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ABSTRACT 

 

The quality of the output of a complex system is often recorded as multi-

dimensional profile data with panel structure. In such structure, the quality of each 

individual in the output is measured repeatedly based on time or other variables.  In this 

dissertation, the quality profile data are modeled to address two types of problems: (a) to 

explore the underlying relationship between the parameter of interest in the complex 

system and the resulting quality under the condition that the principal mechanism is not 

fully known and (b) to quantify the uncertainties among the output. For the first type of 

problem, we consider a constrained semiparametric varying coefficient model. The system 

parameter of interest is treated as a covariate whose effect upon the resulting quality is 

modeled nonparametrically as a function of time. Any existing physicochemical 

knowledge related to other factors in the system that affect the resulting output quality is 

modeled parametrically as an additive term in the model. In the situation that expert 

knowledge about the effect of the parameter is available, some constraints can be 

incorporated in the model such that the estimated effect aligns with the given knowledge. 

For the second type of problem, mixed-effect model is developed to quantify the 

uncertainties among output using random effects. These random effects can be utilized for 

anomaly detection or for variation quantification where deviation among individuals is of 

interest depending on the context of the data. Three case studies from manufacturing and 

biomedical engineering domains are presented in the dissertation where the above two 

types of problems are discussed.   
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CHAPTER I  

INTRODUCTION  

I.1. General introduction to engineering system  

 An engineering system is usually composed of multiple components that regularly 

interact with each other to yield product or service. The complexity of system increases as 

the product or service becomes more integrated. To fulfill quality requirements on system 

output, two critical issues need to be solved: (1) understand the relationship between 

quality of output and components of the system, and (2) quantify the uncertainties among 

the output. The two issues interact with each other. Large variation among the individuals 

of output motivates the optimization of the system to produce satisfying product or service, 

which can be enabled by a better understanding of how the quality of output is related to 

components of the system. Such improvement also helps to diagnose root causes of 

changes and failures in the system that result in unsatisfactory output. The detection of 

such changes and failures makes it possible to adjust the system to maintain and improve 

its stability, leading to the decrease of uncertainties among output products and service. 

Due to the complexity of systems, it is difficult to analyze a system based on domain 

knowledge only. Statistical/data analytics methods along with quality data have been 

introduced and become more and more important in this field. 

I.2. Quality profile data 

Profile data is a new class of quality data that exist in many applications. Compared 

to univariate quality characteristics that summarize the quality of a sample using one 

single value, a profile measures the quality as a function between a response quality 
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characteristic and some explanatory variables. This allows direct observation and deeper 

understanding of the change in quality over factors of interest. A profile dataset typically 

consists of a collection of profiles, each for one individual sample. As a result, profile data 

reflect quality variation among samples as well as relationship between quality and 

relevant factors. Depending on the nature of different systems, profile data take different 

forms and the analysis of them varies. 

I.3. Research tasks 

In this dissertation, we address the above-mentioned two target problems with 

three studies in biomedical and manufacturing applications.  

I.3.1. Modeling the relationship between parameter of interest in the system and the 

output quality using profile data  

The problem is analyzed in Chapter II and III.  

In Chapter II, we propose a method that models the relationship between the 

parameter of interest in the system and the resulting quality with accommodation of 

available expert knowledge. A semiparametric varying coefficient model is created. The 

parameter of interest is treated as a covariate in the model, whose effect upon the resulting 

quality is modeled nonparametrically as a function of time. Any existing physicochemical 

knowledge related to other factors in the system that affect the resulting output quality is 

modeled parametrically as an additive term in the model. In the situation that expert 

knowledge about the effect of the parameter to be explored is available, constraints are 

incorporated in the model such that the estimated effect aligns with the given knowledge.  
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In Chapter III, we consider the relationship between categorical parameters 

(treatment/placebo) and corresponding quality output. Hypothesis tests are first conducted 

to validate that the effect of such parameters is significant and varies over time. Then the 

system parameter effect is modeled as a parametric or nonparametric function of time.  

I.3.2. Quantification of individual randomness using quality profile data 

The problem is analyzed in Chapter III and IV. 

The mixed-effect model is used here, where the individual quality profile is 

divided into the population effect and individual randomness. The former describes the 

portion representing the overall trend of the population, while the latter describes the 

uncertainty among individuals. In Chapter III, we focus on the progress of treatment 

quality over time and use parametric and functional mixed effect models to quantify the 

individual randomness. In contrast, Chapter IV aims at detecting out-of-control products 

in manufacturing where a nonlinear mixed effect model is developed to characterize the 

individual randomness. A 𝑇2 chart is then constructed based on the estimated random 

effects for detection purpose.  
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CHAPTER II  

CONSTRAINED VARYING COEFFICIENT MODEL FOR TIME-COURSE 

EXPERIMENTS IN SOFT TISSUE FABRICATION 

II.1. Introduction  

Soft tissue injury widely occurs among elderly population due to long-term 

pressure combined with the decline of physiological functions. There is a substantial and 

increasing demand in soft tissue repair and replacement surgeries (Parker et al., 2015; 

World Health Organization, 2011; Ortman et al., 2014). Among various treatments of soft 

tissue injury, soft tissue grafts are one favored treatment in the long term. However, there 

is a big gap between the demand and supply of soft tissue grafts due to the shortage of 

donation (Weiss et al., 2017). Driven by the need to close this gap, fabrication of artificial 

(engineered) soft tissues has become an emerging research topic.  

A key to the success of soft tissue fabrication lies in appropriate biomaterials. For 

given biomaterial types, the use of 3D printing allows fabrication of structures with 

complicated and customized shapes like human tissues for each individual patient (He et 

al., 2014). Figure II-1 illustrates the concept of 3D printing for fabricating soft tissue 

products using meniscus as an example. It starts from acquiring image of the tissue by a 

medical scanner such as computed tomography (CT) and magnetic resonance imaging 

(MRI); then the image is processed to create a computer-aided design (CAD) model, and 

the tissue is printed layer by layer based on the CAD model (Wei et al., 2015). 
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Figure II-1. An illustration of 3D printing for fabricating artificial meniscus 

To serve proper functions of natural tissues, the fabricated product needs to meet 

certain requirements. Take artificial meniscus as an example. It must bear certain 

mechanical properties when exposed to shear, tension and compression forces (Bochynska 

et al., 2016) since meniscus acts as cushion to the knee joint to maintain its stability. 

Moreover, meniscus is lubricated so it is necessary to consider surface characteristics of 

the product (Fox et al., 2012). In addition, the biocompatibility of the product is crucial as 

it will be implanted to human body.  

In biomaterial fabrication, satisfactory material properties depend on the setting of 

process parameters (e.g., percentages of ingredients, heating temperature). It is important 

to understand the relationship between process parameters and material properties, or, the 

effect of process parameters on material properties. Data-driven methods are preferred for 

modeling such effects since the fabrication involves a series of physicochemical 

mechanisms which are complex or unknown. This requires data of material properties 

resulted from different settings of process parameters. Also, as the effect of process 

parameters evolves with time, the dynamic trajectory of material properties is measured 

to characterize the stability of tissue products which is critical to serve their designed 
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functions. Such data are obtained by conducting time-course experiments illustrated in the 

upper panel of Figure 2, where 𝑦 is the material property and 𝑥 is the process parameter 

of interest. Within the budget of cost, 𝑚 different settings of the process parameter, 

𝑥1, … 𝑥𝑚, are considered. Under the 𝑖th setting, the material is fabricated and values of 𝑦 

at 𝑛 time points, denoted as 𝑦𝑖(𝑡𝑗), 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛, are measured. The collected 

data form a two-way table as given in the lower panel of Figure 2. Graphically, they 

manifest as multiple time-course curves each from a setting of the process parameter.    

 
Figure II-2. Data collected in biomaterial experiments, where 𝒚𝒊(𝒕𝒋) is the 

measurement of material property at the process parameter value 𝒙𝒊 and time 𝒕𝒋. 

There are several considerations in modeling the data in Figure 2. First, the 

modeling is to provide better understanding of the complex material fabrication process 

hence a good interpretability is required. Second, expert or domain knowledge on the 

process should be accommodated to make the estimated model practically meaningful. 
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Finally, the model must be applicable to data of small size as experiments in the fabrication 

of soft tissues are costly and time-consuming. 

For the aforementioned considerations, we take a modeling strategy based on 

varying coefficient models (VCMs) (Hastie and Tibshirani, 1993). The key idea of 

conventional VCMs is to use a linear (or nonlinear) function to model the relationship of 

response and covariates where the coefficients (including intercept) are non-parametric 

functions of time. Thus they can capture both the complex effects of covariates and 

dynamics of the effects. With a linear form, the model is also easy to understand and does 

not require large samples to fit. However, one limitation of such models is that they are 

not able to accommodate expert knowledge. 

In this work, we propose a constrained VCM approach to model the data in Figure 

2 with accommodation of expert knowledge in biomaterial fabrication. The proposed 

model is a linear function of covariate with semi-parametric coefficients: the intercept is 

a parametric function of time and the coefficient of covariate is a non-parametric function 

of time. Such a semi-parametric model structure allows expert knowledge to be 

accommodated in the form of constraints on the model coefficients. Specifically, 

knowledge on the baseline material behavior is incorporated by specifying an appropriate 

form for the parametric intercept function, while knowledge on the effect of process 

parameter on material property is incorporated by imposing constraints on the non-

parametric coefficient function. For the latter, we consider a dynamic stability constraint 

that applies in many engineering applications. Model estimation methods based on 
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smoothing spline and weighted smoothing spline are also developed for the proposed 

model.  

The contribution of this work lies in three aspects. First, it establishes an 

interpretable framework to model data from time-course experiments in soft tissue 

fabrication. The proposed methodology can be applied to broader areas, such as bio-

manufacturing, with similar forms of experimental data, and it can produce a model with 

good interpretability to help researchers learning new knowledge on their processes. 

Second, we develop novel ways to accommodate different types of engineering expert 

knowledge in data analytics for better interpretation and prediction. Finally, the use of 

weighted smoothing spline in the proposed approach provides a new, convenient method 

for imposing constraints in non-parametric function estimation. While smoothing spline 

is powerful in non-parametric fitting, it is known to be sensitive to large random 

errors/outliers in real observations. By imposing constraints through a weighting scheme, 

we can regulate smoothing spline fitting and make it satisfy various requirements in 

specific applications.  

The remainder of this paper is organized as follows. Section 2 presents a review of 

related literature. Section 3 describes the proposed modeling approach and explains the 

underlying idea. Section 4 gives the model estimation algorithms. Section 5 is the case 

study, where the proposed approach is applied to a dataset from artificial meniscus 

fabrication and its good interpretability and prediction performance are demonstrated. 

Section 6 provides a numerical example to illustrate the advantage of accommodating 
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expert knowledge in data analytics. Section 7 concludes this study and discusses future 

work. 

II.2. Literature review 

The time-course data in Figure 2 take a form similar to longitudinal/panel data that 

are popular in economics, social sciences and medical literature (Hsiao, 2003; Islam, 

1995). There are three relevant modeling approaches in the literature: (1) Marginal or 

population-averaged models which assume the response (biomaterial property in our 

problem) is a linear model of covariates (process parameters in biomaterial fabrication) 

through some link function (Verbeke et al., 2008). Non-parametric intercept is used in 

some studies to improve model flexibility (Zeger and Diggle, 1994). The effects of 

covariates on the response are represented by their coefficients, but the dynamics of the 

effects is often not captured. Moreover, an adequate link function may not be available in 

practice to characterize the complex effects of covariates. (2) Mixed effect models which 

use a linear function to model the relationship of response and covariates with random 

effects for quantifying the randomness between samples (Laird and Ware, 1983). They are 

often used for panel data from individuals such as patients in a medical study, where 

between-individual variation is of interest. However, this is not the case in this study. (3) 

Transition models which account for the time dependence of the response using Markov 

models (Verbeke et al., 2008). The effect of a covariate is separated into two parts, as 

represented by its coefficient in the regression component of the model and by the 

influence of past values of the response on its present value. Such an approach is not 



 

10 

 

applicable for our problem since biomaterial fabrication requires a direct characterization 

of the effect of process parameters.   

Imposing constraints in statistical modeling has been studied recently. For 

example, a general framework for shape constrained generalized additive models (SCAM) 

has been developed which can incorporate shape constraints such as monotonicity in 

generalized additive modeling (Pya and Wood, 2015). A constrained hierarchical model 

is proposed for modeling degradation of biomaterials, where monotonicity and concavity 

constraints are incorporated in the model (Zeng et al., 2016). A constrained Gaussian 

process is developed for the same application, considering bound, censoring and 

monotonicity constraints (Zeng et al., 2018). Splines with non-negativity constraint is used 

for analyzing wake effect in wind turbine power generation (Hwangbo et al., 2018). This 

work considers a dynamic stability constraint on the effect of process parameter which has 

not been considered yet in the literature. 

II.3. The proposed model 

Let 𝑦 be the measurement of the biomaterial property of interest (e.g., toughness, 

viscosity, etc.), 𝑥 be the value of a process parameter (e.g., percentage of certain 

ingredient, temperature, etc.) in biomaterial fabrication, and 𝑡 be time. We consider the 

following varying coefficient model as   

                     𝑦(𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑥 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎𝜖
2),                                  (II.1) 

             with  𝛽0(𝑡; 𝜃) to be a parametric function with parameter 𝜃, 

                      𝛽1(𝑡) to be a non-parametric function. 
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Here 𝜖 is the time-independent error term which represents the overall effect of 

measurement errors and other random errors in the fabrication process. Without loss of 

generality the error term is assumed to be normally distributed with mean 0 and a constant 

variance 𝜎𝜖
2. The 𝛽0(𝑡) is the intercept, and 𝛽1(𝑡) is the coefficient of process parameter.  

The proposed model in Eq. (II.1) follows the spirit of conventional VCMs that 

allows the coefficients to evolve with time to capture the dynamics of the effect of process 

parameter. It has a linear structure with respect to the process parameter, which does not 

require a large number of different settings of the process parameter to learn the model. 

This is especially favorable in the considered application where limited number of settings 

are affordable in experimental studies. The linear structure is also easy to interpret. The 

above aspects make this model suitable for the data in Figure II-2.  

The core of the proposed model lies in the coefficients 𝛽0(𝑡) and 𝛽1(𝑡), which 

have good interpretations and provide basis for accommodating expert knowledge. 

Specifically, the intercept term 𝛽0(𝑡) is to represent the material behavior under the null 

setting of process parameter (i.e., 𝑥 = 0), or the baseline material behavior. We consider 

a parametric function of time for 𝛽0(𝑡) since the baseline material behavior is often 

relatively simple and much knowledge about it is available, including physiochemical 

models of the material and historical data on material characterization. The slope term 

𝛽1(𝑡) is to represent the effect of process parameter on the material property. In general, 

this effect is complex and little knowledge about it is available, especially in the 

considered application where the fabricated biomaterials are novel and very different from 

traditional materials. Therefore, we assume 𝛽1(𝑡) to be a non-parametric function of time.    
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The above setup makes it convenient to incorporate different types of expert 

knowledge in the form of constraints on the two coefficients. Specifically, expert 

knowledge on the baseline material behavior can be incorporated by constraining on the 

form of  𝛽0(𝑡) (e.g., specifying certain parametric form for 𝛽0(𝑡)); and knowledge on the 

effect of process parameter can be incorporated by imposing constraints in the non-

parametric fitting of 𝛽1(𝑡). Examples of such constraints are sign constraints (e.g., the 

effect must be positive) and shape constraints (e.g., the effect must be monotonically non-

decreasing over time).  

 
Figure II-3. The idea of expert knowledge accommodation in the proposed 

modeling approach. 

The idea of expert knowledge accommodation is illustrated in Figure II-3 using a 

simple example. The observed data are shown in the left, and the coefficients and fitted 

values are in the right panel of the figure. Assume we have the following expert 

knowledge: Under the baseline setting, the material property approximately linearly 
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increases over time; and the effect of process parameter is monotonically non-decreasing 

over time. Accordingly, 𝛽0(𝑡) is modeled as a linear function of time, while 𝛽1(𝑡) is a 

non-parametric function of time with a monotonicity constraint. The modeling is expected 

to produce good fitting to observed data and estimates of the two coefficients that reveal 

baseline material behavior and the effect of process parameter on material property, as 

shown in the right panel of Figure II-3. 

We would like to remark that the proposed model can be easily extended to more 

general cases such as non-continuous response under the generalized linear models. Also, 

although the model assumes a single covariate 𝑥, it is applicable to the case of multiple 

covariates by considering the model in a form of 𝑦(𝑡) = 𝛽0(𝑡) + 𝑥
𝑇𝛽1(𝑡) + 𝜖, where 

𝛽1(𝑡) contains 𝑝 components and each component is a non-parametric function of time. 

II.4. Model estimation 

Suppose the time-course data contain 𝑚 settings of the process parameter, 

𝑥1, 𝑥2,… , 𝑥𝑚, and measurements of the property at 𝑛 time points under each setting. Using 

𝑖 to index the process settings and 𝑗 to index time points, the matrix form of the proposed 

model can be written as 

                 𝑌(𝑡𝑗) = 𝛽0(𝑡𝑗)1𝑚×1 + 𝛽1(𝑡𝑗)𝑋 + 𝜖,      𝑗 = 1,… , 𝑛,                           (II.2)                

where 𝑌(𝑡𝑗) = (𝑦1(𝑡𝑗), … , 𝑦𝑚(𝑡𝑗))′,  1𝑚×1 = (1,… ,1)′, 𝑋 = (𝑥1, … , 𝑥𝑛)′, and 𝜖 =

(𝜖1, … , 𝜖𝑛)′. 

For the model estimation, we consider two scenarios in practice:  

Scenario 1: There is only expert knowledge on baseline material behavior. 
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In this scenario, the parametric form of 𝛽0(𝑡; 𝜃) is determined by the expert 

knowledge on baseline material behavior, and 𝛽1(𝑡) takes a general non-parametric form. 

A method to estimate the parameter 𝜃 of 𝛽0(𝑡) and 𝛽1(𝑡) is described in Section 4.1.  

Scenario 2: There is expert knowledge on both baseline behavior and effect of 

process parameter. 

In this scenario, in addition to a parametric form of 𝛽0(𝑡; 𝜃) determined by the 

expert knowledge on baseline material behavior, some constraints are imposed on the non-

parametric form of 𝛽1(𝑡) to reflect the expert knowledge on the effect of process parameter 

on material property. In particular, we will investigate a dynamic stability constraint which 

is a characteristic feature of biomaterials and also a common phenomenon in many 

engineering applications. How to impose this constraint in the estimation of 𝛽1(𝑡) is 

described in Section 4.2. 

II.4.1. Estimation under scenario 1 

In this scenario, we consider the smoothing spline as the non-parametric function 

for 𝛽1(𝑡) since the process parameter usually has a continuous smooth effect over time. 

Thus the model estimation can be written as 

(𝜃∗, 𝛽̂1
∗(𝑡)) = arg𝑚𝑖𝑛∑ ∑ {[𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡; 𝜃) − 𝑥𝑖𝛽1(𝑡𝑗)]

2
}𝑛

𝑗=1 + 𝜆∫𝛽1
′′(𝑡)𝑑𝑡 ,𝑚

𝑖=1     

(II.3) 

where 𝜆 is a smoothness parameter. As there are two unknowns, the parametric component 

𝜃 (and 𝛽0(𝑡; 𝜃)) and the non-parametric component 𝛽1(𝑡), the estimation will follow an 

iterative scheme in a similar fashion as the generalized semi-parametric VCMs (Qi et al., 
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2017). To differentiate from the constrained estimate of 𝛽1(𝑡) in Scenario 2, 𝛽̂1
∗(𝑡) will be 

referred to as the unconstrained estimate of  𝛽1(𝑡). 

 
Figure II-4. An illustration of model estimation under Scenario 1 

The idea of the iterative estimation procedure is illustrated in Figure II-4. The 

estimation contains two building blocks: the estimation of 𝛽1(𝑡) by smoothing spline and 

the estimation of 𝜃 by parametric function fitting. It starts with assigning an initial value 

for 𝜃. Given the value of 𝜃 (and thus 𝛽0(𝑡; 𝜃)), an estimate of 𝛽1(𝑡) is obtained by fitting 

the adjusted part, 𝑌(𝑡) − 𝛽0(𝑡; 𝜃)𝐼𝑚×1, using smoothing spline. Similarly, given the 

estimate of 𝛽1(𝑡), an estimate of 𝜃 is obtained by fitting the function 𝛽0(𝑡; 𝜃) to the 

adjusted part, 𝑌(𝑡) − 𝑋𝛽̂1(𝑡). This process will iterate to update the estimates of 𝜃 and 

𝛽1(𝑡) until 𝜃 converges. Steps of this method are summarized in Algorithm 4.1 given in 

the supplementary file.  

Specifically, in the estimation of 𝛽1(𝑡) given 𝜃, the smoothing spline method for 

conventional VCMs will be used (Eubank et al., 2004). This method gives an analytical 

solution for 

 𝛽̂1(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛∑ ∑ {[𝑦̃𝑖(𝑡𝑗) − 𝑥𝑖𝛽1(𝑡𝑗)]
2
}𝑛

𝑗=1 + 𝜆∫𝛽1
′′(𝑡)𝑑𝑡𝑚

𝑖=1 ,               (II.4) 
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where 𝑦̃𝑖(𝑡𝑗) =  𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡; 𝜃). Details of the method can be found in the 

supplementary files. The objective function in Eq. (II.4) contains two parts: the residual 

sum of squares (RSS) that represents accuracy of fitting and the penalty to non-smoothness 

controlled by the smoothness parameter 𝜆. Methods for automatic smoothing parameter 

selection are available in the literature, including prediction-based methods such as cross-

validation (CV) (Wahba and Wold, 1975), generalized cross-validation (GCV) (Craven 

and Wahba, 1979), Mallow’s 𝐶𝑝 (Wakefield, 2013) and improved Akaike information 

criterion (Hurvich, et al., 1998), likelihood-based methods such as maximum likelihood 

(Anderssen and Bloomfield, 1974), generalized maximum likelihood (GML) (Wahba, 

1985) and restricted maximum likelihood (REML) (Wood, 2011), and risk-based methods 

(Lee, 2003). In our study, GCV is used for smoothing parameter selection as it is 

recommended for small samples (Aydin and Tuzemen, 2012) which aligns well with the 

nature of our data.  

In the estimation of 𝜃 given 𝛽̂1(𝑡), it becomes a nonlinear (linear if 𝛽0(𝑡; 𝜃) is 

linear) least-squares curve fitting problem, which is  

                       𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ ∑ (𝑟𝑖(𝑡𝑗) − 𝛽0(𝑡𝑗; 𝜃))
2

𝑛
𝑗=1

𝑚
𝑖=1 ,                               (II.5) 

where 𝑟𝑖(𝑡𝑗) = 𝑦𝑖(𝑡𝑗) − 𝑥𝑖𝛽̂1(𝑡𝑗). The above optimization problem can be solved by 

either trust-region-reflective (Moré, 1978) or levenberg-marquardt algorithm (Coleman 

and Li, 1996). 
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II.4.2. Estimation under scenario 2 

Dynamic stability refers to the phenomenon that the material property approaches 

to an equilibrium state as time goes on. In biomaterial fabrication, a common expert 

knowledge is that the material property under each setting of process parameter will 

stabilize along time, which implies that the effect of process parameter 𝛽1(𝑡) will converge 

to a constant. Note that the data-driven approach may not follow such underlying 

mechanism since it relies only on data to reflect the pattern of the observed data. The 

smoothing spline method used in Section 4.1 thus could fit the experimental data well, but 

may not produce a 𝛽̂1(𝑡) with the desired shape, especially when the data suffer from large 

random errors and/or outliers, which often happens in biomaterial experiments.  

