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ABSTRACT 

 

A networked control system (NCS) is an interconnected control system in which 

sensors, actuators, and controllers communicate with each other through a shared network.  

Although NCSs are beneficial thanks to easy maintenance, architectural flexibility, 

decreased wiring weights, and tele-operating possibilities, NCSs also have some 

challenges such as disturbance, noise, bandwidth limitation, delay, and packet dropout. 

The popularization of smartphones and the drastically increasing number of internet of 

things (IoT) devices require not only a high-speed internet such as 5G, but also a wise 

strategy for optimal bandwidth allocation. In this dissertation, optimal bandwidth 

allocations for NCSs with disturbance and noise are proposed based on performance index 

function (PIF), artificial neural network (ANN), and Q-learning algorithms. A ball 

magnetic-levitation (maglev) system, four DC motor speed-control systems, and a 

wireless autonomous robotic wheelchair are implemented as test beds. 

The relationship between system performance, sampling frequency, and the 

standard deviation of white Gaussian disturbance are approximated using a 6th-degree 

polynomial. The PIF and ANN methods can estimate the standard deviation of disturbance 

when current a sampling frequency and an error variance are provided. Dynamic 

bandwidth allocation using PIF, ANN, and Q-learning is proposed and verified by 

experimental results for a single-server and single-client DC motor system. The proposed 

methods show integral absolute errors (IAE) of 166 615, 16 773, and 16 945 and 

bandwidth utilizations (BU) of each method are 13.15%, 13.38%, and 13.98%, 
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respectively, after 15 000 iterations, when various standard deviations of disturbance are 

injected. These results present a better performance and a reasonable average BU 

compared to fixed sampling frequencies. When information of the estimated standard 

deviation of disturbance, BU margin of safety, weight of each system, and total time delay 

is given, the optimal sampling frequency for a multi-server and multi-client system can be 

determined based on the PIF, ANN, and Q-learning, respectively. They are validated by 

experiments in two cases. The first case is conducted with a ±0.8-V disturbance, 10% 

safety margin of BU, 1.25-ms total time delay, and various weights for four DC motor 

systems. The second has the conditions of a ±0.8-V disturbance, 10% safety margin of 

BU, 1.25-ms total time delay, various weights for four DC motor systems with a maglev 

and a wheelchair robot system, of which BUs are 44% and 1% respectively. Experimental 

results prove that all three methods can be used to find the optimal sampling frequencies 

for each system when an NCS has limited bandwidth as well as sufficient bandwidth. 
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1. INTRODUCTION AND LITERATURE REVIEW 

The Internet of Things (IoT) is the connected network via the Internet of physical 

objects or things embedded in electronics, software, and sensors. It can transfer data to the 

manufacturer, operator, and other connected devices through the Internet without 

requiring human-to-human or human-to-computer interaction. IoT evolved from the 

convergence of wireless technologies, micro-electromechanical systems (MEMS), and the 

Internet. Recently, it became one of the most studied topics [1]–[6]. Since it was first 

invented, the Internet has become one of the most significant creations and plays an 

important role in many areas such as education, communication, business, science, and 

government. Cisco Systems, Inc., expects that the implementation of the IoT will connect 

50 billion smart objects to the Internet by 2020 [1]. Thus, bandwidth allocation of 

networked control systems (NCSs) and managing data communication is the key of the 

IoT for connected devices. 

1.1 Networked Control Systems 

NCSs are defined as spatially distributed systems in which sensors, actuators, and 

controllers communicate with each other through a shared network. With the development 

of high-speed Internet and wireless connections, NCSs gained significant attention 

recently due to significant advantages such as easy maintenance, architectural flexibility, 

decreased wiring costs, tele-operating possibilities, etc. The design of an NCS requires 

knowledge of not only control and hardware engineering but also computer science, 

software engineering, and real-time operating-systems (RTOS) due to the introduction of 
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the networks [7]. In the NCSs, these two fields are correlated, and their separation will 

lead to the degradation of system performances.  

An NCS can consist of multiple servers or clients and each server or client can be 

connected to hardware. Figure 1-1 illustrates general examples of an NCS from several 

possible operation scenarios between servers and clients such as a single server and a 

single client, a single server and multiple clients, multiple servers and a single client, and 

multiple servers and multiple clients. When multiple plants or clients are connected in the 

same network and communicate, the NCS is needed to allocate limited resources such as 

network bandwidth, central processing unit (CPU) speed, and battery power for mobile 

devices to maintain stability and allowable performance. 

1.2 Literature Review 

1.2.1 History of NCS 

The analog fly-by-wire flight control system for the Avro Vulcan in the 1950s can be 

called the first form of analog NCS because the system was designed to eliminate the 

complexity, fragility, and weight of the hydro-mechanical flight control systems by using 

an electrical circuit. As digital computers and microprocessors acquired more power in 

computing, they accelerated the capability of NCSs in control systems [8]. The first digital 

fly-by-wire aircraft, a modified National Aeronautics and Space Administration (NASA) 

F-8C Crusader, was developed in 1972. The first published research papers of the control 

over networks were written by Halevi and Ray in 1988 [9], [10]. They addressed time-

varying and possibly stochastic delays in Integrated Communication and Control Systems 
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Figure 1-1. A general architecture of an NCS: (a) a single-server and a single-client 

NCS (b) a single-server and multi-client NCS (c) a multi-server and a single client 

NCS (d) a multi-server and multi-client NCS 
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 (ICCS) and design considerations for ICCS. After that, NCSs have been actively studied 

and used in many fields. Zhang et al. studied network-induced constraints of the NCSs 

including time delays, packet losses, resource competition, data quantization, etc. [11]. A 

state-estimation problem involving several finite communication capacity constraints was 

discussed by Wong and Brockett [12], [13].  

1.2.2 Time delays and packet droupouts 

In the NCSs, network induced delays and packet dropouts are inevitable. Thus, 

they are one of the most popular research topics in the NCS field. Yu et al. proposed to 

model NCSs with arbitrary but finite data packet dropouts and network delays using a 

switching system approach [14]. An linear matrix inequality (LMI) approach to networked 

control systems with data packet dropouts and transmission delays are presented by Yu et 

al. [15]. They proposed a Lyapunov-Razumikhin-based method for the continuous-time 

case and a Lyapunov-Krasovskii-based method for the discrete-time case.  Zhang et al. 

presented a new switched linear system model to describe NCSs with a network delay and 

packet dropout at the same time [16]. Xiong et al. presented the stabilization of linear 

systems over networks with bounded packet loss [17]. The arbitrary packet-loss process 

and the Markovian packet-loss process were considered, and the corresponding stabilizing 

controller design techniques were given based on the Lyapunov approach. Sahebsara et 

al. proposed optimal H2 filtering with random sensor delays, multiple packet dropouts, 

and uncertain observations [18]. A fuzzy model-based robust estimator was studied by 

Zhang et al. where the plant is a nonlinear systems with external disturbances [19]. Wang 
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et al. considered the robust H∞ control problem for NCSs with random communication 

packet losses [20]. 

1.2.3 Bandwidth allocation and scheduling 

Not only software design but also implementation conditions such bandwidth, 

sampling frequency, and performance of devices should be integrated to design an NCS. 

Velasco et al. proposed a dynamic control approach managing the bandwidth of the NCS 

based on the dynamics of controlled processes [21]. Optimal tracking performance issues 

with limited bandwidth and additive colored white Gaussian noise was researched by 

Guan et al. [22]. Castane et al. presented a resource management strategy for the NCS that 

maximized control performance within available resources [23]. A dynamic bandwidth 

allocation algorithm for a video based network system was proposed to raise the 

bandwidth utilization (BU) of an NCS [24]. Belzarena et al. presented the network 

bandwidth allocation with time reservations [25]. Branicky et al. recommended a co-

design approach to treat communication protocols and interacting controlled plants as a 

coupled system [26]. An approach was introduced to implement the dynamic scheduling 

policy for the controller area network (CAN) bus with the system performance guaranteed 

by Weiss et al. [27]. Xu et al. formulated a bandwidth optimization and scheduling 

algorithm for an NCS using a non-cooperative game model and designed the utility 

function of susbsystems [28]. 
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1.2.4 Performance index function 

Unlike continuous or digital control systems, a higher sampling frequency does 

not always guarantee better performance in an NCS. Lian et al. studied performance index 

functions (PIFs) related to the sampling frequency and performance [29], [30]. They 

presented several key components of the time delay analysis, and the analysis of NCS 

parameters was used to determine an acceptable working range of the sampling frequency 

in an NCS. These performance characteristics are crucial guidelines for choosing the 

network and control parameters in the design of an NCS because a network has a limited 

communication bandwidth, and a higher sampling frequency to operate devices consumes 

more energy than a lower sampling frequency. Operating the hardware system at a higher 

frequency also increases costs. Dong and Kim discussed an optimal bandwidth allocation 

for NCSs with nonlinear approximation techniques [31]. The optimal sampling 

frequencies are obtained by solving the exponential approximation of PIFs with the 

Karush-Kuhn-Tucker (KKT) method. Because of continuing popularity for 

communication with IoT devices despite of weakness in wireless networks, disturbance 

and noise should be considred when designing an NCS. Kim and Kim studied PIFs in the 

NCSs with disturbance and noise [32]. 

1.2.5 Artificial neural network 

ANN are used in various areas such as modelling and  identification and control 

of nonlinear systems [33].  Yi et al. used a backpropagation (BP) feedforward neural 

network to predict the time delay induced in NCSs [34].  
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1.2.6 Machine learning 

Although machine learning methods were defined in 1959 by Samuel [35], they 

were not actively studied until the middle of the 1990s as one of the AI fileds. The recent 

five-game Go match, AlphaGo versus Lee Sedol, ignited global attention about machine 

learning [36]. Machine learning focuses on prediction making using complex models and 

algorithms, which is devised from experience. It is widely used in areas such as robotics, 

financial services, health care, oil and gas, marketing and sales, classifying 

deoxyribonucleic acid (DNA) sequences, computer vision, and game playing. Dorigo and 

Schnepf presented genetics-based machine learning and behavior-based robotics [37]. 

Nagumo and Noda suggested a method for system identification using a learning 

identification based on an error correcting procedure [38]. Panigrahi and Phandi studied 

an optimal feature selection for classification of power quality disturbances using a 

wavelet packet based fuzzy k-nearest neighbor algorithm [39]. A command-based iterative 

learning control algorithm to reduce the effects of friction, disturbance, and noise was 

studied by Tsai et al. [40]. In the NCS field, machine learning methods has not been widely 

used. Most of the work focuses on detecting the anomaly of the network [41], [42]. Jang 

et al. studied the optimization of the uplink period using machine learning for the future 

IoT network using a Naïve Bays classifier [43]. A self-tuning fuzzy controller for an NCS 

was proposed by Tian et al. [44]. 
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1.3 Research Issues 

1.3.1 Bandwidth limitation 

Any communication network can only carry a finite amount of information per 

time unit. This limitation poses significant constraints on the operation of NCSs. Since 

general NCSs have multiple sensors and actuators to control the systems, optimal and 

efficient utilization of available bandwidth in a network should be considered [45]. The 

Shannon-Hartley theorem expresses the maximum bit rate that a communication channel 

can transmit with the presence of noise. In most digital networks, data are transmitted in 

packets and consume the same amount of network resources whether sending a single bit 

or hundreds of bits. Significant research has also been done to determine the minimum bit 

rate necessary to stabilize linear systems through feedback [12], [46]–[49] and nonlinear 

systems [50], [51] over a finite capacity channel. 

1.3.2 Time delay and packet dropout 

Unlike traditional continuous-time control, to transmit a continuous-time signal 

over a network in NCSs, the signal is sampled at first, encoded in a discrete format, 

transmitted over the network, and decoded on the receiver side as shown in Fig. 1-2. The 

entire delay between sampling and final decoding at the receiver can be highly stochastic 

because both the network access delays and the transmission delays depend on not only 

variable network conditions such as congestion and channel quality but also the 

computation time required for physical coding. The time delays can degrade the 

performance of an NCS and even destabilize the system when the severe delay induces 
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data-packet loss during data transmission [52]–[55]. Packet dropouts can originate from 

transmission errors in physical networks, which is much more frequent in wireless than in 

wired networks, or from buffer overflows due to data congestion. 

 

Actuator

(D/A)

Sensor

(A/D)

Communication Network

Controller

Plant

 

Figure 1-2. Block diagram of an NCS 

1.3.3 Disturbances or noises in NCSs 

Disturbances or noises are any undesirable perturbation or interference that 

negatively affects the output of the control system and results in increasing the system 

error. They are commonly found in control systems and are usually used interchangeably 

with a following additional explanation. In this dissertation, for clarification, they will be 

distinguished as an input disturbance and a measurement noise based on their entry points 

in the closed control loop.  
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In many cases, an input disturbance is in a low-frequency range or a constant value 

and has a certain amplitude level at the input of a control system. A measurement noise is 

an unwanted signal, which is generally small in magnitude and high in frequency, riding 

on top of the desired signal. It usually happens to the measurement instruments such as a 

sensor. They can be generated from within the system itself or an outside source. 

There are various types of noises or disturbances that have been studied such as 

white noise, white Gaussian noise, pink or flicker noise, brown or red noise, blue noise, 

violet noise, grey noise, Poisson noise, shot noise, and burst noise [56], [57]. This 

unpredictability makes the design of an NCS quite challenging. 

1.3.3.1 White noise 

White noise is a random signal in which the frequency and power spectrum is 

constant and independent of frequency. Its name comes from a similarity to white light, 

which has uniform emissions at all frequencies. When plotted in a frequency domain, 

white noise is a horizontal line with a constant value. If it has a normal distribution in the 

time domain with zero mean, it is called Gaussian white noise.  

1.3.3.2 Pink noise 

Pink noise is a signal with a frequency spectrum such that the power spectral 

density is inversely proportional to the frequency (f) of the signal. It carries equal energy 

per decade. This means that the amplitude decreases logarithmically with the frequency. 

Flicker noise also displays a 1/f characteristic and rolls off at a 20 dB/decade. 
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1.3.3.3 Red noise or Brown noise 

Brown noise, also known as red noise, is a kind of signal noise produced by 

Brownian motion. The term Brown noise refers to Robert Brown, the discoverer of 

Brownian motion, it was not named for the color. It has a –40 dB/decade frequency 

response and a frequency spectrum of 
21/ f .  

1.3.3.4 Other noises 

The power density of blue noise increases at 20 dB/decade with a frequency 

spectrum of f and the power density of violet noise increases at 40 dB/decade with a 

frequency spectrum of 
2f . Grey noise’s power density decreases at first and increases 

after a certain frequency. Its behavior looks like combination of pink noise and blue noise. 

Poisson noise or Shot noise is a type of electronic noise which can be modeled by a Poisson 

process. It is caused by a random fluctuation in the motion of charge carriers in a 

conductor. Burst noise or popcorn noise in signal processing consists of sudden step-like 

transitions between two or more discrete signal levels at random and unpredictable times. 

Each shift in offset lasts from several milliseconds to seconds. It sounds like popcorn 

popping as its name indicates. 

1.4 Contribution 

This dissertation focuses on optimal bandwidth allocation and control for NCSs 

with disturbance and noise. The NCS in this research consists of a ball maglev system, a 

DC motor speed control system that contains four DC motors, and an autonomous wireless 

wheelchair robot as test beds to verify proposed control methodologies and algorithms, 
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and optimal bandwidth allocation. Each client has a unique identification number within 

its data packets to distinguish one from the other. We employ an Ethernet based local area 

network (LAN) as a communication network. User datagram protocol (UDP) is applied as 

the communication protocol in the NCS. Various control issues involved in the NCS and 

importance of optimal bandwidth allocation are studied. 

Major accomplishments of this research are as follows: (1) Optimal bandwidth 

allocation and scheduling of the NCS to guarantee the system performance of each client 

in the NCS is presented based on PIF. (2) Optimal bandwidth allocation and scheduling 

of the NCS to guarantee the system performance of each client in the NCS is presented 

based on ANN. (3) Optimal bandwidth allocation and scheduling of the NCS to guarantee 

the system performance of each client in the NCS is presented based on Q-learning 

method. 

 Each bandwidth allocation algorithm will distribute the network bandwidth to 

each client to achieve the maximum system performance. 

1.5 Dissertation Organization 

This dissertation contains seven sections. Section 1 briefly describes the concept 

of NCSs and their general architectures. Current research issues are also presented. This 

section provides a literature review of the research topic. 

Section 2 presents research methodologies to solve the problems identified in 

section 1. 

Section 3 explains the experimental setup. Details of the ball maglev system, 

wheelchair robot system, DC motor system, and their initial tests are provided. 
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Section 4 discusses the PIF for the NCS with disturbances and noises. Polynomial 

and exponential approximation methods are suggested to estimate the standard deviations 

of disturbances and noises. An optimal bandwidth allocation method for multi-server and 

multi-client NCSs with disturbances and noises using PIFs is also proposed in this section. 

Section 5 examines the ANN method to estimate disturbances and noises in the 

NCSs and to determine optimal sampling frequencies to minimize error variances and BU 

for multi-server and multi-client NCSs. 

Q-learning algorithm is introduced for optimal bandwidth allocation for multi-

server and multi-client NCSs with disturbances and noises in section 6. 

Section 7 concludes this dissertation summarizing its achievements and provides 

suggestions for possible future work. 

 



 

14 

 

2. RESEARCH METHODOLOGIES 

2.1 Research Objectives and Assumptions 

The main objectives of this research can be summarized as follows: 

1) Suggest an optimal network bandwidth allocation method to distribute bandwidth 

to each client in an NCS when disturbance and noise are considered as the 

parameters of the PIF. The proposed method will show a dynamic and flexible 

sampling frequency adjustment to meet the system requirements in real time and 

maintain the maximum system performance if possible. 

2) Propose an ANN method to find an optimal network bandwidth allocation in an 

NCS with disturbances and noises in real time. Unlike the PIF, the ANN does not 

need to calculate hundreds of iterations to find optimal sampling frequencies and 

will reduce the calculation time. 

3) Introduce a Q-learning method to an NCS with disturbances and noises to 

determine an optimal network bandwidth allocation. The Q-learning will be 

advantageous in that it does not need experimental data to find the optimal 

bandwidth for each system. 

 

As supported by the research issues described in the previous section, it is 

impossible to implement an exact analysis and modeling of NCSs. In this dissertation, the 

following assumptions are made to simplify the analysis and modeling procedures 

throughout the research. 
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1) The sensor is a strict clock-driven device, and the controller and the actuator are 

strict event-driven devices. Sensor information is sent at every designated time, 

and controller outputs and actuator updates are implemented when the event is 

triggered. 

2) The plant input disturbance and the sensor output noise are zero-mean white 

Gaussian noises (WGNs). They are independent of previous states, control inputs, 

and network-induced time delays. 

3) The standard deviation of sensor output noise is small and fixed. Thus, the sensor 

noise effect can be included in the error variance of disturbance. When input 

disturbance is zero, the sensor output noise is one of the major sources of the output 

error. 

4) All the sensor feedbacks or control outputs are sent in one packet for each iteration. 

5) All four DC motors have identical properties and specifications. Thus, all motors 

show dynamically identical behavior. 

2.2 Time Delays and Packet Dropouts in NCSs 

Unlike a traditional point-to-point communication channel, NCSs introduce 

different forms of time delay uncertainties and packet dropouts between networks as 

shown in Fig. 2-1. These time delays and packet losses can originate from network-

induced time delays as well as the processing time required for coding and computation. 

In the worst case, the time delays influence that the data packet does not arrive at the 

designated location within the sampling period. If a delayed packet arrives at a buffer that 

is already full, the packet is discarded, which may cause system instability. 
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Figure 2-1. Block diagram of an NCS with disturbance, v(k), and noise, w(k). The 

independent random delays from server-to-client and client-to-server are 

represented as 
sc

k  and 
cs

k , and the packet dropouts are denoted as 
sc

k  and 
cs

k , 

respectively 

NCSs have not only processing time delays, p , but also network-induced time 

delays. Between them, the network-induced time delays can be generally described with 

five categories as follows. 

 

i. Proceeding delay (Tprocd): The required time to analyze a packet header and decide 

where to send the packet. 

ii. Queuing delay (Tqueue): The time a packet is enqueued until it is transmitted. 

iii. Blocking delay (Tblock):  The time a message must wait once a node is ready to sent 

it. 

iv. Transmission delay (Tframe): The time required to send all the bits in a packet on 

the transmission medium in use. 

v. Propagation delay (Tprop): After the first bit is sent on to the transmission medium, 

the time required for the bit to propagate to the end of its physical trajectory. 
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Figure 2-2 presents the timing diagram during a single sampling period. When a 

message arrives at the server, the control task starts with a computing control output based 

on sensor outputs (Tcomp) and encoding the data packet (Tcode). Then, the router analyzes a 

packet header and decides where to send it (Tprocd). After that, the data packet will be held 

in a queue waiting for transmission (Tqueue) while other nodes are sending messages or 

resending them because of a message collision (Tblock). When the network is idle, the data 

packet is transmitted to the client (Tprop + Tframe). Once the data packet arrives at the client’s 

computer, it is first decoded (Tdeco), a control iteration is performed with the hardware, and 

a new data packet is calculated (Tcomp). After that, in a way similar to the server process, 

the data packet is encoded and sent to the server. Finally, the server receives the data 

packet and decodes the data to use for a new control iteration. Therefore, we can determine 

the total time delay as  

 

sc

cs

k sc ca p

code procd queue block frame prop

deco code procd queue block frame prop

TS TS TS TS TS TS

TC TC TC TC TC TC TC




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     

      

p

comp compTS TC



 

, (2.1) 

 

where k  is total time delay at the instant k, sc  is time delay between server to client, ca  

is time delay between client and actuator, p  is a processing time delay, TS is time delay 

at the server, and TC is time delay at the client. 
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Figure 2-2. A timing diagram showing time spent sending a message from a server 

to a client for a sampling period 

For the stability and performance of the system, each control task should be 

accomplished within a sampling period. Therefore, all the information of time delay 

should be studied before designing controller. Based on the total time delay, we should 

choose a sampling period within the allowable range to minimize the influence of time 

delays or packet dropouts. Thus, when NCSs are designed, an optimal bandwidth 

allocation method should be considered to keep the system stable. 

 

2.3 Machine Learning Algorithms 

Machine learning is a method of data analysis that automates analytical model 

building. There are three types of machine learning algorithms. 
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2.3.1 Supervised learning 

The ouput for the given input is known in a supervised learning. It trys to model 

relationships between the target prediction output and the input features such that we can 

predict the output values for new data. Supervised learning algorithms include 

classification and regression. Examples of supervised learning are linear, nonlinear 

regression, decision tree, random forest, and ANN. 

2.3.2 Unsupervised learning 

The input data is given, but the outputs for given inputs are unknown in an 

unsupervised learning. Unlike supervised learning, unsupervised learning does not have a 

teacher. It is mainly used in pattern detection, grouping or clustering of data points. 

Examples of unsupervised learning are K-means clustering and Apriori algorithm. 

2.3.3 Reinforcement learning 

With reinforcement learning algorithm, the machine is trained to make specific decisions. 

The machine is exposed to an environment where it trains itself continually using trial and 

error. The algorithm interacts with environment to take actions which would maximize 

the reward.  Q-learning and deep adversarial networks are the most popular reinforcement 

learning algorithms. 
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2.4 Dynamic Optimal Bandwidth Allocation for the Multi-Server Multi-Client 

System Using a Performance Index Function for the NCS System with Noise 

and Disturbance 

2.4.1 Performance index functions 

A PIF for an NCS gives a clear guideline with which to choose the optimal 

sampling periods for the system. Figure 2.3 displays the PIF comparison of different 

systems between a continuous-time control system, a discrete-time control system, and an 

NCS based on the sampling period [29]. When the control system specifications such as  

 

 

Figure 2-3. Performance index functions of continuous control, digital control, and 

networked control system, repectively, reprinted from [29] 
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overshoot, steady-state error, or phase margin are given, the acceptable, unacceptable, 

worst, and best sampling periods can be selected from the chart. Since the performance of 

the continuous-time control is independent of and not a function of the sampling period, 

the PIF of continuous control system is a constant and always presents the best results for 

the fixed control law. Considering a digital control system, however, the PIF depends on 

the sampling period assuming no other uncertainties. Here, at first the performance 

dramatically increases as the sampling period decreases, and it slowly increases and then 

converges to a constant value after a certain sampling period. Unlike in a conventional 

digital control system, a smaller sampling period (higher sampling frequency) does not 

always guarantee a better performance in an NCS. As a smaller sampling period induces 

heavier network traffic, the possibility of more time delays or packet dropouts also 

increases, and longer time delays finally result in degrading the system performance in the 

NCS. Thus, an optimal bandwidth allocation strategy is important to manage an NCS. 

