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ABSTRACT 

 

Completion optimization is a process of identifying completion parameters (e.g., lateral 

length, number of entry points and sand intensity) that maximize economics. Completion 

optimization is difficult to accomplish due to large heterogeneity in unconventional rock 

properties and the high cost of trying new completion practices. On the other hand, optimal 

development of these unconventional resources has significant economic potential. Therefore, it 

is critical to develop methodologies to identify optimum completion practices.  

 This research consists of two objectives: first, to develop methodologies to determine the 

economic optimum completion within and beyond the current industry practices in a low-

permeability heterogeneous formation that requires horizontal wells and hydraulic fracturing to 

flow at commercial rates, and, second, to apply those methodologies to the Town field in the 

Town field in Montney formation in British Columbia, Canada. 

To achieve these objectives, I developed multivariable regression models for the entire 

Montney along with three subset fields (Town, Altares and Parkland). Then, I built a physics-

based reservoir simulation model, calibrated it against the production type curve, and used it to 

predict well performance. Third, I defined 300 different completion designs and performed 

economic analysis on production forecasts generated with both the regression and simulation 

models. Finally, I identified the completion design that yields the maximum rate of return (ROR) 

and present value at 10% discount rate (PV10) as the optimum completion. 

For Altares and Parkland fields, there was no meaningful difference between the full and 

reduced models; however, for the Town field, the reduced dataset generated a better predictive 

model. I then focused on the 44-well Town field for the remainder of my study. Both 
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multivariable regression and simulation models in the Town field do a poor job in predicting 

individual well performance. For the completion parameters that are well inside the boundary of 

current practices and toward the average designs, the regression model has less uncertainty and is 

more suitable. However, for completion parameters that are closer to the upper boundary of 

current practices, the simulation model does a better job in predicting well performance.  

The results show that within current completion practices in the industry, the two models 

suggest the same optimal completion design of 6,560 ft of lateral length, 942 lb/ft of sand 

intensity and 50 entry points, which is at the upper limit of current practices for all completion 

parameters.  

Beyond current completion designs, the multivariable regression and simulation models 

generate different optimal completion designs. In both methodologies, lateral length and number 

of entry points of the optimum completion designs (by ROR and PV10) are greater than the 

upper limits of values currently used in the Town field. The optimized sand intensities (ROR and 

PV10) using the regression method are considerably higher than the upper limit of sand 

intensities currently used in the Town field. In the simulation method, optimized sand intensities 

for ROR are within observed field practices and optimized sand intensities for PV10 are at the 

upper end and beyond current practices used in the Town field, depending on commodity prices. 

In summary, these results suggest that the overall optimal completion is a more aggressive 

completion than current industry practices in the Town field. 
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NOMENCLATURE  

$  US Dollar 

 Specific gravity of gas (oAPI) 

λ
 

Box-Cox exponent 

AECO Alberta Energy Company 

BC  British Columbia 

bbl Barrel 

EP Total entry points 

EUR Estimated ultimate recovery 

DA Data analytics 

Di  Initial production decline  

CAD Canadian dollar 

E&P Exploration and production 

FirstFracYear First fracturing year 

LL
 

Lateral Length 

lb pound 

md Millidarcy 

MVR Multivariable regression 

Mcf Thousand cubic feet 

nd Nano Darcy 

NEB National Energy Board 

APIo,
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NGL  Natural Gas Liquids 

OGIP Original gas in place 

qi Initial production rate  

PV10 Net present value 

ROR Rate of return 

PC Perforation cluster per stage 

scf Standard cubic feet 

Sim Simulation 

SRV Stimulated reservoir volume 

ST Stages 

Sw Water saturation (no unit) 

t t-test 

tep Transformed entry points 

TR Transformation ratio (no unit) 

Tres Reservoir temperature (oF) 

tsand Transformed injected sand 

Tsurf Surface temperature (oF) 

Tcf Trillion cubic feet 

ttvd Transformed true vertical depth 

Vs Slurry volume 

VIF Variance inflation factor 

UGR Unconventional Gas Resources LLC 
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 UGRFieldname Field name as assigned by UGR 

WHP Wellhead Pressure 

xf Fracture half-length 
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CHAPTER 1 INTRODUCTION 

 

 Selection of the values of completion design components (lateral length, sand intensity, 

injected fluid, number of clusters) to maximize economic value is called completion 

optimization. Completion optimization in heterogeneous unconventional plays is a difficult 

problem to solve due to large variability in critical reservoir parameters, numerous variables that 

can be chosen in the completion design, and the high cost of trying new completions in the field.  

 Reservoir properties, various completion designs, and well spacing are factors that should 

be considered when deciding to drill a well in low-permeability plays. In addition to drilling in 

the good-quality acreage, appropriate completion designs are essential for a long-term successful 

investment outcome in low-permeability plays such as the Montney. However, identifying the 

best completion design is a challenging task due to the inherent complexities and great 

uncertainty in these unconventional resources. Some exploration and production (E&P) 

companies apply time-consuming, costly numerical methods (such as reservoir simulation), 

while others replicate neighbor operators’ designs to test completion strategies. These methods, 

however, may fall short in determining the values of the most significant completion parameters 

for shale assets because they fail to account for rock variation within these plays. 

 Shale gas has become an increasingly important source of energy in the last decade, 

especially in the U.S. and Canada. The U.S. Energy Information Administration (2015) reported 

that shale-gas reservoirs produced more than 56% of the total U.S. dry-gas production, and it is 

estimated that by 2040 around 70 Tcf of the world’s annual gas production (out of 203 Tcf) will 

be obtained from unconventional resources.  
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Optimizing completions is materially important to the oil and gas industry. Well 

performance continues to increase with increasing stimulation properties, such as horizontal well 

length, mass of injected sand, volume of injected fluid and number of clusters, suggesting that 

current practices have not yet reached the optimal (Curtis 2017). The U.S. Energy Information 

Administration (2016) reported that the total cost of horizontal wells ranges from $6 to $8 

million in the U.S and completion costs constitute more than 50% of those costs. Optimized 

completion practices improve well economics by maximizing rate of return (ROR) or present 

value at 10% discount rate (PV10), or whatever economic measure is the object of maximization. 

There are hundreds of thousands of potential well locations in US and Canadian plays and 

improving completion technologies in horizontal wells places these plays among the most 

attractive investment opportunities in the oil and gas industry. For instance, the Montney, with 

more than 8,000 wells, is a massive resource play in Canada that has drawn significant amounts 

of interest, investment and activity in recent years. Reimer (2015) suggested if the Montney were 

fully developed, there would be 150,000 wells in the play. With an average $5 million 

completion cost per well, the total completion capital expenditure would be $750 billion. Current 

practices to determine the best completion designs, such as field experiments and numerical 

simulation, are useful; however, they are expensive, time-consuming, and difficult to optimize 

with spatially changing rock properties.  

 

1.1 Status of the Question 

An early study of the optimization of hydraulically-fractured-well completions was 

conducted by R.W. Veatch in 1983. He summarized three basic requirements for fracture-

treatment design in his early studies: 1) determine the expected oil and gas producing rates from 
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a given reservoir with given fracture half-lengths and conductivities; 2) determine treatment cost 

for a range of lengths and conductivities; and 3) maximize a specific economic parameter such as 

the net present value or rate of return. These concepts are illustrated in (Fig. 1.1). 

 
Fig. 1.1—Overview of current hydraulic fracturing design and treatment technology 

(Adapted from Veatch 1983) 

 

  Fig. 1.1 must be understood in the following order to optimize completions: calculate 

fracture half-length, forecast production rates, and estimate revenue. In this methodology, a 

fracture-propagation simulator computes propped fracture half-length and conductivity as a 

function of the treatment volume. A reservoir simulator then provides production forecasts for 

various fracture half-lengths and conductivities. From these production forecasts, a revenue 

estimate for each treatment volume is generated. A cost estimate subsequently is generated from 

the treatment volume. The last step is to calculate the profit by using treatment cost, production 

revenue and other economic data. The user determines the optimum point on the plot of profit 

versus fracture half-length at which the profit is maximized (Fig. 1.1). Veatch assessed only one 

fracture stage since multistage hydraulic fracturing was not practiced at the time of his study. 
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Hryb et al. (2014) used seismic, mineralogy, geomechanics, well plan, drilling, 

completion, microseismic monitoring, and production data from wells in the Vaca Muerta shale 

in Argentina to construct a 3D static geologic model to identify the best reservoir quality 

locations and determine optimal completion design for a well in the Vaca Muerta formation. The 

stimulation design was determined using a multistage hydraulic-fracture simulator that predicted 

complex fracture propagation in the shale reservoir. The hydraulic-fracture results were input to 

a shale-oil numerical simulator and calibrated with the production history of the well. However, 

numerical reservoir simulation and history matching are costly, difficult and unacceptably time-

consuming over a different geographical area in shale formations. The methodology also requires 

detailed reservoir characterization, which is labor-intensive. Moreover, the authors attempted to 

optimize completion design by maximizing production, and they did not perform economic 

analysis. 

Many operators have tried to optimize completion design using various data-mining and 

analytical approaches (Lafollette (2012), Lafollette and Holcomb (2011), Voneiff and Sadeghi 

(2013, 2014)). LaFollette and Holcomb (2011) and LaFollette (2012) performed extensive data-

mining studies in the Barnett shale to correlate production performance to completion and 

stimulation parameters. They used well location as a proxy for rock quality and concluded that 

wells with horizontal lengths greater than 3,500 to 4,500 ft are less productive than shorter wells 

in the Barnett shale in terms of lower production per perforated foot. However, they did not 

attempt to optimize completions economically. 

In another study, Gong et al. (2011) used multivariable statistical analysis in the Barnette 

shale play. They studied 64 horizontal wells in the Barnett shale play to correlate decline-curve 

parameters to completion and stimulation parameters such as perforated interval, fluid volume, 

https://www.google.com/search?client=firefox-b-1-ab&q=microseismic&spell=1&sa=X&ved=0ahUKEwjz7P-Z6ongAhVLUK0KHTuIA0oQkeECCCkoAA&biw=1708&bih=818
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proppant mass, and well spacing. The authors used well spacing and fluid volume per interval as 

variables to predict the ratio of cumulative production at 6 months to 1 month (CP6 to1). As 

shown in the paper, one of the limitations of the study is that it appears that multivariable 

coefficient terms are statistically biased. Bias may happen due to a missing important variable in 

the multivariable model or due to multicollinearity among variables. Additionally, correlation 

coefficients are low in the model. The authors did not attempt to perform economic analysis. 

Companies often conduct A-vs.-B completion experiments in the field to learn the 

best completion strategy at that location. For example, Shell Canada (2012) studied A-vs.-

B completion experiments on the performance of 74 wells in the Montney play with a 

common and consistent analytical framework. The study spanned five producing areas, 

two different completion styles (164 vs. 328 ft fracture spacing) and three different initial 

production strategies including unrestricted, moderately-restricted and highly-restricted 

flowing tubing pressure. These strategies might correlate to reservoir quality; that is, lower 

rock quality requires a higher pressure-drawdown to produce gas. 

In another study, Wilson et al. (2011) studied A-vs.-B completion experiment by 

comparing cased-hole and open-hole completion technologies in the lower Montney 

formation on 15 wells. These wells are in two separate geographical areas within the same 

field. Comparisons of cased-hole and open-hole technologies included lateral lengths, 

number of stages, stage spacing, proppant volumes, pump rates, and operational time and 

cost per well. They concluded that open-hole wells produce hydrocarbons more efficiently. 

A-vs.-B completion experiments in the field may be applicable to the wells near an area of 

study; however, the weakness of the methodology is it can be misleading when there are 

many parameters with large variability. 
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The research gap in the oil and gas industry is lack of fast, efficient and reliable 

methodology to identify optimum completion design. Current numerical and field-

experiment methodologies applied to find the optimum completion in heterogeneous 

unconventional plays are slow and inefficient.  

1.2 Introduction to the Montney 

The Montney gas play is a major shale-gas resource in the U.S. and Canada (Taylor 

2009). It extends from British Columbia to Alberta in Canada (Fig. 1.2 and Fig. 1.3). The 

Triassic over-pressured Montney formation includes dry gas, liquid-rich gas, and oil. In 2013 the 

US National Energy Board (NEB) estimated that the Montney stretches over 1,640,000 ft in 

length and covers an area of 50,000 miles2. The hydrocarbon thickness varies between 328 ft and 

984 ft and is thickest along the western edge. Permeability is 20 to 80 times greater than other 

resource plays in North America and ranges from 1,000 to 100,000 nd. The resources in place 

are enormous, with a P50 estimate of 4,274 Tcf gas in place, and a P50 estimate of 268 billion 

bbl oil and natural gas liquids (NGL) in place (Reynolds 2015). Rokosh (2012) claimed the P50 

estimate of the total marketable gas was 449 Tcf, and the P50 estimate of marketable oil and 

NGLs was 15.6 billion bbl in the Montney. Zinselmeyer (2015) pointed out that production 

volumes from the entire Montney (both Alberta and British Columbia) have increased to 3.9 

Bcf/D and 62,000 bbl/D of NGL and oil as of November 2014.  

Operators drill horizontal wells in three different zones of the Montney: upper, middle 

and lower. Approximately 3,500 wells have already been drilled in the Montney. The play is still 

early in development; however, enough horizontal wells have been drilled and sufficient data 

have been gathered to start optimizing completion practices.  
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Fig. 1.2—Unconventional plays in North America (Crew Energy Inc. Corporation report 

2016) 

 

 
Fig. 1.3—Montney Play (Krause 1994) 
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1.3 Research Objectives 

This research has two objectives. First, develop two different methodologies to determine 

the economic optimum completion in low-permeability complex heterogeneous horizontal wells 

that require hydraulic fracturing to flow at commercial rates, both within and beyond the current 

industry completion practices. Second, apply those methodologies to the Town field in the 

Montney formation in British Columbia, Canada. 

1.4 Overview of Methodology 

In this research, I applied the following methodology to 44 wells located in the Town 

field: 

1) Regression method: I applied an integrated statistical methodology using multivariable 

regression to predict short-term well performance given specific completion design 

parameters. Then, I generated a type curve production forecast for the Town field. I 

scaled the type curve given a specific completion design using a scaling ratio. The scaling 

ratio was defined as a ratio of regressed short-term well performance to the production 

type curve short-term well performance. 

2) Physic-based modeling method: I integrated available production and engineering data 

using a physics-based reservoir simulation model to estimate monthly gas production 

over a 40-year period. 

3)  I defined 300 different completion designs that consist of unique combinations of six 

values for lateral length, five values for sand intensity and 10 values for entry points. 

Then, I performed economic analysis on the 300 cases using both the regression and 

simulation production forecasts. Finally, I identified the completion design that yields the 

maximum ROR and PV10 as the optimum completion (Fig. 1.4). 
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Fig. 1.4—Methodology  
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CHAPTER 2 SUMMARY OF 2,102 WELLS IN THE MONTNEY FORMATION, BRITISH 

COLUMBIA  

 

In this chapter, I summarize statistics for 2,102 wells in the British Columbia Montney 

formation. The daily completion reports were sourced from a commercial data vendor (IHS 

Markit) that offers Canadian data. The 2,102 wells were not all the Montney wells in British 

Columbia at the time, but they were all the wells that existed in the IHS dataset at the time of 

gathering the dataset. I reviewed the daily completion reports on these 2,102 wells and built a 

dataset of 10 completion and geographical parameters for each well.  

The five numerical parameters in the dataset are short-term well performance, sand, fluid, 

entry points, and lateral length. Five categorical parameters are zone, fluid type, first fracturing 

year, field name and completion type. The list of completion and geographical parameters and 

their explanations is shown below (Table 2.1). 

Parameters (unit) Abbreviation Explanation 

B3eq, Mcfed B3 Best three consecutive months of production 

Sand, lb Sand Amount of sand injected 

Fluid, ft3 Fluid Amount of fluid injected 

Entry Points EP Number of entry points 

Lateral Length, ft LL Completed lateral length 

Fluid Type - 10 Types of fluids are injected for fracturing 

First Fracture Year FirstFracYear The starting year of fracturing 

Field Name UGRFieldName 32 Fields (a proxy of location) 

Completion Type - 
Completion technology (open-hole, cased-

hole) 

Zone - Drilling zone (Middle, Upper, Lower) 

True Vertical Depth TVD True vertical depth 

Table 2.1—Summary of parameters in the 2,102 wells in the dataset in the Montney 
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The British Columbia (BC) Montney study area has two general areas, Northern Montney 

and Regional Heritage, which are the BC-government-assigned field names (Fig. 2.1). Since 

these government-assigned field names cover large geographic areas with varying geologic 

properties, I used 32 assigned field names provided by Unconventional Gas Resources LLC 

(UGR) to localize the analysis and reduce reservoir variability. The 32 fields and their well 

counts are shown in Fig. 2.2.  

 

  
Fig. 2.1—Reference map of Montney (Hislop 2018) 

 

Montney 

Study Area 

Town Field 
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                                 Fig. 2.2—List of 32 fields in the BC Montney and their well counts 

 

The 2,102 wells located in the BC Montney dataset represent 23 operating companies, 32 

fields, 3 zones, 10 different fracture-fluid types and two completion types. There is only one 

zone completed per well.  

In this study, I reviewed the daily completion reports on 2,102 wells from the IHS 

database. Slickwater is the most popular fracturing fluid because it has been proved to be an 

effective fluid to increase recovery in the shale gas reservoir (Grieser 2003). Among 2,102 wells, 

1,539 wells are treated with slickwater as a fracturing fluid. Furthermore, the upper zone of 

Montney BC contains more highly porous and permeable rock and is the preferred landing zone 

for operators (Sereda 2017). Among 2,102 wells, 1,291 wells are located in the upper zone. 

Therefore, I selected wells in the entire Montney BC that are in the upper zone and treated with 

slickwater as a fracturing fluid. This reduced the 2,102 wells in the dataset down to 1,040 wells. I 

used these 1,040 wells along with independent variables mentioned in Table 2.1 for 

multivariable analysis in Chapter 3.  
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Furthermore, in Chapter 4, reservoir properties are required to do reservoir simulation. 

Among all 32 fields in the BC Montney, Unconventional Gas Resources LLC operates in the 

Town field and there is more information available on reservoir properties (such as porosity, 

water saturation and initial reservoir pressure) in this field. As a result, I focused on 119 wells 

located in the Town field. All 119 wells in the Town field were fractured by slickwater fluid. 

Furthermore, to reduce the variability of rock properties and build a dataset of wells with similar 

geology, I considered only 44 wells located in the upper zone among these 119 wells. I also used 

these 44 wells in the Town field to perform multivariable regression in Chapter 3. In Fig. 2.3, the 

blue area with the red rectangle shows the Town field and different colored regions represent the 

32 different fields. 
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Fig. 2.3—Montney study area color coded by fields, the red rectangle in the map shows the 

Town field area (obtained from Unconventional Gas Resources LLC 2015) 

 

 

 

 

 

 

 

 

 

Town Field 



 

15 

 

 

CHAPTER 3 MULTIVARIABLE REGRESSION ANALYSIS 

 

In this chapter, I developed several multivariable regression models for two different 

datasets. The first dataset consists of 44 wells in the Town field and the second dataset consists 

of 1,040 wells in the entire BC Montney. I used multivariable regression to estimate short-term 

production (B3) from completion and production parameters. In this chapter, I will first give a 

brief introduction of multivariable regression models, following with the application of 

multivariable regression for the Town well and BC Montney datasets. At the end of the chapter, I 

will acknowledge the limitations of data analytics. 

3.1 Data Analytics 

Data analytics is a field that utilizes statistics, mathematics and computer programming to 

extract knowledge from data. In the oil and gas industry over the past few decades, a massive 

amount of exploration, development and production data has been collected and stored on a daily 

basis. Oil and gas data analytics can help to improve decision making by considering only actual 

data instead of assumed models and by capturing trends, patterns, and relationships between 

data. The relationships are used to build algorithms which identify and optimize critical 

parameters in completion, production and other areas of the oil and gas industry. One of the most 

popular analytics tools available is multivariable regression. Predictive multivariable regression 

models bring helpful insights to unconventional resources where reservoir parameters can be 

highly variable.  
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3.2 Multivariable Regression 

It is likely that more than one independent variable influences a response variable. Fitting 

predictive regression models to data with more than one independent variable is a common 

practice. Let x1, x2…, xp be p independent variables to be related to response variable y. The 

linear regression model for the ith sample is: 

 

where 𝑒𝑖  is a residual term and 𝑏𝑖 , i =1, 2…, p are unknown and fixed regression coefficients. 𝑏0 

is the intercept and also unknown. The assumption of multivariable regression is that residuals 

are independent and normally distributed with mean equals zero. This assumption underlies the 

mathematical development of multivariable regression.  

If we write Eq. 1 for a dataset with n records, we have: 

A convenient way to write the above equations is in a matrix format where Y is a (n×1) 

matrix of the response variable, X is a n×(p+1) matrix of independent variables, β is a (p+1)×1 

vector of unknown regression coefficients and E is a (n×1) vector of residuals. In this section, Y 

upper case is a matrix and 𝑦𝑖 lower case (like the one in Eq. 1) is a sample. Also, X upper case is 

a matrix and x1, x2…, xp lower case (like the one in Eq. 1) are one set of sample. 

 

 𝑦𝑖  =  𝑏0  +  𝑏1𝑥𝑖1  +  𝑏2𝑥𝑖2 … . . + 𝑏𝑝 𝑥𝑖𝑝 + 𝑒𝑖,          
                                             

(1) 

 𝑦1  =  𝑏0  +  𝑏1𝑥11  +  𝑏2𝑥12 … . . + 𝑏𝑝 𝑥1𝑝 + 𝑒1 ,          

𝑦2  =  𝑏0  +  𝑏1𝑥21  + 𝑏2𝑥22 … . . + 𝑏𝑝 𝑥2𝑝 + 𝑒2 ,          

. 

. 