To address this challenge, we consider a constrained smoothing spline for the 

estimation of 𝛽1(𝑡) by incorporating the dynamic stability as a constraint as follows:  

   𝛽̂1(𝑡) = {
𝑎𝑟𝑔𝑚𝑖𝑛∑ ∑ {[𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡; 𝜃

∗) − 𝑥𝑖𝛽1(𝑡𝑗)]
2
}𝑛

𝑗=1 + 𝜆∫𝛽1
′′(𝑡)𝑑𝑡𝑚

𝑖=1

𝑠. 𝑡.  𝛽1(𝑡) converges as 𝑡 → ∞
     (II.6) 

where 𝜃∗ is the estimate of 𝜃 obtained from the unconstrained scenario in Section 4.1. 

Here 𝜃 is treated as a known plug-in parameter with the consideration that the parametric 

function (i.e., 𝛽0(𝑡; 𝜃)) fitting is not as flexible as the non-parametric fitting in general. If 

𝜃 is treated as an unknown under the constrained scenario, it can be difficult to find an 

estimate of 𝜃 that both fits 𝛽0(𝑡; 𝜃) adequately and satisfy the constraint. Thus, it would 

be better to obtain the estimate of 𝜃 under the simpler unconstrained scenario, and then 

apply the flexible non-parametric fitting of 𝛽1(𝑡) to the adjusted data, 𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡; 𝜃
∗).  
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Note that the formulation in Eq. (II.6) is not easy to solve because the constraint is 

rather implicit and nonlinear. One may think the constraint can be integrated in the 

objective function in a form similar to the smoothness penalty; however, it will be difficult 

to solve the resulting optimization problem since the objective function can be quite 

nonlinear. To circumvent this difficulty, we consider a weighted smoothing spline method 

and adjust the weights appropriately such that the estimate 𝛽̂1(𝑡) converges with time. The 

reasoning here is to allow more bias at some points through the weighting scheme, thus 

forcing the resultant estimate to satisfy the constraint. Specifically, we use the following 

weighted smoothing spline to obtain 𝛽̂1(𝑡) as 

𝛽̂1(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛∑ ∑ 𝑤𝑖𝑗 {[𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡; 𝜃
∗) − 𝑥𝑖𝛽1(𝑡𝑗)]

2
}𝑛

𝑗=1 + 𝜆𝑚
𝑖=1 ∫ 𝛽1

′′(𝑡)𝑑𝑡,  (II.7) 

where the weight 𝑤𝑖𝑗 is given to the squared error under the 𝑖𝑡ℎ setting at time 𝑡𝑗, 𝑖 =

1, … ,𝑚, 𝑗 = 1,… , 𝑛. If all the weights are equal to 1, the weighted smoothing spline 

degenerates to smoothing spline; if a weight 𝑤𝑖𝑗 < 1, that means more bias is allowed in 

fitting the corresponding data point. The close-form solution of Eq. (II.7) and derivation 

can be found in the supplementary files.  

It is worth pointing out that the weighted smoothing spline in the literature is 

usually used for improving the local performance of curve fitting. That is, weights are 

assigned to either the squared error term or the smoothness penalty term in Eq. (II.4) to 

reduce the bias in the area with large local variation (Davies and Meise, 2008; Maria and 

Malva, 2005). The use of weighted smoothing spline in this work is for an opposite 

purpose: allowing tolerable bias in the fitting when local variation is large in order to make 

the estimate 𝛽̂1(𝑡) satisfy the constraint. 
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 Figure II-5 elaborates the proposed method for solving the constrained estimation 

problem in Eq. (II.6). Basically, as shown in the left and right panels of the figure, the 

constrained estimate of 𝛽1(𝑡) is obtained by correcting the unconstrained estimate 𝛽̂1
∗(𝑡) 

obtained in Section 4.1 so that the resulting estimate exhibits converging behavior. 

Specifically, starting with 𝛽̂1
∗(𝑡), we update the weights 𝑤𝑖𝑗 in Eq. (II.7) and obtain a new 

estimate 𝛽̂1(𝑡) iteratively. In each iteration, the convergence performance of 𝛽̂1(𝑡) will be 

assessed, and accuracy of fitted values, i.e., 𝑥𝛽̂1(𝑡), will be checked. The iterative 

procedure stops when the stopping rule (e.g., fitting accuracy becomes unacceptable) is 

reached, resulting in a number of 𝛽̂1(𝑡) and their corresponding convergence performance 

assessments. The estimate that has the best convergence performance will be selected as 

the constrained estimate of 𝛽1(𝑡). This proposed estimation method is summarized in 

Algorithm 4.2 which is given in the supplementary files. A series of technical details 

involved in this method are given below. 

 
 Figure II-5. The proposed method to incorporate dynamic stability constraint in 

the estimation of 𝜷𝟏(𝒕). 
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II.4.2.1. When to impose constraint 

The converging behavior of the effect of process parameter occurs at a certain 

stage during the observed period. Let [𝑡∗, 𝑡𝑛] be the converging stage, where 𝑡∗ is the 

starting time point, 0 < 𝑡∗ ≤ 𝑡𝑛. The dynamic stability constraint should be imposed on 

this interval in the constrained estimation of 𝛽1(𝑡). Usually there is no knowledge on the 

converging stage, and 𝑡∗ needs to be determined from data. In this subsection we provide 

a procedure based on reverse cumulative average to estimate 𝑡∗ automatically.    

In the literature, the reverse cumulative average, i.e., cumulative average starting 

from the last time point, is used to reveal trend of a time-course stream of data (Yang et 

al., 2004). Following this idea, we first consider how to identify the converging stage of 

one time-course stream from the 𝑖𝑡ℎ setting, 𝑖 = 1,… ,𝑚, and then extend for all streams 

of data from 𝑚 settings. For a single stream 𝑦𝑖(𝑡𝑗), 𝑗 = 1,… , 𝑛, we can calculate the 

difference between 𝑦𝑖(𝑡𝑗) and its corresponding reverse cumulative average, i.e., 

1

𝑛−𝑗+1
∑ 𝑦𝑖(𝑡𝑠)
𝑛
𝑠=𝑗 − 𝑦𝑖(𝑡𝑗), denoted as 𝐷𝑗(𝑖). If 𝑡𝑗 is within the converging stage, then 

𝐷𝑗(𝑖) will have a small value. Therefore, an estimate of 𝑡∗ can be obtained by finding the 

time point from which 𝐷𝑗(𝑖) starts to become small.  

For multiple streams under the 𝑚 settings, we can take the median of all 𝐷𝑗(𝑖), 𝑖 =

1, … ,𝑚, denoted as 𝐷𝑗 . Here the median estimate is used for robustness purpose. To 

determine the magnitude of 𝐷𝑗  that signals converging, we can compare it with ℎ𝜎̂, where 

ℎ is a pre-specified positive value (e.g., 1) and 𝜎̂ is the estimated standard deviation of 

data. A conventional estimate 𝜎̂ is obtained by finding the robust variance estimate of data 
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under each setting (Davies and Meise, 2008) and then taking the median of the 𝑚 

estimates. 

Specifically, the procedure of finding the estimate of 𝑡∗ consists of the following 

steps: 

Step 1. At each time point 𝑡𝑗, calculate the difference of the observations and their 

corresponding reverse cumulative average:  

𝐷𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑖

  { 
1

𝑛−𝑗+1
∑ 𝑦𝑖(𝑡𝑠)
𝑛
𝑠=𝑗 − 𝑦𝑖(𝑡𝑗):  𝑖 = 1, . . . , 𝑚} ,  𝑗 = 1,…𝑛. 

Step 2. Estimate the variance of data 𝜎2: 

𝜎̂ = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑖

{𝜎̂𝑖: 𝑖 = 1, . . . , 𝑚}, 

where 𝜎̂𝑖 =
1.48

 √2
𝑚𝑒𝑑𝑖𝑎𝑛 {𝑦𝑖(𝑡𝑗) − 𝑦𝑖(𝑡𝑗−1): 𝑗 = 2, …𝑛}. 

Step 3. In the sequence {𝐷1, 𝐷2… ,𝐷𝑛}, find the longest subsequence 

{𝐷𝑎, 𝐷𝑎+1, … , 𝐷𝑛}, 𝑎 ∈ {1, … , 𝑛}, bounded by ±ℎ𝜎̂. Then 𝑡𝑎 is the estimate of 𝑡∗. 

Figure II-6. An example of finding starting time point of converging stage. 

Figure II-6 gives an example with 𝑚 = 3 settings and 𝑛 = 25 time points to 

illustrate the above procedure. Intuitively, when convergence behavior is present, the 
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difference 𝐷𝑗  would be small, as shown in the sequence {𝐷1, 𝐷2… ,𝐷𝑛} in the right panel. 

ℎ𝜎̂ is used as the threshold for the sequence to decide whether it is small enough to signal 

converging. The width of the signaling region depends on the value of ℎ; a larger value of 

ℎ tolerates more random errors. In the example given in Figure II-6, ℎ = 1 is used. The 

16th time point is selected as the starting point 𝑡∗, and thus the converging stage is [𝑡16, 𝑡𝑛]. 

II.4.2.2. How to measure convergence performance of 𝜷̂𝟏(𝒕) 

To assess the convergence performance of the estimate 𝛽̂1(𝑡), a mathematical 

definition of convergence of 𝛽(𝑡) as a function of time is needed. Formally, the 

convergence of 𝛽(𝑡) can be defined as follows: |𝛽(𝑡) − 𝐺  | < 𝛿  for all 𝑡 ≥ 𝑡𝑎, where 𝐺 

is a constant, 𝛿 is a small value, and 𝑡𝑎 is the estimate of the starting time point of the 

converging stage obtained in Section 4.2.1. This leads to 

|𝛽(𝑡𝑎) − 𝐺| = |𝛽(𝑡𝑎) − 𝛽(𝑡𝑎+1) + 𝛽(𝑡𝑎+1) − 𝛽(𝑡𝑎+2) + ⋯− 𝐺| 

                                            ≤ ∑ |𝛽(𝑡𝑖) − 𝛽(𝑡𝑖+1)|  𝑖=𝑎  

                                            ≈ ∑ |Δ𝑡𝑖𝛽′(𝑡𝑖)|𝑖=𝑎 → ∫ |𝛽′(𝑡)|𝑑𝑡
𝑡𝑛

𝑡𝑎
≤ 𝛿                                                                                          

According to the above inequalities, if ∫ |𝛽′(𝑡)|𝑑𝑡
𝑡𝑛

𝑡𝑎
≤ 𝛿, then 𝛽(𝑡) is approaching 

𝐺 approximately. Therefore, we can use 

                                                      𝐶𝛽̂1 = ∫ |𝛽̂1
′(𝑡)|𝑑𝑡

𝑡𝑛

𝑡𝑎
                                                  (II.8)                         

as a measure of convergence for the estimate 𝛽̂1(𝑡). A smaller value of 𝐶𝛽̂1 represents 

better convergence performance of 𝛽̂1(𝑡).  
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II.4.2.3. How to ensure acceptable fitting accuracy 

In addition to good converging behavior, there needs a way to evaluate fitting 

accuracy in the constrained estimation. Note that the weights in the weighted smoothing 

spline vary from iteration to iteration in the estimation. This means that fitting accuracy 

can also vary and the resultant estimate may not give satisfactory accuracy. Here we 

provide a simple method to ensure acceptable fitting accuracy.   

In some studies (e.g., Davies and Meise, 2008), fitting accuracy is controlled by 

specifying a non-parametric confidence region based on residuals and the fitting lying in 

the region is selected. Inspired by this idea, we can guarantee fitting accuracy by defining 

a region of acceptable accuracy (RAA) for the fitted values 𝑦̂𝑖(𝑡𝑗) = 𝛽0(𝑡; 𝜃
∗) +

𝑥𝑖𝛽̂1(𝑡𝑗), 𝑖 = 1, … ,𝑚, 𝑗 = 1,… , 𝑛. The width of RAA depends on one’s tolerance on 

fitting accuracy. Intuitively, if the width → ∞, that means fitting accuracy is completely 

ignored in the constrained estimation, and the narrower the width, the higher the 

requirement on accuracy. A reasonable choice of the RAA is the confidence interval based 

on observed data 

                                      𝐴𝛼 = 𝑦𝑖(𝑡𝑗) ± 𝑡1−𝛼
2
,𝑛−1 ×

𝜎̂

√𝑛
,                                           (II.9) 

where α is a tuning parameter to control width of Aα and σ̂ is the estimated standard 

deviation of data obtained in Step 2 of the procedure given in Section 4.2.1. The tuning 

parameter α follows the selection rule of significance level in computing confidence 

intervals and some common values are 0.001, 0.01 and 0.05. Practitioners can tune the 

value of α based on the required accuracy level.  
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The region of acceptable accuracy Aα will be used in the stopping rule of iterations 

in search for the constrained estimate β̂1(t). Specifically, the iteration process will stop 

when the number of fitted values falling outside Aα increases. As the search starts with 

the unconstrained estimate β̂1
∗(t), this means that the fitting accuracy of the constrained 

estimate should not be considerably worse than the fitting when the convergence 

constraint is not considered. 

II.4.2.4. How to update weights 

Weight updating in the iterations is critical in the constrained estimation. Ideally, 

the updated weights should improve the convergence performance of the resulting β̂1(t) 

so that the satisfactory estimate can be quickly achieved. In other words, the updating 

should be along the direction of improvement in convergence performance. Here we 

propose a weight updating method based on the current fitting performance. Specifically, 

the new weight is  

                              𝑤𝑖𝑗 =
𝑚𝑖𝑛
𝑖,𝑗

|𝑟𝑖𝑗|

|𝑟𝑖𝑗|
,     𝑖 = 1,… ,𝑚, 𝑗 = 𝑎,… , 𝑛                              (II.10) 

where 𝑟𝑖𝑗 = 𝑦𝑖(𝑡𝑗) − 𝑦̂𝑖(𝑡𝑗) is the residual of the current fitting and 𝑚𝑖𝑛
𝑖,𝑗
|𝑟𝑖𝑗| is the smallest 

absolute residual. Using the above weights, the point with the smallest residual (i.e., most 

accurate) will be assigned a weight of 1, while other points will be assigned a weight 

smaller than 1. The larger the residual (i.e., the less accurate the fitting), the smaller the 

weight. The idea here is similar to that of robust regression (Rousseeuw, 1987): If there 

exist any observations with large random errors or outliers, those points will be given 

small weights. Thus, large bias will be allowed in fitting them, or, in other words, they 



 

25 

 

will have little influence on the estimation. Since those points are the major cause for non-

convergence as mentioned previously, this is expected to improve the convergence 

performance of 𝛽̂1(𝑡).  

II.4.2.5. Choice of tuning parameters 

The proposed constrained estimation involves two tuning parameters, 𝜆 that 

controls the smoothness level of 𝛽̂1(𝑡), and 𝛼 that controls the width of acceptable 

accuracy region. For 𝜆, the optimal value determined in Section 4.1 will be used in the 

constrained scenario to maintain the same level of smoothness as in the unconstrained 

scenario. For 𝛼, a smaller value corresponds to a tighter region of acceptable accuracy, 

which requires a larger number of iterations in the estimation. A moderate value 𝛼 = 0.01 

is used in the case study to avoid too long searching time while achieving a reasonably 

good level of fitting accuracy.  

II.5. Case study 

In this section, we apply the proposed approach described in Sections 3 and 4 to a 

real dataset in a 3D printing of meniscus application. The dataset comes from the 

fabrication of a novel biomaterial called calcium-alginate/polyacrylamide (CA/PAAm) 

double-network (DN) hydrogel (Wang et al., 2015). Hydrogel is a popular class of 

materials constructed by a network of polymer chains. The CA/PAAm-DN hydrogel 

contains two networks: the alginate/polyacrylamide (A/PAAm) network and the network 

formed by calcium. With this special structure, it has good shape fidelity with mechanical 

properties similar to those of natural meniscus, and hence is a promising material for 3D 

printing of meniscus. As illustrated in Figure II-7 modified from scheme 1 in Wang et al., 
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2015, one key step in synthesizing this type of hydrogel is to immerse the one-network 

A/PAAm hydrogel in CaCl2 solution to build the second network through Ca2+ in the 

solution. The concentration of CaCl2 solution is a critical process parameter in this step 

which determines properties of the resulting hydrogel. One property of interest is swelling, 

i.e., change in volume of hydrogel, which is important to geometric fidelity of 3D printed 

meniscus. Thus, experiments are done to explore how the concentration of CaCl2 solution 

affects the swelling behavior of hydrogel. 

 
Figure II-7. Illustration of a key step in the fabrication of CA/PAAm hydrogel, 

modified from scheme 1, Wang et al., 2015 

Details of the case study are reported in the following. Section 5.1 introduces the 

data used in the case study and pre-processing. Section 5.2 gives available expert 

knowledge on the baseline swelling behavior of the hydrogel material and the effect of 

process parameter on swelling. Section 5.3 shows the results of model estimation without 

and with consideration of expert knowledge on the effect of process parameter. Section 

5.4 assesses the prediction performance of the proposed approach and compares it with 
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the conventional VCM. The data used and R codes can be found in the supplementary files 

to this article. 

 
Figure II-8. Hydrogel swelling data used in the case study: original (left) and scaled 

(right). 

II.5.1. Data and pre-processing 

The CA/PAAm-DN hydrogel is made into cylinder-shaped samples under four 

values of the weight concentration of CaCl2 solution: 4%, 6%, 8% and 10 %. The 

diameters of the samples are recorded initially, and then measured at 16 time points during 

a period of 10 days. The original data collected from the experiment are displayed in the 

left panel of Figure II-8, where the portion after two days are shown in a small plot. We 

scaled these data by the initial diameter to get rid of the effect of unit, so the response used 

in modeling is volumetric swelling ratio instead of the absolute measurement of diameter. 

The transformed data are displayed in the right panel of Figure II-8, where the small plot 

shows a more detailed view of the data arranged by time index (i.e., the 1st time point, …, 
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the 16th time point). We will fit the transformed data using the proposed model (Eq. (II.1)). 

Here 𝑦 is the volumetric swelling ratio of the fabricated material, 𝑥 is the weight  

concentration of CaCl2 solution, 𝑚=4, and 𝑛=16. 

II.5.2. Available expert knowledge 

In the proposed model, the intercept 𝛽0(𝑡) represents the swelling behavior of the 

material when the concentration of CaCl2 solution is 0% (i.e., when deionized water is 

used in material fabrication). In this case, the resulting material is a regular type, single-

network hydrogel. 𝛽1(𝑡) represents the effect of concentration of CaCl2 solution on the 

swelling behavior of the material. There is expert knowledge on these two quantities, 

which is described below. 

About swelling behavior of regular hydrogels (i.e., baseline swelling behavior of 

the fabricated material), previous research finds that their volume swelling ratio is 

proportional to mass swelling ratio, and the mass swelling ratio has a typical behavior 

pattern that is monotonically non-decreasing and gradually flattening out when time goes 

on (Ehrenhofer et al., 2018). In some literature, exponential functions are used to fit the 

mass swelling ratio of various types of hydrogels (Sadeghi and Hosseinzadeh, 2013; 

Slaughter et al., 2015). Thus, we assume that 𝛽0(𝑡) has the following parametric form  

                                𝛽0(𝑡; 𝛉) = 𝜃1(1 − 𝜃2 ⋅ 𝑒
−𝜃3𝑡),                                           (II.10)                               

which is characterized by three parameters 𝛉 = [𝜃1, 𝜃2, 𝜃3]. The parameters have good 

physical interpretations: 𝜃1 represents the plateau of equilibrium volume swelling ratio 

(i.e., the converged value of volume swelling ratio when it stops changing over time), and 
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𝜃2 and 𝜃3 together describe the increasing rate of volume swelling ratio before equilibrium 

is reached (Steiner et al., 2016). 

About the effect of CaCl2 concentration on hydrogel swelling, as the CA/PAAm-

DN hydrogel is a new material under development, little understanding exists in the 

literature. From the experimental data in the right panel of Figure II-8, a rough impression 

is that higher concentration leads to smaller swelling ratio. In other words, the 

concentration seems to have a negative effect on swelling. But there lacks domain 

knowledge to support this. The dynamics of the effect is also unknown; it may 

monotonically increase or decrease with time, or oscillate in a complex way. Hence, we 

cannot constrain the sign/shape of 𝛽1(𝑡) and should have it learned from data. The only 

knowledge we have is that 𝛽1(𝑡) will converge with time. Intrinsically, as can be seen 

from the trend of data, swelling of each hydrogel sample will achieve a plateau finally, 

and thus the effect of process parameter will converge to a constant.  

II.5.3. Model estimation  

We obtain first the estimate of 𝛽0(𝑡) by the method described in Section 4.1 

(Algorithm 4.1) and then the estimate of 𝛽1(𝑡) with dynamic stability constraint by the 

method described in Section 4.2 (Algorithm 4.2). Parameter setting in the estimation and 

results are given below: 

Estimation of 𝛽0(𝑡) 

Initial values of the parameters are set to be 𝛉(0) = [𝜃1
(0), 𝜃2

(0), 𝜃3
(0)] = [1, 0.5, 1]. 

The algorithm stops after 11 iterations and yields 𝛉̂ = [1.28, 0.21, 0.12]. Figure II-9 

shows the updating process of the parameter estimation (1-norm of the three parameters, 
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i.e.,|𝜃1| + |𝜃2| + |𝜃3|, is plotted for convenience) and the resulting estimate of 𝛽0(𝑡). As 

expected according to the above-mentioned expert knowledge, the estimated 𝛽0(𝑡) is non-

decreasing and flattening out after approximately 40 hours.   

  
Figure II-9. Estimation of 𝜷𝟎(𝒕) norm of parameters in each iteration (left) and 

estimate of 𝜷𝟎(𝒕) (right). 

Estimation of 𝛽1(𝑡)   

From the results of Algorithm 4.1, we have the initial (unconstrained) estimate 

β̂1
(0)(t) = β̂1

∗(t).  To incorporate the dynamic stability constraint, we first find out the 

starting point t∗ of the converging stage using the procedure given in Section 4.2.1. The 

standard deviation of data is estimated to be σ = 0.0137, and  h = 1 is used. The starting 

point is found to be t∗ = t12 = 72 hours. Then we obtain the region of acceptable accuracy 

by Eq. (II.8) with α = 0.01. Those regions associated with the four settings of process 

parameter are shown in Figure II-10. In each plot in the figure, the solid markers connected 

by solid lines represent the observed values, the hollow markers connected by dash lines 
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represent the fitted values, and the gray lines are the upper and lower bounds of the region 

of acceptable accuracy.  

 
Figure II-10. Region of acceptable accuracy under each setting of process 

parameter. 

Using Algorithm 4.2, we obtain the constrained β̂1(t) with  Cβ̂1= 0.0574, which 

has a higher degree of convergence than the unconstrained estimate β̂1
∗(t) with Cβ̂1∗= 

0.1184. The two estimates are shown in Figure II-11 for comparison. It is clear that the 

constrained one is more stable in the tail part. Compared with β̂0(t) shown in the right 

panel of Figure II-9, the estimated β1(t) has a complex shape during the period t = [0, 50], 

telling us that the effect of concentration of CaCl2 solution oscillates in the early stage. 

This is understandable because it is known that the swelling behavior is affected by 
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multiple forces (e.g., shrinkable elastic energy and swelling osmotic energy) which 

compete at the beginning before reaching a balance (Wang et al., 2015). Another finding 

is that this effect is negative, i.e., higher concentration of the solution tends to shrink the 

volume of hydrogel. These findings are useful to researchers in 3D printing of meniscus 

to understand the swelling behavior of the novel CA/PAAm-DN hydrogel.  

 
Figure II-11. Estimate of 𝜷𝟏(𝒕) with and without dynamic stability constraint. 

