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ABSTRACT 

 

The ability to phenotype roots in situ would provide information for carbon 

sequestration potential through increased root mass, possible water-seeking strategies by 

plants, and data generation for plant breeders. However, current phenotyping techniques 

are often labor intensive and destructive to the observed plant. One potential 

phenotyping technique that is both rapid and nondestructive is ground penetrating radar 

(GPR). This technology has been proposed due to its ability to detect fine-scale 

differences in dielectric permittivity, which is strongly influenced by soil moisture 

content. To detect small differences in soil moisture caused by root growth, we will need 

to account for the soil signature in the GPR signal. The objective of this study was to test 

the feasibility of GPR data to be linked with soil electromagnetic data as a means to 

detect and visualize a rooting system in different soil textural classes. Additionally, 

GPR’s potential as a device for quantifying soil organic carbon (SOC) was explored. 

Similar to current root phenotyping techniques, the agricultural field lacks a tool that can 

rapidly and non-destructively measure SOC in the field. Like root phenotyping, GPR 

may be a potential solution due to its ability to detect small scale changes in soil 

moisture in response to changes in SOC. The root phenotyping portion of this study 

focused on multiple field locations across Texas and one controlled experiment to 

simulate in situ and ideal conditions.  GPR measurements were taken within each plot, 

along with multiple measurements of soil moisture to account for soil variability. 

Measurements were collected throughout the growing season and unique post processing 



 

iii 

 

techniques were explored to aide in root detection/visualization. GPR’s ability to 

distinguish root types across different soils conditions were assessed. The SOC portion 

of this study focused on three sites across the United States to capture the largest range 

of SOC levels as possible. GPR data was collected on multiple plots at each location, as 

well as ancillary soil data. Statistics were developed from these measurements and 

compared with pre-recorded SOC levels to determine GPR’s ability to detect differences 

in SOC.  
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CHAPTER I  

INTRODUCTION  

 

One of the primary methods to determine what lies below Earth's surface is to excavate 

which permits a direct visualization. However, such invasive methods are labor intensive and 

often lead to an irreversible disruption of the natural subsurface environment. During the 20th 

century, a variety of non-invasive geophysical tools were developed to aid in subsurface 

exploration including: 1) electrical resistivity (e.g. Arjwech et al., 2013; Udphuay et al., 2011) 

and; 2) electromagnetic induction (e.g. Paine et al., 2003). For agricultural purposes, these 

geophysical techniques to investigate subsurface physical properties routinely focus on 

monitoring soil attributes such as electrical conductivity (a property directly related to salinity) 

and moisture content. Using these techniques, farmers can optimize agricultural practices to best 

suit the characteristics of the soil. However, an under-developed aspect of subsurface monitoring 

is the ability to phenotype roots in situ, i.e. in the field. Such an ability would provide more 

information, in conjunction with soil characteristics, which could improve plant productivity 

(Comas et al., 2013; Lynch, 1995 & 2011). The information gained from accurately phenotyping 

roots can lead to improved crop growth by matching desired root characteristics to specific site 

attributes and production goals. Information such as root mass assessment can aid in determining 

carbon sequestration potential, which can have positive environmental, economic and social 

impacts. Novel geophysical techniques and devices are being explored to accurately and 

nondestructively phenotype roots in the field.  Ground penetrating radar, or GPR, is an 

established geophysical mapping tool that has the potential to accurately characterize root 

physiognomies nondestructively in the field. (Barton et al., 2004; Butnor et al., 2001 & 2003; 
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Hruska et al., 1999). However, in typical GPR applications the soil is treated as a homogenous 

media. Unfortunately, this method does not capture the variations in soil electromagnetic 

properties that naturally exist throughout a soil profile. These variations in soil characteristics 

have the potential to impact GPR’s ability to phenotype roots if not taken into account.  The aim 

of this thesis is to assess the ability of GPR to differentiate root phenotypes at fine spatial scales 

based on the detection of contrasts in dielectric permittivity by linking GPR measurements with 

soil electromagnetic data.   

1.1 Background 

Root phenotyping is a vital tool in agricultural production because control of intrinsic 

root characteristics and features, through crop and site-specific selection, can help maximize 

growth and improve rooting system interactions with the surrounding soil environment.  The 

ability to quickly and accurately phenotype root architecture can enable plant breeders to 

increase plant productivity, enhance potential for carbon sequestration, optimize fertilizer 

application and improve water use strategies (Iyer-Pascuzzi et al., 2011; Richards et al., 2010). 

The most prevalent techniques for root phenotyping are deployed in laboratories or greenhouses. 

Typically, crops are grown in soil pots or gel media and monitored throughout the life of the 

plant (Zhu et al., 2011). Additionally, newer technologies, such as x-ray computed tomography 

and magnetic resonance imaging, are being explored to enhance three-dimensional visualization 

of root systems (Clark et al., 2011). However, these artificial systems limit or completely remove 

the natural interaction of soil and roots in an undisturbed environment, which is vital to 

understanding root functionality.  
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The primary tool for field classification of root phenotypes is the mini-rhizotron. The 

mini-rhizotron is a portable version of a rhizotron structure, which is a large, below-ground 

enclosure that contains transparent panels which enable users to noninvasively view rooting 

systems (Huck et al., 1982; Johnson et al., 2011). A mini-rhizotron is a portable, hand-held 

device also used for root visualization. A mini-rhizotron can provide valuable information on 

rooting systems, however, it has several limitations. Though the zone of soil disturbance is 

smaller than conventional excavation techniques, a mini-rhizotron installation nevertheless 

changes the soil environment, and artifacts generated by the installation process can affect the 

data. Furthermore, there is an extended time delay between tube installations and the time at 

which a root system can be viewed at pre-disturbance levels. Moreover, only a single plant can 

be monitored at a given time.  With these limitations on current root phenotyping technologies 

there is a definite need for a near-surface, or proximal sensor to nondestructively and rapidly 

phenotype roots in the field. Specifically, in this thesis, ground penetrating radar is explored as a 

possible technique and how the natural variations in soil conditions can impact the GPR signal 

and influence its ability to potentially detect fine roots. In addition to investigating the feasibility 

of GPR as a root phenotyping tool, its ability to detect spatial variations in soil-surface levels (0-

15cm) of soil organic carbon (SOC). Like root phenotyping, monitoring SOC in the field is 

limited by the availability of devices which have the capacity to detect small-scale variability. 

SOC data provides valuable information to farmers on overall soil health to help increase 

productivity and maximize carbon sequestration. In most field applications the primary technique 

used to determine SOC is soil coring. The cores are analyzed in a lab after collection. There is a 

lack of tools that can rapidly, nondestructively and inexpensively determine SOC in the field. 
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Herein the ability of GPR to detect differences in SOC levels in a number of field situations is 

tested.  

1.2 Ground Penetrating Radar 

Ground penetrating radar is a near-surface geophysical technique that can be used for 

geological mapping amongst many other applications. GPR employs the emission and reflection 

of short, high-frequency (10 – 2000 MHz) pulses of electromagnetic energy within the ground to 

map subsurface dielectric contrasts, which may be regarded as "anomalies" (Davis et al., 1989).  

The technique began to garner considerable attention in the 1970s particularly in the field of civil 

engineering. As GPR became more refined its uses began to expand and it started being used as a 

tool to locate underground targets such as containers, tunnels, cables, contamination plumes, and 

voids (Annan, 2002). Figure 1 shows two examples of GPR units. Figure 1B is a Sensor & 

Software’s PulseEKKO unit (Sensors & Software, Mississauga, Ontario, Canada), which was 

used in the root phenotyping experiments, while Figure 1A is an IDS GeoRadar RIS-Hi-Mod 

unit (IDS Georadar, Pisa, Italy) which was used in the SOC experiments. 

Over the last few decades the uses of GPR have steadily expanded with applications in 

archaeology, hydrogeology, forensics, bedrock detection and locating landmines and unexploded 

ordnances (Daniels, 1988; Doolittle et al., 1995; Hammon III et al., 2000; Schultz, 2007). In 

agricultural science, GPR attracted attention with its ability to map soil variability (Johnson et 

al., 1982).  From there, the agricultural applications of GPR began to expand with the mapping 

of more specific soil parameters (Adamchuk et al., 2004; Hubbard et al., 2002), the detection and 

characterization of underground hydrological conditions that influence plant productivity 

(Freeland et al., 1998), and finally the detection of coarse tree roots (Butnor et al., 2001; Hruska 
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et al., 1999). It is GPR’s proven ability to detect large roots that will be intend to expounded 

upon to test its feasibility at smaller scales to detect the fine roots of crop plants while taking into 

consideration changes in soil electromagnetic parameters.  

 

 

A  B    
 

Figure 1: Types of GPR units. (A) IDS RIS Hi-Mod. (B) Sensors & Software PulseEKKO Pro 
 

 

As a plant matures, the rooting system expands to compensate for the increased amount 

of water the plant requires for growth. The growing rhizosphere, or area around a growing 

rooting system, extracts water from the surrounding soil to replenish its water stores. This 

exchange creates small scale variations in soil moisture surrounding a plant root. These small-

scale changes in water content could serve as reflectors for a GPR signal. The nature of the 

signal reflection may contain information about root structure and biomass. Ground penetrating 

radar works by emitting an electromagnetic pulse from a transmitter at a given center frequency. 

The pulse propagates through the subsurface media until a boundary of contrasting electrical 
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characteristics is encountered, e.g. an interface between roots and the surrounding soil. The 

signal is then reflected and returned to a receiver. A Tx antenna is used to propagate the transmit 

pulse, while a Rx antenna is used to capture the reflected signal. Figure 2 shows the basic 

functionality of GPR to detect subsurface anomalies. The depiction of the GPR unit in Figure 2 

assumes that the Tx antenna is spatially separated and distinct from the Rx antenna, which is the 

case for the two units shown in Figure 1.  However, there is nothing to preclude a GPR unit from 

using the same antenna for transmit and receive.  

 

 

 

Figure 2: Basic functionality of a GPR unit. 

 

 

The propagation of an electromagnetic wave is described by Maxwell’s equations, which 

comprise Ampere’s Law and Faraday’s Law, along with laws governing conservation of electric 

charges and magnetic dipoles. These equations may be combined into a single vector wave 
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equation that governs how an electric or magnetic field propagates, interacts and is influenced by 

objects (Maxwell, 1865; Annan, 2005). Equations 1-4, shown below, represent Maxwell’s four 

distinct equations in differential form, where D is the electric flux density in C/m2, ρ is the 

volume charge density in C/m3, B is the magnetic flux density in Wb/m2 (or Tesla), E is the 

electric field intensity in V/m, H is the magnetic field intensity in A/m, and J is the current 

density in A/m2.  Note that all of the above quantities, except for the charge density, are vectors, 

and that D = εE, where ε is the permittivity of the medium in C/V-m, and that B = µH, where µ 

is the permeability of the medium in V-s/A-m.  From these four equations and several vector 

operator identities, the wave equation can be derived, which describes how the electric field 

propagates in space and time from one location to another.  It is the electric field detected by the 

receiver antenna that is the measured quantity in GPR applications. 

 

∇ ∙ 𝐷𝐷 = 𝜌𝜌  Gauss’ Law 

(1) 

∇ ∙ 𝐵𝐵 = 0  Gauss’ Law for Magnetism 

(2) 

∇  × 𝐸𝐸 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  Faraday’s Law 

(3) 

∇ × 𝐻𝐻 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐽𝐽 Ampère-Maxwell Law 

(4) 

The pulse emitted by a GPR transmitter is influenced by contrasts in soil electromagnetic 

properties, specifically permittivity, ε, permeability, μ, and conductivity, σ (Benedetto et al., 
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2017). All three characteristics impact the propagation of an electromagnetic wave; however, it 

is most importantly at the boundaries of contrasting permittivity that a signal will be reflected 

and returned to the receiver (Daniels, 2004). The relative permittivity, also referred to as the 

dielectric constant is given by εr=ε/ε0, where ε0 is the permittivity of free space. For a given 

material, the εr is a measure of how much the internal electrical field generated by the dipole 

moments of the constituent molecules opposes an idealized applied electrical field, for example, 

one that is generated between two oppositely charged plates in a vacuum (Hayt et al., 2012; 

Robinson et al., 1999). Polar molecules, such as water, generate large internal electrical fields 

and therefore have a high relative permittivity, εr = 80, whereas substances such as dry sand or 

limestone have significantly lower values, with εr in the range of 3 to 8 (Everett, 2013; Wang et 

al. 1980). Since water has such a high relative permittivity, the volumetric water content, θw, is 

the most influential parameter determining the relative permittivity of subsurface bulk material, 

such as soil. The relationship between relative permittivity and volumetric water content of soil 

may be described by Topp’s equation (Topp et al., 1980).  

 

𝜃𝜃𝑤𝑤 =  −5.3 × 10−2 + 2.92 × 10−2𝜀𝜀𝑟𝑟 − 5.5 × 10−4𝜀𝜀𝑟𝑟2 + 4.3 × 10−6𝜀𝜀𝑟𝑟3 

(5) 

Soil volumetric water content can change spatially both horizontally across a field and 

vertically throughout a soil profile. Changes in topography, soil texture, organic matter content, 

and compaction can influence the amount and movement of water within and through a soil 

system. These variations in soil moisture drive changes in relative permittivity which cause part 

of a transmitted electromagnetic signal to be reflected back to a receiver. For a medium with 

given εr, the velocity of a signal propagating within that medium can be calculated using the 
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formula derived by Davis and Annan (1989), where c is the velocity of an EM wave in a 

vacuum:                                              

𝑣𝑣 =
𝑐𝑐
√𝜀𝜀𝑟𝑟

 

(6) 

This relationship, in turn, can be used along with the signal travel time to calculate the 

approximate depth to a given reflector using the simple law that distance is the product of 

velocity and travel time. Note that the above equation is indicative of the wave velocity at the 

depth or soil layer with that value of εr.  Typically, the soil medium is not homogeneous since 

changes in volumetric water content with depth will in turn effect the relative permittivity via 

Topp’s equation.  Thus, in typical cases the soil medium is multi-layered with varying values of 

relative permittivity and wave velocity, which would need to be taken into account in any signal 

processing to arrive at a more accurate estimation of reflector depth.   
As stated above, a GPR system consists of a transmitter (Tx) and a receiver (Rx).  The 

transmitter comprises a signal generator that emits an electromagnetic pulse at a given voltage 

and center frequency, and a transmit antenna, which converts this voltage to an electric field 

which is radiated outwards. The receiver consists of a receive antenna and associated electronics, 

where the former converts the received electric field to a voltage, and the latter conditions the 

signal for further processing. Note herein that the resultant signal, prior to any additional 

processing, is referred to as the “raw” or recorded GPR signal.  By changing the center frequency 

of the emitted pulse, the depth of signal penetration can be altered. At higher frequencies the 

electromagnetic pulse does not penetrate as deep but provides higher spatial resolution due its 

smaller wavelength. At lower frequencies, a pulse can propagate to greater depths but at the cost 
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of decreased spatial resolution (Jol, 1993). Depth of penetration is also influenced by the 

electromagnetic properties of the medium through which the pulse is travelling. A GPR signal is 

strongest in media that are less conductive such as dry, sandy soils. Whereas, a signal will be 

more attenuated, and consequently more difficult to detect, in a wet clayey soil characterized by 

high conductivity (Daniels, 2004). Clay soils have high rates of attenuation because of the ability 

of clay to absorb water, as evidenced by higher cation exchange capacities compared to sandier 

soils (Saarenketo, 1998), and certain types of clays (smectite and vermiculite) have higher rates 

of attenuation than others (kaolinite, mica). Additionally, the type and amount of salts present, in 

soils of any texture, can lead to high rates of attenuation due to the interaction of ions with the 

electromagnetic pulse (Tosti et al., 2013). All of these characteristics influence the conductivity 

of the soil which is the main driver of signal attenuation (Doolittle et al., 1982 & 2007). 

However, for the conductivities of interest in this application, e.g. 0.01 to 0.02 S/m, the relative 

permittivity also have an effect on signal attenuation with lower values experiencing more 

attenuation than higher values. With the appropriate center frequency selected for the specific 

field conditions and project objectives, the pulse will propagate through the soil until it reaches 

an interface of contrasting dielectric properties. The reflected, or in the case of co-located Tx-Rx 

antennas, the back-scattered signal is then detected by the receive antenna. In addition to the 

reflected signal, a GPR receiver antenna also senses the direct ground and air waves. Direct 

ground and air waves are the portion of the electromagnetic pulse that travels directly from the 

transmitter to the receiver, respectively through the ground and through the air. Ground waves 

travel in the top portion of the subsurface material and air waves propagate above ground. The 

characteristics of data obtained from both reflected signals and direct waves provide information 

on subsurface properties and aid in the detection of buried objects. Note that effects of the direct 
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waves are often suppressed from the received signal in order to produce a more accurate version 

of the signal scattered by the subsurface anomalies. 

In GPR data collection there are three basic scan types: A, B, and C. An A-scan consists 

of a single radar trace or waveform collected from a single GPR location. A B-scan is a sequence 

of A-scans acquired by moving the GPR unit in a given direction.  Thus, B-scans, after suitable 

processing, e.g. removal of hyperbolic diffracted energy, provide a 2D visualization of the 

subsurface in a vertical plane below the GPR unit (Özdemir et al., 2004).  For the discussion 

herein a conventional three axis rectangular coordinate system is assumed, where the GPR unit is 

assumed to be moved along the surface in the “x” direction.  The “z” direction defines the 

vertical dimension where positive values represent depths below the surface.  The above 

convention implies that an x-y plane defines the surface of the earth when z = 0. A C-scan is a 

collection of B-scans, where a given B-scan is offset in the y direction from other B-scans by a 

specified line spacing. Thus, a C-scan after suitable processing can provide a 3D image, or 

sequence of 2D image slices. Examples of the GPR signals collected in A-scan and B-scan 

formats are shown in Figure 3. Figure 4 shows the results of a processed C-scan from a 

controlled experiment wherein a metal pipe was buried at a 450 angle in the x-y plane at a depth 

of ~0.67 m.  Each image within Figure 4 shows the recovered image in the x-y plane at the 

specified depth below the surface.   

 

 

 

 

 

https://www.hindawi.com/30670524/
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A  

B  
 

Figure 3: GPR data visualization (A) A-scan or trace. (B) B-scan. 
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Figure 4: GPR data visualization. C-Scan. 

 

 

1.3 GPR Data Processing 

Once the raw GPR signal data is obtained, post processing must first be performed to aide 

in signal interpretation. A great number of post processing techniques exist and different GPR 

analysis platforms utilize different sets. The type and amount of processing used depends on the 

goals of each project and finding the appropriate combination of processing steps can prove 

challenging. A flow chart of the possible processing steps applied to GPR data collected as part 

of this project is shown in Figure 5. 
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Figure 5: Flow chart of the different analysis techniques and signal processing procedures. 

