
 
 

 
 

THE FUNCTION AND MECHANISMS OF FEMALE ORNAMENTATION 

IN A LEKKING BIRD 

 

A Thesis 

by 

ALEXIS DIANA EARL  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

 

MASTER OF SCIENCE 

 

Chair of Committee,  Jessica L. Yorzinski 
Committee Members, Gil Rosenthal 
 Michael Smotherman 
Head of Department, David Caldwell 

 

August 2019 

 

 

Major Subject: Wildlife and Fisheries Sciences 

 

 

Copyright 2019 Alexis D. Earl



 

ii 
 

 

ABSTRACT 

 

The study of male ornamentation has been fundamental to advancing the understanding of 

sexual selection, yet we are only now beginning to examine elaborate ornamentation of females. 

Although female ornamentation was once thought to be non-adaptive, recent studies have provided 

evidence demonstrating that female ornamentation functions in both intrasexual competition and 

male mate choice; however, few studies have examined the role of female ornamentation in lekking 

species. I investigated the function and mechanisms of female ornamentation in Indian peafowl 

(Pavo cristatus), a lekking species in which females exhibit an elaborate ornament (iridescent green 

neck plumage). I quantified the brightness, chroma, and hue of neck plumage from 24 captive 

peahens. I tested whether female ornamentation correlates with dominance order within the female 

social hierarchy. I also tested whether female dominance affects courtship behavior. Finally, I tested 

whether the steroid hormones, estradiol and corticosterone, are predictive of variation in female 

ornamentation and dominance. I found that more dominant females have brighter ornaments, but 

there was no evidence of a relationship between dominance and either chroma or hue. Additionally, 

dominant females copulated more, and prevented subordinate females from interacting with 

displaying males. Our data did not reveal a significant relationship for estradiol or corticosterone 

with ornamentation or social status. This study provides insight into the evolution and function of 

conspicuous female traits by suggesting a role for female ornamentation in intrasexual competition 

in a lekking species. 
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INTRODUCTION 

Evolutionary biologists have investigated the ultimate function of elaborate male 

ornamentation since Charles Darwin presented the concept of sexual selection in the 

1800s (Darwin, 1871). In contrast, the function of elaborate female ornamentation had 

been considered nonadaptive, existing simply due to residual expression of genes 

associated with the traits of male conspecifics (Lande, 1980). Many recent studies have 

challenged this argument by suggesting that female ornamentation is adaptive (Jawor, 

Gray, Beall, & Breitwisch, 2004; LeBas, 2006; Tobias, Montgomerie, & Lyon, 2012). 

Recent work has found that female ornamentation functions in intrasexual 

competition (LeBas, 2006; Tobias et al., 2012). For example, female ornamentation can 

mediate territorial encounters. In streak-backed orioles (Icterus pustulatus pustulatus), 

females responded more aggressively to female intruders that were more versus less 

colorful (Murphy, Hernández-Muciño, Osorio-Beristain, Montgomerie, & Omland, 

2009). Other studies have found that female ornamentation functions during competition 

for food (Murphy, Rosenthal, Montgomerie, & Tarvin, 2009; Ziegelbecker, Richter, & 

Sefc, 2018) and mating opportunities (Clutton-Brock, 2009). Ornamentation is often 

condition dependent and thus can act as an honest signal (Doutrelant et al., 2008; 

Henderson, Heidinger, Evans, & Arnold, 2013; Jawor et al., 2004; Remeš & 

Matysioková, 2013; Siefferman & Hill, 2005; Weiss, 2006). Female ornamentation that 

signals fighting ability can allow individuals to evaluate one another and determine the 

most likely outcome of a contest without engaging in a costly physical fight (Midamegbe, 

Grégoire, Perret, & Doutrelant, 2011; Santos, Scheck, & Nakagawa, 2011). Similarly, 

female ornamentation that signals health and reproductive potential can attract the 



 

2 
 

 

attention of potential mating partners (Freeman-Gallant, Schneider, Taff, Dunn, & 

Whittingham, 2014; Jawor et al., 2004; Midamegbe et al., 2011). Female ornamentation 

also functions in intersexual competition via male mate choice (Amundsen, 2000; 

Amundsen, Forsgren, & Hansen, 1997; Griggio, Devigili, Hoi, & Pilastro, 2009; Torres 

& Velando, 2005). Most studies on female ornamentation have focused on species with 

monogamous or cooperative-breeding mating systems, but female ornamentation also 

exists in species with other mating systems, particularly those that form leks. 