Based on the estimate of 𝛽0(𝑡) in Figure II-9 and the constrained estimate of 𝛽1(𝑡) 

in Figure II-11, we obtain the fitted values of the original data on volume swelling ratio, 

which are displayed in the left panel of Figure II-12. The data are well fitted with a sum 

of squared residuals of 0.0032. The largest fitting error occurs under 𝑥 = 6%, 𝑡 = 27 

hour, and is only 1.5% of the actual measurement. The residual plot is given in the right 

panel of Figure II-12. All the residuals are up and down around the zero line and appear 

similar among the four settings of 𝑥, which is consistent with the assumptions on random 

errors in Eq. (II.1).  
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Figure II-12. Fitted values of the original data (left) and residuals (right). 

II.5.4. Comparison with existing VCMs 

It is interesting to compare the proposed approach with existing approaches to fit 

VCMs. A flexible and efficient approach in the literature is the previously mentioned 

SCAM method (Section 2), which can be applied to fit conventional VCMs where both 

𝛽0(𝑡) and 𝛽1(𝑡) are non-parametric. The upper panel of Figure II-13 shows the estimates 

of 𝛽0(𝑡) and 𝛽1(𝑡) using the SCAM method without constraint and the proposed approach 

with dynamic stability constraint. It is seen that the non-parametric estimate of 𝛽0(𝑡) is 

jagged with several local peaks and valleys before 𝑡 = 60 hours, and the estimate of 𝛽1(𝑡) 

also has an irregular shape with longer oscillation in the early stage and two humps in the 

later stage. Compared to their counterparts from the proposed approach, the estimates from 

the SCAM method are hard to interpret and not consistent with expert knowledge.  

Since the SCAM method is able to incorporate shape constraints in the model, we 

impose a monotonicity constraint on 𝛽0(𝑡) to improve the estimates of this method. The 
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updated fitting results are given in the lower panel of Figure II-13. Now the estimate of 

𝛽0(𝑡) has a simple shape that is expected according to the expert knowledge, meaning that 

the monotonicity constraint works on it. On the other hand, however, the estimate of 𝛽1(𝑡) 

becomes very simple, too, to match with the change in the estimate of 𝛽0(𝑡). Although 

dynamic stability in the later stage is satisfactory now, the oscillation in the early stage is 

masked, which is not consistent with the expert knowledge nor helpful in understanding 

the subtle details of the swelling behavior. The fitting performance of the resulting model 

also becomes worse than the case without the monotonicity constraint (detailed residual 

analysis is ignored here).  

 
Figure II-13. Estimates of 𝜷𝟎(𝒕)  and 𝜷𝟏(𝒕)  of the proposed approach and SCAM 

without (upper) and with (lower) monotonicity constraint 
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Another important aspect of the comparison is the prediction performance of the 

two approaches. Due to the limited available data, we assess their prediction performance 

based on the leave-one-out cross validation (LOOCV) approach. Specifically, data at the 

𝑗𝑡ℎ time point, 𝑗 = 1,… , 𝑛, are used as test data (of size 𝑚), and the remaining data are 

used as training data (of size 𝑚 × (𝑛 − 1)). We first fit the model using the training data 

and then predict the response in the test data. The prediction performance at each data 

point is measured by the relative prediction error, i.e., 
|𝑦𝑖(𝑡𝑗)−𝑦̂𝑖(𝑡𝑗)|

𝑦𝑖(𝑡𝑗)
. 

 
Figure II-14. Prediction performance of the proposed approach and constrained 

SCAM. 

Figure II-14 shows prediction performance of the proposed approach and the 

SCAM method with monotonicity constraint. Roughly speaking, the prediction errors of 
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both methods are small (within 4%), indicating good prediction performance. Between the 

two, no one is uniformly better than the other, and their errors are similar in many cases. 

So the general conclusion is that the proposed model has comparable prediction 

performance to the conventional VCM with both 𝛽0(𝑡) and 𝛽1(𝑡) being non-parametric. 

Note that the original motivation of the proposed model is interpretability (by 

accommodating expert knowledge). Now this model is found to perform well in prediction 

as well and it is comparable to the more flexible conventional VCM in this aspect. 

   It deserves pointing out that the proposed model performs consistently better in 

prediction than the conventional VCM in the later stage, from 𝑡10 to 𝑡16, thanks to the 

dynamic stability constraint.  In addition, predictions at 𝑡1 are actually extrapolations as 

they are made based on data at 𝑡2,…, 𝑡16. The proposed model also has better performance 

in this case, which is probably owing to its full accommodation of available expert 

knowledge. 

II.6. Numerical study  

To further demonstrate the effectiveness and advantage of the proposed approach, 

a numerical example is presented in this section. The data generation model is as follows 

𝒀(𝑡𝑗) = 𝛽0(𝑡𝑗) + 𝛽1(𝑡𝑗)𝑿 + 𝝐,  𝛽0(𝑡) = 𝑡
𝜃1𝑒

−
𝑡

𝜃2 + 𝜃3,  𝛽1(𝑡) =
𝜙1𝑡

√1+𝜙2𝑡2
, 

where the parameters of 𝛽0(𝑡) are 𝜃1 = 3, 𝜃2 = 1.2, and 𝜃3 = 1.5, the parameters of 𝛽1(𝑡) 

are 𝜙1 = 5, and 𝜙2 = 0.4, 𝑿 = [𝑥1, … , 𝑥𝑚]
𝑇 = [0.05, 0.19, 0.36, 0.72, 0.91]′, 𝝐 =

[𝜖1, … , 𝜖𝑚]
𝑇with 𝜖𝑖 ∼ 𝑁(0, 0.3

2), 𝑚 = 5 and 𝑛 = 30. The simulated data are shown in 

Figure II-15, where the curves are the true functions (i.e., 𝛽0(𝑡) + 𝛽1(𝑡)𝑥𝑖, 𝑖 = 1, … ,𝑚) 
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and the dots are actual observations. The true functions converge when 𝑡 gets large. 

However, due to considerable random errors, the actual observations do not reflect this 

trend very well. This kind of situations is common in biomaterial experiments. We will 

use the proposed approach and the SCAM method to fit the data and compare their fitting 

performance. Note that there is no obvious shape requirement in this case, so no constraint 

is imposed in the SCAM method.   

  
Figure II-15. The simulated dataset. 

We first fit the data using the proposed approach without dynamic stability 

constraint and the SCAM method. The estimates of 𝛽0(𝑡) and 𝛽1(𝑡) from these two 

methods together with the true functions are given in the left panel of Figure II-16. The 

estimate of 𝛽0(𝑡) from the proposed approach matches with the true curve very well, while 

that from the SCAM method has distinct deviations from the true curve, especially in the 

tail part. The estimates of 𝛽1(𝑡) from the two methods exhibit similar shapes. Both of them 

have large fluctuations in the later stage and deviate substantially from the true curve. 
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These results show that without imposing the dynamic stability constraint, the proposed 

approach has advantage in capturing the shape of the true 𝛽0(𝑡), but is not able to capture 

the shape of the true 𝛽1(𝑡). Both methods are subject to the trend of data and affected 

significantly by individual data points. In other words, they are sensitive to measurement 

errors and outliers. 

Then we add the dynamic stability constraint in the proposed approach. The 

updated fitting results are given in the right panel of Figure II-16. The starting time of 

convergence stage is estimated to be 𝑡∗ = 2.59. The estimate of 𝛽0(𝑡) from the proposed 

approach is still similar to the unconstrained case and close to the true curve. The estimate 

of 𝛽1(𝑡) from the proposed approach now exhibits convergence behavior in the later stage 

and becomes close to the true function. The difference of these estimates from those from 

the SCAM method validates that incorporation of the dynamic stability constraint in the 

estimation of 𝛽1(𝑡) can improve the fitting performance as well as produce interpretable 

results consistent with expert knowledge. 

 
Figure II-16. Estimates of  𝜷𝟎(𝒕)  and 𝜷𝟏(𝒕) from SCAM and the proposed 

approach with (left) and without (right) dynamic stability constraint 
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II.7. Conclusion and discussion  

This study proposes a constrained VCM approach to model data from time-course 

experiments in the fabrication of artificial soft tissues. This approach is able to 

accommodate expert knowledge on the baseline material behavior and the effect of 

process parameter on material property. According to the case study, the proposed 

approach leads to results with good interpretability. It also has comparable prediction 

performance to the conventional VCM, and performs better in extrapolations. 

There are some open issues in this study. First, though the semi-parametric model 

itself can be easily extended to the case of multiple covariates, the method for imposing 

the dynamic stability constraint in the modeling is designed for the univariate covariate 

case. When there are more than one process parameters, Algorithm 4.2 is not suitable any 

more. There is a need to make the constraint applicable in this case.          

Second, in the weighted smoothing spline fitting, we update weights based on the 

residuals in previous iteration (Eq. (II.10)). Though 𝐶𝛽̂1 decreases as iteration increases 

(shown in the left panel of Figure II-9) in the case study, this method does not always 

guarantee such monotonicity. We have considered other ways for weight updating such as 

𝑤𝑖𝑗
(𝑘) = 𝑤𝑖𝑗

(𝑘−1) ⋅
min
𝑗
∑ |𝑟𝑖𝑗|𝑖

∑ |𝑟𝑖𝑗|𝑖
.  This weight also depends on the fitting performance in 

previous iteration. However, it differentiates the weights on time points only but not on 

settings of process parameter, i.e., 𝑤𝑖𝑗
(𝑘) = 𝑤

𝑖′𝑗

(𝑘)
, 𝑤𝑖𝑗

(𝑘) ≠ 𝑤
𝑖𝑗′
(𝑘)

 for 𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗′, which 

provides less flexibility in searching for 𝛽̂1(𝑡) with small 𝐶𝛽̂1. Such a weight updating 

appears not performing as well as the proposed one in terms of the convergence 
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performance of 𝛽̂1(𝑡) in the case study. We will further explore other weight updating 

methods to find one that performs better than the proposed method.  

Finally, this study considers a single constraint in the modeling. A more general 

scenario in practice is that multiple constraints need to be considered simultaneously. For 

example, a process parameter may affect the product property of interest in a monotonic 

way while at the same time its effect also follows a convergence pattern. In such a case, 

two constraints, monotonicity and stability, need to be incorporated, which is a 

challenging problem. It becomes more complex when multiple process parameters are 

involved. One can imagine the case where a monotonicity constraint applies to one process 

parameter while a stability constraint applies to another. These problems will be explored 

systematically in our future research. 
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CHAPTER III  

LEARNING HEMODYNAMIC EFFECT OF TRANSCRANIAL INFRARED LASER 

STIMULATION: A LONGITUDINAL DATA ANALYSIS 

III.1. Introduction  

Photobiomodulation is a noninvasive treatment that uses low-level laser to achieve 

beneficial therapeutic outcomes (Bartos et al., 2016). Though photobiomodulation has 

been applied in clinical practices for over 40 years since the first observation of its medical 

benefits in 1967, it was recently found to be potentially useful for various brain disorders 

and neurological diseases such as stroke and Parkinson’s disease (Hennessy and Hamblin, 

2016; Karu, 2013; Naeser and Hamblin, 2011)  . From then on, brain photobiomodulation 

has gained much attention. One form of brain photobiomodulation is transcranial infrared 

laser stimulation (TILS). Previous studies demonstrated that TILS can improve cognitive, 

emotional and executive functions and reduce depression symptoms (Barrett and 

Gonzales-Lima, 2013; Blanco et al., 2015; Disner et al., 2016; Hwang et al., 2016).  

TILS is triggered by photon absorption occurred in the mitochondria in cells and 

followed by a chain of complex reactions which eventually lead to alterations in energy 

metabolism in brain (Wang et al. 2017). Though much preclinical work has been done to 

explore the underlying biochemical mechanism of TILS, its fundamental principle is still 

not fully clear so that skepticism about its clinical performance exists (Hamblin et al., 

2018). Among the few clinical trials on TILS, Wang et al. conducted experiments 

investigating changes in hemodynamics caused by TILS (Wang et al. 2017). In their study, 

hemodynamic responses were measured at a number of time points from a placebo group 
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and a treatment group, and for each time point, the mean responses of the two groups were 

compared using two-sample t-test. The test results confirmed that significant 

hemodynamic changes were caused by TILS. This simple statistical analysis sheds light 

on the effectiveness of TILS treatment by establishing the significance of its population-

level performance. However, the time effect of this treatment was ignored as the t-test was 

applied to each time point separately. In addition, only the mean of individual responses 

to the treatment was considered, while the variation among individuals, which is critical 

for assessing the treatment performance as well, is not clear.  

In this study, we propose to learn the effect of TILS on hemodynamics of human 

brain through longitudinal data analysis. Our proposed methods model the time effect of 

TILS during and after treatment. Also, both the population-level performance and 

variation among individuals are considered in order to learn the individual-level 

uncertainty as well as the expected average therapeutic outcome of TILS. Results of this 

study will provide a deeper and more comprehensive understanding on the TILS effect. 

Specifically, three longitudinal data analysis methods are used. First, repeated measures 

ANOVA is applied to confirm the statistical significance of treatment-placebo difference, 

time effect and individual variation. Then two parametric mixed-effect models are 

proposed to characterize the population-level effect as a function of time and individual 

variation. Finally, a non-parametric functional mixed-effect model is proposed to address 

problems of the parametric mixed-effect models. Performance of the models will be 

compared and interpretation of the selected model will be given. 
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The remainder of this paper is organized as follows. Section 2 introduces data used 

in this study and reports the results of repeated measures ANOVA. Section 3 presents the 

proposed parametric mixed-effect models and estimation results. Section 4 presents the 

proposed functional mixed-effect model and estimation results. The proposed models will 

be compared in Section 5 in terms of fitting, prediction and variance pattern. Section 6 

concludes this study and discusses future research.  

III.2. Repeated measures ANOVA 

III.2.1. Experiment and dataset 

The data used in this study were collected from the experiments conducted by 

Wang et al. (Wang et al. 2017). The experimental setup is shown in the left panel of Figure 

III-1. 11 healthy individuals participated two separate experiments: the placebo treatment 

on their right forehead, followed by the TILS treatment on the same location. A 1064-nm 

continuous wave laser device was used for both types of treatments. The laser power was 

controlled at 3.4 W for the TILS treatment. For the placebo treatment, the power was tuned 

down to 0.1 W, and the laser aperture was further covered by a black cap to ensure that no 

laser was delivered to the subject. A single-channel broadband near-infrared spectroscopy 

(bb-NIRS) system was used to measure change in the concentration of oxygenated 

hemoglobin (Δ𝐻𝑏𝑂) in brain during the experiments, which consists of a tungsten halogen 

lamp as light source, a miniature spectrometer as detector, an “I”-shaped probe holder to 

hold an optical fiber bundle relayed to the white light, an optical shutter to switch on and 

off the white light, and a laptop computer to acquire and save the experimental data.  
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Each experiment lasted a period of 15 minutes. As shown in the right panel of 

Figure III-1, this period was divided to three stages: pre-treatment (first 2 minutes), 

treatment (next 8 minutes) and recovery (last 5 minutes). In the pre-treatment stage, 

neither placebo nor TILS was applied so that the baseline of oxygenated hemoglobin 

(𝐻𝑏𝑂) can be measured for each participant. The treatment was then applied during the 

treatment stage and discontinued in the recovery stage. Spectral data were collected every 

minute during treatment and recovery, and then converted to Δ𝐻𝑏𝑂 from the baseline 

(Wang et al. 2016).   

Figure III-2 shows the Δ𝐻𝑏𝑂 measurements of the placebo group and the TILS 

group. We denote the data using the following notations. Let 𝑦ℎ𝑖𝑗 be the Δ𝐻𝑏𝑂 of 

participant 𝑖 in group ℎ at time 𝑡𝑗, where ℎ = 0 (placebo) or 1 (TILS), 𝑖 = 1,… ,𝑁ℎ, 𝑗 =

1, … , 𝑛. In this dataset, the two groups have equal number of participants, 𝑁1 = 𝑁2 = 11, 

and the number of measured time points in each session is 𝑛 = 13.   

 
Figure III-1. Setup of the TILS/placebo treatment experiment (left) and data 

acquisition scheme (right). 
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Figure III-2. Data collected from Placebo group (left) and TILS group (right) 

III.2.2. Repeated measures ANOVA and hypothesis tests 

We first test if group (TILS vs. placebo), time and individuals cause variation in 

the Δ𝐻𝑏𝑂 measurements in Figure III-2. This test is necessary to set a foundation for 

formal modeling of the TILS effect. If the difference between groups is negligible, the 

effectiveness of TILS at the population-level will be declined. This indicates that 

modeling the effect of TILS does not make much sense. In other words, modeling the 

TILS effect is only meaningful when the difference caused by treatment is significant. 

Time may also play a role in the variation of Δ𝐻𝑏𝑂 data. When the time effect is 

significant, it means that the effect of TILS is time-varying, and thus it should be 

modeled as a function of time. In addition, individual differences of the participants in 

their responses to the treatment may help explain the variation in Δ𝐻𝑏𝑂 too. If this 

difference is significant, it should be taken into account in the modeling. The above three 

aspects can be tested all at once using repeated measures ANOVA (Hedeker and 

Gibbons, 2006) given below. 
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Table III-1. Repeated measures ANOVA table 

Source 

Degrees 

of 

freedom 

Sum-of-squares 
Mean sum-of-

squares 

Group 2 − 1 𝑆𝑆𝐺 = 𝑛∑𝑁ℎ(𝑦̅ℎ . . −𝑦̅…)
2

1

ℎ=0

 𝑀𝑆𝐺 =
𝑆𝑆𝐺
2 − 1

 

Time 𝑛 − 1 𝑆𝑆𝑇 = 𝑁(∑(𝑦̅..𝑗 − 𝑦̅…)
2

𝑛

𝑗=1

) 𝑀𝑆𝑇 =
𝑆𝑆𝑇
𝑛 − 1

 

Group 

 
Time 

(2 − 1) 
× 

(𝑛 − 1) 
𝑆𝑆𝐺𝑇 = 𝑛∑∑𝑁ℎ(𝑦̅ℎ.𝑗 − 𝑦̅ℎ.. − 𝑦̅..𝑗 + 𝑦̅…)

2
 

𝑛

𝑗=1

1

ℎ=0

 

𝑀𝑆𝐺𝑇

=
𝑆𝑆𝐺𝑇

(2 − 1) × (𝑛 − 1)
 

Individuals 

in Group 
𝑁∗ − 2 𝑆𝑆𝑆(𝐺) = 𝑛∑∑(𝑦̅ℎ𝑖 . −𝑦̅ℎ. . )

2

𝑁ℎ

𝑖=1

 

1

ℎ=0

 𝑀𝑆𝑆(𝐺) =
𝑆𝑆𝑆(𝐺)

𝑁 − 2
 

Residuals 
(𝑁 − 2) 
× 

(𝑛 − 1) 
𝑆𝑆𝐸 = ∑∑∑(𝑦ℎ𝑖𝑗 − 𝑦̅ℎ.𝑗 − 𝑦̅ℎ𝑖. + 𝑦̅ℎ. . )

2
𝑛

𝑗=1

𝑁ℎ

𝑖=1

1

ℎ=0

 

𝑀𝑆𝐸

=
𝑆𝑆𝐸

(𝑁 − 2) × (𝑛 − 1)
 

Total 𝑁𝑛 − 1 𝑆𝑆𝑦 =∑∑∑(𝑦ℎ𝑖𝑗 − 𝑦̅…)
2

𝑛

𝑗=1

𝑁ℎ

𝑖=1

1

ℎ=0

 𝑀𝑆𝑦 =
𝑆𝑆𝑦

𝑁𝑛 − 1
 

*∑ 𝑁ℎ
2
ℎ=1 = 𝑁 denotes the total number of participants in the experiment. 

The repeated measures ANOVA is based on the following point-wise model 

                           𝑦ℎ𝑖𝑗 = 𝜇 + 𝛾ℎ + 𝜏𝑗 + (𝛾𝜏)ℎ𝑗 + 𝜋𝑖(ℎ) + 𝑒ℎ𝑖𝑗 ,                           (III.1)   

where 𝜇 is the grand mean, 𝛾ℎ is the group effect, 𝜏𝑗 is the time effect, (𝛾𝜏)ℎ𝑗 is the 

interaction effect of group and time, 𝜋𝑖(ℎ) is the individual difference component for 

participant 𝑖 in group ℎ, and 𝑒ℎ𝑖𝑗 is the random error. In general, it is assumed that 𝜋𝑖(ℎ) 

and 𝑒ℎ𝑖𝑗 are independently normally distributed,  𝜋𝑖(ℎ) ∼ 𝑁(0, 𝜎𝜋
2), 𝑒ℎ𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒

2). It is 

also required that  ∑ 𝛾ℎ
2
ℎ=1 = 0, ∑ 𝜏𝑗

𝑛
𝑗=1 = 0, ∑ ∑ (𝛾𝜏)ℎ𝑗

𝑛
𝑗=1

2
ℎ=1 = 0 to make all effects in 

the model differentiable [6]. The ANOVA table is shown in Table III-1. Using the data in 

Figure III-2, the mean sum-of squares are obtained:  𝑀𝑆𝐺 = 107.9045, 𝑀𝑆𝑇 = 2.18616, 

𝑀𝑆𝐺𝑇 = 2.224202, 𝑀𝑆𝑆(𝐺) = 2.129356, and 𝑀𝑆𝐸= 0.05848785. 
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III.2.2.1. Group by time interaction test 

   𝐻0: (𝛾𝜏)01 = ⋯ = (𝛾𝜏)1𝑛 = 0 𝑣𝑠. 𝐻𝑎: not all (𝛾𝜏)ℎ𝑗 are zeros, ℎ = 0, 1, 𝑗 = 1,⋯ , 𝑛 

Under the null hypothesis, the group by time interaction is tested by an F-test with 

degree of freedom 𝑛 − 1 and (𝑁 − 2)(𝑛 − 1) with 𝐹0 =
𝑀𝑆𝐺𝑇

𝑀𝑆𝐸
. The computed p-value in 

our case is much less than 0.0001, which gives a strong supportive evidence of the 

alternative hypothesis. The rejection of the test indicates that the group and time effects 

are significant however confounded. The difference between groups varies overtime and 

the curves not parallel.  

III.2.2.2. Group effect hypothesis test 

𝐻0: 𝛾0 = 𝛾1 = 0  𝑣𝑠.  𝐻𝑎: not both 𝛾0 and 𝛾1 are zeros. 

Under the null hypothesis, 𝐹0 =
𝑀𝑆𝐺

𝑀𝑆𝑆(𝐺)
 follows 𝐹 distribution with degrees of 

freedom 1 and (𝑁 − 2). The computed 𝑝-value is smaller than 0.0001 so the hypothesis 

is rejected at typical levels of significance such as 0.01, 0.02 and 0.05. The test result 

indicates that the effect of TILS is significant in this experiment so modeling this effect is 

meaningful.  

III.2.2.3. Time effect hypothesis test 

𝐻0: 𝜏1 = ⋯ = 𝜏𝑛 = 0  𝑣𝑠.  𝐻𝑎: not all of 𝜏1, … , 𝜏𝑛 are zeros. 

Under 𝐻0, 𝐹0 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 follows 𝐹 distribution with degrees of freedom (𝑛 − 1) and 

(𝑁 − 2)(𝑛 − 1). The null hypothesis is rejected as the 𝑝-value is smaller than 0.0001. 

This indicates that the value of Δ𝐻𝑏𝑂 depends on time, which suggests to model the effect 

of TILS as a function of time.  
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III.2.2.4. Individual effect hypothesis test 

𝐻0: 𝜎𝜋
2 = 0   𝑣𝑠.  𝐻𝑎: 𝜎𝜋

2 ≠ 0 

Under 𝐻0, 𝐹0 =
𝑀𝑆𝑆(𝐺)

𝑀𝑆𝐸
 follows 𝐹 distribution with degrees of freedom (𝑁 − 2) and 

(𝑁 − 2)(𝑛 − 1). Again, the null hypothesis is rejected as the 𝑝-value is smaller than 

0.0001, which means that the participants respond to the treatment differently. This result 

necessitates the quantification of individual variation in the TILS effect.  

