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ABSTRACT 

 

This thesis presents a new framework for Web-based parametric modeling for 

design collaboration, towards allowing multiple users to work on the shared Web-based 

model in the process of drafting, design, simulation, and optimization. The framework 

consists of a WebGL-based model Viewer (Autodesk Forge Viewer), two visual 

programming tools, Grasshopper and Dynamo, and two software prototypes developed 

for this thesis. The prototypes, one for Grasshopper, the other for Dynamo, provide the 

communication between the Viewer and the visual programming tools. The Web-based 

3D model and design data can be viewed in the Viewer.  The Web-based model is 

controlled and modified through the visual programming tools using the prototypes. The 

embodiment of the Web-based information technology, WebGL and networking, makes 

it possible for users to view the Web-based model, collaborate, and participate in 

modeling through Web browsers. The full-fledged visual programming environments, 

Grasshopper and Dynamo, enable users to interact with the parametric Web-based 

model; the plugins of the visual programming tools allow users to implement building 

energy performance (BEP) simulation and optimization while the Web-based model 

enables collaborative design exploration. Two case studies with three tests each were 

conducted on a simplified residential building model. In Case Study 1, two simulated 

users (actions done by the author) tested the parametric capabilities of the shared Web-

based model using Grasshopper and Dynamo. The basic geometric transformations 

including scale, translate, and rotate were tested in Tests 1.1, 1.2, and 1.3 respectively. In 
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the Case Study 2, the collaboration of two Grasshopper users on the shared Web-based 

model in the process of optimization for different building performance objectives -in 

terms of daylight, energy use, and roof coverage- was tested. Case Study 2 was 

conducted through three tests of optimization. (i) In Test 2.1, the objectives were 

maximum preferred daylight and minimum roof shape with shading. (ii) In Test 2.2, the 

objectives were minimum energy and minimum roof shape with shading. (iii) In Test 

2.3, minimum energy use was the first objective, maximum preferred daylight and 

minimum roof shape with shading was the second objective. 

The findings demonstrate that the framework successfully provides interoperable 

Web-based architectural models which could be controlled parametrically through 

different visual programming tools. The framework also constitutes an environment of 

collaboration between Grasshopper users during daylight, energy, and integrated 

daylight and energy optimization along with the optimization of the roof shape. In both 

collaboration cases, the users retrieve data from the Web-based model to update their 

visual programming files. Major technical limitations of the framework are also found 

and discussed. Future work includes automation of the data flow through Web to the 

local visual programming files and contributing to the interoperability solutions by 

incorporating other tools.  
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1. INTRODUCTION  

 

This thesis introduces a new framework for Web-based parametric modeling for 

architectural design collaboration and optimization through case studies. Within this 

framework, different users can collaborate from disparate places by sharing a Web-based 

model on Web browsers. The users get updates of a Web-based model in real time. The 

framework allows multiple users to work on the shared Web-based model in the process 

of drafting, design, simulation, and optimization.  

The embodiment of the Web-based information technology (WebGL graphics, 

networking, and Web browsers) makes it possible for users to view, collaborate, and 

participate in parametric modeling through Web browsers. The other component is the 

design computing technology (visual programming) which enables users to interact with 

the parametric Web-based model. The framework consists of a WebGL-based model 

Viewer (Autodesk Forge Viewer), two visual programming tools, Grasshopper and 

Dynamo, and two software prototypes developed for this research. The prototypes, one 

for Grasshopper, the other for Dynamo, provide the communication between the Viewer 

and the visual programming tools. The Web-based model is modified through visual 

programming interfaces using the prototypes. The full-fledged visual programming 

environments enable building performance simulation and optimization while the Web-

based model enables collaborative design exploration. 

The Web-based model is a parametric model, so that different design options can 

be explored and generated by changing values of parameters. Besides, parametric 
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relations allow users to run simulations and conduct optimizations. Visual programming 

provides users Graphical User Interface (GUI) instead of command line-based interface, 

and it extends the capabilities of the 3D modeling programs by allowing them to build 

custom parametric relationships. In addition, by integrating simulation plugins, visual 

programming enables users to simulate and optimize the architectural 3D models in its 

own environment eliminating the translation of the models to other software 

environments. With this framework, users can view, edit, simulate, and optimize a 

parametric Web-based model on Web browsers and visual programming user interfaces. 

The framework contributes to the interoperability by letting users to utilize different 

visual programming user interfaces during collaboration. A novel approach to design 

practice is promoted by emphasizing Web-based collaboration and employing building 

performance simulation and optimization in early steps of design process.  

In order to test the framework, two case studies were conducted on a simplified 

residential building model inspired by Clavienrossier Architects’ “Two in One House” 

project. The goal is to demonstrate the collaboration through the Web and the 

implementation of energy and daylight optimization. In the tests of case studies, two 

simulated users (actions done by the author) are included. For the convenience of 

discussion, in this thesis when mentioned the two simulated users, the word “simulated” 

are often omitted. In the Case Study 1, the collaboration of different visual programming 

tools and parametric capabilities of the Web-based model were tested. Two users tested 

the parametric capabilities of the shared Web-based model using Grasshopper and 

Dynamo. The basic geometric transformations including scale, translate, and rotate were 



 

3 

 

tested in Tests 1.1, 1.2, and 1.3 respectively. The parametric relationships were built in 

each user’s visual programming interface, Grasshopper or Dynamo. Both users have the 

control of exploring design options by changing the variables. The parametric changes 

were transferred to the Web browser with the help of two developed prototypes and 

viewed on the Web-based model simultaneously. Each user can get updates of the other 

user’s design drafting results on the Web-based model and can retrieve data from the 

Web-based model.  

In the Case Study 2, the collaboration of two Grasshopper users on the shared 

Web-based model in the process of optimization for different building performance 

objectives -in terms of daylight, energy use, and roof coverage- was tested. Case Study 2 

was conducted through three tests of optimization. (i) In Test 2.1, the objectives were 

maximum preferred daylight and minimum roof shape with shading. (ii) In Test 2.2, the 

objectives were minimum energy and minimum roof shape with shading. (iii) In Test 

2.3, minimum energy use was the first objective, maximum preferred daylight and 

minimum roof shape with shading was the second objective. The optimization dataflow 

was built on each user’s visual programming interface, in this instance Grasshopper, and 

then the Web-based model was optimized through the program. Genetic algorithm was 

utilized in multi-objective optimization to generate a set of solutions called Pareto front. 

The Multi-objective evolutionary optimization plugin Octopus and building energy 

performance (BEP) simulation plugin Honeybee worked together in an iterative process 

of simulation and generation for the best solutions. After the users run daylight and 

energy simulation and optimization, chosen results were sent to the Web-based model. 
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Each user can view the results of other user’s optimization process on the updated Web-

based model and can retrieve data from the model.  

Overall, the findings of the Case Study 1 presented herein demonstrate that the 

proposed framework successfully provides multiple users’ collaboration on interoperable 

Web-based architectural models, which could be controlled parametrically through 

different visual programming tools, Grasshopper and Dynamo, on Web browsers on the 

transformations scale and translate. The findings of the second study presented the 

framework for collaboration between Grasshopper users through the Web-based model 

during daylight, energy, and integrated daylight and energy optimization while 

optimizing the roof shape with shading. In both collaboration case studies, the users can 

retrieve data from the Web-based model to update their visual programming files. While 

experimenting on the case studies, two interoperability issues were identified between 

the Web-based model and Grasshopper on how they responded to rotate and scale 

transformations. The first major issue is the reference point of transformations. All scale 

and rotation transformations reference the center of the bounding box of the Web-based 

model, whilst Grasshopper allows the users to define a reference point for these 

transformations. The twin model method was adopted to solve this issue. The twin 

model, which is the reproduction of the Web-based model in Rhino, served in 

calculating the displacement between the initial and the last positions. The second major 

interoperability issue is the difference of the directions of rotation between the Web-

based model and Grasshopper. Even though the Web-based model’s and Grasshopper’s 

coordinate system follows the same right-hand rule during rotation, the positive Z-axis in 
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Grasshopper coincides with the positive Y-axis in the Viewer. This may cause 

inconsistency in the data transfer of the transformation matrix, which is compounded in 

Grasshopper, while assigning a rotation angle to the Web-based model. There are many 

technical challenges, especially interoperability problems, found and resolved for the 

project through the carefully designed experiments. However, due to the high 

complexity of the problem, limitations are found to be investigated in future work, for 

example, (1) geometry vertices of the Web-based model should be editable to enable 

more flexible parametric changes. (2) The automation of the data transfer from the Web-

based model to the visual programming tools should be implemented. (3) The 

elimination of the need for the twin models in local visual programming environments, 

and enabling direct modeling, simulation, and optimization on the Web. 

Limitations of the framework were found during the experiments, including: 

Limited control on scale transformation and editing of the vertices and the data transfer 

being one-way, from the visual programming tool to the Web-based model. First, the 

elements of the Web-based model could be scaled through visual programming tools, the 

scale only works uniformly. Secondly, the users cannot specify a vertex and control that 

point on the Web-based model, but control the whole element instead. Lastly, the data 

transfer requires follow-up and manual data input while updating visual programming 

tools according to the Web-based model. The framework provides a collaboration 

environment for users who have knowledge of Revit, Dynamo or Rhino, Grasshopper 

for design drafting process. Additional knowledge of building performance simulations 

and metrics, the knowledge for using the graphical user interfaces in visual programming 
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tools to conduct simulations in simulation engines, and the knowledge to use the 

optimization tools are required to collaborate in the process of simulation optimization 

through this framework.    

 

1.1. Research Problem 

Since its invention in the 1960’s, the Internet has gained importance day by day, 

and presently, it plays a major role in nearly every aspect of daily life. Internet 

technologies not only provide fast communication, but also enable data exchange in 

different formats. In addition, with the introduction of Cloud Computing technology, 

applications became accessible to users over the Internet and on demand (Buyya et al., 

2009). A Web technology, WebGL allows users to interact with 2D and 3D graphics on 

Web browsers (“WebGL”, n.d.). Although there are some viewer services that use Cloud 

and WebGL to visualize architectural models, design, drafting, simulation or 

optimization features are not a part of these models yet. 

On the other hand, raising awareness in global warming, climate change, and the 

limitations of natural resources necessitate a sustainable approach in many fields, 

including architecture. BEP simulations are of great importance because buildings are 

the largest energy consumers, as 41% of U.S. primary energy is consumed by this sector 

(U.S. Department of Energy [DOE], 2011). Recently, more professionals in the building 

sector have specialized in BEP, and collaborated in design process with architects. The 

collaboration of specialists and architects is most valuable in the initial design stages 

since the significant design decisions which affect the building performance are made in 
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that stage (Schade et al., 2011). With the development of visual programming tools and 

various plugins, now it is possible to integrate BEP simulation and optimization in the 

process of form finding. The users have the control of generating diverse design 

solutions through parameters. Yet, neither multi-user collaboration through the same 

visual programming tool, nor the collaboration of different visual programming tools are 

examined thoroughly. 

In this research, a framework is proposed to provide a collaboration of different 

visual programming tools on Web browser. A prototype of the framework is developed 

and experimented to investigate how multiple users collaborate through Web-based 

model in search of possible solutions of design, simulation and optimization. 

 

1.2. Research Objectives 

The research presented herein seeks answers for the following two questions: 

1. How to implement set up parametric relationships between the elements of a 

Web-based model and control it through different modeling and visual 

programming tools by different users while getting updates in real time? 

2. How to implement two users to optimize the same parametric Web-based model 

through their own computers? 

The main objective of this research is to test the Web-based parametric modeling 

by using the data flows in the visual programming tools, coding and WebGL (Web 

Graphics Library) technology.  
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Another important objective is to solve the interoperability issues by enabling 

users to practice with their own choice of tools on the shared Web-based model and to 

provide updates in real time. Lastly, this research aims to provide a solution for different 

users to execute different optimization processes on the same Web-based parametric 

model by sharing parameters. For all the above objectives, the research is also going to 

find limitations in the proposed framework. 

 

1.3. Research Significance 

The significance of the research lies in its demonstration of parametric Web-

based modeling while dealing with interoperability issues. The research fills the gap of 

collaboration in parametric design, especially with different visual programming tools. 

The framework provides parametric Web-based modeling with two full-fledged visual 

programming tools and their third-party plugins. By providing the communication 

between the Web-based model and visual programming tools reside in local computers, 

the framework extends the capability of the Web technology beyond viewing by 

employing drafting, simulation, and optimization methods in the process of design. 
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2. LITERATURE REVIEW 

 

The literature review contains five main sections: (1) Building Information 

Modeling; (2) Parametric Modeling; (3) Web-based Modeling; (4) Building Performance 

Simulation, and (5) Optimization. In the first section, the Building Information Modeling 

is investigated; because, Building Information Models can be converted into Web-based 

models and the Web-based model presented in this thesis is created by this conversion. 

In the second section, Parametric Modeling is examined, since one of the objectives of 

this thesis is to set up parametric relationships between the elements of the Web-based 

model which is lost during that conversion. In the third section, existing Web-based 

modeling tools are explored and analyzed in subsections; the capabilities and the 

limitations of these tools are identified. This section gives an overview of the recent 

Web-based modeling availabilities and clarifies the contribution of the thesis to the field. 

In the fourth section, Building Performance Simulation is interrogated in two 

subsections, Daylight and Energy. In both subsections, benefits, metrics, and tools to 

simulate building performance are examined. The related metrics and tools are used in 

the case studies. In the last section, optimization in architectural research is investigated; 

optimization tools for different software and purposes are analyzed. The appropriate tool 

is chosen for the case studies.  
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2.1. Building Information Modeling 

Building Information Modeling (BIM) is distinguished as a new way of project 

drafting, modeling, constructing, and managing among other computer aided design 

tools by integrating information management to the project.  The most significant feature 

of BIM is the generation, use, and extraction of information from design to demolition, 

through the building’s life cycle. By digitally representing the physical and functional 

characteristics of a facility, BIM enables different stakeholders at different phases of the 

life cycle of a facility to collaborate by inserting, extracting, updating, or modifying 

information (National Institute of Building Sciences [NIBS], 2008; Eastman et al., 

2011). The object-based nature of BIM’s structure makes it possible to produce that 

information either by utilizing the generic and product specific properties of the element 

or by benefiting from the element’s relations to others and the attributes the element has. 