2.4.2 Mean squared error 

A mean squared error (MSE) is adopted to measure the system performance in this 

dissertation because, unlike the integral absolute error (IAE) or the integral time-weighted 

absolute error (ITAE), the MSE is not a function of time and is useful for controlling the 

system with various disturbances and noise based on MSEs in real time. The MSE presents 

the mean of squared errors and penalizes a large error. This method was widely used in 

various research results [58], [59], and is formulated as follows: 
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where n is the number of steps, 0k  and fk  are the initial and final times in the interval of 

interest, and 
k

ie  is the error of system i at time k. 

For each individual plant, the MSE will have a different value when a sampling 

frequency is changed. The MSE will also have a distinctive value depending on the 

standard deviations of disturbance or noise. Thus, a set of accumulated MSEs of a system 

over disturbance or noise as well as sampling frequencies will be employed. 

2.5 Artificial Neural Network 

An ANN is an interconnected group of nodes, similar to the network of neurons in 

a human brain. In 1943 McCulloch and Pitts described how networks of artificial neurons 

can be made to perform logical functions [60]. Figure 2-4 shows the general diagram of 

an ANN composed of an input layer, two hidden layers, and an output layer. Each layer is 

made up of nodes. The output of a node in a certain layer becomes an input of a node in 

the next layer. A node receives inputs, changes their internal state according to those 

inputs, and produces outputs depending on the inputs, weights, and activation functions as 

below. 
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where y is the output of a node, w is a weight, x is an input, θ is a bias, and f is an activation 

function. The most popular types of activation functions are the sigmoid function and the 

hyperbolic tangent function. 

An ANN is trained using experimental data and using an ANN, the standard 

deviation of input disturbance in an NCS can be estimated. After that, the optimal 

sampling frequency is calculated with another ANN.  The inputs to estimate the standard 

deviation of disturbance are sampling period and the MSE of the system and the output is 

the estimated disturbance. To determine the optimal sampling frequency of each system, 

weight of each system, safety margin of BU, and estimated disturbance are inserted, and 

the optimal samping frequency is calculated as an output. 
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Figure 2-4. General diagram of an artificial neural network 

2.6 Q-learning 

Q-learning is a model-free reinforcement learning algorithm introduced by 

Watkins [61]. It includes an agent, a set of states S, and a set of actions A, per state. When 

the agent is in state s, it does action a, receives reward r, and goes into a new state sʹ. The 

goal of the agent is to maximize the total reward based on Q-values. The details of the 

terminology used in Q-learning are explained in Table 2.1. 

Q-values are updated using the Bellman equation as shown in Eq. 2.4. 

  ( , ) ( , ) [ ( , ) max ( , ) ( , )]New Q s a Q s a R s a Q s a Q s a        ,  (2.4) 

where New Q(s,a) is a new Q-value, Q(s,a) is a current Q-value, α is the learning rate, 

R(s,a) is a reward for taking action a at state s, γ is a discount factor, maxQʹ (sʹ,aʹ) is a 
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maximum expected future reward given the new sʹ and all possible actions at that new 

state. 

The Q-learning algorithm can be processed as follows. 

1. Arbitrarily initialize Q-values, (Q(s,a)) 

2. Observe the current state s. 

3. Choose an action a in the current state s based on the current Q-value using the 

epsilon greedy strategy. Generate a random number and if the number is greater 

than epsilon, then perform “exploitation.” Otherwise, perform “exploration.” 

4. Take action a and observe the outcome in state sʹ and reward r. 

5. Update the function Q(s,a) according to Eq. 2.4. 

6. Set the state to the new state and repeat the process until learning is completed or 

a terminal state is reached. 

In an NCS, if estimated disturbance, weight of each system, and safety margin of 

BU are known in a current state, an optimal bandwidth can be determined by updating Q-

values and choosing an action which has a maximum Q-value. Unlike the PIF or ANN 

method, the Q-learning does not need to design PIFs and to collect experimental data to 

find the optimal sampling frequency for each system. 
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Table 2.1. Description of terminology used in a Q-learning 

Action (a) An action a is the set of all possible actions the agent can make. 

State (s) A state s is an immediate situation in which the agent is located. 

Reward (r) 
A reward r is the feedback by which the success or failure of an 

agent’s actions are measured. 

Q-value (Q) 
Q-value stands for the quality value of the action. Q-value maps 

state-action pairs to rewards. 

Learning rate 

(α) 

The learning rate α is set between 0 and 1. Setting it to 0 means that 

the Q-values are never updated, hence nothing is learned. Setting a 

high value such as 0.9 means that learning can occur quickly. 

Discount 

factor (γ) 

The discount factor γ determines the importance of future rewards. It 

is set between 0 and 1 and is designed to make future rewards worth 

less than immediate rewards. 

Policy (π) 

The policy is the strategy that the agent employs to determine the 

next action based on the current state. It maps states to actions which 

promise the highest reward. 

ε-greedy 

In Q-learning, the action with the highest Q-value is determined and 

is called the greedy action. To update Q-values, the greedy action 

(exploitation) is selected with probability (1- ε) and a random action 

(exploration) is selected with probability ε. 
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3. EXPERIMENTAL SETUP 

3.1 Software Setup 

An appropriate real-time operating system (OS) is required to minimize the time 

delay caused by data processing and communication, and to successfully implement a 

distributed control system via a network. Among commercially available OSs, Ji tested 

Windows, Linux, and Linux with RTAI, and found that Linux with RTAI gave a minimum 

time delay [62]. Linux Redhat 7.3 with Real-time Application Interface 3.4 (RTAI 3.4) 

runs on servers as the OS, and Linux Ubuntu 6.10 with RTAI 3.4 runs on clients 1, 2, 3, 

4, and 5 as shown in Fig. 3-1. The control and measurement device interface (Comedi) is 

used as drivers and libraries of data acquisition on client computers. The programs for 

servers and clients 1, 2, 3, 4, 5 are developed using C language to control each system and 

communicate with each other. For wireless communication for client 6, a Dell Inspiron 

1525 laptop computer, which has an Intel Core 2 Duo T7250 2.00 GHz processor and 4 

GB RAM, was used where Microsoft Windows XP runs as the OS and programs were 

developed in Visual Basic 6.0 and Visual C++ 2008. Samba [63] was chosen as the 

Windows interoperability suite of programs for Linux as shown in Fig. 3-1, because 

Windows and Linux cannot communicate directly. Samba 5.0 was installed in a desktop 

computer running with Ubuntu 6.10 with RTAI 3.4 as an interoperability suite. Table 3.1 

shows the specifications of server and client computers. The codes for servers, clients, and 

the interoperability suite are listed in Appendix A. 
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Table 3.1. Specifications of server and client computers 

 Server 1 Server 2 Client 1 Client 2 Client 3 Client 4 Client 5 Gateway Client 6 

Processor Celeron Pen 4 Pen 4 Pen 3 Pen 3 Pen 4 Pen 4 Pen 4 
Core 2 

Duo 

CPU Clock 

(Ghz) 
0.6 1.5 1.7 1.0 1.0 1.7 1.7 1.5 2.0 

Memory 

(MB) 
128 256 256 256 256 384 512 256 4000 

 

3.2 Hardware Setup 

Figure 3-1 presents the hardware setup for multi-server and multi-client 

experiments. As shown in Fig. 3-1, an NCS in this research consists of two servers and six 

clients (a ball maglev system, four DC motor systems, and a wheelchair robot). The server  

WLAN

Gateway

(Samba)

Server 1 - 2

(Controller)

Client 6

(Wheelchair Robot)

Client 1

(Ball Maglev)

Client 2 - 5

(DC Motor)

Network

 

Figure 3-1. Experimental setup of an NCS 
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PCs calculate control inputs after receiving sensor output data from clients over the 

network and sends them to each client’s PC over the network. Each client sends control 

input to the hardware plant, receives sensor data from the plant, and sends those data to 

the server PCs. A PCI-6221 data-acquisition card manufactured by National Instruments 

(NI) allows the hardware test bed to send out sensor data and receive control data through 

the local area network (LAN) or the wireless local area network (WLAN). Clients 1 to 5 

represent clients wired into the NCS and client 6 represents a wireless client. 

3.3 Ball Maglev System 

Figure 3-2 presents a steel ball maglev system as Client 1 [64]. An electromagnet 

in the system allows the steel ball to be levitated at a predefined steady-state equilibrium 

position. Two personal computers (PC), one for server and one for a client, a position 

sensor, and a pulse-width modulator (PWM) power amplifier are used to levitate the ball. 

 

 
Figure 3-2. Ball maglev system 
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The optical position sensor unit consists of an incandescent light bulb as a light source, a 

CdS photocell, and a 15-V DC power supply. 

The transfer function of a ball maglev system is [64] 

 2

0.02792
( )

0.0086
G s

s
 .  (3.1) 

A lead-lag controller is used to stabilize the system as [64] 

 
2 6 7

2

33300 2.564 10 1.632 10
( )

700.7 490

s s
D s

s s

   


 
,  (3.2) 

where the input is the voltage to the electromagnet model, and the output is the position 

of the steel ball with a unit of mm. 

A lead-lag compensator is chosen to control the maglev system because a lead 

compensator speeds up a response by lowering the rise time and decreases the transient 

overshoot, and lag compensator improves the steady-state accuracy of the system. As 

shown in Eq. 3.1, the open-loop transfer function of ball maglev system is marginally 

stable and the system requires a fast speed sampling period to obtain stability and 

performance. Therefore, a 3-ms sampling period was chosen for the system [64].  

 Figure 3-3 presents an experimental result for the ball maglev system with a lead-

lag compensator when the reference position is 4 mm for 60 seconds. The system kept a 

4 mm reference position after 10 seconds. 
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Figure 3-3. The position of a steel ball in the ball maglev system when the reference 

is 4mm 

3.4 DC Motor System 

Clients 2 to 5 are on the DC motor speed control system shown in Fig. 3-4 [65]. 

The speed control is achieved by controlling the output voltage of a pulse-width 

modulation (PWM) amplifier. Encoders located at the bottom of each motor measure the 

angular displacement of the motor shaft per unit of time. A PCI-6221 data-acquisition 

(DAQ) card by NI enables the test bed to send out sensor-output data packets and receive 

control-input data packets through the LAN. 

The transfer function of a DC motor system is 

 
20.2

( )
9.92 2.57

G s
s




. (3.3) 
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Figure 3-4. A DC motor system 

A proportional-integral (PI) controller is used to control the DC motor as 

 
1.8 6

( )
s

D s
s


 ,  (3.4) 

where the input is the armature voltage, and the output is the speed of the DC motor with 

a unit of revolutions per second (rps).  

A PI compensator is chosen to control the DC motor system since a derivative 

compensator is subject to high frequency noise or disturbance such as our test bed. 

Coefficients of compensator are selected using root locus, where 0.562  , 

11.9%pM  , 3.49 rad/sn  , 0.52 srt  , and 2.35 sst   as presented in Fig. 3.5. As 
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shown in Eq. 3.3, the system is open-loop stable and requires medium speed sampling 

period. Therefore, various sampling periods, from 3 ms to 30 ms, will be applied for each 

DC motor system to determine optimal periods. Figure 3-6 shows a Simulink model of the 

DC motor system and its simulation results are shown in Fig. 3-7. Figure 3-8 represents 

an initial experimental result of the DC motor system without disturbance or noise using 

the PI controller with a sampling period of 3ms and a reference speed of 7 rps for 3 

seconds. The DC motor system follows reference input quite well without disturbance or 

noise. 

 

 

Figure 3-5. Root locus to determine coefficients of compensator for the DC motor 

system  
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Figure 3-6. Simulink model of a DC motor system 

 

Figure 3-7. DC motor control result with a 7-rps reference input using Simulink 
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Figure 3-8. The speed of a DC motor when the reference speed is 7 rps 

3.5 Wireless Autonomous Wheelchair Robot System 

Figure 3-9 shows the autonomous wireless wheelchair robot based on the frame of 

an Invacare Ranger TM II electric powered wheelchair [66]. Two 12-V DC motors 

independently drive the two front wheels and two small rear wheels follow the front 

wheels. The speed of the motors is controlled by the output voltage of the PWM amplifiers 

on the board of two Diverse Electronic’s modular MC-7 motor controllers. All data 

acquisition and control data packet exchanges are performed by an NI USB-6501 DAQ 

card. In order to measure distance from obstacles in the path, three Sharp GP2D15 and 

two Sharp GP2D12 infrared distance-measuring sensors are mounted on a sensor bracket 

located in front of the wheelchair. The moving distance of each wheel is calculated by 
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measuring the number of revolutions of the motor shaft, which is detected by the Hall-

effect sensors mounted on the rear casing of both motors and the data is fed to a 74HC191 

counter chip. 

 

 

Figure 3-9. Autonomous wireless wheelchair robot 

 This system moves 0.21 m/s and rotates 0.733 rad/s. Thus, it does not require a 

fast speed speed sampling period. Figure 3-10 presents an experimental result of the 

wheelchair robot to avoid obstacles when path is clear. The robot moved straight at a 300 

ms sampling period for 30 seconds. 
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Figure 3-10. Straight motion of the wheelchair robot 

3.6 Network Bandwidth 

According to Ji and Kim [67], the relationship between the sampling periods and 

bandwidth utilization (BU) for each client in the NCS can be expressed as 

 

k
k k ki
i i ik

i

b f
h


  ,  (3.5) 

where 
k

ib  is the BU, 
k

ih  is the sampling period, 
k

if  is the sampling frequency, and 
k

i  is 

the total time delay. The subscript i  indicates the index of the clients in the NCS, and the 

superscript k indicates the k-th iteration of the loop. Then BU represents a portion of the 
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network bandwidth assigned to client at the control iteration i. From Eq. 3.5, given a 

certain amount of time delays, a small BU implies a large sampling period (low sampling 

frequency) and more bandwidth available for other functions and control purposes in the 

same network. If the BU approaches the network bandwidth saturation threshold, the 

network will be overloaded and create more time delays or packet dropouts. 

After PING tests were performed for 100 round trips, the round-trip time between 

the server 1 and client 1, the ball maglev system, is calculated by averaging them. The 

average round-trip time from the server 1 to client 1 is 0.388 ms with a standard deviation 

of 0.011, the round-trip time from client 1 to the server 1 is 0.393 ms with a standard 

deviation of 0.024, and the data processing time is 0.915 ms. For client 2, the DC motor 

system, the average round-trip time from the server 1 to client 2 is 0.378 ms with a standard 

deviation of 0.012, the round-trip time from client 2 is to server 1 is 0.397 ms with a 

standard deviation of 0.027, and the data processing time is 0.866 ms. Client 6, the 

wheelchair robot system, takes 0.391 ms from gateway to server 1 with a standard 

deviation of 0.013, 0.373 ms from server 1 to client with a standard deviation of 0.018, 

2.01 ms from client to gateway with a standard deviation of 0.8819, 1.97 ms from gateway 

to client with a standard deviation of 0.9370 for the average round-tip time, and 0.738 ms 

to process. Client 6 should count the average round-trip time between client 6 and gateway 

as well as between gateway and server because client 6 comunicates with the server 1 

through WLAN and gateway. Therefore, the total time delay can be calculated by 

summing the one-way trip time from server to client, from client to server, and the data 

processing time as Eq. 3.6 to 3.8.  
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 1 (0.388 0.393) / 2 0.915 1.31 msk     .  (3.6) 

 2 (0.378 0.397) / 2 0.866 1.25 msk     .  (3.7) 

 6 (0.391 0.373 2.01 1.97) / 2 0.738 3.11 msk       .  (3.8) 

 

Table 3.2 presents the BU examples for the NCS for the ball maglev system, DC 

motor system, and wheelchair robot system with various sampling periods. If the total BU 

exceeds a certain amount, one hundred percent, the network induces a time delay or packet 

dropout. Thus, when the optimal bandwidth allocation algorithm for the multi-server and 

multi-client system is designed, the BU should be considered. 

 

Table 3.2. BU for the NCS for the ball maglev system and the DC motor system with 

various sampling times 

                     Sampling period 

 

Clients 

2.5 ms 3 ms 4 ms 6 ms 9 ms 

Client 1 (Ball maglev) 52% 44% 33% 22% 15% 

Client 2 (DC motor) 50% 42% 31% 21% 14% 

                     Sampling period 

 

Clients 

100 ms 150 ms 200 ms 250 ms 300 ms 

Client 6 (Wheelchair) 3.12% 2.08% 1.56% 1.25% 1.04% 
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4. PERFORMANCE INDEX FUNCTION FOR THE NCS WITH 

DISTURBANCE AND NOISE* 

4.1 Performance Index Function for the NCS 

 

Figure 4-1. Performance index functions for continuous control, digital control, and 

networked control systems, respectively, reprinted from [29] 

 

________________ 

*Part of this section is reprinted with permission from “Performance-Index Functions in 

Networked Control Systems with Disturbance and Noise" by Kuktae Kim and Won-jong 

Kim, ASME 2015 International Mechanical Engineering Congress and Exposition, vol. 

4B, pp. V04BT04A020, Copyright 2015 by ASME. 
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Figure 4-1 presents the PIFs to compare the performance of different systems 

between a continuous-time control system, a discrete-time control system, and an NCS 

based on the sampling period. A continuous control always presents best performance and 

a digital control shows better performance when sampling period becomes smaller. Unlike 

a digital control system, a smaller sampling period (higher sampling frequency) does not 

always guarantee a better performance in the NCS. As a smaller sampling period induces 

a heavier network traffic, the possibility of more time delays or packet dropouts also 

increases, and longer time delays finally result in a degradation of the system performance 

in the NCS. Therefore, when designing an NCS, bandwidth and sampling period should 

be considered and a PIF for an NCS can give clear guidance to determine the optimal 

sampling frequency for a single system. If the PIFs are integrated with other optimal 

algorithms such as nonlinear constrained optimization, ANN, and Q-learning, the optimal 

bandwidth allocation method for a multi-server and multi-client system can be determined. 

4.2 Exponential and Polynomial Approximations of a PIF 

4.2.1 Exponential and 4th-order polynomial approximations of a PIF with fixed 

standard deviation of disturbance, which is a function of frequency 

Unlike Dong and Kim’s study [31], which modeled an NCS with time delays, in 

this dissertation, exponential and 4th-order polynomial approximations of PIFs are 

proposed to model a relationship between disturbance and sampling frequency of the DC 

motor system in the NCS based on experimental data. The error variances measured from 

the experiments will be defined as a piecewise function of the sampling frequency, when 
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the standard deviation of disturbance or noise is fixed. Based on Fig. 4-1 and experimental 

data, exponential and polynomial approximations were used as PIFs. We can approximate 

an exponential PIF as below, 

 

 
 ( )

k
i i i

k
ifk

i i i i

f
P f e e

   ,  (4.1) 

where Pi is the performance index of system i, fi 
k is the sampling frequency of system i at 

iteration k , and αi, βi, γi, and δi are approximation coefficients. 

The exponential approximation can closely follow the performance index of the 

system. However, the exponential function takes much more time to calculate and is not 

easy to obtain in real time compared to a polynomial function. A 2nd-order polynomial 

approximation has bigger errors compared to the exponential and 4th-order polynomial 

approximations. Thus, a 4th-order polynomial approximation is proposed as a PIF. For 

each individual plant, the general 4th-order polynomial PIF can be defined as 

 
        24 3  ( ) () ) ( )( k k k k k

i i i i i i i i i i ib c dP f a f f ef f    ,  (4.2) 

 
   

1

4

2 3( )( )k k

i i i i i iP f p f p p  ,  (4.3) 

where ia , ib , ic , id , ie , 1ip , 2ip  and 3ip  are the approximation coefficients. A 

special form of the 4th-order polynomial, Eq. 4.3, as well as a general form of the 4th-order 

polynomial, Eq. 4.2, were introduced because the special form approximates experimental 

data better than the general form when the standard deviation of disturbance was less than 

0.1333 and prevents the PIFs from having negative error variances, which sometimes takes 

place with a 4th-order polynomial. 
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 Since Pi is the performance index of the system, we can find the optimal sampling 

frequency by calculating the frequency that minimizes the PIF, Pi, for a single-client 

system. The allowable frequency range for the client is also determined based on the PIF 

equations, when required performance is given. 

4.2.2 2nd-order polynomial approximations of a PIF with a fixed sampling frequency, 

which is a function of standard deviation of disturbance 

A 2nd-order polynomial approximation was selected for the PIF of the DC motor 

system with a fixed sampling frequency in terms of maximum disturbance based on 

experimental data. For each individual plant, the 2nd-order polynomial PIF can be defined 

as 

 
    2  ( ( )( ) )k k k

i i i i i i iP d a d db c  ,  (4.4) 

where k

id  is the maximum disturbance of system i at iteration k and ia , ib , and ic  are 

the approximation coefficients. Once the PIF, a function of maximum disturbance, is 

obtained, the maximum disturbance can be estimated when the sampling frequency and 

error variance are informed. 

4.2.3 6th-degree polynomial approximation for a 3-D PIF in terms of frequency and 

maximum disturbance 

To describe a relationship between a PIF and a sampling frequency, a 4th-order 

polynomial is used and to present a relationship between a PIF and the maximum 

disturbance, a 2nd-order polynomial is used. Thus, a 6th-degree polynomial as shown in 
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Eq. 4.5 is proposed for a 3-D PIF to describe relationships between maximum disturbance, 

sampling frequency, and system performance. 
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where k

if  is the sampling frequency of system i at iteration k, k

id  is the maximum 

disturbance of system i at iteration k, 00p , 10p , 01p , 20p , 11p , 02p , 30p , 21p , 12p , 

40p , 31p , and 22p  are the approximation coefficients. 

4.3 Performance Index Function for the DC Motor System 

4.3.1 Performance index function for the DC motor system in terms of frequency with 

fixed standard deviations of disturbances 

Table 4.1 shows the average experimental results of the error variance between 

reference inputs (7 rps) and outputs for the DC motor system with various standard 

deviations of disturbances and sampling periods. Experiments were conducted on three 

different days and times to avoid specific unknown errors and find representative values. 

Each experimental data are presented in the Appendix B. Various standard deviations of 

white Gaussian disturbances were injected into the input voltage right after the server PC 

calculated a control input for the DC motor, and data including uncertainty was sent to the 

client PC to actuate the DC motor. The maximum range of disturbance was ±0 V, ±0.2 V, 

±0.4 V, ±0.8 V, ±1 V, ±1.5 V, ±2 V, ±3 V, ±4 V, ±6 V, respectively. In this dissertation, 
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all disturbances are white Gaussian disturbance and it shows the Gaussian distribution that 

99.7% of the data are within three standard deviations, σ, of the mean. Thus, one third of 

the maximum disturbance is standard deviation of disturbance. A small standard deviation 

of white sensor noise was assumed to exist and this results in errors when the disturbance 

is zero. The experimental results of the error variance in various sampling periods are also 

visually presented in Fig. 4-2 and a reduced version is shown in Fig. 4-3 to magnify the 

details of the behavior of a disturbance less than maximum 1.5 V. The various trends of 

the system performance are shown when various maximum disturbances are injected. 