. 

𝑦𝑛  =  𝑏0  +  𝑏1𝑥𝑛1  +  𝑏2𝑥𝑛2 … . . + 𝑏𝑝 𝑥𝑛𝑝 + 𝑒𝑛                  

(2) 

(3) 

 

(4) 
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                     𝑌 =

[
 
 
 
 
𝑦1

𝑦2

.

.
𝑦𝑛]

 
 
 
 

 , 𝑋 =

[
 
 
 
 
1 𝑥11 . . 𝑥1𝑝 

1 𝑥21 . . 𝑥2𝑝

. . . . .

. . . . .
1 𝑥𝑛1 . . 𝑥𝑛𝑝 ]

 
 
 
 

 , 𝛽 =

[
 
 
 
 
 𝑏0

𝑏1

.

.
𝑏𝑝 ]

 
 
 
 

,   𝐸 =

[
 
 
 
 
𝑒1

𝑒2

.

.
𝑒𝑛]

 
 
 
 

 

Using the above matrices and vectors, we can write Eq. 2 to Eq. 4 in a matrix format:  

 

 

To estimate the unknown values of the vector β, we minimize the sum of squared residuals. 

 

 

The inner product of a vector and its transpose is equal to the sum of squares of the vector’s 

components: 

 

where apostrophe in 𝐸′ used as a symbol for transposed vector E. Therefore, Eq. 6 equals: 

 

From Eq. 5, the residual term can be written as: 

 

 

  

Below are mathematical statements for transposed matrices that I use to continue the analysis: 

  

(𝑐 − 𝑑)′ = 𝑐′ − 𝑑′                                                                                                     

  

 𝑌 = 𝑋𝛽 + E (5) 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 (𝑅𝑆𝑆) = ∑ 𝑒𝑖
2𝑛

𝑖=1                                                                                                                      (6) 

 

𝐸′ · 𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛] ·

[
 
 
 
 
𝑒1

𝑒2

.

.
𝑒𝑛]

 
 
 
 

 =  𝑒1
2  + 𝑒2

2+ .  .  . + 𝑒𝑛
2  =  ∑ 𝑒𝑖

2𝑛
𝑖=1 ,                                                                                                                

      (7) 

 
∑𝑒𝑖

2 = 𝐸′ · 𝐸

𝑛

𝑖=1

 

                                                                                                   

       (8) 

 𝐸 =  𝑌 –  𝑋𝛽       (9) 
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(𝑐𝑑)′ = 𝑑′𝑐′                                                                                                               

 

 

By using above mathematical statements and combining Eq. 8 and Eq. 9:  

 
Since βˊXˊY is a scalar, meaning dimension of 1×1, the transpose of the term is the same term, 

thus: 

                     βˊXˊY = (𝛽ˊ𝑋ˊ𝑌)′ = 𝑌′𝑋𝛽                                                                                                       

(11) 

Therefore, by using Eq. 11, Eq. 10 can be written as: 

                                                                                                                                                                                                      

 

 

 

To minimize Eq. 12 and calculate the unknown values of vector β, we take the derivative of RSS 

with respect to β and set to zero. To do this, we use the following mathematical statements: 

𝜕𝛽′𝑋′𝑌

𝜕𝛽
 = 𝑋′𝑌 

𝜕𝛽′𝑋′𝑋𝛽

𝜕𝛽
 = 2𝑋′𝑋𝛽 

More information about the above mathematical statements can be found in The Matrix 

CookBook (Petersen and Pedersen 2012). By applying above statements, the derivation of Eq. 12 

is:  

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 (𝑅𝑆𝑆) = ∑ 𝑒𝑖
2 = 𝐸ˊ · 𝐸 = 𝑛

𝑖=1   
 
( 𝑌 − 𝑋𝛽)ˊ · ( 𝑌 − 𝑋𝛽) = ( 𝑌′ − (𝑋𝛽)′) · ( 𝑌 − 𝑋𝛽) = ( 𝑌′ − 𝛽′𝑋′) · ( 𝑌 − 𝑋𝛽) 
  
= YˊY – 𝑌′𝑋𝛽 – βˊXˊY + βˊXˊXβ    
                                                                                                                                                                                                      

(10) 

   

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 (𝑅𝑆𝑆) = ∑ 𝑒𝑖
2 = 𝐸ˊ · 𝐸 = 𝑛

𝑖=1 ( 𝑌 − 𝑋𝛽)ˊ · ( 𝑌 − 𝑋𝛽) =  

( 𝑌′ − (𝑋𝛽)′) · ( 𝑌 − 𝑋𝛽) = ( 𝑌′ − 𝛽′𝑋′) · ( 𝑌 − 𝑋𝛽)                                                                       (12) 

  

= YˊY – 𝑌′𝑋𝛽 – βˊXˊY + βˊXˊXβ = YˊY – 2βˊXˊY + βˊXˊXβ         
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Eq. 13 can be written as: 

 

If we assume that the inverse of the matrix (𝑋´𝑋) exists, vector β is: 

Values of vector 𝛽 are the regression coefficients in Eq. 2 to Eq. 4.  

 

3.3 Case Study: Multivariable Regression Models in the Town Field      

In this section, I applied a multivariable regression model to the 44 wells in the Town 

field. In a large heterogeneous geographical area, there is likely a lot of variation in rock 

properties. In this study, there is no information available on rock properties (e.g., permeability, 

porosity). Therefore, to reduce the impact of the missing information on multivariable regression 

models, I built a geologically similar dataset to perform multivariable regression analysis. To 

build a geologically similar dataset, I selected the Town field among 32 fields in the Montney 

since Unconventional Gas Resources LLC operates in the field. As discussed earlier in Chapter 

2, there are 119 wells in the Town field located in three different zones. The zones are 

geologically different according to Unconventional Gas Resources LLC. Therefore, I selected 44 

wells located in the upper zone of the Town field. Slickwater is the most popular fracturing fluid, 

and all the 44 wells in the Town field well were treated with slickwater.  

 𝜕𝑅𝑆𝑆

𝜕𝛽
= - 2XˊY +2XˊXβ =0                                                                                                                                                                                           (13) 

 XˊXβ = XˊY                                                                                                                                                                                               (14) 

 𝛽 = (𝑋´𝑋)−1(𝑋´𝑌) (15) 
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I applied multivariable regression to these 44 wells to predict B3 from completion inputs 

(i.e., lateral length, mass of sand, volume of injected fluid, entry points) in five different models. 

The only completion type in the dataset is cemented completion and the only fracturing fluid is 

slickwater. Furthermore, all the 44 wells are landed in the upper zone and have similar true 

vertical depth. Therefore, the parameters completion type, fracture fluid, true vertical depth, zone 

and field name mentioned in Table 2.1 are not independent variables in these models. The five 

predictive models with inputs and output are listed in Table 3.1. 

 

Model 

 

Inputs Output, unit 

Total completion 

parameters 

 

Sand tonnes, Lateral length m, Fluid m3, 

Entry points 

 

B3, Mcfed 

Per lateral length Sand per lateral length tonnes/m, Fluid 

per lateral length m3/m, Entry points per 

lateral length 1/m 

B3 per lateral 

length, 

Mcfed/m 

Per fluid Sand per fluid tonnes/m3, Lateral length 

per fluid m/m3, Entry points per fluid 

1/m3 

 

B3 per fluid, 

Mcfed/m3 

Per sand Fluid per sand m3/tonnes, Lateral length 

per sand m/tonnes, Entry points per sand 

1/tonnes 

 

B3 per sand, 

Mcfed/tonnes 

Per entry points Fluid per entry points m3, Lateral length 

per entry points m, Sand per entry points 

tonnes 

B3 per entry points, 

Mcfed 

Table 3.1—Multivariable regression model inputs and outputs for the Town field dataset 

 

  

 

Table 3.2 shows the multivariable regression models for the 44 wells located in the Town field. I 

will discuss how I developed the per-fluid model for the 44-well Town field in detail in the next 

section. The rest of the models are developed similarly. 
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Table 3.2—Multivariable regression models of 44 wells for the Town field dataset 

 

 

 

3.3.1 Per Fluid Multivariable Regression in the Town Field 

To build the multivariable regression model, first I normalized lateral length, entry 

points, amount of sand and B3 by the amount of fluid injected. After preparing the dataset, the 

following six steps were taken: 

1. Correlation plots 

2. Variable selection 

3. Transformation 

4. Homoscedasticity 

5. Multicollinearity 

6. Residuals 

I will discuss these steps in detail in the following subsections. 

Total 

completion 

parameters 

(𝐵3)(0.65) =  − 21797.3 ∗ 𝑆𝑎𝑛𝑑 -0.75 +  6885 ∗ 𝐿𝐿−0.60 − 3.1

∗ 𝐸𝑃0.54 +  11984 ∗ 𝐹𝑙𝑢𝑖𝑑−0.69 + 199.42 

Per lateral 

length 

(𝐵3. 𝐿𝐿)(0.72) =  − 1.04 ∗ 𝑆𝑎𝑛𝑑. 𝐿𝐿−1.06 +  1.8

∗ 𝐹𝑙𝑢𝑖𝑑.  𝐿𝐿−0.95 −  3.5 ∗ 𝐸𝑃. 𝐿𝐿0.75 +  2.7 

Per fluid 

 (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(1.1)

=  2.8 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 1.38 +  0.81 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.33 + 0.11

∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.33 − 0.28 

Per sand 

(𝐵3. 𝑆𝑎𝑛𝑑)(0.85)

=  10.1 ∗ 𝐹𝑙𝑢𝑖𝑑. 𝑆𝑎𝑛𝑑-1.9 + 0.53 ∗ 𝐿𝐿. 𝑆𝑎𝑛𝑑0.98 − 0.26

∗ 𝐸𝑃. 𝑆𝑎𝑛𝑑0.39 + 1.2 

Per entry 

points 

(𝐵3. 𝐸𝑃)(0.33) =  − 0.9 ∗ 𝐹𝑙𝑢𝑖𝑑. 𝐸𝑃0.18 −  14.9 ∗ 𝐿𝐿. 𝐸𝑃−0.33 + 39.1
∗ 𝑆𝑎𝑛𝑑. 𝐸𝑃0.03 − 32.6  
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3.3.1.1 Correlation Plots 

Correlation plots display relations between pairs of variables as well as the histograms for 

normalized variables. The independent variables in the dataset are B3 per fluid, sand per fluid, 

entry point per fluid, and lateral length per fluid. The R2 values of 2-D plots are in the upper 

triangular part of the correlation plot in Fig. 3.1. The diagonal elements of the matrix are the 

histograms for the variables. 

Each variable in the dataset has one row and column in the matrix. For example, B3 per 

fluid is on the first row and column; sand per fluid, lb/ft3 is on the second row and column. 

Therefore, row 2 and column 1 is the 2-D plot of B3 per fluid vs. sand per fluid (the plot with the 

green star). The flipped element on the upper side of the triangular matrix shows an R2 of 0.44 

between B3 per fluid and sand per fluid. The size of R2 numbers on the upper triangular part of 

the matrix represents the magnitude of correlation. Pairs with higher correlation have a larger 

text size R2 in Fig. 3.1. The objective of 2-D plots is to identify correlated variables that can be 

used in further steps of multivariable regression. If the magnitude of correlation between two 

independent variables is more than 0.8, the two independent variables are highly correlated and 

both of them carry the same information on the response variable. Therefore, those independent 

variables should be investigated and one of them should be dropped. As shown in Fig. 3.1, there 

are not any pairs of independent variables that have R2 more than 0.8. 
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Fig. 3.1—Pairwise 2-D plots and histograms, Upper Montney, per fluid model 

 

 

3.3.1.2 Variable Selection 

For this part, I used a backward procedure to select the most important variables in the 

model. The backward procedure starts with all independent variables in the model and removes 

the independent variable with highest p-value that is greater than a critical p-value of 0.05. Then 

the model is refitted with the remaining independent variables and the variable that has highest 

p-value more than critical p-value of 0.05 will be dropped again. The algorithm stops when all p-

values are less than the critical p-value. The result of backward selection shows that all 

independent variables in the per-fluid model are important and should be in the model. Refer to 
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A Modern Approach to Regression with R (Sheather 2009) for more information about variable 

selection. 

3.3.1.3 Transformations 

Multivariable linear regression assumes independent variables have normal distributions. 

Non- normal distributions can distort relationships. Therefore, the first step in the analysis is to 

look at the initial distribution of numerical input variables and find transformations that make 

them normal. Fig. 3.2 shows the initial distribution for numerical independent variables in this 

model, which are sand per fluid, entry points per fluid, and lateral length per fluid. These 

distributions are not normal. 

 
Fig. 3.2—Histograms of initial variables 

 

Box-Cox transformation is a way to transform non-normal distributions. The technique 

was developed by statisticians George Box and Sir David Roxbee Cox and named after them. 



 

25 

 

 

Box-Cox transformation defines a set of exponents called lambda (λ), one for each independent 

variable, which vary from -5 to 5. A λ equal to zero is a log transformation. All values of λ are 

considered and the optimal values for different independent variables in the dataset are selected 

based on linearity and normality of all of independent variables. Therefore, the optimal values 

for different independent variables are a set of numbers which results in the best approximation 

of multidimensional normal distribution curve. Refer to A Modern Approach to Regression with 

R (Sheather 2009) for more information about Box-Cox transformation. Table 3.3 shows the 

transformations of the numerical variables using Box-Cox. For example, the optimum set of 

values for sand per fluid, entry point per fluid and lateral length per fluid to be transformed to 

multidimensional normal distributions are 1.38, 0.33 and 0.33. 

Sand Per Fluid Entry point Per Fluid Lateral Length Per Fluid 

1.38 0.33 0.33 

Table 3.3—Transformation of variables 

 

The equation for the multivariable model with transformed inputs is: 

 

Fig. 3.3 shows histograms of transformed numerical independent variables. These 

distributions do not appear to be close to normal because they consist of only 44 data points, and 

the optimization was done by matching the multidimensional normal distribution curve, not the 

individual distributions. 

 𝐵3. 𝐹𝑙𝑢𝑖𝑑 =  2.8 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 1.38 +  0.81 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.33 + 0.11 ∗

𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.33 − 0.28   

(16) 
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Fig. 3.3—Histograms of transformed variables 

 

 

3.3.1.4 Homoscedasticity 

Homoscedasticity means equal scatter. One of the assumptions of multivariable analysis 

is equal scatter of residuals over the range of fitted values (homoscedasticity of residuals). 

Homoscedasticity is important because multivariable regression assumes that all residuals are 

drawn from a population that has a constant variance. 

 After transforming the independent variables in the previous subsection, the response 

variable (B3) should be transformed to achieve linearity and homoscedasticity (constant variance 

of residuals). To define the transformation for the output (B3 per fluid), I used the Box-Cox 

technique on the results of the multivariable model. I regressed B3 per fluid as the output 
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variable on transformed lateral length, sand, and entry points. The calculated transformation for 

B3 per fluid is 1.1. Therefore, the final linear model is the following: 

 

Eq. 17 is the final multivariable model to predict B3 per fluid. 

 To check the assumption as a next step, I looked at the plot of standardized residual vs. 

fitted values (Fig. 3.4). The fitted values of B3 per fluid are on the x-axis; the square root of the 

standardized residual is on the y-axis. Below is the formula to calculate standardized residual: 

 

  (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(1.1) =  2.8 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 1.38 +  0.81 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.33 + 0.11 ∗

𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.33 − 0.28   

(17) 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖 
                (18) 
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In Fig. 3.4 the spread of residuals does not have any pattern. In the case of 

heteroscedasticity (unequal scatter), the spread of the residuals increases in one direction or 

forms a cone shape. Therefore the per fluid model satisfies the homoscedasticity assumption. 

 
Fig. 3.4—Scale location plot, homoscedasticity 

 

3.3.1.5 Multicollinearity 

Multicollinearity occurs when two or more independent variables in a regression model 

are correlated strongly or moderately. Multivariable linear regression assumes that there is little 

or no multicollinearity in the data. The interpretation of a regression coefficient is that it 

represents the mean change in the response variable for each unit change in an independent 

variable when all of the other independent variables hold constant. Therefore, changing the value 

of one independent variable should not affect other independent variables. However, when 

independent variables are correlated, it indicates that changes in one independent variable cause 

the other correlated variable to change. Therefore, when multicollinearity exists, the estimated 

regression coefficients are not precise. It also makes it difficult to assess the relative importance 

https://statisticsbyjim.com/glossary/regression-coefficient/
https://statisticsbyjim.com/glossary/mean/
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of independent variables in explaining the variation of an output variable. To detect 

multicollinearity, the Variance Inflation Factor (VIF) is used. The equation for VIF is as follows: 

 

where 𝑅𝑘 
2 is the R2 obtained by regressing the Kth independent variable on the remaining 

independent variables. 

A VIF of less than 10 indicates there is no multicollinearity. Table 3.4 shows the VIF of 

independent variables in the model. All the values in the table are less than 10, which indicates 

there is no multicollinearity among independent variables. 

 

Total Sand Per Fluid Entry Points Per Fluid Lateral Length Per Fluid 

1.7 1.2 1.7 

Table 3.4—VIF of the independent variables, per fluid model 

3.3.1.6 Normality of Residuals 

Residuals are the differences between the fitted values from regression and actual values 

of B3 per fluid. Multivariable linear regression assumes that residuals are normally distributed. 

Satisfaction of this assumption allows generation of a reliable confidence interval. A Q-Q plot of 

residuals and histogram of residuals can help to assess whether the residuals are approximately 

normally distributed. If the residuals follow the dash line on the Q-Q plot, they are normally 

distributed.  

Fig. 3.5 is a diagnostic Q-Q plot of standardized residuals. In the Q-Q plot, the data 

points follow the dash line, which indicates that residuals have an approximate normal 

distribution. The histogram of residuals in Fig. 3.6 is approximately normal, which satisfies the 

assumption of normality for the residuals.  

 𝑉𝐼𝐹𝑘 =
𝟏

𝟏−𝑹𝒌
𝟐                                                    (19) 
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Fig. 3.5 —Q-Q plot of residuals 

 

 

 

Fig. 3.6—Histogram of residuals for per fluid model in the Town field 
 

Fig. 3.7 is a 2-D graph of predicted B3 per fluid on the y-axis and actual B3 per fluid of 

44 wells in the Town field on the x-axis. There are two lines in the figure: unit-slope line (red 

line) and the regression line for predicted vs. actual B3 per fluid values (blue line). The R2 of 
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predicted values vs. actual values is 0.20, which is small compared to the maximum possible 

value of 1. R2 of a regression line for predicted vs. actual values represents the predictive power 

of a model. As R2 increases, the scatter around the regression line decreases. Slope of a 

regression line for predicted vs. actual values represents how well a model can predict the entire 

range of the response variable, especially the extremes. The slope is different between the unit-

slope line with R2 of 1 and the regression line for predicted vs. actual B3 per fluid values in Fig. 

3.7, which indicates there is uncertainty in the model due to missing information in the dataset. 

The missing information includes unavailable data such as rock properties (e.g., permeability, 

porosity). Including rock properties information in the dataset should result in a more accurate 

model, in which case the slope of the blue line would be closer to that of the unit-slope line. 

 
Fig. 3.7—2-D regression line of predicted vs. actual B3 per fluid, Mcfed/ft3 values for 44 

wells in the Town field 
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3.3.2 Selection of the Best Model in the Town field 

In the previous section, I explained the details of the per-fluid model for 44 wells in the 

Town field. I developed four other models in the Town field (Table 3.2) 

To choose the best model I initially used the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). AIC is an estimate of relative information lost in the trade-off 

between model fit and complexity. A lower AIC is preferred and considered more likely to be 

the true model. BIC is another criterion for model selection. When fitting models, it is possible to 

increase the likelihood by adding parameters but doing so may lead to overfitting. The BIC 

penalizes the problem by adding a logarithmic term for the number of parameters in the model. 

Similarly, a model with lower BIC is preferred (Sheather 2009). 

The R2 shown in Table 3.5 is the 2-D R-squares of predicted vs. observed values. The 

per-fluid model has the lowest AIC and BIC among the five models, although it does not have 

the highest R2 (Table 3.5). Therefore, based on my original criteria (AIC and BIC), I selected the 

per fluid model as the best model among all five models. Later, I learned that AIC and BIC 

criteria for selecting the best model can only be used when the dependent variable is the same in 

the different models. In these five models with five different dependent variables, R2 should have 

been used to select the best model. Therefore, in retrospect, the per-entry point model is likely 

the best model among all five models because it has the highest R2. However, I used the per-fluid 

model for the Town field in the remainder of this study. For future work it is recommended to 

use the per-entry point model if this analysis was to be repeated.  
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Table 3.5—Comparison of the models of 44 wells in the Town dataset 

 

3.4 Case Study: Entire BC Montney Shale-Well Dataset   

In this section, I applied multivariable regression model on the 1,040 wells in the entire 

BC Montney. These 1,040 wells are located in the upper zone and treated with slickwater fluid, 

as discussed earlier in Chapter 2. I predicted B3, which is the first three consecutive months of 

production, from completion and production inputs, i.e., sand, fluid, entry points, lateral length, 

fluid type, first fracture year, field name, completion type, zone and true vertical depth. I 

developed five predictive models using the independent variables in Table 2.1. However, since 

all wells in this dataset are treated with slickwater and are in the upper zone, fluid type and zone 

variables in Table 2.1 are not included in the models. The independent variables and response 

variable for each model are in Table 3.6. 