For instance, modeling in 3D automatically creates plans, elevations and sections, or 

changing a location or size of a window simultaneously updates the form of the void on 

the wall. Since BIM emerges as an innovative way to design and manage projects 

(Azhar, 2011), its interoperability with other design and simulation tools gains 

importance.  

BIM uses building objects and their relationships to express design intent; and 

the parametric modeling method establishes and manages relationships between building 

objects in a building model (Yan, 2014). The objects parametrically defined through 

relations and attributes facilitate automatic changes with any alteration in the objects’ 

values (Eastman et al., 2011). According to Yan, the parameters defining objects and 
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their relations can be built-in or user-specified such as mathematical formulations or 

computational algorithms (2017). External data can be fed into these relations by 

adopting Graphical User Interface (GUI) (Yan, 2017). Revit is a BIM authoring tool 

developed by Autodesk, Inc. It allows building parametric relations both inside its 

building elements or between these elements by utilizing reference lines, planes or 

dimensions. The definition of parametric relations can be further expanded with the 

integration of visual programming tool Dynamo.  

Integrating Web technologies to create a Web-based model by using BIM would 

significantly contribute to design collaboration. BIM is object-based and its elements 

have the information embedded in these elements; therefore, Web-based models can 

display this information and allow users to retrieve data from Web. This information can 

be related to geometry, location, materials, etc. 

 

2.2. Parametric Modeling 

Parametric equation is a mathematical term, which employs independent 

variables called parameters in explicit functions while defining quantities (Stover & 

Weisstein, n.d.). By changing variables of parametric equations, it is possible to produce 

numerous solutions. Parametric equations are implemented in many fields, including 

architecture. The application of parametric equations in architecture creates the concept 

of parametric architecture. Although, parametric architecture has been used as a term for 

a long time (Davis, 2013), today, the term refers to digital parametric design. In 2008, 

Patrik Schumacher presented Parametricist Manifesto and defined the relationships 
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between elements in a parametric composition as highly integrated so they cannot be 

easily decomposed into independent subsystems (Schumacher, 2008). This integrated 

dependency allows to easily explore form finding by proliferating design solutions.  

 Despite requiring more comprehensive understanding and skills in mathematics 

and computer science besides design, parametric design tools give more control and 

capability to designers (Woodbury, 2010). Hudson (2010) defines the implementation of 

parametric design in architectural practice in five tasks: Translation, Rationalization, 

Control, Generate and Test, and Share Information. According to him, the first task 

includes converting a design idea into a parametric model, which is called translation. 

The second task, rationalization is the application of known geometric principles and 

construction techniques in order to realize a project. The third task, Control, is 

considered by Hudson (2010) on multiple levels, in which the lowest level defines the 

fundamental geometry and the higher levels define further geometry by integrating 

fundamental geometry with other parameters. The fourth task, Generate and Task 

defines testing various criteria and generation of alternatives based on specialist input. 

The fifth task, sharing information, is the integration of design analysis by a specialist 

and production of construction information (Hudson, 2010). Implementation of 

parametric design produces a set of design solutions instead of a single output, especially 

in the exploration of form finding and visualizing. Similarly, parametric relations 

contribute to simulation and optimization processes with the help of computer 

algorithms in a relatively short time compared to an exhaustive search for the optimal 

solutions.  
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2.3. Web-based Modeling or Model Viewing Tools 

Recently, incorporating Cloud services such as storing, viewing, editing, 

designing, and modeling to the architectural design process contributes to participatory 

collaboration and data exchange. Several Web-based tools have been introduced that 

support exchanging the parametric models, viewing the parametric model online and 

making parametric changes on a Web-based platform (Daher, 2017; Bakshi, 2017). A 

brief description of existing Web-based modeling tools, as well as an initial examination 

of each, is provided in subsections 2.3.1-2.3.5. 

 

2.3.1. Lena 

Lena by BIMobject® creates parametric models in Rhino and utilizes cloud 

service (BIMobject® Cloud) to view the model with parameters and other information 

(e.g. color or material) on the Web browser (“BIMscript®”, n.d.). Lena focuses on 

creating BIM objects (such as products, e.g. toilet fixtures) with data and parameters 

embedded. Lena is built on top of Rhino and run by BIMscript which is a scripting 

language that represents parametric behaviors, calculations, product logic, level of detail, 

properties, and attributes (“BIMscript®”, n.d.). 

Lena presents a tool to set up parametric models and operates across Rhino, 

ArchiCAD, cloud, and BIM by creating objects in commonly used formats such as IFC, 

3DS, DWG, and WebGL (“Is There a Place”, 2017). However, it heavily relies on the 

users’ knowledge and skills of scripting, and that becomes a barrier for designers in 
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using Lena during drafting and modeling. Lena is created for the manufacturers to 

convert their products in their catalog into BIM objects. BIM objects contain 

manufacturer details and help to build up the data sheets which makes purchasing 

products easier.  Lena helps to automatically provide information about the products 

while enabling parametrical changes, but it acts mainly as a product library supplier 

rather than a design tool. 

 

2.3.2. Mobius Parametric Modeler 

Developed by The Design Automation Lab at the Department of Architecture, 

National University of Singapore, Möbius Parametric Modeler is a tool for creating 

parametric models on Web browsers (“Möbius Parametric Modeler”, n.d.). Möbius 

Parametric Modeler is an application built on top of Möbius, which is an open-source, 

independent Web platform for building modeling apps that benefits from visual 

programming techniques, combining flowcharts with drag-and-drop, fill-in-the-blanks 

coding methods, creating the network of data flowcharts with nodes and wires. The 

difference of Möbius Parametric Modeler from the general visual programming tools is 

that in addition to combining the nodes with wires and composing the data flowcharts, 

the user also constructs the node itself (Janssen et al., 2016). The user generates nodes 

based on a node template.  

Möbius Parametric Modeler interface consists of four main viewports that can be 

rearranged into any configuration by the user: output, flowchart, procedure, and 

parameters. Möbius Parametric Modeler adopts imperative programming which means 



 

15 

 

customizing nodes by using a procedure viewport to define the set of codes. Specifying 

the nodes facilitates iterative building performance optimization process by including 

loops in both the procedure and the dataflow level (Janssen et al., 2016). However, the 

user needs to create the nodes from scratch in each time since the whole dataflow 

network is a single script till the memorization feature will be included as is specified in 

the future work (Janssen et al., 2016).  

Möbius Parametric Modeler is a parametric modeling tool for a single user 

working on a Web browser which relies on coding and it becomes a tool for iterative 

loops and higher order functions (Janssen et al., 2016). The files cannot be converted to 

any other format. It is specified that additional viewers and function modules are being 

developed for BIM as a future work (Janssen et al., 2016). It is not a collaboration tool 

since an individual user scripts each file.  

 

2.3.3. Spectacles 

Developed by Thornton Tomasetti’s CORE Studio, Spectacles is a plugin for 

Grasshopper to export Rhino/Grasshopper models (currently meshes and lines) and view 

them on the Web browser Spectacles is open source and utilizes three.js (Bhowes, 2015). 

Spectacles has a Grasshopper exporter and by using it, a Grasshopper file is exported as 

a .json file. Then this .json file can be uploaded to the Spectacles Web viewer (http://tt-

acm.github.io/Spectacles.WebViewer/). In addition to Grasshopper, Spectacles also 

exports Revit files with a similar method. The Web viewer has orbit, pan, and zoom 

features. Clicking on an element displays the features and attributes of that element. The 
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viewer can only control the settings of the scene such as background color, lighting, 

shadows, or the layers. It presents the embedded attributes of each element but gives no 

edit capability to users for manipulating them.  

 

2.3.4. ShapeDiver 

ShapeDiver is a plugin for Grasshopper to upload and display parametric models 

on the Web browser (“ShapeDiver”, 2018). ShapeDiver allows users to view the 

parametric models with their parameters on a Web browser and manipulate the 

parameters that were defined prior to the upload. ShapeDiver provides the possibility of 

embedding parametric models on a Website to present product configurators with 

sliders. It also enables exporting files in manufacture-ready formats such as .dxf, .3dm, 

.stl, .dwg, etc. The ShapeDiver Website provides API and UI controls for users to 

authorize their models. ShapeDiver provides material, color, and texture controllers for 

rendering the models (“ShapeDiver”, 2018).  

ShapeDiver allows users to see different options whose boundaries are defined 

by the uploader. Once a parametric model is uploaded, it is on the Web and the range of 

its parameters’ values are fixed. There is no interaction between the original 

Grasshopper file and the uploaded parametric model. Instead, ShapeDiver is aimed at 

being a viewer to display parametric models, and provide users to change the values in 

those parameters.  

All the aforementioned viewing and converting tools do not support working on 

the Web browsers on the same model by using different modeling tools and full-fledged 
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parametric modeling tools directly through the Web. However, software interoperability 

and multidisciplinary collaboration is one of the key issues in the Architecture, 

Engineering and Construction (AEC) industry.  

 

2.3.5. WP-BIM 

WP-BIM is a framework that consists of a Web-based model and two visual 

programming tools. The Web-based model is generated by uploading a BIM model into 

a Web browser. The users are allowed to add parameters to building objects of a Web-

based model. This Web-based model can be controlled with Grasshopper and Dynamo 

(Yan, 2017). The WP-BIM framework benefits from Autodesk Forge Viewer (the 

Viewer) for displaying BIM models with parameters on the Web browser. Besides, WP-

BIM provides communication between the visual programming tools and the uploaded 

BIM model on the browser, which allows users to control the parameters from their 

computers with their own choice of visual programming tools. WP-BIM framework 

previously used Flux (https://flux.io) to provide the communication between a Web-

based model and the visual programming tools, Dynamo and Grasshopper. However, 

Flux is no more available and another plugin developed by Yalong Pi, Bihan Wang, and 

Dr. Wei Yan could provide this communication in one-way from the visual 

programming tools to the Web-based model. The framework was experimented in 

parametric modeling by two simulated users controlling the same BIM element (roof) in 

different Web browsers (Google Chrome and Microsoft Edge) through different visual 

programming tools (Dynamo and Grasshopper). One of the users controls the translation 
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and scale of the roof, while the other controls the rotation. One Grasshopper user can 

optimize the model automatically by using the Galapagos node which is a Genetic 

Algorithm tool. Objectives are covering the building and front area of the door while 

having a minimal area. After running the optimization, a set of generations of design 

options are created. The options can be viewed on the Web and synchronized with the 

Dynamo user in real time.  

 

2.3.6. Discussions About the Web-based Modeling or Model Viewing Tools 

Through the examination of existing Web-based design and viewing tools, it is 

observed that some of them act as a viewer with limited control on the Web-based 

models. All of them have the viewer controls such as pan, orbit and zoom; however, they 

have no control or limited control on manipulating the geometry and data. The viewer 

shows the geometry and data but provide no access to manipulate them as seen in 

Spectacles; or the viewer gives limited access to manipulate geometry and data as seen 

in ShapeDiver. This freedom to control the sliders on the Web browser is defined in the 

local model control file and once it is uploaded, the range of the sliders’ values gets 

fixed since there is no communication between the Web-based model and the local 

model control file. Möbius and Lena rely on command-based programming, which 

requires a significant amount of time to learn them for designers.  

Another limitation with Möbius and Lena is that their own programming 

limitations compared to visual programming tools such as Grasshopper, which has a 

comprehensive set of functions either built-in or through plugins. None of these tools 
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present a solution for interoperability issues except WP-BIM framework. In addition, 

WP-BIM is also a prototype with limited capability to make the Web-based model a full 

parametric model. Finally, none of the tools except WP-BIM provide potentials for BEP 

simulation or optimization. The properties and capabilities of existing Web-based tools 

are summarized in Table 1. 

 

Table 1. Comparison of existing Web-based modeling tools or model viewing tools 

Tool Name Parametric 

Modeling 

Inter- 

operability 

Collaboration Simulation Optimization 

Lena + + _ _ _ 

Mobius 

Parametric 

Modeler 

 

+ 

 

_ 

 

_ 

 

_ 

 

_ 

Spectacles _ + _ _ _ 

Shapediver limited + _ _ _ 

WP-BIM limited + + + limited 

 

 

2.4. Building Performance Simulation  

Building Performance Simulation section consists of two subsections: Daylight 

Simulation and Energy Simulation. In each subsection, the benefits of the simulation, 

metrics, and tools are examined. The reasons for the chosen metrics and the tools are 

discussed. 
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2.4.1. Daylight Simulation 

Proper daylighting in buildings has significant effects both on health of 

occupants and building energy performance. The studies show that the appropriate levels 

of daylight increase office workers’ and students’ performance, productivity, and 

concentration (Heschong Mahone Group, 2003a, 2003b). Daylit rooms make occupants 

feel more comfortable. The daylight, especially the morning sun, speeds up recovery 

time and reduce patients’ average length of stay (ALOS) in hospitals (Choi et al., 2012). 

By stimulating circadian rhythm, daylight has direct positive impact on well-being 

(Edwards & Torcellini, 2002). However, daylight should be carefully designed to meet 

the occupants’ needs. For instance, excess amount of light would cause glare which 

would negatively affect the performance and productivity of office workers or students. 

In addition, avoiding excess daylight with blinds would contribute to electrical lighting. 

On the other hand, if daylighting becomes insufficient; additional electrical 

lighting is needed to meet the minimum illuminance levels, which increases the amount 

of energy consumption. However, excess amount of daylight would bring solar gain, 

which would increase the demand for cooling and add to electrical loads, as well. 