 

 

There are three main types of processing/analysis: (1) Signal processing, (2) Image 

analysis and (3) Energy analysis.  In addition, various statistical analyses were performed on 

various measures to see how well they correlated with other measures. Note that all of the 

processing shown was written or was available open source in MATLAB, except for some of the 

statistical analysis, where certain R packages were used.  Before describing each of the three 

main types of processing in some detail it is important to note that the raw GPR signal data 

provided by the GPR unit used in the root phenotyping experiments includes “stacking” of each 

of the signal traces (A-scans).  In stacking, multiple traces, e.g. 64 was used in this project, are 

collected at each location, added and then averaged to form a new composite signal.  If the signal 

is “coherent” over the summation period, then the Signal to Noise Ratio (SNR) is improved by 

the square root of the number of traces collected.  The end result is a very “clean” signal. 
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1.3.1 Signal Processing 

Referring to Figure 5, the steps within the signal processing heading are typically used 

universally to recover an estimate of the signal due to just the sub-surface anomalies, or what is 

referred to as the scattered signal. These processing steps include: first break synchronization, 

dewow, gain compensation, background estimation and subtraction, and time muting.  First 

break synchronization is used to align in time the first occurrence or starting point of all GPR 

traces. This synchronization allows for more accurate comparisons of traces at different locations 

along the transect and leads to better performance in the processing that follows. Dewow is often 

applied to traces to remove the unwanted decaying low frequency, or ‘wow’ portion of the signal 

that follows the transmitted pulse. The ‘wow’ portion of the signal can interfere with the desired 

high frequency reflections. This low frequency decay is due to a number of factors including the 

location of the transmitting and receiving antenna in relation to one another and the electrical 

properties of the soil (Annan, 2009; Cassidy, 2009; Neal, 2004).  Note that low pass filtering was 

applied to the raw input signal before dewow to remove any high frequency noise, and that 

Wavelet de-noising was tried to further improve signal quality.  Wavelet denoising works by 

localizing certain features in the data to different scales, and by doing so portions of the signal 

can be maintained while the unwanted portion can be attenuated or removed completely. 

However, the latter did not provide any significant improvement since the signal was already 

quite clean due to the signal stacking within the GPR unit. 

Next, gain functions can be applied to help boost weaker signals at later times 

corresponding to greater depths. As an electromagnetic wave propagates through the soil the 

signal is attenuated, the extent of which depends on the electromagnetic properties of the soil. To 
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compensate for that loss, different types and amounts of gain can be applied to ensure that deeper 

subsurface anomalies are represented appropriately (Robinson et al., 2013).  In the gain 

compensation code four different types of gain functions were developed: (1) constant, (2) alpha, 

(3) alpha plus spreading, and (4) user specified alpha. As the name implies, the constant setting 

corresponds to a constant value used for all times/depths. The gain value used for this setting was 

a value of one and hence this corresponds to a “no gain” condition.  This setting was useful for 

processing of the signal returns that were compared with the percent soil organic carbon (SOC) 

measurements.  Since the percent SOC was typically measured in the first 15 cm of depth, it 

made sense to select the no gain option since there is little signal attenuation over the depth of 

interest. The second type of gain is referred to as the alpha setting, which means that the gain 

applied was based on developing estimates of the attenuation coefficient, α. This coefficient is 

based on estimates of the relative permittivity, εr, and the conductivity, σ, and is given by 

Equation 7. 

𝛼𝛼 = 𝜔𝜔�0.5𝜇𝜇𝜀𝜀′ ��1 + �
𝜀𝜀"

𝜖𝜖′
�
2

− 1�

1/2

 

(7) 

In Equation 7, w is the radian frequency = 2πf, where f is the center frequency of the transmit 

pulse, µ is the permeability given by µ = µ0µr, ε’ is the real part of the complex permittivity 

given by ε0εr, ε” is the imaginary part of the complex permittivity given by σ/w, and α is in units 

of Nepers/m. Estimates of the conductivity were obtained either directly from  EM38-MK2 

measurements, or indirectly through empirical equations using θw measurements from a neutron 

moisture meter or a theta probe, see section 3.2 for details.  For this application the relative 
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permeability, µr is always set to 1 since the soil was assumed not to have any magnetic properties 

of note.  In the code implementation, the wave propagation path from the Tx to the reflector at a 

certain depth and then from that reflector to the Rx is split into a number of equal, near-vertical 

segments of length ∆L.  The parameter α is then calculated for each segment with the resulting 

signal loss over that segment given by Equation 8, and total loss over the path then given by 

Equation 9 

𝑒𝑒(−𝛼𝛼∆𝐿𝐿) 

(8) 

𝑒𝑒�−∆𝐿𝐿∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 � 

(9) 

In Equation 9 αi is the α value for the ith segment, and N is the total number of segments.  The 

gain determined compensates for the total loss with values calculated over the depth of interest.  

The alpha gain setting was used for almost all of the analysis (except for the processing of the 

SOC related data) since it was able to provide some reasonable gains at depths of interest, but not 

an overwhelming amount of gain.  It must be commented that gain setting in GPR processing is 

very much ad-hoc in nature. The third gain type is referred to as alpha plus spreading and as the 

name implies it consists of the alpha loss term just described plus a spherical beam spreading 

loss.  The wave that propagates from the Tx antenna can be modeled as a spherical wave and as 

such it will lose energy with propagation distance.  The loss incurred is approximated by (1/L)s, 

where, L is the propagation length, and s is typically set to a value of 1 or 2. This gain setting 

was found to produce quite a bit of  gain at the greater depths, and as such was only used in the 

controlled experiment which attempted to locate two metal pipes buried at known “moderate” 
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depths, see Chapter III. The final gain type implemented is a “user specified alpha” option, 

which allows one to manually set the attenuation coefficient expressed in dB/m.   The code then 

converts this value to the attenuation coefficient, α in Nepers/m by dividing it by 8.69.  This 

value of α would then be used for each ∆L segment of path length as described previously for 

the alpha gain setting.  This option was included in case an estimate of the soil attenuation was 

known in advance and to understand the effect of differing values of conductivity on overall 

performance.  

The next processing step is referred to as background subtraction or removal, which is 

typically used to enhance dipping effects and is often applied to remove the influence of direct 

air and ground waves. As such, it is a critical step for forming an estimate of the scattered signal.  

One of the more common types of background subtraction schemes is referred to as “average” 

background subtraction. In this technique an “average” trace is calculated across all traces, which 

is then subtracted from each trace. Another type of background subtraction is referred to as 

“localized” background subtraction.  In this technique, a “localized average” is calculated across 

traces within a spatial window, which is then subtracted from the total signal level of the trace 

centered within that specified spatial window. The spatial window is also referred to as the 

spatial filter width (SFW). Either technique generates an estimate of the background portion of 

the signal which is referred to as Eb. This estimate of the background is then subtracted from the 

total signal after gain compensation, E, to form an estimate of the received signal due to 

scattering from the sub-surface anomalies of interest, Es.  This resultant signal is also referred to 

as the scattered signal and is given by Equation 10 below.  
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Es = E – Eb 

(10) 

Figure 6 shows example B-scans for E, Eb and Es and how they differ. Es takes the form of 

Es(x,t) for B-scans and Es(x,y,t) for C-scans, where x and y define the GPR unit Rx location 

along the transect, and t is the time variable.  The variable name Es was selected to indicate that 

this signal is proportional to the received electric field even though it has been converted to a 

voltage in the Rx.  Finally, time-muting is applied to remove portions of the scattered signal that 

are not relevant to the depths of interest.  The specific amount of time muting implemented 

followed the guidelines set forth in Persico (2014), which recommended that the signal prior to 

the first peak of the raw signal be muted. 
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A   B  

C  
 

Figure 6: B-scans of the different returned signals. (A) Total Signal E. (B) Background Signal Eb. (C) Scattered Signal Es. 
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1.3.2 Image Analysis 

The estimate of the time-muted, scattered signal developed under the signal processing 

heading is then input to the image analysis section of the processing flowchart (Figure 5) where 

the final images are developed and analyzed.  A number of GPR imaging techniques exist to 

transform a GPR signal into a 2D or 3D image.  These techniques process the data collected from 

either a single B-scan to produce a 2D image, or from a C-scan to produce a 3D image or a 

collection of 2D image slices.  Multiple techniques were explored but the Stolt w-k (frequency-

wavenumber) migration algorithm (Stolt, 1978) was preferred due to its computational efficiency 

and capacity to process multiple soil layers of differing electrical properties.  Phase shift 

migration (Skjelvareid, 2012) was also explored as a possible algorithm; however, the results 

were very similar to Stolt, and since phase shift migration does not utilize an FFT in the depth (z) 

dimension it is less computationally efficient than Stolt.  In addition, a diffraction tomography-

based approach developed by Persico 2014 was also investigated but was found to be 

computationally demanding since FFTs could not be exploited, and further, was not readily 

adaptable to multiple soil layer processing.  

Migration is a commonly used technique in GPR processing that collapses the energy that 

is spread over GPR diffraction hyperbolae back to their apices whence the diffracted energy 

originated. This determines more precise spatial location, size, and electromagnetic properties of 

the buried objects that produce diffractions (Formel, 2003; Özdemir et al., 2004).  The Stolt 

algorithm is also attractive since open-source 2D versions are available in MATLAB and within 

the Sensors and Software processing suite. In addition, a 3D version was available, but only in 

open-source MATLAB code.  The 2D and 3D open-source code is preferable since it includes 

https://www.hindawi.com/30670524/
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code which support the processing of multiple soil layers, which is more representative of the 

soil structure encountered in the field as opposed to a single homogeneous layer.  This ability to 

process multiple soil layers is facilitated within the open source code by a soil layer thickness 

profile input and an associated wave velocity profile input. The Stolt algorithm is 

computationally efficient as it is based upon the Fast Fourier Transform (FFT).  In the 2D 

algorithm, the received scattered field from a B-scan is converted from its original space-time 

representation, Es(x,t) to a wavenumber-frequency representation Es(kx,w) via use of a 2D-FFT. 

The variable kx is the spatial frequency or wavenumber in radians/m, and w is the angular 

frequency in radians/s. The representation Es(kx,w) is then converted to a full wavenumber 

representation, Es(kx,kz) by use of a procedure which maps w to kz (whence the algorithm is 

named). After suitable interpolation to ensure a uniform grid, a 2D inverse FFT is applied to 

retrieve a “focused” image of the scattered field, Es(x,z).  A similar procedure is used to develop 

a 3D image from the received scattered signal based upon a C-scan by using 3D FFTs.   

In this project, images generated by Stolt migration of GPR B-scans were run through an 

additional 2D FFT to obtain their spatial spectral content, which is quantified with a measure 

refered to as the spatial bandwidth (SBW) of the image. In the case of a processed C-scan the 

results were run through a 3D FFT.  This processing step is captured in the block labeled spatial 

spectral analysis in Figure 5.  Two measures of SBW were determined corresponding to the 

bandwidth that encompassed 90% and 95% of the total spectral power.  These percentages were 

selected since the intent was to have a bandwidth criterion that captured most of the power but 

not quite all of it.  These measures were used to detect whether differences in bandwidth existed 

between GPR data acquired in the presence of plants with different rooting structures (e.g. tap vs. 

fibrous).  
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1.3.3 Energy Analysis 

A number of energy measures were developed based upon GPR traces or A-scans. The 

specific measures included: energy per time sample; energy per trace or total energy; sliding 

window energy; and sorted pulse energy. As shown in Figure 5, these energy measures are 

calculated for the raw data signal and/or the scattered signal that results after background 

removal. To begin, Figure 7 shows a subset of traces collected from a B scan for one of the field 

experiments over a shortened time window. For clarity, only M = 4 traces are shown with only N 

= 16 time samples per trace with each sample represented by an ‘o’. Note, the actual B scan 

consisted of 200 traces based upon a 10 m transect length, Lx with 5 cm antennae step size, ∆x, 

where M = Lx/∆x. The actual number of time samples was 130 based upon a time window Tw = 

26 ns and a sampling time ∆t = 200 ps, where N = Tw/∆t.   The energy per time sample, Ets(m,n) 

in Joules (J) at the m-th trace location xm and n-th time sample tn is given by Equation 11 below, 

where V(m,n) is the signal level in volts at the m-th trace and n-th time sample, ∆t is in s, and a 

hypothetical one-ohm resistor has been assumed to represent the conversion factor between 

voltage and energy.  Note that the use of the “E” variable to describe these energy measures is 

not to be confused with the received raw signal, E or the scattered signal, Es, both of which are in 

volts.  In essence, V(m,n) is the sampled version of either E(x,t) or Es(x,t). 

 

𝐸𝐸𝑡𝑡𝑡𝑡(𝑚𝑚,𝑛𝑛) = 𝑉𝑉2(𝑚𝑚,𝑛𝑛)∆𝑡𝑡 

(11) 

The energy per trace in the m-th trace, Etr(m) is just the total energy in that trace and is given by 

Equation 12 below as 
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𝐸𝐸𝑡𝑡𝑡𝑡(𝑚𝑚) =  �𝑉𝑉2(𝑚𝑚, 𝑖𝑖)∆𝑡𝑡
𝑁𝑁

𝑖𝑖=1

 

(12) 

 

 

Figure 7: Subset of traces over a shortened time window collected in a typical B-scan. 

 

 

The sliding window energy measure determines the total energy within a specified time sample 

window.  When the window width is set to one the result is identical to the above energy per 

time sample (Equation 11) and when set to N it is equal to the energy per trace (Equation 12).  

Finally, the sorted pulse energy measure sorts the individual excursions above and below the 

zero level of each trace by the energy that is contained in the excursions. In this project, the 

energy per trace (EPT) measure was found to be the most useful of the four measures. 

Specifically, it was used to differentiate locations associated with a plant, expected to have a 

higher EPT, from locations associated with no plant or just bare soil, expected to have a lower 
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EPT.  In addition, the mean value of the EPT calculated over a given transect was used as a 

measure to compare with the percent SOC in that location, see chapter V.     

1.4 Objectives 

The overall objective of this study was to test the feasibility of GPR data to be linked with 

soil electromagnetic data as a means to detect and differentiate between rooting systems in 

different soil conditions. In addition, the potential for GPR to act as a tool for quantifying 

changes in the amount of soil organic carbon present in the surface layer of the soil profile was 

explored. These goals were accomplished using the following objectives: 

1. Model the potential for GPR to detect and differentiate between different types of rooting 

structures. 

2. Assess the potential for GPR to detect root biomass and structure by incorporating soil 

electromagnetic properties in controlled experiments. 

3. Assess the potential for GPR to detect root biomass and structure by incorporating soil 

electromagnetic properties in field experiments.  

4. Quantify the impact of soil organic C on the GPR signal. 
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CHAPTER II  

GPR MODELLING 

 

2.1 Introduction 

In contrast to typical GPR applications where the goal is to determine the location of 

targets such as concrete reinforcing bars at considerable distance below the surface, root 

phenotyping has some distinctive aspects that should be taken into account and could potentially 

be exploited.  These aspects include: (1) the objects to be detected, i.e. the roots and root 

structure, are near the surface, and; (2) the plant locations are known.  To determine the 

processing functions that might be best to apply for this application, an electromagnetic (EM) 

wave propagation simulator was utilized, in which system setup and all of the operating variables 

could be carefully controlled. To this end, the open-source program gprMax developed and 

maintained at University of Edinburgh was selected. gprMax solves the 3D Maxwell’s equation 

using a finite-difference time-domain method. Electric and magnetic fields are determined as a 

function of time as they propagate from a transmitter to a receiver (Warren et al., 2016). gprMax 

can model different antenna types, absorbing boundary conditions, materials that are anisotropic 

and dispersive and, importantly, different soil properties and topography. The capacity to modify 

the soil environment to reflect field conditions enables gprMax to simulate realistic changes in 

soil dielectric permittivity as related to plant root size, root volumetric water content, and root 

depth (Guo et al., 2013). Two sets of simulations were run using gprMax to develop synthetic 

data.  The first set was run to test GPR’s ability to detect the presence of roots in ideal situations 

and to determine the influence of changing root characteristics and soil parameters on that 

ability.  The second set was run to verify the suitability of Stolt w-k migration for processing 
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GPR data collected with a common offset perpendicular configuration.  In addition to these 

simulations, analysis was conducted to determine if there was a significant difference in the 

spatial spectral content of idealized images of fibrous and tap root plants. The objective for this 

chapter was to model the potential for GPR to detect and differentiate between different types of 

rooting structures.  

2.2 Simulation 1: Impact of Changing Root Characteristics on GPR Signal 

The first gprMax simulation was designed to test two basic hypothesis; (1) That a trace, 

or A-scan, collected from a location that coincides with a plant will have higher signal returns as 

compared to a ‘no-plant’ location, where the latter is typically referred to as the background 

signal, and (2) to verify that as a root increases in size (diameter) and root water content (RWC) 

relative to the surrounding soil media, that the GPR signal returns will be higher with each 

incremental increase in diameter and RWC. The first step was to develop estimated signal 

returns using a gprMax program script, which emulates the potential field measurement setup 

shown in Figure 8 of the common offset perpendicular.  Per Figure 8, the measurement 

procedure is to locate the Tx and Rx transducers on either side of a row of plants, and then to 

record signal traces as the Tx and Rx are moved along in the direction as indicated by the green 

arrow. Note the green arrow also indicates the row along which the plants are located. 
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Figure 8: Diagram of perpendicular common offset configuration for GPR antennas. 

 

 

 The gprMax command script was loosely based upon a Sensor’s and Software 

pulseEKKO GPR unit, which was used in all of the controlled and field experiments. Certain 

parameter values were known for this unit, e.g. the Tx center frequency = 500 MHz (or 1000 

MHz) and were set accordingly. However, since certain aspects of this unit are proprietary and 

unknown, we had to make some assumptions in the simulation modeling with regards to the Tx 

waveform and the Tx and Rx antennas. For example, for the Tx and Rx antennas the only readily 

available choice at 500 MHz within the gprMax command set was an ideal Hertzian dipole.  

Note that the gprMax library does include files for bow-tie antennas (typically used in 

commercial GPR equipment). However, these files are designed to emulate a GPR unit operating 

at 1.2 and 1.5 GHz, and as such would not give an as accurate representation of GPR data 

collected at 500 MHz. Another assumption was that the Tx waveform was a Ricker pulse, which 

is an option available in gprMax, and is a pulse shape that is commonly used in GPR equipment.   

For the purpose of the first simulation a hypothetical plant model based on an immature 

sorghum plant was constructed. The actual geometry that was modeled with gprMax is shown in 

TX RX 
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Figure 9, where we have elected to model a slice of the total geometry, where the slice contains 

just one plant.  The intent is to record a single signal trace (A-scan) for different plant models, 

including the ‘no-plant’ case.   

 

 

 

Figure 9: Geometry of gprMax setup. 
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Ten different scenarios with different plant conditions, classified from ‘worst’ to ‘best-

plus’ were used to represent different root conditions. The hypothesized model is in an ideal 

environment and several of the plant characteristic classifications are not feasible in the field but 

are still used to help demonstrate the overall potential influence of root structure size and water 

content on GPR signal returns. The plant parts modeled include a bulb section, nodal roots, and a 

primary root.  Note that only the plant bulb location is shown in Figure 9.  The bulb was modeled 

using the gprMax “sphere” command, which specifies the sphere center in x-y-z, the sphere 

radius, and a material identifier.  The roots where modeled using the “cylinder” command, which 

specifies the x-y-z location of the cylinder faces, the cylinder radius and a material identifier.  

 The key plant characteristics that were quantified for each model include: bulb diameter, 

primary and nodal root diameters, primary root length, nodal mean and standard deviation root 

length, number of nodal roots, and vertical angular spread of the nodal roots.  A different RWC 

was assigned to each model, where RWC is defined as the ratio between the mass of total water 

to the total root biomass (i.e., root dry weight). The various root relative permittivities, εr, and 

overall root conductivity, σ were determined for each model based upon the RWC value and the 

respective root diameters per the equations defined in Guo et al. (2013). 

