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ABSTRACT 

 

Proper characterization of heterogeneous rock properties and natural/induced 

fracture properties is essential for optimizing field development plan and reliable 

estimation of Estimated Ultimate Recovery (EUR) in conventional and unconventional 

reservoirs. It is achieved by reconciling the geologic model to the dynamic production and 

pressure data, otherwise known as history matching. However, history matching of high 

resolution reservoir models with heterogeneous features and complex fracture properties 

is challenging because it poses non-uniqueness and stability issues of the highly 

underdetermined problems. This dissertation proposes novel reservoir model 

parameterization methods to regularize the ill-posed problem and enhance the efficiency 

of history matching. We also show practical feasibility of the proposed method by various 

field cases. 

First, the spatial properties of rock and fluid are simultaneously calibrated by grid 

adjacency-based parameterizations to seismic and pressure data of a heavy oil reservoir in 

Peace River field, Canada. A novel approach is proposed to integrate frequent time lapse 

seismic data into high resolution reservoir models based on the seismic onset times. Multi-

objective genetic algorithm (MOGA) is utilized to address potential conflicts between 

seismic and pressure match. We demonstrate the feasibility and robustness of the history 

matching workflow with MOGA and simultaneous property calibrations in the 

parameterized transform domain.  
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Second, a novel multi-resolution parameterization is developed to further improve 

the regularization when the production data resolution is variant in a reservoir. The multi-

resolution parameterization adjusts the modal frequencies or resolutions of basis functions 

to comply with the various data resolutions. Hence, it better regularizes the undermined 

history matching problem compared to previous studies. 

Third, the grid adjacency-based parameterization is extended to parameterize 

reservoir models with various fracture geometries simulated by embedded discrete 

fracture model (EDFM). Analytical basis coefficient sensitivity to production data is 

calculated with the resulting basis and streamline-based sensitivity. Employing a 

hierarchical multi-scale workflow and the analytic sensitivity, matrix and fracture 

properties in EDFM are efficiently calibrated with the proposed parameterization.  

 

 

 

 

 

 

  

 

 

 

 



 

iv 

 

DEDICATION 

 

I dedicate this dissertation to my wife, son, and parents of both families. 

 

 

 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Datta-Gupta for his academic 

guidance and financial support throughout the course of this research. I also appreciate his 

support for my professional experiences through internships. I would also like to thank 

my committee members, Dr. King, Dr. Gildin, and Dr. Efendiev, for their guidance and 

support.  

Thanks also go to MCERI alumni and colleagues. Their mentorship and friendship 

have contributed to my successful and enjoyable Ph.D. program at Texas A&M 

University. 

Finally, I would like to express my sincere gratitude to my beloved wife, Soyoung 

Kim, for unconditional support and love she has shown throughout the Ph.D. program. 

 

 

  



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a dissertation committee consisting of Professor 

Akhil Datta-Gupta (advisor), Michael J. King, and Eduardo Gildin of the Department of 

Petroleum Engineering and Professor Yalchin Efendiev of the Department of 

Mathematics.   

The seismic onset times in Chapter 2 were calculated by Gill Hetz and the extended 

collaborated work was published in 2017. In Chapter 4, the EDFM preprocessor was 

developed by Tsubasa Onishi and streamline tracing in EDFM was developed by 

Hongquan Chen.  

All other work conducted for the dissertation was completed by the student 

independently.  

 

Funding Sources 

This work was made possible by the financial support of the member companies 

of the Model Calibration and Efficient Reservoir Imaging (MCERI) consortium. 

 

 

 



 

vii 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. vi 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ........................................................................................................... xv 

1. INTRODUCTION AND LITERATURE REVIEW ...................................................... 1 

1.1. Overview of Parameterization for History Matching .............................................. 1 

1.2. Research Objectives and Dissertation Outline ........................................................ 5 

2. GRID ADJACENCY-BASED TRANSFORM FOR HISTORY MATCHING 

OF FREQUENT SEISMIC SURVEYS USING ONSET TIMES ..................................... 7 

2.1. Chapter Summary .................................................................................................... 7 

2.2. Introduction ............................................................................................................. 8 
2.3. Background and Methodology .............................................................................. 12 

2.3.1. Onset Time of Frequent Seismic Data ........................................................... 12 
2.3.2. Adjacency-Based Transform .......................................................................... 17 

2.4. Application – Field Case at Peace River, Pad 31 .................................................. 23 
2.4.1. Field History and Data ................................................................................... 23 
2.4.2. History Matching of Onset Time and BHP .................................................... 27 

2.5. Conclusions ........................................................................................................... 35 

3. MULTI-RESOLUTION GRID CONNECTIVITY-BASED TRANSFORM 

FOR EFFICIENT HISTORY MATCHING OF CONVENTIONAL AND 

UNCONVENTIONAL RESERVOIRS ........................................................................... 37 

3.1. Chapter Summary .................................................................................................. 37 
3.2. Introduction ........................................................................................................... 39 



 

viii 

 

3.3. Background and Methodology .............................................................................. 45 
3.3.1. Grid Connectivity-Based Transform (GCT) .................................................. 46 
3.3.2. Multi-Resolution Grid Connectivity-Based Transform (MGCT) .................. 51 
3.3.3. Re-parameterization Analysis ........................................................................ 57 

3.3.4. Multi-Objective Genetic Algorithm ............................................................... 63 
3.4. Application ............................................................................................................ 65 

3.4.1. Brugge Benchmark Model ............................................................................. 65 
3.4.2. Unconventional Tight Oil Reservoir With Multi-Stage Hydraulic 

Fractures ................................................................................................................... 79 

3.5. Conclusions ........................................................................................................... 94 

4. PARAMETERIZATION OF EMBEDDED DISCRETE FRACTURE MODELS 

(EDFM) FOR EFFICIENT HISTORY MATCHING OF FRACTURED 

RESERVOIRS ................................................................................................................. 96 

4.1. Chapter Summary .................................................................................................. 96 
4.2. Introduction ........................................................................................................... 98 

4.3. Background and Methodology .............................................................................. 99 
4.3.1. Embedded Discrete Fracture Model (EDFM) .............................................. 100 

4.3.2. Parameterization of EDFM .......................................................................... 102 
4.3.3. Streamline-Based Sensitivity ....................................................................... 110 
4.3.4. Analytical Basis Coefficient Sensitivity ....................................................... 114 

4.3.5. Hierarchical Multi-Scale History Matching Formulation ............................ 117 

4.4. Applications ........................................................................................................ 120 
4.4.1. Synthetic Case – Comparison With Streamline-Based Inversion ................ 120 
4.4.2. Field Case – Reservoir With Faults / Fractures ............................................ 129 

4.5. Conclusions ......................................................................................................... 141 

5. CONCLUSIONS AND RECOMMENDATIONS ..................................................... 143 

5.1. Conclusions ......................................................................................................... 143 
5.2. Recommendations and Future Study .................................................................. 146 

REFERENCES ............................................................................................................... 147 

APPENDIX A CONCEPT AND ILLUSTRATION OF PARAMETERIZATION 

USING BASIS FUNCTION .......................................................................................... 156 

APPENDIX B FRACTURE DISTRIBUTION CALIBRATION ................................. 160 

APPENDIX C USER MANUAL FOR PARAMETERIZATION/CLUSTERING 

SOFTWARE .................................................................................................................. 167 

APPENDIX D WEIGHTING FUNCTIONS OF SIMILARITY ................................... 177 



 

ix 

 

LIST OF FIGURES 

 Page 

Figure 2.1 Permeability field for the illustration of onset time ........................................ 14 

Figure 2.2 Illustration of onset time – conversion of multiple attribute maps (AI) to 

onset time map. (a) A sample of 6 attribute maps (AI). (b) Plot of the 

seismic response of a specific cell (black do in (a)) to indicate the onset 

time. (c) Onset time map after converting from seismic attribute to 

calendar time. The contours display the front propagation .............................. 16 

Figure 2.3 Workflow of basis function calculation for GCT and ABT ........................... 18 

Figure 2.4 Laplacian matrix comparison of GCT and ABT in a 9-points grid system .... 20 

Figure 2.5 Basis function comparison of GCT and ABT in a 50 50  grid system. (a) 

Reference permeability field. (b) GCT basis functions. (c) ABT basis 

functions ........................................................................................................... 21 

Figure 2.6 Re-parameterized permeability fields of GCT and ABT with different 

number of basis functions ................................................................................. 22 

Figure 2.7 RMSE comparison of GCT and ABT ............................................................. 23 

Figure 2.8 Pad 31 horizontal production wells (red), injection wells (green), and 

observation well (blue). Also shown are seismic sources (red dots) and 

receivers (blue dots). Producer 31-08 underwent CSS and is the focus of 

this study ........................................................................................................... 24 

Figure 2.9 Seismic observations in well 31-08 (top view). 18 samples of time shift 

maps are shown out of 175 time shift maps that are available for 

integration ......................................................................................................... 25 

Figure 2.10 Normalized bottom-hole pressure response over the CSS cycle .................. 25 

Figure 2.11 Conversion of multiple attribute maps (time shift) to onset time map. (a) 

A sample of 7 attribute maps (time shifts) out of 175 that are available for 

integration. (b) A plot of the seismic response of a specific cell (label as 

black dot in (a)) to indicate the onset time. (c) The onset time map after 

converting from seismic attribute to time. The contours display the front 

propagation ....................................................................................................... 27 

Figure 2.12 Initial misfits for onset time and BHP in Peace River Field Case ................ 29 



 

x 

 

Figure 2.13 ABT basis functions of parameter fields at layer 17..................................... 30 

Figure 2.14 Comparison of objective functions at (a) 1st and (b) 30th generations 

along with the initial misfits ............................................................................. 31 

Figure 2.15 Clustered populations at 30th generation ....................................................... 32 

Figure 2.16 Onset time maps for selected models for each cluster .................................. 33 

Figure 2.17 Updated BHP responses for each cluster. (a) All responses. (b) 

Respective responses for each cluster ............................................................... 34 

Figure 2.18 Water saturation changes after 45 days and 85 days after model 

calibration ......................................................................................................... 35 

Figure 3.1 Workflow of history matching with multi-resolution parameterization and 

multi-objective genetic algorithm ..................................................................... 46 

Figure 3.2 (a) 1D uniformly structured grid and extended edges to explain the 

Neumann boundary condition and (b) corresponding symmetric second 

difference matrix ............................................................................................... 48 

Figure 3.3 Low frequency GCT basis functions of 50 50  grid system ......................... 51 

Figure 3.4 (a) Grid Laplacian for GCT and (b) coarsened grid Laplacian for MGCT .... 53 

Figure 3.5 Low frequency MGCT basis functions of 50 50  grid system ...................... 54 

Figure 3.6 Coarsened grid and neighboring fine grids ..................................................... 54 

Figure 3.7 (a) Various coarsening schemes and (b) corresponding DCT basis 

functions in AOI ............................................................................................... 56 

Figure 3.8 Reference permeability for re-parameterization ............................................. 59 

Figure 3.9 (a) Coefficients in the order of eigenvalues and (b) coefficients in the 

order of coefficient magnitudes ........................................................................ 59 

Figure 3.10 GCT basis functions of 50 50  grid system (significant mode) .................. 60 

Figure 3.11 (a) Comparison of RMSE and (b) low rank approximation for each 

mode ................................................................................................................. 61 

Figure 3.12 (a) Comparison of RMSE, (b) low rank approximation in entire region, 

and (c) low rank approximation in the AOI for GCT and MGCT .................... 63 



 

xi 

 

Figure 3.13 Illustration of crowding distance in dual objectives case ............................. 65 

Figure 3.14 Prior permeability distribution of Brugge model for each layer ................... 66 

Figure 3.15 (a) Sorted coefficients in a significant mode and (b) corresponding 

RMSE of GCT in Brugge ................................................................................. 68 

Figure 3.16 GCT basis functions selected for model calibration of Brugge model ......... 68 

Figure 3.17 Initial water saturation and well distribution and (b) AOI for Brugge 

model ................................................................................................................ 69 

Figure 3.18 Comparison of GCT and MGCT for (a) Laplacian matrix size and (b) 

computation time for eigen-decomposition ...................................................... 70 

Figure 3.19 MGCT basis functions selected for model calibration of Brugge model ..... 70 

Figure 3.20 (a) Data misfits at the 50th generation, (b) water cut misfits through 

generations, and (c) bottom-hole pressure misfits through generations by 

GCT and MGCT ............................................................................................... 72 

Figure 3.21 Simulated water cut at each production well corresponding to the 

observation, initial, GCT and MGCT for Brugge case ..................................... 74 

Figure 3.22 Simulated bottom-hole pressure at each production well corresponding 

to the observation, initial, GCT and MGCT for Brugge case ........................... 75 

Figure 3.23 Data misfit histogram for water cuts of all populations at the 50th 

generation in Brugge case ................................................................................. 76 

Figure 3.24 Data misfit histogram for bottom-hole pressures of all populations at the 

50th generation in Brugge case ......................................................................... 77 

Figure 3.25 Prior permeability field for the prior model (left), updated permeability 

field by GCT (middle), and by MGCT (right) in Brugge case ......................... 78 

Figure 3.26 Permeability multiplier fields for the entire reservoir and for the AOI 

calibrated by GCT and MGCT in Brugge case ................................................ 79 

Figure 3.27 (a) Prior permeability field and (b) AOI as the green box for the tight oil 

reservoir with multi-stage hydraulic fractures .................................................. 81 

Figure 3.28 Group of hydraulic fracturing stages ............................................................ 83 

Figure 3.29 Dimensionless sensitivity of model parameters to (a) water cut misfit 

and (b) bottom-hole pressure misfit .................................................................. 84 



 

xii 

 

Figure 3.30 (a) Sorted coefficients in a significant mode and (b) the corresponding 

RMSE of MGCT in the tight oil reservoir ........................................................ 85 

Figure 3.31 MGCT basis functions of tight oil reservoir model. First row shows the 

selected basis functions for model calibration, and second row shows the 

higher frequency basis functions as examples of visible resolution 

differences ......................................................................................................... 86 

Figure 3.32 Data misfits comparison (a) at the 1st and 10th generation and (b) 

individual misfits through all the generation .................................................... 88 

Figure 3.33 (a) Simulated water cut and (b) bottom-hole pressure at the 1st 

generation and (c) simulated water cut and (d) bottom-hole pressure at 

10th generation along with observed data ........................................................ 89 

Figure 3.34 Box plots of parameter distribution for 1st and 10th generations. (a) 

Permeability multiplier for SRV. (b) Hydraulic fracture conductivity. (c) 

Fracture half length on each group. (d) Basis coefficients for matrix 

permeability multiplier ..................................................................................... 91 

Figure 3.35 Comparison of matrix permeability multiplier fields between 1st and 

10th generations ................................................................................................ 92 

Figure 3.36 Production forecast with uncertainty quantification by history matched 

models ............................................................................................................... 93 

Figure 4.1 An illustration of EDFM with (a) simulated geologic model and (b) actual 

grid structure in a numerical domain .............................................................. 101 

Figure 4.2 Illustration of EDFM and Laplacian matrix of an extended ABT ................ 104 

Figure 4.3 Two-dimensional synthetic EDFM. (a) Top view of reference 

permeability field with matrix and fracture together. Three-dimensional 

views of (b) matrix field and (c) embedded fractures ..................................... 105 

Figure 4.4 Extended ABT basis functions of a synthetic EDFM for (a) matrix domain 

and (b) fracture domain .................................................................................. 106 

Figure 4.5 Low rank approximations of a synthetic EDFM for (a) matrix 

permeability field and (b) fracture permeability ............................................. 107 

Figure 4.6 RMSE of re-parameterized permeability for (a) matrix domain and (b) 

fracture domain ............................................................................................... 108 



 

xiii 

 

Figure 4.7 Normalized RMSE of re-parameterized permeability field for matrix and 

fracture domains combined ............................................................................. 109 

Figure 4.8 Impact of the number of basis coefficients on the property change, 

compared with streamline-based method ....................................................... 117 

Figure 4.9 Hierarchical EDFM history matching workflow. (a) Large scale 

calibration with an adaptive multi-scale re-parameterization. (b) Small 

scale calibration with a streamline-based inversion ....................................... 119 

Figure 4.10 Permeability fields for a synthetic EDFM. (a) Matrix permeability of the 

initial model. (b) Matrix permeability of the reference model. (c) Fracture 

permeability of the initial model. (d) Fracture permeability of the reference 

model .............................................................................................................. 121 

Figure 4.11 Normalized data misfit reduction by streamline-based inversion and 

hierarchical workflow respectively in synthetic EDFM. (a) BHP misfit. (b) 

WCT misfit (generalized travel time). (c) WCT misfit (amplitude) .............. 123 

Figure 4.12 Match results after streamline-based inversion and hierarchical 

workflow for (a) WCT and (b) BHP in synthetic EDFM ............................... 125 

Figure 4.13 Updated permeability fields after history matching, compared with 

initial and reference models of synthetic EDFM ............................................ 127 

Figure 4.14 Permeability changes after history matching, compared with the 

required change of synthetic EDFM ............................................................... 127 

Figure 4.15 Comparison of streamlines after history matching along with initial and 

reference models of synthetic EDFM. First row shows the time of flights 

from producer and second row shows the producer drainage volume 

partitions ......................................................................................................... 128 

Figure 4.16 Initial rock and fluid distributions in SAIGUP EDFM. (a) Grid structure 

with fractures and faults. (b) Initial permeability field. (c) Porosity field. 

(d) Initial water saturation distribution ........................................................... 130 

Figure 4.17 Basis functions of SAIGUP EDFM calculated by the extended ABT. 

Left column shows values on matrix. Right column shows values on 

fracture planes. Middle column shows the transparent view to observe the 

distinct features between matrix and fractures ............................................... 132 

Figure 4.18 Normalized data misfit reduction by hierarchical workflow in SAIGUP 

EDFM. (a) BHP misfit. (b) WCT misfit (generalized travel time). (c) WCT 

misfit (amplitude) ........................................................................................... 133 



 

xiv 

 

Figure 4.19 Match results after the hierarchical history matching for SAIGUP 

EDFM, along with the observed data and initial simulation results for (a) 

WCT and (b) BHP .......................................................................................... 134 

Figure 4.20 SAIGUP EDFM. (a) Initial matrix permeability field. (b) Updated 

matrix permeability filed after history matching for each layers ................... 136 

Figure 4.21 Matrix permeability changes after history matching in SAIGUP EDFM. 

Green dotted circles represent permeability updates by small scale 

calibration ....................................................................................................... 137 

Figure 4.22 SAIGUP EDFM. (a) Initial fracture permeability. (b) Updated fracture 

permeability after history matching. (c) Fracture permeability change after 

history matching. Green dotted circles represent permeability updates by 

small scale calibration ..................................................................................... 138 

Figure 4.23 Comparison of streamlines after history matching with initial model of 

SAIGUP EDFM. First row shows the time of flights from producer and 

second row shows the producer drainage volume partitions .......................... 139 

Figure 4.24 Streamlines from producer ‘P10’ in SAIGUP EDFM. First row shows 

the time of flight from ‘P10’ and WCT match of ‘P10’. Second row shows 

the pressure distribution along the streamlines and BHP match of ‘P10’. 

Both rows compare the properties and match results between the initial 

model and history matched model .................................................................. 140 

 

 

 

 

 

 

 



 

xv 

 

LIST OF TABLES 

 Page 

 

 

Table 2.1 Parameters for history matching in Peace River field case .............................. 28 

Table 3.1 MOGA parameters in the Brugge case ............................................................ 71 

Table 3.2 Model description and prior information for the tight oil reservoir with 

multi-stage hydraulic fractures ......................................................................... 80 

Table 3.3 Parameter descriptions and ranges for sensitivity analyses ............................. 82 

Table 3.4 MOGA parameters in the tight oil reservoir case ............................................ 86 

Table 4.1 Properties of embedded fractures in a synthetic EDFM ................................ 106 

Table 4.2 Model descriptions and history matching parameters in a synthetic 

EDFM. Streamline-based inversion and the proposed hierarchical 

workflow are compared .................................................................................. 122 

Table 4.3 Model descriptions and history matching parameters in SAIGUP EDFM .... 131 

 

 

 

 

 

 

 

 

 



1 

 

1. INTRODUCTION AND LITERATURE REVIEW1 

 

Proper characterization of heterogeneous rock properties and natural/induced 

fracture properties is essential for optimizing field development plan and reliable 

estimation of EUR in conventional and unconventional reservoirs. It is achieved by 

reconciling the geologic model to the dynamic production and pressure data, called as 

history matching. However, the history matching of a high resolution reservoir model with 

heterogeneous features and complex fracture properties is challenging because it poses 

non-uniqueness and stability issues of the highly underdetermined problem. 

This dissertation proposes novel reservoir model parameterization methods to 

regularize the ill-posed problem and enhance the efficiency of history matching. We also 

show a practical feasibility of the proposed method by various field cases. In this chapter, 

we review the previous parameterization researches and present the outline of this 

dissertation.    

