression have been associated with reduced insulin sensitivity, 

lipotoxicity, glucotoxicity, and increased oxidative stress (Rousset et al., 2004; Fritz et 

al., 2006; Harmancey et al., 2015; Tang et al., 2017). Furthermore, studies in transgenic 
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mice have demonstrated that UCP3 does not function in cold-induced thermogenesis or 

uncoupling of mitochondrial respiration (Rousset et al., 2004). These findings warrant 

further investigation as they indicate that the higher expression of UCP3 may be exerting 

a protective effect on the WPR by shifting from glycolysis to lipid metabolism and 

decreasing oxidative stress. If this is the mode of action, then the finding that UCP3 

expression was highest in birds fed the T1 diet indicates that increasing the concentration 

of ω-3’s in the diet may also have a beneficial effect. 

Finally, cardiovascular disease (sudden death syndrome, ascites, inadequate vessel 

density) is a common concern in modern commercial broiler chickens (Scheele, 1997; 

Olkowski et al., 1998, 1999; Olkowski and Classen, 1998; Malan et al., 2003; Pan et al., 

2005; Olkowski, 2007; Wideman et al., 2013; Tarrant et al., 2017; Sihvo et al., 2018). 

The expression of angiotensin converting enzyme (ACE) is increased in WPR vs R708. 

ACE is responsible for the conversion of angiotensin I to angiotensin II a 

vasoconstrictor, inactivation of the vasodilator bradykinin, and is a member of the 

Renin-Angiotensin-Aldosterone System (also known as RAS) (Erdös, 1975; Niu et al., 

2002; Bealer, 2002; Cabo et al., 2012). 

ACE is most often associated with cardiovascular disease. The product of ACE, 

angiotensin II is highly pro-inflammatory, and a known vasoconstrictor, which increases 

basal heart rate, and activates free-radical generation and oxidative stress through 

upregulation of NADPH oxidases (Bealer, 2002; Das, 2004, 2016; Briones et al., 2012; 

LeMieux et al., 2016). Based on these activities, ACE has also been implicated in 

obesity, metabolic disorder, and diabetes. The decreased expression of ACE in 
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commercial broilers compared not only to the WPR, but also across ages, may explain 

their lower heart rate and higher occurrence of ascites (Scheele, 1997; Olkowski and 

Classen, 1998; Olkowski et al., 1999; Olkowski, 2007; Wideman et al., 2013). 

3.4.3. Differential Gene Expression Specific to Wooden Breast 

The WB specific gene list contained seven of the genes already discussed. 

Specifically, UCP3, MUSTN1, MYOM3, MYH6, METTL21E, CSRP3, and AK1. This 

overlap was expected as WB is highly correlated with growth-rate and breast muscle 

yield, but also numerous concurrent conditions found in modern commercial broilers. 

15-Hydroxyprostaglandin dehydrogenase (HPGD) functions in the metabolism of 

prostaglandins and is involved in inflammation. Expression of HPGD was similar in 

WPR at 11 and 42 days of age but significantly lower in 11-day old R708, and extremely 

down-regulated in 42-day old R708 (Figure 3.10). Eleven genes were unique to the WB 

gene list (GJA8, IQCA1, LMOD2, PHGDH, CAMK2G, FTH1, IPO7, KLHL31, 

LIMCH1, NDUFB10, PGK1). Gene ontology for these indicates a strong association 

with the known molecular characteristics of WB - namely cell proliferation, altered 

energy metabolism, inflammation, calcium regulation, and degeneration and 

regeneration of myofibers.  

Two genes in particular stand out for their potential significance in WB - GJA8 and 

PGK1. Intracellular calcium accumulation is a hallmark of WB tissue (Mutryn et al., 

2015) and GJA8 is a component of calcium and pH-dependent gap junction channels, 

facilitates cell to cell communication, and allows passive diffusion of nutrients, 

metabolites and second messengers (Beyer and Willecke, 2000; Dobrowolski and 
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Willecke, 2009; Šeda et al., 2017). While most information about GJA8 in the literature 

pertains to the development of cataracts (Beyer and Willecke, 2000), recent research has 

linked reduced GJA8 expression to cardiac fibrosis, hypertrophy, decreased blood 

pressure, hypertension, and insensitivity of skeletal muscle to insulin (Šeda et al., 2017). 

As GJA8 is significantly downregulated in R708, this may also explain the elevated rate 

of cardiovascular disease in commercial broilers.  

Dysregulation of glucose metabolism is also a frequently observed characteristic of 

WB. Furthermore, it has been shown that under hypoxic conditions like those of WB, 

glycolysis is enhanced in order to compensate for decreased OXPHOS and maintain 

energy production of the cell (Jackman and Willis, 1996; Guzy et al., 2005; Zheng, 

2012; McGarry et al., 2018). Phosphoglycerate kinase 1 (PGK-1), a key enzyme in 

glycolysis from the WB gene list showed high transcript (logCPM) abundance levels in 

all breeds. However, compared to the WPR and R708 11d samples, expression of PGK-1 

was lowest in 42-day old R708 broilers. Deficiency of PGK-1 has been associated with 

central nervous system dysfunction, hemolytic anemia and myopathies (Fujii et al., 

1980; Tsujino et al., 1995; Sotiriou et al., 2010; Sakaue et al., 2017). Hereditary 

Parkinsonism is an age dependent neuromuscular disease which has been associated with 

PGK-1 deficiency in human males and heterozygotes are often considered asymptomatic 

(Sakaue et al., 2017). These deficiencies in PGK-1 are typically linked to missense 

mutations (Fujii et al., 1980; Tsujino et al., 1995; Sotiriou et al., 2010; Sakaue et al., 

2017). Downregulation of PGK-1 in commercial broilers contrasts with their high 

energy requirements. Also, as the main energy source in breast muscle is glycolysis, 
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reduced expression of PGK-1 is likely correlated to the muscle fiber degradation 

observed in WB. 

3.4.4. Inflammatory Gene Expression in Relation to Diets and Wooden Breast 

It has been demonstrated that selection for today’s fast-growth commercial broilers 

has enhanced inflammatory and cell-mediated immune responses (Cheema et al., 2003). 

Considering the metabolic costs of immune function and the selection for the high 

metabolic rate in fast-growth broilers, nutrition plays a major role in the supplying the 

energy demands of modern broilers. The ω-3 PUFA ALA and its metabolites 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly studied in 

human health and are credited widely as having beneficial effects on numerous diseases 

including cardiovascular disease, metabolic disease, multiple cancer types, neurological 

conditions, and inflammatory diseases (Simopoulos, 2002, 2010; Lorente-Cebrián et al., 

2015; Patrick and Ames, 2015; Jeromson et al., 2015; Behling et al., 2015; 

Wiktorowska-Owczarek et al., 2015; de Oliveira et al., 2017). Several of these disorders 

are commonly observed by canonical pathways, regulators, or predicted diseases and 

disorders in molecular investigations into the pathogenesis of WB (Mutryn et al., 2015; 

Kong et al., 2017; Kuttappan et al., 2017a; Hubert et al., 2018; Papah et al., 2018). 

Our work demonstrated DE inflammation-associated genes specific to all three diets 

(T1, T2, and C) between breeds (Figure 3.11). The only shared gene in the inflammation 

list was HPGD which was also observed in the WB specific gene list. This gene is 

significantly lower expressed in R708 than WPR, and from the comparison used for the 

WB gene list, we know its expression is lowest in 42-day old R708. As prostaglandins 
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are a metabolite of arachidonic acid (an ω-6) it is notable that HPGD was least expressed 

in the T1 diet for R708 while most expressed for R708 in the C diet, although these 

differences in expression were not significant. Interestingly, HPGD not only acts in 

inflammation, but has been identified as a tumor suppressor for breast, pancreatic, and 

gastrointestinal cancers (Yan et al., 2004; Wolf et al., 2006; Mehdawi et al., 2017; Arima 

et al., 2018). All three of these cancers appear commonly on the diseases and disorders 

list of WB pathway analyses.  

Only one gene, C-X-C motif chemokine ligand 14 (CXCL14) was identified as DE 

between breeds in all diets and thus is of particular interest. CXCL14 acts as 

chemoattractant for immature dendritic cells and activated monocytes (Shellenberger et 

al., 2004; Starnes et al., 2006). It has also been identified in chemotaxis of natural killer 

cells to inflamed areas and to have possible roles in oncogenesis (Shellenberger et al., 

2004; Starnes et al., 2006). Expression of CXCL14 has been shown to be ubiquitous in 

normal body tissues, but significantly decreased in many cancers (Shellenberger et al., 

2004; Starnes et al., 2006; Augsten et al., 2009; Lu et al., 2016). However, up-regulation 

of CXCL14 has been shown in MCF7 breast cancer cells in response to mitochondrial 

induced oxidative stress (Pelicano et al., 2009; Lu et al., 2016). CXCL14 has also been 

shown to have significantly increased expression in inflammatory conditions such as 

arthritis, obesity, and atherosclerosis (Lu et al., 2016). Receptors for CXCL14 are still 

unidentified, resulting in a poor understanding of if its regulators (Lu et al., 2016). We 

chose to explore it further in our pairwise comparisons for age and strain ignoring diet. 

We observed that CXCL14 was highly DE between WPR and R708 at both 11 and 42 
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days of age (FDR < 0.001), but not different between ages within either breed (FDR = 

0.85 and 0.9 WPR and R708 respectively). Based on these characterizations, the 

upregulation of CXCL14 in R708 broilers supports previous observations of 

inflammation symptoms and immune infiltration in WB and suggests a possible 

molecular marker for the condition. 

3.5. Conclusions 

Our treatment diets (ω-6:3 ratio) had no impact on WB incidence and severity at 

slaughter age and we did not observe DE genes between diets at a specific age for either 

breed. Although several previous investigations had success in reducing the severity of 

WB, none achieved a reduction in incidence without a corresponding reduction in 

growth-rate, indicating that WB is not susceptible to dietary intervention. We did 

observe an impact of diet on DE genes between breeds and ages, and inflammation 

related genes. This allowed for the refinement of a WB associated DE gene list, as well 

as provided insight into the impact of selection for body weight and feed conversion rate. 

Further research to expound upon the influence of the WB associated DE gene list on the 

condition is needed. Also, comparison of these genes to the proteome would provide 

essential information relating modulation of transcription and translation in modern fast-

growth commercial broilers and important conditions like WB. 
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4. MITOCHONDRIAL GENOME STRUCTURE AND FUNCTION, AND MITO-

NUCLEAR INTERACTIONS IN WOODEN BREAST 

 

4.1. Background 

Wooden breast (WB) is a broiler chicken breast muscle disorder characterized by 

oxidative stress at the tissue and molecular levels (Mutryn et al., 2015; Abasht et al., 

2016; Clark and Velleman, 2016; Sihvo et al., 2017; Cruz et al., 2017; Kuttappan et al., 

2017b; Petracci et al., 2019). Since the 1950s, broiler breeds have been under heavy 

selection for breast muscle yield, feed efficiency, and body weight (Bohren, 1953; 

Warren, 1958; Merritt et al., 1962; Jaap, 1963; Chambers et al., 1981; Fairfull and 

Chambers, 1984; Paxton et al., 2010; Qanbari et al., 2019). The breast muscle is 

typically the highest value portion of the carcass and breast muscle myopathies like WB 

are a large economic concern for the poultry industry. A consensus has emerged that WB 

is associated with the fast growth-rate of commercial broilers (CBRO) and the main 

characteristics are muscle fiber degradation, fibrosis, infiltration of fat, collagen, 

macrophages and T-lymphocytes at the histological level (Trocino et al., 2015; 

Kuttappan et al., 2017b; Papah et al., 2017; Livingston et al., 2019b; Chen et al., 2019). 

