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ABSTRACT

As two ubiquitous features in open oceans, baroclinic instability vortices and near-inertial

waves can coexist in coastal zones under certain conditions and exhibit unique features. This

study attempts to improve the fundamental understanding of the submesoscale baroclinic instabil-

ities and near-inertial waves in coastal buoyancy-driven flows. Baroclinic instabilities in coastal

buoyancy-driven flows exhibit the self-inhibiting feature (the reduction of the growth rate), which

is not revealed in the classical quasi-geostrophic theory. The first part of this study explores the

non-geostrophic baroclinic instability theory adapted to the scenario with sloping bathymetry and

demonstrates that the suppression of instabilities is related to the Rossby wave resonance. A non-

dimensional parameter, slope-relative Burger number, is defined for the instability suppression.

On the other hand, near-inertial waves in coastal buoyancy-driven flows can be modified by the

curved fronts of the instability vortices, which is not revealed in the previous modification theories

accounting for straight, jet-like fronts. The second part of this study focuses on the curvature ef-

fect of a front on modifying the properties of near-inertial waves. The primary finding is that the

waves modified by a baroclinic vortex can be trapped deeper and hence cause deeper mixing than

the ones modified by a front without curvature. Furthermore, to better simulate coastal buoyancy-

driven flows, the simulation errors caused by temporally subsampling winds are quantified in the

last part of this study. The primary finding is that the simulation error is proportional (1:1) to the

fraction of the energy missing in the high-frequency wind caused by subsampling. Analyzing the

fast Fourier transformation spectrum of a single-point wind measurement in the simulation region

is helpful for estimating simulation errors due to temporal resolution.
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NOMENCLATURE

Ri Richardson Number

Rib Bulk Richardson Number

Ro Rossby Number

Rd Rossby Deformation Radius

Bu Burger Number

S Slope Burger Number

SH Horizontal Slope Burger Number

Sr Slope-relative Burger Number

� Slope Parameter

�r Slope-relative Parameter

↵ Bottom Slope

M2 Horizontal Buoyancy Gradient

N2 Vertical Buoyancy Gradient

f Coriolis Paramter / Inertial Frequency

feff Effective Inertial Frequency

f ⇤
eff

Modified Effective Inertial Frequency

⇣s Shearing Vorticity

⇣c Curvature Vorticity

ADCP Acoustic Doppler Current Profiler

CTD Conductivity-Temperature-Depth

FFT Fast Fourier Transform

GCM General Circulation Model
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HYCOM Hybrid Coordinate Ocean Model

MCH Mechanisms Controlling Hypoxia

NDBC National Data Buoy Center

NG Non-Geostrophic

NIW Near-Inertial Wave

QG Quasi-Geostrophic

ROMS Regional Ocean Modeling System

RMS Root-Mean-Square

STD Standard Deviation

TABS Texas Automated Buoy System

WKB Wentzel-Kramers-Brillouin
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1. INTRODUCTION

As an important ocean energy reservoir, ocean eddies carry substantial kinetic energy at the

sub-inertial frequencies (Ferrari and Wunsch, 2009); these spinning features are ubiquitous but

are especially energetic near ocean fronts at all scales. Ocean eddies can be mesoscale within

large-scale, geostrophic fronts, or submesoscale within ocean mixed layers (Boccaletti et al., 2007;

Shcherbina et al., 2013) and along fronts of mesoscale eddies (Callies et al., 2015; Brannigan et al.,

2017). Ocean mesoscale eddies have been extensively investigated in the last decades from both

the theoretical and observational perspectives, whereas the submesoscale eddies have not been well

understood. The generation mechanism of the submesoscales is still a debate in the oceanography

community with two proposed mechanisms – the non-geostrophic baroclinic instabilities and the

mesoscale-driven surface frontogenesis (Lapeyre and Klein, 2006; Boccaletti et al., 2007; Callies

et al., 2016).

The classical non-geostrophic baroclinic instability theory interprets submesoscales by describ-

ing the dimension and growth rate of instability modes, based on an assumption of flat topography

(Stone, 1966, 1970, 1971; Fox-Kemper et al., 2008). This assumption is valid for the mixed layer

instabilities but seems not reasonable for the baroclinic instabilities in coastal buoyancy-driven

flows that are often over continental shelves. Although the classical non-geostrophic theory does

not include the topographic effect, there are still several modified theories accounting for slopping

topography. Blumsack and Gierasch (1972) adapted the classical Eady’s problem (Eady, 1949)

into the scenario with a sloping bottom; but the theory is in the quasi-geostrophic (QG) regime and

hence not applicable to the energetic submesoscales where QG might not be a reasonable assump-

tion (Hetland, 2017). By rotating coordinates, Wenegrat et al. (2018) adapted the classical Stone’s

problem (Stone, 1970) into the scenario with a sloping surface and a sloping bottom to study sub-

mesoscales at bottom boundary layers; although this theory is in the non-geostrophic regime, the

assumption of the parallel, sloping surface and bottom seems not reasonable for coastal buoyancy-

driven flows that are usually with flat surfaces. Unfortunately, a non-geostrophic baroclinic insta-
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bility theory for coastal buoyancy-driven flows has not been established, which is very challenging.

To better understand the fundamental physics of the submesoscales in coastal buoyancy-driven

flows, we will turn to seek the limit within which the existing theories can be approximately appli-

cable, and then use them to explore the controlling mechanism of the instability suppression which

is a unique feature of the submesoscales in coastal buoyancy-driven flows.

As another important ocean energy reservoir, near-inertial waves (NIWs) dominate oceanic

kinetic energy at the frequencies near the local Coriolis parameter (Ferrari and Wunsch, 2009).

NIWs are the internal gravity waves with the nearly inertial frequencies and they are ubiquitous in

the ocean (Alford et al., 2016). One outstanding feature of the internal gravity waves is that the

wave motions are associated with strong velocity shear. This feature can induce wave breaking

such that NIWs can make a significant contribution to the mixing in the ocean interior (Wunsch

and Ferrari, 2004). NIWs are most intense at the major large-scale ocean fronts, such as the

Antarctic Circumpolar Current, Kuroshio Current, and Gulf Stream. These regions underlie the

westerlies where the storm tracks pass, and hence the NIWs can be sufficiently stimulated and

energized (Alford, 2003). Whalen et al. (2012) estimated the global dissipation rate and diffusivity

in the upper ocean based on the ARGO float data – the hotspots of dissipation and diffusivity

match the locations of the major ocean fronts. High dissipation rate implies that the kinetic energy

is energetically transferred to the small-scale turbulence, and high diffusivity indicates that the

vertical mixing is also enhanced during the energy transfer. The correspondence between the NIWs

and the mixing hotspots indicates that NIWs can propagate the energy towards the ocean interior

and transfer the energy to the internal waves with higher frequencies and eventually to small-scale

turbulence, which causes significant mixing and dissipation (Ferrari and Wunsch, 2009).

Because of the correspondence between the NIWs and the large-scale fronts, it has been hy-

pothesized that the NIW-front interactions could damp the large-scale circulation and energize the

internal wave continuum and hence could be important for closing the kinetic energy budgets of

both types of motion (Polzin and Lvov, 2011; Nagai et al., 2015; Wagner and Young, 2016). The

NIW-front interaction is related to the fact that the properties of NIWs can be significantly modi-
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fied by the vorticity of an ocean front. An anti-cyclonic jet can reduce the minimum (allowable)

frequency to the effective inertial frequency (which is less than the inertial frequency in the case

of the anti-cyclonic front) such that the waves with the inertial frequency can vertically propagate.

This modification leads to the trapping of NIWs at anti-cyclonic fronts, where the consequent wave

breaking and mixing can occur. There are substantial observations showing that the enhanced dis-

sipation in the ocean interior are highly related to the negative vorticity (Perkins, 1976; Kunze and

Sanford, 1984; Kunze et al., 1995). This process ensures an efficient transfer of energy through the

ocean thermocline, which is referred to as the near-inertial chimney effect (Lee and Niiler, 1998).

To vertically propagate, NIWs must require potential energy and hence extract kinetic energy from

the balanced flow (Xie and Vanneste, 2015). This process is referred to as the stimulated genera-

tion; it means that NIWs are firstly generated by the energy injection from stimulating forcing and

subsequently gain additional energy through the wave-front interaction. The wave-front interac-

tion can also energize the internal wave continuum by triggering wave-wave interactions and hence

facilitate the energy transfer from NIWs to higher frequency modes (Wagner and Young, 2016).

In addition to the vorticity of fronts, the lateral density gradients can also modify the properties

of NIWs to cause the energy cascade and transfer across the motions with a range of spatial scales

(Thomas, 2017). Beyond the vorticity, the baroclinity of a front can further reduce the minimum

(allowable) frequency so that NIWs can be unstable to the parametric subharmonic instabilities

(Thomas and Taylor, 2014). The parametric subharmonic instabilities can extract kinetic energy

from the NIWs and transfer the energy to secondary instabilities and eventually to potential energy

(by turbulent mixing) and heat (by molecular dissipation). Furthermore, the baroclinity can cause

the four characteristics of NIWs to be symmetric with respect to the isopycnal slope. Particularly,

the waves with the effective inertial frequency can either propagate vertically or horizontally; this

leads to the focusing reflection of the wave characteristics at the surface, which can facilitate the

energy transfer from the NIWs to small-scale turbulence and hence enhance the viscous dissipation

and turbulent mixing (Grisouard and Thomas, 2015, 2016).

However, most of the previous studies focused on the modifications of NIWs at straight, jet-like
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fronts (Mooers, 1975; Kunze, 1985; Whitt and Thomas, 2013; Thomas, 2017; Whitt et al., 2018),

whereas only a few have focused on curved, vortex-like fronts (Kunze and Boss, 1998; Joyce et al.,

2013). In coastal zones, NIWs and vortex-like fronts can coexist under certain conditions and inter-

act with each other. Submesoscale eddies can be quite energetic in some coastal zones because of

the baroclinic instabilities in buoyancy-driven flows. For example, recent studies have highlighted

the enhanced variability over the Texas-Louisiana shelf in the northern Gulf of Mexico (Marta-

Almeida et al., 2013) due to the baroclinic instabilities along the Mississippi/Atchafalaya River

plume front (Hetland, 2017). On the other hand, near-inertial motions over the Texas-Louisiana

shelf are significantly energetic, because they are resonantly forced by the land-sea breeze that is

with the frequency close to the local Coriolis parameter (DiMarco et al., 2000b; Zhang et al., 2009,

2010). However, the modifications of NIWs by a strongly curved, baroclinic front are simply not

well understood. It is hoped that this study will improve the understanding of the modifications

at vortex-like fronts, which could be helpful for further exploring the NIW-front interactions and

hence the energy transfers across scales and regimes.

As a typical buoyancy-driven flow in coastal zones, river plumes are of the central importance

of understanding coastal ecosystems and environments (Horner-Devine et al., 2015). As a primary

forcing agent for coastal buoyancy-driven flows, wind plays an important role in controlling the

position and evolution of a river plume. River plumes move onshore and offshore in response

to downwelling and upwelling winds, respectively. An upwelling wind can pull a river plume

offshore and reduce the along-shore freshwater transport (Masse and Murthy, 1990; Kourafalou

et al., 1996). Under upwelling conditions, motions at the seaward front of a plume are dominated

by the Ekman physics (Fong et al., 1997). A downwelling wind can shrink the surface expression

of a river plume, vertically tilt the isopycnals, and increase the along-coast transport of freshwater

(Moffat and Lentz, 2012). In this sense, wind stress affects freshwater distribution asymmetrically,

because freshwater is moving onshore and downcoast during downwelling and moving offshore

during upwelling (Hetland and Hsu, 2013). Consequently, the temporal history of wind forcing

and the associated accuracy are highly important for accurately simulating the spatial extent and
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structure of a river plume.

Another wind effect on river plumes is wind-induced mixing (Masse and Murthy, 1992). In the

near-field region of a river plume, shear instabilities are dominant due to the inertia and shoaling of

the estuarine jet. After freshwater leaves the near-field region, the shear mixing is suppressed, and

the wind mixing becomes dominant (Hetland, 2010). Fong and Geyer (2001) constructed a con-

ceptual model to describe the far-field mixing during an upwelling wind event. As the upwelling

winds spread the plume offshore, the plume is stretched wider, and, because of the conservation of

buoyancy, the plume must also become thinner. This shoaling increases the depth-averaged Ekman

flow confined to the plume, and shear instabilities may be induced. Entrainment at the interface

thickens the upper layer until the bulk Richardson number is again above the critical value, 0.25.

The vertical spatial scale characterizing this mixing effect is referred to as the critical depth (Lentz,

2004; Hetland, 2005). The critical depth suggests that the portion of the plume with layer thickness

larger than the critical depth is protected from the wind-induced mixing. Wind-induced mixing in

a river plume has a significant impact on the material transport such as larvae, sediments, and pol-

lutants, and is an essential mechanism in the terrestrial-oceanic water cycle (Epifanio and Garvine,

2001; Chant, 2012). Therefore, the temporal history of wind forcing and the associated accuracy

are very important for accurately simulating the density structure of a river plume.

To our knowledge, the simulation errors caused by temporally subsampling of winds have

not been investigated quantitatively in the scenario of coastal buoyancy-driven flows, and hence

we simply do not have a rationale for selecting wind forcing for river plume simulations. One

goal of this study is to quantify the temporal resolution of wind forcing required for river plume

simulations. It is hoped that this study could provide general guidance on properly selecting wind

forcing and improve our ability on simulating coastal buoyancy-driven flows.

This dissertation is organized as follows. Chapter 2 will focus on the submesoscale baroclinic

instabilities in coastal buoyancy-driven flows; particularly, it will exhibit the instability suppres-

sion in coastal buoyancy-driven flows and demonstrate the mechanism controlling the instability

suppression. Chapter 3 will focus on the NIWs in a coastal buoyancy-driven flow; particularly,
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it will present the modifications of NIWs by a baroclinic vortex and demonstrate the curvature

effect of a vortex on modifying NIWs. Chapter 4 will focus on the numerical simulation of coastal

buoyancy-driven flows; particularly, it will quantify the simulation errors caused by temporally

subsampling of winds and provide suggestions on properly selecting wind forcing for river plume

simulations.
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2. NON-GEOSTROPHIC BAROCLINIC INSTABILITY IN BUOYANCY-DRIVEN FLOW

OVER SLOPING BATHYMETRY

2.1 Introduction

Baroclinic instabilities release potential energy stored in horizontal density gradients, creating

unsteady and evolving motions in the flow at approximately the first baroclinic deformation radius.

As such, the Burger number, Bu, associated with baroclinicly unstable flow is Bu = RdL�1 =

RoRi1/2 ⇠ 1 (Eady, 1949; Stone, 1966, 1970). Beyond this, there are two general categories of

baroclinic instabilities associated with the Rossby number, Ro, of the flow: mesoscale instabilities

within the large-scale, geostrophic fronts with Ro ⌧ 1 and Ri � 1, and submesoscale instabilities

with Ro ⇠ 1 and Ri ⇠ 1 (Boccaletti et al., 2007). Examples of the submesoscale instabilities

include instabilities within the ocean mixed layer (Boccaletti et al., 2007; Shcherbina et al., 2013),

along the fronts of mesoscale eddies (Callies et al., 2015; Brannigan et al., 2017), and, rarely, in

certain coastal buoyancy-driven flows (Hetland, 2017).

Coastal buoyancy-driven flows are often associated with stronger lateral density gradients than

open ocean fronts, but are seldom observed to be associated with instabilities; in particular, baro-

clinic instabilities are seldom observed in river plumes, even though lateral buoyancy gradients

within the fronts are strong (Horner-Devine et al., 2015). External forcing agents, such as winds

and tides, could suppress baroclinic instabilities through mixing processes. However, it has been

demonstrated that a rotating plume without the external forcing can be very stable over many ro-

tational periods (Fong and Geyer, 2002; Lentz and Helfrich, 2002; Hetland, 2005; Horner-Devine

et al., 2006; Hetland, 2017); this implies that the suppression can be due to the intrinsic inhibit-

ing effects of the front. Hetland (2017) examined the suppression of baroclinic instabilities in a

coastal buoyancy flow using numerical model results and quasi-geostrophic (QG) theory of buoy-

ancy driven flow over a sloping bottom. However, the QG assumption may not be reasonable in

energetic coastal fronts.
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This paper explores the non-geostrophic baroclinic instability theory adapted to the scenario

with a sloping bathymetry. Both layered and continuously stratified models are used to demon-

strate the suppression of instabilities in buoyancy-driven flow over a sloping bottom, which is

not revealed in the classical QG theory (Blumsack and Gierasch, 1972). In particular, this paper

attempts to seek a non-dimensional parameter for predicting the instability suppression and the

underlying mechanism controlling the suppression in the buoyant flow regime.

2.2 Theory

2.2.1 Layered Model of Non-Geostrophic Baroclinic Instability

Phillips (1954) transformed the continuously stratified fluid to a two-layer system and con-

structed the layered model of QG baroclinic instabilities. Sakai (1989) investigated the ageostrophic

instabilities using an ageostrophic version of Phillips model. We adapt Sakai model to the scenario

with sloping bottom and surface (hereinafter referred to as the adapted Sakai model). The schemat-

ics of Sakai model and the adapted Sakai model are shown in Fig. 2.1. The adapted Sakai model

is a rotating two-layer channel with the sloping topography and mean flow in the thermal wind

balance. Considering the time scale as f�1, the horizontal length scale as the Rossby deformation

radius Rd =
p

1
2g

0H0

f
, and the vertical length scale as H0 (see the scale analysis in Appendix A),

the dimensionless form of the equations governing the perturbations is
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subject to

v1|y=±Ymax = 0,

v2|y=±Ymax = 0,
(2.2)

where the subscript 1 (2) denotes the variables in the upper (lower) layer, u is the along-slope

velocity, v is the across-slope velocity, p is the pressure, ±Ymax are the across-slope boundaries,

H1 = 1 � (� + 1)Ri�1/2
b

y is the thickness of the upper layer, and H2 = 1 + (� + 1)Ri�1/2
b

y

for the lower layer. Rib = g
0
H0

2U2
0

is the bulk Richardson number, where g0 is the reduced gravity,

H0 is the dimensional average thickness, and U0 is the dimensional mean flow (U0 in the upper

layer and �U0 in the lower layer). Ymax ⌘ �H

(�+1)Ri
�1/2
b

insures that the total change of the layer

thickness is�H (�H = 0.5 is used in this study). � = ↵g
0

2U0f
is the slope parameter, the ratio of the

bottom slope ↵ and the isopycnal slope 2U0f

g
0 . Here, � has an opposite sign convention compared

to the original one in the study of Blumsack and Gierasch (1972), such that in this work positive �

represents the common case of buoyancy-driven flow over a continental shelf, where the isopycnal

and bathymetric slopes are opposite. In this study, we will only focus on the scenarios with positive

�, which is referred to as the buoyant flow regime.

Assume a wave-like solution � = e�(y)ei(kx��t), where k = k⇤Rd is the dimensionless along-

slope wavenumber and � = f�1�⇤ is the dimensionless wave frequency. Substituting it into Eq.

(2.1) and (2.2) yields an eigenvalue problem (see Appendix A). The growth rate of instabilities

�i = Imag[�] is obtained by numerically conducting the linear stability analysis. DEDALUS is

used in stability analysis, which is a PDE solver that uses spectral methods (Burns et al., 2016).

Fig. 2.1 shows the normalized growth rate in the flat-bottom case (� = 0) and the sloping-bottom

case (� = 0.5); more discussion is in Section 2.3.1.

2.2.2 Continuously Stratified Model of Non-Geostrophic Baroclinic Instability

Eady (1949) built a continuously stratified QG framework for study the baroclinic instabilities.