 

1.1. Overview of Parameterization for History Matching 

The history matching of high resolution geologic models poses an 

underdetermined inverse problem because of the large number of reservoir properties 

defined on grid cells with limited measured data. Therefore, the solution of the inverse 

                                                 

1 Part of this chapter is from URTeC 2019 Paper 2019-982 “Multi-Resolution Grid Connectivity-Based 

Transform for Efficient History Matching of Unconventional Reservoirs” by Hyunmin Kim, Feyi Olalotiti-

Lawal, Akhil Datta-Gupta, and is reprinted here by permission of the Unconventional Resources Technology 

Conference, whose permission is required for further use. 
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problem related to identification of geologic heterogeneity is non-unique and potentially 

unstable. 

The essence of regularization is to address the non-uniqueness and stability issues 

by either reducing the number of parameters or imposing additional constraints to ensure 

that the inverse problem is more tractable (Tikhonov 1977, Tarantola 2005, Tonkin and 

Doherty 2009). In this dissertation, parameterization is used to reduce the number of 

unknowns, from pixel-based reservoir properties to a low rank approximation of spatial 

properties with little loss of information. This results in more stable solutions and 

improved predictive capability of history matched reservoir models.  

Of the variety of parameterization methods, the linear transformation of spatial 

properties in grid cells to parameters in the transform domain has been widely used in 

hydrology and petroleum engineering (LaVenue and Pickens 1992, Chavent and Bissell 

1998, Grimstad et al. 2003, Alcolea, Carrera, and Medina 2006, Jafarpour and McLaughlin 

2009, Bhark, Jafarpour, and Datta-Gupta 2011, Bhark, Jafarpour, and Datta‐Gupta 2011, 

Bhark et al. 2011, Hetz, Kim, et al. 2017). It is represented by equation (1.1). 

 u v  (1.1) 

where v  is m -component column vector of parameters in transform domain, and   is a 

predefined n m  matrix with columns of interpolation or transformation basis vectors. n  

is the number of grid cells in a model. Therefore, the updated model is determined by 

linear combination of basis vectors weighted by v . 

The most basic parameterization with linear transformation is segmentation of 

geologic models into zones of piecewise continuous value. The reservoir property itself or 
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property multiplier is updated by a constant value within each zone (Jahns 1966, Kang et 

al. 2015, Olalotiti-Lawal et al. 2017). In case of segmentation,   consists of basis vectors 

of which elements are non-zero constant values only for the corresponding zones and zero 

for the other zones.   should be predefined based on the prior model and does not change 

in the course of model calibrations. The other common parameterization is Karhunen-

Loève transform (KLT) or principal component analysis (PCA) of the property covariance 

matrix (Karhunen 1947, Loève 1978, Reynolds et al. 1996). The eigenvectors of the 

covariance matrix are ranked by their corresponding eigenvalues, from largest to smallest, 

and several eigenvectors with the largest eigenvalues compose the transform basis. In this 

approach, the basis vectors provide optimal compression if the covariance matrix 

accurately captures the model geostatistical features. In other words, basis vectors 

obtained by the KLT approach tend to capture the details of spatial heterogeneity with the 

fewest transform parameters and result in minimum mean square error for the low rank 

approximation. Similar to the model segmentation, underdetermined inverse problems can 

be regularized by reducing the number of unknowns from pixel-based property field to a 

low rank approximation with little loss of information. However, Jafarpour and 

McLaughlin (2009) and Bhark, Jafarpour, and Datta‐Gupta (2011) discussed the 

limitations of KLT in a realistic history matching problem of high resolution models: (1) 

the covariance is generally unknown, resulting in the possibility of suboptimal basis 

functions if prior model is incorrect, (2) it often entails an eigen-decomposition of large 

covariance matrices which can be prohibitively expensive. 



 

4 

 

To overcome these limitations, there have been studies conducted on model-

independent parameterization in image processing (Jain 1989, Gonzalez 2001, Rao and 

Yip 2014). They used the discrete cosine transform (DCT) which is a type of Fourier 

transform that reconstructs a discrete signal as the sum of cosine harmonics (Britanak, Yip, 

and Rao 2010). Jafarpour and McLaughlin (2009) applied DCT in reservoir 

characterization, and Bhark, Jafarpour, and Datta-Gupta (2011) developed it to the 

multiscale history matching workflow.  in equation (3.1) of DCT also refers to a linear 

transformation matrix of which columns are each cosine function with corresponding 

frequency that depicts a harmonic pattern of grid. As each cosine function is calculated 

based not on the properties in grid cells, but on the grid structure, basis vectors are 

constructed independent of the prior model. Each transform parameter in 𝐯 is merely the 

amplitude of each cosine function. Therefore, DCT basis vectors are calculated 

analytically only once with cosine functions for a given inverse problem, and considerably 

smaller parameter set ( v ) updates the prior model during calibrations. This parameter 

reduction is possible because DCT has a strong compression performance, so it is able to 

capture larger scales of spatial continuity and heterogeneity with a significantly reduced 

number of parameters. In addition, mapping transform parameter to spatial property is 

achieved simply by the transpose of basis vectors due to their pairwise orthonormality. 

However, to calculate DCT transformation matrix, the grid cells should be rectangular and 

of uniform thickness in certain orientation to satisfy the underlying assumption of 

periodicity (Bhark, Datta-Gupta, and Jafarpour 2011, Bhark, Jafarpour, and Datta‐Gupta 

2011). Bhark, Jafarpour, and Datta‐Gupta (2011) developed the grid connectivity-based 
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transform (GCT) as a generalization of the DCT basis for generic grid geometries. The 

GCT basis vectors are defined as the eigenvectors of a Laplacian matrix that has two-point 

grid connectivity information, so they depend solely on the grid structure independent of 

grid properties. They proved that in the case of a regular periodic and fully connected grid, 

the GCT basis vectors are same as those of DCT in either structured or unstructured grid 

geometry. They also demonstrated that GCT is applicable for reservoir model calibrations 

in any grid geometries. The detailed concept and illustrations for the re-parameterization 

are presented in Appendix A. 

 

1.2. Research Objectives and Dissertation Outline 

This research proposes novel reservoir model parameterizations for efficient 

history matching and shows practical feasibility of the proposed method by field-scale 

applications to both conventional and unconventional reservoirs. The outline of this 

dissertation is as follows: 

 Integrate frequent time lapse (4D) seismic data into high resolution reservoir 

model by utilizing simultaneous adjacency-based transforms of rock properties, 

fluid saturations, and temperature and by utilizing a novel seismic onset time 

approach (Chapter 2) 

 Propose a multi-resolution grid connectivity-based transform for efficient history 

matching by adaptively coarsening the grid Laplacian according to the data 

resolution (Chapter 3) 
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  Propose a hierarchical multi-scale history matching workflow for embedded 

discrete fracture model (EDFM) using a novel parameterization method combined 

with streamline-based sensitivity (Chapter 4) 

 

 



 

7 

 

2. GRID ADJACENCY-BASED TRANSFORM FOR HISTORY MATCHING OF 

FREQUENT SEISMIC SURVEYS USING ONSET TIMES2 

 

2.1. Chapter Summary 

In this chapter, we present a novel and efficient approach to integrate frequent time 

lapse (4D) seismic data into high resolution reservoir models based on seismic onset times, 

defined as the calendar time when the seismic attribute crosses a pre-specified threshold 

value at a given location. Our approach reduces multiple time-lapse seismic survey data 

into a single map of onset times, leading to substantial data reduction for history matching 

while capturing all relevant information regarding fluid flow in the reservoir. Hence, the 

proposed approach is particularly well suited when frequent seismic surveys are available 

using permanently embedded sensors. 

Grid adjacency-based transform (ABT) effectively parameterizes spatial distribution 

of reservoir properties into a low rank property descriptions, resulting in significantly 

reduced parameter set size. It regularizes history matching problems and addresses the 

non-uniqueness and stability issues. We demonstrate the power and efficacy of the 

parameterization method first using a synthetic example. In a field example, large-scale 

features such as regional permeabilities, pore volumes, temperature and fluid saturations 

are adjusted to match seismic and bottom-hole pressure data using a Pareto-based multi-

                                                 

2 Reprinted with permission from “History Matching of Frequent Seismic Surveys Using Seismic Onset 

Times at the Peace River Field, Canada” by Hetz, Gill, Hyunmin Kim, Akhil Datta-Gupta et al., 2017, SPE-

187310-MS, Copyright 2017 by  Society of Petroleum Engineers 
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objective history matching workflow. Rather than an artificial subdivision of the domain, 

multiple zones of spatially continuous heterogeneity are captured based on an eigen-

decomposition of the grid Laplacian. 

The field example involves steam injection into a heavy oil reservoir at Pad 31 in the 

Peace River Field (Alberta, Canada) with daily time lapse seismic surveys recorded by a 

permanently buried seismic monitoring system (Lopez et al. 2015). In our specific 

application, we have used time lapse data (in terms of two-way travel time) from a Cyclic 

Steam Stimulation (CSS) cycle in the pad with a total of 175 seismic surveys. With a 

single onset time map derived from this data we were able to capture the propagation of 

pressure and saturation fronts and significantly improve the dynamic model through the 

estimation of permeability distribution, fluid saturation evolution and swept volume. With 

this methodology we correctly identified and further refined the location of stimulated 

zones as inferred before from reservoir engineering judgement and manual adjustments 

aiding better understanding of CSS behavior in the studied field. The results clearly 

demonstrate the effectiveness of the onset time approach for integrating large number of 

seismic surveys by compressing them into a single map. Also, the onset times appear to 

be relatively insensitive to the petro elastic model but sensitive to the steam/fluid 

propagation, making it a robust method for history matching of time lapse surveys.  

 

2.2. Introduction 

Reservoir monitoring is an integral part of reservoir management during enhanced 

oil recovery, where for example, steam (Eastwood et al. 1994) and 2CO   are injected to 
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ensure injectant conformance and flood front management, maximizing recovery and 

minimizing operational costs. The availability of dense areal information from frequent 

4D seismic offers a great opportunity to achieve these goals. It enables better 

understanding of reservoir sweep and flow patterns, reduction of the uncertainty in the 

reservoir properties and adjustment of the operational strategy to restore conformance and 

optimize recovery (Przybysz-Jarnut et al. 2015, Watanabe et al. 2017). However, it also 

poses new challenges in terms of dynamic reservoir modeling and seismic history 

matching to infer changes in the state of the reservoir. The underlying issues for successful 

monitoring of reservoir fluid-flow systems using time-lapse data were reviewed by 

Lumley (2001) and Behrens et al. (2001).   

Traditionally, time-lapse seismic techniques for inferring flow properties have 

been focused on amplitude, traveltime, and waveform changes. For example, Tura and 

Lumey (1999) and Landrø, Digranes, and Strønen (2001) used the inverted seismic 

responses and amplitude versus offset inversion to discriminate between the pressure and 

saturation changes. Arenas, van Kruijsdijk, and Oldenziel (2001) used the compressional 

velocity to calibrate the permeability field. Vasco et al. (2004) used reflection amplitude 

to update the flow properties, where the sensitivity of seismic amplitude is analytically 

computed. Dadashpour, Landrø, and Kleppe (2007), Dadashpour et al. (2009), and 

Dadashpour et al. (2010) applied the propagator-matrix method (Stovas and Arntsen 2006)  

to generate the seismic traces from a stack of plane layers and calibrate reservoir properties 

by a Gauss-Newton optimization technique. Rey et al. (2012) applied a streamline-based 

sensitivity calculation to integrate the seismically derived water saturation changes and 
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the acoustic impedance differences and demonstrated field-scale applications. Watanabe 

et al. (2017) used the time-lapse changes in acoustic impedance to update grid cell 

permeability with a hierarchical approach involving global and local updates. Cho et al. 

(2019) investigated capabilities of a multiscale method that can deal with fine scale 

heterogeneities of the reservoir layer and more coarsely meshed rock properties in the 

surrounding domains in the same fashion. 

Although such methods can often detect changes in geophysical quantities and 

were successfully applied to field cases, relating geophysical changes to quantified 

changes in the fluid flow properties remains a fundamental challenge (Vasco, Daley, and 

Bakulin 2014). The connection between the current state of the reservoir and the 

geophysical observations relies on underlying rock physics model that can have 

considerable uncertainty. One of the main uncertainties comes from the fact that these 

models are built based on laboratory measurements that may not be representative of the 

field conditions. This makes seismic history matching difficult as the estimation results 

highly depend on the saturation mapping chosen and can be quite different, while 

originating from the same seismic measurement. Another difficulty is integrating the data 

from Permanent Reservoir Monitoring systems (PRM), where tens to hundreds time-lapse 

seismic surveys may be available. 

To deal with the above-mentioned issues we present a novel and computationally 

efficient approach for frequent time lapse seismic integration using the concept of onset 

time (Vasco, Daley, and Bakulin 2014, Vasco et al. 2014). The onset times are defined as 

the calendar times at which geophysical observations begin to deviate from their initial or 
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background values above a pre-defined threshold value. It allows compression of multiple 

seismic surveys into a single map of front propagation, which can be used to effectively 

guide history matching and for dynamic model updating.  The onset time can be related to 

the arrival time of a particular physical phenomenon (e.g. saturation front and/or pressure 

front). Hetz, Kim, et al. (2017) demonstrated the power and the utility of the onset time 

methodology for history matching using synthetic study and field application. They 

compared the traditional seismic integration based on matching the magnitudes of seismic 

observations with the onset time approach.  

The history matching of high resolution geologic models poses an 

underdetermined inverse problem due to the large number of reservoir properties defined 

on grid cells with limited measured data. Therefore, the solution of the inverse problem 

related to identification of geologic heterogeneity is non-unique and potentially unstable. 

To address these issues, there have been various parameterization studies (LaVenue and 

Pickens 1992, Chavent and Bissell 1998, Grimstad et al. 2003, Alcolea, Carrera, and 

Medina 2006, Jafarpour and McLaughlin 2009, Bhark, Jafarpour, and Datta-Gupta 2011, 

Bhark, Jafarpour, and Datta‐Gupta 2011, Bhark et al. 2011). Bhark, Jafarpour, and Datta‐

Gupta (2011) developed the grid connectivity-based transform (GCT) as a generalization 

of the discrete cosine transform (DCT) (Jain 1989, Gonzalez 2001, Rao and Yip 2014) 

basis for generic grid geometries. Bhark, Datta-Gupta, and Jafarpour (2011) applied GCT 

with prior static property (adjacency-based transform; ABT) in a field case to calibrate 

permeability field to water production and bottom-hole pressure data. 
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In this research, the field example involves steam injection into a heavy oil 

reservoir at Pad 31 in the Peace River Field (Alberta, Canada) with daily time lapse 

seismic surveys (in terms of two-way travel time) recorded by a permanently buried 

seismic monitoring system. We simultaneously update static reservoir properties, initial 

temperature, and initial fluid saturation to match bottom-hole pressure and onset time 

derived from the continuous seismic land monitoring, using ABT and Pareto-based multi-

objective history matching workflow. 

 

2.3. Background and Methodology 

In this section, we introduce our proposed approach of integrating time lapse 

seismic into the reservoir model using onset-times. We start with an explanation of the 

data integration workflow and illustrate the concept of onset time in a stepwise manner 

using a simple synthetic example. The workflow and re-parameterization analysis of ABT 

are also given in this section compared with GCT. 

 

2.3.1. Onset Time of Frequent Seismic Data 

 

2.3.1.1. From Multiple Surveys to a Single Map of Onset Times 

The traditional approach to time lapse seismic data integration uses multiple 

seismic surveys and integrates seismic attributes (amplitudes or travel times) or changes 

thereof via dynamic modeling and history matching. In contrast, the onset time 

methodology collapses multiple seismic surveys into a single map of changes propagating 
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in the reservoir. The onset times (Vasco et al. 2014) are defined as the calendar times at 

which measured time-lapse attributes begin to deviate from their initial values above a 

pre-defined threshold value. The magnitude and sign of the threshold value depends on 

the signal-to-noise ratio of the seismic dataset and the particular physical phenomenon 

that is being tracked (e.g. saturation front and/or pressure front). 

 

2.3.1.2. Time Lapse Seismic Data and Petro Elastic Model (PEM) 

In order to connect between the state of the reservoir and the geophysical 

observation, we have to rely on a PEM to calculate the elastic properties of the rock that 

vary in time as a result of changes in the dynamic reservoir properties: fluid saturations, 

reservoir pressure, and temperature etc. The relationship between the seismic properties 

and the rock elastic properties can often be described by Gassmann’s equations (Gassmann 

1951) for calculating the effective bulk modulus of the entire saturated rock. The model 

relates the bulk modulus of a rock to its pore, frame, and fluid properties. The Gassmann’s 

relation is valid in most practical cases; however, it can have considerable uncertainty, 

particularly in the model used to describe how the fluids are distributed within the pore 

space. The onset time, as opposed to magnitude matching, seems to be insensitive to the 

specific model used for mapping the fluid saturations (Vasco et al. 2014), and thus more 

robust against uncertainties in the underlying rock physics model. 
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2.3.1.3. Five-Spot Synthetic Case 

We first illustrate the major steps involved in the onset time data integration 

procedure using a two-dimensional synthetic application. The model is composed of 

50 50  grid cells and involves reservoir production in an inverted 5-spot pattern with four 

producers located at the corners and one central injector. The wells are constrained by the 

historical (constant) liquid flow rates, and the injection program starts simultaneously with 

the production of the reservoir. The permeability field shown in Figure 2.1 is generated 

using the sequential Gaussian simulation with well permeability values as conditioning 

data. The observed 4D seismic data were generated from the permeability field using a 

commercial reservoir simulator and a petro-elastic model. Over an interval of 2080 days, 

a total of 8 time-lapse seismic surveys (260 days each) in the form of acoustic impedance 

maps, are available for integration. 

 

 

 

Figure 2.1 Permeability field for the illustration of onset time 
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In our onset time approach, the first step is to define a threshold value that allows 

a meaningful conversion of multiple attribute maps to a single map of onset time. The pre-

defined threshold has two main roles: (1) to ensure that the magnitude of seismic 

observation is above the noise level, which determines the value of the threshold, (2) to 

define the physical phenomenon that is being tracked, which specifies the sign of the 

threshold value. Time-lapse seismic data are typically noisy due to non-repeatable noise, 

environmental noises, sensors spacing, and changes in near surface propagation due to 

variations in the water table or in the overlying water column. These variations lead to 

seismic signals even when there are no dynamic changes within the reservoir, and thus a 

need for threshold value to distinguish between noise and meaningful signal. In this 

example, we define the threshold to be 5% above the acoustic impedance of the baseline 

survey (that is, before the injection started). This increase above the threshold corresponds 

to an increase in the bulk density and velocity of the seismic waves, which results from 

replacement of “softer” for “harder” reservoir fluids (e.g. oil or gas being displaced by the 

injected water). Figure 2.2 illustrates the procedure of converting the time-lapse acoustic 

impedance data to an onset time map. For each cell in our model we indicate the calendar 

time at which the measured acoustic impedance crosses the threshold value. This time 

(day), will be recorded in the onset time map, and the spatial location is not visited 

anymore. Thus data from multiple attribute maps is reduced to a single onset time map 

(Figure 2.2(c)). The contours of the onset time provide a display of the changes 

propagating in the reservoir. 
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Figure 2.2 Illustration of onset time – conversion of multiple attribute maps (AI) to 

onset time map. (a) A sample of 6 attribute maps (AI). (b) Plot of the seismic 

response of a specific cell (black do in (a)) to indicate the onset time. (c) Onset time 

map after converting from seismic attribute to calendar time. The contours display 

the front propagation 
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2.3.2. Adjacency-Based Transform 

The literature survey and detailed mathematical formulation of the GCT are 

explained in chapter 3. In this section, the ABT is compared with GCT in terms of 

Laplacian matrix formulation and re-parameterization analysis. 

 

2.3.2.1. Parameterization with Prior Information 

Figure 2.3 shows the workflow of basis function calculation both for GCT and 

ABT. A similarity matrix is first constructed and Laplacian matrix is calculated by 

equation (2.1).  

 L D A   (2.1) 

L  is a Laplacian matrix, and A  is the N N  similarity matrix, where N  is the total 

number of grids in a reservoir model. D  is the  diagonal matrix, known as degree 

matrix, whose entries are row sums of A  as in equation (2.2). 

 ,

1

N

i i j

j

d a



 

(2.2) 

The Laplacian matrix is then eigen-decomposed and selected eigenvectors will define the 

basis functions. 

 

 

N N



 

18 

 

 

Figure 2.3 Workflow of basis function calculation for GCT and ABT 

 

 

The only difference between GCT and ABT is the method of constructing the 

similarity matrix, whose elements represent the degree of similarity among every grid cell 

pairs. In GCT, each component of the similarity matrix is defined by equation (2.3).  

 ,

1      

0           
i j

if neighbored
a

otherwise


 
  

(2.3) 

The grid cells in direct connection are considered as similar and both of them are assigned 

a value of unity. The grid cell has no similarity with the others without direct connectivity. 

Therefore, GCT takes into account only grid connectivity represented by unity or zero in 

the similarity matrix. However, an element of the similarity matrix in ABT is defined by 

equation (2.4).  
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,i jp  is the property value of the grid cell, ,i jx  is the coordinate of grid cell centroid, and 

r  is a Euclidean cutoff distance, beyond which the similarity is considered to be zero 

regardless of their properties and distance. Therefore, ABT considers grid cell properties 

as well as their distance. 

Figure 2.4 compares Laplacian matrix of GCT and ABT in a 9-points grid system. 