The resulting key physical and electrical characteristics of the plant models developed are 

summarized in Table 1. In addition, the half-space that contains each modeled root needs to be 

defined. Within gprMax, the half-space is defined by four parameters; relative permittivity, εr, 

conductivity, σ, in Siemens/meter (S/m), relative permeability, μr, and the magnetic loss σ* in 

Ohms/meter. In real world applications the relative permittivity of a subsurface anomaly and the 

surrounding media are the key drivers in influencing the effectiveness of GPR since the latter 
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works by detecting boundaries of differing relative permittivity. In the soil, changes in relative 

permittivity are driven mainly by changes in soil moisture content per Topp’s equation (Equation 

5). Therefore, it is important to measure the volumetric water content of the soil. In the 

simulations the half-space was kept constant throughout all models with a relative permittivity of 

4, representative of a dry sand. Additionally, the soil conductivity was kept constant at 0.01 S/m 

to also represent a dry sandy soil. To determine the signal generated from the half-space/soil 

media only a ‘no-plant’, or ‘ExRef’, model which contained no subsurface anomaly (i.e. plant 

root) but had the same half-space parameters was also created. 



 

 

Table 1: Different plant physical and electrical characteristics of the various plant models.  
 

 

 

Worst 
Worst-

Plus 
Average-

Minus Average 

Average
-Plus-
Minus 

Average-
Plus 

Average-
Plus-Plus 

Best-
Minus Best Best-Plus 

Ph
ys

ic
al

 C
ha

ra
ct

er
is

tic
s 

Root water content, % 30 50 70 90 100 110 120 130 150 170 
Bulb diameter, mm 23.3 26.3 30 35 37.9 40.8 43.8 46.7 52.5 58.3 
Primary root diameter, 
mm 3.3 3.75 4.3 5 5.4 5.8 6.3 6.7 7.5 8.3 
Nodal root diameter, mm 2 2.25 2.6 3 3.2 3.5 3.7 4 4.5 5 
Primary root length, mm 100 133.4 167 200 233 267 300 333 400 467 
Nodal root length, mm 50 66.7 83.3 100 116.7 133 150 166.7 200 233.3 
Nodal root length, 
standard deviation, mm 25 33.4 41.7 50 58.3 66.7 75 83.4 100 116.7 
# of nodal roots 15 20 24 30 35 39 46 50 60 69 
Vertical angular spread of 
nodal roots, degrees 20 26.67 33.3 40 43.3 46.7 50 53.3 60 66.7 

El
ec

tr
ic

al
 C

ha
ra

ct
er

is
tic

s 

Bulb and nodal roots 
relative permittivity 3.98 8.74 13.92 19.51 22.51 25.74 29.27 33.13 42.11 53.36 
Primary root relative 
permittivity 3.44 7.35 11.64 16.35 18.91 21.66 24.65 27.91 35.41 44.63 

Root conductivity, S/m 1.00E-
05 

1.85E-
05 3.41E-05 6.31E-05 

8.58E-
05 1.17E-04 1.58E-04 2.15E-04 3.98E-04 7.36E-04 

Reflection coefficient, 
bulb and nodal roots 

1.25E-
03 -0.193 -0.302 -0.377 -0.407 -0.435 -0.460 -0.484 -0.529 -0.570 

Reflection coefficient, 
primary root 

3.77E-
02 -0.151 -0.261 -0.338 -0.370 -0.399 -0.426 -0.451 -0.497 -0.539           



 

 

Figure 10A shows the resulting A-scans, with time in nanoseconds on the x-axis and the 

received electrical field x component, Ex, in V/m on the y-axis for six of the ten different root 

models as well as the ExRef trace. Note that all of these results are based upon an Rx dipole with 

polarization x, which is matched to the Tx dipole also of polarization x. In Figure 10A it is 

difficult to differentiate between the different models, which is due to the signal being dominated 

by the direct air and ground waves. In the controlled environment of the simulation, the direct air 

and ground waves are the only components of the background signal since no other anomalies or 

variations exist within the half-space.  In order to visualize the portion of the signal associated 

solely with the plant roots, or the scattered signal (Es), the background needs to be removed. To 

do this the GPR signal associated with ExRef/no-plant was subtracted from all of the root models 

leaving only the scattered signal reflected off the root. Figure 10B shows the A-scans for six of 

the scenarios but with the ExRef removed so only the scattered signal, Es, remains. From Figure 

10B there is a difference in signal levels between the different root scenarios. Figure 10B also 

confirms that the plant model with the smallest root diameter and lowest water content (‘worst’) 

has the weakest signal as opposed to the ‘best-plus’ model with the largest root diameter and 

highest root content which had the largest signal. Specifically, for these set of simulation 

assumptions, the worst model had a maximum negative peak of about -0.0025 V/m, while the 

best model had a value greater than 20 times that of about -0.055 V/m.   
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A  

B  

Figure 10: Signal comparison between the different gprMax modelled scenarios. (A) Original 
traces. (B) Traces with ExRef removed (subtracted). 
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2.3 Simulation 2: Verification of Stolt Migration Algorithm 

The second set of gprMax simulations was used to verify the viability of the Stolt 

migration algorithm to process B-scans and C-scans for purposes of developing 2D and 3D 

images, respectively.  By creating known targets, e.g. a slab with electrical properties different 

from that of the surrounding soil and locating the slab at a known depth, synthetic GPR signal 

returns were developed by gprMax. These synthetic signals were then processed to develop an 

estimate of the scattered signal, which was then input to the Stolt migration algorithm to verify 

its ability to detect the target. Stolt migration was described earlier in section 1.3.2 along with its 

main advantages of computational efficiency by virtue of its use of FFTs, and its ability to 

process multiple soil layers.      

To verify 2D Stolt migration processing, grpMax was used to generate a ‘slab’ of known 

dimensions and electrical characteristics. The designed slab was 400 mm x 200 mm x 50 mm (x-

y-z), and was centered in the x-y plane of the simulation domain at a depth (z-axis) of 500 mm.  

The GPR data collection configuration was a common offset perpendicular where the Tx and Rx 

are moved in the x direction but offset in the y dimension as opposed to the x dimension as in 

conventional common offset.  This configuration was used in the controlled and field 

experiments described in Chapter III and IV to avoid damaging the plants. The y-axis center of 

the slab was located midway between the Tx and Rx y locations. The slab was assigned a relative 

permittivity of 2.6 while the surrounding soil media was assigned a relative permittivity of 2.5 as 

shown in the x-z profile of Figure 11A. The slab and soil conductivity were both set to 0.001 

S/m, representative of a relatively lossless medium.  Synthetic GPR data was collected over this 

model using gprMax with the resulting B scan of the raw data envelope as seen in Figure 11B 
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with time, t, in microseconds on the y-axis and location along the transect in mm on the x-axis. 

In Figure 11B the characteristic hyperbolic distortion often seen in GPR data is apparent making 

it somewhat difficult to identify the location of the slab edges. 

 

 

A B  

Figure 11: Stolt Migration Algorithm. (A) Original image. (B) Raw data envelope from 
synthetic GPR data.  
 

 

The next step is to run the estimate of the scattered signal through the Stolt w-k migration 

to generate an estimate of the scalar electric wavefield in the x-z plane, Es(x,z).  For this 

example, we used the 2D version of the algorithm even though the data was collected via the 

common offset perpendicular configuration with Tx and Rx offset in the y dimension. This 

appears to be a novel way to process data from such a configuration since we have not seen it 

described in the literature to date.  The 2D version of the Stolt migration algorithm starts by 

taking a 2D FFT of the scattered electric field Es(x,t), which converts the scattered signal from a 

spatial-time domain representation to a wavenumber-frequency domain representation, Es(kx,w).  
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The resulting 2D image of the magnitude of Es(kx,w) is shown in Figure 12A.   The next step is 

to write the scattered signal as a function of kx and kz, Es(kx,kz) as opposed to kx and w.  This is 

achieved by mapping every w value to a corresponding kz value per the following equation  

 

kz= �� 𝑤𝑤
𝑣𝑣𝑠𝑠

2�
�
2
− 𝑘𝑘𝑥𝑥

2 

(13) 

In Equation 13 vs is the wave velocity in the surrounding soil given by the expression 𝑐𝑐/√𝜀𝜀𝑟𝑟 

where c is the speed of light in a vacuum. The factor of 2 in Equation 13 converts the velocity to 

what is referred to as the effective wave velocity for the exploding reflector model (Skjelvareid, 

2012).  The resulting values for kz will not typically lie on a uniform grid and thus, interpolation 

(resampling) is required to achieve this thereby enabling the use of the FFT in the final 

processing step.  The 2D image after suitable interpolation/resampling is shown in Figure 12B. 

The final step of Stolt migration is to recover an estimate of the scalar wavefield by taking an 

inverse 2D FFT of Es(kx, kz) to generate Es(x,z). Figure 12C shows the recovered image to 

confirm that Stolt migration was successful in recovering an estimate of the original image from 

the raw synthetic GPR data, albeit with some noise in adjacent pixels and a slight offset from the 

correct depth. 
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Figure 12: Stolt Migration Algorithm.  (A) 2D spectrum. (B) Spectrum after Stolt resampling. (C) Image of slab recovered using Stolt 
migration. 



 

 

The next step was to verify 3D Stolt migration processing. To this end, gprMax was used 

to develop synthetic data corresponding to a C scan over an area in which two metal pipes 

arranged in a cross shape were buried at known depths in a homogeneous soil layer.  This 

scenario is similar to one of the controlled experiments described in Chapter III where two metal 

pipes were buried in a uniform sand soil and in a uniform Yahola soil. In the simulation, one pipe 

was about 17” in length and about 2” in diameter (50 mm), while the other pipe was about 4” in 

length and of the same diameter.  The long pipe was laid on top of the short pipe with both 

centered in the x-y plane to form a cross shape, where the axis of the longer pipe was located at 

45 degrees with respect to the x-axis.  The z dimension center of the long pipe was located at a 

depth of 0.735 m, while the depth of the short pipe was 0.785 m.  Both pipes were assumed to be 

perfect electrical conductors (infinite conductivity) and were hollow with a pipe thickness of 5 

mm. The surrounding soil had a relative permittivity of 2.5 and a conductivity of 0.001 S/m.  The 

image slices recovered by the 3D Stolt migration processing at various depths for a 500 MHz Tx 

are shown in Figure 13.  As shown, the processing is able to locate the longer pipe at nearly the 

correct depth.  The shorter, bottom pipe is not as clearly visible since it only extends 1” on either 

side of the longer, top pipe.  However, there is increased signal (brightness) near the center of the 

image, which is likely due to the intersection of the two pipes at the center.  Note that 2D Stolt 

migration processing is readily extended to 3D processing by replacing the 2D FFT operations 

described previously with 3D FFT operations, and modifying Equation 13 to include the 

wavenumber in the y dimension, ky as follows    
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(14) 

The above exercises verify that Stolt migration can be used to process field data to develop 

subsurface images once prior post processing has developed an estimate of the scattered signal.  

 

 

 

Figure 13: 3D image recovery of slab using 3D version of Stolt migration algorithm. 
 

 

 

 



 

41 

 

2.4 Analysis: Spatial Spectral Content (Spatial Bandwidth)  

  Finally, an analysis was conducted to determine if the spatial spectral content of a GPR 

image could be used to differentiate plants with fibrous roots from plants with tap roots. Note 

herein that the spatial spectral content of an image was quantified by determining what we refer 

to as the spatial bandwidth (SBW). As mentioned in section 1.2.4, two measures of SBW are 

determined corresponding to the bandwidth that encompasses 90% and 95% of the total spectral 

power. In this analysis, two images were generated to represent highly idealized tap and fibrous 

roots. Figure 14A shows the idealized tap root as a vertical rectangle extending downward from 

the surface. Figure 14C shows the idealized fibrous root represented as a sphere. Note, in an 

actual field trial, these two images would be the result of running the GPR data collected in a B-

scan through the basic post processing schemes and the Stolt migration algorithm. The next step 

was to generate the spectral content of the two images, which is accomplished by applying a 2D 

FFT to both images to generate Figures 14B and 14D, respectively.  It is apparent by looking at 

the spectral content plots, that the spectrum of the circle appears to be much more concentrated 

about the zero-center point (kx = kz = 0), whereas the vertical rectangle is more spread out 

especially along the kz = 0 line.   However, the images that will be developed from data collected 

from the field and processed through the Stolt migration algorithm will typically not be this 

distinctly different. That is why a technique which quantifies the spectral content of a given 

image is needed.  To that end, code was developed which calculates the fraction of total spectral 

power within +-kx and +-kz of the zero-center point. The power is calculated in ever increasing 

squares about the zero point and then a curve is drawn based upon these points.  Note that the 

power of a given spectral component is normalized and is equal to its magnitude squared divided 

by the total spectral power.   
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In this example, each of the original images are 32 x 32 (Nz x Nx) pixels with total image 

spatial widths, Lx and Lz both set to 1 m.  The resulting step size in x and z = delx and delz = 

1/32 = 0.0313 m.  This implies that the spatial sampling frequencies, kxs, kzs = 32 cycles/m since 

kxs = 1/delx and kzs = 1/delz.  The Nyquist frequencies, equal to half of the sampling frequencies 

are thus, both = 16.  The resulting centered spectrum for kx and kz ranges from -16 to +15 with a 

spacing delkx = 1/Lx = 1 and delky = 1/Lz = 1.  This range is what is shown in each of the 

spectral content figures below for the circle and vertical rectangle.  It is worth noting that kx and 

kz in the prior Stolt migration discussion were in units of radians/m (wavenumber), whereas kx 

and kz in this discussion are in units of cycles/m (spatial frequency). The conversion from spatial 

frequency in cycles/m to wavenumber in radians/m is achieved by multiplying by 2π 

radians/cycle.  
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Figure 14: Development of quantitative comparison of spatial bandwidths. (A) Original image 
of ideal tap root. (B) Spectral content of idealized tap root. (C) Original image of ideal fibrous 
root. (D) Spectral content of idealized fibrous root. 
 

 

Figure 15 shows the fraction of spectral power as a function of kx, kz where kx and kz are varied 

from 1 to 15 in steps of 1 for both images.  For example, the first data point for each spectral 

image is determined by calculating the sum of the power of the spectral components within the 

square bounded by +-1 in kx and +-1 in kz, which amounts to the center 3x3 pixels since the zero 

point is included.  The next data point corresponds to the sum of the power of the spectral 

components bounded by +-2 in kx and +-2 in kz, which corresponds to the center 5x5 pixels and 

so on up to +-15 in kx, +-15 in kz. To normalize the comparison two points of interest were 

A B

   

C D
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selected: (1) the spatial frequency at which 90% of the power is captured and (2) the spatial 

frequency at which 95% of the power is captured.  The 90% points are shown in the figure below 

where the circle is shown to reach this value at 3.1 cycles/m, while the rectangle does so at 6.9 

cycles/m.  This clearly shows that the rectangle extends over a much wider bandwidth than the 

circle as was expected. Thus, in this ideal situation, there is a significant quantitative difference 

between the spectral content of an idealized tap root versus that of an idealized fibrous root.  The 

95% points were determined via interpolation to be 6.8 and 12.7 cycles/m, respectively for the 

circle and rectangle.    

 

 

 

Figure 15: Comparison of fraction of spectral power within ±kx & ±kz from the zero point of 
idealized tap (rectangle) and fibrous root (circle). 
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 The SBW analysis was extended to 3D by comparing the bandwidth of 3D models of a 

sphere and a parallelepiped. A 3D representation of the sub-surface would provide more accurate 

results by capturing data associated with the growth of the different root types in multiple 

directions. Similar to the comparison of the circle and rectangle, a sphere and parallelepiped, 

representing fibrous roots and a tap root respectively, were constructed in a MATLAB script. 

The same type of calculations were implemented to calculate the fraction of the total power. 

However, instead of calculating the power in ever increasing squares as in the 2D example, the 

power is calculated in cubes of increasing size expanding around the zero point in +-kx, +-kz and 

now including +-ky. Figure 16 shows the fraction of spectral power as a function of kx, ky, and kz, 

where the latter are varied from 1 to 15 in steps of 1 for both objects.  As shown the SBW of the 

idealized tap root (parallelepiped) is much greater than that of the idealized fibrous root (sphere), 

where at the 90% fractional power point the former is 12.49 cycles/m, while the latter is 4.61 

cycles/m.  The respective values for the 95% points are 14.25 and 8.69.  
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Figure 16: Comparison of fraction of spectral power within ±kx, ±ky & ±kz from the zero point 
of 3D idealized tap (parallelepiped) and fibrous root (sphere). 
 

 

2.5 Summary 

In this chapter three different computer models were run using an electromagnetic wave 

simulator, gprMax, along with MATLAB code to test the validity of using GPR in field root 

phenotyping applications. The three analyses conducted were: (1) an energy analysis comparing 

plant and non-plant locations using gprMax synthetic data, (2) the verification of the Stolt 

migration algorithm also using synthetic gprMax data, and (3) a spatial spectral content analysis 

comparing the SBW of plants with tap and fibrous roots in both 2D and 3D utilizing MATLAB 

code. In the first simulation multiple models were constructed to represent a root with varying 

characteristics along with a background model, called ExRef, to represent a homogenous soil 
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surrounding the root. In this simulation it was found that in ideal conditions, it is possible to 

differentiate between plant and non-plant locations based on the comparison of energy 

calculations associated with a GPR trace. Additionally, it was found that as the root parameters 

increased, most notably root diameter and RWC, the energy of the signal increased as well. The 

second analysis dealt with testing the applicability of using the Stolt migration algorithm. In 

conjunction with the simulations, multiple controlled and field experiments were conducted 

using a unique GPR configuration termed perpendicular common offset. This type of 

configuration is not typically used in GPR applications and needed to be tested in a simulated 

setting to assess if it was a viable signal processing tool to aide in root detection and 

differentiation. An image of a slab with differing electrical characteristics than the surrounding 

half space was run through gprMax using the perpendicular common offset configuration to 

generate raw synthetic GPR data that was then run through an open source script of the Stolt 

migration algorithm. A recovered image was then generated and compared to the original image. 

The comparison proved the functionality of GPR in this application while using the different 

configuration technique.  The final analysis dealt with comparing the SBW of an idealized tap 

root image to the SBW of a fibrous root image. The SBW that encapsulated 90% and 95% of the 

total SBW was calculated and this value was compared between the tap and fibrous root. This 

was done in both 2D and 3D. It was found that in both cases, 2D and 3D, the SBW of the tap 

root was larger than the SBW of the fibrous showing that this method could potentially be used a 

tool for differentiating between different rooting systems.  
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CHAPTER III  

CONTROLLED EXPERIMENTS 

 

3.1 Introduction 

The most common techniques for root phenotyping take place in greenhouse or 

laboratory settings. In both cases plants are often grown in small pots or in gel media. Both of 

these scenarios limit or completely remove the influence of soil on a rooting system which 

makes field techniques desirable in order to capture the influence of the soil on a growing rooting 

structure. However, conventional field methods are often time consuming and labor intensive. 

Newer technologies, such as magnetic resonance imaging and the use of unmanned aerial 

vehicles, are still under development and have their own set of drawbacks. GPR has been proven 

to be a viable tool for root phenotyping particularly when investigating larger roots such as tree 

roots and is an attractive option due to its rapid data collection and non-destructive nature. In 

Chapter II it was seen that in the ideal conditions, of the simulations that GPR is a viable tool to 

detect the presence or absence of roots based on an energy analysis. Also, that GPR can 

distinguish between tap and fibrous roots by comparing the SBW between the two. The next step 

was to validate these results but in environments closer to field conditions and attempt to capture 

the influence of changing soil characteristics on the GPR signal. One of the most important 

characteristics that influences GPR’s ability to detect subsurface anomalies is contrasts in 

relative permittivity which is a function of changing soil water content. To monitor this soil 

electrical data was collected alongside the GPR data. Measurements were taken on two types of 

plants: sorghum (fibrous) and cotton (tap). This was done across multiple small-scale controlled 

boxes in both a sand and a Yahola very fine sandy loam soil type. Multiple soil monitoring 
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devices were used to measure the soil’s electrical characteristics in an attempt to integrate the 

influence of changing soil conditions on a GPR signal in both 2D and 3D analysis. The objective 

of this chapter was to assess the potential for GPR to detect root biomass and structure by 

incorporating soil electromagnetic properties in controlled experiments. 