Blumsack and Gierasch (1972) adapted Eady model to the scenario with a sloping bottom (here-

inafter referred to as the QG model). Stone (1966, 1970, 1971) extended Eady model (Eady, 1949)

to the non-geostrophic limit and constructed the continuously stratified model of non-geostrophic

9
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H2
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-U0

Sakai Model
(Ageostrophic)

Adapted Sakai Model
(Ageostrophic)

Figure 2.1: Normalized growth rate (�̂i = Ri1/2
b
�i = Ri1/2

b
f�1�⇤

i
) as a function of normalized

wavenumber (k̂ = k⇤Rd) and bulk Richardson number (Rib =
g
0
H0

2U2
0

) based on Sakai model (� =

0.0) and the adapted Sakai model (� = 0.5).
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baroclinic instabilities. We use the modified model (Wenegrat et al., 2018), which adapts Stone

model to the scenario with sloping bottom and surface (hereinafter referred to as the adapted Stone

model). The schematic of the QG and adapted Stone models are shown in Fig. 2.2. In the adapted

Stone model, the coordinates are rotated to align with the sloping bottom. The background buoy-

ancy has a constant vertical gradient N2 and a constant horizontal gradient M2, and the background

flow is constrained by the thermal wind relation. Considering the time scale as f�1, the horizontal

length scale as U/f , and the vertical length scale as H (see the scale analysis in Appendix B), the

dimensionless form of the equations governing the perturbations in the rotated coordinates is

@u

@t
+ u0

@u

@x
+ w

@u0

@z
� v cos✓ � ✏ w sin✓ = �Ri

@p

@x
,

@v

@t
+ u0

@v

@x
+ u cos✓ = �Ri

@p

@y
� � b cos✓ ,

✏2
@w

@t
+ ✏2u0

@w

@x
+ ✏ u sin ✓ = �Ri

@p

@z
+ Ri b cos✓ ,

@b

@t
+ u0

@b

@x
+ v

@b0
@y

+ w
@b0
@z

= 0 ,

@u

@x
+
@v

@y
+
@w

@z
= 0 ,

(2.3)

subject to

w|z=0 = 0,

w|z=1 = 0,
(2.4)

where u is the along-shore velocity, v is the across-shore velocity, and w is the vertical velocity,

p is the pressure, b is the buoyancy, ✓ is the bottom slope angle, u0 = z

cos✓
is the mean along-

shore velocity, b0 = (cos✓ � ✏Ri�1sin✓)z � (� + 1)Ri�1cos✓ y is the mean buoyancy, and z=0

(z=1) is the sloping bottom (surface). Ri = N2H2U�2 = N2f 2M�4 is the Richardson number.

� = ↵N2M�2 is the slope parameter, the ratio of the bottom slope ↵ and the isopycnal slope M
2

N2 .

✏ = fHU�1 = f 2M�2 is the non-hydrostatic parameter (Stone, 1971).

Noting that the surface is also assumed to be tilted, the adapted Stone model is intrinsically

suitable for the baroclinic instabilities in a tilted bottom boundary layer, but seems not directly

applicable to the situation with a flat surface that is not parallel with the tilted bottom. One way is to

11



adapt Stone model to the scenario with a flat surface, but this presents two challenges for theoretical

approaches: first, making the uniform depth assumption like Eq. (2.4) is theoretically invalid;

second and subsequently, an ansatz with the wave form in the across-slope direction becomes

theoretically invalid. Consequently, instead of adapting Stone model to the flat-surface scenario,

we will address the feasibility of the adapted Stone model (Wenegrat et al., 2018) in the flat-surface

cases, e.g., baroclinic instabilities in a coastal buoyancy-driven flow over a continental shelf.

Assume a wave-like solution � = e�(z)ei(kx+�y��t), where k = f

U
k⇤ is the dimensionless

along-slope wavenumber, � = f

U
�⇤ is the dimensionless along-slope wavenumber, and � = f�1�⇤

is the dimensionless wave frequency. Substituting it into Eq. (2.3) and (2.4) yields the eigenvalue

problem of the adapted Stone model (see Appendix B). DEDALUS is also employed to calculate

the growth rate of instabilities �i = Imag[�]. Fig. 2.2 shows the normalized growth rate based on

the QG model (Ri � 1) and the adapted Stone model (Ri = 2.0); more discussion is in Section

2.3.2. To keep consistent with the normalization in the QG model (Blumsack and Gierasch, 1972),

the dimensionless variables �i and k are converted to the normalized variables �̂i and k̂. The

normalized wavenumber k̂ is defined by the normalization of the dimensional wavenumber k⇤ by

the Rossby deformation radius Rd =
NH

f
; that is, according to the scaling relations,

k̂ ⌘ Rdk
⇤ = (

1

L
)(
NH

f
)k = (

1

Uf�1
)(
NH

f
)k = NHU�1k = Ri1/2k . (2.5)

The normalized growth rate �̂i is defined by the normalization of the dimensional growth rate �⇤
i

by the advection time scale Rd/U ,

�̂i ⌘
Rd

U
�⇤
i
= (NHU�1)f�1�⇤

i
= Ri1/2�⇤

i
f�1 = Ri1/2�i . (2.6)

With regard to the normalization in the adapted Sakai model, the wavenumber k⇤ is normalized

by Rd, so k̂ ⌘ Rdk⇤ is equivalent to the k in the adapted Sakai model, while the dimensionless

�i ⌘ �⇤
i
f�1 still needs to be converted as Eq. (2.6). For the rest of this paper, we will use the

normalized variables (�̂i and k̂) to describe the properties of baroclinic instabilities.
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z̃

Horizontal Buoyancy Gradient $"

x̃ ỹ
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Figure 2.2: Normalized growth rate (�̂i = Ri1/2�⇤
i
f�1) as a function of normalized wavenumber

(k̂ = k⇤Rd) and slope parameter � = ↵N2M�2 based on Blumsack-Gierasch model (Ro ⌧ 1,
Ri � 1) and the adapted Stone model (Ro ⇠ 1, Ri ⇠ 1). Ri = 2.0 is used in the adapted Stone
model.
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2.3 Results

Suppression of baroclinic instabilities over sloping bathymetry, in terms of the amplitude of

the instabilities, occurs when the horizontal slope Burger number SH = M2f�2↵ & 0.2 (Hetland,

2017). SH can be written as a ratio of the inertial length scale to the front width; the criterion

implies that instabilities can be suppressed when the front is too narrow to fit the vortices. In this

study, we will also address the suppression of instabilities but from the temporal perspective - the

growth rate of instabilities.

2.3.1 Suppression of Instabilities in the Layered Model

Based on the adapted Sakai model, baroclinic instabilities start to be suppressed, meaning the

growth rate of the instabilities is reduced, when the bottom slope increases (see Fig. 2.1). Also,

instabilities are found to be suppressed with decreasing bulk Richardson number Rib. Fig. 2.3

shows the transition of the normalized grow rate �̂i = Ri1/2�⇤
i
f�1 if Rib shifts from 40 to 20 -

instabilities are significantly inhibited in the Rib = 20 case and can be completely suppressed if

the slope parameter � is sufficiently large.

As noted above, the suppression of instabilities has opposite dependencies on Rib and �. To

further demonstrate it, the maximum grow rate as a function of Rib and � is calculated. The

maximum normalized growth rate �̂i,max is defined as the maximum of the normalized growth rate

across all wavenumbers k̂ = k⇤Rd for given Rib and �. Fig. 2.4 shows the �̂i,max in the parameter

space of Rib and �. �̂i,max also exhibits opposite dependencies on Rib and �, with the suppression

as Rib decreases and � increases. Baroclinic instabilities are completely suppressed at low Rib

and high �. To understand the suppression of baroclinic instabilities, we will identify the primary

coefficient linked with the suppression and explore the controlling mechanism.

A new parameter, slope-relative Burger number Sr = N

f
(↵ + M

2

N2 ), is considered as the coef-

ficient controlling the suppression of instabilities in the non-geostrophic case. Compared to the

conventional slope Burger number S = N

f
↵, the slope-relative Burger number Sr uses a bottom

slope relative to the isopycnal slope, M
2

N2 . Thus, if the slopes are aligned, with the bottom par-

14



Figure 2.3: Normalized growth rate (�̂i = Ri1/2�⇤
i
f�1) in the cases with Richardson number

Rib = 40 (left) and Rib = 20 (right). �̂i is shown as a function of normalized wavenumber
(k̂ = k⇤Rd) and slope parameter (� = ↵g

0

2U0f
).

allel to the isopycnals, then Sr = 0. The slope-relative Burger number is based on the Burger

number using the layer thicknesses in the adapted Sakai model; H⇤
1 = H0 � (↵ + M

2

N2 )y⇤ and

H⇤
2 = H0 + (↵ + M

2

N2 )y⇤ may be used to write a Burger number as Bu = NH

fL
= N

f
(↵ + M

2

N2 ).

Noticing that the dimensionless layer thickness is H1 = 1�Sry and H2 = 1+Sry (see Appendix

A), the physical meaning of the slope-relative Burger number is that Sr represents the gradient of

potential vorticity supplemented by topographic effects.

The slope-relative Burger number can be written in terms of the Richardson number Ri and the

slope parameter � as

Sr =
N

f
(↵ +

M2

N2
) = (↵N2M�2 + 1)(N2f 2M�4)�1/2 = (� + 1)Ri�1/2 = �rRi�1/2 . (2.7)

where �r = 1 + � = ↵+M
2
/N

2

M2/N2 is the slope-relative parameter, with an interpretation similar to the

slope-relative Burger number Sr. For clarity, hereafter 1 + � will be written as �r. The distribution

of S2
r

in Rib�� space (middle panel of Fig. 2.4) is proportional to the maximum normalized growth

rate �̂i,max (right panel of Fig. 2.4). In addition, instabilities are completed suppressed for S2
r
&

0.1. The linear relation between S2
r

and �̂i,max does not hold in the QG limit (e.g., Rib ⇠ O(100)),

so suppression of instabilities proportional to Sr only applies in the non-geostrophic limit.
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A strength of the Sakai model is to interpret instabilities in the framework of wave resonance

based on the physical wave coordinates (Sakai, 1989). For instance, Kelvin-Helmholtz instabilities

are interpreted as the resonance of interacting gravity waves. In this study, we will only focus on

the interactions between Rossby waves to interpret the suppression of baroclinic instabilities. The

physical wave coordinates, then, only consist of the Rossby waves; since the Rossby wave coordi-

nates are the Fourier basis (see Appendix C), the projection onto the physical wave coordinates is

equivalent to conducting the Fourier transform (Pedlosky, 2013). The details of the Rossby wave

resonance in the adapted Sakai model can be found in Appendix C. The resonance rate R⇤ in the

adapted Sakai model is, then,

R⇤ = Imag[ k⇤U0

s
(1� 2�r✏⇤n)

2 � ✏⇤2
n

1� ✏⇤2
n

] (2.8)

where ✏n = 1
2R2

d(k
⇤2+l⇤2n )+1

is the interaction coefficient, k⇤ is the dimensional along-slope wavenum-

ber, and l⇤
n
= n⇡

2Y ⇤
max

(n = 1, 2, 3, ...) is the dimensional across-slope wavenumber. If �r = 1 (the

flat-bottom case), Eq. (2.8) is reduced to R⇤ = Imag[ k⇤U0

q
1� 2

R
2
d(k

⇤2+l⇤2n )+1
], which reproduces

Eq. (28) in Sakai (1989). Fig. 2.5 shows the comparison between the non-zero �̂i,max (shown in

Fig. 2.4) and the normalized resonance rate Ri1/2
b

f�1R⇤, where R⇤ is calculated by only consid-

ering the resonance of the lowest mode (n = 1) and using the k⇤ corresponding to the maximum

growth rate. The resonance rate closely follows the growth rate, especially at high growth rates

(presumably, the discrepancy at low growth rates is due to the only consideration of the resonance

of the lowest mode). This implies that the maximum growth of instabilities is highly related to the

resonance of the lowest mode of Rossby waves.

Basically, in the adapted Sakai model, the sloping bottom and surface modify the phase speed

of Rossby waves and hence alter the Rossby wave resonance from the flat-bottom case. According
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Figure 2.4: (left) Maximum normalized growth rate �̂i,max and (middle) slope-relative Burger
number S2

r
= [(1 + �)Ri�1/2

b
]2 as functions of bulk Richardson number Rib = g

0
H0

2U2
0

and slope

parameter � = ↵g
0

2U0f
based on the adapted Sakai model. Comparison of S2

r
and �̂i,max is shown in

the right panel.
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to Appendix C, the dimensionless form of the phase speed of the Rossby waves in both layers is

�1/k = � 2

2(k2 + l2
n
) + 1

Sr,

�2/k =
2

2(k2 + l2
n
) + 1

Sr.
(2.9)

Where �1,2 are the dimensionless wave frequencies, k is the dimensionless along-slope wavenum-

ber, and ln ⌘ n⇡

2Ymax
= n⇡

2�H
Sr (n = 1, 2, 3, ...) is the dimensionless across-slope wavenumber. If

only considering the resonance of the lowest mode (n = 1) and using the k corresponding to the

non-zero �̂i,max, the dimensionless phase speed �/k is a function of Rib and �, which is shown in

the left panel of Fig. 2.6. The correlation between �/k and Rim
b
�n
r

is shown in the middle panel of

Fig. 2.6. The highest correlation coefficients are at m = �n

2 where Sn

r
= [Ri�1/2

b
�r]n locates; it

means that the phase speed of the Rossby waves is significantly proportional to the slope-relative

Burger number Sr. Presumably, this is due to that Sr represents the gradient of potential vortic-

ity, and larger gradient leads to the faster wave speed. Once the wave speed is increased by the

sloping bathymetry, the Doppler-shifted frequencies of the waves would be altered from the res-

onant frequency in the corresponding flat-bottom case. Consequently, the wave resonance would

be weaker, and hence the growth rate of instabilities would be smaller. The right panel of Fig. 2.6

shows that the resonance rate linearly decreases with the increasing S2
r
, and they are highly corre-

lated (r2 = �0.99, p = 0.0). In sum, Sr controls the growth of instabilities by altering the Rossby

wave resonance.

2.3.2 Suppression of Instabilities in the Continuously Stratified Model

The suppression of instabilities through the reduction of instability growth rate is also found in

the adapted Stone model. Particularly, the suppression is significant when the regime shifts from

QG to non-geostrophic. To demonstrate the suppression, the QG model is briefly reviewed here.

In the QG model, the mean state consists of a density field with constant vertical and horizontal

buoyancy gradients and a velocity field constrained by the thermal wind relation. By assuming that

the Rossby number Ro = U

fL
⌧ 1 and Burger number Bu = NH

fL
⇠ 1 (leading to the Richardson
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Figure 2.5: Comparison of the normalized Rossby wave resonance rate Ri1/2
b

f�1R⇤ and the non-
zero maximum normalized growth rate �̂i,max (based on the adapted Sakai model) in the parameter
space of 10  Rib  40 and 0  �  0.6. Color represents slope-relative Burger number S2

r
, and

grey line is the 1:1 line.
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Figure 2.6: (left) Dimensionless Rossby wave speed �/k as a function of bulk Richardson number
Rib =

g
0
H0

2U2
0

and slope parameter � = ↵N2M�2. (middle) Correlation coefficient between �/k and
Rim

b
�n
r

(using different powers of bulk Richardson number Rib and slope-relative parameter �r).
The red dashed line marks Ri�n/2

b
�n
r

representing slope-relative Burger number Sn

r
= [�rRi�1/2

b
]n.

(right) Comparison of the slope-relative Burger number S2
r

and the Rossby wave resonance rate.
Grey dashed line is the linear regression (r2 = �0.99, p = 0.0).
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number Ri = Bu2Ro�2 � 1), the equations governing perturbations can be linearized and hence

reduced to a single PDE about the QG potential vorticity. Then, the growth rate of the instabilities

is analytically obtained by solving the associated eigenvalue problem; the normalized growth rate

is, then,

�̂i = {[ k̂

tanh(k̂)
� 1] (1 + �)� 1

4
[

�

tanh(k̂)
+ k̂] 2}1/2 , (2.10)

where �̂i = Ri1/2�⇤
i
f�1 is the normalized growth rate, k̂ = k⇤Rd is the normalized wavenumber,

and � is the slope parameter. Fig. 2.2 shows �̂i in the QG model and the adapted Stone model. The

adapted Stone model exhibits a significant reduction of the tail and predicts lower growth rates

than the QG model. For instance, the tail enclosed by the contours of 0.2 is significantly smaller

in the adapted stone model than the QG model.

Maximum growth rates predicted by the QG and adapted stone models have different depen-

dencies on the Richardson number Ri. The maximum normalized growth rate, �̂i,max, is defined as

the maximum of the normalized growth rate across all wavenumbers, k̂, for a given Ri and �. The

maximum normalized growth rate, �̂i,max, for the adapted stone model is denoted as �̂NG, �̂QG for

the QG model. Fig. 2.7 shows the �̂NG and �̂QG in the parameter space of Richardson number, Ri,

and slope parameter, �. Here we implicitly associate QG theory to high Ri conditions, because it

is unknown how well QG theory describes flow at low Ri conditions. The QG maximum growth

rate, �̂QG, decreases with �, but does not vary with Ri, since the QG normalized growth rate �̂i is

independent of Ri (see Eq. (2.10)). In contrast, �̂NG exhibits a clear dependency on Ri, decreasing

as Ri decreases.

A dimensionless number is also sought for indicating the suppression of instabilities in the

adapted Stone model. We will seek the form of the dimensionless number according to the dimen-

sionless numbers controlling the instability growth in the QG limit (Blumsack and Gierasch, 1972)

and the non-geostrophic limit with flat bathymetry (Stone, 1970). In other words, the new number

should be able to reduce to the numbers in the QG limit (as Ri ! 1) and the non-geostrophic

limit with flat bathymetry (as � ! 0).

Based on the discussion of the adapted Sakai model, above, Sr and �r are obvious choices
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Figure 2.7: Maximum normalized growth rates �̂NG (left) and �̂QG (right) as functions of Richard-
son number Ri = N2f 2M�4 and slope parameter � = ↵N2M�2 based on the adapted Stone
model and the QG model.

to consider. The following discussion will demonstrate the dimensionless numbers ��1
r

and (1 +

Ri�1)�1/2 control the instability growth in the QG limit and non-geostrophic limit with flat bathymetry,

respectively. First, as demonstrated in Pedlosky (2016), the slope-relative parameter �r is the only

dimensionless number appearing at the bottom boundary condition of the Eady problem (Pedlosky,

2016, Eq.(5b)); it involves the vertical shear of the mean flow that is supplemented by the topo-

graphic production of vertical vorticity by the perturbed across-slope flow. Fig. 2.8 (left) shows

the comparison between the maximum normalized QG growth rate �̂QG and ��1
r

; ��1
r

has a robust

relation with �̂QG (r2 = 0.997, p = 3 ⇥ 10�66) – ��1
r

is the controlling number in the QG limit.