 

Table 4.1 Error variances between reference inputs (7 rps) and outputs with various 

standard deviations of disturbances 

 Sampling T.(ms) 

Disturbance (m, σ2) 
2.5ms 3ms 4ms 5 ms 6 ms 

(0,02) 0.076 0.058 0.063 0.086 0.133 

(0,0.0672) 0.174 0.120 0.116 0.134 0.158 

(0,0.1342) 0.408 0.313 0.257 0.245 0.245 

(0,0.2682) 1.297 1.068 0.828 0.699 0.580 

(0,0.3332) 1.912 1.610 1.236 1.029 0.826 

(0,0.52) 4.066 3.450 2.669 2.184 1.698 

(0,0.6672) 6.802 5.828 4.606 3.775 2.904 

(0,12) 12.475 10.971 9.052 7.723 6.155 

(0,1.3332) 17.215 15.611 13.387 11.873 9.744 

(0,22) 23.851 22.101 20.260 18.228 16.300 

Sampling T. (ms) 

Disturbance (m, σ2) 
9ms 12ms 15ms 21 ms 30 ms 

(0,02) 0.275 0.497 0.837 1.651 3.383 

(0,0.0672) 0.296 0.528 0.821 1.634 3.297 

(0,0.1342) 0.360 0.561 0.869 1.698 3.287 

(0,0.2682) 0.607 0.740 1.001 1.770 3.386 

(0,0.3332) 0.786 0.867 1.100 1.854 3.577 

(0,0.52) 1.411 1.340 1.458 2.099 3.594 

(0,0.6672) 2.307 1.978 1.961 2.454 3.964 

(0,12) 4.746 3.816 3.437 3.449 4.601 

(0,1.3332) 7.842 6.293 5.355 4.791 5.463 

(0,22) 14.000 11.795 10.195 8.456 7.914 
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Figure 4-2. Error variances of DC1 with disturbances at the actuator at various 

sampling periods 

 
Figure 4-3. Reduced version of error variances of DC1 with disturbances at the 

actuator at various sampling times 
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Without the disturbance, the error variance continues to decrease when the 

sampling frequency increases (sampling period decreases). However, when the standard 

deviation of the disturbance is increased, the error variance decreases at a low frequency 

(slow sampling period) from the beginning and then increases after a certain sampling 

frequency. 

Figs. 4-4 to 4-13 presents experimental data and PIFs using the 4th-order 

polynomial and exponential approximations of a DC motor system with various sampling 

periods and a fixed maximum disturbance. To calculate the coefficients of each 

approximation, MATLAB cftool is used. A trust-region algorithm is used for exponential 

approximations and a linear least squares algorithm is used for the 4th-order polynomial 

approximations. Approximation coefficients and R-squared values for each figure are 

listed in Tables 4.2 to 4.4. Standard deviations, σ, of disturbances are also included in 

Tables 4.2 to 4.4. When the 3σ of injected disturbance is within the interval of ±1.5 V, the 

exponential pproximation presents a better R-squared value than do the 4th-order 

polynomials and if the 3σ of injected disturbance is outside the interval of ±2 V, the 4th-

order polynomial shows a better R-squared values. Both approximation methods have 

reasonable R-squared values which are higher than 0.93. Since 4th-order polynomial 

approximations need less calculation time than exponential approximations, in this 

research 4th-order polynomial approximations are used to determine optimal bandwidth 

allocation for the DC motor system. 
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Figure 4-4. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system without disturbance at the actuator 

 

 

Figure 4-5. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system with a ±0.2-V disturbance at the actuator 
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Figure 4-6. PIFs using 4th-order polynomial and exponential approximations of a DC 

motor system with a ±0.4-V disturbance at the actuator 

 

  

Figure 4-7. PIFs using 4th-order polynomial and exponential approximations of a DC 

motor system with a ±0.8-V disturbance at the actuator 
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Figure 4-8. PIFs using 4th-order polynomial and exponential approximations of a DC 

motor system with a ±1-V disturbance at the actuator 

 

  

Figure 4-9. PIFs using 4th-order polynomial and exponential approximations of a DC 

motor system with a ±1.5-V disturbance at the actuator 
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Figure 4-10. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system with a ±2-V disturbance at the actuator 

 

  

Figure 4-11. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system with a ±3-V disturbance at the actuator 



 

52 

 

 

 

  

Figure 4-12. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system with a ±4-V disturbance at the actuator 

 

  

Figure 4-13. PIFs using 4th-order polynomial and exponential approximations of a 

DC motor system with a ±6-V disturbance at the actuator 
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Table 4.2. Coefficients of special form of 4th-order polynomial approximations (Eq. 

4.3) for PIFs of the DC motor system with fixed standard deviations of disturbances 

Disturbance 
Coefficients 

R-square 
1p  2p  3p  

±0 (σ=0) 106.214×10   272.9 0.0495 0.9357 

±0.2 (σ=0.067) 106.932×10  264.7 0.0941 0.9384 

±0.4 (σ=0.133) 107.434×10  259.9 0.1890 0.9365 

 

Table 4.3. Coefficients of general form of 4th-order polynomial approximations (Eq. 

4.2) for PIFs of the DC motor system with fixed standard deviations of disturbances 

Disturbance 
Coefficients 

R-square 
a b c d e 

±0.8 (σ=0.267) 91.649×10  61.706×10  46.205×10  –0.0896 4.804 0.9525 

±1 (σ=0.333) 91.677×10  61.739×10  46.331×10  –0.0896 4.865 0.9418 

±1.5 (σ=0.5) 91.903×10  61.967×10  47.1×10  –0.0941 5.295 0.9298 

±2 (σ=0.667) 92.793×10  62.8×10  49.719×10  –0.1189 6.590 0.9800 

±3 (σ=1) 92.889×10  62.836×10  49.38×10  –0.0910 6.344 0.9942 

±4 (σ=1.333) 92.423×10  62.298×10  46.947×10  –0.0362 5.606 0.9955 

±6 (σ=2) -104.121×10  71.573×10  41.217×10  0.0956 4.594 0.9975 

 

Table 4.4. Coefficients of exponential approximations for PIFs of the DC motor 

system with fixed standard deviations of disturbances 

Disturbance 
Coefficients 

R-square 
α β γ δ 

±0 (σ=0) 21.62 –0.06241 0.9812 –0.01144 0.9991 

±0.2 (σ=0.067) 16.92 –0.05206 0.317 –0.002884 0.9979 

±0.4 (σ=0.133) 14.94 –0.04772 0.2049 0.001464 0.9983 

±0.8 (σ=0.267) 17.33 –0.05322 0.3847 0.003039 0.9985 

±1 (σ=0.333) 21.8 –0.05982 0.5332 0.003234 0.9976 

±1.5 (σ=0.5) 29.6 –0.07474 1.0200 0.003542 0.9854 

±2 (σ=0.667) 103.6 –0.1174 1.6810 0.003609 0.9730 

±3 (σ=1) 4159 43.992×10  –4156 43.943×10  0.9665 

±4 (σ=1.333) –8657.5 0.007077 8661.813 0.007076 0.9841 

±6 (σ=2) 23.04 42.834×10  –18.87 –0.005547 0.9973 
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4.3.2 Performance index function for the DC motor system in terms of disturbance 

with fixed sampling frequencies 

The PIF for the DC motor system with fixed sampling frequencies can be defined 

in terms of disturbance based on experimental data in Table 4.1. Unlike section 4.3.1, 

when the performance of the system with respect to various standard deviations of 

disturbances with fixed sampling frequencies is approximated, 2nd-order polynomials as 

shown in Eq. 4.4 are enough to describe the system performance. R-squared values were 

higher than 0.99 except for the case of the fixed 33.3 Hz sampling frequency with an R-

squared value of 0.93. Figs. 4-14 to 4-23 present PIFs using 2nd-order polynomial 

approximations of the DC motor system with fixed sampling frequencies and various 

standard deviations of disturbances. To calculate the coefficients of each approximation, 

a linear least squares algorithm in MATLAB cftool was used. Approximation coefficients 

and R-squared values for each figure are listed in Table 4.5. 

 

   

Figure 4-14. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 400 Hz  
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Figure 4-15. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 333 Hz  

 

  

Figure 4-16. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 250 Hz  
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Figure 4-17. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 200 Hz  

 

  

Figure 4-18. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 166.7 Hz  
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Figure 4-19. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 111.1 Hz  

 

 

Figure 4-20. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 83.3 Hz 
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Figure 4-21. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 66.7 Hz 

 

 

Figure 4-22. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 47.6 Hz 
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Figure 4-23. PIF using 2nd-order polynomial approximations of a DC motor system 

with various standard deviations of disturbances at the actuator for a fixed sampling 

frequency of 33.3 Hz 

Table 4.5. Coefficients of 2nd-order polynomial approximations for PIFs of the DC 

motor system with a fixed sampling frequencies 

Sampling 

frequency (Hz) 

Coefficients 
R-square 

a b c 

400 1.511 0.3697 0.04693 0.9998 

333 1.329 0.2554 0.0274 0.9997 

250 1.093 0.09234 0.05486 1 

200 0.8998 0.04598 0.08578 1 

166.7 0.6894 0.008149 0.131 1 

111.1 0.5048 0.004275 0.276 1 

83.3 0.3679 0.002292 0.5029 0.9999 

66.7 0.2951 –0.02332 0.828 0.9997 

47.6 0.1989 0.006186 1.645 0.9984 

33.3 0.1838 –0.0607 3.337 0.9274 

 

4.3.3 3-D PIF for the DC motor system 

After accumulating the entire data and approximated PIFs, we can plot the 3-D PIF 

versus various sampling frequencies and maximum disturbances together as presented in 

Fig. 4-24.  



 

60 

 

 

Figure 4-24. 3-D PIF versus various sampling frequencies and maximum 

disturbances 

This proves that, unlike traditional continuous or discrete control systems, the 

faster sampling frequency does not always ensure less error variance and better system 

performance. A universal optimal sampling frequency does not exist. The error variance 

also changes when the sampling frequency or the maximum disturbance changes. The 

standard deviation of disturbance as well as the sampling frequency affects system 

performance. Thus, these two factors should be considered to find the optimal sampling 

frequency for the DC motor system. For Fig. 4-24, the 3-D PIF versus various sampling 
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frequencies and maximum disturbances can be approximated by the 6th-degree polynomial 

method as shown in Eq. 4.6. 
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Figure 4-24 and Eq. 4.6 can be an important tool in calculating optimal bandwidth 

allocation. During the experiment, error variance can be calculated for every predefined 

loop and the sampling frequency is already known. Then the Eq. 4.6 becomes a 2nd-order 

polynomial equation in terms of the maximum disturbance. Thus, the maximum 

disturbance can be estimated by solving the 2nd-order equation with sampling frequency 

and error variance. After the maximum disturbance is estimated and is inserted into Eq. 

4.6, the PIF becomes a 4th-order polynomial equation in terms of sampling frequency. 

Therefore, the optimal sampling frequency can be attained, which results in the least error 

variance from the 3-D PIF along with the estimated maximum disturbance. 

4.4 Optimal Bandwidth Allocation Using the PIF Method 

Figure 4.25 presents a flowchart of dynamic bandwidth optimization for the NCS 

with disturbance and noise. First, when the program runs, the client PCs calculate error 

variance for predefined loops. Since the sampling frequency is already known, the 6th-

degree polynomial PIF becomes a 2nd-order polynomial as a function of the maximum  
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Figure 4-25. Flowchart for dynamic bandwidth optimization 

disturbance. Then, the maximum disturbance can be estimated from the PIF by calculating 

the crossing point of the sampling frequency and error variance. Client PCs send each 

estimated disturbance and sensor data packet to the server. After the server receives a data 

packet, the 6th-degree polynomial PIF becomes a 4th-order polynomial as a function of 
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frequency and the optimal sampling frequency can be obtained from the PIF. After that, 

the server calculates the control input from the digital controller at the chosen optimal 

sampling frequency. In this research, a PI digital controller, which is converted using 

Tustin’s method from continuous controller in Eq. 3.5, is used to control the DC motor 

system, since without integral control, the system output cannot reach its target value and 

a derivative controller is subject to high-frequency noises. Finally, a data packet to control 

the actuator is sent to each client PC. Once the client PC receives the data packet, it 

actuates the plant, senses the output of the plant, and resends the sensor data to the server. 

Both the server and client PCs run until the predefined control loops are excuted 

completely. 

4.4.1 Disturbance estimation using the PIF method 

Figures 4-26 to 4-28 present the experimental results that verify the PIF method. 

A white Gaussian disturbance was intentionally injected between the controller output and 

hardware. The standard deviation of the input disturbance, σ, was changed from 0.5 to 1 

to 0.333 to 1, and to 0.667 for every 3000 loops as shown in Fig. 4-26. The standard 

deviations of disturbances vary from 0.333 to 1 because the dynamic bandwidth allocation 

method should find the optimal sampling frequency for each disturbance and it will 

obviously show the advantages of dynamic bandwidth allocation method compared to 

fixed sampling frequencies. The largest standard deviation of disturbance are chosen to 1, 

which corresponds to maximum 3-V disturbance because maximum output voltage for the 

DC motor system from the power supply is 5 V. The disturbance estimation results of the 

PIF are presented in Figs. 4-27 and 4-28. The PIF method estimated the original 
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disturbance with a small error and thus can be used to estimate the standard deviation of 

disturbance of the DC motor system in the NCS. 

 

 

Figure 4-26. Original standard deviations of disturbances which were intentionally 

injected for the experiment 



 

65 

 

 

Figure 4-27. Estimated standard deviations of disturbances using the PIF method 

 

Figure 4-28. Comparison of standard deviations of disturbances between the original 

and the estimated using the PIF 
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4.4.2 Optimal bandwidth allocation for a DC motor system using the PIF 

Figures 4-29 and 4-30 present sampling frequencies and bandwidth utilization 

changes based on the PIF when the amount of disturbance changed during 15 000 

iterations as shown in Fig. 4-26. As explained at the beginning of this section, with error 

variance and sampling frequency information, standard deviations of disturbances can be 

estimated from the 6th-order polynomial PIF of the Eq. 4.6 as shown in Fig. 4-27. If the 

estimated standard deviation of disturbance replaces actual disturbance in Eq. 4.6. The PIF 

becomes 4th-order polynomial as a function of sampling frequency. Optimal sampling 

frequency can be calculated from the 4th-order PIF as shown in Fig. 4-29. The average BU 

of the dynamic bandwidth allocation method using the PIF is about 13.15%. As shown in 

Eq. 3.6, BU is propotional to sampling frequency. Thus, changes of sampling frequency 

and BU look identical as shown in Fig. 4-29 and 4-30.  

Figure 4-31 presents comparison of the IAEs between fixed sampling periods (3 

ms, 6 ms, 9 ms, 12 ms, 15 ms, 21 ms, and 30 ms) and the dynamic bandwidth allocation 

method using the PIF. The dynamic bandwidth allocation method using the PIF shows the 

best performance at 16 615 IAE and uses an economical average BU of 13.15%. 
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Figure 4-29. Changes of optimal sampling frequencies using the PIF during 15 000 

iterations when various standard deviations of disturbances were injected into the 

system 

  

Figure 4-30. Optimal bandwidth utilization using the PIF during 15 000 iterations 

when various standard deviations of disturbances were injected into the system 
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Figure 4-31. Comparison of the IAEs between fixed sampling periods (3 ms, 6 ms, 9 

ms, 12 ms, 15 ms, 21 ms, and 30 ms) and the dynamic bandwidth allocation method 

using the PIF 

4.4.3 Optimal bandwidth allocation for a multi-client system using the PIF 

Equation 4.7 presents a constrained nonlinear optimization problem to find the 

optimal bandwidth allocation for a multi-client system using the PIF. 
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where J is the cost function of the total system, which is the summation of multiplication 

of weights and performance of each system, iP  is the performance index of system i, N is 

the total number of systems, k

iw  is the weight of system i at iteration k , which can be 

selected by engineer to put more available bandwidth to a certain system, k

if  is the 

sampling frequency of system i at iteration k , k

i  is the total time delay of system i at 

iteration k, B is the available bandwidth utilization, ia , ib , ic , id , and ie  are 

coefficients. From the previous experiment as shown in Fig. 4-29, the range of sampling 

frequency was chosen from 33 Hz to 450 Hz because high sampling frequency such as 

450 Hz are subject to large standard deviation of disturbance and low sampling frequency 

such as 33 Hz presents large error variance despite of small standard deviation of 

disturbance. To determine the optimal sampling frequency for each client in the NCS with 

disturbance and noise, sequential quadratic programing (SQP) approach is used. SQP is 

one of the most effective methods for nonlinearly constrained optimization and generates 

steps by solving quadratic sub-problems [68]. SQP may only give a local minimum. The 

PIF of the DC motor system, when estimated disturbance is provided, is a 4th-order 

polynomial that has two local minima. Thus, a global minimum can be obtained by (1) 

choosing the initial point of iteration as a lower boundary of the sampling frequency, (2) 

calculating the local minimum of the cost function, (3) choosing the other initial point of 

iteration as an upper boundary of the sampling frequency, (4) calculating the local 

minimum of the cost function, (5) comparing two local minimum, and (6) selecting 

optimal sampling frequency for each system with a lower local minimum, which is the 
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global minimum. In this research, since four DC motor systems was studied and the PIF 

of each DC motor system had two local minima, a total of 16 initial points were selected 

at the boundaries. 

 

4.4.3.1 Experimental result – Case 1: a ±0.8-V disturbance, 10% safety margin of BU, 

1.25-ms total time delay, and the weights of DC motor systems: 4, 3, 2, and 1, 

repectively 

  

Figure 4-32. Profile of the sampling frequencies and BU changes for each DC motor 

during the experiment in Case 1 

Figures 4-32 to 4-35 presents experimental results of case 1, where a ±0.8-V 

disturbance was intentionally injected, the safety margin of BU was 10%, there was a 
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1.25-ms total time delay, and the weight of each DC motor was 4, 3, 2, and 1, respectively. 

In this dissertation, the safety margin of BU was chosen as 10%. Each DC motor system 

has average 1.25-ms total time delay and standard deviations of round-trip time between 

server 1 to client 2 is 0.012 and between client 2 to server 1 for DC motor system are 0.012 

and 0.027, respectively, as shown in the section 3.6. Network induced time delay is 

stochastic and if it is assumed to show the normal distribution, 99.99% of the data are 

within 4 standard deviations of the mean. Thus, maximum time delay for the DC motor 

system can be calculated by {(0.397+0.027×4) + (0.378+0.012×4)}/2 + 0.866 = 1.332 ms 

in the worst case. Using Eq. 3.6 and due to the fact that total summation of BU should not 

be greater than 1, maximum summation of sampling frequencies of four DC motors can 

be calculated by 1/ 750.75 Hzk k

i if    in the worst case. When summation of 

sampling frequencies of four DC motors are 750.75 Hz, total BU with average time delay 

is calculated by 1.25×10-3×750.75×100 = 93.84%. Thus, at least 6.16% of safety margin 

of BU is required to perform optimal bandwith allocation for case 1. When a maglev and 

a wheelchair robot system are included in the NCS as shown in section 4.4.3.2, additional 

2.33% and 1.23% of safety margin of BU are calculated using the same method as the DC 

motor system used. Thus, 10% of safety margin of BU is selected to validate the optimal 

bandwidth allocation for a multi-clinet and multi-server system in this dissertation. 

Figure 4-32 presents how optimal sampling frequency is calculated when the 

iterations increase, and Fig. 4-33 is a reduced version of the profile of the sampling 

frequency and BU changes for each DC motor during the experiment in Case 1 to see the 

details of iterations for finding one local minimum. As shown in Fig. 4-33, the initial 
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starting points of all DC motor systems was 33 Hz, and optimal sampling frequency was 

calculated by solving the nonlinear constraint problem in Eq. 4.7 at f1 = 122.2 Hz, f2 = 

122.2 Hz, f3 = 122.2 Hz and f4 = 122.2 Hz, respectively, for 40 iterations. It took 626 

iterations to complete the whole optimization. Several peaks are observed during iterations 

because 4th-order polynomials generally have two local minima and starting points of each 

DC motor are one of the boundaries. When one of initial point of DC motor systems is 

450 Hz, peak is observed. 16 initial points at the boundaries are chosen and all local 

minima are compared to find the global minimum. 

 

 

Figure 4-33. Reduced profile of the sampling frequencies and BU changes for each 

DC motor during the experiment in Case 1 
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Figure 4-34. IAEs of the DC motors in the case of a ±0.8-V disturbance, 10% safety 

margin of BU, 1.25-ms total time delay, and the weights of DC motor systems: 4, 3, 

2, and 1, repectively 

Figure 4-34 presents the experimental results of the PIF method in case 1. The 

optimal sampling frequencies of each system were 122.2 Hz, 122.2 Hz, 122.2 Hz and 

122.2 Hz and the IAE values are 6865.8, 7061.6, 6917.1 and 7108.7, respectively. 

Although all four DC motors are assumed to have identical properties and specifications, 

actually motor specs are different, each client PC also exhibits different performance, and 

there could be unexpected time delays or packet dropouts. That might lead slight different 

values of IAEs. It is also possible that unexpected sensor noise arose for conducting 

experiments. Four DC motor systems require a total of 61.1% bandwidth to operate in an 

optimal sampling frequency for each system. Thus, a total of 90% bandwidth is enough to 
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Figure 4-35. IAEs of the DC motors in the case of a ±0.8-V disturbance, 10% safety 

margin of BU, a 1.25-ms total time delay when the maximum bandwidth is utilized 

operate in an optimal sampling frequency for four DC motor systems and the optimal 

sampling frequencies were identical in spite of the different weights of each system. 

Figure 4-35 presents the experimental results of the PIF method where a   

disturbance was intentionally injected, the safety margin was 10%, the total time delay 

was 1.25-ms, and the weight of each DC motor was 4, 3, 2, and 1, respectively, with a 

maximum BU to compare the results with the optimal bandwidth allocation method. Since 

the safety margin was 10 %, sampling frequency of each system was 180 Hz and the IAEs 

were 6915.1, 7006.2, 6996.7 and 7094.7. Although a maximum BU is used and faster 

sampling frequencies were allocated to each system than frequencies using the optimal 

bandwidth allocation method, the optimal bandwidth allocation method using the PIF 
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presents a similar performance with a lower BU. Thus, the optimal bandwidth allocation 

method using the PIF are more economical. 

 

4.4.3.2 Experimental result – Case 2: a ±0.8-Vdisturbance, 10% safety margin of BU, 

1.25-ms total time delay, and the weights of DC motors: 4, 3, 2, and 1, 

respectively, with a maglev and a wheelchair robot system 

 

  

Figure 4-36. Profile of the sampling frequencies and BU changes for each DC motor 

during the experiment in Case 2 
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Figure 4-37. Reduced profile of the sampling frequencies and BU changes for each 

DC motor during the experiment in Case 2 

The Maglev system uses 44% BU as Table 3.2 in 3-ms sampling time and the 

wheelchair robot uses 1% BU in 300-ms sampling time. Safety margin to avoid time 

delays or packet dropouts are 10%. Thus, four DC motors can utilize up to 45% BU.  

Figure 4-36 shows the change in sampling frequency for the DC motor system 

during iterations to find the optimal bandwidth allocation. Fig. 4-37 is a reduced version 

of the profile of the sampling frequencies and BU changes for each DC motor during the 

experiment in Case 2. SQP algorithm with a 3-D PIF are used to determine optimal 

frequencies for each DC motor. As shown in Fig. 4-37, the initial starting point of each 
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DC motor system was 33 Hz and the optimal sampling frequency was calculated at f1 = 

103.73 Hz, f2 = 98.69 Hz, f3 = 89.66 Hz and f4 = 67.91 Hz, respectively, for 33 iterations. 

It took 463 iterations to complete the whole optimization. 

 

 

Figure 4-38. IAEs of the DC motors in the case of a ±0.8-V disturbance, a 10% safety 

margin of BU, 1.25-ms total time delay, and the weights of DC motors: 4, 3, 2, and 1, 

respectively, with a maglev and a wheelchair robot system 

Figure 4-38 presents the experimental results of a PIF method where a ±0.8-V 

disturbance was intentionally injected, the safety margin of BU was 10%, total time delay 

was 1.25 ms, and the weight of each DC motor was 4, 3, 2, 1, respectively, with a maglev 

and wheelchair robot system. Since the maglev system with a 3 ms sampling time requires 

a 44% BU and the wheelchair robot uses 1% BU, only 45% of the bandwidth can be 

utilized. Optimal sampling frequencies of each system were 103.73 Hz, 98.69 Hz, 89.66 

Hz and 67.91 Hz and the IAE values were 7281.7, 7689.2, 8002.9 and 9945.8. Due to the 
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different weights of each system, they had a different optimal sampling frequencies and 

system performance increased in the order of higher weight number. 

Figure 4-39 presents the experimental results of the PIF method where a   

disturbance was intentionally injected, the safety margin was 10 %, and the total time 

delay was 1.25 ms with a maglev and wheelchair robot system with a maximum BU to 

compare results with the optimal bandwidth allocation method. Since 45 % of the 

bandwidth can be utilized, the sampling frequency of each system was 90 Hz and the IAE 

values were 7904.1, 8405.1, 8049.4 and 8436.6. Since an identical maximum sampling 

frequency was allocated to each system, all systems had similar IAEs. On the other hand, 

the optimal bandwidth allocation method with the weights of 4, 3, 2 and 1 presents a better 

performance which has larger number of weight. 