In summary, the above test results motivate us to model the effect of TILS on the 

concentration of oxygenated hemoglobin in brain. In the modeling, time should be 

involved as this effect is found to be time-varying. The variation of individual responses 

should also be taken into account. The following sections provide two types of models 

that satisfy the requirements. Note that only the data of the TILS group (shown in the right 

panel of Figure III-2) will be used in the modeling of TILS effect, and the subscript ℎ will 

be dropped in the notations hereafter. 

III.3.  Parametric mixed-effect model  

As a starting point of the modeling, this section considers parametric mixed-

effect models which is a popular category of models for longitudinal data analysis (Laird 

and Ware ,1982; Breslow and Clayton, 1993). Basics of such models will be given first 

and then two specific models will be proposed for the TILS data.  

III.3.1. Basics 

For interpretation convenience, a general parametric mixed effect model is 

written in the following hierarchical form (Lindstrom and Bates, 1990), 

                          Level-1: 𝑦𝑖𝑗 = 𝑓(𝑡𝑗; 𝜃𝑖) + 𝑒𝑖𝑗                                                    (III.2a)                                  
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                          Level-2: 𝜃𝑖 = 𝛽 + 𝑢𝑖                                                                 (III.2b) 

The Level-1 model assumes that 𝑦𝑖𝑗, the Δ𝐻𝑏𝑂 of participant 𝑖 at time 𝑡𝑗, depends 

on a parametric function 𝑓 of time with parameter 𝜃𝑖 and random error 𝑒𝑖𝑗. 𝑒𝑖𝑗 is assumed 

to follow a normal distribution 𝑁(0, 𝜎𝑒
2). The Level-2 model further defines the parameter 

𝜃𝑖 as combination of a constant, 𝛽, called fixed effect, and a random variable 𝑢𝑖, called 

random effect. It is assumed that 𝑢𝑖 ∼ 𝑁(0, 𝜎𝑢
2).  

Note that the model in Eq. (III.2a) is a point-wise model. The continuous versions 

of the notations are 𝑦𝑖(𝑡), 𝑓(𝑡; 𝜃𝑖), etc. Intuitively, the responses of participant 𝑖 at 

different time points form a curve 𝑦𝑖(𝑡) as shown in Figure III-2. The shape of the curve 

is determined by 𝜃𝑖 and it varies from one participant to another as clearly seen from the 

figure. Thus, 𝛽 represents the population-level, or baseline, shape of the curve, while 𝑢𝑖 

represents the difference of participant 𝑖 from the baseline.   

Once the form of Leve-1 model is determined, the unknown parameters 𝛽, 𝜎𝑒 and 

𝜎𝑢 can be estimated by maximizing the likelihood using the expectation-maximization 

(EM) algorithm [16, 17]. Then 𝑓(𝑡; 𝛽̂) can be interpreted as the population-level effect of 

TILS treatment, and 𝜎̂𝑢
2 indicates the individual variation of the TILS effect. It deserves 

to mention that the selection of the parametric function 𝑓(𝑡; 𝜃) is subjective and often 

relies on domain knowledge. Here we give two models with different forms of 𝑓(𝑡; 𝜃) and 

their corresponding estimation results.  

III.3.2. Model I 

From the right panel of Figure III-2, we observe that the Δ𝐻𝑏𝑂 shows an overall 

increasing trend for all participants during the treatment period, and a decreasing trend for 
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some participants (#1, #5, #6 and #10) during the recovery period. Therefore, we assume 

the following model form 

               Level-1: 𝑓(𝑡𝑗; 𝜽𝑖) = 𝜃1𝑖𝑡𝑗
2 + 𝜃2𝑖𝑡𝑗 + 𝜃3𝑖 + 𝑒𝑖𝑗,                      (III.3a) 

                       Level-2: {

𝜃1𝑖 = 𝛽1 + 𝑢1𝑖 ,
𝜃2𝑖 = 𝛽2 + 𝑢2𝑖  ,
𝜃3𝑖 = 𝛽3 + 𝑢3𝑖  .

                                     (III.3b) 

In the Level-1 model, 𝑓 is a quadratic function of time with three parameters 𝜃1𝑖, 

𝜃2𝑖, 𝜃3𝑖. When 𝜃1𝑖 is negative, the curve of participant 𝑖 first increases monotonically when 

0 ≤ 𝑡 ≤  −
𝜃2𝑖

2𝜃1𝑖
 and then decreases, and the increasing/decreasing rate is controlled by 𝜃1𝑖. 

All the three parameters contribute to the highest value that the curve can achieve. In the 

Level-2 model, each parameter contains a fixed effect and a random effect which allows 

much flexibility to fit individual curves. The random effects are assumed to be normally 

distributed with 𝑢1𝑖 ∼ 𝑁(0, 𝜎𝑢1
2 ), 𝑢2𝑖 ∼ 𝑁(0, 𝜎𝑢2

2 ), 𝑢3𝑖 ∼ 𝑁(0, 𝜎𝑢3
2 ). 

The fitted population-average curve (i.e., 𝑓(𝑡; 𝜷̂), where 𝜷̂ = [𝛽̂1, 𝛽̂2, 𝛽̂3]) and 

individual curves (i.e., 𝑓(𝑡; 𝜽̂𝑖), where 𝜽̂𝑖 = [𝜃1𝑖 , 𝜃2𝑖 , 𝜃3𝑖]) are shown in the left panel and 

right panel, respectively, of Figure III-3 with the parameter estimates given in Appendix 

E. The fitted population-average curve shows an overall increasing trend till around the 

11th minute. The fitted individual curves show similar trend and match with the data well. 

According to Appendix E, the estimated variances of random effects are considerably 

large, indicating that individual variation of the TILS effect is significant. Consistent with 

that, the shapes of individual curves in the right panel of Figure III-3 vary a lot from each 

other.  
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Figure III-3. Population and individual fitting of Model I. 

The fitted Model I tells us that in general, the change in oxygenated hemoglobin 

concentration in brain increases as the TILS treatment continues. When the treatment 

stops, the change remains increasing and then starts to decrease, meaning that the effect 

of TILS lasts but gets weaker with time.  

III.3.3. Model II 

Alternatively, it is reasonable to assume that Δ𝐻𝑏𝑂 is non-decreasing as time goes 

on and achieves a plateau eventually. The corresponding model has the following form, 

         Level-1: 𝑓(𝑡𝑗; 𝜽𝑖) = 𝜃1𝑖 + 𝜃2𝑖 (1 − exp (−𝜃3𝑖(𝑡𝑗 − 1))) + 𝑒𝑖𝑗,          (III.4a)  

                                         Level-2: {

𝜃1𝑖 = 𝛽1 + 𝑢1𝑖 ,
𝜃2𝑖 = 𝛽2 + 𝑢2𝑖  ,
𝜃3𝑖 = 𝛽3 + 𝑢3𝑖  .

                                         (III.4b) 
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Figure III-4 shows an illustration of the function 𝑓(𝑡; 𝜽) in the Level-1 model in 

Eq. (III.4a). It has an increasing trend starting from 𝜃1 at 𝑡1 = 1 and reaches a plateau of 

height 𝜃1 + 𝜃2 when 𝑡 is large. 𝜃3 reflects the speed of increase before reaching the 

plateau. The larger the 𝜃3 is, the faster the increase is and the more likely that the curve 

flattens out at the end of the experiment period. The Level-2 model is the same as in Model 

I, where each parameter contains a fixed effect and a random effect. 

 
Figure III-4. Illustration of Level-1 model in Model II 

The fitted population-average curve and individual curves are shown in Figure III-

5 with the parameter estimates listed in Appendix E. The population-level effect keeps 

increasing without reaching a plateau during the whole experiment period. The fitted 

individual curves show similar trend and match with data well. According to Appendix E, 

the estimates of variance components are considerably large and similar to those of Model 

I. 

Based on the fitted Model II, we can conclude that the change in oxygenated 

hemoglobin concentration in brain keeps increasing during the treatment stage and even 
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in the recovery stage, meaning that the TILS effect sustains for quite long time after the 

treatment stops. 

 
Figure III-5. Population and individual fitting of Model II 

III.3.4. Limitation of parametric mixed-effect models  

Both Model I and Model II provide estimates of the population-level effect of TILS 

treatment on hemodynamics, but their interpretations are not fully consistent. About the 

TILS effect during the treatment stage (1 ≤ 𝑡 ≤ 9), both models indicate that ∆𝐻𝑏𝑂 

increases over time. However, they differ regarding the TILS effect during the recovery 

stage: Model I suggests that ∆𝐻𝑏𝑂 first keeps increasing and then starts to decrease, while 

Model II says that ∆𝐻𝑏𝑂 keeps increasing during the whole recovery stage.  

The above difference comes from the selection of parametric form for 𝑓(𝑡; 𝜽) in 

Eq. (III.2a), which pre-specifies the shape of the population-average curve and individual 
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curves subjectively. The risk associated with parametric models is twofold. First, the 

selected parametric form may not be consistent with the true underlying mechanism. As a 

result, the estimated population-average curve may lead to biased interpretation on the 

TILS effect and generate inaccurate predictions to unobserved data. Second, the 

parametric form together with the random effects in the Level-2 model also determines 

the variance structure of the response variable. It is possible that the fitting of population 

and individual curves is good, but the corresponding variance pattern does not match with 

the data.   

III.4. Functional mixed-effect model  

The issues with parametric mixed-effect models can be addressed by functional 

mixed-effect model which utilizes a nonparametric approach. In this section, we first 

present the basics of functional mixed-effect model and then give the estimation results of 

this model.  

III.4.1. Basics 

The functional mixed-effect model was first introduced in 2002 (Guo, 2002). For 

the considered data, the model can be written as below, 

                                       𝑦𝑖𝑗 =  𝛽(𝑡𝑗) + 𝛼𝑖(𝑡𝑗) + 𝑒𝑖𝑗 ,                                          (III.5)  

where 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒
2). Here we assume that both 𝛽(𝑡) and 𝛼𝑖(𝑡) are smooth functions of 

𝑡, and thus the estimated 𝑦̂𝑖(𝑡) is also a smooth curve. The random errors 𝑒𝑖𝑗 are 

independent among individuals and time points. The variance-covariance matrix of the 

random effects {𝛼𝑖(𝑡1), 𝛼𝑖(𝑡2), … , 𝛼𝑖(𝑡𝑛)} is denoted by Σ𝛼. Intuitively, 𝛽(𝑡) represents 
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the population-average curve that tells the overall trend of the TILS effect, while 𝛼𝑖(𝑡) is 

the individual-specific deviation from the population curve.  

In this study, we model 𝛽(𝑡) and 𝛼𝑖(𝑡) using smoothing splines. Specifically, for 

participant 𝑖, the estimated 𝛽̂(𝑡) and 𝛼̂𝑖(𝑡) balance the fitting accuracy and smoothness by 

minimizing a penalized residual sum of squares, 

{𝛽̂(𝑡), 𝛼̂𝑖(𝑡)} = 𝑎𝑟𝑔𝑚𝑖𝑛∑[𝑦𝑖𝑗 − 𝛽(𝑡𝑗) − 𝛼𝑖(𝑡𝑗)]
2

𝑛

𝑗=1

 

+𝜆𝛽 ∫ 𝛽′′(𝑡)2𝑑𝑡
𝑡𝑛

𝑡1
+ 𝜆𝛼 ∫ 𝛼𝑖

′′(𝑡)2𝑑𝑡
𝑡𝑛

𝑡1
.                (III.6) 

In Eq. (III.6), 𝜆𝛽 and 𝜆𝛼 are tuning parameters that control the smoothness of the 

estimated curves. Details of the model estimation are given in Appendices F and G.  

III.4.2. Fitting results 

The estimated population-level effect 𝛽̂(𝑡) and random effects 𝛼̂𝑖(𝑡) are given in 

Figure III-6. In Figure III-6(a), the population-level effect displays monotonic increase 

during the whole experiment period with a decreasing rate in the recovery stage. In Figure 

III-6(c), we could observe that for all participants, the observed values (black dots) fall 

close to the individual fits, which indicates good fitting performance. Also, the fitted 

individual curves do not have similar shapes but vary a lot from each other, which is 

different from those from parametric mixed-effect models shown in Figures III-3 and III-

5. To provide some intuition on the fitting, Figure III-6(b) shows the population fit, 

individual fit and the estimated random effect of a single participant as an example. It can 

be seen clearly that the individual fit (black solid line) is a combination of the population 

effect and random effect.  
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Figure III-6. Population and individual fitting of Model III. 

The results tell us that the TILS treatment causes an increasing change in the 

oxygenated hemoglobin concentration in brain, and this effect sustains in the recovery 

stage after the treatment stops, though with a weakened rate. The individual variation 

among participants is significant as demonstrated by the fitted individual curves. 

Especially, their behaviors in the recovery stage are very different, some keeping 

increasing, some reaching a constant, and some going downward.  

III.5. Model comparison  

In this section we compare the three proposed models from three aspects: fitting 

performance, prediction performance and fitted variance pattern. 
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III.5.1. Fitting performance  

Table III-2 lists the residual sum of squares and log likelihood of Models I, II, and 

III, which measure how well each model fits the TILS data. It is clear that Model III has 

the best fitting performance, with the smallest residual sum of squares and largest log 

likelihood. This is consistent with the visual impression of fitting performance in Figures 

III-3, III-5 and III-6. The two parametric models perform similarly in fitting. 

Table III-2. Comparison of fitting performance of proposed models. 

Model Residual sum of squares Log likelihood 

Model I   (Eq. (III.3)) 4.508246 1.361531 

Model II  (Eq. (III.4)) 4.977247 3.189774 

Model III (Eq. (III.5)) 3.135987 147.9451 

 

III.5.2.  Prediction performance 

In all the three models, individual variation is represented by the random effects 

and quantified by the estimated variances and covariances of the random effects. This 

makes the prediction of Δ𝐻𝑏𝑂 at individual level possible. Here we will compare the 

prediction performance of Models I, II and III through the following procedure. First, we 

split the data into a training set and a testing set. Specifically, the testing set is created by 

randomly selecting 𝑁𝑡𝑒𝑠𝑡 observations among all participants and time points, and the 

training set is obtained after removing the testing set from the data. Each model is 
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estimated using the training set and then the estimated model is used to predict the values 

in the testing set. The performance of prediction is measured by the mean squared error 

(MSE), which is the mean of squared differences between the predicted values and actual 

observations. 

To be robust to the effect of sample size and uncertainty in data splitting, five 

different sizes of the testing set 𝑁𝑡𝑒𝑠𝑡 = {1, 5, 10, 20, 30} are considered, and given each 

size, 100 runs are conducted and the average prediction error is computed. The results are 

shown in Figure III-7. Model III outperforms the other two models with the smallest 

average prediction error in all scenarios. Between the two parametric models, Model I 

exhibits relatively better prediction performance than Model II in most scenarios. 

Figure III-7. Comparison of prediction performance of proposed models. 

III.5.3. Variance pattern 

We use 𝑉(𝑦) to denote the variance of Δ𝐻𝑏𝑂. For parametric mixed-effect models, 

the variance is determined by both the Level-1 model and Level-2 model, and thus the 

resulting structure of variance is often complex. Here we derive the variance of Model I 

as an example for the purpose of comparing the fitted variance patterns of the proposed 
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models. Let 𝜌(⋅) be the correlation between two random effects. The variance of Δ𝐻𝑏𝑂 in 

Model I is as below, 

𝑉(𝑦) = 𝑉𝑎𝑟(𝑓(𝑡; 𝜽)) + 𝑉𝑎𝑟(𝑒) 

= 𝑡3 (2𝜎𝑢1
2 𝜎𝑢2

2 𝜌(𝑢1, 𝑢2)) + 𝑡
2 (𝜎𝑢1

2 + 2𝜎𝑢1
2 𝜎𝑢3

2 𝜌(𝑢1, 𝑢3)) 

             +𝑡 (𝜎𝑢2
2 + 2𝜎𝑢2

2 𝜎𝑢3
2 𝜌(𝑢2, 𝑢3)) + 𝜎𝑢3

2 + 𝜎𝑒
2                                             (III.7) 

In contrast, the variance of Model III is determined by the random effect 𝛼(𝑡) and random 

error: 

                                    𝑉(𝑦) = 𝑉𝑎𝑟(𝛼(𝑡)) + 𝑉𝑎𝑟(𝑒)                                           (III.8) 

 
Figure III-8. Comparison of fitted variance patterns of proposed models. 

Figure III-8 shows the variance pattern of the data and the fitted models. Sample 

variance of all observations collected at each time point is used to represent the variance 

of the data, and the fitted variance is obtained based on Eqs. (III.7) and (III.8). Again, 



 

65 

 

Model III performs better in fitting the variance pattern of the data. With small coefficients 

for the 𝑡3 and  𝑡2 terms in Eq. (III.7), the variance of Model I has a near-linear shape which 

does not match with the data. 

III.6. Conclusion  

In this study, we learn the effect of TILS treatment on the concentration of 

oxygenated hemoglobin in brain from experimental data by using three longitudinal data 

analysis methods. The result of repeated measures ANOVA validates that the TILS effect 

is significant. It also suggests that this effect should be modeled as a function of time and 

individual variation should be taken into account in the modeling. Following the idea, we 

propose two parametric mixed-effect models and a functional mixed-effect model to 

characterize the effect of TILS. By selecting appropriate parametric forms, the parametric 

mixed-effect models are able to provide desired approximation of the population-level 

effect of TILS and estimation of individual variation. However, the selection of function 

form in those models is subjective and could be misleading. In addition, such models lack 

the flexibility to fit the variance of the data. These issues are further addressed by the 

functional mixed-effect model. As a non-parametric method, it is free of the bias due to 

specification of model form and can let data speak.   

According to the fitted functional mixed-effect model, the change in the 

concentration of oxygenated hemoglobin in brain caused by TILS increases as time goes 

on during the period when TILS is applied. Such an effect sustains even after TILS stops, 

though with a slower increasing rate. Another important fact is that large variation in the 

TILS effect exists among participants taking the treatment. These findings are useful 



 

66 

 

information to biomedical engineering researchers in the related field, which helps to 

reveal the underlying mechanism of TILS as a promising treatment and will direct future 

research toward deeper understanding of this treatment and better control of its clinical 

application.    

There are a series of interesting topics for our future research on this topic. First, 

this study uses the concentration of oxygenated hemoglobin to illustrate the TILS effect 

on hemodynamics in brain. In the original experiment conducted (Wang et al. 2017), other 

response variables such as the concentration of deoxygenated hemoglobin and total 

hemoglobin are also measured. Similar approaches can be applied to those variables to 

obtain a comprehensive view about how TILS affects hemodynamics. Second, the effect 

of TILS on cerebral metabolism can also be assessed quantitatively as the change in 

cerebral concentration of oxidized cytochrome-c-oxidase (CCO), the terminal enzyme in 

the mitochondrial respiratory chain, are also measured in the experiment. In addition, we 

will explore the coupling effect between cerebral metabolism and blood oxygen supply 

via multivariate longitudinal data analysis.  
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CHAPTER IV  

PHASE I MONITORING OF OPTICAL PRO-FILES WITH APPLICATION IN LOW-

EMITTANCE GLASS MANUFACTURING1 

IV.1. Introduction 

During the past two decades, concerns about energy and environment have led to 

many improvements in house and building design such as increased energy efficiency of 

windows. One critical technical innovation that makes this possible is the low-emittance 

(low-E) glass. This type of glass is manufactured through a coating process as illustrated 

in the upper panel of Figure IV-1, where in the coating chambers solid materials, e.g., 

metal, metal oxide and metal nitride, are deposited on the surface of flat glass ribbons. The 

coating will enhance the thermal/optical performance of the glass, making it to reflect up 

to 90% of infrared radiation while allowing visible light to enter (Arasteh et al., 2004; 

Carmody et al., 1996). Thus, low-E glass can reduce unwanted heat gain in summer and 

heat loss in winter. Due to its great benefit in energy savings, such glass has become more 

and more popular (Carmody and Haglund, 2012).  

One quality concern in low-E glass manufacturing is the coating uniformity on the 

glass surface. In the current quality inspection practice illustrated in the lower panel of 

Figure IV-1, laser scanning is conducted on different locations of finished products to 

                                                 

1Reprinted (parts of this chapter) with permission from “Phase I Monitoring of Optical 

Pro-files with Application in Low-emittance Glass Manufacturing “ by Qian Wu, Li Zeng 

& Qiang Zhou (2018), Journal of Quality Technology, 50:3, 262-278, Copyright [2018] 

by American Society for Quality. 
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measure optical properties such as reflectance, i.e., the percentage of light that reflects 

from the surface. The measurements at each location form an optical profile, where the x-

axis denotes wavelength . Each profile is then summarized into two color scales, a* 

(degree of redness/greenness) and b* (degree of yellowness/blueness) (Hunter Lab, 2008), 

which are monitored by Shewhart control charts. The color scales are simple summaries 

of information contained in optical profiles and thus may not perform well in detecting 

changes. This study aims to advance quality control in low-E glass industry by using 

optical profiles directly. The coating uniformity of products consists of two aspects: the 

spatial uniformity of optical profiles at different locations of the same product and the 

between-product uniformity at the same location. We will focus on the latter in this study, 

i.e., we consider one profile from each product. Phase I analysis will be investigated, 

where a historical dataset is available and the purpose is to screen out outlying profiles in 

the dataset. 

 
Figure IV-1. The coating process of low-E glass and quality inspection 
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Figure IV-2 shows a collection of 191 real optical profiles from low-E glass 

manufacturing, each containing 125 equally-spaced sampling points. The shape and 

variation of the data exhibit the following characteristics: (i) As shown in Fig. 2(a) and 

Fig. 2(b), the profile has a complex shape, with a high level of smoothness and small 

random noises, and (ii) the difference between profiles mainly lies in their shapes, as can 

be seen in Fig. 2(c). These characteristics need to be taken into account when looking for 

a suitable methodology for monitoring optical profile data.  

 
Figure IV-2. (a) A collection of 191 optical profiles, (b) zoom-in view of profiles at 

spectrum range 385-470 nm and (c) two single profiles in the dataset 

The monitoring of quality profiles has been well studied recently; see the reviews 

of Woodall et al. (2004) and Noorossana et al. (2011). A large amount of work in this field 

deals with simple profiles that can be described by linear models (e.g., Kang and Albin, 

2000; Mahmound, 2008) or polynomial models (e.g., Kazemzadeh et al., 2008, 2009). A 

few studies have been done on complex nonlinear profiles, which are potentially useful 
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for our problem. Specifically, we will take a look at those considering Phase I monitoring 

for the same purpose as this study. For Phase II monitoring of nonlinear profiles, see Zou 

et al. (2008) and Qiu et al. (2010).  

The existing methods can be categorized into three groups. The first group treats 

each profile as a high-dimensional vector and uses dimension reduction methods such as 

principal component analysis and independent component analysis, and monitors the 

reduced data (e.g., Chang et al., 2012; Ding et al., 2006; Paynabar et al., 2013; Zhang and 

Albin, 2009; Zou, et al., 2014). The second group fits a nonparametric regression model 

such as B-spline to each profile, and monitors summary statistics of deviations from the 

fitted model (e.g., Chang and Yadama, 2010; Chou, et al., 2014). The third group fits a 

parametric or nonparametric regression model to the profiles, and monitors the estimates 

of parameters (e.g., Abdel-Salam et al., 2013; Jensen and Birch, 2009; Jensen et al. 2016; 

Mosesova et al. 2007; Williams et al., 2007a; Williams et al., 2007b). The first two groups 

are designed for a general category of nonlinear profiles which typically have irregular 

shapes and/or special features such as sharp peaks and jaggedness. In contrast, the optical 

profiles, shown in Figure IV-2, are very smooth and can be adequately characterized by 

regular regression models. Therefore, the third group is most relevant to our problem and 

will be reviewed in detail as follows. 