Figure 2.4(a) shows a 9-points grid system where a color represents the property value in 

each grid cell and values on white lines are the similarities between a center grid cell and 

others calculated by equation (2.4). Blue boxes in Figure 2.4(b) and Figure 2.4(c) clearly 

show the difference between GCT and ABT. While GCT Laplacian matrix has the direct 

grid connectivity information, ABT Laplacian matrix includes all the similarity values 

around the corresponding grid cell. For example, as there is a large property difference 

between the top-left grid cell and the center grid cell, the similarity is calculated to be 

almost zero, as the first element of the blue box. On the other hand, the property value of 

the middle-right grid cell is similar to that of center grid cell and the distance between two 

grid cells is small, the similarity is calculated to be closer to unity, 0.8 . It is shown as the 

6th element of the blue box. Eigenvectors of the corresponding Laplacian matrices will 

define our basis functions.  
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(a) 

 

(b) 

 

(c) 

 

Figure 2.4 Laplacian matrix comparison of GCT and ABT in a 9-points grid system 
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2.3.2.2. Re-parameterization Analysis of ABT 

For the two dimensional reference permeability field in Figure 2.5(a), basis 

functions of GCT and ABT are compared in Figure 2.5(b) and (c). While GCT basis 

functions have grid connectivity information only, ABT entails property values in its basis 

functions. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 2.5 Basis function comparison of GCT and ABT in a 50 50  grid system. (a) 

Reference permeability field. (b) GCT basis functions. (c) ABT basis functions 
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Reconstructed permeability fields of GCT and ABT with different number basis 

functions are shown in Figure 2.6. Qualitatively indicated from Figure 2.6, ABT has a 

higher compression power than GCT.  

 

 

(a) 

 

(b) 

 

Figure 2.6 Re-parameterized permeability fields of GCT and ABT with different 

number of basis functions 

 

 

To quantitatively compare the compression power, root mean square errors 

(RMSE) as in equation (2.5) between the reconstructed permeability field and the 

reference field are calculated. RMSE’s of GCT and ABT are compared in Figure 2.7.  

 
2
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Figure 2.7 RMSE comparison of GCT and ABT 

 

 

2.4. Application – Field Case at Peace River, Pad 31 

 

2.4.1. Field History and Data 

The Peace River is a heavy oil field in Alberta, Canada. The field has been under 

several thermal recovery schemes including Cyclic Steam Stimulation (CSS) and Steam 

Assisted Gravity Drainage (SAGD) to increase the recovery of the bitumen deposits. 

These processes led to limited recovery of the bitumen originally in place, partly due to 

insufficient stimulation of the reservoir volume. Recently, one of the production pads, Pad 

31, was re-developed with six new horizontal steam injectors (in green, Figure 2.8) and 

operated as a Top Down Steam Drive (TDSD).  This new development was monitored 

with a permanent seismic monitoring system (the monitoring period was between May 

2014 and May 2016) that provides snapshots of reservoir state on a daily basis (Hetz, 

Datta-Gupta, et al. 2017, Lopez et al. 2015). In addition to the ongoing TDSD, one of the 
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producers (31-08 well, Figure 2.8) has undergone CSS to promote communication with 

the northern part of the pad. 

 

 

 

Figure 2.8 Pad 31 horizontal production wells (red), injection wells (green), and 

observation well (blue). Also shown are seismic sources (red dots) and receivers 

(blue dots). Producer 31-08 underwent CSS and is the focus of this study 

 

 

The fact that the well under consideration is relatively isolated from the rest of the pad and 

did not seem to be influenced by the ongoing TDSD, allows one to use a sector model for 

dynamic modeling on a fine grid (Przybysz-Jarnut et al. 2016). The seismic data is 

translated into time shift maps, expressing the travel time changes in the seismic wave 

propagation across the reservoir between a chosen baseline survey (e.g. the start of the 

cycle) and subsequent monitor surveys. Over the CSS cycle, a total of 175 time lapse 
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seismic surveys are available for integration (Figure 2.9) and bottom-hole pressure data is 

also available (Figure 2.10).  

 

 

 

Figure 2.9 Seismic observations in well 31-08 (top view). 18 samples of time shift 

maps are shown out of 175 time shift maps that are available for integration 

 

 

 

Figure 2.10 Normalized bottom-hole pressure response over the CSS cycle 
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The amount and the nature of the recorded time shift data, which combine the 

effects of temperature, pressure and phase saturation changes in the reservoir, make it 

extremely challenging and time consuming for manual or even assisted history matching. 

To overcome these problems, we use our onset time approach to integrate the time lapse 

seismic data into the model. Based on the signal to noise ratio of the seismic dataset, we 

define the threshold as a decrease of 0.1[mS] in the time-shift. At the first part of the cycle 

(e.g. the injection), the onset time is associated with water phase replacing gas phase as a 

result of steam injection. In the second part (e.g. soak), the onset is related to pressure 

diffusion after the injection ceases. 

For the field application, the first step in our data calibration procedure is to sample 

the seismic observations into the reservoir model grid to be able to compare it with the 

simulation response. The calculated onset time map is shown in Figure 2.11.  
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Figure 2.11 Conversion of multiple attribute maps (time shift) to onset time map. 

(a) A sample of 7 attribute maps (time shifts) out of 175 that are available for 

integration. (b) A plot of the seismic response of a specific cell (label as black dot in 

(a)) to indicate the onset time. (c) The onset time map after converting from seismic 

attribute to time. The contours display the front propagation 

 

 

2.4.2. History Matching of Onset Time and BHP 

Since the heavy oil field has been under production for more than ten years with 

different thermal recovery schemes, the significant uncertainty lies in the initial conditions 

for this re-development and the flow properties of the reservoir at the beginning of the 

CSS cycle. Our objective is to calibrate the initial saturations, initial temperature, porosity, 

and the permeability field to the 4D seismic and the pressure data acquired to understand 

the unexpected reservoir behavior during CSS cycle in 31-08 well with much less injected 

volume and higher than expected injection pressure. Our sensitivity analysis (Hetz, Datta-

Gupta, et al. 2017) showed that above mentioned parameters have the largest influences 

on the matching quality. The history matching was performed with ABT parameterization 
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and MOGA workflow with the parameters in Table 2.1. A steam injection period is used 

for history matching and a production period is used to validate the calibrated models. 

 

Table 2.1 Parameters for history matching in Peace River field case 

Objective Function 
Onset time misfit 

Bottom-hole pressure misfit 

Variable 

Permeability (10 basis coefficients) 

Porosity (10 basis coefficients) 

Initial gas saturation (10 basis coefficients) 

Initial water saturation (10 basis coefficients) 

Initial temperature (10 basis coefficients) 

Constraint Water rate 

Number of Basis Functions 50 

Population Size 150 

Maximum Generation 30 
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Initial misfits for onset time and BHP are shown in Figure 2.12. It indicates that 

the initial model could not capture the correct fluid propagation and energy in the 

reservoir. 

 

 

(a) 

 

(b) 

 

Figure 2.12 Initial misfits for onset time and BHP in Peace River Field Case 

 

 

The first step in our data calibration procedure is to parameterize the initial 

saturations, initial temperature, porosity and permeability using ABT parameterization. 

While most of the parameters were initialized based on the geologic model or uniformly 

distributed, the initial temperature distribution was interpolated from the tubing head 
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temperature (THT) at the beginning of the cycle, within the observed onset time map 

region. Since the gas saturation was uniformly distributed, we use the observed onset time 

as prior knowledge to calculate its adjacency matrix for the ABT parameterization. A Total 

of 50 basis functions (10 per each property) and corresponding basis coefficients are used 

to modify the initial properties in the course of model calibration. As an example, the ABT 

basis functions of layer 17 are shown in Figure 2.13. Note that the variations in the ABT 

basis functions result from the prior property heterogeneity. 

 

 

 

Figure 2.13 ABT basis functions of parameter fields at layer 17 
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Both onset time and BHP misfits were significantly reduced through MOGA as 

shown in Figure 2.14. The large number of simulations allows us to test different 

combinations of the model parameters and alternative dynamic realizations. 

 

 

(a) 

 

(b) 

 

Figure 2.14 Comparison of objective functions at (a) 1st and (b) 30th generations 

along with the initial misfits 

 

 

While an overall reduction is observed for both the seismic data and the BHP, the trade-

off between the objectives is clearly shown at the Pareto-fronts (Figure 2.14(b)). By 
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applying a cluster analysis, we further investigate the objective function space as shown 

in Figure 2.15. Cluster 1 has more weight on matching seismic data, cluster 3 does on 

matching pressure data, and cluster 2 is an intermediate. 

 

 

 

Figure 2.15 Clustered populations at 30th generation 

 

 

Figure 2.16 shows the updated onset time maps of selected models for each cluster, 

respectively. For every clusters, we have observed a notable improvement from the initial 

onset time map calculated using the prior model. As expected, however, cluster 1 has the 

most similar shape of onset time map with the observed one, since it has more weight on 

matching seismic data.  
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Figure 2.16 Onset time maps for selected models for each cluster 

 

 

In Figure 2.17, we plot the pressure responses at the 30th generation, represented by 

different colors for each cluster, over the entire CSS cycle. There is marked improvement 

in the match quality. One notable feature is the consistent pressure match to the soak part 

(validation), where we used the history matched models to predict the pressure behavior 

indicating that the models are able to adequately represent the saturation propagation in 

the reservoir. As expected again, cluster 3 has the best pressure matches with the observed 

data, since it has more weight on matching pressure data.  
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(a) 

 

(b) 

 

Figure 2.17 Updated BHP responses for each cluster. (a) All responses. (b) 

Respective responses for each cluster 

 

 

Water saturation changes after 45 days and 85 days are shown in Figure 2.18. 

There has not been much difference in water saturation changes after 45 days for the initial 

model and calibrated models. However, after 85 days which is the end of steam injection 

period, water saturation increase is confined to a smaller region than that of the initial 

model. It means that the reservoir needs to be less softened compared to the initial model, 

resulting in a more concentrated onset time maps as seen in the observed data.  
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Figure 2.18 Water saturation changes after 45 days and 85 days after model 

calibration 

 

 

Overall our history matching workflow significantly reduced the misfit associated with 

4D seismic and pressure data and provided an improved representation of reservoir sweep 

through identification of fluid saturation distribution. 

 

2.5. Conclusions 

In this chapter, we have proposed a novel approach to integrate frequent time lapse 

seismic data into high resolution reservoir models based on the seismic onset times. The 

ABT parameterization is used to simultaneously reconcile the model heterogeneity by 

compressing multiple seismic surveys into a single map of onset times that represents the 

propagation of changes in the reservoir. Some of the conclusions from this study are the 

following: 
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 We propose a novel and computationally efficient approach for time lapse seismic 

integration using the onset time which is able to efficiently display the front 

propagation in order to update the flow properties. 

 The onset time leads to a significant data reduction and provides practical and 

faster approach that allows testing alternative dynamic realizations, making the 

algorithm suitable for large field applications with frequent seismic surveys. 

 The parameterization with prior information (ABT) has been demonstrated in a 

synthetic case compared with GCT and effectively applied to a field case. 

 The Peace River application demonstrates the feasibility and the robustness of the 

history matching workflow (MOGA with ABT) to integrate onset times and 

pressure data. Unlike the manual history matching (Przybysz-Jarnut et al. 2016), 

our approach updates the parameters simultaneously, which allows testing 

different combinations of parameters uncertainty range.   The compression of the 

frequent seismic surveys into a single set of onsets assists efficient history 

matching using the population-based technique that requires a large number of 

simulation runs. With this technique we were able to identify the injectivity profile 

along the horizontal well, which was crucial for further development 

considerations. 
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3. MULTI-RESOLUTION GRID CONNECTIVITY-BASED TRANSFORM FOR 

EFFICIENT HISTORY MATCHING OF CONVENTIONAL AND 

UNCONVENTIONAL RESERVOIRS3 

 

3.1. Chapter Summary 

Proper characterization of heterogeneous rock properties and hydraulic fracture 

parameters is essential for optimizing field development and reliable estimation of EUR 

in conventional and unconventional reservoirs. High resolution characterization of matrix 

properties and complex fracture parameters requires efficient history matching of well 

production and pressure response. We propose a novel reservoir model parameterization 

method to reduce the number of unknowns, regularize the ill-posed problem, and enhance 

the efficiency of history matching of conventional and unconventional reservoirs.  

Our proposed method makes a low rank approximation of the spatial distribution 

of reservoir properties taking into account the varying model resolution of the rock and 

fracture properties. In a conventional waterflooded reservoir, we have more information 

on the flooded region between injectors and producers. Therefore, it enables a higher 

resolution model descriptions. Typically in an unconventional reservoir, hydraulic 

fractures are represented with much higher resolution through local grid refinements 

compared to the matrix properties. In our approach, the spatial property distribution of 

                                                 

3 Part of this chapter is from URTeC 2019 Paper 2019-982 “Multi-Resolution Grid Connectivity-Based 

Transform for Efficient History Matching of Unconventional Reservoirs” by Hyunmin Kim, Feyi Olalotiti-

Lawal, Akhil Datta-Gupta, and is reprinted here by permission of the Unconventional Resources Technology 

Conference, whose permission is required for further use. 
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both for matrix and fractures is represented using a few parameters via a linear 

transformation with multi-resolution basis functions. The parameters in transform domain 

are then updated during model calibrations, substantially reducing the number of 

unknowns. The multi-resolution basis functions are constructed by eigen-decomposition 

of an adaptively coarsened grid Laplacian corresponding to the data resolution. High 

property resolution at the area of interest through the adaptive resolution control while 

keeping the original grid structure improves quality of history matching, reduces 

simulation runtime, and improves the efficiency of history matching. 

We demonstrate the power and efficacy of our method using synthetic and field 

examples. First, we illustrate the effectiveness of the proposed multi-resolution 

parameterization by comparing it with traditional method. It is shown in a conventional 

waterflooded reservoir that the proposed parameterization method outperforms the 

conventional parameterization method based on history matching quality. For the field 

application, an unconventional tight oil reservoir model with a multi-stage hydraulic 

fractured well is calibrated using bottom-hole pressure and water cut history data. The 

hydraulic fractures as well as the stimulated reservoir volume (SRV) near the well are 

represented with higher grid resolution. In addition to matrix and fracture properties, the 

extent of the SRV and hydraulic fractures are also adjusted through history matching using 

a Multi-Objective Genetic Algorithm (MOGA). The calibrated ensemble of models are 

used to obtain bounds of production forecast.  

Our proposed method is designed to calibrate reservoir and fracture properties with 

higher resolution in regions that have improved data resolution and higher sensitivity to 
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the well performance data, for example flooded region in conventional reservoirs and the 

SRV region and the hydraulic fractures in unconventional reservoirs. This leads to a fast 

and efficient history matching workflow and enables us to make optimal 

development/completion plans in a reasonable time frame. 

 

3.2. Introduction 

Proper characterization of the heterogeneous rock properties is essential for 

optimizing field development plan and reliable estimation of EUR in conventional and 

unconventional reservoirs. It is critical to understand the rock properties in conventional 

reservoirs which are calibrated through history matching. In unconventional reservoirs, 

we also need to calibrate fracture parameters that significantly affect well production and 

pressure response. The history matching of high resolution geologic models poses an 

underdetermined inverse problem because of the large number of reservoir properties 

defined on grid cells with limited measured data. Therefore, the solution of the inverse 

problem related to identification of geologic heterogeneity is non-unique and potentially 

unstable. 

The essence of regularization is to address the non-uniqueness and stability issues 

by either reducing the number of parameters or imposing additional constraints to ensure 

that the inverse problem is more tractable (Tikhonov 1977, Tarantola 2005, Tonkin and 

Doherty 2009). In this chapter, parameterization is used to reduce the number of 

unknowns, from pixel-based reservoir properties to a low rank approximation of spatial 
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properties, with little loss of information. This results in more stable solutions and 

improved predictive capability of history matched reservoir models.  

Of the variety of parameterization methods, the linear transformation of spatial 

properties in grid cells to parameters in the transform domain has been widely used in 

hydrology and petroleum engineering (LaVenue and Pickens 1992, Chavent and Bissell 

1998, Grimstad et al. 2003, Alcolea, Carrera, and Medina 2006, Jafarpour and McLaughlin 

2009, Bhark, Jafarpour, and Datta-Gupta 2011, Bhark, Jafarpour, and Datta‐Gupta 2011, 

Bhark et al. 2011, Hetz, Kim, et al. 2017). It is represented by equation (3.1). 

 u v  (3.1) 

where v  is a m -component column vector of parameters in transform domain, and  is 

a predefined n m  matrix with columns of interpolation or transformation basis vectors. 

n  is the number of grid cells in a model. Therefore, the updated model is determined by 

linear combination of basis vectors weighted by v . 

The most basic parameterization with linear transformation is segmentation of 

geologic models into zones of piecewise continuous value. The reservoir property itself or 

property multiplier is updated by a constant value within each zone (Jahns 1966, Kang et 

al. 2015, Olalotiti-Lawal et al. 2017). In case of segmentation,   consists of basis vectors 

of which elements are non-zero constant values only for the corresponding zones and zero 

for the other zones.   should be predefined based on the prior model and does not change 

in the course of model calibrations. The other common parameterization is Karhunen-

Loève transform (KLT) or principal component analysis (PCA) of the property covariance 

matrix (Karhunen 1947, Loève 1978, Reynolds et al. 1996). The eigenvectors of the 
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covariance matrix are ranked by their corresponding eigenvalues, from largest to smallest, 

and several eigenvectors with the largest eigenvalues compose the transform basis. In this 

approach, the basis vectors provide optimal compression if the covariance matrix 

accurately captures the model geostatistical features. In other words, basis vectors 

obtained by the KLT approach tend to capture the details of spatial heterogeneity with the 

fewest transform parameters and result in minimum mean square error for the low rank 

approximation. Similar to the model segmentation, underdetermined inverse problems can 

be regularized by reducing the number of unknowns from pixel-based property field to a 

low rank approximation with little loss of information. However, Jafarpour and 

McLaughlin (2009) and Bhark, Jafarpour, and Datta‐Gupta (2011) discussed the 

limitations of KLT in a realistic history matching problem of high resolution models: (1) 

the covariance is generally unknown, resulting in the possibility of suboptimal basis 

functions if prior model is incorrect, (2) it often entails an eigen-decomposition of large 

covariance matrices which can be prohibitively expensive.   

To overcome these limitations, there have been studies conducted on model-

independent parameterization in image processing (Jain 1989, Gonzalez 2001, Rao and 

Yip 2014). They used the discrete cosine transform (DCT) which is a type of Fourier 

transform that reconstructs a discrete signal as the sum of cosine harmonics (Britanak, Yip, 

and Rao 2010). Jafarpour and McLaughlin (2009) applied DCT in reservoir 

characterization, and Bhark, Jafarpour, and Datta-Gupta (2011) further developed it to the 

multiscale history matching workflow. The matrix   in equation (3.1) of DCT also refers 

to a linear transformation matrix of which columns are cosine function with corresponding 
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frequency that depicts a harmonic pattern of grid. As each cosine function is calculated 

based not on the properties in grid cells, but on the grid structure, basis vectors are 

constructed independent of the prior model. Each transform parameter in 𝐯 is merely the 

amplitude of each cosine function. Therefore, DCT basis vectors are calculated 

analytically only once with cosine functions for a given inverse problem, and considerably 

smaller parameter set ( v ) updates the prior model during calibrations. This parameter 

reduction is possible because DCT has a strong compression performance, so it is able to 

capture larger scales of spatial continuity and heterogeneity with a significantly reduced 

number of parameters. In addition, mapping transform parameter to spatial property is 

achieved simply by the transpose of basis vectors due to their pairwise orthonormality. 

However, to calculate DCT transformation matrix, the grid cells should be rectangular and 

of uniform thickness in certain orientation to satisfy the underlying assumption of 

periodicity (Bhark, Datta-Gupta, and Jafarpour 2011, Bhark, Jafarpour, and Datta‐Gupta 

2011). Bhark, Jafarpour, and Datta‐Gupta (2011) developed the grid connectivity-based 

transform (GCT) as a generalization of the DCT basis for generic grid geometries. The 

GCT basis vectors are defined as the eigenvectors of a Laplacian matrix that has two-point 

grid connectivity information, so they depend solely on the grid structure independent of 

grid properties. In the case of a regular periodic and fully connected grid, the GCT basis 

vectors are same as those of DCT in either structured or unstructured grid geometry.  

The limitation of GCT is that the resolution within each basis vector is forced to 

follow the grid cell resolution because its underlying periodicity calculation is solely based 

on the grid connectivity, not on the grid cell size and shape (Bhark et al. 2011). The 
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geologic model should be reconciled in accordance with multi-resolution static and 

dynamic data, for which resolution can vary from regional to the grid-cell scale. There 

have been studies on the structured data integration algorithms that are each suited to the 

scale of the estimated properties and the type and resolution of available data (Landa and 

Horne 1997, Cheng, Dehghani, and Billiter 2008, Kim et al. 2014, Kam, Han, and Datta-

Gupta 2017, Park et al. 2019, Park and Janova 2019). Bhark, Jafarpour, and Datta-Gupta 

(2011) and Bhark, Jafarpour, and Datta‐Gupta (2011) suggested an adaptive multiscale 

inversion workflow with DCT and GCT to balance parameter resolution with data 

resolution, that is, the low rank property descriptions are updated and successively refined 

to the spatial scale beyond which the available data do not support further refinement. If 

there is a region with higher data resolution in a reservoir, considered as an area of interest 

(AOI), it is required to include more basis vectors to achieve corresponding spatial 

resolution of heterogeneity, although the data resolution outside AOI is limited to a coarser 

scale. It masks the regularization effect by requiring more basis vectors, which are 

necessary for AOI but redundant for the region outside AOI.  

