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ABSTRACT 

 

This study focuses on investigating and improving the convergence of two 

numerical schemes for electromagnetic single scattering simulations: The pseudo-

spectral time domain (PSTD) method and the invariant-imbedding T-matrix (II-TM) 

method. The single scattering properties (phase matrix, extinction, scattering cross 

section, etc.) can be obtained with these two methods for non-spherical and 

inhomogeneous particles. The single scattering properties are vital input for radiative 

transfer simulations of the atmosphere and oceans and are also used in retrievals for 

interpreting satellite observations of the atmosphere and surface.  

PSTD and II-TM are numerically exact methods because they solve Maxwell’s 

Equations. Given the proper choice of model parameters, their model outputs could be 

made as close as possible to the real solution. In this study, we study their convergence 

behaviors to make sure that they actually converge to the right solution. Specifically, for 

PSTD, we study the electromagnetic near field in its computational domain to see how 

the near field decays to zero. This is important since it determines how long we should 

integrate the discretized Maxwell’s equation in time domain. For the II-TM method, we 

study the Gaussian quadrature employed to compute the surface integrations. In the 

version of II-TM for hexagonal columns, we modify the original quadrature scheme to 

avoid quadrature over discontinuities. We also implement a new node and weight 

generating method into II-TM. These two improvements greatly accelerated II-TM 

method for hexagonal columns and spheroids.  



 

iii 

 

An application of II-TM and a physical geometric optics method (PGOM) is 

presented. The application is to compute and compile a dataset intended for marine 

hydrosols. A hexahedral ensemble is used to simulate the complicated particle geometry. 

The size and refractive indices included in the dataset cover most natural marine 

hydrosols. We compare the single and bulk scattering properties of our hexahedra 

dataset with those obtained with the Lorenz-Mie method and discover major differences 

in the shape of the volume scattering function. 
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1. INTRODUCTION  

 

Based on fundamental physical theories (Maxwell’s Equations), the theory of 

radiative transfer describes the radiance field in an absorbing medium with scattering 

objects. Conceptually, the path from fundamental physics to radiative transfer theory 

involves the following stages, with increasing applicable length scale: 

1.Quantum electrodynamics 

2.Maxwell’s Equations 

3.The vector radiative transfer equation 

Quantum electrodynamics (QED) is the fundamental theory which explains with 

complete accuracy the interactions of light and matter [1]. In that theory, the 

electromagnetic field is quantized with photons, and electromagnetism is described at 

the level of individual photons. QED is a conceptual starting point for much of modern 

physics.  

At the “classical physics limit” of QED, the electromagnetic field is no longer 

quantized.  Applying classical field theory gives the four Maxwell’s equations. 

Maxwell’s equations describe the electric and magnetic fields as continuous functions of 

space and time. The Maxwell’s differential equations in SI units [2],  

 

 ∇ ∙ 𝐸M⃑ =
𝜌
𝜖Q

 (1.1) 

 ∇ ∙ 𝐵M⃑ = 0	 (1.2) 
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 ∇ × 𝐸M⃑ = −
∂𝐵M⃑
∂t 	

(1.3) 

 ∇ × 𝐵M⃑ = −𝜇Q𝚥 + 𝜇Q𝜖Q
∂𝐸M⃑
∂t 	

(1.4) 

 

 𝐸M⃑  is the electric field, 𝐵M⃑  is the magnetic field, 𝜌 is the electric charge density, 𝚥 is the 

electric current density. 𝜖Q	is the electric permittivity of free space, 𝜇Q	is the magnetic 

permeability in free space. In a material medium, the Maxwell’s equations become more 

complicated, but the general form remains the same. Maxwell’s equations written in this 

form are linear in nature and the resulting electromagnetic fields can be superposed.  

In the frequency domain, the time averaged electric field can be given by the 

complex amplitude 𝐸QMMMM⃑ (𝑟) of a monochromatic plane electromagnetic wave 𝐸M⃑ (𝑟⃑) =

𝐸QMMMM⃑ (𝑟)𝑒X(Y
M⃑ Z⃑[\]). The wavenumber vector 𝑘M⃑  is in the direction of propagation and 𝜔 is the 

frequency. In the reference plane which is perpendicular to the propagation direction, the 

complex amplitude 𝐸QMMMM⃑ (𝑟) can be decomposed into orthogonal components 𝐸∥ and 𝐸a 

with respect to the two conventionally chosen orthogonal vectors 𝑒̂Qa and 𝑒̂Q
∥ ( as 

discussed later in Sec.1.1, Fig.1.2).  

The Stokes vector gives the state of polarization along with the intensity of the 

light field 
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 c

𝐼
𝑄
𝑈
𝑉

g = h
ij

k
l

⎝

⎜
⎛

𝐸∥ 𝐸∥∗ + 𝐸a 𝐸a∗

𝐸∥ 𝐸∥∗ − 𝐸a 𝐸a∗

𝐸∥ 𝐸a∗ + 𝐸a 𝐸∥∗

𝑖q𝐸∥ 𝐸a∗ − 𝐸a 𝐸∥∗r⎠

⎟
⎞

. (1.5) 

 

where 𝜖 is the electric permittivity of the medium and 𝜇 is the magnetic permeability of 

the medium. Each element has the units of irradiance (𝑊/𝑚i). I indicates the intensity, 

Q indicates the degree of linear polarization, U indicates the degree of linear polarization 

with respect to the directional vector 45 degrees away from 𝑒̂Q
∥ and V indicates the 

degree of circular polarization.  

Switching from the instantaneous electromagnetic field in time domain to the 

Stokes vector in frequency domain, a 3D vector radiative transfer equation (VRTE) can 

be obtained. 𝑆(𝑥⃑, 𝑟̂) is the Stokes vector at spatial position 𝑥⃑ with propagation direction	𝑟̂ 

 

 𝑆(𝑥⃑, 𝑟̂) =

⎝

⎛

𝐼(𝑥⃑, 𝑟̂)
𝑄(𝑥, 𝑟̂)
𝑈(𝑥, 𝑟̂)
𝑉(𝑥⃑, 𝑟̂)⎠

⎞ = 𝑟̂

⎝

⎛

𝐼(𝑥⃑)
𝑄(𝑥⃑)
𝑈(𝑥⃑)
𝑉(𝑥⃑)⎠

⎞ = 𝑟̂𝑆(𝑥⃑), (1.6) 

 

the VRTE has the form [3] (omitting the inelastic scattering term): 

 

 𝑟̂ ∙ ∇𝑆(𝑥⃑, 𝑟̂) = −𝐾z(𝑥⃑, 𝑟̂)𝑆(𝑥⃑, 𝑟̂) + { 𝑑i𝑟̂}

~�

𝑍̿(𝑥⃑; 𝑟̂}, 𝑟̂)𝑆(𝑥⃑, 𝑟̂}) (1.7) 
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𝐾z(𝑥⃑, 𝑟̂) is the 4×4 extinction matrix. This matrix describes the attenuation by the 

background medium and any particles immersed in the medium. 𝑍̿(𝑥⃑; 𝑟̂}, 𝑟̂) is the phase 

matrix, which describes the transformation of the incident light direction and 

polarization to the scattered direction and polarization. Note that 𝐾z and 𝑍̿ are the bulk 

extinction and scattering matrices for a volume containing a number of particles. Eq.1.7 

can describe polarized light propagation in a medium that is non-isotropic, and that 

contains scattering particles with random or fixed orientations [3].   

 𝐾z and 𝑍̿ require the single scattering properties of those immersed particles. 

Since the distances between the scattering particles are large enough in the atmosphere 

and oceans, the single scattering approximation can be applied, where the incident light 

on each particle is purely composed of sunlight (not containing scattered waves from 

other particles). Thus, the single scattering simulation of individual particles is separated 

from the radiative transfer calculation and can be treated accurately by solving the 

Maxwell’s equations with boundary conditions at infinity. Conceptually, the 

computational domain of a single scattering simulation is a single particle (of any shape, 

composition and internal structure) situated in a background medium. The incident plane 

wave comes, and we solve for the electromagnetic field with respect to this particle and 

the boundary condition at infinity (scattered wave radiating to infinity). Thus, the current 

forward radiative transfer problem can be seen as a “multiscale” problem where the 

single scattering properties of small particles obtained from solving the Maxwell’s 

equations serve as input to the radiative transfer equation with a larger length scale, and 
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the conceptual “infinitely small volume” contains a large number of single scattering 

particles.  

The problem of single scattering is a classic mathematical-physics problem. For a 

spherical particle shape, the method of separation of variables can be applied to 

Maxwell’s equations in the frequency domain [4]. Naturally, the basis functions in 

spherical coordinates are used (spherical Bessel functions and spherical harmonics). The 

linear transformation between the expansion coefficients of the incident and scattered 

waves contains all of the single scattering properties and is used to compute the 

corresponding extinction and scattering matrices. For spheroids, a similar approach was 

attempted [5]. Separation of variables was carried out in spheroidal coordinates, and 

spheroidal basis functions are used. 

 For non-spherical and inhomogeneous particles, separation of variables does not 

work so a proper discretization scheme must be used based on the particle shape. For 

particles possessing certain rotational symmetry or mirror symmetries, the Transition 

Matrix (T-matrix) method is the most efficient. Mathematically speaking, the T-matrix is 

the linear transformation between the expansion coefficients of the scattered wave and 

the incident wave. All information of a particle’s single scattering properties are 

contained in the T-matrix. Classical T-matrix solution schemes include the Extended 

Boundary Condition Method (EBCM) where the T-matrix is obtained through a direct 

matrix inversion resulting from a surface integral equation for the electric field 

surrounding the particle[6]. EBCM is very efficient for spheroids, bodies of revolution 

and Chebyshev particles. The invariant imbedding method has been applied to a volume 



 

 6 

integral equation to generate an iterative formula for the T-matrix of the particle [7][8]. 

The resulting solution scheme is named the invariant-imbedding T-matrix (II-TM) 

method and this scheme is also efficient for particles with symmetry.  

 For irregular particles possessing no symmetries, various discretizing schemes 

have been applied. One most widely used and the easiest to understand is the finite-

difference method [9][10]. The finite difference scheme is applied to Maxwell’s 

differential equations. The discrete dipole approximation is applied to a volume integral 

equation for the electric field inside the particle [11]. The pseudo-spectral method is 

used on the spatial derivatives in the discretized Maxwell’s equations, and the resulting 

scheme is called the pseudo-spectral time domain (PSTD) method [12]. PSTD is an 

improved version of the finite difference time domain (FDTD) method [10].  

This dissertation will focus on the aforementioned II-TM and PSTD methods. 

Specifically, we improve the performance of the Gaussian quadrature in the II-TM 

method by implementing a new node and weight generating algorithm [13]. 

Modifications are also made to avoid quadrature over discontinuities in certain particle 

shape. 

Finally, a marine hydrosol dataset is computed and compiled.  The main feature 

of the dataset is the particle shapes. A random hexahedral ensemble is used. The II-TM 

method mentioned above is used to compute properties of particles on the smaller end of 

the size spectrum. The physical geometric optics method (PGOM) [14] is used to 

compute properties of large particles. Single particle optical properties are obtained by 
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averaging over the ensemble. Comparisons between the hexahedra ensemble dataset and 

spherical dataset are made.  

 

1.1. Single scattering 

 

Consider a time harmonic electric field at a single frequency 𝜔  

 

 𝐸M⃑ (𝑟) = 𝐸QMMMM⃑ (𝑟⃑, 𝜔)𝑒X(Y
M⃑ Z⃑[\]), (1.8) 

 

the amplitude of the wavenumber vector k is defined by 𝑘 = i�
�

 with 𝜆  being the 

wavelength. The volume integral equation with the electric field 𝐸M⃑ (𝑟⃑, 𝜔) (omitting 

subscript 0) at a certain frequency ω [2] is 

 

 
𝐸M⃑ (𝑟⃑) = 𝐸���MMMMMMM⃑ (𝑟) + 𝑘i�𝑑�𝑟}MMM⃑

�

�𝑚iq𝑟}MMM⃑ r − 1� �𝐼 ̿ +
1
𝑘i ∇

}∇}�
𝑒XY�Z⃑[Z

�MMMM⃑ �

4𝜋�𝑟 − 𝑟}MMM⃑ �

∙ 𝐸M⃑ q𝑟}MMM⃑ r, 

(1.9) 

 

where 𝐸M⃑ (𝑟) is the total electric field and 𝐸���MMMMMMM⃑ (𝑟⃑) is the incident field. The volume V 

encloses the scattering particle, 𝑚iq𝑟}MMM⃑ r = 1 outside the particle (Fig.1.1).  This equation 

describes the electric field with respect to the Somerfield radiation condition at infinity 

(scattered field radiating to infinity) and a certain scattering particle geometry 𝑚iq𝑟}MMM⃑ r.  
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Figure 1.1 The scattering particle. The particle (green patch) is surrounded in a 

volume indicated by the red dashed line. Circle with an infinity symbol marks the 

boundary at infinity. 𝒎𝟐q𝒓}MMM⃑ r = 𝟏 outside the particle. 

 

The particle size parameter is defined as 

 

 𝑥 =
2𝜋𝑑
λ , (1.10) 

 

where d is either the equivalent-volume-sphere radius or the radius of the circumscribing 

sphere. Eq. (1.9) is the fundamental equation to be solved in the PSTD and II-TM 

method to obtain the far field properties of the scattering particle. 
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Figure 1.2 Single scattering geometry. The green patch represents the scattering 

particle and is located at the coordinate origin. The scattering plane is the plane 

marked with the 2 orthogonal dashed lines. Scattering angle 𝜽 is indicated in the 

figure and ranges from 0 to 180 degrees.  

 

The incident wave can be expanded into components with respect to 𝑒̂Qa and 𝑒̂Q
∥ (Fig.1.2) 

,𝐸���MMMMMMM⃑ = 𝑒̂Q
∥𝐸X��

|| + 𝑒̂Qa𝐸X��a . Similarly, for the scattered wave that are sufficiently far away 

from the particle (𝑘𝑟 → 	∞), 𝐸�MMMM⃑ = 𝑒̂�∥𝐸�
|| + 𝑒̂�a𝐸�a.  With respect to the scattering plane, 
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the scattered far field can be related to the incident field through a rotation matrix called 

the amplitude scattering matrix [15], 

 

 �𝐸�
∥(𝑟)

𝐸�a(𝑟)
�  𝑘𝑟 → 	∞ =

𝑒XYZ

−𝑖𝑘𝑟 ¡
𝑠i 𝑠�
𝑠~ 𝑠h¢ �

𝐸X��
||

𝐸X��a
� (1.11) 

 

The amplitude scattering matrix indicates the angular distribution of scattered energy 

around the particles where 𝑘 is the wavenumber and 𝑟 is the distance between the 

scattering particle and the observation point.  The four elements of the Stokes vector 

describe both the amplitude and polarization state of the electric field, Far-field physical 

properties of interest can all be obtained with this matrix. 