 
Figure 4-39. IAEs of the DC motors in the case of a ±0.8-V disturbance, 10% safety 

margin of BU, a 1.25-ms total time delay with a maglev and a wheelchair robot 

system when the maximum bandwidth is utilized 
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4.5 Conclusion of PIF Method for NCS with Disturbance and Noise to Find 

Optimal Bandwidth Allocation 

In this section, the PIF method for NCS with disturbances and noises was used to 

find the optimal bandwidth allocation. The relationship between the sampling frequency 

and the performance of a system can be approximated by using a 4th-order polynomial or 

exponential approximation. However, the exponential approximation approach requires 

more calculation time in real-time. Thus, a 4th-order polynomial approximation was 

chosen in this research to determine the optimal sampling frequency. The relationship 

between the amount of disturbance and the performance of a system can be easily 

approximated by using a 2nd-order polynomial. Thus, the relationship between the system 

performance and sampling frequency and the amount of disturbance can be approximated 

using 6th-degree polynomials with two different variables such as sampling frequency and 

disturbance. When the error variance was calculated and the sampling frequency was 

informed, the standard deviations of disturbance was estimated using the PIF, which 

presents the relationship between disturbance and system performance with a fixed 

sampling frequency. After obtaining the amount of estimated disturbance, the safety 

margin of BU, the weight of each DC motor system and the total time delay, the optimal 

sampling frequency can be determined by solving the nonlinear constraint optimization 

method using SQP methods. Experimental results proved the effectiveness of the PIF 

method. 
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5. ARTIFICIAL NEURAL NETWORK METHOD FOR THE NCS 

WITH DISTURBANCE AND NOISE 

5.1 Disturbance Estimation Using the ANN Method 

Figure 5-1 shows the general diagram of an ANN which will be used to infer the 

relationship between the sampling frequency and the system performance for the NCSs 

with uncertainty. The inputs for the ANN are sampling period and the MSE values of the 

system. Outputs are the standard deviation of disturbance. In this dissertation, the ANN 

algorithm is used twice to calculate estimated standard deviation of disturbance and 

optimal sampling frequency. 
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Figure 5-1. General diagram of an ANN 
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Figure 5-2. Diagram of an ANN for disturbance estimation of a DC motor system 

A specific diagram of an ANN is presented in Fig. 5-2 to estimate the disturbance 

of a DC motor system. The two inputs are the sampling period and MSE, and the output 

is the estimated disturbance. To model an ANN for disturbance estimation for a DC motor 

system, MATLAB nftool is used and activation function and number of neurons and layers 

are found by trial and error. Four neurons and two layers are used for the ANN. The elliot-

sigmoid function is used as an active function as follows: 
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(5.1) 

Unlike other sigmoid transfer functions, it does not use exponential or hyperbolic 

functions and thus, reduces calculation time, which is essential to operate NCS in real-

time. Data shown in Table 4.1 are used to train and validate the ANN. 

Figures 5-3 to 5-6 present the training results of ANN to estimate the disturbance 

of a DC motor system. Most of errors are in ±0.2 V in Fig. 5-3, the R-squared value is 

0.99 in Fig. 5-4, and the training performance is presented in Fig. 5-5. The trained data 

can follow target data with small errors in Fig. 5-6. Therefore, the ANN effectively found 

the relationship between inputs (sampling time and MSE values) and outputs (estimated 

disturbance). The ANN method can be used to estimate the disturbance of a DC motor 
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system. The bias of 1st layer are 0.473, 1.912, -2.744, and -3.941 and the weights of 1st 

layer are -0.769, -0.691, -3.771, -0.244, -2.337, 0.478, 1.486, and -4.708, repectively. The 

bias of 2nd layer is -0.714 and the weights of 2nd layer are -7.706, 3.260, -2.352, and -

2.059, repectively. 

 

  

Figure 5-3. Error histogram of an ANN for disturbance estimation 
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Figure 5-4. R-squared value of the ANN to estimate disturbance 
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Figure 5-5. ANN training performance 

 

Figure 5-6. ANN training results: target (star) vs trained data (circle) 
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Figures 5-7 to 5-8 present the experimental results to verify the ANN method. A 

white gausian disturbance is intentionally injected between the control output and 

hardware. The standard deviation of disturbance, σ, is changed in the order of 0.5, 1, 0.333, 

1, and 0.667 for every 3000 loops as shown in Fig. 4-24. The disturbance estimation results 

of the ANN and comparison with the PIF are presented in Figs. 5-7 and 5-8. Both the ANN 

and PIF methods follow original disturbance and thus, are suitable as methods for 

estimating the disturbance of DC motors in an NCS. 

 

 

Figure 5-7. Estimated standard deviations of disturbances using the ANN method 
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Figure 5-8. Comparison of standard deviations of disturbances between the original 

and the estimated using the ANN and PIF 

5.2 Optimal Bandwidth Allocation for One DC Motor System Using ANN 

Figures 5-9 and 5-10 present changes of sampling frequency and bandwidth 

utilization based on the ANN when the standard deviations of disturbances changed during 

15 000 iterations as seen in Fig. 4-24. The average BU of the dynamic bandwidth 

allocation method using the ANN is about 13.4%. 

Figure 5-11 shows the experimental results of the dynamic bandwidth allocation 

method using an ANN and compares the result of ANN method with those of fixed 

sampling periods and the PIF. Table 5.1 presents error variance and IAE comparisons 

between fixed and dynamic sampling periods using the ANN and PIF method. The IAE 
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of the ANN method is 16 773 and the average BU is 13.38%. A dynamic bandwidth 

allocation method such as the PIF and ANN shows best performance of 16 615 and 16 

773 IAE and uses an economical BU of 13.15% and 13.38%, respectively. 

 

Figure 5-9. Changes of optimal sampling frequency using the ANN during 15 000 

iterations when various standard deviations of disturbances were injected into the 

system 

 

 

Figure 5-10. Optimal bandwidth utilization using the ANN during 15 000 iterations 

when various standard deviations of disturbances were injected into the system 
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Figure 5-11. Comparison of the IAEs between fixed sampling periods (3 ms, 6 ms, 9 

ms, 12 ms, 15 ms, 21 ms, and 30 ms) and the dynamic bandwidth allocation methods 

using the PIF and ANN, respectively 

Table 5.1 Comparison of error variances and IAEs between fixed and dynamic 

sampling time using the PIF and ANN method, respectively 

Sampling Time (ms) 3 6 9 12 15 

Error variance 6.8565 3.5233 2.7608 2.3455 2.2438 

IAE 29864 21326 18964 17802 17787 

BU (%) 41.7 20.8 13.9 10.4 8.3 

Sampling Time (ms) 21 30 PIF ANN  

Error variance 2.6616 3.8503 2.0202 2.0530  

IAE 20195 24885 16615 16773  

BU (%) 6.0 4.2 13.15 13.38  

 

5.3 Optimal Bandwidth Allocation for Multi-Client System Using ANN 

Unlike the single client system, the weight of each DC motor and total bandwidth 

utilization should be considered to find the optimal bandwidth allocation for a multi-client 

system. A diagram of an ANN is presented in Fig. 5-12 to determine the optimal sampling 
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frequency for four DC motor systems. Six inputs are the weight of each DC motor and the 

estimated disturbance and safety margin of BU, and the output is the optimal sampling 

frequencies of each DC motor. Ten neurons and two layers are used for the ANN and the 

Elliot-sigmoid function is chosen as an active function to take adavantage of faster 

calculation time. To have various data set to train and validate the ANN method, 10 752 

pieces of data are obtained based using the PIF method, described in Section 4, to find the 

optimal sampling frequency when the standard deviation of disturbance increases from 

zero to 1 with a rate of increase of 0.2, the safety margin of BU increases from 0% to 60% 

with a rate of increase of 10%, and the weights of the DC motor systems increase from 1 

to 4 with a rate of increase of 1. The bias of 1st layer are 0.384, −0.182, −2.989, 1.0318, 

2.806, −60.499, 0.1580, −52.228, −41.761, and −44.019, respectively. The weights of 1st 

layer are 0.013, 0.002, 0.001, 0.002, 0.126, -0.591, 0.060, -0.099, 0.032, 0.032, 0.270, 

−0.343, 0.493, 0.225, −1.141, 0.169, −0.320, 2.298, −0.165, 0.331, −0.065, −0.068, 0.098, 

−0.715, −0.479, −0.216, −0.145, 1.044, 0.295, −2.171, 12.885, −9.423, −9.624, −8.953, 

−24.500, −20.737, −0.018, 0.018, −0.007, −0.007, −0.208, 0.291, −7.899, −8.070, −8.042, 

11.053, −21.477, −17.731, −6.555, −6.249, 8.917, −6.498, −16.982, −14.274, -6.914,  

9.388, −6.434, −6.770, −18.061, and −14.913, repectively. The bias of 2nd layer is −0.280, 

−0.567, −0.409, and −0.422, respectively. The weights of 2nd layer are 1.401, −0.023, 

0.100, −0.302, −0.110, 0.636, 0.921, −0.090, −0.087, −0.099, 0.687, 0.937, 0.043, 0.587, 

−0.043, −0.082, 1.920, −0.082, −0.088, 0.664, 0.830, 0.028, −0.209, −0.103, −0.041, 

−0.076, 0.789, −0.0714, 0.667, −0.087, 0.833, 0.026, 0.042, −0.104, 0.217, −0.075, 0.795, 

0.648, −0.073, and −0.082, repectively. 
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Figure 5-12. Diagram of an ANN for the optimal bandwidth allocation of four DC 

motor systems 

 

Figure 5-13. Error histogram of an ANN for the optimal bandwidth allocation of four 

DC motor systems 
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Figure 5-14. The R-squared value of the ANN to find the optimal bandwidth 

allocation 
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Figure 5-15. ANN training performance 

 

Figure 5-16. ANN training results: target (star) vs trained data (circle) 
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Figure 5-17. Reduced ANN training results: target (star) vs trained data (circle) 

Figures 5-13 to 5-17 present the training results of an ANN to find the optimal 

bandwidth allocation of a four DC motor system. Most of the errors are in ±20 Hz as 

illustrated in Fig. 5-13, the R-squared value is 0.94 as in Fig 5-14, and the training 

performance of ANN is presented in Fig. 5-15. Most of the data are located lower than 

170 Hz or higher than 280 Hz in Fig. 5016 because most of the optimal frequencies are 

located in a low frequency or a high frequency range as described in Fig. 4-2. Without 

disturbance the highest sampling frequencies such as 400 Hz and 333 Hz present best 

performance, and if the standard deviations of disturbance increase, the optimal sampling 

frequency drastically moves to lower frequencies such as 200 Hz, 150 Hz, 100 Hz, and 50 

Hz. Since as many as 10 752 pieces of data are used, it is difficult to distinguish between 
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the target optimal sampling frequencies and the trained data in Fig. 5-16. Thus, a reduced 

version containing 106 pieces of data is presented in Fig 5-17. Trained data can follow 

target data with a small error. Therefore, the ANN method can be used to find optimal 

sampling frequency of the NCS. 

 

5.3.1 Experimental result – Case 1: a ±0.8-Vdisturbance, 10% safety margin of BU, 

1.25-ms total time delay, weights of DC motor systems: 4, 3, 2, and 1, repectively 

Figure 5-18 presents the experimental results of the ANN method where a ±0.8-V 

disturbance is intentionally injected, the safety margin of BU is 10%, total time delay is 

1.25 ms, and the weight of each DC motor is 4, 3, 2, and 1, respectively. The optimal 

sampling frequencies of each system are 125.3 Hz, 123.3 Hz, 121.6 Hz and 119.3 Hz and 

IAEs are 6844.1, 7030.2, 6975.3 and 7098.9, respectively as seen in Table 5.2. Despite a 

safety margin of BU of 10%, a 90% bandwidth is enough to operate in optimal sampling 

frequencies for four DC motor systems because four DC motor systems used a total of 

62.5% BU to operate in optimal sampling frequencies. Thus, optimal sampling frequencies 

are almost identical in spite of the different weights of each system. Experimental results 

of the PIF are included in Table 5.2 as well to compare results. 
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Figure 5-18. IAEs of DC motors in the case of a ±0.8-V disturbance, 10% safety 

margin of BU, 1.25-ms total time delay, weights of DC motor systems: 4, 3, 2, and 1, 

repectively 

Table 5.2. Comparison of optimal sampling frequencies and IAEs between the PIF 

and ANN method in Case 1 

 DC1 DC2 DC3 DC4 

Optimal sampling 

frequency 

PIF 122.2 122.2 122.2 122.2 

ANN 125.3 123.3 121.6 119.3 

IAE 
PIF 6865.8 7061.6 6917.1 7108.7 

ANN 6844.1 7030.2 6975.3 7098.9 
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5.3.2 Experimental result – Case 2: a ±0.8-V disturbance, 10% safety margin of BU, 

1.25-ms total time delay, weights of DC motors: 4, 3, 2, and 1, respectively, with 

a maglev and a wheelchair robot system 

 

Figure 5-19. IAEs of the DC motors in the case of a ±0.8-V disturbance, 10% safety 

margin of BU, 1.25-ms total time delay, and weights of DC motors: 4, 3, 2, and 1, 

respectively, with a maglev and a wheelchair robot system 

Figure 5-19 presents the experimental results of an ANN method where a ±0.8-V 

disturbance is intentionally injected, the safety margin of BU is 10%, total time delay is 

1.25 ms, and the weight of each DC motor is 4, 3, 2, 1, respectively, with a maglev and 

wheelchair robot systems. Since the maglev system with 3-ms sampling period requires 

44% BU and the wheelchair robot uses 1% BU, only 45% of the bandwidth can be utilized. 

Optimal sampling frequencies of each system are 105.9 Hz, 100.2 Hz, 92.1 Hz, and 64.9 

Hz and the IAEs are 7221.8, 7440.2, 7852.1 and 10 344 as shown in Table 5.3. Due to the 
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different weight, each system has a different optimal sampling frequency and system 

performance increases in the ascending order of weights. Experimental results of the PIF 

are included in Table 5.3 as well for comparison. 

 

Table 5.3. Comparions of IAEs between the PIF and ANN method in Case 2 

 DC1 DC2 DC3 DC4 

Optimal sampling 

frequency (Hz) 

PIF 103.7 98.7 89.7 67.9 

ANN 105.9 100.2 92.1 64.9 

IAE (rps2) 
PIF 7281.7 7689.2 8002.9 9945.8 

ANN 7221.8 7440.2 7852.1 10344 

 

5.4 Conclusion of ANN Method for NCS with Disturbance and Noise to Find 

Optimal Bandwidth Allocation 

Unlike the nonlinear constraint optimization method using the PIF, the ANN 

method does not need to operate hundreds of iterations to determine optimal bandwidth 

allocation every time. Thus, it is more beneficial in real-time operation such as NCSs 

compared to the PIF method. Also, by training a well-selected data set, the estimated 

disturbance and optimal sampling frequency results can be close to the results of the PIF. 
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6. Q-LEARNING METHOD FOR THE NCS WITH DISTURBANCE 

AND NOISE 

                  

Start

End

Initialize Q values

Perform action

Measure reward r

Update Q values

Choose an action a

Observe the current state s

 

Figure 6-1. Flowchart of the Q-learning algorithm for an NCS 

Figure 6-1 presents a flowchart of the Q-learning algorithm for an NCS. First, Q-

values are initialized at any arbitrary values. In this dissertation, initial Q-values are set to 
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zero. Then, a current state s is observed. The weight of each system, safety margin of BU, 

and standard deviation of disturbance make up the current state. Based on the current Q-

value and using an ε-greedy strategy, an action a (sampling frequency) in the current state 

s is selected. We first generate a random number, and if the number is greater than ε, then 

an “exploitation” is performed. If not, an “exploration” is done. After taking the action a, 

the outcome state s´ and reward r is observed. Q-values are updated according to Eq. 2.4. 

The process is repeated until learning is stopped or a terminal state is reached. 

 In an NCS, if the estimated disturbance, weight of each system, and safety margin 

of BU are known for a current state, the optimal bandwidth can be calculated by updating 

Q-values and choosing an action which has a maximum Q-value. The advantage of the Q-

learning algorithm is that it does not need experimental data such as an ANN or PIF to 

find the relationship between the amount of disturbance and the optimal sampling 

frequency. Without knowledge of the PIFs, the Q-learning method can find an optimal 

bandwidth allocation for an NCS. 

 

6.1 Optimal Bandwidth Allocation for a DC Motor System Using Q-learning 

Figure 4-24 presents how the standard deviation of disturbance, σ, was changed 

for the experiment. Figures 6-2 to 6-5 show how Q-values are changed for 50 000 

iterations for a DC motor system with a ±1.5-V, ±3-V, ±1-V, ±2-V disturbance, 

respectively. Possible actions are to select a 3-ms to 30-ms sampling period with 

increments of 1 ms. Thus, the total number of possible actions are 28. Initial Q-values are  
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Figure 6-2. Changes in two arbitrary Q-values and an optimal Q-value for a DC 

motor system with a ±1.5-V disturbance 

set to zero, learning rate α is 0.25, and the discount factor γ is zero because the chosen 

action (sampling frequency) does not change the status of the system, which consists of 

the weight of each DC motor system, safety margin of BU, and standard deviation of 

disturbance. A reward is 1 when an error variance is equal to or less than three consecutive 

previous results, or the reward is 0. The ε-greedy function is designated as g1/(g2+k), where 

g1 is 300, g2 is 400, and k is the number of iterations. The ε-greedy function allows the 

system to explore randomly at the beginning and the ratio of exploitation increases when 

the number of iterations grows. The g1 and g2 depend on the number of actions. 

 Figure 6-2 presents two arbitrary Q-values and an optimal Q-value change for a 

DC motor system with a ±1.5-V disturbance. As iterations increased, optimal Q-values 

converged to 1 and others became small numbers, less than 0.1. After 50 000 iterations, 
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Q-values became 0, 0.0003, 0, 0.0016, 0.0042, 0.0047, 1.0000, 0.0006, 0.0044, 0.0519, 

0.0020, 0.0105, 0.0006, 0.0014, 0.0001, 0.0013, 0.0010, 0.0008, 0.0658, 0, 0, 0.0020, 

0.0001, 0, 0, 0.0001, 0.0003, and 0, respectively. The optimal sampling frequency was 

111.1 Hz, which corresponds to the index of the highest Q-value. 

Figure 6-3 presents two arbitrary Q-values and an optimal Q-value change for a 

DC motor system with a ±3-V disturbance. As iterations increased, optimal Q-values 

converged to 1 and others became small numbers, less than 0.1. After 50 000 iterations, 

Q-values became 0, 0, 0, 0.0001, 0.0006, 0.0001, 0.0019, 0.0033, 0.0006, 0.0375, 0.0449, 

0.0009, 1.0000, 0.0011, 0.0007, 0.0014, 0.0143, 0.0002, 0.0005, 0.0008, 0.0855, 0.0008, 

0.0003, 0.0001, 0, 0.0001, 0.0011, and 0.0012, respectively. The optimal sampling 

frequency was 66.7 Hz, which corresponds to the index of the highest Q-value. 

Figure 6-4 shows two arbitrary Q-values and an optimal Q-value change for a DC 

motor system with a ±1-V disturbance. As iterations increased, optimal Q-values 

converged to 1 and others became small numbers less than 0.1. After 50 000 iterations, Q-

values became 0.0001, 0.0049, 0.0039, 0.0012, 0.0067, 1.0000, 0.0027, 0.0057, 0.0117, 

0.0109, 0.0001, 0.0288, 0.0001, 0.0015, 0.0106, 0.0041, 0.0392, 0, 0, 0.0633, 0.0781, 0, 

0.0004, 0, 0, 0, 0, and 0, respectively. The optimal sampling frequency is 125 Hz, which 

corresponds to the index of the highest Q-value. 
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Figure 6-3. Changes in two arbitrary Q-values and an optimal Q-value for a DC 

motor system with a ±3-V disturbance 

 

 

Figure 6-4. Changes in two arbitrary Q-values and an optimal Q-value for a DC 

motor system with a ±1-V disturbance 
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Figure 6-5 shows two arbitrary Q-values and an optimal Q-value change for a DC 

motor system with a ±2-V disturbance. As the iterations increased, the optimal Q-value 

converged to 1 and others became small numbers, less than 0.1. After 50 000 iterations, 

the Q-values became 0.0001, 0.0001, 0, 0.0011, 0.0020, 0.0003, 0.0032, 1.0000, 0.0007, 

0.0157, 0.0001, 0.0196, 0.0004, 0.0020, 0.0005, 0.0003, 0.0006, 0.0003, 0.0139, 0.0014, 

0.0001, 0.0410, 0, 0.0025, 0.0005, 0.0001, 0.0002, and 0.0003, respectively. The optimal 

sampling frequency was 100 Hz, which corresponds to the index of the highest Q-value. 

 

 

Figure 6-5. Changes in two arbitrary Q-values and an optimal Q-value for a DC 

motor system with a ±2-V disturbance 
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Figure 6-6. Changes of optimal sampling frequencies using the Q-learning during 15 

000 iterations when various standard deviations of disturbances were injected into 

the system 

 

 

Figure 6-7. Optimal bandwidth utilization using the Q-learning during 15 000 

iterations when various standard deviations of disturbances were injected into the 

system 
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Figures 6-6 and 6-7 present changes of sampling frequencies and BU using Q-

learning when the standard deviations of disturbances changed during 15 000 iterations as 

shown in Fig. 4-24. In this experiment, we limited possible sampling frequencies to 333 

Hz, 167 Hz, 111 Hz, 83 Hz, 67 Hz, 56 Hz, 48 Hz, and 33 Hz to compare the results with 

previous results from the PIF and ANN. After, the standard deviations of disturbances was 

estimated using either the PIF or ANN method, the Q-learning algorithm was used to find 

the optimal sampling frequency. First, estimated disturbance is sent to the server. The 

server identifies the current status and chooses the optimal action which has the highest 

Q-value. The average BU of the dynamic bandwidth allocation method using the Q-

learning method is about 13.98%. 

 

 

Figure 6-8. Comparison of the IAEs between fixed sampling periods (3 ms, 6 ms, 9 

ms, 12 ms, 15 ms, 21 ms, and 30 ms) and the dynamic bandwidth allocation method 

susing the PIF, ANN, and Q-learning 
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Table 6.1. Comparison of error variances and IAEs between fixed and dynamic 

sampling periods using Q-learning, PIF and ANN method, repectively 

Sampling Time (ms) 3 6 9 12 15 

Error variance 6.8565 3.5233 2.7608 2.3455 2.2438 

IAE 29864 21326 18964 17802 17787 

BU (%) 41.7 20.8 13.9 10.4 8.3 

Sampling Time (ms) 21 30 PIF ANN 
Q-

learning 

Error variance 2.6616 3.8503 2.0202 2.0530 2.0916 

IAE 20195 24885 16615 16773 16945 

BU (%) 6.0 4.2 13.15 13.38 13.98 

 

Figure 6-8 presents the experimental results of the dynamic bandwidth allocation 

method using Q-learning to compare it with fixed sampling periods, the PIF and the ANN 

methods. Table 6.1 shows the exact error variances, IAEs, and BUs to allow comparisons 

between the fixed and dynamic sampling periods using the Q-learning, ANN, and PIF 

methods. The IAE of Q-learning is 16 945 and the BU is 13.98%. Compared to fixed 

sampling periods,  a dynamic bandwidth allocation method such as Q-learning, PIF, or 

ANN shows best performance of 16 945, 16 615, and 16 773 IAEs and uses economical 

BUs of 13.98%, 13.15%, and 13.38%, respectively. 