3.2 Methods 

Fourteen PVC 1 m3 boxes were constructed and lined with plastic bags and then placed 

approximately two meters apart in an unused field at the Texas A&M Farm. The boxes were 

placed away from any water sources or areas known to accumulate standing water during rain 

events. Additionally, the boxes were placed away from any large trees or plants whose roots or 

overhanging branches could interact with a GPR signal.  Seven of these boxes were filled with 

the Yahola very fine sandy loam (coarse-loamy, mixed, superactive, calcareous, thermic Udic 

Ustifluvents) soil series collected from the Texas A&M Farm. All textural classification data was 

obtained with Web Soil Survey. The Yahola soil was selected to mimic conditions of the field 

data being collected in conjunction with the controlled experiment. Additionally, the Yahola, as 

opposed to other soils present throughout the farm, has a lower clay content and therefore lower 

attenuation rates and higher expected signal returns.  The other seven boxes were filled with a 

washed sand material purchased from a local bulk soil store. The sand was selected to represent 

ideal conditions for GPR signal propagation with low clay content, high water infiltration, and 

low water retention rates. One box of sand and one box of Yahola contained two pieces of 

aluminum pipe stacked one on top of the other to form a cross shape in the x-y plane with the top 

of the top-most pipe at a depth of about 0.67 m in the box of sand and a depth of about 0.56 m in 

the box of Yahola.  These boxes were used as a control to test the functionality of different signal 

processing and imaging techniques. The contents of each box are described in Figure 17C, while 
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Figure 17A and 17B shows a graphic representation of a single box and a picture of one of the 

boxes in the field.  

 

 

 

Figure 17: Box experiment design. (A) Contents of a single box. (B) Picture of box containing 
sorghum. (C) Contents of the 14 different boxes. Sand in yellow boxes and Yahola in brown.   
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Two of the boxes, 5 and 12, labeled control in Figure 18B only contained an access tube 

for NMM readings. The reason behind this was that the two boxes could potentially serve as an 

estimation of the background signal. GPR data collected from box 5 could be used to develop an 

estimate of the background signal for sand, while data collected from box 12 could be used to 

develop a background signal estimate for Yahola. These respective background signals could 

later be removed from the GPR data collected from the boxes with plants to help visualize the 

roots only, serving as a semi-perfect background removal, similar to the ExRef trace in the 

simulations. However, when this method was tested, it did not yield meaningful results due to the 

inability to properly synchronize the data and variability of the soil conditions between the 

control boxes and the boxes with plants. This variability could be due to a number of factors. 

First, a main issue with the boxes overall was keeping the soil within each box level across the 

entire area and over time. This was difficult since the bags which the soil was placed in, were not 

rigid and allowed for slight settling and movement of the soil over time. Also, the 2018 season 

was uncharacteristically wet with multiple heavy rain events. These rain events had a tendency to 

move the soil around in the boxes and pool in corners and along edges. This movement of soil 

resulted in small differences in terrain between boxes and over time. Another reason the box 

background subtraction did not work was due to the changes in gain compensation between 

boxes due to variations in water contents between the boxes. Even minor differences in 

conductivity between the boxes could alter the amount of gain applied and subtracting a uniform 

background from all the boxes failed to capture the differences in conductivity resulting in 

skewed results.  Thus, for all of the processing conducted herein, background signal estimates 

were derived from the collected signal as described in section 1.3.1.  
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Originally, cotton and corn were selected to represent the two different root architectures: 

tap and fibrous.  A tap root architecture consists of a primary central root that is larger in 

diameter than all other exploratory lateral roots. This type of root generally penetrates deeper 

into the soil but with minimal lateral spread of roots.  On the other hand, a fibrous rooting system 

is made up of many thin roots that typically spread extensively through the topsoil but do not 

penetrate to lower depths (Atkinson et al., 2014). Both the corn and the cotton were transplanted 

from nearby fields as immature plants. The same fields were later used in the field experiments. 

Corn was initially selected to represent the fibrous root system, however, the corn did not survive 

the transplant process and had to be replaced after the second set of data collection. At that point 

in the season, the corn growing in the field was too large to be transplanted, and so instead a late 

season sorghum, which also has fibrous roots, was transplanted from a site within the farm on 

similar soil. The sorghum remained for the rest of the data collection time period. The 

transplanted cotton survived the entire season and did not need to be replaced at any point. The 

2018 season was particularly wet and therefore the plants did not require a significant amount of 

supplemental water. At any point when the plants did require water, each box was hand watered 

approximately the same amount at the same time. No chemicals or fertilizers were added to 

boxes at any point during the experiment to limit the influence of any outside factors on the GPR 

signal. Although the sand was selected for its much lower attenuation of GPR signals, it is not an 

ideal soil type for plant growth. Thus, the crops in the sand boxes were stunted and did not grow 

to the extent that the boxes containing the Yahola soil. Figure 18 shows a comparison between a 

cotton and sorghum plant in Yahola soil boxes versus a cotton and sorghum plant in sand boxes. 
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A  B  

C  D  

Figure 18: Typical contents of different boxes. (A) Cotton Yahola. (B) Sorghum Yahola. (C) 
Cotton sand. (D) Sorghum sand.  
 

 

It is clear that the plants in the Yahola soil boxes were consistently larger throughout the 

growing season, and therefore any comparisons made between boxes of different soil types must 

be done with caution because the size of the rooting systems could potentially be vastly different. 

The GPR selected for this objective was initially a 500 MHz and then later a 1000 MHz Sensors 

& Software bistatic unit (Sensors & Software, Mississauga, Ontario, Canada), where the term 

bistatic implies that the Tx transducer is separate and distinct from the Rx transducer. A typical 

GPR transect is run in what is called a common offset configuration with the transmitting and 

receiving antenna placed at a fixed distance apart and offset in the direction of travel. In many 
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cases, the distance between the two antennas is made as small as possible with the limit typically 

being the respective enclosure dimensions. However, for this controlled experiment (and the 

field experiment described in Chapter IV), a bistatic unit was chosen to allow for the transmitter 

and receiver to be on opposite sides of the growing plants in a modified common offset 

configuration with the offset being perpendicular to the direction of travel. This configuration, 

which we have termed perpendicular common offset, was chosen to increase the likelihood of 

root visualization. Figures 19A and19B illustrate the two different types of GPR data collection 

configurations, and Figure 19C is a picture of the common offset perpendicular orientation setup 

in one of the boxes. 
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A   B 

C  

Figure 19: Different data collection configurations. (A) Perpendicular common offset. (B) 
Common offset. (C) Picture of perpendicular common offset configuration in box. 
 

 

Note that the conventional common offset configuration was used in the SOC work 

described in Chapter V since the intent was to measure SOC content in the first 15 cm of soil and 

not root structures (and there were no intervening plants at the time of the measurements).  The 

common offset configuration is much more efficient from a data collection perspective since 

mobile, wheeled assemblies, which carry the transducers are commercially available, while the 

common offset perpendicular configuration required manual movement of each transducer in 

lieu of a mobile, mechanical assembly which was not available.  

RX 

TX 

TX RX 
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The 500 and 1000 MHz center frequencies were selected because the rooting system of 

both plant types remain in the top portion of the soil profile, therefore the pulse does not need to 

penetrate as deeply as in other scenarios, but due to the small size of the roots, requires a better 

resolution.  Resolution for GPR applications is typically defined as the minimum distance at 

which two electrically small scattering objects can be distinguished from one another. Per 

Persico (2014), the achievable horizontal and vertical resolution are both proportional to the 

wavelength of the EM wave in the soil, which is inversely proportional to the center frequency, 

and thus, the higher the frequency the better the resolution. A GPR transect was run parallel to 

the crop row with the Tx on one side of the plant and the Rx on the other.  Additionally, prior to 

any planting or installation of monitoring devices, all boxes were scanned with both sets of 

transducers during dry and wet conditions to obtain an estimate of the background signal for 

each box. These background signal estimates were in addition to the estimates derived from the 

control boxes described earlier in this section.  Using these pre-stored background signals from 

each of the boxes had some of the same problems as experienced in using background signals 

from the control boxes.  In addition, changes in soil properties between when the actual data was 

collected and when the background signal was recorded result in additional distortion of the 

estimated scattered signal, thus, reinforcing the decision to use background signal estimates 

derived from the collected signal as described in section 1.3.1. Each box was scanned four times 

with four different antenna orientations. The first with both Tx and Rx antenna polarizations 

oriented perpendicular to the direction of travel, and the second with the antennas oriented 

parallel to the direction of travel.  The third orientation consisted of the Tx antenna being 

perpendicular to the direction of travel and the Rx antenna being parallel. The final orientation 

was the opposite of the third with the Tx oriented parallel and the Rx perpendicular to the 
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direction of travel. Figure 20 shows the four antenna orientations, which we have labeled as 

perpendicular-perpendicular, parallel-parallel, perpendicular-parallel, and parallel-perpendicular.  

 

 

 

Figure 20: Four different antenna orientations. Perpendicular-perpendicular, parallel-parallel, 
perpendicular-parallel and parallel-perpendicular. 

 

 

A trace was collected every 2.5 or 5 cm with the starting and ending positions of each 

transect noted for each box so as to maintain consistency in transect location and length between 

different survey dates. Additionally, in boxes 1, 2, 8, and 9 multiple B-scans at 5 cm increments 

were run in the typical common offset configugration, as shown in Figure 19B,  to generate a C-

scan of each of the four boxes. For boxes 1 and 8 which each contained the two buried metal 

pipes the distance between B-scans was uniform over each box.  But for boxes 2 and 9, which 

each contained a plant, there was one step size between B-scans that was much greater than all of 

the other step sizes.  This greater step size was required to avoid the intervening plant.    

Since a GPR signal is strongly influenced by soil volumetric water content, θw, due to 

water’s influence on dielectric properties, it is critical to monitor soil moisture readings in each 

box at the time GPR readings are collected. Three techniques based upon three separate devices 
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were selected to monitor soil moisture content in conjunction with the GPR measurements. The 

three devices selected were an electromagnetic induction (EMI) unit, a neutron probe for 

incremental point depth measurements, and a theta probe for point surface measurements as 

shown in Figure 21 A, B and C respectively. 

 

 

A   B   C  

Figure 21: Devices used to measure ancillary soil electromagnetic properties. (A) EM-38MK2. 
(B) Neutron Moisture Meter. (C) Theta Probe.  
 

 

The EMI meter selected was the EM-38MK2 (Geonics Limited, Mississauga, Ontario, 

Canada). Electromagnetic induction meters have been used extensively in agricultural settings as 

a tool to quickly and nondestructively map soil properties including clay content and soil 

moisture. EMI meters measure the bulk apparent electrical conductivity of a soil (ECa) which is 

driven by the presence of electrolytic solutions in the moisture filled pores and passages in the 

soil (McNeill, 1980). EMI meters contain a transmitter coil that generates a primary magnetic 

field which travels through the soil via eddy currents. These eddy currents interact with the 
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moisture filled areas within the soil and generate a secondary magnetic field which is 

proportional to the ECa of the soil (Doolittle et al., 2001 & 2014; McNeill, 1980,). The EM-

38MK2 was used to collect bulk apparent electrical conductivity reading in each box. The EM-

38MK2 provides two measurements based on readings from different coil spacings between the 

transmitter and receiver. The first reading corresponds to a spacing of 0.5m and the second to a 

spacing of 1.0m. Multiple readings allowed for a multilayered representation of the soil in later 

post processing. The EM-38MK2 was placed on top of each box as shown in Figure 21A and 

five measurements were manually taken and then averaged for a final value at each coil spacing. 

Prior to data collection the EM-38MK2 was calibrated in both the vertical and horizontal dipoles. 

The weather and temperature conditions were also noted to temperature calibrate the ECa values 

after collecting the data. The EM-38MK2 measurements taken on 8/24/18 verified that sand has 

a lower expected attenuation than Yahola soil where the average ECa value for the 0.5 m spacing 

for the sand boxes was found to be 1.93 mS/m, while the average for the Yahola boxes was 3.20 

mS/m.  Given the near linear relationship between the conductivity and the attenuation 

coefficient alpha (see Equation 7), Yahola was expected to have an alpha that is about 1.66 times 

greater than that of sand. This translates into a signal that is about 3.5 times less over 1 m in 

Yahola soil compared to sand due to the negative exponential signal decay relationship with 

alpha, see Equation 8 and 9.    

The neutron probe selected was a 503 Elite Hydroprobe (CPN, Concord, California, 

USA). Neutron moisture meters (NMM) are the gold standard of measuring soil moisture in the 

field (Schmugge et al., 1980; Stone et al., 1955). Field calibrated NMM are widely accepted as 

an indirect moisture monitoring device and are known to be the most accurate and reliable 

machine for soil moisture measurements in agricultural settings (Evett, 2008). A neutron 
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moisture meter consists of a radioactive source, in this case Americium-241, which emits fast, 

high energy neutrons. After the probe is lowered into the ground, neutrons are emitted and begin 

to collide with atoms in the surrounding environment and are then slowed, also known as 

becoming thermalized (Chanasyk et al., 1996). The neutron moisture detector is designed to 

count these slow neutrons while ignoring the fast neutrons (Grant, 1975). The typical atom that 

the fast neutrons collide with are hydrogen atoms, due to hydrogen’s low atomic weight. In soil, 

since the main source of hydrogen is water, the proportion of slow neutrons counted by the 

device is equivalent to volumetric water content (Schmugge et al., 1980). 

 After initial GPR scanning, an aluminum access tube was installed and NMM moisture 

readings were taken at a depth of 10, 20 and 40 cm in 10 of the boxes (boxes 3, 4, 5, 6, 7, 

containing sand and boxes 10, 11, 12, 13, 14 containing Yahola. Prior to each use of the NMM a 

standard count had to be performed to check the accuracy and calibration of the machine. In 

addition, a calibration curve had to be developed for each soil type under observation by 

comparing NMM measurements to lab tested soil volumetric water contents. Three calibration 

curves were used to account for the different soil types, Weswood (found in the field 

experiments see Chapter III), Yahola and the sand mixture with a RMSD, or root mean square 

difference, for each linear relationship being 0.0232, 0.0114, and 0.016 respectively. The ideal 

condition for a NMM to take the most accurate readings is with an aluminum access tube, 

however, the presence of a metal pipe had the potential to greatly disrupt the GPR signal and 

block out the portion of the signal representing roots. Therefore, during each GPR scanning the 

tube was removed and replaced with a dry wooden dowel to minimize the impact.  Additionally, 

the NMM access tube needed to be placed in the center of the box to obtain a more accurate 

reading of the soil within the box. This was done to reduce outside influences and for safety 
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reasons to minimize neutron exposure to the operator. Similar to the multi-layered approach of 

the conductivity readings, the NMM readings were used in the GPR post processing of the 

signal. The different depth readings of soil volumetric water allowed for more accurate 

calculations of relative permittivity and signal velocity throughout the soil profile within each 

box. These more accurate representations allowed for more precise post processing schemes to 

be used. Table 2 lists some of the NMM data collected on survey date 7/26/18 and shows how 

the water content varied not only between soil types but with depth. Two sets of boxes (1, 2, 8, 

and 9) did not have access tubes installed and NMM measurements were not taken. Access tubes 

were not installed in 1 and 8 because they contained the buried pipes and were used as a control. 

Box 2 contained a single sorghum plant, while box 9 contained a single cotton plant. All of these 

four boxes were intended to be used to in the construction of C-scans.  

  

 

Table 2:  List of volumetric water contents collected using neutron moisture meter on 7/26/18. 
 

Volumetric Water Content m3 m-3 
of Boxes 

Box 10 cm 20 cm 40 cm 
3 Sand .07 .05 .06 
4 Sand .08 .07 .08 
5 Sand .07 .05 .07 
6 Sand .09 .07 .09 
7 Sand .07 .06 .07 

10 Yahola .11 .19 .19 
11 Yahola .10 .19 .21 
12 Yahola .10 .22 .23 
13 Yahola .13 .23 .23 
14 Yahola .14 .24 .25 
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The final device used to monitor soil moisture was a TH20 Theta Probe (Dynamax, 

Houston, Texas, USA) which analyzes the impedance of a soil. The Theta Probe is a hand-held 

device with approximately 10 cm long pins that are inserted into the ground and generate a 100 

MHz sinusoidal signal (Gaskin et al., 2006). The signal impedance is measured as a voltage 

output which is primarily controlled by the relative permittivity and conductivity of the soil 

(Robinson et al., 1999). As stated earlier, the relative dielectric permittivity is primarily 

controlled by the soil volumetric water content, therefore the voltage output of the Theta Probe 

can be related back to soil volumetric water content. Similar to the NMM, the theta probe must 

be calibrated to the specific soil type. To do this, 5 readings were taken at a single location and 

then a soil sample of known volume was collected from the measurement location. A wet and 

dry weight were taken of the sample and gravimetric water content and bulk density were 

determined to calculate volumetric water content.  This was done 5 times in each soil to create a 

calibration for the theta probe. At the time of each survey four Theta Probe measurements were 

taken at four different positions within the box and then averaged for a final surface volumetric 

soil measurement. The surface soil measurements taken with the Theta Probe were combined 

with the multiple measurements taken with the NMM to create a more representative picture of 

the electrical properties of the soil profile within each box and help account for how they change 

with depth.  

In the MATLAB code implementation of the GPR signal processing the user can select 

from several options for calculating the soil conductivity. These options include (1) EM-38, (2) 

McCutcheon, (3) Noborio, (4) manual.  The EM-38 option uses the two EM-38 readings directly, 

σ = soil ECa, where the reading corresponding to 0.5 m spacing is used for depths < 0.75 m, 

while interpolated values based upon both readings are used for depths > 0.75 m.  For the 
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McCutcheon and Noborio options, the θw values measured by either the NMM or theta probe are 

used in Equation 15 or 16 below to determine soil conductivity.  Equation 15 was derived by 

McCutcheon et al. 2006 and is representative of conductivity in sandier soils.  Equation 16 was 

derived by Noborio et al. in 1994 and is representative of loamy soils.  Finally, the manual option 

allows the user to set the soil conductivity value directly. 

𝜎𝜎 = 4.504𝑒𝑒8.2635𝜃𝜃𝑤𝑤   (McCutcheon) 

(15) 

𝜎𝜎 = 𝜎𝜎𝑤𝑤𝜃𝜃𝑤𝑤(𝑎𝑎𝜃𝜃𝑤𝑤 + 𝑏𝑏) + 𝜎𝜎𝑠𝑠  (Noborio) 

(16) 

Note that in Equation 16, σw is the conductivity of soil solution = 0.3 S/m, σs is the conductivity 

of dry soil = 0.002 S/m, a = 2.635, and b = 0.09184, where the values are representative of a 

sandy loam soil as would be found in College Station, TX.   

The estimated conductivity values were applied in the gain compensation step within the 

GPR signal processing, see section 1.3.1. The gain calculations are related to the attenuation rate 

of the soil media, which is strongly influenced by soil electrical properties, primarily 

conductivity and relative permittivity. Collecting multiple readings of ECa, along with soil θw, 

allowed for the construction of a multi-layered gain function, which compensates for the 

exponential loss of signal due to attenuation throughout the entire soil profile.   