Second, as demonstrated in Fox-Kemper et al. (2008), the maximum normalized non-geostrophic

growth rate in the flat-bottom case is a linear function of (1 +Ri�1)�1/2,

�̂Asym

NG
=

r
5

54
(1 +Ri�1)�1/2, (2.11)

which is obtained based on the asymptotic solution of Stone (1970). Fig. 2.8 (right) shows the

comparison between the numerical �̂NG|�=0 and (1+Ri�1)�1/2; (1+Ri�1)�1/2 has a robust relation
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Figure 2.8: (left) Comparison of the slope-relative parameter ��1
r

and the maximum normalized QG
growth rate �̂QG. Red line is the linear regression (r2 = 0.997, p = 3⇥10�66). (right) Comparison
of the dimensionless number (1+Ri�1)�1/2 and the maximum normalized non-geostrophic growth
rate in the flat bottom case �̂NG|�=0. Red line is the linear regression (r2 = 1.000, p = 2⇥ 10�32).
Blue line is the analytical relation between (1 + Ri�1)�1/2 and �̂NG|�=0 based on the asymptotic
solution of Stone (1970).

with �̂NG|�=0 (r2 = 1.000, p = 2⇥10�32). The analytical �̂Asym

NG
as a function of (1+Ri�1)�1/2 is

shown in Fig. 2.8 (right); the offset between the numerical �̂NG|�=0 and the analytical �̂Asym

NG
is due

to the underestimate of the asymptotic solution of Stone (1970). Both the analytical and numerical

solutions suggest that (1 + Ri�1)�1/2 is the controlling number in the non-geostrophic limit with

flat bathymetry. Recalling the inhibiting effect of the slope-relative Burger number Sr = �rRi�1/2

in the non-geostrophic limit, the dimensionless number (1+Ri�1)�1/2 could be the representation

of the (1 + S2
r
)�1/2 in the flat-bottom case because of (1 + S2

r
)�1/2|�=0 = (1 +Ri�1)�1/2.

The multiplication of ��1
r

(representing the QG effect) and (1 + S2
r
)�1/2 (representing the non-

geostrophic effect) would be a physically intuitive form of the dimensionless number in the adapted

Stone model, because it can simply reduce to ��1
r

as Ri ! 1 (the QG limit) and (1+Ri�1)�1/2 as

� ! 0 (the non-geostrophic limit with flat bathymetry). The dimensionless number ��1
r
(1+S2

r
)�1/2

in the Ri � � space is shown in Fig. 2.9, which has a similar distribution as the �̂NG (shown in

Fig. 2.7 left). Fig. 2.9 also shows the comparison between ��1
r
(1 + S2

r
)�1/2 and �̂NG; �̂NG is
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Figure 2.9: (left) The dimensionless number ��1
r
(1 + S2

r
)�1/2 as a function of Richardson number

Ri and slope parameter �, where Sr = N

f
(↵ + M2N�2) is slope-relative Burger number and

�r = (↵ +M2N�2)N2M�2 is slope-relative parameter. (right) Comparison of the dimensionless
number ��1

r
(1+S2

r
)�1/2 and the maximum normalized non-geostrophic growth rate �̂NG. Red line

is the linear regression, y = 0.430x� 0.103, with r2 = 0.997 and p = 0.0.

highly related to ��1
r
(1+S2

r
)�1/2 indicated by a robust linear regression (r2 = 0.997 and p = 0.0).

The selection of this dimensionless number is empirical but with strong physical meaning - the

modification of (1 + S2
r
)�1/2 on ��1

r
stands for the suppression of instabilities occurring when the

regime shifts from QG to non-geostrophic (as shown in Fig. 2.7). In other words, the instabilities

are suppressed with increasing slope-relative Burger number Sr.

2.4 Discussion

The suppression of instabilities demonstrated in Section 2.3 seems to be related to the fact that

baroclinic instabilities are seldom observed in coastal fronts over sloping topography, such as river

plumes, even when strong lateral buoyancy gradients are present. In this section, we will discuss

the applicability of the adapted Stone model to the baroclinic instabilities in coastal buoyancy-

driven flow over sloping bathymetry.
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2.4.1 Scale Analysis

The adapted Stone model is intrinsically applicable to baroclinic instabilities in a bottom

boundary layer (Wenegrat et al., 2018), where both the bottom and surface can be assumed to

be tilted and parallel, while it may not seem directly applicable to surface-intensified baroclinic

instabilities that are usually associated with flat surfaces. However, the following scale analysis

demonstrates that the adapted Stone model can be used as an approximation of the flat surface

case so long as the slope Burger number S . O(10�1) and the horizontal slope Burger number

SH . O(10�1). The scaling relations in Appendix B will be used in the scale analysis. In the

rotated coordinates, a flat surface in the dimensional form can be written as z⇤ = H+↵(y⇤�y⇤
c
) is

the depth, H is the depth at the center of the front y⇤
c
, and ↵ is a constant bottom slope. Consider-

ing the motions within the length scale of baroclinic instabilities that is on the order of the Rossby

deformation radius Rd =
NH

f
(Eady, 1949; Stone, 1966, 1970), the dimensional flat surface can be

scaled as

z =
z⇤

H
⇠ 1± ↵

Rd

H
= �1± S, (2.12)

where S = N

f
↵ is the slope Burger number. For the situations characterized by � ⇠ O(10�1)

and Ri ⇠ O(1) (which are the cases in this study), the slope Burger number S = �Ri�1/2 is on

the order of O(10�1) so that the uniform fluid depth z = 1 will be a reasonable assumption. In

other words, if S ⇠ O(10�1), motions with lateral displacements O(Rd) will span a depth range

of H ± 0.1H , and hence the uniform fluid depth will be a first-order approximation.

With the uniform fluid depth approximation, the rigid-lid boundary condition at the flat surface

in the rotated coordinates is

w⇤|z⇤=H = ↵v⇤ . (2.13)

The dimensionless form is, then,

w|z=1 = ↵U(Hf)�1v = ↵M2f�2v = SHv, (2.14)
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Figure 2.10: (top) Model domain and the initial surface density. (middle and bottom) Cross sec-
tions of the initial density and currents (along the red dashed line in the top panel).

where SH = ↵M2f�2 is the horizontal slope Burger number (Hetland, 2017). For the situations

characterized by � ⇠ O(10�1) and Ri ⇠ O(1) (which are the cases in this study), the horizontal

slope Burger number S = �Ri�1 is on the order of O(10�1) so that the no-flow boundary condition

w|z=1 = 0 will be an acceptable approximation. In summary, if a front over a sloping bottom

satisfied S . O(10�1) and S . O(10�1), the assumptions of the uniform fluid depth and the

no-flow boundary condition will be first-order accurate, and hence the adapted Stone model can be

used to represent the surface-intensified baroclinic instabilities formed within the front.

26



2.4.2 Numerical Simulations

A series of existing idealized numerical simulations, first analyzed by Hetland (2017), are

used to examine the feasibility of the adapted Stone model. The idealized model domain is a 260

km (along-slope) ⇥ 128 km (across-slope) continental shelf with the uniform bathymetric slope

↵ = 10�3 across all simulations. The depth increases from 5 m onshore to 133 m offshore. The

model grid has 1-km uniform horizontal resolution and 30 layers in the vertical direction. The

boundary conditions are periodic along-slope, open (with a sponge layer) offshore, and closed (no-

slip) at the coast. k � ✏ turbulence closure scheme is used to calculate the vertical mixing, and

bottom friction is defined using a specified bottom roughness and a log-layer approximation. The

model is unforced and run as an initial-value problem. The initial density field is a coastal buoyant

front with a constant vertical stratification N2 over the whole shelf and a constant lateral buoyancy

gradient M2 within the offshore distance of W = 50 km. The initial current field is configured in

the thermal wind balance with the density field. The initial density and current fields of the base

case (Ri = 2.0 and � = 0.1) are shown in Fig. 2.10. Initial fields are varied among simulations to

cover a range of situations of instability formation.

The idealized simulations were configured in the parameter space of the Richardson number Ri

and the slope parameter �, and all the simulations used in this study are listed in Tab. 2.1. All the

simulations were run with same stratification N2 and same bottom slope ↵, but with different lateral

buoyancy gradients M2 and Coriolis parameters f that are determined by each combination of Ri

and �. Note that the simulations listed in Tab.1 are part of the simulations conducted in Hetland

(2017); simulations with the Richardson number Ri = 1 or Ri = 10 or the slope parameter � > 0.5

or the horizontal slope Burger number SH > 0.2 were excluded. Ri = 1 is around the boundary

between baroclinic instabilities and symmetric instabilities (Haine and Marshall, 1998; Boccaletti

et al., 2007), so the simulations with Ri = 1 are excluded to ensure only baroclinic instabilities

can form. The simulations with Ri = 10 are excluded to ensure the non-geostrophic regime,

and to minimize the influence of bottom friction in these simulations with long instability growth

rates. The instability formations in the simulations with � > 0.5 are excluded because they are
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Table 2.1: Simulations in the parameter space of Ri and �. All simulations were run with N2 =
1.00 ⇥ 10�4 s�1 and ↵ = 1.00 ⇥ 10�3. Slope Burger number is determined by S = �Ri�1/2,
Coriolis parameter is then determined by f = N↵/S, and horizontal buoyancy gradient is lastly
determined by M2 = NfRi�1/2. �⇤

NG
and �⇤

QG
are the maximum dimensional growth rates in

units of day�1, based on the adapted stone model and QG model, respectively. �⇤
R

is the regressed
dimensional growth rate in units of day�1. Treg is the time scale (in units of days) to truncate a
EKE series for the regression.

M2 f Ri � S SH �⇤
NG

�⇤
QG

�⇤
R

Treg

1.00e-06 1.41e-04 2.0 0.10 0.07 0.05 1.817 2.505 1.727 4.6
1.00e-06 1.73e-04 3.0 0.10 0.06 0.03 1.971 2.505 1.939 4.4
1.00e-06 2.24e-04 5.0 0.10 0.04 0.02 2.108 2.505 2.264 3.9
7.07e-07 1.00e-04 2.0 0.14 0.10 0.07 1.182 1.720 0.716 8.5
5.77e-07 1.00e-04 3.0 0.17 0.10 0.06 0.996 1.372 0.680 9.6
5.00e-07 7.07e-05 2.0 0.20 0.14 0.10 0.742 1.166 0.391 14.4
5.00e-07 8.66e-05 3.0 0.20 0.12 0.07 0.823 1.166 0.507 12.9
5.00e-07 1.12e-04 5.0 0.20 0.09 0.04 0.896 1.166 0.699 10.6
4.47e-07 1.00e-04 5.0 0.22 0.10 0.04 0.770 1.024 0.481 13.5
3.54e-07 5.00e-05 2.0 0.28 0.20 0.14 0.445 0.776 0.275 25.1
3.33e-07 4.71e-05 2.0 0.30 0.21 0.15 0.405 0.720 0.137 39.9
3.33e-07 5.77e-05 3.0 0.30 0.17 0.10 0.459 0.720 0.235 29.9
3.33e-07 7.45e-05 5.0 0.30 0.13 0.06 0.507 0.720 0.334 23.5
2.89e-07 5.00e-05 3.0 0.35 0.20 0.12 0.367 0.604 0.208 33.9
2.24e-07 5.00e-05 5.0 0.45 0.20 0.09 0.270 0.433 0.229 45.8
2.00e-07 4.47e-05 5.0 0.50 0.22 0.10 0.222 0.371 0.200 62.1
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Figure 2.11: Development of instabilities of the base case (Ri = 2.0 and � = 0.1) at the surface
(left columns) and bottom (right columns).

generally weak and also strongly influenced by bottom friction. The simulations with SH > 0.2

are excluded to ensure SH . O(10�1) and S . O(10�1) so that the adapted Stone can be applied

to the flat-surface case. One example of the development of instabilities in the base run is shown

in Fig. 2.11.

The growth rate of instabilities is estimated in each simulation and then compared to the QG

model and the adapted stone model. Note that the spatial scale of the instabilities increases in the

offshore direction (see Fig. 2.11) because of the increase of the deformation radius Rd = NH

f
. We

only focus on the growth of the largest instabilities at ⇠ 50 km offshore with the depth H ⇠ 50 m,

because they are the most energetic and dispersive components (Thyng and Hetland, 2017, 2018).

This also makes the comparison between the numerical and theoretical results feasible: the theo-
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retical configuration has the fixed depth scale and infinite front, while the numerical configuration

has the varying depth scale and finite front; the comparison is valid only if the depth scale and front

region are unified in the numerical and theoretical configurations.

Eddy kinetic energy (EKE) is used to quantify growth rates of instabilities. Given that the

domain is periodic in the along-slope direction, the velocity field associated with the instability

eddies is calculated by subtracting the along-slope mean velocity from the original velocity field.

So, EKE is dominated by the largest eddies. Then, the EKE can be determined by integrating the

kinetic energy of the eddy flow field over the whole domain. Last, the EKE is normalized by the

initial domain-integrated mean kinetic energy MKEInitial. Fig. 2.12a shows the normalized EKE,

EKE

MKEInitial
, of all the simulations listed in Tab. 2.1.

The EKE in each case appears to increase exponentially from the start (Fig. 2.12a), but even-

tually the rapid increase is retarded by friction. In order to isolate our results from these frictional

effects and compare our results more directly with the theories that do not consider the influence

of friction, we truncate EKE time series where it reaches the half of the maximum, removing the

later part that is potentially influenced by friction. The truncated timescale for each simulation is

listed in Tab.1, and the truncated EKE time series are shown in Fig. 2.12b. We take the base case

(Ri = 2.0, � = 0.1) as an example to show the comparison between the simulated growth rate and

the theoretical predictions. The truncated EKE time series of the base run is shown in Fig. 2.12c,

and the best exponential function to fit it has a growth rate of 1.73 day�1 (r2 = 0.996). On the

other hand, based on the adapted stone and QG models, we can calculate the maximum dimen-

sional growth rates for the base case, which are �⇤
NG

= 1.82 day�1 and �⇤
QG

= 2.50 day�1. The

non-geostrophic and QG predictions as exponential functions with growth rates of �⇤
NG

and �⇤
QG

are shown in Fig2.12c; as expected from the growth rate estimates, the non-geostrophic prediction

tracks the simulated increase in EKE closer than the QG prediction.

A regressed estimate of simulated EKE growth rate, �⇤
R

, is calculated for each simulation listed

in Tab.1, in order to compare with �⇤
NG

and �⇤
QG

. The calculated values of �⇤
R

, �⇤
NG

, and �⇤
QG

for each simulation are listed in Tab.1. Fig. 2.13a and 2.13b show the comparison between the
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Figure 2.12: (a) Normalized EKE time series of the simulations of Tab.1. (b) Truncated normalized
EKE time series. Each series is truncated at where the EKE reaches 50% of its maximum. Colors
of the lines denote �, and darker colors represent lower Ri. (c) Normalized EKE time series of
the base case (Ri = 2.0, � = 0.1) is compared to the theoretical estimates. The best exponential
function fitting the base case has a growth rate of 1.73 day�1 (r2 = 0.996), and the theoretical
estimates are 1.82 day�1 (non-geostrophic) and 2.50 day�1 (QG).
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regressed growth rates and the theoretical predictions. We can see that �⇤
NG

better follow �⇤
R

than

�⇤
QG

. Two-sided T test is conducted to test if the calculated and predicted growth rates are statis-

tically equivalent. The two-tailed p-value for the non-geostrophic theory comparison is p = 0.42,

and for the QG theory p = 0.04. Thus, if based on the p-value threshold of 5%, we cannot reject the

null hypothesis in the test for the non-geostrophic theory, indicating the calculated and predicted

growth rate distributions are indistinguishable. However, we can reject the null hypothesis in the

test for the QG theory; the calculated and predicted distributions are distinct, as apparent from

the offset from the 1:1 line in Fig 2.13b. Moreover, Fig. 2.13c and 2.13d show the distribution of

growth rate errors in the Ri � � space. Compared to the adapted Stone model, the QG model has

higher growth rate errors, particularly on the low Richardson number cases (Ri = 2.0 and 3.0);

this implies that the QG theory is not able to accurately describe the development of the subme-

soscale baroclinic instability eddies under energetic flow situations. However, under the conditions

of SH . O(10�1) and S . O(10�1), the adapted Stone model accurately predicts the growth rate

of the instabilities in the energetic flow situations. Consequently, the numerical simulations com-

plement the scale analysis in Section 2.4.1 and validate the applicability (under certain conditions)

of the adapted Stone model to the flat-surface situations.

2.5 Conclusions

Layered and continuously stratified models of non-geostrophic baroclinic instability over slop-

ing topography are explored in the buoyant flow regime. The primary finding of this study is that

non-geostrophic baroclinic instabilities (Ri ⇠ 1, Ro ⇠ 1) are suppressed in terms of a reduced

instability growth rate compared to QG baroclinic instabilities (Ri � 1, Ro ⌧ 1). This finding

is consistent with the fact that baroclinic instabilities are seldom observed in energetic fronts in

the coastal ocean, such as buoyancy-driven coastal currents associated with river plumes. A new

parameter, the slope-relative Burger number Sr = N

f
(↵ + M

2

N2 ) is an important dimensionless pa-

rameter for predicting the suppression of instabilities in the non-geostrophic limit. Both the layered

model (i.e., the adapted Sakai model) and the continuously stratified model (i.e., the adapted Stone

model) show that the growth of instabilities is inhibited with increasing Sr.
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Figure 2.13: Regressed growth rates �⇤
R

versus maximum dimensional (a) non-geostrophic growth
rates �⇤

NG
and (b) QG growth rates �⇤

QG
for the simulations in Tab. 1. Dashed grey lines are the

linear regressions. Growth rate errors of the (c) non-geostrophic and (d) QG theories.
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The physical mechanism behind Sr is explored based on the wave resonance theory (Sakai,

1989). In the physical wave coordinates consisting of the Rossby waves, baroclinic instabilities are

interpreted as the Rossby wave resonance; supported by the adapted Sakai model, the maximum

normalized growth rate of instabilities is found to be nearly 1:1 to the resonance rate of the Rossby

waves. Since Sr represents the gradient of potential vorticity supplemented by topographic effect,

it modifies the phase speed of the Rossby waves, alters the wave resonance, and hence influences

the growth of instabilities.

One limitation of the adapted Stone model is the sloping-surface assumption. Idealized numer-

ical simulations of coastal buoyancy-driven flow are used to test the feasibility of the adapted Stone

model in flat-surface situations. The comparison of the numerical results and theoretical predic-

tions indicates that the limitation is not prohibitive if the slope Burger number S = N

f
↵ . O(10�1)

and the horizontal slope Burger number SH = M
2

f2 ↵ . O(10�1), which complements the scale

analysis. The results also show that the QG model (Blumsack and Gierasch, 1972) can not accu-

rately describe the growth of the submesoscale baroclinic instabilities especially when the flow is

energetic (low Ri), which was not previously explained (Hetland, 2017). The numerical simula-

tions validate the feasibility of the adapted Stone model in the flat-surface situations, and hence

the inhibiting mechanism provided by the non-geostrophic theories can be used to interpret the

suppression of instabilities in buoyancy-driven flow of coastal zones.
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3. NEAR-INERTIAL WAVES IN A BAROCLINIC VORTEX

3.1 Introduction

NIWs dominate oceanic kinetic energy at the frequencies near the local Coriolis parameter.

NIWs generated at the surface can propagate downward, transfer kinetic energy to the internal

waves with higher frequencies, and trigger the diapycnal mixing in the ocean interior via wave

breaking (Ferrari and Wunsch, 2009). In the open ocean, the energy input to NIWs from the winds

is most intense under the mid-latitude storm tracks where large-scale ocean fronts, such as the

Kuroshio Current, Gulf Stream, and Antarctic Circumpolar Current, are found (Chaigneau et al.,

2008; Simmons and Alford, 2012). Because of the correspondence between NIWs and strong

oceanic fronts, it has been hypothesized that the NIW-mean flow interactions play an important

role in damping the large-scale circulation and energizing the internal wave continuum and hence

could be important for closing the kinetic energy budget for both types of flows (Polzin and Lvov,

2011; Thomas, 2012; Nagai et al., 2015; Wagner and Young, 2016; Thomas, 2017).