 

6.2 Optimal Bandwidth Allocation for a Multi-Client System Using Q-learning 

6.2.1 Experimental result – Case 1: a ±0.8-V disturbance, 10% safety margin of BU, 

1.25-ms total time delay, weights of DC motor systems: 4, 3, 2, and 1, repectively 

Unlike the single-client system, the weight of each DC motor and total bandwidth 

utilization should be considered to find the optimal bandwidth allocation for a multi-client 

system. Possible actions for each DC motor system were set to select a sampling frequency 
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among 333 Hz, 250 Hz, 200 Hz, 167 Hz, 143 Hz, 125 Hz, 111 Hz, 100 Hz, 91 Hz, 83 Hz, 

77 Hz, 71 Hz, 67 Hz, 56 Hz, 48 Hz, 42 Hz, 37 Hz, and 33 Hz. Thus, a total of 104 976 

(=18×18×18×18) actions were available. However, available BU was considered at the 

beginning and possible actions were reduced to 98 561 after the actions exceeding the 

limitation of BU were eliminated. This process removes unnecessary calculations during 

Q-learning based on each scenario. Initial Q-values were set to zero, the learning rate α 

was 0.25, and the discount factor γ was zero because the chosen action does not change 

the status of the system such as the weight of each system, safety margin of BU, or 

standard deviation of disturbance. Too low a learning rate does not progresses and too 

high a learning rate causes instability and does not converges. Thus, to select a proper 

learning rate is important. In this dissertation, the learning rate, 0.25, was selected after 

dozens of simulation. The reward is 1 when the error variance is equal to or less than 

twenty consecutive previous results or the reward is 0. The ε-greedy function was 

designated as g1/(g2+k), where g1 is 1 500 000, g2 is 2 000 000, and k is the number of 

iterations. Since more than 50 times actions are available compared to cases in section 6.1, 

much larger number of g1 and g2 are selected. Using the ε-greedy function, the system 

explores randomly at the beginning and increases the ratio of exploitation when the 

number of iterations grows. 
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Figure 6-9. Changes in two arbitrary Q-values and an optimal Q-value for four DC 

motor systems with a ±0.8-V disturbance, 10% safety margin of BU, 1.25-ms total 

time delay, weights of DC motor systems: 4, 3, 2, and 1, repectively 

Figure 6-9 shows two arbitrary Q-values and an optimal Q-value change for a four 

DC motor system with a ±0.8-V disturbance, a 10% safety margin of BU, and a 4, 3, 2, 1 

weight for each motor, respectively. As iterations increased, the optimal Q-value 

converged to 1 and others became small numbers, less than 0.1. The optimal sampling 

frequencies for each DC motor were 125 Hz, 125 Hz, 125 Hz, and 125 Hz, respectively, 

which corresponds to the index of the highest Q-value. 
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Figure 6-10. IAEs of four DC motor systems with a ±0.8-V disturbance, 10% safety 

margin of BU, 1.25-ms total time delay, weights of DC motor systems: 4, 3, 2, and 1, 

repectively 

Figure 6-10 presents the experimental results of the Q-learning algorithm where a 

±0.8-V disturbance was intentionally injected, the safety margin of BU was 10%, the total 

time delay of each DC motor system was 1.25 ms, and the weight of each DC motor was 

4, 3, 2, and 1, respectively. The optimal sampling frequencies of each system are 125 Hz, 

125 Hz, 125 Hz, and 125 Hz and the IAEs are 6793.0, 6948.3, 6961.6, and 7035.6 as seen 

in Table 6.2. Despite a safety margin of 10%, an available 90% bandwidth is enough to 

operate the system at an optimal sampling frequency for the four DC motors since the total 

BU is 62.4%. Thus, the optimal sampling frequencies of the all DC motors are identical 

despite the different weights of each motor. Experimental results of the ANN and PIF are 

also included in Table 6.2 to compare them with those of the Q-learning. 



 

110 

 

Table 6.2. Comparison of IAEs and BUs between the PIF, ANN, and Q-learning 

method in Case 1 

 DC1 DC2 DC3 DC4 

Optimal 

sampling 

frequency 

(Hz) 

PIF 122.2 122.2 122.2 122.2 

ANN 125.3 123.3 121.6 119.3 

Q-learning 125 125 125 125 

IAE 

PIF 6865.8 7061.6 6917.1 7108.7 

ANN 6844.1 7030.2 6975.3 7098.9 

Q-learning 6793.0 6948.3 6961.6 7035.6 

BU (%) 

PIF 15.3 15.3 15.3 15.3 

ANN 15.7 15.4 15.2 14.9 

Q-learning 15.6 15.6 15.6 15.6 

Total BU (%) 

PIF 61.2 

ANN 61.2 

Q-learning 62.4 

 

6.2.2 Experimental result – Case 2: a ±0.8-V disturbance, 10% safety margin of BU, 

1.25-ms total time delay, weights of DC motors: 4, 3, 2, and 1, respectively, with 

a maglev and a wheelchair robot system 

Possible actions for each DC motor system were set to select a sampling frequency 

among 333 Hz, 250 Hz, 200 Hz, 167 Hz, 143 Hz, 125 Hz, 111 Hz, 100 Hz, 91 Hz, 83 Hz, 

77 Hz, 71 Hz, 67 Hz, 56 Hz, 48 Hz, 42 Hz, 37 Hz, and 33 Hz as in Case 1. Thus, a total 

of 104 976 actions were available. However, the available BU was considered at the 

beginning and the possible actions were reduced to 33 833 after the actions exceeding the 

limitation of BU were eliminated. Initial Q-values were set to zero, the learning rate α was 

0.25, and the discount factor γ was zero because the chosen action does not change the 
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weight of the system, safety margin of BU, or standard deviation of disturbance. The 

reward is 1 when the MSE is equal to or less than twenty consecutive previous results or 

the reward is 0. The ε-greedy function was designated as g1/(g2+k), where g1 is 1 500 000, 

g2 is 2 000 000, and k is the number of iterations. The ε-greedy function allows the system 

to explore randomly at the beginning and the ratio of exploitation increases when the 

number of iterations grows. 

 

 

Figure 6-11. Changes in two arbitrary Q-values and an optimal Q-value for four DC 

motor systems with a ±0.8-V disturbance, 10% safety margin of BU, 1.25-ms total 

time delay, weights of DC motor systems: 4, 3, 2, and 1, repectively, with a maglev 

and a wheelchair robot system 
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Figure 6-11 shows two arbitrary Q-values and an optimal Q-value change for DC 

motor systems with a ±0.8-V disturbance, a 10% safety margin of BU, and a 4, 3, 2, 1 

weight for each DC motor system, respectively, with a maglev and a wheelchair robot 

system. As iterations increased, the optimal Q-value converged to 1 and others became 

small numbers, less than 0.1. The optimal sampling frequency for each DC motor system 

was 100 Hz, 100 Hz, 91 Hz, and 67 Hz, respectively which corresponds to the index of 

the highest Q-value. 

 

 

 

Figure 6-12. IAEs of four DC motor systems with a ±0.8-V disturbance, 10% safety 

margin of BU, 1.25-ms total time delay, weights of DC motor systems: 4, 3, 2, and 1, 

repectively, with a maglev and a wheelchair robot system 
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Table 6.3. Comparison of IAEs and BUs between the PIF, ANN, and Q-learning 

method in Case 2 

 DC1 DC2 DC3 DC4 

Optimal 

sampling 

frequency 

(Hz) 

PIF 103.7 98.7 89.7 67.9 

ANN 105.9 100.2 92.1 64.9 

Q-learning 100 100 91 67 

IAE 

PIF 7281.7 7689.2 8002.9 9945.8 

ANN 7221.8 7440.2 7852.1 10344 

Q-learning 7275.5 7394.6 7660.5 9666.3 

BU (%) 

PIF 13.0 12.3 11.2 8.5 

ANN 13.2 12.5 11.5 8.1 

Q-learning 12.5 12.5 11.4 8.4 

Total BU (%) 

PIF 90 

ANN 90.3 

Q-learning 89.8 

 

Figure 6-12 presents the experimental results of a Q-learning algorithm where a 

±0.8-V disturbance was intentionally injected, the safety margin of BU was 10%, total 

time delay is 1.25 ms, and the weight of each DC motor was 4, 3, 2, and 1, respectively, 

with a maglev and a wheelchair robot system. Since the maglev system with a 3-ms 

sampling period requires 44% BU and the wheelchair robot with 300-ms sampling period 

uses 1% BU, only 45% of the bandwidth can be utilized. The optimal sampling frequencies 

for each system were 100 Hz, 100 Hz, 91 Hz, and 67 Hz and the IAEs were 7275.5, 7394.6, 

7660.5, and 9666.3 as shown in Table 6.3. Due to the weight, each system had a different 

optimal sampling frequencies and system performance increased in the order of the higher 

weight number. The total BU using the Q-learning algorithm was 89.8% including four 
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DC motor systems, a maglev, and a wheelchair robot system.  Experimental results for the 

PIF and ANN are also included in Table 6.3 for comparison. 

6.3 Conclusion: Q-learning Method for NCS with Disturbance and Noise to Find 

the Optimal Bandwidth Allocation 

Unlike the PIF and ANN methods, the Q-learning algorithm does not need 

experimental data to find the optimal sampling frequency and does not have to model the 

PIFs. The Q-learning method can guide an optimal bandwidth allocation for an NCS 

without knowledge of PIFs after the standard deviations of disturbances are estimated 

using the PIF or ANN by updating the Q-values. Optimal sampling frequencies based on 

the Q-learning algorithm are close to those obtained by using the PIF and ANN. Thus, the 

Q-learning algorithm is another good solution for finding the optimal bandwidth. 
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7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

7.1 Conclusions 

Although NCSs have many benefits such as tele-operation, reduced weight, and 

easy maintenance, NCSs also have some challenges such as disturbance, noise, bandwidth 

limitations, time delays, and package dropout. A higher sampling frequency does not 

guarantee better performance in NCSs, and each system has different specifications and 

requirements to control.  

This dissertation presented three possible solutions to these problems. Exponential 

and 4th-order polynomial functions were formulated to describe the system performance 

versus the sampling frequency with fixed disturbances and noises. However, the 

exponential approximations require more calculation time, and the 2nd-order polynomials 

have more deviations from experimental data than the 4th-order polynomials. Thus, a 4th-

order polynomial approximation was chosen in this research to find the optimal sampling 

frequency. The relationship between the standard deviations of disturbances and the 

performance of a system with a fixed sampling frequency could be easily approximated 

by using a 2nd-order polynomial. Thus, the relationship between the system performance 

and sampling frequency and the standard deviations of disturbances could be 

approximated using a 6th-degree polynomial with two different variables such as the 

sampling frequency and the disturbance. When the error variance was calculated and the 

sampling frequency for the experiment was identified, the standard deviations of 

disturbances were estimated using the PIF, which presented the relationship between 

disturbance and system performance with a fixed sampling frequency. After the standard 
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deviations of estimated disturbances are obtained, the optimal sampling frequency for a 

DC motor system could be determined using the PIF. A dynamic bandwidth-allocation 

method was proposed and experimental results were provided for the single-server and 

single-client DC motor system. When the standard deviations of estimated disturbancse, 

the safety margin of BU, the weight of each DC motor system, and the total time delay of 

each system were identified, the optimal sampling frequency could be determined by 

solving the nonlinear constraint optimization using the SQP methods. Experimental results 

proved the validity of this method. 

With experimental data, an ANN could infer the standard devation of disturbance 

and noise according to the sampling frequency and error variance as inputs. To validate 

the proposed method, the actual injected disturbance and estimated disturbance using the 

ANN were compared. The dynamic bandwidth allocation for a single-server and single-

client system was suggested. It was proved by experimental results, and the results were 

compared with the fixed sampling periods and the PIF method. Optimal bandwidth 

allocation using the ANN for a multi-server and multi-client system with disturbance, 

noise, safety margin of BU, and weight of each system was proposed. Unlike the nonlinear 

constraint optimization method using the PIF, the ANN method did not need to perform 

hundreds of iterations to solve the nonlinear constraint optimization problem to find the 

optimal bandwidth allocation every time for a multi-server, multi-client system. Thus, the 

ANN is more appropriate in real time operations such as NCSs compared to the PIF 

method. Also, by training a well-selected data set, the estimated disturbance and optimal 
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sampling frequency showed comparable results as the nonlinear constraint optimization 

method using the PIF. 

A Q-learning algorithm does not need experimental data to obtain optimal 

sampling frequency and does not have to model the PIF in contrast with the PIF and ANN 

methods. Q-learning can be a guide to an optimal bandwidth allocation method for an NCS 

without knowledge of the PIFs after the standard deviations of disturbances are estimated 

using the PIF or ANN by updating Q-values using the Bellman equation as shown in Eq. 

2.4. To validate a dynamic bandwidth allocation using the Q-learning algorithm for a 

single-server, single-client system, experimental data were compared with fixed sampling 

frequencies and the PIF and ANN. Experimental results using the Q-learning algorithm 

presented better performance than that with fixed sampling frequencies, which is close to 

the results of the PIF and ANN. Optimal bandwidth allocation using Q-learning for a 

multi-server, multi-client system with disturbance and noise, where the safety margin of 

BU and the weight of each system were identified, was also suggested and results were 

compared with the PIF and ANN. The experimental results verified that Q-learning 

algorithm was another good solution to find the optimal bandwidth allocation. 

 

7.2 Suggestions for Future Work 

In this dissertation, three solutions were proposed to find the optimal bandwidth 

allocation for NCSs with disturbances and noises. Several possible further research 

directions are explored in this section. 
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The plant input disturbance and the sensor output noise are assumed to be zero-

mean WGN. The standard deviation of sensor output noise was assumed to be small and 

fixed in this dissertation. Thus, the sensor noise effect was included in the error variance 

of disturbance when the injected input disturbance was zero. NCSs with other types and 

amounts of disturbance or noise such as a constant value, pink noise, grey noise, and a 

mixture of them should be studied. In this dissertation, the optimal bandwidth allocation 

for four identical DC motor systems was studied. However, an NCS with different systems 

having different characteristics should also be studied. Other regression algorithms and 

reinforcement learnings can be considered to find the optimal bandwidth allocations, and 

the results should be compared with those presented in this dissertation. 
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APPENDIX A 

C/C++ CODES FOR THE NCS 

 

A.1  C Code for Server [69] 

//This code includes all the control laws for six clients: a ball maglev, four DC motors, // 

and an Autonomous wheelchair. 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

#include <string.h> 

#include <asm/errno.h> 

#include <sys/types.h> 

#include <sys/user.h> 

#include <sys/mman.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <sched.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

#include <sys/ioctl.h> 

#include <sys/time.h> 

#include <errno.h> 

#include <inttypes.h> 

#include "defines.h"  
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#define KEEP_STATIC_INLINE 

#include <rtai_lxrt_user.h> 

#include <rtai_lxrt.h> 

RTIME time_stamp; 

//data from server to client 

double u0; //current control data 

double u1e; //below are predicted control data for ball maglev 

double u2e; 

double u3e; 

double u4e; 

double u5e; 

double u6e; 

double u7e; 

double u8e; 

//data from client to server 

double y0; //below are sensor data from clients 

double y_1; 

double y_2; 

double y_3; 

double y_4; 

double y_5; 

double y_6; 

double y_7; //client ID number. 

double u_1; //control data 

double u_2; //control data 

//AR model predicted data 

double y_hat_1; 

double y_hat_2; 

double y_hat_3; 
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double y_hat_4; 

double y_hat_5; 

double y_hat_6; 

double y_hat_7; 

double y_hat_8; 

FILE *fp; 

 

// variables for noise 

FILE *fp1; 

float noise[20000]; 

int idx=0; 

float dist=0; // multiplier for disturbance 

 

//variables for DC motor 1 

double y_dot_desi = 7.0; //desire speed of DC motor [rps] 

double e0 = 0;  

double e1 = 0;  

double u0 = 0;  

double u1 = 0;  

float e_dist = 0; // estimated disturbance 

 

//DC motor 2 

double y_dot_desi2 = 7.0;  

 

//DC motor 3 

double y_dot_desi3 = 7.0;  

 

//DC motor 4 

double y_dot_desi4 = 7.0;  
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// Variables for Ball Maglev  

double y_hat_desi = 0.005; // User input (desired set point) 

double v_hat_err = 0.0; 

double k = 0.083; //small k -> small vibration current setting (Gain parameter) 

double c = 0.0; //Controller constant 

double v = 0.975; //current setting for initial offset 

double er0 = 0.0; //Input to controller at time n 

double er1 = 0.0; //Intput to controller at time n-1 

double er2 = 0.0; //Intput to controller at time n-2 

int i=0; 

 

// for display, file print counters 

int p1 = 0; 

int p2 = 0; 

int p3 = 0; 

int p4 = 0; 

int p5 = 0; 

int p6 = 0; 

 

//rtai declarations 

unsigned long mtsk_name; 

RT_TASK *mtsk; 

struct sched_param mysched; 

void terminate_normally(int signo) 

{ 

   fflush(stdin); 

 if(signo==SIGINT || signo==SIGTERM) 

 { 

  printf("Terminating the program normally\n");  
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  //make the process soft real time process 

  rt_make_soft_real_time(); 

  printf("MASTER TASK YIELDS ITSELF\n"); 

  rt_task_yield(); 

  printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

  stop_rt_timer(); 

  printf("MASTER TASK DELETES ITSELF\n"); 

  rt_task_delete(mtsk); 

  printf("END MASTER TASK\n"); 

 } 

   exit(0); 

} 

 

main(int argc, char *argv[]) 

{ 

    int sockid, nread, addrlen; 

int nw, nr; 

int send_buffer_size, recv_buffer_size; 

unsigned short server_port = 0;  

struct sockaddr_in my_addr, client_addr; 

struct send_data *send_buffer = NULL; 

struct recv_data *recv_buffer = NULL; 

 RTIME start_time = 0; 

 RTIME end_time = 0; 

 RTIME actual_period = 0; 

 RTIME difference = 0; 

 size_t iRet = 0; 

 int esti_count = 0; 

 double vhaterr_prev[5] = {0.0, 0.0, 0.0, 0.0, 0.0}; 
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 int j=0;  

 //signal handling 

 struct sigaction sa; 

 //Initialize the signal handling structure 

 sa.sa_handler = terminate_normally; 

 sa.sa_flags = 0; 

 sigemptyset(&sa.sa_mask); 

 if(sigaction(SIGINT, &sa, NULL)) 

 { 

  perror("sigaction"); 

 } 

 if(sigaction(SIGTERM, &sa, NULL)) 

 { 

  perror("sigaction"); 

 }    

fprintf(stderr, "creating socket\n"); 

if ( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {  

  perror("socket() failed "); 

fprintf(stderr, "%s: socket error: %d\n", argv[0], errno);  

exit(2);  

} 

fprintf(stderr, "binding my local socket\n"); 

server_port = 4444; 

    memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

my_addr.sin_family = AF_INET; 

my_addr.sin_addr.s_addr = htons(INADDR_ANY); 

my_addr.sin_port = htons(server_port); 

if ( (bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ){  

 perror("bind() failed "); 
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 fprintf(stderr, "bind() errno = %d\n", errno);  

 exit(4);  

} 

recv_buffer_size = sizeof(struct recv_data);  

if(( recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data))) 

==NULL) { 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

exit(4); 

} 

send_buffer_size = sizeof(struct send_data);  

if(( send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data))) 

==NULL) { 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

exit(4); 

} 

addrlen = sizeof(client_addr); 

fprintf(stderr, "%s: starting blocking message read\n", argv[0]); 

mysched.sched_priority = 99; 

 if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 ) { 

 puts(" ERROR IN SETTING THE SCHEDULER UP"); 

 perror( "errno" ); 

 exit( 0 ); 

  }        

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 mtsk_name = nam2num("MTSK"); 

  if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) { 

  printf("CANNOT INIT MASTER TASK\n"); 

  exit(1); 

 } 
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 start_time = rt_get_cpu_time_ns(); 

 printf("main: start_time = %lld\n", start_time); 

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

 actual_period = start_rt_timer(nano2count(25000)); 

 printf("actual_period = %lld\n", actual_period); 

 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 

 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000000), 

nano2count(3000000));  

   

 fp = open("result.txt", "w"); // Save result 

 fp1 = fopen("random.txt", "r"); // Read white gaussian noise 

  

 if(fp1 == NULL) 

 { 

     printf("could not open file.\n"); 

 } 

 while(!feof(fp1)) { 

 fscanf(fp1, "%f,", &noise[idx]); 

 idx+=1; 

 } 

 

while( 1 ) 

{ 

FILE *fp = NULL; 

 float print_data[200000]; 

 int loop_count = 0; 

 fp = fopen("result.txt", "W"); 

 if(fp == NULL) 

 { 
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     printf("could not open file"); 

 } 

 nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct sockaddr 

*) &client_addr, &addrlen); 

 if( nr <= -1 ) {  

  fprintf(stderr, "recvfrom() errno = %d\n", errno); 

  exit(10); 

 }     

 start_time = rt_get_cpu_time_ns(); 

 y0 = recv_buffer->y0; 

 y_1 = recv_buffer->y_1; 

 y_2 = recv_buffer->y_2; 

 y_3 = recv_buffer->y_3; 

 y_4 = recv_buffer->y_4; 

 y_5 = recv_buffer->y_5; 

 y_6 = recv_buffer->y_6; 

 y_7 = recv_buffer->y_7; 

 u_1 = recv_buffer->u_1; 

 u_2 = recv_buffer->u_2; 

 e_dist = u_1; // estimated disturbance calculated from client 

  

 if(y_7 == 1) {  //Client 1 Ball Maglev 

  er0 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k;  // Error Calculation  

  er1 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k; 

  er2 = (y_hat_desi - (-0.0010108*y_2+0.0114970))*k; 

  u0 = ((0.782*(u_1-v)) + (0.13*(u_2-v)) + (41500.0*er0) - 

(41500.0*1.754*er1) + (41500.0*0.769*er2)) + v; 

       send_buffer->u0 = u0; 
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 y_hat_1 = 0.8122*y0 - 0.3479*y_1 - 0.0294*y_2 + 0.4605*y_3 + 0.0742*y_4 + 

0.1042*y_5 + 0.1117*y_6;// - 0.3561*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k;  // Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k; 

 u1e = ((0.782*(u0-v)) + (0.13*(u_1-v)) + (41500.0*er0) - (41500.0*1.754*er1) + 

(41500.0*0.769*er2)) + v; 

      send_buffer->u1e = u1e; 

 y_hat_2 = 0.3117*y0 - 0.3119*y_1 + 0.4366*y_2 + 0.4482*y_3 + 0.1645*y_4 + 

0.1964*y_5 - 0.2653*y_6;// - 0.2892*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k;  / Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k; 

 u2e = ((0.782*(u1e-v)) + (0.13*(u0-v)) + (41500.0*er0) - (41500.0*1.754*er1) + 

(41500.0*0.769*er2)) + v; 

      send_buffer->u2e = u2e; 

 y_hat_3 = -0.0587*y0 + 0.3281*y_1 + 0.4390*y_2 + 0.3080*y_3 + 0.2195*y_4 

- 0.2329*y_5 - 0.2544*y_6;// - 0.1110*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k;  // Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k; 

 u3e = ((0.782*(u2e-v)) + (0.13*(u1e-v)) + (41500.0*er0) - (41500.0*1.754*er1) 

+ (41500.0*0.769*er2)) + v; 

      send_buffer->u3e = u3e; 

 y_hat_4 = 0.2804*y0 + 0.4594*y_1 + 0.3097*y_2 + 0.1925*y_3 - 0.2372*y_4 - 

0.2605*y_5 - 0.1176*y_6;// + 0.0209*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k;  // Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k; 
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 u4e = ((0.782*(u3e-v)) + (0.13*(u2e-v)) + (41500.0*er0) - (41500.0*1.754*er1) 

+ (41500.0*0.769*er2)) + v; 

      send_buffer->u4e = u4e; 

 y_hat_5 = 0.6872*y0 + 0.2122*y_1 + 0.1842*y_2 - 0.1081*y_3 - 0.2397*y_4 - 

0.0884*y_5 + 0.0523*y_6;// - 0.0999*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k;  / Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k; 

 u5e = ((0.782*(u4e-v)) + (0.13*(u3e-v)) + (41500.0*er0) - (41500.0*1.754*er1) 

+ (41500.0*0.769*er2)) + v; 

      send_buffer->u5e = u5e; 

 y_hat_6 = 0.7703*y0 - 0.0548*y_1 - 0.1283*y_2 + 0.0767*y_3 - 0.0374*y_4 + 

0.1239*y_5 - 0.0231*y_6;// - 0.2447*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k;  // Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k; 

 u6e = ((0.782*(u5e-v)) + (0.13*(u4e-v)) + (41500.0*er0) - (41500.0*1.754*er1) 