 

 

 

 

 

Model R 2 AIC BIC 

Total completion 

parameters 
0.05 490 501 

Per lateral length 0.03 83 92 

Per fluid 0.20 -43 -32 

Per sand 0.06 102 111 

Per entry points 0.58 113 122 
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Model 

 

Inputs Output 

 

Total completion 

parameters 

 

Sand tonnes, Lateral length m, Fluid m3, Entry 

points, True vertical depth m, Completion type, 

Field name, First fracturing year 

 

B3, Mcfed 

Per lateral length 

 

Sand per lateral length tonnes/m, Fluid per lateral 

length m3/m, Entry points per lateral length 1/m, 

True vertical depth m, Completion type, Field 

name, First fracturing year 

B3 per lateral 

length, Mcfed/m 

 

Per fluid 

 

 

Sand per fluid tonnes/m3, Lateral length per fluid 

m/m3, Entry points per fluid 1/m3, True vertical 

depth m, Completion type, Field name, First 

fracturing year 

 

B3 per fluid, 

Mcfed/m3 

Per sand 

Fluid per sand m3/tonnes, Lateral length per sand 

m/tonnes, Entry points per sand 1/tonnes, True 

vertical depth m, Completion type, Field name, 

First fracturing year 

B3 per sand, 

Mcfed/tonnes 

Per entry points 

Fluid per entry points m3, Lateral length per entry 

points m, Sand per entry points tonnes, True 

vertical depth m, Completion type, Field name, 

First fracturing year 

B3 per entry 

points, 

Mcfed 

 

Table 3.7 shows five multivariable regression models with their coefficients and 

intercepts. The independent variables in the first model includes total lateral length, volume of 

fluid, mass of sand, and number of entry points. In the rest of models, the quantitative 

independent variables models have been normalized based on lateral length, volume of fluid, 

mass of sand, and number of entry points, respectively. For example, in the per-lateral-length 

model, volume of fluid, mass of sand, and number of entry points have been divided by total 

lateral length.  

 

Table 3.6—Multivariable regression model inputs and outputs in the entire Montney BC 

dataset 
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Table 3.7—Multivariable regression models for the entire Montney BC dataset 

 

Among the predictive models in Table 3.7, the per-fluid model is likely the best model 

for the dataset of 1,040 wells in the Montney BC because it has the highest R2 among the models 

(Table 3.8). The R2 shown in Table 3.8 is the 2-D R-squares of predicted vs. observed values. 

 

 

 

 

 

Total 

completion 

parameters 

(𝐵3)(0.25)  =  −17.4 ∗ 𝑆𝑎𝑛𝑑 -0.06 +  0.028 ∗ 𝐿𝐿0.53 − 6.5 ∗ 10−4

∗ 𝐹𝑙𝑢𝑖𝑑0.52 +  1.12 ∗ 𝐸𝑃0.13 +  119.7 ∗  𝑇𝑉𝐷−0.35

+  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 +  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 −  0.062

∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 +  131.2 

Per lateral 

length 

(𝐵3. 𝐿𝐿)(0.31)  =  −0.72 ∗ 𝑆𝑎𝑛𝑑. 𝐿𝐿−0.19 +  0.007 ∗ 𝐹𝑙𝑢𝑖𝑑. 𝐿𝐿0.53

+  0.51 ∗ 𝐸𝑃. 𝐿𝐿0.22 +  30.1 ∗  𝑇𝑉𝐷−0.38

+  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 +  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 −  0.016

∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 + 33.8 

Per fluid 

(𝐵3. 𝐹𝑙𝑢𝑖𝑑)(0.15)  

=  −0.07 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑 −0.37 +  4.22 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.0035

−  0.61 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑−0.108  +  4.17 ∗  𝑇𝑉𝐷−0.149  

+  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 +  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 −  0.006

∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 +  8.56 

Per sand 

(𝐵3. 𝑆𝑎𝑛𝑑)(0.34)  

=  0.01 ∗ 𝐹𝑙𝑢𝑖𝑑. 𝑆𝑎𝑛𝑑0.75 +  0.55 ∗ 𝐿𝐿. 𝑆𝑎𝑛𝑑0.17  

+  1.21 ∗ 𝐸𝑃. 𝑆𝑎𝑛𝑑0.18 +  15.48 ∗  𝑇𝑉𝐷−0.16 

+  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 +  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 −  0.02 

∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 +  42.1 

Per entry points 

(𝐵3. 𝐸𝑃)(0.1863)  

=  0.017 ∗ 𝐹𝑙𝑢𝑖𝑑. 𝐸𝑃0.2784 −  3.36 ∗ 𝐿𝐿. 𝐸𝑃−0.1032  

− 4.28 ∗ 𝑆𝑎𝑛𝑑. 𝐸𝑃−0.0478  − 0.00037 ∗  𝑇𝑉𝐷 

+  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 +  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 − 0.024 

∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 +  56.9 
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Table 3.8—Comparison of the models of 1,040 wells in the entire Montney BC 

 

 

Fig. 3.8 is a 2-D graph of predicted B3 per fluid on the y-axis and actual B3 per fluid of 

1,040 wells in the entire BC Montney on the x-axis. The R2 of predicted values vs. actual values 

for the per-fluid model of 1,040 wells is 0.78, which is relatively close to the maximum R2 value 

of 1. As mentioned earlier, R2 of a regression line for predicted vs. actual values represents the 

predictive power of a model. Slope of a regression line for predicted vs. actual values represents 

how well a model can predict the entire range of the response variable, especially the extremes. 

In the previous section, the per-fluid model for the 44 wells in the Town field has R2 of 0.20. The 

R2 of the per-fluid model for 1,040 wells in the Montney (0.78) is greater than the R2 of the per-

fluid model of 44 wells in the Town field (0.20). The slope of the regression line for predicted 

vs. actual B3 per-fluid values (blue line) is also closer to 1 than the 44-well Town-Field model. 

The full-dataset model (1,040 wells) is better than the reduced-dataset model (44 wells) likely 

because there is more data available in the full-dataset model. However, as shown in Fig. 3.8, the 

slope of the regression line for predicted vs. actual B3 per fluid values (blue line) is still less than 

1. Therefore, there is still uncertainty remaining in the model due to missing information. The 

missing information is most likely unavailable data such as rock properties (e.g., permeability, 

Model R 2 

Total completion 

parameters 
0.32 

Per lateral length 0.33 

Per fluid 0.78 

Per sand 0.37 

Per entry points 0.58 



 

37 

 

 

porosity). Including rock properties information in the dataset should result in a more accurate 

model, in which case the blue line would likely be closer to the unit-slope line (red line).  

 

 

 
Fig. 3.8—2-D regression line of predicted vs. actual B3 per fluid, Mcfed/ft3 values for 1,040 

wells in the BC Montney 

 

 

3.5 Comparison of Reduced Datasets vs. Full Dataset  

In the previous sections, I built multivariable models on the 1,040 wells in the entire BC 

Montney, including Town field, as well as models on the 44 wells in the Town field. In this 

section, I will use the full dataset of 1,040 wells along with three different reduced datasets 

(Town, Altares and Parkland) to build new models and compare their results. The models that 

are built in this section are independent and different from the models in Sections 3.3 and 3.4. In 

Section 3.3, the models of 44 wells in the Town field did not include TVD and FirstFracYear; 
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however, models in this section include TVD and FirstFracYear for 44 wells of Town field, 119 

wells of Altares and 63 wells of Parkland. Also, the models built in Section 3.4 did not include 

interaction terms; however, the model in this section for 1,040 wells has interaction terms. I will 

define the interaction terms in the following paragraphs.  

 The main objective of this section is to build two models with the exact same 

independent variables on two different datasets (full and reduced dataset) for three different 

fields (Town, Altares and Parkland). In the full dataset case (1,040 wells), there are more data 

available for modeling; therefore, statistical conclusions are expected to be more statistically 

significant and reliable compared to the reduced datasets (44 wells in Town, 119 wells in Altares 

and 63 wells in Parkland). However, the full dataset likely has a higher degree of uncertainty and 

heterogeneity in reservoir properties because it includes all 32 fields. On the other hand, the 

wells in the reduced datasets are likely more similar in rock properties since all of them are each 

in one field. In this section, I am going to assess whether the full dataset yields a more accurate 

model than the reduced dataset. To answer this question, as mentioned above, I selected three 

fields in the Northern Montney, Regional Heritage and middle sections of the Montney, which 

are the Town (44 wells), Altares (119 wells) and Parkland (63 wells) fields. All the wells in the 

three fields are treated with slickwater and located in the upper zone. The full-dataset model 

consists of interaction terms (variables in red in Eq. 20) between sand per fluid and 

UGRFieldname, EP per fluid and UGRFieldname, LL per fluid and UGRFieldname and TVD 

and UGRFieldname. This means that the coefficients of sand per fluid, EP per fluid, LL per fluid 

and TVD are different from one field to another field. The full-dataset model is a function of the 

variables below: 
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(𝐵3. 𝐹𝑙𝑢𝑖𝑑) =

 𝑓 (
𝑠𝑎𝑛𝑑. 𝑓𝑙𝑢𝑖𝑑, 𝐸𝑃. 𝑓𝑙𝑢𝑖𝑑, 𝐿𝐿. 𝑓𝑙𝑢𝑖𝑑, 𝑇𝑉𝐷, 𝐹𝑖𝑟𝑠𝑡 𝑓𝑟𝑎𝑐𝑦𝑒𝑎𝑟, 𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒,
𝑆𝑎𝑛𝑑. 𝑓𝑙𝑢𝑖𝑑 ∗  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒, 𝐸𝑃. 𝑓𝑙𝑢𝑖𝑑 ∗ 𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒, 𝐿𝐿. 𝑓𝑙𝑢𝑖𝑑 ∗  𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒,

𝑇𝑉𝐷 ∗ 𝑈𝐺𝑅𝐹𝑖𝑒𝑙𝑑𝑛𝑎𝑚𝑒

)                                 (20) 

 

The reduced models do not have interaction terms because the dataset belongs to only the 

Town field or the Altares field or the Parkland field. The reduced models are a function of the 

variables below:  

 

(𝐵3. 𝐹𝑙𝑢𝑖𝑑) =  𝑓(𝑠𝑎𝑛𝑑. 𝑓𝑙𝑢𝑖𝑑, 𝐸𝑃. 𝑓𝑙𝑢𝑖𝑑, 𝐿𝐿. 𝑓𝑙𝑢𝑖𝑑, 𝑇𝑉𝐷, 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟)                                  (21) 

 

Interaction terms in the full-dataset model measure the effect of one independent variable 

conditioned on the other independent variable. For example, the effect of sand per fluid on B3 

per fluid depends on the field that a well is located within. To measure the impact of sand per 

fluid on B3 per fluid for different fields, I defined an interaction term in the multivariable 

regression that consists of sand per fluid and field name, shown as 𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 ∗ 𝐹𝑖𝑒𝑙𝑑𝑁𝑎𝑚𝑒 in 

Eq. 22. This term means the trend of B3 per fluid vs. sand per fluid varies in the 32 different 

fields and depends on the field in which a well is located. Therefore, the coefficient of this term 

(𝑎8) in Eq. 22 holds 32 different values for 32 different fields. For example, for the Parkland 

field the value of the 𝑎8 coefficient is 0.27 and for Altares this value is 0.32. However, the value 

of 𝑎1 is the same for all 32 fields and equal to -0.34. The explanation is the same for all the other 

interaction terms in Eq. 22.  
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𝑩𝟑 = 𝑎0 +  𝒂𝟏 ∗ 𝑺𝒂𝒏𝒅. 𝑭𝒍𝒖𝒊𝒅 +  𝑎2 ∗ 𝑬𝑷. 𝑭𝒍𝒖𝒊𝒅 +  𝑎3 ∗ 𝑳𝑳. 𝑭𝒍𝒖𝒊𝒅 +  𝑎4 ∗

𝑻𝑽𝑫 +  𝑎5 ∗ 𝑭𝒊𝒓𝒔𝒕𝑭𝒓𝒂𝒄𝒀𝒆𝒂𝒓 +  𝑎6 ∗ 𝑼𝑮𝑹𝑭𝒊𝒆𝒍𝒅𝑵𝒂𝒎𝒆 +  𝑎7 ∗ 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 𝑻𝒚𝒑𝒆  + 

𝒂𝟖 ∗ 𝑺𝒂𝒏𝒅. 𝑭𝒍𝒖𝒊𝒅 ∗ 𝑭𝒊𝒆𝒍𝒅𝑵𝒂𝒎𝒆 +  𝑎9 ∗ 𝑬𝑷.  𝑭𝒍𝒖𝒊𝒅 ∗ 𝑼𝑮𝑹𝑭𝒊𝒆𝒍𝒅𝑵𝒂𝒎𝒆 +  𝑎10 ∗

𝑳𝑳.  𝑭𝒍𝒖𝒊𝒅 ∗ 𝑼𝑮𝑹𝑭𝒊𝒆𝒍𝒅𝑵𝒂𝒎𝒆 + 𝑎11 ∗ 𝑻𝑽𝑫 ∗ 𝑼𝑮𝑹𝑭𝒊𝒆𝒍𝒅𝑵𝒂𝒎𝒆              (22)                                                               

Table 3.9 shows the models in Town, Altares, and Parkland for the full and reduced 

datasets. The differences between Table 3.7 and Table 3.9 are interaction terms. Interaction 

terms are not included in Table 3.7. 
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Town  

full dataset 

 

    (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(0.14) = −0.35 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  −0.417 − 2.5 ∗
𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑−0.0047 − 0.024 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑−0.1009 +  15.8 ∗ 𝑇𝑉𝐷  −0.1347 −
0.006 ∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒  +  𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 ∗
𝑇𝑜𝑤𝑛𝐹𝑖𝑒𝑙𝑑 +  𝐸𝑃.  𝐹𝑙𝑢𝑖𝑑 ∗ 𝑇𝑜𝑤𝑛𝐹𝑖𝑒𝑙𝑑 +  𝐿𝐿.  𝐹𝑙𝑢𝑖𝑑 ∗ 𝑇𝑜𝑤𝑛𝐹𝑖𝑒𝑙𝑑 +
 𝑇𝑉𝐷 ∗ 𝑇𝑜𝑤𝑛𝐹𝑖𝑒𝑙𝑑 + 12.4 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)   

 

Town  

reduced dataset 

    (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(0.47) = 0.50 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  1.17 +  1.25 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.26 +
0.33 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.23 +  16.50 ∗ 𝑇𝑉𝐷  −3.43 − 0.013 ∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 +
26.4 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)   

 

Parkland 

full dataset 

    (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(0.14) = −0.35 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  −0.417 − 2.5 ∗
𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑−0.0047 − 0.024 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑−0.1009 +  15.8 ∗ 𝑇𝑉𝐷  −0.1347 −
0.006 ∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒  +  𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 ∗
𝑃𝑎𝑟𝑘𝑙𝑎𝑛𝑑𝐹𝑖𝑒𝑙𝑑 +  𝐸𝑃.  𝐹𝑙𝑢𝑖𝑑 ∗ 𝑃𝑎𝑟𝑘𝑙𝑎𝑛𝑑𝐹𝑖𝑒𝑙𝑑 +  𝐿𝐿.  𝐹𝑙𝑢𝑖𝑑 ∗
𝑃𝑎𝑟𝑘𝑙𝑎𝑛𝑑𝐹𝑖𝑒𝑙𝑑 +  𝑇𝑉𝐷 ∗ 𝑃𝑎𝑟𝑘𝑙𝑎𝑛𝑑𝐹𝑖𝑒𝑙𝑑 + 12.4 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)   

 

Parkland 

reduced dataset 

    (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(−0.2) = 0.018 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  −0.68 + 0.04 ∗
𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑−0.85 + 0.13 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑−0.10 − 9.34 ∗ 109 ∗ 𝑇𝑉𝐷  −3.13 +
0.007 ∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 − 14.4(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)  

Altares 

full dataset 

    (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(0.14) = −0.35 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  −0.417 − 2.5 ∗
𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑−0.0047 − 0.024 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑−0.1009 +  15.8 ∗ 𝑇𝑉𝐷  −0.1347 −
0.006 ∗ 𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒  +  𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 ∗
𝐴𝑙𝑡𝑎𝑟𝑒𝑠𝐹𝑖𝑒𝑙𝑑 +  𝐸𝑃.  𝐹𝑙𝑢𝑖𝑑 ∗ 𝐴𝑙𝑡𝑎𝑟𝑒𝑠𝐹𝑖𝑒𝑙𝑑 +  𝐿𝐿.  𝐹𝑙𝑢𝑖𝑑 ∗
𝐴𝑙𝑡𝑎𝑟𝑒𝑠𝐹𝑖𝑒𝑙𝑑 +  𝑇𝑉𝐷 ∗ 𝐴𝑙𝑡𝑎𝑟𝑒𝑠𝐹𝑖𝑒𝑙𝑑 + 12.4 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)   

 

Altares 

Reduced 

dataset 

𝐿𝑛(𝐵3. 𝐹𝑙𝑢𝑖𝑑) = −0.05 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑢𝑖𝑑  −0.64 − 1.3 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑−0.26 ∗
+5.2 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.15 − 3.53 ∗ 10−12 ∗ 𝑇𝑉𝐷  3.41 − 0.12 ∗
𝐹𝑖𝑟𝑠𝑡𝐹𝑟𝑎𝑐𝑌𝑒𝑎𝑟 + 240.1  

Table 3.9—Full and reduced dataset models in Town, Parkland, Altares fields 

I plotted predicted vs. actual values from the full and reduced models for the Town, 

Parkland and Altares fields in Fig. 3.9 to Fig. 3.11. To select the best model between reduced and 

full dataset models in each field, I based my conclusions on R2 and the slope of predicted vs. 

actual values of these plots. For the Town field, the reduced model is better in both respects. The 

R2 of the per-fluid model in Section 3.4 was higher than the R2 of the per-fluid model in Section 

3.3. This is probably because the per-fluid model of Section 3.3 did not include TVD and first 

fracturing year as variables, but the reduced model in this section does include them. Moreover, 
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the R2 of the per-fluid model in Section 3.4 is for the entire Montney and not just the Town field. 

In Parkland and Altares fields, the reduced and full models are similar in both respects, although 

the full model is slightly better.  

 
Fig. 3.9—Predicted vs. actual B3 per fluid (Mcfed/ft3) in the Town field for full and 

reduced models 
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Fig. 3.10—Predicted vs. actual B3 per fluid (Mcfed/ft3) in the Parkland field for full and 

reduced models 

 
Fig. 3.11—Predicted vs. actual B3 per fluid (Mcfed/ft3) in the Altares field for full and 

reduced models 
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Table 3.10 summarizes R2 and slope for the full and reduced datasets in Town, Altares 

and Parkland fields. The R2 shown in Table 3.10 is the 2-D R-squares of predicted vs. observed 

values.  

Table 3.10—Summary of full and reduced models in the Town, Parkland and Altares fields 

 

I will use the per-fluid model for the Town field selected in Section 3.3.2 in the 

remainder of this study. In the next section, I will develop a type curve for 44 well in the Town 

field and use the per-fluid model from Section 3.3.2 to scale the type curve.  

 

3.6 Build Type Curve of 44 Wells in the Town Field 

The next step in the analysis was to build the production type curve of the 44 wells in the 

Town field that is used later in the economic analysis. To build the type curve, I first forecasted 

40 years of monthly production for individual wells in the Town field by applying hyperbolic 

decline curve analysis of the historical data.  

These 44 wells started producing on different dates; therefore, I shifted all wells to the 

same time zero. Zero-time shifting means that the first month of production for all wells is 

assigned to month one regardless of their start production date, the second month of production 

for all wells are assigned to month two of production for all wells regardless of their date, and so 

forth. After applying zero-time shifting to monthly production of the 44 wells, I calculated a final 

type curve for the area by averaging monthly productions of those wells.  

 
Full model 

R2  

Reduced model 

R2 

Full model 

slope 

Reduced model 

slope 

Town 0.33 0.60 0.33 0.57 

Parkland 0.61 0.57 0.46 0.48 

Altares 0.90 0.88 0.54 0.58 
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When computing the zero-time average, there is a concern of survivor bias generating 

artificially high or low tail declines. As time progresses, some of the wells with fewer months of 

production no longer have data to average; therefore, there is undue focus on wells that have 

survived. One solution to avoid survivor bias is to include the production forecast for each well 

in the averaging process. Thus, in the earliest zero-time months the average consists of all 

historical data and later in time the average grades to all forecasted data. 

The zero-time type curve for the Town field, including forecasted data in the average, is 

the red line in Fig. 3.12. There is an uncertainty in the red line given that is based on forecasts. 

The green line in Fig. 3.12 illustrates an average curve based solely on historical data and is 

subject to survivor bias. As seen by inspection, survivor bias in this dataset results in a lower 

forecast after 50–60 months. The left side of the purple line shows the first 78 months of 

production, in which more than 50% of wells have historical data. The secondary y-axis shows 

the well count. It starts from 44 wells and, at month 78, only 23 wells have historical data. I 

regressed these 78 months of production to forecast 40 years of performance using hyperbolic 

decline curve analysis (Fig. 3.13). The decline curve with terminal decline of 6% (red curve with 

dash line in Fig. 3.13) is used as the basis for the reservoir simulation and economic analysis in 

the next chapters. The terminal decline of 6% is standard in the field and provided by UGR LLC. 

The qi, Di and b of the Town field type curve are 3,366 Mcfed, 1.097 (per year, nominal) and 

1.46, respectively. The B3 of the type curve is 3,039 Mcfed. 
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Fig. 3.12—Type curve of 44 wells 
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Fig. 3.13—Decline curve of 44 wells 

 

 

3.7 Calculate Well Spacing for the Town Type Curve 

After building the type curve, the objective in this section is to calculate a development 

well spacing. For this purpose, I first determined if the 44 wells in the Town field are isolated or 

non-isolated. There are two types of wells: 

• Type (a): a horizontal well in isolation (no other wells near enough to constrain 

any of the well’s boundaries). A Type (a) well has maximum distance 

perpendicular to the lateral that is equal to the radius of a 0.25 miles2 circle. This 
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number is provided by UGR based on mapping and the most likely drainage 

distance. This is 1,489 ft from each side of the lateral (Fig. 3.14).  

 

 

 

 

 

 

 

 

 

Fig. 3.14—Schematic of drainage area 

 

• Type (b): a horizontal well that is not of Type (a) above, meaning somewhere 

near the well, there is at least one other well close enough to constrain its 

boundaries such that it is not a Type (a) well. 