While females in lekking species theoretically have complete choice over mating 

partners, some studies suggest that their mating opportunities are limited by intrasexual 

aggression (Bro-Jørgensen, 2002; Hannon, Sopuck, & Zwickel, 1982; Karvonen, 

Rintamäki, & Alatalo, 2000; Petrie, Hall, Halliday, Budgey, & Pierpoint, 1992; Saether, 

Fiske, & Kalas, 2001) and male mate choice (Saether et al., 2001; Werner & Lotem, 

2003). Female ornamentation has rarely been investigated in lekking species (but see 

Trail, 1990 & Dakin, 2011) and little is known about why females of some lekking 

species are highly ornamented while others are less so. Dakin (2011) found that Indian 

peahen (Pavo cristatus) crest morphology predicted body-condition at the start of the 

breeding season, but not female-female agonistic behavior, suggesting that the crest 

functions to signal health and condition but not dominance status (Dakin, 2011). A 

comparative study on differences in female ornamentation between two lekking species 

(Trail, 1990) found that highly ornamented females in the monomorphic species engaged 

in intense intrasexual aggression while less ornamented females in the dimorphic species 

did not; this study concluded that female ornamentation in lekking birds likely evolved 

due to competition among females (Trail, 1990). These studies suggest that female 
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ornamentation in lekking species is functional but our understanding of this topic is still 

limited. 

Furthermore, we know little about the physiological mechanisms influencing 

ornamentation in females. Behavioral and morphological traits that covary are often 

linked by shared physiological mechanisms, producing an integrated phenotype (Barron, 

Webster, & Schwabl, 2015; Cain & Ketterson, 2012). In males, the integrated phenotype 

including aggressive behavior and conspicuous ornamentation is often linked by the male 

primary steroid hormone, testosterone (Collis & Gerald, 1992; Kimball, 2006; Zuk, 

Johnson, Thornhill, & Ligon, 1990). In females, there is evidence that estradiol, the 

primary female sex steroid hormone, correlates with intrasexual aggression (Pärn, 

Lindström, Sandell, & Amundsen, 2008; Rubenstein & Wikelski, 2005; Woodley & 

Moore, 1999a, 1999b) and female ornamentation (Calisi & Hews, 2007). For example, in 

female spiny lizards (Sceloporus pyrocephalus), ornamental color of the gular region, 

which is extended during female intrasexual aggressive interactions, is correlated with 

estradiol (Calisi & Hews, 2007). Corticosterone, a glucocorticoid that elevates in 

response to stress, also impacts female ornamentation in some species. This may be 

because higher corticosterone can interfere with feather protein deposition (Romero, 

Strochlic, & Wingfield, 2005) and increase metabolism (Jimeno, Hau, & Verhulst, 2018; 

Loiseau, Fellous, Haussy, Chastel, & Sorci, 2008). As an example, baseline 

corticosterone levels in female blue tits were negatively correlated with their structural 

color signal from crown feathers (Henderson et al., 2013). While some studies have 

uncovered mechanisms underlying female ornamentation, we still have much to learn, 

especially in lekking species. 
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I therefore investigated whether female ornamentation in a lekking species is 

functional, and if so, whether hormonal mechanisms link the ornament with the function. 

Indian peafowl (Pavo cristatus) are an ideal lekking species in which to examine female 

ornamentation because they are a sexually dimorphic species in which females exhibit 

neck ornamentation consisting of structurally-colored feathers. Many studies have 

suggested a functional role for structural coloration as a signal for condition because the 

production of nanoparticles that creates this coloration is condition dependent (Doucet, 

2002; Hill, Doucet, & Buchholz, 2005; Keyser & Hill, 1999; McGraw, Mackillop, & 

Dale, 2002). There is also evidence that peahens compete with each other for mating 

partners (Petrie et al., 1992). I tested whether feather ornamentation reflects dominance 

status. I predicted that dominant females would have ornamentation that is brighter or 

more colorful (higher values of chroma and hue). In addition, I examined whether 

hormones underlie variation in female ornamentation. I predicted that females with 

brighter or more colorful plumage would have higher levels of estradiol and lower levels 

of corticosterone during the breeding season. Lastly, I tested whether the dominance 

status of females influenced courtship behavior. I predicted that dominant females would 

guard displaying males and have more mating opportunities than subordinate females. 
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MATERIALS AND METHODS 