+ (41500.0*0.769*er2)) + v; 

      send_buffer->u6e = u6e; 

 y_hat_7 = 0.5708*y0 - 0.3963*y_1 + 0.0541*y_2 + 0.3173*y_3 + 0.1810*y_4 + 

0.0572*y_5 - 0.1586*y_6;// - 0.2743*y_7; 

 er0 = (y_hat_desi - (-0.0010108*y_hat_7+0.0114970))*k;  // Error Calculation 

 er1 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k; 

 er2 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k; 

 u7e = ((0.782*(u6e-v)) + (0.13*(u5e-v)) + (41500.0*er0) - (41500.0*1.754*er1) 

+ (41500.0*0.769*er2)) + v; 

      send_buffer->u7e = u7e; 

 send_buffer->u8e = 1; 
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 p1 = p1+1;  

 fprintf(fp,"m02 %d\n",p1); 

 printf("m02  %d\n",p1); 

 } 

  

 if(y_7 == 2){  //Client 2 DC motor  

e1 = y_dot_desi - y0; // Error Calculation 

 

 //control law u(k)=u(k-1)+(1.5+2.5h)*e(k)+(2.5h-1.5)*e(k-1) 

 //PI controller with Kp=1.5 Ki=5 

 u0 = u1 + (1.8+3*h1)*e1 - (1.8-3*h1)*e0 + noise[p2]*0.267;   //* universal 

digital controller (Tustin's method) 

 send_buffer->u0 = u0; 

      send_buffer->u1e = u1e; 

 u2e = 0;  

      send_buffer->u2e = u2e; 

 u3e = 0; 

      send_buffer->u3e = u3e; 

 u4e = 0; 

      send_buffer->u4e = u4e; 

 u5e = 0; 

      send_buffer->u5e = u5e; 

  u6e = 0; 

      send_buffer->u6e = u6e; 

 u7e = 0; 

      send_buffer->u7e = u7e; 

 u8e = 2; 

      send_buffer->u8e = u8e; 
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 p2 = p2+1;  

 printf("  DC1 %d\n", p2); 

 fprintf(fp,"      DC1  %d\n",p2); 

 u1 = u0; 

 u2 = u1; 

 e0 = e1; 

 }  

  

 if(y_7 == 3) { //Client 3 wheelchair robot  

  if(strcmp(y_8,"00010")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"00011")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"00100")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"00101")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"00110")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"00111")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"01000")==0){ 

   send_buffer->u0 = 7.0; 
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  } 

  else if(strcmp(y_8,"01001")==0){ 

   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"01010")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"01100")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"01110")==0){ 

   send_buffer->u0 = 2.0; 

  } 

  else if(strcmp(y_8,"10000")==0){ 

   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"10001")==0){ 

   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"10010")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"10100")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"10110")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"11000")==0){ 
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   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"11001")==0){ 

   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"11010")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"11100")==0){ 

   send_buffer->u0 = 7.0; 

  } 

  else if(strcmp(y_8,"11110")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else if(strcmp(y_8,"00000")==0){ 

   send_buffer->u0 = 10.0; 

  } 

  else{ 

   send_buffer->u0 = 5.0; 

  } 

  u1e = 0; 

       send_buffer->u1e = u1e; 

  u2e = 0;  

       send_buffer->u2e = u2e; 

  u3e = 0; 

       send_buffer->u3e = u3e; 

  u4e = 0; 

       send_buffer->u4e = u4e; 

  u5e = 0; 
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       send_buffer->u5e = u5e; 

  u6e = 0; 

       send_buffer->u6e = u6e; 

  u7e = 0; 

       send_buffer->u7e = u7e; 

  u8e = 2; 

       send_buffer->u8e = u8e; 

  p3 = p3+1; 

  printf("     _wheelchair %d_\n", p3); 

  fprintf(fp,"        wheelchair %d\n",p3); 

  u1 = u0; 

  e0 = e1; 

 } 

 

 if(y_7 == 4) { //Client 4 DC motor2  

  e1 = y_dot_desi2 - y0;  // Error Calculation  

u0 = u1 + (1.8+3*h2)*e1 - (1.8-3*h2)*e0 + noise[p4]*0.267;   // universal 

digital controller (Tustin's method) 

 

  send_buffer->u0 = u0; 

  u1e = 0; 

      send_buffer->u1e = u1e; 

  u2e = 0;  

      send_buffer->u2e = u2e; 

  u3e = 0; 

       send_buffer->u3e = u3e; 

  u4e = 0; 

      send_buffer->u4e = u4e; 

  u5e = 0; 
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      send_buffer->u5e = u5e; 

  u6e = 0; 

      send_buffer->u6e = u6e; 

  u7e = 0; 

      send_buffer->u7e = u7e; 

  u8e = 2; 

      send_buffer->u8e = u8e; 

  p4 = p4+1;  

  printf("     DC2 %d\n", p4); 

fprintf(fp,"         DC2  %d\n",p4); 

  u1 = u0; 

  e0 = e1; 

 }  

 

 if(y_7 == 5) { //Client 5 DC motor3  

  u0 = u1 + (1.8+3*h3)*e1 - (1.8-3*h3)*e0 + noise[p5]*0.267;   // universal 

digital controller (Tustin's method) 

  

  send_buffer->u0 = u0; 

  u1e = 0; 

      send_buffer->u1e = u1e; 

  u2e = 0;  

      send_buffer->u2e = u2e; 

  u3e = 0; 

       send_buffer->u3e = u3e; 

  u4e = 0; 

      send_buffer->u4e = u4e; 

  u5e = 0; 

       send_buffer->u5e = u5e; 



 

146 

 

  u6e = 0; 

      send_buffer->u6e = u6e; 

  u7e = 0; 

      send_buffer->u7e = u7e; 

  u8e = 2; 

       send_buffer->u8e = u8e; 

  p5 = p5+1;  

  printf("      DC3 %d\n", p5); 

fprintf(fp,"          DC3  %d\n",p5); 

  u1 = u0; 

  e0 = e1; 

}  

 

 if(y_7 == 6) { //Client 6 DC motor4  

e1 = y_dot_desi4 - y0;  // Error Calculation  

  u0 = u1 + (1.8+3*h4)*e1 - (1.8-3*h4)*e0 + noise[p6]*0.267;   // universal 

digital controller (Tustin's method) 

 

  send_buffer->u0 = u0; 

  u1e = 0; 

      send_buffer->u1e = u1e; 

  u2e = 0;  

      send_buffer->u2e = u2e; 

  u3e = 0; 

      send_buffer->u3e = u3e; 

  u4e = 0; 

      send_buffer->u4e = u4e; 

  u5e = 0; 

      send_buffer->u5e = u5e; 
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   u6e = 0; 

      send_buffer->u6e = u6e; 

  u7e = 0; 

      send_buffer->u7e = u7e; 

  u8e = 2; 

      send_buffer->u8e = u8e; 

  p6 = p6+1;  

  printf("      DC4 %d\n", p6); 

fprintf(fp,"        DC4  %d\n",p6); 

  u1 = u0; 

  e0 = e1; 

 }  

  

end_time = rt_get_cpu_time_ns(); 

send_buffer->time_stamp = recv_buffer->time_stamp; 

      nw = sendto(sockid, (const void *)send_buffer, send_buffer_size, 0, (struct 

sockaddr *) &client_addr, addrlen); 

 

if( nw <= -1 ) { 

  perror("sendto failed "); 

  fprintf(stderr, "sendto() errno = %d \n", errno);  

  exit(12);  

} 

} // END of while 

fclose(fp); 

fclose(fp1); 

 

printf("MASTER TASK YIELDS ITSELF\n"); 

rt_task_yield(); 
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printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

stop_rt_timer(); 

printf("MASTER TASK DELETES ITSELF\n"); 

rt_task_delete(mtsk); 

close(sockid); 

free(send_buffer); 

free(recv_buffer); 

} 

 

 

A.2  C Code for Client (Ball Maglev System) [69] 

// A Ball Maglev system 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.1 

 

#define PERIOD 1000000 

#define LOOPS 1000 

#define NTASKS 2 

#define taskname(x) (1000 + (x)) 

 

…  // Here is an identical code block as the one in Appendix A.1 

  

double y_7=1; 

double u_1; 

double u_2; 

RTIME current_time_stamp; 

pthread_t task[NTASKS]; 

int ntasks = NTASKS; 
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RT_TASK *mytask; 

SEM *sem; 

static int cpus_allowed; 

SEM *sock_sem; //socket semaphoere, used by all the threads. 

int sockid; 

RTIME start_instant; 

int server_sock_size = 0; 

struct sockaddr_in my_addr, server_addr; 

comedi_t *it; 

int in_subdev = 0; // digital input 

int out_subdev = 1; // analog output 

int in_chan = 0;  

int out_chan = 0; 

int in_range = 0; 

int out_range = 0; 

int aref = AREF_GROUND; 

int i=0; 

 

//comedi declarations 

lsampl_t in_data; 

lsampl_t out_data; 

float volts = 0.0; 

int in_maxdata = 0, out_maxdata = 0; 

comedi_range *in_range_ptr, *out_range_ptr; 

int endme_int = 0; 

 

void terminate_normally(int signo); 

void endme(int sig) 

{ 
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 printf("You want to kill me?\n"); 

 endme_int = 1; 

rt_sem_delete(sem); 

 comedi_close(it); 

 stop_rt_timer(); 

 rt_task_delete(mytask); 

 signal(SIGINT, SIG_DFL); 

 exit(1); 

} 

 

void *send_thread_fun(void *arg) 

{ 

 RTIME start_time, period, end_time, difference; 

 RTIME t0; 

 SEM *sem; 

 RT_TASK *mytask; 

 unsigned long mytask_name; 

 int mytask_indx; 

 double * buffer = NULL; 

 int iRet = 0; 

    struct recv_data *send_msg = NULL; 

    int send_msg_size; 

 FILE *fp = NULL;  

 float print_data[20000]; 

 int loop_count = 0; 

 fp = fopen("result.txt","w"); 

 if(fp == NULL) 

 { 

  printf("could not open file"); 
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  exit(0); 

 }    

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

 mytask_indx = 0; 

 mytask_name = taskname(mytask_indx); 

 cpus_allowed = 1 - cpus_allowed;  

  if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << 

cpus_allowed))) { 

  printf("CANNOT INIT send_thread TASK\n"); 

  exit(1); 

 } 

 printf("send thread pid = %ld\t master pid = %ld\n", getpid(), getppid()); 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 rt_receive(0, (unsigned int*)&sem); 

    send_msg_size = sizeof(struct recv_data); 

    if(( send_msg = (struct recv_data *)calloc(1, sizeof(struct recv_data))) == 

NULL) 

    { 

         printf("cannot allocate message memory\n"); 

  exit(4); 

    } 

 

 period = nano2count(PERIOD); 

 start_time = rt_get_time() + nano2count(10000000); 

 t0 = start_instant; 

 printf("send: t0 = %lld\t", t0); 

 printf("This period = %lld\t", rt_get_time()); 

 printf("actual start = %lld\n", t0 + nano2count(500000000)); 
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 rt_task_make_periodic(mytask, (t0 + nano2count(500000000)), 

nano2count(3000000));//3.0 ms sampling time 

 start_time = rt_get_cpu_time_ns(); 

 printf("starting the send_thread while loop\n"); 

 for(;;) {  

  if(endme_int == 1) { 

   break; 

  } 

   

  comedi_data_read(it, in_subdev, in_chan, in_range, aref, &in_data); 

  if(in_data > 4094) { 

   in_data = 4094; 

  } 

  if(in_data < 2049) { 

   in_data = 2049; 

  } 

  current_time_stamp = rt_get_cpu_time_ns(); 

  printf("in_data: %i",in_data); 

  printf("in_range_ptr: %i",in_range_ptr); 

  printf("in_maxdata: %i",in_maxdata); 

  y_0 = comedi_to_phys(in_data, in_range_ptr, in_maxdata); 

  print_data[loop_count] = u_1; //output control data 

  printf("y_0 : %f \n",y_0); 

  send_msg->y_0 = y_0; 

  send_msg->y_1 = y_1; 

  send_msg->y_2 = y_2; 

  send_msg->y_3 = y_3; 

  send_msg->y_4 = y_4; 

  send_msg->y_5 = y_5; 
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  send_msg->y_6 = y_6; 

  send_msg->y_7 = y_7; 

  send_msg->u_1 = u_1; 

  send_msg->u_2 = u_2; 

  send_msg->time_stamp = current_time_stamp; 

 

  rt_sem_wait(sock_sem);  

  iRet = sendto(sockid, (const void *)send_msg, send_msg_size, 0, (struct 

sockaddr*)&server_addr, server_sock_size); 

  rt_sem_signal(sock_sem); 

  if(iRet <= -1) { 

   perror("sendto() failed\n"); 

   break; 

  } 

  //y_7 = y_6; 

  y_6 = y_5; 

  y_5 = y_4; 

  y_4 = y_3; 

  y_3 = y_2; 

  y_2 = y_1; 

  y_1 = y_0; 

  loop_count++; 

  if(loop_count == 20000) { 

   break; 

  } 

  rt_task_wait_period(); 

 

 } 

 end_time = rt_get_cpu_time_ns(); 
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 difference = end_time - start_time; 

 printf("difference = %lld\n", difference); 

 endme_int++;  

 rt_sem_signal(sem); 

 rt_make_soft_real_time(); 

 for(i=0;i<20000;i++) {  

  fprintf(fp, "%f\n", print_data[i]); 

 } 

 fclose(fp); 

 free(send_msg); 

 rt_task_delete(mytask); 

 printf("send_thread ENDS\n"); 

 return 0; 

} // End of send thread 

 

void *recv_thread_fun(void *arg) 

{ 

 RTIME start_time, period, end_time, difference; 

 RTIME t0; 

 SEM *sem; 

 RT_TASK *mytask; 

 unsigned long mytask_name; 

 int mytask_indx; 

 struct data *buffer = NULL; 

 int iRet = 0; 

 int recv_msg_size;  

    struct send_data *recv_msg = NULL; 

    int loop_count = 0; 

  recv_msg_size = sizeof(struct send_data); 
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    if(( recv_msg = (struct send_data *)calloc(1, sizeof(struct send_data))) == 

NULL) { 

         printf("cannot allocate message memory\n"); 

  exit(4); 

    } 

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

 mytask_indx = 1; 

 mytask_name = taskname(mytask_indx); 

 cpus_allowed = 1 - cpus_allowed;  

  if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << 

cpus_allowed))) { 

  printf("CANNOT INIT recv_thread TASK\n"); 

  exit(1); 

 } 

 printf("recv thread pid = %ld\t master pid = %ld\n", getpid(), getppid()); 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 rt_receive(0, (unsigned int*)&sem); 

 period = nano2count(PERIOD); 

 start_time = rt_get_time() + nano2count(10000000); 

 t0 = start_instant; 

 printf("recv: t0 = %lld\t", count2nano(t0)); 

 printf("This period = %lld\t", count2nano(rt_get_time())); 

 printf("actual start = %lld\n", count2nano(t0 + nano2count(500500000))); 

 rt_task_make_periodic(mytask, (t0 + nano2count(500500000)), 

nano2count(3000000));//smapling period 3ms 

 start_time = rt_get_time(); 

 printf("starting the recv_thread while loop\n"); 

 for(;;) {  

  if(endme_int == 1) { 
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   break; 

  } 

  rt_sem_wait(sock_sem);  

  iRet = recvfrom(sockid, (void *)recv_msg, recv_msg_size, 0, (struct 

sockaddr *)&server_addr, &server_sock_size); 

  rt_sem_signal(sock_sem);  

  if(iRet <= -1) { 

   endme_int = 1; 

   perror("recvfrom() failed\n"); 

   break; 

  } 

  if((loop_count < 30001)) {  

  u0 = recv_msg->u0; 

  printf("u0 : %f \n",u0); 

  u1e = recv_msg->u1e; 

  u2e = recv_msg->u2e; 

  u3e = recv_msg->u3e; 

  u4e = recv_msg->u4e; 

  u5e = recv_msg->u5e; 

  u6e = recv_msg->u6e; 

  u7e = recv_msg->u7e; 

  u8e = recv_msg->u8e; 

  } 

  

 if(u8e == 1) { 

  if(loop_count < 30001) { 

   volts = u0; 

  } 

  else if(loop_count == 30001) { //every 9 seconds data missing 
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   volts = u4e; 

  } 

  if(volts > 10.0) { 

   volts = 9.99999; 

  } 

  if(volts < 0.0) { 

   volts = 0.0; 

  }   

  out_data = comedi_from_phys(volts, out_range_ptr, out_maxdata); 

  comedi_data_write(it, out_subdev, out_chan, out_range, aref, out_data); 

  u_2 = u_1; 

  u_1 = u0; 

  if(loop_count == 30001) { 

   loop_count = 0; 

  } 

  Else { 

   loop_count++; 

  } 

 }  

 else 

 { 

  printf("wait\n"); 

 }  

 rt_task_wait_period(); 

} 

 end_time = rt_get_cpu_time_ns(); 

 difference = end_time - start_time; 

 //printf("difference = %lld\n", difference); 

 endme_int++;  
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 rt_make_soft_real_time(); 

 free(recv_msg); 

 rt_task_delete(mytask); 

 printf("recv_thread ENDS\n"); 

 return 0; 

} // End of recv thread 

int main(void) 

{ 

 int i;        

 unsigned long mytask_name = nam2num("MASTER"); 

 struct sigaction sa; 

char * server_ip = "192.168.138.46";//maglev1 

unsigned short my_port, server_port;  

my_port = 4445; 

server_port = 4444; 

 

/* -- Create client side socket -- */ 

printf("creating socket\n"); 

if( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {  

perror("socket() failed "); 

exit(2);  

} 

 

/* -- Initialize client side socket address -- */ 

memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

my_addr.sin_family = AF_INET; // Internet Address Family 

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); /* I can receive from any 

host */ 

my_addr.sin_port = htons(my_port); 
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if ( (bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ) {  

perror("bind() failed "); 

exit(3);  

}    

 

/* -- Initialize server side socket address -- */ 

server_sock_size = sizeof(server_addr); 

memset((void *) &server_addr, (char) 0, server_sock_size); 

server_addr.sin_family = AF_INET; 

server_addr.sin_addr.s_addr = inet_addr(server_ip); 

server_addr.sin_port = htons(server_port); 

 sa.sa_handler = endme; 

 sa.sa_flags = 0; 

 sigemptyset(&sa.sa_mask); 

 if(sigaction(SIGINT, &sa, NULL)) { 

  perror("sigaction"); 

 } 

 if(sigaction(SIGTERM, &sa, NULL)) { 

  perror("sigaction"); 

 } 

 it = comedi_open("/dev/comedi0"); 

 if(it == NULL) { 

  printf("Could not open comedi\n"); 

  exit(1); 

 } 

 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan); 

 out_maxdata = comedi_get_maxdata(it, out_subdev, out_chan); 

 in_range_ptr = comedi_get_range(it, in_subdev, in_chan, in_range); 

 out_range_ptr = comedi_get_range(it, out_subdev, out_chan, out_range); 
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 if (!(mytask = rt_task_init(mytask_name, 1, 0, 0))) { 

  printf("CANNOT INIT main TASK \n"); 

  exit(1); 

 } 

 printf("MASTER INIT: name = %lu, address = %p.\n", mytask_name, mytask); 

 sem = rt_sem_init(10000, 0);  

 sock_sem = rt_sem_init(nam2num("SOCK"), 1); 

 rt_set_periodic_mode(); 

 start_rt_timer(nano2count(25000)); 

 start_instant = rt_get_time(); 

 printf("main: start_instant = %lld\n", start_instant);  

 if (pthread_create(&task[0], NULL, send_thread_fun, &start_instant)) { 

  printf("ERROR IN CREATING send_thread\n"); 

  exit(1); 

  }       

 if (pthread_create(&task[1], NULL, recv_thread_fun, &start_instant)) { 

  printf("ERROR IN CREATING recv_thread\n"); 

  exit(1); 

  }  

 for (i = 0; i < ntasks; i++) { 

  while (!rt_get_adr(taskname(i))) { 

   rt_sleep(nano2count(20000000)); 

  } 

 } 

 for (i = 0; i < ntasks; i++) { 

  rt_send(rt_get_adr(taskname(i)), (unsigned int)sem); 

 } 

 printf("Start waiting for sem\n"); 

 while(endme_int == 0) { 
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  rt_sem_wait_timed(sem, nano2count(5000000000)); 

 } 

 printf("Stop waiting for sem\n"); 

 for (i = 0; i < ntasks; i++) { 

  while (rt_get_adr(taskname(i))) { 

   rt_sleep(nano2count(20000000)); 

  } 

 } 

 rt_sem_delete(sem); 

 rt_sem_delete(sock_sem); 

 stop_rt_timer(); 

 comedi_close(it); 

 rt_task_delete(mytask); 

 printf("MASTER %lu %p ENDS\n", mytask_name, mytask); 

 for (i = 0; i < ntasks; i++) { 

  pthread_join(task[i], NULL); 

 } 

 return 0; 

} 

 

A.3  C Code for Client (DC Motor Systems) [69] 

// client.c for DC motors 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.1 

… // Here is an identical code block as the one in Appendix A.2 

… // Here is an identical code block as the one in Appendix A.1 

 

double y_7=2; 
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double u_1; 

double u_2; 

RTIME current_time_stamp; 

int j = 0, m = 0, b0 = 0, b1 = 0, cnt = 0, p = 0; 

double speed = 0; 

 

… // Here is an identical code block as the one in Appendix A.2 

 

void *send_thread_fun(void *arg) 

{ 

 

… // Here is an identical code block as the one in Appendix A.2 

 

// DC motor speed measure 

 while(1) {  

  if(endme_int == 1) { 

   break; 

  } 

  // Counting encoder pulses 

  start_time = rt_get_cpu_time_ns(); 

  comedi_dio_config(it, in_subdev, in_chan, COMEDI_INPUT); 

    for(j=0;j<500;j++) { //* for loop 

   m = comedi_data_read(it, in_subdev, in_chan, in_range, aref, 

&in_data); 

   if(in_data == 1) { //* high or low? 

    b1 = 1;} 

   else { 

    b1 = 0;} 

   if(b1 != b0) { //* count turn-over (H to L or L to H) 
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   cnt++;}  

   b0 = b1; 

}  

  end_time = rt_get_cpu_time_ns(); //* End of the FOR loop 

  current_time_stamp = rt_get_cpu_time_ns(); 

  speed = (cnt*0.214)+1.322; //* DI counting w/ j=1000, PCI-6025E 

  y_0 = speed;   

 

  print_data[loop_count] = y_0; 

 

… // Here is an identical code block as the one in Appendix A.2 

  

  cnt = 0; 

 

  if(loop_count < 5) { 

   printf("s: %d\n", loop_count); 

  } 

if(loop_count > 9995) { 

printf("s: %d\n", loop_count); 

} 

loop_count++;  

  if(loop_count == 10000) { 

   break; 

  }   

  rt_task_wait_period(); 

 }// End of while loop 

 

… // Here is an identical code block as the one in Appendix A.2 
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} // End of send_thread  

 

void *recv_thread_fun(void *arg) 

{ 

 RTIME start_time, period, end_time, difference, re_time_stamp, 

current_cpu_time; 

 RTIME time_diff[20000]; 

 

… // Here is an identical code block as the one in Appendix A.2 

    

tdiff = fopen("timediff.txt","w"); 

 if(tdiff == NULL) { 

  printf("could not open file"); 

  exit(0); 

 } 

  

… // Here is an identical code block as the one in Appendix A.2 

  

  if(loop_count < 10000) 

  {  

  u0 = recv_msg->u0; 

  u1e = recv_msg->u1e; 

  u2e = recv_msg->u2e; 

  u3e = recv_msg->u3e; 

  u4e = recv_msg->u4e; 

  u5e = recv_msg->u5e; 

  u6e = recv_msg->u6e; 

  u7e = recv_msg->u7e; 

  u8e = recv_msg->u8e; 
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  re_time_stamp = recv_msg->time_stamp; 

   current_cpu_time = rt_get_cpu_time_ns(); 

  time_diff[loop_count] = current_cpu_time-re_time_stamp; 

  } 

 

  if(loop_count < 9998) { 

   volts = u0*1.014-0.005; 