If all wells were in isolation (Type (a)), then the drainage distance would be 1,489 ft from 

each side of the lateral. Therefore, first I drew a line of Type (a) area (assuming the 44 wells are 

in isolation) vs. lateral length (Fig. 3.15). Then, I added the Voronoi drainage areas vs. lateral 

length of the 44 wells (Fig. 3.15). As shown, Voronoi drainage areas are below the Type (a) line, 

indicating all wells in the field are non-isolated. 

 

 Drainage area of Type (a) well = Lateral length * Well spacing + 0.25 miles2  (23)  

Well 

0.125 miles2 
 

0.125 miles2
 

1,489 ft 
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Fig. 3.15 —Voronoi areas of 44 -Well in the Town field 

 

All 44 wells are non-isolated; therefore, to calculate the average well spacing, the 

relationship between drainage area of the type well in the Town field, lateral length and well 

spacing can be written as below. 

 

By inserting an average lateral length of 4,838 ft and an average Voronoi drainage area of 

15,659,832 ft2 for the 44 wells, I computed the corresponding average well spacing.  
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 Drainage area of type (b) wells = Lateral length × Well spacing + π 
× (Well spacing / 2)2,                                                                                                           

  (24) 

  4,838 × Well spacing + π × (Well spacing/2)2 – 15,659,832=0   (25) 
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Solving Eq. 25, the average well spacing is 2,344 ft. With this average well spacing and 

porosity of 0.031, water saturation of 0.25, net pay of 262 ft and gas volume factor of 0.00079 

bbl/scf (I assumed the porosity value; the other reservoir properties were provided by UGR), I 

calculate the original gas in place (OGIP) as below: 

 

OGIP = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 ×𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ×(1−𝑊𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛)×𝑁𝑒𝑡 𝑝𝑎𝑦

𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
 

= 
15,659,832×0.031×(1−0.25)×262

0.00079 ×5.615
  

= 21.2 × 109 scf = 21.2 Bcf                                                                               (26)                                                                               

Using the type curve with terminal decline of 6%, developed in the Section 3.6, yields 

6.06 Bcf of estimated ultimate recovery (EUR) based on a 40-year well life. Therefore, the 

calculated recovery factor is 29% using Eq. 27. 

Rf = 
𝐸𝑈𝑅

𝑂𝐺𝐼𝑃
 × 100 = 

6.06

21.2
× 100 = 29%                                                              (27)                                                                        

The calculated 29% recovery factor is far below the typical recovery factor of 65%. It 

appears that wells on average are not able to effectively drain an area corresponding to an 

average well spacing of 2,344 ft. Therefore, 1,312 ft was recommended by UGR LLC to be used 

as well spacing for future wells in the rest of analysis since it corresponds to a standard for the 

local area. A development spacing of 1,312 ft yields a recovery efficiency of 57%, which is 

below the 65% upper limit used by most reserves auditors. Later in Chapter 4, I used half of this 

well spacing (656 ft) as the maximum value that fracture half-length can take.  

3.8 Design 300 Completion Cases for Economic Analysis 

In this section, I define the completion cases for economic analysis. In the next section, I 

apply the predictive multivariable model (per-fluid) that was developed previously for the Town 
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field to predict B3 for these completion cases. Later in Chapter 5, the Town field production type 

curve is scaled by the ratio of predicted B3 to the type curve B3 to provide a production forecast 

for a specific completion design. The resulting production profiles, along with completion and 

drilling cost models, was used in an economic analysis to identify the economic optimum 

completion design. 

Sand, lateral length and entry points were the critical variables in the per-fluid model in 

the previous section. Therefore, I defined 3 sets of values for these completion parameters: 6 

values for lateral length, 5 values for sand intensity and 10 values for entry points. The 

combination of these parameter values results in 300 different cases (Table 3.11). 

EP 
LL, 

ft 

Sand Intensity, 

lb/ft 

10 3,280 471 

25 4,920 942 

50 6,560 1,413 

100 8,200 2,019 

150 9,840 2,688 

200 13,120 
 

250  

350  
400 

Table 3.11—Completion parameters utilized in 300 completion designs 

 

Some of these 300 designed sets fall inside the range of current completion practices in 

the industry (highlighted in Table 3.11); others fall outside current practices. In all the 300 

designs, sand-to-fluid ratio is 52.3 
𝑙𝑏

𝑏𝑏𝑙
 . Table 3.12 shows the actual ranges of completion 

parameters for the 44 wells in the Town field. 
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 EP 
LL, 

ft 

Sand Intensity, 

lb/ft 

Minimum 10 3,280 471 

Average 24 4,838 712 

Maximum 64 6,560 1,344 

Table 3.12—Range of current completion designs in the Town field 

 

I designed 300 completion cases that encompass both current and potential practices. For 

lateral length and sand-intensity parameters, the range starts from minimum values in the current 

completion parameters of the Town field and ends at two times the maximum value of these 

current completion parameters. For example, in the Town field, the minimum value for lateral 

length is 3,280 ft and the maximum value is 6,560 ft. Therefore, designed sets start from 3,280 ft 

and continue up to 13,120 ft, which is two times the maximum current practice in the field. Since 

in the 44-well dataset there is no well that is completed with the maximum values of sand 

intensity, LL, using two times the maximum values provide sufficient parameter space. To define 

the range for EP, UGR LLC recommended to design the number of stages between 10 to 50 as 

lower and upper values of number of stages (first column of Table 3.13). Then I calculated EP 

using relationship between number of entry points and number of stages (Eq. 28). For example, 

using 50 stages in Eq. 28, EP will be 400 and using 10 stages in the Eq. 28, EP will be 10.   

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠 × 9.75 − 87.5                             (28) 

 

Number of stages is important because it will be used for the economics later in Chapter 

5. Number of stages and number of entry points are shown in Table 3.13 using Eq. 28. For 10 
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entry points, number of stages is 10 and there is a 1:1 ratio. For 400 entry points, the number of 

stages is 50 and there is 8:1 ratio. The linear relationship between number of entry points and 

number of stages is shown in Fig. 3.16. 

Number of stages EP 

10 10 

12 25 

14 50 

19 100 

24 150 

29 200 

35 250 

40 300 

45 350 

Table 3.13—Number of entry points and the number of stages 
 

 

 
Fig. 3.16—Correlation between entry points and the number of stages 
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3.9 Predict Well Performance of 300 Completion Cases, Per-Fluid Model 

In this section, I used the per-fluid model to predict B3 of the 300 cases defined in the 

previous section. In Table 3.14, column “B3(regressed)” is the calculated B3 from the per-fluid 

regression model in the Town field for minimum, mid-point, and maximum of current and 

potential completion practices in the 300 cases (“mid-point” was defined in terms of parameter 

values in SI units). The last column of Table 3.14 is the ratio of regressed B3 (calculated in the 

previous column) to the type curve B3 of the Town field. The B3 of the type curve in the Town 

field is a constant value of 3,039 Mcfed. The word “Inside” in Table 3.14 refers to completion 

designs defined in Section 3.8 that are inside the current practices in the industry. Similarly, the 

word “Outside” in Table 3.14 refers to potential completion designs defined in Section 3.8 that 

are outside of the current practices in the industry. 

 As shown in Table 3.14 for the average completion of 44 wells, the regression predicts 

B3 close to the type curve B3 of 44 wells (their ratio is 1.3). This ratio close to one is expected 

because the regression model is calibrated to the average well in the Town field and the type 

curve is also calculated from zero-time averaging of 44 wells in the town field.   

The ratio of regressed B3 to the type curve B3 for the minimum completion of 10 entry 

points, 471 lb/ft of sand and 3,280 ft of lateral length is 0.7. As the completion parameters 

increase, this ratio increases. For the maximum completion of 400 entry points, 2,688 lb/ft of 

sand and 13,120 ft of lateral length the ratio is 8.2 and B3 is 25,024 Mcfed. As completion 

parameters get further outside the space of current completion parameters, the rate of increase of 

the ratio increases. 
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 EP 
Sand Intensity, 

lb/ft 

Lateral length, 

ft 

B3(regressed), 

Mcfed 

B3(regressed), Mcfed / 

B3, Mcfed (from type 

curve of 44 wells) 

Minimum completion 10 471 3,280 2,127 0.7 

Average completion from 44 

wells 

24 712 4,838 4,073 1.3 

Mid-point completion-Inside 25 942 4,920 4,924 1.6 

Maximum completion-Inside 50 942 6,560 6,064 2.0 

Mid-point completion-Outside 200 1,413 6,560 8,649 2.8 

Maximum completion-Outside 400 2,688 13,120 25,024 8.2 

Table 3.14—B3 of minimum, mid–point, and maximum of current and potential 

completion practices in the 300 cases 

 

Fig. 3.17 to Fig. 3.22 are cumulative production and gas rates of the 6 completion designs 

in Table 3.14. The red triangles in these figures are the actual data of gas rate and cumulative 

production that are calculated by zero-time averaging of actual data of 44 wells in the Town 

field, which represents average completion parameters of the Town field. The green lines in 

these figures are the original type curve in the Town field that was developed in the Section 3.8. 

The dark blue lines in these figures are the scaled type curve in the Town field using the scaling 

ratio calculated in the last column of Table 3.14. For example, for the minimum completion the 

scaling ratio is 0.7, which is 2,127 divided by 3,039. Therefore, all monthly gas rates of the 

original type curve are scaled by 0.7 (dark blue line) in the figure. Later in Chapter 5, I will use 

the scaled type curve to perform economic analysis.  
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Fig. 3.17— Comparison of regressed typed curve vs. type curve and actual data for the 

minimum completion with 10 Entry Points, 471 lb/ft, 3,280 ft 
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Fig. 3.18—Comparison of regressed typed curve vs. type curve and actual data for the 

average completion with 24 Entry Points, 712 lb/ft, 4,838 ft 
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Fig. 3.19— Comparison of regressed typed curve vs. type curve and actual data for the 

mid-point completion with 25 Entry Points, 942 lb/ft, 4,920 ft 
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Fig. 3.20— Comparison of regressed typed curve vs. type curve and actual data for the 

maximum completion with 50 Entry Points, 942 lb/ft, 6,560 ft 
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Fig. 3.21— Comparison of regressed typed curve vs. type curve and actual data for the 

mid-point completion with 200 Entry Points, 1,413 lb/ft, 6,560 ft 
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Fig. 3.22— Comparison of regressed typed curve vs. type curve and actual data for the 

maximum completion of with 400 Entry Points, 2,688 lb/ft, 13,120 ft 
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history matching. However, the limitation of data analytics methods is that they are by 

construction interpolation models. Therefore, they should be used with great caution for 

extrapolation beyond the range of given data. Fig. 3.23 illustrates the large error that can result 

from using multivariable regression to extrapolate beyond a range of observed data. Assuming 

that the red line is the true function of blue dots in Fig. 3.23, extrapolating the blue line leads to 

large error in predictions.  

 

 
Fig. 3.23—Invalid extrapolation beyond the range of observed data with multivariable 

regression with assumption that red curve is the true function  
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CHAPTER 4 RESERVOIR SIMULATION MODELS 

 

4.1 Introduction 

In this chapter, my objective is to predict well performance for a specific completion 

design using a physics-based reservoir simulation model calibrated against production data. A 

physics-based model will still be uncertain outside the dataset used for calibration, and the 

uncertainty should be greater the further one gets away from the calibration dataset. However, 

because extrapolation outside the dataset with simulation is constrained by the laws of physics 

while extrapolation outside the data with data analytics is not constrained by the laws of physics, 

one would expect the uncertainty for extrapolation with simulation to be lower than that for data 

analytics.   

I used a simulation model to predict production performance for the 300 completion 

designs described in the previous chapter (Table 3.11), which are inside and outside the range of 

current practices. To create a reservoir simulation model in the Town field, I used the production 

profile of the production type curve with terminal decline of 6% in the Town field developed in 

the previous chapter (Fig. 3.13). First, I performed a history match of 78 months of gas rates 

from the production type curve, as well as observed wellhead pressure data. Then I used the 

history-matched reservoir simulation model to calculate the B3 of the 300 completion designs. 

Next, I predicted 40-year production profiles for the 300 completion designs (Table 3.11) in the 

Town field that will be used in Chapter 5. 
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4.2 History Matching 

History matching is a process to calibrate a reservoir simulation model so that the 

production and pressure data predicted by the model match the observed production rates and 

pressures. This is accomplished by trying many different combinations of reservoir and 

hydraulic-fracture properties and finding the combination of parameters that minimizes the 

differences between predicted and observed production and pressure data. History matching is 

necessary due to uncertainties in important subsurface properties such as formation permeability 

and fracture half-length. 

In this study, I performed a history match of the production type curve with a multi-

fractured horizontal lateral length of 4,838 ft, 24 entry points, 3,448,030 lb of sand and 712 lb/ft 

of sand intensity (Table 4.1), which are the average values of these parameters for the 44 wells in 

the Town field. Each entry point is assumed to have a single transverse fully-penetrating 

hydraulic fracture. Hydraulic fractures in this study are assumed identical and 100% effective, 

which means only one of them needs to be modeled in reservoir simulation, due to the symmetry 

of the drainage area. 

I used the reservoir properties of the Town field provided by UGR to perform the history 

match (Table 4.2). The well spacing in Table 4.2 was calculated in Section 3.7. Entry point 

spacing in Table 4.2 is computed by dividing completed the lateral length of 4,838 ft by 23, 

which is number of spaces along the lateral. Since there are 24 entry points in the well, there are 

23 spaces between entry points. I performed history matching on the 78 months of gas 

production and well pressure data. Since bottom-hole pressures are not available in this study, I 

used a common operating condition of 200 psi for the wellhead pressure (recommended by 

UGR) as a matching parameter.  
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Table 4.1—Summary of average well completion used in the history match 

 

 

 

Porosity 0.031 

Water saturation 0.25 

Reservoir pressure, psi 3,647 

Bottom-hole temperature, F 190 

Well spacing, ft 1,312 

Average depth, ft 6,038 

Net pay, ft 262 

Gas gravity 0.7 

Entry point spacing, ft 211 

Table 4.2—Reservoir and fluid properties 

 

Fig. 4.1 is a schematic of the drainage area. In the figure, the well is in the green lines and 

fractures are in the blue lines. The red dashed line is the boundary of each fracture. The resulting 

single-fracture model does not properly model the fractures at each end of the well, but it does 

adequately model the interior fractures.  

Completed lateral 

length, ft 
 

Total entry points 
Total sand, 

lb 

Sand intensity, 

lb/ft 

4,838 24 3,448,030 712 
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Fig. 4.1—Schematic of the drainage area 

 

I modeled one fracture and used the symmetry of the drainage area to divide the well gas 

rates by the number of fractures (24) and calculate the production of one fracture. Therefore, to 

calculate the gas rate for the entire well length, the simulation results should be multiplied by the 

number of fractures. The original gas in place (OGIP) for the assumed drainage area (1 fracture) 

from the simulation model is 0.384 Bcf. Therefore, OGIP for the drainage area of the full 

wellbore (24 fractures) from the simulation model is 9.2 Bcf.  

The horizontal well is in the i direction (red dot) and fracture is in j direction (yellow 

dash line) (Fig. 4.2). The fracture in the j direction is perpendicular to the wellbore in the i 

direction. The model has a single-porosity system with two phases—water and gas. There are 

60,075 grids in the model—25 grids in i direction, 267 grids in the j direction and 9 layers in the 

z direction. I refined gridding near the wellbore logarithmically to capture large pressure drops. 

Since I simulated one fracture, the fracture spacing in the i direction is 211 ft. I assumed the well 

is not isolated (as discussed in the Section 3.7) and the fracture half-length can grow to the tips 
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of fractures in adjacent wells. The drainage distance calculated in Section 3.7 was 1,312 ft and 

was assumed to be the well spacing for future wells. Therefore, fracture half-length in the j 

direction can grow to half of the well spacing, which is 656 ft.  

 In the history matching process, it is possible to get matches in which fracture heights 

are significantly greater than total fracture length, which is not realistic. To prevent these history 

matching cases, I tested three different fracture heights with a constraint on total fracture lengths. 

The constraint was that total fracture length can be significantly greater than fracture height if 

there are sufficient barriers to vertical fracture growth, but it cannot be less than the fracture 

height. The first-case fracture height has reservoir net pay of 262 ft and total fracture length more 

than 262 ft. The second-case fracture height has 7/9 reservoir net pay, which is 204 ft, and total 

fracture length more than 204 ft. The third-case fracture height has 5/9 reservoir net pay, which 

is 145 ft, and total fracture length more than 145 ft.  

  
Fig. 4.2—Schematic of well and gridding 
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History match parameters are fracture permeability, matrix permeability and fracture 

half-length (Table 4.3). Fracture half-length has a uniform distribution, and all possible values 

from 5 ft to 656 ft for fracture half-length have an equal chance in the matching process. 

Permeabilities of the fracture and matrix have logarithmic distributions since permeability 

usually is lognormally distributed. Lognormal distributions are truncated by upper and lower 

bounds. The values for lower and upper bounds of the distributions were provided by UGR.  

Parameters Minimum Maximum Distribution 

Permeability of matrix, md 1E-6          0.01 Lognormal 

Permeability of fracture, md 1         1,500 Lognormal 

Fracture half-length, ft 5         656 Uniform 

Table 4.3— Prior distributions of history match parameters 

                                   

Since bottom-hole pressure data are not available in this study, I used a common 

operating condition of 200 psi for the wellhead pressure (recommended by UGR). After I built 

the model, I performed history matching with one objective function that has 2 terms. The two 

terms are cumulative gas production and 200-psi wellhead pressure. The primary well constraint 

in the first three months of production is rate and the secondary constraint in the first three 

months of production is wellhead pressure of 200 psi. Starting in month four, wellhead pressure 

of 200 psi is the primary constraint.  

As I mentioned earlier, I constrained fracture half-length. The constraint is that fracture 

half-length should be greater than half of the fracture height. For this purpose, I performed a 

history match on three different fracture-height cases with constrained fracture half-length (Table 

4.4). In the table there is a percentage of error for matching cumulative gas and a percentage 

error for matching wellhead pressure with historical data. I averaged the percentage error of 
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these two terms of the objective function and selected the case with a minimum average 

percentage error. This table shows the best match is the second one with the minimum average 

percentage error of wellhead pressure and cumulative gas. The fracture half-length is 343 ft, the 

permeability of fractures is 2.51 md and the permeability of matrix is 112.2 nd (Table 4.4). I will 

use the second model in the table for further analysis in this chapter. 

 

Case  

Formation 

height, 

ft 

Fracture  

height,  

ft 

Constraine

d fracture 

half-length, 

ft 

Error rate 

(Cumulative 

gas)  

Error rate 

(WHP) 
 

Average error 

rate for WHP 

and cumulative 

gas 

Xf, 

ft 

Permeabilit

y matrix,  

nd 

Permeability 

fracture, 

md 

1 262 262 > 131 84% 
0.0000087

% 
42% 393 60.2 1.86 

2 262 
204 (7/9 H 

formation) 
> 102 66% 0% 33% 343 112.2 2.51 

3 262 
145 (5/9 H 

formation) 
> 72 97% 0% 48% 583 79.4 3.46 

Table 4.4—Results of the history match 

 

 

In Fig. 4.3, Fig. 4.4 and Fig. 4.5 the blue circles show historical data for the 78 months, 

and the red line shows the predicted values from reservoir simulation for Case 2. The red line 

and blue circles align relatively closely, which indicates the reservoir simulation model is a good 

match. 
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Fig. 4.3—History match of gas production rates - one entry point 

 

 
Fig. 4.4—History match of cumulative gas - one entry point 
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Fig. 4.5—History match of wellhead pressure - one entry point 

 

 

 

4.3 Comparison between Predicted B3 per Fluid from Reservoir Simulation to the Actual B3 

Per- Fluid of 44 Wells  

In this section, I compared the predicted B3 from reservoir simulation developed in 

Section 4.2 to the actual B3 of the 44 wells. Fig. 4.6 is a 2-D plot of predicted B3 per fluid model 

using both reservoir simulation (blue dots) and the regression model (orange dots) on the y-axis 

and actual B3 per fluid of 44 wells in the Town field on the x-axis. The R2 of the orange line for 

the regression model is 0.2 and R2 of the blue line for the simulation model is 0.11, which shows 

there is more uncertainty in the simulation model for the 44 wells in the Town field. However, 

neither of the models do a good job in predicting individual wells. Furthermore, the orange line 

for the regression model is flatter (lower slope) compared to the blue line for the simulation 
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model. Thus, the simulation model does a better job in predicting the extremes than the 

regression model. However, neither model predicts well over the full range of B3-per-fluid 

values. 

In summary, there is a trade-off between slope and R2. The simulation model has a greater 

slope compared to regression model; as a result, it can better predict the extremes of B3 

compared to the regression model. However, the simulation model has a smaller R2 compared to 

the regression model and, thus, there is more uncertainty in the simulation model compared to 

the regression model.  

 

 
Fig. 4.6—2-D regression line of predicted vs. actual B3 per fluid, Mcfed/ft3 values for 44 

wells in the Town field 
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4.4 Predict Well Performance of 300 Completion Cases Using Simulation Model 

  In this section, I used the calibrated simulation model to predict B3 of the 300 cases 

defined in Section 3.8. Table 4.5 shows the B3 for the minimum, mid–point, and maximum of 

current and potential completion practices in the 300 cases that are predicted from reservoir 

simulation. The fifth column is predicted B3 from the reservoir simulation model, and the sixth 

column is the ratio of predicted B3 from reservoir simulation to the B3 of the 44-well type curve, 

3,039 Mcfed. As the completion parameters increase, the ratio of simulation B3 to the type-curve 

B3 increases. 

