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ABSTRACT 

 

     There are increasing interests to produce culinary herbs and leafy greens in indoor 

vertical farms (IVFs) due to increasing world population, resource competition, and 

unusual climate. Light is one of the most important environmental factors, which affects 

plant photosynthesis, morphology, yield, and secondary metabolism. Advancement of 

light emitting diodes technology provides researchers the opportunity to optimize lighting 

conditions in IVFs to improve plant productivity and quality. Therefore, the objective of 

the present study is to improve plant growth, yield, and nutritional quality in culinary herbs 

and leafy greens via manipulating the lighting environment in IVFs.  

     Five experiments were conducted in a growth room using green and purple/red basil 

(Ocimum basilicum) and four Brassica species. Results indicated that higher daily light 

integrals of 12.9 to 17.8 mol·m-2·d-1 improved plant photosynthesis, yield, and 

phytochemical accumulation in green basil plants. In combined red and blue (R&B) light, 

increases of blue light proportions increased plant photosynthesis, chlorophyll content, 

and phytochemical concentrations in basil and Brassica species, while plants grown under 

higher red light proportions had increased stem elongation, leaf expansion, and greater 

plant yield. Addition of green light to R&B light decreased photosynthesis, chlorophyll 

content, and yield in all tested plant species. Substituting red or blue light with green light 

increased plant photosynthesis in the lower leaves in purple basil plants, but showed no 

effects in green basil plants. Phytonutrients accumulation in green basil plants decreased 

by substituting blue or R&B light with green light, while decreased in purple basil plants 
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by substituting red or R&B light with green light. Substituting photosynthetically active 

radiation light with far-red light increased plant stem and petiole elongation and shoot FW 

by 6%-23% in green basil plants, which also resulted in increased phytochemical 

concentrations and antioxidant capacity. Supplemental ultraviolet-B (UV-B) radiation 

increased phytochemical concentrations up to 169% in green basil leaves but decreased 

plant yield, while lower UV-B radiation doses increased antioxidant capacity in Brassica 

species without yield reduction. In conclusion, this study unveils how plants respond to 

changes of light intensity, quality, and supplemental UV-B radiation, providing useful 

information for light source selection in IVFs. 
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CHAPTER I  

INTRODUCTION  

1.1 Introduction 

     The demand for more resources (e.g. land, water, and energy) to produce more food is 

ever increasing with the population growth worldwide, which is expected to reach 9.3 

billion by 2050. However, our food production capacity is increasingly threatened by 

global climate change and competition of resources such as arable land, clean water, and 

fuel energy (Dunwoody, 2014; Liaros et al., 2016). Meanwhile, with the development of 

urbanization, the food demand is mainly in the urban area with 68% of the population 

living in an urban environment, which increases costs of long-distance transportation and 

decreases the quality of food products (Kozai et al., 2015). The negative impacts of the 

conventional food production systems are exacerbating, including groundwater 

contamination from pesticide and synthetic nitrogen use, soil erosion and degradation, a 

large volume of greenhouse gas emissions and persistently high levels of food insecurity 

and disease (Cleveland et al., 2015). As a consequence, the challenge facing agriculture 

in the upcoming 50 years will be an increasing demand for food to feed ever larger cities 

with ever fewer resources. In this scenario, an increasing interest has been placed on 

controlled environment agriculture (CEA), especially indoor vertical farms (IVFs), also 

called plant factory with artificial lighting, used as an alternative production system to 

conventional open field production (Castilla and Hernandez, 2006; Despommier, 2013; 

Kozai, 2013). 
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     Indoor vertical farm refers to a plant production facility with a thermally insulated and 

nearly airtight warehouse-like structure, using multi-layer cultivation shelves installed 

with artificial lighting (Kozai, 2013). Compared to open field production, IVFs exhibit 

social, economic, and environmental sustainability with many advantages. (1) IVFs can 

achieve year-round production with complete environment control over light, temperature, 

relative humidity, CO2 concentration, and nutrients regardless of local weather conditions 

(Kozai, 2007; Kozai, 2013). Meanwhile, plant yield, nutritional quality, and harvesting 

time could be regulated depending on the marketing requirements owning to the accurate 

manipulation and control of the environmental conditions. (2) Resource utilization 

efficiencies of water, land, and fertilizer in IVFs are improved significantly compared to 

open field production (Kozai, 2007; Ohyama et al., 2003; Yokoi et al., 2005). For example, 

IVFs use less than 5% water compared to open field production (Ohyama et al., 2003). (3) 

Sustainable production is achieved in IVFs with less resource consumption (land, water, 

and CO2) and less emission of environmental pollutants (pesticides and chemicals) (Kozai, 

2012). (4) IVFs could be placed close to the consumer which significantly reduces the cost 

and time involved in food packing and transportation, as well as the loss of crop quality 

and quantity due to long distance transportation (Ohyama et al., 2008; Pessu et al., 2011). 

(5) Working environment for farmers in IVFs is more comfortable, and placement of IVFs 

in cities will increase job opportunity in urban areas. 

     With all these advantages, the crop production in IVFs is currently limited to high value 

crops with short production periods, such as specialty leafy vegetables, micro/baby greens, 
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transplants, herbs, and medicinal plants. This limitation is the initial high construction and 

operation costs and immature technologies. Among these crops, culinary herbs such as 

basil (Ocimum basilicum) and leafy greens such as Brassica vegetables are highly diverse 

in species and cultivars and a valuable part of human diet owing to their nutritive values. 

For example, basil is called the "king of herbs" or the "royal herb” and is widely used as 

a culinary herb and medicinal plant due to its specific aromatic flavor and relatively high 

content of phenolic compounds (Chiang et al., 2005; Makri and Kintzios, 2008). Brassica 

vegetables are popularly consumed owing to their good flavor, vivid colors, and 

abundance in bioactive compounds, including glucosinolates, ascorbic acid, and phenolic 

compounds (Kopsell et al., 2003; Qian et al., 2016). With increasing research efforts to 

identify their health-promoting properties and potential applications, the interest in these 

crops continues to grow and consumer demand keeps increasing (Keservani et al., 2010; 

Mills and Jones Jr, 1996). The increasing demand is accompanied by issues of quality and 

consistency in open field production (Zobayed et al., 2005). To meet the market demand 

and ensure safety and high quality of these crops, increasing numbers of farmers and 

entrepreneurs are adopting to IVFs production.  

     Light is an indispensable energy for crop production and one of the largest energy 

consumption components in IVFs, which influences plant photosynthesis, 

photomorphogenesis, and phytochemical accumulation (Dou et al., 2017; Kang et al., 

2013). In IVFs, artificial lighting system represents the only source of light and its features 

are fundamental for optimal plant performance and reduced production cost. However, 



 

 
4 

 

due to limited information, the effects of artificial lighting on plant growth and 

development and the optimal crop light requirements is still unclear to growers and 

researchers. To be at the forefront of this movement, our research project addressed how 

different lighting conditions affect culinary herbs’ and leafy greens’ production in IVFs. 

1.2 Advantages of Light Emitting Diodes (LEDs)  

     Since lighting is one of the largest power consumption components in IVFs, selection 

of light sources can have a significant influence on the construction and operation costs, 

in addition to their effects on plant growth and development (Kozai, 2012). With the 

development of LED technology, it has become a widely used light source in IVFs owning 

to its high energy utilization efficiency and low surface temperature compared to the other 

lamp types (Bantis et al., 2018; Pennisi et al., 2019). 

     LEDs were initially adopted for lighting research for plant growth in mid 1980s and 

early 1990s by the University of Wisconsin Center for Space Automation and Robotics, 

NASA, and the Kennedy Space Center (Cocetta et al., 2017). Use of LEDs has gradually 

increased in horticultural production due to its advantages compared to other light types 

(Stutte, 2009). Firstly, energy use efficiency of LEDs is significantly improved, which 

provides high light intensity with low radiant heat and surface temperature, allowing LEDs 

to be installed close to the plant canopy or even intra-canopy. The electricity-to-light 

energy conversion factor of LEDs is around 60% higher compared to conventional 

fluorescent lamps (FLs) (Kozai et al., 2015). Secondly, spectra wavelength of LEDs could 

be customized allowing optimization of light spectra to the demand of each plant species 
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and cultivar (Stutte, 2009). Thirdly, they offer longer durability and higher operating 

capabilities such as short response time, small size, and light weight compared to other 

light types (Mitchell et al., 2015; Morrow, 2008; Stutte, 2015). Although there are still 

obstacles influencing the use of LEDs in horticulture (high cost and developing 

technology), the mass production, new techniques, and simplified manufacturability and 

maintenance would ensure its further cost reductions.  