An ocean front can significantly modify the allowable frequency and propagation properties

of a NIW. Most of the previous studies focused on the modifications of NIWs at straight, jet-

like fronts; the results show that, at the front with anti-cyclonic vorticity, subinertial waves can

exist, be trapped, transfer the wave kinetic energy to small-scale turbulence, and hence enhance

the interior mixing (Mooers, 1975; Kunze, 1985; Kunze et al., 1995; Whitt and Thomas, 2013;

Thomas, 2017; Whitt et al., 2018). However, only a few have focused on curved, vortex-like fronts.

Kunze and Boss (1998) constructed a model to explain the intense inertial motions observed within

a vortex cap over the Fieberling Seamount, but the model is barotropic. Joyce et al. (2013) included

the effects of a baroclinic vortex in the Richardson number and generalized the vertical vorticity

dependence to explain an observed near-inertial mode in a Gulf Stream warm-core ring. Beyond

that, a systematic, theoretical framework of the modifications of NIWs in a baroclinic vortex has

yet to be well established.
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Figure 3.1: (a) MCH acrobat transects, MCH CTD stations, and TABS buoys in the northern Gulf
of Mexico. MCH data were collected on Aug. 4-7, 2010. (b) Surface salinity and (c) normalized
vorticity on Aug. 10, 2010, based on the TXLA model. (d) Density section along the 25m isobath
with the isopycnals every 1.5 kg/m3. Black triangles mark the CTD locations, orange circles
indicate the north/south ends of the Acrobat paths, black dots mark the sampling depth, and pink
box marks an vortex-like front observed at the zoomed-in field in a). (e) Across-shore density
section along the Acrobat path at the zoomed-in field. Isobath contours are 10, 25, 50, 100, and
200m in a) and b) and 15, 20, 25, and 30m at the zoomed-in field.

Understanding the modifications of NIWs at vortex-like fronts is essential to predict the trap-

ping of the NIWs, a process that may enhance mixing within ocean eddies. Recent theoretical ad-

vances indicate that the strong vorticity, strain, and lateral density gradients within submesoscale

structures could facilitate the energy transfers between the waves and eddies (Taylor and Straub,

2016; Barkan et al., 2017c; Thomas, 2017; Rocha et al., 2018). So, better understanding the mod-

ifications at vortex-like fronts is helpful for further investigating the energy transfers across scales

and regimes.

The Texas-Louisiana shelf in the northern Gulf of Mexico is an ideal geophysical lab to study
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NIWs in a baroclinic vortex. It is a broad, shallow shelf characterized by large inputs of fresh water

from the Mississippi/Atchafalaya River (Morey et al., 2003; Zhang et al., 2012, 2014). With weak

winds during the summertime and relatively weak tides, submesoscale vortices along the river

plume front are prevalent over the shelf due to the baroclinic instabilities in buoyancy-driven flows

(DiMarco and Reid, 1998; DiMarco et al., 2000a; Hetland, 2017). Fig. 3.1 shows the simulation

and observation of the vortices over the shelf. The observational data are from the hydrographic

survey of the Mechanisms of Controlling Hypoxia (MCH) project in August 2010 (Zimmerle and

DiMarco, 2017). The along-shore density field (Fig. 3.1d) exhibits a lot of vortex-like structures.

The across-shore density of one structure (Fig. 3.1e) indicates a half of an eddy with the radius

around of 20 km. This is consistent with the realistic simulation in this region, TXLA model

(Zhang et al., 2012), which shows that the energetic freshwater eddies have scales of 10-50 km

(see Fig. 3.1b and 3.1c). In addition, storms are infrequent in the summertime, and winds are gen-

erally mild with a notable land-sea breeze that is nearly resonant with the local inertial frequency

(DiMarco et al., 2000b; Zhang et al., 2009, 2010). Fig. 3.2 shows the time series of winds and

currents observed at the Texas Automated Buoy System (TABS) buoys and the associated FFT

spectra. The winds are generally calm with a pronounced diurnal (near-inertial) land-sea breeze,

and the near-inertial surface currents are resonantly generated by the land-sea breeze, which is

conformed by the peak coincidence near the local inertial frequency in the spectra.

Some recent studies have focused on the submesoscale dynamics in the northern Gulf of Mex-

ico based on the numerical simulations (Luo et al., 2016; Barkan et al., 2017a,b) and observations

(Mariano et al., 2016; Poje et al., 2017; Haza et al., 2018). However, these studies do not examine

the internal mixing caused by the vertical radiation of NIWs in this vigorous field of submesoscale

vortices. Since the freshwater influence from the Mississippi/Atchafalaya River suppresses the

ventilation to the subsurface and bottom water, bottom hypoxia is a significant ecological feature

over the Texas-Louisiana shelf (Bianchi et al., 2010; Hetland and DiMarco, 2008). Potentially, the

internal mixing can provide ventilation for the bottom water (O’Donnell et al., 2008) and hence

modulate the bottom oxygen patterns, e.g., the patchiness in the seasonally hypoxic bottom wa-
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ter over the shelf. One outcome of this study will be the linkage between NIWs and mixing in

a coastal environment where both NIWs and ocean eddies are prevalent; it would be helpful for

better understanding the biogeochemistry in coastal zones.

This chapter generalizes the NIW theory at a baroclinic jet (Whitt and Thomas, 2013) to the

scenario of a baroclinic vortex and explores the difference between two modifications of NIWs. In

particular, this chapter attempts to demonstrate that the curvature effect of a vortex can alter the

trapping depth of NIWs and hence the mixing positions, as compared to the NIWs at a baroclinic

jet.

3.2 Theory

In cylindrical coordinates, the equations governing the motion of an adiabatic inviscid fluid in

a rotating system with the Boussinesq and hydrostatic approximations are
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(3.1)

where r is the radial distance, ✓ is the azimuth, z is the depth, vr is the radial velocity (outward

is positive), v✓ is the azimuthal velocity (counter-clockwise is positive), w is the vertical velocity

(upward is positive), f is the Coriolis parameter, ⇢0 is the reference density, p is the pressure, and

b = g(⇢0�⇢)⇢�1
0 is the buoyancy. The background field is a stationary baroclinic vortex where the

flow is in the thermal wind balance with the density field. The center of the cylindrical coordinates

coincides with the vortex center. The background flow, then, only has the azimuthal component

V✓(r, z) which is invariant in the azimuthal direction. The momentum equations of the background
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TABS-B

TABS-F

TABS-B

TABS-F

Figure 3.2: (a) Time series of the winds and surface currents at the TABS buoys (marked in
Fig. 3.1). (b) FFT spectra of the wind and current data. Blue dashed lines represent the local
Coriolis parameter.
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where B(r, z) is the background buoyancy and P (r, z) is the background pressure; it says that

the residual between the Coriolis force and the pressure gradient force provides the centripetal

forcing in the radial direction, and the vertical direction is in the hydrostatic balance. Note that the

centrifugal force V 2
✓
/r modifies the classical geostrophic balance so that V✓ varies in a different

way compared to the classical thermal wind relation.

The ratio between the centrifugal force and the the Coriolis force is the curvature vortic-

ity Rossby number Ro = ⇣c

f
corresponding to the curvature vorticity ⇣c = V✓/r. If the flow

is significantly curved (Ro ⇠ 1), the centrifugal force cannot be neglected and hence modifies

the geostrophic balance. Consequently, the thermal wind relation is modified in the curved flow

regime; by eliminating P in Eq. (3.2), the modified thermal wind relation can be obtained as

� (f + 2⇣c)
@V✓

@z
= �@B

@r
. (3.3)

Compared to the classical thermal wind relation, the modified relation reveals that the velocity

shear is not only related to the lateral buoyancy gradient but also the curvature of the flow.

Consider a perturbed field (primed) superimposing on the background vortex (capitalized):

vr = v
0

r
, v✓ = V✓ + v

0

✓
, w = w

0
, b = B + b

0
, p = P + p

0
. (3.4)

Substituting Eq. (3.4) into Eq. (3.1) and assuming small-amplitude perturbations yields the gov-
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erning equations for the perturbations:
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0 @B

@z
= 0,

@rv
0
r

@r
+
@rw

0

@z
= 0.

(3.5)

Note that, since we are focusing on the propagation of the perturbations in the radial direction,

the perturbations are assumed to be invariant in the azimuthal direction. To satisfy the continuity

equation above, we can introduce a streamfunction � such that

v
0

r
=

1

r

@�

@z
and w

0
= �1

r

@�

@r
. (3.6)

Following the derivation in Appendix D, a partial differential equation (PDE) for� can be obtained

as
1

r

@4�

@t2@z2
+

@

@r
(
N2

r

@�

@r
+

M2

r

@�

@z
) +

@

@z
(
M2

r

@�

@r
+

f ⇤
eff

2

r

@�

@z
) = 0, (3.7)

where f ⇤
eff

=
p

(f + 2⇣c)(f + ⇣c + ⇣s) is the modified effective inertial frequency in the curved

flow case, ⇣s = @V✓
@r

is the shearing vorticity, ⇣c = V✓/r is the curvature vorticity, M2 = �@B

@r
is

the background lateral density gradient, and N2 = @B

@z
is the background stratification; this shifts

the Eliassen-Sawyer equation (Eliassen, 1951; Sawyer, 1956; Eliassen, 1962) to a time-dependent

form which describes the propagation of NIWs within a baroclinic vortex. The physical meaning

of f ⇤
eff

will be discussed in Section 3.3.2.
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a) b)

c) d)

Figure 3.3: Surface (a) velocity and (b) relative vorticity of the idealized anti-cyclonic vortex.
Profiles of (c) velocity and (d) relative vorticity along the gray lines marked in (a) and (b). Relative
vorticity is normalized by f = 10�4 s�1.
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3.3 Propagation of Near-Inertial Waves in a Baroclinic Vortex

3.3.1 Idealized Baroclinic Vortex

To demonstrate the modifications of NIWs in a baroclinic vortex, an idealized vortex is con-

structed to mimic the observed vortex shown in Fig. 3.1. The velocity structure of the vortex is as

follows (see Fig. 3.4b)

V✓(r, z) = �c1 cos
n(
⇡r

2R
) sinm(

⇡r

2R
) [1 + tanh(c2

z

H
+ c3)], (3.8)

where R = 20 km is the radius, H = 23m is the thickness, and n = 0.4, m = 1.0, c1 = 0.47m/s,

c2 = 3, c3 = 0.3 are the tuning constants. The surface velocity field and the associated vorticity

field are shown in Fig. 3.3 – the vortex is an anti-cyclone and the flow is both curved and sheared.

The radius of the vortex is comparable to the observed vortex-like front over the Texas-Louisiana

shelf (see the lower panel of Fig. 3.1). The vorticity of the vortex has the similar features as

revealed in the realistic simulation over the shelf (Zhang et al., 2012) – the vortices have negative

vorticity in the cores with positive vorticity around (see the upper panel of Fig. 3.9).

The density structure of the vortex is calculated by integrating the modified thermal wind rela-

tion Eq. (3.3). First, we use the density profile at the north end of the observed vortex-like front as

a reference to create an idealized density profile at the center of the idealized vortex (see Fig. 3.4a).

Second, we integrate Eq. (3.3) from the center to the edge by making use of the velocity structure

Eq. (3.8). The integrated density field is shown in Fig. 3.4c – the constructed vortex is similar to

the observed vortex-like front.

3.3.2 Dispersion Relation and Minimum Frequency

To obtain the dispersion relation of the NIWs in a baroclinic vortex, we apply the Wentzel-

Kramers-Brillouin (WKB) approximation and hence assume that the variables in Eq. (3.5) have

the wave form �(r, z, t) = e�ei(krr+kzz��t). This linearization approximation is only valid when the

background field does not significantly change within the scale of the wavelength. We will crudely

43



Figure 3.4: (a) Idealized and observed density profiles at the vortex center. Radial sections of (b)
velocity and (c) density within the idealized vortex.

accept this approximation at first and then validate this approximation by numerically solving the

Eliassen-Sawyer equation that does not assume the spatial scale separation. Substituting the wave

forms into Eq. (3.5) and letting the determinant to be zero yield the dispersion relation,

� =

r
f ⇤
eff

2 + 2M2
kr
kz

+N2(
kr
kz

)2, (3.9)

where f ⇤
eff

=
p

(f + 2⇣c)(f + ⇣c + ⇣s) is the modified effective inertial frequency, � is the wave

frequency, and kr and kz are the wavenumbers in the radial and vertical directions, respectively.

To interpret the physical meaning of f ⇤
eff

, we need to analogize it to feff =
p
f(f + ⇣s), which

is the effective inertial frequency in the jet-like front case (Mooers, 1975; Whitt and Thomas, 2013;

Thomas, 2017). For near-inertial oscillations (purely horizontal motions), the oscillating frequency

is equal to feff in the jet-like front case and f ⇤
eff

in the vortex-like front case. The latter one is

obtained by setting kr = 0 in Eq. (3.9). Contrasting f ⇤
eff

to feff , we can see that f ⇤
eff

is not only

related to the shear of the flow but also the curvature. The schematic in Fig. 3.5 illustrates the

shear and curvature of a flow. A flow can be decomposed into a sheared flow without curvature
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Figure 3.5: Schematic illustrating the shearing vorticity ⇣s and curvature vorticity ⇣c of an anti-
cyclonic flow. (a) Radial profiles of the shearing vorticity ⇣s and curvature vorticity ⇣c at the
surface of the idealized vortex. (b) Radial profiles of the effective inertial frequency feff and the
modified effective inertial frequency f ⇤

eff
at the surface of the idealized vortex.

and a curved flow without shear. The curvature vorticity ⇣c and shearing vorticity ⇣s represent

the vorticity of those two different types of flow components. The total vorticity of the flow is

the sum of ⇣c and ⇣s. Consequently, f ⇤
eff

is not only modified by the total vorticity ⇣c + ⇣s that

alters the net spin of the fluid, but also modified by the curvature vorticity ⇣s that alters the net

spin of the rotating framework. If the background flow field is an anti-cyclone, ⇣c is negative, and

hence f ⇤
eff

< feff . Fig. 3.5a shows the surface curvature vorticity ⇣c and shearing vorticity ⇣s

of the idealized anti-cyclone. ⇣c and ⇣s are both negative in the core and at similar magnitudes.

The curvature of the flow (represented by ⇣c) causes a significant reduction on the effective inertial

frequency (see the contrast shown in Fig. 3.5b).

According to the dispersion relation Eq. (3.9), the minimum frequency of NIWs in a baroclinic

vortex is

�min =
q

f ⇤
eff

2 �M4/N2 = f

s

(1 + 2
⇣c
f
)(1 +Ro)� (1 + 2

⇣c
f
)2Ri�1, (3.10)

where Ro = (⇣c + ⇣s)f�1 is the vorticity Rossby number and Ri = N2(@V✓
@z

)�2 = N2M�4(f +

2⇣c)2 is the Richardson number. �min =
q
f ⇤
eff

2 �M4/N2 is identical to the expression (B9) of
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Minimum frequency is reduced

Shearing Vorticity Baroclinity Curvature Vorticity

Min . Freq . : f feff = f( f + �s) ���
min = f 2

eff � M4/N2 �min = f *2
eff � M4/N2

feff < f �min < ���
min < feff < f���

min < feff < f

Figure 3.6: Schematic illustrating the modification cascade of the minimum frequency by the
shearing vorticity, frontal baroclinity, and curvature vorticity.

Joyce et al. (2013). If the front is with negligible curvature (⇣c ⌧ f ), �min reduces to �0
min

=
q

f 2
eff

�M4/N2 = f
p
1 +Ro�Ri�1 (Whitt and Thomas, 2013). Whitt and Thomas (2013)

shows that, at a baroclinic jet with anti-cyclonic vorticity, the minimum frequency of NIWs is

reduced down from feff to �0
min

because of the baroclinity. Our study shows that, in a baroclinic

anti-cyclone, the minimum frequency is further reduced down from �
0
min

to �min because of the

curvature effect of the vortex (the curvature shifts feff down to f ⇤
eff

). The modification cascade

of the minimum frequency by the shearing vorticity, frontal baroclinity, and curvature vorticity are

illustrated in Fig.3.6.

Fig. 3.7a and 3.7b show the comparison of feff and f ⇤
eff

based on the idealized vortex – the

curvature of the vortex significantly reduces the effective frequency. Fig. 3.7c shows several sep-

aratrices within the idealized vortex, where the minimum frequencies of various scenarios (feff ,

�
0
min

, and �min) are equal to the wave frequencies (� = 0.95f and � = 0.98f ). Inside of a separa-

trix, the wave frequency is larger than the minimum frequency such that the wave can be supported.
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On a separatrix, the group speed of the wave is equal to zero. Outside of a separatrix, the wave

frequency is smaller than the minimum frequency so that the wave can not be supported. In other

words, the region enclosed by a separatrix is the allowable area where the wave with the corre-

sponding frequency can exist and propagate, and the wave can not escape outside. Consistent with

Whitt and Thomas (2013), the baroclinity extends the propagation area; the curvature effect further

extends the propagation area beyond the baroclinity – this implies that NIWs within a vortex can

propagate wider and deeper than previously predicted.

3.3.3 Wave Propagation and Ray Tracing

According to the dispersion relation Eq. (3.9), the slope of the wave energy propagation (slope

of wave group velocity with respect to horizontal) SE is a function of the wave frequency �,

S+,�
E

⌘ Cgz

Cgr

= S⇢ ±
r
�2 � �2

min

N2
, (3.11)

where S⇢ = M2/N2 is the isopycnal slope, ± represent the two wave characteristics, and Cgr and

Cgz are the group velocity components in the radial and vertical directions, respectively. This rela-

tion is similar to the result in the case of the baroclinic jet but with �min replacing �0
min

(Thomas,

2017). If � = �min, SE = S⇢; the wave energy propagation is along the isopycnal, but, in fact,

there is no energy propagating out because ~Cg = 0 if � = �min. Consequently, � = �min is the

necessary condition of wave trapping or reflection at a turning point.

Left panels of Fig. 3.8 show the comparison of S+,�
E

in the idealized vortex and in the jet-like

front where the curvature is neglected by simply setting ⇣c to zero. Eq. (3.11) is valid only inside

of the separatrix, where �min < �. S+,�
E

in the vortex not only span a larger region than in the jet,

but also have larger values; this implies that the curvature effect facilitates the vertical radiation of

the NIWs.

In addition, ray tracing is conducted in both fronts, which is shown in the right panels of

Fig. 3.8. The procedure of ray tracing can be found in Whitt and Thomas (2013) and Whitt et al.

(2018) but is briefly described here. The heading of a wave ray is determined by SE . As the wave
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! = 0.95'

!	 = 0.98'

*+**
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Figure 3.7: Across-front sections of feff (a) and f ⇤
eff

(b). Red dashed lines represents feff = f and
f ⇤
eff

= f . (c) Propagation regions of the waves with the frequencies of � = 0.95f (solid lines) and
� = 0.98f (dashed lines). The propagation boundaries are marked by the separatrices of feff = �

(green lines), �0
min

= � (magenta lines), and �min = � (blue lines). �0
min

=
q

f 2
eff

�M4/N2

(Eq. (19) of Whitt and Thomas (2013)) and �min =
q
f ⇤
eff

2 �M4/N2 (Eq. (3.10)). Isopycnals
are marked by the gray lines every 1 kg/m3.
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proceeds, SE is updated to determine the heading, and Cg is updated to determine the speed of the

waveguide. SE switches signs at the separatrix to create reflections. In this study, SE is also set

to switch signs at the core of a vortex. The ray tracing results shown in Fig. 3.8 indicate that the

waves in the vortex propagate wider and deeper than in the jet, and the wave rays are trapped at the

base of the vortex where the group speed is near to zero. Thus, the wave trapping condition can be

concluded as follows: the trapping must occur at the locations where SE = S⇢ (for ~Cg = 0) and

the slope of the separatrix is also equal to S⇢ (for creating an infinite reflection zone). Based on the

ray tracing results, it can be inferred that the curvature effect of an anti-cyclone can cause deeper

trapping and hence deeper mixing than previously predicted.