At the molecular level, oxidative stress, inflammation, and altered energy metabolism 

are definitive of WB (Mutryn et al., 2015; Abasht et al., 2016, 2019; Kong et al., 2017; 

Kuttappan et al., 2017a; Hubert et al., 2018; Papah et al., 2018; Livingston et al., 2019a). 

The identification of inflammatory and immune activities in WB is also a consumer 

health concern, and inflammatory tissue is required to be removed from the carcass 
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(USDA FSIS, 2018), further downgrading product quality and increasing economic 

losses. 

A notable feature of WB and several other related myopathies is that they are found 

in fast-growth, high-feed efficiency strains, and altered energy metabolism is a unifying 

theme. Metabolic rate is positively correlated with growth-rate and feed efficiency, or an 

organism’s ability to produce and convert energy to body mass, specifically muscle 

mass. This energy, in the form of ATP, is necessary for cell maintenance and replication 

as well as whole organism health and survival. On the other hand, the metabolic rate 

required for rapid growth-rate can be inversely related to feed efficiency in that higher 

metabolic rates typically coincide with high higher levels of heat production and oxygen 

consumption, and thus decreased feed efficiency (Fairfull and Chambers, 1984; Jackson 

and Diamond, 1996; Ojano-Dirain et al., 2007; Bottje et al., 2017; Tallentire et al., 

2018). Therefore, it is remarkable that selection in modern broilers has achieved the 

highly desirable trifecta of high feed efficiency, rapid growth rate, and high metabolic 

rate. Optimized nutrition and controlled environments have contributed to this success, 

but this economically desirable combination has come at the cost of various metabolic 

disorders. 

Oxidative stress, a primary molecular feature of WB, is a disruption of the balance 

between reactive oxygen species (ROS), and antioxidant defense (Clanton, 2007; 

Halliwell, 2007; Weidinger and Kozlov, 2015; McGarry et al., 2018). ROS are produced 

normally in the cell and are essential for intracellular signaling, regulation of 

inflammatory responses, and gene expression (Halliwell, 2007; Sims and Muyderman, 
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2010; Weidinger and Kozlov, 2015). Antioxidants, either produced in vivo or consumed 

as part of the diet, combat excess reactive oxygen species (Clanton, 2007; Halliwell, 

2007; Sims and Muyderman, 2010; Weidinger and Kozlov, 2015). Tissues experiencing 

oxidative stress can experience cellular damage and subsequent cell death if the 

oxidant/antioxidant balance is not restored. As oxidative stress proceeds, ion balance 

changes, modulating sodium/potassium-ATPase channels and cellular calcium 

metabolism, resulting in elevated intracellular free calcium and apoptosis (Clanton, 

2007; Halliwell, 2007; Sims and Muyderman, 2010; Weidinger and Kozlov, 2015). One 

of the foci of ROS production is the mitochondria. The mitochondria regulate cytosolic 

calcium concentrations, acting in cell signaling, differentiation, and programmed cell 

death (Johnstone et al., 2002; Bonnard et al., 2008; Sims and Muyderman, 2010; Netzer 

et al., 2015; Liao et al., 2015). The mitochondrion, well known as the powerhouse of the 

cell, is responsible for the majority of the cell’s ATP production. Thus, the 

mitochondrion also, in large part, drives feed efficiency in agricultural animals. This role 

has been studied in many species of production livestock (Kiessling, 1977; Pitchford, 

2004; Schenkel et al., 2004; Bottje et al., 2006, 2009; Bottje and Carstens, 2009; Kelly et 

al., 2010, 2011; Tinsley et al., 2010; Toyomizu et al., 2011; Young and Dekkers, 2012; 

Sharifabadi et al., 2012; Weller et al., 2013; Fu et al., 2017).  

While mitochondrial involvement in WB has been of interest recently in WB (Papah 

et al., 2017, 2018; Sihvo et al., 2018; Livingston et al., 2019a; Abasht et al., 2019), 

relatively little attention has been devoted to mitochondrial genetics in broiler 

myopathies. Part of this gap in the knowledge can be traced to the fact that the broiler 
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breast is “white meat”, comprised mostly of type IIB muscle fibers. Type IIB muscle 

fibers have very few mitochondria and rely on anaerobic methods of ATP production 

(Jackman and Willis, 1996; Hudson et al., 2017). Only two recent studies have included 

the mitochondria in their histologic investigations of WB in CBRO (Papah et al., 2017; 

Sihvo et al., 2018).  

The mitochondria provide a unique opportunity for better understanding the impacts 

of selective breeding for performance traits as well as the selective forces of 

domestication (Kiessling, 1977; Desjardins and Morais, 1990; Liu et al., 2006; Guan et 

al., 2007). Few investigations have focused on the signatures of selection arising from 

domestication (comparing against ancestral Red Jungle Fowl) versus those arising 

through selection for production traits (comparing against slow growth chicken varieties) 

(Chambers et al., 1981; Remignon et al., 1994; Liu et al., 2006; Kanginakudru et al., 

2008; Paxton et al., 2010; Miao et al., 2013; Collins et al., 2014; Tallentire et al., 2018; 

Qanbari et al., 2019). Selection for CBRO has resulted in changes to muscle morphology 

such as reduced spacing for connective tissue between fiber bundles, increased size of 

fibers, increased rates of degradation and regeneration, and decreased capillary blood 

supply (Mahon, 1999; Dransfield and Sosnicki, 1999; MacRae et al., 2006, 2007; 

Fanatico et al., 2007; Petracci and Cavani, 2012; Velleman and Clark, 2015; Velleman, 

2015; Sihvo et al., 2018). Muscle morphological structure not only impacts function, but 

directly determines meat quality and the morphology observed in breast muscle 

myopathies like WB (Petracci and Cavani, 2012; Sihvo et al., 2014, 2017, 2018; Petracci 

et al., 2015; Velleman, 2015; Clark and Velleman, 2016; Velleman et al., 2018). 
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Furthermore, several investigations have indicated that “normal” or unaffected WB 

CBRO samples are asymptomatic rather than negative for the condition (Velleman and 

Clark, 2015; Kong et al., 2017; Papah et al., 2017; Hubert et al., 2018). As most 

nutritional and management approaches to eliminate WB have been unsuccessful, it is 

increasingly important to identify the impact of selective breeding for body size, breast 

muscle accretion and feed efficiency (Trocino et al., 2015; Cruz et al., 2017; Bodle et al., 

2018; Livingston et al., 2019b; a). Thus, comparative analyses of chicken mitochondria 

varieties can be a valuable perspective for determining the pathophysiology of WB. 

In this study, we utilized comparative genomics approaches to investigate the 

structure and function of the mitochondrial genome in relation to WB. First, we 

compared mitochondrial gene expression patterns from the breast tissue of fast- versus 

slow-growth broilers. Following this, we investigated if functionally important genes 

carried significant variants (mutations) that may be associated with breed and WB 

incidence. Differential gene expression of mitochondrial genes is likely to be directly 

informative about energy metabolism and aberrations in WB. Additionally, due to the 

primarily uniparental inheritance of the mitochondrial (MT) genome, the patterns of 

genetic variation at functionally active genes may reflect the selection history of 

commercial broilers. On the other hand, it is possible that the adoption of line breeding 

in broiler production is so recent (<70 years) that the broiler MT genome has not 

diverged sufficiently from foundational and ancestral strains, potentially constraining 

efficient energy metabolism 
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4.2. Materials and Methods 

4.2.1. Sample Collection and Storage 

Tissue samples for RNA sequencing were collected as a part of a study investigating 

WB molecular signatures in fast and slow growth broilers. Full details on methods for 

this study can be found in Hubert, 2019 (Dissertation Chapter 3). Birds utilized for tissue 

collection included 60 White Plymouth Rock (WPR) and 60 CBRO. Dissections were 

done at 11 and 42 days of age and euthanization was by CO2 exposure, followed by 

cervical dislocation. Animal care and euthanasia procedures were performed according 

to protocols approved by Texas A&M’s Institute for Animal Care and Use Committee 

(AUP IACUC 2016-0065). Approximately two grams of breast tissue was surgically 

dissected and stored in RNALater (Ambion Inc.) at a 5:1 ratio following the 

manufacturer guidelines. Breast tissue samples were stored at 4°C for a minimum of 24 

hours and then removed from the RNALater and stored at -80°C until RNA isolation. 

Genomic data for comparative variant analysis were originally collected for previous 

studies at the Texas A&M University Poultry Center. Blood and tissue samples were 

utilized in order to generate data for this study. Blood was collected from four Ross 

broilers (CBRO), four Vietnam Red Jungle Fowl, two Richardson’s Red Jungle Fowl 

(RJF), two Hy-line Browns (Hy-Line International, Dallas Center, IA), and two Rhode 

Island Reds (LAY). Blood samples was stored in Longmire buffer until DNA isolation 

and purified using a Qaigen DNEasy column-based kit (Qiagen). 
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4.2.2. Sample Processing 

 RNA Extraction and Sequencing 

Total RNA was extracted from 100 mg sections of Pectoralis major tissue samples 

through the TRIzol Reagent method following the manufacturer’s protocol 

(ThermoFisher Scientific, Waltham, MA). All samples were quantified on a Nanodrop 

spectrophotometer and the quality of the RNA isolates was checked using an Agilent 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) with the RNA 6000 Nano 

Kit following the kit manual. Samples yielding an RNA integrity number above 8 were 

retained for further analyses and those which did not were re-extracted until a 

satisfactory RIN was met. Finally, the concentration of both RNA and DNA in these 

samples was checked using Qubit Fluorometric quantitation (ThermoFisher Scientific). 

The concentration of DNA measured in each sample was calculated as the percent of 

contaminant genomic DNA and was generally low with an average of about two percent. 

RNA sequencing (RNAseq) libraries were prepared in-house with the Lexogen 

QuantSeq 3’mRNA Library Prep Kit (Lexogen, Vienna, Austria) for Illumina. A total of 

96 single-indexed libraries were generated, checked for quality with the Agilent 

TapeStation D1000 DNA ScreenTape, and concentration was determined using the 

Qubit dsDNA High Sensitivity Kit (ThermoFisher Scientific). Of these, 72 libraries 

(n=18) were of sufficient quality and quantity. Libraries were diluted to 2 µg, pooled, 

and submitted for sequencing of 75 bp single-end reads on an Illumina NextSeq 

(Illumina, San Diego, CA). Sequencing of total RNA isolated was performed by the 
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Texas A&M University Institute for Genome Sciences and Society (College Station, 

TX). 

 DNA Extraction and Sequencing 

DNA was extracted from blood samples through the use of the DNeasy Blood and 

Tissue Kit (Qiagen, Inc., Hilden Germany) and quality control was carried out on a 

Nanodrop spectrophotometer. High quality samples were then used for whole genome 

sequencing which was performed by the Texas A&M University Institute for Genome 

Sciences and Society (College Station, TX). Paired-end, 150 base pair reads were 

sequenced on an Illumina NextSeq. 