1.3 Photosensory Photoreceptors 

     Plant responses to light conditions are triggered by changes in light intensity, quality 

[wavelength distribution from ultraviolet (UV, 280-399 nm) to far-red (700-780 nm) 

light], direction, and duration, to modulate plant growth and development. Plants possess 

two types of photoreceptors, photosynthetic pigments that harvest light energy for 

photosynthesis, and photosensory receptors that mediate non-photosynthetic light 

responses. Signals from the photoreceptors can regulate the expression of genes involved 

in cell division and enlargement, which form various tissues such as floral buds and leaf 

primordia (Anpo et al., 2018). Five photosensory systems have been identified to date, 

including phytochromes, cryptochromes, phototropins, members of the Zeitlupe family, 

and UV Resistance locus 8 (Bantis et al., 2018). Understanding properties of 

photoreceptors and their involvements in plant responses would provide useful 

information during the selection of light sources to improve plant productivity and quality 

in IVFs. 
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1.3.1 Phytochromes  

     Phytochromes are primarily red (600-699 nm) and far-red light sensing photoreceptors, 

which is the first plant photoreceptor identified at the molecular level. There are two 

reversible forms of phytochromes, the biologically inactive Pr (for red light absorbing, 

peaks at 660 nm) form and active Pfr (for far-red light absorbing, peaks at 730 nm) form 

(Quail, 2002). In general, red light activation of phytochromes may be reversed by far-red 

light. The phytochrome photoequilibrium (PPE), which estimates the proportion of Pfr in 

total phytochromes, depends on the spectral distribution of light sources and phytochrome 

absorption (Sager et al., 1988).  

     Phytochromes family consists of five members, designated phyA to phyE, and 

individual members of the family have differential, albeit frequently overlapping, 

photosensory and/or physiological functions in controlling plant responses from seed 

germination to flowering initiation, which is stated in Table 1 (Li et al., 2011). For 

example, at least three phytochromes (phyA, phyB and phyE) are involved in the control 

of seed germination in arabidopsis (Arabidopsis thaliana). PhyA is responsible for the 

irreversible very low fluence responses (VLFR) triggered by a wide variety of radiations 

(UV, visible, and far-red light), while phyB controls the red/far-red photo-reversible low 

fluence responses (LFRs). However, phyE was also found to play a role in controlling 

seed germination in continuous far-red light. This could be either because phyE is directly 

involved in the photoreception of far-red light for this response, or because phyA requires 

phyE to mediate seed germination. 
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     Seedling de-etiolation is initiated when seedlings emerge from the soil and perceive 

light radiation, which is characterized by several morphological changes, including 

hypocotyl growth inhibition, cotyledon expansion, and chloroplast development (Chen 

and Chory, 2011). PhyA is the primary photoreceptor responsible for perceiving and 

mediating various responses to far-red light, while phyB and phyC responds to red light, 

and phyB is the predominant phytochrome regulating de-etiolation in response to white 

and red light (Li et al., 2011; Quail, 2002). 

     Shade avoidance responses include elongation of stems and petioles, accelerated 

flowering time, and increased apical dominance, which elevate leaves toward light (Li et 

al., 2011). PhyB is the predominant suppressor of shade avoidance responses in high red: 

far-red (R:FR) ratio, as phyB mutants display a constitutive shade avoidance phenotype, 

such as elongated petiole and early flowering. Shade avoidance responses enabled by low 

R:FR ratios can be effectively phenocopied by end of day far-red (EOD-FR) treatment, 

which is regulated by phyB, phyD, and phyE. 
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Table 1. Different roles of phytochrome family members in seedling and early 
vegetative development (Li et al., 2011). 
Phytochrome Members  Primary Photosensory Activities     Primary Physiological Roles 
phyA VLFRs Seed germination under a broad 

spectrum of light conditions 
(UV, visible, FR). 

FR-HIRs Seedling de-etiolation under FRc; 
promoting flowering under LD. 

phyB LFRs Seed germination under Rc 
R-HIRs Seedling de-etiolation under Rc 
EOD-FR (R:FR ratio) Shade avoidance response 

(petiole and internode 
elongation, flowering). 

phyC R-HIRs Seedling de-etiolation under Rc 
phyD EOD-FR (R:FR ratio) Shade avoidance response 

(petiole and internode 
elongation, flowering). 

phyE LFRs Seed germination 
EOD-FR (R:FR ratio) Shade avoidance response 

(petiole and internode 
elongation, flowering). 

VLFRs: very-low-fluence responses; R-LFRs: red low-fluence responses; R-HIRs: red 
light high-irradiance responses; FR-HIRs: far-red light high-irradiance responses; FRc: 
continuous far-red light; Rc: continuous red light; LD: long day light condition; EOD-FR: 
end-of-day far-red light; R:FR ratio: red: far-red ratio. 

1.3.2 Cryptochromes 

     Cryptochromes are primarily blue (400-499 nm)/UV-A light photoreceptors, which 

work together with phytochromes to regulate various light responses, including regulation 

of cell elongation and photoperiodic flowering, and act together with phototropins to 

mediate blue light regulation of stomatal opening (Chory, 2010; Li and Yang, 2007). There 

are two members of cryptochromes, CRY1 and CRY2, with overlapping functions and 

primarily mediates blue light inhibition of hypocotyl elongation and photoperiodic control 
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of floral initiation, respectively. CRY1 plays a major role in blue light inhibition of 

hypocotyl elongation, whereas CRY2 plays a relatively minor one compared to CRY1 (Yu 

et al., 2010). Although phototropins are the major photoreceptor regulating stomata 

opening, it was found that in response to blue light, the cry1 cry2 mutant and CRY1 

overexpressing plants exhibit reduced and increased stomata opening, respectively, which 

indicated stimulation of stomata opening by cryptochromes (Mao et al., 2005). In addition 

to the light responses discussed above, cryptochromes are also found to regulate 

chloroplast development and stimulate anthocyanin accumulation in plants (Li and Yang, 

2007; Yu et al., 2010).  

1.3.3 Phototropins  

     Phototropins are blue/UV-A light photoreceptors controlling a range of plant responses 

including phototropism, light-induced stomatal opening, and chloroplast movements in 

response to light intensity (Christie, 2007; Zhang and Folta, 2012). Two members of 

phototropins, phot1 and phot2, exhibit partially overlapping roles in these regulations. For 

instance, both phot1 and phot2 act to regulate hypocotyl phototropism in arabidopsis 

plants in response to high intensities of unilateral blue light, while hypocotyl phototropism 

is solely mediated by phot1 under low light intensities (Pedmale et al., 2010). Phot1 and 

phot2 also redundantly regulate stomatal opening by mediating blue light dependent 

hyperpolarization of membrane potential of guard cells, allowing plants to regulate CO2 

uptake for photosynthesis and water loss through transpiration (Briggs and Christie, 2002). 

Meanwhile, phototropins regulate chloroplast relocation responding to different light 
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intensities. Under low light intensities, phot1 and phot2 induce chloroplast movement and 

accumulation to the upper cell surface to promote light capture for photosynthesis, while 

under high light intensities, chloroplasts move away from the site of radiation to prevent 

photodamage of the photosynthetic apparatus, which is mediated only by phot2 (Christie, 

2007). 

1.3.4 Members of the Zeitlupe family 

     Members of Zeitlupe family, including ZEITLUPE (ZTL), FLAVIN-BINDING 

KELCH REPEAT F-BOX 1 (FKF1), and LOV KELCH PROTEIN 2 (LKP2), is a group 

of blue light photoreceptors (Kevei et al., 2006; Somers et al., 2004). Zeitlupe family 

participates in regulating the period of circadian oscillation, photoperiodic flowering, and 

hypocotyl elongation (Miyazaki et al., 2015). Somers et al. (2004) reported that fkf1 

mutants have short hypocotyls under continuous blue or red light, while LKP2-

overproducing plants have elongated hypocotyls under continuous blue, red, or white 

light. This indicated that even though Zeitlupe family consists of blue light photoreceptors, 

they could promote hypocotyl growth under red or white light by inhibiting the phyB 

mediated signal transduction pathway, as phyB is the main receptor mediating red light 

induced inhibition of hypocotyl elongation (Chory, 2010). 