In this chapter, we propose a multi-resolution parameterization method to enhance 

the regularization when data resolution is variant in a reservoir (Kim, Olalotiti-Lawal, and 

Datta-Gupta 2019). In our approach, for each basis vector, frequency in the AOI is higher 

than the coarsened regions. Multi-resolution grid connectivity-based transform (MGCT) 

requires smaller parameter set (less basis vectors) than GCT to have the same adaptive 

ability to detect and characterize local and global spatial features at different resolutions. 

In other words, MGCT has better capability of integrating multi-resolution data into a 
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geologic model given the same number of parameters.  The history matching workflow 

starts with the establishment of AOI based on the type and location of measured data. By 

coarsening the regions outside AOI, MGCT basis is constructed by spectral analysis of the 

locally refined grid connectivity information. Using multi-resolution basis vector set, 

reservoir property field is transformed from spatial domain to spectral domain, and vice 

versa during model calibrations. It enables adaptive updates of reservoir heterogeneity that 

are amenable to variant data resolutions.  

In the following sections, the multi-resolution GCT parameterization method is 

explained in detail, mainly in comparison with GCT. The implementations and analyses 

of re-parameterization, which is a low rank approximation, are demonstrated with a 

synthetic case. We further compare MGCT with GCT through history matching exercise 

of the widely used SPE Brugge benchmark case, where measured data are concentrated in 

specific regions. The inversion problem is solved by one of powerful gradient-free 

methods, Pareto-based multi-objective genetic algorithm to eliminate potential conflicts 

between objective functions (Park, Datta-Gupta, and King 2015). After demonstrating 

improved performance, MGCT is applied to an unconventional tight oil reservoir with 

multi-stage hydraulic fractures for which AOI is the stimulated reservoir volume (SRV) 

near the well. 
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3.3. Background and Methodology 

The proposed history matching method follows a gradient-free inversion process 

with reservoir property parameterization as depicted in Figure 3.1. First, transformation 

basis functions are constructed as the eigenvectors of a multi-resolution grid Laplacian, 

followed by Pareto-based multi-objective genetic algorithm. Initial population in low-

dimensional transform domain are generated, with which reservoir properties in high-

dimensional spatial domain are calculated using predefined basis functions. Simulations 

are run with these properties and we calculate objective functions, which are the data 

misfits for history matching. Through selection, crossover, mutation, non-dominated 

sorting and ranking algorithms (Deb and Pratap 2002), we will have new populations and 

repeat this process until the solution is converged or the maximum generation is reached. 

The detailed backgrounds and methodologies will be explained in the following 

subsections. 
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Figure 3.1 Workflow of history matching with multi-resolution parameterization 

and multi-objective genetic algorithm 

 

 

3.3.1. Grid Connectivity-Based Transform (GCT) 

The GCT is a generalization of the DCT basis for generic grid geometries, which 

is a Fourier-based transform designed for signal decorrelation (Britanak, Yip, and Rao 

2010). With the analytic form of cosine functions as an example for two-dimensional 

x yN N -grid cell property in equation (3.2), DCT basis is easily calculated and commonly 

used for data compression (Gonzalez 2001).  
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where  ,u x y  is a spatial parameter,  ,v r s  is a parameterized coefficient in a spectral 

domain, and  
1
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0,  1,  2,  ,  1xr N  , and 0,  1,  2,  ,  1ys N  . As in its multiplication form of two 

separate cosine functions for two-dimensional property, the DCT can be extended to three-

dimensional case with multiplying the other cosine function. Jafarpour and McLaughlin 

(2009) applied DCT to characterize and update the prior model with a low-rank 

approximation that captures important large scale heterogeneity with significantly reduced 

number of parameters, resulting in a regularized history matching problem. Bhark, 

Jafarpour, and Datta‐Gupta (2011) generalized DCT to arbitrary grid geometry by GCT, 

of which basis functions are defined as a set of the grid Laplacian eigenvectors. Strang 

(1999) showed that DCT basis can be derived as the eigenvectors of symmetric second 

difference matrix. Bhark, Jafarpour, and Datta‐Gupta (2011) demonstrated that grid 

Laplacian is a discrete second difference operator when applied to a function on the grid 

with Neumann boundary condition. For one-dimensional grid example, function 
ju  is 

defined on grid j , shown in Figure 3.2(a). Second differences for interior grid cell 

 2, 1j N   are calculated as        1 1 1 1, 2j j j j j j jL j u u u u u u u            . 

Therefore, all the rows except top and bottom rows have the same form  1  2  1   as in 

Figure 3.2(b). For the boundary grid cell 1,  j N , Neumann’s zero derivative condition 

is applied. The second difference at the left boundary is 

  0 1 2 1 1 2 1 21, 2 2L u u u u u u u u          , because 
'

1 2 0 10  u u u   . Similarly at 
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the right boundary, the second difference is 

  1 1 1 1, 2 2N N N N N N N NL N u u u u u u u u              , because 

'

1 2 10  N N Nu u u    . The second difference matrix for one-dimensional grid is now 

completed as in Figure 3.2(b) and its eigenvectors are same as DCT basis vectors (Strang 

1999). 

 

 

(a) 

 

(b) 

 

Figure 3.2 (a) 1D uniformly structured grid and extended edges to explain the 

Neumann boundary condition and (b) corresponding symmetric second difference 

matrix 

 

 

The grid Laplacian is constructed as in equation (3.3) (Mohar 1997, Sorkine 2006, 

Von Luxburg 2006).  
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where i  and j  are grid cell indices from 1 to N , E  is the two-point edge set of grid cells  

i  and j , and id  is the degree of a cell which is equivalent to the total number of grid cells 

connected to grid i . Equation (3.3) is equivalent to the second difference matrix 

constructed in Figure 3.2(b), therefore, the grid Laplacian eigenvectors are also DCT basis 

vectors (Bhark, Jafarpour, and Datta‐Gupta 2011). Another practical form of grid 

Laplacian is equation (3.4). 

 L D A   (3.4) 

where A  is the N N  grid adjacency matrix, where N  is the total number of grids in a 

reservoir model. The entries of A  are given by grid connectivity between two grid cells, 

that is, unity if neighbored and zero otherwise as in equation (3.5).  

 ,

1      

0           
i j

if neighbored
a

otherwise


 
  

(3.5) 

D  is the N N  diagonal matrix, known as degree matrix, whose entries are row sums of 

A  as in equation (3.6). 
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i i j

j
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(3.6) 

Therefore, we can construct the grid Laplacian only using grid connectivity information 

for any grid system. From the construction rule of grid Laplacian, it is always sparse and 

real symmetric, of which eigen-decomposition is  
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where V  is an N N  matrix with columns as eigenvectors, and   is the N N  diagonal 

matrix of the real eigenvalues  . As L  is real symmetric, it is positive semidefinite, 

resulting in N  nonnegative real eigenvalues with spectrum 0 i N    , where i  is 

the spectral index. The eigenvector of lower modal frequency has a lower eigenvalue. For 

the low rank approximation of spatial properties, only a small number of leading 

eigenvectors are used, from the lowest frequency to higher. Therefore, full eigen-

decomposition of a Laplacian is not required, but we only need to carry out a partial 

decomposition to calculate eigenvectors with small eigenvalues. Utilizing a sparse form 

of Laplacian, the partial decomposition is efficiently performed by the Arnoldi Package 

(ARPACK) subroutines (Lehoucq, Sorensen, and Yang 1998). For given grid geometry 

and structure, the grid Laplacian is constructed, followed by a partial eigen-decomposition 

to calculate the basis vectors with low frequency, that represent large scale heterogeneity. 

Any spatial property can be projected onto the selected low frequency basis vectors, and 

corresponding spectral coefficients are updated during history matching, resulting in large 

scale property updates. In addition, the eigenvectors in equation (3.7) are pairwise 

orthonormal, linear transforms and inverse transforms are conducted in an efficient way 

in equation (3.8). 

     Tv u u v    (3.8) 

where u  is a n -component column vector of a spatial parameter set, same as the number 

of grid cells, and v  is a m -component column vector of a spectral parameter in a 

transform domain, much smaller than n  for re-parameterization to regularize the inverse 
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problems.   is the n m  linear transform matrix of which columns are the selected low 

frequency GCT basis vectors.  

For example, Figure 3.3 shows twenty leading basis vectors of 50 50  grid 

system. As constructed entirely by grid structure and geometry, specifically by the grid 

connectivity, these are independent of reservoir property. Each of these has constant 

resolution over the entire grid system, because the grid cell size and shape are constant in 

this case. In case of variant grid cell sizes, the grid Laplacian contains information related 

not to cell size, but only to connectivity (Bhark et al. 2011).  

 

 

 

Figure 3.3 Low frequency GCT basis functions of 50 50  grid system 

 

 

3.3.2. Multi-Resolution Grid Connectivity-Based Transform (MGCT) 

As mentioned in the introduction, the resolution in each GCT basis function follow the 

grid cell resolution, because grid Laplacian is constructed only from the grid connectivity, 

not from the grid cell size and shape. History matching problems often entail reconciliation 

of multi-resolution static and dynamic data. Basis functions that have multiple resolutions 
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corresponding to the measured data better regularize the history matching problem than 

GCT. 

We suggest a novel multi-resolution parameterization method, multi-resolution 

grid connectivity-based transform (MGCT), by coarsening the region that has low data 

resolution, outside the AOI. Merging grid cells into a smaller number of grid cells makes 

the grid size larger, therefore, it lowers basis function frequency in the coarsened area and 

AOI gets a benefit of higher frequency. Figure 3.4 shows a comparison of grid Laplacian 

constructions by GCT and MGCT, where AOI is the center region assumed to have higher 

data resolution. GCT has 36 36  Laplacian matrix in Figure 3.4(a), where the integer 

values implying grid connectivity and the degree of each grid cell are shown as each color. 

By coarsening the region outside AOI with 2 2  scheme, MGCT has much smaller 

12 12  Laplacian, despite a little less sparsity caused by the new connections between 

coarsened grid and neighboring fine grid cells. Due to significantly reduced size, MGCT 

requires less computation load on the eigen-decomposition even with larger off-diagonal 

elements ratio (less sparsity). By this formulation, basis functions in AOI will have higher 

resolutions without changing grid cell geometry than those of GCT. 
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(a) 

 

(b) 

 

Figure 3.4 (a) Grid Laplacian for GCT and (b) coarsened grid Laplacian for 

MGCT 

 

 

For the example of the same grid geometry as Figure 3.3, MGCT shows the twenty 

leading basis vectors with AOI located at the center (I-direction: 16 – 35, J-direction: 16 

– 35) and the peripheral area is coarsened with 5 5  scheme as in Figure 3.5. Except for 

the constant basis function (BF1) with zero eigenvalue, MGCT always has higher 

frequencies in AOI than GCT. This feature makes MGCT have a better capability of 

integrating multi-resolution data into a geologic model, given the same degree of freedom. 
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Figure 3.5 Low frequency MGCT basis functions of 50 50  grid system 

 

 

MGCT Laplacian should also be a symmetric second difference matrix, in order 

for its eigenvectors to be DCT basis vectors. In Figure 3.6, 
ju  is a function defined on the 

coarsened grid, with 
x yC C  coarsening scheme. 

, , ,

,

E W N S

j iu  are functions defined on the 
thi  

neighboring fine grids located on  , , ,E W N S  edges. 

 

 

 

Figure 3.6 Coarsened grid and neighboring fine grids 
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In the horizontal direction, discrete second difference is calculated as in equation (3.9), 

and the one in the vertical direction as equation (3.10). 
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(3.10) 

Finally, the second difference matrix with  x yC C -coarsened grid cell will have the 

form as in equation (3.11) which is equivalent with the two-point grid connectivity of grid 

Laplacian. The coarsened grid 
ju  has a coefficient as the total number of neighbored fine 

grid cells, each of which has the coefficient of 1  implying two-point grid connectivity. 

The coarsened grid Laplacian can be easily extended to three-dimension with inclusions 

of neighboring grids on top and bottom edges and generalized to any coarsening scheme 

with the corresponding grid connectivity information.  
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(3.11) 

As in the GCT, MGCT basis vectors are calculated solely dependent on grid 

structure and geometry, so model independent, however, its frequencies can be adjusted 

by a coarsening scheme. As a simple example, we show how frequencies of basis vectors 

in AOI are changing in one-dimensional grid system, according to different coarsening 

schemes in Figure 3.7. The AOI is the yellow area  0,  4 , and the other region is 
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coarsened with 1 1 (no coarsen), 2 1 , 3 1 , and 4 1  each. The one-dimensional DCT 

basis functions in equation (3.12) are compared for each grid system as in Figure 3.7(b).   
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(3.12) 

 

 

(a) 

 

(b) 

 

Figure 3.7 (a) Various coarsening schemes and (b) corresponding DCT basis 

functions in AOI 
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In each modal frequency, from the lowest to higher modes ( 1,2,3,4r  ), the more 

aggressive coarsening scheme results in higher frequency of basis function in the AOI. It 

is caused by that total number of grids ( xN ), which is decreased by grid coarsening. 

Therefore, frequency of cosine function,  2 1 / 2 xx r N , becomes higher given an order 

of basis function ( r ). In this manner, we are able to adaptively change the resolutions 

within each MGCT basis vectors. Coarsening the regions where data resolution is lower 

than in AOI, which can be also variant depending on the given data sources, MGCT 

controls spatial property resolutions mapped onto each basis vectors. This adaptive 

resolution control of MGCT is a significant benefit, considering that GCT requires an 

inclusion of more basis functions in order to achieve the spatial resolution comparable to 

the data resolution in the AOI. 

 

3.3.3. Re-parameterization Analysis 

In the course of history matching, the prior model ranges from uninformed to well 

informed. The basis function of model dependent parameterization, such as KLT, may not 

be effective and can mislead the property update when prior model is not known or 

incorrect. Model independent parameterizations (DCT, GCT, and MGCT) do not require 

prior knowledge and the basis functions are not limited by uncertain or incorrect prior 

assumptions. Although the basis constructions are independent of prior information, we 

can benefit from the prior model if it is well informed by available data sources. The 

benefit comes from the method to sort and select basis functions superimposed onto the 

prior model.  
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Jafarpour and McLaughlin (2009) demonstrated the method to truncate the images 

(re-parameterization) with a few significant coefficients when the prior model is well 

informed. When inverse transformed from the prior model to a set of coefficients in 

equation (3.13), the large coefficients are concentrated on the low frequency basis vectors. 

A large coefficient implies that the corresponding basis vector includes a large amount of 

prior information. Therefore, the leading eigenvectors, from the lowest frequency to 

higher, should be re-sorted to select the basis functions that provide the best approximation 

to a single known image. 

 Tv u  (3.13) 

We calculate the coefficients of the leading GCT basis functions shown in Figure 

3.3, for the reference permeability field in Figure 3.8. Figure 3.9(a) shows the coefficients 

with the order of eigenvalues, from the lowest to higher (leading mode). The magnitudes 

of these coefficients, which are not the eigenvalues, do not decrease monotonically but 

fluctuate from eigenvector to eigenvector, due to the projection onto the prior model as in 

equation (3.13). The coefficients are then sorted in a descending order to select the basis 

functions with large prior information as in Figure 3.9(b). We call that these basis 

functions are now in a ‘significant mode’. Note that the sequence of eigenvectors in a 

significant mode is not in a monotonic order any more. The selected twenty basis functions 

with the significant coefficients are shown in Figure 3.10. In summary, if the prior 

knowledge is uncertain or incorrect, the leading mode should be used. Otherwise, the 

significant mode is recommended for the selection of basis functions.  
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Figure 3.8 Reference permeability for re-parameterization 

 

 

(a) 

 

(b) 

 

Figure 3.9 (a) Coefficients in the order of eigenvalues and (b) coefficients in the 

order of coefficient magnitudes 
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Figure 3.10 GCT basis functions of 50 50  grid system (significant mode) 

 

 

To compare the compression performance of each modes, the root mean square 

errors (RMSE) between the reference and low rank approximation, in equation (3.14), are 

calculated as a function of the number of basis functions included.  
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(3.14) 

where N  is the number of grid cells in the model, reference

ik  is the reference permeability of 

thi  grid, and approximation

ik  is the permeability value of a low rank approximation in 
thi  grid. 

RMSE from the significant mode is always smaller than that of the leading mode when 

using the same number of basis functions as shown in Figure 3.11(a), implying the higher 

compression performance of a significant mode than a leading mode. It should be noted 

that the perfect reconstruction of the reference permeability field is possible if the full rank 

of basis functions are used, whether it is model dependent or model independent and 

whether it is a leading mode or a significant mode, and that the purpose of re-

parameterization (truncation) is to represent as much information as possible with a small 

number of coefficients. Therefore, from the RMSE point of view, the significant mode is 
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better than the leading mode, if the prior model is well informed. Figure 3.11(b) shows 

the low rank approximations with the corresponding (unsorted or sorted) basis functions, 

from which it is obvious that the significant mode results in a better compression 

performance than the leading mode, especially when smaller number of basis functions 

are retained. 

 

 

(a) 

 

(b) 

 

Figure 3.11 (a) Comparison of RMSE and (b) low rank approximation for each 

mode 

 

 

The compression performances of GCT and MGCT in the AOI, defined in Figure 

3.5, are compared in Figure 3.12. The basis functions for each method are selected both 
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in significant modes. In the AOI, assumed to have higher data resolution, MGCT always 

has higher compression performances than GCT as confirmed by its lower RMSE values 

in Figure 3.12(a). As a result of grid coarsening, the low rank approximations of MGCT 

have multiple resolutions as compared to a constant spatial resolution of GCT in Figure 

3.12(b). This feature makes the underdetermined history matching problem more 

regularized by MGCT when the data resolution is variant throughout the reservoir. The 

re-parameterized permeability fields only in the AOI are also compared in Figure 3.12(c). 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.12 (a) Comparison of RMSE, (b) low rank approximation in entire region, 

and (c) low rank approximation in the AOI for GCT and MGCT 

 

 

3.3.4. Multi-Objective Genetic Algorithm 

In this section, we briefly review the genetic algorithm (GA) with the direct use of 

the dominance relation between each solutions, instead of aggregating objective functions 

into a scalar function. The purpose of stochastic optimization approach is to secure as 

diverse realizations as possible for uncertainty quantification. The GA with the aggregated 
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sum method, however, results in incomplete exploration of the solution space especially 

when the objectives are conflicting each other (Deb and Pratap 2002). The multi-objective 

genetic algorithm (MOGA) is designed to find a representative set of solutions in the 

Pareto optimal front, which displays the trade-off between multiple objectives.   

Of many evolutionary algorithms, we use non-dominated sorting genetic algorithm 

(NSGA-II) in order to directly use the dominance relation between each member of the 

population (Deb and Pratap 2002, Park, Datta-Gupta, and King 2015). The major 

difference of NSGA-II from the classical GA with the aggregated sum methods is the 

selection method. Instead of fitness function, NSGA-II uses ‘rank’ and ‘crowding 

distance’ to select one population over the other. In each generation, the members are 

sorted based on the dominance relationship, which means that one member dominates the 

other only if all objective functions are smaller than those of the other. We first find non-

dominated solutions which are not dominated by any other members, and assign the ranks 

as 1. The next sorted populations are ranked as 2, which are not dominated by any member 

except at least one of members in rank 1. In the same manner, all the members are assigned 

the ranks. If populations have the same ranks, the one with larger crowding distance is 

selected to preserve the diversity of the populations. It represents the density of solutions 

around certain population, calculated as in equation (3.15) and Figure 3.13. The detailed 

background and methodology are well described in Deb and Pratap (2002) and Park, 

Datta-Gupta, and King (2015). 

 max
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Figure 3.13 Illustration of crowding distance in dual objectives case 

 

 

3.4. Application 

In this section, we demonstrate the applications of our proposed approach. First, 

we parameterize permeability field for the Brugge reservoir model, a SPE benchmark case 

(Peters et al. 2010), to calibrate it to water cut and bottom-hole pressure. Both GCT and 

MGCT are utilized to compare the resolutions of basis functions, required computation 

powers, and history matching results. Second, we apply MGCT to parameterize matrix 

permeability in an unconventional tight oil reservoir with multi-stage hydraulic fractures, 

in which AOI is the region for the stimulated reservoir volume (SRV) near the well. 

 

3.4.1. Brugge Benchmark Model 

The Brugge reservoir model is a benchmark case developed by the Netherlands 

Organization for Applied Scientific Research (TNO) to test the combined use of 

waterflooding-optimization and history-matching methods in a closed-loop workflow. 
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The properties in the model imitate a North Sea Brent-type field within an east-west half 

dome. There is a single interior fault and a truncating boundary fault at the north edge. 

The model has 44,355 active cells in nine layers, with twenty producers at the center dome 

and ten peripheral water injectors in the supporting aquifer. It has ten years of history data 

for water production rate, oil production rate, and bottom-hole pressure at each producer. 