4.2.3. Data Analysis 

 RNA Sequencing Data 

Briefly, RNA sequence data was checked for quality with FastQC (version 0.11.6) 

and MultiQC (version 1.4), and adapters were trimmed with Trim_Galore version 0.4.3 

(Martin, 2011; Ewels et al., 2016; Babraham Institute, 2018a; b). Reads with an average 

quality score lower than Q30 and length less than 35 bp were removed. RNA sequencing 

data were aligned to the Gallus gallus genome (Version 4.8, Ensembl Release 85, July 

2016) with the short-read de-novo splice mapper STAR (version 020201) and reads 

mapping to exons were counted with HTseq-Count (version 0.9.1) (Anders et al., 2013; 

Dobin and Gingeras, 2015; Herrero et al., 2016; Aken et al., 2016; Ruffier et al., 2017). 

Normalized counts from each mRNA libraries were used to perform analysis of 

differential gene expression in the EdgeR package in R (Robinson et al., 2010; 

McCarthy et al., 2012; Anders et al., 2013; RStudio Team, 2015; R Core Team, 2019). 
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Genes were identified as significantly differentially expressed (FDR <0.05) using the 

likelihood ratio test ‘glmLRT’ function. Differentially expressed genes specific to the 

mitochondrial genome were then extracted from the data set and ten commonly observed 

genes were selected for comparison to SNP data. Expression data (logCPM) of genes 

were then used to create a heatmap with the gplots package in R in order to visualize 

differences in gene expression (RStudio Team, 2015; R Core Team, 2019; Warnes et al., 

2019).   

 DNA Sequencing Data 

The whole genome sequence data were checked for quality, trimmed with 

Trimmomatic and aligned with BWA (Li and Durbin, 2009; Bolger et al., 2014). Variant 

calling was performed following the GATK best practices pipeline, followed by the 

annotation of variant effects using the SnpEff program for effect prediction (McKenna et 

al., 2010; Cingolani et al., 2012). Mitochondrial SNP data was separated and used in 

further analyses. Individual sample mitochondrial chromosome variant call files were 

combined by bird variety (CBRO, LAY, RJF) using the GATK CombineVariants tool, 

for the purpose of generating summary statistics by breed type. Tajima’s D was then 

calculated for each of these files using VCFtools (Danecek et al., 2011) in order to 

observe the impact of selection on each variety and the results were graphed using the 

ggplot2 package in the R statistical platform (RStudio Team, 2015; Wickham, 2016; R 

Core Team, 2019). To investigate MT variants associated with differentially expressed 

MT genes, ten mitochondrial genes differentially expressed across all pairwise 

comparisons were identified, and SNP data for these genes were subsetted using 
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VCFtools. We then observed the compared SNPs and their effects at these loci across all 

varieties and individuals. 

4.3. Results 

4.3.1. RNA Sequencing Results 

Thirty-six annotated mitochondrial genes obtained Ensembl BioMart (Gallus gallus 

genome, version 4.8, Ensembl Release 85, July 2016) specific to the chicken 

mitochondrial genome were included in the analysis (Herrero et al., 2016; Aken et al., 

2016; Ruffier et al., 2017). Twenty-five of the 36 mitochondrial genes were 

differentially expressed in pairwise comparisons of fast- versus slow-growth broilers 

(FDR < 0.05). The number of observations across all pairwise comparisons for each of 

mitochondrial gene observed as differentially expressed is shown in Figure 4.1. We then 

utilized the SNPeff predicted impacts and the frequency of their observation to select ten 

genes for further analyses (Table 4.1). A heatmap of the logCPM for each of the ten 

mitochondrial genes comparing the WPR to the CBRO at 11 and 42 days of age is 

shown in Figure 4.2. In general, mitochondrial gene expression was similar between 

ages than variety, with a decrease in expression from 11 to 42 days of age for both 

strains. However, NADH Dehydrogenase 3 (ND3) and an Mt_tRNA 

(ENSGALG00000018366 and ENSGALG00000018372 respectively) were 

downregulated in CBRO compared to WPR regardless of age, with FDR < 0.02 and 

minimum logFC < -3. These were the only genes considered differentially expressed at 

11 days of age between the two varieties. At 42 days of age ATP Synthase 6 (ATP6) and 

NADH Dehydrogenase (ND2) were downregulated in CBRO (ENSGALG00000018368, 
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FDR = 0.008, logFC = -1.86 and ENSGALG00000018378, FDR = 0.02, logFC = -1.78 

respectively). Within variety, CBRO mitochondrial gene expression for the nine protein-

coding genes significantly decreased from 11 to 42 days of age. In the WPR, only six of 

the protein-coding genes significantly decreased expression from 11 to 42 days of age, 

NADH Dehydrogenase 6 (ND6), NADH Dehydrogenase 1 (ND1), ND3, Cytochrome C 

Oxidase 3 (COX3), Cytochrome C Oxidase 2 (COX2), and NADH Dehydrogenase 4 

(ND4) (ENSGALG00000018357, ENSGALG00000018382, ENSGALG00000018366, 

ENSGALG00000018367, ENSGALG00000018370, ENSGALG00000018364 

respectively, FDR < 0.05, logFC < -1.8). 

 

  

Figure 4.1 Histogram of differentially expressed mitochondrial genes across all RNAseq 

pairwise comparisons. 
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Table 4.1 Summary of the ten mitochondrial genes selected for further analyses. The table 

contains the gene name abbreviation, the Ensembl release 85 gene ID, the start and end 

coordinates for the coding sequence (bp), the gene type, and a short description. 

Gene Abbr. Ensembl Gene ID 

Gene 

Start 

(bp) 

Gene 

End 

(bp) 

Gene type Description 

ATP6 ENSGALG00000018368 9240 9923 protein_coding 
ATP synthase subunit a  

[Source:UniProtKB/Swiss-
Prot;Acc:P14092] 

COX1 ENSGALG00000018373 6645 8192 protein_coding 
Cytochrome c oxidase subunit 1  

[Source:UniProtKB/Swiss-
Prot;Acc:P18943] 

COX2 ENSGALG00000018370 8331 9014 protein_coding 
Cytochrome c oxidase subunit 2  

[Source:UniProtKB/Swiss-
Prot;Acc:P18944] 

COX3 ENSGALG00000018367 9923 10706 protein_coding 
Cytochrome c oxidase subunit 3  

[Source:UniProtKB/Swiss-
Prot;Acc:P18945] 

Mt_tRNA ENSGALG00000018372 8124 8258 Mt_tRNA   

ND1 ENSGALG00000018382 4050 5024 protein_coding 

NADH-ubiquinone oxidoreductase 
chain 1  

[Source:UniProtKB/Swiss-
Prot;Acc:P18936] 

ND2 ENSGALG00000018378 5241 6281 protein_coding 

NADH-ubiquinone oxidoreductase 
chain 2  

[Source:UniProtKB/Swiss-
Prot;Acc:P18937] 

ND3 ENSGALG00000018366 10776 11126 protein_coding 

NADH-ubiquinone oxidoreductase 
chain 3  

[Source:UniProtKB/Swiss-
Prot;Acc:P18938] 

ND4 ENSGALG00000018364 11486 12863 protein_coding 

NADH-ubiquinone oxidoreductase 
chain 4  

[Source:UniProtKB/Swiss-
Prot;Acc:P18939] 

ND6 ENSGALG00000018357 16184 16705 protein_coding 

NADH-ubiquinone oxidoreductase 
chain 6  

[Source:UniProtKB/Swiss-
Prot;Acc:P18941] 
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Figure 4.2 Hierarchical clustering heatmap of the 10 mitochondrial genes from pairwise 

RNAseq comparisons, based on average logCPM values for each breed and age. Clustering 

shows that gene expression is most similar between the 11d samples and then the 42d samples, 

with expression decreasing with age in both breeds, but most significantly in CBRO. 

 

 

 

 

4.3.2. Mitochondrial Variants in the Wooden Breast Phenotype 

Forty-three SNPs were identified within the coding sequences of nine out of the ten 

MT genes investigated (Table 4.2). The exception (ENSGALG00000018372) was a 

Mt_tRNA gene, which demonstrated no SNPs within its coding sequence. However, 41 

of the 43 SNP variants identified act as modifiers (upstream or downstream regulators) 

of the Mt_tRNA. SNP variants were found at the same loci and the frequency of the 

variant allele was similar between the three breeds (Table 4.3). Low impact synonymous 

variants accounted for 33 of the 43 SNPs, whereas nine were moderate impact missense 
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variants, and one was a high impact variant. High-impact variants are typically non-

synonymous changes in the coding sequence. The single high-impact variant occurred in 

the Cytochrome C Oxidase 1 (COX1) gene in the form of a stop loss missense mutation. 

Also, all SNPs identified were either up- or downstream gene modifiers for Mt_tRNAs 

and other mitochondrial protein coding genes. Of the 43 SNPs identified, the majority 

were transitions (39) and the rest were transversions [9:1, TS:TV]. Transitions typically 

outnumber transversions, as transversions tend to be nonsynonymous. Furthermore, 

based on gene expression data, all these ten genes carrying the SNP variants are 

significantly down regulated in 42-day old CBRO.  
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Table 4.2 Summary of the SNP variants identified within the protein coding sequences of the mitochondrial genes. The table contains the 
gene name abbreviation and Ensembl release 85 gene IDs, the directional regulation of the gene in CBRO, the location of the SNP in the 
gene coding sequence (bp), possible alleles at the loci, and the predicted effect of the SNP. 