 

 c

𝐼
𝑄
𝑈
𝑉

g =
1
2£

𝜖
𝜇

⎝

⎜
⎛

𝐸∥ 𝐸∥∗ + 𝐸a 𝐸a∗

𝐸∥ 𝐸∥∗ − 𝐸a 𝐸a∗

𝐸∥ 𝐸a∗ + 𝐸a 𝐸∥∗

𝑖q𝐸∥ 𝐸a∗ − 𝐸a 𝐸∥∗r⎠

⎟
⎞

 (1.12) 

 

The linear transformation between the Stokes vectors of incident and scattered fields is 

the 4× 4 Mueller matrix, 
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𝑆��¤ = c

𝐼��¤
𝑄��¤
𝑈��¤
𝑉��¤

g = (
1
𝑘𝑟)

i c

𝑆hh 𝑆hi 𝑆h� 𝑆h~
𝑆ih 𝑆ii 𝑆i� 𝑆i~
𝑆�h
𝑆~h

𝑆�i
𝑆~i

𝑆�� 𝑆�~
𝑆~� 𝑆~~

gc

𝐼X��
𝑄X��
𝑈X��
𝑉X��

g

= (
1
𝑘𝑟)

i c

𝑆hh 𝑆hi 𝑆h� 𝑆h~
𝑆ih 𝑆ii 𝑆i� 𝑆i~
𝑆�h
𝑆~h

𝑆�i
𝑆~i

𝑆�� 𝑆�~
𝑆~� 𝑆~~

g𝑆X�� 

(1.13) 

 

The 16 Mueller matrix elements can be written as combinations of amplitude scattering 

matrix elements. We only list a few here: 

 

 Shh =
1
2
(|𝑠h|i + |𝑠i|i + |𝑠�|i + |𝑠~|i) (1.14) 

 Shi =
1
2
(|𝑠i|i − |𝑠h|i + |𝑠~|i − |𝑠�|i)	 (1.15) 

 Sii =
1
2
(|𝑠h|i + |𝑠i|i − |𝑠�|i − |𝑠~|i)	 (1.16) 

 S�� = Re(𝑠i∗𝑠h + 𝑠�𝑠~∗)	 (1.17) 

 

Using the Optical Theorem [15], the extinction cross section 𝐶©ª] can be written in terms 

of the amplitude scattering matrix and the incident Stokes vector as 

 

 

𝐶©ª] =
2𝜋
𝑘i 𝑅𝑒	 «

[𝑠h(0) + 𝑠i(0)] + [𝑠i(0) − 𝑠h(0)]
𝑄X��
𝐼X��

+ [𝑠�(0) − 𝑠~(0)]
𝑈X��
𝐼X��

+ [𝑠�(0) − 𝑠~(0)]
𝑉X��
𝐼X��

® 

(1.18) 
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The scattering cross section is given by, 

 

 𝐶��¤ =
1
𝑘i¯ 𝑑iΩ𝑆hh

~�
 (1.19) 

 

Due to energy conservation, the absorption cross section 𝐶¤±² is  

 

 𝐶¤±² = 𝐶©ª] − 𝐶��¤ (1.20) 

 

The single scattering albedo (SSA) is defined as,  

 

 SSA =
𝐶��¤
𝐶©ª]

 (1.21) 

 

With respect to the particle’s projected cross-sectional area 𝐶²Z´µ, the extinction, 

scattering and absorption efficiencies are, 

 

 𝑄©ª] =
𝐶©ª]
𝐶²Z´µ

, 𝑄��¤ =
𝐶��¤
𝐶²Z´µ

, 𝑄¤±² =
𝐶¤±²
𝐶²Z´µ

 (1.22) 

 

the scattering function 𝑓(𝜃) is defined as, 
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 𝑓(𝜃) = 𝑆hh + 𝑆hi
𝑄X��
𝐼X��

+ 𝑆h�
𝑈X��
𝐼X��

+ 𝑆h~
𝑉X��
𝐼X��

 (1.23) 

 

The scalar phase function 𝑝(𝜃) is defined as,  

 

 𝑝(𝜃) =
𝑓(𝜃)
𝑘i𝐶��¤

 (1.24) 

 

The phase function gives the relative distribution of scattered radiation with respect to 

scattering angle 𝜃. The asymmetry factor g is defined as [15],  

 

 𝑔 = ¯𝑝(𝜃)𝑐𝑜𝑠𝜃
~�

𝑑iΩ (1.25) 

 

The asymmetry factor is a rough indication of the characteristics of the angular 

distribution of scattered energy where 𝑔 = −1 indicates pure backward scattering, 𝑔 =

1 indicates pure forward scattering, and 𝑔 = 0	means that the scattered energy is evenly 

distributed across the 4𝜋 steradian.  
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2. THE PSEUDO SPECTRAL TIME DOMAIN METHOD* 

 

The pseudo spectral time domain (PSTD) method has its origin in the finite 

difference time domain (FDTD) method [10]. The FDTD uses a finite difference scheme 

to discretize the spatial derivative in time domain Maxwell’s Equations. In the near field 

computational domain of PSTD and FDTD, the field smoothly decays to 0 in the 

absorbing boundary layer. Due to this periodicity, a pair of Fast Fourier Transforms 

(FFT) can be used to calculate the spatial derivative in Maxwell’s Equation.  

The collected time domain data from the near field is Fourier transformed to the 

frequency domain for computation of far field single scattering properties. For smooth 

fields, the pseudo spectral method is very efficient, and requires only several grid points 

per wavelength in the computational domain. In this dissertation, we conduct 2-D 

simulations to investigate how the time domain near field decays inside the PSTD 

computational domain. The decay time affects the elapsed computational time of the 

near field time stepping which in turn affects the total computational time of the method. 

 

 

 

                                                

* Reprinted with minor edits and permission from “Internal electromagnetic waves, 
energy trapping, and energy release in simple time-domain simulations of single particle 
scattering” Panetta RL, Zhai S, Yang P., J Quant Spectrosc Radiat Transf 2019. Volume 
228, P27-46. DOI: https://doi.org/10.1016/j.jqsrt.2019.01.015 Copyright 2019 
@Elsevier. 
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2.1. Pseudo-spectral time domain (PSTD) method 

 

For the far field, r ≫ λ, r ≫ 𝑟} the Green Function can be simplified, and 

Eq.(1.9) reduces to [10], 

 

 

𝐸�MMMM⃑ (𝑟⃑)  𝑘𝑟 → 	∞

=
𝑘i𝑒XYZ

4𝜋𝑟 �𝑑�𝑟}MMM⃑
�

�𝑚iq𝑟}MMM⃑ r − 1�𝑒[XYẐ∙Z�MMMM⃑ ¸𝐸M⃑ q𝑟}MMM⃑ r

− 𝑟̂�𝑟̂ ∙ 𝐸M⃑ q𝑟}MMM⃑ r�¹, 

(2.1) 

 

where 𝑟̂ = Z⃑
Z
. Writing the scattered field in components with respect to 𝑒̂�∥ and  𝑒̂�a, using 

Eq. (1.11), we have, 

 

 

�𝐸�
∥(𝑟)

𝐸�a(𝑟)
�  𝑘𝑟 → 	∞

=
𝑘i𝑒XYZ

4𝜋𝑟 �𝑑�𝑟}MMM⃑
�

�𝑚iq𝑟}MMM⃑ r − 1�𝑒[XYẐ∙Z�MMMM⃑ �
𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�∥

𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�a
�

=
𝑒XYZ

−𝑖𝑘𝑟 ¡
𝑠i 𝑠�
𝑠~ 𝑠h¢ �

𝐸X��
||

𝐸X��a
�, 

(2.2) 
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To obtain the amplitude scattering matrix, two different incident polarizations are 

needed, and we have,  

 

 
−𝑖𝑘�

4𝜋 �𝑑�𝑟}MMM⃑
�

�𝑚iq𝑟}MMM⃑ r − 1�𝑒[XYẐ∙Z�MMMM⃑ �
𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�∥

𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�a
� º𝐸Q

|| = 1
𝐸Qa = 0

= ¡
𝑠i
𝑠~¢, (2.3) 

 

 
−𝑖𝑘�

4𝜋 �𝑑�𝑟}MMM⃑
�

�𝑚iq𝑟}MMM⃑ r − 1�𝑒[XYẐ∙Z�MMMM⃑ �
𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�∥

𝐸M⃑ q𝑟}MMM⃑ r ∙ 𝑒̂�a
� º𝐸Q

|| = 0
𝐸Qa = 1

= ¡
𝑠�
𝑠h¢, (2.4) 

 

Now we need to obtain the electric field in V at a certain frequency 𝐸M⃑ q𝑟}MMM⃑ , ωr.  It is 

achieved by collecting time domain data 𝐸M⃑ q𝑟}MMM⃑ , tr and then perform a discrete Fourier 

Transform back to the frequency domain, 

 

 𝐹(𝑟}MMM⃑ , ω) =
1
𝑁»𝑓(𝑟}MMM⃑ , 𝑛)

½	

�¾h

𝑒[X	¿À∆Â, (2.5) 

 

Where 𝑓 and 𝐹 represent any of the components of 𝐸M⃑ . Time domain data 𝐸M⃑ q𝑟}MMM⃑ , tr is 

obtained through time-stepping the Maxwell’s Equation. The Pseudo-Spectral Time 

Domain (PSTD) method is developed to carry out the aforementioned procedures to 

obtain the single scattering properties of non-spherical and inhomogeneous particles. 
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Figure 2.1 PSTD computational domain. Left panel indicate our idea of truncating 

the actual infinite single scattering geometry to a finite box. Right panel shows the 

use of the absorbing layer to truncate the domain.  

 

The near field computational domain is truncated with an absorbing layer (Fig.2.1). The 

absorbing layer absorbs any incoming wave and is used to satisfy the boundary condition 

that the scattered wave radiates to infinity.  Macroscopic Maxwell’s Equations (in 

Gaussian units) are solved inside the absorbing layer [12],  

 

 𝜖(𝑟)
𝑐

𝜕𝐸M⃑ (𝑟, 𝑡)
𝜕𝑡 = ∇ × 𝐻MM⃑ (𝑟, 𝑡) (2.6) 
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 1
𝑐
𝜕𝐻MM⃑ (𝑟, 𝑡)
𝜕𝑡 = −∇ × 𝐸M⃑ (𝑟, 𝑡)	 (2.7) 

 

c is light speed in vacuum, separate the incident and scattered electromagnetic fields as 

follows: 

 

 𝐸M⃑ = 𝐸M⃑ X�� + 𝐸M⃑ �,			𝐻MM⃑ = 𝐻MM⃑ X�� + 𝐻MM⃑ � (2.8) 

 

the permittivity has real and imaginary parts, 

 

 𝜖 = 𝜖Z + 𝑖𝜖X (2.9) 

 

plugging Eqs.2.8 and 2.9 into Eq.2.6 and 2.7, we have,  

 

 𝜕𝐸M⃑ �
𝜕𝑡 =

𝑐
𝜖Z
∇ × 𝐻MM⃑ � − 𝜔

𝜖X
𝜖Z
𝐸M⃑ � + 𝑓X�� (2.10) 

 

 𝜕𝐻MM⃑ �
𝜕𝑡 = −𝑐∇ × 𝐸M⃑ � (2.11) 

and 

 

 𝑓X�� = Å�
1 − 𝜖Z
𝜖Z

�
𝜕
𝜕𝑡 − 𝜔

𝜔X
𝜔Z
Æ 𝐸M⃑ X�� (2.12) 
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At each time step, 𝑓Q is given analytically, so the right hand side of Eq.2.10 involves 

only spatial derivatives. Write all fields in discrete time and space as follows: 

 

 𝑈�(𝑖, 𝑗, 𝑘) = 𝑈(𝑛∆𝑡, 𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧) (2.13) 

 

where superscript n indicates time step. Eq.2.10 and 2.11 become, 

 

 𝜕𝐸M⃑ ��(𝑖, 𝑗, 𝑘)
𝜕𝑡 =

𝑐
𝜖Z
∇ × 𝐻MM⃑ ��(𝑖, 𝑗, 𝑘) − 𝜔

𝜖X
𝜖Z
𝐸M⃑ ��(𝑖, 𝑗, 𝑘) + 𝑓X��(𝑛, 𝑖, 𝑗, 𝑘) (2.14) 

 

 𝜕𝐻MM⃑ �
�Êhi(𝑖, 𝑗, 𝑘)
𝜕𝑡 = −𝑐∇ × 𝐸M⃑ �

�Êhi(𝑖, 𝑗, 𝑘) (2.15) 

 

Using a 2nd order finite difference in time, the time derivative has the following form: 

 

 𝜕𝐸M⃑ ��(𝑖, 𝑗, 𝑘)
𝜕𝑡 ~

𝐸M⃑ �
�Êhi(𝑖, 𝑗, 𝑘) − 𝐸M⃑ �

�[hi(𝑖, 𝑗, 𝑘)
∆𝑡  (2.16) 

 

And using the following approximation, 

 

 𝐸M⃑ ��(𝑖, 𝑗, 𝑘)~
𝐸M⃑ �
�Êhi(𝑖, 𝑗, 𝑘) − 𝐸M⃑ �

�[hi(𝑖, 𝑗, 𝑘)
2  (2.17) 
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Eqs.2.14 and 2.15 become, 

 

 
𝐸M⃑ �
�Êhi(𝑖, 𝑗, 𝑘) = 𝑎h(𝑖, 𝑗, 𝑘)∇ × 𝐻MM⃑ ��(𝑖, 𝑗, 𝑘) + 𝑎i(𝑖, 𝑗, 𝑘)𝐸M⃑ �

�[hi(𝑖, 𝑗, 𝑘)

+ 𝑎�(𝑖, 𝑗, 𝑘)
𝜕
𝜕𝑡 𝐸
M⃑ Q�(𝑖, 𝑗, 𝑘) + 𝑎~(𝑖, 𝑗, 𝑘)𝐸M⃑ Q�(𝑖, 𝑗, 𝑘) 

(2.18) 

 

 𝐻MM⃑ ��Êh(𝑖, 𝑗, 𝑘) = 𝐻MM⃑ ��(𝑖, 𝑗, 𝑘) − 𝑐∆𝑡∇ × 𝐸M⃑ �
�Êhi(𝑖, 𝑗, 𝑘) (2.19) 

 

where 

 

𝑎h(𝑖, 𝑗, 𝑘) =
2𝑐∆𝑡

2𝜖Z(𝑖, 𝑗, 𝑘) + 𝑘𝑐∆𝑡𝜖X(𝑖, 𝑗, 𝑘)

𝑎i(𝑖, 𝑗, 𝑘) =
2𝜖Z(𝑖, 𝑗, 𝑘) − 𝑘𝑐∆𝑡𝜖X(𝑖, 𝑗, 𝑘)
2𝜖Z(𝑖, 𝑗, 𝑘) + 𝑘𝑐∆𝑡𝜖X(𝑖, 𝑗, 𝑘)

𝑎�(𝑖, 𝑗, 𝑘) =
2(1 − 𝜖Z(𝑖, 𝑗, 𝑘))∆𝑡

2𝜖Z(𝑖, 𝑗, 𝑘) + 𝑘𝑐∆𝑡𝜖X(𝑖, 𝑗, 𝑘)

𝑎~(𝑖, 𝑗, 𝑘) = −
2𝑘𝑐∆𝑡𝜖Z(𝑖, 𝑗, 𝑘)

2𝜖Z(𝑖, 𝑗, 𝑘) + 𝑘𝑐∆𝑡𝜖X(𝑖, 𝑗, 𝑘)

 (2.20) 

 

We can choose any form of incident wave 𝐸M⃑ X��(𝑟, 𝑡). In our numerical simulations, a 

plane wave with a Gaussian envelope is used,  

 

 

𝐸M⃑ X��(𝑟, 𝑡) = 𝐸M⃑ X��q𝑘M⃑ ∙ 𝑟 − 𝜔𝑡r

= 𝐸Qcosq𝑘M⃑ ∙ 𝑟⃑ − 𝜔𝑡r𝑒𝑥𝑝 Ï−�
𝑘M⃑ ∙ 𝑟 − 𝜔𝑡 − 𝜎Q

4𝜋 �
i

Ð 
(2.21) 
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𝜎Q is the initial phase of the pulse, it is so chosen that the pulse has negligibly small 

amplitude at the start of the simulation. 

In the pseudo-spectral method that we discuss here, we write the interpolant of a 

function u(x) in the form of a discrete inverse Fourier transform, 

 

 𝑈(𝑥) = » 𝑈ÑY

½
i[h

Y¾[½i

𝑒XYÒ ª (2.22) 

 

where 𝑘Ò = i�
Ó
𝑘 is the scaled wavenumber. L is the length of the computational domain 

(including the absorbing layer in Fig.2.1). The coefficients are given by the discrete 

Fourier transform,  

 

 𝑈ÑY =
1
𝑁»𝑢(𝑥µ)

½

µ¾h

𝑒[XYÒ ªÕ,			𝑘 ∈ [−
𝑁
2 ,
𝑁
2 − 1] (2.23) 

 

Note that these discrete Fourier transforms can be efficiently computed with the Fast 

Fourier Transform (FFT). The derivative of u(x) can be written as,  
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𝑑
𝑑𝑥 𝑈

(𝑥) = » 𝑖𝑘Ò𝑈ÑY

½
i[h

Y¾[½i

𝑒XYÒ ª = » 𝑖𝑘Ò
1
𝑁»𝑢(𝑥µ)

½

µ¾h

𝑒[XYÒªÕ

½
i[h

Y¾[½i

𝑒XYÒ ª

= 𝐼𝐹𝐹𝑇	 Ø𝑖𝒌Ú ∙ [𝐹𝐹𝑇(𝒖)]Ü 

(2.24) 

where IFFT indicates inverse fast Fourier transform, and, 

 

 𝒌Ú =
2𝜋
𝐿 Å−

𝑁
2 ,−

𝑁
2 + 1,… ,

𝑁
2 − 1Æ 

(2.25) 

 

 𝒖 = [𝑢(1), 𝑢(2), … , 𝑢(𝑁)]ß (2.26) 

 

Note that the maximum wavenumber k=½
i
 is associated with the number of grid points. 