   For the average completion of 44 wells, the reservoir simulation model predicts B3 close 

to the type-curve B3 of 44 wells (their ratio is 1:1). This ratio is expected because I developed a 

reservoir simulation model based on the type curve of the 44 wells and completion design of the 

average entry points, lateral length and sand intensity of the 44 wells. In 3.14, the value for the 

same ratio from the regression model is 1.3, which demonstrates that reservoir simulation does 

better in predicting B3 for the average well.  

 Entry point 

Sand 

Intensity, 

lb/ft 

Lateral 

length, 

ft 

B3, 

Mcfed 

(predicted from 

simulation model) 

B3, Mcfed (predicted from 

simulation model)/ B3, Mcfed 

(from type curve of 44 wells) 

Minimum completion 10 471 3,280 2,193 0.7 

Average completion from 44 

wells 
24 712 4,838 3,485 1.1 

Mid-point completion-Inside 25 942 4,920 4,644 1.5 

Maximum completion-Inside 50 942 6,560 7,053 2.3 

Mid-point completion-Outside 200 1,413 6,560 10,031 3.3 

Maximum completion-Outside 400 2,688 13,120 15,508 5.1 

Table 4.5—Reservoir-simulation-predicted B3 and its ratio to the type curve B3 of 44 wells 

for the minimum, mid–point and maximum of current and potential completion practices 

in the 300 cases 
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After performing the history match, I used the matched parameters in the reservoir 

simulation model to compute 40 years of gas production rates (from 2017 to 2057) for the 300 

defined completion designs. Using these rates, I performed economic analysis in the next 

chapter. 

Fig. 4.7 to Fig. 4.12 are cumulative production and gas rates of the 6 completion designs 

in Table 4.5. The red triangles in these figures are the actual data of gas rates and cumulative 

production that are calculated by zero-time averaging of production data from the 44 wells. The 

green lines in these figures are the original type curve and its cumulative production in the Town 

field that was developed in Section 3.6. The dark blue lines in these figures are gas rates and 

cumulative production from the reservoir simulation model. These figures show that as 

completion parameters increase, cumulative production (blue line) increases. However, the 

increase is bounded by physics of the simulation model such as reservoir size and friction, and it 

does not increase as much as for the regression model. For example, the cumulative production 

(blue line) in Fig. 4.10 is 8.8 Bcf after 480 months while cumulative production (blue line) in 

Fig. 3.20 for the same design in the regression model is 12.4 Bcf after 480 months. 

In Fig. 4.7, simulated gas rates of the minimum completion design (blue line) are below 

actual gas rates and the Town field type curve (red and green lines). The ratio of the B3 from 

simulation to B3 of the type curve is 0.7.  
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Fig. 4.7—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

minimum completion with 10 Entry Points, 471 lb/ft, 3280 ft 

 

 

In Fig. 4.8, simulated gas rates of the average completion design (blue line) are similar to 

actual gas rates and the type curve of Town field (red and green lines) as expected. The ratio of 

the B3 from simulation to B3 of the type curve is 1.1. 
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Fig. 4.8—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

average completion with 24 Entry Points, 712 lb/ft, 4,838 ft 

 

In Fig. 4.9, simulated gas rates of the mid-point completion design (blue line) are greater 

than actual gas rates and the type curve of Town field (red and green lines). The ratio of the B3 

from simulation to B3 of the type curve is 1.5. 
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Fig. 4.9—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

mid-point completion with 25 Entry Points, 942 lb/ft, 4,920 ft 

 

In Fig. 4.10, simulated gas rates of the maximum completion design inside the current 

industry practices (blue line) are greater than actual gas rates and the type curve of Town field 

(red and green lines). The ratio of the B3 from simulation to B3 of the type curve is 2.3. 
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Fig. 4.10—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

maximum completion with 50 Entry Points, 942 lb/ft, 6,560 ft 

 

In Fig. 4.11, simulated gas rates of the mid-point completion design which is outside the 

space of current industry practices (blue line) are greater than actual gas rates and the type curve 

of Town field (red and green lines). The ratio of the B3 from simulation to B3 of the type curve 

is 3.3. 
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Fig. 4.11—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

mid-point completion with 200 Entry Points, 1,413 lb/ft, 6,560 ft 

 

In Fig. 4.12, simulated gas rates of the maximum completion design, which is outside the 

space of current industry practices (blue line), are greater than actual gas rates and the type curve 

of Town field (red and green lines). The ratio of the B3 from simulation to B3 of the type curve 

is 5.1. 
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Fig. 4.12—Comparison of simulation gas rates vs. type curve and actual gas rates for the 

maximum completion with 400 Entry Points, 2,688 lb/ft, 13,12
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CHAPTER 5 ECONOMIC ANALYSIS 

 

In this chapter, the main objective is to identify an economic optimum completion for the 

upper Montney formation in the Town field in British Columbia, Canada. To perform the 

optimization a wide range of completion designs must be evaluated from cost, well performance 

and financial perspectives. I approximated the range of completion designs with 300 specific 

completion designs incorporating varying values of lateral length (3,280 to 13,120 ft), number of 

fracture entry points (10 to 400) and sand intensity (471 to 2,688 lb/ft). These ranges are defined 

in Chapter 2. In this chapter, I describe well-cost models for the completion and drilling costs 

that are applied to the 300 completion designs, resulting in well costs ranging from $3.5 to $14.6 

MM for a commodity price of CAD$2/MMbtu. These well costs are combined with the predicted 

production performance calculated from the reservoir-simulation and multivariable-regression 

models to compute rate of return and present value to identify the economic optimum completion 

design. All monetary values are in CAD$ unless specifically noted otherwise.  

 

5.1 Range of Completion Designs 

The ranges of values for each completion design parameter as found in the existing wells 

in the Town field are shown in Table 3.11. This table lists the parameters used for the 300 

completion designs evaluated in this study. There are 6 values for lateral length, 5 values for 

sand intensity and 10 values for fracture entry points. The completion technology in the 44 Town 

wells is ball-drop-sleeve. However, the completion technologies in the 300 cases in this chapter 

are a blend of plug-and-perf and ball-drop-sleeve technologies, since some of these cases have 
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400 entry points and it is not viable to complete a well with 400 entry points with ball-drop-

sleeve technology.   

The plug-and-perf system (Fig. 5.1) utilizes bridge plugs and perforation guns at specific 

intervals in a wellbore. This is the most common method of stimulating flow from low-

permeability formations completed with horizontal wells in North America. The completion 

starts at the toe of the wellbore (the furthest end of the well), completing one stage at a time and 

moving from the toe towards the heel (where the wellbore begins to bend towards the vertical). 

Once the first stage is completed, a bridge plug is set inside the lateral to isolate the prior stage 

perforations from the about-to-be completed stage. Once the bridge plug is set, the perforation 

gun creates holes in the casing that penetrate the reservoir. Then hydraulic pressure is applied to 

the inside of wellbore, forcing fluid from the wellbore, through the perforations and into the 

rock. As the fluid is forced into the rock, the pressure builds until the rock fractures. As the 

fractures are created and extended by pumping additional fluid, proppant (sand or man-made 

sand-sized particles) is added to the fluid in order to fill and prop open the fractures in the rock. 

Once pumping stops, the fluid leaks off into the formation, leaving the propped fractures as 

conduits for flowing hydrocarbons from the formation to the wellbore. The propped fractures are 

much better conduits for flow than the unfractured formation. The bridge plug, perforation & 

fracturing process is then repeated for each stage until the entire lateral has been completed. 

Following the completion of the last stage, the plugs are drilled out to allow all stages to 

contribute to production.  
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Fig. 5.1—Plug-and-perf system 

 

The ball-drop-sleeve system (Fig. 5.2) uses balls that are dropped into the wellbore while 

pumping fluid to shift sliding sleeves in the lateral section, which allows communication with the 

reservoir at specific intervals. The balls are sized so that the stages are opened sequentially from 

toe to heel. This is a common completion practice in the Montney formation in Canada. To 

complete a single stage, a single ball of a specific size is pumped through the well until it seats in 

a restriction inside the wellbore that is sized specifically for that ball. When the ball seats, the 

wellbore is temporarily a closed system so hydraulic pressure builds until it is sufficient to shift 

the sleeve attached to the ball seat restriction. Shifting the sleeve exposes ports in the casing so 

that hydraulic pressure inside the well can push fluid through the ports and into the formation. 

Then the stage fluid and sand is pumped in the same manner as with a plug and perf stage. At the 

end of stage, a ball is pumped to seat and open the next sleeve. This is repeated until the entire 

lateral is completed. The balls dissolve with time and temperature. The advantage of the ball-

drop-sleeve system is the elimination of running bridge plugs and perforation guns and the faster 
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completion times. The reduced cost of the completion with this system is roughly offset by the 

cost of the sleeves.  

 

 
Fig. 5.2—Ball-drop-sleeve system 

 

5.2 Drilling Costs Model 

When considering the drilling operation and associated costs, it can conceptually be 

divided into several pieces to allow logical grouping of several operational and cost items: 

1. The drilling of the wellbore segments: The vertical hole, the build segment where the 

inclination changes from vertical to horizontal and the lateral (horizontal) hole. 

2. The hardware that is placed in the well (casing, sleeves, e.g.) 

3. A variety of other costs that are independent of the actual drilling operation such as rig 

mobilization, logging, e.g. 

In considering these groupings when creating a drilling cost model, two drilling-cost 

parameters that change with different completion designs are the lateral length and the number of 

completion stages. The lateral length dictates the time to drill the lateral, and the number of 

stages dictate the amount of stage-dependent hardware (sleeves and plugs) that will be utilized. 
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Thus, the model I used reflects those requirements. I do treat several items as constants that in 

practice are variables, such as the time to drill the vertical and build segments, rig mobilization, 

and de-mobilization cost, drilling day rates.  

Due to the continuously-changing market for drilling, completion services and materials, 

one could find themselves in a never-ending cycle of attempting to stay current with local costs. 

Instead, I chose to fix those costs and let only the costs change that were due to specific changes 

in lateral length and stage count. Likewise, I assumed a single formation depth rather than model 

slightly different formation depths that would have had a small, but immaterial, impact on well 

cost. 

The costs are positively correlated with commodity prices such that as commodity prices 

rise, the well costs also rise. For a 50% increase in the gas price, drilling and completion costs 

increase by 15%. CAD$2/MMbtu gas price is the commodity price associated with the stated 

costs in the various tables that showed the cost components in Section 5.1 and 5.2. Factor 

ComCost in the cost equations in section 5.1 and 5.2 represents the commodity price of gas. It is 

1 for CAD$2/MMbtu, 1.15 for CAD$3/MMbtu and 1.30 for CAD$4/MMbtu. 

The drilling cost model is comprised of four components as described below. 

 

where 

 𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 =  𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 +  𝐶𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 +  𝐴𝑑𝑑𝑀𝑎𝑡𝐶𝑜𝑠𝑡 +  𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡  (29)  

 𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡, $ 

𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, $ 

𝐶𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑠𝑖𝑛𝑔, $ 
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The observed costs were provided by UGR and cost model was calibrated to local actual 

costs by UGR. The costs in Eq. 30 are calculated as follows: 

1. Cost of drilling the lateral 

 

where 

 

 

 

 

 

 

I used a constant of $80,000 for the daily drilling rate. This daily rate includes the cost of 

the drilling rig, drilling mud, equipment rentals, manpower, fuel and numerous small 

consumables that are used during the drilling operation. The number of days to drill a lateral in 

the Town upper Montney is a nonlinear function of lateral length (Table 5.1). 

 

 

 

𝐴𝑑𝑑𝑀𝑎𝑡𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎l, $ 

𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡

=  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐 (𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑚𝑜𝑏𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 & 𝑏𝑢𝑖𝑙𝑑 𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑠 ℎ𝑜𝑙𝑒 𝑐𝑜𝑠𝑡𝑠  

, 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑛𝑔, 𝑙𝑜𝑔𝑔𝑖𝑛𝑔, 𝑒𝑡𝑐 ,$ 

 𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 =  𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝑇𝑖𝑚𝑒 ∗  𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡, (30) 

 𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, $ 

𝐿𝑎𝑡𝐷𝑟𝑖𝑙𝑙𝑇𝑖𝑚𝑒 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑡𝑜 𝑑𝑟𝑖𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑑𝑎𝑦 

𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 = 𝑑𝑎𝑖𝑙𝑦 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒,
$

 𝑑𝑎𝑦
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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Lateral length, 

ft  

Drilling rate, 

ft/day 

LatDrillTime,  

day 

 0-3,280  1,476 2.22 

 3,280-4,920  1,312 3.5 

 4,920-6,560 1,312 4.7 

6,560-8,200  656 7.2 

 8,200-9,840  164 9.7 

9,840-13,120 82 39.7 

Table 5.1—Drilling pace in the lateral 

 

Table 5.2 shows the cost to drill the lateral for the minimum, mid-point, and maximum 

completions. Cost of drilling lateral increases as the number of days to drill increase. 

 

 

 

 

 

 

 

 

 

2. Cost of casing 

The casing model presumes two sizes of casing are utilized in the well, 5-1/2” casing 

(large casing, internal diameter) to line the wellbore from surface to near the beginning of the 

horizontal section and 4-1/2” casing (small casing, internal diameter) that lines the wellbore from 

the end of the large casing to end of the lateral. The reason for using this casing arrangement is to 

reduce the well cost without creating an unacceptable amount of operational risk. The bigger the 

Completion parameters 
DrillCostRate, 

$/day 

LatDrillTime, 

day 

LatDrillCost, 

$MM 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft 

Lateral Length = 3,280 ft 

80,000 2.22 0.18 

Mid-point 

Entry Points = 200 

Sand Intensity = 1,413 lb/ft 

Lateral Length =6,560 ft 

80,000 4.7 0.37 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft 

Lateral Length = 13,120 ft 

80,000 39.7 3.17 

 

Table 5.2—Cost of drilling lateral for the minimum, mid-point, and maximum 

completions for CAD$2/MMbtu 
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hole, the easier it is to work in, but the more expensive it is to drill and case. Most operators in 

the Town field utilize this casing arrangement. 

 

where 

 

 

 

 

 

 

 

In Eq. 31, I used a constant of 13.7 $/ft for the cost of small casing, a constant of 8,200 ft 

as an average estimated length of large casing, and a constant of 24.4 $/ft for the cost of the large 

casing. Table 5.3 shows the cost of the casing for the minimum, mid-point, and maximum 

completions. 

  

 

 

 

 

 

 

 
𝐶𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = ( 𝑆𝑚𝑎𝑙𝑙𝐶𝑎𝑠𝐿𝑒𝑛 ∗  𝑈𝑛𝑖𝑡𝑆𝑚𝑎𝑙𝑙𝐶𝑎𝑠𝐶𝑜𝑠𝑡 + 𝐿𝑎𝑟𝑔𝑒𝐶𝑎𝑠𝐿𝑒𝑛

∗ 𝑈𝑛𝑖𝑡𝐿𝑎𝑟𝑔𝑒𝐶𝑎𝑠𝐶𝑜𝑠𝑡) ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡, 

 (31) 

 

 

𝐶𝑎𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑠𝑖𝑛𝑔, $ 

𝑆𝑚𝑎𝑙𝑙𝐶𝑎𝑠𝐿𝑒𝑛 = 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑎𝑠𝑖𝑛𝑔, 𝑓𝑡 

𝑈𝑛𝑖𝑡𝑆𝑚𝑎𝑙𝑙𝐶𝑎𝑠𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑎𝑠𝑖𝑛𝑔,
$

𝑓𝑡
  

𝐿𝑎𝑟𝑔𝑒𝐶𝑎𝑠𝐿𝑒𝑛 =  𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑐𝑎𝑠𝑖𝑛𝑔, 𝑓𝑡  

𝑈𝑛𝑖𝑡𝐿𝑎𝑟𝑔𝑒𝐶𝑎𝑠𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑐𝑎𝑠𝑖𝑛𝑔,
$

𝑓𝑡
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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3. Cost of additional material: 

 

         where 

 

 

 

 

 

Eq. 32 calculates the cost of plugs used with the plug-and-perf technology or the cost of 

sleeves used in the ball-drop-sleeve technology. I used a constant of $10,000 per stage for the 

cost of these materials. The ball-drop-sleeves are run in the casing string at the time the well is 

cased while the plug-and-perf are run at the time of the completion. Many operators will include 

the cost of the plugs in the completion cost, but I choose to include them in the drilling costs so 

that the cost of wellbore-related hardware would appear in the same drilling category for the two 

technologies.  

Table 5.4 shows the cost of additional material for the minimum, mid-point, and 

maximum completions.  

 

 

 

 

 

 𝐴𝑑𝑑𝑀𝑎𝑡𝐶𝑜𝑠𝑡 =  𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 ∗  𝑆𝑡𝑎𝑔𝑒𝐴𝑑𝑑𝐶𝑜𝑠𝑡 ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡,   (32) 

 𝐴𝑑𝑑𝑀𝑎𝑡𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, $ 

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑆𝑡𝑎𝑔𝑒𝐴𝑑𝑑𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
$

𝑠𝑡𝑎𝑔𝑒 
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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4. Cost of miscellaneous  

In Eq. 33, I used a constant of 15 days for the number of days in the Town field for the 

time to drill the vertical and build (the transition from the vertical to horizontal wellbore 

inclination) segments at an average daily cost rate of $74,667. This daily rate is less than the 

$80,000 per day used for the lateral drilling costs due to 4 of the 15 days being after total depth is 

Completion parameters NumStages 
StageAddCost, 

$/stage 

AddMatCost, 

$MM 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft 

Lateral Length = 3,280 ft 

10 10,000 0.10 

Mid-point 

Entry Points = 200 

Sand Intensity = 1,413 lb/ft 

Lateral Length =6,560 ft 

29 10,000 0.29 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft 

Lateral Length = 13,120 ft 

50 10,000 0.50 

 

Table 5.4—Cost of additional material for the minimum, mid-point and maximum  

Completions for $CAD2/MMbtu 

 

 𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡 = (𝑉𝑒𝑟𝑡𝑇𝑖𝑚𝑒 ∗ 𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 +  𝑀𝑜𝑣𝑒𝐼𝑛𝑅𝑖𝑔𝑈𝑝𝐶𝑜𝑠𝑡) ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡     (33)  

 where 

 

𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡  

= 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠(𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑑𝑒𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 , 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑜𝑙𝑒 𝑐𝑜𝑠𝑡𝑠), $ 

𝑉𝑒𝑟𝑡𝑇𝑖𝑚𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑓𝑜𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑎𝑛𝑑 𝑏𝑢𝑖𝑙𝑑 𝑠𝑒𝑔𝑚𝑒𝑡𝑛, 𝑑𝑎𝑦  

𝐷𝑟𝑖𝑙𝑙𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 =  𝑑𝑎𝑖𝑙𝑦 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒,
$

𝑑𝑎𝑦
  

𝑀𝑜𝑣𝑒𝐼𝑛𝑅𝑖𝑔𝑈𝑝𝐶𝑜𝑠𝑡 = 𝑚𝑜𝑣𝑒 𝑖𝑛 𝑎𝑛𝑑 𝑟𝑖𝑔 𝑢𝑝 𝑐𝑜𝑠𝑡, $ 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 

  



 

92 

 

 

reached but before rig release where active drilling is not occurring and some rental equipment is 

not being used. I used a constant of $100,000 for the drilling rig move-in and rig-up costs and 

any other costs not included in this or other drilling categories. Table 5.5         Table 5.5 shows 

the cost of miscellaneous items for the minimum, mid-point and maximum completions using the 

drilling cost model. 

 

 

 

 

 

 

 

The drilling-cost components, as well as total drilling costs, for the minimum, mid-point, 

and maximum completion parameters are presented in Table 5.6. 

Table 5.6—Drilling cost components for the minimum, mid-point, and maximum 

completions for CAD$2/MMbtu 

Completion parameters 
VertTime, 

day 

DrillCostRate,  

$/day 

MiscCost, 

$MM 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft 

Lateral Length = 3,280 ft 

15 74,667 1.22 

Mid-point 

Entry Points = 200 

Sand Intensity = 1,413 lb/ft 

 Lateral Length =6,560 ft 

15 74,667 1.22 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft 

Lateral Length = 13,120 ft 

15 74,667 1.22 

         Table 5.5—Cost of miscellaneous for the minimum, mid-point, and maximum 

completions for CAD$2/MMbtu 

 

 

 

Completion parameters 
LatDrillCost, 

$MM 

CasingCost, 

$MM 

AddMatCost, 

$MM 

MiscCost, 

$MM 

DrillCost, 

$MM 

Minimum 

 Entry Points = 10 

Sand Intensity = 471 lb/ft  

Lateral Length = 3,280 ft 

0.18 0.24 0.10 1.22 1.74 

Mid-point  

Entry Points = 200  

Sand Intensity = 1,413 lb/ft 

Lateral Length =6,560 ft 

0.37 0.29 0.29 1.22 2.17 

Maximum  

Entry Points = 400 

 Sand Intensity = 2,688 lb/ft 

 Lateral Length = 13,120 ft 

3.17 0.38 0.50 1.22 5.27 
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Table 5.7 and Fig. 5.3 present the drilling costs and total well costs (which are the sum of 

completion and drilling costs) for the minimum, mid-point, and maximum of completion designs 

parameters. The drilling costs increase as the completion parameters increase, as expected.  

 

Table 5.7—Drilling and total costs for the minimum, mid-point and maximum, completions 

for CAD$2/MMbtu 

  

 

 

 
Fig. 5.3—Drilling and total well costs for CAD$2/MMbtu gas price  

$1.74 
$2.17 
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Minimum completion parameters    Mid-point completion parameters   Maximum completion 

Completion parameters    Drilling cost, 

 $MM 

Total well cost,  

$MM 

Minimum 

 Entry Points = 10 

Sand Intensity = 471 lb/ft 

Lateral Length = 3,280 ft 

 

$1.74 

 

$3.44 

Mid-point 

 Entry Points = 200 

 Sand Intensity = 1,413 lb/ft 

 Lateral Length =6,560 ft 

 

$2.17 

 

$5.68 

Maximum 

 Entry Points = 400 

 Sand Intensity = 2,688 lb/ft 

Lateral Length = 13,120 ft 

 

$5.27 

 

$14.62 
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5.3 Completion Cost Model 

The completion operation is performed on a stage-by-stage basis after the drilling rig has 

been removed from the well site. There are numerous cost items in a completion operation, but 

the largest individual items are the pumping charges and cost of chemicals, sand and water. 