Gene Abbr. Ensembl ID Regulation (up or down) Location (bp) Alleles (ref:alt) Predicted Effect 

ND1 ENSGALG00000018382 down 4580 G:A 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018381, 

ENSGALG00000018379, and ND2 

ENSGALG00000018378; downstream gene variant and 

modifier of ENSGALG00000018372 

ND2 ENSGALG00000018378 down 

5369 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000021716, and COX1 

ENSGALG00000018373; downstream gene variant and 

modifier of ENSGALG00000018372 

5718 T:G 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000021716, and 

COX1 ENSGALG00000018373; downstream gene 

variant and modifier of ENSGALG00000018372 

5750 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000021716, and COX1 

ENSGALG00000018373; downstream gene variant and 

modifier of ENSGALG00000018372 

5826 T:C 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000021716, and 

COX1 ENSGALG00000018373; downstream gene 

variant and modifier of ENSGALG00000018372 

5928 C:A 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000021716, and 

COX1 ENSGALG00000018373; downstream gene 

variant and modifier of ENSGALG00000018372 
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Table 4.2. Continued 
Gene Abbr. Ensembl ID Regulation (up or down) Location (bp)  Alleles (ref:alt) Predicted Effect 

COX2 ENSGALG00000018370 down 

8420 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

8464 T:C 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000018377, 

ENSGALG00000018376,  ENSGALG00000018372 

8609 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

8774 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

ATP6 ENSGALG00000018368 down 

9375 A:G 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000018377, 

ENSGALG00000018376,  ENSGALG00000018372 

9533 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

9593 G:A 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

9650 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018380, 

ENSGALG00000018377, ENSGALG00000018376, 

ENSGALG00000018372 

9797 G:A 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000018377, 

ENSGALG00000018376,  ENSGALG00000018372 

 



 

160 

 

Table 4.2. Continued 

Gene Abbr. Ensembl ID Regulation (up or down) Location (bp)  Alleles (ref:alt) Predicted Effect 

COX3 ENSGALG00000018367 down 

10072 A:G 

Moderate impact missense variant; upstream gene 

variant and modifier of MT_tRNAs 

ENSGALG00000018380, ENSGALG00000018377, 

ENSGALG00000018376,  ENSGALG00000018372 

10249 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

10261 G:A 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

10303 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

10438 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

10660 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

ND3 ENSGALG00000018366 down 

10968 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 

10997 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018377, 

ENSGALG00000018376, ENSGALG00000018375, 

ENSGALG00000018372 
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Table 4.2. Continued 

Gene Abbr. Ensembl ID Regulation (up or down) Location (bp)  Alleles (ref:alt) Predicted Effect 

ND4 ENSGALG00000018364 down 

11683 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

11963 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

11998 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12094 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12268 C:T 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12454 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12481 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12547 G:A 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

12679 T:C 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNAs ENSGALG00000018372, 

ENSGALG00000021720, ENSGALG00000018363 

ND6 ENSGALG00000018357 down 

16346 G:A 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNA ENSGALG00000018358; 

downstream gene variant and modifier ND4L 

ENSGALG00000021719, ND4 

ENSGALG00000018364 

16586 A:G 

Low impact synonymous variant; upstream gene variant 

and modifier of MT_tRNA ENSGALG00000018358; 

downstream gene variant and modifier ND4 

ENSGALG00000018364, MT_tRNA 

ENSGALG00000021720 



 

162 

 

 
Table 4.3 Summary of the frequency of the reference and alternate alleles for each identified 
SNP loci for the nine mitochondrial protein-coding genes for each of the three breeds. The table 
contains the gene name abbreviation, SNP location (bp) within the gene coding sequence, and 
columns for each breed containing the reference and alternate alleles and their relative 
frequencies. 

Gene Abbr. Location LAY CBRO RJF 

ND1 4580 G:0 A:1 G:0.375 A:0.625 G:0.667 A:0.333 

ND2 

5369 C:0.666667 T:0.333333 C:1 T:0 C:1 T:0 

5718 T:1 G:0 T:1 G:0 T:0.583333 G:0.416667 

5750 A:1 G:0 A:1 G:0 A:0.8 G:0.2 

5826 T:1 C:0 T:0.75 C:0.25 T:1 C:0 

5928 C:0 A:1 C:0 A:1 C:0 A:1 

COX1 

6758 T:0 C:1 T:0.25 C:0.75 T:0.666667 C:0.333333 

6800 T:0 C:1 T:0.25 C:0.75 T:0.666667 C:0.333333 

6899 A:0 G:1 A:0.25 G:0.75 A:0.571429 G:0.428571 

7166 C:1 T:0 C:1 T:0 C:0.8 T:0.2 

7361 T:1 C:0 T:1 C:0 T:0.833333 C:0.166667 

7530 C:0 G:1 C:0 G:1 C:0 G:1 

7644 T:1 G:0 T:0.875 G:0.125 T:1 G:0 

7691 T:1 C:0 T:1 C:0 T:0.666667 C:0.333333 

8070 T:0 C:1 T:0.25 C:0.75 T:0.571429 C:0.428571 

COX2 

8420 C:1 T:0 C:1 T:0 C:0.833333 T:0.166667 

8464 T:0 C:1 T:0.25 C:0.75 T:0.666667 C:0.333333 

8609 T:0 C:1 T:0.25 C:0.75 T:0.571429 C:0.428571 

8774 C:0.5 T:0.5 C:1 T:0 C:1 T:0 

ATP6 

9375 A:1 G:0 A:1 G:0 A:0.833333 G:0.166667 

9533 A:0 G:1 A:0.333333 G:0.666667 A:0.571429 G:0.428571 

9593 G:0 A:1 G:0.333333 A:0.666667 G:0 A:1 

9650 A:1 G:0 A:1 G:0 A:0.833333 G:0.166667 

9797 G:0 A:1 G:0 A:1 G:0 A:1 

COX3 

10072 A:0 G:1 A:0.25 G:0.75 A:0.666667 G:0.333333 

10249 A:1 G:0 A:1 G:0 A:0.666667 G:0.333333 

10261 G:1 A:0 G:0.75 A:0.25 G:1 A:0 

10303 T:1 C:0 T:1 C:0 T:0.666667 C:0.333333 

10438 T:0 C:1 T:0 C:1 T:0 C:1 

10660 C:1 T:0 C:0.75 T:0.25 C:1 T:0 
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Table 4.3. Continued 
Gene Abbr. Location LAY CBRO RJF 

ND3 10968 T:0 C:1 T:0.25 C:0.75 T:0.571429 C:0.428571 

10997 T:0 C:1 T:0.25 C:0.75 T:0 C:1 

ND4 

11683 A:1 G:0 A:1 G:0 A:0.833333 G:0.166667 

11963 C:0 T:1 C:0.25 T:0.75 C:0.571429 T:0.428571 

11998 T:0.5 C:0.5 T:1 C:0 T:1 C:0 

12094 T:0 C:1 T:0 C:1 T:0 C:1 

12268 C:1 T:0 C:1 T:0 C:0.833333 T:0.166667 

12454 T:0 C:1 T:0.25 C:0.75 T:0.571429 C:0.428571 

12481 A:1 G:0 A:1 G:0 A:0.833333 G:0.166667 

12547 G:1 A:0 G:1 A:0 G:0.833333 A:0.166667 

12679 T:0 C:1 T:0 C:1 T:0 C:1 

ND6 16346 G:1 A:0 G:1 A:0 G:0.875 A:0.125 

16586 A:0 G:1 A:0.333333 G:0.666667 A:0 G:1 

 

 

 

 

Next, we estimated the Tajima’s D statistic to detect signatures of selection along the 

mitochondrial genome, for each chicken breed (Figure 4.3). A negative value of 

Tajima’s D is indicative of decreasing genetic diversity due to a directional selection, 

whereas positive values are indicative of balancing selection and increased genetic 

diversity. The location and directionality of peaks in Figure 4.3 are similar between 

LAY, CBRO and RJF at most locations across the mitochondrial genome. For RJF there 

are no negative Tajima’s D values and several positive ones, indicating a high level of 

genetic diversity as we would expect from a population not undergoing any type of 

selection or bottleneck. The Tajima’s D values for LAY are most similar to those for the 
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RJF except at one position around 13000 bp, indicating lower genetic diversity, and 

suggesting directional selection at this locus. The CBRO, although showing positive 

values in the same locations as the RJF and LAY, was less so, and had pronounced 

negative values for Tajima’s D at around 7500 bp window. This peak sits atop the COX1 

(ENSGALG00000018373, Table 4.1) gene, located between 6645 and 8192 bp, and is 

thus likely to be the gene experiencing directional selection in CBRO. COX1 contains 

nine known SNPs, one of which (7644 bp) is a high impact variant due to a lost stop 

codon, and two moderate impact missense SNP variants (7530 and 8070 bp) (Figure 

4.4). COX1 is the main subunit of cytochrome c oxidase in respiratory complex IV, the 

final enzyme in oxidative phosphorylation (Debray et al., 2014; Dennerlein and Rehling, 

2015). Mutations in COX1 have been linked to complex disorders such as primary 

ovarian insufficiency, Parkinson’s disease, Alzheimer’s disease, and encephalomyopathy 

in humans (Jiang et al., 2004; Frautschy, 2010; Hornig-Do et al., 2012; Arnold et al., 

2013; Choi et al., 2013; Debray et al., 2014; Zhen et al., 2015; Shukuri et al., 2016; 

Hoffmann et al., 2018), suggesting the importance of this gene in several critical 

pathways. These disorders terms have been previously associated with WB by pathway 

analyses of the transcriptome from our lab. 
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Figure 4.3 Line graph of the values obtained by the calculation of the Tajima’s D statistic to 
quantify the effect of selection on the mitochondrial genome across the three chicken breeds 
(CBRO = commercial broilers, LAY = laying chickens, RJF = ancestral red jungle fowl). 
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Figure 4.4 Diagram of the COX1 gene demonstrating the moderate-high impact SNPs within its 
coding sequence and the observation of these SNPs by breed. The location (bp) of the SNP is 
marked along the gene coding sequence and the reference and alternate alleles are noted, along 
with the predicted effect. Identification of the SNP within each breed is indicated by a colored 
marker at the location of the SNP. The two moderate impact SNP variants were observed in all 
three breeds so three colored markers are shown at these locations, while the high impact SNP 
variant was only observed in CBRO, as indicated by only one colored marker. 

 

 

 

 

4.3.3. Divergent Expression Ratios of OXPHOS Counterparts 

Considering the low impact of the majority of the SNPs identified in the 

mitochondrial genome, we investigated why the expression of these genes was different 

in the CBRO versus the WPR (slow-growth broiler). Particularly, we investigated the 

interaction of nuclear and mitochondrial genes, given that nuclear-encoded and MT-

encoded genes work together to ensure normal cellular function. Given the importance 

of energy metabolism and oxidative stress in WB, we compared gene expression patterns 

in the nuclear and mitochondrial counterparts of the oxidative phosphorylation pathway 
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(OXPHOS). Also, of the polypeptides required for OXPHOS, only 13 are encoded by 

the mitochondrion, while roughly 70 are encoded by the nuclear (NUC) genome 

(Smeitink et al., 2001). To this end, the expression ratios for 51 NUC encoded MT 

associated genes (available from Ensebml BioMart, Gallus gallus genome, version 4.8, 

Ensembl Release 85, July 2016) involved in OXPHOS and the 36 MT encoded genes 

were compared between 11 and 42-day old broilers of either variety (Table A-5). 

Nuclear genes were subsampled 36 at a time to calculate the NUC:MT expression ratios. 

Each unique MT-NUC gene combination was resampled without replacement 1000 

times for each of the four data sets (WPR and CBRO, 11 and 42 days of age), resulting 

in all 51 NUC OXPHOS genes being sampled approximately 20 times. Although gene 

expression was significantly down-regulated in both varieties between 11 and 42 days of 

age, this analysis demonstrated that in CBRO a high frequency of NUC:MT gene 

expression ratios fall close to zero, indicating that oxidative capacity is not different 

between the two ages (Figure 4.5). In WPR, we see a very surprising pattern where the 

11- and 42-day old expression ratios were significantly different (Figure 4.5). 