3.4 Energetics of Near-Inertial Waves in a Baroclinic Vortex

The energetics of NIWs in a baroclinic vortex is investigated via a parcel argument (the parcel

argument is demonstrated in Appendix E). The parcel argument links the wave energy density to

the stream function so that the wave energy can be obtained by numerically solving the Eliassen-

Sawyer equation derived in Section 3.2. The numerical calculation of the wave energy density will

be also used to test the WKB approximation made for the dispersion relation and the consequent

theoretical analysis in Section 3.3.

3.4.1 Formulating Wave Energy Density

The following derivation is to formulate the energy density of the NIWs in a baroclinic vortex

as a function of the stream function. First, we link the wave energy density to the displacement of

the parcel argument. According to Appendix E, the perturbed variables can be expressed by the

displacement ~� = R~i+ Z~k as follows

v
0

r
=
@R

@t
, v

0

✓
(t) = �(f + ⇣c + ⇣s)R� @V✓

@z
Z, and b

0
(t) = M2R�N2Z. (3.12)
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Figure 3.8: Slope of energy propagation SE (a and c), ray tracing (b) and energy density (d) of the
NIWs with � = 0.95f in the jet-like front where the curvature vorticity of the idealized vortex is
ignored. Same properties are calculated in the idealized vortex (e, f, g, and h). Three point sources
are set at (r = 5, 7, 9 km, z = �3 m) for the ray tracing calculations, and one point source at
(r = 7 km, z = �3 m) for the energy density calculations. Group speed is normalized by the
maximum and colored on the rays. Energy density is also normalized by the maximum. Wave
rays are overlaid on the energy density plots. �0

min
= 0.95f and �min = 0.95f are marked by the

magenta and blue lines, respectively. Isopycnals are marked every 1 kg/m3 by the gray lines.

50



Substituting these relations to the radial and vertical momentum equations of Eq. (3.5) and apply-

ing the modified thermal wind relation Eq. (3.3), we can get

@2R

@t2
+ f ⇤

eff

2R�M2Z = � 1

⇢0

@p
0

@r
, (3.13)

�M2R +N2Z = � 1

⇢0

@p
0

@z
. (3.14)

Multiply Eq. (3.13) by rv̂0
r

and Eq. (3.14) by rŵ0 ( ˆ< · > means the complex conjugate) and add

them together to get

⇢0
2

@

@t
[|@R
@t

|2 + f ⇤
eff

2|R|2 � 2M2RẐ +N2|Z|2] = �1

r
[
@p

0

@r
(rv̂0

r
) +

@p
0

@z
(rŵ0)]. (3.15)

Making use of the continuity equation in Eq. (3.5) and the divergence operator in cylindrical

coordinates r · ~a ⌘ 1
r

@rar
@r

+ 1
r

@a✓
@✓

+ @az
@z

, the right-hand side of Eq. (3.15) can be rewritten as

�1

r
[
@p

0

@r
(rv̂0

r
) +

@p
0

@z
(rŵ0)] = �1

r
[
@p

0
(rv̂0

r
)

@r
+
@p

0
(rŵ0)

@z
] = �r · (p0~̂v) (3.16)

where ~̂v = (v̂0
r
, ŵ0); this implies that the right-hand side of Eq. (3.15) is the convergence of

the pressure work. Thus, the left-hand side of Eq. (3.15) must be the changing rate of the energy

density (the wave energy per unit volume); the energy density, E, as a function of the displacement

� = (R,Z) can be expressed as

E =
⇢0
2
[|@R
@t

|2 + f ⇤
eff

2|R|2 � 2M2RẐ +N2|Z|2]. (3.17)

Second, we link the energy density E to the stream function�. Assuming that the displacement

� has the form of (Re�i�t, Ze�i�t), we can obtain v
0
r
⌘ @R

@t
= �i�R and w

0 ⌘ @Z

@t
= �i�Z. Given
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v
0
r
= 1

r

@�
@z

and w
0
= �1

r

@�
@r

, we can get

R =
1

r

i

�

@�

@z
,

Ẑ =
1

r

i

�

@�̂

@y
.

(3.18)

Substituting Eq. (3.18) into Eq. (3.17) to eliminate R and Ẑ, Eq. (3.17) can be rewritten as

E =
1

r2
⇢0
2�2

[(f ⇤
eff

2 + �2)|�z|2 + 2M2�z�̂r +N2|�r|2]. (3.19)

Assuming that �(r, z, t) = �(r, z)e�i�t, the time-averaged (averaged in a period) wave energy

density Ē can be expressed as

Ē =
1

r2
⇢0
4�2

[(f ⇤
eff

2 + �2)|�z|2 + 2M2�z�̂r +N2|�r|2]. (3.20)

3.4.2 Numerical Calculation of Wave Energy Density

In this section, we will calculate the wave energy density based on Eq. (3.20) by numeri-

cally solving the Eliassen-Sawyer equation Eq. (3.7). The WKB approximation will be tested by

comparing the energy distribution with the ray tracing results of Section 3.3.3.

The Eliassen-Sawyer equation Eq. (3.7) is numerically solved with the idealized vortex as the

background field. The velocity and density fields of the vortex are shown in Fig. 3.4. The method

of images is used to solve for the Green’s function of the Eliassen-Sawyer equation – a mirror

image of the idealized vortex is attached at r = 0. The boundary condition � = 0 is applied at all

four walls of the extended domain. Given an oscillating wave maker, the stream function �(r, z)

can be, then, obtained by numerically solving the Eliassen-Sawyer equation, and hence the energy

density Ē can be calculated according to Eq. (3.20). The details of the numerical method can

be found in Section 5.b of Whitt and Thomas (2013). Fig. 3.8h shows an example of the energy

density of the NIWs that are forced by the wave maker at r = 7km and z = �3m.

The wave energy density is also calculated in the jet-like front case where the curvature of the
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idealized vortex is neglected by simply setting ⇣c to zero. As demonstrated in Whitt and Thomas

(2013), the stream function  of the NIWs at a baroclinic jet is governed by

(f 2
eff

+
@2

@t2
)
@2 

@z2
+ 2M2 @

2 

@z@y
+N2@

2 

@y2
= 0, (3.21)

where y represents the across-front direction; it is the Eliassen-Sawyer equation in Cartesian co-

ordinates. Assuming  (y, z, t) =  (y, z)e�i�t, the time-averaged wave energy density Ē is ex-

pressed as

Ē =
⇢0
4�2

[(feff
2 + �2)| z|2 + 2M2 z ̂y +N2| y|2]. (3.22)

Ē can be calculated by numerically solving Eq. (3.21) for  . Fig. 3.8d shows the energy density

of the NIWs that are forced by the same wave maker but at the jet-like front.

In both cases, the ray tracing results (under the WKB assumption) are consistent with the

numerical calculations of wave energy density (based on the Eliassen-Sawyer equations); it implies

that the WKB approximation is valid. Furthermore, in the vortex case, there are two hotspots

of high energy at the base corresponding to the trapping locations revealed by the ray tracing.

The curvature effect causes the waves to propagate deeper and also cause the wave energy to be

accumulated deeper. Potentially, the internal wave continuum can be energized there; eventually,

the energy will be transferred to the small-scale turbulence which can significantly enhance the

mixing at the wave trapping locations.

3.5 Numerical Simulations of Near-Inertial Waves in a Baroclinic Vortex

3.5.1 Idealized Simulation

Hydrodynamic model employed in this study is the Regional Ocean Modeling System (ROMS),

which is a free-surface, hydrostatic, primitive equation ocean model using the S-coordinate in

the vertical direction (Shchepetkin and McWilliams, 2005). The idealized model domain is an

80 km⇥80 km domain with the uniform depth of 23 m. The horizontal resolution is 200m⇥200m

and there are 30 layers in the vertical direction. The boundary conditions are set to be periodic at
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all four open boundaries. The initial condition is based on the idealized vortex shown in Fig. 3.4.

The temperature is uniformly set to 25�C, and hence the density is determined by the salinity.

Equation of state of seawater is a linear equation,

⇢ = 1027.0[1.0 + 7.6⇥ 10�4(salinity � 35.0)]; (3.23)

the salinity field is calculated by solving the equation above with the density field specified in

Fig. 3.4c. The vortex is located at the middle of the domain; the velocity and salinity outside the

vortex are set to be the values at the vortex edge. The wind forcing is an oscillating wind in the

y-direction with an amplitude of 3m/s; the oscillating frequency is set to be 0.95f (f = 10�4 s�1),

which is equivalent to an oscillating period of 18.4 hours. The simulation runs for 20 oscillating

periods. MPDATA scheme is used for the tracer advection (Smolarkiewicz and Margolin, 1998).

k � ✏ turbulence closure scheme is used to calculate the vertical mixing, and Canuto A stability

function formulation is applied (Umlauf and Burchard, 2003; Canuto et al., 2001).

NIWs are resonantly forced by the oscillating wind, and the vortex is advected by the near-

inertial motions (not shown). The "jiggling" of this idealized vortex under the oscillating forcing

is similar to the behaviors of the anti-cyclones in the TXLA model (see animations on the TABS

website, Thyng and Marta-Almeida (2017)). Fig. 3.9 shows the vertical shear of the unbalanced,

azimuthal flow at the section crossing the vortex center. The unbalance flow is the flow deviating

the initial, balanced flow and hence can represent the NIWs. The vertical shear of the unbalanced

flow is, then, an effective metric to indicate the intensity of the NIWs. Fig. 3.9 indicates that the

separatrix of �0
min

= 0.95f can not enclose the propagation region – the NIWs propagate wider and

deeper than in the jet case. However, the separatrix of �min = 0.95f better predicts the propagation

boundary of the NIWs. This contrast reveals that the curvature effect is an important agent for the

propagation and trapping of the NIWs in a baroclinic vortex, and the fully non-linear simulation

further validates and supports the theoretical analysis in Section 3.3.
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Figure 3.9: Velocity shear of the unbalanced flow along the section across the vortex center, based
on the idealized ROMS simulation. Two phases (0 and ⇡) in one inertial period are selected.
�

0
min

= 0.95f and �min = 0.95f are marked by the magenta and green lines, respectively. Isopyc-
nals are marked by the gray lines every 1 kg/m3.
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3.5.2 Realistic Simulation

An existing, realistic simulation in the northern Gulf of Mexico, TXLA model (Zhang et al.,

2012; Hetland and DiMarco, 2012b), is used to illustrate the features of the NIWs within a baro-

clinic vortex. The model is implemented based on the ROMS and has a horizontal resolution of

about 1 km in the region of the Texas-Louisiana shelf with 30 layers in the vertical. The model

uses the 3-hourly atmospheric forcing to resolve the diurnal land-sea breeze and the daily river

discharge of the Mississippi/Atchafalaya river to reproduce the river plume. The model is nested

within the HYCOM model. MPDATA is used for the tracer advection, and k � ✏ turbulent closure

for the vertical mixing.

Top panels of Fig 3.10 show the model snapshots of the surface salinity and the normalized

vertical vorticity ⇣/f , illustrating the eddies along the Mississippi/Atchafalaya river plume front.

The eddies have scales of 10-50 km. The eddies are often with negative vorticity in the cores

and surrounded by the fronts with significant positive vorticity (the magnitude often exceeds the

planetary vorticity f ). Middle panels of Fig 3.10 show a pronounced diurnal land-sea breeze

(indicated by the wind stress) and the resonantly forced oscillating currents with the velocity vector

tracing the ellipses. The near-inertial oscillations are persistent even when the winds are weak.

Presumably, the surface oscillating motions can trigger the vertically radiating NIWs, because the

NIWs could be modified by the front and hence radiate downward (see Fig. 3.8). Bottom panels

of Fig 3.10 show the vorticity and turbulent kinetic energy (TKE) dissipation rate along a transect

through an anti-cyclone. The negative vorticity is evident in the core of the anti-cyclone. The TKE

dissipation rate is inferred from the k�✏model and can be used to indicate the intensity of mixing.

The enhanced mixing (approaching 1 ⇥ 10�5 W/kg) is not only found within the outcropping

surface front but also in the stratified interior at the base of the anti-cyclone.

The enhanced mixing in the stratified interior is speculated to be caused by the downward

radiation of NIWs and the consequent trapping of the NIWs. To conform this, the ray tracing

of NIWs is conducted with the consideration of the curvature effect of the anti-cyclone. The

waves are forced by the wave makers with the frequency of f , and the wave rays are initiated

56



at the subsurface. The bottom panel of Fig 3.10 shows the ray tracing result. Two sets of the

wave rays converge in the stratified interior; the positions of the convergence are corresponding

to the locations where the interior mixing is strongest. Presumably, the wave trapping and the

consequent wave amplification can create strong shear to trigger secondary instabilities, small-

scale turbulence, and hence the enhanced mixing. Furthermore, the convergence of wave rays near

the bottom seems to be related to the bottom critical reflection of NIWs – the wave rays are parallel

with the bottom and experiencing the focusing reflection; this mirrors the surface critical reflection

of NIWs revealed by Grisouard and Thomas (2015, 2016).

3.6 Discussion and Conclusions

The restoring mechanism of the NIWs in a baroclinic vortex relies on the conservation of

absolute angular momentum. The absolute angular momentum of a fluid parcel with unit mass in

a rotating system is defined as ~L = r2~! + r2~⌦, where r2 represents the moment of inertia of the

parcel, ~! = ~r⇥~v

r2
is the relative angular velocity of the parcel, and ~⌦ = f

2
~k is the angular velocity

of the rotating system. Given that the vertical component of ~! is ! = v✓
r

, the vertical component

of ~L is, then,

L = rv✓ +
1

2
fr2. (3.24)

On the other hand, the azimuthal momentum equation in Eq. (3.1) can be expressed as

dv✓
dt

+
vrv✓
r

+ fvr = 0, (3.25)

where d

dt
⌘ @

@t
+ vr

@

@r
+ v✓

r

@

@✓
+w @

@z
is the material derivative. Multiplying both sides of Eq. (3.25)

by r and applying vr ⌘ dr

dt
, Eq. (3.25) can be rewritten as

d(rv✓ +
1
2fr

2)

dt
⌘ dL

dt
= 0; (3.26)

it implies that the absolute angular momentum L is conserved following a fluid parcel if the flow is

azimuthally symmetric and there are no torques in the rotating system. This conservation principle
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Vertical vorticity TKE dissipation rate

Figure 3.10: (top) An example of the surface salinity and surface vorticity in 2010 summer, based
on the TXLA model. (middle) Time series of the surface currents and surface wind stress (at the
red dot) with a hodograph of the currents to the right. (bottom) Eddy transects of the vorticity and
TKE dissipation rate (along the black line) with density contours every 1 kg m�3. Vortex center
marked by the gray dashed line. NIW rays (magenta lines) with the frequency of f are initiated at
z = �5 m. Ray tracing results show that the waves propagate downward in the anti-cyclone, and
the rays converge where the interior dissipation is strongest (marked by the black dashed circles).
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yields the restoring mechanism of the NIWs within a baroclinic vortex (see Appendix E).

According to the parcel argument in Appendix E, the oscillating frequency � of a displaced

parcel is equal to

� =
q

f ⇤
eff

2 � 2M2S� +N2S2
�
=

q
M2(S�1

⇢
S2
�
� 2S� + SL), (3.27)

where SL ⌘ �
@Lb
@r
@Lb
@z

=
f
⇤
eff

2

M2 is the slope of the background absolute angular momentum (Lb =

rV✓+
1
2fr

2), S⇢ = M2/N2 is the isopycnal slope, and S� is the slope of the displacement. Fig. 3.11

shows � as a function of S�. � decreases with increasing S� when S� < S⇢ and increases when

S� > S⇢. � reaches the minimum if S� = S⇢, which is

�min =
q
M2(SL � S⇢); (3.28)

�min depends on the difference between SL and S⇢. Moreover, the displacements with S� = 0 and

S� = 2S⇢ have the same frequency as f ⇤
eff

– the motions with the frequency of f ⇤
eff

can be purely

horizontal oscillations or vertically propagating waves. These results are analogous to the case of

the baroclinic jet (Thomas, 2017).

The primary finding of this study is that the curvature effect of a baroclinic vortex can influence

the vertical radiation of NIWs and hence alter the trapping depth of the NIWs; particularly, in a

baroclinic anti-cyclone, NIWs can be trapped deeper and hence could cause a deeper mixing,

compared to the NIWs at a baroclinic jet with anti-cyclonic vorticity.

The effective inertial frequency is modified from feff =
p

f(f + ⇣s) at a baroclinic jet to

f ⇤
eff

=
p

(f + 2⇣c)(f + ⇣c + ⇣s) in a baroclinic vortex. f ⇤
eff

contains two modifications: the mod-

ification by the total vorticity ⇣c + ⇣s altering the net spin of the fluid, and the modification by the

curvature vorticity ⇣s altering the net spin of the rotating framework. The minimum frequency of

NIWs is modified from �
0
min

=
q

f 2
eff

�M4/N2 at a baroclinic jet to �min =
q
f ⇤
eff

2 �M4/N2

in a baroclinic vortex due to the curvature effect. In particular, if the vortex is an anti-cyclone

(⇣c < 0), �min will be less than �0
min

– the minimum frequency of the NIWs is reduced by the
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Figure 3.11: (a) Oscillating frequency � of a displaced fluid parcel as a function of the displacement
slope S�. The schematics above are corresponding to three scenarios: S� < S⇢, S⇢ < S� < SL,
and SL < S� (� is displacement, ⇢ is density, L is absolute angular momentum, SL = f ⇤

eff

2/M2

is slope of L, and S⇢ = M2/N2 is isopycnal slope). The background field is configured with
f ⇤
eff

2 = 10�9 s�2, M2 = 10�7 s�2, and N2 = 10�4 s�2. (b) Zoomed view of the red box in a).
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curvature effect.

The time-dependent Eliassen-Sawyer equation and the wave energy density formula are derived

in cylindrical coordinates. The Eliassen-Sawyer equation is numerically solved in an idealized

anti-cyclone to illustrate the energy density of the NIWs within a baroclinic vortex. On the other

hand, the ray tracing based on the WKB approximation is conducted in the idealized vortex to

illustrate the propagation and trapping of the NIWs. The numerical solution is consistent with the

ray tracing result. Both the numerical solution and ray tracing result show that the curvature effect

of the anti-cyclone extends the propagation area of the NIWs, and the NIWs can be trapped deeper

than previously predicted.

A fully non-linear numerically simulation is conducted to simulate the NIWs in the idealized

vortex based on the ROMS. The result shows that the curvature-modification theory well predicts

the propagation region of the NIWs. Furthermore, the ray tracing is conducted in an anti-cyclone

based on a realistic simulation on the Texas-Louisiana shelf with the curvature effect taken into

account. The result shows that the NIWs propagate downward and converge in the interior at the

base of the vortex, which suggests the wave trapping and wave amplification. Correspondingly,

the internal mixing is found to be enhanced at the locations where the wave rays converge. This

feature indicates that the bottom water could be periodically ventilated by the trapping of NIWs,

which is helpful to interpret the patchy and transient features of summertime bottom hypoxia in

the northern Gulf of Mexico.
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4. TEMPORAL RESOLUTION OF WIND FORCING REQUIRED FOR RIVER PLUME

SIMULATIONS ⇤

4.1 Introduction

As a typical buoyancy-driven flow in coastal zones, river plumes are of the central importance

of understanding coastal ecosystems and environments (Horner-Devine et al., 2015). Rivers trans-

port freshwater, sediments, nutrients, and pollutants from continents to the ocean. Annually, about

4⇥ 104 km3 of freshwater (one-third of the total precipitation over land) and 12.6 billion metric

tons of sediments are transported to the global ocean via rivers (Syvitski et al., 2005; Trenberth

et al., 2007). The large input of nutrients stimulates phytoplankton and zooplankton growth, which

can give rise to productive fisheries in river plume regions. As a negative consequence, this high

productivity, combined with the enhanced stratification, can create hypoxic bottom water under

plume regions (Lohrenz et al., 1999; Rabalais et al., 1999; Hetland and DiMarco, 2008). More-

over, the high-nutrient conditions created by the runoff of industrial and agricultural wastes can

induce toxic algal blooms, which threaten the communities living in coastal regions and hurt the

shellfisheries and other potential industries that rely on clean water (Franks and Anderson, 1992).