In addition, the multiple θw measurements collected by the NMM at depths of either 10, 

20, and 40 cm for the controlled experiment, or at depths of 20, 40, and 60 cm for the field 

experiment (see Chapter IV), supports the development of a multi-layer relative permittivity 



 

64 

 

profile per Topp’s equation.  This in turn allows for a multi-layer soil wave velocity profile using 

the relation 𝑣𝑣𝑠𝑠 = 𝑐𝑐

√𝜀𝜀𝑟𝑟
 . The processing code implementation for the soil wave velocity profile 

supports three options.  Option 1 assumes one layer and is the default option if only one value of 

θw is available.  Option 2 assumes three layers and can be used when the three NMM values are 

available.  If the NMM measured depths are 10, 20, and 40 cm, the three layers are defined from 

0 to 15 cm, 15 to 30 cm and 30 cm to the soil depth.  If the measured depths are 20, 40, and 60 

cm, the three layers are defined from 0 to 30 cm, 30 to 50 cm and 50 cm to the soil depth.   

Option 3 supports interpolation of the NMM values with an interpolation step size of 5 cm.  

Thus, there are 10 layers when the maximum measurement depth is 40 cm, and 14 layers when 

the maximum measurement depth is 60 cm, where the extra layer comes from extending the 

interpolation one step size past the maximum measurement depth.  When NMM measurements 

were available, the three-layer option was typically used since there were recommendations in 

the Stolt migration software documentation to limit the number of layers when possible 

(Skjelvareid, 2012).         

The analysis on the box data were performed in the same manner as in the simulations.  

For the energy analysis, to determine if our hypothesis that plant locations will have higher 

energy readings than non-plant locations, could be backed by statistically significant data, we 

conducted similar analysis for the GPR data collected in all of the boxes across multiple 

measurement dates (8/9/18, 8/24/18 and 9/19/18). The average or mean energy per trace (MEPT) 

was computed across plants of the same type and across all four antenna orientations for both 

plant and non-plant locations.  In addition, for boxes with two plants, the non-plant EPT was 

calculated based upon the traces midway between the plants, whereas for boxes with one plant, it 

was the average of the two traces that are midway between the plant location and the ends of the 
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boxes.  This approach for the non-plant EPT was used to minimize the interference due to 

reflections from the plants and is different from the way it was calculated in Figure 22 where all 

non-plant locations were averaged. 

The second analysis compared the SBW of the images generated from the different crop 

soil combinations. The SBW was calculated by taking the average measurement of the 

representative boxes. For example, in the case of Yahola cotton, three boxes contained the 

combination, and thus, the reported SBW was the average of the SBW across all three boxes. For 

the case of Yahola sorghum there were only two boxes, and thus, the reported SBW was the 

average across the two boxes. In the sand scenario it was the opposite, with the results from three 

boxes of sorghum being averaged, while for cotton the results from two boxes were averaged. 

Comparisons were made between the SBW of sorghum and cotton across both soil types 

combined, within one soil type only, at single dates and over time.   

3.3 Results 

In this section, we discuss the results of the three analyses conducted on the GPR data 

collected in the controlled experiments.  The three analyses include: (1) an energy analysis 

comparing plant and non-plant locations, (2) a spatial spectral content analysis comparing the 

SBW of plants with tap and fibrous roots, and (3) a 3D analysis based upon C scan data collected 

from selected boxes.  

3.3.1 Energy Analysis 

This analysis was used to verify the model simulations that plant locations have larger 

signal return than that of non-plant locations. As opposed to the simulations, where there was 

also a comparison between plant roots of various water content and diameter, the box and field 
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data focused on the more basic hypothesis that there are higher signal returns from traces 

associated with a plant location as opposed to those at a non-plant location. 

Figure 22 is a representative result, which shows the energy per trace (EPT), in femto-

Joules (fJ) for the scattered signal after background removal at each location along the entire 

transect across a box filled with sand and containing two cotton plants. Two traces were selected 

around each plant to better represent the spread of the roots beneath the surface and to account 

for the fact that not all plants were located exactly at a 5 cm interval. In this example, it is seen 

that the plant locations individually have higher energy levels than the surrounding non-plant 

locations in all but one non-plant location. The average energy per trace for the traces associated 

with plant locations was about 35 fJ, while the average energy per trace for the non-plant 

locations was about 16.5 fJ. 

 

 

 

Figure 22: Representative energy comparison in box containing sand and cotton between non-
plant (blue lines) and plant locations (red lines). 
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Figures 23A and 23B demonstrates the difference in MEPT between plant and non-plant 

locations across multiple dates for sorghum and cotton, respectively in the sand boxes.   In all 

cases the mean at plant locations is above the mean at non-plant locations.  The sorghum MEPT 

increases over time as one would expect, but the cotton does not.  A possible reason for the latter 

is that the tap root structure of cotton is harder to detect than is the fibrous root structure of 

sorghum.  The associated p-values for sorghum and cotton individually, and then sorghum and 

cotton taken together are shown in Table 3. The sorghum p-values meet the 0.05 confidence 

level for all dates, while cotton p-values met it for two of the three dates.  The p-values were 

further reduced when the sorghum and cotton data was merged by virtue of the increased number 

of total sample points (56 total compared to 24 and 32 for sorghum and cotton, respectively). 
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A  

B  

 

Figure 23: Energy analysis in box data. (A) Mean energy per trace for sorghum plants in sand 
boxes. (B) Mean energy per trace for cotton plants in sand boxes. 
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Table 3: P-values of comparison between plant and non-plant locations in sand box data. 
 

P-values Sand Boxes  
Sorghum Cotton Combined 

8/9/2018 0.019 0.038 0.005 
8/24/2018 0.045 0.035 0.006 
9/19/2018 0.011 0.068 0.003 

 

 

The above results for sand are based upon the application of a constant gain value of one, 

or that is to say no gain.  This was a reasonable starting assumption due to the lower signal 

attenuation associated with EM wave propagation in sand.  There is always concern when gain is 

applied that the gain estimates are inaccurate to that extent that the results might be worse than 

without gain applied.  That turned out to be the case for sand, but for Yahola, gain was required 

to overcome its higher signal attenuation characteristics. The resulting MEPT values for Yahola 

soil with gain applied based upon an estimate of the attenuation coefficient, alpha are shown in 

Figures 24A & B, where we see that the MEPT of the plant locations did exceed the MEPT of 

the non-plant locations for all dates, although just barely for cotton on 8/24/18.  The 

corresponding p-values are shown in Table 4, where we see the sorghum results when taken 

individually were significant on two of the three dates, while for cotton taken individually none 

of the results were significant, although the result for 8/9/18 was quite close.  These results for 

the boxes show that as expected GPR tends to perform better in a lower attenuation medium such 

as sand as opposed to a higher attenuation medium such as Yahola soil.  In addition, better 

results were obtained for sorghum as opposed to cotton, which may be due to the difference in 

root structure.    
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B  

 

Figure 24: Energy analysis for box data. (A) Mean energy per trace for sorghum plants in 
Yahola boxes. (B) Mean energy per trace for cotton plants in Yahola boxes. 
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Table 4: P-values of comparison between plant and non-plant locations in Yahola box data. 

 

 

 

 

 

 

3.3.2 Spatial Spectral Content Analysis (Spatial Bandwidth) 

The spatial spectral content analysis was used to determine if the SBW of tap roots was 

greater than the SBW of fibrous roots based upon data collected in a number of controlled 

experiments.  This analysis, which determines the SBW at the 90% and 95% power points, was 

initially discussed in sections 1.3.2 and 2.4.  In the simulated scenario discussed in section 2.4, 

the SBW of the circle, representing the fibrous rooting mass, had a smaller SBW when compared 

to the SBW of the rectangle representing the tap root system.  If the simulations findings hold 

true, then the SBW of the boxes containing cotton (tap root) will have a larger SBW as opposed 

to the boxes containing sorghum (fibrous root).  Figures 25 A, B, C, and D are example spectral 

content plots for cotton and sorghum in sand and in Yahola.  All of these spectral plots are based 

upon measurements taken on 8/24/18 with the Tx frequency = 1000 MHz, the Tx and Rx y 

polarized, and the transect along the x direction. 

P-values Yahola Boxes  
Sorghum Cotton Combined 

8/19/2018 0.04706 0.1276 0.01943 
8/24/2018 0.03685 0.5676 0.109 
9/19/2018 0.131 0.432 0.1311 
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A B  

C D  

Figure 25: Spectral content images (A) Cotton in sand. (B) Cotton in Yahola. (C) Sorghum in 
sand. (D) Sorghum in Yahola. 
 

 

As opposed to the simulation results where the difference in SBW was visually apparent, 

it is typically not possible to visually determine which image has a larger or smaller SBW. To 

quantify the comparison, we calculated the SBWs out to the 90% and 95% power points as 

described in section 2.4. Unlike the simulations, where the B-scan generated from the synthetic 
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gprMax data contained a single idealized root system and a homogenous soil media, the scanned 

boxes contained one or two plants (and in some cases a wooden dowel place holder for the 

NMM access tube) with variations in relative permittivity due to changes in soil volumetric 

water content present throughout the soil profile.  

The first set of results are shown in Figure 26A, which compare the SBW at the 90% and 

95% points between cotton and sorghum at each of the three survey dates with data from both 

soil types combined.  The signal processing parameters used to generate Figure 26A were set as 

follows: gain type = alpha; conductivity/sigma type = EM38; background type = localized with a 

spatial filter width = 0.35 m; and Stolt migration employed three soil layers.   In Figure 26A we 

see that at both the 90% and 95% power points that cotton does have a larger SBW at two of the 

three dates. At the final survey date on 9/18/18, the SBWs converge to nearly the same value. In 

the case of the 90% power point, the SBW of the sorghum actually becomes larger than that of 

the cotton at the final date. It is not known why this occurred other than to state that this method 

may not always yield the expected result.  It could be that at this point in the growing season the 

sorghum had developed new roots which emanated from the original root mass and thus, induced 

a larger SBW signature compared to the previous survey date. As shown in Table 3 under the 

Sand & Yahola heading there was only one combination of measurement dates that yielded a 

significant p-value. 
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A  

B   
 
Figure 26: Spatial bandwidth comparison of sorghum and cotton in boxes. (A) Sand and Yahola 
combined. (B) Sand only. (C) Yahola only. (D) Yahola only with Noborio conductivity. 
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C  

D  
 
Figure 26: Continued 
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The results for the combined data for the two soil types were motivation to look at the data 

for the soil types taken separately. Figure 26B shows the results for just the sand boxes, while 

Figure 26C shows the results for just the Yahola soil boxes, where the same processing 

parameter values used for the combined data were used. The results in sand indicate that the 

mean SBW at the 90% and 95% points for cotton was indeed greater than that for sorghum at all 

three measurement dates, but that the visual separation was better for the 90% SBW values.  The 

resulting p-values shown in Table 5 under the “sand only” heading were significant for all 

combinations including the first measurement date for the 90% value, but were only significant 

for two of the combinations involving the first date for the 95% value, thus verifying the better 

visual separation observed in Figure 26B. All other comparisons yielded results that were not 

significant. Note that in the following tables a highlighted value indicates a statistically 

significant value.  

The results in Yahola shown in Figure 26C indicate the opposite of what was predicted in 

that the SBW at the 90% and 95% points was greater for sorghum that for cotton. This led us to 

investigate the use of the Noborio conductivity model to estimate the gain applied as opposed to 

conductivity values based upon the EM38-MK2 measurements. The results for the Noborio 

model do support the predicted trend (cotton > sorghum) for the 90% SBW values as shown in 

Figure 26D.  However, the trend for the 95% SBW values was not reversed.  This leads us to 

conclude that the 90% SBW measure is preferred to the 95% SBW measure, at least for this 

scenario. The resulting p-values shown in Table 5 under the “Yahola only with Noborio 

conductivity” heading were significant for three measurement date combinations for the 90% 

SBW value. A possible reason the Noborio calculation yielded a significant result and the EM38 

measurements did not, was likely due to the fact that the former was based upon a sandy loam 
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profile near College Station, TX, and thus, was more appropriate in the Yahola and Weswood 

soils. A number of reasons exists that could explain why the SBW did not work as expected in 

the boxes. The over-arching issue was the complexity of the problem. Recall that the overall 

intent was to estimate the electrical properties of the roots based upon reflections captured by the 

GPR Rx located at or above the surface.  The estimation of such below ground properties from 

scattered signal returns is commonly referred to as an inverse scattering problem, which is 

typically ill-posed (Persico, 2014).  As such, any error in the signal processing, e.g. in the 

background signal removal, is magnified such that the resultant estimate of the scattered signal 

may be degraded.  The resultant Stolt migration cannot correct for these errors and thus, 

produces an image that may have significant error.  A more specific reason that the data from the 

boxes did not produce the expected results may be due to the uncharacteristically wet summer in 

2018. The heavy, frequent amounts of rain caused issues with the distribution of water in the soil 

and surface soil level. These issues combined may have interfered with the GPR’s ability to 

detect and differentiate between the types of root structures. 
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Table 5: P-values for box data comparisons between mean SBW of corn/sorghum and cotton. 
 

Sand and Yahola 
Corn/Sorghum Survey Date(s) Cotton Survey Date(s) p-value 90% p-value 95% 

9-Aug 9-Aug 0.056 0.095 
9-Aug 24-Aug 0.079 0.169 
9-Aug 19-Sep 0.093 0.205 

24-Aug 9-Aug 0.179 0.067 
24-Aug 24-Aug 0.351 0.343 
24-Aug 19-Sep 0.382 0.420 
19-Sep 9-Aug 0.429 0.258 
19-Sep 24-Aug 0.529 0.445 
19-Sep 19-Sep 0.521 0.494 

9-Aug, 24-Aug 9-Aug, 24-Aug 0.050 0.079 
9-Aug, 24-Aug 24-Aug, 9-Sept 0.083 0.171 
9-Aug, 24-Aug 9-Aug, 9-Sept 0.060 0.105 
24-Aug, 9-Sept 9-Aug, 24-Aug 0.338 0.216 
24-Aug, 9-Sept 24-Aug, 9-Sept 0.427 0.401 
24-Aug, 9-Sept 9-Aug, 9-Sept 0.358 0.274 
9-Aug, 9-Sept 9-Aug, 24-Aug 0.088 0.118 
9-Aug, 9-Sept 24-Aug, 9-Sept 0.128 0.215 
9-Aug, 9-Sept 9-Aug, 9-Sept 0.099 0.145 

9-Aug, 24-Aug, 9-Sept 9-Aug, 24-Aug, 9-Sept 0.087 0.124 
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Table 5: Continued 
 

Sand Only 
Corn/Sorghum Survey Date(s) Cotton Survey Date(s) p-value 90% p-value 95% 

9-Aug 9-Aug 0.0045 0.022 
9-Aug 24-Aug 0.007 0.017 
9-Aug 19-Sep 0.030 0.073 

24-Aug 9-Aug 0.328 0.192 
24-Aug 24-Aug 0.270 0.176 
24-Aug 19-Sep 0.375 0.423 
19-Sep 9-Aug 0.540 0.300 
19-Sep 24-Aug 0.403 0.236 
19-Sep 19-Sep 0.471 0.479 

    

 

Yahola Only with Noborio Conductivity 
9-Aug 9-Aug 0.143 0.747 
9-Aug 24-Aug 0.107 0.735 
9-Aug 19-Sep 0.166 0.825 

24-Aug 9-Aug 0.388 0.356 
24-Aug 24-Aug 0.285 0.427 
24-Aug 19-Sep 0.424 0.457 
19-Sep 9-Aug 0.049 0.286 
19-Sep 24-Aug 0.048 0.370 
19-Sep 19-Sep 0.061 0.362 

9-Aug, 24-Aug, 9-Sept 9-Aug, 24-Aug, 9-Sept 0.028 0.562 
    
    
    

Yahola Only 
9-Aug 9-Aug 0.793 0.828 
9-Aug 24-Aug 0.913 0.935 
9-Aug 19-Sep 0.949 0.958 

24-Aug 9-Aug 0.188 0.134 
24-Aug 24-Aug 0.635 0.695 
24-Aug 19-Sep 0.556 0.516 
19-Sep 9-Aug 0.386 0.350 
19-Sep 24-Aug 0.639 0.632 
19-Sep 19-Sep 0.587 0.519 
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3.3.3 3D Analysis  

Another area that was explored was generating 3D images from C-scans from data 

collected in the boxes containing the pipes (boxes 1 and 8). In addition, a 3D SBW analysis was 

conducted on C-scans collected in the boxes containing only a single plant (boxes 2 and 9).  As 

mentioned previously, C-scans are a collection of B-scans, where a given B-scan is offset in the 

y direction from other B-scans by a specified amount. Thus, C-scans after suitable processing, 

provide a 3D image, or a sequence of 2D image slices.  The 3D SBW can then be determined 

from the 3D image.Figures 27A and B show the results of the processed C-scans from box 1 

corresponding to a sand soil and box 8 corresponding to a Yahola soil.  In each box, two, hollow 

metal pipes of differing lengths were laid one on top of the other in the x-y plane to form a cross 

shape. The longer pipe was approximately 43 cm long with a 5 cm diameter and was oriented at 

a 45° angle with respect to the x-axis.  The shorter pipe was 10 cm long with a 5 cm diameter 

and was oriented perpendicular to the longer pipe.  In box 1, the top of the longer pipe was 

located at a depth of ~0.67 m, while the bottom of the shorter pipe was located at a depth of 

~0.77 m.  In box 8, the top of the longer pipe was located at a depth of ~0.56 m, while the bottom 

of the shorter pipe was located at a depth of ~0.66 m.  The data captured by the C-scan was 

processed per the signal processing steps shown in Figure 5 followed by 3D Stolt migration.  The 

key parameter settings were as follows: “alphaPlusSpreading” gain compensation; Noborio-

based conductivity estimates; localized background estimate with spatial filter width = 0.35 m, 

and Stolt migration with three layers.  Thus, at a top level this experiment is quite similar to the 

synthetic data experiment used to verify 3D Stolt migration described in section 1.3.2, although 

there are key differences as will be noted in the following discussion. 
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A  

B  

Figure 27: C-scan results. A) Box 1 containing sand. B) Box 8 containing Yahola. 
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Figure 27A shows that the pipes are detectable in the sand at approximately the correct 

depths, while Figure 27B shows that the pipes are essentially undetectable in the Yahola soil.  

This result was somewhat expected and was due primarily to the much greater signal attenuation 

in the Yahola soil as compared to sand.  Although the pipes were detectable in the sand, the 

image slices of interest are not nearly as clear as that obtained with the synthetic data.  One of the 

primary reasons for this was that in the processing of the synthetic data the background signal 

was exactly known since simulations were run without the pipes to precisely determine it.  Thus, 

an ideal estimate of the scattered signal was formed by simply subtracting the known background 

signal from the signal received when the pipes were present.  In the processing of the data from 

the boxes, the background signal was not known and had to be estimated from the signal, which 

was not an error-free process.  In addition, the synthetic data was generated for a single soil layer 

with little loss (σ = 0.001 S/m), and thus, no gain compensation was required. In the boxes, the 

volumetric water content based upon NMM measurements varied with depth. Even in the box 

with sand, σ was estimated to be about 0.01 S/m at the depths of interest, and thus, gain 

compensation was required, which can also introduce error into the process. Finally, a 500 MHz 

Tx was used to generate the synthetic data, while the controlled experiments used a 1000 MHz 

Tx. The latter is a good choice from a resolution perspective, but perhaps not as good a choice as 

the former for detecting buried objects at medium depths. The results of this controlled 

experiment tend to indicate that using GPR to detect fine root structures in other than sand may 

be limited to shallower depths.   