Considering the immense change in body size seen in CBRO, the results suggest that the 

performance of the MT components of OXPHOS are constrained in CBRO, which in 

turn may cause or exacerbate hypoxia, oxidative stress, and altered energy metabolism 

observed in WB. 
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Figure 4.5 Frequency of NUC: MT OXPHOS gene expression ratios generated by resampling unique NUC: MT OXPHOS gene 
combinations without replacement 1000 times for each breed and age. For CBRO, NUC: MT OXPHOS gene expression ratios tend to 
fall near 0 indicating no change to OXPHOS capacity with an increase in age, while the NUC: MT OXPHOS gene expression ratios for 
the WPR show significant deviation from zero with increased age. 
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4.4. Discussion 

Our investigation of mitochondrial gene expression confirmed the inhibition of 

OXPHOS observed by others (Kong et al., 2017; Papah et al., 2018). All of the gene 

products of the protein-coding MT genes observed here are involved in OXPHOS. The 

ND genes encode enzymes which act as NADH dehydrogenases, while the COX genes 

encode Cytochrome C Oxidase subunits, and ATP6 encodes the complex V ATP 

synthase which produces ATP from ADP (Smeitink et al., 2001; Sparks et al., 2005; 

Reinecke et al., 2009; Fuhrmann and Brüne, 2017; Pearce et al., 2017). Oxidative 

phosphorylation is an aerobic pathway in which energy molecules from beta-oxidation, 

glycolysis, and the TCA cycle are converted to ATP in the mitochondria and is required 

for proper cell function and maintenance (Kunz, 2001; Smeitink et al., 2001; Conley et 

al., 2001; Reinecke et al., 2009). Although muscles can utilize anaerobic metabolic 

pathways, OXPHOS is the most efficient method of ATP production for the cell, 

producing 38 molecules of ATP per glucose versus 2 (Conley et al., 2001; Reinecke et 

al., 2009; Hudson et al., 2017; Fuhrmann and Brüne, 2017). As OXPHOS is under both 

mitochondrial and nuclear genetic control, discerning phenotypic impacts is extremely 

complex. However, several conditions have been linked to OXPHOS disorders including 

diabetes, lactic acidosis, epilepsy, neuropathy, cardiomyopathy, and myopathy (Sparks 

et al., 2005; Misu et al., 2007; Olsson et al., 2011; Frazier et al., 2019).  

Modern broiler chickens are particularly well known for their high growth rate and 

feed efficiency, especially with respect to breast muscle production. Breast muscle fiber 

type is consistent between varieties of chicken, regardless of growth-rate or genotype, 
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although fiber number, size, and density is variable (Kiessling, 1977; Remignon et al., 

1994, 1995; Dransfield and Sosnicki, 1999; Scheuermann et al., 2003, 2004; MacRae et 

al., 2006; Velleman, 2007; Branciari et al., 2009; Clark and Velleman, 2016; Velleman 

et al., 2018). However, hypertrophy has been implicated as the main change responsible 

for breast size increase in modern CBRO (Roy et al., 2006; Velleman, 2007; Berri et al., 

2007; Le Bihan-Duval et al., 2008; Trocino et al., 2015). The mechanisms behind this 

desirable performance phenotype have long been investigated, but recently Reverter et 

al., (2017) identified that a strong positive relationship exists between mitochondrial 

content of the breast and thigh (P<0.0001). They also observed a negative correlation of 

mitochondrial content with breast muscle yield (P=0.037) and high levels of individual 

variation (Reverter et al., 2017). However, increased breast muscle mass (low 

mitochondrial content) was also associated with an increased proportion of abdominal 

fat (Reverter et al., 2017). This phenotype coincides with biochemical characterizations 

of obesity and metabolic disorders, all of which have been associated with the aberrant 

molecular characteristics of WB.  

Several studies have observed the transcriptome, metabolome, and proteome in 

relation to WB severity, finding impacts on glucose metabolism, OXPHOS, and 

oxidative stress (Mutryn et al., 2015; Abasht et al., 2016, 2019; Clark and Velleman, 

2016; Kong et al., 2017; Kuttappan et al., 2017a; Cai et al., 2018; Hubert et al., 2018; 

Papah et al., 2018). Results of these investigations demonstrated increased MT beta-

oxidation of fatty acids, while peroxisomal beta-oxidation of fatty acids was decreased in 

CBRO (Abasht et al., 2019). Also, the lipogenic enzyme ATP-citrate lyase was up-
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regulated in CBRO indicating citrate export from the MT for cytosolic production of 

acetyl-CoA (Abasht et al., 2019). This further validates the correlation of increased body 

fat observed by Reverter et al. (2017) and the association with obesity models. 

The extreme growth rate of CBRO has also been associated with an increase in 

cardiovascular disease and inflammatory states. These conditions are also associated 

with WB by diminished cardiovascular efficiency due to decreased blood vessel density, 

and resultant hypoxia. Recently, Sihvo et al. (2018) investigated this relationship finding 

that WB exhibits reduced vessel density which exacerbates hypoxic conditions. 

Mitochondria can adapt to hypoxic conditions through the activation of hypoxia-

inducible factor-1⍺ (HIF1⍺) which shuts down electron transport chain complex IV and 

up-regulating expression of pyruvate dehydrogenase kinase (decreasing pyruvate 

conversion to Acetyl CoA) to reduce oxygen consumption by the MT (Guzy et al., 2005; 

Solaini et al., 2010; Fuhrmann and Brüne, 2017; McGarry et al., 2018). HIF1⍺ also 

stimulates glycolysis by up-regulating the expression of glucose transporters (Solaini et 

al., 2010; Fuhrmann and Brüne, 2017; McGarry et al., 2018). Hypoxic conditions 

increase the production of reactive oxygen species, furthering cellular damage and 

inflammation (Solaini et al., 2010; Fuhrmann and Brüne, 2017; McGarry et al., 2018) 

exacerbating WB. Concurrently, hypoxia downregulates OXPHOS, and stimulates 

anaerobic glycolysis, both of which increase inflammation. The downregulation of the 

mitochondrial counterparts of OXPHOS in WB found in this study supports the hypoxia-

driven oxidative stress and inflammation mechanism in action. Additionally, the 

expression ratios of MT-nuclear OXPHOS counterparts suggests that diminished 
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mitochondrial gene expression may be a limiting factor in supplying the energy demands 

of fast growth, therefore instigating the symptoms of WB.  

The causes of diminished mitochondrial function can be varied. While 

nonsynonymous mutations have been identified in some human disorders (e.g. See 

Warburg Phenomenon), we found only one nonsynonymous change in CBRO, but this 

variant was also shared among other chicken breeds. Furthermore, an MT phylogenetic 

tree including CBRO, RJF, and LAY breeds (based on MT genetic distances) shows 

remarkable conservation of the MT genome across members of Gallus gallus (Figure 

4.6). When contrasted against the divergence of nuclear genomes across members of 

Gallus gallus, the similarity of MT genomes is not only surprising, but emerges as a 

potential factor limiting continued phenotypic improvements that depend on MT genome 

products.   
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A second, complementary factor affecting mitochondrial function is the number of 

mitochondria. Although few mitochondria are expected in muscles composed of type IIB 

fibers, those impacted by diffuse WB typically demonstrates aggregations of 10-25 

mitochondria between the myofibrils, with the observation of more than 40 in those 

scored as severely affected (Sihvo et al., 2018). However, areas of unaffected tissue in 

both “normal” and affected WB samples demonstrated single mitochondria or rows of 

only two or three lined up along the myofibrils (Sihvo et al., 2018). Histologically a 

swollen matrix chamber, loss of cristae, and vacuolation were observed in the broiler 

breast muscles regardless of WB, but the degree of these changes was increased in WB 

muscles (Sihvo et al., 2018). Furthermore, normal mitochondria were also observed in 

all cases, just in varying degrees. These findings are representative of those previously 

observed by Papah et al. (2017), but with the addition of detail regarding increased 

mitochondrial content compared to non-WB CBRO samples. 
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Figure 4.6 Phylogenetic tree of mitochondrial genetic distances of CBRO, RJF, and LAY as well as other members of Gallus gallus 
demonstrating conservation of the mitochondrial genome. 
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4.5. Conclusions 

Although several studies have considered the role of the mitochondrion in WB, to 

our knowledge this is the first study to directly investigate the gene expression profiles 

specific to the MT genome, MT genome variants in CBRO, as well as investigate the 

cooperative regulation of OXPHOS by nuclear genes in relationship to WB. Our data 

showed that MT OXPHOS genes were downregulated in WB affected CBRO, compared 

to WPR. The diminished function of MT genes was not a result of mutations affecting 

MT transcription, but our data is unable to rule out alteration of MT gene translation. 

Sequence conservation in the MT genome across Gallus gallus, combined with its 

uniparental inheritance of MT genomes, suggests that unlike the nuclear genome, the 

MT genome has remained relatively unaffected by directional selection for performance 

traits. These findings suggest that the MT genome structure and function may be the 

constraint in growth performance, and exacerbating WB. 
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5. CONCLUSIONS 

 

5.1. Overview of Our Work 

The work completed here investigated the roles of genetic background, age, and diet 

in causing wooden breast (WB). A major takeaway from this work and emerging work 

from various researchers is that diet has no role in causing or ameliorating WB. Instead, 

we found strong support for a genetic basis of WB in broilers defined by a history of 

selection for feed conversion ratio (and consequently, growth rate). Although several 

studies have investigated the molecular architecture of WB and the role of its 

characteristics, this is the first body of work to investigate pathophysiological 

mechanisms through comparative analyses with fast- and slow-growth varieties as well 

as the ancestral RJF. WB is an inherited, age-dependent multi-system condition 

characterized by dysregulation of oxidative phosphorylation (OXPHOS).  

Growth-rate, high body weight, breast muscle mass, and feed efficiency 

(performance traits) have long been linked to WB through observation of variation in 

incidence and severity. The molecular characteristics of hypoxia, oxidative stress, and 

dysregulated glucose metabolism have been observed by many. As the breast muscle is 

anaerobic due to its muscle fiber composition, few have considered the role of the 

mitochondria (MT), although its damage, degradation, and altered gene expression have 

been described. Here we validated previous observations of the transcriptional profile of 

WB and linked selection for broiler performance to aberrant OXPHOS. Furthermore, we 
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found an abnormal pattern of nuclear: MT OXPOS expression in 42-old birds affected 

by WB.  

The MT is an intrinsic producer of reactive oxygen species (ROS) and oxidative 

stress. This is in large part due to the activities of the electron transport chain and 

OXPHOS. Furthermore, attenuated MT DNA repair mechanisms and a close 

relationship with the electron transport chain increase its susceptibility to damage by 

ROS during oxidative stress. Conversely, MT are also severely affected when oxygen is 

limiting, or under conditions of hypoxia. Although they seem antagonistic, hypoxia and 

ROS work in conjunction to produce oxidative stress, oxidative damage, and 

inflammation. As both, oxidative stress and hypoxia are hallmarks of WB tissue, 

observation of MT degradation is not surprising. However, it has not been observed if 

cellular and MT damage in WB is a consequence of OXPHOS ROS production or a 

symptom of the overall condition.   

5.2. Relevance to Industry 

WB presents not only substantial economic losses for the industry but also consumer 

related propagation of miss-information. Reduction of WB has so far, only been attained 

along with reduced growth-rate, typically due to decreased caloric intake during the 

growth period. All manner of antioxidants, vitamins, and minerals have been 

hypothesized as functional in combating oxidative stress or as possibly being limiting for 

normal cellular growth and development. Combined with these previous findings, this 

work substantiates that WB cannot be mitigated by nutritional/management practices. 

These findings indicate that selection methods besides phenotypes/genotypes may be 
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necessary in order to completely abrogate WB. However, this is a costly and inefficient 

process which will require years for the industry to implement. Furthermore, without the 

ability for informed selection of pedigree lines, this would be unreasonable. The work 

completed here offers some potential applications for future genomic selection 

programs.  