A finer grid can describe a smaller scale oscillation using the spectral method. When 

function 𝑢(𝑥) is smooth, Eq.2.24 converges to the exact value rapidly meaning that N is 

small. When function 𝑢(𝑥) contains discontinuities in itself or its higher order 

derivatives, Eq.2.24 converges slowly (meaning that a large N is required). Spectral 

filters were implemented into the PSTD method to mitigate the Gibbs phenomenon 

when the field is oscillatory or discontinuous [12].  
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Figure 2.2 PSTD computation flowchart.  

 

The simulation time in the time domain is controlled by N in Eq.2.5,  

 

 

𝐹q𝑟}MMM⃑ , ωr =
1
𝑁»𝑓q𝑟}MMM⃑ , 𝑛r

½	

�¾h

𝑒[X	¿À∆Â

=
1
𝑁 » 𝑓q𝑟}MMM⃑ , 𝑛r

½[h	

�¾h

𝑒[X	¿À∆Â +
1
𝑁 𝑓q𝑟

}MMM⃑ , 𝑁r𝑒[X	¿à∆Â. 

(2.27) 

 

In general when 𝑓q𝑟}MMM⃑ , 𝑁r < 10[hQ, we can safely terminate the simulation in the time 

domain since the contribution from further simulations will be negligible. However, in 

most situations, the decay of the electric field in the near field of the particle is not 

monotonic, and it depends on the structure of the particle. For example, Fig.2.3 shows 

the time series of the Ex component at six spots on the Huygens surface in the case of a 

sphere in the PSTD computational domain. In the case of a sphere, the time series is 

filled with semi-periodic pulses. The presence of such pulses causes a challenge in 
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predicting the simulation length. It can be imagined the signal will be even more 

irregular for complex particle shapes.  

 

Figure 2.3 Time series of Ex component recorded at the six spots (red dots) on centers 

of the six Huygens surface. (Reprinted with permission from [16]) 
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2.2. 2-dimensional PSTD simulations to understand the near field behavior 

 

For simplicity we first look at 2-dimensional simulations. The two-dimensional 

problem here is a cylindrical particle (of various cross-section) illuminated by an 

incident wave or wave packet approaching at an angle normal to the cylinder axis.  The 

Transverse Electric (TE) case is considered here, in which the incident field is polarized 

parallel to the cylinder axis, and the model equations are [16],  

 

 𝜖
𝑐
𝜕𝐸M⃑
𝜕𝑡 = ∇ × 𝐻MM⃑  (2.28) 

 

 1
𝑐
𝜕𝐻MM⃑
𝜕𝑡 = −∇ × 𝐸M⃑  (2.29) 

 

 𝐸M⃑ = 𝐸á𝑧̂,			𝐻MM⃑ = 𝐻ª𝑥â + 𝐻ã𝑦â (2.30) 

 

The particle shape (cross section) is described by the spatial dependence of the 

permittivity, 𝜖 = 𝜖(𝑥, 𝑦). In this study, we consider cases of circular, elliptical, and 

hexagonal shapes. The incident wave has central wavelength 0.55𝜇𝑚 and the particle 

refractive index m=1.3. 

First, we present a circular cross-sectional shape with size parameter x=30. The size 

parameter is defined as in Eq.1.10 with r being the circle radius. In Fig.2.4, the colormap 

indicates the strength of the Ez component within the absorbing layer. The incident wave 
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is coming in from the top at this instance. White arrows indicate the Poynting vector, or 

the local flux of electromagnetic energy,  

 

 𝑃M⃑ = 𝐸M⃑ × 𝐻MM⃑  (2.31) 

 

Relative to the incident direction, we have the 𝜃 angle indicating the scattering angle. 

The angular position 𝜃 was recorded at each timestep for diagnostic calculations that 

will be discussed below.  The red dot indicates the maximum intensity of within the 

cross section. The maximum is slightly off center because the internal field is already 

reacting to the leading edge of the pulse. There is another maximum on the other side of 

the particle because of the symmetry of the problem and it’s not shown. The number at 

the bottom right indicates the number of time steps where each time step is 

∆𝑡~2.62 × 10[hå sec.  
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Figure 2.4 2D simulation geometry. Color map shows the strength of the Ez field. In 

this case, the incident Gaussian pulse is coming into the computational domain from 

the top. White arrows indicate the strength and direction of the Poynting vectors. 

The number at the bottom indicates the time step. (Reprinted with permission from 

[16]) 
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Fig.2.5 shows the Ez field at later stages of the simulation. Fig.2.5(a) and (b) show 

that parts of the incoming pulse outside the particle has moved further down than the 

part that has entered the particle. This is expected since wave moves more slowly inside 

the particle due to its higher index of refraction. Also, the internal energy flux gradually 

focuses in the forward scattering direction. The maximum amplitude of the Ez field 

moves near the surface of the particle. 

Fig.2.5c shows the instant just after the two counter-propagating wave packets inside 

the particle have met and coalesced. The counter-propagating wave packets moved 

further and started to “split” apart symmetrically. At this moment the maximum 

amplitude is concentrated in a relatively narrow stream outside the particle moving off in 

the forward-scattering direction. This is similar to the presence of a “photonic nanojet” 

in images of the electric field in the frequency domain [17].  After this stage, the major 

characteristics of the Ez field evolution can be described as dominated by wave packets 

with maximum amplitude near the surface of the particle, along with internal curvilinear 

concentrations of amplitude similar to caustic-like features. Wave packets travelling near 

the particle surface can in a sense be related to the classical “electromagnetic surface 

waves” [18][19].  

Fig.2.5 (e~l) shows that the counter-propagating surface wave packets continue 

travelling around the particle surface and during this process, gradual energy release is 

happening around the circle. While the wave packets meet and collide, bursts of energy 

are shed in the direct forward and backward scattering direction. The amplitude 

decreases with time.  



 

 29 

Major release of energy in the forward and backward directions can generally be 

conceptually related to the familiar forward and backward peaks in the phase function 

𝑆hh, although we cannot see the interferences of the scattered waves happening outside 

our limited computational domain. The intermittent bursts of oscillatory Ez leaves a 

signal in time when they pass certain observation points outside the particle. These 

signals must have the appearances of the semi-periodic pulses in Fig.2.3. 

Fig.2.14 shows evolution of field energy in a different way inspired by [20]. The 

time evolution shown is after timestamp 1500, by which time the incident pulse has 

already left the computational domain; it is happening between Fig.2.5(e) and (f). 

Fig.2.14(a) shows the energy at a fixed radius outside the particle as a function of the 

scattering angle 𝜃 and time.  Fig.2.14(b) shows the total energy within the particle as 

function of angle and time. The energy is recorded in a cone of width 2 degrees centered 

on the angle 𝜃. The upper row of 3 panels are of the circular case; lower rows of 3 panels 

are for the elliptical and hexagonal cross sections discussed later. In order to deal with 

the decay of energy with time, the rows are divided into 3 successive time intervals.  

The amplitude maxima occurring at near backscattering in the 2nd panel for the circle 

in Fig.2.14(a) and the one at the forward scattering angle in the 3rd panel are to be 

expected (wave front passes in Fig.2.5(g)and(j) at the same time and location). The 

maximum near 105 degrees near timestep 2000 in the 1st panel is difficult to interpret. It 

also shows up in the internal energy plot at about the same time. at these times, the 

animations show that the energy being launched at about timestep 1771(Fig.2.5(f)) 
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reaches the observation radius during the interval of the amplitude maximum in the 1st 

panel.  

The 2nd two panels in Fig.2.14(a) and (b) suggest that there is approximately constant 

angular velocity in the movement of the wave packet. Another method of diagnosis is 

called upon which helps in relating the features of the wave field and release of energy 

from the particle. The red dots in Fig.2.5 record the location of maximum |Ez| inside the 

particle. The amplitudes and corresponding positions of the red dots, together with 

values of total internal electromagnetic energy inside and outside the particle were 

recorded during the simulations and are displayed in Fig.2.6. Fig.2.6 also shows features 

of the electromagnetic field inside (left column) and outside (right column) the particle. 

“Outside the particle” refers to the area outside the particle and within the absorbing 

layer in our computational domain. Logarithmic scale is used in panels a,b,e,f on the y-

axis. Panel (a) (b) show, respectively, a time series of the value of the total 

electromagnetic energy within the particle and maximum |Ez| at any interior grid point. 

The asterisks on the curve in the internal energy time series (2.6b) marks the times of the 

events shown in Fig.2.5; the same meaning applies for the asterisks on the time series of 

external energy (2.6f). To help in recognizing the transition of internal and external 

events, the dotted curve in panel 2.6f is a copy of the internal energy curve shown in 

Figure 2.6b. The subsequent pulse emissions are not as clearly defined as the first in the 

total energy field in the circle case. It is recognizable by the episodic burst-like behavior 

of the interior grid point maximum |Ez|.  
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At first the interior maximum |Ez| (2.6a) increases as part of the incident pulse 

enters the particle, remains approximately constant until the “focusing” of energy in 

Fig.2.5(b)(c) causes a local rise at the area from which the first forward pulse will be 

emitted. As the first forward pulse is emitted, the maximum |Ez| drops. At the same time, 

the total internal electromagnetic energy drops sharply, while outside the particle, the 

maximum |Ez| and total electromagnetic energy (2.5e,f) rise.  

After that, the formation of backward and forward jets are indicated by the short 

jiggles on the maximum |Ez| curve in 2.6a, which are observed to occur when counter-

propagating packets coalesce. Subsequent decreases in total energy inside the particle 

when backward or forward jets are formed are too small to show on the plots.  

The bottom 2 panels in each column show the positions of grid point |Ez| 

maxima. It is quite difficult to track locations of maximum |Ez| because the maximum is 

attained along a curve, rather than a single point in a locally oscillating wave packet 

structure. In Fig.2.5(a~l), the “bottom” of the circular boundary corresponds to the 

bottom edge (0´) of a 𝜃 plot in the panels. In Fig.2.6c,g, which show radial position, the 

solid red line indicates the distance corresponding to the radius of the particle. Certain 

features are clearly apparent in spite of the irregularities, especially after the main pulse 

passes by. 

   First, the confinement of maximum interior |Ez| near the boundary of the particle 

is clear. In other words, the maximum point does stick to the boundary, although there is 

some kind of a “hopping” between two preferred near-boundary positions that eventually 

disappears. This hopping can be related to the complicated near surface structure 
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reported in [21]. our numerical resolution may be insufficient to represent every detail of 

the structure. After the incident pulse has passed by, the movement of the maximal |Ez| 

location around the particle boundary appears to be at a constant angular velocity ( 𝜃æ¤ª 

plots in panels 2.6(d)(h)).  

 The 𝜃æ¤ª plots “time” events in the other panels of Fig.2.5. The 3 short bursts of 

interior maximum |Ez| of similar shape seen in Fig.2.6a mentioned above are associated 

with the interaction of the counter-propagating wave structures that result in the 

emission of pulses. The times at which maximum |Ez| outside the particle gets far away 

from the particle mainly happen in the period between the first forward nanojet pulse 

and the first backward pulse. Parts of the incident pulses that passes by the particle and 

the nanojet pulse itself are connected to the first two outward movement events. The 

third outward movement of the field maximum in the particle exterior occurs before the 

first backscatter pulse in between Fig.2.5f and 2.5g. The outward moving field 

maximum is part of a broader outward-sweep structure that follows the exiting nanojet 

pulse. The pulse maintains a clear but weak connection to the field in the particle interior 

as it spreads away from it. Recall that after the incident pulse has existed the 

computational domain, the field maximum |Ez| in the particle interior is travelling at an 

approximately constant angular velocity. This observation suggests a consideration of 

how this speed might compare with the light speeds inside and outside the particle. 

Although the hopping of the |Ez| maximum and numerical noises makes the resulting 

series quite noisy, we attempted to measure the speed by measuring the radial position 

and using a finite difference approximation for angular velocity.  
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Figure 2.5 Incident Gaussian pulse interacting with cylindrical crystal with circular 

cross-section. Time steps are indicated in the panels. (Reprinted with permission 

from [16]) 
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Figure 2.5 Continued 
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Figure 2.6 Time series of data gathered inside and outside and outside the circular 

cross section. The quantities shown are (a,e) pointwise maximum |Ez|; (b,f) total 

electromagnetic energy; (c,g) distance of pointwise maximum, with red line 

indicating particle boundary; and (d,h) Angle of the pointwise maximum. see text for 

details. (Reprinted with permission from [16]) 
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Figure 2.7 Tangential speed measurements of movements of |Ez| maxima. The speeds 

are normalized with vacuum light speed. See text for details. (Reprinted with 

permission from [16]) 

 

Now we turn to two other cross sections with less symmetry: Elliptical and 

hexagonal. In these shapes there are other mechanistic features that excite pulse releases, 

namely variation in surface curvature.  

Figures 2.8(a-l) show images from an elliptical cross-section for which the size 

parameter is x=30 and the aspect ratio is 0.5 (ratio of the semi-minor axis to the semi-

major axis). Overall, the ellipsoid field snapshots are qualitatively similar to those of a 

sphere. The nanojet feature in fig.2.5d is no longer strong but it is visible in Fig.2.8d. We 

see a broad and less focused wave front. Figs.2.8(e-g) show something not present in the 

circular case: as the wave packets travel near the surface of the particle to around 90 

degrees, a wave is generated and spins out, carrying electromagnetic energy away from 

the particle.  
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Remaining panels show the same kind of energy release as the near-surface wave 

packets encounter regions of high curvature. Figs.2.8i,j show that compared to the circle, 

the backscattered pulse is broader and less focused. These qualitative observed patterns 

about the energy release at high curvature spots can be quantified as shown in Fig.2.9 

and 2.10. As in Fig. 2.6, Fig.2.9 shows time series of local |Ez| maximum values, total 

electromagnetic energy, the radial and angular position of the |Ez| maximum inside and 

outside the particle.   

As in Fig.2.6f, the internal energy curve is plotted as a dotted curve in Fig.2.9f. 

Again, tracking position with the 𝜃æ¤ª time series, it can be recognized that the 

intermittent “bursts” in the |Ez| series correspond to surface wave packet maxima 

colliding at direct forward and direct backward scattering angles. We see that the major 

drops in electromagnetic energy happen in between these events, when the maxima enter 

the regions of maximal curvature.  

Unlike the case of a circle, the angular velocity indicated by the 𝜃æ¤ª time series 

in Fig.2.9d is not constant. As the wave packets travel to areas of higher surface 

curvature their velocity decreases. After the wave packets pass this region their angular 

velocity increases again. Also, this is the spot where major energy release takes place. 

Similar behavior is seen in the movement of total internal energy (middle row of 

Fig.2.14b).  The appearance of strong energy maxima outside the particle is a very 

striking feature (middle row in Fig.2.14a, at around 90 degrees) 

Fig.2.10 shows the relation between energy release and curvature, for ellipses 

with 2 different aspect ratios. Green curves are analogous quantities of circular cases. 
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For the ellipses, it is the radius of curvature divided by the incident Gaussian pulse half-

width. It is apparent that the electromagnetic energy drops most dramatically for the 

ellipse with smaller aspect ratio(b/a=0.5) when the wave packet hits regions of high 

curvature.  In the case of the ellipse with a larger aspect ratio the effect is less dramatic, 

and the overall rate of energy loss is much slower (closer to that of a circle). 