1.3.5 UV Resistance locus 8 

     The UV-B specific photoreceptor, UV Resistance Locus 8 (UVR8), initiates UV-B 

mediated signaling pathways in response to low levels of UV-B radiation. Under UV-B 
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radiation, UVR8 is translocated from cytosol to nucleus and interacts with COP1 

(CONSTITUTIVELY PHOTOMORPHOGENIC 1), promoting the expression of HY5 

(ENLONGATED HYPOCOTYL 5) and HYH (HY5 HOMOLOG) (Kaiserli, 2018). In 

turn, the expression of HY5 and HYH increases the expression of key elements for UV-B 

acclimation, including genes encoding enzymes of the phenylpropanoid pathway 

(Schreiner et al., 2012).  Meanwhile, perception of low UV-B radiation by UVR8 also 

affects plant morphology, causing growth retardation such as the inhibition of hypocotyl 

elongation (Jansen and Bornman, 2012). Recently, UVR8 was also shown to be involved 

in regulating thermomorphogenesis, shade-avoidance response, plant immunity, and 

circadian clock entrainment, underlining the importance of signaling crosstalk among 

light, clock, hormone, and defense pathways (Yin and Ulm, 2017). 

1.4 Plant Responses to Lighting Environments 

1.4.1 Plant responses to light intensity, photoperiod, and daily light integral 

     Daily light integral (DLI) is equal to the product of photosynthetic photon flux density 

(PPFD, 400-700 nm) and photoperiod, representing the total photosynthetic photon flux 

radiated by a light source in one day, and usually has a linear relationship with plant yield. 

Increased DLIs were favorable for improving yield, accumulating phenolics content and 

essential oils in basil and perilla (Perilla frutescens) plants (Chang et al., 2008; Schnitzler 

and Habegger, 2004). However, higher DLI increases produce cost by increasing capital 

cost (more light fixtures) or operation cost (longer photoperiods). Therefore, a minimum 

target DLI for lettuce (Lactuca sativa) and other leafy crops in IVFs is recommended as 
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12-17 mol·m-2·d-1 (Albright et al., 2000). A few studies explored the effects of DLIs from 

13.5 to 34.6 mol·m-2·d-1 on basil growth and development (Beaman et al., 2009; Chang et 

al., 2008), but no study has determined the optimum DLI between 12 and 17 mol·m-2·d-1 

to minimize the energy cost while maintaining a high plant yield. Characterizing the 

response of plant growth to DLIs and the relationship between PPFD and photoperiod at 

same DLI are useful in lighting design and determining optimal combination of PPFD and 

photoperiod to obtain target DLI.  

     Under a controlled environment, plant growth responds almost linearly to increasing 

PPFD, and  plant photosynthetic efficiency decreases when a light saturation point is 

reached. Light saturation point is specific for each plant species and for different 

environmental conditions. Beaman et al. (2009) reported that the lowest plant growth and 

edible biomass production was observed at PPFD of 300 μmol·m-2·s-1 and the highest at 

500 and 600 μmol·m-2·s-1 in basil plants grown under PPFD of 300, 400, 500, and 600 

μmol·m-2·s-1 provided by FLs and incandescent lamps. Carotenoids concentration in leaf 

blade of four spinach (Spinacia oleracea) cultivars increased with increasing PPFD from 

100 to 300 μmol·m-2·s-1 (Li et al., 2009). Similarly, there was a linear increase in both leaf 

fresh weight (FW) and dry weight (DW) in kale (Brassica oleracea) and spinach plants as 

PPFD increased from 125 to 620 μmol·m-2·s-1 in a growth chamber, while the 

concentrations of Ca, Cu, K, and Mn in kale plants all decreased at high PPFD due to a 

dilution effects resulting from increased leaf FW (Lefsrud et al., 2006b). In contrast, shoot 

and root growth and anthocyanin content in ‘Kudo’ perilla decreased under increased 
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PPFD of 500 μmol·m-2·s-1 compared to 300 μmol·m-2·s-1, while total polyphenol content 

increased (Hwang et al., 2014). 

     Photoperiod is the length of light in a daily cycle of 24 h. Growing plants under a low 

PPFD for a long photoperiod will reduce the capital costs of IVFs due to decreased number 

of light fixtures and requirements for cooling compared to high PPFD for a short 

photoperiod at same DLI. Studies showed that a long photoperiod generally increased 

plant biomass accumulation due to increased leaf expansion and chlorophyll content 

(Adams and Langton, 2005). However, many sensitive species tend to develop important 

physiological disorders such as leaf chlorosis and chlorophyll degradation under extended 

photoperiod (Kang et al., 2013; Langton et al., 2003). Sysoeva et al. (2010) reported that 

dry matter growth and yield of tomato (Solanum lycopersicum) and sweet pepper 

(Capsicum annuum) plants decreased, and light injury symptoms were observed in tomato, 

eggplant (Solanum melongena), potato (Solanum tuberosum), radish (Raphanus sativus), 

and cucumber (Cucumis sativus) plants under a 24-h photoperiod. Reduced growth and 

yield under extended photoperiods were thought to be caused by the inability of leaf to 

export accumulated photosynthates out of the leaf or the destruction of chloroplasts due 

to some photooxidative stress by long photoperiod (Ali et al., 2009; Demers et al., 1998). 

     In addition to biomass accumulation, effects of photoperiods on nutritional 

concentration in plants also varied. A 16-h photoperiod increased gluconasturtiin 

concentration by 30-40% in watercress (Nasturtium officinale) plants compared to a 8-h 

photoperiod (Engelen-Eigles et al., 2006). Similarly, lutein and β-carotene concentration 
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on FW basis in kale plants increased 64% and 65%, respectively, under a 6-h photoperiod 

compared to 24-h photoperiod, while the peak accumulation was observed in a 16-h 

photoperiod on DW basis (Lefsrud et al., 2006a). In contrast, betacyanin concentration in 

red and green amaranth (Amaranthus tricolor), swiss chard (Beta vulgaris), red beet (Beta 

vulgaris), and red spinach leaves increased from 6-h to 12-h photoperiod but decreased 

from 12-h to 20-h (Ali et al., 2009).  

1.4.2 Plant responses to light quality 

     Plants sense and respond to a broad range of light spectra from UV to far-red regions, 

and light quality or light spectrum wavelength significantly affects plant growth, 

development, morphology, and secondary metabolism (Bugbee, 2016; Dou et al., 2017; 

Piovene et al., 2015). The development of LED technology provided researchers with 

opportunities to regulate plant yield and nutritional quality using different light 

wavelengths. However, there is no universal agreement on how light quality might affect 

plant yield and secondary metabolites accumulation, and plant responses to light quality 

are dependent on plant species, cultivars, and phytochemical compounds (Taulavuori et 

al., 2016).  

1. Red and blue Light  

     Red light is sensed in plants by phytochromes and regulates responses related to seed 

germination, stem elongation, leaf expansion, flowering induction, etc., while blue light is 

sensed by cryptochromes and phototropins and regulates processes such as seedling de-

etiolation, phototropism, chloroplast movement, circadian rhythms, stomatal opening, etc. 
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(Kozuka et al., 2005; Lobiuc et al., 2017; Neff and Van Volkenburgh, 1994). However, 

phytochromes, cryptochromes, and phototropins act antagonistically in the regulation of 

plant morphogenesis. For instance, phototropins promote leaf flattening, while phyB 

promotes leaf downward curling (Anpo et al., 2018). Thus, careful attention must be paid 

in determining the balance between blue and red light to achieve the target plant 

architecture. 

     High efficiency of red and blue lights on plant photosynthesis and growth is easily 

understood since they perfectly fit the absorption peak of chloroplasts (McCree, 1972). 