This chapter will focus on the river plume simulations. Particularly, the temporal resolution of

wind forcing required for river plume simulations is explored to provide guidance on selecting

wind forcing data.

Wind is a primary forcing agent for the river plume variability. For selecting wind forcing

data, there are often two choices, i.e., single-point measurements or atmospheric general circula-

tion model (GCM) data. Wind data from single-point measurements often have higher temporal

resolutions (sampling rates are often higher than hourly) compared to the GCM data. To use this

will be reasonable if the spatial scale of the simulation region is smaller than, or comparable with,

the wind decorrelation scale (Hetland and DiMarco, 2012a). However, it will not be a good choice

for the situations where the spatial structure of wind matters even though the simulation area is
⇤This chapter is a reprint of material published in the Journal of Geophysical Research - Oceans with permission.
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small. For instance, the Pearl River plume region over the northern South China Sea shelf is fre-

quently affected by typhoons, leading single-point measurements to miss the phase information of

passing fronts. Therefore, under some circumstances, we have to use GCM data, which possess

lower temporal resolution but with spatial information. This is a trade-off between resolving finer

spatial structure or high-frequency temporal variability, and we simply do not know which one is

more important, because it is not clear which temporal resolution is needed for simulating river

plumes.

Wind data from atmospheric GCMs can be found in multiple temporal resolutions. There are

numerous meteorologic reanalysis and forecast products. The associated institutions include the

European Center for Medium-Range Weather Forecasts (ECMWF), National Centers for Environ-

mental simulation (NCEP) of National Oceanic and Atmospheric Administration (NOAA), and

National Aeronautics and Space Administration (NASA). For reanalysis data products, JRA-25

(Onogi et al., 2007) and NCEP-DOE Reanalysis 2 (Kanamitsu et al., 2002) provide 6-hourly sea

surface wind data, ERA-Interim (Simmons et al., 2007) and NCEP NARR (Mesinger et al., 2006)

provide 3-hourly wind data, and NASA MERRA (Rienecker et al., 2011) and NCEP CFSR (Saha

et al., 2010) provide hourly wind data. For forecast data products, GFS/NOAA provides 3-hour

surface wind forecast up to +240 hours (NCEP, 2003), and ECMWF forecast provides 3-hourly

data up to +144 hours and 6-hourly data from +150 to +240 hours (Andersson, 2015). A data prod-

uct with a lower temporal resolution may have a better performance on reproducing or predicting

winds in a specific region compared to the ones with higher resolutions. In this situation, we have

to use the wind data with the relatively low temporal resolution, but we simply do not know how

important is the missing high-frequency information.

The goal of this chapter is to quantify the temporal resolution of wind forcing required for

accurate river plume simulations. In particular, the problems mentioned above will be addressed

by evaluating the influence of missing high-frequency wind information in a series of idealized

numerical simulations. The simulation errors will be examined in three aspects: the plume extent,

freshwater transport, and plume structure in salinity coordinates. The factor controlling the plume
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simulation errors will be explored, and subsequently, suggestions on properly selecting wind forc-

ing for river plume simulations will be provided.

4.2 Methods

4.2.1 Idealized Numerical Model

The hydrodynamic model employed in this study is the version 3.8 of Regional Ocean Mod-

eling System (ROMS) (Shchepetkin and McWilliams, 2005). ROMS is a free-surface, hydro-

static, primitive equation ocean model using orthogonal curvilinear coordinates in the horizontal

direction and S-coordinate in the vertical direction. The model domain is a uniformly sloping

shelf with a straight estuary attached (Fig 4.1a). The size of the shelf region is approximately

100 km (across-shore) ⇥ 360 km (along-shore), and the depth ranges from 10 m to 100 m off-

shore. The estuary is 20 km long and 1 km wide and has a parabolic bathymetry ranging from

3 m to 10 m in the cross-channel direction. Model grid focuses on the estuary and the adjoin-

ing shelf region, with the finest resolution of 200 m ⇥ 200 m. Resolution decreases away from

the outflow region and is coarsest at the edges of the domain. Model grid and resolution in the

river plume region are shown in Fig 4.1b. In the vertical direction, the model has 20 layers with

fine resolution at the surface (< 1 m in the upper 5 m). The s-coordinate parameters are set to

Vtransform = 2, Vstretching = 4, ✓S = 5.0, ✓B = 0.01, and Tcline = 5.0. Flow is initially at

rest, and initial temperature and salinity are set to uniformly 25�C and 32 psu, respectively. River

discharge has a constant rate of 1000 m3s�1 with the temperature of 25�C and the salinity of 0

psu. k � ✏ turbulence closure scheme is used to calculate vertical mixing, and Canuto A stability

function formulation is applied (Umlauf and Burchard, 2003; Canuto et al., 2001). This idealized

model with similar configurations has been used in previous, general studies to understand the

mixing within river plumes, such as Hetland (2005) and Cole and Hetland (2016). Consequently,

the model is capable of capturing the main features of a wind-dominated, surface-advected river

plume, and supports the associated plume dynamics in a variety of situations.

The momentum forcing is along-shore and spatially uniform and has no across-shore compo-
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Figure 4.1: a) Idealized model domain with bathymetry in color. Dashed box encloses the region
shown to the right, and red line marks a section at 60 km downstream. b) Model grid (lines) and
resolution (color). Black lines mark every 10 grid cells. Reprinted with permission from Qu and
Hetland (2019).

nent (see Section 4.2.2). The reason for excluding the across-shore component is that the structure

and position of a river plume over a shelf are dominated by the along-shore winds (upwelling

and downwelling winds) through the Ekman transport (Fong and Geyer, 2001; Moffat and Lentz,

2012). The across-shore winds could merely affect the across-shore transport in an unstratified

inner shelf, where the surface and bottom Ekman layers can interact with each other so that the

fluid is friction-dominated (Tilburg, 2003). But, in this study, we focus on the river plumes on

a stratified, broad shelf, so the across-shore transport due to the across-shore winds should be a

secondary effect in this scenario.
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4.2.2 Wind Forcing Data

Surface wind data are gathered from the Texas Automated Buoy System (TABS) buoy B, which

is located on the Texas-Louisiana shelf and in the Mississippi River plume region (Fig 4.2a). We

use the data in August 2014, which possess a sampling rate of 30 minutes. Fig 4.2b shows the

observed wind speed in the zonal direction, positive eastward. The wind speed approximately

ranges from -10 m/s to 8 m/s, which is a typical wind condition in this region (Jebson, 2007). This

observational data are used as a reference to reconstruct a near-realistic wind forcing for idealized

numerical experiments. The near-realistic wind is required to be as realistic as possible to keep

the natural characters of the observed wind, yet idealized enough to clearly highlight the relation

between temporal resolutions and simulation errors.

Fast Fourier Transformation (FFT) is used to decompose the observed wind time series, and

the associated spectrum is shown in Fig 4.2a. In logarithmic coordinates, the energy spectrum

increases with increasing periods in an approximately linear trend. The linear regression of the

spectrum is shown in Fig 4.2a. Correlation between the regression and the raw spectrum is r2 =

0.85, and the two-sided T-test shows that they are statistically indistinguishable with p = 0.48.

A near-realistic wind is reconstructed by inverse FFT using the linear-regressed spectrum and the

original FFT phases. Fig 4.2b shows the comparison between the reconstructed and the original

wind data; we can see that the main features of the original wind are still preserved. This near-

realistic wind is used to force the idealized model to build the control run. Furthermore, in order

to quantify simulation errors caused by temporal subsampling, the near-realistic wind is low-pass

filtered (see Section 4.2.3) to generate a series of winds with various temporal resolutions, and

subsequently the simulations forced by the filtered winds are compared with the control run.

4.2.3 Low-Pass Filters

Two types of low-pass filters are used in this study. One is the attenuated amplitude filter,

a low-pass filter that passes signals with frequencies lower than a cutoff frequency and attenu-

ates amplitudes of signals with frequencies higher than the cutoff frequency. The other one is the

67



Period [days]

Figure 4.2: a) FFT spectrum of the surface wind speed observed at TABS Buoy B and the asso-
ciated linear regression. b) Comparison between the observed and reconstructed winds. Only the
zonal component of the wind data is exhibited, and eastward is positive. Lower-right panel in a)
shows the buoy location (red circle). 10, 20, 50, and 100 m isobath contours are marked. Reprinted
with permission from Qu and Hetland (2019).
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randomized phase filter, a low-pass filter that passes low-frequency signals in terms of both am-

plitudes and phases, while preserves the amplitudes of high-frequency signals, but randomizes the

phases of high-frequency signals.

Applying the attenuated amplitude filter (see the upper panels of Fig 4.3), the portion of the FFT

spectrum with frequencies lower than the cutoff frequency is preserved, while the high-frequency

proportion of the spectrum above the cutoff frequency is set to zero amplitude. A new wind time

series is reconstructed by inverting the modified spectrum with the corresponding proportion of

the FFT phases. On the other hand, applying the randomized phase filter (see the lower panels

of Fig 4.3), the entire spectrum is preserved, while the phases with frequencies lower than the

cutoff frequency are preserved, but the high-frequency proportion of the phases above the cut-

off frequency are randomized. A new wind time series is reconstructed by inverting the original

spectrum with the modified phases. In order to more effectively show the cutoff points, cutoff

frequencies will be expressed as cutoff periods for the rest article, which are proportional to the

reciprocal of the cutoff frequencies.

4.2.4 Metrics

The metrics to evaluate river plume simulation errors are the plume extent distance, freshwater

transport, and plume structure in salinity coordinates. Plume extent distance, D, is defined as

the maximum surface offshore extent of 28 psu isohaline and used to characterize the cross-shore

freshwater transport by a plume. Root-Mean-Square (RMS) error is used to evaluate simulation

errors. RMS error of plume extent, RMSD, is given by

RMSD =

vuut 1

N

NX

n=1

[DE(tn)�DC(tn)]2 , (4.1)

where DE(tn) and DC(tn) are the plume extent of a filtered run and the control run, respectively,

and tn, n = 1, 2, ..., N, are the output time points. Analogously, RMS error of surface salinity,
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Attenuated amplitude filter 

Randomized phase filter

FFT phasesPeriod [days]Time [days]

Figure 4.3: Examples of the attenuated amplitude filter (upper) and randomized phase filter (lower)
outputs with the FFT spectra and phases to the right. Non-filtered and filtered winds are marked
by gray lines and red lines. Cutoff period is set to 2 days marked by dashed green lines in the
spectrum and phase plots. In the spectrum plots, gray lines represent the idealized spectra, and
gray dots represent the raw spectrum. In the phase plots, 16 days, 4 days, 1 day, and 6 hours are
marked by dashed gray lines, and size of a phase dot represents the amplitude of the corresponding
signal. Reprinted with permission from Qu and Hetland (2019).

RMSS(x, y), is given by

RMSS(x, y) =

vuut 1

N

NX

n=1

[SE(x, y, tn)� SC(x, y, tn)]2 , (4.2)

where SE(x, y, t) and SC(x, y, t) are the surface salinity of a filtered run and the control run,

respectively.

Freshwater transport, T , is defined as the transport across the 60 km, down-coast section

(marked in Fig 4.1) and used to characterize plume along-shore transport. The transport is defined

as the freshwater content within the total seawater transport, relative to the background salinity S0

(32 psu), which is expressed as

T (t) =

Z Z

A

S0 � S(x, z, t)

S0
v(x, z, t) dxdz , (4.3)
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where S(x, z, t) is the salinity at the section, v(x, z, t) is the across-section velocity, and A is the

section area. RMS error of freshwater transport, RMST , is given by

RMST =

vuut 1

N

NX

n=1

[TE(tn)� TC(tn)]2 , (4.4)

where TE(tn) and TC(tn) are the freshwater transport of a filtered run and the control run, respec-

tively.

In contrast to Cartesian coordinates, salinity coordinates have the advantage of following a

river plume and tracking freshwater distribution as the plume moves and mixes with ambient water

(Hetland, 2005). The key link to describe a river plume in salinity coordinates is the freshwater

content, V (S), as a function of salinity, S. Given a volume where salinity is less than a reference

salinity Sr, the freshwater content relative to Sr, V (Sr), is defined by the integral of the freshwater

fraction in this volume relative to the background salinity S0, which is expressed as

V (Sr) =

Z Z Z

S<Sr

S0 � S(x, y, z)

S0
dxdydz , (4.5)

where S(x, y, z) is the 3-dimensional salinity distribution in Cartesian coordinates. Consequently,

the structure of a plume in salinity coordinates can be described by the freshwater distribution

function V 0(S) = dV (S)
dS

, which is the salinity derivative of the freshwater content V (S). Although

the freshwater distribution function could not provide the stratification information of a river plume

in a Cartesian reference frame (e.g. the stratification or plume depth at a specific location), it can

indicate the overall mixing status of the plume and track the freshwater entrainment and transfer

across salinity classes due to a variety of mixing processes within the plume. Hetland (2005)

demonstrates its capability on tracking the changes of the stratification status when the winds

shift between upwelling and downwelling phases; this suggests that the freshwater distribution is

effective to quantify the wind-induced mixing effects on river plume structures and hence can be

used as a metric to evaluate the simulation errors caused by subsampling winds.
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4.3 Results

4.3.1 Comparative Experiments

Comparative experiments are conducted to examine the relative effects of the low- and high-

frequency wind components on river plume variability. There are three groups of experiments:

the control run, randomized low-frequency group (3 ensemble members), and randomized high-

frequency group (3 ensemble members). All model settings except wind forcing are the same

across all three groups. The wind forcing in the control run is the near-realistic wind shown in

Fig 4.2b. In the randomized low-frequency group, the winds have the same FFT spectrum as the

wind in the control run, but FFT phases of the winds are randomized at periods longer than 1

day (see Fig 4.4b). Analogously, in the randomized high-frequency group, the FFT spectra are

the same, but the FFT phases with periods shorter than 1 day are randomized (see Fig 4.4c). The

randomized winds are compared to the near-realistic winds in Fig 4.4d and 4.4e.

According to the surface salinity snapshots (not shown), the plumes of the randomized low-

frequency group are diverse, and the salinity structures are different from the control run. In con-

trast, the plumes of the randomized high-frequency group are similar, and the salinity structures

are consistent with the control run. Surface salinity RMS errors, RMSS(x, y), of the random-

ized low- and high-frequency groups are calculated based on Eq. (4.2) and shown in Fig 4.5; the

low-frequency group has generally larger RMS errors than the high-frequency group, especially in

the bulge and far-field regions. Moreover, the time-averaged 28 psu isohalines of the randomized

low-frequency group are more divergent from the control run than the randomized high-frequency

group; this also confirms that the low-frequency group are more deviated from the control run.

Consequently, it can be inferred that river plumes are strongly influenced by low-frequency com-

ponents in wind rather than high-frequency components.

In the phase setting of the randomized high-frequency group (see Fig 4.4c), only 4% of the FFT

phases are original, other 96% randomized. However, the surface salinity structure is successfully

reproduced. In contrast, 96% of the FFT phases are preserved originally in the phase setting of
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Figure 4.4: a) FFT phases of the near-realistic wind. b) and c) are the phases of the randomized
low-frequency and high-frequency groups, respectively. Phases at purple areas are randomized. 16
days, 4 days, 1 day, and 6 hours are marked by dashed gray lines. Size of a phase dot represents the
amplitude of the corresponding signal. d) and e) show the comparisons between the randomized
winds and the near-realistic wind in those two groups. Reprinted with permission from Qu and
Hetland (2019).

Figure 4.5: Surface salinity RMS errors, RMSS(x, y), of the randomized low-frequency and high-
frequency groups. Blue and black contours represent the time-averaged 28 psu contours of the
control run and ensemble simulations, respectively. Reprinted with permission from Qu and Het-
land (2019).
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the randomized low-frequency group (see Fig 4.4b), but the plumes are very different from the

control run. The reason seems to be related to the fact that the low-frequency components have

much higher energy than the high-frequency components (see Fig 4.2a); these experiments lead to

the hypothesis that the amount of the missing FFT components might not be the dominant factor

controlling simulation errors, but the fraction of the missing energy is.

4.3.2 Low-Pass Filter Experiments

In the experiment assocaited with the low-pass attenuated amplitude filter, the wind forcing data

are a series of filtered winds – the winds created by applying the low-pass attenuated amplitude

filter on the wind of the control run. The cutoff periods are: 3 hours, 6 hours, 12 hours, 18 hours,

24 hours, 35 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 8 days, 10 days, and 16 days. Other

model settings are the same as the control run. River plume simulation errors are examined using

the metrics of plume extent and freshwater transport.

Surface salinity RMS errors, RMSS(x, y), of the cutoff runs are shown in Fig 4.6a. Compared

to the surface salinity pattern of the control run (upper-left panel of Fig 4.6a), we can see that

the large errors are mainly located at the plume bulge region, and the errors significantly decrease

with decreasing cutoff periods. Also, the time-averaged 28 psu isohalines of the cutoff runs are

compared with the control run, as shown in Fig 4.6a. The contours of the cutoff runs converge

to the control run with the decreasing cutoff periods. RMS errors of the plume extent, RMSD,

and freshwater transport, RMST , are shown in Fig 4.6b and 4.6c, respectively. Both RMS errors

significantly decrease with decreasing cutoff periods. RMSD decreases approximately from 10

km to 0.5 km, and RMST decreases approximately from 400 m3s�1 to 40 m3s�1.

In the experiment assocaited with the low-pass randomized phase filter, the wind forcing data

are created by applying the randomized filter on the wind forcing of the control run. One statistical

advantage of the randomized filter is generating ensemble members for a given cutoff period by

creating randomized phases. There are 12 ensemble members for each cutoff run. The cutoff

periods are the same as used in the attenuated amplitude filter experiment. Other model settings

are the same as the control run. In addition, a max error run is set up, in which there are also 12
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Figure 4.6: a) Surface salinity RMS errors, RMSS(x, y), of the low-pass attenuated amplitude
filter experiment. Time-averaged surface salinity of the control run is shown in the upper-left
panel. Green and black contours represent the time-averaged 28 psu contours in the control run
and the cutoff runs, respectively. b) Plume extent RMS errors, RMSD, as a function of the cutoff
period. c) Freshwater transport RMS errors, RMST , as a function of the cutoff period. Reprinted
with permission from Qu and Hetland (2019).

ensemble members, but the wind forcing of each member is created using a totally randomized

phase.

Surface salinity RMS errors, RMSS(x, y), of the max error run and the cutoff runs are shown in

Fig 4.7a. Instead of exhibiting the error of each ensemble member, ensemble-averaged RMS error,

RMSS , is displayed; that is defined by RMSS(x, y) =
1
M

MP
m=1

RMSm

S
(x, y), where RMSm

S
(x, y)

is the surface salinity RMS error of the mth member, and M = 12 is the total number of the

ensemble members. The result shows that the significant errors are also mainly located in the plume

bulge regions, which is consistent with the result of the attenuated amplitude filter experiment. The
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max error run has the largest error reaching 12 psu, and the errors of the cutoff runs significantly

decrease with decreasing cutoff periods. Time-averaged 28 psu isohalines of all ensemble members

are compared with the one of the control run (see Fig 4.7a). The ensemble contours converge to

the control run with decreasing cutoff periods.