The comparative analysis of the impact of diet and age between White Plymouth 

Rock chickens and commercial broilers was highly informative of the genetic changes 

associated with selection for performance traits and narrowing down on WB specific 

gene expression. It allowed for isolation of signatures of normal growth and 

development which have been selected upon in commercial broilers and identification of 

those which are now aberrantly regulated and likely involved in WB pathogenesis. 

Furthermore, although the diets did not demonstrate a significant impact on gene 

expression, an age and breed related interaction with the diet was identified. Genes 

differentially expressed due to age or breed and further impacted by diet yield insights 

into nutritional and genomic interplay which provides insights about the role of feed 

ingredients on normal growth and development. 

5.3. Possible Applications and Future Directions 

This work demonstrates identified genes which could be used as biomarkers for 

genetic testing of pedigree lines. Selecting based on OXPHOS function is one method 

which could be implemented with little effort. Another option would be creating a 

custom panel for divergently expressed genes involved in cellular functions like 

signaling, development, and differentiation, regulation of inflammation and metabolism, 
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and muscle structure and function such as CXCL14, GJA8, UCP3, LMOD2, CSRP3, 

HPGD, and IQCA1 which were identified as WB- and inflammation-associated in 

commercial broilers in this work. Poultry primary breeders are adopting genomic 

selection into their selection practices, and therefore selecting for beneficial genotypes is 

highly feasible. However, as the commercial broilers (which experience WB) are the 

product of complex AB♂ x CD♀ crosses, substantial work is needed to evaluate 

individual lines and the impact of selection for specific variants in the ultimate hybrid 

product.  

The candidate biomarkers identified here could also provide a foundation on which 

further methods of ameliorating WB could be tested. Many of these genes are targets in 

ongoing research for disease therapies and there is a potential to model those 

investigations in broilers. However, this would be a completely new direction for WB 

research, requiring high technical skills, extensive funding, and tightly controlled rearing 

conditions. Finally, this too would most likely be inefficient and require not only years 

to complete and validate, but consumer education and acceptance could become an issue 

as well. 
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APPENDIX A 

SUPPLEMENTARY TABLES 

 

Table A-1. Diet formulation including basal diet ingredients (percent) for starter, grower, and 
finisher feeds. 

   Percent of Diet for each ingredient 

  Name: Starter Grower Finisher 

IngrCode Ingredient Name Version: 17 18 19 

2 TAMU CORN  #21 0.512 0.5495 0.6045 

21 TAMU SOYBEAN ML48% 0.365 0.335 0.2955 

50 DL-MET98   0.003575 0.003 0.0029 

53 LYSINE HCL 0.002425 0.0017 0.001775 

54 L-THREONINE 98.5% 0.001325 0.000825 0.000725 

61 Oil   0.05 0.05 0.05 

70 LIMESTONE 0.01425 0.01305 0.01225 

73 BIOFOS 16/21P 0.01565 0.0139 0.0127 

75 SALT   0.00465 0.0046 0.00365 

76 SODIUM BICARB 0 0.00005 0.00135 

79 TAMU TRACE MINERALS 0.0005 0.0005 0.0005 

80 TAMU VITAMINS 0.0015 0.0015 0.0015 

SAND sand   0.029105 0.02665 0.012745 
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Table A-2. Summary of canola oil concentration and estimated omega-6:3 ratio for T1, T2, and 
C for starter, grower, and finisher feeds. 

Diet Canola Oil % Inclusion Omega 6-3 Ratio 

T1 Starter 5% 4.4:1 
T2 Starter 0.75 11.2:1 
C Starter 0 20:1 
T1 Grower 5 4.49:1 
T2 Grower 0.75 11.6:1 
C Grower 0 19.7:1 
T1 Finisher 5 4.64:1 
T2 Finisher 1 11:1 
C Finisher 0 20:1 
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TableA-3. Summary of differential gene expression results from pairwise contrasts and results of the core pathway analysis in IPA. 
Table shows the specific information for each pairwise data set on differentially expressed genes associated IPA analysis of core 
pathways, upstream regulators for each dataset, and top disease and disorder terms. 

Against R708 42d C R708 42d T1 R708 42d T2 

Control R708 11d C R708 11d T1 R708 11d T2 

DE Up 137 358 537 

DE Down 130 260 313 

Total DE 267 618 850 

Top Canonical PW 
  
  
  
  

Oxidative Phosphorylation Oxidative Phosphorylation Mitochondrial Dysfunction  

Mitochondrial Dysfunction  Mitochondrial Dysfunction  Oxidative Phosphorylation 

TCA Cycle II (Eukaryotic) Sirtuin Signaling Pathway Sirtuin Signaling Pathway 

Superpathway of Cholesterol Biosynthesis TCA Cycle II (Eukaryotic) Superpathway of Cholesterol Biosynthesis 

Sirtuin Signaling Pathway Complement System TCA Cycle II (Eukaryotic) 

Upstream Regs 
  
  
  
  

KDM5A KDM5A TP53 

INSR TP53  KD5MA 

RICTOR methypredisolone torin 1 

RB1 MAPT metribolone 

arsenic trioxide dexamethasone mono-(2-ethylhexyl)phthalate 

Diseases 
  
  
  
  

Hereditary Disorder Cancer Cancer 

 Organismal Injury and Abnormalities Organismal Injury and Abnormalities  Organismal Injury and Abnormalities 

Skeletal and Muscular Disorders Hereditary Disorder Gastrointestinal Disease 

Gastrointestinal Disease Skeletal and Muscular Disorders  Hepatic System Disease 

 Hepatic System Disease Connective Tissue Dissorders Endocrine System Disorders 
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TableA-3. Continued  
Against WPR 42d C WPR 42d T1 WPR 42d T2 

Control WPR 11d C WPR 11d T1 WPR 11d T2 

DE Up 35 61 78 

DE Down 80 111 219 

Total DE 115 172 297 

Top Canonical PW 
  
  
  
  

NAD Phosphorylation and Dephosphorylation Mitochondrial Dysfunction  Oxidative Phosphorylation 

Cell Cycle: G1/S Checkpoint Regulation Epithelial Adherenes Junction Signaling Mitochondrial Dysfunction  

Epithelial Adherens Junction Signaling Oxidative Phosphorylation  Sirtuin Signaling Pathway 

Cyclins and Cell Cycle Regulation Remodeling of Epithelial Adherens Junctions Superpathway of Cholesterol Biosynthesis 

Hepatic Fibrosis/Hepatic Stellate Cell Activation Sirtuin Signaling Pathway CD28 Signaling in T Helper Cells 

Upstream Regs 
  
  
  
  

STAT5B RICTOR RICTOR 

FGF1 DMD Esrra 

ADRB AMOT POR 

ESR1 AMOTL2 arsenic trioxide 

YY1 AMOTL1 INSR 

Diseases 
  
  
  
  

Cancer Cancer Cancer 

 Organismal Injury and Abnormalities  Organismal Injury and Abnormalities  Organismal Injury and Abnormalities 

Reproductive System Disease  Endocrine System Disorders Gastrointestinal Disease 

Respiratory Disease Cardiovascular Disease  Hepatic System Disease 

Cardiovascular Disease Skeletal and Muscular Disorders Neurological Disease 
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TableA-3. Continued  
Against R708 C R708 T1 R708 T2 

Control WPR C WPR T1 WPR T2 

DE Up 740 960 686 

DE Down 478 714 651 

Total DE 1218 1674 1337 

Top Canonical PW 
  
  
  
  

Protein Kinase A Signaling Protein Kinase A Signaling Glycolysis I 

NRF2-mediated oxidative stress response NRF2-mediated oxidative stress response Actin Cytoskeleton Signaling 

RhoGDI Signaling Actin Cytoskeleton Signaling Aldosterone Signaling in Epithelial Cells 

Complement System IL-8 Signaling Regulation of Actin-based Motility by Rho 

Glycolysis I Renin-Angiotensisn Signaling Glutamate Receptor Signaling 

Upstream Regs 
  
  
  
  

KRAS TP53 TGFB1 

TGFB1 TGFB1 beta-estradiol 

TP53 beta-estradiol TP53 

HRAS dexamethasone HNRNPA2B1 

methapyrilene KRAS HRAS 

Diseases 
  
  
  
  

Cancer Cancer Cancer 

 Organismal Injury and Abnormalities  Organismal Injury and Abnormalities  Organismal Injury and Abnormalities 

Endocrine System Disorders Endocrine System Disorders Endocrine System Disorders 

Gastrointestinal Disease Gastrointestinal Disease Gastrointestinal Disease 

 Hepatic System Disease  Hepatic System Disease Hereditary Disorder 
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TableA-3. Continued  
Against R708 11d R708 42d WPR 42d R708 42d 

Control WPR 11d WPR 42d WPR 11d R708 11d 

DE Up 1214 2183 488 1450 

DE Down 1282 1321 681 975 

Total DE 2496 3504 1169 2425 

Top 
Canonical 
PW 

EIF2 Signaling 
NRF2-Mediated Oxidative 

Stress Response Oxidative Phosphorylation Mitochondrial Dysfunction 
Protein Ubiquitination Stress 

Response  Actin Cytoskeleton Signaling Mitochondrial Dysfunction Oxidative Phosphorylation 
NRF2-mediated Oxidative 

Stress Response Protein Kinase A Signaling Sirtuin Signaling Pathway Sirtuin Signaling Pathway 
Breast Cancer Regulation by 

Stathmin 1 
Signaling by Rho Family 

GTPases Cholesterol Biosynthesis I Gluconeogenesis I 
Mechanisms of Viral Exit from 

Host Cells 
Breast Cancer Regulation by 

Stathmin 1 
Cholesterol Biosynthesis II (via 24,25-

dihydrolanosterol) 
NRF2-mediated Oxidative 

Stress Response 

Upstream 
Regs 

TP53 TP53 RICTOR TP53 

RRP1B TGF1B torin 1 MYC 

CDKN1A beta-estradiol TP53 TGFB1 

ESR1 MYC mono-(2-ethylhexyl)phthalate FOXO1 

MYC HRAS methylprednisolone torin 1 

Diseases 
  
  

Cancer Cancer Cancer Cancer 
 Organismal Injury and 

Abnormalities 
 Organismal Injury and 

Abnormalities  Organismal Injury and Abnormalities 
 Organismal Injury and 

Abnormalities 

Endocrine System Disorders Endocrine System Disorders Endocrine System Disorders Endocrine System Disorders 

Gastrointestinal Disease Gastrointestinal Disease Reproductive System Disease  Gastrointestinal Disease 

 Hepatic System Disease  Hepatic System Disease Gastrointestinal Disease  Hepatic System Disease 
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Table A-4. List of unique and shared most variable genes associated to broiler performance traits between breeds. Gene name  
abbreviations and Ensembl release 85 gene IDs are provided. Genes identified by bold font are related to cell growth and differentiation, 
muscle function and development, and intracellular ion concentration. 