Therefore, daylighting should be planned rigorously in order to meet the requirements of 

the function of the building. For instance, healthcare facilities require more daylight than 

other buildings (USGBC, n.d.).  

There are a number of useful daylight metrics and standards that guide architects 

to plan daylighting through daylight simulations. Illuminance is the total luminous flux 

incident on a surface, per unit area with unit lux (SI) or foot-candle (IP). Illuminating 
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Engineering Society (IES) provides illuminance levels according to building and space 

types. As reported by IES, recommended illuminance values for residence ranged 

between 50-500 lux (DiLaura et al., 2011). However, in houses many activities take 

place and this range does not fully provide the required illuminance levels for some 

activities such as reading or typing. Also, good lighting is subjective and without 

requisites, it is difficult to identify an illuminance range for houses. This brings a 

necessity to specify the activity and the space of the house, or to follow a universally 

accepted standard.  

For this thesis, the house is accepted as a universally designed house, which 

requires minimum levels of illumination for older people and people with visual 

impairment. Universal design is a term that implies designing for occupants of all ages, 

sizes, and abilities, or shortly “design for all people”, throughout the lifespan (NAHB 

National Research Center, 1996). Universal design principles are developed to answer 

the needs of a growing population of people with disabilities by making products, 

buildings, and exterior spaces accessible and adaptable (Mace et al., 1996). The 

buildings that receive effective daylighting provide good visibility. In order to make the 

buildings to provide visibility to all people, the daylighting should be designed to meet 

the requirements. If universal features are considered at the early stages of design, the 

cost of the final product would not exceed the cost of a traditional one (Mace et al., 

1996). According to CIE 227:2017 Lighting for Older People and People with Visual 

Impairment in Buildings, a technical report by International Commission on Illumination 
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(CIE), aged and visually impaired people require illumination levels of at least 750 lux 

for task areas to do reading, writing, typing, etc. (Akashi et al., 2017).  

Although minimum illuminance requirement for older people and people with 

visual impairment is identified in CIE 227:2017 standard, there is no upper limit 

provided in the report. Yet, excess daylight may result in glare and discomfort, which 

could obstruct the visibility. Therefore, another metric is required to set the upper limit 

for a good visibility for older people and people with visual impairment. To determine 

the optimum daylight range for this research, a synthesis was obtained by incorporating 

Useful Daylight Illumination (UDI) metric to universal design principles. UDI is chosen 

because it is a human-based metric, and it is constituted based on the surveys of 

occupant comfort. According to UDI, excess levels of illuminance create discomfort for 

occupants (Nabil & Mardaljevic, 2006). So that, the lower level is set according to the 

needs, and the upper limit is set for illuminance comfort levels. As a daylight availability 

metric, UDI defines useful levels of daylight illuminance based on realistic sky and sun 

conditions by aiding climate-based analyses of yearly daylight illuminance levels during 

occupancy hours (Nabil & Mardaljevic, 2006). According to UDI, the illumination 

levels below 500 lux are considered useful, which are ignored by Daylight Factor metric; 

a threshold is defined for excess illuminance levels that would result in occupant’s 

discomfort (Nabil & Mardaljevic, 2006). The Daylight Factor metric was out of the 

scope because of its limits with working independent from the orientation and only 

functioning under the overcast sky condition (Nabil & Mardaljevic, 2005). According to 

Nabil and Mardaljevic (2006), the useful limits of UDI are determined between 100-
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2000lux. However, when the illumination levels are below 500 lux, additional electrical 

lighting may be needed. 

In order to provide a comfortable illuminance for aged and impaired vision 

occupants, the simulation is run with minimum and maximum constraints. The minimum 

constraint is determined by using the illuminance levels of CIE 227:2017 standard, and 

the maximum constraint comes from UDI levels. As a result, the new useful daylight 

illuminance for the universal design house is ranged between 750lux and 2000lux for 

this study. 

RADIANCE, ADELINE, DOE, EnergyPlus, and DAYSIM are some of the 

prevalently used building performance simulation tools (Wong, 2017). Among them, 

RADIANCE, DOE, and EnergyPlus are command line-based engines and it is difficult 

to use them without programming knowledge. With the development of graphical user 

interfaces (GUI), they are available to architects. With the help of GUIs such as 

Honeybee and Diva, these engines can be accessed through either GUI or visual 

programming tool. RADIANCE is a command line-based lighting simulation engine, 

which helps predict illumination, visual quality and appearance of spaces, and evaluate 

new lighting and daylighting technologies by employing the light-backwards ray-tracing 

method (Ward, 1994; Fritz & McNeil, 2019). Honeybee is a GUI plugin to run daylight 

simulation in RADIANCE through Grasshopper (“Honeybee”, n.d.). Honeybee works 

together with another plugin, Ladybug, to import EnergyPlus Weather files (.EPW) into 

Grasshopper and visualize the results of daylight simulation (Roudsari & Pak, 2013).  
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2.4.2. Energy Simulation 

Due to the rise of oil prices and energy crisis in the 1970s, energy efficiency 

became a major concern in many sectors including construction. Also, the limitations of 

the natural resources, global warming, and climate change place stress on energy savings 

and renewable energy sources. On the other hand, buildings are the largest consumers of 

energy as compared to other sectors, such as transportation or industry (U.S. Department 

of Energy [DOE], 2011). Therefore, energy efficiency became a significant concern 

when designing buildings, therefore implementing BEP simulations gained significant 

importance. 

In order to make buildings more energy efficient, a major thing to do is to predict 

how much energy will be used by a building during its life-cycle. Energy performance 

simulation tools not only calculate BEP and HVAC requirements, but also output 

valuable data about thermal comfort and how to design properly according to needs of 

occupants. For the past fifty years, a large number of BES tools have been developed, 

and Crawley at al. (2005) reviewed twenty major BEP simulation programs in detail 

with up-to-date comparison of the features and capabilities. Maile et al. (2007) reviewed 

BEP simulation engines EnergyPlus and DOE2 and their user interfaces in the 

perspective of a life-cycle and interoperability. These two engines are operated by 

mathematical and thermodynamic algorithms, and input and analysis output data are 

command line based. Honeybee and Archsim (Reinhart et al., n.d.) are available GUIs 

for EnergyPlus to work in Grasshopper. EnergyPlus is an open-source whole-building 

energy modeling (BEM) engine developed by DOE, to model both energy 
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consumption—for heating, cooling, ventilation, lighting and plug and process loads—

and water use in buildings (“EnergyPlus”, n.d.). GUIs present model-based control, 

therefore geometry can be input in 3D, and the output can be visualized in 3D as well. 

Running simulation through GUI brings the whole process and the output to the same 

environment where geometry is generated. The results could be directly used in the 

design process or could be optimized within the same visual programming environment. 

Since the simulation engines only accept single planes for BEP modeling, the geometry 

is required to be built with single planes instead of solid modeling or surface modeling. 

For instance, walls are presented as single planes instead of having thickness or having 

two layers of planes. 

Honeybee provides access to a ready-to-use library of building construction 

materials through EnergyPlus. The building construction materials in the library are 

classified according to the standards from ASHRAE and CBECS. By running an energy 

performance simulation, zone loads, HVAC systems and equipment, electrical systems, 

renewable energy systems, ventilation and multizone airflow, and infiltration data can be 

obtained. Energy simulation is run in two phases, base design, and an improved design. 

The first one predicts the energy requirement of a building, while the second provides 

how much the energy performance of the building is improved and the amount of energy 

saved in the total energy use after doing modifications.  

Energy Use Intensity (EUI) is a metric to calculate energy efficiency in a 

building. EUI is obtained by dividing the total energy usage of a building in one-year by 

its total floor area. Units are kBTU/ft2 yr (IP) or kWh/m2*yr (SI). The EUI benchmarks 
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are determined according to the functions of buildings. U.S. Energy Use Intensity Table 

(U.S. Energy Use Intensity, 2018) and U.S. National Average Site EUI Table by AIA 

2030 Commitment Working Group (“Reference”, n.d.) present EUI targets to evaluate 

the performance of buildings.  

 

2.5. Optimization  

Optimization is a mathematical term later adopted by other fields, such as 

computer science, manufacturing industry and architecture, in order to represent the 

process of finding the optimal solution. Optimization is either calculating the maximum 

or the minimum value of an objective function within the given range of parameter 

values.  

The development of the computational design tools provides opportunities to do 

architectural design optimization (ADO) in finding optimal design solutions in many 

ways, e.g. floorplan layout design (Michalek et al., 2002) or optimal circulation paths 

between rooms. Gero (1975) pointed out that, building services such as air-conditioning, 

vertical transportation or materials selection can be treated as a multi-factor optimization 

problem. Today, from structural design to envelope design, energy optimization to 

daylight optimization, optimization became a method of designing. According to a 

survey conducted between the practicing architects, there is a need of an interactive 

multi-objective optimization tool especially in the process of daylight, structure, and 

geometry optimization (Cichocka et al., 2017). Visual programming tools allow for 

building parametric relations and optimization while generating the solutions within the 
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same tool, with geometry or numerical data. Two of the prevalent visual programming 

tools, Grasshopper and Dynamo, allow for optimization with the help of additional 

plugins (Rutten, 2010; Vierlinger & Bollinger, 2014; Rahmani et al., 2014, 2015a & 

2015b). Optimo is a BIM-based multi-objective optimization tool that utilizes Dynamo 

for high performance building design and generates a set of solutions based on 

evolutionary principles (Rahmani et al., 2015a). In Grasshopper, there are many 

available optimization tools. Among those tools, Galapagos and Octopus are two of the 

major evolutionary optimization tools. Galapagos Evolutionary Solver is a single 

objective optimization plugin for Grasshopper that emulates theory of evolution by 

adopting Genetic Algorithm and provides a single solution (the best solution) for a 

fitness function (Rutten, 2010). The variables, like genes, are fed into Galapagos with an 

objective which is the fitness function. The user starts and ends the solver which creates 

generations of variable values that fit the fitness function. Those generations are crossed 

over in an iterative process to yield the best result while worse solutions are deleted. 

Galapagos helps achieve the best result based on a fitness function in the process of 

design or simulation. By combining multiple objectives into a single objective using 

weighted sum, multiple objectives can be optimized through Galapagos.  

Octopus is a multi-objective optimization tool in Grasshopper that applies 

evolutionary principles to produce a range of best solutions with tradeoffs between the 

objectives (Vierlinger & Bollinger, 2014). According to Fonseca and Fleming (1995), in 

a multi-objective optimization, the solution is not a single one, but instead, a set of 

solutions known as Pareto-optimal set, that satisfy the multi-objectives. Each solution in 
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a Pareto-optimal set is in an optimal state where no improvement in a solution can be 

achieved without degradation in at least one of the remaining solutions (Fonseca & 

Fleming, 1995). Octopus generates this set of solutions, also known as Pareto front, 

which are symbolically presented as cubes in a graphical solution space. The population 

size of each generation of solutions and the number of generations denote the iterative 

process of producing design solutions; the starting, pausing, and stopping the 

optimization process are controlled by the user (Vierlinger & Bollinger, 2014). The 

history of the whole process can be recorded, and the data can be exported as text. Each 

objective is defined as a fitness function, and as default, Octopus algorithm runs to 

achieve the minimum values for all fitness functions. Octopus iteratively generates 

design solutions according to these fitness functions within the boundaries of parametric 

inputs. These inputs are connected to Octopus and act similarto genes in evolution. 

Integration of optimization, which adopts Genetic Algorithms (GA), into parametric 

modeling generates and evaluates results in a looping process (Caldas & Norford, 2002). 

If Octopus is used jointly with a simulation tool, simulation is run for every design 

solution at each iteration for each design solution. 
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3. METHODOLOGY AND PROTOTYPING 

 

In this section, the methods and the technology adopted for building and testing 

the framework and the prototypes are described in detail. The features of the Web-based 

modeling and the working principles of two prototypes, Grasshopper and Dynamo, are 

provided. Also, the information about the case study model is included. 

The research methodology includes a comprehensive literature review on Web-

based modeling tools and testing the framework of this thesis for selected case studies. 

The framework integrates a Web-based viewer with full-fledged visual programming 

tools, Dynamo and Grasshopper, which support complex parametric modeling features 

through their comprehensive built-in functions and further extended capabilities with 

algorithm libraries and many third-party plugins. The framework embodies all these 

functions and becomes a powerful tool. 

To provide the dataflow between the plugins and the server, Socket.io is adopted. 

Socket.io is a JavaScript library enabling real-time, bi-directional communication 

between Web clients and servers (https://en.wikipedia.org/wiki/Socket.IO). To test the 

framework and visualize the Web-based model, a local server was created by utilizing 

socket.io. Any change in the values of the transformations (scale, translate, rotate) of 

individual building element is required to be followed by the parametric changes of the 

other related elements. These changes in values are transferred as a matrix from plugin 

through the server. Consequently, these changes are visualized simultaneously on Web-

based models on different browsers. The plugins which provide data transfer between 
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the server and the visual programming tools are both built upon templates. Dynamo 

plugin is created by employing Zero-Touch Node, which is a custom node written in C# 

and helps to benefit of the .NET framework, a solid IDE, debugging tools, and many 

libraries (Cominetti, 2017). Grasshopper plugin is created by employing Add-on 

template. 

The framework employs Autodesk Forge Viewer (the Viewer) which utilizes 

JavaScript-based WebGL technology for viewing the models on Web. WebGL 

technology makes it possible to display, orbit, pan, zoom, etc., on the Web-based model 

by default. Autodesk Forge Viewer API and Model Derivative API are used during this 

translation process, and the BIM model generated in Revit is converted into .svf format 

to be displayed in the Viewer. In order to create a Web-based model, a BIM (Revit) 

model, is converted into a Web-based model by using Autodesk Forge Viewer (the 

Viewer) (model.autodesk.io). 