Combined red and blue (R&B) light is more effective than monochromatic red or blue 

light for plant growth, while monochromatic red or blue light may induce physiological 

disorders in several plant species (Dong et al., 2013; Sabzalian et al., 2014). For instance, 

monochromatic red light decreased the maximum quantum efficiency of photosystem II 

(Fv/Fm), stomata density, photosynthetic capacity, and impaired growth in cucumber and 

tomato plants and was defined as the “red light syndrome”. None of these effects occurred 

in leaves grown under combined R&B light (Hogewoning et al., 2010; Savvides et al., 

2011; Trouwborst et al., 2016). Zheng and Van Labeke (2017) also reported that most 

chrysanthemum (Chrysanthemum × morifolium) cultivars had the smallest leaf area under 

monochromatic red light compared to blue, white, and R75B25 (combined R&B light, in 

which the red and blue light percentage was 75% and 25%, respectively) treatments, which 

indicated that a certain amount of blue light is essential to maintain normal plant growth. 

     Although it is generally known that combined R&B light is more effective for plant 

growth, the optimal red: blue (R:B) ratio or blue light proportion was not determined yet. 
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Shoot FW of basil plants increased by 214% when blue light proportion increased from 

15% to 59% in combined R&B light at PPFD of 200 μmol·m-2·s-1 with a 16-h photoperiod 

(Piovene et al., 2015). Net photosynthetic rate (Pn), leaf mass per unit leaf area, and 

chlorophyll content per leaf area in cucumber plants increased with increasing blue light 

proportion from 7% to 50% (Hogewoning et al., 2010). In contrast, ‘Wala’ basil plants 

grown under white FLs with blue light proportion at 8% had higher plant height and 

greater shoot FW compared to plants grown under white LEDs with blue light proportion 

at 16% at PPFD of 160 μmol·m-2·s-1 with a 16-h photoperiod, and no differences in leaf 

area or photosynthetic rate was observed (Fraszczak et al., 2014). Similarly, plant height, 

leaf area, and shoot FW and DW in cucumber plants decreased gradually with blue light 

proportion increased from 10% to 75% (Hernandez et al., 2016). 

     Numerous studies have been conducted to evaluate effects of red and blue lights on 

plant secondary metabolism, and results were conflicting (Cocetta et al., 2017). Several 

studies have shown that blue light induced the synthesis of anthocyanin and phenolic 

compounds in various plant species, such as lettuce, sage (Salvia miltiorrhiza), and 

gerbera (Gerbera hybrid) (Li, 2010; Meng et al., 2004). Accumulation of anthocyanin and 

phenolic compounds induced by blue light is attributed to the expression of key enzymes 

in the phenylpropanoid pathway, including phenylalanine ammonia-lyase (PAL), 

chalcone synthase (CHS), and dihydroflavonol 4-reductase (Giliberto et al., 2005; Jenkins, 

2009; Son et al., 2012). In accordance, total phenolic concentration in purple basil plants 

and concentrations of total phenolics and anthocyanins in kale sprouts (7 days old) were 
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the highest under blue light treatment compared to red and white LED treatments 

(Hosseini et al., 2018; Qian et al., 2016). However, in contrast, rosmarinic acid 

concentration, the major phenolic acid in basil, was 2 times in basil plants grown under 

red and white LED lights compared to plants grown under blue light (Shiga et al., 2009). 

Hosseini et al. (2018) also reported that anthocyanin concentration in green basil plants 

was the highest under red light, while total phenolic concentration in green basil plants 

and anthocyanin concentration in purple basil plants were the highest under R70B30 

treatment, compared to blue or white light treatments. One of the reasons of the 

contradictory results was thought to be the inconsistent light parameters among studies, 

such as different light sources and light intensities. Overall, the mechanism of light 

spectrum affecting phytochemical biosynthesis is still unclear, but it is hypothesized that 

red and blue lights share some mechanisms, and their effects are dependent on plant 

species, plant age, and the phytochemical compounds (Taulavuori et al., 2016). 

2. Red and far-red light 

     Red and far-red lights are important signals to plants since R:FR ratio affects 

phytochrome regulated responses such as seed germination, seedling de-etiolation, shade 

avoidance, and reproduction responses (Casal, 2013; Chia and Kubota, 2010; De Wit et 

al., 2012). For example, low R:FR ratio decreased chlorophyll content per unit leaf area 

in citrus (Citrus insitorum), potato, white clover (Trifolium repens), tomato, and cucumber 

plants (Demotes-Mainard et al., 2016). On the contrary, EOD-FR treatment increased 

plant height and leaf length in tomato, arabidopsis, cucumber, and aspen (Populus tremula 
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× tremloides) plants compared to those grown under EOD red treatment (Chia and Kubota, 

2010).  

     Hogewoning et al. (2012) stated that far-red light preferentially excites photosystem I 

(PSI), while photosynthetically active radiation (PAR, 400-700 nm) generally excite 

photosystem II (PSII) more than PSI, which operate in series to carry out photochemical 

reactions. Under relatively high level of far-red light, plants showed low quantum yield of 

photosynthesis since PSI tends to be over-excited relative to PSII, and vice versa (Myers, 

1971; Zhen and Van Iersel, 2017). Therefore, the photosynthetic efficiency of combined 

far-red and PAR light should be higher than only far-red or PAR light at the same light 

intensity, due to a better-balanced citation of the two photosystems (Zhen and Van Iersel, 

2017). Consistently, it was reported that PAR light supplemented with far-red light 

significantly increased quantum yield of PSII in ‘Green Towers’ lettuce plants and leaf 

area and shoot DW in geranium (Pelargonium hortorum ‘Pinto Premium Orange Bicolor’) 

and snapdragon (Antirrhinum majus ‘Trailing Candy Showers Yellow’) seedlings (Park 

and Runkle, 2017). However, some researchers hypothesized that substituting PAR light 

with far-red light may decrease the whole-plant photosynthetic efficiency due to a 

decreased PPFD. Meanwhile, far-red light substitution might increase the light radiation 

capture by inducing stem and petiole elongation and leaf expansion, which leave the far-

red light effects on plant growth unclear (Demotes-Mainard et al., 2016; Park and Runkle, 

2017). 
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3. Green light  

     It is well known that leaves absorb green (500-599 nm) light less effectively (by 16-

23%) than blue or red light (Moss and Loomis, 1952). However, the average relative 

quantum efficiency value for broadband green light is 0.87, which is slightly lower than 

that for red light (0.91) and higher than that for blue light (0.73) (Sager et al., 1988). In 

addition, while blue and red lights are strongly absorbed by the upper level plant canopy, 

green light penetrates into deeper plant canopy, which could potentially increase plant 

yield (Terashima et al., 2009; Wang and Folta, 2013). In fact, Paradiso et al. (2011) 

validated that canopy quantum efficiency in ‘Akito’ roses (Rosa) grown under green light 

was not much lower than that grown under red light.  

     In addition to photosynthesis, green light also regulates plant non-photosynthetic 

responses such as vegetative growth, anthocyanin accumulation, and flowering initiation 

via phytochromes and cryptochromes (Folta and Maruhnich, 2007; Wang and Folta, 

2013). Plant responses to green light share a general tendency to counteract blue or red 

light induced responses, such as inhibition of hypocotyl elongation (Talbott et al., 2006). 

For instance, as green light proportion increased, anthocyanin concentrations in 

arabidopsis and ‘Red Sails’ lettuce plants decreased significantly (Zhang and Folta, 2012; 

Zhang et al., 2011). Stomatal opening stimulated by blue light could also be reversed by 

green light in a range of plant species and supplemental green light to red and blue LEDs 

induced shade avoidance responses in arabidopsis plants (Frechilla et al., 2000; Talbott et 

al., 2002; Zhang and Folta, 2012). 
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4. UV-B light 

     UV-B light is commonly considered as a stress factor to plant growth due to its excess 

excitation energy unavoidably leading to the production of reactive oxygen species in 

plant organelles, such as chloroplasts, mitochondria, and peroxisomes. Recently, some 

studies indicated that supplemental UV-B radiation induced secondary metabolite 

synthesis in plants, such as anthocyanins, flavonoids, ascorbate, carotenoids, glutathione 

and a broad range of other metabolites, which provide plant protection against potential 

UV-B damage and health benefits in human diets (Ghasemzadeh et al., 2016; 

Sakalauskaite et al., 2013). Supplemental UV-B radiation at 2.5 µmol·m-2·s-1 for 1 h or 2 

h per day significantly increased the content of total phenolic compounds, anthocyanin 

concentrations, and antioxidant activity in basil plants without suppressing biomass 

accumulation, and 1 h UV-B treatment was more efficient for anthocyanin accumulation 

than 2 h treatment (Sakalauskaite et al., 2012; Sakalauskaite et al., 2013). Similarly, 

supplemental UV-A radiation to white LEDs enhanced antioxidant content in ‘Genovese’ 

basil microgreens (Brazaityte et al., 2016). However, high levels of UV-B radiation 

generally damages photosynthetic apparatus, depresses plant growth, and reduces plant 

yield (Wargent and Jordan, 2013; Wargent et al., 2009). Therefore, further research is 

needed to find the balance between enhanced nutritional quality and yield reduction. 