Another consideration is that the situation is different for a different orientation 

of the ellipse. We do not show here the detailed field evolution when the major axis is 

parallel to the incident direction. We only point out some notable features seen in the 

simulations: There are no massive spin-outs at regions of maximum curvature, since they 

are in the exact forward and backward directions parallel to the incident direction. The 

major energy release is in nanojet-like features in the direct forward and backward 

directions similar to those in the circular case. When the major axis has an orientation 

between these 2 extremes, mixtures of energy release of both kinds occur. 
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Figure 2.8 As in Fig.2.5, but evolution of the Ez field around a particle with 

elliptical cross section. (Reprinted with permission from [16]) 
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Figure 2.8 continued 
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Figure 2.9 As in Fig.2.6, but for an elliptical cross section. (Reprinted with permission 

from [16]) 
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Figure 2.10 Time series of surface curvature at point on interface of elliptical particle 

with same angle as nearby interior |Ez| maximum, and total electromagnetic energy, 

for two aspect ratios of the ellipse. In panels 2 and 4, the time series of the total energy 

for the circular cross section is included for comparison. (Reprinted with permission 

from [16]) 

 

 

In the case of a hexagonal cross-section, it is expected that there is more energy 

release when the surface wave packet moves across corners, based on the effect of 

curvature in the case of an elliptical cross section.  
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Fig.2.11 shows selections of field images chosen to illustrate behaviors near 

corners. In Fig.2.11b, the first forward nanojet has almost existed the domain, and the 

incident pulse has mostly exited the computational domain. The red dot in the image 

indicates a maximum at a midpoint position along the bottom edge of the particle, but 

evidence can be seen of a leading pair of oppositely propagating features near the 

boundary. In 2.11c, the internal maximum has travelled around the first corner on its 

way back to the backscatter direction.  

Note that the flux of electromagnetic energy indicated by the Poynting vector, 

which is parallel to the bottom surface of the particle, is heading away from the particle. 

When the travelling maximum |Ez| meets a corner, energy will be released parallel to the 

particle side at the same time. This turns out to be a characteristic of the field evolution 

in the case of a hexagonal cross section. Figs.2.11f and g show this phenomenon at the 

next corner, at the next corner, at the top corners. Figure 2.11h shows the bonus effect of 

enhancing the backscattering jet shown in Figure 2.11i.  This jet is formed by 

interference between the outward moving wave packet generated at each of the top 

corners by the counter-propagating wave packets and another created by the coalescence 

of wave packets. The remaining 3 panels in Fig.2.11 show subsequent corner encounters 

of the wave packet. The final one of the three shows the emerging of a flux that will 

contribute to another forward-scatter pulse a few timesteps later in Fig.2.11i. Note that 

the |Ez| maximum often appears well within the particle interior, mostly along the 

vertical symmetry axis. Those images are not all shown here. Suggestions of how this 
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might occur are seen in Fig.2.11(c-e). In non-circular particles we have simulated, 

occurrence of internal energy maximum well within the particle is a common feature.  

Similar to the case of the elliptical cross section, the time-angle dependence of 

the energy outside the particle shown in third row of Figure 2.14a is distinctive. Outward 

bursts of energy are recorded at angles near 30 ,60 and 120 degrees.  In addition, the first 

panel shows amplitude maxima near 180 degrees.  Figure 2.11i displays the Ez field at 

timestep 2281, during the period when the maxima appear: clearly the maxima are a 

signal of the first backscattering pulse.  At timestep 3500, the subsequent forward 

scattering pulse appears as the maximum in the lower-right edge of the middle panel.   

 To illustrate the major events just described more quantitatively, Figure 2.12 is 

constructed as in Figures 2.6 (circle) and 2.9 (ellipse). One surprising finding is the 

apparent constancy of angular velocity shown in the 𝜃æ¤ª time series, unlike in the case 

of the ellipse. While in the movement of the radial position of the |Ez| maxima, there is 

evidence of corner encounters, there is virtually no impact on the speed of progression of 

the maxima around the particle.   

Again, this time series serves to track the timing of key events:  The three major 

drops in internal electromagnetic energy, equally spaced in time between these corner 

encounter events, near-surface location of the maximal |Ez| at the onset of these energy 

drops and the quasi-periodic bursts of maximal |Ez| in the forward and backscatter pulse 

generation events.  (Note:  The two red lines in the time series for distance from the 

particle center indicate the maximum and minimum distances of points on the hexagon 

profile from its center.) 
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Fig.2.13 compares time series for the three non-circular cases (two ellipses and 

one hexagon) and with the time series for the circle.  It is clear from the figure that the 

strong “flattening” of the ellipse with aspect ratio 0.5 has accelerated the rate of energy 

release dramatically in comparison with the other cases. If an ellipse with larger aspect 

ratio is considered to be a less deformed circle, we might expect the ellipse with a larger 

aspect ratio to have a rate of energy release closer to that of the circle. However, we have 

no explanation for the fact that the rate of release is actually slower than that of the circle 

for most of the evolution after the main incident pulse has passed by.  We also have no 

explanation for the fact that the rate of release of energy from the hexagonal particle is 

similar to that seen in the circular case for a while, but then increases significantly.   
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Figure 2.11 As in Fig.2.5 but showing the Ez field evolution of the hexagonal cross 

section. (Reprinted with permission from [16]) 
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Figure 2.11 Continued 
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Figure 2.12 As in Fig.2.9, but for a hexagonal cross section. (Reprinted with 

permission from [16]) 
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Figure 2.13 Comparison of time series of total internal electromagnetic energy for 

cases of circular cross section, two different elliptical cross sections (aspect ratio 0.5 

and 0.75), and hexagonal cross section. (Reprinted with permission from [16]) 
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Figure 2.14 Angle-time diagram for (top row)circle, (middle row)ellipse and 

(bottom row)hexagonal cross sections: (a) at a fixed distance outside (b) total inside. 

See text for details. (Reprinted with permission from [16]) 
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3. THE INVARIANT IMBEDDING T-MATRIX METHOD 

 

A special approach to the single scattering problem is the Transition Matrix (T-

matrix) method. The T-matrix is the linear transformation between the expansion 

coefficients of the incident wave and the scattered wave. All information about a 

particle’s single scattering properties are contained in the T-matrix.  The T-Matrix is an 

inherent property of the particle; in particular, it depends only on the particle structure, 

size and refractive index. The T-matrix of a homogeneous sphere reduces to a diagonal 

form with matrix elements corresponding to the Lorenz-Mie series expansion 

coefficients. For nonspherical particles, the T-matrix method is computationally efficient 

because it is feasible to analytically average the optical properties over random 

orientations, as originally illustrated by [6].   

This dissertation focuses on one particular discretization scheme for solving the 

T-matrix: The invariant-imbedding T-matrix (II-TM) method [7][8].  Mathematically 

speaking, Eq.3.1 with the free-space Green’s Function is a Fredholm integral equation 

with a degenerate kernel. Eq.3.1 is a two-point boundary value problem before we apply 

the method of invariant imbedding. Expanding all field quantities with the vector 

spherical wave functions (VSWFs), the T-matrix relating the expansion coefficients is 

introduced into the equation sets. The method of invariant imbedding is applied in 

matrix equations 3.40~41. By regarding the solution at a fixed point as a function of the 

interval of integration, a matrix differential equation is obtained for the T-matrix. In its 

discretized form, the matrix differential equation provides a radial recurrence formula 
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for the T-matrix. The T-matrix corresponding to the portion of the scattering particle 

enclosed by a spherical shell of one radius can be used to obtain the T-matrix of the next 

radius.(Fig.3.1)  Through the use of the invariant imbedding method, the original 

boundary value problem of Eqs 3.1, 3.40, and 3.41 is transformed into an initial value 

problem suitable for numerical computation.  

The computational procedure of II-TM method for a non-spherical particle can 

be divided into three major parts: 

1.Surface integrations on each spherical shell to obtain the particle geometry 

2.Radial recurrence to obtain the final T-matrix 

3.Orientation averaging  

We aim to improve the computational efficiency of the Gaussian quadrature in the 

surface integrations by implementing a new node and weight generating algorithm [13]. 

Also, the method is modified to avoid doing quadrature over discontinuities for 

hexagonal columns so the convergence rate can be accelerated.  
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Figure 3.1 Schematic of the radial recurrence. Particle in this schematic is an 

irregular hexahedron marked in green. It could be any non-spherical 

inhomogeneous particles. Coordinate origin is on the geometric center of the 

hexahedra. Two spherical shells are indicated in transparent grey color. Red 

dashed arrows indicate the two radii 𝒓𝒑 and 𝒓𝒑Ê𝟏. 
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3.1. The invariant imbedding T-matrix method 

 

The volume integral equation containing the total field 𝐸M⃑ (𝑟, 𝜔) at a certain 

frequency ω [8] is 
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(3.1) 

 

Due to the linearity of the equation, the incident 𝐸QMMMM⃑  and the scattered field 𝐸�MMMM⃑  can be 

related through a linear transformation with respect to their expansion with Vector 

Spherical Wave Functions (VSWF) [8],  
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where 𝑅 is the radius of the circumscribing sphere of the particle. The angular functions 

are contained in the 𝑌éæ�(𝜃, 𝜑) matrix given by,  
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where 𝑑Qæ� (𝜃) is the Wigner-d function and,   
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the radial functions are contained in the 𝐻z�(𝑟) and 𝐽�̿(𝑟) matrices given by, 
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where ℎ�
(h)(𝑘𝑟) is the spherical Hankel function of the 1st kind, and 𝑗�(𝑘𝑟) is the 

spherical Bessel function of the 1st kind.  

The transition matrix (T-matrix) relates the expansion coefficients, 
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The single scattering properties can be obtained with the T-matrix, in other words, the T-

matrix contains all information about a particle’s single scattering properties, 

 

 ¡
𝑠i 𝑠�
𝑠~ 𝑠h¢~𝑇

é  (3.10) 

 

To compute the T-matrix, we start from Eq.3.1, which can be rewritten as,  

 

 
𝐸M⃑ (𝑟) = 𝐸QMMMM⃑ (𝑟) + 𝑘i�𝑑�𝑟}MMM⃑

�

𝜒q𝑟}MMM⃑ r Å𝐺̿Q(𝑟, 𝑟}) −
1
𝑘i 𝛿(𝑟⃑ − 𝑟

})𝑟̂⨂𝑟̂Æ

∙ 𝐸M⃑ q𝑟}MMM⃑ r, 

(3.11) 

 

Where 𝐺̿Q(𝑟, 𝑟}) is the free-space Green Function valid for a point source at 𝑟} in a 

medium that is otherwise a vacuum, 𝜒q𝑟}MMM⃑ r = 𝑘iq𝑚iq𝑟}MMM⃑ r − 1r, 𝑟̂ is the radial component 

of the spherical coordinates (𝑟̂ 𝜃Ò 𝜑â), the purpose of these maneuvers is to bring out 
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the 𝐺̿Q(𝑟, 𝑟}) explicitly so that we can use the series expansion in Eq.3.16.  The outer 

product leads to, 

 

 𝑟̂⨂𝑟̂ = ù
1
0
0
ú (1 0 0) = ù

1 0 0
0 0 0
0 0 0

ú. (3.12) 

 

After some manipulations, we have, 

 

 𝐸M⃑ (𝑟) = 𝐸QMMMM⃑ (𝑟) +�𝑑�𝑟}MMM⃑
�

𝜒q𝑟}MMM⃑ r𝐺̿Q(𝑟, 𝑟}) ∙ 𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r, (3.13) 

 

where 𝐸M⃑  is the scaled version of the original electric field, 

 

 𝐸M⃑ (𝑟) = ð
𝑚i(𝑟)𝐸Z(𝑟)
𝐸û(𝑟)
𝐸ï(𝑟)

ó (3.14) 

and 𝑍̿(𝑟}) is,  

 𝑍̿(𝑟}) = c

1
𝑚i(𝑟}) 0 0

0 1 0
0 0 1

g (3.15) 

 

The free-space Green Function can be factorized into, 
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 𝐺̿Q(𝑟, 𝑟}) = » » 𝑌éæ�(𝜃, 𝜑)
�

æ¾[�

ë

�¾h

𝑔̿�(𝑟, 𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑}) (3.16) 

 

where  

 𝑔̿�(𝑟, 𝑟}) =

⎩
⎪
⎨

⎪
⎧𝑖𝑘𝐻z�(𝑟)𝐽�̿ß(𝑟}),																					𝑟 > 𝑟}
𝑖𝑘
2
�𝐻z�(𝑟)𝐽�̿ß(𝑟}) + 𝐽�̿(𝑟)𝐻z�ß(𝑟})�,

𝑖𝑘𝐽�̿(𝑟)𝐻z�ß(𝑟}),																				𝑟 < 𝑟}
			𝑟 = 𝑟} (3.17) 

 

Insert Eq.3.16 into Eq.3.13. Then,  

 

 

𝐸M⃑ (𝑟)

= 𝐸QMMMM⃑ (𝑟)

+�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r» » 𝑌éæ�(𝜃, 𝜑)
�

æ¾[�

ë

�¾h

𝑔̿�(𝑟, 𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})

∙ 𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r, 

(3.18) 

 

Practically speaking, through integration in the azimuth (𝜑) and zenith (𝜃) direction, this 

function aims at separating the angular	(𝜃, 𝜑) and radial (r) variables.  

 

 𝐹⃑æ�(𝑟) = 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒q𝑟}MMM⃑ r𝑍̿(𝑟, 𝜃, 𝜑)𝐸M⃑ (𝑟, 𝜃, 𝜑) (3.19) 
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Inserting Eq.3.18 into Eq.3.19,  

 

 

𝐹⃑æ�(𝑟)

= 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒(𝑟)𝑍̿(𝑟, 𝜃, 𝜑) Ï𝐸QMMMM⃑ (𝑟)

+�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r » 𝑌éæ���(𝜃, 𝜑)
æ���

𝑔̿��(𝑟, 𝑟})𝑌éæ���
ß∗ (𝜃}, 𝜑})

∙ 𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ rÐ 

(3.20) 

 

Grouping terms with 𝑟}, 𝜃}	𝑎𝑛𝑑	𝜑} together, the integral in the square brackets becomes,  

 

 

{𝑑𝑟} » 𝑌éæ���(𝜃, 𝜑)𝑔̿��(𝑟, 𝑟})
æ���

"

Q

c𝑟}i { 𝑠𝑖𝑛𝜃}𝑑𝜃}𝑑𝜑}

!

𝜒q𝑟}MMM⃑ r𝑌éæ���
ß∗ (𝜃}, 𝜑})

∙ 𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ rg

= { 𝑑𝑟} » 𝑌éæ���(𝜃, 𝜑)𝑔̿��(𝑟, 𝑟})
æ���

"

Q

𝐹⃑æ���(𝑟}) 

 

(3.21) 

Eq.3.20 becomes, 
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𝐹⃑æ�(𝑟) = 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒(𝑟)𝑍̿(𝑟, 𝜃, 𝜑) Ï𝐸QMMMM⃑ (𝑟⃑)

+ {𝑑𝑟} » 𝑌éæ���(𝜃, 𝜑)𝑔̿��(𝑟, 𝑟})
æ���

"

Q

𝐹⃑æ���(𝑟})Ð 

(3.22) 

 

Expand 𝐸QMMMM⃑ (𝑟) in VSWFs,  

 

 

𝐹⃑æ�(𝑟) = 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒(𝑟)𝑍̿(𝑟, 𝜃, 𝜑) × 

Ï » 𝑌éæ�����(𝜃, 𝜑)𝐽�̿��(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����

+ { 𝑑𝑟} » 𝑌éæ���(𝜃, 𝜑)𝑔̿��(𝑟, 𝑟})
æ���

"

Q

𝐹⃑æ���(𝑟})Ð 

(3.23) 

 

Define 𝑈zæ�æ��� matrices, sticking to the idea of separating angular and radial variables,  

 

 𝑈zæ�æ���(𝑟) = 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒(𝑟)𝑍̿(𝑟, 𝜃, 𝜑)𝑌éæ���(𝜃, 𝜑) (3.24) 

 

Eq.3.22 becomes,  
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𝐹⃑æ�(𝑟) = 	 » 𝑈zæ�æ�����(𝑟)𝐽�̿��(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����

+ » 𝑈zæ�æ���(𝑟)
æ���

{ 𝑑𝑟}𝑔̿��(𝑟, 𝑟})
"

Q

𝐹⃑æ���(𝑟}) 

(3.25) 

 

Expand 𝐹⃑æ�(𝑟),  

 𝐹⃑æ�(𝑟) = 	 » 𝐹éæ�æ�����(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����
 (3.26) 

 

 𝐹⃑æ���(𝑟) = 	 » 𝐹éæ���æ�����(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����
 (3.27) 

 

Insert into Eq.3.25,  

 

 

» 𝐹éæ�æ�����(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����

= 	 » 𝑈zæ�æ�����(𝑟)𝐽�̿��(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����

+ » 𝑈zæ�æ���(𝑟)
æ���

{ 𝑑𝑟}𝑔̿��(𝑟, 𝑟})
"

Q

» 𝐹éæ���æ�����(𝑟) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����
 

(3.28) 

 

Equate linear independent terms indexed with 𝑚}}𝑛}}, 
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𝐹éæ�æ�����(𝑟) = 	𝑈zæ�æ�����(𝑟)𝐽�̿��(𝑟)