Viewer API/Extension is utilized to generate custom nodes for both Grasshopper 

and Dynamo to communicate with and control the Web-based model through parameters 

for geometry transformations (including Translation, Rotation, and Scale). The prototype 

enables the communication between Grasshopper/Dynamo and the Viewer. By using a 

slider, an object index is specified. Each BIM element has its own index number. In 

order to control BIM elements, each element must have its own dataflow chart, and to 

obtain parametric changes, the parametric relationships should be built up between these 

elements. The parametric relationships in the BIM model are generally lost after it had 

been converted to a Web-based model. A main task of this research is to build up these 
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parametric relationships in Grasshopper and Dynamo in order to control the Web-based 

building model parametrically. 

Transformation in Grasshopper is defined by a transformation matrix, which 

defines rotation, scale, translation, shear, etc. These transformation operations in 

Grasshopper are driving the rotation, scale, and translation of objects in the Viewer. Any 

changes done by any user is reflected on the Web-based model and each user gets the 

updates in real time in each browser. The Web-based model has its own instruments to 

display data. Since the model is converted from a BIM (Revit) model, it is object-based 

and all the data of each element is embedded in the model. The Forge Viewer also 

allows 3D models in other formats such as 3dm or dwg to be converted into Web-based 

models and viewed on the Web browsers. However, these models are not BIM models; 

therefore, they only represent 3D model geometry, but not any information about the 

elements of the Web-based model, which would obstruct the further collaboration in the 

proposed framework. Still, users can retrieve data by using the measurement tool within 

the Viewer. Figure 1 displays sample Rhino and AutoCAD models viewed on the Forge 

Viewer. It can be noted that clicking on an element in the Viewer do not provide any 

data about that element. Therefore, BIM (Revit) was used to create Web-based model in 

this framework.  
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Figure 1. The Web-based model created with a Rhino model 3dm (top), the Web-

based model created with an AutoCAD model dwg (bottom) 

 

By clicking on an element and using the tools provided, data can be retrieved 

from the Web-based model (Figure 2 - 3). The Web-based model allows users to interact 

with the model and presents two additional features, Explode and Section Box, to 

visualize the relationships between the elements (Figure 4 -5). 
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Figure 2. The Web-based model displaying properties of a window 

 

 

Figure 3. Dimension and angle retrieving from the Web-based model 
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Figure 4. The Web-based model Explode feature 

 

 

Figure 5. The Web-based model Section Box feature 
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As a case study, a simple house model is created inspired by Clavienrossier 

Architects’ housing project “Two in One House” (Frei, 2013). This project is chosen 

because of its form; as its diamond-shaped geometry may offer a variety of diverse 

geometries in the optimization process. However, in order to reduce the simulation time, 

the building is simplified as a single zone with a flat roof.   

The model of the house is built up in Revit and uploaded through the Viewer 

(model.autodesk.io) to the Web. In the upload process client id and client secret are used 

to get an access token from Viewer. Both id and secret are generated in the Viewer’s 

Website following the generation of application (https://forge.autodesk.com/). Several 

models can be uploaded by using the same access token. An individual URN for the 

model is generated after each upload. By using socketserver.js, the model can be tested 

by running the Viewer with the parametric Web-based model from the Web server (for 

the testing purpose, a local Web server was used: http://localhost). The model is 

controlled from local Grasshopper and Dynamo programs. The users get updates in the 

Web-based model after each change. With any change in the location, scale or rotation 

of one element, other elements could parametrically adapt themselves and the model 

elements should act as a whole.  

 

3.1. Prototype for Grasshopper 

As previously mentioned, a Viewer plugin is developed for this research to 

provide data transfer between Grasshopper file and Web-based model. It is displayed on 

Grasshopper canvas as a node which has four inputs: Object Index, Transformation 
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Matrix, Boolean Toggle for Emit (the change), and Timer (Figure 6). The Object Index 

serves to individually select each element of the Web-based model for change, e.g. 

Object Index 4 refers to roof, Object Index 8 refers to floor, and etc. The Transformation 

Matrix is a combination of transformations: Scale, translate, rotate, etc. Emit serves to 

transfer the data of the Transformation Matrix to the Web-based model. A timer set to 1 

second is connected to the Viewer node, which determines the intervals of data transfer 

to the Web-based model.  

 

 

Figure 6. Grasshopper Viewer plugin, connected to the Object Index, 

Transformation Matrix, Boolean Toggle for Emit, and Timer 

 

Each element of the Web-based model has its own unique Object Index number. 

A Viewer node for each wall, roof, and floor is required to be created. The same Viewer 

node can be used for both the windows (both frames and glass) and their host walls. The 

Object Index number for each element is identified by observing them through the Web-

based model. Each Viewer node has its own Transformation Matrix; however, all of the 

Viewer nodes are controlled by a single Boolean Toggle for triggering data transfer to 

the Web-based model.  
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A twin model of the Web-based model is built in Grasshopper in order to guide 

the user in building parametric relationships and conducting simulations and 

optimizations. The original Revit file, which was previously uploaded to Web for 

creating the Web-based model, is the basis for the twin model. The file is converted to a 

.DWG file during exportation, so it could be directly opened in Rhino. The twin 

geometry of each element of the Web-based model is reconstructed by using 

Grasshopper. All elements are created individually as Breps on the Grasshopper canvas 

by referring to Rhino poly surfaces. The scale and translation parameters which are 

created for the Web-based model, are also utilized by the twin model. Even though both 

Grasshopper and the Web Viewer follow the same right-hand rule for coordinate 

systems, there is a rotation between the two reference frames, such that the positive Z-

axis in Grasshopper coincides with the positive Y-axis in the Viewer. This may cause 

inconsistency in the data transfer of the transformation matrix, which is compounded in 

Grasshopper, while assigning a rotation angle to the Web-based model. In order to align 

the rotation in both coordinate systems, rotation angle is flipped (Figure 7).  
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Figure 7. Typical data flow of an element in Grasshopper showing the Web-based 

model Transformation Matrix and the twin model Transformation Matrix 

 

The goal is to create a twin of the Web-based model which acts and responds the 

same. Using a twin model allows users to mirror the changes in Web-based model 

elements and to retrieve data from the twin geometry. For instance, if a wall is rotated, 

twin wall provides the final location data. This data can be used to calculate the scale 

factor of other walls in order to meet that wall. The twin model is utilized for building 

and visualizing parametric relationships. 

In order to make the twin model to respond the same with the Web-based model, 

the reference plane of scale should refer the same location. The geometric center of the 

Bounding Box constitutes the center of the Web-based model. All the transformations 

are operated with reference to this center. Therefore, the Grasshopper twin model is 

needed to be translated, since the origin point of Grasshopper is located on the northwest 

corner of the model.  
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Two types of parametric relationships are built within Grasshopper. First, each 

element is converted to become parametric with translate, scale, and rotate variables. 

Second, parametric relationships are built between elements to create a parametric 

architectural model. Different configurations of data flow are created for different types 

of parametric relationships to reduce the complexity. For instance, in order to show 

scale, a file is generated; another one is generated to show translate. 

 

3.2. Prototype for Dynamo 

Similar to the Grasshopper Viewer plugin, the Viewer plugin for Dynamo is 

developed for this research to provide data transfer between the Web-based model and 

the Dynamo file. Dynamo is a visual programming tool which can be integrated as a 

plugin to Revit or operated as a standalone version. In Dynamo Studio, the standalone 

version, a Viewer node is created for each of the elements, since Object Index Input only 

accepts one value at a time. Object Indices are matched with Web-based model elements 

by checking the model. The Dynamo Viewer node, similar to the Grasshopper Viewer 

node, has inputs for Object Index, Scale X-Y-Z, Translate X-Y-Z, Rotate X-Y-Z and 

Emit. Due to the lack of a built-in transformation matrix node in Dynamo, this prototype 

separately receives transformation values for each input of Scale, Translate, and Rotate 

as X-Y-Z values. Boolean Toggle fed into Emit serves to control the transfer of data 

from Dynamo to the Web-based model (Figure 8). In Dynamo, a twin model is not built, 

since the Web-based model is originally a Revit model.  
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Figure 8. Dynamo Viewer plugin 
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4. EXPERIMENTS OF THE FRAMEWORK 

 

In this section, two case studies, each consisting of three tests, are described in 

detail. In Case Study 1, the ways of collaboration between the Grasshopper and the 

Dynamo users through the model and creating parametric relationships between the 

elements of the Web-based model were explored. The parametric relationships were 

experimented on the basic transformations, scale, translate, and rotate in the subsections: 

Test 1.1, Test 1.2, and Test 1.3, respectively.  

In Case Study 2, the ways of collaboration between two Grasshopper users on 

multi-objective optimization (the building performance and the roof shape optimization) 

through the Web-based model were explored in three different tests. In Test 2.1, the 

Web-based model was optimized for maximum preferred daylight and minimum roof 

shape with shading objectives. In Test 2.2, the Web-based model was optimized for 

minimum energy use and minimum roof shape with shading objectives. In Test 2.3, the 

Web-based model was optimized for two objectives: The first objective was the 

weighted sum of maximum preferred daylight and minimum roof shape with shading 

and the second objective was minimum energy use. Table 2 sums up the experiments of 

the framework over the tests of the case studies and the tools used. 
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Table 2. Experiments of the framework 

Definition 
# of 

users 
Tools used 

Case Study 1 

Parametric 

changes 

Test 1.1 Scale 2 

Grasshopper 

& Dynamo 

Test 1.2 Translate 2 

Grasshopper 

& Dynamo 

Test 1.3 Rotate 1 Grasshopper 

Case Study 2 

Building 

performance 

and roof 

shape 

optimization 

Test 2.1 

Max. Daylight & 

Min. Roof with 

shading 

2 

Grasshopper 

Honeybee               

Octopus 

Test 2.2 

Min. Energy use & 

Min. Roof with 

shading 

2 

Grasshopper 

Honeybee               

Octopus 

Test 2.3 

Max. Daylight and 

Min. Roof with 

shading & Min. 

Energy use  

2 

Grasshopper 

Honeybee               

Octopus 

 

4.1. Case Study 1 

In this case study, parametric changes are tested through the transformation 

factors, scale, translate, and rotate. These transformations are already defined in WebGL 

rendering technology. Therefore, the Web-based model can perform scale, translate, and 
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rotate transformations, and they can be controlled by Grasshopper and Dynamo with the 

help of the Viewer plugins. In order to perform the parametric changes, the relationships 

are built by the user. For each transformation, particular data flow needs to be created in 

both Grasshopper and Dynamo. The parameters control the transformations, and the 

ranges of the parameters are determined by the users. The goal is exploring the ways of 

implementing the parametric relationships, testing the parametric capabilities of the 

framework for individual transformations, and observing if this serves parametric form 

propagation to be used in design drafting and editing. 

 Separate tests were run for each transformation: Test 1.1 scale, Test 1.2 

translate, and Test 1.3 rotate. Two simulated users, using Grasshopper and Dynamo, 

were simulated for Test 1.1 and 1.2. A single user, using Grasshopper, was simulated for 

Test 1.3. Users could be architects, consultants, engineers, or clients. The framework 

consists of two users with their local control visual programming files, and a shared 

Web-based model. The Web-based model is visualized on the Web browsers. In order to 

simulate the Web page, local servers were utilized with the help of Node.js, and 

Socket.IO, and the page was visualized on Viewer provided by models.autodesk.io. The 

variables for transformation parameters are provided in Table 3. In Case Study 2, 

building performance optimization was conducted, and the orientation of the model was 

required to be provided for performance simulations. Therefore, the model was oriented 

towards the same direction as the inspiring house, aligning northwest and southeast 

direction. Since the building form was a distorted hexagon, and the alignment of the 
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model was not in the cardinal directions, names are assigned to the walls in order to 

eliminate confusion. Figure 9 demonstrates the assigned names to the model elements. 

 

Table 3. Parameter definition  

Parameter Value Range Type of Number 

Scale X 

Scale Y 

Scale Z 

 

1.000 – 3.000 

 

Decimal Numbers 

Translate X 

Translate Y 

Translate Z 

 

0ft – 30ft 

 

Integers 

Degree X  

Degree Y 

Degree Z 

 

0° - 360° 

 

Integers 

 

 

Figure 9. Model elements’ names 
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4.1.1. Test 1.1 and Results 

The goal in Test 1.1 is implementing collaboration and interoperability between 

Grasshopper and Dynamo through the Web-based model in the transformations: Scale in 

X, Y, and Z directions. Scale transformation was tested by simulating two users: 

Grasshopper and Dynamo users. According to the scenario, both users set up their visual 

programming files in their computers, and they shared the Web-based model in their 

Web browsers. The Grasshopper user defined transformation parameters for each of the 

model element, and built the parametric relations between these elements in 

Grasshopper. The parametric relations serve all the elements to be scaled in X, Y, and Z 

directions simultaneously. Although each object had its own matrix, all of the scale 

transformation values in the objects’ matrices were controlled by single Scale X, Scale 

Y, and Scale Z parameters. Similarly, Emit input was controlled by a single Boolean 

toggle for controlling data transfer to the Web-based model (Figure 10).  

 

 

Figure 10. Parametric dataflow in Grasshopper for Scale X-Y-Z 
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On the other hand, the Dynamo user built the same parametric relations in 

Dynamo canvas by using Scale X, Scale Y, and Scale Z parameters. Similar to 

Grasshopper, a single Scale X parameter controlled all the Scale X transformations of 

objects. Likewise, all Scale Y or Scale Z transformations were controlled by single 

parameters. The data transfer was provided by a single Boolean toggle (Figure 11).  