We constrain the total well liquid rates and calibrate the isotropic permeability, whose 

prior distribution is shown in Figure 3.14, to match water cuts and bottom-hole pressures 

of each well, by updating basis coefficients.  

 

 

 

Figure 3.14 Prior permeability distribution of Brugge model for each layer 

 

 

The logarithmic multiplier is parameterized as in equation (3.16), to avoid negative 

multiplier values and to preserve high resolution of the prior permeability field, assumed 

to be well informed. GCT basis functions ( ) are not variant regardless of the grid 
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property, while basis coefficients ( v ) are dependent on the parameterized property. 

Therefore, any type of spatial property can be parameterized by the equation (3.16), with 

the same GCT basis functions. Note that ‘ ’ represents an entrywise product between two 

vectors.  

    10 0log   10 vmultiplier v k k     (3.16) 

 

3.4.1.1. Comparison of Re-parameterization 

In order to benefit from the well informed prior model, GCT basis functions are 

sorted by their coefficients projected to prior permeability distribution as shown in Figure 

3.15(a). That is, we are to use the basis functions that have the most similar spatial trends 

to the prior model in a significant mode. The corresponding RMSE is shown in Figure 

3.15(b). It should be noted that there is a tradeoff between model calibration performance 

and the spatial property resolution from the parameterization. Improving the resolution of 

the property update via the inclusion of more basis functions deteriorates the regularization 

by increasing the parameter set size in underdetermined inversion problems. Therefore, 

we need to decide the optimal number of basis functions to include as much spatial 

information as possible with the fewest basis coefficients. In the Brugge case, thirty basis 

functions are selected as indicated by red dotted lines in Figure 3.15(a) and (b). The 

improvement of spatial heterogeneity information is negligible with further increasing the 

parameter set. The selected GCT basis functions are shown in Figure 3.16. The modal 

shapes reflected by basis functions and their resolutions follow the grid structure and 

geometry, honoring the discontinuity across the interior fault. 
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(a) 

 

(b) 

 

Figure 3.15 (a) Sorted coefficients in a significant mode and (b) corresponding 

RMSE of GCT in Brugge 

 

 

 

Figure 3.16 GCT basis functions selected for model calibration of Brugge model 

 

 

In order to employ MGCT, we need to set an appropriate AOI where the data 

resolution is higher than the other regions. The main production mechanism in the Brugge 

case is waterflooding from the peripheral water injectors to the oil producers at the center 

of the dome. It is evident that the history data measured at each well would facilitate the 

reservoir property calibration around them to the finer scale than the other regions. 

Obviously, the region of high fluid saturation changes through production is more 

influential to both history data and simulation results. Based on the well distributions and 

the initial water saturation shown in Figure 3.17(a), the AOI is set as in Figure 3.17(b). 
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The other regions are coarsened with  3 3 3   scheme. Due to the grid coarsening, 

MGCT has significantly smaller Laplacian matrix, reduced by more than 50%  from the 

GCT’s. As a result, the computation time for eigen-decomposition of MGCT Laplacian is 

reduced by 30%  shown in Figure 3.18. The reason that the effect of computation time 

reduction is slightly smaller than the degree of Laplacian size reduction is that the grid 

coarsening generates more off-diagonal elements in the matrix by additional connections 

between coarsened grids and neighboring fine grid cells. However, because it is computed 

only once for model calibrations, MGCT benefits over GCT from the lighter computation 

loads, in addition to its ability to adjust the resolutions within each basis function. 

 

 

(a) 

 

(b) 

 

Figure 3.17 Initial water saturation and well distribution and (b) AOI for Brugge 

model  
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(a) 

 

(b) 

 

Figure 3.18 Comparison of GCT and MGCT for (a) Laplacian matrix size and (b) 

computation time for eigen-decomposition 

 

 

In order to compare the history matching performances, the same number of 

MGCT basis functions are selected with the same sorting method, shown in Figure 3.19. 

All the MGCT basis functions have higher modal frequencies in the AOI than the 

coarsened peripheral area. The re-parameterized permeability multipliers by these basis 

functions have higher spatial resolutions in the AOI, so that we can adaptively update the 

reservoir properties that are amenable to variant data resolutions. 

 

 

 

Figure 3.19 MGCT basis functions selected for model calibration of Brugge model 
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3.4.1.2. Comparison of History Matching Performance 

The objective functions in the Brugge case are data misfits for water cut and 

bottom-hole pressure of each producer as in equation (3.17) and (3.18). WCTO  is the 

objective function for water cut, wellN  is the number of wells, timeN  is the number of time 

steps, ,

observed

i jWCT  and ,

simulation

i jWCT  are the observed and simulated water cuts of 
thj  well 

for 
thi  time step. The same nomenclatures are followed for bottom-hole pressure. In a 

multi-objective optimization method, the objective functions are not combined, but remain 

independent while being minimized by the dominance relationship between solutions. To 

more precisely compare the effect of parameterization methods (GCT and MGCT) on the 

model calibrations, all the parameters for MOGA are same as in Table 3.1, except for the 

basis formulation.   

  
2

, ,

1 1

1well timeN N
observed simulation

WCT i j i j

j iwell

O WCT WCT
N 

    (3.17) 

  
2

, ,

1 1

1well timeN N
observed simulation

BHP i j i j

j iwell

O BHP BHP
N 

    (3.18) 

 

Table 3.1 MOGA parameters in the Brugge case 

Objective function WCT and BHP misfits 

Variable Absolute permeability (isotropic) 

Number of basis functions 30 

Population size 100 

Maximum generation 50 
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After the model calibrations through MOGA, both objective functions are 

significantly reduced as shown in Figure 3.20(a), which shows the results at the 50th 

generation. Only with different basis formulation, MGCT makes the improved Pareto 

front than GCT, meaning smaller data misfits. It is expected that given the same number 

of parameters, MGCT can capture more detailed heterogeneity in the AOI through the 

integration of data that also has higher resolution in the same region. The individual data 

misfit reduction through the generations are shown in Figure 3.20(b) and (c). It is 

confirmed that MGCT has better performance than GCT. 

 

 

 (a) 

  

(b) 

 

(c) 

 

Figure 3.20 (a) Data misfits at the 50th generation, (b) water cut misfits through 

generations, and (c) bottom-hole pressure misfits through generations by GCT and 

MGCT 
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The simulation results at the 50th generation for each of the 20 production wells are shown 

in Figure 3.21 and Figure 3.22. Most of the wells have significant improvements on the 

data misfit both for water cuts and bottom-hole pressures. A few wells (P10 for water cut, 

and P2, P5, P11, P12, P13 for bottom-hole pressure) have remained unchanged or have 

deteriorated matching results. The more important aspect here is that we have better 

improvements with MGCT than with GCT. It can be more effectively compared in the 

data misfit histogram of all populations at the 50th generation, as shown in Figure 3.23 

and Figure 3.24. These figures clearly show the improved data misfit distributions 

compared to the initial misfit. In P9, for example, GCT reduced both water cut and bottom-

hole pressure misfits; however, MGCT reduced data misfits even further as implied by the 

distributions shifted closer to zero. Based on the data misfit histograms, MGCT has 

smaller data misfits for both water cut and bottom-hole pressure at all the wells, except 

only for one well (P15). Therefore, it is concluded that MGCT is more computationally 

efficient and better able to calibrate reservoir models to the observed data which has 

variant resolution throughout the reservoir. It is because MGCT basis functions comply 

with the data resolution by its formulation. 
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Figure 3.21 Simulated water cut at each production well corresponding to the 

observation, initial, GCT and MGCT for Brugge case 
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Figure 3.22 Simulated bottom-hole pressure at each production well corresponding 

to the observation, initial, GCT and MGCT for Brugge case 
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Figure 3.23 Data misfit histogram for water cuts of all populations at the 50th 

generation in Brugge case 
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Figure 3.24 Data misfit histogram for bottom-hole pressures of all populations at 

the 50th generation in Brugge case 

 

 

To compare the updated permeability fields, one model is selected each from GCT 

and MGCT results. Both the calibrated models show smooth and continuous geological 

features similar to the prior model, shown in Figure 3.25. Large scale heterogeneity 

updates are shown for the entire region and the AOI in Figure 3.26, respectively. As 

expected, MGCT shows multi-resolution permeability updates, higher in the AOI and 

lower at the peripheral area. 
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Figure 3.25 Prior permeability field for the prior model (left), updated permeability 

field by GCT (middle), and by MGCT (right) in Brugge case 
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Figure 3.26 Permeability multiplier fields for the entire reservoir and for the AOI 

calibrated by GCT and MGCT in Brugge case 

 

 

3.4.2. Unconventional Tight Oil Reservoir With Multi-Stage Hydraulic Fractures 

In this section, we apply MGCT to parameterize matrix permeability in an 

unconventional tight oil reservoir with multi-stage hydraulic fractures, where the AOI is 
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usually within stimulated reservoir volume (SRV), to show its ability to calibrate the rock 

property with multiple levels of spatial detail and to demonstrate the entire history 

matching workflow. Tartan grid is used in order for propped fractures to be located in the 

refined grid so that the flow dynamics are more accurately simulated. In a low permeable 

tight oil reservoir, a horizontal well is completed and perpendicular hydraulic fractures are 

generated. The detailed model description and prior information are shown in Table 3.2. 

The prior permeability field is as in Figure 3.27(a) with a cube-cropped region to show 

both matrix and hydraulic fractures. The AOI is shown as a green box in Figure 3.27(b). 

The producer is constrained by oil rate and we calibrate the rock properties and uncertain 

hydraulic fracturing parameters to match the observed water cut and bottom-hole pressure. 

 

Table 3.2 Model description and prior information for the tight oil reservoir with 

multi-stage hydraulic fractures 

Parameter Range 

Model size  ~ 2.4 41 1267 46million  
 

Phase Oil and water 

Matrix permeability 0.0001 ~ 0.0076 mD 

SRV permeability multiplier 50 

Hydraulic fracture conductivity 120 mD-ft 

Number of fracture stages 12 

Number of clusters per stage 10 

Fracture half length 130 ~ 311 ft 

Production period 10 months 
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(a) 

 

(b) 

 

Figure 3.27 (a) Prior permeability field and (b) AOI as the green box for the tight 

oil reservoir with multi-stage hydraulic fractures 

 

 

3.4.2.1. Sensitivity Analysis 

The first step for the model calibration is to select key parameters that are sensitive 

enough to change the objective functions, which in this application are data misfits for 

water cut and bottom-hole pressure. This parameter set size reduction by removal of 

insensitive parameters further improves regularization of the inverse problem. To 

eliminate disproportionate parameter perturbation sizes and dimensions, the 

dimensionless scaled sensitivity is used as in equation (3.19) (Olalotiti-Lawal et al. 2017, 

2019, Onishi et al. 2019), where Basex  is the prior parameter, x is the parameter 
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perturbation, BaseJ  is the objective function for the prior model, and J  is the perturbed 

objective function caused by x . As we have two separate objective functions (water cut 

misfit and bottom-hole pressure misfit), two sensitivity analyses are performed with the 

ranges shown in Table 3.3. Fracture half length is set as a constant value within each group 

(‘XfCell1’, ‘XfCell2’, ‘XfCell3’). The stage groups are defined as in Figure 3.28. 

 Base
x

Base

J
J

sensitivity
x

x






 

(3.19) 

 

Table 3.3 Parameter descriptions and ranges for sensitivity analyses 

Parameter Description Low Base High 

permHF Conductivity of hydraulic fractures (mD-ft) 90 120 150 

permMulSRV Permeability multiplier for SRV 5 40 80 

permMulMtr Permeability multiplier for matrix 0.5 1 10 

XfCell1 Fracture half length in Group 1 (ft) 130 198 311 

XfCell2 Fracture half length in Group 2 (ft) 130 198 311 

XfCell3 Fracture half length in Group 3 (ft) 130 198 311 
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Figure 3.28 Group of hydraulic fracturing stages 

 

 

The results of sensitivity analyses are shown in the tornado charts for water cut 

and bottom-hole pressure as in Figure 3.29. The same parameter order as in the tornado 

chart of water cut is used for the bottom-hole pressure in order to easily compare the effect 

of parameters on the data misfits. Matrix permeability is the most important parameter in 

that it has the most significant impact on water cut data misfit and on the positive 

sensitivity side of bottom-hole pressure misfit (right side of the tornado plot in Figure 

3.29(b)). Therefore, matrix permeability field is parameterized with MGCT rather than 

using single uniform multiplier, in order to make more variability. MGCT gives us higher 

degree of freedom in the AOI, which is the SRV in this case. The opposite direction of 

sensitivity implies that there is a potential conflict between data misfits. For example, 

when taking the high value of fracture half length at group 2 (orange bar of ‘XfCell2’), 

water cut misfit increases but bottom-hole pressure misfit decreases. That is, most of 

parameter perturbations reduce one data misfit while increasing the other. Therefore, all 

the other parameters, which are related with hydraulic fracturing performance and have 

impacts on the data misfits, are also included in the history matching through MOGA. 
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(a) 

 

(b) 

 

Figure 3.29 Dimensionless sensitivity of model parameters to (a) water cut misfit 

and (b) bottom-hole pressure misfit 

 

 

3.4.2.2. Re-parameterization Analysis 

To decide the optimal number of basis functions, the re-parameterization analysis 

is performed and the results are shown in Figure 3.30. In this case, six basis functions are 

selected as indicated by red dotted lines in Figure 3.30(a) and (b). The improvement of 

spatial heterogeneity information is negligible with increasing parameter set. The selected 

MGCT basis functions are shown as the first row in Figure 3.31 and show slightly higher 

modal frequencies in the AOI than the coarsened peripheral area. The small resolution 

differences within the low frequency basis functions are observed. It is because the major 

modal variation occurs along the J  direction due to its significantly larger number of grid 

cells than the other directions. Therefore, at the I K  plane of certain J  index, the 

numbers of grid cells of I  and K  directions are not enough to have visible variations in 
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the low frequency basis functions. The higher frequency basis functions, some of which 

are already selected, are shown in the second row of Figure 3.31 for the reference.  

 

 

(a) 

 

(b) 

 

Figure 3.30 (a) Sorted coefficients in a significant mode and (b) the corresponding 

RMSE of MGCT in the tight oil reservoir 
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Figure 3.31 MGCT basis functions of tight oil reservoir model. First row shows the 

selected basis functions for model calibration, and second row shows the higher 

frequency basis functions as examples of visible resolution differences 

 

 

3.4.2.3. History Matching 

As the data misfits show opposing trends in the sensitivity analysis, MOGA is used 

for the model calibration with the parameters in Table 3.4. Parameterization is applied to 

matrix permeability as in equation (3.20) to keep the resolution of prior spatial 

heterogeneity. 

 

Table 3.4 MOGA parameters in the tight oil reservoir case 

Objective Function 
Water cut misfit 

Bottom-hole pressure misfit 

Variable 

Matrix permeability (6 basis coefficients) 

SRV permeability multiplier (1 variable) 

Fracture conductivity (1 variable) 

Fracture half length (3 variables) 

Number of Basis Functions 6 

Population Size 40 

Maximum Generation 10 
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 0u u v   (3.20) 

where 0u  is the prior matrix permeability field, ‘ ’ represents an entrywise product 

between two vectors. We parameterize matrix permeability multiplier field in a low rank 

approximation and basis coefficients are updated to calibrate the matrix permeability field.  

After the model calibration through MOGA, both objective functions are 

significantly reduced as shown in Figure 3.32. It does not show a clear Pareto front. 

MOGA always outperforms the aggregated sum single objective genetic algorithm 

whether objective functions are strongly conflicting each other or not, except when there 

are specific weighting factors for each objective. Without any preferred weighting factors, 

as in this case, we can accept the significant data misfit reductions through MOGA after 

10 generations. Individual data misfit reductions through the generations are also shown 

in Figure 3.32(b). Notice the logarithmic units of axes. 
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(a) 

 

(b) 

 

 

Figure 3.32 Data misfits comparison (a) at the 1st and 10th generation and (b) 

individual misfits through all the generation 
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The updated simulation results of water cut and bottom-hole pressure at the 10th 

generation are shown in Figure 3.33. Compared with the 1st generation, significant 

improvements on both data misfits are achieved. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.33 (a) Simulated water cut and (b) bottom-hole pressure at the 1st 

generation and (c) simulated water cut and (d) bottom-hole pressure at 10th 

generation along with observed data 

 

 

In the boxplots of Figure 3.34, uncertainty reduction of the parameters are 

observed after history matching. The first generation of permeability multiplier for SRV 

in Figure 3.34(a) has a high uncertainty with the evenly distributed populations within the 

specified range. After MOGA, the 10th generation has a lower uncertainty with decreased 

values. The uncertainty on the hydraulic fracture conductivity in Figure 3.34(b) has also 



 

90 

 

been significantly reduced, with the median value shift from 120 mD-ft to 110 mD-ft. For 

the fracture half lengths, in Figure 3.34(c), the uncertainties on all the groups have been 

reduced, requiring longer fractures in a group 1 and shorter fractures in group 2 and 3. The 

parameter collapses for group 1 and 3 (‘XfCell1’, ‘XfCell3’) are caused by the 

discontinuous representation of fracture half length by the number of grid cells to describe 

the hydraulic fracture planes. Figure 3.34(d) shows the MGCT basis coefficients used to 

calibrate the matrix permeability field to the production data. A comparison of matrix 

permeability multiplier fields between 1st and 10th generations is shown in Figure 3.35. 

Each line represents the distribution of the matrix permeability multipliers for every grid 

cells within a single model. From the broad spread of the 1st generation to the narrow 

spread of 10th generation, along with the box plots in Figure 3.34(d), it is clear that the 

uncertainty of a matrix permeability field has been reduced after history matching. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.34 Box plots of parameter distribution for 1st and 10th generations. (a) 

Permeability multiplier for SRV. (b) Hydraulic fracture conductivity. (c) Fracture 

half length on each group. (d) Basis coefficients for matrix permeability multiplier 
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Figure 3.35 Comparison of matrix permeability multiplier fields between 1st and 

10th generations 
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3.4.2.4. Production Forecast 

The history matched models at the 10th generation are used to predict future 

production as in Figure 3.36. The constraint for the history matching was oil production 

rate. In the production forecast, however, the operating constraint is a bottom-hole 

pressure (800 psia). The results show the variations of predicted water cut and oil 

production rate. 

 

 

Figure 3.36 Production forecast with uncertainty quantification by history matched 

models 
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3.5. Conclusions 

In this chapter, we have introduced a novel multi-resolution parameterization 

method for efficient history matching, especially when the spatial data resolution is variant 

in a reservoir. The multi-resolution basis vectors are achieved by coarsening the region 

outside AOI and eigen-decomposing the corresponding grid Laplacian. By this method, 

the resolution in the AOI becomes higher at the cost of lower resolution in the coarsened 

region. Basis vectors are then used to linearly map the spatial properties in grid cells to 

parameters in transform domain, which are updated in the history matching.  

As MGCT is still dependent only on the grid connectivity, the basis functions can 

be constructed from any grid geometry if the connectivity is updated according to the 

coarsening schemes. Due to the coarsening, it has a smaller Laplacian matrix than GCT, 

and therefore requires a reduced computation time for eigen-decomposition. The more 

powerful aspect of MGCT is the ability to adjust the modal frequencies or resolutions of 

basis functions to comply with the various data resolutions. Hence, it better regularizes 

the underdetermined history matching problem compared to GCT.  

In the applications of MGCT to the model calibrations, multi-objective genetic 

algorithm was utilized to directly use the dominance relation between each solutions and 

to secure as diverse realizations as possible that equivalently meet the data misfit criteria. 

We showed in the conventional waterflooded reservoir that history matching quality can 

be improved by the proposed multi-resolution parameterization compared to the uniform-

resolution parameterization. We also demonstrated its applicability to history matching of 

the unconventional tight oil reservoir with multi-stage hydraulic fractures.  
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Although this study employs multi-resolution parameterization method to the 

history matching with a single iteration (the same number of basis functions through 

MOGA), the sequential refinement of spatial properties by iteratively adding more basis 

functions can be used to get better improvements in data misfits. Whether we use a single 

iteration or sequential refinement method, MGCT will outperform GCT, when there is a 

variation on data resolutions. 
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4. PARAMETERIZATION OF EMBEDDED DISCRETE FRACTURE MODELS 

(EDFM) FOR EFFICIENT HISTORY MATCHING OF FRACTURED RESERVOIRS 

 

4.1. Chapter Summary 

Embedded Discrete Fracture Model (EDFM) is a promising approach to describe 

the reservoirs with fractures. Conventional streamline-based inversion method has been 

limited to the dual-porosity models where the natural fractures are modeled implicitly and 

flow between matrix blocks is not accounted for. To address this challenge, we propose a 

novel parameterization and hierarchical multi-scale history matching formulation for 

EDFM’s. We sequentially includes basis functions, from large to small scale, to calculate 

basis coefficient sensitivity combined with streamline-based analytical sensitivity, for 

updating matrix and fracture properties to match the reservoir dynamic response. 

In EDFM dominant fractures are explicitly represented within the matrix domain. 