1.5 Objectives 

     There are increasing interests to produce culinary herbs and leafy greens in IVFs due 

to increasing population and urbanization, resource competition, and climate change. 
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Among artificial light sources, LEDs have several advantages such as wavelength 

specificity, high energy conversion efficiency, low heat emission, and long lifespan which 

attracted attention as the preferred source of artificial lights for crop production in IVFs. 

To further improve plant productivity and quality in IVFs with greater energy saving and 

sustainability, objectives of the present study were (i) to characterize the minimum light 

requirements (DLI) for the production of culinary herbs and leafy greens in IVFs without 

significant decrease in plant yield or nutritional value; (ii) to investigate the effects of 

different light quality including red, blue, and green lights (white fluorescent light and 

white LED lights) and combined R&B LEDs with different blue light proportions on plant 

photosynthesis, morphology, yield, and phytochemical accumulation; (iii) to determine 

the optimal dose of UV-B radiation to achieve enhanced accumulation of secondary 

metabolites in leaf herbs and vegetables without significant yield reduction; and (iv) to 

evaluate the effects of far-red and green lights on plant growth, yield, and nutritional 

quality.



*Reprinted with permission from Dou, H., G. Niu, M. Gu, and J.G. Masabni. 2018. Responses of 
sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional 
quality. HortScience 53:496-503. Copyright 2018 by the American Society for Horticultural 
Science. 
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CHAPTER II  

RESPONSES OF BASIL PLANTS TO DIFFERENT DAILY LIGHT INTEGRALS IN 

PHOTOSYNTHESIS, MORPHOLOGY, YIELD, AND NUTRITIONAL QUALITY* 

2.1 Synopsis 

     Consumption of basil (Ocimum basilicum) plants has been increasing worldwide in 

recent years due to various health benefits it offers. To achieve a stable supply of basil 

products of high nutritional quality, more growers are turning to controlled environment 

production with artificial lighting (indoor vertical farms, IVFs) due to its high 

environmental controllability and sustainability. However, electricity cost for lighting is a 

major limiting factor to the commercial application of IVFs, and little information is 

available on the minimum light requirement to produce uniform and high-quality basil 

products. To determine the optimal daily light integral (DLI) for basil production in IVFs, 

this study investigated the effects of five DLIs, 9.3, 11.5, 12.9, 16.5, and 17.8 mol·m-2·d-

1, on basil growth and quality. ‘Genovese’ basil plants were treated with five DLIs 

provided by white fluorescent lamps for 21 days after germination, and gas exchange rate, 

growth, yield, and nutritional quality of basil plants were measured to evaluate the effects 

of different DLIs on basil growth and quality. Results indicated that basil plants grown 

under higher DLIs of 12.9, 16.5 or 17.8 mol·m-2·d-1 showed improved photosynthesis, 

compared to those under lower DLIs of 9.3 and 11.5 mol·m-2·d-1. High DLIs resulted in 

lower Chl a+b content per leaf fresh weight, higher Chl a/b ratios, and larger and thicker
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 leaves of basil plants. Shoot fresh weight under DLIs of 12.9, 16.5 and 17.8 mol·m-2·d-1 

was 54.2%, 78.6%, and 77.9%, respectively, higher than that at DLI of 9.3 mol·m-2·d-1. 

Additionally, higher DLIs led to higher soluble sugar content and dry matter ratio 

compared to lower DLIs. Contents of anthocyanin, phenolics, and flavonoids of basil 

leaves were also positively correlated to DLIs, and antioxidant capacity at DLI of 17.8 

mol·m-2·d-1 was 73% higher than that at DLI of 9.3 mol·m-2·d-1. Combining results of 

growth, yield, and nutritional quality of basil plants, we suggest a DLI of 12.9 mol·m-2·d-

1 for basil commercial production in IVFs to minimize the energy cost while maintaining 

a high yield and nutritional quality. 

2.2 Introduction 

     Basil plants are often referred as the “king of herbs” or the “royal herb”, and is widely 

used in cooking and medicinal practices, as well as a fragrant, ornamental plant for gardens 

and containers because of its unique flavor and relatively high content of essential oils and 

phenolic compounds (Chiang et al., 2005; Kruma et al., 2008; Makri and Kintzios, 2008). 

The United States is both the largest producer and importer of basil plants in the world, 

with most of its production in open fields (DAFF, 2012). However, the yield and quality 

such as nutritional contents of basil plants grown outdoors is hard to control and its 

phytochemical concentration varies widely with cultivation location, season, and cultivar 

(Fischer et al., 2011; Hassanpouraghdam et al., 2010; Pushpangadan and George, 2012). 

To achieve a stable and reliable supply of basil plants, more growers are adopting indoor 

controlled environment production, which has proven to be a suitable alternative to open 

field and greenhouse production (Liaros et al., 2016; Saha et al., 2016).  



 

 
24 

 

     Indoor vertical farms (IVF), also known as “plant factory”, is a highly controlled 

environmental system for plant production that utilizes multiple-layer culture shelves with 

artificial lighting (Despommier, 2010; Kozai et al., 2015). In consideration of global 

climate change and increasing urban populations, food security is an increasingly pressing 

matter, especially considering limited resources such as arable land, clean water, and fuel 

energy (Dunwoody, 2014; Liaros et al., 2016). Indoor vertical farming emerged as an 

environmentally sustainable plant production system due to its high resource-use 

efficiency of both land and water (Despommier, 2013; Kozai, 2013; Kozai et al., 2015; 

Touliatos et al., 2016). The utilization efficiency of land, water, CO2, and light energy in 

indoor vertical farming were 100, 40, 2, and 1.7 times of those in greenhouses, respectively 

(Kozai, 2007; Ohyama et al., 2003; Yokoi et al., 2005). In recent years, the number of 

IVFs has increased rapidly in Japan, China, and the other Asian countries (Kozai et al., 

2015). In North America, IVFs have been built for commercial production of leafy greens, 

herbs, and transplants (Kozai et al., 2015). For example, AeroFarms, an enterprise 

specializing in indoor farming, built its ninth farm in Newark, New Jersey, and is the 

world’s largest indoor vertical farm based on annual output (AeroFarms, 2017). As one of 

the most popular herbs in the United States, basil is a great candidate plant for IVFs due 

to its high value and demand (Liaros et al., 2016), and basil plants are adapted to 

moderately high light intensity and long day irradiation (Pushpangadan and George, 

2012). 

     Light is one of the most important environmental factors that affects plant development 

and regulates plant behavior depending on light quantity, quality, direction, and duration 
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(Chang et al., 2008; Dou et al., 2017; Figueiredo et al., 2008; Shafiee-Hajiabad et al., 

2016). Daily light integral (DLI) represents the total photosynthetic photon flux radiated 

by a light source in 24 h, and usually has a linear relationship with plant yield and nutrient 

accumulation (Bochenek and Fallstrom, 2016; Colonna et al., 2016; Dai et al., 2009). In 

IVFs, powering artificial lighting is one of the most electricity consumption factors, which 

makes energy conservation one of the biggest concerns for its commercial adoption 

(Ohyama et al., 2002). DLIs of 12-17 mol·m-2·d-1 are recommended for vegetables and 

herbs in IVFs in terms of energy savings (Albright et al., 2000; Kozai et al., 2015). A few 

studies explored the effects of DLIs from 13.5 to 34.6 mol·m-2·d-1 on basil growth and 

development (Beaman et al., 2009; Chang et al., 2008), but no study has determined the 

optimum DLI between 12 and 17 mol·m-2·d-1 for basil production under an indoor 

controlled environment. Between DLIs of 17.3 and 23.0 mol·m-2·d-1, no differences in 

plant height, canopy diameter, or shoot yield among ‘Genovese’, ‘Italian Large Leaf’, and 

‘Nufar’ basil were observed, which were lower than basil grown under DLIs of 28.8 and 

34.6 mol·m-2·d-1 in a growth chamber, respectively (Beaman et al., 2009). In a glasshouse 

condition, there was no difference in photosynthesis of ‘Genovese’ basil between DLI of 

13.5 mol·m-2·d-1 (light shading in a glasshouse) and 24.9 mol·m-2·d-1 (full sunlight), while 

DLI of 5.3 mol·m-2·d-1 (heavy shading) significantly reduced the photosynthetic rate, leaf 

area, shoot fresh weight (FW), and total essential oils content (Chang et al., 2008). The 

total amount of essential oil of ‘Bageco’ basil increased significantly with supplemental 

light provided by high pressure sodium-vapor lamp compared to plants grown under 

sunlight (Nitz and Schnitzler, 2004). Based on these circumstances, the objective of this 
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study was to determine the minimum DLI for basil production with comparable nutritional 

values in IVFs. 