 

 

Figure 11. Parametric dataflow in Dynamo for Scale X-Y-Z 

 

The Grasshopper user opened the Web-based model in one window and Rhino 

and Grasshopper in another window. Likewise, the Dynamo user opened the Web-based 

model in one window and Dynamo Studio in another window (Figure 12).  
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Figure 12. Test 1.1: Before Scale, Web-based model (top) and views of the Dynamo 

user (left) and the Grasshopper user (right) 

 

Both users started to explore the overall form of the model by using scale 

parameters. First, the Grasshopper user changed the Scale X from 1 to 1.5. As a result, 

the walls, windows, door, roof, and floor stretched along the X-axis simultaneously, both 

in the Web-based model and Grasshopper twin model. The Dynamo user observed the 

parametric change in the Scale X in the Web-based model (Figure 13). Since the data 

transfer was through a local computer to the Web-based model, the Dynamo user needed 

to manually update the Dynamo file. Therefore, the user retrieved data from the Web-

based model by using the measuring instruments embedded in the Web viewer. For this 

transformation, the Dynamo user measured the model along X axis; calculated the Scale 

X factor with the knowledge of original dimensions; and manually entered the value to 

the Scale X parameter in Dynamo to update the Revit model (Figure 14).  
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Figure 13. Test 1.1: After the Grasshopper user (right) changes Scale X = 1.5, both 

users observe the parametric changes in the Web-based model (top) 

 

 

Figure 14. Test 1.1: The Dynamo user (left) retrieves data from the Web-based 

model and manually updates parameters in Dynamo to match the model 
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Afterwards, the Dynamo user changed the Scale Y value from 1 to 2 (Figure 15). 

Similarly, the Grasshopper user utilized the Web viewer’s measure feature and manually 

entered the Scale Y value to the Grasshopper parameter to update the Rhino model 

(Figure 16). Lastly, the Grasshopper user repeated the same process for Scale Z by 

increasing the value from 1 to 2 (Figure 17). Consequently, the Dynamo user retrieved 

data from the Web-based model, and manually modified the Dynamo data flow. 

 

 

Figure 15. Test 1.1: After the Dynamo user (left) changes Scale Y = 2, both users 

observe the parametric changes in the Web-based model (top) 
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Figure 16. Test 1.1: The Grasshopper user (right) retrieves data from the Web-

based model and manually updates parameters in Grasshopper to match the model 

 

 

Figure 17. Test 1.1: After the Grasshopper user (right) changes Scale Z = 2, both 

users observe the parametric changes in the Web-based model (top) 
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All the steps were repeated backwards and by changing the order. The 

experiments showed that any change in Scale X, Scale Y, and Scale Z parameters by any 

user resulted in parametric change in both users’ Web-based model. These findings 

demonstrate that the Web-based model is capable of parametrically responding to the 

value changes in scale parameters. Besides, the Web-based model provides a medium 

for users to collaborate while using different visual programming tools. However, there 

was a limitation in both Grasshopper and Dynamo; their number sliders of parameters do 

not allow to be updated by external data. Therefore, the updates in a Web-based model 

could not be transferred to the visual programming files. In order to collaborate, the 

users were required to measure the Web-based model, retrieve data from it, and 

manually update their visual programs. Additional coding can help to overcome the 

limitation of the data transfer.  

 

4.1.2. Test 1.2 and Results 

The goal in Test 1.2 is implementing collaboration and interoperability between 

Grasshopper and Dynamo through the Web-based model in Translation X. Translation 

was tested by simulating two users, namely the Grasshopper and the Dynamo users. The 

users made a copy of their visual programming files, previously used for scale 

transformation. Both data flow was modified to accommodate Translate. Users followed 

the same process as in scale transformation to access the Web-based model.  

The translate data flow was set up in the same way by both users: Narrow Wall 1 

was fixed and only Narrow Wall 2 was set to be translated. The Translation parameter 
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was decided to be in X direction, and constrained between 0 and 30. Other related 

building elements, such as the window, roof, floor, connected walls were programmed to 

adapt their geometries to meet the translated Narrow Wall 2 – thus to behave as in a 

parametric model. Therefore, roof, floor, all diagonal walls with the door and the 

window had to extend in the positive direction of the X-axis. In order to provide this 

transformation, the value of Scale X of these elements was formulated depending on 

Translate X of Narrow Wall 2. The actual dimensions retrieved from the original Revit 

model were integrated into a formula of Scale X. Both users accessed the shared Web-

based model in their localhost servers (Figure 18).  

 

 

Figure 18. Test 1.2: Before Translation, Web-based model (top) and views of the 

Dynamo user (left) and the Grasshopper user (right) 
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Both users started to explore the overall geometry propagation based on 

translation of the Narrow Wall 2. First, the Dynamo user changed the Translate X value 

from 0ft to 15ft. The Narrow Wall 2 was translated; the roof, the floor, all the walls 

along with the door and the window were scaled in X direction and composed a closed 

geometry. All the parametric changes were observed on both of the users’ Web-based 

models (Figure 19). 

 

 

Figure 19. Test 1.2: After the Dynamo user (left) changes Translate X = 15ft, both 

users observe the parametric changes in the Web-based model (top) 

 

Afterwards, the Grasshopper user identified the Translate factor of the parametric 

change done by the Dynamo user by measuring the Web-based model. The Grasshopper 

user calculated the translation factor and manually entered the data into Grasshopper to 

update the local twin model (Figure 20).  



 

54 

 

 

Figure 20. Test 1.2: The Grasshopper user (right) retrieves data from the Web-

based model and manually updates parameters in Grasshopper to match the model 

 

As the next step, the Grasshopper user moved the Narrow Wall 2 by increasing 

the Translate X value to 30ft. Consequently, other elements adapted their forms to meet 

the translated wall. The parametric change was observed in the Web-based models on 

both users’ browsers (Figure 21). Next, the Dynamo user retrieved dimension data from 

the Web-based model, and after calculating the Translate X value, manually entered the 

translation value into the Translate X input (Figure 22). 
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Figure 21. Test 1.2: After the Grasshopper user (right) changes Translate X = 30ft, 

both users observe the parametric changes in the Web-based model (top) 

 

 

Figure 22. Test 1.2: The Dynamo user (left) retrieves data from the Web-based 

model and manually updates parameters in Dynamo to match the model 
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All the steps were repeated backwards and by changing the order. The 

experiments showed that, any change in Translate X parameter by any user, resulted in 

parametric change in both users’ Web-based models automatically (but the changes in 

local twin model are made manually). By presenting visualization as well as data to 

retrieve, the Web-based model provided a medium for users to collaborate while using 

different visual programming tools. Because of the limitation in Grasshopper and 

Dynamo for the use of their sliders, the number sliders of parameters could not be 

updated by the external data received from the Web-based model. Therefore, the data 

was required to be retrieved from the Web-based model by using the instruments of the 

Web-based model, and manually input into the visual programming file by the user. 

Additional scripting can help to overcome this limitation by providing reciprocal data 

transfer.   

 

4.1.3. Test 1.3 and Results 

Due to the complexity of parametric rotation, Rotation was tested by simulating 

only a single Grasshopper user currently. The Grasshopper user created a copy of the 

Scale transformation file and modified the data flow to accommodate Rotate. For Rotate, 

Diagonal Wall 3 was chosen to rotate around the Z-axis where this wall meets Narrow 

Wall 2. The parametric relationships were defined for Diagonal Wall 4 in order to make 

this wall to respond the rotation by adapting its geometry. The door on the Diagonal 

Wall 4 and the window on the Diagonal Wall 3 were also modified to rotate 

simultaneously with their host walls. Other geometries were fixed. Also due to the 
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complexity, a twin model was utilized to calculate the scale and translation factors of an 

adjacent wall to match the rotated one. 

As previously mentioned, the center of the bounding box of the model constitutes 

the center point of the Web-based model. All the rotation transformations made on the 

Web-based model reference to the Z-axis with this center as the origin. After each 

rotation of Diagonal Wall 3, the twin geometry of Diagonal Wall 3 was translated to the 

location where the geometry was expected to be. By translation, not only the twin model 

and the Web-based model were synchronized, but also the data to calculate the rotation 

angle and the scale factor of Diagonal Wall 4 was obtained.  

In order to test the transformation, the Grasshopper user connected to the Web-

based model through the localhost server, and opened Rhino, Grasshopper file that 

included the data flow designed for Rotate, and the twin model of the Web-based model 

(Figure 23). Then, the Grasshopper user changed Rotation Angle of Diagonal Wall 3 

from 0° to 15°. Consequently, Diagonal Wall 3 rotated and Diagonal Wall 4 rotated and 

scaled on both the twin model and the Web-based model (Figure 24).   
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Figure 23. Test 1.3: Before Rotation, Web-based model (top left) and views of the 

Rhino (right) and the Grasshopper (bottom left) 

 

 

Figure 24. Test 1.3: After the Grasshopper user (bottom left) changes Rotation Z = 

15°, the user observes the parametric changes in the Web-based model (top left) 

and Rhino (right) 
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Parametric responses of roof and floor were out of scope for this step due to the 

complexity, since those calculations would require a modified Grasshopper Viewer 

plugin. Diagonal Wall 3 and Diagonal Wall 4 did not meet precisely at their joint, which 

would also require more time to solve. Also, Diagonal Wall 4 moved away from the 

location where it meets Narrow Wall 1 as the Rotation Angle increased (Figure 25). 

Dynamo user collaboration was decided to be a future work, since that would also 

require extra coding for the plugin. 

 

 

Figure 25. Test 1.3: After the Grasshopper user (bottom left) changes Rotation Z = 

30°, the user observes the limitations of the parametric changes in the Web-based 

model (top left) and Rhino (right) 

 

4.1.4. Discussion 

In Case Study 1, the Web-based model was examined through Scale, Translate, 

and Rotate transformations. The Scale and Translate tests provided a collaborative 
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environment between the Grasshopper and Dynamo users. Both users were able to 

control the Web-based model and got the updates on the Web page. However, the 

number sliders of both Grasshopper and Dynamo have a limitation; they do not allow to 

be updated by external data which came from the Web-based model. Therefore, the data 

transfer was one-way, from the visual programming tools to the Web-based model; the 

updates on the Web-based model could not be automatically viewed on the visual 

programming tools. Instead, the users were required to measure the Web-based model, 

retrieve data by using the Viewer’s own instruments, and manually update their visual 

programs.  

The elements were not parametric by default, but the users were required to build 

the parametric relationships. The elements did not adapt their geometries at the joints to 

provide a precise union. Also, there was no access to control geometry vertices, so that, 

the sides of the walls did not provide a clean joint after scaling in Test 1.2. Similar 

problem was observed in Test 1.3, as the rotated walls did not meet at a clean joint. Also, 

the roof and the floor were not able to parametrically respond to the rotation of the walls 

because non-uniform scaling is not available. The solution to the both problems is the 

same, which requires users to be able to control the geometries through the vertices, 

which is not enabled by the current Grasshopper and Dynamo Viewer plugins. All of the 

above-mentioned limitations could be overcome by using additional scripting. 
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4.2. Case Study 2 

In this case study, two simulated users, both using Rhino, Grasshopper and 

sharing the same Web-based model, collaborated on an optimization process. The goal is 

to examine the ways of collaboration between the users using the Web-based model 

framework during different types of optimization. For this case study, the roof of the 

building was defined as parametric, while the rest of the elements remained static; and 

the parameters of the roof proliferated the intended roof shape and building performance 

results in an iterative simulation and optimization process. Three optimization tests were 

defined: Test 2.1, Test 2.2, and Test 2.3. In Test 2.1 the objectives were maximum 

preferred daylight, and minimum roof area that creates a shading in the south. In Test 

2.2, the objectives were minimum energy consumption and minimum roof area with a 

shading in the south. In Test 2.3, even though there were initially three objectives in the 

integrated optimization, two of them were combined by using the weighted sum method. 

The maximum preferred daylight and minimum roof area with a shading in the south 

constituted one objective, and the minimum energy consumption was the other objective 

in Test 2.3.  

For this case study, a new Web-based model was used. Since daylight simulation 

and optimization would be run, the building would require more windows for a better 

daylight distribution. Two types of windows were added: 16’x8’ windows were located 

on diagonal walls, except the one that had a door; 5’x8’ windows were located on 

narrow side walls, and the wall with the door. A twin model of the Web-based model 

was created in both users' local computers by using Rhino and Grasshopper. The twin 
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model would constitute the input geometry for conducting simulation and optimization; 

the simulation and optimization results could be visualized with the help of twin 

geometry. However, this twin geometry is different than the previous twin geometry 

used in Case Study 1. As previously mentioned, the simulation engines only work with 

surfaces. The twin geometry should be composed of single planes in order to be used as 

input geometry. Thus, a new model is built in Rhino with reference to the model, which 

was previously imported from Revit. The Rhino model is carried out to Grasshopper by 

referencing each surface as Breps and converted into Honeybee surfaces and zone in 

order to be used in both daylight and energy simulation and optimization. 

For setting and running daylight and energy simulation, Honeybee was used in 

combination with Ladybug. Ladybug served to import weather data and visualize the 

simulation results. Honeybee provided running daylight simulation in RADIANCE and 

energy simulation in EnergyPlus. Since the Web-based model is a parametric model, the 

daylight model is also a parametric model; the roof element has the parameters for scale 

and rotation values. The roof, floor, and each wall and window were created individually 

as Honeybee surfaces so that they are identical to the Web-based model. Honeybee 

provides access to use materials both from RADIANCE and EnergyPlus libraries. Also, 

it is possible to define a custom-made Radiance material. For the daylight simulation, 

glass was defined upon Radiance glass material; wall, floor, and roof materials were 

chosen from the RADIANCE library. For wall, floor, and roof materials, two types were 

specified in RADIANCE library as Exterior and Interior; yet, both of them had the same 

values. Exterior wall, floor, and roof reflectance values are 50%, 20%, and 80%, which 
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are denoted as 0.5, 0.2, and 0.8 for RADIANCE respectively. Visible transmittance was 

specified for the glass material. Table 4 shows the details of RADIANCE materials used.  