  } 

  else if(loop_count == 9998) { //every  seconds data missing 

   volts = 0.0; 

  } 

  if(loop_count < 5) { 

   printf("r: %d\n", loop_count); 

  } 

if(loop_count > 9995) { 

                        printf("r: %d\n", loop_count); 

} 

  if(volts > 5.0) { // Voltage limit: 5V 

   volts = 4.99999; 

  } 

  if(volts < 0.0) { 

   volts = 0.0; 

  } 

   

  out_data = comedi_from_phys(volts, out_range_ptr, out_maxdata); 

  comedi_data_write(it, out_subdev, out_chan, out_range, aref, out_data); 

  //u_2 = u_1; 

  //u_1 = u0; 
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  if(loop_count == 10000) 

  { 

   loop_count = 0; 

  } 

  else 

  { 

   loop_count++; 

  } 

  

  rt_task_wait_period(); 

 } 

  

… // Here is an identical code block as the one in Appendix A.2 

 

 for(i=0;i<20000;i++) 

 {  

  fprintf(tdiff, "%f\n", time_diff[i]); 

  //fprintf(tdiff, "                            %f\n", current_cpu_time[i]); 

 } 

 fclose(tdiff); 

 

 … // Here is an identical code block as the one in Appendix A.2 

 

} // End of recv thread 

 

int main(void) 

{ 

… // Here is an identical code block as the one in Appendix A.2 

} 
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A.4  C Code for Interoperability Suite [69] 

// Interoperability suite for Wheelchair robot 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.1 

 

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e; 

char y_8[6]="000000"; 

double y_0, y_1, y_2, y_3, y_4, y_5, y_6; 

double y_7=3; 

double u_1, u_2; 

 

//rtai declarations 

… // Here is an identical code block as the one in Appendix A.1 

 

void terminate_normally(int signo) { 

… // Here is an identical code block as the one in Appendix A.1 

} 

int main(int argc, char *argv[]) 

{ 

… // Here is an identical code block as the one in Appendix A.1    

 

int sd, clilen; 

int cw, cr; 

int cnt=0; 

char recv_msg[6] = "000000"; // client to interoperability suite 

char fwd[10] = "front"; 

char back[10] = "back"; 

char stop[10] = "stop"; 
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char left[10] = "left"; 

char right[10] = "right"; 

char *server_ip= "192.168.138.46"; 

FILE *fp = NULL; 

fp = fopen("result.txt","w"); 

if (fp==NULL) { 

  printf("could not open file\n"); 

  exit(0); 

} 

 RTIME start_time = 0; 

 

… // Here is an identical code block as the one in Appendix A.1 

 

fprintf(stderr, "binding sockets\n"); 

server_port = 4444; 

second_port = 3333; 

addrlen = sizeof(server_addr); 

clilen = sizeof(my_addr);  

memset((void *) &server_addr, (char) 0, addrlen); 

server_addr.sin_family = AF_INET; 

server_addr.sin_addr.s_addr = inet_addr(server_ip); 

server_addr.sin_port = htons(server_port); 

memset((void *) &my_addr, (char) 0, clilen); 

my_addr.sin_family = AF_INET; 

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

my_addr.sin_port = htons(second_port); 

if ( (bind(sd, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ) {  

perror("2bind() failed "); 

fprintf(stderr, "bind() errno = %d\n", errno);  
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exit(4);  

} 

recv_buffer_size = sizeof(struct recv_data);  

if(( recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data))) 

==NULL) { 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 

} 

 send_buffer_size = sizeof(struct send_data);  

 if(( send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data))) 

==NULL) { 

fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 

} 

fprintf(stderr, "%s: starting blocking message read\n", argv[0]); 

 

… // Here is an identical code block as the one in Appendix A.1 

 

 start_time = rt_get_cpu_time_ns(); 

 printf("main: start_time = %lld\n", start_time); 

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

 //rt_set_oneshot_mode(); 

 actual_period = start_rt_timer(nano2count(25000)); 

 printf("actual_period = %lld\n", actual_period); 

 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 

 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000000), 

nano2count(3000000));  

while( 1 ) { 
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  cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *) &client_addr, 

&clilen); 

  if( cr <= -1 ) {  

   fprintf(stderr, "2recvfrom() errno = %d\n", errno); 

   exit(10); 

  } 

  start_time = rt_get_cpu_time_ns(); 

  y_1 = 0; 

  y_2 = 0; 

  y_3 = 0; 

  y_4 = 0; 

  y_5 = 0; 

  y_6 = 0; 

  y_7 = 3; 

  y_8[0] = recv_msg[0]; 

  y_8[1] = recv_msg[1]; 

  y_8[2] = recv_msg[2]; 

  y_8[3] = recv_msg[3]; 

  y_8[4] = recv_msg[4]; 

  y_8[5] = recv_msg[5]; 

  u_1 = 0; 

  u_2 = 0; 

  send_buffer->y_0 = y_0; 

  send_buffer->y_1 = y_1; 

  send_buffer->y_2 = y_2; 

  send_buffer->y_3 = y_3; 

  send_buffer->y_4 = y_4; 

  send_buffer->y_5 = y_5; 

  send_buffer->y_6 = y_6; 
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  send_buffer->y_7 = y_7; 

  send_buffer->y_8[0] = y_8[0]; 

  send_buffer->y_8[1] = y_8[1];  

  send_buffer->y_8[2] = y_8[2]; 

  send_buffer->y_8[3] = y_8[3]; 

  send_buffer->y_8[4] = y_8[4]; 

  send_buffer->u_1 = u_1; 

  send_buffer->u_2 = u_2; 

  send_buffer->time_stamp = current_time_stamp; 

  nw=sendto(sockid, (const void *)send_buffer, send_buffer_size, 0,(struct 

sockaddr *) &server_addr, addrlen);  

if( nw <= -1 ) { 

perror("1sendto failed "); 

fprintf(stderr, "sendto() errno = %d \n", errno);  

exit(12);  

} 

nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct 

sockaddr *) &server_addr, &addrlen); 

  if( nr <= -1 ) {  

   fprintf(stderr, "1recvfrom() errno = %d\n", errno); 

   exit(10); 

  } 

      u0 = recv_buffer->u0; 

  u1e = recv_buffer->u1e; 

  u2e = recv_buffer->u2e; 

  u3e = recv_buffer->u3e; 

  u4e = recv_buffer->u4e; 

  u5e = recv_buffer->u5e; 

  u6e = recv_buffer->u6e; 
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  u7e = recv_buffer->u7e; 

  u8e = recv_buffer->u8e; 

  printf("recv: %s   u0: %f" ,y_8, u0); 

  if(u0 == 10.0) { 

   cw = sendto(sd, fwd, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 7.0) { 

   cw = sendto(sd, right, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 2.0) { 

   cw = sendto(sd, left, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 0.0) { 

   cw = sendto(sd, back, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 5.0) { 

   cw = sendto(sd, stop, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  end_time = rt_get_cpu_time_ns(); 

  send_buffer->time_stamp = recv_buffer->time_stamp; 

  printf("    end_time - start_time = %lld\n", (end_time - start_time)); 

  cnt = cnt +1; 

} // End of while 

 fclose(fp); 
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… // Here is an identical code block as the one in Appendix A.1 

 

close(sockid); 

close(sd); 

free(send_buffer); 

free(recv_buffer); 

free(recv_msg); 

free(recv_msg); 

} 

 

A.5  C++ Code for Client (Wheelchair Robot System) [69] 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <NIDAQmx.h> 

#include <winsock2.h> 

#include <ws2tcpip.h> 

#define MAXLOOP 100 

#define DAQmxErrChk(functionCall) if( DAQmxFailed(error=(functionCall)) ) goto 

Error; else 

void move(uInt8 direction[8]); 

void main(void) 

{ 

WSADATA w; // Used to open Windows connection  

 SOCKET sd; // The socket descriptor 

 int server_length; // Length of server struct 

 struct sockaddr_in server; // Information about the server 

 struct sockaddr_in client; // Information about the client 
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 char *server_ip = "165.91.95.119"; 

 unsigned short server_port = 3333; 

 char recv_data[6]="wheel", send_data[6]="00000"; 

 uInt8 forward[8]={0,1,1,0,0,1,1,0}; 

 uInt8 backward[8]={1,0,1,0,1,0,1,0}; 

 uInt8 left[8]={0,1,1,0,1,0,1,0}; 

 uInt8 right[8]={1,0,1,0,0,1,1,0}; 

 uInt8 stop[8]={0,0,0,0,0,0,0,0}; 

 int LIFR, LIFRS, RIFR, RIFRS, IFR; 

 int counter=0; 

 int32 error=0; 

 TaskHandle taskHandle=0; 

 uInt8 data[8]; 

 char errBuff[2048]={'\0'}; 

 int32 read,bytesPerSamp; 

 /* Open windows connection */ 

 if (WSAStartup(0x0101, &w) != 0) { 

  printf("Could not open Windows connection.\n");  

  exit(0); 

 } 

 /* Open a datagram socket */ 

 sd = socket(AF_INET, SOCK_DGRAM, 0); 

 if (sd == INVALID_SOCKET) { 

  printf("Could not create socket.\n"); 

  WSACleanup(); 

  exit(0); 

 } 

 /* Clear out server struct */ 

 memset((void *)&server, '\0', sizeof(struct sockaddr_in)); 
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 /* Set family and port */ 

 server.sin_family = AF_INET; 

 server.sin_port = htons(server_port); 

 server.sin_addr.S_un.S_addr = inet_addr(server_ip); 

 /* Clear out client struct */ 

 memset((void *)&client, '\0', sizeof(struct sockaddr_in)); 

 /* Set family and port */ 

 client.sin_family = AF_INET; 

 client.sin_port = htons(0); 

 client.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 

 /* Bind local address to socket */ 

 if (bind(sd, (struct sockaddr *)&client, sizeof(struct sockaddr_in)) == -1) 

 { 

  printf("Cannot bind address to socket.\n"); 

  closesocket(sd); 

  WSACleanup(); 

  exit(0); 

 } 

 printf("Wheelchair is ready.\n"); 

 printf("Wheelchair is running.\n"); 

 

 // DAQmx Configure Code 

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle)); 

 DAQmxErrChk 

(DAQmxCreateDIChan(taskHandle,"Dev1/port1/line0:7","",DAQmx_Val_ChanForAllL

ines)); 
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 // DAQmx Start Code 

 DAQmxErrChk (DAQmxStartTask(taskHandle)); 

 

 while (counter<MAXLOOP) 

 { 

  // DAQmx Read Code 

  DAQmxErrChk 

(DAQmxReadDigitalLines(taskHandle,1,10.0,DAQmx_Val_GroupByChannel,data,8,&r

ead,&bytesPerSamp,NULL)); 

 

  LIFR = data[0]; 

  LIFRS = data[1]; 

  RIFR = data[2]; 

  RIFRS = data[3]; 

  IFR = data[4]; 

  send_data[0] = (char)(((int)'0')+LIFR); 

  send_data[1] = (char)(((int)'0')+LIFRS); 

  send_data[2] = (char)(((int)'0')+RIFR); 

  send_data[3] = (char)(((int)'0')+RIFRS); 

  send_data[4] = (char)(((int)'0')+IFR); 

 

  // Tranmsit data to get time  

  server_length = sizeof(struct sockaddr_in); 

  if (sendto(sd, (char *)&send_data, (int)strlen(send_data) + 1, 0, (struct 

sockaddr *)&server, server_length) == -1) { 

   printf("Error transmitting data.\n"); 

   closesocket(sd); 

   WSACleanup(); 

   exit(0); 
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  } 

 

  // Receive time 

  if (recvfrom(sd, (char *)&recv_data, (int)sizeof(recv_data), 0, (struct 

sockaddr *)&server, &server_length) < 0) { 

   printf("Error receiving data.\n"); 

   closesocket(sd); 

   WSACleanup(); 

   exit(0); 

  } 

  if (strcmp(recv_data,"stop")==0) 

   move(stop); 

  else if (strcmp(recv_data,"back")==0) 

   move(backward); 

  else if (strcmp(recv_data,"left")==0) 

   move(left); 

  else if (strcmp(recv_data,"right")==0) 

   move(right); 

  else move(forward); 

  sleep(500); 

  counter++; 

  printf("Current loop: %d.  Command from the server: %s \n", counter, 

recv_data); 

 } 

 move(stop); 

 printf("Wheelchair stops. \n"); 

 closesocket(sd); 

 WSACleanup(); 

 printf("To quit and close the console window, press any key! \n"); 
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 getchar(); 

 

Error: 

 if( DAQmxFailed(error) ) 

  DAQmxGetExtendedErrorInfo(errBuff,2048); 

 if( taskHandle!=0 ) { 

  // DAQmx Stop Code 

  DAQmxStopTask(taskHandle); 

  DAQmxClearTask(taskHandle); 

 } 

 if( DAQmxFailed(error) ) 

  printf("DAQmx Error: %s\n",errBuff); 

} 

 

void move(uInt8 direction[8]) 

{ 

 double       error=0; 

 TaskHandle  taskHandle=0; 

 char        errBuff[2048]={'\0'}; 

 

 // DAQmx Configure Code 

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle)); 

 DAQmxErrChk 

(DAQmxCreateDOChan(taskHandle,"Dev1/port2/line0:7","",DAQmx_Val_ChanForAll

Lines)); 

 

 // DAQmx Start Code 

 DAQmxErrChk (DAQmxStartTask(taskHandle)); 
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 // DAQmx Write Code 

 DAQmxErrChk 

(DAQmxWriteDigitalLines(taskHandle,1,1,10.0,DAQmx_Val_GroupByChannel,directi

on,NULL,NULL)); 

 

Error: 

 if( DAQmxFailed(error) ) 

  DAQmxGetExtendedErrorInfo(errBuff,2048); 

 if( taskHandle!=0 ) { 

  // DAQmx Stop Code 

  DAQmxStopTask(taskHandle); 

  DAQmxClearTask(taskHandle); 

 } 

 if( DAQmxFailed(error) ) 

  printf("DAQmx Error: %s\n",errBuff); 

} 

 

A.6  C Code for Server (Dynamic Bandwidth Allocation) 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.1 

 

// variables for DC motor 1 

double y_dot_desi = 7.0; 

double e0 = 0; //instead of long 

double e1 = 0; //instead of long 

double u0 = 0; //value0, instead of long 

double u1 = 0; //value1, instead of long 

float e_dist = 0; // estimated disturbance 
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float h; // sampling time to client 

 

… // Here is an identical code block as the one in Appendix A.1 

 

main(int argc, char *argv[]) 

{ 

… // Here is an identical code block as the one in Appendix A.1 

 

while( 1 ) 

{ 

… // Here is an identical code block as the one in Appendix A.1 

 

  e_dist = u_1; // estimated disturbance calculated from client 

 

… // Here is an identical code block as the one in Appendix A.1 

 

  if(y_7 == 2) { //Client 2 DC motor  

   if(p2<4000) { // Choose multiplier for dynamic disturbance 

    dist=0.5; } 

   else if(4000<=p2 && p2 <8000) { 

    dist=1; } 

else if(8000<=p2 && p2 <12000) { 

 dist=0.333; } 

else if(12000<=p2 && p2 <16000) { 

dist=1; } 

Else { 

dist=0.667; } 

   e1 = y_dot_desi - y0; // Error Calculation 
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   // Optimal bandwidth allocation for single DC motor 

   if (e_dist<0.067){ 

    h = 3; } 

   else if (e_dist>=0.067 && e_dist<0.134) { 

    h = 4; } 

   else if (e_dist>=0.134 && e_dist<0.268) { 

    h = 5; } 

   else if (e_dist>=0.268 && e_dist<0.333) { 

    h = 6; } 

   else if (e_dist>=0.333 && e_dist<0.5) { 

    h = 9; } 

   else if (e_dist>=0.5 && e_dist<0.667) { 

    h = 12; } 

   else if (e_dist>=0.667 && e_dist<1.333) { 

    h = 15; } 

   else if (e_dist>=1.333 && e_dist<2) { 

    h = 21; } 

   else { 

    h = 30; } 

 

   u0 = u1 + (1.8+3*h1)*e1 - (1.8-3*h1)*e0 + noise[p2]*0.267;   //* 

universal digital controller (Tustin's method) 

   send_buffer->u0 = u0; 

 

… // Here is an identical code block as the one in Appendix A.1 

 

  }  

… // Here is an identical code block as the one in Appendix A.1  

} // END of while 
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… // Here is an identical code block as the one in Appendix A.1  

 

} 

 

A.7  C Code for Client (Disturbance Estimation Using PIF) 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.3 

 

double u_2; 

float h=6; // sampling time 

 

// Variables for error variance 

float e_var_sum_old=0; // old summation of error variance 

float e_var=0; // error variance 

float e_var_sum=0; // summation of error variance  

float avg_var=0; // average of error variance 

float dist=0.3; //estimated disturbance 

 

// Variables for disturbance estimation using PIF 

float wsn[10]={0,0.067,0.134,0.268,0.333,0.5,0.667,1,1.333,2}; /* Amount of Sigma of 

White noise */ 

float 

st3[10]={0.0578,0.1200,0.3127,1.0683,1.6097,3.4499,5.8278,10.9706,15.6114,22.1013}

; // 3ms sampling time 

float 

st4[10]={0.0627,0.1156,0.2569,0.8278,1.2363,2.6693,4.6059,9.0520,13.3866,20.2599}; 

// 4ms sampling time 
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float 

st5[10]={0.0857,0.1342,0.2447,0.6985,1.0291,2.1841,3.7752,7.7233,11.8726,18.2277}; 

// 5ms sampling time 

float 

st6[10]={0.1327,0.1580,0.2450,0.5801,0.8256,1.6975,2.9038,6.1550,9.7442,16.3004}; // 

6ms sampling time 

float 

st9[10]={0.2745,0.2960,0.3603,0.6069,0.7855,1.4110,2.3069,4.7460,7.8418,14.0000}; // 

9ms sampling time 

float 

st12[10]={0.4973,0.5283,0.5605,0.7404,0.8667,1.3395,1.9777,3.8156,6.2928,11.7949}; 

// 12ms sampling time 

float 

st15[10]={0.8368,0.8208,0.8688,1.0006,1.1001,1.4581,1.9609,3.4375,5.3552,10.1955}; 

// 15ms sampling time 

float 

st21[10]={1.6506,1.6341,1.6979,1.7702,1.8539,2.0986,2.4540,3.4491,4.7911,8.4559}; // 

21ms sampling time 

float 

st30[10]={3.3833,3.2970,3.2870,3.3857,3.5769,3.5941,3.9642,4.6006,5.4629,7.9140}; // 

30ms sampling time 

 

RTIME current_time_stamp; 

 

… // Here is an identical code block as the one in Appendix A.3 

 

void terminate_normally(int signo); 

void endme(int sig) 

{ 
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… // Here is an identical code block as the one in Appendix A.3 

} 

 

void *send_thread_fun(void *arg) 

{ 

… // Here is an identical code block as the one in Appendix A.3 

 

// to print sampling time 

 float print_samp[100000]; 

 FILE *fp1 = NULL;  

 fp1 = fopen("samp_T_result.txt","w");  

 if(fp1 == NULL) { 

  printf("could not open file"); 

  exit(0); 

 } 

 // to print estimated disturbance 

 float print_dist[100000]; 

 FILE *fp2 = NULL;  

 fp2 = fopen("estimated_disturbance.txt","w"); 

 // to print avg error_variance 

 float print_avg_evar[100000]; 

 FILE *fp3 = NULL;  

 fp3 = fopen("avg_e_variance.txt","w"); 

  

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

 … // Here is an identical code block as the one in Appendix A.3 

 while(1)  

 {  

… // Here is an identical code block as the one in Appendix A.3 
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  speed = (cnt*0.214)+1.322; //* DI counting w/ j=1000, PCI-6025E 

  y_0 = speed;   

  print_data[loop_count] = y_0; 

  print_samp[loop_count] = h;  // to print sampling time 

 

// error variance 

  e_var = (7-y_0)*(7-y_0); // error square 

  e_var_sum = e_var_sum_old + e_var; 

  e_var_sum_old = e_var_sum; 

// estimate disturbace 

  if(loop_count%1000 == 0 && loop_count > 0) { /* To avoid calculate 

when loop_count=0 (initial value) */ 

   avg_var=e_var_sum/1000; 

   e_var=0; 

   e_var_sum=0; 

   e_var_sum_old=0; 

   if(h==3) { 

    if(avg_var<=st3[0]){ 

     dist=wsn[0]/st3[0]*avg_var;} 

    else if(avg_var<=st3[1]){ 

     dist=(wsn[1]-wsn[0])/(st3[1]-st3[0])*(avg_var-

st3[0])+wsn[0];} 

    else if(avg_var<=st3[2]){ 

     dist=(wsn[2]-wsn[1])/(st3[2]-st3[1])*(avg_var-

st3[1])+wsn[1];} 

    else if(avg_var<=st3[3]){ 

     dist=(wsn[3]-wsn[2])/(st3[3]-st3[2])*(avg_var-

st3[2])+wsn[2];} 

    else if(avg_var<=st3[4]){ 
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     dist=(wsn[4]-wsn[3])/(st3[4]-st3[3])*(avg_var-

st3[3])+wsn[3];} 

    else if(avg_var<=st3[5]){ 

     dist=(wsn[5]-wsn[4])/(st3[5]-st3[4])*(avg_var-

st3[4])+wsn[4];} 

    else if(avg_var<=st3[6]){ 

     dist=(wsn[6]-wsn[5])/(st3[6]-st3[5])*(avg_var-

st3[5])+wsn[5];} 

    else if(avg_var<=st3[7]){ 

     dist=(wsn[7]-wsn[6])/(st3[7]-st3[6])*(avg_var-

st3[6])+wsn[6];} 

    else if(avg_var<=st3[8]){ 

     dist=(wsn[8]-wsn[7])/(st3[8]-st3[7])*(avg_var-

st3[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==4) { 

    if(avg_var<=st4[0]){ 

     dist=wsn[0]/st4[0]*avg_var;} 

    else if(avg_var<=st4[1]){ 

     dist=(wsn[1]-wsn[0])/(st4[1]-st4[0])*(avg_var-

st4[0])+wsn[0];} 

    else if(avg_var<=st4[2]){ 

     dist=(wsn[2]-wsn[1])/(st4[2]-st4[1])*(avg_var-

st4[1])+wsn[1];} 

    else if(avg_var<=st4[3]){ 

     dist=(wsn[3]-wsn[2])/(st4[3]-st4[2])*(avg_var-

st4[2])+wsn[2];} 
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    else if(avg_var<=st4[4]){ 

     dist=(wsn[4]-wsn[3])/(st4[4]-st4[3])*(avg_var-

st4[3])+wsn[3];} 

    else if(avg_var<=st4[5]){ 

     dist=(wsn[5]-wsn[4])/(st4[5]-st4[4])*(avg_var-

st4[4])+wsn[4];} 

    else if(avg_var<=st4[6]){ 

     dist=(wsn[6]-wsn[5])/(st4[6]-st4[5])*(avg_var-

st4[5])+wsn[5];} 

    else if(avg_var<=st4[7]){ 

     dist=(wsn[7]-wsn[6])/(st4[7]-st4[6])*(avg_var-

st4[6])+wsn[6];} 

    else if(avg_var<=st4[8]){ 

     dist=(wsn[8]-wsn[7])/(st4[8]-st4[7])*(avg_var-

st4[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==5) { 

    if(avg_var<=st5[0]){ 

     dist=wsn[0]/st3[0]*avg_var;} 

    else if(avg_var<=st5[1]){ 

     dist=(wsn[1]-wsn[0])/(st5[1]-st5[0])*(avg_var-

st5[0])+wsn[0];} 

    else if(avg_var<=st5[2]){ 

     dist=(wsn[2]-wsn[1])/(st5[2]-st5[1])*(avg_var-

st5[1])+wsn[1];} 

    else if(avg_var<=st5[3]){ 
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     dist=(wsn[3]-wsn[2])/(st5[3]-st5[2])*(avg_var-