+ » 𝑈zæ�æ���(𝑟)
æ���

{ 𝑑𝑟}𝑔̿��(𝑟, 𝑟})
"

Q

𝐹éæ���æ�����(𝑟) 
(3.29) 

 

Eq.3.29 is one of the formulas needed for constructing the recurrence relation for the T-

matrix. Now, we derive an explicit formula for the T-matrix. First, write Eq.3.18 for the 

scattered field,  

 

 

𝐸M⃑ �(𝑟)

=�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r» » 𝑌éæ�(𝜃, 𝜑)
�

æ¾[�

ë

�¾h

𝑔̿�(𝑟, 𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})

∙ 𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r, 

(3.30) 

 

For r>R>𝑟}, we have according to Eq.3.17,  

 

 𝑔̿�(𝑟, 𝑟}) = 𝑖𝑘𝐻z�(𝑟)𝐽�̿ß(𝑟}) (3.31) 

 

Eq.3.30 becomes,  
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𝐸M⃑ �(𝑟) =�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r × 

» » 𝑌éæ�(𝜃, 𝜑)
�

æ¾[�

ë

�¾h

𝑖𝑘𝐻z�(𝑟)𝐽�̿ß(𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r, 

(3.32) 

 

Relating this to Eq.3.2, we have,  

 

 

𝐸M⃑ �(𝑟) = » » 𝑌éæ�(𝜃, 𝜑)𝐻z�(𝑟)�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r ×
�

æ¾[�

ë

�¾h

 

𝑖𝑘𝐽�̿ß(𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r 

= » » 𝑌éæ�(𝜃, 𝜑)𝐻z�(𝑟) ¡
𝑝æ�
𝑞æ�¢

�

æ¾[�

ë

�¾h

	 

(3.33) 

 

 
¡
𝑝æ�
𝑞æ�¢ = 	�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r𝑖𝑘𝐽�̿ß(𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})𝑍̿(𝑟})

∙ 𝐸M⃑ q𝑟}MMM⃑ r 

(3.34) 

 

Connecting Eq.3.34 with ¡
𝑎æ�
𝑏æ�¢, we have,  
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¡
𝑝æ�
𝑞æ�¢

= 	�𝑟}i𝑠𝑖𝑛𝜃}𝑑𝑟}𝑑𝜃}𝑑𝜑}

�

𝜒q𝑟}MMM⃑ r𝑖𝑘𝐽�̿ß(𝑟})𝑌éæ�ß∗ (𝜃}, 𝜑})𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r

= 𝑖𝑘 {𝑑𝑟}
"

Q

𝑟}i𝐽�̿ß(𝑟}) { 𝑠𝑖𝑛𝜃}𝑑𝜃}𝑑𝜑}

!

𝑌éæ�ß∗ (𝜃}, 𝜑})𝜒q𝑟}MMM⃑ r𝑍̿(𝑟}) ∙ 𝐸M⃑ q𝑟}MMM⃑ r

= 𝑖𝑘 {𝑑𝑟}
"

Q

𝐽�̿ß(𝑟})𝐹⃑æ�(𝑟})

= 𝑖𝑘 {𝑑𝑟}
"

Q

𝐽�̿ß(𝑟}) » 𝐹éæ�æ�����(𝑟}) ¡
𝑎æ�����

𝑏æ�����
¢

æ�����

= » Ï𝑖𝑘{ 𝑑𝑟}
"

Q

𝐽�̿ß(𝑟})𝐹éæ�æ�����(𝑟})Ð ¡
𝑎æ�����

𝑏æ�����
¢

æ�����
 

(3.35) 

 

So, comparing with Eq.3.9, we have,  

 

 𝑇éæ�æ�����(𝑅) = 	𝑖𝑘{ 𝑑𝑟}
"

Q

𝐽�̿ß(𝑟})𝐹éæ�æ�����(𝑟}) (3.36) 

 

Eq.3.29 and 3.36 are the ingredients to derive a recurrence relation for the T-matrix, 

group the expressions for 𝑇éæ�æ�����(𝑅) and 𝐹éæ�æ�����(𝑟) together,  
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 𝑇éæ�æ�����(𝑅) = 	𝑖𝑘{ 𝑑𝑟}
"

Q

𝐽�̿ß(𝑟})𝐹éæ�æ�����(𝑟}) (3.37) 

 

 

𝐹éæ�æ�����(𝑟) = 	𝑈zæ�æ�����(𝑟)𝐽�̿��(𝑟)

+ » 𝑈zæ�æ���(𝑟)
æ���

{ 𝑑𝑟}𝑔̿��(𝑟, 𝑟})
"

Q

𝐹éæ���æ�����(𝑟) 
(3.38) 

 

Define the following super matrices, where each matrix element is a matrix, 

 

 

𝑻 = �𝑇éæ�æ������,𝑼 = �𝑈zæ�æ������,𝑭 = �𝐹éæ�æ������, 

								𝑱 = �𝐽�̿��𝛿����𝛿ææ���,𝑯 = �𝐻z���𝛿����𝛿ææ���,					 

𝒈 = [𝑔̿���𝛿����𝛿ææ��], 𝑱𝑻 = �𝐽�̿��
ß 𝛿����𝛿ææ���

ß
 

(3.39) 

 

Rewrite Eq.3.37 and 3.38 in condensed form using these super matrices, 

 

 𝑻(𝑅) = 𝑖𝑘 {𝑑𝑟}
"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) (3.40) 

 

 𝑭(𝑟, 𝑅) = 𝑼(𝑟)𝑱(𝑟) + {𝑑𝑟}
"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅) (3.41) 
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 𝒈(𝑟, 𝑟}) =

⎩
⎨

⎧𝑖𝑘𝑯(𝑟)𝑱
𝑻(𝑟}),																					𝑟 > 𝑟}

𝑖𝑘
2
[𝑯(𝑟)𝑱𝑻(𝑟}) + 𝑱(𝑟)𝑯𝑻(𝑟})],

𝑖𝑘𝑱(𝑟)𝑯𝑻(𝑟}),																				𝑟 < 𝑟}
			𝑟 = 𝑟} (3.42) 

 

Now we begin deriving a recurrence relation for 𝑻(𝑅). Consider first 𝑭(𝑅, 𝑅) since it 

will be used many times in the derivation, 

 

 

𝑭(𝑅, 𝑅) = 𝑼(𝑅)𝑱(𝑅) + { 𝑑𝑟}
"

Q

𝑼(𝑅)𝒈(𝑅, 𝑟})𝑭(𝑟}, 𝑅)

= { 𝑑𝑟}
"[∆"

Q

𝑼(𝑅)𝒈(𝑅, 𝑟})𝑭(𝑟}, 𝑅)

+ ∆𝑅𝑼(𝑅)𝒈(𝑅, 𝑅)𝑭(𝑅, 𝑅)

= { 𝑑𝑟}
"[∆"

Q

𝑼(𝑅)𝑖𝑘𝑯(𝑅)𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅)

+ ∆𝑅𝑼(𝑅)𝒈(𝑅, 𝑅)𝑭(𝑅, 𝑅) 

(3.43) 

 

Group 𝑭(𝑅, 𝑅) together,  

 

 

[𝑰− ∆𝑅𝑼(𝑅)𝒈(𝑅, 𝑅)]𝑭(𝑅, 𝑅)

= 𝑼(𝑅)𝑱(𝑅) + 𝑖𝑘𝑼(𝑅)𝑯(𝑅) { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) 
(3.44) 
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𝑭(𝑅, 𝑅) = [𝑰− ∆𝑅𝑼(𝑅)𝒈(𝑅, 𝑅)][𝟏𝑼(𝑅) Ï𝑱(𝑅)

+ 𝑖𝑘𝑯(𝑅) { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅)Ð

=
1
∆𝑅𝑸(𝑅)

[𝑱(𝑅) +𝑯(𝑅)𝒒(𝑅)] 

(3.45) 

 

Where 𝑸(𝑅) and 𝒒(𝑅) are given by the following relationships,  

 

 𝑸(𝑅) = ∆𝑅[𝑰− ∆𝑅𝑼(𝑅)𝒈(𝑅, 𝑅)][𝟏𝑼(𝑅) (3.46) 

 

 𝒒(𝑅) = 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) (3.47) 

discretize 𝑻(𝑅),  

 

 

𝑻(𝑅) = 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) + 𝑖𝑘∆𝑅𝑱𝑻(𝑅)𝑭(𝑅, 𝑅)

= 𝒒(𝑅) + 𝑖𝑘∆𝑅𝑱𝑻(𝑅)
1
∆𝑅𝑸

(𝑅)[𝑱(𝑅) +𝑯(𝑅)𝒒(𝑅)]

= 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑱(𝑅) + 𝒒(𝑅) + 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑯(𝑅)𝒒(𝑅)

= 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑱(𝑅) + [𝑰+ 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑯(𝑅)]𝒒(𝑅)

= 𝑸hh(𝑅) + [𝑰+ 𝑸hi(𝑅)]𝒒(𝑅) 

(3.48) 
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where 𝑸hh(𝑅) and 𝑸hi(𝑅) are given by, 

 

 𝑸hh(𝑅) = 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑱(𝑅) (3.49) 

 

 𝑸hi(𝑅) = 𝑖𝑘𝑱𝑻(𝑅)𝑸(𝑅)𝑯(𝑅) (3.50) 

 

To form a recurrence for 𝑻(𝑅), we need to connect 𝒒(𝑅) in Eq.3.48 with 𝑻(𝑅 − ∆𝑅), 

from Eq.3.40, 

 𝑻(𝑅 − ∆𝑅) = 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅 − ∆𝑅) (3.51) 

and, 

 𝒒(𝑅) = 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) (3.52) 

For 𝑭(𝑟}, 𝑅), we have,  
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𝑭(𝑟, 𝑅) = 𝑼(𝑟)𝑱(𝑟) + {𝑑𝑟}
"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅)

= 𝑼(𝑟)𝑱(𝑟) + { 𝑑𝑟}
"[∆"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅)

+ ∆𝑅𝑼(𝑟)𝒈(𝑟, 𝑅)𝑭(𝑅, 𝑅)

= 𝑼(𝑟)𝑱(𝑟) + { 𝑑𝑟}
"[∆"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅)

+ ∆𝑅𝑼(𝑟)𝑖𝑘𝑱(𝑟)𝑯𝑻(𝑅)𝑭(𝑅, 𝑅)

= 𝑼(𝑟)𝑱(𝑟)	[𝑰+ 𝑖𝑘∆𝑅𝑯𝑻(𝑅)𝑭(𝑅, 𝑅)]

+ { 𝑑𝑟}
"[∆"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅)

= 𝑼(𝑟)𝑱(𝑟)[𝑰+ 𝑷(𝑅)] + { 𝑑𝑟}
"[∆"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅) 

(3.53) 

where 

 

 𝒑(𝑅) = 𝑖𝑘∆𝑅𝑯𝑻(𝑅)𝑭(𝑅, 𝑅) (3.54) 

 

Compare Eq.3.53 with 𝑭(𝑟}, 𝑅 − ∆𝑅), 

 

 𝑭(𝑟, 𝑅 − ∆𝑅) = 𝑼(𝑟)𝑱(𝑟) + { 𝑑𝑟}
"[∆"

Q

𝑼(𝑟)𝒈(𝑟, 𝑟})𝑭(𝑟}, 𝑅 − ∆𝑅) (3.55) 
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𝑭(𝑟, 𝑅) and 𝑭(𝑟, 𝑅 − ∆𝑅) solve the same Fredholm integral equation, but with different 

forcing functions 𝑼(𝑟)𝑱(𝑟)[𝑰+ 𝑷(𝑅)] and 𝑼(𝑟)𝑱(𝑟), so 

 

 𝑭(𝑟, 𝑅) = 𝑭(𝑟, 𝑅 − ∆𝑅)[𝑰+ 𝒑(𝑅)] (3.56) 

 

This relation should be valid for small values of R (the circumscribing sphere radius). 

We multiply Eq.3.51 by [𝑰+ 𝑷(𝑅)],  

 

 

𝑻(𝑅 − ∆𝑅)[𝑰+ 𝒑(𝑅)] = 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅 − ∆𝑅)[𝑰+ 𝑷(𝑅)]

= 𝑖𝑘 { 𝑑𝑟}
"[∆"

Q

𝑱𝑻(𝑟})𝑭(𝑟}, 𝑅) = 𝒒(𝑅) 

(3.57) 

Furthermore,  

 

 

𝒑(𝑅) = 𝑖𝑘∆𝑅𝑯𝑻(𝑅)𝑭(𝑅, 𝑅)

= 𝑖𝑘∆𝑅𝑯𝑻(𝑅)
1
∆𝑅𝑸

(𝑅)[𝑱(𝑅) +𝑯(𝑅)𝒒(𝑅)]

= 𝑖𝑘𝑯𝑻(𝑅)𝑸(𝑅)[𝑱(𝑅) +𝑯(𝑅)𝒒(𝑅)]

= 𝑖𝑘𝑯𝑻(𝑅)𝑸(𝑅)𝑱(𝑅) + 𝑖𝑘𝑯𝑻(𝑅)𝑸(𝑅)𝑯(𝑅)𝒒(𝑅)

= 𝑸𝟐𝟏(𝑅) + 𝑸𝟐𝟐(𝑅)𝒒(𝑅) 

(3.58) 
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where,  

 𝑸𝟐𝟏(𝑅) = 𝑖𝑘𝑯𝑻(𝑅)𝑸(𝑅)𝑱(𝑅) (3.59) 

 

 𝑸𝟐𝟐(𝑅) = 𝑖𝑘𝑯𝑻(𝑅)𝑸(𝑅)𝑯(𝑅) (3.60) 

 

Combine Eq.3.57 and 3.58 to solve for 𝒒(𝑅),  

 

 𝒒(𝑅) = [𝑰− 𝑻(𝑅 − ∆𝑅)𝑸ii(𝑅)][h𝑻(𝑅 − ∆𝑅)[𝑰+ 𝑸ih(𝑅)] (3.61) 

 

Finally, insert 3.61 into Eq.3.48: 

 

 

𝑻(𝑅) = 𝑸hh(𝑅)

+ [𝑰+ 𝑸hi(𝑅)][𝑰− 𝑻(𝑅 − ∆𝑅)𝑸ii(𝑅)][h𝑻(𝑅 − ∆𝑅)[𝑰

+ 𝑸ih(𝑅)] 

(3.62) 

 

This is the radial recurrence relation for the T-matrix in the II-TM method.  

 Fig.3.1 illustrates the radial recurrence. The T-matrix 𝑻(𝑟Q) of the inscribed 

sphere with radius 𝑟Q is the initial T-matrix to start the recurrence [22]. The recurrence 

ends at the circumscribing sphere of the particle.  
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We show comparisons between II-TM and two benchmark single scattering 

methods, the Lorenz-Mie theory for homogeneous spheres and the Extended Boundary 

Condition Method (EBCM) [6] for spheroids.  

According to previous chapters, three parameters control the accuracy of the II-

TM method: the truncation order of the T-matrix N, the radial discretization ∆𝑟 of the 

recurrence and the number of quadrature nodes 𝑁- for the surface integrations in the U-

matrix elements.  

The first comparison is for a sphere and the two methods are Lorenz-Mie theory 

and the II-TM method, the initial radius of the recurrence 𝑅Q is selected to be half the 

radius of the sphere 𝑅 , and the radial resolution for the recurrence is ∆𝑟 = 0.005 ∗

(𝑅 −	𝑅Q). The T-matrix truncation order for the Lorenz-Mie theory is given by 

Wiscombe [23], 

 

 𝑁 = 𝑥 + 4.05𝑥h/� + 2, (3.63) 

 

In the II-TM method, we use the same truncation order. In later chapters we will 

elaborate on the choice of the number of quadrature nodes 𝑁-. In these comparison test 

runs, 𝑁- = 100. Since the integrands in the surface integrations in the case of a sphere 

(or spheroid) are simply products of polynomials, a low 𝑁- is enough for high precision 

quadrature.  

 In Figs. 3.2(no absorption) and 3.3(with absorption), good agreement is achieved 

between the Lorenz-Mie theory and the II-TM method for sphere.  
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Figure 3.2 Comparison between II-TM and the Lorenz-Mie theory. Sphere is 

indicated in the figure, size parameter x=30 at incident wavelength 550nm, 

refractive index is 1.3.   
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Figure 3.3 Comparison between II-TM and the Lorenz-Mie theory. Sphere is 

indicated in the figure, size parameter x=30 at incident wavelength 550nm, 

refractive index is 1.3+i0.01. 