 

Table 4. RADIANCE materials 

Model 

Element 

RADIANCE 

Material 

Material 

Type 

Values 

 

Wall 

 

Exterior_Wall 

 

Plastic 

Reflectance: 0.5 

Specularity: 0 

Roughness: 0 

 

Floor 

 

Exterior_Floor 

 

Plastic 

Reflectance: 0.2 

Specularity: 0 

Roughness: 0 

 

Roof 

 

Exterior_Roof 

 

Plastic 

Reflectance: 0.8 

Specularity: 0 

Roughness: 0 

Glass Radiance Glass Material Glass Transmittance: 0.65 

 

For the energy simulation, EnergyPlus materials were chosen to specify the 

optimum thermal properties of the elements. EnergyPlus presents a list of building 

construction elements classified according to the standards ASHRAE and CBECS with 

varying U-values. The building materials are categorized according to climate zones. 

Since the inspiring project for the Web-based model is located in Geneva, Switzerland, 



 

64 

 

Geneva is considered as the location of the Web-based model. According to U.S. 

Department of Energy [DOE] (2015), climate zone for Geneva, Switzerland is 4A, 

mixed humid. Table 5 shows the selected materials for wall, window, roof, and floor 

from the related climate zone materials regarding ASHRAE 90.1-2010.  

 

Table 5. EnergyPlus building construction materials 

Model 

Element 

EnergyPlus Building Construction 

Material 

U-Value 

(Btu/h∙ft²∙℉) 

 

Wall 

ASHRAE 90.1-2010 EXTWALL 

WOODFRAME CLIMATEZONE 1-4 

 

0.1 

 

Window 

ASHRAE 90.1-2010 EXTWINDOW 

NONMETAL CLIMATEZONE 4 

 

0.4 

 

Roof 

ASHRAE 90.1-2010 EXTROOF IEAD 

CLIMATEZONE 2-8 

 

0.05 

Floor  EXTERIOR FLOOR 0.1 

 

Both users had the same data flow for daylight and energy simulation and 

optimization in order to conduct optimization and retrieve data. Octopus, a Multi-

Objective Evolutionary Optimization plugin for Grasshopper was utilized, since all three 

experiments employed multiple objectives. Octopus calculates the best set of solutions 

known as Pareto front, within the limits of genomes (parameters) according to fitness 

functions. In a Pareto front, no improvement in a solution can be made without 
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degradation in at least one of the remaining solutions (Fonseca & Fleming, 1995). The 

ranges of the parameters’ values remained the same as in the Case Study 1 (Table 3). 

The Scale X, the Scale Y, and the Rotation Z parameters of the roof constituted the 

genomes of Octopus for all tests. The fitness functions were defined in accordance with 

the optimization. In the daylight optimization, the preferred daylight illuminance values 

range between 750 lux and 2000 lux. Honeybee creates sensors to measure the 

illuminance levels. The aim is to maximize the number of sensors that receive 

illuminance between 750 lux and 2000 lux for daylight optimization.  

A requirement for both the daylight and energy optimization is the minimum roof 

area while creating a shading for the south (in the meantime covering the entire building 

floorplan). To create a shading, a point located 3ft southeast from the south corner of the 

model at the roof level is considered to be covered by the roof. In order to formulate this, 

Point In Curve node in Grasshopper was utilized. Point In Curve node tests if a point is 

in a curve or not by assigning the coverage indices: 0 for outside, 1 for coincident, and 2 

for inside. In order to cover the room area and the chosen point at the roof level in the 

south, all corner points of the room and the chosen point should be inside the curve of 

the roof polyline. Since there were 6 corners for roof and an additional point for the 

shading, the total 7 points yield a maximum sum of coverage indices 14. If the Coverage 

Index is equal to 14, the roof covers both the room and the point for shading. Therefore, 

in formulating the roof shape requirement, the Coverage Index had to be maximized 

while the roof area had to be minimized. The roof area was represented by a 
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multiplication of the Scale X and Scale Y parameters. The objectives are formulated in 

detail in subsections 4.2.2, 4.2.3 and 4.2.4. 

 

4.2.1. Test 2.1 and Results 

Test 2.1 was conducted to investigate the ways of how two Grasshopper users 

could collaborate through the Web-based model while optimizing the roof shape and 

achieving the preferred daylight intake. Daylight simulation data flow in the twin model 

was created with Ladybug and Honeybee in Grasshopper based on the definition of the 

geometric data flow. The daylight simulation type was grid-based, and a work plane was 

defined at the height of 2.5ft for the grid. The sensors were set 5ft apart to minimize the 

simulation time. According to U.S. DOE (2015), climate zone for Geneva, Switzerland 

is 4A, mixed-humid. When the annual dry bulb temperature (Figure 26) and monthly 

diurnal average (Figure 27) graphics are examined, it is concluded that the dominant 

energy loads for Geneva are the heating loads. According to the graphs, the temperatures 

are below the comfort zone for most of the year. Thus, the month of December was 

chosen for both energy and daylight simulations. December 21st was tested with a 

standard CIE sky, sunny with sun, for 12 hours. CHE_Geneva.067000_IWEC.epw 

weather file was utilized.  
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Figure 26. Annual dry bulb temperature for Geneva (Analyzed in epwvis) 

 

 

Figure 27. Monthly diurnal averages (Analyzed in Climate Consultant 6.0) 
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RADIANCE materials and reflectance values were determined for walls, roof 

and floor; visual transmittance value was determined for glass. RADIANCE materials 

and their specifications were previously mentioned in Table 4. Although, the daylight 

simulation and optimization were tested for a chosen day and time, it is possible to 

conduct the simulation for another day or a period of time, e.g annual daylight 

simulation, coupled with another sky type. Likewise, another metric could be utilized 

instead of using the metrics specified for this thesis. The chosen metrics, daylight 

simulation date and time, the function and the daylight requirement of the Web-based 

model are examples which could be replaced in accordance with the design of the 

project and the intended daylight simulation goals.  

The model was oriented towards the same direction as the inspiring house, 

aligning northwest and southeast direction. Building program was set to midrise 

apartment. Illuminance was simulated for the given date and time. In this case study, the 

illuminance levels on the work plane were tested since the aimed levels were expected to 

serve the activities such as writing, reading, and typing. The floor level could also be 

tested in the same way. After obtaining the list of illuminance values, the list was filtered 

to calculate the number of sensors that received the illuminance levels in the 750-2000 

lux range. The daylight simulation can be tested for various dates, times, sky conditions, 

weather files and orientations. Similarly, it can be tested for different forms, and since 

the Web-based model is a parametric model, the scale, translation and rotation of each 

element can be changed through the parameters.  
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The number of all sensors for daylight was 104, since Honeybee automatically 

created and distributed them on the work plane with 5ft apart. However, the number of 

sensors that received the preferred daylight range was dependent on the shape of the roof 

and other parameters such as the room shape and windows. The number of filtered 

sensors was multiplied by -1 in order to formulate the number of sensors into a fitness 

function, mainly because, Octopus generates solutions for minimizing objectives. Since 

Octopus is a multi-objective optimization tool, a set of design solutions were generated 

at the end of the optimization process that satisfy the objectives. This set of solutions, 

called Pareto front, provides an optimal condition that none of the solutions can be 

improved without degradation in at least one of the remaining solutions (Fonseca & 

Fleming, 1995). 

For the second objective, the roof was aimed to cover the room area, as well as 

the point at the roof level in the south. Besides, the roof area was required to be 

minimized. All these objectives were combined in a single formula to produce a fitness 

function. Scale X was denoted by x, Scale Y was denoted by y, and the multiplication of 

Scale X and Scale Y should be minimum to minimize the roof area. The Coverage Index 

was denoted by z, ensured to cover both the roof area and the point at the roof level in 

the south. Both the number of sensors that receive the preferred daylight and the 

Coverage Index were required to be maximized and converted into fitness functions 

which seek for the minimum. Thus, the number of sensors and the Coverage Index were 

both multiplied by -1.  



 

70 

 

The objectives were defined with two equations; the first one referred to the 

daylighting, the second one referred the roof shape: 

Fitness Function 1:  min (− 𝑢) 

Fitness Function 2:  min (𝑥 · 𝑦 − 𝑐) 

where u is the number of the sensors that received 750-2000 lux, x denotes the Scale X, y 

represents the Scale Y, and c stands for the Coverage Index. The Scale X, Scale Y and 

Rotation Angle parameters of the roof constituted the genomes for Octopus – the 

Genetic Algorithm (GA) tool in Grasshopper. Parameter value ranges were previously 

mentioned in Table 3.  

In search of the optimum roof shape and daylight, Honeybee was run to simulate 

the daylight for all solutions generated by Octopus. In this iterative process, Octopus 

generated different design options, and after each generation, the solutions got closer to 

the optimum solutions as a trend. The design solutions were displayed in the design 

space; each solution could be regenerated by reinstating the solution. The computer used 

in the optimization process has Intel® Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz 

processor, 8.00 GB RAM installed memory, and Windows 10 operating system. The 

population was set to 50 which can provide diverse number of solutions after each 

generation. Simple Genetic Algorithms (sGA) have been terminated under three 

conditions: (1) When the number of generations reached an upper limit; (2) when the 

number of evaluations of the fitness function reached an upper limit; (3) when there is an 

extremely low chance of achieving significant changes in the next generations (Safe et 

al., 2004). In this instance, the user frequently checked the solution set in Octopus graph. 
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After Octopus had proliferated generations more than 100, the solution set was 

converged, and the user observed that the chance of obtaining changes in the next 

generations was extremely low. Therefore, the user stopped the optimization process. 

GA was run for 102 generations which took almost 18 hours. It should be noted that the 

optimization can be paused when needed, yet the file is saved each time since Octopus 

allows for resuming optimization. After 102 generations of running GA, 14 Pareto front 

(overall best) solutions were obtained (Figure 28). The Pareto-optimal solution set for 

roof shape ranged between -8.06 and -12.91 while the daylight solutions ranged between 

-20 and -76. The red cubes represent Pareto-optimal solutions, and each solution was 

numbered in order to map the geometric outcomes on the graph (Figure 29). 

 

 

Figure 28. Test 2.1: Search space for daylight and roof shape optimization with all 

solutions after 102 generations 



 

72 

 

 

Figure 29. Test 2.1: Search space and Pareto front for daylight and roof shape 

optimization 

 

All 14 solutions in the Pareto front were individually visualized in Rhino to find 

the best options (Figure 30). The solution #1 presented the best values for the roof shape, 

where the solution #14 presented the best values for daylight. However, except the 

solution #1, none of the other solutions provided an appropriate room coverage.  
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Figure 30. Test 2.1: Pareto front solutions visualized in the building floorplan view 

 

The data from Pareto front was transferred to a table for a better understanding of 

results and further use (Table 6). Scale values, rotation angle, coverage index, number of 

sensors, and results of objective 2 formula were included. Only the solution #1 provided 

14 for Coverage Index, which represents the coverage of the room and the point. Also, 

this solution provided the third minimum roof area. However, the number of sensors 

with the aimed illuminance range was also the lowest. The best daylight results belonged 

to solution #14 with 74 sensors. Maximum roof area was also given by solution#14, but 

the roof did not cover 2 of the room corners.  
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Table 6. Daylight optimization Pareto front data 

Solutions 

# 

Scale 

X 

Scale 

Y 

Rotation 

Angle 

Coverage 

Index 

Number of 

Sensors in 

satisfactory 

range 

(x*y)-

z 

1 1.090 1.000 359 14 19 -12.91 

2 1.077 1.000 339 10 56 -8.92 

3 1.081 1.000 340 10 60 -8.92 

4 1.084 1.000 341 10 60 -8.92 

5 1.120 1.000 345 10 62 -8.88 

6 1.156 1.000 345 10 63 -8.84 

7 1.547 1.000 344 10 64 -8.45 

8 1.586 1.000 341 10 65 -8.41 

9 1.738 1.000 340 10 69 -8.26 

10 1.745 1.000 340 10 70 -8.26 

11 1.891 1.000 337 10 68 -8.11 

12 1.912 1.000 337 10 72 -8.09 

13 1.913 1.000 337 10 73 -8.09 

14 1.942 1.000 337 10 74 -8.06 

 

All the simulation and optimization process were completed on one user’s local 

computer, using Rhino, Grasshopper, Ladybug, Honeybee, and Octopus. Once the 
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process was over, the Grasshopper user decided which solution was the overall best and 

transferred the chosen geometry into the Web-based model. In this case, the user chose 

the solution #1 as overall best and visualized it on the Web (Figure 31), while the other 

Grasshopper user observed it through her/his own Web-based model, and retrieved data 

from it. Since the data is transferred from local control file to the Web-based model, one 

user actively participates in the optimization process; while the other user passively 

observes the results on the shared Web-based model, and retrieves data from it by using 

the instruments embedded in the Web-based model.  

 

 

Figure 31. Test 2.1: Optimum daylight and roof shape solution transferred from 

the local twin model (right) to the Web-based model (left) 
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4.2.2. Test 2.2 and Results 

Test 2.2 was conducted to investigate the ways of how two Grasshopper users 

could collaborate through the Web-based model while optimizing the roof shape creating 

a shading and minimizing the energy usage. The goal of the energy optimization is to 

make the building more energy efficient and to use less energy as possible.  

The process of setting up energy optimization is very similar to daylight 

optimization in terms of methodology and the tools that are used. The single surface twin 

model which was previously converted into a Honeybee model was used in the energy 

simulation. Ladybug was used to import the weather file and Honeybee was used for the 

energy simulation. The energy use results provided by Honeybee were used as one of the 

inputs for Octopus in the multi-objective optimization. Since Honeybee and Octopus 

were connected, energy simulation was run for each single design solution iteratively. 

Since the dominant loads were the heating loads for the project location, these loads 

were calculated for the month of December. However, any energy related optimization 

can be conducted with this framework, such as cooling loads, electrical loads, lighting 

loads, solar gain, airflow volume, and etc. Also, energy optimization calculations can be 

conducted for any time period, like for another month, or annually. Honeybee calculated 

the loads in kWh, so the total amount of energy usage was converted into kBtu and 

divided to the total floor area (sqft) in order to find the (dominant) heating EUI for 

December.  
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There were two objectives for optimization in Octopus: Minimization of the 

energy use and minimization of the roof shape while providing shading on the south. 