2.3 Materials and Methods 

2.3.1 Plant materials and growing conditions  

     The experiment was conducted in a walk-in growth room in Texas AgriLife Research 

and Extension Center at El Paso, TX from 7 March to 26 April 2017 and repeated from 

17 April to 29 May. ‘Improved Genovese Compact’ green basil (Johnny’s Selected Seeds, 

Winslow, ME, USA) was used in both experiments. For both experiments, one basil seed 

per cell was sown in 72 square cell trays (length 3.86 cm; height 5.72 cm; volume 59 cm3) 

with Metro-Mix 360 (peat moss 41%, vermiculite 34%, pine bark 25%, Sun Gro® 

Horticulture, Bellevue, WA, USA). All trays were placed under mist in a greenhouse for 

germination. Seedlings were moved out from mist after germination and grown in a 

greenhouse for two weeks. Seedlings were then transplanted to 4” square pots (length 9.52 

cm, height 8.26 cm; volume 574 cm3) with Metro-Mix 360, when roots were visible on 

the outside of the plug root ball. Uniform plants were selected and moved to the walk-in 

growth room for different DLI treatments for 21 days.   

2.3.2 DLIs treatments 

     There were five DLI levels, 9.3, 11.5, 12.9, 16.5, and 17.8 mol·m-2·d-1 (hereafter, DLI 

9.3, DLI 11.5, DLI 12.9, DLI 16.5, and DLI 17.8), created by growing basil plants under 

five different light intensities of 160, 200, 230, 290, or 310 µmol·m-2·s-1, respectively, 
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with the same 16-h photoperiod provided by Cool White Alto Linear Fluorescent Lamps 

(FLs, Philips Lighting, Somerset, NJ, USA). All treatments were randomly arranged in 

the growth room, and 18 plants were randomly planted in each treatment (replications). 

To minimize light distribution being disproportionate within each treatment, all plants 

were systematically rearranged every three days. The light intensity in each treatment was 

measured at 15 cm from FLs at 9 spots using PS-100 spectroradiometer (Apogee 

Instruments, Logan, UT, USA). All plants were sub-irrigated with nutrient solution 

containing 1.85 g·L-1 (277.5 ppm N) 15N-2.2P-12.5K (Peters 15-5-15 Ca-Mg Special, The 

Scotts Company, Marysville, OH, USA) as needed, maintaining electrical conductivity of 

2.0 dS·m-1 and pH of 6.0. Plant canopy temperature was recorded and maintained at 

24.5/21.3ºC day/night. Mechanical mini fans (LS1225A-X, AC Infinity, City of Industry, 

CA, USA) were used to circulate the air to achieve uniform temperatures across 

treatments. Both experiments showed a similar trend, thus only data from the second 

experiment are presented. 

2.3.3 Measurements 

1. Gas exchange and chlorophyll concentration analysis 

     A portable gas exchange analyzer (CIRAS-3, PP Systems International, Amesbury, 

MA, USA) was used to measure the gas exchange rate of basil leaves on D20. A PLC3 

leaf cuvette with LED light unit was used, and light intensity, relative air humidity, and 

CO2 concentration inside the leaf chamber were kept constant at 800 µmol·m-2·s-1, 50%, 

and 390 µmol·mol-1, respectively. The soil plant analysis development (SPAD) index of 
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basil plants was recorded weekly to quantify relative chlorophyll (Chl) content in basil 

leaves using a Chl meter SPAD-502 (Konica-Minolta cooperation, Ltd., Osaka, Japan). 

On D21, approximately 0.2 g of basil leaves were cut into small pieces, then extracted in 

80% methanol (v:v) for three days. The absorbance of extracts was measured at 663 nm 

and 645 nm using a spectrophotometer (Genesys 10S UV/Vis, Thermo Fisher Scientific, 

Madison, WI, USA), and the concentrations of Chl a and Chl b were calculated according 

to Porra et al. (1989). The Chl a+b and Chl a/b were calculated accordingly. 

2. Growth parameters  

     Growth characteristics such as plant height, two perpendicular widths, and the number 

of internodes were recorded on day 1 (D1) of the treatment and then weekly. Six plants 

per treatment were randomly selected for measurement. Height and two perpendicular 

widths of the first branch of basil plants were measured on D21, the end of the experiment. 

Leaf area was measured using a leaf area meter (LI-3100, LI-COR, Lincoln, NE, USA), 

and shoot and root FW were recorded on D21. The shoot and root tissues were dried at 

80ºC in a drying oven (Grieve, Round Lake, IL, USA) for 3 days to determine dry weight 

(DW).  

3. Nutritional quality measurement 

     Six plants per treatment were randomly selected for measurements of soluble sugar 

content, anthocyanin concentration, total phenolic concentration, total flavonoid 

concentration, and antioxidant capacity of basil leaves on D21 to evaluate the effects of 

DLIs on basil nutritional quality. The soluble sugar content of fresh basil leaves was 
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measured using a Brix Refractometer (Extech Instruments, Nashua, NH, USA). Fresh 

leaves were collected in a cooler and immediately stored in a deep freezer (IU1786A, 

Thermo Fisher Scientific, Marietta, OH, USA) at -80ºC until phytochemical analyses.  

      Extraction. Approximately 2 g fresh basil leaves were ground in liquid nitrogen and 

extracted with 15 mL 1% acidified methanol in darkness. After overnight extraction, the 

mixture was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Fisher Scientific, 

Madison, WI, USA) at 13,200 rpm (26,669 ×g) for 15 min, and the supernatant was 

collected for phytochemical analysis.  

     Anthocyanin analysis. The absorbance of extracts was measured at 530 nm using the 

aforementioned spectrophotometer, and the anthocyanin concentration was expressed as 

mg cyanidin-3-glucoside equivalents using a molar extinction coefficient of 29,600 

(Connor et al., 2002). Since the extracts were freshly prepared from leaf tissues maintained 

at -80ºC and did not undergo extensive processing or significant browning, a pH 

differential method for anthocyanin content was considered unnecessary (Connor et al., 

2002). 

     Phenolics analysis. The total phenolic concentration of basil leaves was determined 

using the modified Folin-Ciocalteu reagent method (Xu and Mou, 2016) described as the 

following: 100 µL extraction sample was added to a mixture of 150 µL distilled water and 

750 µL 1/10 dilution Folin-Ciocalteu reagent. After 6 min reaction, 600 µL 7.5% Na2CO3 

was added to the mixture. The mixture was incubated at 45°C in a water bath for 10 min 

before the absorbance was measured at 725 nm using a microplate reader (ELx800, 



 

 
30 

 

BioTek, Winooski, VT, USA). Results were expressed as mg gallic acid equivalent  g-1 

FW of basil leaves.  

     Flavonoids analysis. The total flavonoid concentration of basil leaves was determined 

as the following (Xu and Mou, 2016): 20 µL extraction sample was added to a mixture of 

85 µL distilled water and 5 µL 5% NaNO2. After 6 min, 10 µL of 10% AlCl3·6H2O was 

added. After 5 min, 35 µL of 1M NaOH and 20 µL distilled water was added, then the 

absorbance was measured at 520 nm using the aforementioned microplate reader. The 

results were expressed as mg of (+)-catechin hydrate equivalent per unit FW of basil 

leaves. The content of total anthocyanin, phenolic compound, and flavonoid per basil plant 

were calculated by multiplying the content of anthocyanin, phenolic compound, and 

flavonoid by leaf FW per plant. 