The next type of 3D analysis was similar to the SBW comparison of the tap and fibrous 

roots described in section 3.3.2 but extended from processing a 2D image to processing a 3D 

image or object. In this case, instead of processing a B-scan, the C-scans generated from box 2 
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and 9, each of which contained only one plant, were analyzed. The data obtained from the two 

boxes was first run through the signal processing steps shown in Figure 5, and then through a 3D 

Stolt Migration algorithm.  Finally, an FFT was applied in all three dimensions of the resulting 

3D image to produce a 3D image of the spectral content. Unlike the previous comparison 

between the tap and fibrous roots, the two boxes contained different soil types. Box 2 contained a 

single sorghum plant grown in sand, whereas box 9 contained a single cotton plant grown in the 

Yahola soil. Therefore, a direct comparison between the two could not be made. Instead, the 

SBW over time in a single box was examined to see if any change in SBW could be observed as 

the rooting system grew. Box 9 was selected for this type of analysis. This was done because 

after two surveys dates the original corn plants in box 2 had to be replaced with sorghum, 

whereas the cotton survived the entire growing season, and thus, more survey dates were 

available for analysis. Another reason box 9 with the Yahola cotton combination was selected 

was due to the stunted growth of the sorghum in the sand. As stated above, sand is not an ideal 

environment to grow a crop in, and therefore, it did not grow nearly as well as it would have in 

the field. However, the cotton plant grew at a more normal rate as opposed to the sorghum in the 

sand. Data for the cotton-Yahola combination was collected on four survey dates in 2018:  7/13, 

7/27, 8/2 and 8/28. For each date the 90% and 95% 3D SBW points were calculated. Figure 28 

shows the results over time, where two sets of results are shown for the 90% and 95% points.  

One set corresponds to processing all of the z axis “lines” produced by Stolt migration 

(NzRemove = 0), while the second set corresponds to processing all but the first z line, which 

extended from the surface to a depth of 5 cm (NzRemove = 1).  The latter was investigated to see 

if near surface noise was corrupting the results, but as shown in Figure 27 there is not much 

difference whether the first line is removed or not. The expected result was that as the rooting 
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system expands, the SBW would decrease over time.  This expected decrease did occur between 

the first and second dates, and between the third and fourth dates, but there was a positive 

inflection between the second and third dates. A possible reason for the positive inflection is that 

new root growth between the second and third dates could have emanated from the main root in 

such a way as to increase the spectral signature, but then with further growth there was a “filling 

in” effect such that the tap root appears wider and thus, a decrease in the spectral signature.   

 

 

  

Figure 28: 3D Spatial bandwidth comparison over time with first z-slice removed and not 
removed. 
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3.4 Summary  

In summary, this chapter described the set of controlled experiments that combined GPR 

measurements with measurements of soil water content and soil conductivity to: (1) estimate the 

energy per trace at plant and non-plant locations, (2) determine the SBW of recovered images for 

sorghum and cotton plants for purposes of differentiating between their respective root 

structures, and (3) verify use of 3D Stolt migration as a viable technique for detecting sub-

surface objects. The energy analysis focused on developing the EPT and then comparing the 

corresponding average or mean value at non-plant and plant locations.  The results indicated that 

for both sand and Yahola that the mean EPT at plant locations was greater than the mean EPT at 

non-plant locations for all three of the measurement dates examined.  Indicating that these more 

controlled conditions GPR could detect the presence of roots. However, the results were much 

more conclusive in sand, where the associated p-values met the 0.05 confidence level for all 

three of the sorghum measurement dates, and two of the three cotton measurement dates.  For 

Yahola, the p-values met the confidence level for two of the three sorghum measurement dates 

but did not meet it for any of the cotton dates although it was very close for one of the dates. The 

conclusions are that better results were obtained in sand by virtue of its lower signal attenuation, 

and that sorghum led to better results by virtue of its more spread out root structure.  

The second analysis compared the SBW of plants with fibrous roots (sorghum) to plants 

with tap roots (cotton).  The hypothesis was that the SBW of cotton should be greater than that of 

sorghum based upon the idealized analysis conducted in section 2.4.  The results in sand did 

indicate that the mean SBW at the 90% and 95% points for cotton was indeed greater than that 

for sorghum at all three measurement dates, but that the separation was better for the 90% SBW 



 

86 

 

values.  The resulting p-values were only significant at the first measurement date.  The results in 

Yahola with the gain applied based upon the EM38 conductivity measurement indicate the 

opposite of what was predicted in that the SBW at the 90% and 95% points was greater for 

sorghum than for cotton.  When the gain was switched such that it was based upon the Noborio 

conductivity model the proper trend (cotton > sorghum) was observed for the 90% SBW values, 

and in fact one of the measurement dates had a significant result.  However, the trend for the 

95% SBW values was not reversed.  This leads us to conclude that the 90% SBW measure was 

preferred to the 95% SBW measure, at least for this scenario.  Overall, the performance was 

“better” once again in sand as opposed to Yahola.  In addition to the above 2D measures of 

SBW, the 3D SBW was determined for cotton in Yahola soil over time by processing C-scans 

collected at four separate measurement dates.  The expectation was that the 3D SBW would 

decrease over time since the spatial signature would conversely be increasing in size.  The 

expected trend was observed between the first and second dates, and then between the third and 

fourth dates, but not between the second and third dates.  A possible reason for the 3D SBW 

increasing between the second and third dates was that new root growth could have emanated 

from the main root in such a way as to increase the spectral signature, but then with further 

growth between the third and fourth dates there was a “filling in” effect such that the tap root 

appears wider and thus, a subsequent decrease in the spectral signature.   

Finally, the results of the 3D Stolt migration of C-scans of boxes with metal pipes buried at 

known depths indicate that the pipes are detectable in the sand at about the right depths, while 

the pipes are essentially undetectable in the Yahola soil.  This result was somewhat expected and 

was due primarily to the much greater signal attenuation in the Yahola soil as compared to sand 
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and supports the notion that it should be increasingly difficult to detect the small-scale roots in 

the Yahola soil.  

The mixed results seen in the box study could be a result of a number of factors. First, as 

stated above, was the overall complexity associated with an inverse-scattering problem. This 

issue can introduce sources of error early in the processing steps and that will only be magnified 

in later analysis. Additionally, utilizing GPR in fine root phenotyping, is a relatively novel 

application, and the appropriate types of post processing and analysis techniques have not been 

solidified. Finally, even though the boxes were designed to represent a controlled study, not all 

environmental factors could be controlled. For example, the heavy rain events throughout the 

season and shifting of the soil could influence GPR’s ability to accurately detect and differentiate 

rooting structures.  
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CHAPTER IV  

FIELD EXPERIMENTS 

 

4.1 Introduction 

After testing the feasibility of GPR to detect and differentiate rooting systems in a 

controlled environment, the next step was to take measurements in field situations where not all 

parameters could be as carefully controlled. The controlled experiments were designed to 

represent ideal conditions for GPR data collection, however this is not representative of the 

conditions encountered in the field. Field measurements are influenced by a variety of factors 

and it is important to test GPR’s ability to overcome these changes and test if it can be used as a 

phenotyping tool in more realistic conditions. In an active field such things as tillage, weeds and 

changes in soil conditions can alter and affect GPR data collection. To test the capability of GPR 

for phenotyping root biomass in the field, several experiments were designed and conducted 

during the summers of 2017 and 2018. Plots with different crop types and soil textures were 

selected to test the feasibility of GPR for phenotyping in different field conditions. In addition to 

GPR measurements, the same soil monitoring devices used in the controlled experiment were 

used. These included the EM38-MK2 for bulk apparent conductivity readings, the neutron 

moisture meter and theta probe for multiple depths measurements of soil water content. Similar 

to the controlled experiments, these measurements were integrated into GPR signal processing in 

an attempt to capture the influence of changing soil characteristics. The same types of analysis, 

energy and image that were utilized in the simulations and controlled experiments were again 

implemented. First, energy analysis was used to test if GPR could detect the presence or absence 

of roots, and then image analysis, specifically SBW comparison, was used to test if a difference 
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existed in the GPR signal associated with a tap root versus a fibrous root.  The objective of this 

chapter was to assess the potential for GPR to detect root biomass and structure by incorporating 

soil electromagnetic properties in field experiments. 

4.2 Methods 

In 2017 two sites were selected in Texas for field tests. The first site was at the Stiles Farm 

Foundation near Thrall, TX. The soil at this location was classified as a Burleson clay with 40 - 

60% clay content (fine, smectitic, thermic, Udic Haplusterts). The second site was at the Texas 

A&M AgriLife Research & Extension Center at Lubbock, TX. The soil in Lubbock was an Olton 

clay loam (fine, mixed, superactive, thermic Aridic Paleustolls). Each location contained plots of 

sorghum (fibrous root structure), cowpea (tap root structure) and a nine-species cover crop mix 

which contained both types of rooting systems. All plots at both locations were under no-till 

management to minimize soil disturbance.  The GPR used in the field campaigns was the same 

Sensors & Software pulseEKKO unit used in the controlled experiments. In 2017 the only 

transducers available had a central operating frequency of 500 MHz. GPR transects 

approximately 8 m long were run parallel to crop rows with transmitter on one side of the plant 

and receiver on the other, also known as the perpendicular common offset configuration as 

shown in Figure 8 that was utilized in the controlled box experiment. Again, this was chosen to 

maximize GPR’s potential ability to detect root structure. In addition to the data collected from 

the transects that ran parallel to the crop rows, GPR transects were also run perpendicular or 

across crop rows.  This was done to provide a clearer distinction between plants. As opposed to 

plants within the same row, which had the potential to be close to one another, making it difficult 

to differentiate individual root systems, the plants along the perpendicular transect were 
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separated by an entire row and within each transect there was only 2 to 5 plants, depending on 

the number of rows crossed.  This was especially important in the mixed cover crop where the 

plants within the row were in very close proximity to one another, at times less than 5 cm apart.  

Each transect, whether parallel or perpendicular, was run twice with different antenna 

orientations, first with antennas oriented perpendicular to direction of travel and second with 

antennas oriented parallel to direction of travel. An A-scan was collected at 5 cm increments and 

the location of each plant was noted. Flags were placed at the beginning and end of each transect 

to maintain consistency in transect location across all survey dates.  

Similar to the controlled box experiment, the EM-38MK2, neutron moisture meter and 

theta probe were used to monitor soil moisture. EMI readings were taken at approximately the 

same time as the GPR scans, along the same rows of crop in each plot. Access tubes were 

inserted along the GPR transect within the plant row and moisture measurements at 20, 40, 60, 

and 80 cm depths were taken at the time of GPR data collection.  Theta probe measurements 

were taken at multiple locations along each transects.  

Unfortunately, a majority of the results from the 2017 data set were inconclusive. This 

was most likely due to the soil type at each location. The soil in Thrall especially wasn’t ideal for 

ground penetrating radar measurements due to the extremely high clay content (40-60%) which 

had the potential to cause major signal attenuation. The Olton clay loam at the Lubbock location 

didn’t have as high of clay content, however, a severe weed infestation on the plots made data 

collection and processing difficult. The density of the weeds made it challenging to differentiate 

between what was the desired crop root and what was the unwanted weed root.  Another 

potential issue was the influence of the aluminum NMM tubes on both the GPR data and the 
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EMI data collected with the EM-38MK2. The aluminum material is highly conductive and 

therefore the aluminum will dominate the signals of both the EM and GPR of surrounding 

measurements potentially masking all other information. Due to the variety of setbacks in the 

first field experiment, the 2017 field campaign served as a test for methodologies that were later 

improved upon in the 2018 season, which resulted in the collection of more conclusive data. 

The second set of field experiments was conducted on a Yahola very fine sandy loam 

(coarse-loamy, mixed, superactive, calcareous, thermic Udic Ustifluvents) and on a Weswood 

silt loam (fine-silty, mixed, superactive, thermic Udifluventic Haplustepts) at the Texas A&M 

Farm located outside of College Station, TX in 2018. As with the box experiment, data was 

collected for a tap root crop, i.e. cotton, and for a fibrous root crop, in this case corn with a plot 

of each crop on each soil series for a total of four plots. Two transects were collected on each 

plot. Similar to the 2017 methodology, one GPR transect approximately 6 m long was run 

parallel to the crop rows, with the transmitting and receiving antenna on opposite sides of plant 

and moved in tandem in 5 cm increments taking note of each plant location. The second transect 

of similar length bisected the first transect at its midpoint and ran perpendicular to the crop rows, 

creating a ‘cross’ shape. Two individual neutron moisture meter access tubes, now made of PVC 

instead of aluminum to minimize its influence on the EM-38 and GPR, were placed at the end of 

each transect and one additional access tube placed at the center for a total of five NMM access 

tubes in each ‘cross’ transect formation. The NMM access tubes also served as starting and 

ending points for each transect to keep the length and location of the transect consistent 

throughout all survey dates. The antenna orientation used were the same as those used in 2017, 

parallel-parallel and perpendicular-perpendicular. At the time of each GPR survey the EM38-

MK2, NMM, and Theta probe were used to collect the ancillary soil moisture data. The EM-
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38MK2 was run directly over the transect for purposes of collecting bulk electrical conductivity 

data. The neutron moisture meter was used to take measurements at 20, 40, 60 and 80 cm, 

although the 80 cm measurement was not used in any of the processing. In the corn field, the 

theta probe measurements were taken at every plant location. However, the plants on the cotton 

field were too dense and measurements could not be taken at each individual plant. Instead, a 

measurement was taken at every meter along the transect including the starting location for a 

total of 7 measurements per transect.  Multiple surveys were taken throughout the seasonal dry 

down from May to September.   

The same two types of analysis, energy and image, were utilized with the field data. To 

determine if our hypothesis that the mean energy per trace at plant locations was greater than the 

mean energy per trace (MEPT) at non-plant locations could be backed by statistically significant 

data, statistical analysis for GPR data collected in the field across a number of measurement 

dates was conducted. The average or mean energy per trace was computed across plants of the 

same type and across the two antenna orientations for both plant and non-plant locations.  The 

non-plant EPT corresponding to a given plant location was calculated based upon the traces 

midway between the plant of interest and the adjacent plants.  This approach for the non-plant 

EPT was used to minimize the interference due to reflections from the plants. Specifically, data 

was collected for Weswood and Yahola soils for corn and cotton plants.  The corn data was 

collected on 5/20, 5/30, 6/27, and 7/16, while the cotton data was collected on 6/27, 7/16, and 

8/7.  The methodology used to determine the SBW for the field experiments was similar to that 

of the box experiments, but with some differences noted as follows. First, in the parallel transect, 

or the transect that went along the crop rows, the SBW was calculated by dividing the 6-meter 

transect into six, 1-meter sections. Within each section the SBW was calculated, and then these 
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values were averaged for one final bandwidth value. On the perpendicular transect, or the 

transect running across the plant rows, a 1-meter section was centered on each plant along the 

transect (4 – 5 plants per transect). Each meter-long section was run through Stolt migration to 

form an image from which the SBW was determined. The resulting value was averaged with the 

other sections for a final single SBW value for the whole perpendicular transect. Recall that for 

the box experiments that only a single image was developed per box, although there was some 

averaging across boxes with the same plant type.   

4.3 Results 

As in the box experiments, the same two types of analysis were performed on the field 

data.  First energy analysis was used to determine if there was a difference in signal energy level 

at plant and non-plant locations along the transect. Next, the SBW of the cotton and corn were 

compared to determine if a difference could be seen between fibrous and taps roots. 

4.3.1 Energy Analysis  

Figure 29 is a representative example of the energy data collected from a row of corn 

planted in Yahola soil. In the field, the data was much nosier even after post processing was 

applied. It is difficult to differentiate between plant and non-plant locations based on energy in 

this case. At some points the plant locations have low energy and non-plant locations have some 

of the highest energy values. However, for this example the average or mean energy per trace 

over all plant locations was as expected found to be higher than the average over the non-plant 

locations, with respective values of 2.62 fJ and 1.90 fJ. 
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Figure 29: Representative energy comparison in field on Yahola with corn between non-plant 
(blue lines) and plant locations (red lines).  
 

 

The next step was to compare the mean energy per trace (MEPT) in different crop, soil 

combinations across multiple dates. The MEPT for corn and cotton compared to the MEPT at 

non-plant locations in the Weswood soil is shown in Figures 30A and 30B, where we see that the 

corn MEPT was greater on 2 of the 3 dates, while the cotton MEPT was greater for all of the 

dates.  The resulting p-values for corn and cotton taken individually and then corn and cotton 

taken together in the Weswood soil are shown in Table 6, where we see that none of the corn 

results were significant, while only one of the cotton results was significant.  Three issues to note 

in these and succeeding figures related to the field data are (1) that the corn data collected on 
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5/20 and 5/30 is merged into one data set labeled 5/30, (2) a constant or no gain condition was 

found to provide better results than when gain was applied, and (3) the 500 MHz Pulse EKKO 

transducers were used for the 5/20, 5/30 and 6/27 measurements, while the 1000 MHz 

transducers were used for the 7/16 and 8/17 measurements.  The reason for this latter shift was 

that we had just recently acquired the 1000 MHz transducers. A key point to note here is that the 

500 and 1000 MHz data are not normalized with respect to one another, and thus, one cannot 

make accurate time-trend comparisons from the data.   
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A  

B  

Figure 30: Energy analysis for field data. (A) Mean energy per trace for corn in Weswood. (B) 
Mean energy per trace for cotton in Weswood.  
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Table 6: P-values for MEPT of plant and non-plant locations in Weswood field data. 
 

P-values Weswood Field  
Corn Cotton Combined 

5/30/2018 0.3616 
  

6/27/2018 0.7872 0.01494 0.05576 
7/16/2018 0.1928 0.2476 0.1301 

8/7/2018 
 

0.1361 
 

 

 

The results for Yahola soil are summarized in Figures 31Aand 31B and Table 7.  Figures 

31A and 31B show the MEPT for corn and cotton compared to the MEPT at non-plant locations, 

where the MEPT for corn was greater for only one date, while MEPT for cotton was greater for 

two of the three dates.  The resulting p-values in Table 7 demonstrate that only one result for 

cotton was significant, while no results were significant for corn.  These results for Yahola when 

compared with the prior results for Weswood tend to indicate that GPR performed better in the 

Weswood soil as shown in Table 8. In fact, the p-value for cotton in Weswood was significant.  

The reason that GPR performs better in Weswood compared to Yahola was due to the lower 

signal attenuation associated with the Weswood soil.  The latter was confirmed from the EM38 

conductivity measurements for the two soils, where the average values captured by the 0.5 m 

spacing Rx coil for Weswood are all lower than those for Yahola as shown in Figure 32A for 

corn and Figure 32B for cotton.  Recall that the attenuation coefficient, alpha for this application 

was nearly linear with conductivity.  Also, of note was that “better” results were obtained for tap-

root cotton as opposed to fibrous-root corn, which is the opposite of what was seen in the boxes, 

where fibrous-root sorghum provided better results than tap-root cotton.  However, this latter 
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result was consistent with the conductivity values associated with the cotton plants in the field 

being lower than those for the corn plants in the field in all but one condition as shown by 

comparing the values in Figures 32A and 32B.  

 

 

A  

          B  

Figure 31: Energy analysis for field data. (A) Mean energy per trace for corn in Yahola. (B) 
Mean energy per trace for cotton in Yahola. 
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Table 7: P-values for MEPT of plant and non-plant locations in Yahola field data. 
 