The matrix-fracture and fracture-fracture interactions are modeled using non-neighbor 

connections (NNCs) with corresponding transmissibility. In this research, grid 

connectivity information including NNCs and the reservoir properties in the prior model 

are first used to construct a grid Laplacian matrix. Next, the eigenvectors of the Laplacian 

matrix are used as the transformation basis vectors through which matrix and fracture 

properties are mapped to a low-dimensional transform domain. This step significantly 

reduces the number of unknowns and also regularizes the inverse problem. Finally, the 

basis coefficient sensitivity in the transform domain is analytically calculated using 
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streamlines and the updated basis coefficients are then used to reconstruct the reservoir 

property field.  

We first illustrate the proposed parameterization of the EDFM and its effectiveness 

by reconstructing low rank approximations of the spatial distribution of the matrix and 

fracture properties. Conventional streamline-based inversion method typically leads to 

large property changes along the streamlines. With the proposed parameterization 

approach, the basis coefficient sensitivities enable us to effectively calibrate the EDFM in 

a more geologically continuous manner on both matrix domain and fracture planes. We 

demonstrate the power and efficacy of our method through application to a field scale 

reservoir model with complex fault structure, channels, and dominant natural fractures. 

The example involves waterflood history matching with water-cut and bottom-hole 

pressure data. The proposed approach effectively updates the prior permeability field 

along the fracture planes and the matrix domain, resulting in significantly improved 

history match. 

The parameterization of EDFM has high compression power to represent 

important geological trend and fracture properties with significantly reduced number of 

parameters. The new model calibration method extends the capability of the streamline-

based inversion method to explicitly model flow in natural fractures and also flow between 

matrix blocks. 
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4.2. Introduction 

Significant amount of hydrocarbons come from conventional reservoirs with 

natural fractures or faults and unconventional reservoirs with hydraulic fractures. It has 

been challenging to accurately predict future production and optimize development plan 

for reservoirs with fractures due to its complexity and heterogeneity. Therefore, reservoir 

simulation and characterization of complex fracture system are critical to develop and 

manage the fractured reservoirs. 

Dual continuum model was introduced by Warren and Root (1963) and has been 

widely used for reservoir simulation with densely distributed small-scale fractures (Azom 

and Javadpour 2012, Kang et al. 2015, Sævik, Lien, and Berre 2017). For reservoirs with 

sparsely distributed large-scale fractures, it is more appropriate in terms of accuracy to use 

Discrete Fracture Model (DFM) to represent fluid flow within fractures and between 

matrix and fractures. However, it requires high computation time for simulation and an 

unstructured grid system, introducing additional complexity for field scale models. 

Embedded Discrete Fracture Model (EDFM) was proposed to adopt accuracy of DFM and 

efficiency of dual continuum model (Li and Lee 2008). There have been studies on history 

matching of EDFM by Bayesian approach (Chai, Tang, et al. 2018, Chai, Yan, et al. 2018, 

Dachanuwattana et al. 2018). These studies are limited to calibrate variables that are 

constant over the reservoir and in general are incapable of calibration of spatial 

heterogeneity distribution. Streamline-based inversion method is known to efficiently 

improve the history matching quality when used after large-scale calibrations (Kam, Han, 
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and Datta-Gupta 2017, Hetz, Kim, et al. 2017). However, there has not been any research 

for the streamline-based inversion on EDFM. 

In this chapter, we extend the ABT parameterization to Embedded Discrete 

Fracture Models (EDFM) by using non-neighbor connections (NNCs) between matrix-

fracture and fracture-fracture interactions. During history matching, basis coefficient 

sensitivity to production data in the transform domain is analytically calculated using 

streamlines and predefined basis functions. The updated basis coefficients are then used 

to reconstruct the reservoir property field. The history matching formulation follows the 

previous adaptive multi-scale approach (Bhark, Jafarpour, and Datta-Gupta 2011, Bhark 

et al. 2012, Bhark, Jafarpour, and Datta‐Gupta 2011). Spatial heterogeneity is sequentially 

refined by adding basis functions of higher-frequency, until calibration resolution balances 

with the data resolution. With the proposed parameterization approach, the basis 

coefficient sensitivities enable us to effectively calibrate the EDFM in a more geologically 

continuous manner on both matrix domain and fracture planes. We demonstrate the power 

and efficacy of our method through application to a field scale reservoir model with 

complex fault structure, channels, and dominant natural fractures. 

 

4.3. Background and Methodology 

In this section, background and methodologies of previous studies on EDFM, 

streamline-based sensitivity, the proposed parameterization, analytical basis coefficient 

sensitivity, and hierarchical multi-scale history matching formulation are explained.  
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4.3.1. Embedded Discrete Fracture Model (EDFM) 

EDFM adopts accuracy of DFM and efficiency of dual continuum model (Li and 

Lee 2008) by connecting discrete fractures to the matrix of a structured grid system by 

additional connection information (NNCs) and corresponding transmissibility. Figure 4.1 

shows an illustration of EDFM with the simulated geologic model and the actual grid 

structure in a numerical domain. In Figure 4.1(a), purple, yellow, and blue lines represent 

NNCs between fracture-matrix, intersecting fractures, and fracture-fracture respectively. 

Their transmissibilities are calculated as in equation (4.1) – (4.3) (Moinfar 2013).  
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  (4.3) 

For fracture-matrix interaction in equation (4.1), A  is the fracture surface area in the grid 

cell, mfk  is the harmonic average of matrix and fracture permeabilities, and d  is the 

average normal distance. nx  is the normal distance of the element from the fracture and 

V  is the volume of grid cell. For the interaction of intersecting fractures in equation (4.2), 

iT  is a transmissibility of each fracture, where 
if

d  is the average of normal distances from 

the center of the fracture subsegments to the intersection line shown as yellow line in 

Figure 4.1(a), 
if

k  is a fracture permeability, 
if

  is a fracture aperture,  and intl  is the 



 

101 

 

length of the intersection line. For fracture-fracture interaction in equation (4.3), ffd  is the 

distance between the centers of each fractures,   is the fracture aperture, intl  is the length 

of the intersection line, and ffk  is the harmonic average of fracture permeabilities. 

 

 

(a) 

 

(b) 

 

Figure 4.1 An illustration of EDFM with (a) simulated geologic model and (b) 

actual grid structure in a numerical domain 
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4.3.2. Parameterization of EDFM  

 

4.3.2.1. Extended Adjacency-Based Transform 

In EDFM, fractures are simulated by NNCs and their transmissibilities, located in 

a separate numerical domain from the matrix domain. The permeability contrast between 

matrix and fracture is significant, a requirement for the purpose of designing EDFM. 

Therefore, the previous parameterization methods (GCT, ABT) are not appropriate for 

EDFM. The elements of similarity matrix for GCT is calculated as in equation (4.4).  

 ,

1      

0           
i j

if neighbored
a

otherwise


 
  

(4.4) 

Although it includes all the connectivity information, both the connection within matrix 

grid cells and the fracture-matrix connection by NNCs, there will be no property 

information in the basis functions. Therefore, GCT is not appropriate for EDFM that has 

a significant property contrast between matrix and fracture. ABT takes property difference 

and distance into account in the similarity matrix as in equation (4.5). 
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otherwise




             
    



 (4.5) 

However, as the fracture numerical domain is separated from the matrix domain in EDFM, 

the distance between two domains is artificially large. The elements of a Laplacian matrix 

interacting matrix and fracture will be calculated as zero since the distance (
i jx x  in 

equation (4.5)) is larger than Euclidean cut-off distance. Therefore, ABT is not appropriate 
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for EDFM because it does not properly account for the NNCs between matrix and fracture. 

Considering we are simulating embedded fractures, the distance between matrix and 

fracture should be treated as almost zero rather than significantly large value. Then, we 

can approximate 

2

2exp
i j

x

x x



  
 
 
 

 term as 1 for the connected grid cell pairs. 

We propose a novel parameterization method by extending ABT so that it includes 

the connectivity information in basis functions. The elements of similarity matrix in an 

extended ABT are calculated as in equation (4.6). 
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exp
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p p if
a

otherwise

     
 
 

 (4.6) 

Figure 4.2 shows an illustration of the extended ABT in a 5-points grid system with a 

fracture embedded. A tilted thin grid cell in Figure 4.2(a) is an embedded fracture and 

colors represent the property value in each grid cell. The Laplacian matrix of an extended 

ABT for this model is shown in Figure 4.2(b). The region outlined with a blue dotted line 

in Figure 4.2(b) explains the similarities within a matrix domain. The yellow box explains 

the interactions between fracture grid cells and the matrix grid cells. The red box 

represents the interaction within fracture grid cells. 
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(a) 

 

(b) 

 

Figure 4.2 Illustration of EDFM and Laplacian matrix of an extended ABT 

 

 

4.3.2.2. Two-Dimensional Synthetic EDFM 

For detailed explanation of the extended ABT, a two-dimensional synthetic EDFM 

is modeled as in Figure 4.3. The reference permeability field is shown together in Figure 

4.3(a), and three-dimensional views of the matrix field and embedded fractures are shown 

in Figure 4.3(b) and Figure 4.3(c), respectively. The number of matrix grid cells is 2500 (
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50 50 1  ) and its size is 1640 1640 33ft ft ft  . Information on the embedded fractures 

are given in Table 4.1. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.3 Two-dimensional synthetic EDFM. (a) Top view of reference 

permeability field with matrix and fracture together. Three-dimensional views of 

(b) matrix field and (c) embedded fractures 
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Table 4.1 Properties of embedded fractures in a synthetic EDFM 

Fracture 

ID 
Starting Point Orientation Aperture Length Permeability 

1 (1,115 𝑓𝑡,  262 𝑓𝑡) 80° 0.05 𝑓𝑡 1,000 𝑓𝑡 300 𝐷 

2 (1,476 𝑓𝑡,  361 𝑓𝑡) 160° 0.05 𝑓𝑡 1,200 𝑓𝑡 300 𝐷 

 

Basis functions of the extended ABT are shown in Figure 4.4(a) and (b) for matrix 

and fracture domains respectively. They obviously include not only grid connectivity 

information but also property information. The low rank approximations of EDFM are 

shown in Figure 4.5 for the matrix permeability field and fracture permeability.  

 

 

(a) 

 

(b) 

 

Figure 4.4 Extended ABT basis functions of a synthetic EDFM for (a) matrix 

domain and (b) fracture domain 
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(a) 

 

(b) 

 

Figure 4.5 Low rank approximations of a synthetic EDFM for (a) matrix 

permeability field and (b) fracture permeability 

 

 

The compression performances of the extended ABT are calculated by root mean 

square error (RMSE) as in equation (4.7) between a low-rank approximation and the 

reference permeability field, for matrix and fracture separately with respect to the number 

basis functions. RMSE for the entire field is dominated by several orders of magnitude 

larger fracture permeability, although the heterogeneous matrix permeability is as 

important as fracture permeability when characterizing the fractured reservoir model. 

Therefore, separate RMSE’s are calculated as in Figure 4.6 in order to differentiate 

compression performances on matrix and fracture domains, respectively. While the RMSE 

for heterogeneous matrix permeability has gradually reduced as more basis functions are 

included in a re-parameterization, the RMSE for the fracture permeability has rapidly 

reduced even with first several basis functions. It is attributed to the fact that heterogeneity 

of fracture domain is significantly smaller than that of matrix domain. In this synthetic 

case a uniform fracture permeability value is used, and the number of basis functions to 
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parameterize for fracture domain is much smaller. Therefore, it is comparatively easy to 

capture the geological trend of fracture domain with smaller number of basis functions. 

 
2

1

1 N
reference re parameterized

i i

i

RMSE k k
N





   (4.7) 

  

 

(a) 

 

(b) 

 

Figure 4.6 RMSE of re-parameterized permeability for (a) matrix domain and (b) 

fracture domain  
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In order to eliminate the dominance of fracture permeability on the entire RMSE, a 

normalized RMSE is calculated as in equation (4.8) to represent the compression 

performance over the entire reservoir including fractures. Normalized RMSE’s for each 

domain are calculated by normalizing RMSE’s with the initial RMSE from the re-

parameterization when only the basis function of lowest frequency is used. 

Normalized Matrix RMSE + Normalized Fracture RMSE
Normalized RMSE

2
  (4.8) 

The normalized RMSE for the synthetic EDFM is shown in Figure 4.7, which radically 

reduces with the first several basis functions. It is obvious that the extended ABT 

effectively parameterizes EDFM with a small number of parameters.  

 

 

 

Figure 4.7 Normalized RMSE of re-parameterized permeability field for matrix 

and fracture domains combined 
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4.3.3. Streamline-Based Sensitivity 

Streamline-based history matching has been widely used as it is highly effective 

in that parameter sensitivities are analytically computed after a single forward simulation. 

As the sensitivities are calculated along streamlines, where the properties are updated, it 

is also efficient to update small scale properties in a high resolution geologic model. There 

have been research on the analytical streamline-based sensitivity for various historical data 

(Tanaka et al. 2015, Hetz, Kim, et al. 2017, Kam, Han, and Datta-Gupta 2017, Watanabe 

et al. 2017, Chen et al. 2019). Streamline tracing in EDFM has recently been developed 

by Chen et al. (2018). Therefore previous streamline-based history matching algorithm 

can now be extended to EDFM. In this section, the analytical sensitivities of permeability 

on water cut and bottom-hole pressure are explained.  

 

4.3.3.1. Saturation Front Arrival Time Sensitivity 

Time of flight (TOF), which is the travel time of a neutral tracer along a streamline 

(Datta-Gupta and King 2007) is expressed as equation (4.9). 

  s x dr


    (4.9) 

where   is a streamline trajectory, along which r  is the distance, and  s x  is the 

slowness defined as the reciprocal of the interstitial velocity shown in equation (4.10).  
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 x  is porosity,  k x  is permeability at the location x . rt  and P  are total relative 

mobility and pressure gradient respectively. The shift of travel time to perturbation in 

permeability and porosity is then approximated by equation (4.11). 
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 (4.11) 

The sensitivity of the permeability at a location x  on the travel time along a streamline 

  is calculated by equation (4.12), integrating 
 

 

s x

k x
  within a grid cell along the arc 

length ( r ) of the streamline. 
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  (4.12) 

By the Buckley-Leverett equation, the water saturation propagation time is expressed in 

terms of time of flights as in equation (4.13).  
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 (4.13) 

Therefore, the sensitivity of travel time of water saturation with respect to permeability at 

a location x  is given by equation (4.14).  
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4.3.3.2. Bottom-hole Pressure Sensitivity 

The pressure drop between wells is expressed as in equation (4.15) by the 

summation of pressure drops at each grid cells along the streamtube.  

 well i

i node

P P


    (4.15) 

The sensitivity of permeability on pressure drop between wells is then approximated by 

equation (4.16). 

 
well i
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i nodei i i

P P
P

k k k

   
   

   
  (4.16) 

Pressure drop along a streamline is computed by Darcy’s law in equation (4.17). It can be 

represented in terms of the pressure head drop as in equation (4.18). 
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   (4.18) 

Assuming that Darcy’s equation can be applied along streamlines, the pressure drop 

sensitivity along the streamline can be given in equation (4.19), by combining equation 

(4.16), (4.17), and (4.18). 
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 (4.19) 

where 
,sl effq  is an effective rate along the streamline, A  is the associated cross section, 

and L  is distance shown in equation (4.20) – (4.22), respectively.  
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  (4.21) 

 2 2 2

i i i iL x y z     (4.22) 

0

slq  is the flow rate assigned to streamline starting location and 
eff  is an effective density 

that captures the fluid volume changes with pressure. Both are traced along streamlines. 

slP  is calculated by half-cell pressure drop between neighboring grid cells. It is weighted 

by half-cell transmissibilities shown in equation (4.23) and (4.24). Therefore, pressure 

drop along streamline is represented by equation (4.25). 
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 (4.25) 

In model calibration of reservoir models, grid cell sensitivity is required to update grid 

cell reservoir properties. To get the grid cell sensitivity, all streamlines that are reached at 
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well p  are considered and their sensitivities along each streamline are weighed by the 

flux ratio based on the streamlines passing through the i -th grid cell as in equation (4.26).  
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 (4.26) 

The bottom-hole pressure sensitivity calculation depends on the boundary conditions of 

each well pair. Equation (4.16) is the bottom-hole pressure sensitivity if either of one well 

has a pressure constraint. When we have rate constraints for both wells that streamlines 

connect, the bottom-hole pressure sensitivity is calculated as in equation (4.27) by 

modifying the sensitivity of pressure-rate constraint. 

 

prod prod

bhp bhp i

i i totalrate rate pressure rate

P P

k k




 

 


 
 (4.27) 

where 
prod

bhpP  is the bottom-hole pressure at a producer, total  is the total time of flight 

between well pair, and i  is the time of flight from injector to grid cell i . Detailed 

explanation and validation can be found in previous research (Tanaka et al. 2015, Kam, 

Han, and Datta-Gupta 2017). 

 

4.3.4. Analytical Basis Coefficient Sensitivity 

A multi-scale and smooth reservoir property update is possible by sequentially 

including higher frequency basis functions and their coefficient sensitivities. The 

analytical basis coefficient sensitivity is derived in this subsection, combined with 
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streamline-based analytical sensitivity shown in the previous subsection. The re-

parameterization of a reservoir property field is performed as in equation (4.28).    

 u v  (4.28) 

where u is the n -component column vector of a re-parameterized reservoir property field, 

v  is m -component column vector of parameters in transform domain, and  is the 

predefined n m  matrix with columns of interpolation or transformation basis vectors. 

The basis coefficient sensitivity with respect to any production data ( ) is calculated as 

in equation (4.29) by chain rule using analytical streamline-based sensitivity. 

 1
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vk

v k v k v k

    

     


 
    


 (4.29) 

where iv  is the i -th basis coefficient, k  is the permeability field whose low rank 

approximation can be represented by 
1

m

j jj
v


 . The level of approximation is controlled 

by the number of basis functions ( m ). 
k




 is the analytical streamline-based sensitivity 

which is easily calculated after a single forward reservoir simulation. Therefore, the basis 

coefficient sensitivity can be analytically computed by multiplying the streamline-based 

sensitivity with the corresponding basis function. Note that the dimensions of 
k




 and i  

are 1 n  and 1n  respectively, therefore i
k




  is a scalar value for each coefficient.  

The linear equation for permeability update based on streamline-based sensitivity 

is written in equation (4.30), where k
S  is the sensitivity matrix ( D n ), k is the column 
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vector for required permeability changes ( 1n ), and d  is the column vector for data 

misfits ( 1D ). D  is the number of observed data for history matching.  

  kS k d  (4.30) 

On the other hand, the linear equation for basis coefficient update is written in equation 

(4.31), where vS  is the sensitivity matrix ( D m ), v  is the column vector for required 

basis coefficient changes ( 1m ). Updated basis coefficients are utilized to update a 

permeability field with equation (4.28), enabling a multi-scale and smooth property 

changes. 

  vS v d  (4.31) 

The impact of the number of basis coefficients on the property change during 

calibration is shown in Figure 4.8. It shows the property changes after a single iteration 

with the same initial property and data misfits. As clearly seen in Figure 4.8, more 

inclusion of basis functions makes the property change closer to the streamline-based 

change. Hence, we first carry out pressure history matching by including a small set of 

low frequency basis functions in order to calibrate the large scale property. As 

demonstrated in Figure 4.8, more inclusion of higher frequency basis functions enables 

sequential refinement of spatial property changes. 
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Figure 4.8 Impact of the number of basis coefficients on the property change, 

compared with streamline-based method 

 

 

4.3.5. Hierarchical Multi-Scale History Matching Formulation 

In this chapter, the main production data to which we calibrate a permeability field 

are well water cut and bottom-hole pressure. Vasco, Keers, and Karasaki (2000) noted that 

pressure data is less affected by tracer dispersion and fractional flow properties. These 

small-scale property variations rather influence water cut data. Therefore, a hierarchical 

history matching workflow is proposed, where we first start with a large scale reservoir 

model calibration to pressure data, followed by a small scale calibration to water cut only 

or also to pressure data further if necessary. Bhark et al. (2012) proposed a multi-scale 

history matching workflow for bottom-hole pressure and water cut together, utilizing GCT 

and calculating parameter sensitivity by adjoint method. In their large scale calibration, a 

reservoir property multiplier field is parameterized and the inversion process is iterated by 

sequentially including additional parameters (basis coefficients), thus enabling a 
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refinement of the re-parameterized multiplier field. It was designed to adaptively update 

spatial details in the reservoir model until the re-parameterization scales are reached to the 

level at which the history matching is no longer improved by further refinement. They 

showed with several field cases that history matching is successful only if it begins from 

the low resolution. 