     Antioxidant capacity analysis. The total antioxidant capacity of basil leaves was 

measured using the ferrous ion chelating activity method (Xu and Mou, 2016) described 

as the following: the mixture of 24 µL extracts, 1.20 mL methanol, and 16 µL of 2 mM 

ferrous chloride were vortexed vigorously. A 32 µL of 5 mM ferrozine was then added 

and mixed vigorously, and the absorbance of mixture was measured at 562 nm after 4 min 

reaction using the aforementioned spectrophotometer. Ferrous ion chelating activity was 

calculated as the absorbance difference between control and sample. 

2.3.4 Statistical analysis 

     One-way analysis of variance (ANOVA) was conducted to analyze the effects of DLI 

on all measured parameters. Mean comparison among treatments was conducted using 
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Student’s t method. Correlation test was conducted using Pairwise Correlations method. 

All statistical analyses were performed using JMP (Version 13, SAS Institute Inc., Cary, 

NC, USA). 

2.4 Results 

2.4.1 Photosynthesis and chlorophyll content of basil leaves under different DLIs  

     Relative Chl content of basil leaves, SPAD readings, increased significantly as basil 

growth stage developed and DLI increased (Fig. 1A). SPAD for treatments DLI 9.3, DLI 

11.5, and DLI 12.9 increased from 30 to 37 after 21 days treatment, while those in the DLI 

16.5 and DLI 17.8 treatments increased to approximately 41, which was 11% higher (Fig. 

1A). In contrast, no difference in Chl a concentration per leaf FW was observed among 

the five different DLIs on D21, while Chl b content was higher for treatments DLI 9.3 and 

DLI 11.5, and lower for treatments DLI 12.9, DLI 16.5, and DLI 17.8 (Fig. 1B). Higher 

levels of Chl a/b ratio (Fig. 1C) and lower levels of Chl a+b content (Fig. 1B) were 

observed for treatments DLI 12.9, DLI 16.5, and DLI 17.8. Chl a+b content per leaf FW 

for treatments DLI 9.3 and DLI 11.5 were about 17% higher than basil plants grown under 

treatments DLI 12.9, DLI 16.5, and DLI 17.8 (Fig. 1B). 
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Figure 1. Relative Chl content of basil leaves from day 1 to day 21 (A), Chl a, Chl b, 
and Chl a+b content (B), and Chl a/b ratio (C) of ‘Improved Genovese Compact’ 
basil plants grown for 21 days at different daily light integrals (DLI). Means followed 
by the same lowercase letters are not significantly different, according to Student’s t 
mean comparison (P < 0.05). Bars represent standard errors. Reprinted with 
permission from Dou et al. (2018). 
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Leaf net photosynthetic rate per leaf area (Pn), transpiration (E), and stomatal 

conductance (Gs) of basil leaves increased significantly as DLI increased, and were the 

highest for treatments DLI 12.9, DLI 16.5, and DLI 17.8 (11.5, 10.6, and 10.4 µmol·m-

2·s-1), followed by treatments DLI 9.3 and DLI 11.5 (6.1 and 7.8 µmol·m-2·s-1), 

respectively (Table 2). Net photosynthetic rate for treatments DLI 12.9 was 86% and 47% 

higher than treatments DLI 9.3 and DLI 11.5, respectively, and no difference was observed 

among treatments DLI 12.9, DLI 16.5, or DLI 17.8 (Table 2). Transpiration for treatment 

DLI 12.9 was 78% and 57% higher than treatments DLI 9.3 and DLI 11.5, respectively, 

while Gs for treatments DLI 12.9 was 126% and 83% higher (Table 2). 

Table 2. Net photosynthetic rate per leaf area (Pn), transpiration (E), stomatal CO2 
concentration (Ci), and stomatal conductance (Gs) of ‘Improved Genovese Compact’ 
basil leaves grown for 20 days at different daily light integrals (DLIs). A portable gas 
exchange analyzer CIRAS-3 was used to measure the gas exchange rate of basil 
leaves at harvest. Adapted with permission from Dou et al. (2018). 

Treatment Pn 
(µmol·m-2·s-1) 

E 
(mmol·m-2·s-1) 

Ci 
(µmol·mol-1) 

Gs 
(mmol·m-2·s-1) 

DLI 9.3 6.1    cz 1.26  c     266 a     86    b 
DLI 11.5 7.8    bc 1.43  bc     255 a     106  b 
DLI 12.9 11.5  a 2.24  a     269 a     194  a 
DLI 16.5 10.6  a 2.01  a     273 a     172  a 
DLI 17.8 10.4  ab 1.85  ab     252 a     142  ab 

z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05).  

2.4.2 Morphological differences of basil plants influenced by DLIs  

     Basil plants grown under higher DLIs had a larger canopy due to increased height and 

width (Table 3) but had similar number of internodes (data not presented). Plant width 
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responded faster to DLIs compared to plant height, with visible difference after one week 

DLI treatment, whereas it took two weeks for plant height to show difference among 

treatments. On D21, plant height was the greatest for treatments DLI 12.9, DLI 16.5, and 

DLI 17.8 (22.1, 23.3, and 23.0 cm, respectively), followed by DLI 11.5 (20.2 cm), and 

was the lowest for DLI 9.3 (17.4 cm). Although plant width showed visual differences 

earlier than plant height, the differences among five DLI treatments were small (Table 3). 

Table 3. Plant height and width of ‘Improved Genovese Compact’ basil plants on 1, 
7, 14, and 21 days after transplanting at different daily light integrals (DLIs). 
Adapted with permission from Dou et al. (2018). 

Treatment 
Day 1 Day 7 Day 14        Day 21 

Height 
(cm) 

Width 
(cm) 

Height 
(cm) 

Width 
(cm) 

Height 
(cm) 

Width 
(cm) 

Height 
(cm) 

Width 
(cm) 

DLI 9.3 3.9 az 5.1 a 5.3 a 7.7  b 10.1 b 10.2  b 17.4 c 12.5  b 
DLI 11.5 3.8 a 5.4 a 5.5 a 7.8  b 12.1 a 10.5  ab 20.2 b 13.0  ab 
DLI 12.9 4.0 a 5.2 a 6.1 a 8.3  ab 12.7 a 10.9  a 22.1 a 12.8  ab 
DLI 16.5 3.7 a 4.9 a 6.0 a 8.1  ab 12.9 a 11.0  a 23.3 a 13.0  ab 
DLI 17.8 3.8 a 5.1 a 6.3 a 8.6  a 13.0 a 10.8  a 23.0 a 13.4  a 
z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05). 

     Basil plants grown under higher DLIs had larger and thicker leaves, as well as greater 

branch height and width (Table 4). With similar number of leaves, total leaf area for 

treatment DLI 17.8 was 51% and 35% higher than treatments DLI 9.3 and DLI 11.5, 

respectively, while specific leaf area (leaf area per unit leaf DW) was 30% and 21% lower. 

Lower specific leaf area under higher DLIs indicated that the thickness of basil leaves 

increased as DLIs increased. In addition to plant height and width, branching of basil 

plants was also positively correlated to DLIs. There were two pairs of fully expanded 
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leaves at the 1st branch of basil plants grown under treatments DLI 12.9, DLI 16.5, and 

DLI 17.8 while only one pair of fully expanded leaves for treatment DLI 9.3 (data not 

presented), which contributed to increased branch height and width under higher DLIs 

(Table 4). 

Table 4. Leaf area, specific leaf area, and 1st branch height and width of ‘Improved 
Genovese Compact’ basil plants grown for 21 days at different daily light integrals 
(DLIs). Adapted with permission from Dou et al. (2018). 

Treatment Leaf area 
(cm2) 

Specific leaf areaz 
(cm2·g-1, DW) 

Height of 1st branch 
(cm) 

Width of 1st branch 
(cm) 

DLI 9.3       406 by 518  a      2.9  c      3.8 b 
DLI 11.5       454 b 480  ab      4.5  b      5.0 a 
DLI 12.9       560 a 462  b      5.4  ab      5.7 a 
DLI 16.5       609 a 389  c      6.2  a      5.7 a 
DLI 17.8       614 a 398  c      6.3  a      5.9 a 
z Specific leaf area = leaf area per unit leaf dry weight.  
y Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05). 