Unique To Ross 708 Gene ID Unique to  WPR Gene ID Shared Genes Gene ID 

TNNT2 ENSGALG00000000302 BF1 ENSGALG00000000178 HBAD ENSGALG00000007463 

TNNI1 ENSGALG00000000313 BTF3 ENSGALG00000000395 HBAA ENSGALG00000007468 

MUSTN1 ENSGALG00000001709 ACE ENSGALG00000000498 GATM ENSGALG00000023435 

CSRP3 ENSGALG00000004044 FKBP51 ENSGALG00000000947 PROCA1 ENSGALG00000027107 

MYOM3 ENSGALG00000004155 ONCM2 ENSGALG00000003465 CA3 ENSGALG00000027638 

SCN5A ENSGALG00000006112 ANKRD! ENSGALG00000006491 HBE1 ENSGALG00000028273 

GREM1 ENSGALG00000009724 PDK4 ENSGALG00000009700 Novel Gene ENSGALG00000028612 

JCHAIN ENSGALG00000011551 ACTC1 ENSGALG00000009844 

  

DCDC2 ENSGALG00000012668 SUN Domain-containing protein3-
like ENSGALG00000013105 

PRUNE2 ENSGALG00000015167 HNRPK ENSGALG00000014366 

MYH15 ENSGALG00000015358 Uncharacterized Protein ENSGALG00000022685 

RGCC ENSGALG00000016954 RTN4RL2 ENSGALG00000023441 

IGLL1 ENSGALG00000021139 BFIV21 ENSGALG00000024372 

EX-FABP ENSGALG00000024011 SNORA2 ENSGALG00000027108 

MYH1A ENSGALG00000026748 MYH1D ENSGALG00000027323 

MYH1C ENSGALG00000027177 CHAC1 ENSGALG00000027874 

Uncharacterized Protein ENSGALG00000027412 Uncharacterized Protein ENSGALG00000028102 

MYH1B ENSGALG00000028134 GADD45B ENSGALG00000028143 
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Table A-5. List of nuclear and mitochondrial oxidative phosphorylation genes used for the nuclear: mitochondrial gene expression ratio 
calculation. The table contains the location (NUC or MT), the Ensembl release 85 gene and transcript IDs. description, associated 
chromosome, coding sequence start and end location (bp), gene name abbreviation, and the gene type. 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End 
(bp) 

Associated 
Gene 
Name 

Gene type 

MT ENSGALG00000018356 ENSGALT00000029076   MT 16708 16775   Mt_tRNA 

MT ENSGALG00000018357 ENSGALT00000029077 
NADH-ubiquinone oxidoreductase chain 

6  [Source:UniProtKB/Swiss-
Prot;Acc:P18941] 

MT 16184 16705 ND6 protein_coding 

MT ENSGALG00000018358 ENSGALT00000029078   MT 16108 16177   Mt_tRNA 

MT ENSGALG00000018359 ENSGALT00000029079   MT 16039 16107   Mt_tRNA 

MT ENSGALG00000018360 ENSGALT00000029080 
Cytochrome b  

[Source:UniProtKB/Swiss-
Prot;Acc:P18946] 

MT 14893 16035 CYTB protein_coding 

MT ENSGALG00000018361 ENSGALT00000029081 
NADH-ubiquinone oxidoreductase chain 

5  [Source:UniProtKB/Swiss-
Prot;Acc:P18940] 

MT 13071 14888 ND5 protein_coding 

MT ENSGALG00000018364 ENSGALT00000029084 
NADH-ubiquinone oxidoreductase chain 

4  [Source:UniProtKB/Swiss-
Prot;Acc:P18939] 

MT 11486 12863 ND4 protein_coding 

MT ENSGALG00000018366 ENSGALT00000029086 
NADH-ubiquinone oxidoreductase chain 

3  [Source:UniProtKB/Swiss-
Prot;Acc:P18938] 

MT 10776 11126 ND3 protein_coding 

MT ENSGALG00000018367 ENSGALT00000029087 
Cytochrome c oxidase subunit 3  

[Source:UniProtKB/Swiss-
Prot;Acc:P18945] 

MT 9923 10706 COX3 protein_coding 

MT ENSGALG00000018370 ENSGALT00000029090 
Cytochrome c oxidase subunit 2  

[Source:UniProtKB/Swiss-
Prot;Acc:P18944] 

MT 8331 9014 COX2 protein_coding 

MT ENSGALG00000018373 ENSGALT00000029093 
Cytochrome c oxidase subunit 1  

[Source:UniProtKB/Swiss-
Prot;Acc:P18943] 

MT 6645 8192 COX1 protein_coding 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End 
(bp) 

Associated 
Gene 
Name 

Gene type 

MT ENSGALG00000018378 ENSGALT00000029098 
NADH-ubiquinone oxidoreductase chain 

2  [Source:UniProtKB/Swiss-
Prot;Acc:P18937] 

MT 5241 6281 ND2 protein_coding 

MT ENSGALG00000018382 ENSGALT00000029102 
NADH-ubiquinone oxidoreductase chain 

1  [Source:UniProtKB/Swiss-
Prot;Acc:P18936] 

MT 4050 5024 ND1 protein_coding 

MT ENSGALG00000018370 ENSGALT00000029090 
Cytochrome c oxidase subunit 2  

[Source:UniProtKB/Swiss-
Prot;Acc:P18944] 

MT 8331 9014 COX2 protein_coding 

MT ENSGALG00000018371 ENSGALT00000029091   MT 8261 8329   Mt_tRNA 

MT ENSGALG00000018372 ENSGALT00000029092   MT 8124 8258   Mt_tRNA 

MT ENSGALG00000018373 ENSGALT00000029093 
Cytochrome c oxidase subunit 1  

[Source:UniProtKB/Swiss-
Prot;Acc:P18943] 

MT 6645 8192 COX1 protein_coding 

MT ENSGALG00000018374 ENSGALT00000029094   MT 6573 6643   Mt_tRNA 

MT ENSGALG00000018375 ENSGALT00000029095   MT 6508 6573   Mt_tRNA 

MT ENSGALG00000018376 ENSGALT00000029096   MT 6434 6506   Mt_tRNA 

MT ENSGALG00000018377 ENSGALT00000029097   MT 6362 6430   Mt_tRNA 

MT ENSGALG00000018378 ENSGALT00000029098 
NADH-ubiquinone oxidoreductase chain 

2  [Source:UniProtKB/Swiss-
Prot;Acc:P18937] 

MT 5241 6281 ND2 protein_coding 

MT ENSGALG00000018379 ENSGALT00000029099   MT 5172 5240   Mt_tRNA 

MT ENSGALG00000018380 ENSGALT00000029100   MT 5102 5172   Mt_tRNA 

MT ENSGALG00000018381 ENSGALT00000029101   MT 5025 5096   Mt_tRNA 



 

199 

 

Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End 
(bp) 

Associated 
Gene 
Name 

Gene type 

MT ENSGALG00000018382 ENSGALT00000029102 
NADH-ubiquinone oxidoreductase chain 

1  [Source:UniProtKB/Swiss-
Prot;Acc:P18936] 

MT 4050 5024 ND1 protein_coding 

MT ENSGALG00000018383 ENSGALT00000029103   MT 3967 4040   Mt_tRNA 

MT ENSGALG00000018384 ENSGALT00000029104   MT 2346 3966   Mt_rRNA 

MT ENSGALG00000018385 ENSGALT00000029105   MT 2273 2345   Mt_tRNA 

MT ENSGALG00000018386 ENSGALT00000029106   MT 1297 2272   Mt_rRNA 

MT ENSGALG00000018387 ENSGALT00000029107   MT 1228 1296   Mt_tRNA 

MT ENSGALG00000021716 ENSGALT00000035258   MT 6280 6355   Mt_tRNA 

MT ENSGALG00000021717 ENSGALT00000035259 
ATP synthase protein 8  

[Source:UniProtKB/Swiss-
Prot;Acc:P14093] 

MT 9085 9249 ATP8 protein_coding 

MT ENSGALG00000021718 ENSGALT00000035260   MT 10708 10775   Mt_tRNA 

MT ENSGALG00000021719 ENSGALT00000035261 
NADH-ubiquinone oxidoreductase chain 

4L  [Source:UniProtKB/Swiss-
Prot;Acc:P18942] 

MT 11196 11492 ND4L protein_coding 

MT ENSGALG00000021720 ENSGALT00000035262   MT 12864 12932   Mt_tRNA 

NUC ENSGALG00000026732 ENSGALT00000043689 
NADH:ubiquinone oxidoreductase core 

subunit V1 [Source:CGNC 
Symbol;Acc:123] 

5 89593 93802 NDUFV1 protein_coding 

NUC ENSGALG00000000508 ENSGALT00000000694 
succinate dehydrogenase complex, 

subunit B, iron sulfur (Ip) [Source:CGNC 
Symbol;Acc:63429] 

21 162038 170418 SDHB protein_coding 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End (bp) 

Associated 
Gene 
Name 

Gene type 

NUC ENSGALG00000000842 ENSGALT00000001235 

Gallus gallus NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 2, 

8kDa (NDUFA2), mRNA. 
[Source:RefSeq 

mRNA;Acc:NM_001302137] 

13 392987 394389 NDUFA2 protein_coding 

NUC ENSGALG00000001330 ENSGALT00000002026 

ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit C1 

(subunit 9) [Source:CGNC 
Symbol;Acc:911] 

27 3493403 3495227 ATP5G1 protein_coding 

NUC ENSGALG00000001355 ENSGALT00000034898 
NADH:ubiquinone oxidoreductase 

subunit A8 [Source:CGNC 
Symbol;Acc:929] 

17 8704356 8706618 NDUFA8 protein_coding 

NUC ENSGALG00000001452 ENSGALT00000002207 
ATP synthase, H+ transporting, 

mitochondrial Fo complex subunit B1 
[Source:CGNC Symbol;Acc:1004] 

26 3157146 3161840 ATP5F1 protein_coding 

NUC ENSGALG00000002033 ENSGALT00000003162 
NADH:ubiquinone oxidoreductase 

subunit B6 [Source:CGNC 
Symbol;Acc:1444] 

14 13393595 13395738 NDUFB6 protein_coding 

NUC ENSGALG00000002490 ENSGALT00000003923 
ubiquinol-cytochrome c reductase core 

protein II [Source:CGNC 
Symbol;Acc:1783] 

14 15085440 15096857 UQCRC2 protein_coding 

NUC ENSGALG00000003625 ENSGALT00000005739 
NADH:ubiquinone oxidoreductase 

subunit S5 [Source:CGNC 
Symbol;Acc:2647] 

23 5287781 5289451 NDUFS5 protein_coding 

NUC ENSGALG00000004302 ENSGALT00000033730 
NADH:ubiquinone oxidoreductase 

subunit A10 [Source:CGNC 
Symbol;Acc:3165] 

7 6552331 6592902 NDUFA10 protein_coding 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End (bp) 

Associated 
Gene 
Name 

Gene type 

NUC ENSGALG00000005465 ENSGALT00000008778 
NADH:ubiquinone oxidoreductase 

subunit B10 [Source:CGNC 
Symbol;Acc:4071] 

14 6130748 6132664 NDUFB10 protein_coding 

NUC ENSGALG00000005749 ENSGALT00000009231 
cytochrome c oxidase subunit IV 

isoform 1 [Source:CGNC 
Symbol;Acc:4285] 

11 17077534 17081626 COX4I1 protein_coding 

NUC ENSGALG00000005789 ENSGALT00000009300 
ubiquinol-cytochrome c reductase core 

protein I [Source:CGNC 
Symbol;Acc:4319] 