There are also a variety of sand sieve sizes used in typical fracture treatment, and the use of 

resin-coated sand is common. 

As the completion design changes, it usually manifests itself as changes to the number of 

stages and the amount of chemicals, sand, and water pumped into the well. The combination of 

number of stages and volume of sand and water will dictate how much time is required to 

complete the well. Since pumping charges are often based on hourly and/or day rates, one must 

compute the estimated number of days to complete the well in order to compute those pumping 

charges. Since chemicals, sand and water are sold on a volume basis; their cost can be easily 

computed from the volume times the unit cost. 

As with the drilling cost model, the completion cost model treats a number of inputs as 

constant, such as the unit’s costs for chemical, sand, and water, despite the business reality that 

those costs change on a regular basis. As such the completion cost model only provides for cost 

changes related to the time duration of the completion process and the volume of materials used 

in operation. There are several small cost items that are included in a miscellaneous category 

which also includes the pumping charges which is a large cost item by itself.  

The completion cost model consists of five components as described below.  

     where 

  𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡 = 𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 +  𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 + 40/70𝐶𝑜𝑠𝑡 +  50/140𝑅𝑒𝑠𝐶𝑜𝑠𝑡 

+  𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡  

(34) 
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The observed completion costs were provided by UGR, and the cost model was calibrated to 

local actual cost by UGR. The formula for each component in Eq. 34 is as follows: 

1. Cost of water 

 

 

 

 

 

 

 

In Eq. 35, the costs to source and truck water to a well in the Town field are $4.77/bbl. Table 5.8 

shows costs of water for the minimum, mid-point, and maximum completions. 

 𝐶𝑜𝑚𝑝𝐶𝑜𝑠𝑡 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡, $ 

𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, $ 

𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑠,$ 

40/70𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 40/70 𝑠𝑎𝑛𝑑, $ 

50/140𝑅𝑒𝑠𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 50/140 𝑎𝑛𝑑 𝑟𝑒𝑠𝑖𝑛 𝑠𝑎𝑛𝑑, $ 

𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡

=  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠 (𝑛𝑜𝑡 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡, 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠), $ 

 𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = 𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 ∗  𝑆𝑡𝑎𝑔𝑒𝑊𝑎𝑡𝑉𝑜𝑙 ∗ 𝑈𝑛𝑖𝑡𝑊𝑎𝑡𝐶𝑜𝑠𝑡 ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡, 
 

where 

(35) 

 

 

 𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟, $ 

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑆𝑡𝑎𝑔𝑒𝑊𝑎𝑡𝑒𝑟𝑉𝑜𝑙 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒𝑠,
𝑏𝑏𝑙

𝑠𝑡𝑎𝑔𝑒
 

𝑈𝑛𝑖𝑡𝑊𝑎𝑡𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡𝑠 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑡𝑟𝑢𝑐𝑘 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑤𝑒𝑙𝑙,
$

𝑏𝑏𝑙
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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2. Cost of chemicals  

 

      where 

 In Eq. 36, I used a constant cost of $1.79 per barrel of fracturing water for the cost of 

chemicals to treat the water. Those chemicals include biocides to kill bacteria and friction 

reducers to reduce friction losses in the tubular while pumping. Lower friction losses equate to 

lower surface pumping pressures which equate to lower pumping charges. Table 5.9 shows 

chemical costs for the minimum, mid-point and maximum completions. 

 

 

 

 

 

 

 

 

 𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 =  𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 ∗  𝑆𝑎𝑡𝑔𝑒𝑊𝑎𝑡𝑒𝑟𝑉𝑜𝑙 ∗  𝑈𝑛𝑖𝑡𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡, (36) 

 𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑠, $ 

 𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ  

𝑆𝑡𝑎𝑔𝑒𝑊𝑎𝑡𝑒𝑟𝑉𝑜𝑙 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒𝑠,
𝑏𝑏𝑙

𝑠𝑡𝑎𝑔𝑒
 

𝑈𝑛𝑖𝑡𝐶ℎ𝑒𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑠 𝑡𝑜 𝑡𝑟𝑒𝑎𝑡 𝑤𝑎𝑡𝑒𝑟,
$

𝑏𝑏𝑙
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 

 

   



 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
o

m
p

le
ti

o
n
 p

ar
a
m

et
er

s 
N

u
m

S
ta

g
es

 
S

ta
g
eW

at
er

V
o

l,
 

b
b

l/
st

ag
e
 

W
at

er
V

o
l,

 

b
b

l 

U
n
it

C
h
e
m

C
o

st
, 

$
/b

b
l 

 

C
h
e
m

C
o

st
, 

$
M

M
 

M
in

im
u

m
 

E
n
tr

y
 P

o
in

ts
 =

 1
0

 

S
an

d
 I

n
te

n
si

ty
 =

 4
7

1
 l

b
/f

t,
 

L
at

er
al

 L
en

g
th

 =
 3

,2
8

0
 f

t 

1
0
 

3
,0

8
2
 

3
0

,8
2
0

 
1

.7
9
 

0
.0

5
 

M
id

-p
o

in
t 

E
n
tr

y
 P

o
in

ts
 =

 2
0

0
  

S
an

d
 I

n
te

n
si

ty
 =

 1
,4

1
3

 l
b

/f
t,

 

L
at

er
al

 L
en

g
th

 =
6

,5
6

0
 f

t 

2
9
 

6
,3

7
6
 

1
8

4
,9

0
4

 
1

.7
9
 

0
.3

3
 

M
ax

im
u

m
 

E
n
tr

y
 P

o
in

ts
 =

 4
0

0
 

S
an

d
 I

n
te

n
si

ty
 =

 2
,6

8
8

 l
b

/f
t,

 

L
at

er
al

 L
en

g
th

 =
 1

3
,1

2
0

 f
t 

5
0
 

1
4

,0
8
8
 

7
0

4
,3

9
9

 
1

.7
9
 

1
.2

5
 

   

T
a
b

le
 5

.9
—

C
o
st

 o
f 

ch
em

ic
a
ls

 f
o
r 

th
e 

m
in

im
u

m
, 

m
id

-p
o
in

t,
 a

n
d

 m
a
x
im

u
m

 

co
m

p
le

ti
o
n

s 
fo

r 
C

A
D

$
2
/M

M
b

tu
 

 



 

99 

 

 

3. Cost of 40/70 sand  

The 40/70 sieve size sand constitutes the majority of the sand used in the fracturing 

treatment. The completion cost model used for this work presumes each fracturing stage will also 

use 5 tonnes of 50/140 sand and 10 tonnes of resin-coated sand which is often 30/50 mesh size. 

When designing a completion, the overall design methodology only considers the total tonnage 

of sand, usually thought of as the sand intensity (lb/ft) multiplied by the completed lateral length 

(ft). As a result, a given completion design only specifies the total sand tonnage and the cost 

model then imposes the 50/140 and resin-coated sand assumptions. Therefore, the cost model 

starts with the total sand tonnage and subtracts the tonnage of 50/140 and resin-coated sand to 

determine the amount of 40/70 sand. The model also includes $150,000 miscellaneous costs 

which are related to sand trucking and sand storage equipment. 

 

 40/70𝐶𝑜𝑠𝑡 = ([𝑆𝑡𝑎𝑔𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 − 𝑆𝑡𝑎𝑔𝑒50/140𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 −

 𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠] ∗ 𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 ∗
𝑈𝑛𝑖𝑡40

70𝐶𝑜𝑠𝑡
+  𝑀𝑖𝑠𝑐𝑇𝑟𝑢𝑐𝑘𝐶𝑜𝑠𝑡) ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡, 

 

where 

(37) 

 40/70𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 40/70 𝑠𝑎𝑛𝑑, $ 

𝑆𝑡𝑎𝑔𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑛𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
𝑙𝑏

𝑠𝑡𝑎𝑔𝑒
 

𝑆𝑡𝑎𝑔𝑒50/140𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 50/140 𝑠𝑎𝑛𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
𝑙𝑏

𝑠𝑡𝑎𝑔𝑒
  

 𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛 𝑠𝑎𝑛𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
𝑙𝑏

𝑠𝑡𝑎𝑔𝑒
 

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 
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In Eq. 37, volume of 50/140 sand is 11,023 lb/stage (5 tonnes/stage) and the volume of 

resin sand is 22,046 lb/stage (10 tonnes/stage). The cost of the 40/70 sand is $165/tonne which 

converts to $0.748/lb. I used a constant of $150,000 for miscellaneous cost which is for sand 

trucking and storage. Table 5.10 shows costs of 40/70 sand for the minimum, mid-point, and 

maximum completions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑈𝑛𝑖𝑡40/70𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 40/70 𝑠𝑎𝑛𝑑,
$

𝑙𝑏
 

 𝑀𝑖𝑠𝑐𝑇𝑟𝑢𝑐𝑘𝐶𝑜𝑠𝑡 =  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑎𝑛𝑑, $ 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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Table 5.10 Continued.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Cost of resin and 50/140 sand 

 50/140𝑅𝑒𝑠𝐶𝑜𝑠𝑡 = 𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 ∗  (𝑆𝑡𝑎𝑔𝑒50/140𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 +

 𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 ) ∗ 𝑈𝑛𝑖𝑡50/140𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝐶𝑜𝑠𝑡 ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡,  

where 
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In Eq. 38, volume of 50/140 sand is 11,023 lb/stage (5 tonnes/stage) and the volume of 

resin sand is 22,046 lb/stage (10 tonnes/stage). I used a constant of 0.184 $/lb for the cost of 

resin and 50/140 sand. Table 5.11 shows the costs of other sand for the minimum, mid-point, and 

maximum completions. 

 

 

 

 

 

 

 

 

 

 

 50/140𝑅𝑒𝑠𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛 𝑎𝑛𝑑 50/140 𝑠𝑎𝑛𝑑, $ 

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙  

𝑆𝑡𝑎𝑔𝑒50/140𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠

=  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 50/140 𝑠𝑎𝑛𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
𝑙𝑏

𝑠𝑡𝑎𝑔𝑒
 

𝑆𝑡𝑎𝑔𝑒𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝑀𝑎𝑠𝑠 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛 𝑠𝑎𝑛𝑑 𝑝𝑒𝑟 𝑠𝑡𝑎𝑔𝑒,
𝑙𝑏

𝑠𝑡𝑎𝑔𝑒
 

𝑈𝑛𝑖𝑡50

140𝑅𝑒𝑠𝑆𝑎𝑛𝑑𝐶𝑜𝑠𝑡
=  𝑐𝑜𝑠𝑡 𝑜𝑓

50

140
𝑠𝑎𝑛𝑑 𝑎𝑛𝑑 𝑟𝑒𝑠𝑖𝑛 𝑠𝑎𝑛𝑑,

$

𝑙𝑏
 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 
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5. Cost of miscellaneous elements 

Miscellaneous cost is variety of costs that happens during the days that all stages of a 

completion design are being completed. Therefore, to calculate miscellaneous cost, I should 

calculate the number of days that it takes to complete all stages in a completion design. To 

calculate the number of days to complete all stages in a completion design, first, I calculated the 

number of minutes that takes to complete one stage using slurry volume and injection rate. 

Second, I calculated the number of stages that can be completed in one day given the fact that 

completion and fracturing equipment is available 12 hours per day. Third, I calculated the 

number of days that it takes for all stages to be completed in one completion design. For 

example, for minimum completion design with 10 entry points, slurry volume of 3,390 bbl and 

injection rate of 53.4 bbl/min, it takes 123 minutes to complete one stage. Given that the 

completion and fracturing equipment is only available 12 hours a day, 5.8 stages can be 

completed per day. Therefore, to complete all 10 stages in this design, it takes 1.7 days. With 1.7 

days that it takes to complete a well with minimum completion design and miscellaneous daily 

rate of $25,264$, it costs $42,948, which will be add up to $1,151,600 cost of truck and rental 

and result in MM$1.19.  

To calculate miscellaneous cost, first I calculate the number of minutes it takes to 

complete one stage using equation 39: 

 

 

     where 

 𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒 = ( 
𝑆𝑡𝑎𝑔𝑒𝑆𝑙𝑢𝑟𝑟𝑦𝑉𝑜𝑙𝑢𝑚𝑒 

 𝐼𝑛𝑗𝑅𝑎𝑡𝑒
) + 𝐵𝑒𝑡𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒, (39) 
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Number of minutes between stages is 60 minutes. To calculate slurry volume, I 

multiplied the volume of water per stage by a constant of 1.1. The injection rate is a constant of 

53.4 bbl/min. Calculated number of minutes per stage for minimum, mid-point n and maximum 

completion designs is in Table 5.12 is derived from Eq. 39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12—Calculated minutes per stage for the minimum, mid-point, and maximum 

completions for CAD$2/MMbtu 

 

After calculating number of minutes that takes to complete one stage, I calculated the 

number of stages that can be completed in one day, given that completion and fracturing 

equipment is available for 12 hours a day. 

 𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒 =

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒,𝑚𝑖𝑛/stage 

𝑆𝑡𝑎𝑔𝑒𝑆𝑙𝑢𝑟𝑟𝑦𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑙𝑢𝑟𝑟𝑦,
𝑏𝑏𝑙

𝑠𝑡𝑎𝑔𝑒
  

𝐼𝑛𝑗𝑅𝑎𝑡𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑔𝑒𝑠,𝑚𝑖𝑛  

 

Completion parameters 
StageWaterVolume, 

bbl/stage 

VolSlurry, 

bbl 

InjRate, 

bbl/min 

StageTime, 

min/stage 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft, 

Lateral Length = 3,280 ft 

3,082 3,390 53.4 123 

Mid-point 

Entry Points = 200 Sand 

Intensity = 1,413 lb/ft, 

Lateral Length =6,560 ft 

6,376 7,013 53.4 191 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft, 

Lateral Length = 13,120 ft 

14,088 15,497 

 

53.4 
350 

 
𝑆𝑡𝑎𝑔𝑒𝐶𝑜𝑚𝑝𝑅𝑎𝑡𝑒 =

𝐸𝑞𝑢𝑖𝑝𝐴𝑣𝑎𝑖𝑙𝐹𝑟𝑎𝑐 

𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒
 

(40) 
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where 

 

Number of hours that fracturing equipment is available per day is 12 and calculated 

minutes per stage was computed in Table 5.12. Number of stages that can be completed in a day 

for minimum, mid-point and maximum completion design is in Table 5.13 using Eq. 40. 

Table 5.13— Calculated number of stages per day and number of fracturing days for the 

minimum, mid-point, and maximum completions for CAD$2/MMbtu 

 

Then I calculated the number of days that it takes to fracture all stages in a completion design by 

using Eq. 41. 

 

 𝑆𝑡𝑎𝑔𝑒𝐶𝑜𝑚𝑝𝑅𝑎𝑡𝑒 =  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦, 𝑠𝑡𝑎𝑔𝑒/𝑑𝑎𝑦  

𝐸𝑞𝑢𝑖𝑝𝐴𝑣𝑎𝑖𝑙𝐹𝑟𝑎𝑐 = 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, ℎ𝑟/𝑑𝑎𝑦 

𝑆𝑡𝑎𝑔𝑒𝑇𝑖𝑚𝑒 =

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒,𝑚𝑖𝑛/𝑠𝑡𝑎𝑔𝑒  

 

Completion parameters 
EquipAvailFrac, 

Hr/day 

StageTime, 

Min/stage 

StageCompRate, 

stage/day 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft, 

Lateral Length = 3,280 ft 

12 123 5.80 

Mid-point 

Entry Points = 200 Sand 

Intensity = 1,413 lb/ft, 

Lateral Length =6,560 ft 

12 191 3.80 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft, 

Lateral Length = 13,120 ft 

12 350 2.06 

 
𝐹𝑟𝑎𝑐𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒 =

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 

𝑆𝑡𝑎𝑔𝑒𝐶𝑜𝑚𝑝𝑅𝑎𝑡𝑒
 

(41) 
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where  

Number of days that takes to complete all stages for minimum, mid-point and maximum are in 

Table 5.14. Completed number of stages per day was computed in Table 5.13. 

 

 

 

 

 

Table 5.14— Calculated number of stages per day and number of fracturing days for the 

minimum, mid-point, and maximum completions for CAD$2/MMbtu 
 

Finally, miscellaneous cost is calculated using number of days to fracture all stages in a 

completion design from Table 5.14 as well as miscellaneous daily rate and cost of trucking and 

rental. 

 

 𝐹𝑟𝑎𝑐𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒 

=  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑤𝑒𝑙𝑙, 𝑑𝑎𝑦 

𝑆𝑡𝑎𝑔𝑒𝐶𝑜𝑚𝑝𝑅𝑎𝑡𝑒 =  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦, 𝑠𝑡𝑎𝑔𝑒/𝑑𝑎𝑦  

𝑁𝑢𝑚𝑆𝑡𝑎𝑔𝑒𝑠 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑢𝑙𝑙 𝑙𝑎𝑡𝑒𝑟𝑎𝑙  

 

 

Completion parameters NumStages 
StageCompRate, 

Stage/day 

FracCompTime, 

day 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft, 

Lateral Length = 3,280 ft 

10 5.80 1.7 

Mid-point 

Entry Points = 200 Sand 

Intensity = 1,413 lb/ft, 

Lateral Length =6,560 ft 

29 3.80 7.70 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft, 

Lateral Length = 13,120 ft 

50 2.06 24.30 

  𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡 = (𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 ∗ 𝐹𝑟𝑎𝑐𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒 +  𝑅𝑒𝑛𝑡𝐶𝑜𝑠𝑡) ∗ 𝐶𝑜𝑚𝐶𝑜𝑠𝑡 ,  

 where 

(42) 
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In Eq. 42, I used a constant of 25,264 $/day for miscellaneous daily rate and a constant of 

1,151,600 $ for trucking, rental and testing costs. Table 5.15 shows costs of miscellaneous for 

the minimum, mid-point, and maximum completions. 

 

 

Table 5.16 shows completion component costs as well as total completion cost. 

 

 

 𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠, $ 

𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒 = 𝑚𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠 𝑑𝑎𝑖𝑙𝑦 𝑟𝑎𝑡𝑒,
$

𝑑𝑎𝑦
 

𝐹𝑟𝑎𝑐𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒 

=  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑡𝑎𝑘𝑒𝑠 𝑡𝑜 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑤𝑒𝑙𝑙, 𝑑𝑎𝑦 

𝑅𝑒𝑛𝑡𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑛𝑡𝑎𝑙 𝑎𝑛𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔, $ 

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑖𝑑𝑖𝑡𝑦 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 1 𝑓𝑜𝑟 𝐶𝐴𝐷$2/𝑀𝑀𝑏𝑡𝑢 

 

Completion parameters 
FracCompTime, 

day 

MiscCostRate, 

$/day 

RentCost, 

$ 

MiscCost, 

$MM 

Minimum 

Entry Points = 10 

Sand Intensity = 471 lb/ft, 

Lateral Length = 3,280 ft 

1.70 25,264 1,151,600 1.19 

Mid-point 

Entry Points = 200 Sand 

Intensity = 1,413 lb/ft, 

Lateral Length =6,560 ft 

7.70 25,264 1,151,600 1.35 

Maximum 

Entry Points = 400 

Sand Intensity = 2,688 lb/ft, 

Lateral Length = 13,120 ft 

24.30 25,264 1,151,600 1.77 

         Table 5.15—Cost of miscellaneous for the minimum, mid-point, and maximum 

completions for CAD$2/MMbtu 

 

 

 



 

110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
o

m
p

le
ti

o
n
 p

ar
a
m

et
er

s 
W

at
er

C
o

st
, 

$
M

M
 

C
h
e
m

ic
al

C
o

st
, 

$
M

M
 

4
0

/7
0

 C
o

st
, 

$
M

M
 

5
0

/1
4

0
R

es
C

o
st

, 

$
M

M
 

M
is

cC
o

st
, 

$
M

M
 

C
o

m
p

C
o

st
, 

$
M

M
 

M
in

im
u

m
 

E
n
tr

y
 P

o
in

ts
 =

 1
0

 

S
an

d
 I

n
te

n
si

ty
 =

 4
7

1
 l

b
/f

t,
 

L
at

er
al

 L
en

g
th

 =
 3

,2
8

0
 f

t 

0
.1

5
 

0
.0

5
 

0
.2

5
 

0
.0

6
 

1
.1

9
 

1
.7

0
 

M
id

-p
o

in
t 

E
n
tr

y
 P

o
in

ts
 =

 2
0

0
 S

an
d

 

In
te

n
si

ty
 =

 1
,4

1
3

 l
b

/f
t,

 

 L
at

er
al

 L
en

g
th

 =
6

,5
6

0
 f

t 

0
.8

8
 

0
.3

3
 

0
.7

7
 

0
.1

8
 

1
.3

5
 

3
.5

1
 

M
ax

im
u

m
 

E
n
tr

y
 P

o
in

ts
 =

 4
0

0
 

 S
an

d
 I

n
te

n
si

ty
 =

 2
,6

8
8

 l
b

/f
t,

 

 L
at

er
al

 L
en

g
th

 =
 1

3
,1

2
0
 f

t 

3
.3

6
 

1
.2

5
 

2
.6

7
 

0
.3

0
 

1
.7

7
 

9
.3

5
 

 
T

a
b

le
 5

.1
6
—

C
o
m

p
le

ti
o

n
 c

o
m

p
o
n

en
ts

 f
o
r 

th
e 

m
in

im
u

m
, 

m
id

-p
o
in

t 
a
n

d
 

m
a
x
im

u
m

 c
o

m
p

le
ti

o
n

s 
fo

r 
C

A
D

$
2
/M

M
b

tu
 g

a
s 

p
ri

ce
 

 



 

111 

 

 

Table 5.17 and Fig. 5.4 present the completion costs for the minimum, mid-point and 

maximum completion parameters used in the range of designs that were evaluated. The 

completion costs increase as the completion parameters increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.17—Completion and total well costs for CAD$2/MMbtu gas price 

 

 

 
Fig. 5.4—Completion and total well cost for CAD$2/MMbtu gas price 
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Total well cost, 
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 Entry Points = 10 
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1.70 

 

3.44 
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Sand Intensity = 1,413 lb/ft  

Lateral Length =6,560 ft 

 

3.51 

 

5.68 

Maximum  

Entry Points = 400 

Sand Intensity = 2,688 lb/ft 

 Lateral Length = 13,120 ft 

 

9.35 
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The summary of drilling and completion costs for the minimum, mid-point, and maximum 

completions are in Fig. 5.5 and Table 5.18. 