We propose a hierarchical multi-scale history matching workflow for EDFM as in 

Figure 4.9. In the large scale calibration, we follow the adaptive multi-scale history 

matching (Bhark, Jafarpour, and Datta-Gupta 2011, Bhark et al. 2012, Bhark, Jafarpour, 

and Datta‐Gupta 2011, Bhark et al. 2011) by sequential refinement of permeability 

multiplier field with the extended ABT, mainly focusing on the pressure data match. It is 

because the pressure data is more sensitive to large scale reservoir property than to small 

scale parameters. The basis coefficient sensitivity is calculated from the streamline-based 

sensitivity, which is more amenable than the adjoint method in that we are efficiently able 

to compute it only with simulation results and an access to simulator’s source codes is not 

required. Note that the basis functions are computed only once and are not updated during 

iterations. If the large scale calibration meets the stopping criteria (maximum number of 

basis functions included, or no more data misfit reduction), a small scale calibration 

follows with streamline-based inversion workflow focusing more on water cut data match 

or also pressure data further if necessary. Note that in both calibration steps a pre-process 

of EDFM simulation should be performed after every property update, in order to calculate 

connectivity and transmissibility of matrix-fracture and fracture-fracture interactions. 
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(a) 

 

(b) 

 

Figure 4.9 Hierarchical EDFM history matching workflow. (a) Large scale 

calibration with an adaptive multi-scale re-parameterization. (b) Small scale 

calibration with a streamline-based inversion 
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4.4. Applications 

In this section, we demonstrate the power and efficacy of our proposed 

parameterization and hierarchical multi-scale history matching workflow with two-

dimensional synthetic and field scale EDFM’s. First in a synthetic example, we illustrate 

the effectiveness and validation of the proposed workflow by comparing the history 

matching results with the conventional streamline-based inversion. We show its 

effectiveness and practical feasibility further by history matching of a field example with 

complex fault structure, channels, and dominant natural fractures.  

 

4.4.1. Synthetic Case – Comparison With Streamline-Based Inversion 

We compare the history matching results of the proposed parameterization and 

hierarchical workflow with the results from a conventional streamline-based inversion 

method. The model is composed of 50 50  matrix grid cells and two embedded fractures 

as shown in Figure 4.10. It shows the comparison between the initial model and the 

reference model for matrix and fracture permeabilities, respectively. The history matching 

is carried out from the initial model (Figure 4.10(a) and (c)). The observed data are 

reproduced by the reference model (Figure 4.10(b) and (d)). Note that the reference 

permeabilities for fracture as well as matrix are heterogeneous. The reservoir oil is 

produced by an inverted 5-spot pattern for 50 months. Four producers are controlled by 

total liquid rates and an injector is constrained by bottom-hole pressure. We calibrate 

matrix and fracture permeabilities to water cut and bottom-hole pressure of the producers. 
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The detailed model descriptions and history matching parameters are summarized in Table 

4.2. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.10 Permeability fields for a synthetic EDFM. (a) Matrix permeability of 

the initial model. (b) Matrix permeability of the reference model. (c) Fracture 

permeability of the initial model. (d) Fracture permeability of the reference model 
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Table 4.2 Model descriptions and history matching parameters in a synthetic EDFM. 

Streamline-based inversion and the proposed hierarchical workflow are compared 

Phases Oil and water 

Matrix Grid 50 50 1 2,500    

Number of Embedded Fractures 2 

Well 4 producers / 1 injector 

History Period 50 months 

Constraint 
Producer: Total liquid rates 

Injector: Bottom-hole pressure 

Objective Function Water cut misfit, Bottom-hole pressure misfit 

Inversion Method Streamline-based Vs. Hierarchical workflow 

 

Normalized data misfits for bottom-hole pressure and water cut (generalized travel 

time and amplitude) are shown in Figure 4.11. In hierarchical multi-scale workflow, large 

scale calibration to BHP data is performed four times with basis coefficient sensitivity, 

beyond which match quality is not improved further. Small scale inversion is carried out 

by the joint sensitivities for BHP and WCT, based on streamlines through all iterations. 

The water cut misfit for both methods is computed by ‘generalized travel time’ to reduce 

the non-linearity (Kam and Datta-Gupta 2016). The amplitude water cut misfit is also 

computed for reference as in Figure 4.11(c). 
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Figure 4.11 Normalized data misfit reduction by streamline-based inversion and 

hierarchical workflow respectively in synthetic EDFM. (a) BHP misfit. (b) WCT 

misfit (generalized travel time). (c) WCT misfit (amplitude) 

 

 

While significantly reducing WCT misfit after two iterations, the streamline-based 

inversion increased BHP misfit to more than double. Further iterations after this could not 

improve both BHP and WCT match. It is caused by the fact that it tries to calibrate small 
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scale grid cell permeability to match BHP and WCT at the same time, resulting in a local 

minima with small WCT misfit. Therefore, further iterations could not improve the match 

results. However, the large scale calibration in a hierarchical workflow significantly 

reduced BHP misfit with slight increase of WCT misfit. Continuing with the small scale 

calibration gradually reduced WCT misfit, to the same degree as the streamline-based 

inversion after 20 iterations. The match results are improved by calibrating permeability 

field in a large scale first to match the energy in the reservoir and distributing saturations 

through small scale updates. In other words, the large scale calibration helps the solution 

not to be trapped in a local minima.  

Figure 4.12 shows match results for both the methods along with the observed 

data. Both streamline-based inversion and the hierarchical workflow have improved WCT 

match to the similar degree, compared to the initial model as in Figure 4.12(a). However, 

the streamline-based inversion has deteriorated BHP match especially on producers ‘P1’ 

and ‘P4’. The match results after the hierarchical workflow, on the other hand, have been 

significantly improved for every producers as in Figure 4.12(b). 
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(a) 

 

(b) 

 

 
 

Figure 4.12 Match results after streamline-based inversion and hierarchical 

workflow for (a) WCT and (b) BHP in synthetic EDFM 
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Updated permeability fields after history matching are compared with the initial 

and reference models in Figure 4.13. It is difficult to decide based on Figure 4.13 whether 

the permeability field is updated in the correct direction because of the large heterogeneity. 

Therefore, permeability changes are compared with the required change (

  reference permeability initial permeability  ) in Figure 4.14. Note that the 

permeability change after large scale calibration has geologically smooth and large trend. 

It is because the property field is updated not by streamline-based grid cell sensitivity, but 

by basis coefficient sensitivity of large scale basis functions. The gray circles on the 

permeability change after small scale calibration in Figure 4.14 represent the regions that 

have the same trend with the required change. Of these regions, green check marks are 

given if the trend is the same as the one from the streamline-based inversion. Therefore, 

the rest of circled regions (with red arrows) contributes to BHP match mainly resulting 

from the large scale calibration.  
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Figure 4.13 Updated permeability fields after history matching, compared with 

initial and reference models of synthetic EDFM 

 

 

 

Figure 4.14 Permeability changes after history matching, compared with the 

required change of synthetic EDFM 

 

 

Streamlines are compared after history matching with the initial and reference 

models in Figure 4.15. The first row shows the time of flights from producers and second 

row shows the producer drainage volume partition, respectively. Since we have the 
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reference model and true flow properties, it is possible to select the better calibrated region 

based on the flow diagnostics. The regions with gray circle have more similar trends to 

the reference case than the flow properties from the model after streamline-based 

inversion.  

 

 

 

Figure 4.15 Comparison of streamlines after history matching along with initial 

and reference models of synthetic EDFM. First row shows the time of flights from 

producer and second row shows the producer drainage volume partitions 

 

 

Based on the comparisons of data misfit, match results, permeability change, and 

flow diagnostic, it is demonstrated that the hierarchical multi-scale history matching 

workflow is more effective than the conventional streamline-based inversion method for 

the calibration of EDFM.  

 



 

129 

 

4.4.2. Field Case – Reservoir With Faults / Fractures 

We apply the proposed parameterization method and the hierarchical multi-scale 

history matching workflow to a field scale reservoir model with complex faults, channels, 

and fractures. It was made for the ‘Sensitivity Analysis of the Impact of Geological 

Uncertainties Project (SAIGUP)’ (Manzocchi et al. 2008). Seven large fractures are 

embedded by EDFM construction shown in Figure 4.16, along with initial rock and fluid 

distributions. The reservoir oil is produced by peripheral water injection during 15 years. 

Ten producers are controlled by total liquid rates and eleven injectors are constrained by 

bottom-hole pressure. We calibrate matrix and fracture permeabilities to water cut and 

bottom-hole pressure of the producers. The detailed model descriptions and history 

matching parameters are summarized in Table 4.3.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.16 Initial rock and fluid distributions in SAIGUP EDFM. (a) Grid 

structure with fractures and faults. (b) Initial permeability field. (c) Porosity field. 

(d) Initial water saturation distribution 
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Table 4.3 Model descriptions and history matching parameters in SAIGUP EDFM 

Phases Oil and water 

Matrix Grid 40 120 20 96,000    

Number of Embedded Fractures 7 

Well 10 producers / 11 injector 

History Period 15 years 

Constraint 
Producer: Total liquid rates 

Injector: Bottom-hole pressure 

Objective Function Water cut misfit, Bottom-hole pressure misfit 

Inversion Method Hierarchical workflow 

 

 Basis functions are calculated by the extended ABT and shown in Figure 4.17. It 

shows basis functions on the matrix and the fracture plane in the left and right columns 

respectively. Transparent views are also shown in the middle column to observe the 

distinct features between matrix and fractures.  
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Figure 4.17 Basis functions of SAIGUP EDFM calculated by the extended ABT. 

Left column shows values on matrix. Right column shows values on fracture planes. 

Middle column shows the transparent view to observe the distinct features between 

matrix and fractures 

 

 

Normalized data misfits for bottom-hole pressure and water cut (generalized travel 

time and amplitude) are shown in Figure 4.18. The large scale calibration to BHP data 

with basis coefficient sensitivity is performed three times, followed by small scale 

streamline-based inversion for WCT data. The large scale calibration significantly reduced 

BHP misfit accompanying small decrease of WCT misfit (generalized travel time) and 

small increase of WCT misfit amplitude. The following small scale calibration could 

gradually reduce WCT misfit.  
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Figure 4.18 Normalized data misfit reduction by hierarchical workflow in SAIGUP 

EDFM. (a) BHP misfit. (b) WCT misfit (generalized travel time). (c) WCT misfit 

(amplitude) 

 

 

Figure 4.19 shows match results after the hierarchical history matching workflow 

along with the observed data and initial simulation results. Both water cut and bottom-

hole pressure match were significantly improved for every producers. It is attributed to the 

proposed effective parameterization method and multi-scale calibrations. It calibrated 

permeability field in the large scale first to match the energy in reservoir and distributed 
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fluid saturations into each producers through small scale updates. It clearly shows practical 

feasibility of the proposed approach through the field scale EDFM with complex 

geological structures.  

 

 

(a) 

 

(b) 

 

 
 

Figure 4.19 Match results after the hierarchical history matching for SAIGUP 

EDFM, along with the observed data and initial simulation results for (a) WCT and 

(b) BHP 

 

 

Updated matrix permeability field after history matching are shown for each layers 

in Figure 4.20(b), along with the initial model in Figure 4.20(a). Figure 4.21 shows the 
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matrix permeability changes (   updated permeability initial permeability  ) after history 

matching, where most of changes are located within layer 1 – layer 10. Green dotted circles 

represent the permeability changes calibrated by the small scale calibration. Note that the 

permeability change in the large scale calibration is along the geological structure, while 

the small scale calibration changed the model along the streamlines and around wells. 
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(a) 

 

(b) 

 

Figure 4.20 SAIGUP EDFM. (a) Initial matrix permeability field. (b) Updated 

matrix permeability filed after history matching for each layers 

 

 



 

137 

 

 

Figure 4.21 Matrix permeability changes after history matching in SAIGUP 

EDFM. Green dotted circles represent permeability updates by small scale 

calibration 

 

 

Updated fracture permeability and its change are shown in Figure 4.22. Green dotted 

circles again represent the permeability changes calibrated by the small scale calibration. 

It is obvious that the small scale calibration changed fracture permeability along the 

streamlines.  

 

 

(a) 
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(b) 

 

(c) 

 

Figure 4.22 SAIGUP EDFM. (a) Initial fracture permeability. (b) Updated fracture 

permeability after history matching. (c) Fracture permeability change after history 

matching. Green dotted circles represent permeability updates by small scale 

calibration 

 

 

We also examined the change of streamlines after history matching in Figure 4.23, 

compared with the initial model. The first row shows the time of flights from producers 

and second row shows the producer drainage volume partition, respectively. It is clearly 

seen that the flow patterns are changed after history matching.  
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Figure 4.23 Comparison of streamlines after history matching with initial model of 

SAIGUP EDFM. First row shows the time of flights from producer and second row 

shows the producer drainage volume partitions 

 

 

In order to explain the improved match results by flow diagnostics, streamlines from 

producer ‘P10’ are shown as an example in Figure 4.24. Even though streamline 

trajectories are similar to each other, it shows different flow properties before and after 

history matching. First row shows the time of flights from ‘P10’ and WCT match results. 

Compared to the initial model, history matched model has smaller drainage volume 

despite the same liquid production rate (constraint). It means that the pressure drawdown 

around ‘P10’ changed to be smaller after history matching. The change of flow pattern 

explains the delayed water breakthrough in the updated model compared to the initial 

model and hence the improved match WCT match. Improvement is noted as a green dotted 

arrow in the water cut response graph. Second row shows the pressure distribution along 

the streamlines. The pressure around ‘P10’ changed to be higher than the initial model 

after history matching. The pressure increase explains how we could get the improved 
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BHP match. In this way, we are able to utilize the streamlines for flow diagnostic as well 

as for the hierarchical multi-scale history matching combined with the extended ABT basis 

functions.   

 

 

 

Figure 4.24 Streamlines from producer ‘P10’ in SAIGUP EDFM. First row shows 

the time of flight from ‘P10’ and WCT match of ‘P10’. Second row shows the 

pressure distribution along the streamlines and BHP match of ‘P10’. Both rows 

compare the properties and match results between the initial model and history 

matched model  
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4.5. Conclusions 

In this chapter, we have extended adjacency-based transform to parameterize 

embedded discrete fracture model for efficient history matching of reservoir models with 

fractures. As fracture domain is connected to matrix domain by non-neighbor connections 

and they have significant property difference in EDFM, both grid connectivity information 

and property difference are considered in Laplacian construction. Therefore, the proposed 

method can effectively parameterize EDFM, both for matrix and fractures. 

We have also proposed a hierarchical multi-scale history matching workflow for 

EDFM. In the large scale calibration, basis coefficient sensitivity to production data is 

analytically computed based on streamline-based sensitivity in order to calibrate EDFM 

to pressure data, which is more affected by large scale parameters. The inversion process 

is iterated by sequentially including additional basis coefficients of higher frequency. It 

enables a refinement of the re-parameterized multiplier field until the re-parameterization 

scales are reached to the level at which the history matching is no longer improved by 

further refinement. The large scale calibration is followed by small scale calibration where 

streamline-based sensitivity is utilized to match saturation data by updating grid cell 

properties.  

In two-dimensional synthetic EDFM case, we demonstrated the power and 

efficacy of the extended ABT parameterization by efficient compression performance both 

on matrix and fracture domains. The proposed hierarchical workflow showed improved 

match results than the conventional streamline-based inversion. The match quality is 

determined by data misfits, simulation results compared to the observed data, permeability 
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change, and flow diagnostics by streamlines. In field scale EDFM case with complex fault 

structure, channels, and fractures, the proposed parameterization and hierarchical history 

matching workflow could efficiently reduce both water cut and bottom-hole pressure 

misfits. Through successful field scale EDFM history matching, we clearly showed its 

effectiveness and practical feasibility.  

The parameterization of EDFM enables to represent important geological trend 

and fracture properties with significantly reduced number of parameters. The hierarchical 

model calibration method combined with the proposed parameterization facilitates the 

efficient history matching for the fractured reservoirs.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. Conclusions 

In this study, we developed, validated, and applied novel model parameterization 

methods for efficient history matching of conventional and unconventional reservoirs. The 

spatial property distribution of reservoir model is transformed into a few parameters in the 

spectral domain with appropriate basis functions. The parameters in the spectral domain 

are then updated during model calibration. Substantially reduced number of unknown 

parameters regularizes the ill-posed history matching problem, and addresses the non-

uniqueness and stability issues. The novelty of this study is the basis formulation for 

various reservoir models, data types, and data resolution to achieve efficient history 

matching. The conclusions of this study are summarized as follows: 

 We proposed a novel approach to integrate frequent time lapse seismic data into 

high resolution reservoir models based on seismic onset times. The ABT 

parameterization was used to simultaneously reconcile the model heterogeneity by 

compressing multiple seismic surveys into a single map of onset times that 

represents the propagation of changes in the reservoir. The Peace River application 

demonstrated the feasibility and the robustness of the history matching workflow 

(MOGA with ABT) to integrate onset times and pressure data. Our approach 

updated the parameters simultaneously, which allows testing different 

combinations of parameters uncertainty range.  
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 We introduced a novel multi-resolution grid connectivity-based transform 

(MGCT) for more efficient history matching, especially when the production data 

resolution is variant in a reservoir. The multi-resolution basis vectors are achieved 

by coarsening the region outside the area of interest (AOI) and eigen-decomposing 

the corresponding grid Laplacian. By this method, the resolution in the AOI 

becomes higher at the cost of lower resolution in the coarsened region. Due to the 

coarsening, it has a smaller Laplacian matrix than GCT, and therefore requires 

reduced computation time for eigen-decomposition. The more powerful aspect of 

MGCT is the ability to adjust the modal frequencies or resolutions of basis 

functions to comply with the various data resolutions. Hence, it better regularizes 

the underdetermined history matching problem compared to GCT. We showed in 

the conventional waterflooded reservoir that history matching quality can be 

improved by the proposed multi-resolution parameterization compared to the 

uniform-resolution parameterization. We also demonstrated its applicability to 

history matching of unconventional tight oil reservoir with multi-stage hydraulic 

fractures. 

 We extended adjacency-based transform to parameterize embedded discrete 

fracture model (EDFM) for efficient history matching of reservoir models with 

fractures. As fracture domain is connected to matrix domain by non-neighbor 

connections and they have significant property difference in EDFM, both grid 

connectivity information and property difference are considered in the Laplacian 

construction. Therefore, the proposed method can effectively parameterize EDFM, 
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both for matrix and fractures. We also proposed a hierarchical multi-scale history 

matching workflow for EDFM. In the large scale calibration, basis coefficient 

sensitivity to production data is analytically computed using streamline-based 

sensitivity in order to calibrate EDFM to pressure data, which is more affected by 

large scale property variations. The inversion process is iterated by sequentially 

including additional basis coefficients to include higher frequencies. It enables a 

refinement of the re-parameterized multiplier field until the re-parameterization 

levels are reached to the level at which the history matching is no longer improved 

by further refinement. The large scale calibration is followed by the small scale 

calibration where streamline-based sensitivity is utilized to match saturation data 

by updating grid cell properties. We demonstrated the power and efficacy of the 

extended ABT parameterization by efficient compression performance both on 

matrix and fracture domains. The proposed hierarchical workflow showed much 

improved match results than the conventional streamline-based inversion. In the 

field scale EDFM case with complex fault structure, channels, and fractures, the 

proposed parameterization and hierarchical history matching workflow could 

efficiently reduce both water cut and bottom-hole pressure misfits. Through 

successful field scale EDFM history matching, we clearly showed its effectiveness 

and practical feasibility. 
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5.2. Recommendations and Future Study 

This study can be extended and improved by the following recommendations and 

future study: 

 History matching with parameterization and multi-objective genetic algorithm in 

this study is carried out with a fixed number of basis functions after re-

parameterization analysis. Multi-stage MOGA with sequential inclusion of basis 

functions would remove subjectivity of the number of basis functions and improve 

history matching quality. 

 In multi-resolution GCT, the area of interest (AOI) is set by qualitative engineering 

judgement since there is no specific data resolution provided. The definition of 

AOI by quantitative criteria (data resolution, sensitivity to production data) would 

improve history matching. 

 Hierarchical multi-scale history matching workflow for EDFM is carried out with 

the fixed fracture geometries. The proposed matrix/fracture property calibration 

should be preceded by the calibration of fracture distribution and geometries which 

have high uncertainty. The workflow for the calibration of fracture distribution is 

recommended in Appendix B.   

 There are subjectivities on the weighting functions in the similarity formulation of 

ABT. Alternative similarity definition by ‘diffusive time of flight’ (DTOF) is 

proposed in Appendix D, in order to mitigate subjectivity. 
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APPENDIX A 

CONCEPT AND ILLUSTRATION OF PARAMETERIZATION USING BASIS 

FUNCTION 

 

For high resolution reservoir models, it is almost infeasible to directly calibrate 

every single grid cell properties. In Figure A.1, if we have an appropriate transformation 

matrix ( ), the large property vector ( u ) can be reduced into much smaller vector ( v ). 

u represents the parameters in spatial domain (grid cell properties in a high resolution 

reservoir model), v  is the parameters in spectral domain (basis coefficients) where model 

calibration is performed, and   is the transformation matrix that is consisted of basis 

functions ( i ). Note that the size of v  is significantly smaller than u . It enables the 

history matching problem to be highly regularized by reducing the number of unknowns 

while keeping the same number of observed data.  
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Figure A.1 Linear transform from high resolution reservoir property to parameters 

in transform domain  

 

 

Figure A.2 illustrates the re-parameterization using basis functions with a one-

dimensional graph for one million reservoir properties. The gray dotted line is the original 

reservoir property along with the grid cell number. If we utilize three basis functions and 

corresponding basis coefficients, it is possible to make a low rank approximation of the 

reservoir properties (Figure A.2(a)). By the parameterization using basis function, the 

number of parameters is reduced from one million to three. With twenty basis functions, 

the low rank approximation with higher resolution is computed as in Figure A.2(b). Note 

that there is a tradeoff between the property resolution and the number of parameters. 
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(a) 

 

(b) 

 

Figure A.2 Illustration of the re-parameterization using (a) three basis functions 

and (b) twenty basis functions 
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The original and low rank approximations of two-dimensional permeability field 

images with respect to different number of basis functions are shown in Figure A.3. The 

more basis functions we utilize, the more detailed feature of reservoir properties we are 

able to capture by re-parameterization. Basis functions are the building blocks for the 

spatial reservoir property distribution.  