P-values Yahola Field  
Corn Cotton Combined 

5/30/2018 0.7371 
  

6/27/2018 0.8884 0.477 0.7192 
7/16/2018 0.08523 0.5846 0.1562 
8/7/2018 

 
0.01765 

 

 

 

Table 8: P-value comparison of MEPT between Yahola and Weswood. 
 

P-value Comparison Yahola and Weswood  
Corn Cotton Combined 

Yahola, all dates 0.7216 0.3154 0.487 
Weswood, all dates 0.3234 0.0333 3.59E-02 
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A  

B  

Figure 32: Soil conductivity comparison in mS/m. (A) Corn plants. (B) Cotton plants. 
 
 

 

18.094

22.062

18.347

22.95
20.518

24.14

0

5

10

15

20

25

30

corn

EC
a

5/29/18 weswood 5/20/18 yahola
6/28/18 weswood 6/28/18 yahola
7/20/18 weswood 7/20/18 yahola

14.467

23.966

15.779
17.878

16.33
17.811

0

5

10

15

20

25

30

cotton

EC
a

6/28/18 weswood 6/28/18 yahola
7/20/18 weswood 7/20/18 yahola
8/8/18 weswood 8/8/18 yahola



 

101 

 

Overall, the field results for the energy analysis are not quite as conclusive as the box 

results, which may be due to several factors. One potential issue dealt with the GPR unit itself, 

since during data collection it was difficult to keep the separation between the two GPR antennas 

constant, so some variation in separation length existed. In the cotton field, the influence of 

tillage could have played a part in influencing the results. The act of tilling can create small-scale 

changes in elevation and cause the GPR antenna to sit at an angle which would alter the GPR 

signal. Steps were taken to attempt to place the antennas on as level of surface as possible, but it 

was impossible to remove all variations in surface heterogeneity. Additionally, by the nature of 

the field experiment parameters, not all environmental factors could be controlled. First, weeds 

were a problem in the corn plots. Prior to each survey the weeds were removed from the surface 

soil using a hoe. The act of hoeing disturbed the top portion of the soil and only removed part of 

the weed roots. Deeper roots could not always be completely removed, and some remained 

within the soil. Both issues could influence a GPR signal. The plots were a part of an active farm 

and various farm equipment and irrigation lines ran through the plots which could affect the 

distribution of water across the GPR transects and influence soil conditions such as bulk density 

from compaction. 

4.3.2 Spatial Spectral Content Analysis  

The spatial spectral content analysis was used to determine if the SBW of tap roots was 

greater than the SBW of fibrous roots based upon data collected in a number of field 

experiments.  This analysis which determines the SBW at the 90% and 95% power points was 

initially discussed in sections 1.3.2 and 2.4, with results for the box experiments described in 
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section 3.3.2. In the case of the field experiments, corn was representative of the fibrous root 

structure, while cotton was representative of the tap root structure.  

The first set of field results is shown in Figure 33, where we see the SBW at the 90% and 

95% points for corn and cotton across both soil types, Weswood and Yahola, as a function of the 

measurement dates. Figure 34 show that the corn with the fibrous rooting system consistently has 

a lower SBW at both 90% and 95% points than the tap roots of cotton, although the difference is 

rather small at the 7/16/18 measurement date. The signal processing parameters used to generate 

Figure 33 and the succeeding figures in this section were set as follows: gain type = alpha; 

conductivity or sigma type = EM38, background type = localized with a spatial filter width = 

0.35 m; and Stolt migration employed three soil layers.   

 

 

Figure 33: Spatial comparison of corn and cotton from Yahola and Weswood combined.  
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The dates of comparison and the associated p-value calculated for the comparison 

between cotton and corn across both soils are shown in Table 9 under the heading “Yahola & 

Weswood, Combined”. The highlighted values indicated where the difference in SBW was 

statistically significant. In Table 9 we see a majority of the comparisons yielded significant 

results for both the 90 and 95% points. The comparisons that did not result in statistically 

significant p-values were all associated with the corn survey date of July 16th. Figures 34A and 

34B, compare the SBW for the 90 and 95% points across the same set of measurement dates, but 

now the data is separated based on soil type, Yahola only and Weswood only. In the Yahola only 

comparison shown in Figure 34A we see the expected result that the mean SBW of the cotton 

plots is consistently greater than that of the corn plants.  In addition, Table 9 under the heading 

“Yahola only” shows that the associated p-values are all statistically significant expect for the 

comparisons made with the values collected on July 16th in the corn field. However, in the 

Weswood only comparison shown in Figure 34B a visual difference exists between cotton and 

corn at the first two survey dates (for each plant), but at the third date the corn’s SBW value is 

greater. Looking at Table 9 under the heading “Weswood only” we see that none of the 

comparisons had statistically significant results. A possible reason for the Weswood soil 

producing no significant results was due to its texture classification. Weswood soil’s higher 

perceived clay content, though this is not backed with laboratory data, could give rise to higher 

signal attenuation, but that was not shown to be the case in the energy analysis results section 

4.3.1, where Weswood’s attenuation coefficient was estimated to be lower than that of Yahola. 



 

104 

 

A  

B  

Figure 34: Spatial comparison of corn and cotton. (A) Yahola data only. (B) Weswood data 
only. 
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Table 9: P-values for field data comparisons between mean SBW of corn and cotton. 
 

Yahola & Weswood Combined 
Corn Survey Date(s) Cotton Survey Date(s) p-value 90% p-value 95% 

30-May 27-Jun 0.006 0.005 
30-May 16-Jul 0.018 0.014 
30-May 7-Aug 0.017 0.012 
27-Jun 27-Jun 0.001 0.003 
27-Jun 16-Jul 0.002 0.008 
27-Jun 7-Aug 0.002 0.007 
16-Jul 27-Jun 0.092 0.034 
16-Jul 16-Jul 0.422 0.293 
16-Jul 7-Aug 0.388 0.200 

30-May, 27-Jun 27-Jun, 16-Jul 0.000 0.000 
30-May, 27-Jun 16-July, 7-Aug 0.000 0.000 
30-May, 27-Jun 27-June, 7-Aug 0.000 0.000 
27-Jun, 16-July 27-June, 16-July 0.002 0.003 
27-Jun, 16-July 16-July, 7-Aug 0.006 0.008 
27-Jun, 16-July 27-June, 7-Aug 0.002 0.003 
30-May, 16-July 27-June, 16-July 0.009 0.005 
30-May, 16-July 16-July, 7-Aug 0.022 0.013 
30-May, 16-July 27-June, 7-Aug 0.008 0.005 

30-May, 27-Jun, 16-July 27-June, 16-July, 7-Aug 0.000 0.000 
 

Yahola Only 
30-May 27-Jun 0.002 0.004 
30-May 16-Jul 0.003 0.005 
30-May 7-Aug 0.003 0.004 
27-Jun 27-Jun 0.008 0.022 
27-Jun 16-Jul 0.011 0.034 
27-Jun 7-Aug 0.012 0.031 
16-Jul 27-Jun 0.016 0.019 
16-Jul 16-Jul 0.088 0.148 
16-Jul 7-Aug 0.194 0.151 

 

 



 

106 

 

Table 9: Continued.  
 

Weswood Only 
Corn Survey Date(s) Cotton Survey Date(s) p-value 90% p-value 95% 

30-May 27-Jun 0.304 0.221 
30-May 16-Jul 0.457 0.342 
30-May 7-Aug 0.352 0.305 
27-Jun 27-Jun 0.073 0.065 
27-Jun 16-Jul 0.081 0.107 
27-Jun 7-Aug 0.052 0.091 
16-Jul 27-Jun 0.508 0.312 
16-Jul 16-Jul 0.937 0.777 
16-Jul 7-Aug 0.838 0.612 

 

 

4.4 Summary 

In summary, this chapter described the results for the field experiments conducted in 2018.  

The field data was analyzed in the same manner as the box data by examining changes in energy 

between non-plant and plant locations and comparing the SBW between fibrous and tap roots. 

Two plants types were investigated in each of the two soil types across three measurement dates: 

corn (fibrous) and cotton (tap-root) in Weswood and Yahola soils.  The results of the energy 

analysis indicate that in Weswood soil that the corn MEPT for plant locations was greater than 

non-plant locations for two of the three measurement dates, while the cotton MEPT was greater 

for all of the dates.  The resulting p-values for corn and cotton taken individually indicate that 

none of the corn results were significant, while one of the cotton results was found to be 

significant.  The results for Yahola soil show that the MEPT for corn was greater than non-plant 

locations for only one of the measurement dates, while for cotton the MEPT was greater for two 
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of the three dates.  The resulting p-values show that only one result for cotton was significant, 

while no results were significant for corn.  The Yahola results when compared with the 

Weswood results tend to indicate that GPR performed better in the Weswood soil.  This was 

confirmed by the fact that the p-values for corn and cotton in Weswood soil are lower than the p-

values for Yahola soil when both sets of results are taken across all measurement dates.  In fact, 

the p-value for cotton in Weswood was significant. Overall the GPR performed better in the 

Weswood plots. The main reason for this may be due to the lower amount of attenuation 

occurring in the Weswood as shown in the conductivity values collected from each plot. This is 

due to the near linear relationship between conductivity and the attenuation coefficient.  Also, of 

note is that “better” results were obtained for tap-root cotton as opposed to fibrous-root corn, 

which is the opposite of what was seen in the boxes, where fibrous-root sorghum provided better 

results than tap-root cotton.  However, this latter result was consistent with the conductivity 

values associated with the cotton plants in the field being lower than those for the corn plants in 

the field in all but one condition. 

The results of the SBW analysis indicate that in Weswood soil across all dates that the SBW 

values at both the 90% and 95% points for corn were as predicted less than that for cotton except 

for the July measurement date.  Recall that the field measurement dates are staggered with 

regards to plant type, where for corn, measurements were conducted in May, June and July, but 

for cotton measurements were conducted in June, July and August.  It is not clear why the July 

measurement date was out of line. The results for Yahola soil indicate that the SBW values at 

both the 90% and 95% points for corn were less than that for cotton across all measurement 

dates. The associated p-values were found to be significant when the May and June corn values 

were compared with all of the cotton values on a date-by date basis, and when the July corn date 
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value was compared with the June cotton date value.  The only two combinations that weren’t 

significant were the July corn date compared with the July and August cotton dates.  Thus, with 

regards to the SBW analysis, Yahola soil was found to provide results that were “better” than 

those obtained in Weswood soil, which is opposite to what was found for the energy analysis. 

The mixed results of both types of analysis reinforce the complexity of the problem at hand. 

Attempting to infer the electrical properties of sub-surface reflections via external GPR 

measurements is a classical inverse-scattering problem that is known to be ill-posed and 

therefore difficult to solve. As stated in the box experiment discussions, this application for GPR 

is relatively new and no specific guidelines exist as to what GPR parameters should be utilized, 

and on what signal processing techniques would produce the best results. Instead, at this point in 

development it is a trial and error approach to find the right type, amount and combination of 

parameters that need to be used. Uncontrollable environmental conditions most likely also 

played a role in disrupting the results. Weed overgrowth, weather events and plant density all 

have the potential to influence the GPR signal. 
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CHAPTER V  

SOIL ORGANIC CARBON 

 

5.1 Introduction 

Soil organic carbon (SOC), distinct from atmospheric or vegetative carbon, comprises the 

largest reservoir of terrestrial carbon (Jobbάgy et al., 2000). The carbon in the global soil 

reservoir acts as both source and sink for atmospheric carbon and plays a major part in 

maintaining the equilibrium of gains and losses in the global carbon scale (Stockmann et al., 

2013). Soil acts as a sink by carbon sequestration. This process can help to balance fossil fuel 

emissions and increase agricultural productivity (Lal, 2004). Additionally, soil acts as a source 

by releasing carbon into the atmosphere, such as methane from melting permafrost in the Arctic 

Circle (Tarnocai et al., 2009). Development of means to measure SOC rapidly and 

nondestructively can provide information on sequestration potential, soil health, and help 

maintain long-term, viable agricultural practices. Advances have been made in recent years to 

digitally map SOC on the global scale, however, at the field scale, tools are lacking to ground 

truth large-scale SOC estimates rapidly and nondestructively. Current technologies typically 

consist of collecting a soil core to send back to the lab for combustion analysis which results in 

the destruction of the sample.  

 Similar to the technique of phenotyping roots, GPR has the potential to detect and 

differentiate between different amounts of SOC. The amount of soil organic carbon strongly 

influences the amount of water contained within a soil. As previously discussed, this change in 

water content leads to changes in relative permittivity. Changes in relative permittivity is one of 
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the main drivers influencing the propagation of a GPR signal. These changes in the GPR signal 

can be quantified and related back to a water content. It is this relationship between soil moisture 

and a GPR signal that can be exploited to indirectly detect the changes in SOC. The objective of 

this chapter was to quantify the impact of SOC on GPR signal. 

5.2 Methods  

Three sites were selected in three different states to represent different SOC levels; Texas, 

Arkansas, and Wisconsin.  The first site selected was in Arlington, WI at the Arlington 

Agricultural Research Station run by the University of Wisconsin-Madison. This site was on a 

Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudolls). The Wisconsin site 

represented the highest carbon levels of the three sites with an average soil organic carbon 

content of 2.5%. The second site selected was in Mariana, AR at the Lon Mann Cotton Research 

Station run by the University of Arkansas. This site was on a Calloway silt loam (Fine-silty, 

mixed, active, thermic Aquic Fraglossudalfs). The Arkansas location was selected as a mid-range 

soil organic carbon content with an average soil organic carbon content of 1.2%. The final site 

selected was Lamesa, TX run by Texas A&M Agrilife Research and Extension. This site was on 

an Amarillo fine sandy loam (fine-loamy, mixed, superactive, thermic Aridic Paleustalfs). The 

Texas location represented the lowest SOC content with average content of 0.2%. In addition to 

attempting to capture the greatest range of SOC possible, these three locations were selected 

because they have similar soil textures and mineralogical backgrounds. Having similar 

characteristics and backgrounds between sites can help rule out other potential factors that could 

be altering the GPR signal between locations. GPR transects were run across multiple plots with 

different historical uses at each location. The length of each transect varied at each location but 
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each was at least 4-meters. At the time of each survey no plants were present on any of the plots. 

In Wisconsin two different fields sites with multiple sub-plots at each location were scanned for 

a total of 39 plots. At Arkansas 48 plots were scanned and in Texas 9 different plots were 

scanned. The GPR selected was the IDS Hi-Mod operating at two frequencies, 400 and 900MHz. 

Figure 1A is a picture of the GPR unit used. Unlike the Sensor’s and Software unit, the IDS GPR 

transmitting and receiving antenna are housed within the same enclosure with a fixed separation 

and cannot be moved independently. The IDS GPR had a spatial sampling frequency of 

approximately one per 3.5 cm and 1.75 cm for 400 MHz and 900 MHz, respectively, both of 

which were controlled by a calibrated odometer attached to the wheel. This means that at every 

1.75 cm centimeter increment the 900 MHz transmitting antenna automatically emitted a pulse, 

while at every 3.5 cm the 400 MHz transmitting antenna automatically emitted a pulse. Several 

issues were encountered using the IDS Hi-Mod GPR. First, several of the plots, mainly in 

Arkansas, had a large amount of crop residue left after harvesting. This excess ground cover has 

the potential to interfere with the portion of the GPR signal under investigation. Similarly, at the 

Wisconsin location the terrain was very uneven, and caused the GPR to bounce as it was pushed 

along the transect. This unwanted movement could also be detrimental to GPR data and needs to 

be taken into consideration.  The uneven terrain at these sites coupled with the increased mobility 

of the wheeled assembly made it impossible to employ the stacking signal option, which we were 

able to use with the Sensor’s and Software unit to increase signal to noise ratio, see section 1.3. 

Figure 35 shows pictures of example plots from all three locations. In the pictures you can see 

the different types of ground conditions and cover encountered.  Lubbock had the conditions 

most conducive for GPR data collection, however, even there the minimal amount of cotton 

residue could impact the signal.  Since there were no intervening plants in all of these sites, the 
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conventional common offset configuration could be used where the Tx and Rx antennas are 

offset in the direction of travel. 

 

 

A  B  

C  D  

Figure 35: Different field conditions. (A) Arlington, Wisconsin. (B) Arlington, Wisconsin. (C) 
Mariana, Arkansas. (D) Lamesa, Texas. 
   

 

 In addition to collecting GPR data, at the time of each survey surface soil moisture 

measurements were taken using the Dynamax TH20 soil moisture probe. Surface soil moisture 

measurements were taken at the Arkansas and Texas locations; however, the device was not 

available at the Wisconsin site and soil moisture measurements had to be estimated. This was 
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done using the data collected by using a statistic known as the average envelope amplitude 

(AEA).  AEA is a measure of the early time signal (ETS) portion of a GPR signal trace and was 

calculated by determining the average of the signal envelope over a specified time window. 

The AEA was utilized for calculating an estimate of the water content in Wisconsin because it 

has been shown by Comite et al., 2014 and Pettinelli et al., 2007 to be related to changes in 

relative permittivity and conductivity. In order to generate the Wisconsin water content data, the 

AEA of the first positive half cycle of every GPR trace collected in Wisconsin was calculated. 

From those AEA values the relative permittivity could then be estimated using Equation 17. 

𝜀𝜀𝑟𝑟 = 1 + 1/(𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴������2𝜋𝜋𝜀𝜀0∆𝑥𝑥2) 

(17) 

The overbar in Equation 17 implies taking the mean of all of the AEA measurements. Since ∆x 

varied with the frequency, two estimates of εr were developed, one for 400 MHz and one for 900 

MHz. The relationship between AEA and relative permittivity was calibrated using the data 

collected from Arkansas where the soil volumetric water content measurements were taken with 

the theta probe. This calibration was taken into account by multiplying Equation 17 by a 

calibration factor, where a different factor was developed for each frequency.  The volumetric 

water content could then be calculated via Topp’s Equation (Equation 5). 

After data collection, two different statistics were used to determine if there was a 

relationship between changes in SOC content and changes in the GPR signal. These statistics 

were: integrated pixel magnitude (IPM) and energy per trace spatial mean (EPTSM). These types 

of statistics are desirable in this situation because these forms of analysis do not require the 

presence of subsurface reflectors (Pettinelli et al., 2007). Additionally, the specific calculation of 
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each of these statistics focuses on the beginning of the GPR signal which corresponds to the 

shallow depths where SOC is most likely to accumulate and where changes will be most 

noticeable. The integrated pixel magnitude was calculated after the raw B-scan was processed 

and run through the Stolt migration algorithm. Formally, the IPM was the summation of the pixel 

magnitude, i.e. the absolute value of pixel values over the transect length (4 m) and depth of 

interest (0-15 cm) multiplied by the step size in the x and z directions. The step size in the x 

direction is the space between traces along the transect and is a set parameter in the GPR 

equipment, and as noted above varies with the Tx frequency for the IDS unit used in these 

measurements. The step size in the z direction was artificially generated within the Stolt 

migration algorithm and is proportional to the velocity of the EM wave in the soil divided by the 

bandwidth of the Tx pulse. A graphical representation of IPM can be seen in Figure 36A where 

the pixels shown in red are assumed to extend the length of the transect.  The second test statistic 

was energy per trace spatial mean (EPTSM), which is developed by first calculating the energy 

per trace over the time period corresponding to the depth of interest for each trace, and then 

taking the average of these values over all traces along the transect.  Figure 36B shows the 

selection of the samples of interest (red dots) used to calculate the energy per trace for a given 

trace. Both statistics were compared to carbon data collected within different plots at each 

location and between average carbon percentages between different locations.  
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A B  

Figure 36: Different analysis types. (A) Integrated pixel magnitude. (B) Energy per trace spatial 
mean. 
 