 

The second comparison is for a spheroid and the two methods are EBCM and II-

TM.  Unlike the II-TM method where the T-matrix is obtained with a radial recurrence 

in terms of a family of concentric spherical shells centered on the particle center, EBCM 

solves for the T-matrix with a direct matrix inversion obtained from a surface integral 

equation for the electric field surrounding the particle. Both methods are numerically 

exact methods in that they accurately solve the Maxwell’s equations. The same 

truncation order is used for EBCM and II-TM. Good agreement can be achieved in 

Figs.3.4~5.  
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At large size parameters, comparison between the II-TM and PGOM method for 

hexagonal column is shown in Fig.3.6 and 3.7. The PGOM (physical geometric optics 

method) is a geometric optics method which is only accurate for large particles[14]. In 

the PGOM method, the near field is obtained by tracing the reflection and refraction of 

the light beam impinging on multiple facets. The far field is obtained via a near-to-far 

field transformation. The agreement between II-TM and PGOM is very good.  

 

 

Figure 3.4 Comparison between II-TM and the EBCM method. Spheroid is 

indicated in the figure, size parameter x=30 at incident wavelength 550nm, aspect 

ratio=0.5, refractive index is 1.3. 
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Figure 3.5 Comparison between II-TM and the EBCM method. Spheroid is 

indicated in the figure, size parameter x=30 at incident wavelength 550nm, aspect 

ratio=0.5, refractive index is 1.3+i0.01. 
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Figure 3.6 Comparison between II-TM and the PGOM method. Hexagonal column 

is indicated in the figure, size parameter x=225 defined with the circumscribing 

sphere radius. Refractive index m=1.308+i𝟏.𝟒𝟑 × 𝟏𝟎[𝟗. This corresponds to ice 

refractive index at 650 nm wavelength. 
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Figure 3.7 Comparison between II-TM and the PGOM method. Hexagonal column 

is indicated in the figure, size parameter x=225 defined with the circumscribing 

sphere radius. Refractive index m=1.276+i0.413. This corresponds to ice refractive 

index at 120 𝛍𝐦 wavelength. 
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3.2. Improving the surface integrations in U-matrix elements 

 

In this section we investigate and improve the precision of the II-TM method. 

Specifically, we look at the II-TM surface integrations in the U-matrix elements 

(Eq.3.24), which is repeated here: 

 

 𝑈zæ�æ���(𝑟) = 	 𝑟i { 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
!

𝑌éæ�ß∗ (𝜃, 𝜑)𝜒(𝑟)𝑍̿(𝑟, 𝜃, 𝜑)𝑌éæ���(𝜃, 𝜑) (3.64) 

 

The matrix elements of the U-matrix 𝑈z(𝑟) in each iteration are surface integrals in zenith 

and azimuth directions on the spherical shell. The five nonzero elements in the U-matrix 

can be written as [22], 

 

𝑈æ�æ���
Xµ = 𝐴æ�æ��� { 𝑑𝜃𝑠𝑖𝑛𝜃

�

Q
𝐹ææ�(𝑟, 𝜃)𝐾æ�æ���

Xµ (𝜃),				𝑖, 𝑗 = 1,2 (3.65) 

𝑈æ�æ���
�� = 𝐴5æ�æ��� { 𝑑𝜃𝑠𝑖𝑛𝜃

�

Q
𝐹6ææ�(𝑟, 𝜃)𝑑Qæ� (𝜃)𝑑Qæ�

�� (𝜃), (3.66) 

where,   

𝐹ææ�(𝑟, 𝜃) = { 𝑑𝜑
i�

Q
𝑒[Xqæ[æ�rï[𝜀(𝑟, 𝜃, 𝜑) − 1], (3.67) 

𝐹6ææ�(𝑟, 𝜃) = { 𝑑𝜑
i�

Q
𝑒[Xqæ[æ�rï [𝜀(𝑟, 𝜃, 𝜑) − 1]

𝜀(𝑟, 𝜃, 𝜑) , (3.68) 
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𝐴æ�æ��� = (𝑘𝑟)i(−1)æÊæ� Å
2𝑛 + 1

4𝜋𝑛(𝑛 + 1)Æ
h
i
8

2𝑛} + 1
4𝜋𝑛}(𝑛} + 1)9

h
i
, (3.69) 

𝐴5æ�æ��� = ñ𝑛𝑛}(𝑛 + 1)(𝑛} + 1)𝐴æ�æ���, (3.70) 

�𝐾æ�æ���
Xµ (𝜃)�

= Å
𝜋æ�(𝜃)𝜋æ���(𝜃) + 𝜏æ�(𝜃)𝜏æ���(𝜃) −𝑖[𝜋æ�(𝜃)𝜏æ���(𝜃) + 𝜏æ�(𝜃)𝜋æ���(𝜃)]
𝑖[𝜋æ�(𝜃)𝜏æ���(𝜃) + 𝜏æ�(𝜃)𝜋æ���(𝜃)] 𝜋æ�(𝜃)𝜋æ���(𝜃) + 𝜏æ�(𝜃)𝜏æ���(𝜃)

Æ, 
(3.71) 

 

and 𝜋æ� and 𝜏æ� are given by, 

 

 𝜋æ�(𝜃) =
𝑚
𝑠𝑖𝑛𝜃 𝑑Qæ

� (𝜃), (3.72) 

 𝜏æ�(𝜃) =
𝑑
𝑑𝜃 𝑑Qæ

� (𝜃). (3.73) 

 

In Eqs.3.66, 3.72 and 3.73, 𝑑Qæ� (𝜃) is the Wigner-d function. The U-matrix elements are 

different for different particles. We outline the formulations for a spheroid and a regular 

hexagonal column. These particle geometries are selected to represent particles with 

continuous and discrete symmetries. In particular, a spheroid has both rotational and mirror 

symmetry so the formulation is relatively simple, and a hexagonal column has mirror 

symmetry and 6-fold symmetry.  

A spheroid has rotational symmetry with respect to the z-axis (𝜀(𝑟, 𝜃, 𝜑) = 𝜀(𝑟, 𝜃)) 

and mirror symmetry with respect to the xy-plane (𝜀(𝑟, 𝜃) = 𝜀(𝑟, 𝜋 − 𝜃)). Also,  
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                         [𝜀(𝑟, 𝜃) − 1] = «
0,			𝜃 > 𝜃i

[𝜀 − 1],				𝜃 ∈ [0, 𝜃i]	
, (3.74) 

 

and 𝜃i is the angle at which the spherical shell intersects the spheroid (Fig.3.8).  

 

 

 

Figure 3.8 Progression of the spherical shell on a spheroid. In this case, 𝜽𝟏 = 𝟎. and 

𝜽𝟐 is the angle where the spherical shell intersects the spheroid.   

 

 

The properties of the Wigner-d functions allow us to greatly simplify the formulations [24]: 

 

 

[𝜋æ�(𝜃)𝜋æ��(𝜃) + 𝜏æ�(𝜃)𝜏æ��(𝜃)]𝑠𝑖𝑛𝜃

= :

𝑑
𝑑𝜃 (𝜏æ�

�𝑑Qæ� (𝜃)𝑠𝑖𝑛𝜃) + 𝑛}(𝑛} + 1)𝑠𝑖𝑛𝜃𝑑Qæ� (𝜃)𝑑Qæ�
� (𝜃)

𝑑
𝑑𝜃

(𝜏æ�𝑑Qæ�
� (𝜃)𝑠𝑖𝑛𝜃) + 𝑛(𝑛 + 1)𝑠𝑖𝑛𝜃𝑑Qæ� (𝜃)𝑑Qæ�

� (𝜃)
, 

(3.75) 
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 [𝜋æ�(𝜃)𝜏æ��(𝜃) + 𝜏æ�(𝜃)𝜋æ��(𝜃)]𝑠𝑖𝑛𝜃 = 𝑚
𝑑
𝑑𝜃 ¡𝑑Qæ

� (𝜃)𝑑Qæ�
� (𝜃)¢, (3.76) 

 

Substituting Eqs.3.75 and 3.76 into Eqs.3.65 and 3.66 and integrating by parts, we obtain 

the simplified formulations: 

 

 

𝑈æ�æ���
hh (𝑟) = 𝑈æ�æ���

ii (𝑟)

= 𝐴æ�æ���2𝜋𝛿ææ�[𝜀 − 1] 8𝑐���𝜏æ��(𝜃i)𝑑Qæ� (𝜃i)𝑠𝑖𝑛𝜃i

+ 𝑛}(𝑛} + 1){ 𝑑𝜃
û;

Q
𝑠𝑖𝑛𝜃	𝑑Qæ� (𝜃)𝑑Qæ�

� (𝜃)9 ,

𝑐��� = 1 + (−1)�Ê��, 

(3.77) 

 

𝑈æ�æ���
�� (𝑟)

= 𝐴5æ�æ���2𝜋𝛿ææ�
[𝜀 − 1]
𝜀 𝑐��� { 𝑑𝜃𝑠𝑖𝑛𝜃

û;

Q
𝑑Qæ� (𝜃)𝑑Qæ�

�� (𝜃), 
(3.78) 

 

𝑈æ�æ���
hi (𝑟) = −𝑈æ�æ���

ih (𝑟)

= 𝐴æ�æ���2𝜋𝛿ææ�[𝜀 − 1]𝑐̃���(−𝑖𝑚)�	𝑑Qæ� (𝜃i)𝑑Qæ�
� (𝜃i)

− 𝑑Qæ� (0)𝑑Qæ�
� (0)�, 𝑐̃��� = 1 + (−1)�Ê��Êh. 

(3.79) 

 

The original integrals in the zenith direction in Eqs. 3.65 and 3.66 are now reduced to 

∫ 𝑑𝜃û;
Q 𝑠𝑖𝑛𝜃	𝑑Qæ� (𝜃)𝑑Qæ�

� (𝜃) in Eqs.3.77 and 3.78.  

 In the case of a hexagonal column, without a rotational symmetry with respect to 

the z-axis, the azimuth integrals 𝐹ææ�(𝑟, 𝜃) and 𝐹6ææ�(𝑟, 𝜃) cannot be decoupled from the 
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zenith integrals. Fig.3.9 illustrates the 3 different situations as the recurrence progresses in 

the case of a long column. The values of the azimuth integrals are dependent on 𝜃 and 𝑟 

because the spherical shell intersects with the hexagonal column in different ways as 𝜃 and 

𝑟 change. 

 

Figure 3.9 Progression of the spherical shell on a long hexagonal column. 

 

Using the mirror symmetry of 𝜀(𝑟, 𝜃) = 𝜀(𝑟, 𝜋 − 𝜃), we can simplify Eqs.3.65 and 3.66: 

 

 

𝑈æ�æ���
hh = 𝑈æ�æ���

ii

= 𝐴æ�æ���𝑐��� { 𝑑𝜃𝑠𝑖𝑛𝜃
û;

û>
𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���

XX (𝜃),

𝑐��� = 1 + (−1)�Ê��	, 

(3.80) 

 𝑈æ�æ���
�� = 𝐴5æ�æ���𝑐��� { 𝑑𝜃𝑠𝑖𝑛𝜃

û;

û>
𝐹6ææ�(𝑟, 𝜃)	𝑑Qæ� (𝜃)𝑑Qæ�

�� (𝜃), (3.81) 
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𝑈æ�æ���
hi = −𝑈æ�æ���

ih

= 𝐴æ�æ���𝑐̃��� { 𝑑𝜃𝑠𝑖𝑛𝜃
û;

û>
𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���

Xµ (𝜃),

𝑐̃��� = 1 + (−1)�Ê��Êh. 

(3.82) 

 

𝐹ææ�(𝑟, 𝜃) and 𝐹6ææ�(𝑟, 𝜃) in this case are piecewise smooth functions in 𝜃 . Fig.3.10 

shows 𝐹ææ�(𝜃)  of some index 𝑚𝑚}  at a certain 𝑟² . The discontinuity (in the first 

derivative) exists when the spherical shell intersects with the hexagonal surface. As a result, 

the U-matrix integrand 𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���
XX (𝜃)  is no longer smooth in the interval 

[𝜃h, 𝜃i] . The location of the discontinuity 𝜃µ?æ²	 is given in Eq.(16) of [22], where 

𝑟²𝑠𝑖𝑛𝜃µ?æ² =
√�¤
i

.  

 

 

Figure 3.10 An example 𝑭𝒎𝒎�(𝒓, 𝜽) as a function of 𝜽.   
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In the II-TM method for spheroid and hexagonal column, the surface integration in the 

zenith direction (Eqs.3.77~3.82) are computed using Gauss-Legendre (GL) quadrature, 

 

 

{ (𝑑𝜃𝑠𝑖𝑛𝜃)
�

Q
(𝐹ææ�(𝑟, 𝜃)𝐾æ�æ���

Xµ (𝜃))

≈»𝑤µ

½C

µ

(𝐹ææ�q𝑟, 𝜃µr𝐾æ�æ���
Xµ q𝜃µr), 

(3.83) 

 

In addition to the T-matrix truncation order N and the radial discretization ∆r, the 

number of quadrature nodes 𝑁- is an important parameter controlling the accuracy of the 

II-TM method. For a standard Gaussian Legendre quadrature like Eq.(3.83), the optimal 

numbers of nodes for quadrature of order 𝑁-  are given by the roots of the Legendre 

polynomials 𝑃½C(𝑥) = 𝑃½C(𝑐𝑜𝑠𝜃) . The GL quadrature is optimal if the integrand 

(𝐹ææ�(𝑟, 𝜃)𝐾æ�æ���
Xµ (𝜃)) can be well approximated by polynomials of order 2𝑁- − 1 or 

less. Generally, this means that the various orders of derivative of the integrand must be 

smooth. Discontinuities or singularities in the integrand or its derivatives will reduce the 

smoothness of the integrand. Higher order polynomials are required to approximate the fine 

scale oscillations of the integrand, and 𝑁- in that case have very large values.  

We use Gaussian quadrature on the following two integrals to illustrate our point that 

the convergence rate of the Gaussian quadrature depends on the behaviour of the integrand. 
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{ 𝑓h(𝑥)𝑑𝑥
h

Q
~»𝑤�

½C

�¾h

𝑓h(𝑥�), 𝑓h(𝑥) = « 1,			0 ≤ 𝑥 ≤ 0.5
2(1 − 𝑥),			0.5 < 𝑥 ≤ 1 (3.84) 

{ 𝑓i(𝑥)𝑑𝑥
h

Q
~»𝑤�𝑓i(𝑥�)

½C

�¾h

,								𝑓i(𝑥)

= « 1,			0 ≤ 𝑥 ≤ 0.5
0.5[1 + 𝑐𝑜𝑠2𝜋(𝑥 − 0.5)],			0.5 < 𝑥 ≤ 1	 

(3.85) 

 

 

 

Figure 3.11  𝒇𝟏(𝒙) and 𝒇𝟐(𝒙) 

 

 

The two integrals of 𝑓h(𝑥) and 𝑓i(𝑥) each have an analytical value of 0.75 so we 

can easily demonstrate the convergence rate of Gaussian quadrature on the two integrands. 

𝑓i(𝑥) is smooth inside the [0,1] interval while 𝑓h(𝑥) possesses a discontinuity in its 1st 

derivative at x=0.5. The behaviour of 𝑓h(𝑥) is very similar to that of 𝐹ææ�(𝜃) in Fig.3.10. 
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They both possess a discontinuity in the first derivative inside their integration range. Table 

3.1 shows magnitude of the relative error with respect to an increasing number of nodes 𝑁- 

for the two integrands. Apparently 𝑓i(𝑥) has a superior rate of convergence.  

 

 𝑓h(𝑥) = « 1, 0 ≤ 𝑥 ≤ 0.5
2(1 − 𝑥), 0.5 < 𝑥 ≤ 1 

𝑓i(𝑥)

= « 1, 0 ≤ 𝑥 ≤ 0.5
0.5[1 + 𝑐𝑜𝑠2𝜋(𝑥 − 0.5)], 0.5 < 𝑥 ≤ 1 

 { 𝑓h(𝑥)𝑑𝑥
h

Q
~»𝑤�

½C

�¾h

𝑓h(𝑥�) { 𝑓i(𝑥)𝑑𝑥
h

Q
~»𝑤�𝑓i(𝑥�)

½C

�¾h

 

𝑁- order of magnitude of RE order of magnitude of RE 

10 10[� 10[F 

100 10[G 10[F 

1000 10[å 10[F 

10000 10[F 10[F 

 

Table 3.1 Convergence rate of Gaussian quadrature for 2 different integrands in 

Fig.3.10. “RE” indicates the relative error which is given by the ratio of the 

difference between the quadrature and integral over the integral, or 𝑹𝑬 =

𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆[𝒆𝒙𝒂𝒄𝒕
𝒆𝒙𝒂𝒄𝒕

. 