Animals and Facilities 

This study was conducted in College Station, Brazos County, TX (30° 37' 40.717" 

N 96° 20' 3.864" W) on a population of captive peafowl (Pavo cristatus; 24 peahens and 

12 peacocks) during the breeding season. The birds were originally captured from feral 

populations in Florida and California between 2009 and 2012. They were housed in an 

outdoor enclosure (18.3 x 24.5 m). Individuals had a metal band on one leg and a plastic 

band on the other leg. Individuals were given food and water ad libitum.  

 

Dominance Hierarchy 

I determined the dominance hierarchy of all peahens within our study population 

in March 2018 based on wins and losses in physical contests surrounding a limited 

amount of a preferred food (Royal Wing® Total Care™ - Nut & Fruit Blend). I scored 

dyadic interactions between individuals using an ethogram of known peahen dominance 

behaviors (Yorzinski, 2014), which included displacing (dominant walks or runs toward 

subordinate and subordinate moves away), pecking (dominant’s beak quickly comes into 

contact with subordinate), and hopping (dominant jumps on top of subordinate and 

subordinate moves away). I recorded interactions between each dyad until one individual 

won at least three more times than the other individual. After the initial 60 hours of 

observation, dyads that did not meet the above criteria were separated from the group and 

observed until one of the individuals won at least three times more than the other. I then 

determined the dominance hierarchy using David’s score (David, 1987; Yorzinski, 2014), 

which calculates a dominance value that accounts for nonlinear relationships.  
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Hormone Collection & Measurement 

I collected blood (0.5 mL) from all peahens (n = 24) between 8 AM and 10 AM 

on April 18, 2018. To minimize disturbance to the flock, I lured a peahen using food into 

a separate room (6.2 m x 6.3 m) of the enclosure that was not visible to other flock 

members. I collected a blood sample from the brachial wing vein (25 gauge needle 

attached to a 1 mL syringe) within three minutes of when she walked into the separate 

room. I then released her into another isolated room (18.3 m x 6.2 m) within the 

enclosure that was separate from the flock. I repeated this process for each peahen. After 

I collected blood samples from all individuals, I centrifuged the samples, separated the 

plasma from the red blood cells, and stored all samples in a freezer at -20° C. Samples 

were then shipped on dry ice to Indiana University for processing.  

 Baseline circulating levels of estradiol (E2) and corticosterone (CORT) in 

peahens were determined using 50 µL and 10 µL of plasma, respectively. After a diethyl-

ether extraction, hormones were assayed using ELISA kits (E2: #ADI-900-176, Enzo 

Life Sciences, Ann Arbor, MI, USA; CORT: #501320, Cayman Chemical, Ann Arbor, 

MI, USA). Parallelism and extraction efficiency were validated for both assays using a 

pool of peahen plasma. Peahen plasma collected during the breeding season had high fat 

content (even after the extraction) and this prevented initial parallelism validation of the 

assay. Therefore pooled samples were centrifuged at 5000 rcf for 15 minutes and then 

plasma was siphoned off the top of the fat using a 100 µL Hamilton syringe prior to the 

extractions. This method enabled proper validation of the assay and therefore this method 

was used on all samples. Samples were randomized across two plates for each assay. 
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Coefficients of variance were as follows: E2: n = 2 plates, intra-plate variability = 10.2% 

and 5.5%, inter-plate variability = 18%; CORT: n = 2 plates, intra-plate variability = 

1.7% and 0.8%, inter-plate variability = 1.2%.  

 

Feather Collection & Measurement 

I collected 24 feathers from the neck ornamentation (iridescent green feathers on 

the neck) of each peahen on a single day (May 1, 2018). In particular, I collected six 

feathers from each of four ornamentation regions: ventral, dorsal, left lateral and right 

lateral of the neck. From each of the four ornamentation regions, I sampled three of the 

six feathers from an area closer to the head (eight centimeters down the neck from the 

crown of the peahen’s head) and the other three feathers from an area farther from the 

head (13 centimeters down the neck from the crown of the peahen’s head). The feathers 

were removed by cutting the rachis below the barbs. Feathers were stored indoors at 

room temperature (20° C) in labeled opaque envelopes and then mounted on matte black 

card stock.  