The two fitness functions are: 

Fitness Function 1:  min (𝑢) 

Fitness Function 2:  min (𝑥 · 𝑦 − 𝑐) 

where u is the (dominant) heating loads of December in kBtu/sqft, and x, y and c stand 

for Scale X, Scale Y, and the Coverage Index, respectively. The Coverage Index was 

multiplied by -1 in order to achieve a maximum value because Octopus minimizes the 

function. The Scale X, Scale Y, and Rotation Angle parameters of the roof constituted 

the genomes for Octopus. The computer used in the optimization process has Intel® 

Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz processor, 8.00 GB RAM installed 

memory, and Windows 10 operating system. The population was set to 50, and Octopus 

was stopped by the user after the solution set was converged. After109 generations of 

running GA which took almost 19 hours, the chance of achieving significant chances in 

the next generations got excessively low. The simulation was paused when necessary, 

but the file was saved then, and Octopus resumed optimization after the breaks. After 

109 generations, 5 best solutions were generated as Pareto front. All solutions are 

displayed in Figure 32, while Pareto front is provided in Figure 33. The Pareto-optimal 

solutions for Roof Shape ranged between 1 and -12.91 while the energy solutions 

converged to 5.67 kBtu/sqft. The geometric outcomes of the solutions are shown in 

Figure 34. According to the geometric visualization, only solution #1 provided shading, 
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only solutions #2 and #3 covered the room area. The solution #4 did not cover the room 

area and solution #5 did not even cover any of the required points. 

 

 

Figure 32. Test 2.2: Search space for energy and roof shape optimization with all 

solutions after 109 generations 
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Figure 33. Test 2.2: Search space and Pareto front for energy and roof shape 

optimization 

 

 

Figure 34. Test 2.2: Pareto front solutions visualized in the building floorplan view 
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The numeric outcomes of this analysis are listed in Table 7. Accordingly, the best 

energy use results were provided by the solutions #4 and the #5 with 5.671 kBtu/sqft. 

Minimum roof area was also produced by the solutions #4 and #5. Even though the 

initial orientation of the roof was defined at 0˚ angles in daylight optimization, for the 

energy optimization, the initial orientation of the roof was defined by 180˚. The solution 

#1 was chosen as the overall best result, and the corresponding data was transferred to 

the Web-based model. The Web-based models were updated and displayed the optimum 

result in both Grasshopper user’s Web browser (Figure 35).  

 

Table 7. Energy and Roof Shape optimization Pareto front data 

Solutions Scale X Scale Y Rotation 

Angle 

Coverage 

Index 

Energy Use 

kBtu/sqft 

x*y-z 

1 1.091 1.000 179 14 5.79 -12.91 

2 1.001 1.001 180 12 5.68 -11.00 

3 1.001 1.000 180 10 5.67 -9.00 

4 1.000 1.000 235 4 5.67 -3 

5 1.000 1.000 217 0 5.67 1 
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Figure 35. Test 2.2: Optimum energy and roof shape solution transferred from the 

local twin model (right) to the Web-based model (left) 

 

4.2.3. Test 2.3 and Results 

Test 2.3 was conducted to examine how two Grasshopper users could collaborate 

through the Web-based model while executing multi-objective optimization with two 

objectives: (1) Energy use minimization for December (kBtu/sqft), and (2) preferred 

daylight (750-2000 lux) maximization and roof shape minimization while creating 

shading. The method, the tools, the simulation inputs, and the parameters (genomes) 

were the same as those of the previous tests. The only difference was the combination of 

the daylight objective with the roof shape objective in a weighted sum. The roof shape 

optimization was conducted through the use of the Coverage Index and Scale X and 

Scale Y variables of the roof. The Coverage Index referred the sum of the corner points 

and a selected point in the south at the roof level to be covered by the roof. If all the 

points were covered by the roof shape, 2 points were assigned for each point which 
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yielded a sum of 14. The Coverage Index should be maximized in order to cover the 

room area. Therefore, by assigning the weight (10), the impact of the Coverage Index 

was increased, and the possibility to obtain solutions with covered roof were also 

increased. Since the second objective was achieving minimum roof shape, the Scale X 

and Y variables of the roof shape should be minimized. The two fitness functions were: 

Fitness Function 1:  min (𝑡) 

Fitness Function 2:  min (𝑥 · 𝑦 − 𝑢 − 10 · 𝑐) 

where t is the energy use in kBtu/sqft, u represents the number of sensors that received 

750-2000 lux, and x, y, and c stand for Scale X, Scale Y, and the Coverage Index, 

respectively. The Coverage Index and the number of sensors output were both multiplied 

by -1 since Octopus optimizes through minimization of the function; so that, the roof 

coverage and the number of sensors within the ideal illumination range were maximized. 

The objective was to obtain the roof with shading and maximum sensors to receive the 

appropriate daylight. The population of the Genetic Algorithm using Octopus was set to 

50 in this instance and the optimization was run on two different computers one after 

another (although one computer can also be sufficient to run the experiments). The 

optimization was started on a desktop with an Intel® Core™ i7-7820X CPU @ 3.60 

GHz processor, 32.00 GB RAM installed memory, and Windows 10 operating system; 

and at the end of 10 hours, it produced 58 generations of solutions. The optimization was 

resumed on a laptop with an Intel® Core™ i7-7500U CPU @ 2.70 GHz processor, 8.00 

GB RAM installed memory, and Windows 10 operating system. At the end of 13 hours, 

the optimization was ended by the user because the chance of achieving an improvement 
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in the solution set in the next generations was excessively low. The number of produced 

generations increased to 105 (Figure 36). After 105 generations of running GA, 7 Pareto 

front (overall best) solutions were obtained; the solutions were visualized in Rhino for an 

evaluation of shape (Figure 37 - 38).  

 

 

Figure 36. Test 2.3: Search space for energy, daylight and roof shape optimization 

with all solutions after 105 generations 
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Figure 37. Test 2.3: Search space and Pareto front for energy, daylight and roof 

shape optimization 
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Figure 38. Test 2.3: Pareto front solutions visualized in the building floorplan view 

 

 

The numeric data of the optimization solutions are presented in Table 8. Only the 

solution #1 provided the minimum roof area with shading. The solutions #5 and #6 

covered the room area but did not cover the selected sample outdoor point (as a design 

requirement) for shading. The rest of the solutions #2, #3, #4, and #7 did not cover the 

room area; however, the solutions #2, #3, and #4 covered the point for the shading. As 

seen in Table 8, the best energy and daylight optimization results were produced by the 

solution #7, which has the worst room coverage. The 3 of the solutions (#1, #5, and #6) 
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had the minimum preferred daylight. In all of the solutions, the findings show that the 

initial roof position was defined with an angle of 0º. The Grasshopper user chose the best 

result and transferred it to the Web-based model. In this instance, the solution #1 was 

selected as the overall best and viewed on the Web browser (Figure 39). The other 

Grasshopper user received the update and retrieved the data from the Web-based model. 

 

Table 8. Energy, Daylight and Roof Shape optimization Pareto front data 

Solutions Scale 

X 

Scale 

Y 

Rotation 

Angle 

Coverage 

Index 

Energy 

Use 

kBtu/sqft 

# of 

sensors 

1 1.089 1.000 359 14 5.79 27 

2 1.089 1.000 341 10 5.79 59 

3 1.081 1.000 340 10 5.78 58 

4 1.081 1.000 339 10 5.78 55 

5 1.001 1.001 360 12 5.68 27 

6 1.001 1.000 360 10 5.67 27 

7 1.000 1.000 349 4 5.67 64 
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Figure 39. Test 2.3: Optimum energy, daylight and roof shape solution transferred 

from the local twin model (right) to the Web-based model (left) 

 

4.2.4. Discussion 

In Case Study 2, the collaboration of two Grasshopper users in the process of 

BEP and roof shape optimization through the Web-based model was examined. The roof 

shape was parametrically explored and optimized to achieve the best possible shading in 

the south, the maximum preferred daylight (750-2000lux), and lowest energy use, using 

Pareto optimization with Genetic Algorithm. In order to optimize the roof shape for a 

minimum area while providing shading, Coverage Index was used. The Coverage Index 

referred to the inclusion of the room area through the corner points and a chosen point in 

the south at the roof level. When optimizing the roof shape, the Coverage Index should 

be maximized, the Scale X and Scale Y values in the parameters of the roof shape should 

be minimized.  
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Three tests were conducted as multi-objective optimization. In Test 2.1, there 

were two objectives: Maximum preferred daylight and minimum roof area with shading. 

In Test 2.2, there were two objectives: Minimum energy use and minimum roof area 

with shading. In Test 2.3, there were two objectives, but one of the objectives consisted 

of two objectives combined in a weighted sum. The objectives in Test 2.3 were 

minimum energy use as one objective, maximum preferred daylight and roof shape with 

shading in a weighted sum as the other objective. In this test, the impact of the roof 

coverage to the optimization objective function was increased by assigning a weight of 

10 to the Coverage Index in the fitness function formula. In order to get all the solutions 

to cover the room area and the point, the weight of Coverage Index was increased.  

In the beginning, the goal was to divide and distribute the optimization process 

between the users. If optimization could be divided and distributed, more complex 

projects could be optimized in a shorter time by using less computational power. Also, 

division and distribution of optimization would highly contribute to the collaboration in 

the process of design, performance simulation, and optimization. Therefore, the 

optimization was tried to be divided and distributed between two users working with one 

objective each. For this purpose, individual Galapagos evolutionary solvers were 

connected to each of the objectives. However, two Galapagos could not run at the same 

time; Galapagos can run only one instance at a time. As a result, the optimization cannot 

be divided and distributed into separate optimizations.  

With the help of Octopus, the multi-objective optimization tool, the tests were 

conducted. However, two optimization processes still can’t be run at the same time. For 
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the experiment, one user conducted the optimization process, and the other user got 

updates on the Web-based model, and retrieved data from the Web. In all three tests, at 

the end of the given number of generations, only one solution in the Pareto front 

provided the room area coverage with shading in each time. The best solution was 

evaluated by the user and transferred to the Web. The data recording, pausing, and 

resuming functions of Octopus were utilized conduct the optimization in different 

computers and reinstate the Pareto-optimal solutions. The local twin model of the Web-

based model was utilized conduct simulation and optimization; the twin model also 

provided visual feedback in the assessment of the best solution before transferring the 

data to the Web-based model. If the Viewer prototypes for Dynamo and Grasshopper are 

modified to provide reciprocal communication between the Web-based model and the 

visual programming tools in the future, the multi-objective optimization process could 

be divided and distributed into optimizing separate objectives between the users through 

sharing parameters. For example, the Rotation angle, Scale X, and Scale Y parameters of 

the roof can be shared between two users while conducting roof shape with shading 

optimization by one user, and daylight optimization by another user.  
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5. FINDINGS AND DISCUSSION 

 

In this research, the first objective was to search the ways to establish parametric 

relationships between the elements of the Web-based model, which had been lost during 

the conversion from BIM(Revit) to the Web-based model. However, prior to establishing 

these relationships, two different visual programming tools, Dynamo and Grasshopper 

had to be examined based on their capabilities to control the Web-based model. Two 

major interoperability issues were identified between Grasshopper and the Web-based 

model in the way they operate. The first major issue could be caused by using a 

transformation matrix. Although, both Rhino and Grasshopper’s coordinate systems and 

the Web-based model’s coordinate system follow the same right-hand rule for rotation, 

there is inconsistency between Grasshopper and the Web Viewer in rotation. The 

transformation matrix in Grasshopper is a world matrix which transforms a vector in a 

space where the positive Z-axis is perpendicular to the ground plane. The Z-axis in 

Grasshopper coincides to the with the positive Y-axis in the Web Viewer. This may 

cause inconsistency when assigning the rotation angles. Therefore, a coordinate 

transformation is needed to convert the matrix. For now, the angle variable in 

Grasshopper was flipped before sending the data from the local computer to the Web-

based model to align the coordinate systems. 

The second major interoperability issue is the reference point of transformations. 

In Grasshopper, the user has the control of creating a reference point for scale and rotate. 

On the other hand, by default all operations in the Web-based model reference the origin 
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point, which is located in the center point of the model’s bounding box. Besides, a twin 

model was required to be built in Grasshopper in order to retrieve data for building 

parametric relationships. The twin model is the reproduction of the Web-based model in 

Rhino exported from a Revit file. The model elements in Rhino were carried to 

Grasshopper as Breps, and they together constituted the twin model. When the exported 

Revit file opened in Rhino, the origin point was at the same location with the Revit 

model. However, the center was changed during the conversion from Revit to Web-

based model. So that, the twin model in Grasshopper and the Web-based model respond 

to Scale and Rotate differently because of the discrete reference points. In order to 

provide compatibility between the Web-based model and Grasshopper, either additional 

scripting is required or additional data flow in Grasshopper is required to be created. So 

that, additional data flow was created in Grasshopper. Since the Web-based model’s 

reference point is fixed and Grasshopper can modify its own reference points, the 

reference point of twin model in Grasshopper was relocated at the same location where 

the center of the Web-based model’s bounding box is, so that the origin point of 

Grasshopper (0, 0, 0) would match the model’s center of its bounding box. The 

relocation and flipping of the angle variable synchronized the transformations between 

Grasshopper and Web-based model. Since Dynamo is the visual programming tool for 

Revit and the Web-based model was converted from a Revit model, and no built-in 

transformation matrix is available in Dynamo yet, no modification was required in 

Dynamo in order to synchronize the angle or the reference point.  
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After the elimination of the two interoperability issues between the Grasshopper 

twin model and the Web-based model, the elements of both models began to operate the 

same way. However, an additional data flow was required to be created in Grasshopper 

in order to make the result of rotation or scale of the twin model to be identical with the 

Web-based model. The twin model provided visualization and data for building this data 

flow. For instance, when a wall was rotated, the rotation was around the coordinate 

system’s origin point. Therefore, following the rotation, the wall of the Grasshopper twin 

model was not located at its initial position, but was moved out. In order to finalize the 

position of the wall as if the wall had rotated around the Z-axis of its own corner point, 

the wall needed to be translated back after the rotation. With the help of the twin model 

method, the distance between the location of the rotated wall and the expected location 

could be calculated. Creating a copy of the original geometry after each transformation 

served in calculating the displacement between the initial and the last positions. By using 

the twin model method and the data provided by this method, the elements in 

Grasshopper were modified to respond the same as the elements of the Web-based 

model respond in transformations, such as scale and rotate. Similarly, the twin model 

could provide the data to build the parametric relationships between the elements of both 

the twin model and the Web-based model. For instance, if a wall was rotated, the other 

wall was required to be scaled to meet that wall. In order to build that parametric 

relationship, first, the final location of the rotated wall had to be calculated. Second, the 

data from the rotated wall's final position had to be extracted in order to calculate the 

scale factor of the second wall to meet the first wall. However, the elements were scaled 
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according to the origin, which resulted in them to be translated. In order to place the 

elements into where they were expected to be, and calculate the scale factors, the 

required data was supplied by the twin model elements. 