Ensemble-averaged RMS errors of the plume extent, RMSD, and freshwater transport, RMST ,

are shown in Fig 4.7b and 4.7c, respectively. RMSD and RMST are defined by RMSD =

1
M

MP
m=1

RMSm

D
and RMST = 1

M

MP
m=1

RMSm

T
, where RMSm

D
and RMSm

T
are the RMS errors of

the mth member. Compared to the results of the attenuated amplitude filter experiment (Fig 4.6b

and 4.6c), RMSD and RMST also significantly decrease with decreasing cutoff periods in similar

trends. RMSD varies more continuously than RMSD in the attenuated amplitude filter exper-

iment. Moreover, RMSD and RMST have similar variation ranges compared to RMSD and

RMST of the attenuated amplitude filter experiment; RMSD decreases approximately from 13

km to 0.4 km, and RMSD decreases approximately from 340 m3s�1 to 40 m3s�1.

4.3.3 Comparison of Two Filter Experiments

Both the attenuated amplitude filter experiment and the randomized phase filter experiment

show that simulation errors decrease with decreasing cutoff periods (see Fig 4.6b/c and Fig 4.7b/c).

Although two types of filter experiments show similar decreasing trends, some difference still

exists between the results. Fig 4.8a shows the comparison of plume extent RMS errors (RMSD

versus RMSD), and Fig 4.8b shows the comparison of of freshwater transport RMS errors (RMST

versus RMST ).

In Fig 4.8a, the errors associated with the cutoff periods shorter than 3 days are nearly identical.

However, for the longer cutoff periods, the randomized phase filter runs have higher errors than

those of the attenuated amplitude filter runs. The reason for "3 days" can be explained using the

classic Ekman transport theory. Given that the plume extent is defined in the plume bulge region,

the Ekman transport in the plume bulge is explored. To be consistent with the definition of the

plume extent, the definition of the plume bulge is also based on the criterion of 28 psu, which is

the volume where salinity is less than 28 psu. The across-shore section through the center of the
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Cutoff period [days] Cutoff period [days]

Figure 4.7: a) Ensemble-averaged surface salinity RMS errors, RMSS(x, y), of the low-pass ran-
domized phase filter experiment. Green and black contours represent the time-averaged 28 psu
contours of the control run and the ensemble members, respectively. b) Ensemble-averaged RMS
errors of plume extent, RMSD, as a function of the cutoff period. c) Ensemble-averaged RMS er-
rors of freshwater transport, RMST , as a function of the cutoff period. Reprinted with permission
from Qu and Hetland (2019).
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time-averaged bulge in the control run is shown in Fig 4.8c.

Consider the plume bulge as a layer of freshwater, with density ⇢0 and thickness of hf , over-

laying denser oceanic water. In the freshwater layer, the Ekman transport caused by a wind stress

⌧ can be given by

uhf =
⌧

f⇢0
, (4.6)

where u is the depth-averaged velocity in the freshwater layer and f is the Coriolis parameter.

The across-shore velocity u can be estimated as �x

�t
, where �t is the duration of the wind and �x

is the moving distance of a fluid parcel. Therefore, the across-shore moving distance �x can be

expressed as a function of the wind duration �t,

�x =
⌧

f⇢0hf

�t . (4.7)

The difference of wind forcing between two experiments is that a randomized phase filtered

wind has additional, randomized high-frequency fluctuations compared to an attenuated amplitude

filtered wind using the same cutoff period. If the additional wind fluctuations could cause a moving

distance �x larger than the bulge width W , the spatial dimension of the bulge would be changed,

and hence the randomized phase filtered wind can cause extra errors compared to the attenuated

amplitude filtered wind. Otherwise, if the additional fluctuations cause a �x smaller than W ,

the spatial dimension of the bulge would not be changed since the motion is confined within the

bulge, and hence the randomized phase filtered wind would cause a similar error as the attenuated

amplitude filtered wind; this implies a constraint of the wind duration �t to yield similar errors in

two experiments,

�t <
f⇢0hf

⌧
W . (4.8)

According to the wind record (see Fig 4.2b), the mean wind speed UW is 2.0 m s�1 such that

the mean wind stress is ⌧ = ⇢aCDU2
W

= 4.9 ⇥ 10�3 N m�2, where ⇢a = 1.225 kg m�3 is the

air density and CD = 0.0015 is the drag coefficient (Cushman-Roisin and Beckers, 2011). Based

on the spatial dimension of the plume bulge in the control run (see Fig 4.8c), the plume width W
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is approximately 20 km, and the thickness of the upper layer is approximately 1 m (horizontal-

averaged). Given that f is 10�4 s�1 and ⇢0 is 103 kg m�3, applying Eq. 4.8, yields�t < 3.15 days;

this indicates that the randomized components with periods shorter than 3 days in the randomized

phase filtered wind can not cause extra error compared to the attenuated amplitude filtered wind. In

other words, two filtered winds with the cutoff periods shorter than 3 days will have similar errors,

even if the randomized phase filtered wind has additional random high-frequency components. For

the longer cutoff periods, the random components in the randomized phase filtered winds can cause

large across-shore motions so that spatial structures of plume bulges can be further modified and

create larger RMSD; this explains the larger RMSD after the 3 days cutoff.

In Fig 4.8b, the RMS errors of two experiments are nearly 1:1, especially when the cutoff pe-

riod is smaller than 3 days. In this cutoff period range, the attenuated amplitude filter experiment

has nearly identical errors as the randomized phase filter experiment, in terms of both plume extent

and freshwater transport; it implies that the error caused by missing high-frequency components

is nearly 1:1 to the error caused by adding random perturbations at this high-frequency band. Fur-

thermore, the cutoff period that is shorter than 3 days is equivalent to the temporal resolution that

is finer than 1.5 days. This resolution range is where the temporal resolutions of atmospheric GCM

data and single-point measurements are located. Hence, the randomized phase filter experiment

would be capable of quantifying the simulation errors caused by subsampling.

4.3.4 Quantifying River Plume Simulation Errors

The freshwater distribution function in salinity coordinates can provide a comprehensive de-

scription of the structure of a river plume (Hetland, 2005). On the other hand, the randomized phase

filter experiment can provide more statistical information by setting up ensemble runs. Therefore,

we choose the freshwater distribution in the randomized phase filter experiment as the metric to

quantify the error rate for a river plume simulation.

Time-averaged freshwater distribution functions of the control run, max error run, and cutoff

runs are shown in Fig 4.9a. As discussed by Hetland (2005), freshwater is concentrated at high-

salinity classes. As the cutoff period decreases, the results of the ensemble runs converge to the

79



3 days
3 days

a) b)

c)

W = 20 km

hf = 1 m

Figure 4.8: a) RMSD versus RMSD. b) RMST versus RMST . Color represents cutoff period,
and grey lines are 1:1 lines. c) Across-shore section through the center of the time-averaged plume
bulge in the control run. Grey contour marks the 28 isohaline. Reprinted with permission from Qu
and Hetland (2019).

result of the control run. Assuming V 0
m
(S) is the freshwater distribution function of the mth en-

semble member and V 0(S) is the ensemble mean of all the V 0
m
(S), the ensemble standard deviation

� of the freshwater distribution is defined as

� =
1

NS

X

Sr2S

STD(Sr) =
1

NS

X

Sr2S

vuut 1

M � 1

MX

m=1

[V 0
m
(Sr)� V 0(Sr)]2 , (4.9)

where Sr 2 S, S is a discrete salinity space with NS elements ranging from 16 to 32 psu, and

M = 12 is the total number of the ensemble members. STD(S) is the unbiased estimation of

standard deviation based on the 12 ensemble members, and it is calculated on each salinity point

Sr 2 S. Then, STD(Sr) are averaged across all the salinity points Sr 2 S to get the mean ensemble

standard deviation �. Large ensemble standard deviation � indicates a large plume simulation error,

and small � indicates a small error.

Assuming that �cut and �max are the standard deviations of a cutoff run and the max error run,
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Figure 4.9: a) Freshwater distribution functions, V 0(S) = dV (S)
dS

, in the low-pass randomized phase
filter experiment, and red and black lines represent the functions in the control run and the ensemble
runs, respectively. b) Simulation error rate, E, as a function of the cutoff period, and black line is
the best power function to fit the dots. Reprinted with permission from Qu and Hetland (2019).

81



respectively, the error rate E for the cutoff run is defined as the ratio between �cut and �max,

E =
�cut

�max
. (4.10)

Here, the standard deviation of the max error run �max is used to normalize the standard deviation

of the cutoff run �cut. The reason is as follows. As shown in Fig 4.9a, the freshwater distri-

bution dV (S) becomes more diverse with the increasing cutoff periods. Correspondingly, �cut

must increase with increasing cutoff periods, but also it must have an upper limit that is �max,

since the max error run is the most diverse situation. Consequently, this normalization ensures

that E < 100%. Ideally, if the cutoff period is set to zero (all ensemble members are forcing with

the same, unfiltered wind), every ensemble member will have the same freshwater distribution, and

thus �cut will be zero; this ensures that the most accurate situation has E = 0%. As noted above, E

decreases with decreasing cutoff periods, varies between 0% and 100%, and hence represents the

accuracy of a river plume simulation. In this study, E = 5% is used as the threshold to determine

the accuracy of a river plume simulation.

Simulation error rate, E, as a function of the cutoff period is shown in Fig 4.9b, which can be

regressed by a power function of the cutoff period with a robust correlation (r2 = 0.98). Two-

sided T test is conducted for the regression and the raw data, and the result shows that they are

statistically indistinguishable with p = 0.99. Since a cutoff period is equal to two times of a

temporal resolution, E can be related to a temporal resolution, �t, as follows

E = 10�1.1 ⇥ (2�t)0.6 . (4.11)

For the resolutions higher than 12-hourly (corresponding to the cutoff period less than 1 day),

the error rates are lower than 90%. The single-point measurements with the sampling rate of 30

minutes seem to not be necessary to be used as wind forcing, because the improvement will be

slight and the spatial information will be missed compared to the atmospheric GCM data. More

details will be discussed in Section 4.4.
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4.3.5 Linking Simulation Error to Missing Wind Energy

Comparative experiments in Section 4.3.1 lead to a hypothesis that the fraction of the missing

wind energy is the dominant factor controlling simulation errors. This hypothesis will be tested in

this section. In order to link the simulation error rate E to the missing wind energy, we normalize

the missing wind energy by the total wind energy. Cumulative missing energy ratio, R, is defined

as the ratio between the cumulative missing wind energy and the total wind energy based on FFT

spectrum. Based on the regressed FFT spectrum shown in Fig 4.2a, R is calculated for all the cutoff

periods used in the filter experiment. Fig 4.10a shows the R as a function of the cutoff period. We

can see that R decreases with decreasing cutoff periods as E does, and the best power function to

fit R is

R = 10�1.2 ⇥ (2�t)0.7 , (4.12)

where �t is the temporal resolution (2�t is the cutoff period). Correlation between the regression

and the raw data is r2 = 0.99, and the two-sided T test shows that they are statistically indistin-

guishable with p = 0.93.

The similarity between Eq. (4.11) and Eq. (4.12) implies a strong link between the simulation

error rate, E, and the cumulative missing energy ratio, R. Fig 4.10b shows the comparison between

E and R for all cutoff runs in the randomized phase filter experiment. Correlation between E and

R is r2 = 0.98. A two-sided T test is conducted to test if E and R are statistically identical, with

similar values. The test results are t = �0.03 and p = 0.97. Based on the criterion of p = 0.05,

we cannot reject the null hypothesis in the T test, indicating E and R are indistinguishable; this

implies that R is the primary factor indicating river plume simulation errors. In other words, the

reason why E is a power function of the cutoff period is due to R being a power function of the

cutoff period. Furthermore, Fig 4.10a shows that the wind energy at the periods of several hours is

weak (less than 5% of total energy) and hence is insignificant to influence mixing in a river plume.

Note that, the specific numbers of E and R are associated with the choice of the wind data that

is a single-point measurement in the Mississippi River plume region. However, the 1:1 relation
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Cutoff period [days]

Figure 4.10: a) Cumulative missing energy ratio, R, as a function of the cutoff period, and black
line is the best power function to fit the dots. b) Comparison between the cumulative missing
energy ratio, R, and the simulation error rate, E, and black line is the 1:1 line. Colors represent
the cutoff periods. Reprinted with permission from Qu and Hetland (2019).

between E and R should be general for the river plume simulations in other regions. Therefore, R

can be used to estimate the error of a river plume simulation caused by temporal subsampling of

wind forcing.

4.4 Discussion and Conclusions

Should single-point measurements or atmospheric GCM data be used as the wind forcing in

river plume simulations? Or, if choosing atmospheric GCM data, what temporal resolution should

be selected? The cumulative missing energy ratio can be used to tackle these problems. Analyzing

the FFT spectrum of a wind measurement in the simulation region will be helpful for deriving an

estimation of the simulation error.

Here, we give three realistic examples, the Mississippi River, Columbia River, and Merrimack

River, to show the determination of temporal resolution of wind forcing. The wind data for the

Mississippi River are the realistic wind measurements shown in Fig 4.2b. The other two observa-

tions are from the National Data Buoy Center (NDBC). The buoy in the Columbia River plume
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Table 4.1: Cumulative missing energy ratios, R, of the subsampled winds in the Mississippi River,
Columbia River, and Merrimack River regions. Reprinted with permission from Qu and Hetland
(2019).

Resolution 6-hourly 4-hourly 3-hourly 2-hourly hourly
Mississippi 8.94% 6.69% 4.93% 3.46% 1.66%
Columbia 5.91% 3.72% 3.00% 1.97% 0.79%
Merrimack 9.04% 6.47% 4.91% 3.69% 1.42%

region is NDBC Station 46029, NDBC Station IOSN3 for the Merrimack River plume region.

Both subsampling rates are 10 minutes, and the along-shore wind records in August 2014 are used.

First, FFT spectra of the wind data are calculated. Then, the cumulative missing energy ratios R

are calculated based on the spectra and the selected cutoff periods. The cutoff periods are selected

as: 24 hours, 12 hours, 8 hours, 6 hours, 4 hours, and 2 hours, and the corresponding temporal

resolutions are at the half of the associated cutoff periods. R for these three wind measurements

are shown in Tab 4.1.

R of the Columbia River case is generally smaller than the Merrimack River and Mississippi

River cases. The reason is that, according to the analysis of FFT spectra (not shown), the wind

energy at the periods of several hours in the Columbia River region is generally weaker. Consid-

ering that R is 1:1 related to the simulation error E and 5% error rate is the accuracy criterion, the

4-hourly wind forcing for the Columbia River plume simulation will be very accurate with an error

rate around 3.72%. However, the 4-hourly wind forcing in the Mississippi River and Merrimack

River regions would cause the error rates of around 6.69% and 6.47%, respectively. These error

rates cannot meet the criterion, so it is necessary to choose the 3-hourly wind forcing to get the

acceptable error rates. In all cases, the single-point measurements with the sampling rates of 10

or 30 minutes are not necessary to be used as wind forcing. Of course, different specific applica-

tions may have different acceptable error rates. Other, large sources of error may render even a

10% error rate inconsequential; well calibrated simulations may find errors of even a few percents

unacceptable.

Supported by idealized numerical simulations, the river plume simulation errors caused by
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temporal subsampling of wind forcing are evaluated using the metrics of plume extent, freshwater

transport, and plume structure in salinity coordinates. The wind forcing used in the control run is

a reconstructed, near-realistic wind based on a wind measurement in the Mississippi River plume

region. Low-pass attenuated amplitude filter and randomized phase filter are applied to generate

subsampled wind forcing, and the associated simulations are compared to the control run. We

find that, if the cutoff periods are smaller than 3 days, the attenuated and the randomized winds

cause nearly identical simulation errors (in terms of plume extent and freshwater transport). This

indicates that the evolution of a river plume is not sensitive to the high-frequency (period < 3 days)

variation of the wind and missing high-frequency wind components has a similar effect as adding

random information at the high-frequency bands. Furthermore, the simulation error rate (in terms

of plume structure in salinity coordinates) is found to be significantly (r2 = 0.98, p = 0.99) related

to the temporal resolution by E = 10�1.1 ⇥ (2�t)0.6.

The factor controlling simulation error rates has been explored. Comparative experiments im-

ply that the amount of missing FFT components in wind is not the dominant factor, but the fraction

of missing wind energy can significantly influence the accuracy of a river plume simulation. The

primary finding of this study is that the key factor controlling simulation errors is the cumulative

missing energy ratio of a subsampled wind forcing. River plume simulation error rates are sig-

nificantly (r2 = 0.98, p = 0.97) 1:1 related to the cumulative missing energy ratios. The results

established in this study is based on the scenario of simulating the Mississippi River plume but is

supposed to be general for the other river plume simulations.

This finding allows us to better estimate potential plume simulation errors introduced by tem-

porally subsampling winds prior to running a model. Since the cumulative missing energy ratio can

be easily calculated based on the FFT spectrum of a wind speed series, conducting an FFT anal-

ysis on a wind measurement in the simulation region will be helpful for properly selecting wind

forcing data and setting up a model configuration. According to the cumulative missing energy

ratios of the wind records in the Mississippi River, Columbia River, and Merrimack River regions,

the 3-hourly or 4-hourly atmospheric GCM data would be an acceptable choice for a criterion of
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5% error rate, and single-point measurements with higher temporal resolutions are not necessary,

because the temporal improvement will be slight.

This study does not address spatial errors in winds, and it may be possible that improvements

in high temporal resolution may be undermined by errors in spatial structure of winds, such as the

timing and magnitude of frontal passages. However, if the errors in the spatial wind structure can

be estimated based on comparison with observations, this may be compared with the errors due to

temporal resolution, so that the best wind products to use for a simulation may be selected.
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5. CONCLUSIONS

Supported by numerical simulations, the classical theories of baroclinic instabilities and NIWs

have been revisited and extended in an attempt to better understand the fundamental physics of

the submesoscale vortices and NIWs in coastal buoyancy-driven flows. To better simulate coastal

buoyancy-driven flows, the simulation errors caused by temporally subsampling winds are quanti-

fied to provide general guidance on properly selecting wind forcing. Main findings of these studies

are summarized as follows.

Baroclinic instabilities are ubiquitous in open oceans but seldom observed in coastal zones,

even though lateral density gradients within coastal fronts are often stronger than those of open

ocean fronts. This study explores the non-geostrophic baroclinic instability theories adapted to

the scenario with sloping bathymetry and demonstrates the suppression of instabilities, through a

reduction in growth rate, in the non-geostrophic limit. Both the layered and continuously stratified

models reveal that the suppression is related to a new parameter, slope-relative Burger number

Sr = N

f
(↵ + M

2

N2 ), which represents the gradient of potential vorticity supplemented by topo-

graphic effects. The instability growth is found to be inhibited with increasing Sr. The underlying

mechanism of Sr is that the growth of baroclinic instabilities is directly related to Rossby wave

resonance, and Sr controls the wave resonance by modifying the properties of the Rossby waves,

thereby influencing the the growth of instabilities. One limitation of the adapted theories is the

assumption of a tilted surface. However, this limitation does not prohibit application to the flat-

surface cases, so long as the slope Burger number S = N

f
↵ . O(10�1) and horizontal slope Burger

number SH = M
2

f2 ↵ . O(10�1); this feasibility is verified by a set of numerical simulations. Sr

is inversely proportional to the Richardson number Ri1/2, and coastal fronts are often energetic,

characterized by low Ri, which is why baroclinic instabilities may be suppressed in coastal regions

where they might otherwise be expected.