Individual variation in feather reflectance was quantified using UV-VIS 

spectrometry. I quantified variation in ornamentation reflectance of all feathers across the 

avian-visible spectrum (300–700 nm) using the Maya2000-pro spectrometer (Ocean 

Optics, Inc., Largo, FL, USA). The illumination probe and light collection probe were 

mounted using a stand with three protractors to adjust angle of the light source, collection 

probe and the table (Meadows, Morehouse, Rutowski, Douglas, & McGraw, 2011). I 

attached collimating lenses onto the ends of 600 µm premium fiber, solarization-resistant, 

1 m optical fibers for both illumination (probe placed at 37 mm from the feather surface) 
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and collection (probe placed at 50 mm from the feather) of a spot approximately 2 mm in 

diameter. The alignment of the two beams was confirmed by shining a light down the 

measurement fiber. For illumination, I used a DH2000-DUV light source (output 190 – 

2500 nm; Ocean Optics, Inc.), with the illumination probe set at 60° to the right of the 

measurement probe. Previous work in peacocks measured feather reflectance at 30°, 45°, 

and 60° (Dakin & Montgomerie, 2013); because the reflectance of the female neck 

ornamentation feathers at 30° and 45° was low, it was not possible for us to accurately 

measure reflectance at those angles. The stage and collection probe remained at 90° for 

all measurements. Feathers were mounted on the stage at the height that achieved 

maximum alignment for the illumination angle. I measured reflectance relative to a 

certified reflectance standard (Spectralon WS-1-SL diffuse reflectance standard; 

Labsphere, Inc., North Sutton, NH, USA). The mounted feathers were stacked on cards to 

be measured at the same distance from the probes as the reference standard. I took dark 

standard readings by removing the collection probe and capping the spectrometer. I 

recalibrated the dark reflectance standard every 15 minutes (Dakin & Montgomerie, 

2013) and the white reflectance standard was placed on the stand between each new 

feather measurement to minimize instrumental drift. OceanView software (Ocean Optics, 

Inc.; integration time: 90-120 ms) was used to process the reflectance data. All 

measurements were taken in a darkroom to minimize ambient light. 

I then exported the reflectance data from the OceanView software and converted 

the percent reflectance measurements to color space variables using a model of peafowl 

tetrachromatic vision (tetrahedral color space within the R package “Pavo”) to account 

for peafowl-specific visual sensitivities (Maia, Eliason, Bitton, Doucet, & Shawkey, 
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2013; Stoddard & Prum, 2008). This model used the peafowl chromatic visual sensitivity 

system, the achromatic receptor stimulation for the double cone sensitivity of Gallus 

gallus (which is most similar to peafowl compared with the other options), and 

illumination set to “ideal” (homogenous illumination across all bird sensitive 

wavelengths; Stoddard & Prum, 2008). Previous work on peacock feather iridescence 

used this same model (Dakin & Montgomerie, 2013). This model converted the percent 

reflectance measurements for each feather output by OceanView to calculate one 

achromatic color space variable (brightness), and three chromatic color space variables 

(chroma, hue UV, and hue VIS). Hue UV and hue VIS include hue in the 300-380 nm 

and 380-700 nm part of the spectrum, respectively. 

 

Courtship Trials & Measurement 

I examined the impact of the female dominance hierarchy on courtship 

interactions during the breeding season (May 2018) between 7:00 and 12:00. Males and 

females were separated for one week prior to the start of these trials. The females were 

housed within one room of the enclosure (18.3 m x 6.2 m) while the males were 

separated within another room of the enclosure (18.3 m x 18.3 m); the females and males 

could hear but not see each other. Trials were conducted in another room of the enclosure 

(6.2 m x 6.3 m) that was visually isolated from the rest of the flock. This testing room 

had cameras (Swann SWPRO 535CAM security cameras; Swann Security Systems, 

Santa Fe Springs, CA, USA) in each corner of the room; the videos from the cameras 

were synchronized using a DVR (4-channel HD DVR; Night Owl Security Products 

LLC, Naples, FL, USA). The experimenter (ADE) remained outside this testing room but 
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monitored the trials through a camcorder (DCR-SR40; Sony Corp, Tokyo, Japan) that 

was directed inside the room.  