st5[2])+wsn[2];} 

    else if(avg_var<=st5[4]){ 

     dist=(wsn[4]-wsn[3])/(st5[4]-st5[3])*(avg_var-

st5[3])+wsn[3];} 

    else if(avg_var<=st5[5]){ 

     dist=(wsn[5]-wsn[4])/(st5[5]-st5[4])*(avg_var-

st5[4])+wsn[4];} 

    else if(avg_var<=st5[6]){ 

     dist=(wsn[6]-wsn[5])/(st5[6]-st5[5])*(avg_var-

st5[5])+wsn[5];} 

    else if(avg_var<=st5[7]){ 

     dist=(wsn[7]-wsn[6])/(st5[7]-st5[6])*(avg_var-

st5[6])+wsn[6];} 

    else if(avg_var<=st5[8]){ 

     dist=(wsn[8]-wsn[7])/(st5[8]-st5[7])*(avg_var-

st5[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==6) { 

    if(avg_var<=st6[0]){ 

     dist=wsn[0]/st6[0]*avg_var;} 

    else if(avg_var<=st6[1]){ 

     dist=(wsn[1]-wsn[0])/(st6[1]-st6[0])*(avg_var-

st6[0])+wsn[0];} 

    else if(avg_var<=st6[2]){ 

     dist=(wsn[2]-wsn[1])/(st6[2]-st6[1])*(avg_var-

st6[1])+wsn[1];} 
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    else if(avg_var<=st6[3]){ 

     dist=(wsn[3]-wsn[2])/(st6[3]-st6[2])*(avg_var-

st6[2])+wsn[2];} 

    else if(avg_var<=st6[4]){ 

     dist=(wsn[4]-wsn[3])/(st6[4]-st6[3])*(avg_var-

st6[3])+wsn[3];} 

    else if(avg_var<=st6[5]){ 

     dist=(wsn[5]-wsn[4])/(st6[5]-st6[4])*(avg_var-

st6[4])+wsn[4];} 

    else if(avg_var<=st6[6]){ 

     dist=(wsn[6]-wsn[5])/(st6[6]-st6[5])*(avg_var-

st6[5])+wsn[5];} 

    else if(avg_var<=st6[7]){ 

     dist=(wsn[7]-wsn[6])/(st6[7]-st6[6])*(avg_var-

st6[6])+wsn[6];} 

    else if(avg_var<=st6[8]){ 

     dist=(wsn[8]-wsn[7])/(st6[8]-st6[7])*(avg_var-

st6[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==9) { 

    if(avg_var<=st9[0]){ 

     dist=wsn[0]/st9[0]*avg_var;} 

    else if(avg_var<=st9[1]){ 

     dist=(wsn[1]-wsn[0])/(st9[1]-st9[0])*(avg_var-

st9[0])+wsn[0];} 

    else if(avg_var<=st9[2]){ 
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     dist=(wsn[2]-wsn[1])/(st9[2]-st9[1])*(avg_var-

st9[1])+wsn[1];} 

    else if(avg_var<=st9[3]){ 

     dist=(wsn[3]-wsn[2])/(st9[3]-st9[2])*(avg_var-

st9[2])+wsn[2];} 

    else if(avg_var<=st9[4]){ 

     dist=(wsn[4]-wsn[3])/(st9[4]-st9[3])*(avg_var-

st9[3])+wsn[3];} 

    else if(avg_var<=st9[5]){ 

     dist=(wsn[5]-wsn[4])/(st9[5]-st9[4])*(avg_var-

st9[4])+wsn[4];} 

    else if(avg_var<=st9[6]){ 

     dist=(wsn[6]-wsn[5])/(st9[6]-st9[5])*(avg_var-

st9[5])+wsn[5];} 

    else if(avg_var<=st9[7]){ 

     dist=(wsn[7]-wsn[6])/(st9[7]-st9[6])*(avg_var-

st9[6])+wsn[6];} 

    else if(avg_var<=st9[8]){ 

     dist=(wsn[8]-wsn[7])/(st9[8]-st9[7])*(avg_var-

st9[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==12) { 

    if(avg_var<=st12[0]){ 

     dist=wsn[0]/st12[0]*avg_var;} 

    else if(avg_var<=st12[1]){ 

     dist=(wsn[1]-wsn[0])/(st12[1]-st12[0])*(avg_var-

st12[0])+wsn[0];} 
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    else if(avg_var<=st12[2]){ 

     dist=(wsn[2]-wsn[1])/(st12[2]-st12[1])*(avg_var-

st12[1])+wsn[1];} 

    else if(avg_var<=st12[3]){ 

     dist=(wsn[3]-wsn[2])/(st12[3]-st12[2])*(avg_var-

st12[2])+wsn[2];} 

    else if(avg_var<=st12[4]){ 

     dist=(wsn[4]-wsn[3])/(st12[4]-st12[3])*(avg_var-

st12[3])+wsn[3];} 

    else if(avg_var<=st12[5]){ 

     dist=(wsn[5]-wsn[4])/(st12[5]-st12[4])*(avg_var-

st12[4])+wsn[4];} 

    else if(avg_var<=st12[6]){ 

     dist=(wsn[6]-wsn[5])/(st12[6]-st12[5])*(avg_var-

st12[5])+wsn[5];} 

    else if(avg_var<=st12[7]){ 

     dist=(wsn[7]-wsn[6])/(st12[7]-st12[6])*(avg_var-

st12[6])+wsn[6];} 

    else if(avg_var<=st12[8]){ 

     dist=(wsn[8]-wsn[7])/(st12[8]-st12[7])*(avg_var-

st12[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==15) { 

    if(avg_var<=st15[0]){ 

     dist=wsn[0]/st15[0]*avg_var;} 

    else if(avg_var<=st15[1]){ 
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     dist=(wsn[1]-wsn[0])/(st15[1]-st15[0])*(avg_var-

st15[0])+wsn[0];} 

    else if(avg_var<=st15[2]){ 

     dist=(wsn[2]-wsn[1])/(st15[2]-st15[1])*(avg_var-

st15[1])+wsn[1];} 

    else if(avg_var<=st15[3]){ 

     dist=(wsn[3]-wsn[2])/(st15[3]-st15[2])*(avg_var-

st15[2])+wsn[2];} 

    else if(avg_var<=st15[4]){ 

     dist=(wsn[4]-wsn[3])/(st15[4]-st15[3])*(avg_var-

st15[3])+wsn[3];} 

    else if(avg_var<=st15[5]){ 

     dist=(wsn[5]-wsn[4])/(st15[5]-st15[4])*(avg_var-

st15[4])+wsn[4];} 

    else if(avg_var<=st15[6]){ 

     dist=(wsn[6]-wsn[5])/(st15[6]-st15[5])*(avg_var-

st15[5])+wsn[5];} 

    else if(avg_var<=st15[7]){ 

     dist=(wsn[7]-wsn[6])/(st15[7]-st15[6])*(avg_var-

st15[6])+wsn[6];} 

    else if(avg_var<=st15[8]){ 

     dist=(wsn[8]-wsn[7])/(st15[8]-st15[7])*(avg_var-

st15[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

 

   if(h==21) { 

    if(avg_var<=st21[0]){ 
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     dist=wsn[0]/st21[0]*avg_var;} 

    else if(avg_var<=st21[1]){ 

     dist=(wsn[1]-wsn[0])/(st21[1]-st21[0])*(avg_var-

st21[0])+wsn[0];} 

    else if(avg_var<=st21[2]){ 

     dist=(wsn[2]-wsn[1])/(st21[2]-st21[1])*(avg_var-

st21[1])+wsn[1];} 

    else if(avg_var<=st21[3]){ 

     dist=(wsn[3]-wsn[2])/(st21[3]-st21[2])*(avg_var-

st21[2])+wsn[2];} 

    else if(avg_var<=st21[4]){ 

     dist=(wsn[4]-wsn[3])/(st21[4]-st21[3])*(avg_var-

st21[3])+wsn[3];} 

    else if(avg_var<=st21[5]){ 

     dist=(wsn[5]-wsn[4])/(st21[5]-st21[4])*(avg_var-

st21[4])+wsn[4];} 

    else if(avg_var<=st21[6]){ 

     dist=(wsn[6]-wsn[5])/(st21[6]-st21[5])*(avg_var-

st21[5])+wsn[5];} 

    else if(avg_var<=st21[7]){ 

     dist=(wsn[7]-wsn[6])/(st21[7]-st21[6])*(avg_var-

st21[6])+wsn[6];} 

    else if(avg_var<=st21[8]){ 

     dist=(wsn[8]-wsn[7])/(st21[8]-st21[7])*(avg_var-

st21[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 

   if(h==30) { 
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    if(avg_var<=st30[0]){ 

     dist=wsn[0]/st30[0]*avg_var;} 

    else if(avg_var<=st30[1]){ 

     dist=(wsn[1]-wsn[0])/(st30[1]-st30[0])*(avg_var-

st30[0])+wsn[0];} 

    else if(avg_var<=st30[2]){ 

     dist=(wsn[2]-wsn[1])/(st30[2]-st30[1])*(avg_var-

st30[1])+wsn[1];} 

    else if(avg_var<=st30[3]){ 

     dist=(wsn[3]-wsn[2])/(st30[3]-st30[2])*(avg_var-

st30[2])+wsn[2];} 

    else if(avg_var<=st30[4]){ 

     dist=(wsn[4]-wsn[3])/(st30[4]-st30[3])*(avg_var-

st30[3])+wsn[3];} 

    else if(avg_var<=st30[5]){ 

     dist=(wsn[5]-wsn[4])/(st30[5]-st30[4])*(avg_var-

st30[4])+wsn[4];} 

    else if(avg_var<=st30[6]){ 

     dist=(wsn[6]-wsn[5])/(st30[6]-st30[5])*(avg_var-

st30[5])+wsn[5];} 

    else if(avg_var<=st30[7]){ 

     dist=(wsn[7]-wsn[6])/(st30[7]-st30[6])*(avg_var-

st30[6])+wsn[6];} 

    else if(avg_var<=st30[8]){ 

     dist=(wsn[8]-wsn[7])/(st30[8]-st30[7])*(avg_var-

st30[7])+wsn[7];} 

    else{ 

     dist=2;} 

   } 
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  } 

 

  print_dist[loop_count] = dist; // to print estimated disturbance 

  print_avg_evar[loop_count] = avg_var; // to print avg error_variance 

 

  send_msg->y_0 = y_0; 

  send_msg->y_1 = y_1; 

  send_msg->y_2 = y_2; 

  send_msg->y_3 = y_3; 

  send_msg->y_4 = y_4; 

  send_msg->y_5 = y_5; 

  send_msg->y_6 = y_6; 

  send_msg->y_7 = y_7; 

  send_msg->u_1 = dist; // using u_1 to send estimated disturbance 

information 

  send_msg->u_2 = u_2; 

  send_msg->time_stamp = current_time_stamp; 

 

… // Here is an identical code block as the one in Appendix A.3 

 }//END of FOR (WHILE) LOOP 

 

 end_time = rt_get_cpu_time_ns(); 

… // Here is an identical code block as the one in Appendix A.3 

 

 for(i=0;i<10000;i++) 

 {  

  fprintf(fp, "%f\n", print_data[i]); 

  printf("%f\n", print_data[i]); 

  fprintf(fp1, "%f\n", print_samp[i]); // sampling time 
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  fprintf(fp2, "%f\n", print_dist[i]); // estimated disturbance 

  fprintf(fp3, "%f\n", print_avg_evar[i]); // average error variance 

 } 

 fclose(fp); // result 

 fclose(fp1);  // sampling time 

 fclose(fp2); // estimated disturbance 

 fclose(fp3); // avg error variance 

 

… // Here is an identical code block as the one in Appendix A.3 

} // End of send_thread  

 

void *recv_thread_fun(void *arg) 

{ 

… // Here is an identical code block as the one in Appendix A.3 

 

 rt_task_make_periodic(mytask, (t0 + nano2count(500500000)), 

nano2count(h*1000000)); // h ms sampling time 

 

… // Here is an identical code block as the one in Appendix A.3 

 

  if(loop_count < 10000) 

  {  

  u0 = recv_msg->u0; 

… // Here is an identical code block as the one in Appendix A.3 

  u8e = recv_msg->u8e; 

 

  h=u1e; // assign sampling period from server 

 

… // Here is an identical code block as the one in Appendix A.3 
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  } 

  if(loop_count < 9998) { 

… // Here is an identical code block as the one in Appendix A.3 

} 

 

int main(void) 

{ 

… // Here is an identical code block as the one in Appendix A.3 

} 

 

A.8  C Code for Client (Disturbance Estimation Using ANN) 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.3 

 

// Variables for error variance 

float e_var_old=0; // error variance old 

float e_var=0; // error variance  

float avg_var=0; // average variance 

 

// Variables for average speed of DC motor 

float ysum=0; 

float ysum_old=0; 

float avg_y=0; 

 

// Variables to calculate ANN 

// Input 1 

float x1_xoffset[2] = {2.5, 0.1114}; 

float x1_gain[2] = {0.0727272727272727, 0.161136982548865}; 
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float x1_ymin = -1; 

float h2=0; 

float avg_y2=0; 

float avg_var2=0; 

int k; 

// Layer 1 

float net1[4]={0,0,0,0}; 

float net11[4]={0,0,0,0}; 

float b11[4] = {0.47300776220375267966,1.9122015819874829123, 

2.7435818236477609311,-3.9405675003955682456}; 

float W11[2] = {-0.7688159172855809631,-0.69052644842593469132}; 

float W12[3] = {-3.7709279503866457439,-0.24358152435790655921}; 

float W13[3] = {-2.3373025435141800976,0.47755270268816996104}; 

float W14[3] = {1.4856282135442397951 -4.7080849515018128315}; 

float a11[4]={0,0,0,0}; 

// Layer 2 

float b21 = -0.71374227756580377324; 

float W21[4] = {-7.7056536845927992019,3.2598735695268215018, 

2.3522230812494124841,-2.0592920285453231166}; 

float a21=0; 

// Output 1 

float y_ymin = -1; 

float y_gain = 0.714285714285714; 

float y_xoffset = 0; 

 

float dist=0; //estimated disturbance 

 

RTIME current_time_stamp; 
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… // Here is an identical code block as the one in Appendix A.3 

 

void *send_thread_fun(void *arg) 

{ 

… // Here is an identical code block as the one in Appendix A.7 

// DC motor speed measure 

 while(1)  

 {  

… // Here is an identical code block as the one in Appendix A.3 

 

  speed = (cnt*0.214)+1.322; //* DI counting w/ j=1000, PCI-6025E 

  y_0 = speed;   

  print_data[loop_count] = y_0; 

  print_samp[loop_count] = h;  // to print sampling time 

   

// error variance 

  e_var = (7-y_0)*(7-y_0); 

  e_var = e_var_old + e_var; 

  e_var_old = e_var; 

 

//avg speed 

  ysum=ysum_old+y_0; 

  ysum_old=ysum; 

 

  if(loop_count%100 == 0 && loop_count > 0) { /* to avoid calculate 

when loop_count=0 (initial value) */ 

 

   avg_var=e_var/100; 

   e_var=0; 
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   e_var_old=0; 

   avg_y=ysum/100; 

   ysum=0; 

   ysum_old=0; 

    

   // Input 1 (Xp1) 

   h2=(h-x1_xoffset[0])*x1_gain[0]+x1_ymin; 

   avg_y2=(avg_y-x1_xoffset[1])*x1_gain[1]+x1_ymin; 

   avg_var2=(avg_var-x1_xoffset[2])*x1_gain[2]+x1_ymin; 

   // Layer 1 (a1) 

   net1[0]=W11[0]*h2+ W11[1]*avg_var2+b11[0]; 

   net1[1]=W12[0]*h2+W12[1] *avg_var2+b11[1]; 

   net1[2]=W13[0]*h2+W13[1] *avg_var2+b11[2]; 

   net1[3]=W14[0]*h2+W14[1] *avg_var2+b11[3]; 

   for ( k=0;k<4;k++ ) { 

    net11[k]=fabs(net1[k]); 

    a11[k]=net1[k]/(1+net11[k]); // f(net)=net/(1+|net|) elliot 

sigmoidal activation function 

   } 

   // Layer 2 (a2)

 a21=W21[0]*a11[0]+W21[1]*a11[1]+W21[2]*a11[2]+W21[3]*a11[3]+b21; 

   // Output 1 (Y) : estimated disturbance 

   dist=(a21-y_ymin)*y_gain+y_xoffset; 

 

  } 

  print_dist[loop_count] = dist; // to print estimated disturbance 

 

… // Here is an identical code block as the one in Appendix A.7 
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} // End of send_thread  

 

void *recv_thread_fun(void *arg) 

{ 

… // Here is an identical code block as the one in Appendix A.7 

} 

 

int main(void) 

{ 

… // Here is an identical code block as the one in Appendix A.3 

} 

 

A.9  C Code for Server (Q-learning) 

#include <stdio.h> 

 

… // Here is an identical code block as the one in Appendix A.1 

 

// Variables for DC motor 1 

double y_dot_desi = 7.0; //desire speed of DC motor united in RPS 

double e0 = 0; //instead of long 

double e1 = 0; //instead of long 

double u0 = 0; //value0, instead of long 

double u1 = 0; //value1, instead of long 

float e_dist = 0; // estimated disturbance 

float mse = 0; // mse from client 

int ri = 0; // index for random disturbance 

 

// Q-learning for single client DC motor 

float h[7]={0.003,0.006,0.009,0.012,0.015,0.021,0.030}; // sampling time 
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float r[7]={0,0,0,0,0,0,0}; // reward 

float q[7]={0,0,0,0,0,0,0}; // Q-values 

int size=7; 

float alpha=0.25; // learning rate 

float gamma=0; // discount factor 

float maxq=0; // maximum Q-value 

int idx=0; 

float yold1=0; 

float yold2=0; 

float yold3=0; 

 

float h1=0.008; // sampling time of DC1 

float h2=0.008; // sampling time of DC2 

float h3=0.008; // sampling time of DC3 

float h4=0.008; // sampling time of DC4 

 

… // Here is an identical code block as the one in Appendix A.1 

 

main(int argc, char *argv[]) 

{ 

… // Here is an identical code block as the one in Appendix A.1 

 

  while( 1 ) 

{ 

… // Here is an identical code block as the one in Appendix A.1 

 

  u_1 = recv_buffer->u_1; 

  u_2 = recv_buffer->u_2; 

  mse = u_1; // mse from client 
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… // Here is an identical code block as the one in Appendix A.1 

 

  if(y_7 == 2) { //Client 2 DC motor  

   e1 = y_dot_desi - y0; // Error Calculation 

   u0 = u1 + (1.8+3*h1)*e1 - (1.8-3*h1)*e0 + noise[ri]*0.5; /* 

universal digital controller (Tustin's method) */ 

    

   // Q-learning 

if (p2%200==0&&p2>0) { 

    idx=rand()%7;  

    h1=h[idx]; 

    if (y<=yold1 && y<=yold2 && y<=yold3){ 

     r[idx]=1;} // reward  

    else { 

     r[idx]=0;} // reward 

    maxq=q[0]; 

    for (c=1;c<size;c++){ 

     if (q[c]>maxq){ 

     maxq=q[c]; 

} 

} 

q[idx]=(1-alpha)*q[idx]+alpha*(r[idx]+gamma*maxq); // New Q 

   send_buffer->u0 = u0; 

 

… // Here is an identical code block as the one in Appendix A.1 

  }  

… // Here is an identical code block as the one in Appendix A.1  

  } // END of while 
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… // Here is an identical code block as the one in Appendix A.1 

 

} 
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APPENDIX B 

EXPERIMENTAL DATA OF ERROR VARIANCE BETWEEN 

REFERENCE INPUT (7 RPS) AND OUTPUT WHEN WHITE 

GAUSSIAN DISTURBANCE IS INJECTED TO ONE DC MOTOR 

SYSTEM 

 

Table B-1. Experiment 1 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

2.5 ms 3 ms 4 ms 5 ms 6 ms 

(0,02) 0.075 0.061 0.062 0.085 0.137 

(0,0.0672) 0.174 0.118 0.111 0.132 0.157 

(0,0.1342) 0.406 0.311 0.254 0.239 0.247 

(0,0.2682) 1.285 1.070 0.824 0.694 0.579 

(0,0.3332) 1.917 1.598 1.231 1.030 0.824 

(0,0.52) 4.088 3.442 2.650 2.167 1.695 

(0,0.6672) 6.803 5.833 4.622 3.774 2.901 

(0,12) 12.383 10.781 8.923 7.726 6.171 

(0,1.3332) 16.979 15.391 13.211 11.809 9.739 

(0,22) 23.724 21.401 20.398 17.933 16.214 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

9 ms 12 ms 15 ms 21 ms 30 ms 

(0,02) 0.279 0.470 0.860 1.533 3.425 

(0,0.0672) 0.290 0.511 0.810 1.542 3.206 

(0,0.1342) 0.364 0.558 0.860 1.571 3.238 

(0,0.2682) 0.607 0.713 0.970 1.681 3.379 

(0,0.3332) 0.779 0.849 1.070 1.742 3.531 

(0,0.52) 1.415 1.329 1.376 2.034 3.560 

(0,0.6672) 2.319 1.975 1.891 2.399 4.001 

(0,12) 4.750 3.800 3.386 3.408 4.549 

(0,1.3332) 7.901 6.339 5.316 4.751 5.452 

(0,22) 14.015 11.774 10.219 8.404 7.877 
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Table B-2. Experiment 2 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

2.5 ms 3 ms 4 ms 5 ms 6 ms 

(0,02) 0.076 0.055 0.061 0.079 0.128 

(0,0.0672) 0.172 0.120 0.118 0.133 0.158 

(0,0.1342) 0.411 0.312 0.257 0.249 0.247 

(0,0.2682) 1.297 1.063 0.826 0.700 0.579 

(0,0.3332) 1.910 1.613 1.239 1.026 0.825 

(0,0.52) 4.040 3.453 2.695 2.206 1.699 

(0,0.6672) 6.823 5.822 4.597 3.781 2.891 

(0,12) 12.523 11.062 9.084 7.713 6.143 

(0,1.3332) 17.234 15.619 13.416 11.908 9.725 

(0,22) 23.854 22.459 20.215 18.478 16.308 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

9 ms 12 ms 15 ms 21 ms 30 ms 

(0,02) 0.276 0.506 0.862 1.709 3.363 

(0,0.0672) 0.307 0.555 0.839 1.720 3.320 

(0,0.1342) 0.363 0.570 0.903 1.784 3.351 

(0,0.2682) 0.608 0.771 1.035 1.902 3.403 

(0,0.3332) 0.790 0.880 1.134 1.989 3.628 

(0,0.52) 1.414 1.346 1.526 2.216 3.591 

(0,0.6672) 2.304 1.987 2.044 2.561 3.950 

(0,12) 4.743 3.822 3.492 3.512 4.633 

(0,1.3332) 7.812 6.278 5.391 4.858 5.562 

(0,22) 14.025 11.844 10.215 8.525 8.059 
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Table B-3. Experiment 3 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

2.5 ms 3 ms 4 ms 5 ms 6 ms 

(0,02) 0.076 0.058 0.065 0.093 0.133 

(0,0.0672) 0.176 0.122 0.118 0.138 0.160 

(0,0.1342) 0.408 0.315 0.260 0.246 0.242 

(0,0.2682) 1.310 1.072 0.834 0.702 0.583 

(0,0.3332) 1.910 1.617 1.239 1.032 0.828 

(0,0.52) 4.072 3.455 2.663 2.179 1.699 

(0,0.6672) 6.778 5.828 4.600 3.770 2.920 

(0,12) 12.519 11.069 9.149 7.731 6.151 

(0,1.3332) 17.434 15.825 13.533 11.901 9.768 

(0,22) 23.975 22.443 20.167 18.273 16.379 

Sampling T. (ms) 

 

Disturbance (m, σ2) 

9 ms 12 ms 15 ms 21 ms 30 ms 

(0,02) 0.269 0.516 0.789 1.709 3.361 

(0,0.0672) 0.291 0.520 0.813 1.641 3.365 

(0,0.1342) 0.354 0.554 0.843 1.739 3.272 

(0,0.2682) 0.606 0.737 0.997 1.727 3.375 

(0,0.3332) 0.788 0.872 1.096 1.831 3.572 

(0,0.52) 1.404 1.343 1.473 2.046 3.632 

(0,0.6672) 2.298 1.971 1.948 2.401 3.941 

(0,12) 4.745 3.826 3.434 3.427 4.620 

(0,1.3332) 7.813 6.262 5.359 4.765 5.375 

(0,22) 13.960 11.767 10.152 8.440 7.806 
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