For modeling the shape of profiles, Jensen and Birch (2009), Jensen et al. (2016), 

Williams et al. (2007a), and Williams et al. (2007b) choose parametric nonlinear 

regression models (e.g., four-parameter logistic model); Mosesova et al. (2007) provide a 

nonparametric regression model (B-spline) as an alternative; and Abdel-Salam et al. 



 

73 

 

(2013) consider a hybrid of parametric model and non-parametric model (p-spline) to be 

robust. For modeling the between-profile variation, Jensen et al. (2016) and Williams et 

al. (2007b) assume a normally distributed random error term to represent all variation in 

data; Williams et al. (2007a) build a regression model for the variance of data; and Abdel-

Salam et al. (2013), Jensen and Birch (2009), and Mosesova et al. (2007) consider random 

effects of parameters to characterize the within-profile correlation in addition to the 

random error term. All those studies use a T2 control chart to monitor the estimates of 

model parameters or random effects for change detection. 

In this study, we propose a piecewise polynomial random-coefficient (PRC) model, 

called the piecewise PRC model later, for optical profiles. That is, the spectrum will be 

segmented into a number of pieces and a PRC model is fitted to the profile segments on 

each piece. A random-coefficient model is a special type of mixed-effect models where 

each coefficient has a random effect (West et al., 2015). For Phase I analysis, estimates of 

random effects in each piece will be monitored separately using a T2 control chart as in 

previous work.  

The proposed method uses a piecewise polynomial model to characterize the shape 

of optical profiles. There are two reasons for this. First, compared to the global modeling 

strategies (using parametric nonlinear models or nonparametric models) in most studies, 

monitoring a complex profile in segments will facilitate subsequent diagnosis efforts. This 

makes particular sense for the considered application. In low-E glass coating as illustrated 

in the upper panel of Figure IV-1, the deposition material in each chamber affects the 

resulting optical profile at certain range of the spectrum. Therefore, when change is 
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detected in a piece, engineers only need to examine related chambers to find root cause of 

the change. In fact, the segmentation strategy is also adopted by Jin and Shi (1999) and 

Chang and Yadama (2010), where profiles are divided either subjectively or by 

engineering knowledge. A heuristic procedure for profile segmentation based on data will 

be provided in this study which is useful when engineering knowledge is not available. 

Second, as shown in a proof-of-concept exploration on optical profiles (Zeng and Chen, 

2015), a polynomial model is adequate for a profile segment. In addition, the simple 

polynomial model which is easy to estimate is beneficial for online monitoring. In low-E 

glass manufacturing, optical profiles are generated very fast (fifteen seconds between 

scannings). The computation problems in estimation of parametric nonlinear or 

nonparametric models (Jensen and Birch, 2009; Abdel-Salam et al. 2013) will pose 

challenges for monitoring large streams of optical profiles in practice.  

As optical profiles have strong within-profile correlation, a mixed-effect model is 

used here. We choose a random-coefficient model specifically to reflect differences in the 

shape of profiles which accounts for the major part of the between-profile variation. 

Moreover, while most studies assume independent random effects, we consider correlated 

random effects and show its advantages in fitting. Furthermore, we investigate a potential 

problem caused by highly correlated random effects (HCRE). The rationale of this 

problem and its detrimental impacts on Phase I monitoring are revealed, and a remedy 

based on regressor transformation is provided. To the best of our knowledge, this work is 

the first attempt to understand and address problems associated with correlated random 

effects in model estimation and model-based monitoring.  
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It is also worth mentioning that optical profile data have been widely used in 

various applications, e.g., biomaterial fabrication (Fernandez-Oliveras et al., 2013), 

semiconductor manufacturing (Gaponenko, 1998), and food industry (Zude, 2009), to 

measure product quality. Although the proposed method is illustrated using data from low-

E glass manufacturing, it can also be applied or easily extended to data from other 

applications.   

The remainder of the paper is organized as follows. We will first present the 

proposed methodology for Phase I monitoring of optical profiles, including the definition 

of the piecewise PRC model, model construction and change detection. Then we will 

describe the HCRE problem and the proposed remedy. This is followed by a numerical 

study and a case study using real data from low-E glass manufacturing. Finally, we 

conclude this study and discuss future research.   

IV.2. Proposed methodology for Phase I monitoring of optical profiles 

IV.2.1. The piecewise PRC model  

Suppose there are 𝑚 optical profiles in a historical dataset, each containing 𝑁 

design points. We split the spectrum into a number of pieces and fit a PRC model to the 

profile segments on each piece. Given a piece with 𝑛 design points, the segments are 

modeled by  

                            𝐲𝒊 = 𝐗(𝛃 + 𝐛𝒊) + 𝛆𝒊  for  𝒊 = 𝟏, 𝟐,⋯𝒎,                                  (IV.1) 

where 𝐲𝑖 = [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛]′ is the 𝑛 × 1 vector of responses (e.g., reflectance of light) 

for the 𝑖𝑡ℎ profile, 𝐗 = [1, 𝒙, … , 𝒙𝑝] is the 𝑛 × (𝑝 + 1) matrix of polynomial regressors 

where 𝒙 is the vector of design points on the spectrum, and 𝛆𝑖~𝑀𝑁(𝟎, 𝜎𝜀
2𝐈) is the vector 
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of random errors where 𝟎 is the vector of 0s, 𝐈 is the identity matrix, and “𝑀𝑁” denotes 

multivariate normal distribution. Note that we assume the design points on each profile 

are the same, so 𝐗 is constant for all profiles (thus the profile index is omitted). The 

coefficient of the regressors has two parts: the vector of fixed effects 𝛃 = [𝛽0, 𝛽1, … , 𝛽𝑝]′ 

that is the same for all profiles, and the vector of random effects for the 𝑖𝑡ℎ profile 𝐛𝑖 =

[𝑏𝑖0, 𝑏𝑖1, … , 𝑏𝑖𝑝]′. For the random effects, we assume  

                                              𝐛𝑖~𝑀𝑁(𝟎, 𝐆),                                                  (IV.2) 

where 𝐆 is the variance-covariance matrix of 𝐛𝑖, which has nonzero off-diagonal elements 

since correlated random effects are used. 

The model in Eq. (IV.1) is a random-coefficient model as each coefficient has a 

random effect. Since coefficients characterize the shape of a profile, the random effects 

reflect the between-profile variation which mainly lies in the shape of profiles. The terms 

in the model have an easy interpretation: the fixed effects 𝛃 represent the base-line 

regressor-response relationship, the random effects 𝐛𝑖 represent the intrinsic variation in 

low-E glass manufacturing, and the random errors 𝛆𝑖 represent noises in the process and 

optical measurement. It is also worth mentioning that as optical profiles are very smooth, 

the random errors are small compared to the random effects.  

IV.2.2. Profile segmentation 

Segmenting profiles is similar to identifying knots in curve fitting studies (Hastie 

et al., 2009). However, our problem is more complex: curve fitting typically deals with a 

single curve (i.e., profile) and only considers the shape of the curve; process monitoring 

focuses on between-profile variations and thus takes both shapes and variation patterns of 
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the profiles into account. Here we propose a simple method for profile segmentation, 

which is described as follows. 

We first point out some basic properties of the PRC model. From Eq. (IV.1), we 

can obtain the pointwise expression of the model 

                          𝑦𝑖𝑗 = 𝑿𝑗(𝛃 + 𝐛𝑖) + 𝜀𝑖𝑗  for 𝑗 = 1, 2, … , 𝑛,                                (IV.3) 

where 𝑦𝑖𝑗 is the 𝑗𝑡ℎ response on the 𝑖𝑡ℎ profile, and 𝑿𝑗 is the 𝑗𝑡ℎ row of the design matrix 

𝐗. Consequently, the pointwise mean and variance are 

                                 𝜇𝑖𝑗 = 𝑿𝑗𝛃,   𝑣𝑖𝑗 = 𝑿𝑗𝐆𝑿𝑗
𝑇 + 𝜎𝜀

2.                                            (IV.4) 

Since 𝜇𝑖𝑗 and 𝑣𝑖𝑗 are functions of  𝒙, we can call them the “mean profile” and 

“variance profile”.  By Eq. (IV.4), these two quantities have the following properties: (i) 

The mean profile depends on the fixed effects, while the variance profile depends on the 

variances/covariances of the random effects. In other words, differences in any two PRC 

models, whether in fixed effects or random effects, will be reflected by their mean and 

variance profiles. (ii) They are polynomial functions of 𝒙. These suggest that the 

segmentation can be made by dividing the (sample) mean profile and variance profile such 

that each piece of them can be modeled by a polynomial function. 

This idea is illustrated in Figure IV-3, where plot (a) shows a set of 𝑚 = 200 

profiles simulated from PRC models, and plots (b) and (c) are their (sample) mean profile 

and variance profile respectively. The dataset contains two parts. The part on 𝑥 = [−1, 0] 

comes from a quadratic PRC model, and the part on 𝑥 = [0, 1] comes from another 

quadratic PRC model. We can see that the difference in the fixed effects of the two models 
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is reflected by shapes of the mean profile on the two intervals of 𝑥, while the difference in 

their variances/covariances of random effects is reflected by the variance profile similarly. 

Assuming the true structure of data is unknown, we can split the mean and variance 

profiles at their empirical stationary points (i.e., where the slope is zero, as marked in plots 

(b) and (c)), which results in segments from the two models. 

 
Figure IV-3. Simulated profiles and their mean profile and variance profile 

Based on the above idea, the proposed procedure for profile segmentation is as 

follows: 

Step 1. Obtain the mean profile and variance profile of the optical profiles.  

Step 2. Identify the empirical stationary points, say 𝑥1
𝜇
, 𝑥2
𝜇
, …. and 𝑥1

𝑣 , 𝑥2
𝑣 , …. , of 

the mean and variance profiles, and sort them in ascending order. These points are used as 

the initial breaking points, which tend to divide the mean and variance profiles into pieces 

of simple shapes that can be described adequately by polynomial models. Considering that 

the polynomial order of the variance profile is twice that of the mean profile (by Eq. 
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(IV.4)), we will limit to cubic or lower-order polynomial models in fitting each piece of 

the mean and variance profiles.  

Step 3. Combine some adjacent pieces by removing their boundaries to minimize 

the number of pieces. Residual sum of squares (RSS) of fitting will be used as a stopping 

rule, 

𝑅𝑆𝑆𝜇 = Σ𝑗=1
𝑁 (𝑦̅𝑗 − 𝑦̂̅𝑗)

2
,  𝑅𝑆𝑆𝑣 = Σ𝑗=1

𝑁 (𝑠𝑗
2 − 𝑠̂𝑗

2)
2
, 

where 𝑦̅𝑗 is the 𝑗𝑡ℎ point of the mean profile, 𝑦̂̅𝑗 is the corresponding fitted value by a 

polynomial model, 𝑠𝑗
2 is the 𝑗𝑡ℎ point of the variance profile, and 𝑠̂𝑗

2 is its fitted value. A 

boundary can be removed only when it will not cause considerable increase (e.g., ≤ 1%) 

to 𝑅𝑆𝑆𝜇 or 𝑅𝑆𝑆𝑣. 

Step 4. Adjust locations of the breaking points resulted from last step within a small 

neighborhood to improve the fitting. The adjustment stops when there is no considerable 

further reduction on RSS (e.g., > 1%). The spectrum will be cut into pieces using the 

resulting breaking points.  

IV.2.3. Model estimation 

A PRC model will be fitted to the profile segments at each piece of spectrum. Let 

the variance-covariance matrix of random effects be 

                           𝐆 =

[
 
 
 
 

𝜏0
2 𝜏0𝜏1𝑟01 … 𝜏0𝜏𝑝𝑟0𝑝

𝜏1𝜏0𝑟01 𝜏1
2 … 𝜏1𝜏𝑝𝑟1𝑝

⋮ ⋮ ⋮ ⋮
𝜏𝑝𝜏0𝑟0𝑝 𝜏𝑝𝜏1𝑟1𝑝 … 𝜏𝑝

2 ]
 
 
 
 

 ,                                   (IV.5) 

where 𝜏0
2, 𝜏1

2, … , 𝜏𝑝
2 are variances of the random effects 𝑏𝑖0, 𝑏𝑖1, … , 𝑏𝑖𝑝 (𝜏0, 𝜏1, … , 𝜏𝑝 are 

positive), and 𝑟01, 𝑟02, … 𝑟𝑝−1,𝑝 are the 𝑝(𝑝 + 1)/2 correlation coefficients between the 
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random effects. Defining 𝛉 = (𝜏0
2, 𝜏1

2, … , 𝜏𝑝
2, 𝑟01, 𝑟02, … , 𝑟𝑝−1,𝑝, 𝜎𝜀

2), the unknowns in the 

PRC model include the fixed effects 𝛃, the random effects 𝐛𝑖, 𝑖 = 1,… ,𝑚, and 𝛉. The 

maximum likelihood (ML) estimator of the unknowns has a negative bias due to the loss 

of degrees of freedom in estimating the fixed effects (Patterson and Tompson, 1971). The 

restricted maximum likelihood (REML) method (Jiang, 2007) can solve this problem by 

transforming the response to remove the fixed effects. This method will be used for the 

estimation, the details of which are given below. 

From Eq. (IV.1), the marginal distribution of the response is 

                              𝐲𝑖~𝑀𝑁(𝐗𝛃, 𝐕), 𝐕 = 𝐗𝐆𝐗
𝑇 + 𝜎𝜀

2𝐈.                                        (IV.6) 

Let 𝐀 be a matrix from the null space of 𝐗 (i.e., 𝐀𝑇𝐗 = 𝟎). The REML method 

transforms the response to have zero mean and involve only 𝐕, 

                                       𝐀𝑇𝐲𝑖~𝑀𝑁(𝟎, 𝐀
𝑇𝐕𝐀).                                                     (IV.7) 

Since 𝐕 is a function of 𝛉, 𝛉̂ can be found by maximizing the likelihood of the 

multivariate normal distribution in Eq. (IV.7). Then 𝛃̂ and 𝐛̂𝑖 can be obtained by 

                               𝛃̂ = (𝑚𝐗𝑇𝐕̂−1𝐗)
−1
(𝐗𝑇𝐕̂−1∑ 𝐲𝑖

𝑚
𝑖=1 ),                                   (IV.8) 

                                   𝐛̂𝑖 = 𝐆̂𝐗
𝑇𝐕̂−1(𝐲𝑖 − 𝐗𝛃̂).                                                    (IV.9) 

Calculating 𝛉̂ requires numerical optimization algorithms (Gumedze and Dunne, 

2011). The stochastic approximation expectation maximization (SAEM) method (Delyon, 

Lavielle and Moulines, 1999) is used here. For notational simplicity, we will consider 

estimation using a single profile (i.e. 𝐲𝑖); estimation using all the 𝑚 profiles is similar 
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(note that 𝐲1, 𝐲2, … , 𝐲𝑚 are independent samples from the same multivariate normal 

distribution).  

SAEM follows a similar scheme as the traditional EM algorithm that performs E-

step and M- step iteratively to update estimates. Treating the random effects in the PRC 

model as missing data, the complete data are (𝐲𝑖, 𝐛𝑖). Correspondingly, the log-likelihood 

function is  

         𝑙(𝛉|𝐲𝑖, 𝐛𝑖) = log𝑝(𝐲𝑖, 𝐛𝑖|𝛉) = log𝑝(𝐛𝑖|𝛉) + log𝑝(𝐲𝑖|𝛉, 𝐛𝑖),                  (IV.10) 

where 𝑝(∙) is the density function, and the two terms in the right are given by  

                        log𝑝(𝐛𝑖|𝛉) = −
1

2
[log(|𝐆|) + 𝐛𝑖

𝑇𝐆−1𝐛𝑖],                                 (IV.11) 

                       log𝑝(𝐲𝑖|𝛉, 𝐛𝑖) = −
1

2
[𝑛log(𝜎𝜀

2) + 
(𝐲𝑖−𝐗𝛃−𝐗𝐛𝑖)

𝑇(𝐲𝑖−𝐗𝛃−𝐗𝐛𝑖)

𝜎𝜀
2                    (IV.12) 

E-step: Given the current estimate 𝛉̂(𝑘)in the 𝑘𝑡ℎ iteration, EM calculates the 

expectation of the log-likelihood in Eq. (IV.10) with respect to 𝑝(𝐛𝑖|𝛉̂
(𝑘), 𝐲𝑖) by 

𝐸𝐛𝑖|𝛉̂(𝑘),𝐲𝑖
[𝑙(𝛉|𝐲𝑖, 𝐛𝑖)] = −

1

2
[log(|𝐆(k)|) + 𝑡𝑟(𝐕𝒃

(𝑘)
𝐆(k)

−1
) + 𝛍

𝒃
(𝑘)𝑇𝐆

(k)−𝟏𝛍
𝒃
(𝑘)] 

                                          −
1

2
[𝑛log(𝜎𝜀

2) +
𝑡𝑟(𝐕𝜺

(𝑘)
)+𝛍𝜺

(𝑘)𝑇
𝛍𝜺
(𝑘)

𝜎𝜀
2 ]                     (IV.13) 

where  

𝛍𝒃
(𝑘)
= 𝐆(𝑘)𝐗𝑇𝐏(𝑘)𝐲𝑖, 

𝐕𝒃
(𝑘)
= 𝐆(𝑘) − 𝐆(𝑘)𝐗𝑇𝐏(𝑘)𝐗𝐆(𝑘), 

𝛍𝜺
(𝑘)
= 𝜎𝜀

2(𝑘)
𝐏(𝑘)𝐲𝑖, 𝐕𝜺

(𝑘)
= 𝜎𝜀

2(𝑘)
− 𝜎𝜀

4(𝑘)
𝐏(𝑘), 

𝐆(𝑘) = 𝐆(𝛉̂(𝑘)), 𝐕(𝑘) = 𝐕(𝛉̂(𝑘)), 

𝜎𝜀
2(𝑘)

= 𝜎𝜀
2(𝛉̂(𝑘)), 𝐏(𝑘) = 𝐀(𝐀𝑇𝐕(𝑘)𝐀)−1𝐀. 
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One drawback of the EM algorithm is that computing the expectation in Eq. 

(IV.13) may be difficult and time consuming. To alleviate this problem, the SAEM 

algorithm approximates the expectation in the 𝑘𝑡ℎ iteration by sampling the missing data 

(i.e., 𝐛𝑖) based on the estimate in the (𝑘 − 1)𝑡ℎ iteration. Specifically, the expectation in 

Eq. (IV.13) is replaced by 𝑄(𝛉) which has an iterative formula 

                   𝑄(𝑘)(𝛉) = 𝑄(𝑘−1)(𝛉) + 𝛾𝑘 [𝑙(𝛉|𝐲𝑖, 𝐛𝑖
(𝑘)
) − 𝑄(𝑘−1)(𝛉)],                  (IV.14) 

where 𝐛𝑖
(𝑘)

 is sampled from an ergodic Markov chain with limiting distribution 

𝑝(𝐛𝑖|𝛉̂
(𝑘−1), 𝐲𝑖) and transition probability 𝜋𝛉̂(𝑘−1), 𝑙(𝛉|𝐲𝑖, 𝐛𝑖

(𝑘)
) is the likelihood function 

when 𝐛𝑖
(𝑘)

 is used, and 𝛾𝑘 is a decreasing sequence satisfying ∑𝛾𝑘 = +∞, ∑ 𝛾𝑘
2 < +∞.                                        

M-step: Find the updated estimate of 𝛉 that maximizes 𝛉̂(𝑘+1) in Eq. (IV.14) 

                                      𝛉̂(𝑘+1) = argmax
𝛉

𝑄(𝑘)(𝛉).                                             (IV.15) 

According to our preliminary study, the SAEM is much faster than the EM in 

general. For example, EM takes hours to estimate a cubic PRC model, while SAEM only 

takes minutes to obtain similar results. We also find that one explanation for EM’s poor 

performance is the correlation of random effects; it works rather fast in the independent 

case. Since correlated random effects are assumed in this study, SAEM is a better choice.  

IV.2.4. Change detection 

Since random effects indicate the intrinsic process variation, the REML estimates 

of 𝐛𝑖 will be monitored using a T2 control chart for change detection. In Phase I analysis, 

we calculate the T2 statistic based on the successive-difference estimator of the variance-

covariance matrix (Holmes and Mergen, 1993)  
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                              𝑇𝑖
2 = 𝐛̂𝑖

𝑇𝐆̂−1𝐛̂𝑖   for 𝑖 = 1, 2, … , 𝑚,                                    (IV.16) 

where 𝐆̂ = 𝐃𝑇𝐃

2(𝑚−1)
 , 𝐃 = [(𝐛̂2 − 𝐛̂1), … , (𝐛̂𝑚 − 𝐛̂𝑚−1)]

𝑇 
. This version of T2 statistic performs better 

in detecting sustained step shifts in the mean than the version based on the sample 

variance-covariance matrix of random effects estimates (Sullivan and Woodall, 1996). 

When 𝑚 > (𝑝 + 1)2 + 3(𝑝 + 1), the upper control limit is 𝜒𝑝+1,𝛼
2 , where 𝛼 is the 

significance level. Assume there are 𝐿 control charts, one for each piece, we can set the 

overall significance level 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 to be a certain value, and then the significance level of 

each chart is 𝛼𝑐ℎ𝑎𝑟𝑡 = 1 − (1 − 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙)
1

𝐿. Since each chart monitors 𝑚 statistics, this 

requires 𝛼 = 1 − (1 − 𝛼𝑐ℎ𝑎𝑟𝑡)
1

𝑚. If any of these control charts signals, the whole profile 

that contains the outlying segment will be removed. Then models will be re-estimated 

using the remaining data and the T2 statistics will be re-calculated based on the updated 

model estimates. This repeats until no signal is generated from the control charts. Note 

that the specification of the overall significance level depends on the number of pieces. In 

general, when 𝐿 is larger, 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 needs to be higher to enable a reasonable significance 

level for each chart. When 2 ≤ 𝐿 ≤ 10 (which holds in most cases of optical profile 

monitoring), 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.1 is suggested, which leads to 0.01 ≤ 𝛼𝑐ℎ𝑎𝑟𝑡 ≤ 0.05. 

In online (i.e., Phase II) monitoring, the statistic for a newly observed profile 𝐲0 is 

                                           𝑇0
2 = 𝐛̂0

𝑇
𝐆̂−1𝐛̂0,                                                     (IV.17) 

where 𝐛̂0 = 𝛃̂0 − 𝛃̂. 𝛃̂ and 𝐆̂ are the final estimates of fixed effects and variance-

covariance matrix of random effects from Phase I analysis, and 𝛃̂0 is the least squares 

estimate of coefficients in the (𝑝 + 1)-degree polynomial model of 𝐲0.  
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IV.3. The highly-correlated-random-effects problem and regressor transformation 

IV.3.1. The HCRE problem and its impacts 

The variance-covariance matrix of the random effects in Eq. (IV.5) can be 

decomposed as 

    𝐆 = 𝛕 × 𝐑 × 𝛕 =

[
 
 
 
𝜏0
𝜏1

⋮
𝜏𝑝]
 
 
 

∙ [

1 𝑟01 … 𝑟0𝑝
𝑟01 1 … 𝑟1𝑝
⋮ ⋮ ⋮ ⋮
𝑟0𝑝 𝑟1𝑝 … 1

] ∙

[
 
 
 
𝜏0
𝜏1

⋮
𝜏𝑝]
 
 
 

           (IV.18) 

where 𝐑 is the correlation matrix of the random effects. When some random effects have 

high correlations, which is very likely to happen for the smooth optical profiles, the HCRE 

problem arises. For example, if 𝑏𝑖0 and 𝑏𝑖1 are highly correlated, 𝑟01 ≈ 1, 𝑟02 ≈

𝑟12, … , 𝑟0𝑝 ≈ 𝑟1𝑝, giving a correlation matrix  

𝐑 =

[
 
 
 
1 ≈ 1 𝑟02 … 𝑟0𝑝
≈ 1 1 ≈ 𝑟02 … ≈ 𝑟0𝑝
⋮ ⋮ ⋮ ⋮ ⋮
𝑟𝑝0 𝑟𝑝1 𝑟𝑝2 … 1 ]

 
 
 

, 

which is near singular as the first two rows are similar (or, nearly linearly dependent). As 

a result, 𝐆 is near singular and 𝐆−1 is ill-conditioned.  