After setting up the parametric relationships for the elements of the Web-based 

model through the local twin model, the model was tested in the Case Study 1 on the 

basic transformations: Scale, Translate, and Rotate. The framework, which included the 

Web-based model, Grasshopper, and Dynamo files successfully demonstrate the 

interoperable collaboration of the tools on the parametric model for Scale and Translate. 

Each user was able to control the Web-based model and the Web-based model was 

parametrically able to respond to the transformation requests. The results of the 

parametric changes were updated on each user’s Web browser. The Web-based model 

also contained the data, which could be retrieved by any user. The users were able to 

collaborate by retrieving data from the Web-based model.  

For rotation, one Grasshopper user with the Web-based model tested two 

diagonal walls. Although the parametric relationship was accommodated between the 

two diagonal walls, it required more time and scripting to build the same relationship 

between the walls and roof and floor because the parametric changes could only be 

applied uniformly now. For instance, if two walls were rotated, the related sides of the 

roof or floor could not adapt their geometry to this non-uniform change. In addition, the 

rotated diagonal walls did not meet precisely at joints. Since the parametric relationship 

between the elements was lost when the Revit model was converted to the Web-based 

model, the elements could not adapt their geometries at joints after transformations, even 
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the parametric relationship was built by the user. For instance, the edges of the diagonal 

wall were determined in Revit prior to converting the model into a Web-based model. 

After the conversion, additional scripting was required to manipulate the edges of the 

walls. In order to overcome both limitations, the editing of geometry vertices should be 

provided which requires more development of the Dynamo and Grasshopper Viewer 

plugins. The issue of the walls not meeting precisely had also been observed in 

translation. The elements of the Web-based model could be scaled, translated, or rotated, 

however; they did not adapt their geometries at the joints. The edges of the elements did 

not respond to the parametric changes. As a result, the wall joints were not clean.  

In the Case Study 2, the collaboration between two Grasshopper users through 

the Web-based model in the process of building performance optimization was 

examined. The daylight, energy, and integrated daylight and energy optimization was 

tested. In each optimization, one other objective was to obtain the minimum roof area 

that provided shading on south. The Dynamo user was not included in this process since 

the tools for BEP simulation in Dynamo was still limited. In collaboration between two 

Grasshopper users through the Web-based model, one user actively optimized the Web-

based model according to the objectives: maximum daylight with minimum roof area 

with shading or minimum energy use and the same roof objective. The other user 

observed the updates on the Web-based model and retrieved data from the model. 

Previously, the process was experimented by using Galapagos evolutionary solver – the 

single objective optimization tool in Grasshopper - by assigning one Galapagos for each 

user and one objective, i.e. defining one user with objective 1 as maximum preferred 
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daylight using one Galapagos node; defining another user with objective 2 as minimum 

roof shape with shading using another Galapagos node. However, two Galapagos solvers 

could not be run at the same time. Therefore, the Octopus multi-objective optimization 

tool was utilized by defining two objectives to be optimized at the same time in the Test 

2.1 of Case Study 2. At the end of the optimization process, a set of Pareto-optimal 

solutions were obtained. In Test 2.1, optimization with maximum preferred daylight and 

minimum roof with shading, only one of the solutions provide cover for the roof and 

shading. In Test 2.2, optimization with minimum energy use and minimum roof with 

shading, despite more than one solution was generated that covered the room area, only 

one solution provided shading. In Test 2.3, the daylight objective was combined with 

roof shape with the shading objective, where the other objective was the minimum 

energy use. In order to ensure that both the room area and the chosen point for shading 

were covered, a weight factor (10) was assigned for the Coverage Index in the fitness 

function. However, among the Pareto front, only one solution provided the room cover 

and the shading, which also had the one of the highest energy use. It is expected by 

adjusting the parameters of the fitness functions, for example, the weight factor for the 

Coverage Index, more desired design options may appear in the Pareto front. 

In all optimization processes, the user ended the optimization process after 

observing that there was an extremely low chance of retrieving improvement in the next 

generations. Afterwards, the user decided the best solution among the Pareto front. After 

choosing the best solution, the data was transferred to the Web-based model and both 

users got the updates on their Web browsers. While one user optimized the Web-based 
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model, the other user could observe the updates on the Web-based model and could 

retrieve data from this model. The framework enabled two Grasshopper users to 

collaborate on daylight, energy, and roof shape optimization through Web-based model 

as sample optimization experiments. The usage of the framework requires the 

knowledge of the mentioned tools, Rhino, Grasshopper, Revit, Dynamo, Ladybug, 

Honeybee, and Octopus. Moreover, the users should have the understanding of building 

performance, basic terms, simulation metrics, and how to conduct simulations and 

optimization in order to collaborate in the process of performance optimization. 
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6. CONCLUSIONS 

 

The research has demonstrated the advancement of a Web-based parametric 

modeling method and its prototypes, utilizing the full-fledged visual programming tools 

(Grasshopper and Dynamo), which enable parametric modeling, performance 

simulation, and optimization, while the Web-based model enables collaborative design 

exploration. There are many technical challenges, especially interoperability problems, 

found and resolved for the project through the carefully designed experiments. However, 

due to the high complexity of the problem, limitations are found to be investigated in 

future work.  

The parametric Web-based modeling framework was experimented on two case 

studies and three tests in each case study. In the Case Study 1, answers to the two 

questions were investigated: 

1. How could the parametric relationships between the elements of the Web-

based model be built within the proposed framework? 

2. How to implement the collaboration through a Web-based model while using 

Grasshopper and Dynamo and get real-time updates?  

In order to build parametric relationships, data flow was required to be created 

both in Grasshopper and Dynamo. The transformations, Scale, Translate, and Rotate 

were tested in Test 1.1, Test 1.2, and Test 1.3, respectively. The findings showed that the 

framework worked on Scale and Translate, partially worked on Rotate. Two major 

interoperability issues were identified between Web-based model and Grasshopper: The 
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reference point of transformations and the directions of rotation. The reference point 

difference was overcome by using additional data flow in Grasshopper. The use of 

transformation matrix could cause a difference on rotation between Web-based model 

and Grasshopper, which was handled by flipping the rotation angle. Since the data 

transfer was from visual programming tools to the Web-based model, the framework 

enabled the collaboration of one active and one passive user. While one user modified 

the Web-based model, the other user observed the updates and retrieved data with the 

help of Web-based model’s instruments. 

In the Case Study 2, an answer to the question “Is it possible for two 

Grasshopper users to collaborate on a Web-based model while working on building 

performance optimization?” was investigated. Three tests, Test 2.1, Test 2.2, and Test 

2.3, were conducted by using Honeybee for performance simulation, Ladybug for 

importing weather file to Grasshopper and visualization of the simulations, and Octopus 

for multi-objective optimization. In Test 2.1, maximum preferred daylight and minimum 

roof shape with shading were the two objectives. In Test 2.2, minimum energy use and 

minimum roof shape with shading were the two objectives. In Test 2.3, weighted sum of 

maximum preferred daylight and minimum roof shape with shading was the one 

objective, minimum energy use was the other objective. The optimization was first 

experimented by using Galapagos; however, two Galapagos did not work at the same 

time. Since the prototype transferred data was from visual programming tools to the 

Web-based model, the framework only allowed the collaboration of one active and one 

passive user. Therefore, the optimization could not be divided and distributed between 
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the users. The framework could be used as follows: One user optimized the Web-based 

model on the local computer and decided the best result by visualizing the Pareto front 

and evaluating the numeric data output of optimization. The best result was transferred 

from Grasshopper to the Web-based model. The other user observed the updates and 

retrieved data with the help of Web-based model’s instruments. 

 

6.1. Limitations 

There are two types of limitations: The limitations of the thesis and the 

limitations of the framework. However, the limitations of the framework are also the 

outcomes of the research, since one of the goals of this thesis is to identify the ways of 

collaboration, building parametric relationships, and conducting optimizations which 

includes the identification of the limitations of the framework as well.  

One of the outcomes and the limitations of the framework is the number sliders 

of Grasshopper and Dynamo not allowing to be updated by external data, data from the 

Web-based model in this instance. Data transfer being only one-way, from visual 

programming tools to the Web-based model, is a limitation in the collaboration of 

parametric modeling and optimization. Receiving the updates only on the Web-based 

model requires the manual data input by the user. Without the automatization of the data 

transfer bidirectionally between the Web-based model and Grasshopper/Dynamo, the 

collaboration of the users is limited as one active user and one passive user. The 

optimization process cannot be divided and distributed into different users and the 

parameters cannot be shared without reciprocal data transfer. Also, Galapagos running 
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only one instance at a time limits this distributed optimization method and the use of 

Galapagos. Another limitation is the lack of control of the capability to directly change 

the geometry vertices of the Web-based model. This limitation creates imprecise joint 

problems, especially in the rotation transformations. In addition, the limited control on 

scale transformations results only in uniformly scaled geometries which do not always 

generate the intended forms. The control of the Web-based model by using Dynamo is 

limited on rotation and this prevents the collaboration of Grasshopper and Dynamo 

through the Web-based model on rotation. The need for the local twin model in 

Grasshopper in order to retrieve data for building parametric relationships and conduct 

optimization, instead of direct parametric modeling, simulation, and optimization with 

the Web based model, is a limitation. 

One of the limitations of the thesis is the simplification of the case studies due to 

the time limit. For example, the current parametric relations in the proposed study are 

created based on the transformation of one single element, one of the narrow walls. 

Other elements are adjusted parametrically in their size, orientation, and scale in order to 

match that narrow wall’s transformations. This is a limitation of the case studies. 

However, the simple prototype model can demonstrate the potential of the method for 

supporting Web-based parametric modeling and the problems of tools used. Second 

limitation of the thesis is the usage of the framework being based on simulated user 

experiments.  
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6.2. Future Work 

Three different suggestions are proposed to improve the framework. The first 

suggestion is provide editing the geometry vertices of the Web-based model through the 

visual programming tools in order to achieve precise joints between the elements of the 

model after transformations. Editing geometry vertices individually enables the users to 

modify the geometry of the elements efficiently and flexibly for more comprehensive 

parametric modeling. With the control of the vertices, the users could transform the 

geometries in a non-uniform way.  

The second suggestion is the automation of the data transfer from the Web-based 

model to the visual programming tools. By automation, the building parameter values 

would transfer reciprocally between the Web-based model and the visual programming 

tools. Then, after any change, both the Web-based model and the local twin parametric 

models would be updated automatically. The reciprocal data transfer will help divide and 

distribute the optimization process into two or more users for collaboration. When 

optimization is divided and distributed, the amount of time and the computational power 

required for the process would decrease. For instance, in large and complex projects, 

designers deal with a large number of design decisions which increases the number of 

inputs and the size of the search space. However, if optimization is divided and 

distributed, users could optimize simultaneously; and this way, the process would be 

more efficient and effective, and requires less computational power for each user when 

compared to a traditional optimization with one user. If the automation of reciprocal data 

exchange is provided, then the optimization could be collaboratively conducted by 
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sharing parameters. Optimizing simultaneously by sharing parameters would result in 

the interaction between the genomes of each optimization. The best performing genomes 

are selected at the end of each generations, and the value of the shared genomes in 

Genetic Algorithm would be updated after each run of an optimization. When the 

optimization is divided and distributed, the selection of the best genomes in different 

users’ optimization will affect each other’s optimization process. This interaction is 

expected to generate optimum solutions for a Web-based model that satisfy two or more 

different optimization objectives. With the division and distribution of the optimization, 

specialists could collaborate on the same project and achieve a set of design solutions 

which are optimum for all parties, e.g. a lighting specialist and an energy specialist could 

collaborate on a shared model while optimizing.  

The third suggestion for the improvement of the framework is the elimination of 

the need for the twin models in local visual programming environments, and enabling 

direct modeling, simulation, and optimization on the Web. 

As a future work, integration of Dynamo would be improved to be used in the 

performance simulation process. In the future framework, visual programming would be 

employed inside the Viewer which would contribute to design from the scratch on the 

Web browser. Also adopting simulation GUIs and optimization plugins into the Web-

based model would make the framework a collaborative parametric modeling, design, 

and simulation tool which would be compatible with many prevalent software. 

Collaboration between structural, mechanical and electrical engineers and architects by 

integrating detailed models of engineers would be another goal of future work. 
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Moreover, automatic creation of architectural 2D drawings and data sheets according to 

the 3D Web-based model would provide the BIM features to the Web-based model. In 

addition, the control of permission levels (view, edit, share) of users and the recording of 

logging and editing history of users would enhance the collaboration experience. 
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