 

In the II-TM method, the spheroid has the simplest integrand among all other shapes 

(excluding sphere): 
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 { 𝑑𝜃𝑠𝑖𝑛𝜃
û;

Q
𝑑Qæ� (𝜃)𝑑Qæ�

�� (𝜃), (3.86) 

 

where the integrand is the product of Wigner-d functions 𝑑Qæ� (𝜃)𝑑Qæ�
�� (𝜃). We expect 

rapid convergence of the quadrature with respect to 𝑁-, since the integrand can be well 

approximated by polynomials, 

 

 { 𝑑𝜃𝑠𝑖𝑛𝜃
û;

Q
𝑑Qæ� (𝜃)𝑑Qæ�

�� (𝜃) ≈»𝑤µ

½C

µ

�𝑑Qæ� q𝜃µr𝑑Qæ�
�� q𝜃µr�. (3.87) 

 

Fig.3.12 shows the convergence rate of the code outputs (𝑄©ª], 𝑔, 𝑃hh(180´)) with 

respect to 𝑁-. 𝑄©ª] is the extinction efficiency, and 𝑃hh(180´) is the phase function in 

the exact backscattering direction and 𝑔 is the asymmetry factor. 𝑁- = 1000 is chosen 

as the reference value and outputs of 𝑁- = 200,400,600	𝑎𝑛𝑑	800 are compared against 

it to show the convergence rate. Clearly, we can’t do an 𝑁- = ∞ calculation and 𝑁- =

1000 is considered large enough. T-matrix truncation order N and radial discretization 

∆r are fixed. The T-matrix truncation order N is selected according to the formula, 

 

 𝑁 = 𝑥 + 4.05𝑥h/� + 5, (3.88) 

 

This differs slightly from the Mie truncation order criterion for a sphere [23], 
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 𝑁PQR = 𝑥 + 4.05𝑥h/� + 2, (3.89) 

 

where x is the size parameter (Eq.1.10). Theoretically speaking, the T-matrix of a non-

spherical particle should include more terms but no explicit formula has been published. 

We include 3 more terms than for a sphere. ∆r is determined according to the formula, 

 

 
∆r

𝑅 − 𝑟Q
= 0.1, (3.90) 

 

where 𝑟Q is the radius of the homogeneous sphere inscribed inside the non-spherical 

particle and is the starting radius for the radial recurrence. R is the radius of the 

circumscribing sphere. The value 0.1 is considered to be enough for particles without 

small scale features like surface roughness. In our cases where the particle shapes are 

regular spheroids and hexagonal columns, 0.1 should be large enough.  

The spheroid shape is indicated in the left panel of each row and 𝑥 indicates the 

particle size parameter defined by, 

 

 𝑥 ≈
2𝜋𝑅
𝜆 , (3.91) 

 

where 𝑅 is the radius of the circumscribing sphere of the particle. 
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Figure 3.12  Convergence rate of the code outputs (𝑸𝒆𝒙𝒕,𝒈,𝑷𝟏𝟏(𝟏𝟖𝟎𝒐)) with respect 

to the number of quadrature nodes 𝑵𝒒. Each row has different aspect ratios, 3 

panels in each row has different size parameters indicated in the top-left corner of 

each panel.  

 

The convergence rates of different particle sizes show mixed behaviors. Generally, 

we can conclude that the convergence rate for a spheroid is relatively fast. In most cases, 

the outputs agree to more than 12 significant digits. As far as we know, the only obstacle 

for a spheroid is the intense oscillation shown by high-order Wigner-d functions for 

larger spheroids. Once 𝑁- gets large enough (>200), the sampling rate is large enough 

and we have rapid convergence. 

The integrals in the hexagonal column formulation take the following form, 
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 { 𝑑𝜃𝑠𝑖𝑛𝜃
û;

û>
𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���

Xµ (𝜃)	. (3.92) 

 

It was pointed out in Fig.3.10 that function 𝐹ææ�(𝑟, 𝜃) has a discontinuity in its first 

derivative when the spherical shell crosses the hexagonal column. We expect this to 

undermine the convergence of the quadrature if we do the quadrature in the interval 

[𝜃h, 𝜃i] which contains the discontinuity. Fig.3.13 shows the convergence rate of the 

code outputs (𝑄©ª], 𝑔, 𝑃hh(180´)) with respect to 𝑁-. 𝑁- = 1000 is again used as the 

reference value. The hexagonal column shape is indicated in the left panel of each row 

and 𝑥 is the size parameter. 
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Figure 3.13  Convergence rate of the code outputs(𝑸𝒆𝒙𝒕,𝒈,𝑷𝟏𝟏(𝟏𝟖𝟎𝒐)) with respect 

to number of quadrature nodes 𝑵𝒒 as in Fig.3.11 but for hexagonal column.  

 

Compared to spheroids (Fig.3.12), the convergence rate for hexagonal column is 

much slower. As is suspected, the discontinuity in 𝐹ææ�(𝑟, 𝜃) undermines the 

convergence rate of the quadrature (Fig.3.10). We know that there is only one 

discontinuity 𝜃µ?æ² in [𝜃h, 𝜃i] (Fig.3.10). A similar situation was encountered in EBCM 

for hexagonal columns [25].   A straightforward solution is to split the interval and 

perform quadrature on the two intervals where the integrand is smooth.  
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{ 𝑑𝜃𝑠𝑖𝑛𝜃
û;

û>
𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���

Xµ (𝜃)

= { 𝑑𝜃𝑠𝑖𝑛𝜃
ûÕVWX

û>
𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���

Xµ (𝜃)

+	{ 𝑑𝜃𝑠𝑖𝑛𝜃
û;

ûÕVWX

𝐹ææ�(𝑟, 𝜃)	𝐾æ�æ���
Xµ (𝜃). 

(3.93) 

 

After this modification, the results are shown in Fig.3.14. Compared to Fig.3.13, the 

convergence rate is accelerated. At this rate, we can expect to reach convergence to 16 

digits at about 𝑁- = 1000, which is an acceptable value for practical use.  
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Figure 3.14  Convergence rate of the code outputs(𝑸𝒆𝒙𝒕,𝒈,𝑷𝟏𝟏(𝟏𝟖𝟎𝒐)) with respect 

to number of quadrature nodes 𝑵𝒒 as in Fig.3.12. Unlike Fig.3.12, the integration 

range is split into 2 smooth intervals, so the convergence rate is accelerated (see 

text). 

 

From Figs.3.12 and 3.14, we can conclude that with respect to the number of 

quadrature points 𝑁-, to reach convergence for common particle sizes and aspect ratios, 

𝑁-~1000 is enough for hexagonal columns and 𝑁-~600 is enough for spheroids. 
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3.3. Accelerating the node generating scheme for Gaussian quadrature in II-TM 

 

We have pointed out that the optimal nodes for Gaussian-Legendre quadrature of 

order L are the roots of Legendre Polynomials 𝑃Ó(𝑥). There are no closed formulas for 

location of the roots, so they have to be generated numerically along with the corresponding 

weights. Different algorithms exist for generating the nodes and weights of Gauss-

Legendre quadrature [26][27][28].  

The current algorithm in the II-TM code uses the Newton-Raphson method to find 

the roots of 𝑃Ó(𝑥)[22].  Denote the L node-weight pairs by {𝑥Ó,Y,𝑤Ó,Y}, 𝑘 ∈ [0, 𝐿] , and 

they satisfy 𝑃Óq𝑥Ó,Yr = 0. The weights are given by 𝑤Ó,Y =
i(h[ªZ,[;)

[(�Êh)\Z]>(ªZ,[)];
.  For any large 

L, some initial value for 𝑥Ó,Y is given and Newton-Raphson iterations are called to obtain 

a true value for 𝑥Ó,Y up to a desired precision. The trick to the design of a fast algorithm is 

a proper choice of asymptotic expansions of the high-order Legendre polynomials. 

The state-of-the-art algorithm for generating the Gaussian-Legendre quadrature 

nodes and weights is the Bogaert’s algorithm [13][28]. In their algorithm, Newton-Raphson 

iteration is avoided by providing expansions directly for 𝑥Ó,Y	𝑎𝑛𝑑	𝑤Ó,Y. In the following 

discussions, the previous algorithm is referred to as “Newton” and the new algorithm is 

referred to as “Bogaert”. The Bogaert algorithm is considered to be the fastest node and 

weight generating algorithm to date [29]. We expect the II-TM with the new algorithm 

(Bogaert) to produce the same outputs in less CPU time.  
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Table.3.2 shows the CPU time required to compute the same code section with the 

two methods. The code section is a simple quadrature of the integral 𝑓h(𝑥) =

« 1, 0 ≤ 𝑥 ≤ 0.5
2(1 − 𝑥), 0.5 < 𝑥 ≤ 1 that appeared in Table.3.1. Obviously the Bogaert algorithm is 

much faster.   

 

Nq 

{ 𝑓h(𝑥)𝑑𝑥
h

Q
~»𝑤�𝑓h(𝑥�)

½C

�¾h

 
𝑐𝑝𝑢	𝑡𝑖𝑚𝑒(𝑁𝑒𝑤𝑡𝑜𝑛)
𝑐𝑝𝑢	𝑡𝑖𝑚𝑒(𝐵𝑜𝑔𝑎𝑒𝑟𝑡) CPU time(sec) 

Newton 

CPU time(sec) 

Bogaert 

10 <0.001 <0.001 -- 

100 <0.001 <0.001 -- 

1000 0.026 <0.001 -- 

10000 1.643 0.001 1643 

 
 
Table 3.2 CPU time required to run the same code section (integrate 𝒇𝟏(𝒙) =

« 𝟏,𝟎 ≤ 𝒙 ≤ 𝟎.𝟓
𝟐(𝟏 − 𝒙),𝟎.𝟓 < 𝒙 ≤ 𝟏) with Newton and Bogaert algorithms. 

 

Next, we put the Bogaert method into the II-TM code. Table.3.3 shows the 

acceleration for hexagonal columns and spheroids. II-TM is implemented with the 

Massage Passing Interface (MPI) parallelization and 100 CPUs were used for the 

experiments. Significant acceleration is achieved for hexagonal columns of all sizes and 

aspect ratios. Slight acceleration is achieved for spheroids.  
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shape 
Size 

parameter 

Aspect 

ratio 

𝐶𝑃𝑈	𝑡𝑖𝑚𝑒(𝑁𝑒𝑤𝑡𝑜𝑛)
𝐶𝑃𝑈	𝑡𝑖𝑚𝑒(𝐵𝑜𝑔𝑎𝑒𝑟𝑡) 

𝑤𝑎𝑙𝑙	𝑐𝑙𝑜𝑐𝑘	𝑡𝑖𝑚𝑒(𝑁𝑒𝑤𝑡𝑜𝑛)
𝑤𝑎𝑙𝑙	𝑐𝑙𝑜𝑐𝑘	𝑡𝑖𝑚𝑒(𝐵𝑜𝑔𝑎𝑒𝑟𝑡) 

Hexagona

l columns 

𝑥 = 30 
0.5 7.9 283.7 

0.75 9.5 432 

𝑥 = 65 
0.5 2.2 34.1 

0.75 2.3 34.6 

𝑥 = 100 
0.5 1.7 8.6 

0.75 1.6 9.1 

     

spheroids 

𝑥 = 30 
0.5 1.1 0.9 

0.75 1.03 1.1 

𝑥 = 65 
0.5 1.03 1.0 

0.75 1.2 1.1 

𝑥 = 100 
0.5 1.1 0.8 

0.75 1.03 1.0 

 
 
Table 3.3 Acceleration for hexagonal columns and spheroids of various sizes and 
aspect ratios. 
 
 

We studied the performance of the angular quadrature in the II-TM method for a 

spheroid and a hexagonal column. The precision of the angular quadrature is of 
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fundamental importance to the entire II-TM procedure, and we want to obtain 

convergence to 16 significant digits by choosing an appropriate number of quadrature 

nodes 𝑁-. A new node and weight generating algorithm (Bogaert algorithm) is 

implemented in the II-TM method, and considerable acceleration in computation time is 

achieved for hexagonal columns and spheroids. In the case of a hexagonal column, the 

previous formulation [8] is modified to avoid a discontinuity in the integration domain, 

and the convergence rate is massively accelerated. Based on convergence test results 

from spheroids and hexagonal columns with various sizes, we conclude that 𝑁-~600 for 

a spheroid and 𝑁-~1000 for a hexagonal column is sufficiently large.  
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4. MARINE HYDROSOL SINGLE SCATTERING DATASET 

 

The previous chapters were devoted to single particle scattering problems where 

the solution is provided by the Maxwell’s equations in the single scattering 

computational setup. This chapter focuses on the application of single scattering in 

oceanic forward and inverse radiative transfer problems, specifically, the comparison of 

the single scattering properties of spherical and irregular shapes.  

 The scattering and absorption characteristics of sea water are described by its 

inherent optical properties (IOPs). IOPs are properties of the medium and do not change 

with the ambient light field. One of the most important IOPs of a volume of water is the 

volume scattering function (VSF). The VSF describes the angular distribution 

(0´~180´) of the scattered energy by a small volume of water. To measure the forward 

and backward scattering characteristics, the corresponding forward and backward 

coefficients are obtained by integrating the VSF in the forward and backward 

hemisphere respectively. IOPs can be measured in a laboratory on a water sample, or in 

situ on the open oceans. IOPs can also certainly be constructed with numerical models 

assuming certain particle shapes and composition. Comparison between measured and 

simulated IOPs can help to probe the composition of the sea water using remote sensing.  

 For observation and mapping of marine particulate matters on a global scale, 

aircraft and satellite remote sensing is the best approach. Given satellite or aircraft 

measurements overt a large area of ocean water, we attempt to obtain the IOPs and infer 

the constituents in those waters. Remote sensing is the inverse problem of radiative 
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transfer theory: Given measured radiometric signals of water-leaving or underwater light 

fields, determine the IOPs of the water.  

 To interpret either signals measured from lab water samples or a large ocean 

area, certain numerical models of the light field involved need to be constructed, but 

models on all scales require single scattering properties of small particles as inputs. 

Next, we will introduce the constituents of water and a dataset constructed as an 

expansion of the commonly assumed spherical particle shape.  

 

 

4.1. Water constituents 

 

According to their optical properties and measurement methods, water 

constituents can be divided into these groups: 

1. Sea water (water with inorganic dissolved matter) 

2. Bubbles 

3. Colored dissolved organic matter 

4. Phytoplankton 

5. Non-phytoplankton organic detritus 

6. Inorganic particles 

The identification of these groups is defined both according to their strict chemical 

composition and measurement methods. For example, the distinction between dissolved 
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matter and particulate matter is defined by the measurement filter type/pore size used in 

measurements.  

Among these particulates, the phytoplankton group is the most important and 

interesting. We have to account for them in forward and inverse radiative transfer studies 

due to their dominant number in marine particulate matters. Their relatively large size 

and wide size range make them a dominant factor in scattering in the visible 

wavelengths. Also, they are the base of the ocean food chain and a vital component in 

the global carbon cycle [30]. This makes it extremely important to monitor their 

concentration at the global scale via retrievals using satellite and airborne measurement 

data.  Most phytoplankton are single-celled. One important composition in their cell is 

chlorophyll. Chlorophyll allows phytoplankton to do photosynthesis. 

 In terms of their taxonomy, phytoplankton is a very diverse group. The group 

consists of more than 10000 taxa and species[31]. The most numerous groups of 

phytoplankton include algae, diatoms, dinoflagellates and coccolithophores. 