For each trial, two randomly selected females and one randomly selected male 

were placed in the testing room and allowed to freely interact. After one hour, the birds 

were returned to their respective rooms. Each female participated in two trials (but were 

never paired with the same individuals) and these two trials were separated by at least 

eight days. One trial from two of the females was excluded from the analyses because the 

relationship between those females and their randomly selected female partners was 

ambiguous; in all other trials, the dominance relationship between the female dyads was 

clear (and the same as what was observed previously in March). 

 I analyzed the videos of all trials (QuickTime Player 10.4; Apple Inc., Cupertino, 

CA, USA) and recorded the number of successful copulations as well as the number of 

attempted copulations (male performed the hoot-dash display but the female avoided; 

Petrie 1992) for each female. I also recorded female-female aggression via dominance 

displays within 1.5 meter of the male based on the previously described dominance 

ethogram (Yorzinski, 2014).  

 

Statistical Analysis 

R version 3.5.1 (2018-07-02) was used for all statistical tests. I used generalized 

linear models (packages “stats” and “lme4”) to test whether the color space variables 

predicted dominance status in peahens. The dependent variable was David’s score; the 

independent variables were the mean values of brightness, chroma, hue UV, and hue VIS 
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for all 24 feathers from each peahen as well as peahen mass. I reran this model with only 

predictor variables that had p-values less than 0.10.  

I also tested whether the color space variables varied by ornamentation region 

(ventral, dorsal, or lateral) using linear mixed-effects models (packages “lme4” and 

“emmeans”) with individual bird identity as the random effect. Because I found that color 

space varied by ornamentation region (see Results), I performed a follow-up analysis to 

determine whether the color space of specific ornamentation regions (ventral, dorsal, or 

lateral) reflected dominance status. I pooled measurements from the left and right lateral 

ornamentation because I found that they were similar (paired t-test: brightness t = 0.394, 

DF = 46, P = 0.695; chroma t = 0.957, DF = 46, P = 0.344; hue UV t = 0.832, DF = 46, P 

= 0.410; hue VIS t = 1.960, DF = 46, P = 0.056).  

 I used generalized linear models (packages “stats” and “lme4”) to investigate 

whether E2 and CORT predicted dominance status. David’s score was the dependent 

variable and the independent variables were E2, CORT, the interaction between E2 and 

CORT, and peahen mass. I ran additional analyses to examine the relationship between 

hormones and the color space variables. I ran separate models in which each color space 

variable was the response variable and hormones (E2, CORT, and their interaction) were 

the explanatory variables; I also included peahen mass as a fixed effect.  

 To determine whether dominant females limit subordinate females’ mating 

opportunities, I ran generalized linear mixed models with a Poisson distribution (package 

“lme4”). The dependent variable was the number of copulations and the independent 

variable was the dominance status (David’s score) of the females. I included the 

individual male as the random effect and trial number (whether it was the first or second 
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trial of a given female) as a fixed effect. I reran this model a second time but used the 

number of attempted copulations as the dependent variable. Lastly, I evaluated whether 

female dominance status during food competition (David’s score) is related to female 

aggressive behavior during courtship (number of aggressive behaviors between females 

in the courtship trials). 
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RESULTS 

Feather ornamentation 

Dominant females had brighter ornamentation than subordinates (t = 2.609, DF = 

18, P = 0.018; Table 1). Chroma (t = -0.723, DF = 18, P = 0.479), hue UV (t = 0.189, DF 

= 18, P = 0.852), and hue VIS (t = -1.439, DF = 18, P = 0.167) did not predict dominance 

status. Dominant individuals tended to weigh less than subordinates (t = -1.821, DF = 18, 

P = 0.085). The results were similar when I reran this analysis using only variables with 

p-values less than 0.10 (Table 2). 

The color space of feathers varied by ornamentation region: dorsal and lateral 

ornaments were significantly brighter than ventral ornaments (dorsal vs. ventral: t = 

5.100, DF = 46, P < 0.0001; lateral vs. ventral: t = -4.982, DF = 46, P < 0.0001). Dorsal 

and lateral ornaments exhibited similar brightness (t = 0.117, DF = 46, P = 0.992; Table 

3). The brightness of the dorsal ornament (t = 2.539, DF = 18, P = 0.021) but not the 

ventral ornament (t = 1.308, DF = 18, P = 0.207) predicted dominance status: dominant 

individuals had brighter dorsal ornaments than subordinates. There was a trend for 

dominant individuals to also exhibit brighter lateral ornaments than subordinates (t = 

2.026, DF = 18, P = 0.058). Although there were differences among ornamentation 

regions in brightness, chroma and hue (Table 3), only brightness was related to 

dominance status. The results were similar when I reran this analysis using only variables 

with p-values less than 0.10 (Table 1; Table 2).
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Table 1: Results of generalized linear model testing whether the brightness, chroma and 

hue of female ornaments predicts dominance status while controlling for peahen mass. 