The HCRE problem will impact the monitoring of optical profiles in three aspects: 

(i) Model estimation. The EM algorithm may not converge as the expectation of log-

likelihood in Eq. (IV.13) depends on 𝐆−1. When the SAEM algorithm is used, this 

problem still exists because it involves computing the log-likelihood function which 

depends on 𝐆−1 too (see Eqs. (IV.10), (IV.11) and (IV.14)). In general, the higher the 

correlation level among the random effects, the more serious the non-convergence 

problem in model estimation. (ii) Change detection. Note that the T2 statistics in Eqs. 
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(IV.16) and (IV.17) contain 𝐆−1. Thus, the HCRE problem will also make it difficult to 

apply the control chart. (iii) Interpretability. Highly correlated random effects represent 

similar information on the process variation, and thus monitoring them simultaneously 

makes little sense and cannot lead to easily interpretable results for root cause 

identification.  

IV.3.2. Regressor transformation 

A similar problem, which is due to correlated coefficient estimates, exists in the 

literature of polynomial regression and profile monitoring based on polynomial models. 

Popular remedies for the problem are centering and other transformations of the 

regressors. For example, Kazemzadeh et al. (2009) use the orthogonal polynomial model 

(OPM) to replace the regular polynomial model in profile monitoring. The regressors in 

the OPM are transformed polynomials that are orthogonal to each other; the corresponding 

coefficient estimates are independent so that they can be monitored separately using 

univariate control charts. 

There are also a few studies on correlated random effects in linear mixed-effect 

(LME) models. Morrell et al. (1997) show how linear transformations of regressors affect 

the random effects. Zhang and Chen (2013) propose an adaptive algorithm for fitting LME 

models, which applies location transformation to the regressor to make resulting random 

effects independent. However, both of the two studies focus on simple LME models with 

a single regressor, so their results cannot be easily generalized to the PRC model in Eq. 

(IV.1) which has multiple regressors. Compared to general LME models, our model has 

another special aspect: the regressors are polynomials which themselves might be highly 
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correlated; as a result, the transformation of each regressor will not only affect its 

associated random effect, but also affect the random effects of other regressors.  

In this study, we propose a regressor transformation method to solve the HCRE 

problem. We first show two simulation examples on the effect of centering as the simplest 

form of location transformation to provide some insights. Consider a quadratic PRC model 

with random effects 𝑏𝑖0, 𝑏𝑖1, 𝑏𝑖2, and assume the original design points are evenly 

distributed at 𝑥 = [0, 0.2, 0.4, … , 6.0]. In each example, 𝑚 = 100 profiles are generated 

from the model, and then estimates of the random effects and their pairwise correlations 

are obtained from the data. Then the values of 𝑥 are centered, i.e., 𝑥′ =

[−3.1, −2.9, −2.7, … , 2.9], with the response unchanged, and model estimation is 

performed based on the transformed data in a similar way. In Figure IV-4, the upper row 

displays the profiles before and after the centering, and the lower row shows the 

corresponding pairwise scatter plots of the estimated random effects (histograms are given 

in the diagonal). 

 
Figure IV-4. The effect of centering on correlations of random effects 
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In Example I, the original random effects are highly correlated, as indicated by the 

line patterns in the scatter plots, while after centering, they become independent, as 

indicated by the random clouds in the scatter plots. Example II shows the opposite: the 

independent random effects become highly correlated after the centering. These results 

suggest that the location transformation of regressors can significantly change the 

correlation structure of random effects. On the other hand, a simple transformation like 

centering may not necessarily lead to reduction of such correlations; more flexible 

transformations are needed to solve the HCRE problem.  

This problem can be formulated as follows. Using the pointwise expression of the 

PRC model in Eq. (IV.3), the original model is 

      𝑦𝑖𝑗 = (𝛽𝑝 + 𝑏𝑖𝑝)𝑥𝑗
𝑝 +⋯+ (𝛽1 + 𝑏𝑖1)𝑥𝑗 + (𝛽0 + 𝑏𝑖0) + 𝜀𝑖𝑗 .                      (IV.19) 

We can apply a location shift to each polynomial regressor, giving the transformed model 

𝑦𝑖𝑗
′ = (𝛽𝑝

′ + 𝑏𝑖𝑝
′ )(𝑥𝑗 − 𝑢𝑝)

𝑝
+⋯+ (𝛽1

′ + 𝑏𝑖1
′ )(𝑥𝑗 − 𝑢1) + (𝛽0

′ + 𝑏𝑖0
′ ) + 𝜀𝑖𝑗

′ ,    (IV.20) 

where 𝐮 = [𝑢1, … , 𝑢𝑝] is the vector of location shifts. Note that here we assume that 

appropriate centering and/or scaling has been performed in data pre-processing, so 

transformation on the intercept (i.e., 𝑢0) is not considered in Eq. (IV.20). It is easy to find 

the relationship between the original and transformed coefficients 

                                          𝛃′ + 𝐛𝑖
′ = (𝐮)(𝛃 + 𝐛𝑖),                                         (IV.21) 

where (𝐮) is a (𝑝 + 1) × (𝑝 + 1) transformation matrix which is a function of 𝐮. The 

derivation of Eq. (IV.21) and the specific transformation matrices for 𝑝 = 1, 2, 3 are given 

in Appendix H. Consequently, the transformed variance-covariance matrix of random 

effects is 



 

88 

 

                                              𝐆′ = (𝐮)𝐆𝑇(𝐮).                                              (IV.22) 

This indicates that the variances/covariances of the transformed random effects are 

functions of the original ones and the location shifts. So we can write the transformed 

pairwise correlations as 𝑟01
′ (𝛉, 𝐮), 𝑟02

′ (𝛉, 𝐮), … , 𝑟𝑝−1,𝑝
′ (𝛉, 𝐮) since 𝐆 depends on 𝛉 by Eqs. 

(IV.5) and (IV.18).  

A critical question is how to find the optimal location shifts 𝐮∗ that reduce the 

correlations of random effects as much as possible. According to Eq. (IV.22), if we can 

obtain an estimate of 𝛉 and thus of 𝐆 from the original data, then the transformed 

correlations will only depend on 𝐮. Thus, we can formulate this as the following 

optimization problem 

𝐮∗ = argmin
𝐮=[𝑢1,…,𝑢𝑝]

|𝑟01
′ (𝐮|𝛉̂)| + |𝑟02

′ (𝐮|𝛉̂)| + ⋯ + |𝑟𝑝−1,𝑝
′ (𝐮|𝛉̂)| 

 𝑠. 𝑡.   |𝑟01
′ (𝐮|𝛉̂)| ≤ 𝑐, 

                                                    |𝑟02
′ (𝐮|𝛉̂)| ≤ 𝑐,    

                                                             … 

                                                    |𝑟𝑝−1,𝑝
′ (𝐮|𝛉̂)| ≤ 𝑐,                                          (IV.23) 

where the constant 𝑐 (e.g., 0.7) is a threshold for each correlation. The above formulation 

aims to minimize the sum of the (absolute) correlations, with each of them constrained by 

the threshold. The objective function takes the form of 𝑙1-norm as in LASSO (Hastie, et 

al., 2009), which is convex and easy to solve.  

Note that the estimation of 𝛉 may not converge due to the HCRE problem. In this 

case, we can first apply some simple transformations, e.g., centering, to obtain the estimate 

and then apply the formulation in Eq. (IV.23). In cases where the estimate of 𝛉 does not 
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have good precision, we can find the optimal transformation in an iterative way: given a 

crude estimate of 𝛉, solution of Eq. (IV.23) will be obtained; then given the optimally 

transformed regressors, an updated estimate of 𝛉 will be found, which will produce the 

updated optimal shifts 𝐮∗. Another potential problem is that the specified value of c may 

not produce a solution in some extreme cases. A higher value can be used to relax the 

constraints. 

One special case that deserves to mention is 𝑝 = 1, i.e., a linear PRC model, which 

is equivalent to the LME model with a single regressor considered in the literature (Morrell 

et al., 1997; Zhang and Chen, 2013). In this case, there are only two random effects 𝑏𝑖0 

and 𝑏𝑖1, and accordingly one pairwise correlation 𝑟01 and one location shift 𝑢1. Thus, it is 

possible to find an optimal 𝑢1
∗ such that 𝑟01

′ = 0, i.e., the two random effects become 

independent. The solution is 

                                               𝑢1
∗ = −

𝜏0

𝜏1
𝑟01.                                                       (IV.24) 

The derivation is given in Appendix I. This is a desired case as independent random 

effects have good interpretability. When 𝑝 > 1, the number of location shifts (i.e., 𝑝) is 

smaller than the number of pairwise correlations (i.e., 𝑝(𝑝 + 1)/2), so the desired case is 

not possible in general. Considering the complex shape of optical profiles, linear PRC 

models are not adequate for profile segments. Thus the generic formulation of optimal 

location shifts in Eq. (IV.23) makes more sense. 

IV.4. Numerical study 

We provide two numerical examples to demonstrate the regressor transformation 

method in different scenarios. The first example shows a case with low correlations of 
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random effects and how different types of transformations work in this case, and the 

second example shows a case with high correlations and the corresponding optimal 

location shifts. In both examples, a quadratic PRC model (𝑝 = 2) without the random error 

term is used to generate the profile data; the SAEM algorithm is used for model estimation 

through the MATLAB function nlmefitsa; and the interior-point algorithm is used for the 

optimization problem in Eq. (IV.23) through the MATLAB function fmincon. For 

notational simplicity, the subscript “i” and/or “j” will be dropped in related quantities (e.g., 

Eq. (IV.19)) in the following. 

IV.4.1.Example 1 

The data generation model used in this example is 𝑦 = (2 + 𝑏2)𝑥
2 + (2 + 𝑏1)𝑥 +

(2 + 𝑏0), with the variance-covariance matrix of random effects  

𝐆 = [
0.3

0.5
0.3
] [

1 0.3 0.25
0.3 1 0.2
0.25 0.2 1

] [
0.3

0.5
0.3
]. 

𝑚 = 500 profiles are generated from this model, which are shown in the left panel 

of Figure IV-5. We first estimate parameters of the PRC model. Then, assuming location 

shifts 𝑢1, 𝑢2 for the regressors 𝑥, 𝑥2 respectively, three types of location transformation 

are applied and transformed correlations of random effects are obtained. The scenarios of 

transformation are summarized in Table IV-1, and results of pairwise correlations 

(𝑟01
′ , 𝑟02

′ , 𝑟12
′ ) vs. location shift are given in Figure IV-6.  
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Figure IV-5. Simulated profiles and fitted mean profile in Example 1 (left) and 

Example 2 (right) 

 

 

Table IV-1. Scenarios of location transformation in Example 1

 
 

 

 

 

 
Figure IV-6. Transformed correlations of random effects in Scenario I (left), II 

(center), and Scenario III (right) 

 

Scenario Setting of shifts Setting of magnitude 

I 𝑢1 = 𝑢2 ≠ 0 −5,−4, −3,−2,−1, 0, 1, 2, 3, 4, 5 

II 𝑢1 = 0, 𝑢2 ≠ 0 −2.5, −2,−1.5, −1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5 

III 𝑢1 ≠ 0, 𝑢2 = 0 −2.5, −2,−1.5, −1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5 
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The REML estimates of model parameters are   

which are close to the true values. The fitted mean profile is shown in the left panel of 

Figure IV-5, which matches the trend of the data well.  

In Figure IV-6, the pairwise correlations of random effects change with the 

magnitude of location shift dramatically and exhibit different patterns in the three 

scenarios. In Scenario I with two equal-size location shifts, 𝑟01
′  and 𝑟12

′  vary from −1 to 

1, while 𝑟02
′  varies in the range of (0.2, 0.9). At 𝑢1 = 𝑢2 = −0.15, 𝑟01

′ ≈ 0, 𝑟12
′ ≈ 0, 

meaning that 𝑏1 is independent of both 𝑏0 and 𝑏2, which is a desired result. In Scenario II 

with only a location shift 𝑢2, 𝑟01
′  and 𝑟12

′  experience large changes as in Scenario I, except 

that 𝑟01
′  has an opposite pattern from 𝑟12

′ ; 𝑟02
′  shows a symmetric pattern in the range of 

(−1, 0.2). By appropriately choosing the magnitude of the location shift, we can make 

some of the correlations to zero. In Scenario III with only a location shift 𝑢1, 𝑟01
′  shows 

dramatic changes as in Scenario I, while 𝑟02
′  and 𝑟12

′  change mildly as 𝑏2 is not affected 

by the shift in this case; under certain value of the location shift,  𝑟01
′  and 𝑟02

′  can be very 

close to zero.  

In summary, the above results validate that the location shifts have significant 

impacts on the correlations of random effects in the PRC model. Moreover, the setting of 

the location shifts, such as which regressors they are applied to and magnitudes, is critical. 

When the original correlations of random effects are not high, a well-designed regressor 

𝛃̂ = [1.994 1.976 2.015]′, 

𝐆 = [
0.301

0.488
0.304

] [
1 0.251 0.258

0.251 1 0.226
0.258 0.226 1

] [
0.301

0.488
0.304

], 
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transformation, like the case given in the left panel of Figure IV-6, can lead to desired 

independent random effects. 

IV.4.2.Example 2   

In this example, we generate 𝑚 = 500 profiles from the same quadratic PRC 

model as in Example 1, except that the correlation matrix now contains large elements 

                 𝐆 = [
0.3

0.5
0.3
] [

1 0.9 0.85
0.9 1 0.7
0.85 0.7 1

] [
0.3

0.5
0.3
]. 

The data are shown in the right panel of Figure IV-5. We first obtain the REML 

estimates which are very close to the true values. The fitted mean profile is also given in 

Figure IV-5.  

Then the regressor transformation method is applied to reduce the correlations of 

random effects. In this specific case, the optimization problem in Eq. (IV.23) is 

𝐮∗ = argmin
𝐮=[𝑢1,𝑢2]

|𝑟01
′ (𝐮|𝛉̂)| + |𝑟02

′ (𝐮|𝛉̂)| + |𝑟12
′ (𝐮|𝛉̂)| 

                           𝑠. 𝑡.  |𝑟01
′ (𝐮|𝛉̂)| ≤ 0.7,  

                                   |𝑟02
′ (𝐮|𝛉̂)| ≤ 0.7, … , |𝑟12

′ (𝐮|𝛉̂)| ≤ 0.7, 

where the transformed correlations can be obtained based on the transformed matrix (𝐮) 

for quadratic model given in Appendix H, and the threshold is set to be 0.7. The solution 

is 𝑢1
∗ = −0.252, 𝑢2

∗ = −0.783, and correspondingly, by Eqs. (IV.21)-(IV.22), 

𝛃̂ = [1.994 1.989 1.999]′ , 

𝐆 = [
0.290

0.484
0.299

] [
1 0.900 0.855

0.900 1 0.716
0.855 0.716 1

] [
0.290

0.484
0.299

], 
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      We also find the REML estimates of parameters under the optimal shifts, i.e., 

using regressors (𝑥 − 𝑢1
∗), (𝑥 − 𝑢2

∗)2, 

The REML estimates are very similar to those from Eqs. (IV.21)-( IV.22). The 

fitted mean profile of the transformed model, given in the right panel of Figure IV-5, is 

almost identical to the original mean. 

This example demonstrates the effectiveness of the proposed regressor 

transformation method. It will reduce correlations of random effects, while maintaining 

the good fitting performance of the original model. Also, note that in this example the 

optimal location shifts lead to not only reduced correlations, but two independent random 

effects (𝑟02
′ ≈ 0).  

IV.5. Case study 

This section applies the proposed methodology for Phase I analysis to real data 

from low-E glass manufacturing. The dataset, shown in Figure IV-2, was from a glass 

producer in the US. For confidentiality reasons, information on the company and their 

products is not disclosed in this text. It contains reflectance profiles collected from 𝑚 =

191 glass ribbons, with 𝑛 = 125 design points evenly distributed on the spectrum 

𝛃̂𝑅𝐸𝑀𝐿
′ = [1.040 − 1.1214 1.996]′, 

𝐆𝑅𝐸𝑀𝐿
′ = [

0.136
0.351

0.298
] [

1 0.051 0.671
0.051 1 −0.329
0.671−0.329 1

] [
0.136

0.351
0.298

]. 

𝛃̂′ = [1.056 − 1.140 1.999]′, 

𝐆′ = [
0.136

0.359
0.299

] [
1 −0.000 0.700

−0.000 1 −0.339
0.700 −0.339 1

] [
0.136

0.359
0.299

]. 
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=[380nm, 1005nm]. In the data pre-processing, the 𝑥 values are centered (original values 

are shown in the following figures for better interpretability).  

First, the optical profiles are segmented using the proposed procedure. Then a PRC 

model is fit to profile segments at each piece of the spectrum, and performances of models 

with correlated and independent random effects are compared. For the pieces where the 

HCRE problem occurs, the regressor transformation method is applied, and computational 

advantages of the transformed models are discussed. Finally, the T2 chart in Eq. (IV.16) is 

used to detect outlying profiles in the dataset. Details and results in each step are given as 

follows. 

 
Figure IV-7. Segmentation of profiles using the proposed method: the mean and 

variance profiles (center) and the five pieces (around) 
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IV.5.1.Step 1: Profile segmentation 

To apply the proposed method, we first obtain the sample mean profile and 

variance profile, which are shown in the center plot of Figure IV-7. There are four 

empirical stationary points on the variance profile (black circles) and three on the mean 

profile (red circles). Considering identical stationary points on these two profiles, the set 

of initial breaking points contains six points. Next, segments between some adjacent 

breaking points are very short, so we combine those short segments by removing their 

boundaries. This reduces the number of breaking points to four. As a result, the RSS in 

fitting the variance profile increases slightly (about 1%), while that of the mean profile 

remains the same. Furthermore, we adjust locations of those four points within a small 

neighborhood to improve the fit. Finally, the breaking points (vertical dashed lines) are 

determined at 1=470nm, 2=585nm, 3=670nm, and 4=805nm, leading to five pieces, 

which is reasonable for monitoring and root cause diagnosis. As shown in the surrounding 

plots of Figure IV-7, the five pieces have different shapes and variation patterns, but 

follow similar characteristics as data in Figure IV-5 which are simulated from PRC 

models. 

IV.5.2.Step 2: Model estimation 

A cubic PRC model is fit to each of the five pieces (denoted as P1~P5) in Figure 

IV-7. Table IV-2 lists the estimates of fixed effects, standard deviations/correlation matrix 

of random effects, and standard deviations of random errors for each piece. The pairwise 

correlations of random effects are very high in all the pieces, especially P2, P4 and P5. P1 

has relatively weaker correlations than others, with only one high correlation. Also, as 
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pointed out previously, the variation due to random errors is much smaller than that due 

to random effects; for example, the ratios of  𝜏̂0 𝜎̂𝜀⁄  are 2.0, 7.3, 33.4, 43.9 and 39.4 in 

P1~P5. Note that though the values of 𝜏̂3 are small, they may have large impact on the fit 

because of the cubic regressor (i.e., 𝑥3).  

The fitted mean profiles for each piece are shown in Figure IV-8. We can see that 

the fitted mean matches the shape of the profiles very well in each piece. For comparison, 

we also fit a cubic PRC model with independent random effects to each piece. The fitted 

mean profile, also shown in Figure IV-8, exhibits a clear deviation from its counterpart of 

the model with correlated effects and does not match the data well. These results validate 

that correlated random effects must be used for adequate fitting of optical profiles.   

Table IV-2. Parameter estimates of the original cubic PRC models with correlated 

random effects 

 

 [𝛽0 , 𝛽1 , 𝛽2 , 𝛽3]′  [𝜏0 , 𝜏1 , 𝜏2 , 𝜏3]′ 𝐑 𝜎𝜀  

P1 [

14.3972
−32.4287
 27.2772
 −4.6176

] [

0.7078
1.5440
3.8242
 2.5952

] 

[
 
 
 

   
1

−0.2889
−0.4396
0.5888

    

   
−0.2889

1
−0.7317
0.5998

     

   
−0.4396
−0.7317

1
−0.9840

     

   
0.5888
0.5998
−0.9840

1 ]
 
 
 
 0.3468 

P2 [

 8.0788
−15.4786
15.4725
−4.1172

] [

1.0243
2.1354
1.4548
0.3084

] 

[
 
 
 

   
1

 −0.9955
0.9674
−0.9196

    

   
 −0.9955

1
−0.9864
0.9513

     

   
0.9674
−0.9864

1
−0.9889

     

   
 −0.9196

0.9513
−0.9889

1 ]
 
 
 
 0.1396 

P3 [

−83.5117
121.5186
−53.4717

7.5564

] [

 4.1140
5.4000
2.3490
0.3431

] 

[
 
 
 

   
1

−0.9905
0.9566
−0.8945

    

   
−0.9905

1
−0.9865
0.9433

     

   
0.9566
−0.9865

1
−0.9846

     

   
−0.8945
0.9433

 −0.9846
1 ]

 
 
 
 0.1233 

P4 [

312.9730
−253.7014

64.5434
 −4.7761

] [

12.7913
12.4688
3.9477
0.3976

] 

[
 
 
 

   
1

−0.9934
0.9792
−0.9654

    

   
−0.9934

1
−0.9960
0.9889

     

   
0.9792
−0.9960

1
−0.9982

     

   
−0.9654
0.9889
−0.9982

1 ]
 
 
 
 0.2915 

P5 [

−290.6179
123.3512
 −12.5272

 0.3414

] [

11.3402
7.3960
1.5008
0.0977

] 

[
 
 
 

   
1

−0.9947
0.9884
−0.9843

    

   
−0.9947

1
−0.9988
0.9971

     

   
0.9884
−0.9988

1
−0.9996

     

   
−0.9843
0.9971
−0.9996

1 ]
 
 
 
 0.2879 
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Figure IV-8. Fitted mean profiles of PRC models with correlated vs. independent 

random effects 

IV.5.3.Step 3: Regressor transformation 

As the HCRE problem occurs in all the five pieces, regressor transformation is 

applied to each piece. In this case, the optimization problem in Eq. (IV.23) is 

𝐮∗ = argmin
𝐮=[𝑢1,𝑢2,𝑢3]

|𝑟01
′ (𝐮|𝛉̂)| + |𝑟02

′ (𝐮|𝛉̂)| + |𝑟03
′ (𝐮|𝛉̂)| + |𝑟12

′ (𝐮|𝛉̂)| + |𝑟13
′ (𝐮|𝛉̂)| + |𝑟23

′ (𝐮|𝛉̂)|   

𝑠. 𝑡.max (|𝑟01
′ (𝐮|𝛉̂)|, |𝑟02

′ (𝐮|𝛉̂)|, |𝑟03
′ (𝐮|𝛉̂)|, |𝑟12

′ (𝐮|𝛉̂)|, |𝑟13
′ (𝐮|𝛉̂)|, |𝑟23

′ (𝐮|𝛉̂)|) ≤ 0.7. 