Table 5.18—Completion, drilling and total well costs for CAD$2/MMbtu gas price 

 

 
Fig. 5.5—Completion, drilling and total well costs for CAD$2/MMbtu gas price 
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1.70 1.74 
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Mid-point          

     Entry Points = 200 
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Lateral Length =6,560 ft 

 

3.51 2.17 

 

5.68 

Maximum             

             Entry Points = 400 

Sand Intensity = 2,688 lb/ft 

Lateral Length = 13,120 ft 

 

9.35 5.27 

 

14.62 
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The total well costs for different lateral lengths and entry points are shown in Fig. 5.6 and 

Fig. 5.7 with the sand intensity of 2,688 lb/ft. The total well costs are the same for reservoir 

simulation and regression methods. 

 

 

 
Fig. 5.7—Total well cost vs. lateral length for different entry points for CAD$2/MMbtu 
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Table 5.19 includes all the other economic inputs, such as variable operating costs, for 

calculating PV10 and ROR. The inputs were obtained from UGR. The economic analyses use 

July 1, 2018, as an effective date. The stated commodity prices are adjusted to AECO hub prices. 

AECO stands for Alberta Energy Company and is a Canadian hub. In this analysis, gas prices are 

CAD$2/MMbtu, CAD$3/MMbtu or CAD$4/MMbtu; the oil price is CAD$81.25/STB, and the 

condensate price is CAD$87.5/bbl. The fixed operating cost is CAD$6,500 well/month, working 

interest is 100%, and royalty before and after payout is 8%. A tie-in cost of CAD$400,000 per 

well is included in the economic analysis. The 10% royalty rate is used to approximate the 

sliding-scale royalties in British Columbia that vary as a function of commodity prices, 

production rates and eligible royalty holidays (royalty reductions that wells in Town should 

qualify). Actual royalties will be lower than 10% in the early life of the well, higher than 10% 

later in the well life and should average roughly 10% over the well life for completion designs 

typical of the historic completion in the Town field. 
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ECONOMIC INPUTS  

AECO HUB GAS PRICES  

        
 

    

  Effective Date            

  Starting Year 2018          

  starting Month 7    Operating Costs (CAD)    

       Fixed $6,500 /Well/Month    

  Gas Shrinkage 8.0%    Variable Gas $1.00 /Mcf    

       Variable Oil $0.00 /STB    

       Variable Cond $0.00 /bbl   
 

  Product Prices (CAD)   Water Disposal $1.00 /bbl                                          

                                    Gas $2.00 /MMbtu         

  Oil $81.25 /STB         

  Cond/NGL $87.50 /bbl         

       Capital Costs (CAD)    

  Price Escalation Rate: 0.000% /year 1.00000  
Drilling and 

Completion  
$3,440,858 /well    

       Tie-In $400,000 /well    

  Gas Content 1.10 MMbtu/Mcf   Abandonment $50,000 /well    

  Oil Gravity Price 

Adjustment 
$0.00 /STB   Facilities $0     

             

  Basis Differential (CAD)         

  Gas -$0.30 /MMbtu   
Ownership 

   

  Oil $0.00 /STB      

  Cond/NGL -$15.00 /bbl    Before Pay 
Out 

After Pay Out    

       WI 100.00% 100.00%    

       Royalty 10.00% 10.00%    

       Override 0.00% 0.00%    

            

             

       1 Boe = 6 Mcfe      

             

             

             

   Wellhead Prices (CAD)         

  Gas $3.70 /MMbtu         

  Cond/NGL $72.50 /bbl         

Table 5.19—Economic inputs 

 

 

5.4 Economic Analysis Using the Regression Analysis-Based Production Forecast 

In this section, I used the production forecast model derived from the regression analysis 

found in Chapter 3 as an input for economic analysis on the 300 completion designed sets. To 

conduct the economic analysis, I first calculated a B3 for each of the 300 different completion 
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designs using the equation shown in (Table 5.20). Thus, each completion design had an 

associated B3 value from which a production forecast was constructed. This equation was 

derived using multivariable regression as described in Chapter 3. 

 

Per fluid 

model 

 (𝐵3. 𝐹𝑙𝑢𝑖𝑑)(1.1) =  2.8 ∗ 𝑆𝑎𝑛𝑑. 𝐹𝑙𝑢𝑖𝑑 1.38 +  0.81 ∗ 𝐿𝐿. 𝐹𝑙𝑢𝑖𝑑0.33 +

0.11 ∗ 𝐸𝑃. 𝐹𝑙𝑢𝑖𝑑0.33 − 0.28   

Table 5.20—Per-fluid model from regression 

Then I converted the B3 to a 40-year monthly production forecast by scaling the Town 

Field production type curve (Fig. 5.8). The scaling is performed by multiplying the monthly 

production values by a scale ratio, where the scale ratio is calculated as follows:  

 

The B3 in the denominator of Eq. 43 is the best three consecutive months of type curve 

production in the Town field (3,039, Mcfed). The impact of the scaling process is illustrated in 

Fig. 5.8. The scaling factor for the graph is shown in Eq. 44.  

 

In Fig. 5.8, the red line is the initial type curve with B3 of 3,039 Mcfed, and the blue line 

is the scaled type curve with B3 of 6,080 Mcfed. The scaled factor which is shown with the red 

arrow is 2.  

 

 𝑆𝑐𝑎𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝐵3 (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐵3 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑇𝑜𝑤𝑛 𝑓𝑖𝑒𝑙𝑑,
𝑀𝑐𝑓

𝑑𝑎𝑦
)
            (43) 

 
𝑆𝑐𝑎𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =  

6,080 𝑀𝑐𝑓𝑒𝑑

3,039 𝑀𝑐𝑓𝑒𝑑
= 2 

(44) 
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Fig. 5.8—Decline of production type curve in the Town field 

 

The scaling ratios of the B3 from regression to the B3 from the Town field production type curve 

for the minimum, mid-point, and maximum completions parameters for regression methodology 

are in Fig. 5.9. 

 

 

 

 

 

 

 

Base type curve  

Scaled type curve 

Scale factor = 2 
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Fig. 5.9—The scaling ratio of the B3 from regression to the B3 from type curve for the 

minimum, mid-point and maximum completions parameters 

 

The production type curve for the Town field was scaled for each of the 300 different 

completion designs as discussed above, generating a 40-year monthly production forecast of the 

gas phase for each completion design. I then used the 40-year monthly production forecasts with 

the specific completion design well costs for the economic analysis of each of the 300 

completion designs. I computed the rate of return and PV10 of 300 completions and identified 

the one that yields the highest rate of return and PV10.  
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5.5 Economic Analysis Using Reservoir Simulation Model 

Section 5.4 used multivariable regression to determine the B3 and scaled monthly 

production forecast to be input into the economic analysis. In this section, I used a reservoir 

simulation model to determine the monthly production forecast for use in the economic 

optimization assessment. To generate monthly production forecasts from the simulation model, I 

first calculated the estimated propped fracture half-length created by each of the 300 completion 

designs. This was performed by using a series of equations that computed the fracture surface 

area, fracture width and propped fracture half-length from the pumped vs. slurry volume as 

shown in Eq. 45, Eq. 46, Eq. 47 and Eq. 48. These equations were derived from regression 

analysis of a matrix of FracPro runs provided by UGR that modeled fracture dimensions as a 

function of slurry for the Upper Montney in the Town field. 

With the known slurry volume per stage (Vs, ft) and number of entry points per stage (PC), the 

propped fracture width (𝑤) is computed with equation 40 below. Equations were provided by 

UGR. 

 

Constants a, b and c in are: 

Then I calculated fluid efficiency (FE) as a function of Vs, PC, and constants a, b and c: 

 

 𝑤 = 𝑎𝑉s𝑏𝑃𝐶𝐶   (45) 

 a = 0.0091  

 b = 0.1735   

 c = -0.415   

   

 
𝐹𝐸 =  (𝑎𝑉𝑠 + 𝑏) ∗

𝑃𝐶𝑐

100
 , 

(46) 
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where 

 

I next calculated the total propped surface area of all fracture(s) per stage, Af, ft
2. Af is calculated 

using fluid efficiency, total slurry volume and propped fracture width:  

 

 

The assumption is 
𝐻

𝐿
 = 0.75 where H is fracture height and L is propped fracture half-length. This 

assumption is provided by UGR. Propped fracture half-length is calculated as the following:  

 

 

 

In Eq. 48, we divide the total propped area by 2*2 to account for the fracture having two 

faces and being propped in two directions from the wellbore. Table 5.21 shows fracture 

parameters for the minimum, mid-point, and maximum of completion parameters.  

 

 

 

 

 a = -0.0008  

 b = 93.223  

 c = -0.06  

 𝐴𝑓 = 𝐹𝐸 ∗
𝑇𝑜𝑡𝑎𝑙 𝑆𝑙𝑢𝑟𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉𝑠,𝑓𝑡3)

𝑃𝑟𝑜𝑝𝑝𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑊𝑖𝑑𝑡ℎ (𝑤,𝑓𝑡)
  (47) 

 
𝑃𝑟𝑜𝑝𝑝𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐻𝑎𝑙𝑓 − 𝑙𝑒𝑛𝑔𝑡ℎ =

 𝐴𝑓 

2 ∗ 2 ∗ 𝑃𝐶 ∗ 𝐻
 

  (48) 
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With the calculated propped fracture half-length and fracture width, I ran the simulation 

model described in Chapter 4 on the different 300 completion designs in CMOST (reservoir 

simulation software). By selecting the grid size in both i and j directions, the desired fracture 

half-length and fracture width are made for each completion design. The grid size dimension is 

based on well spacing of 1,312 ft and initial entry point spacing of 211 ft. Maximum fracture 

half-length is half of the well spacing since I assumed there is no communication between two 

neighbor wells. 

I performed the economic analysis using the calculated 40-year monthly production 

volumes of gas from the simulation-based model for each of the 300 completion designs with 

their completion and drilling costs. The maximum completion has shorter propped fracture half-

lengths than the minimum completion since there is less sand per entry point in the maximum 

completion design.   

 

5.6  Economic Analysis and Optimum Completion 

I performed the economic analysis using CAD$2/MMbtu, CAD$3/MMbtu and 

CAD$4/MMbtu per MMbtu gas prices twice: once using monthly production forecasts derived 

from the multivariable regression and again using forecasts from the reservoir simulation 

process. I identified the completion design that has the highest rate of return or PV10 out of the 

300 completion designs using economic analysis. Optimization was done with an assumed well 

spacing of 1,312 ft for all cases.  

The tables below present summaries of completion design that maximize rate of return or 

PV10 using multivariable regression and reservoir simulation process for existing completion 

practices in the industry as well as those beyond the past observed practices. Below are eight 
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tables presenting the twenty-four combinations of completion parameters that have optimum 

ROR and PV10. 

The completion designs maximizing rate of return from the multivariable regression 

process within the range of past observed completion practices are shown in Table 5.22. 

 

Gas Price, 

(CAD)/MMbtu 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

 Entry 

point 

B3, 

Mcfed 

EUR, 

Bcf 
ROR 

$2 6,560 942 50 6,604 11.0 13% 

$3 6,560 942 50 6,604 11.0 43% 

$4 6,560 942 50 6,604 11.0 74% 

Table 5.22—Completion designs with optimum ROR using multivariable regression, 

current practices for a well spacing of 1,312 ft 

 

The completion designs maximizing rate of return from the multivariable regression 

process over the entire range of 300 completion designs (which extend well beyond the past 

observed completion practices) are shown in Table 5.23. 

Gas Price, 

(CAD)/MMbtu 

Lateral 

length, 

 ft 

Sand 

intensity 

lb/ft 

 Entry 

point 

B3, 

Mcfed 

EUR, 

Bcf 
ROR 

$2 9,840 2,688 150 18,454 31.9 31% 

$3 9,840 2,688 150 18,454 31.9 86% 

$4 9,840 2,688 150 18,454 31.9 148% 

Table 5.23—Completion designs with optimum ROR using multivariable regression, 

potential practices for a well spacing of 1,312 ft 

 

The completion designs maximizing rate of return from the reservoir simulation process 

within the range of past observed completion practices are shown in Table 5.24.   
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Gas Price, 

(CAD)/MMbtu 

Lateral 

length,  

ft 

Sand 

intensity 

lb/ft 

 Entry 

point 

B3, 

Mcfed 

EUR, 

Bcf 
ROR 

$2 6,560 942 50 6,587 7.3 4% 

$3 6,560 942 50 6,587 7.3 31% 

$4 6,560 942 50 6,587 7.3 60% 

Table 5.24—Completion designs with optimum ROR using reservoir simulation, current 

practices for a well spacing of 1,312 ft 

 

 The completion designs maximizing rate of return from the reservoir simulation process 

over the entire range of 300 completion designs (which extend well beyond the past observed 

completion practices) are shown in Table 5.25. 

Gas Price, 

(CAD)/MMbtu 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

B3, 

Mcfed 

EUR, 

Bcf 
ROR 

$2 9,840 942 100 9,715 11.4 12% 

$3 9,840 471 150 10,214 9.2 57% 

$4 9,840 471 150 10,214 9.2 118% 

Table 5.25—Completion designs with optimum ROR using reservoir simulation, potential 

practices for a well spacing of 1,312 ft 

 

 

The completion design maximizing PV10 from the multivariable regression process 

within the range of past observed completion practices are shown in Table 5.26. 
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Gas Price, 

(CAD)/MMbtu 

Lateral 

length, ft 

Sand 

intensity, 

lb/ft 

 Entry 

point 

B3, 

Mcfed 
EUR, 

Bcf 

PV10 

(MM$) 

$2 6,560 942 50 6,604 11.0 0.54 

$3 6,560 942 50 6,604 11.0 5.73 

$4 6,560 942 50 6,604 11.0 10.92 

Table 5.26—Completion designs with optimum PV10 using multivariable regression, 

current practices for a well spacing of 1,312 ft 

 

The completion designs maximizing PV10 from the multivariable regression process over 

the entire range of 300 completion designs (which extend well beyond the past observed 

completion practices) are shown in Table 5.27. 

Gas Price, 

(CAD)/MMbtu 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

 Entry 

point 

B3, 

Mcfed 
EUR, 

Bcf 

PV10 

 

(MM$) 

$2 13,120 2,688 400 25,024 43.3 8.84 

$3 13,120 2,688 400 25,024 43.3 29.03 

$4 13,120 2,688 400 25,024 43.3 49.27 

Table 5.27—Completion designs with optimum PV10 using multivariable regression, 

potential practices for a well spacing of 1,312 ft 

 

 

The completion designs maximizing PV10 from the reservoir simulation process within 

the range of past observed completion practices are shown in Table 5.28.   
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Gas Price, 

(CAD)/MMbtu 

Lateral 

length,  

ft 

Sand 

intensity, 

lb/ft 

 Entry 

point 

B3, 

Mcfed 
EUR, 

Bcf 

PV10 

(MM$) 

$2 6,560 942 50 6,587 7.3 -0.89 

$3 6,560 942 50 6,587 7.3 2.96 

$4 6,560 942 50 6,587 7.3 6.84 

Table 5.28—Completion designs with optimum PV10 using reservoir simulation, current 

practices for a well spacing of 1,312 ft 

  

The completion designs maximizing PV10 from the reservoir simulation process over the 

entire range of 300 completion designs (which extend well beyond the past observed completion 

practices) are shown in Table 5.29. 

 

Gas Price, 

(CAD)/MMbtu 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

 Entry 

point 

B3, 

Mcfed 
EUR, 

Bcf 

PV10 

($) 

$2 9,840 942 100 10,679 11.4 0.29 

$3 13,120 1,413 100 12,364 17.3 7.27 

$4 13,120 1,413 100 12,364 17.3 15.45 

Table 5.29— Completion designs with optimum PV10 using reservoir simulation, potential 

practices for a well spacing of 1,312 ft 

 

Fig. 5.10 to Fig. 5.17 are 2-D graphs of lateral lengths and entry points for different 

economics metrics PV10, ROR using multivariable regression and reservoir simulation for the 

sand intensity of 2,688 lb/ft. I chose this sand intensity because it was the maximum sand 

intensity in the defined range of the sand intensity parameter. The gas price used in these figures 

is CAD$2/MMbtu. 
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In Fig. 5.10, which optimizes for ROR using the regression method, the optimum designs occur 

in the range of 50 to 100 entry points regardless of different lateral lengths. This is because the 

lateral length is not as important in short term production in the regression model. ROR 

decreases after 100 entry points, but the rate of decline is not substantial. 

 
Fig. 5.10—ROR vs. entry point for different lateral lengths for the sand intensity of 2,688 

lb/ft - regression  

 

In Fig. 5.11, which optimizes for ROR using the simulation method, the optimum designs 

occur in the range of 25 to 100 entry points for different lateral lengths. ROR starts decreasing 

after 100 entry points. The optimum design is a function of lateral length. For example, in the 

below graph, for the 8,200 ft lateral length optimal design correlates roughly to 50 entry points 

and entry point spacings of 164 feet. With longer laterals, the optimum designs have more entry 

points, this is because the incremental cost of increasing the lateral length and adding entry 

points is being smaller than the incremental production gain.  
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In Fig. 5.12, which optimizes for ROR using the regression method, the optimum designs 

happen around 10,000 ft of lateral for all range of entry points as it has maximum ROR. Then 

ROR decreases after 10,000 ft. This is because, after 10,000 ft of lateral, the cost of drilling 

increased dramatically. 

 
Fig. 5.12—ROR vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft - regression 
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Fig. 5.11—ROR vs. entry point for different lateral lengths for the sand 

intensity of 2,688 lb/ft - simulation 
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In Fig. 5.13, which optimizes for ROR using the simulation method, the ROR increases 

by increasing lateral length for the entire range of entry points. The optimum designs happen 

around 10,000 ft of lateral then ROR levels off or decrease after 10,000 ft for different entry 

points. This is because lateral length does not contribute to short-term well performance which 

significantly influences ROR. Also, the cost of drilling lateral increase significantly after 10,000 

ft.  

 

Fig. 5.13—ROR vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft - simulation 
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Fig. 5.14—PV10 vs. entry points for different lateral lengths for the sand intensity of 2,688 

lb/ft - regression 

 

In Fig. 5.15, which optimizes for PV10 using the simulation method, PV10 increases as 

number of entry points increase till range of 50 to 100 entry points and then starts decreasing for 
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increases, the number of entry points in the optimum designs increases. This can be because of as 

the lateral length increases, more entry points per unit of lateral length are required to drain the 

reservoir. Number of entry points and later length in the optimum designs are the balance 

between draining more fluid out of the reservoir due to a bigger contact area with reservoir while 

keeping the friction losses in the tubular system as well costs at a minimum.  
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Fig. 5.15—PV10 vs. entry points for different lateral lengths for the sand intensity of 2,688 

lb/ft - simulation 
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Fig. 5.16—PV10 vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft – regression 

 

In Fig. 5.17, which optimizes for PV10 using the simulation method, PV10 increases as 
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points because the drilling cost starts increasing dramatically after this lateral length.  
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Fig. 5.17—PV10 vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft – simulation 
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area and capacity of the wellbore. Therefore, with the simulation methodology, long-term 

production is directly tied to the drainage volume (material balance) and production rates are 

limited to physics-based computations of the flow capacity of pipe and flowing pressures at the 

surface and at the formation. As a result, reservoir simulation production forecast is more 

realistic compared to the regression method forecast. 

The regression technique can generate production volumes that exceed the drainage area. 

For example, for a completion design of 6,560 ft of lateral length, 25 entry points and 942 lb/ft of 

sand intensity, the regression model in the Town field predicts a B3 of 6,541 Mcfed and EUR of 

10.9 Bcf which is 118% of initial OGIP (9.2 Bcf). The reservoir simulation-based model Town 

for the same completion results in B3 of 5,344 Mcfed and EUR of 7.8 Bcf which is 84% of 

initial OGIP (9.2 Bcf). A similar completion design in one of the 44 wells in the Town field has 

6,080 ft of lateral length, 33 entry points and 680 lb/ft of sand intensity with the B3 of 4,426 

Mcfed, so even the simulation-based method may appear optimistic at times even though it is the 

more conservative of the two methodologies. This maybe because there is an uncertainty in the 

underlying assumptions in the reservoir simulation model. Despite the possibility of optimistic 

B3 & EUR projections for the regression method, the likelihood of those optimistic projections 

diminishes when completion designs are considered that are inside the range of values in the 

observed dataset. Also, in terms of generating an optimized completion design, when inside the 

range of current completion practices both multivariable regression and reservoir simulation 

methods point out to the same completion design as the optimum one. However, outside the 

range of current industry practices multivariable regression and reservoir simulation method 

select different completion designs as the optimum. Due to problems for incorporating physics 

such as reservoir size, wellbore capacity and friction losses inside the tubular in the regression 
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model, multivariable regression is not recommended for optimizing completions that fall outside 

the range of completion designs in the observed dataset that was used to train the regression 

model.  