Asterisks indicate significant differences.  

Ornamentation Region Fixed Effects Estimate Std. Error t-value P 
All Brightness 5179.225 1984.827 2.609 0.018* 
All Chroma -468.099 647.529 -0.723 0.479 
All Hue UV 18.003 95.316 0.189 0.852 
All Hue VIS -664.028 461.581 -1.439 0.167 
All Mass -0.172 0.094 -1.821 0.085 

Dorsal Brightness 5281.979 2080.595 2.539 0.021* 
Dorsal Chroma -409.469 606.933 -0.675 0.509 
Dorsal Hue UV -95.696 67.888 -1.410 0.176 
Dorsal Hue VIS -212.627 236.512 -0.899 0.381 
Dorsal Mass -0.103 0.095 -1.085 0.292 
Lateral Brightness 3205.272 1582.088 2.026 0.058 
Lateral Chroma -520.212 580.655 -0.896 0.382 
Lateral Hue UV -2.261 79.156 -0.029 0.978 
Lateral Hue VIS 117.838 482.409 0.244 0.810 
Lateral Mass -0.252 0.109 -2.319 0.032* 
Ventral Brightness 3327.558 2543.214 1.308 0.207 
Ventral Chroma -475.922 630.556 -0.755 0.460 
Ventral Hue UV 84.078 94.015 0.894 0.383 
Ventral Hue VIS -277.357 240.998 -1.151 0.265 
Ventral Mass -0.269 0.104 -2.577 0.019* 
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Table 2: Results of generalized linear model testing whether variation in color space 

predicts dominance status while controlling for peahen mass. This model includes only 

predictor variables with p<0.10 in the original model (Table 1). Asterisks indicate 

significant differences.  

Ornamentation Region Fixed Effects Estimate Std. Error t-value P 
All Brightness 2906.718 1265.844 2.296 0.032* 
All Mass -0.213 0.084 -2.528 0.019* 

Dorsal Brightness 2359.709 1057.211 2.232 0.037* 
Dorsal Mass -0.185 0.086 -2.160 0.042* 
Lateral Brightness 2082.615 1026.484 2.029 0.055 
Lateral Mass -0.219 0.086 -2.543 0.019* 
Ventral Brightness 1800.606 1464.641 1.229 0.233 
Ventral Mass -0.227 0.092 -2.474 0.022* 

 

 

Table 3: Results from linear mixed effects models using contrasts to determine pairwise 

differences of ornamentation regions. Asterisks indicate significant differences.  

Color Space Variable Contrast Estimate Std. Error t-value DF P 
Brightness dorsal-ventral 0.023 0.005 5.100 46 <.0001* 
Brightness dorsal-lateral 0.001 0.005 0.117 46 0.992 
Brightness ventral-lateral -0.023 0.005 -4.982 46 <.0001* 

Chroma dorsal-ventral 0.034 0.014 2.415 46 0.051 
Chroma dorsal-lateral -0.009 0.014 -0.659 46 0.788 
Chroma ventral-lateral -0.043 0.014 -3.074 46 0.010* 
Hue UV dorsal-ventral -0.512 0.095 -5.383 46 <.0001* 
Hue UV dorsal-lateral -0.221 0.095 -2.326 46 0.062 
Hue UV ventral-lateral 0.291 0.095 3.057 46 0.010* 
Hue VIS dorsal-ventral -0.173 0.032 -5.477 46 <.0001* 
Hue VIS dorsal-lateral -0.098 0.032 -3.085 46 0.010* 
Hue VIS ventral-lateral 0.076 0.032 2.392 46 0.054 
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Figure 1: Relationship between ornament brightness (all regions) and dominance status.  
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Hormones  

I did not find significant relationships between E2, CORT, or their interaction and 

dominance status (E2: t = 0.060, DF = 19, P = 0.953; CORT: t = 0.229, DF = 19, P = 

0.821; E2*CORT: t = -0.094, DF = 19, P = 0.926; Table 4; Figure 2; Figure 3). None of 

the color space variables had a relationship with either hormone (Table 5; Figure 4; 

Figure 5).  