The transformation matrix (𝐮) for cubic PRC models (Appendix H) is used in 

solving the above problem. The resulting optimal shifts and correlations of random effects 

are listed in Table IV-3.  
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Table IV-3. Optimal location shifts and correlations of random effects after 

transformation 

 

From Table IV-3, the optimal location shifts for P1 are the smallest, while those 

for P5 are the largest, which is reasonable as P1 has the weakest HCRE problem and P5 

has the most serious. The correlations of random effects after transformation are much 

smaller than their original values in all the pieces, with many of them far below 0.7. 

Especially, there are one or more near-zero correlations (marked in bold in Table IV-3) in 

each piece, meaning that some transformed random effects are near independent. It is also 

found that the fitted mean profiles and estimated standard deviations of random errors in 

the transformed models (results not shown here for space limit) are almost identical to 

those in the original models given in Table IV-2. 

 

 [𝑢1, 𝑢2, 𝑢3]′ 𝐑 

P1 [
0.6809
0.2275
0.4815

] 

[
 
 
 

   
1

−0.0126
−0.7000
0.6895

    

   
−𝟎. 𝟎𝟏𝟐𝟔

1
−0.7000
−0.6902

     

   
−0.7000
−0.7000

1
−0.0208

     

   
0.6895
−0.6902
−0.0208

1 ]
 
 
 
 

P2 [
0.6985
1.1582
1.3264

] 

[
 
 
 

   
1

0.0000 
0.0000
0.0320

    

   
𝟎. 𝟎𝟎𝟎𝟎 

1
−0.2762
−0.4674

     

   
𝟎. 𝟎𝟎𝟎𝟎
−0.2762

1
−0.7000

     

   
𝟎. 𝟎𝟑𝟐𝟎
−0.4674
−0.7000

1 ]
 
 
 
 

P3 [
2.0180
2.0261
2.0700

] 

[
 
 
 

   
1

−0.0000
−0.7000
0.0000

    

   
−𝟎. 𝟎𝟎𝟎𝟎

1
−0.4396
−0.2652

     

   
−0.7000
−0.4396

1
−0.4059

     

   
𝟎. 𝟎𝟎𝟎𝟎
−0.2652
−0.4059

1 ]
 
 
 
 

P4 [
2.8402
2.8265
3.1098

] 

[
 
 
 

   
1

0.6130
 −0.6602

0.0000

    

   
0.6130

1
−0.0144
−0.7000

     

   
 −0.6602
−𝟎. 𝟎𝟏𝟒𝟒

1
−0.7000

     

   
𝟎. 𝟎𝟎𝟎𝟎
−0.7000
−0.7000

1 ]
 
 
 
 

P5 [
7.0411
4.0715
4.9792

] 

[
 
 
 

   
1

0.6807 
 −0.7000
−0.0011

    

   
0.6807  

1
0.0000
−0.6699

     

   
 −0.7000
−𝟎. 𝟎𝟎𝟎𝟎

1
−0.699

     

   
−𝟎. 𝟎𝟎𝟏𝟏
−0.6699
−0.6999

1 ]
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Figure IV-9. Convergence rate in estimating 𝝉𝟏 

It is interesting to compare the convergence behaviors in estimating the original 

model, the transformed  model and the model with independent random effects. Figure 

IV-9 shows the number of iterations to achieve convergence in estimating 𝜏1 for each 

piece. The transformed model converges the fastest in all the five pieces, whereas the 

original model is the slowest. The estimates of other parameters have similar trends. For 

more details on the difference between the original and transformed models, Figure IV-10 

shows their convergence process in parameter estimation for P4. The transformed model 

converges smoothly, while the original model exhibits jumps and jaggedness in the 

process. These results suggest that the proposed location transformation can enhance 

computation speed and efficiency in model estimation.  



 

101 

 

 

 

Figure IV-10. The convergence process in parameter estimation for Piece 4 

IV.5.4.Step 4: Change detection 

With 𝐿 = 5 and 𝛼𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.1, each control chart has a significance level 

𝛼𝑐ℎ𝑎𝑟𝑡 ≈ 0.021. For an individual statistic in each chart that monitors 𝑚 = 191 profiles, 

𝛼 ≈ 0.00011, hence the upper control limit is 
𝑝+1,𝛼
2 = 23.30. In the first run, we 

construct the 𝑇2 control chart for each piece based on estimates of the transformed models. 

The resulting charts are displayed in the upper panel of Figure IV-11. Most data points are 

within the control limit, with only six, two, four, seven and five points out of control in 

P1~P5. Detailed information (sample index and value of 𝑇2 statistic) of those points are 

listed in the first row of Table IV-4. Sample #40 is a common out-of-control point in most 

pieces, which looks like an obvious outlier. The lower panel of Figure IV-11 shows the 

original optical profiles associated with those points. The outlying profiles look clearly 

abnormal from the majority of profiles (shadow in each plot) in location and/or shape. 

Sample #40 is a salient case, which is outside of the data zone.  
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Table IV-4. Out-of-control points in the 𝑻𝟐 control charts 

 

 

In the second run, the outlying profiles detected in the first run are removed from 

the dataset. Then the transformed model is fit to the remaining data and T2 chart is 

constructed based on the model estimates. Figure IV-12 (upper) shows the updated control 

charts for each piece. P5 has no out-of-control points now, whereas other pieces still 

contain several weak ones. Detailed information of those points is given in the second row 

of Table IV-4. The original profiles associated with them are shown in the lower panel of 

Figure IV-12. Those outlying profiles have slightly different shapes from the majority 

profiles. In the third run, we remove them, refit the models, and construct the new control 

charts, as shown in Figure IV-13. Now all profiles are in control in each piece, which ends 

the Phase I analysis. The parameter estimates, including fixed effects 𝜷̂ and variance-

covariance matrix of random effects 𝐆̂, obtained in the last run will be saved for online 

monitoring.  

 Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

# Statistic # Statistic # Statistic # Statistic # Statistic 

1st run 

4 25.73 11 26.76 7 26.86 7 28.69 19 23.40 

23 24.87 150 29.76 19 36.65 8 26.02 40 23.46 

40 33.98   39 24.49 19 25.51 125 24.99 

49 44.62   40 46.73 20 30.60 172 25.60 

117 26.36     35 30.85 173 24.93 

118 32.68     40 80.82   

      166 25.06   

2nd run 

22 23.57 41 37.03 5 26.08 3 25.23   

109 26.56 167 30.78 14 26.31 5 31.71   

    109 26.08 6 34.31   

      27 23.37   

      68 79.07   
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Figure IV-11. 𝑻𝟐 charts and detected outlying profiles in the first run 

 
Figure IV-12. 𝑻𝟐 charts and detected outlying profiles in the second run 

 
Figure IV-13. 𝑻𝟐 charts and in-control profiles in the third run 
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IV.6. Conclusions 

This study investigates the monitoring of optical profile data from low-E glass 

manufacturing. The proposed methodology is based on a piecewise modeling of profiles 

using PRC model and T2 charting of the estimated random effects for change detection. 

We also examine the HCRE problem and develop the regressor transformation method as 

a remedy. The case study shows that the piecewise PRC model can well capture the shape 

and intrinsic variations of optical profiles, and the proposed Phase I monitoring 

methodology can successfully screen out outlying profiles in the given dataset.  

This study may be useful in applications of mixed-effect models with correlated 

random effects. As illustrated in Figure IV-9, taking correlations of random effects into 

account can significantly improve the model fitting. Moreover, the proposed regressor 

transformation method can enhance model estimation efficiency and interpretability. 

Another way to solve the HCRE problem is to simply cut each piece into shorter pieces to 

reduce the polynomial orders. Since more pieces is not a good strategy for monitoring 

purposes, we did not pursue this line. 

One limitation of this study is that the model selection problem, i.e., determining 

which terms in the PRC model have random effects, was not considered. One reason is 

that there is no easy way for random effects selection (Pauler el al., 1999). In general, 

frequentist methods are inaccurate, while Bayesian methods are complex. For 

practitioners, one simple method is to fit a regular polynomial model to each profile 

segment, and then compare the variance of estimates of each coefficient among all 

segments. But be cautious that this method may fail because a coefficient with small 
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variance may have large impact on the fitting if it is associated with a high-order 

polynomial term (e.g.,𝑥3). This is another special aspect of polynomial mixed-effect 

models, which will be explored in our future research. 

Another direction of our future study is whether it is possible and how to transform 

the PRC model to enable independent random effects. As pointed out at the end of the 

section on location transformation, theoretically the proposed method is not able to make 

all random effects independent; but, it can produce some independent random effects, as 

shown in the numerical study and case study. We can formulate the optimization problem 

in Eq. (IV.23) in terms of independence between random effects, e.g., maximizing the 

number of zero correlations, to further improve the interpretability of this method.  

IV.7. References 

Abdel-Salam, A. G., Birch, J. B., and Jensen, W. A. (2013). “A Semiparametric Mixed 

Model Approach to Phase I Profile Monitoring”. Quality and Reliability Engineering 

International, 29, 555-569. 

Arasteh, D., Carmody, J., Lee, E.S., and Selkowitz, S. (2004). Window Systems for High-

performance Buildings. W. W. Norton & Company, New York, NY.   

Carmody, J., Selkowitz, S., and Heschhong, L. (1996). Residential Windows: A Guide to 

New Technologies and Energy Performance. W. W. Norton & Company, New York, 

NY.  

Carmody, J., and Haglund, K. (2012). “Measure Guideline: Energy-efficient Window 

Performance and Selection, Department of Energy report. Golden, CO. 

Chang, S. I., Tsai, T.-R., Lin, D. K. J., Chou, S.-H., and Lin, Y.-S. (2012). “Statistical 

Process Control for Monitoring Nonlinear Profiles: A Six Sigma Project on Curing 

Process”. Quality Engineering, 24, 251-263. 



 

106 

 

Chang, S. I., and Yadama, S. (2010). “Statistical Process Control for Monitoring Non-

linear Profiles Using Wavelet Filtering and B-Spline Approximation”. International 

Journal of Production Research, 48(4), 1049-1068.  

Chou, S.-H., Chang, S. I., and Tsai, T.-R. (2014). “On Monitoring of Multiple Nonlinear 

Profiles”. International Journal of Production Research, 52(11), 3209-3224.  

Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). “Maximum Likelihood from 

Incomplete Data via the EM Algorithm”. Journal of the Royal Statistical Society, 

Series B. 39 (1): 1-38.  

Ding, Y., Zeng, L., and Zhou, S. (2006). “Phase I Analysis for Monitoring Nonlinear 

Profiles in Manufacturing Processes”. Journal of Quality Technology, 38(3), 199-216. 

Fernandez-Oliveras, A., Rubiño, and Pérez, M. M. (2013). “Scattering and Absorption 

Properties of Biomaterials for Dental Restorative Applications”. Journal of the 

European Optical Society Rapid Publications, 8: 13056. 

Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge 

University Press, New York, NY. 

Gumedze, F. N., and  Dunne, T. T. (2011). “Parameter estimation and inference in the 

linear mixed model”. Linear Algebra and Its Applications, 435(8), 1920-1944. 

Hartley, H. O., and Rao, J. N. K. (1967). “Maximum-Likelihood Estimation for the Mixed 

Analysis of Variance Model”. Biometrika, 54, 93-108. 

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning, 

2nd Edition. Springer, New York, NY. 

Holmes, D. S and Mergen, A. E. (1993). “Improving the Performance of the 𝑇2 Control 

Chart”. Quality Engineering, 5, 619-625. 

Hunter Lab (2008). CIE L*a*b* Color Scale. Insight on Color, 8(7), 1-4.  

Jensen, W. A., and Birch J. B. (2009). “Profile Monitoring via Nonlinear Mixed Models”. 

Journal of Quality Technologies, 41(1), 18-34. 

https://en.wikipedia.org/wiki/Arthur_P._Dempster
https://en.wikipedia.org/wiki/Nan_Laird
https://en.wikipedia.org/wiki/Donald_Rubin
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B
http://www.sciencedirect.com/science/article/pii/S002437951100320X
http://www.sciencedirect.com/science/article/pii/S002437951100320X
http://www.sciencedirect.com/science/journal/00243795


 

107 

 

Jensen, W. A., Grimshaw, S. D., and Espen, B. (2016). “Nonlinear Profile Monitoring for 

Oven-Temperature Data”. Journal of Quality Technologies, 48(1), 84-97. 

Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. 

Springer, New York, NY. 

Jin, J., and Shi, J. (1999). “Feature-Preserving Data Compression of Stamping Tonnage 

Information Using Wavelets”. Technometrics, 41(4), 327-339. 

Kang, L., and Albin, S. (2000). “On-line Monitoring When the Process Yields A Linear 

Profile”. Journal of Quality Technology, 32(4), 418-426. 

Kazemzadeh, R. B., Noorossana, R., and Amiri, A. (2008). “Phase I Monitoring of 

Polynomial Profiles”. Communications in StatisticsTheory and Methods, 37, 1671-

1686. 

Kazemzadeh, R. B., Noorossana, R., and Amiri, A. (2009). “Monitoring Polynomial 

Profiles in Quality Control Applications”. International Journal of Advanced 

Manufacturing Technology, 42, 703-712. 

Kutner, M. H., Nachtsheim, C. J., and Neter, J. (2004). Applied Linear Regression Models. 

McGraw-Hill/Irwin, New York, NY. 

Mahmoud M. A. (2008). “Phase I Analysis of Multiple Linear Regression Profiles. 

Communications in StatisticsSimulation and Computation, 37, 2106-2130. 

Morrell, C. H., Pearson, J. D., and Brant, L. J. (1997). “Linear Transformations of Linear 

Mixed-effects Models”. The American Statistician, 51(4), 338-343. 

Mosesova, S. A., Chipman, H. A., MacKay, R. J. and Steiner, S. H. (2007). “Profile 

Monitoring Using Mixed-Effects Models”. Technical Report. 

Noorossana, R., Saghaei, A., and Amiri, A. (2011). Statistical Analysis of Profile 

Monitoring. John Wiley & Sons, Hoboken, NJ. 

Patterson, H. D., and Tompson, R. (1971). “Recovery of Inter-Block Information when 

Block Sizes are Unequal”. Biometrika, 58, 545-554. 



 

108 

 

Pauler, D. K., Wakefield, J. C., and Kass, R. E. (1999). “Bayes Factors and 

Approximations for Variance Component Models”. Journal of the American 

Statistical Association, 94(448), 1242-1253. 

Paynabar, K., Jin, J., and Pacella, M. (2013). “Monitoring and Diagnosis of Multichannel 

Nonlinear Profile Variations Using Uncorrelated Multilinear Principal Component 

Analysis”. IIE Transactions, 45, 1235-1247. 

Qiu, P., Zou, C. and Wang, Z. (2010). “Nonparametric Profile Monitoring by Mixed 

Effects Modeling”. Technometrics, 52, 265-277. 

Seber, G. A. F., and Lee, A. J. (2003). Linear Regression Analysis. John Wiley & Sons, 

Hoboken, New Jersey. 

Sullivan, J. H. and Woodall, W. H. (1996). “A Comparison of Multivariate Control Charts 

for Individual Observations”. Journal of Quality Technology, 28(4), 398-408. 

West, B. T., Welch, K. B., and Gatecki, A. T. (2015). Linear Mixed Models: A Practical 

Guide Using Statistical Software, 2nd Edition. CRC Press, Boca Raton, FL. 

Williams, J. D., Woodall, W. H., Birch, J. B., and Sullivan J. H. (2006). “Distribution of 

Hotelling’s T2 Statistic Based on the Successive Differences Estimator”. Journal of 

Quality Technology, 38(3), 217-229. T2 

Williams, J. D., Birch, J. B., Woodall, W. H., and Ferry, N. M. (2007a). “Statistical 

Monitoring of Heteroscedastic Dose-Response Profiles from High-Throughput 

Screening”. Journal of Agricultural, Biological, and Environmental Statistics, 12(2), 

216-235. 

Williams, J. D., Woodall, W. H., and Birch, J. B. (2007b). “Statistical Monitoring of 

Nonlinear Product and Process Quality Profiles”. Quality and Reliability Engineering 

International, 23, 925-941. 

Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and Gupta, S. (2004). “Using Control 

Charts to Monitor Process and Product Quality Profiles”. Journal of Quality 

Technologies, 36(3), 309-320. 



 

109 

 

Zeng, L., and Chen, N. (2015). “Bayesian Hierarchical Modeling for Monitoring Optical 

Profiles in Low-E Glass Manufacturing”. IIE Transactions, 47(2), 109-124. 

Zhang, H., and Albin, S. (2009). “Detecting Outliers in Complex Profiles Using a 𝜒2 

Control Chart”. IIE Transactions, 41, 335-345. 

Zhang, G., and Chen, J. J. (2013). “Adaptive Fitting of Linear Mixed-effects Models with 

Correlated Random Effects”. Journal of Statistical Computation and Simulation, 

83(12), 2291-2314. 

Zou, C., Tsung, F., and Wang, Z. (2008). “Monitoring Profiles based on Nonparametric 

Regression Methods”. Technometrics, 50(4), 512-526. 

Zou, C., Tseng, S.-T., and Wang, Z. (2014). “Outlier Detection in General Profiles Using 

Penalized Regression Method”. IIE Transactions, 46, 106-117. 

Zude, M (edited) (2009). Optical Monitoring of Fresh and Processes Agricultural Crops. 

CRC Press, Boca Raton, FL.  



 

110 

 

CHAPTER V  

CONCLUSIONS AND DISCUSSION 

V.1. Conclusions 

For the purpose of optimizing a system delivering products or service, two tasks 

arise: (1) quantifying the performance of the system and then (2) tuning the process 

parameters to improve the system performance. Since a system often contains multiple 

components whose effects interact with each other, analysis from the physiochemical 

perspective only is difficult. Therefore, statistical methods and data driven approaches are 

considered. One type of data that is getting more and more popular in characterizing 

performance of systems is the output quality profiles. In this dissertation, we focus on 

using quality profile data with panel structure to solve two types of problems 

corresponding to the tasks mentioned above. First, modeling the relationship between 

process parameter of the system and the resulting quality of the output. Second, 

quantifying the variation of the output quality measures among individual product or 

service. The first problem aims at connecting the process parameter to the system 

performance from the perspective of output quality using statistical models. The desired 

system performance can then be achieved by selecting the optimal process parameter. The 

second problem targets on measuring the variation among the products or services from 

the system. This variation can be used as an approximation to reflect the stability of the 

system. These two types of problems are discussed and addressed via three studies in 

manufacturing and biomedical engineering domains in this dissertation. 
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For the first type of problem, we consider modeling the relationship between 

process parameter of the system and the resulting quality of the output in different 

scenarios depending on the availability of related expert knowledge. Specifically, we 

focus on the scenario where only partial information about the underlying knowledge is 

known, which is often the case when the system is complex or involves novel 

technologies. We develop a constrained semiparametric varying coefficient model where 

the domain knowledge is accommodated as a constraint on the effect of process parameter 

of interest and a parametric additive term for other factors in the system. A case study in 

biomedical fabrication is provided to demonstrate the performance of the model. We first 

mathematically formulate the dynamic stability constraint, which is a common observed 

behavior in engineering and then provide the corresponding estimation algorithms to 

implement the dynamic stability constraint. The results of the case study indicate both 

good interpretability and fitting accuracy of the proposed model.  

For the second type of problem, we give the analysis of individual variation in two 

case studies. In Chapter III, the individual variation is modeled as functional random 

effects in a biomedical engineering application. The results show that the estimated 

random effects fit the quality profile data well and capture the variation pattern as well. In 

Chapter IV, a nonlinear mixed-effect model is used for anomaly detection in a 

manufacturing application. The results show that the proposed model fits the data well and 

is able to identify abnormal products based on the estimated random effects. 

V.2. Future work 

There are several topics which can be explored in my future research.  
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First, the dynamic stability constraint in Chapter II is applied to one process 

parameter in the system. In other cases, it is possible that multiple process parameters have 

a similar converging behavior over time. In such a situation, the dynamic stability 

constraint needs to be extended to all the process parameters.  

Second, our study considers modeling for a single process parameter. It is 

reasonable in the practice of experimental studies as considering multiple process 

parameters would be complex and involve interaction effects of process parameters. 

However, for datasets retrieved from systems other than time-course experiments, it is 

possible that multiple process parameters are present and hence need to be modeled 

simultaneously. Then the model in Chapter II will need to involve multiple smoothing 

components and their interactions.   

Third, there are many other types of constraints than the dynamic stability 

constraint one may encounter in reality, such as shape constraints and sign constraints. 

Therefore, another potential research direction is to consider multiple types of constraints 

in the modeling.  

Fourth, when using mixed-effect models to quantify the variation of individual 

products and services, one of the problems is the model selection issue. In the case studies 

of Chapter III and IV, we simply assume that randomness occurs at all terms for all 

covariates for the purpose of covering all sources of variation. In other cases, it is not 

always the best way to assume all terms in the model contain randomness and a model 

selection step is necessary.   
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Finally, another possible direction to extend the work is considering multivariate 

quality profiles. For each individual, there may be multiple quality measurements taken 

and affected by the process parameter of interest simultaneously. The models developed 

in the dissertation can be extended to multivariate cases. By involving the covariance 

among the multiple quality measures, the performance of the model may be improved in 

both fitting accuracy and interpretability.  
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APPENDIX A 

SMOOTHING SPLINE ESTIMATION OF VCM IN THE STUDY OF EUBANK ET 

AL. (2004) 

A p-dimensional varying coefficient model is defined as 

𝑦𝑖𝑗 = 𝒙𝑖𝑗𝜷𝜆(𝑡𝑗) + 𝜖𝑖𝑗,       𝒙𝑖𝑗 = [𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝], 

where 𝑦𝑖𝑗 represents the observed value on the 𝑖𝑡ℎ curve at time 𝑡𝑗 and 𝑥𝑖𝑗𝑟 is the 𝑟𝑡ℎ 

component of 𝒙𝑖𝑗, a p-dimensional time-dependent covariate of the 𝑖𝑡ℎ curve at time 𝑡𝑗, 

𝑖 = 1, … ,𝑚, 𝑗 = 1,… , 𝑛, 𝑟 = 1,… , 𝑝. The original paper provides an analytical smoothing 

spline estimator of the varying coefficient 𝜷𝜆(𝑡) = [𝛽1(𝑡), … , 𝛽𝑝(𝑡)] by solving the 

generalized objective function 

𝐽𝜆,𝑊 = ∑ ∑ [[𝑦𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑟
𝑝
𝑟=1 𝛽𝑟(𝑡𝑖𝑗)]

2
]𝑚

𝑗=1 + ∑ 𝜆𝑟∫ 𝛽𝑟
(𝑧)(𝑡)2𝑑𝑡𝑝

𝑟=1
𝑛
𝑖=1 ,               (A1) 

where 𝑧 is the order of derivatives required for smoothness, for example 𝑧 = 2 for second-

order derivative. The proof is summarized as below.  

For the data regarding objective function (A1), we rewrite them as  

𝑌 = [𝑦11, … , 𝑦𝑚1, … , 𝑦1n, … , 𝑦𝑚𝑛]
𝑇 

𝑋⋅𝑗 = [𝒙1𝑗
𝑇 , … , 𝒙𝑚𝑗

𝑇 ]
𝑇
, 𝑗 = 1,… , 𝑛  

and then define   𝐻 = [
𝑋⋅1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑋⋅𝑛

],  𝑄̃ = {∫
(𝑡𝑗1−𝑠)

𝑧−1
(𝑡𝑗2−𝑠)

𝑧−1

[(𝑧−1)!]2
𝑑𝑠

min(𝑡𝑗1 ,𝑡𝑗2)

0
}
𝑗1,𝑗2=1,…,𝑛

 

𝑡̃𝑗 = [1, 𝑡𝑗 , … , 𝑡𝑗
𝑧−1]

𝑇
 

𝐾 = 𝑄̃⨂𝐼𝑝 



 

115 

 

𝑇 = [

𝑡̃1
𝑇⨂𝐼𝑝
⋮

𝑡̃𝑛
𝑇⨂𝐼𝑝

] 

Λ = 𝐼𝑛⨂𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝) 

𝑉 = 𝐻𝑇 

where ⨂ represents the Kronecker product of two matrices and 𝐼𝑝 is the identity matrix of 

size 𝑝. 