On the other hand, the multivariable regression method is fast to implement compared to 

reservoir simulation method which is time-consuming and skill demanding (it takes more time to 

implement the physics of the reservoir such as frictions in the pipe, reservoir size and fluid 

properties in the model). Therefore, when inside the range of current completion practices, 

regression method can be a fast and reliable tool, but when the purpose is to explore outside the 

range of current practices, reservoir simulation method is recommended. 

Both regression and reservoir simulation models are calibrated to the mean of observed 

data, regression by virtue of the regression analysis and simulation through history matching of 

the type curve. Fig. 5.18 (which is the same as Fig. 4.6) shows 2-D regression lines of predicted 

vs. actual B3-per-fluid values for 44 wells in the Town field for the regression model in orange 

dots and the simulation model in blue dots. The regressed line for predicted B3 per fluid from the 

regression model has higher R2 but smaller slope. The regressed line for predicted B3 per fluid 

from the simulation model has lower R2 but larger slope. There is trade-off between slope and 

R2. The regression model with higher R2 and smaller slope indicates that there is less uncertainty 

in the model due to missing information such as rock properties, but the model cannot reproduce 

the extremes as well. On the other hand, the simulation model with smaller R2 and greater slope 

indicates that there is more uncertainty in the model, but the model does a better job in predicting 

the extreme values. Therefore, as completion parameters go toward the boundary of current-

practices space, the simulation model does a better job in predicting the performance. However, 
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for the completion parameters that are inside the boundary of current practice and toward the 

average designs, the regression model has less uncertainty and is more suitable. 

 
Fig. 5.18—2-D regression line of predicted vs. actual B3 per fluid, Mcfed/ft3 values for 44 

wells in the Town field 
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In Fig. 5.19, B3 increases as number of entry points increase because there are more 

connections between wellbore and reservoir. However, the incremental changes of B3 to number 

of entry points are not substantial. In Fig. 5.10, ROR vs. entry points showed a similar trend to 

y = 0.3342x + 0.007
R² = 0.11

y = x

y = 0.1959x + 0.006
R² = 0.20

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02

P
r
e
d
i
c
t
e
d
 
B
3
 
p
e
r
 
F
l
u
i
d
 
(
M
c
f
e
d
/
m
3
)

Actual B3 per Fluid (Mcfed/m3)

Simulation

line with slope 1

Regression

Linear (Simulation)

Linear (line with slope 1 )

Linear (Regression)



 

137 

 

 

B3 vs. entry points since B3 and ROR correlate. The maximum B3 in the 44 wells in the Town 

field is 6,700 Mcfed, and the tubular capacity is 15,000 Mcfed which is far below some of the 

regression prediction range. 

,  

Fig. 5.19—B3 vs. entry point for different lateral lengths for the sand intensity of 2,688 lb/ft 

– regression 

 

In Fig. 5.20, B3 increases as the number of entry points increase since the number of 

connections between reservoir and wellbore go up. However, after 200 entry points, B3 will 

level off because of reservoir size and friction in the wellbore as well as a limitation of tubular 

size that have been applied in the simulation method. 
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In Fig. 5.21, B3 increases as the lateral length increases using the regression method 

because of additional reservoir being contacted via the longer lateral. However, since regression 

method does not incorporate any constraints on reservoir size or wellbore capacity, the trend of 

increasing B3 with lateral length continues growing. The B3 doubles when lateral length 

doubles, which indicates that as the lateral length doubles, therefore number of entry points 

doubles. As a result, the regression model predicts that B3 doubles, which is not physically 

reasonable. This is due to friction losses and fluid competition in tubular that increases when 

there is more fluid in the wellbore. 
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Fig. 5.20—B3 vs. entry point for different lateral lengths for the sand intensity of 

2,688 lb/ft - simulation 
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Fig. 5.21—B3 vs. lateral length for different entry points for the sand intensity of 2,688 lb/ft 

- regression 

 

In Fig. 5.22, B3 increases as lateral length increases, however, the slope of growth in B3 

to lateral lengths decreases as lateral length increase for different entry points. This is because of 

the hydraulic friction; reservoir size and wellbore capacity have been incorporated in the 

simulation method and the slope of change of B3 vs. lateral length decreases when lateral length 

increases. 
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Fig. 5.22—B3 vs. lateral length for different entry points for the sand intensity of 2,688 lb/ft 

- simulation 

 

In Fig. 5.23, EUR increases slightly as the number of entry points increase using the 

regression method. EUR is correlated to long-term production and number of entry points 

usually corresponds to short-term production. Therefore increasing the number of entry points 

does not increase EUR significantly. 
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Fig. 5.23—EUR vs. entry point for different lateral lengths for the sand intensity of 2,688 

lb/ft – regression 

 

In Fig. 5.24, EUR increases in the range of 10 to 100 entry points for different lateral 

lengths. However, EUR goes down after 100 entry points in the simulation method. This is due 

to the increase in hydraulic frictions and fluid completion when there is a rise in number of 

connections and fluid in the wellbore. Fig. 5.15 (PV10 vs. entry points) shows a similar trend 

since they are both indicator of long-term production and long-term economic gains. 
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Fig. 5.24—EUR vs. entry point for different lateral lengths for the sand intensity of 2,688 

lb/ft – simulation 

 

In Fig. 5.25, EUR increases as lateral length increases using the regression method due to 

the additional reservoir being contacted. This trend is similar to the B3 vs. lateral length in Fig. 

5.21. As the lateral length doubles, EUR approximately doubles in the regression model which 

not physically possible due to friction losses in tubular. This is due to the fact that regression 

method is not constraint by reservoir size and friction losses in the tubular of the problem.  
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Fig. 5.25—EUR vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft - regression 

 

In Fig. 5.26, EUR increases as lateral length increases in the simulation method, but the 

range of EUR in simulation method (2 Bcf to 18 Bcf) is not as high as the regression method (9 

Bcf to 42 Bcf). This is because in the reservoir simulation I considered the size of tubular and 

limit the flow when it exceeds more than tubular size.  
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Fig. 5.26—EUR vs. lateral length for different entry points for the sand intensity of 2,688 

lb/ft – simulation 

 

In Fig. 5.27, as number of entry points increase, the well life increases slightly. As the 

number of entry points increase, there is more connection between reservoir and wellbore, 

however, number of entry point corresponds to short-term production at the early life of the well. 

Therefore increasing number of entry points does not have significant effect on the well life.  
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As presented by Fig. 5.28, lateral length has a significant impact on well life. Longer 

laterals generate much longer well lives. This is due to the combination of the additional 

reservoir being contacted via the longer lateral and the greater number of entry points that can be 

cost-effectively placed in the longer lateral. These parameters provide higher long-term total-

wellbore production rates that when combined with the fixed operating costs cause the well to 

remain above the economic limit for a longer period of time than a well with a shorter lateral 

and/or fewer entry points. Well life does decrease modestly as the number of entry points 

increase as more entry points for a given lateral length will deplete the reservoir in less time.  
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Fig. 5.27—Well life vs. entry points for different lateral lengths for the sand intensity of 

2,688 lb/ft - regression 
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In Fig. 5.29 and Fig. 5.30, well life increases as the lateral length increases. As the lateral 

length increases, more reservoir being contacted via the longer lateral, therefore the well life 

goes up both in the regression and simulation methods.  
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Fig. 5.28—Well life vs. entry point for different lateral lengths for the sand intensity 

of 2,688 lb/ft - simulation 

 



 

147 

 

 

 

 

 

 

 

30

32

34

36

38

40

42

2,000 4,000 6,000 8,000 10,000 12,000 14,000

Lateral length (ft)

5

10

15

20

25

30

35

40

45

2,000 4,000 6,000 8,000 10,000 12,000 14,000

Lateral length (ft)

 

Fig. 5.29—Well life vs. lateral length for different entry points for the sand intensity of 

2,688 lb/ft - regression 

 

Fig. 5.30—Well life vs. lateral length for different entry points for the sand intensity of 

2,688 lb/ft - simulation 
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Table 5.30 consists of different metrics I calculated in this chapter using simulation and 

regression methods for minimum, mid-point and maximum completion parameters. 
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Fig. 5.31 to Fig. 5.35 illustrate B3, EUR, well life, ROR and PV10 of minimum, mid-

point and maximum completions of regression and simulation methodologies as bar charts. 

These figures illustrate the overall impact of the regression and simulation-based methodologies 

on expected well performance and financial value of various completion designs. 

As shown in Fig. 5.31, for the minimum completion parameters the regression and 

simulation B3 are close to each other. However, for the maximum completion parameters B3 

from regression is about 60% greater than the simulation B3. This is due to the lack of physics 

constraints such as friction losses in the tubular, reservoir size and tubular size in the regression 

model. Thus, at the aggressive completions, which are beyond the range of observed field data, 

the regression analysis method will yield significantly optimistic B3’s and therefore will likely 

yield incorrect optimal completion designs. 

 

Fig. 5.31—B3 (Mcfed) of regression and simulation methodologies for the minimum, mid-

point, and maximum completions 
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In Fig. 5.32, for the minimum completion parameters the regression and simulation EUR 

are close to each other. However, for the mid-point and maximum completion parameters EUR 

from regression is 146% and 186% greater than simulation EUR. This is again due to the lack of 

physics-based constraints such as friction losses in the tubular and reservoir size limitation in the 

regression model that manifests more severely in the long-term production. Thus, at the 

aggressive completions, which are beyond the range of observed field data, the regression 

analysis method will yield significantly optimistic EUR’s and therefore will likely yield incorrect 

optimal completion designs. 

 

 
Fig. 5.32—EUR (Bcf) of regression and simulation methodologies for the minimum, mid-

point, and maximum completions 
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because regression predicts a higher EUR than simulation. For the maximum completion 

parameters, the well life of both methodologies is 40 years, this is because 40 years was the 

maximum well life incorporated in the economic model.   

 

 
Fig. 5.33—Well life(year) of regression and simulation methodologies for the minimum, 

mid-point, and maximum completions 
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limitations on reservoir size, tubular capacity and friction losses in tubular As a result, the 

predicted short-term and long-term economic gains in regression method are higher than 

simulation method with the same well costs in the economic model. Therefore, at the aggressive 

completions, which are beyond the range of observed field data, the regression analysis method 
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will yield significantly optimistic ROR’s and PV10’s and therefore will likely yield incorrect 

optimal completion designs. For example, for the minimum completion design the difference 

between optimum ROR from regression and simulation is 5%, for mid-point completion design 

this difference is 24% and for the maximum completion design the difference is 28%. Similarly, 

for the minimum completion design the difference between optimum PV10 from regression and 

simulation is $0.4MM, for mid-point completion design this difference is $3.76 MM and for the 

maximum completion design the difference is $14MM. 

 

 
Fig. 5.34—ROR of regression and simulation methodologies for the minimum, mid-point, 

and maximum completions 
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Fig. 5.35—PV10 ($MM) of regression and simulation methodologies for the minimum, mid-

point, and maximum completions 

 

Table 5.31 to Table 5.42 present summaries of optimum completion designs that 

maximize rate of return or PV10 using multivariable regression and reservoir simulation process 

for existing completion practices in the industry as well as those beyond the past observed 

practices using CAD$2/MMbtu, CAD$3/MMbtu and CAD$4/MMbtu. 

As mentioned earlier in this chapter, the regression method tends to predict greater short 

and long-term production volumes compared to the simulation model. Therefore, given the same 

well cost, calculated economic gain using the regression method is greater than the simulation 

method. Inside the range of values of the observed dataset, the higher forecast of production in 

regression method is not as severe as the higher forecast outside range of observed values.  

As shown in Table 5.31 to Table 5.42, within the current range of completion practices 

both multivariable regression and reservoir simulation methods generate the same optimum 
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completion design regardless of commodity price. A net effect of using the regression method is 

an inflated estimate of ROR and PV10 for any designs being evaluated.  

Outside the range of current industry practices the regression and simulation methods 

generate different optimum completion designs across the evaluated commodity prices. For ROR 

optimization, the net impact of using the regression methodology rather than the simulation 

methodology is only to significantly increase the sand intensity and, in the CAD$2/MMbtu gas 

price case, increasing the number of entry points. For PV10 optimization outside the range of 

current practices, the net impact of using the regression methodology rather than the simulation 

methodology is to significantly increase the sand intensity and the number of entry points, and 

again in the CAD$2/MMbtu gas price case to increase the lateral length. 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$2 
Simulation 6,560 942 50 4% 

Regression 6,560 942 50 13% 

Table 5.31—Optimum ROR completion for current completion designs for a well spacing 

of 1,312 ft and CAD$2/MMbtu gas price 
 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$2 
Simulation 9,840 942 100 12% 

Regression 9,840 2,688 150 31% 
Table 5.32—Optimum ROR completion for future completion designs for a well spacing of 

1,312 ft and CAD$2/MMbtu gas price 
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Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$3 
Simulation 6,560 942 50 31% 

Regression 6,560 942 50 43% 

Table 5.33—Optimum ROR completion for current completion designs for a well spacing 

of 1,312 ft and CAD$3/MMbtu gas price 
 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$3 
Simulation 9,840 471 150 57% 

Regression 9,840 2,688 150 86% 

Table 5.34—Optimum ROR completion for future completion designs for a well spacing of 

1,312 ft and CAD$3/MMbtu gas price 

 

 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$4 
Simulation 6,560 942 50 60% 

Regression 6,560 942 50 74% 

Table 5.35—Optimum ROR completion for current completion designs for a well spacing 

of 1,312 ft and CAD$4/MMbtu gas price 

 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 
ROR 

$4 
Simulation 9,840 471 150 118% 

Regression 9,840 2,688 150 148% 

Table 5.36—Optimum ROR completion for future completion designs for a well spacing of 

1,312 ft and CAD$4/MMbtu gas price 
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Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$2 
Simulation 6,560 942 50 -0.89 

Regression 6,560 942 50 0.54 

Table 5.37—Optimum PV10 completion for current completion designs for a well spacing 

of 1,312 ft and CAD$2/MMbtu gas price 
 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$2 
Simulation 9,840 942 100 0.29 

Regression 13,120 2,688 400 8.84 

Table 5.38—Optimum PV10 completion for future completion designs for a well spacing of 

1,312 ft and CAD$2/MMbtu gas price 

 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$3 
Simulation 6,560 942 50 2.96 

Regression 6,560 942 50 5.73 

Table 5.39—Optimum PV10 completion for current completion designs for a well spacing 

of 1,312 ft and CAD$3/MMbtu gas price 

 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$3 
Simulation 13,120 1,413 100 7.27 

Regression 13,120 2,688 400 29.03 

Table 5.40—Optimum PV10 completion for future completion designs for a well spacing of 

1,312 ft and CAD$3/MMbtu gas price 
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Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$4 
Simulation 6,560 942 50 6.84 

Regression 6,560 942 50 10.92 

Table 5.41—Optimum PV10 completion for current completion designs for a well spacing 

of 1,312 ft and CAD$4/MMbtu gas price 

 

 

Gas Price, 

(CAD)/MMbtu 
Methodology 

Lateral 

length, 

ft 

Sand 

intensity, 

lb/ft 

Entry 

point 

PV10 

(MM$) 

$4 
Simulation 13,120 1,413 100 15.45 

Regression 13,120 2,688 400 49.27 

Table 5.42—Optimum PV10 completion for future completion designs for a well spacing of 

1,312 ft and CAD$4/MMbtu gas price 

 

 

 

As the results show in the Table 5.31 to Table 5.42, within the range of current 

completion practices, the regression and simulation models generate the same optimal 

completion design of 6,560 ft of lateral length, 942 lb/ft of sand intensity and 50 entry points and 

are at the upper limit of current practices for all completion parameters. However, outside the 

range of current completion practices, the regression and simulation model generate different 

optimal completion designs: 

➢  In both regression and simulation methodologies, lateral length of the 

optimum completion designs (ROR and PV10) are considerably longer than 

the upper limit of current lateral length in the Town field.  

➢ In both regression and simulation methodologies, number of entry points of 

optimum completion designs (ROR and PV10) are greater than the upper limit 

of current number of entry points in the Town field.  
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➢ The optimized sand intensities (ROR and PV10) using the regression method 

are considerably higher than upper limit of sand intensities currently used in 

the Town field. In the simulation method, optimized sand intensities for ROR 

are within current practices and optimized sand intensities for PV10 are within 

and beyond current practices used in the field, depending on commodity 

prices.  
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CHAPTER 6 LIMITATIONS AND FUTURE WORK 

 

One limitation of this study in particular is that the optimization was not normalized for 

the size of the development area. That is, as the lateral length increases, not as many wells can be 

drilled per section, the well inventory decreases and infrastructure costs (e.g., roads, pads) 

change. This study was performed for individual-well optimization, not multi-well optimization 

of an area. Future work should encompass multi-well optimization by area. 

Another limitation was the lack of geologic/reservoir data in the dataset.  For the 

regression methodology these data were completely omitted and for the simulation methodology 

an average set of values was used.  These data were excluded primarily due to the difficult and 

time-consuming nature of accurately acquiring these data. Future work should consider including 

these data, spatially distributed across the study area for both methodologies. 

In this work, optimization using multivariable regression and reservoir simulation were 

conducted separately. Future work should investigate how to combine two these methodologies 

into a single optimization. Moreover, future work should quantify the uncertainty that exists in 

both models. 
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CHAPTER 7 CONCLUSIONS 

 

The objectives of this research were, first, to develop methodologies to identify the 

economic optimum completion in heterogeneous, low-permeability horizontal wells that require 

hydraulic fracturing to flow at commercial rates, within and beyond the current industry 

completion practices and, second, apply the methodologies to 44 hydraulic-fractured horizontal 

wells in the Town field, located in the Montney formation in Canada, British Columbia. The 

conclusions of the study are as following: 

• Two different methodologies were used to identify the economic optimum completion 

design in the Town field:  

o First, an empirical multivariable methodology incorporating individual-well 

completion and production data was used to predict B3 which was then projected into 

a 40-year production forecast using an average type curve. 

o Second, a physics-based reservoir simulation methodology using reservoir properties, 

was calibrated to match the average flowing pressure and production performance of 

an average production type curve.  This calibrated simulator was then used to predict 

B3 and a 40-year production forecast. 

o Each methodology was used to generate production forecasts for a wide variety of 

completion designs. Single-well economics were generated on each of those designs 

and the optimum designs were identified that maximize either ROR or PV10.  

• For the empirical multivariable regression section, I developed five multivariable 

regression models using completion parameters of 44 wells in the Town field to predict 
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short-term well performance. The conclusions from the multivariable regression 

modeling are as follows:   

o The best model among the five models in the Town Upper Montney is the per-entry-

point model, not the per-fluid model that was chosen for the analysis in this study.  

o The predicted values from the per-fluid multivariable regression model of the Town 

field do not exhibit as large a range of values as the observed values. This is probably 

due to missing data in the model such as rock properties. 

o The model does a poor job of predicting individual wells. 

o I applied multivariable regression on the full BC Montney dataset of 1040 wells along 

with three different reduced datasets for the Town, Altares and Parkland fields: 

➢ For the Town field, the reduced dataset generated a better predictive model. 

For Altares and Parkland fields, there was no meaningful difference between 

the full and reduced models. 

o Multivariable regression model was used to predict short-term well performance for 

300 sets of completion parameters within and beyond the range of current completion 

practices in the Town field. The B3 of each set of completion parameters was 

converted to a 40-year monthly production forecast by scaling with the Town Field 

production type curve. 

• For the physics-based reservoir simulation modeling, I calibrated a reservoir simulation 

model to match the average flowing pressures and production of a 44-well type curve in 

the Town field and used that calibrated model to predict well performance. The 

conclusions from the reservoir simulation modeling are as follows: 

o The model does a poor job of predicting individual wells. 
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o The predicted B3 values from the simulation model do not exhibit as large a range of 

values as the observed values. This is probably due to a single set of rock properties 

being used in the simulation model while the 44-well Town area probably includes a 

significant range of rock properties. 

o The simulation model does a better job of predicting the B3 extremes than the 

regression model, but results in a lower R2 of predicted vs. observed B3 than the 

regression model. 

• Economic optimization was performed using the both regression and simulation models 

with an assumed well spacing of a 1,312 ft. The conclusions from the economic modeling 

are as follows: 

o The regression model predicts higher ROR & PV10 compared to the simulation 

model for the same completion parameters. 

➢ The higher forecast ROR is because of a higher forecast B3. This is due to a 

lack of parameters relating to the physics of wellbore friction losses in the 

regression model.  

➢ The higher forecast PV10 is because of a higher forecast EUR. This is due to a 

lack of parameters relating to the physics of the drainage area size in the 

regression model. 

o Within the range of current completion practices, the regression and simulation 

models generate the same optimal completion design of 6,560 ft of lateral length, 

942 lb/ft of sand intensity and 50 entry points. The optimal completion design is at 

the upper limit of current industry practices in the Town field for all completion 
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parameters, indicating the optimal completion is likely beyond the current 

completion practices. 

o Outside the range of current completion practices, the regression and simulation 

model generate different optimal completion designs. In both methods, lateral length 

and number of entry points of the optimum completion designs (ROR and PV10) are 

considerably greater than the upper limit of current values in the Town field. The 

optimized sand intensities (ROR and PV10) using the regression method are 

considerably higher than upper limit of sand intensities currently used in the Town 

field. In the simulation method, optimized sand intensities for ROR are within and 

optimized sand intensities for PV10 are within and beyond current practices used in 

the field, depending on commodity prices.  

o These results suggest that the optimal completion is beyond current practices. 

o Although the regression method is faster, the simulation method is recommended for 

optimization beyond the range of current completion practices. This is because the 

reservoir simulation method specifically models several physics-based realities that 

regression does not, such as material balance as dictated by the size of the reservoir 

(OGIP) and fluid-flow friction losses through the casing and tubing. 

o B3 is mostly influenced by and positively correlated to the number of entry points. 

Larger B3’s generate larger ROR’s and thus impact the economic optimum 

completion. 

o EUR is mostly influenced by and positively correlated to the lateral length. Larger 

EUR’s generate larger PV10’s and thus impacts the economic optimum completion. 
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