 

5.3 Results 

 The hypothesis was that there should be a positive relationship between SOC level and 

both of the measured statistics at both frequencies. GPR has previously been tested as tool for 

measuring soil moisture content and different methods exist that relate various calculations 

derived from a GPR signal back to soil moisture content with a positive correlation (Huisman et 

al., 2003). This relationship can be indirectly extended to the measurement of SOC content due 

to the fact that as SOC increases in the top portion of the soil, the water holding capacity of that 

section also increases, and therefore, a higher signal return would be expected resulting in an 

indirect measure of SOC. IPM and EPTSM are tools to measure the intensity of the first portion 

of the returned signal. The first set of results compare the calculated IPM and EPTSM of each 

individual plot with their respective SOC content within a single state location.  Figures 37A, B 
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and C show a comparison of the IPM at 900 MHz with the percentage SOC level for each of the 

three sites. Figure 37A is for data collected from the 9 plots located in Texas which had the 

lowest SOC values (0.13-.0.31% SOC).  In this figure we see the opposite of the expected trend 

with an R2 value of 0.43, and a statistically insignificant p-value of 0.055. Figure 37B is for the 

data collected from the Arkansas location which had the mid-range of soil organic carbon values 

(0.831-1.82% SOC).  In this figure we see a small positive relationship between the IPM and 

SOC percentages with a R2 of 0.009 and corresponding p-value of 0.507, which does not indicate 

a statistically significant relationship between the two. Finally, Figure 37C is for the data 

collected from Wisconsin which had the highest values of SOC (1.907-3.178% SOC). In this 

figure, the data has a slightly larger positive relationship with an R2 of 0.02. However, like the 

Arkansas data this relationship is not statistically significant with a p-value of 0.357, and no 

conclusions can be confidently drawn from it.  
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A          B  

C  

Figure 37: Comparison of percent carbon and IPM at 900 MHz at the three different locations. 
(A) Lamesa, TX. (B) Mariana, AR. (C) Arlington, WI. 
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Additionally, the comparison between EPTSM and SOC percentage yielded even less 

conclusive results than the comparison with the IPM. In these specific conditions, the GPR does 

not appear to be able to detect the small-scale, plot to plot differences in SOC. This may be due 

to the spatial heterogeneity of ground cover and topography. Another point is that all the graphs 

show only the 900 MHz results. The 400 MHz data was also less conclusive with smaller 

relationships between the values. As the frequency of the GPR signal decreases, the greater the 

depth penetration but at the cost of image resolution. This is desirable in situations where the 

goal is to observe larger objects buried at greater depths. In the scenario of trying to observe 

small-scale near surface changes in soil organic carbon, the 400 MHz signal may miss any 

potential changes at shallow depths.  

To summarize, Table 10 shows the R values and associated p-values for the different 

comparisons between SOC and EPTSM and IPM at the two different frequencies for the plot to 

plot comparisons within each location. Table 10 also lists the “partial” correlation coefficients 

and associated p-values. The partial correlation coefficient was determined by comparing two 

variables, in this case SOC and either IPM or EPTSM, while holding a third variable, in this 

scenario, soil moisture content, constant. The soil water content is not solely controlled by SOC, 

instead it is influenced by a variety of other soil characteristics and environmental conditions. By 

holding the soil moisture content constant, we can take into consideration changes in soil 

moisture content that are not a result of changes in SOC but instead by other confounding 

variables. We can then test if changes in the GPR signal can be related back to the small-scale 

variations in the SOC or if the signal is controlled by another factor’s influence on soil moisture 

content.  The partial correlation had the greatest impact on the Wisconsin data and resulted in 
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statistically significant correlations for both the IPM and EPTSM at 900 MHz. Additionally, the 

relationship between IPM at 900 MHz and SOC in Lubbock also yielded a statistically 

significant result, however this relationship was still negative which was the opposite of the 

expected results. 

 

 

Table 10: Different correlation coefficients with associated p-values and partial correlation 
coefficients and p-values for three different locations. 
 

 
IPM @ 400 MHz IPM @ 900 MHz EPTSM @ 400 MHz EPTSM @ 900 MHz  

Wisconsin  
R 0.1361 0.1514 0.0593 0.2519 
p 0.4088 0.3575 0.72 0.1218 

Partial R 0.2123 0.3469 0.0366 0.3853 
p for partial R 0.2006 0.0329 0.8272 0.0169  

Arkansas 
R 0.0389 0.0981 0.0375 -0.0421 
p 0.7929 0.5071 0.8003 0.7764 

Partial R 0.0154 0.1268 0 -0.0574 
p for partial R 0.9181 0.3958 0.9999 0.7014  

Texas 
R -0.2172 -0.6557 -0.35 -0.4486 
p 0.5745 0.0552 0.3558 0.2258 

Partial R -0.1345 -0.7169 -0.299 -0.4309 
p for partial R 0.7508 0.0454 0.4719 0.2866 
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The next step in the analysis was to compare average data between states to test if the 

GPR signal was influenced by larger scale changes in SOC. This was done by first calculating 

the average IPM and EPSTM across all plots within a given state location for the both the 400 

and 900 MHz. Next, the average SOC for each state was calculated and found to be 0.2%, 1.2%, 

and 2.5% in Texas, Arkansas, and Wisconsin, respectively.  Figure 38A and 38B compare the 

mean energy per trace spatial mean (MEPTSM) for each state to the mean carbon percentage for 

400 and 900 MHz respectively. The expected result in this scenario would also be a positive 

linear relationship between the two statistics and SOC, with the lowest value being from Texas, 

middle from Arkansas and highest from Wisconsin with increasing soil organic carbon. In Figure 

38A with the 400 MHz Tx, the expected results were not observed. Instead, the middle Arkansas 

value has the highest MEPTSM instead of Wisconsin with an overall R2 = 0.376.  As mentioned 

earlier, 400 MHz may not be the ideal frequency since its associated wavelength may not provide 

the image resolution needed to detect small scale changes at the near surface level. However, in 

Figure 38B which compares the data collected at 900 MHz we see the expected positive 

relationship between MEPTSM and the SOC with an R2 = 0.987.  The next set of Figures in 38C 

and 38D continue to compare the average SOC of each state but now with the mean integrated 

pixel value or MIPM. In this case we see a positive relationship at both the 400 and 900 MHz 

frequencies with R2 values of 0.893 and nearly 1 (0.999998), respectively.  Again the 900 MHz 

has a stronger relationship as opposed to the 400 MHz. The 900 MHz comparison nearly has a 

straight-line linear relationship between the average SOC content and the MIPM.  
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A B  

C D  

Figure 38: Comparison of average carbon percentage and mean integrated pixel magnitude and 
mean energy per trace spatial mean. (A) Mean % carbon and MEPTSM at 400MHz. (B) Mean % 
carbon and MEPTSM at 900 MHz. (C) Mean % carbon and MIPM at 400 MHz. (D) Mean % 
carbon and MIPM at 900 MHz.  
 

 

A critical parameter in these comparisons is the spatial filter width associated with the 

localized background calculation, see discussion on background removal in section 1.3.1. By 

changing the spatial filter width the significance of the relationships between SOC and 

MEPTSM and MIPM can be shifted. Figure 39 shows the sensitivity to spatial filter width for 
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both statistics at 900MHz. For MEPTSM the p-value tends to decrease with increasing values of 

spatial filter width, but at no value is it ever statistically significant. However, for the MIPM, 

there is a clear optimum value at a spatial filter width of 1.5 m, with significant p-values over a 

fairly wide range of values. Thus, 1.5m was the value used for the spatial filter width in the 

analysis described above comparing the average statistics across sites.  

 

 

 

Figure 39: Sensitivity of p-value to spatial filter width for MIPM and MEPTSM at 900 MHz. 
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5.4 Summary 

GPR’s ability to detect variations in soil moisture content made it a viable tool to be 

explored as a means to indirectly measure SOC in the field. A majority of the current 

technologies utilized to measure SOC are time-consuming and destructive. GPR could provide a 

means to quickly and non-destructively measure SOC indirectly in the field. A change in SOC 

levels results in changes in the soil moisture content of the soil, most notably in the top portion 

of the soil profile. GPR could potentially indirectly measure SOC by detecting the small-scale 

differences in soil moisture content induced by changes in SOC. At the Arkansas and Wisconsin 

locations no relationship was observed between SOC with IPM collected at 900 MHz. At the 

Texas location only a weak negative linear relationship was observed with the 900 MHz IPM. 

The results from 400 MHz IPM and from both frequencies of the EPTSM resulted in even less 

conclusive results at all three locations.  A partial correlation analysis was also run between the 

SOC levels and the two statistics. This type of analysis allows us to hold a third variable 

constant, in this case soil moisture content, and test the relationship without its influence. The 

results of this analysis yielded significant results for the IPM and EPTSM at 900 MHz for the 

Wisconsin data, whereas the results for the conventional correlation analysis did not.  In 

addition, the analysis yielded a significant result for the IPM at 900 MHz for the Texas data, 

whereas the conventional analysis did not.  In summary, the above results indicate the GPR 

could not detect the small-scale differences noted between plots which is likely due to the spatial 

heterogeneity of ground cover and terrain between plots which caused uneven signal disruption 

across the GPR transects at these locations.  
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The next analysis step was to compare the average results between states. The 

comparison of the mean EPTSM and mean IPM at 900 MHz generated graphs with strong 

positive linear relationships. The comparisons at 400 MHz were not as meaningful, although the 

mean IPM was consistent with the expected trend, but not in a linear fashion. The results for 900 

MHz indicate that GPR can potentially detect larger scale differences in SOC.  As noted, the 

frequency of the GPR unit plays an important role in its ability to detect differences in SOC. 

Specifically, the higher 900 MHz frequency generated more conclusive results than the lower 

400MHz. This is likely due to the fact that at lower frequencies the depth of signal penetration 

was greater, but the resolution of a generated image was lower. The 900 MHz, with its high 

image resolution capabilities, is more likely to capture SOC variations in the top portion of the 

soil.  

As in the case of using GPR as a tool for root phenotyping, it cannot be conclusively said 

that GPR can be used as a tool for measuring SOC in the field. This experiment was one of the 

first of its kind to explore this potential application of GPR, and more work needs to be done to 

test its feasibility. Data across a wider range of SOC levels with consistent measurements of soil 

electromagnetic properties (relative permittivity and conductivity) under a range of soil types and 

conditions would aide in determining GPR’s usefulness as a tool for measuring SOC. Finally, as 

with root phenotyping at finer scales, there are no standard procedures set as to what post 

processing and analysis techniques would be best suited in this application. Other types of signal 

processing, amounts and with different parameters may yield more definitive results in future 

studies.  
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CHAPTER VI  

CONCLUSIONS 

 

The ability to phenotype roots rapidly and nondestructively can provide valuable 

information to plant breeders. It can help increase plant productivity, enhance the potential for C 

sequestration through the incorporation of root biomass into the soil, and improve water use 

strategies. Ground penetrating radar with its ability to detect small scale differences in relative 

permittivity as controlled by soil moisture content and conductivity, could be a potential tool to 

supplement current phenotyping technologies. The goal of this project was to link GPR data with 

soil electromagnetic properties to enhance GPR performance while conducting preliminary tests 

to assess the ability of GPR to be utilized as a tool for root phenotyping at the fine root scale. 

The results in this thesis can help lay a groundwork for future experimental models and can be 

expounded upon in greater detail.  

In Chapter II of this thesis, three GPR modeling exercises were described, two of which 

were based upon the use of an open source EM wave simulator specifically developed for GPR 

applications, gprMax. The different modelling applications indicated that it is feasible, in highly 

controlled, idealized environments for GPR to be used as a root phenotyping tool. Additionally, 

the simulations showed the importance and viability of using certain processing techniques. One 

of the main issues often confronted in novel techniques using GPR is the selection of which post-

processing techniques to use. In this thesis, Stolt migration algorithm was examined and later 

shown to be a viable tool to aide in root detection and visualization. Two types of analysis were 

also tested, energy and SBW, to examine GPR’s root detection and differentiation abilities. 
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Overall, each of these applications showed the importance of different aspects of GPR 

processing and the significance of taking into consideration how the parameters of the anomaly, 

i.e. roots, being visualized and the surrounding soil electromagnetic parameters effect GPR’s 

ability to be used as an effective tool.  

In Chapters III and IV the controlled and field experiments that were set up to test the 

feasibility of GPR in close to ideal and in situ conditions were described. In the controlled 

experiment multiple tests were run to test methodologies that could aide in using GPR as a 

potential tool for root phenotyping. Of note was the use of a GPR configuration, which we refer 

to as perpendicular common offset.  In this configuration, the offset between the transmitting and 

receiving antenna is perpendicular to the direction of travel of the GPR unit, whereas in the 

conventional common offset configuration the separation is in the same direction.  In the 

conventional common offset technique, the receiving and transmitting antenna must remain on 

the same side of a plant being scanned, while in the perpendicular common offset configuration 

it is possible to place the two antennas on opposite sides of a plant which could potentially 

enhance root detection.  

In the controlled experiments, cotton and sorghum plants and objects were placed in bags 

(boxes) filled with either sand or Yahola soil. The boxes were used to test the validity of the 

results obtained in Chapter II from the GPR modelling and analysis scenarios. Specifically, 

looking at changes in energy and SBW to indicate the presence or absence of roots and whether 

or not a difference in a tap or fibrous root could be identified. Results were often mixed 

depending on the analysis and the soil type under investigation. This reinforces the idea that even 

in controlled, ideal conditions it is important to account for changes in soil type and its varying 
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conditions (e.g. relative permittivity and conductivity) in the observed study area. Typically, 

GPR is known to work best in dry, sandy conditions, which in most cases of the controlled 

experiment held true. However, even in the ideal conditions of the boxes, GPR was not always 

be successful at detecting and visualizing differences in roots. Inherent and environmental 

limitations exist that cannot always be overcome and must be taken into consideration.  The box 

experiments also demonstrated that it was important to take into consideration not just the large-

scale difference in soil properties seen in between different soil series but the small-scale 

variations in soil properties that are observed with depth. It is important to integrate these 

changes into the post processing schemes to obtain a more accurate representation of the soil 

subsurface and how it impacts the propagation of the GPR signal.  

In Chapter IV the results for the field experiments conducted in 2018 were described.  The 

field experiments conducted in 2017 in Thrall and Lubbock did not yield reliable results, most 

likely due to the soil conditions at both locations. This reinforces the theory that soil conditions 

must be taken into consideration when using GPR in this type of application. However, they did 

lay the groundwork for the test methodology that was improved upon in 2018. The 2018 field 

data was analyzed in the same manner as the box data by examining changes in energy between 

non-plant and plant locations and comparing the SBW between fibrous and tap roots. Similar to 

the box results, the results were often inconclusive and depended on soil characteristics and other 

environmental parameters. For example, it was found that in the energy analysis, the Weswood 

soil yielded ‘better’ results as opposed to the Yahola soil. One potential reason that GPR 

performs better in Weswood compared to Yahola is due to the lower signal attenuation 

associated with the Weswood soil which is mainly controlled by the conductivity of a given soil.  

However, in the SBW analysis ‘better’ results were obtained in the Yahola soil giving mixed 
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results overall.  As is in the box experiments, the mixed results demonstrate the importance and 

influence of the soil properties on GPR’s ability to detect and differentiate roots. Additionally, it 

shows the various limitations associated with GPR and how a variety of factors can confound 

GPR’s ability to detect and distinguish roots.  

In addition to the importance of the soil properties, there are a number of potential 

reasons for the observed mixed results encountered throughout this project. First and foremost is 

just how difficult and complex a problem it is to use GPR in this fashion. In the context of image 

recovery, the electrical characteristics (relative permittivity and conductivity) of objects within 

the soil are inferred from externally gathered GPR measurements aided by EM-38MK2, NMM, 

and theta probe measurements.  This is a classical inverse scattering problem, which is typically 

ill-posed, which implies that any error made in the assumptions, e.g. background removal in the 

development of the scattered signal, will tend to induce a large amount of error in the image 

recovery process. In addition, there is a need for further refinement of the post processing 

techniques used. As a still maturing technology, there are no standard operating procedures on 

how to post process the GPR data. Finding the right processes, which combination of processes, 

what values to set parameters within the processes, and in what order to use them all impact the 

overall effectiveness and can alter results. Having too little post processing can cause the desired 

results to be masked and lost in the data. However, using too much post processing can alter the 

data too far and move towards the manipulation of information to generate the desired results. As 

well, inherent limitations exist within the current signal processing. For example, the w-kz 

conversion that is integral to Stolt w-k migration is such that low spatial frequencies in the z 

dimension are not recoverable.  This leads to image distortion along the z-axis where in the end 
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the processing is only able to detect the edges of an object corresponding to the higher spatial 

frequencies.  

Additionally, there are a number of other parameters that can be altered within the GPR 

hardware and software that could potentially enhance GPR’s functionality in this application. 

These include but are not limited to: changing the antenna type, increasing or decreasing the 

operating frequency, and altering the specific survey parameters such as antenna separation or 

step size. Also, only two types of analysis were examined in this thesis. Other means of 

comparison, such as examining ground root biomass, could be explored as a means to measure 

changes in root characteristics. Finally, certain environmental conditions encountered in the 

controlled and field experiments hindered results. For example, the overgrowth of weeds and 

uncontrolled rain events made ground truthing impossible. 

Overall, it cannot be said one way or another if GPR can be used a tool for fine root 

phenotyping from this research. This research instead shows the importance of incorporating the 

electromagnetic properties of the soil into the processing of GPR data and that more research 

needs to be conducted. The above experiments could provide a groundwork and act as a stepping 

stone to help determine the feasibility of GPR as a phenotyping tool.  

 Finally, this thesis also looked at the ability of GPR to be used as a tool for detecting and 

quantifying soil organic carbon with results presented in Chapter V. SOC data can provide 

information to help increase plant productivity, maximize carbon sequestration potential and 

improve water use strategies. However, similar to root phenotyping, the agriculture discipline 

lacks a tool to rapidly and nondestructively quantify SOC in the field. Increased SOC is known 

to cause a subsequent increase in water infiltration and retention in the surface soil and thus, 
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GPR could act as a potential tool for indirectly detecting small scale changes in SOC by 

detecting the changes in soil moisture content caused by changes in SOC levels. To provide a 

reasonable range of SOC levels, three sites were selected across the United States at which GPR 

measurements were taken at 400 and 900 MHz.  Two statistics, integrated pixel magnitude and 

energy per trace spatial mean, were developed specifically for this application to compare with 

the SOC levels. The first comparison made was between plots within the same locations. In this 

scenario the relationships varied greatly from state to state. This was likely due to the spatial 

heterogeneity of the ground cover and terrain between plots that influenced the GPR signal. In 

the comparison between states a strong positive linear relationship was observed between the 

average value of the two statistics across all of the plots at a given site and the average SOC. As 

in the root phenotyping portion of this thesis, the results for SOC quantification were mixed. In 

certain scenarios, i.e. where contrast in SOC were larger, GPR appeared to have the potential to 

detect differences in SOC levels, however at the smaller scale between plots, GPR failed to 

detect any differences in SOC. As a novel technique for GPR, the ability to quantify SOC is still 

unclear. Additional experiments across a variety of soil types and SOC levels are required to be 

able to state if GPR could be used as a SOC quantification tool. As in root phenotyping, the type 

of and amount of post-processing required is still under-development and changing soil 

parameters across a landscape and within a soil profile must be taken into consideration in order 

confidently state whether GPR can successfully quantify SOC. 
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