Phytoplankton have different sizes, shapes and compositions. Their size ranges from 

around 0.1 𝜇𝑚 to 1000	𝜇𝑚. Commonly encountered shapes include cylinders, ellipsoids 

and many more. Table 4.1 lists typical phytoplankton of various sizes.  
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Plankton Size(diameter) Phytoplankton types 
mesoplankton 100~1000	𝜇𝑚 Metazoans 

Copepods 
Tunicates 
Pteropods 
Cladocera 

microplankton 10~100	𝜇𝑚 large eukaryotic protists 
most phytoplankton 
ciliates 
 

Nanoplankton 1~10	𝜇𝑚 Small eukaryotic protists 
Small diatoms 
Small flagellates 
Pyrrophyta (algae with hard 
shells) 
Chrysophyta (golden algae) 
Chlorophyta (green algae) 
Xanthophyta (yellow-green 
algae) 

picoplankton 0.1~1	𝜇𝑚 Small eukaryotic protists 
Bacteria 
Chrysophyta 

femtoplankton <0.1	𝜇𝑚 viruses 
 

Table 4.1 Categorization of different phytoplankton based on their sizes along with 

examples of those phytoplankton. 

 

Table 1 in [32] provides a list of the real part of index of refraction of marine 

particles with the methods to obtain them. Relative to sea water, most organic and 

inorganic particles’ refractive indices vary between 1.05 and 1.20. In terms of the 

approach of numerical modelling, the shape, internal structure and composition of 

marine particles are extremely complicated and varied. We cannot cover all the 

possibilities in the finite parameter space in our numerical models. Also, due to the 
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physical assumption of random orientation of single particle and size averaging on 

polydisperse particles with varying sizes in the scattering volume, it has been widely 

accepted that a spherical shape can adequately represent small particle bulk optical 

properties [33][34].  

Compared to other single scattering solvers for non-spherical and 

inhomogeneous particles (FDTD, DDA, etc.), the Lorenz-Mie theory is extremely easy 

to use and very efficient. In a very short time, one can obtain numerical model outputs 

for a large number of model inputs (radii, refractive indices). However, a sphere is not 

likely to be a good representation of the average shape of marine particles. First of all, 

most marine particles are not spherical. Secondly, a sphere has the lowest surface area-

to-volume ratio, in spite of the fact that most single-cell organisms try to have a high 

surface area-to-volume ratio for maximum efficiency in photosynthesis and capturing 

prey. Moreover, comparison of in-situ measured data and modelling results suggest that 

a homogeneous spherical shape often underestimate the bulk backscattering. This 

phenomenon is widely known and is given the name “backscattering enigma” [35]  

 An easy alternative is to use a coated sphere as the model particle shape, and 

some progress in interpreting the measured backscattering signal has been made 

[36][37][38]. The coated sphere model provides additional structural complexity and can 

still be easily modelled. Other studies look into the possibility of using an overall non-

spherical shape to model marine particles [39][40][41] . All of these studies have found 

out that there is strong dependence of optical properties on the assumed particle shape.  
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4.2. The hexahedral ensemble dataset 

 

To provide an alternative to using a sphere and a coated sphere, we computed 

and compiled a dataset for an ensemble of distorted hexahedra. For each incident 

wavelength, each refractive index 𝑛 and size, there is a 20-random-hexahedra ensemble. 

Each individual hexahedron in the ensemble is assigned the same volume and the same 

refractive index. The only difference among them is that each individual shape is 

randomly distorted. The degree of distortion is controlled by a parameter which 

determines the distribution of the tilting angle of the 6 facets of a hexahedron. Each 

individual hexahedron is input into our single scattering simulation codes. The single 

scattering properties of the 20 hexahedra is averaged and is considered to represent a 

single marine hydrosol with that size (volume) and refractive index. 

This random hexahedral ensemble approach was proposed and used in 

interpreting satellite data for dust particles [42]. Borrowing from their idea of 

representing natural irregular dust particles with a random hexahedral ensemble, we use 

it here for representing natural marine particles.  

The incident wavelength is 658nm. The particle size is defined with the 

equivalent volume sphere radius. The equivalent-volume-sphere radius ranges from 

0.001	𝜇𝑚 ~300	𝜇𝑚 in this dataset. This size range covers most hydrosols ranging from 

viruses to large phytoplankton, and organic and inorganic detritus particulates. The real 

part of refractive indices ranges from 1.02~1.2(relative to pure water), and the imaginary 

part ranges from 0.0005~0.01. The invariant-imbedding T-matrix (II-TM) introduced 
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earlier is used to compute those with size 0.001	𝜇𝑚 ~2	𝜇𝑚. The physical geometric 

optics method (PGOM) is used to compute those with size 2.1~300	𝜇𝑚. The PGOM will 

be introduced later. Fig.4.1 shows each individual shape used in the hexahedra 

ensemble. Each irregular hexahedron is obtained by distorting a regular hexahedron. 

Specifically, the slope of each particle facet in the ensemble is controlled by the normal 

distribution, 

 

𝑃 q𝑡ª, 𝑡ãr =
1
𝜋𝜎i exp�	−

𝑡ªi + 𝑡ãi

𝜎i � 
 

(4.1) 

 

where 𝑡ª, 𝑡ã are the slopes along two orthogonal directions with respect to the regular 

facet. The standard deviation of the normal distribution is 𝜎i ,and controls statistically 

how rough these distorted hexahedra are. Larger 𝜎i values correspond to a more 

irregular hexahedron.  

 In Fig.4.1, the four rows each has 𝜎i = 0.3,0.4,0.5,1.0 respectively.  
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Figure 4.1  The 20-shapes ensemble. 4 rows from top to bottom were constructed 

with 𝝈𝟐=0.3,0.4,0.5,1.0, respectively.  

 

The single scattering properties are averaged in the following manner [43],  

 

𝑃Xµ(𝑛, 𝑠𝑖𝑧𝑒, 𝜃) =
∑ 𝐶��¤,Y(𝑛, 𝑠𝑖𝑧𝑒)𝑃Xµ,Y(𝑛, 𝑠𝑖𝑧𝑒, 𝜃)iQ
Y¾h

∑ 𝐶��¤,YiQ
Y¾h (𝑛, 𝑠𝑖𝑧𝑒)

 
 

(4.2) 

𝑄©ª],��¤(𝑛, 𝑠𝑖𝑧𝑒) =
∑ 𝐶©ª],��¤,YiQ
Y¾h (𝑛, 𝑠𝑖𝑧𝑒)
∑ 𝐶d©´,YiQ
Y¾h 	(𝑛, 𝑠𝑖𝑧𝑒)

 
 

(4.3) 

 

where n is the refractive index, size is particle size defined according to its volume,  𝐶��¤,Y 

is the scattering cross section and 𝐶d©´,Y  is the projected area. The asymmetry factor is 

computed with the averaged phase function. Fig.4.2 shows the phase matrix elements of 
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the individual hexahedra and their average when the particle equivalent-volume sphere 

radius is 2.0	𝜇𝑚. Results are computed with II-TM. 

 

 

Figure 4.2  Individual phase matrix elements(green) against their ensemble 

averaged values. The average(red) is in between the individual lines.  

 

The structure of the dataset is illustrated in Fig.4.3. X-axis is the equivalent-volume 

sphere radius, y-axis is the refractive index.  
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Figure 4.3  Parameter space of the dataset. 

 

It is vital to check that the transition at size 2.0µm between II-TM and PGOM is smooth. 

Fig.4.4 shows the comparison between II-TM and PGOM at equivalent-volume-radius 

2.0	𝜇𝑚. The particle refractive index is 1.02+0.0005i. The agreement between II-TM 

and PGOM is very good. Fig.4.6 shows that the physical quantities, namely, the 

extinction, scattering efficiency (𝑄©ª],��¤), single scattering albedo (SSA), asymmetry 

factor(g). Note that all curves have a smooth transition at 2.0	𝜇𝑚, except for a little jump 

in the asymmetry factor. Overall, the combination of II-TM and PGOM can safely cover 

the size range 0.001	𝜇𝑚 ~300	𝜇𝑚.  
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Figure 4.4  Phase matrix elements of ocean particles at incident wavelength 658 nm, 

particle refractive index 1.02+i0.0005, and particle equivalent-volume-sphere 

radius 2.0	𝝁𝒎.  

 

4.3. The physical geometric optics method (PGOM) 

 

The PGOM ray tracing method used to compute the optical properties for large 

particles is briefly introduced in this section. For details go to [14]. The ray tracing method 

and its numerical implementation has a long history [44]. The conventional geometric 

optics method (CGOM) uses an enormous number of rays to trace the electromagnetic near 

field [45]. After the near field is obtained with ray tracing, the analytical near-to-far-field 
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mapping is replaced with certain empirical formulas [45]. Thus, the interference between 

different rays on their way from the particle to infinity is ignored.  

The PGOM method uses beam tracing to compute the near field. For faceted 

particles, all rays incident on a facet can be treated all together as a single beam. This has 

the advantage that the large number of rays we need to account for is reduced to one single 

beam. On the other hand, the near-to-far-field mapping is carried out with Eq. (2.1), which 

is repeated here, 

 

 

𝐸�MMMM⃑ (𝑟⃑)  𝑘𝑟 → 	∞

=
𝑘i𝑒XYZ

4𝜋𝑟 �𝑑�𝑟}MMM⃑
�

�𝑚iq𝑟}MMM⃑ r − 1�𝑒[XYẐ∙Z�MMMM⃑ ¸𝐸M⃑ q𝑟}MMM⃑ r

− 𝑟̂�𝑟̂ ∙ 𝐸M⃑ q𝑟}MMM⃑ r�¹, 

(4.4) 

 

Thus, the near-to-far-field mapping is conducted analytically, which greatly improves the 

accuracy of the method.  

 The direction and amplitude of the reflected and refracted waves at the particle 

interface is of course accounted for by the usual Snell’s law and Fresnel formulas (Fig.4.5b). 

The challenge in the method is proper beam splitting once the beam impinges on multiple 

facets. Fig.4.5a illustrates the situation where during the beam tracing iterations, one beam 

could face multiple particle facets. When the beam column impinges on multiple facets, 
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the beam needs to be split correctly to ensure that each divided sub-beam is incident only 

on its own facet.  

 

 

Figure 4.5  (a)Beam tracing in a faceted particle. (b)Schematic of reflection and 

refraction event at an interface of changing refractive index. 

 

4.4. Comparison with spheres 

 

Here we compare the simulated single and bulk scattering properties of 

homogeneous spheres and our homogeneous irregular hexahedral ensembles.  

Fig.4.6 shows the single scattering properties: extinction, scattering efficiencies 

(𝑄©ª],��¤), single scattering albedo (SSA), asymmetry factor(g). The high refractive 

index (1.18) corresponds to inorganic particles.  The transition from II-TM (solid line) to 

PGOM (dashed line) is smooth.   
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In terms of 𝑄©ª] and 𝑄��¤, a sphere and a hexahedral ensemble generally show 

the same trend, but a sphere shows much higher peaks. For larger particles(>10um), a 

sphere shows a higher SSA, meaning the scattering of a sphere is stronger than for 

hexahedra. The asymmetry factors of the 2 shapes basically share the same trend.   

 Observational data usually measure bulk properties. Since our dataset provides 

single scattering properties across the size spectrum, we can integrate with respect to a 

particle size distribution (PSD) to obtain our modelled bulk scattering properties. The 

Junge distribution in the form A𝑟[~ is selected, based on previous studies [43].  

 

 

Figure 4.6  Qext, Qsca, SSA (single scattering albedo) and asymmetry factor as 

functions of particle size. Refractive index=1.18+i0.0005.  
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The size distribution is a Junge distribution with exponent -4, 

 

 
𝑑𝑁
𝑑𝑟 = A𝑟[~ (4.5) 

 

The bulk Mueller matrix is obtained by integrating over the particle size distribution, 

 

 𝑀Xµ(𝑛, 𝜃) = { 𝑑𝑟
𝑑𝑁
𝑑𝑟 𝐶��¤

(𝑛, 𝑠𝑖𝑧𝑒)

ZWgh

ZWij

𝑃Xµ(𝑛, 𝑠𝑖𝑧𝑒, 𝜃), 𝑖, 𝑗 = 1,4 (4.6) 

 

𝑀hh is the volume scattering function (VSF). In most cases, the Mueller matrix elements 

are normalized to 𝑀hh for comparison with other data, 

 

 𝑀kXµ(𝑛, 𝜃) =
𝑀Xµ(𝑛, 𝑠𝑖𝑧𝑒, 𝜃)

∫ 𝑑𝜃𝑠𝑖𝑛𝜃𝑀hh(𝑛, 𝑠𝑖𝑧𝑒, 𝜃)
hlQ
Q

 (4.7) 

 

The backscattering ratio indicates the relative backscattering intensity, 

 

 
𝐵±/𝐵(𝑛) =

∫ 𝑑𝜃𝑠𝑖𝑛𝜃𝑀hh(𝜃)
hlQ
FQ

∫ 𝑑𝜃𝑠𝑖𝑛𝜃𝑀hh(𝜃)
hlQ
Q

 

 

(4.8) 

Figs.4.7 and 4.8 show the normalized VSF 𝑀khh(𝑛, 𝜃) values in four cases.  Two 

indices of refraction are shown, n=1.06+i0.0005 and n=1.12+i0.0005, in order to 



 

114 

 

represent organic and inorganic particles respectively. The only difference between the 

data presented in Fig.4.7 and 4.8 is their integration size range. In both figures, 𝑟æ¤ª =

70𝑢𝑚 while 𝑟æX� = 0.1𝑢𝑚 in Fig.4.7 and 𝑟æX� = 1𝑢𝑚 in Fig.4.8.  It was pointed out 

that submicron particles are the major source of oceanic particulate backscattering 

[46][47] .Through our simple comparison of Figs.4.7 and 4.8, taking out the submicron 

(<1um) particles leads to a significant drop in backscattering. The decrease in 

backscattering ratio is both visible in the shape of 𝑀khh(𝑛, 𝜃) and the backscattering ratio. 

In Fig.4.7, the hexahedral ensemble model produces backscattering ratio as high as ~0.2 

while a sphere produces much lower backscattering. In Fig.4.8, without the submicron 

particles, the hexahedral ensemble model produces a slightly lower backscattering ratio 

than sphere.   This comparison demonstrates the drastically different optical signals 

produced by spheres and hexahedral ensembles. Through Figs.4.6~8, we see that the 

sphere model and our hexahedral model have their similarities and differences. Their 

huge difference in the bulk scattering properties will lead to different retrieval results 

when both are implemented in actual retrieval studies using ocean optics measurement 

data.  
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Figure 4.7  Normalized VSF of a sphere (red line) and hexahedra ensemble (blue 

dotted). Two refractive indices are indicated in the titles. The integration size range 

[0.1um,70um] is used in the computation of VSF. In this case, our hexahedral 

model produces much higher backscattering than the spherical model.  
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Figure 4.8  Normalized VSF of sphere (red line) and hexahedra ensemble (blue 

dotted). Two refractive indices are indicated in the titles. The integration size range 

[1um,70um] is used in the computation of VSF. In this case, our hexahedral model 

produces lower backscattering than the spherical model. 
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5. CONCLUSIONS 

 

In this dissertation, investigation of the convergence behaviors of two numerical 

schemes for single scattering simulations (PSTD and II-TM) is presented. Improvements 

in the convergence are shown for the II-TM method. Both methods are designed for 

accurately solving the Maxwell’s Equation to obtain the single scattering properties of 

non-spherical and inhomogeneous particles.  

For the PSTD method, we study the electromagnetic near field in a 2-D 

computational domain to see how the near field decays to zero. The decay pattern 

determines how long (or how many time steps) we should integrate the discretized 

Maxwell’s equation in time domain. A travelling surface wave packet is observed in the 

particle interior along its boundary. Three different cross-sectional shapes are 

considered: a circle, ellipse and hexagon. We observe three different mechanisms for the 

surface wave packets to escape the particle interior. For the II-TM method, we 

investigate the Gaussian quadrature employed to compute the surface integrations. We 

also modify the original quadrature scheme to avoid doing quadrature over 

discontinuities in the case of a hexagonal column. We also implement a new node and 

weight generating procedure into the II-TM method. These two improvements greatly 

improve the computational efficiency of the II-TM method for hexagonal columns and 

spheroids.  

A dataset intended for marine hydrosols is computed with the II-TM and PGOM 

methods. A hexahedral ensemble is employed to represent the complex particle 
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geometry seen in natural oceanic particles. Size and refractive index values in the dataset 

cover most natural marine hydrosol parameters. A comparison between a sphere and our 

hexahedra ensemble shows major differences are found in the shape of the volume 

scattering functions (VSF). This difference in the bulk scattering properties of sphere 

and hexahedral ensemble will lead to different retrieval results when both are 

implemented in actual retrieval studies using ocean optics measurement data.  
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