 

Table 4: Generalized linear model assessing the relationship between dominance status 

and hormones (E2 and CORT) while controlling for peahen mass. 

Fixed Effects Estimate Std. Error t-value P 
E2 74.930 1247.973 0.060 0.953 

CORT 75.125 327.432 0.229 0.821 
E2*CORT  -67.502 719.975 -0.094 0.926 

Mass -0.187 0.118 -1.585 0.129 



 

18 
 

 

 

Table 5: The results of four generalized linear models, each assessing the relationship between one of the four color space variables 

(brightness, chroma, hue UV, and hue VIS) and E2 and CORT while controlling for peahen mass. 

Color Space Variable Fixed Effects Estimate Std. Error t-value DF P-value 
Brightness E2 0.213 0.186 1.142 19 0.268 
Brightness CORT 0.063 0.049 1.284 19 0.215 
Brightness E2*CORT -0.126 0.108 -1.170 19 0.257 
Brightness Mass 0.000 0.000 0.773 19 0.449 

Chroma E2 0.602 0.635 0.948 19 0.355 
Chroma CORT 0.187 0.167 1.123 19 0.276 
Chroma E2*CORT -0.388 0.367 -1.058 19 0.303 
Chroma Mass 0.000 0.000 0.222 19 0.827 
Hue UV E2 -1.161 3.527 -0.329 19 0.746 
Hue UV CORT -0.082 0.925 -0.089 19 0.930 
Hue UV E2*CORT 0.619 2.035 0.304 19 0.764 
Hue UV Mass 0.000 0.000 1.078 19 0.294 
Hue VIS E2 0.102 0.700 0.146 19 0.886 
Hue VIS CORT -0.045 0.184 -0.243 19 0.811 
Hue VIS E2*CORT 0.100 0.404 0.248 19 0.807 
Hue VIS Mass 0.000 0.000 1.579 19 0.131 
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Figure 2: Relationship between estradiol levels and dominance status 
 

 

Figure 3: Relationship between corticostrone levels and dominance status 
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Figure 4: Relationship between estradiol levels and ornament brightness (all regions) 
 

 

Figure 5: Relationship between corticosterone levels and ornament brightness (all regions) 
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Courtship Trials 

Dominant females copulated with males more often than subordinate females did (z = 

2.447, DF = 26, P = 0.014; Table 6). In addition, dominant females received more copulation 

attempts (z = 2.685, DF = 26, P = 0.007; Table 6). Finally, aggression among females (number of 

aggressive displays in front of displaying males) was highly correlated with dominance status 

(determined from feeding trials; see ‘Dominance hierarchy’ above; z = 9.823, DF = 26, P < 

0.001; Figure 2). 

 

Table 6: Generalized linear mixed effects models assessing dominance score (controlling for 

trial number) as a predictor of number of copulations and attempted copulations. Asterisks 

indicate significant differences. 

Response Variable Fixed Effects Estimate Std. Error z-value P 
Copulations Dominance 0.002 0.001 2.447 0.014* 

 
Trial Number -0.032 0.256 -0.124 0.901 

Attempted Copulations Dominance 0.003 0.001 2.685 0.007* 

 
Trial Number 0.333 0.311 1.073 0.283 
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Figure 6: The relationship between David’s score and female aggression during courtship. 
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DISCUSSION AND CONCLUSIONS 

To our knowledge, this study provides the first evidence that female ornamentation 

functions in intrasexual competition within lekking species. Peahens have ornamentation 

consisting of structurally-colored feathers around their necks. I found that dominant peahens had 

brighter ornaments than subordinate peahens. This is consistent with a study on peacocks, which 

found that males with brighter feathers had higher mating success (Loyau et al., 2007). In other 

avian species, brightness of structural coloration has been associated with male (Doucet, 2002; 

Doucet & Montgomerie, 2003; Keyser & Hill, 2000) and female (Siefferman & Hill, 2005) 

health and condition. Similar to the Loyau (2007) findings that brightness was the only color 

space variable associated with peacock mating success, I found brightness (and not chroma or 

hue) to be the only color space variable predictive of peahen dominance. 