The minimization of objective function (A1) can be reduced to solving for 

unknown coefficient 𝑐 and 𝑑 to minimize the quadratic function below 

                  (𝑌 − 𝐻(𝐾𝑐 + 𝑇𝑑))
𝑇
(𝑌 − 𝐻(𝐾𝑐 + 𝑇𝑑)) + 𝑐𝑇Λ𝐾𝑐,                             (A2) 

where 𝑐 = [𝑐11, . . 𝑐1𝑝, … , 𝑐𝑛1, … , 𝑐𝑛𝑝]
𝑇
, 𝑑 = [𝑑11, … , 𝑑1𝑝, … , 𝑑𝑧1, … , 𝑑𝑧𝑝]

𝑇
. To minimize 

(A2), we take the derivative of (A2) with respect to 𝑐 and let it be zero and obtain  

                                (𝐾𝐻𝑇𝐻𝐾 + 𝐾Λ)𝑐 = 𝐾𝐻𝑇(𝑌 − 𝑉𝑑).                                       (A3) 

Similarly, let the partial derivative with respect to 𝑑 be zero and then  

                                     −𝑉𝑇𝑌 + 𝑉𝑇𝐻𝐾𝑐 + 𝑉𝑇𝑉𝑑 = 0.                              (A4) 

By applying Sherman-Morrison –Woodbury formula to Eq. (A3), we have 

                                  𝐾𝑐 = (𝐻𝑇𝐻 + Λ𝐾−1)−1𝐻𝑇(𝑌 − 𝑉𝑑).                              (A5) 

Again apply Sherman-Morrison –Woodbury formula to (𝐻𝑇𝐻 + Λ𝐾−1), we have  

        (𝐻𝑇𝐻 + Λ𝐾−1)−1 = 𝐾Λ−1 − (𝐾Λ−1)(𝐻𝑇)[𝐼𝑛𝑚 +

𝐻(𝐾Λ−1)𝐻𝑇]−1𝐻(𝐾Λ−1).     (A6) 

Eq. (A6) can be further simplified as 

                                   (𝐻𝑇𝐻 + Λ𝐾−1)−1 = 𝑄 − 𝑄𝐻𝑇𝑀−1𝐻𝑄                             (A7) 
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by letting 𝑄 = 𝐾Λ−1 and 𝑀 = 𝐼𝑛𝑚 + 𝐻𝑄𝐻
𝑇. Also the algebra shows that  

                             𝑀−1 = 𝐼𝑛𝑚 − 𝐻(𝐻
𝑇𝐻 + 𝐾−1Λ)−1𝐻𝑇.                                (A8) 

We then replace 𝐾𝑐 in Eq. (A4) by the right hand side of Eq. (A5) along with Eq. 

(A8) and obtain  

                                     𝑑 = (𝑉𝑇𝑀−1𝑉)−1𝑉𝑇𝑀−1𝑌.                                          (A9) 

Now with Eqs. (A5), (A7) and (A9), we have 

                                         𝐾𝑐 + 𝑇𝑑 = 𝐶(𝜆)𝑌,                                                  (A10) 

where 

   𝐶(𝜆) = 𝑄𝐻𝑇𝑀−1 − (𝑄𝐻𝑇𝑀−1𝑉 − 𝑇)(𝑉𝑇𝑀−1𝑉)−1𝑉𝑇𝑀−1.            (A11) 

As a result, the minimizer of the objective function (A1) is 𝜷𝜆(𝑡) =

[𝛽1(𝑡), … , 𝛽𝑝(𝑡)], where each component 𝛽𝑟(𝑡) is the natural cubic spline through knots 

[𝑏𝑟 , 𝑏𝑚+𝑟 , … , 𝑏(𝑚−1)𝑝+𝑟] and 𝑏𝑘 is the 𝑘𝑡ℎ element of 𝐶(𝜆)𝑌.  
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APPENDIX B 

DERIVATION OF CLOSE-FORM SOLUTION TO EQ. (II.7) 

Based on the smoothing spline estimate in Appendix A, we give an analytical 

minimizer 𝜷𝜆(𝑡) = [𝛽1(𝑡), … , 𝛽𝑝(𝑡)] to the generalized weighted smoothing spline with 

objective function  

           𝐽𝜆,𝑊 = ∑ ∑ 𝑤𝑖𝑗 [[𝑦𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑟
𝑝
𝑟=1 𝛽𝑟(𝑡𝑖𝑗)]

2
]𝑚

𝑗=1 + ∑ 𝜆𝑟∫ 𝛽𝑟
(𝑧)(𝑡)2𝑑𝑡𝑝

𝑟=1
𝑛
𝑖=1 ,       (B1) 

where the weight 𝑤𝑖𝑗 is assigned to each observed sample point 𝑦𝑖𝑗 and 𝜆 = [𝜆1, … , 𝜆𝑝] is 

given. Using the same notations as in Appendix A, we provide the proof as follows.  

We first write the weight matrix as 𝑊 = 𝑑𝑖𝑎𝑔(𝑤11, … , 𝑤𝑚1, … , 𝑤1n, … , 𝑤𝑚𝑛). 

Following a similar fashion shown in (Eubank et al., 2004), the objective function (B1) 

can be reduced to 

               (𝑌 − 𝐻(𝐾𝑐 + 𝑇𝑑))
𝑇
𝑊(𝑌 − 𝐻(𝐾𝑐 + 𝑇𝑑)) + 𝑐𝑇Λ𝐾𝑐,                        (B2) 

where 𝑐 = [𝑐11, . . 𝑐1𝑝, … , 𝑐𝑛1, … , 𝑐𝑛𝑝]
𝑇
, and 𝑑 = [𝑑11, … , 𝑑1𝑝, … , 𝑑𝑧1, … , 𝑑𝑧𝑝]

𝑇
. We then 

solve for the unknown coefficients 𝑐 and 𝑑 to minimize the objective function by taking 

derivatives with respect to 𝑐 and 𝑑. Consequently, we have 

                         (𝐾𝐻𝑇𝑊𝐻𝐾 + 𝐾Λ)𝑐 = 𝐾𝐻𝑇𝑊(𝑌 − 𝑉𝑑)                                   (B3) 

and 

                           −𝑉𝑇𝑊𝑌 + 𝑉𝑇𝑊𝐻𝐾𝑐 + 𝑉𝑇𝑊𝑉𝑑 = 0.                            (B4) 

We apply Sherman-Morrison –Woodbury formula to obtain 

          (𝐾𝐻𝑇𝑊𝐻𝐾 + 𝐾Λ)−1 = (𝐾𝐻𝑇𝑊𝐻𝐾)−1 −
(𝐾𝐻𝑇𝑊𝐻𝐾)

−1
𝐾Λ(𝐾𝐻𝑇𝑊𝐻𝐾)

−1

𝐼+Λ(𝐾𝐻𝑇𝑊𝐻𝐾)−1𝐾
 .             (B5) 

Eqs. (B3) and (B5) allow us to derive  
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                          𝐾𝑐 = (𝐻𝑇𝑊𝐻 + Λ𝐾−1)−1𝐻𝑇𝑊(𝑌 − 𝑉𝑑).                                (B6) 

Again Sherman-Morrison –Woodbury formula leads to 

(𝐻𝑇𝑊𝐻 + Λ𝐾−1)−1 = 𝐾Λ−1 − (𝐾Λ−1)(𝐻𝑇𝑊)[𝐼𝑛𝑚 + 𝐻(𝐾Λ
−1)𝐻𝑇𝑊]−1𝐻(𝐾Λ−1),(B7) 

which can be further simplified to 

                        (𝐻𝑇𝑊𝐻 + Λ𝐾−1)−1 = 𝑄 − 𝑄𝐻𝑇𝑊𝑀0
−1𝐻𝑄                                 (B8) 

by letting 𝑄 = 𝑄̃⨂𝑑𝑖𝑎𝑔(𝜆1
−1, … , 𝜆𝑝

−1) and 𝑀0 = 𝐼𝑛𝑚 + 𝐻𝑄𝐻
𝑇𝑊. 

Noticing that 

                         𝑀0
−1 = 𝐼𝑛𝑚 − 𝐻(𝐻

𝑇𝑊𝐻 +𝐾−1Λ)−1𝐻𝑇,                                  (B9) 

we can replace 𝐾𝑐 in Eq. (B4) by the right side of Eq. (B6) along with Eq. (B9) and obtain  

                                𝑑 = (𝑉𝑇𝑊𝑀0
−1𝑉)−1𝑉𝑇𝑊𝑀0

−1𝑌.                                     (B10) 

Now with Eqs. (B6), (B8) and (B10), we have 

                                           𝐾𝑐 + 𝑇𝑑 = 𝐶(𝜆)𝑌,                                                  (B11) 

where 

𝐶(𝜆) = 𝑄𝐻𝑇𝑊𝑀0
−1 − (𝑄𝐻𝑇𝑊𝑀0

−1𝑉 − 𝑇)(𝑉𝑇𝑊𝑀0
−1𝑉)−1𝑉𝑇𝑊𝑀0

−1           (B12) 

As a result, each component 𝛽𝑟(𝑡), 𝑟 = 1,… , 𝑝, in the minimizer 𝜷𝜆(𝑡) to 

objective function (B1) is computed as the natural cubic spline through knots 

[𝑏𝑟 , 𝑏𝑚+𝑟 , … , 𝑏(𝑚−1)𝑝+𝑟], where 𝑏𝑘 is the 𝑘𝑡ℎ element of 𝐶(𝜆)𝑌.  

When the smoothing parameter 𝜆 is not given, the generalized cross-validation 

smoothing parameter 𝜆𝐺𝐶𝑉 can be selected that   

𝜆𝐺𝐶𝑉 = argmin
𝜆

(𝑌−𝐴𝜆𝑌)
𝑇(𝑌−𝐴𝜆𝑌)

{1−
𝑡𝑟(𝐴𝜆)

𝑛𝑚
}
2                                        (B13) 
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where 𝐴𝜆 = 𝐼𝑚𝑛 − (𝑀0
−1 −𝑀0

−1𝑉(𝑉𝑇𝑊𝑀0
−1𝑉)−1𝑉𝑇𝑊𝑀0

−1) is the hat matrix of 𝑌, i.e 

𝑌̂(𝜆) = 𝐴𝜆𝑌. As 𝑄,𝑀0 hence 𝐴𝜆 are matrices of unknown 𝜆, the objective function is a 

function of 𝜆 and the minimizer is the selected to be 𝜆𝐺𝐶𝑉 using constrained optimization 

such that all elements in 𝜆𝐺𝐶𝑉 are positive.  
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APPENDIX C 

ALGORITHM FOR MODEL ESTIMATION IN SCENARIO 1 

Algorithm 4.1  Estimate parameter 𝜃 of 𝛽0(𝑡; 𝜃) and 𝛽1(𝑡) 
1. Initialize 𝑘 ← 0 ; 𝜃(𝑘) = 𝜃0. 
2. Repeat  

3.  Set 𝑘 ←  𝑘 + 1 

  Estimate 𝜷̂𝟏(𝒕) 
4. 

5.  
   Compute 𝒀̃(𝑘−1) (𝑡𝑗) ← 𝒀(𝑡𝑗) − 𝛽0(𝑡𝑗; 𝜃

(𝑘−1))𝑰𝑚×1,        𝑗 = 1,… , 𝑛 

      Compute the optimal smoothness parameter 𝜆𝐺𝐶𝑉                         

6. 
 

Estimate 𝛽1
(𝑘) (𝑡𝑗) using 𝜆𝐺𝐶𝑉 from  𝒀̃(𝑘−1) (𝑡𝑗) = 𝛽1

(𝑘) (𝑡𝑗)𝑿 + 𝝐,                 

𝑗 = 1,… , 𝑛                                                                      
  Estimate 𝜽̂ 

7.  Compute 𝑹(𝑘)(𝑡𝑗) ← 𝒀(𝑡𝑗) − 𝛽1
(𝑘) (𝑡𝑗)𝑿,        𝑗 = 1,… , 𝑛      

8.       Estimate 𝜃(𝑘) from 𝑹(𝑘)(𝑡𝑗) = 𝛽0(𝑡𝑗; 𝜃
(𝑘))𝑰𝑚×1 + 𝝐,        𝑗 = 1,… , 𝑛                          

9.  Compute ‖𝜃(𝑘) − 𝜃(𝑘−1)‖
1
 

10. Until ‖𝜃(𝑘) − 𝜃(𝑘−1)‖
1
≤ 𝜔  for some small 𝜔. 

11. 𝜃 = 𝜃(𝑘),  𝛽̂1
∗(𝑡) =  𝛽̂1

(𝑘)(𝑡).    
 

Implementing the above algorithm requires specifying the value of 𝜔 in the 

stopping rule. A larger value of 𝜔 allows larger difference between current and updated 

estimates, or, in other words, earlier termination of iteration. To guarantee stability of the 

estimation, small 𝜔 is preferred. The value can be determined according to the required 

precision of estimation. For example, if it needs to be precise to 𝑙 decimal places, then 𝜔 

will be set to 10−(𝑙+1). 𝜔 = 10−3 is used in the case study. 
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APPENDIX D 

ALGORITHM FOR CONSTRAINED ESTIMATION OF 𝛽1(𝑡) IN SCENARIO 2 

Algorithm 4.2  Incorporate convergence constraint in the estimation of 𝛽1(𝑡) 

Initialize: 𝑘 ← 0, 𝛽̂1
(𝑘)(𝑡) ← 𝛽̂1

∗(𝑡) from Algorithm 4.1,  

                  𝑤𝑖𝑗
(𝑘) = 1,   𝑗 = 1, … , 𝑛,  𝑎 ∈ {1,… , 𝑛|𝑡𝑎 = 𝑡

∗} 

𝑦̃𝑖 (𝑡𝑗) ← 𝑦𝑖(𝑡𝑗) − 𝛽0(𝑡𝑗; 𝜃),          𝑖 = 1,… ,𝑚     𝑗 = 1,… , 𝑛    

𝐴𝛼 (𝑦̃𝑖  (𝑡𝑗)) ← 𝑦̃𝑖  (𝑡𝑗) ± 𝑡1−𝛼
2
,𝑛−1 ×

𝜎̂

√𝑛
 ,   𝑖 = 1,… ,𝑚     𝑗 = 1,… , 𝑛    

 𝜓(𝑘) ← the total number of points in 𝑥𝑖𝛽̂1
(𝑘)
(𝑡𝑗) that falls outside 𝐴𝛼, 𝑖 = 1,… ,𝑚, 𝑗 =

1, … , 𝑛 

Repeat: 

 𝑘 ← 𝑘 + 1 
     Compute residuals 𝑟𝑖𝑗

(𝑘−1) = 𝑦𝑖(𝑡𝑗) − 𝛽0(𝜃; 𝑡𝑗) − 𝑥𝑖𝛽̂1
(𝑘−1)(𝑡𝑗), 𝑖 = 1,… ,𝑚, 𝑗 =

1, … , 𝑛                                                                                                                       
 Update the weights 𝑤𝑖𝑗

(𝑘) = 𝑚𝑖𝑛
𝑖,𝑗
(|𝑟𝑖𝑗|)/|𝑟𝑖𝑗|, 𝑖 = 1,… ,𝑚     𝑗 = 𝑎,… , 𝑛    

 Update 𝛽̂1
(𝑘)(𝑡) ← 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝜆𝐺𝐶𝑉,𝑤(𝑘)                                                            

 Update  𝜓(𝑘) 

Until  𝜓(𝑘) > 𝜓(𝑘−1), then 𝐾 ← 𝑘, where 𝐾 is the total number of iterations. 

𝛽̂1(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘
𝐶
𝛽̂1
(𝑘)
 
,  𝑘 = 1,2, … , 𝐾 − 1 
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APPENDIX E 

ESTIMATES OF PARAMETERS IN PARAMETRIC MIXED-EFFECT MODELS 

Model I 

Parameter 𝛽̂1 𝛽̂2 𝛽̂3 𝜎𝑢1 𝜎𝑢2 𝜎𝑢3 𝜎𝑒 

Estimate 0.0183 0.4052 0.41810 0.0103 0.1857 0.1340 0.1904 

Model II 

Parameter 𝛽̂1 𝛽̂2 𝛽̂3 𝜎𝑢1 𝜎𝑢2 𝜎𝑢3 𝜎𝑒 

Estimate 0.0913 2.230 0.2078 0.0443 0.6847 0.0849 0.1990 



 

123 

 

APPENDIX F 

NATURAL CUBIC SPLINE 

In general, a natural cubic spline of time 𝑡 with 𝐾 knots can be represented by 𝐾 

basis functions {𝐶𝑗(𝑡)}𝑗=1
𝐾
} as below  

𝑍(𝑡) = ∑ 𝜁𝑗𝐶𝑗(𝑡)
𝐾
𝑗=1 , 

where 𝜁𝑗  are coefficients of the basis functions. Let the knots be {𝑡1, 𝑡2, … , 𝑡𝐾} in ascending 

order, the basis functions can be written as  

{

𝐶1(𝑡) = 1                                 

𝐶2(𝑡) = 𝑡                                 

𝐶𝑘+2(𝑡) = 𝑅𝑘(𝑡) − 𝑅𝑘−1(𝑡)
 

where 1 ≤ 𝑘 ≤ 𝐾 − 2, 𝑅𝑘(𝑡) =
(𝑡−𝑡𝑘)+

3−(𝑡−𝑡𝐾)+
3

𝑡𝐾−𝑡𝑘
, and 𝑡1 ≤ 𝑡 ≤ 𝑡𝐾.  
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APPENDIX G 

ESTIMATION OF FUNCTIONAL MIXED-EFFECT MODEL 

In the functional mixed-effect model, the minimizer of the objective function in 

Eq. (III.6) is a natural cubic spline (Fitzmaurice et al,2018).  So 𝛽(𝑡) and 𝛼𝑖(𝑡) can be 

written as    

𝛽(𝑡) = ∑ 𝑏𝑗𝐶𝑗(𝑡)
𝑛
𝑗=1 ,  𝛼𝑖(𝑡) = ∑ 𝑎𝑖𝑗𝐶𝑗(𝑡)

𝑛
𝑗=1 , 

where 𝐶𝑗(𝑡), 𝑗 = 1,… , 𝑛, are basis functions of natural cubic spline at knots 𝑡1, … 𝑡𝑛 as 

given above. The objective function then becomes 

(𝒚𝒊 − 𝑸𝒃 − 𝑸𝒂𝒊)
𝑇(𝒚𝑖 − 𝑸𝒃 − 𝑸𝒂𝒊) + 𝜆𝛽𝒃

𝑇𝛀𝒃 + 𝜆𝛼𝒂𝒊
𝑇𝛀𝒂𝒊 , 

where 𝒚𝑖 = [𝑦𝑖1, … , 𝑦𝑖𝑛]
𝑇 , 𝒃 = [𝑏1, … , 𝑏𝑛]

𝑇 , 𝒂𝒊 = [𝑎𝑖1, … , 𝑎𝑖𝑛]
𝑇 , 𝑸 and 𝛀 are 𝑛 × 𝑛 

matrices with elements 𝑄𝑘𝑗 = 𝐶𝑗(𝑡𝑘), Ω𝑘𝑗 = ∫ 𝐶𝑘
′′(𝑡)𝐶𝑗

′′(𝑡)𝑑𝑡. The unknown parameters 

𝒃, Σ𝛼,  𝜎𝑒 can be estimated using EM algorithm (Kuhn and Lavielle, 2005) and 

computed using the sme algorithm in R package (Berk, 2018).  
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APPENDIX H 

DERIVATION OF EQ. (IV.22) AND TRANSFORMATION MATRIX FOR 𝑝 = 1,2,3 

Since random errors in the optical profiles are small and the transformation will 

not change the fitting in general, we have 𝑦𝑖𝑗 ≈ 𝑦𝑖𝑗
′ . By Eqs. (IV.19) and (IV.20),  

 (𝛽𝑝 + 𝑏𝑖𝑝)𝑥𝑗
𝑝 +⋯+ (𝛽0 + 𝑏𝑖0) ≈ (𝛽𝑝

′ + 𝑏𝑖𝑝
′ )(𝑥𝑗 − 𝑢𝑝)

𝑝 +⋯+ (𝛽0
′ + 𝑏𝑖0

′ )  

Comparing the coefficients associated with each polynomial term of 𝑥𝑗, i.e., 

𝑥𝑗 , 𝑥𝑗
2,… , 𝑥𝑗

𝑝
, at the two sides and using the binomial expansion, we will obtain a set of 

equations 

{
 
 

 
 
𝛽𝑝 + 𝑏𝑖𝑝 = 𝛽𝑝

′ + 𝑏𝑖𝑝
′

𝛽𝑝−1 + 𝑏𝑖,𝑝−1 = 𝑝(−𝑢𝑝)(𝛽𝑝
′ + 𝑏𝑖𝑝

′ ) + (𝛽𝑝−1
′ + 𝑏𝑖,𝑝−1

′ )

⋮

𝛽0 + 𝑏𝑖0 = (−𝑢𝑝)
𝑝
(𝛽𝑝

′ + 𝑏𝑖𝑝
′ )

           +(−𝑢𝑝−1)
𝑝−1

(𝛽𝑝−1
′ + 𝑏𝑖,𝑝−1

′ ) + ⋯+ (𝛽0
′ + 𝑏𝑖0

′ )

, 

which will lead to Eq. (IV.21). 

When 𝑝 = 1, i.e., a linear PRC model is used,  

1(𝐮) = [
1 𝑢1
0 1

]. 

When 𝑝 = 2, i.e., a quadratic PRC model is used,  

2(𝐮) = [
1 𝜇1 2𝜇1𝜇2 − 𝜇2

2

0 1 2𝜇2
0 0 1

]. 

When 𝑝 = 3, i.e., a cubic PRC model is used,  

3(𝐮) = [

1 𝜇1 2𝜇1𝜇2 − 𝜇2
2 𝜇3

2 − 3𝜇2
2𝜇3 + 6𝜇1𝜇2𝜇3 − 3𝜇1𝜇3

2

0 1 2𝜇2 6𝜇2𝜇3 − 3𝜇3
2

0 0 1 3𝜇3
0 0 0 1

]  
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APPENDIX I 

OPTIMAL LOCATION SHIFT FOR 𝑝 = 1 

From 1(𝐮) given in Appendix H, we can obtain 

𝛽0
′ + 𝑏𝑖0

′ = (𝛽1 + 𝑏𝑖1)𝑢1 + (𝛽0 + 𝑏𝑖0), 

𝛽1
′ + 𝑏𝑖1

′ = 𝛽1 + 𝑏𝑖1. 

Thus 

cov(𝛽0
′ + 𝑏𝑖0

′ , 𝛽1
′ + 𝑏𝑖1

′ ) = cov(𝑏𝑖0
′ , 𝑏𝑖1

′ ) = var(𝑏𝑖1) ∙ 𝑢1 + cov(𝑏𝑖0, 𝑏𝑖1). 

Letting cov(𝑏𝑖0
′ , 𝑏𝑖1

′ ) = 0, we obtain 

𝑢1
∗ = −

cov(𝑏𝑖0, 𝑏𝑖1)

var(𝑏𝑖1)
 . 

By the definition of variance and correlation of random effects in Eq. (IV.5),  

var(𝑏𝑖1) = 𝜏1
2, 

𝑐ov(𝑏𝑖0, 𝑏𝑖1) = √𝑣𝑎𝑟(𝑏𝑖0) ∙ √𝑣𝑎𝑟(𝑏𝑖1) ∙ 𝑟01 = 𝜏0𝜏1𝑟01, 

which gives Eq. (IV.22).  

 