 

 

 

Figure A.3 Illustration of re-parameterization for two-dimensional permeability 

field with respect to different number of GCT basis functions 
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APPENDIX B 

FRACTURE DISTRIBUTION CALIBRATION 

 

Characterization of fractured reservoir is challenging because of high uncertainty 

on fracture distribution and properties. The hierarchical multi-scale workflow proposed in 

Chapter 4 is effective if we have reliable fracture distribution and geometries. If the 

fracture distribution is not correct, the fracture property calibration would give a 

geologically unrealistic solution. Even with satisfactory history match results, its 

prediction will be inaccurate and hence can lead to suboptimal development plan.  

We recommend a higher level of hierarchical history matching workflow for 

fractured reservoir. The first stage is to calibrate fracture distribution with uniform fracture 

conductivity. After reducing the uncertainty on fracture distribution and geometries, we 

carry out the second stage to calibrate fracture conductivity as described in Chapter 4. 

Note that the second stage is also the hierarchical workflow utilizing the extended ABT 

and streamline-based sensitivity. Several representative fracture distribution models from 

the first stage can independently step into the second stage for matrix and fracture property 

calibrations. In this appendix, the first stage of fracture distribution calibration is proposed. 

Pixel-based characterization of fractured reservoirs is difficult because of its 

geometry and non-Gaussian property. Exact location, direction, and length of each fracture 

is commonly unknown. Hence, a good estimation of the fracture distribution is very 

important for predicting and optimizing the reservoir production. Ping and Zhang (2013) 

parameterized fracture distribution by employing level set function to differentiate the 
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nodes whether fracture can start or not. They transformed non-Gaussian fracture 

distribution to Gaussian field where each node has Gaussian random number for level set 

function, fracture length and orientation. Yao et al. (2018) employed Hough-transform 

method to parameterize non-Gaussian fracture distribution with continuous parameter 

fields. The purpose of fracture distribution parameterization in their research is mainly on 

conversion of non-Gaussian field to Gaussian field, so that parameters satisfy the 

assumption of Ensemble-based inversion methods. The transformed parameter set in their 

method is too large to be used in non-gradient based inversion methods, however, it is not 

a drawback in Ensemble-based inversion methods. Remind that the main purpose of 

parameterization in this study is to regularize the underdetermined history matching 

problems by reducing parameter set with little loss of spatial heterogeneity information. 

Therefore, large parameter set size does not coincide with the main purpose of 

parameterization with non-gradient inversion process. We recommend a new fracture 

distribution parameterization method resulting in a much smaller parameter set.  

We are limited to reduce the uncertainty on fracture distribution in reservoir, to 

which simulation results are highly sensitive. Therefore, we rather parameterize fracture 

distribution than explicit individual fractures. Fracture distribution can be represented by 

three factors in two-dimensional case; statistical distributions of fracture length, angle, and 

density. In order to control fracture location within reservoir, we employ level set function 

and GCT basis functions to make a continuous field. A set of GCT basis coefficients 

determines the region that fractures exist. The workflow of fracture distribution 

construction with the proposed parameters is shown in Figure B.1.  
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Figure B.1 Workflow of fracture distribution generation 

 

 

First, we calculate GCT basis function ( ) and continuous level set function ( v ) with 

a set of basis coefficients. The number of basis functions and coefficients can be 

determined based on desired fracture region resolution. After level set (Osher and Sethian 

1988), the region that individual fracture can start its geometry is determined (  ). 

Assuming that fracture length ( l ), angle ( ), and density (  ) in a reservoir follow 

Gaussian distribution, we construct three Gaussian distributions with each mean and 

standard deviation ( , , , , ,l l          ). It transforms explicit non-Gaussian fracture 
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distribution to Gaussian parameters. One value of fracture density (
* ) is sampled from 

its distribution,  ,N    , to determine if individual fracture generation should be 

stopped afterwards. One random coordinate (
*x ) is selected and tested if it is within the 

fracture region (  ). If satisfied, fracture length (
*l ) and angle (

* ) are sampled from 

each Gaussians,  ,l lN    and  ,N    . One fracture geometry can be determined 

with sampled parameters (
*x , 

*l , 
* ). Individual fracture geometry generation is repeated 

until calculated fracture density (
calc ) is not less than the sampled one (

* ). In this 

workflow, the parameter set is 
1 2 3, , , , , , , , , ,l l Nv v v v         , where N  is the 

number of GCT basis functions. Hence, the number of parameters is  6 N  which is 

significantly smaller than the previous studies. Another advantage of the proposed fracture 

distribution parameterization is that it enables uncertainty quantification even with a single 

parameter set since it involves random processes. Examples of fracture distribution with 

a parameter set without fracture region constraint    100,10 , , , 0.3,0.05
6 15

N N N
  
 
 

  

are shown in Figure B.2. For the explicit representation of fractures (Figure B.2(a)), 

EDFM can be utilized as forward simulation to adopt accuracy and efficiency. If desired 

to use single porosity model, the pixel-based representation (Figure B.2(b)) in an 

extremely fine grid can be used. In this case, fast-marching method (FMM) is able to 

reduce simulation computation load by orders of magnitude (Iino et al. 2017). Fracture 

distribution parameters are then calibrated to historical production data with any of 
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efficient forward simulations. Figure B.3 shows more fracture distributions with respect 

to different parameter sets.   

 

 

(a) 

 

(b) 

 

Figure B.2 Examples of fracture distribution with a single parameter set. 

Representations for (a) Explicit fractures and (b) Pixel-based fractures 
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Figure B.3 Fracture distributions with respect to different parameter sets 

 

 

The impact of fracture region, determined by five GCT basis coefficients in this example 

and level set method, is demonstrated in Figure B.4 with fixed Gaussian parameters 

   200,10 , , , 0.3,0.05
2 6

N N N
  
 
 

. It is clearly observed that the shape of fracture 

swarm is controlled by GCT basis coefficients. 
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Figure B.4 Fracture distributions with respect to the fracture region, determined 

by GCT basis coefficients and level set method 

 

 

Utilizing the proposed fracture distribution parameterization method and efficient 

forward simulation method (EDFM or FMM), we will be able to reduce the uncertainty 

on the fracture distribution and geometry. As mentioned above, the fracture/matrix 

conductivity can be further calibrated by the parameterization method and history 

matching workflow formulated in Chapter 4. This would make the complete hierarchical 

calibration workflow for the reservoir with fractures. 
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APPENDIX C 

USER MANUAL FOR PARAMETERIZATION/CLUSTERING SOFTWARE 

 

C.1 Introduction 

This is the user manual for parameterization software for all the parameterization 

methods utilized in this dissertation (GCT, MGCT, ABT, Extended ABT for EDFM) and 

additional spectral clustering functions. This software is an independent pre-processor 

before any history matching workflow. It is written in C++ language and compatible with 

ECLIPSE developed by Schlumberger.  

 

C.2 Overview 

The input for this software are input deck file (‘Destiny.dip’), grid and initial 

property files (GRID, EGRID, INIT). The output is basis function files for 

parameterization and region number for spectral clustering. In order to calculate basis 

functions, we need an efficient linear algebra tool for the eigen-decomposition of a large 

and sparse Laplacian matrix. There are two tools employed to the software. (1) ARPACK 

(Lehoucq, Sorensen, and Yang 1998) and (2) SPECTRA. Therefore, there are two versions 

of the software, both of which are working identically. Using output files along with 

history matching tools, efficient model calibration is performed. 
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C.3 Input Files 

 

C.3.1 Input Data Deck 

In the input deck file (‘Destiny.dip’), we have to select specific option and provide 

corresponding information. All options and keywords are described as below. 

 DIP_DATA_FILE 

Case Name 

The keyword is followed by a line with case name with an extension ‘DATA’. For 

example, ‘CASENAME.DATA’. The software reads other input files (GRID, 

EGRID, INIT) with the case name specified by this keyword. 

 DIP_GCT_SETTING 

Basic Parameterization Setting 

The keyword is followed by a line with 4 records. The records are defined as 

follows. 

1st keyword 

(String) 

Parameterization method 

- GCT: Grid Connectivity-Based Transform. It can be used for 

Multiresolution GCT if ‘COARSEN’ keyword is specified. If 

‘GCT’ is specified, ‘DIP_ABT_SETTING’ will be ignored. 

- ABT: Adjacency-Based Transform. If ‘ABT’ is specified, 

‘DIP_ABT_SETTING’ should be correctly provided. 

- PCT: Extended ABT for Embedded Discrete Fracture Model 

(EDFM) 

2nd keyword 

(Boolean) 

Bool to generate basis function files 

- TRUE: Generate basis function files 

- FALSE: Do not generate basis function files. If the software 

is used for region definition by spectral clustering, basis 

function files does not necessarily need to be generated. 
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3rd keyword 

(Integer) 

Number of basis functions to be generated. If the software is used 

for region definition by spectral clustering, it can be any number 

larger than 1.  

4th keyword 

(Boolean) 

Bool to make single file for basis functions 

- TRUE: Write basis functions in a single file 

(‘BF_Final.GRDECL’). If ‘DIP_LAYER_SETTING’ is 

specified more than one keyword, it should be set as ‘TRUE’. 

- FALSE: Write basis functions in separate files 

(‘BASIS001.GRDECL’,  ‘BASIS002.GRDECL’, …) 

 

 DIP_ABT_SETTING 

ABT Parameterization Setting 

The keyword is followed by a line with 5 records. The records are defined as 

follows. 

1st keyword 

(Float) 

Weight of distance on similarity calculation ( X  in equation 

(2.4)). The larger this value is, the larger similarity it calculates. 

Even though the distance between two grid cells is large, it would 

consider them similar if this keyword is large. It determines the 

shape of basis functions along with 2nd keyword, both of which 

are subjective depending on the reliability of prior model. The 

recommended first trial value is 
2

ln( )

r


 , where r  is the 

Euclidean cut-off distance which is normally considered as the 

range of variogram and   is the negligible value (for example, 

0.001). 

2nd keyword 

(Float) 

Weight of property difference on similarity calculation ( P  in 

equation (2.4)). The larger this value is, the larger similarity it 

calculates. Even though the property difference between two grid 

cells is large, it would consider them similar if this keyword is 

large. It determines the shape of basis functions along with 1st 

keyword, both of which are subjective depending on the reliability 
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of prior model. The recommended first trial value is pS range , 

where 0.01~ 0.02pS  .  

3rd keyword 

(Integer) 

Number of grid cells in I direction for search radius of ABT 

Laplacian. The software searches grid cells whose indices are 

within the range [Considering I index – Keyword, Considering I 

index + Keyword]. 

4th keyword 

(Integer) 

Number of grid cells in J direction for search radius of ABT 

Laplacian. The software searches grid cells whose indices are 

within the range [Considering J index – Keyword, Considering J 

index + Keyword]. 

5th keyword 

(Integer) 

Number of grid cells in K direction for search radius of ABT 

Laplacian. The software searches grid cells whose indices are 

within the range [Considering K index – Keyword, Considering K 

index + Keyword]. 

 

 DIP_LAYER_SETTING 

Layer Grouping Setting 

This keyword is useful when there are distinct geological units separated by the 

vertical indices and user desires to generate basis functions separately for each 

unit. 

The keyword is followed by a line with user specified records (series of integers). 

Records are the number of layers of each group. User may want to calculate basis 

functions grouped by several layer groups, usually dependent on distinct 

geological unit. For example, the reservoir model with 9 layers has three distinct 

features which can be divided by K indices. Suppose that K index for group 1 is 

[1, 2], group 2 has [3, 5], and group 3 has [6, 9]. Then this keyword should be the 

number of layers of each group, ‘2 3 4’. It makes the output files 

‘BF_Group_1.GRDECL’, ‘BF_Group_2.GRDECL’, ‘BF_Group_3.GRDECL’ 
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that contain basis functions of each group. There will also be the combined basis 

function file, ‘BF_Final.GRDECL’. If there is no specific group and user want to 

calculate basis functions for the entire layer, this keyword should be ‘9’. Keep in 

mind that the summation of records should be exactly same as the total number of 

layers in the model. 

 

 COARSEN 

Grid Coarsening Setting  

The keyword is followed by user defined lines with 9 records (series of integers) 

for each line. This keyword setting is required to calculate multiresolution GCT 

(MGCT) basis functions. When preparing other input files (GRID, EGRID, INIT), 

the initialization simulation should be run with ‘COARSEN’ keyword in ECLIPSE 

data deck. The definition of each record is exactly following ECLIPSE 

‘COARSEN’ setting as below. If MGCT is not required, user needs to remove this 

keyword. Due to coarsening, there are sparse nonzero values for the coarsened 

region in ‘BF_Final.GRDECL’ file. For visualization purpose, those sparse 

nonzero values are copied to the rest of the coarsened region in 

‘BF_full_Group_#.GRDECL’ file.  

1st keyword 

(Integer) 
Lower I index of the coarsening region 

2nd keyword 

(Integer) 
Upper I index of the coarsening region 

3rd keyword 

(Integer) 
Lower J index of the coarsening region 
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4th keyword 

(Integer) 
Upper J index of the coarsening region 

5th keyword 

(Integer) 
Lower K index of the coarsening region 

6th keyword 

(Integer) 
Upper K index of the coarsening region 

7th keyword 

(Integer) 

Number of coarsened cells along the I direction in this 

coarsening region 

8th keyword 

(Integer) 

Number of coarsened cells along the J direction in this 

coarsening region 

9th keyword 

(Integer) 

Number of coarsened cells along the K direction in this 

coarsening region 

 

 CLUSTER_SETTING 

Spectral Clustering Setting  

The keyword is followed by a line with 3 records. Please refer to Kang et al. (2015) 

for the theoretical backgrounds of spectral clustering. If dividing the reservoir only 

by its grid structure, user needs to specify the 1st keyword as ‘GCT’ in 

DIP_GCT_SETTING. If considering prior model property, it should be ‘ABT’ and 

DIP_ABT_SETTING should also be correctly provided. If clustering is not 

required, user needs to remove this keyword. The output is the array of region 

numbers for all grid cells, ranging [1, Number of clusters] and zero for inactive 

grid cells in ‘Cluster_Group_#.GRDECL’. The records are defined as follows. 

1st keyword 

(String) 

Clustering method 

- RCUT: Ratio cut. It is to find a ‘cut’, which is relaxed by the 

vertices between clusters. 

- NCUT: Normalized cut. The size of clustering is measured 

by the weights of its cutting edge. 

- RCC: Ratio Cheeger cut. The Cheeger constant is a 

measurement of ‘bottleneckedness’ in a graph. 
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- NCC: Normalized Cheeger cut. It is optimized by the 

minimum volume of clusters.  

2nd keyword 

(Integer) 
Number of clusters 

3rd keyword 

(Integer) 

Clustering threshold type 

- 0: Zero 

- 1: Median 

- 2: Mean 

- -1: Optimal 

 

C.3.2 Reservoir Simulation Output Files 

Grid and initial property files (GRID, EGRID, INIT) should be prepared by the 

initialization simulation by ECLIPSE with ‘NOSIM’ keyword.  

 

C.3.3 ARPACK Library Files 

SPECTRA version does not require any library files. However, ARPACK library 

files are required to run the software of the ARPACK version. The library files for 

Windows 64 bit system are as below. 

 Arpack_win64.dll 

 libgcc_s_sjlj-1.dll 

 libgfortran-3.dll 

 libquadmath-0.dll 

 

C.4 Code Structure 

For future developer, main code structure is explained in this section. The 

descriptions are common for both versions of softwares.  
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The software commences with the main source code, ‘DESTINY.cpp’. All the 

parameterizations are performed by ‘runInversion(&p_PROJECT)’ function in 

‘DIPGCT.cpp’ file, as shown in Figure C.1.  

 

 

 

Figure C.1 Main function for parameterization in the main source code 

(DESTINY.cpp) 
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In ‘runInversion(&p_PROJECT)’ function of ‘DIPGCT.cpp’ file, it prompts to read grid 

geometry and grid property with ‘scan_static_data(0)’ function. After reading all grid 

information, ‘generateGCTBasis()’ function is called to generate basis functions as shown 

in Figure C.2. 

 

 

 

Figure C.2 Code to call functions to read grid information and generate basis 

functions (‘runInversion(&p_PROJECT)’ function of ‘DIPGCT.cpp’ file) 

   

 

The core part of the software is ‘generateGCTBasis(void)’ function in ‘DIPGCT.cpp’ file. 

According to the types of parameterization, it uses corresponding function to calculate 

basis functions. If ABT basis functions are to be calculated, it calls 

‘constructABTMatrix()’ function. Otherwise, if GCT or PCT are required, it calls 
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‘storeAdjecentCells()’ function to save the grid connectivity information, and 

‘CheckSimulationNNC()’ function to save non-neighbor connections from the extended 

grid (EGRID) file. After saving all the information for the desired parameterization 

method, it calls ‘constructLaplacian()’ function to construct Laplacian matrix and eigen-

decompose it to generate the desired number of basis functions. In this function, either 

ARPACK or SPECTRA is used to efficiently eigen-decompose a large sparse matrix.  If 

the developer is to replace the eigen-decomposition tool, the source codes in this function 

need to be modified. In order to write basis functions in a text file, it calls 

‘generateGCTBasisModels(m_iNumberOfModels)’ function. The above descriptions are 

shown in Figure C.3.  

 

 

 

Figure C.3 Core part of the software (‘generateGCTBasis(void)’ function in 

‘DIPGCT.cpp’ file) 
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APPENDIX D 

WEIGHTING FUNCTIONS OF SIMILARITY 

 

Incorporation of reliable prior knowledge is beneficial to reservoir model 

characterization. As one of efficient and practical parameterization methods, ABT is 

explained and applied to the field case in Chapter 2. The similarity of ABT is defined as 

equation (D.1).  
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(D.1) 

where ,i jp  is the property value of grid cell, ,i jx  is the coordinate of grid cell centroid, 

and r  is a Euclidean cutoff distance, beyond which a similarity is considered as zero 

regardless of their properties and distance. p  and x  are weighting functions to 

determine the strictness of similarity between adjacent grid cells, regarding distance and 

grid property, respectively. The smaller the weighting function is, the stricter it calculates 

the similarity. It means that we consider the adjacent grid cells as more similar if we have 

larger weighting functions. As an extreme case, if both weighting functions are 

significantly large, then two kernel functions will be unity within the Euclidean cutoff 

distance. It results in the Laplacian matrix consisting only of zero and unity, similar to 

grid Laplacian. On the other hand, if either of weighting functions is extremely small, the 

Laplacian matrix will be almost zero matrix and eigen-decomposition is not feasible in 

this case. 
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 Determination of the weighting functions, therefore, is admittedly subjective step, 

and there is no general rule. Although there have been guidelines on how to determine the 

weighting functions (Bhark, Datta-Gupta, and Jafarpour 2011, Kang 2014), it still requires 

iterative trial and error on both weighting functions to select appropriate basis functions. 

In order to mitigate subjectivity on weighting functions, alternative definition of 

similarity is proposed by ‘diffusive time of flight’ (DTOF). It is a representation of the 

travel time of pressure propagation in the reservoir. Therefore, the DTOF embeds the 

distance and reservoir properties as in equation (D.2).  

 
1




   
(D.2) 

where   is DTOF and   is the diffusivity defined as / tk c  . As the DTOF also 

embeds fluid source and sink locations, it can lead to more effective basis functions (in 

terms of model calibration by flow simulation) which reflect flow patterns in the reservoir. 

In addition, incorporated with fast-marching method (FMM), it is able to reduce 

simulation computation load by orders of magnitude (Iino et al. 2017).   

The similarity of ABT on DTOF is defined as in equation (D.3). Subjectivity on 

the weighting function of distance is removed by incorporating distance and property into 

the DTOF. 
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For example, two-dimensional synthetic reservoir model with a horizontal well is 

parameterized based on permeability and DTOF, respectively. Figure D.1 shows the 

permeability field and DTOF. 

 

 

(a) 

 

(b) 

 

Figure D.1 (a) Permeability field and (b) diffusive time of flight for two-dimensional 

synthetic reservoir model with a horizontal well 

 

 

ABT basis functions are compared as in Figure D.2. Notice that basis functions of 

DTOF reflect the flow pattern incurred by horizontal producer at the center. The 

reconstructed permeability field and DTOF map are shown in Figure D.3 with respect to 

different number of ABT basis functions. Notice here that the parameterization of DTOF 

is more effective than permeability field, that is, the important features of the reference 

property can be captured with smaller number of basis functions. It is resulted by 

incorporating distinct rock and fluid properties into the DTOF which has more simple and 

smooth patterns and influences the flow pattern. 
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(a) 

  

(b) 

 

Figure D.2 ABT basis functions of (a) permeability field and (b) DTOF 

 

 

(a) 

  

(b) 

 

Figure D.3 Reconstructed property distributions for (a) permeability field and (b) 

DTOF 