NIWs are ubiquitous in the ocean and actively interact with ocean fronts. The modifications

of NIWs at jet-like fronts have been extensively investigated, while the modifications at curved
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fronts such as mesoscale and submesoscale eddies are less understood. This study focuses on how

the curvature of a front modifies the properties of NIWs; particularly, the modifications in an anti-

cyclonic baroclinic vortex are explored. The time-dependent Eliassen-Sawyer equation, dispersion

relation, and wave energy density equation are derived in cylindrical coordinates to describe the

NIWs in a baroclinic vortex. Ray tracing and the numerical calculation of wave energy density

provide support that NIWs in an energetic anti-cyclonic vortex can be significantly modified by

the curvature – the fully non-linear, idealized simulation also confirms that NIWs in such a vortex

can propagate deeper than at a front without curvature and hence might cause deeper mixing than

previously predicted. The theory is used to interpret the results from realistic simulations of the

northern Gulf of Mexico, which exhibit enhanced mixing at the base of an anti-cyclone that is

related to the trapping of NIWs. It is possible that this mixing could result in the ventilation of

bottom waters and might explain the transient features of bottom hypoxia in this region.

Wind is a primary forcing agent for river plume variability. Consequently, the temporal reso-

lution of wind forcing is an important factor to consider for river plume simulations. This study

evaluates river plume simulation errors caused by temporal subsampling of wind forcing data.

We use an idealized model of a river plume over a continental shelf and force the model with

temporally filtered winds to quantify the effect of temporal subsampling on simulation accuracy.

The simulation error is proportional to the fraction of energy missing in the high-frequency wind

absent from the forcing. These results set requirements for temporal wind resolution in realistic

simulations of river plumes. Spectral analysis of observed wind records at the Mississippi River,

Columbia River, and Merrimack River regions indicates that, for simulation errors due to insuffi-

cient temporal wind resolution to be smaller than 5% of the variance, 3-hourly or 4-hourly wind

data are reasonable. Though horizontal variations in wind forcing are lost, analyzing FFT spectrum

of a single-point wind measurement in the simulation region is helpful for estimating simulation

errors due to temporal resolution, and hence aid in properly selecting temporal resolutions.
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APPENDIX A

LAYERED MODEL OF NON-GEOSTROPHIC BAROCLINIC

INSTABILITY – ADAPTED SAKAI MODEL

The following derivation follows Sakai (1989) but is modified to account for the presence of

sloping bottom and surface. Considering a rotating two-layer channel with sloping bottom and top

and currents in the thermal wind balance, the linearized equations for perturbation are
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subject to

v⇤1|y⇤=±Y ⇤
max

= 0,

v⇤2|y⇤=±Y ⇤
max

= 0,
(A.2)

where u⇤ is the perturbed along-slope velocity, v⇤ is the perturbed across-slope velocity, p⇤ is the

perturbed pressure, h⇤ is the interface displacement, g0 is the reduced gravity, f is the Coriolis

parameter, ±Y ⇤
max

are the across-slope boundaries, and the upper and lower layer variables are

denoted by the subscripts of 1 and 2, respectively. The background thermal wind velocities in the

upper and lower layers are set to U0 and �U0 for simplicity (Sakai, 1989). H⇤
1 = H0 � ↵y⇤ � �y⇤

is the thickness of the upper layer, and H⇤
2 = H0 + ↵y⇤ + �y⇤ for the lower layer, where ↵ is the
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bottom slope and � ⌘ M
2

N2 = 2U0f

g0 is the isopycnal slope.

Considering the time scale as 1/f , the horizontal length scale as the Rossby deformation radius

Rd =
p

1
2g

0H0

f
, and the vertical length scale as H0, the scaling relations about the variables in Eq.

(A.1) are
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where Sr = (� + 1)Ri�1/2
b

is the slope-relative Burger number. Rib =
g
0
H0

2U2
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is the bulk Richardson

number, and � = ↵g
0

2U0f
is the slope parameter. The dimensionless form of Eq. (A.1) is, then,
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subject to

v1|y=±Ymax = 0,

v2|y=±Ymax = 0.
(A.5)

Assuming an ansatz of the form � = e�(y)ei(kx��t), substituting the ansatz into Eq. (A.4) and (A.5)
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yields the eigenvalue problem as followed (dropping tilde accents for clarity),
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(A.7)
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APPENDIX B

CONTINUOUSLY STRATIFIED MODEL OF NON-GEOSTROPHIC

BAROCLINIC INSTABILITY – ADAPTED STONE MODEL

The following derivation follows Stone (1966, 1970, 1971) but is modified to account for the

presence of sloping bottom and surface. The coordinates are rotated to align with the sloping

topography as Wenegrat et al. (2018), and the derivation is essentially equivalent to Wenegrat et al.

(2018) but with a different orientation. Dimensionally, the equations describing a rotational flow

field of an adiabatic inviscid fluid with Boussinesq and hydrostatic approximations in the rotated

coordinates are
du⇤
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subject to

w⇤|z⇤=0 = 0,

w⇤|z⇤=H = 0,
(B.2)

where ✓ is the slope angle,u⇤ is the along-slope velocity, v⇤ is the across-slope velocity, and w⇤ is

the vertical velocity, p⇤ is the pressure, and b⇤ = g(⇢0 � ⇢)⇢�1
0 is the buoyancy (⇢ and ⇢0 are the

seawater density and the reference, respectively). Rigid-lid boundary conditions are applied at the

surface (z⇤ = H) and bottom (z⇤ = 0).

Considering the horizontal velocity scale as U , the time scale as f�1, the horizontal length

scale as U/f , and the vertical length scale as H , the scaling relations about the variables in Eq.
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(B.1) are, then,

(x⇤, y⇤) = Uf�1(x, y)

z⇤ = Hz

t⇤ = f�1t

(u⇤, v⇤) = U(u, v)

w⇤ = Hfw

b⇤ = N2Hb

p⇤ = ⇢0N
2H2p .

(B.3)

Thus, Eq. (B.1) and (B.2) have the dimensionless form

du

dt
� v cos✓ � ✏w sin✓ = �Ri

@p

@x
,

dv

dt
+ u cos✓ = �Ri

@p

@y
� �b cos✓ ,

✏2
dw

dt
+ ✏u sin✓ = �Ri

@p

@z
+ Rib cos✓ ,

db

dt
= 0 ,

@u

@x
+
@v

@y
+
@w

@z
= 0 ,

(B.4)

subject to

w|z=0 = 0,

w|z=1 = 0,
(B.5)

where Ri = N2H2U�2 = N2f 2M�4 is the Richardson number, � = ↵N2M�2 is the slope

parameter, and ✏ = fHU�1 = f 2M�2 is the non-hydrostatic parameter.

Considering a mean current flowing only in the along-shore, downcoast direction, constrained

by the thermal wind relation, the mean state can be described as

u0 =
z

cos✓
,

v0 = 0 ,

w0 = 0 ,

b0 = (cos✓ � ✏Ri�1sin✓)z � (� + 1)Ri�1cos✓ y ,

(B.6)
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where b0 = b
⇤
0

N2H
= N

2(z⇤cos✓�y
⇤
sin✓)�M

2(z⇤sin✓+y
⇤
cos✓)

N2H
. Assuming u1, v1, w1, b1, and p1 are the

small perturbations from the mean state, the equations governing the perturbed motion can be

linearized by neglecting the product of small terms as (dropping the subscripts for clarity)

@u

@t
+ u0

@u

@x
+ w

@u0

@z
� v cos✓ � ✏w sin✓ = �Ri

@p

@x
,

@v

@t
+ u0

@v

@x
+ u cos✓ = �Ri

@p

@y
� �b cos✓ ,

✏2
@w

@t
+ ✏2u0

@w

@x
+ ✏u sin ✓ = �Ri

@p

@z
+ Rib cos✓ ,

@b

@t
+ u0

@b

@x
+ v

@b0
@y

+ w
@b0
@z

= 0 ,

@u

@x
+
@v

@y
+
@w

@z
= 0 .

(B.7)

Assuming an ansatz of the form � = e�(z)ei(kx+�y��t), substituting the ansatz into Eq. (B.7)

yields the eigenvalue problem as followed (dropping tilde accents for clarity),

i(�� + k
z

cos✓
)u+

w

cos✓
� v cos✓ � ✏w sin✓ + ikRip = 0 ,

i(�� + k
z

cos✓
)v + u cos✓ + i�Rip+ �b cos✓ = 0 ,

i✏2(�� + k
z

cos✓
)w + ✏u sin ✓ � Rib cos✓ + Ripz = 0 ,

i(�� + k
z

cos✓
)b� (� + 1)Ri�1v cos✓ + (cos✓ � ✏Ri�1sin✓)w = 0 ,

iku+ i�v + wz = 0 ,

(B.8)

subject to

w|z=0 = 0,

w|z=1 = 0.
(B.9)
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APPENDIX C

ROSSBY WAVE INTERACTIONS IN THE ADAPTED SAKAI MODEL

The following derivation follows Sakai (1989) but is modified to account for the presence of

sloping bottom and top. The details about the interaction theory and associated derivation can

be found in Section 4 and Appendix A of Sakai (1989). We will only focus on the interactions

between Rossby waves. In the adapted Sakai model, the physical wave coordinates consisting of

the Rossby waves in the upper and lower layers are, then,

e1n ⌘ (u⇤
1n, v

⇤
1n, p

⇤
1n) = (

il⇤
n

f
,� ik⇤

f
, 1)eil

⇤
ny

⇤
,

e2n ⌘ (u⇤
2n, v

⇤
2n, p

⇤
2n) = (

il⇤
n

f
,� ik⇤

f
, 1)eil

⇤
ny

⇤
,

�⇤
1 = � 2k⇤U0

2R2
d
(k⇤2 + l⇤2

n
) + 1

�r,

�⇤
2 =

2k⇤U0

2R2
d
(k⇤2 + l⇤2

n
) + 1

�r,

(C.1)

where k⇤ is the dimensional along-slope wavenumber, l⇤
n

= n⇡

2Y ⇤
max

(n = 1, 2, 3, ...) is the di-

mensional across-slope wavenumber, �⇤ is the dimensional wave frequency, Rd =
p

1
2g

0H0

f
is the

deformation radius, and �r = 1 + ↵g
0

2U0f
is the slope-relative parameter. Assuming an ansatz of the

form � = e�(y⇤)ei(k⇤x⇤��
⇤
t
⇤), one eigenmode in the mathematical coordinates can be projected onto

the Rossby wave coordinates as followed,

( eu1
⇤, ev1⇤,fw1

⇤) = ⌃
1

d1n
Ane1n = ⌃

1

d1n
An(u

⇤
1n, v

⇤
1n, p

⇤
1n),

( eu2
⇤, ev2⇤,fw2

⇤) = ⌃
1

d2n
Bne2n = ⌃

1

d2n
Bn(u

⇤
2n, v

⇤
2n, p

⇤
2n),

(C.2)

where An and Bn are the magnitudes in the physical wave coordinates, d21n ⌘
R
ET

1n · e1n dy (E1n

is the complex conjugate of the adjoint vector (H⇤
1u

⇤
1n, H

⇤
1v

⇤
1n,

1
g
0 p⇤1n)) and the same for d2n. The
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interactions between Rossby waves can be described by

(�⇤ � k⇤U0)An � �⇤
1An = ✏n(�

⇤ � k⇤U0)Bn,

(�⇤ + k⇤U0)Bn � �⇤
2Bn = ✏n(�

⇤ + k⇤U0)An,
(C.3)

where ✏n = 1
2R2

d(k
⇤2+l⇤2n )+1

is the interaction coefficient (invariant form with the presence of sloping

bottom and top). Consequently, the resonance rate R⇤ can be obtained by eliminating An and Bn

in Eq. (C.3):

R⇤ = Imag[ k⇤U0

s
(1� 2�r✏⇤n)

2 � ✏⇤2
n

1� ✏⇤2
n

], (C.4)

which can be reduced to the flat bottom case, R⇤ = Imag[ k⇤U0

q
1� 2

R
2
d(k

⇤2+l⇤2n )+1
] (Sakai, 1989,

Eq. (28)), by setting �r = 1.
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APPENDIX D

FORMULATING ELIASSEN-SAWYER EQUATION IN CYLINDRICAL COORDINATES

The linearized equations governing the perturbations in a balanced baroclinic vortex are:

@v
0
r

@t
� (f +

2V✓

r
)v

0

✓
= � 1

⇢0

@p
0

@r
, (D.1)

@v
0
✓

@t
+ v

0

r

@V✓

@r
+ w

0 @V✓

@z
+ (f +

V✓

r
)v

0

r
= 0, (D.2)

�b
0
= � 1

⇢0

@p
0

@z
, (D.3)

@b
0

@t
+ v

0

r

@B

@r
+ w

0 @B

@z
= 0, (D.4)

@rv
0
r

@r
+
@rw

0

@z
= 0, (D.5)

where the capitalized variables are the background variables and the primed variables are the per-

turbations. Cross-differentiating Eq. (D.1) and Eq. (D.3) and eliminating p
0 lead to

@2v
0
r

@t@z
� (f +

2V✓

r
)
@v

0
✓

@z
� 2v

0
✓

r

@V✓

@z
= �@b

0

@r
. (D.6)

Taking the derivative of Eq. (D.6) with respect to t and eliminating v
0
✓

and b
0 by Eq. (D.2) and

Eq. (D.4), we are left with an equation that only depends on the background variables and the

perturbed velocities v0
r

and w
0 ,

@3v
0
r

@t2@z
+ (f +

2V✓

r
)
@

@z
[v

0

r

@V✓

@r
+ w

0 @V✓

@z
+ (f +

V✓

r
)v

0

r
]

| {z }
(I)

+
2

r

@V✓

@z
[v

0

r

@V✓

@r
+ w

0 @V✓

@z
+ (f +

V✓

r
)v

0

r
]

| {z }
(II)

=
@

@r
(v

0

r

@B

@r
+ w

0 @B

@z
).

(D.7)

109



The following procedures are to simplify Eq. (D.7). First, the term (I) in Eq. (D.7) is reformed.

Applying the product rule, the term (I) can be expanded as

Term (I) = (f +
2V✓

r
)
@V✓

@r

@v
0
r

@z| {z }
(i)

+(f +
2V✓

r
)
@2V✓

@r@z
v

0

r

| {z }
(ii)

+(f +
2V✓

r
)
@V✓

@z

@w
0

@z| {z }
(iii)

+(f +
2V✓

r
)
@2V✓

@z2
w

0

| {z }
(iv)

+(f +
2V✓

r
)(f +

V✓

r
)
@v

0
r

@z| {z }
(v)

+(f +
2V✓

r
)
@V✓

@z

v
0
r

r| {z }
(vi)

.

(D.8)

Noticing f ⇤
eff

=
p

(f + 2⇣c)(f + ⇣c + ⇣s), the sum of the terms (i) and (v) collapses to f ⇤
eff

2 @v
0
r

@z
.

Making use of the modified thermal wind relation Eq. (3.3), the sum of the terms (iii) and (vi)

becomes �M2 @w
0

@z
�M2 v

0
r
r

, and the sum of the terms (ii) and (iv) can be rewritten as

Term (ii) + Term (iv) = �(f +
2V✓

r
)(v

0

r

@

@r
+ w

0 @

@z
)

M2

f + 2V✓/r

= 2
M2

f + 2V✓/r
(
@V✓

@r
� V✓

r
)
v

0
r

r
� 2(

M2

f + 2V✓/r
)2
w

0

r
.

(D.9)

Thus, the term (I) in Eq. (D.7) can be reformed as

Term (I) = f ⇤
eff

2@v
0
r

@z
�M2@w

0

@z
�M2v

0
r

r
+ 2

M2

f + 2V✓/r
(
@V✓

@r
� V✓

r
)
v

0
r

r
� 2(

M2

f + 2V✓/r
)2
w

0

r
.

(D.10)

Second, making use of the modified thermal wind relation Eq. (3.3), the term (II) in Eq. (D.7) can

be reformed as

Term (II) = �2
M2

f + 2V✓/r
(f +

V✓

r
+
@V✓

@z
)
v

0
r

r
+ 2(

M2

f + 2V✓/r
)2
w

0

r
. (D.11)

Last, substituting Eq. (D.10) and (D.11) into Eq. (D.7), it collapses to

@3v
0
r

@t2@z
+ f ⇤

eff

2@v
0
r

@z
�M2@w

0

@z
� 3M2

r
v

0

r
=

@

@r
(�M2v

0

r
+N2w

0
). (D.12)
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With the modified thermal wind relation Eq. (3.3) and a little algebra, we can obtain
@f

⇤
eff

2

@z
=

�3M2

r
, and hence Eq. (D.12) can be expressed as

@3v
0
r

@t2@z
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r
�N2w

0
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@z
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�M2w

0
) = 0. (D.13)

According to Eq. (D.5), we can introducing a stream function � such that v0
r
= 1

r

@�
@z

and

w
0
= �1

r

@�
@r

, and hence Eq. (D.13) can be rewritten as a single PDE for the stream function �,

1

r

@4�

@t2@z2
+

@

@r
(
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r

@�

@r
+

M2
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@z
) +
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@z
(
M2

r

@�

@r
+

f ⇤
eff

2

r

@�

@z
) = 0, (D.14)

which is the time-dependent Eliassen-Sawyer equation in cylindrical coordinates.
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APPENDIX E

PARCEL ARGUMENTS IN A BAROCLINIC VORTEX

The following parcel argument closely follows Whitt and Thomas (2013) but relies on the

principle of the absolute angular momentum conservation. The strategy is to link the perturbation

variables to the parcel displacement and then to express the restoring force as a function of the

displacement.

Consider a fluid parcel that is displaced from its neutral position with the displacement ~� =

R~i+ Z~k. v0
✓

can be obtained by applying the absolute angular momentum conservation. The total

absolute angular momentum Lt of a fluid parcel in a vortex is

Lt = rv
0

✓
+ rV✓ +

1

2
fr2 = rv

0

✓
+ Lb, (E.1)

where Lb = rV✓+
1
2fr

2 is the background absolute angular momentum. The conservation�Lt = 0

yields�rv
0
✓
= ��Lb – the change of Lb will induce the change of v0

✓
. Assuming that the parcel is

initially at rest, i.e., v0
✓
|t=0 = 0, v0

✓
(t) after the displacement becomes

v
0

✓
(t) = �1

r
�Lb = �1

r
rLb · ~� = �(f + ⇣c + ⇣s)R� @V✓

@z
Z. (E.2)

Making use of the buoyancy conservation, b0(t) after the displacement becomes

b
0
(t) = �rB · ~� = M2R�N2Z. (E.3)

Next is to express the restoring force as a function of the displacement. Assuming that the

pressure of the parcel can be instantaneously adjusted to the background pressure, the radial com-

ponent of the restoring force FR and the vertical component FZ can be expressed as functions of

the displacement (R,Z) by using the momentum equations in Eq. (3.5) and the expressions of v0
✓
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and b
0 (Eq. (E.2) and (E.3)),

FR ⌘ dv
0
r

dt
= (f + 2⇣c)v

0

✓
= �f ⇤

eff

2R +M2Z,

FZ ⌘ dw
0

dt
= b

0
= M2R�N2Z.

(E.4)

Projecting FR and FZ on the oscillating path yields the total restoring forcing

F� = (�f ⇤
eff

2 + 2M2S� �N2S2
�
)�, (E.5)

where S� = Z/R is the displacement slope. Consequently, the oscillating frequency as a function

of S� is

� =
q

f ⇤
eff

2 � 2M2S� +N2S2
�
. (E.6)
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