The brightness of peahen ornamentation varied within the ornament. The ornamentation 

was brighter in the dorsal and lateral feathers compared to the ventral feathers. Dorsal neck 

feathers are targeted by conspecifics in both competitive and mating contexts. During aggressive 

intrasexual interactions, females often peck or pull the dorsal neck feathers of their rivals. In a 

mating context, peacocks grasp peahens’ dorsal neck feathers in their bills during copulation. 

During these competitive and mating contexts, the females’ ornamentations may become 

damaged by abrasion (Surmacki, Liu, Mercadante, & Hill, 2011). Given that dominant females 

exhibited brighter ornaments than subordinate females, it is possible that dominant individuals’ 

feathers are more resistant to abrasion (Fitzpatrick, 1998) but further studies would be needed to 

test this possibility. The impact of abrasion on feather brightness is worth exploring further 

because feather brightness may signal dominance, which affects competition for food and mating 

opportunities. 
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I found that dominant peahens (determined in a feeding context) performed more 

dominance behaviors in front of displaying males. In addition, dominant females copulated more 

frequently than subordinate peahens and received more copulation attempts from males. 

Copulation attempts occurred when females rejected the male’s courtship by moving out of the 

way of the male’s hoot-dash display. These findings expand upon a previous study on a feral 

population of peafowl, which found that males court dominant females more than subordinate 

females (Petrie et al., 1992). This study suggested that peahens compete for access to males even 

after previous copulations, and mate with the same preferred male more than once (Petrie et al., 

1992). This may be the result of an interaction between physiology and behavior where the 

combination of long-term sperm storage and copulating with multiple males results in sperm 

competition in which mating again with a preferred male increases the odds that he will sire the 

offspring (Kokko & Jennions, 2008). This conflicts with traditional sexual selection theory, as it 

applies to mate choice in lekking systems, which assumes that males compete for access to as 

many females as possible and females choose their preferred male. In this scenario, all females 

have equal opportunity to copulate with preferred males, resulting in high reproductive skew 

among males but not females. Female reproductive skew is often described as driven by 

competition for food and nest sites or “non-sexual social selection” (Tobias et al., 2012). 

However, in peahens both social selection (e.g., during competition for food) and sexual 

selection (e.g., during competition for mates) may drive elaboration of ornamentation (Tobias et 

al., 2012). 

I did not find underlying hormonal mechanisms linking peahen ornamentation and 

dominance status. Dominance was unrelated to circulating baseline E2 or CORT concentrations. 

Similarly, feather brightness was also unrelated to circulating baseline E2 or CORT 
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concentrations. Although circulating E2 or CORT do not predict dominance or ornament 

brightness, differences in tissue sensitivity rather than circulating levels of hormones might 

better explain the link between ornamentation and dominance status (Creel, 2001; Rosvall, 

Reichard, Ferguson, Danielle, & Ketterson, 2012). Since CORT is typically upregulated under 

stressful conditions, feather brightness may only be related to CORT levels when food is limited 

(Breuner & Berk, 2019). Given that our peahens had unlimited access to feed, CORT effects may 

have been limited. Furthermore, feather CORT is more often repeatable than circulating blood 

CORT levels (Taff, Schoenle, & Vitousek, 2018) and may be a better predictor of stress levels 

than circulating blood CORT. Future studies could consider other hormonal mechanisms that 

might regulate female aggression and ornamentation, such as testosterone (T) and progesterone 

(P). Both T and P have been correlated with aggression and dominance in both sexes in many 

other species (Carré et al., 2017; Enbody, Boersma, Schwabl, & Karubian, 2018; O’Connell, 

Ding, & Hofmann, 2013; Pikus, Guindre-Parker, & Rubenstein, 2018).  

In conclusion, this study suggests that the brightness of a structural ornament signals 

female dominance status in a lekking species. This ornamentation is likely a sexually selected 

trait because brighter ornamented, dominant females win more competitions for both food and 

mating opportunities. Future studies should experimentally manipulate peahen feather brightness 

in order to evaluate the effect on social status in addition to mating behavior and reproductive 

success. Our results add to the growing body of evidence for functional female ornamentation in 

a wide range of taxa. These data suggest that lekking females can have ornamentation which 

functions in intrasexual competition, and spans contexts from competition for food to 

competition for mating opportunities. 
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