12 9046001 9054965 UQCRC1 protein_coding 

NUC ENSGALG00000006073 ENSGALT00000009801 
NADH:ubiquinone oxidoreductase 

subunit AB1 [Source:CGNC 
Symbol;Acc:4554] 

14 6864896 6866786 NDUFAB1 protein_coding 

NUC ENSGALG00000006753 ENSGALT00000010913 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, gamma 

polypeptide 1 [Source:CGNC 
Symbol;Acc:5096] 

1 4144466 4151271 ATP5C1 protein_coding 

NUC ENSGALG00000007096 ENSGALT00000011489 
ubiquinol-cytochrome c reductase, 
complex III subunit VII, 9.5kDa 

[Source:CGNC Symbol;Acc:5357] 
13 16453956 16455280 UQCRQ protein_coding 

NUC ENSGALG00000007205 ENSGALT00000011661 
cytochrome c oxidase subunit VIa 

polypeptide 1 [Source:CGNC 
Symbol;Acc:50396] 

15 9297230 9298519 COX6A1 protein_coding 

NUC ENSGALG00000007926 ENSGALT00000012869 
ATP synthase, H+ transporting, 

mitochondrial Fo complex subunit D 
[Source:CGNC Symbol;Acc:5993] 

18 10897737 10900757 ATP5H protein_coding 

NUC ENSGALG00000008066 ENSGALT00000013095 

Gallus gallus ubiquinol-cytochrome c 
reductase, complex III subunit X 

(UQCR10), mRNA. [Source:RefSeq 
mRNA;Acc:NM_001302149] 

15 11034185 11035607 UQCR10 protein_coding 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End (bp) 

Associated 
Gene 
Name 

Gene type 

NUC ENSGALG00000008084 ENSGALT00000013121 
NADH:ubiquinone oxidoreductase core 

subunit S3 [Source:CGNC 
Symbol;Acc:6122] 

5 22088781 22093418 NDUFS3 protein_coding 

NUC ENSGALG00000008239 ENSGALT00000013407 

Gallus gallus NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 3, 

12kDa (NDUFB3), mRNA. 
[Source:RefSeq 

mRNA;Acc:NM_001302167] 

7 10893771 10897452 NDUFB3 protein_coding 

NUC ENSGALG00000008606 ENSGALT00000014015 
NADH:ubiquinone oxidoreductase core 

subunit S1 [Source:CGNC 
Symbol;Acc:6532] 

7 12077169 12090936 NDUFS1 protein_coding 

NUC ENSGALG00000008613 ENSGALT00000014034 
NADH:ubiquinone oxidoreductase 

subunit A1 [Source:CGNC 
Symbol;Acc:6539] 

4 16454195 16454917 NDUFA1 protein_coding 

NUC ENSGALG00000008821 ENSGALT00000014337 
NADH:ubiquinone oxidoreductase 

subunit A5 [Source:CGNC 
Symbol;Acc:50588] 

1 22078542 22084456 NDUFA5 protein_coding 

NUC ENSGALG00000009076 ENSGALT00000014768 
NADH:ubiquinone oxidoreductase 

subunit B5 [Source:CGNC 
Symbol;Acc:6907] 

9 16903953 16907474 NDUFB5 protein_coding 

NUC ENSGALG00000009286 ENSGALT00000015106 

ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit C3 

(subunit 9) [Source:CGNC 
Symbol;Acc:52137] 

7 16150149 16153215 ATP5G3 protein_coding 

NUC ENSGALG00000009703 ENSGALT00000015797 
NADH:ubiquinone oxidoreductase core 

subunit S7 [Source:CGNC 
Symbol;Acc:56235] 

28 3064298 3067588 NDUFS7 protein_coding 

NUC ENSGALG00000011325 ENSGALT00000018479 
NADH:ubiquinone oxidoreductase 

subunit A12 [Source:CGNC 
Symbol;Acc:8606] 

1 45179843 45187320 NDUFA12 protein_coding 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start (bp) 

Gene End 
(bp) 

Associated 
Gene 
Name 

Gene type 

NUC ENSGALG00000013167 ENSGALT00000021508 
succinate dehydrogenase complex 

flavoprotein subunit A 
[Source:CGNC Symbol;Acc:49461] 

2 85681939 85697842 SDHA protein_coding 

NUC ENSGALG00000013191 ENSGALT00000021552 
NADH:ubiquinone oxidoreductase 

subunit S6 [Source:CGNC 
Symbol;Acc:9959] 

2 86002617 86007620 NDUFS6 protein_coding 

NUC ENSGALG00000014121 ENSGALT00000022855 cytochrome c oxidase subunit 5A 
[Source:CGNC Symbol;Acc:10534] 10 1891957 1896138 COX5A protein_coding 

NUC ENSGALG00000014310 ENSGALT00000023134 
NADH:ubiquinone oxidoreductase 

core subunit V2 [Source:CGNC 
Symbol;Acc:52803] 

2 98526884 98541978 NDUFV2 protein_coding 

NUC ENSGALG00000014644 ENSGALT00000002698 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha 

subunit 1, cardiac muscle 
[Source:CGNC Symbol;Acc:49066] 

Z 2151456 2159196 ATP5A1 protein_coding 

NUC ENSGALG00000015372 ENSGALT00000024803 
ATP synthase, H+ transporting, 

mitochondrial Fo complex subunit E 
[Source:CGNC Symbol;Acc:11448] 

Z 53307243 53309110 ATP5I protein_coding 

NUC ENSGALG00000015751 ENSGALT00000025402 

ATP synthase, H+ transporting, 
mitochondrial Fo complex subunit 

F6 [Source:CGNC 
Symbol;Acc:11749] 

1 101882851 101884143 ATP5J protein_coding 

NUC ENSGALG00000015906 ENSGALT00000031654 
cytochrome c oxidase subunit VIIa 

polypeptide 2 (liver) [Source:CGNC 
Symbol;Acc:11867] 

3 80197965 80201301 COX7A2 protein_coding 

NUC ENSGALG00000016336 ENSGALT00000026351 
NADH:ubiquinone oxidoreductase 

subunit B9 [Source:CGNC 
Symbol;Acc:12221] 

2 138071064 138074938 NDUFB9 protein_coding 
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Table A-5. Continued 

Locatio
n Ensembl Gene ID Ensembl Transcript 

ID Description Chromosome Name Gene 
Start (bp) 

Gene End 
(bp) 

Associate
d Gene 
Name 

Gene type 

NUC ENSGALG0000001738
0 

ENSGALT0000002806
5 

ubiquinol-cytochrome c 
reductase hinge protein 

[Source:CGNC 
Symbol;Acc:13054] 

8 20498970 20500444 UQCRH protein_codin
g 

NUC ENSGALG0000001767
5 

ENSGALT0000003276
7 

NADH:ubiquinone 
oxidoreductase core subunit 

S8 [Source:CGNC 
Symbol;Acc:13124] 

5 199552 201194 NDUFS8 protein_codin
g 

NUC ENSGALG0000001944
5 

ENSGALT0000003082
6 

cytochrome c oxidase 
subunit 6C [Source:CGNC 

Symbol;Acc:13868] 
2 12806993

9 
12807563

9 COX6C protein_codin
g 

NUC ENSGALG0000002253
9 

ENSGALT0000003611
4 

Gallus gallus ATP synthase, 
H+ transporting, 

mitochondrial F1 complex, 
beta polypeptide (ATP5B), 

mRNA. [Source:RefSeq 
mRNA;Acc:NM_001031391

] 

LGE22C19W28_E50C2
3 954486 965125 ATP5B protein_codin

g 

NUC ENSGALG0000002281
3 

ENSGALT0000003670
4 

NADH:ubiquinone 
oxidoreductase subunit V3 

[Source:CGNC 
Symbol;Acc:15744] 

1 10892600
8 

10892893
8 NDUFV3 protein_codin

g 

NUC ENSGALG0000002581
9 

ENSGALT0000004419
9 

ubiquinol-cytochrome c 
reductase, Rieske iron-sulfur 

polypeptide 1 
[Source:CGNC 

Symbol;Acc:3283] 

11 7596758 7603866 UQCRFS1 protein_codin
g 

NUC ENSGALG0000002599
9 

ENSGALT0000004594
1 

NADH dehydrogenase  
[Source:RefSeq 

peptide;Acc:NP_001289036
] 

2 26144942 26148789 NDUFA4 protein_codin
g 

NUC ENSGALG0000002610
8 

ENSGALT0000004619
2 

ATP synthase, H+ 
transporting, mitochondrial 
F1 complex, delta subunit 

[Source:CGNC 
Symbol;Acc:56808] 

JH375570.1 172 2062 ATP5D protein_codin
g 
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Table A-5. Continued 

Location Ensembl Gene ID Ensembl Transcript ID Description Chromosome 
Name 

Gene 
Start 
(bp) 

Gene 
End (bp) 

Associated 
Gene 
Name 

Gene type 

NUC ENSGALG00000026530 ENSGALT00000046236 

ATP synthase, H+ transporting, 
mitochondrial Fo complex, 

subunit C2 (subunit 9) 
[Source:CGNC 

Symbol;Acc:64862] 

JH376268.1 49431 50544 ATP5G2 protein_coding 

NUC ENSGALG00000027277 ENSGALT00000045899 
succinate dehydrogenase complex 

subunit C [Source:CGNC 
Symbol;Acc:63505] 

JH376252.1 4289 9884 SDHC protein_coding 

NUC ENSGALG00000027607 ENSGALT00000045518 
NADH:ubiquinone oxidoreductase 

core subunit S2 [Source:CGNC 
Symbol;Acc:66024] 

AADN03017199.1 21 1922 NDUFS2 protein_coding 

NUC ENSGALG00000027688 ENSGALT00000043614 

NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 

4, 15kDa [Source:CGNC 
Symbol;Acc:55666] 

1 79257200 79258833 NDUFB4 protein_coding 

NUC ENSGALG00000027963 ENSGALT00000045264 
cytochrome c oxidase subunit 7C 

[Source:HGNC 
Symbol;Acc:HGNC:2292] 

Z 61059202 61062815 COX7C protein_coding 

NUC ENSGALG00000028026 ENSGALT00000045576 
NADH:ubiquinone oxidoreductase 

subunit S4 [Source:HGNC 
Symbol;Acc:HGNC:7711] 

Z 15962742 16010010 NDUFS4 protein_coding 
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APPENDIX B 

SUPPLEMENTARY FIGURES 

 

Figure B-1. Plot demonstrating the biological coefficient of variation (BCV) for all samples 
based on average logCPM for each sample. Tagwise dispersion is represented by the black dots 
and showed that 75% of the data had a BCV under 0.76. Common dispersion was estimated as 
0.15 and is represented by the blue line. Trended dispersion is represented by the red line. 
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Figure B-2. Mean abundance plots (logFC by logCPM) of differential gene expression by age for both breeds between diets. Red dots 
indicate genes P < 0.05, while blue lines indicate logFC 2 and -2. An FDR < 0.05 was required for significance and no genes in these 
pairwise comparisons met that criteria. Plots A, B, E, F, I, and J represent WPR gene expression, while plots C, D, G, H, K, and L 
represent R708 gene expression between diets at 11 and 42 days of age respectively. 