2.4.3 Plant growth and yield of basil plants under different DLIs 

     The highest shoot FW was observed in treatments DLI 12.9, DLI 16.5, and DLI 17.8 

(20.2, 23.4, and 23.3 g, respectively), followed by DLI 11.5 (15.7 g), while DLI 9.3 (13.1 

g) had the lowest value (Fig. 2A). Fresh leaf and stem weight had the similar trend as fresh 

shoot yield, while root FW was the highest in treatments DLI 16.5 and DLI 17.8, followed 

by DLI 12.9, then DLI 11.5, and was the lowest in DLI 9.3. Leaf DW was more sensitive 

to DLIs compared to leaf FW, and significant differences were observed among treatments 

DLI 12.9, DLI 16.5, and DLI 17.8 (1.22, 1.58 and 1.55g, respectively) (Fig. 2B). Shoot 

DW had a similar pattern with leaf DW, where shoot DW in DLI 17.8 was over twofold 
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that in DLI 9.3. Shoot FW and DW of basil plants were both positively correlated to DLIs 

at the time of harvest on D21 (Fig. 3A). Shoot dry matter content of basil plants was also 

positively influenced by DLIs, ranging from 6.7% to 9.2% (Fig. 3B).  

 

Figure 2. Leaf, stem, shoot, and root fresh weight (A), and dry weight (B) of 
‘Improved Genovese Compact’ basil plants grown for 21 days at different daily light 
integrals (DLIs). Means followed by the same lowercase letters are not significantly 
different, according to Student’s t mean comparison (P < 0.05). Bars represent 
standard errors. Adapted with permission from Dou et al. (2018). 
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Figure 3. Correlations between daily light integrals (DLIs) and shoot fresh weight 
(FW) and dry weight (DW) (A), and correlations between DLIs and dry matter 
content (B) in ‘Improved Genovese Compact’ basil plants grown for 21 days at 
different DLIs. Dash lines show regression between measured parameters and DLIs 
according to Pairwise Correlation method. Adapted with permission from Dou et al. 
(2018). 

2.4.4 Nutritional quality of basil leaves under different DLIs  
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leaves led to higher antioxidant capacities with increasing DLIs, which was 73% higher 

in treatment DLI 17.8 than DLI 9.3 (Table 5). Owing to higher leaf FW under higher DLIs, 

total anthocyanin content, phenolic content, and flavonoid content per plant were 

positively correlated to DLIs (Fig. 4). 

Table 5. Brix, anthocyanin concentration, phenolics concentration, flavonoids 
concentration, and antioxidant capacity of ‘Improved Genovese Compact’ basil 
leaves grown for 21 days at different daily light integrals (DLIs). Adapted with 
permission from Dou et al. (2018). 

Treatment  Brix 
  (%) 

Anthocyanin 
concentration 
(mg·100g-1) 

Phenolics 
concentration 

(mg·g-1) 

Flavonoids 
concentration 

(mg·g-1) 

Antioxidant 
capacity 

(%) 
DLI 9.3 2.3  cz       2.60 a 1.02 b 0.34  c 1.96  b 
DLI 11.5 2.7  bc       2.76 a 1.07 b 0.47  b 3.46  ab 
DLI 12.9 2.9  b       2.82 a 0.99 b 0.40  bc 3.80  ab 
DLI 16.5 2.5  bc       2.82 a 1.61 a 0.90  a 5.26  a 
DLI 17.8 3.5  a       2.73 a 1.38 a 0.63  a 3.37  ab 
z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05). 
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Figure 4. Correlations between daily light integrals (DLIs) and total anthocyanin 
content per plant (A), and correlations between DLIs and total phenolic content 
(gallic acid equivalent) and total flavonoid content ((+)-catechin hydrate equivalent) 
per plant (B) in ‘Improved Genovese Compact’ basil plants grown for 21 days at 
different DLIs. Dash lines show regression between measured parameters and DLIs 
according to Pairwise Correlation method. Adapted with permission from Dou et al. 
(2018). 
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2.5 Discussion 

2.5.1 Photosynthetic capacity, Chl content, leaf morphology, growth, and yield of basil 

plants 

     As a significant factor affecting plant photosynthesis, DLI or light intensity alters leaf 

Chl content to maximize photosynthetic efficiency and productivity (Retkute et al., 2015; 

Wittmann et al., 2001). In this study, Pn of basil leaves increased from 6.1 µmol·m-2·s-1 in 

treatment DLI 9.3 (relatively low light intensity of 160 µmol·m-2·s-1) to 10.4 µmol·m-2·s-

1 in treatment DLI 17.8 (relatively high light intensity of 310 µmol·m-2·s-1) (Table 2), 

indicating that the light saturation point of basil is higher than 310 µmol·m-2·s-1 under this 

environment. Similarly, Polyakova et al. (2015) reported that Pn of ‘Ararat’ basil leaves 

grown for 30 days under 240-260 µmol·m-2·s-1 provided by induction lamps was over 

twice higher than plants under 80-85 µmol·m-2·s-1 provided by white LEDs. One reason 

for the increased Pn of high-light leaves is their generally higher Chl content per leaf area 

(Lichtenthaler et al., 2007). Net photosynthetic rate represents the sum of individual cell 

CO2 assimilation per leaf area, and thinner leaves under lower DLIs contain significantly 

less cells per leaf area as compared to thicker leaves under higher DLIs (Table 4), 

consequently resulting in lower Chl content per leaf area (SPAD) and Pn (Fig. 1A and 

Table 2). SPAD reading of plants was mainly associated with a greater amount of nitrogen 

per leaf area, as well as higher content of Rubisco enzyme, and subsequently resulted in 

increased photosynthesis (Lichtenthaler, 1985). Increased SPAD reading also led to darker 

green leaves of basil plants under higher DLIs, which plays an important role for 
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consumers making purchasing decisions (Rouphael et al., 2012). Basil plants under higher 

DLIs exhibited higher Pn not only on leaf area basis but also on Chl basis and leaf DW 

basis (Fig. 5), which could be explained by the possession of chloroplasts adapted to 

higher light intensity under higher DLIs. High-light adapted chloroplasts had higher 

photosynthetic quantum conversion rate with adapted ultrastructure, biochemical 

organization and a special arrangement of chlorophylls and carotenoids in the thylakoids 

under higher DLIs, resulting in increased Pn on Chl basis and leaf DW basis (Lichtenthaler 

et al., 2007).  
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Figure 5. Net photosynthetic rate per Chl content (A) and per leaf DW (B) of 
‘Improved Genovese Compact’ basil plants grown for 21 days at different daily light 
integrals (DLIs). Means followed by the same lowercase letters are not significantly 
different, according to Student’s t mean comparison (P < 0.05). Bars represent 
standard errors. Adapted with permission from Dou et al. (2018). 
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leaves under lower DLIs resulted from increased Chl b levels with similar Chl a content, 

and consequently lower Chl a/b ratios (Fig. 1C). The difference in Chl a/b ratios is also a 

useful indicator of light conditions, with lower Chl a/b ratios in shade leaves and higher 

Chl a/b ratios in sun leaves (Sarijeva et al., 2007). Under lower DLIs, plants maximize 

light-harvesting capacity by increasing light harvesting chlorophyll-protein complex in 

photosystem II, which contains mainly of Chl b, and consequently a higher Chl b content 

and lower Chl a/b ratio (Kitajima and Hogan, 2003; Sarijeva et al., 2007). The increased 

Chl a+b content per leaf FW under lower DLIs demonstrated the plants’ ability to 

maximize the light-harvesting capacity under lower light conditions (Dai et al., 2009). 

Accordingly, Chl a+b was correlated to Chl a/b ratio negatively and Pn per leaf area 

positively (Fig. 6).  

 

Figure 6. Correlation between Chl a+b with Chl a/b ratio and correlation between 
net photosynthetic rate per leaf area with Chl a/b ratio of ‘Improved Genovese 
Compact’ basil plants grown for 21 days at different daily light integrals (DLIs). 
Dash lines show regression between measured parameters and Chl a/b ratio 
according to Pairwise Correlation method. Adapted with permission from Dou et al. 
(2018). 
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     Plant photosynthetic rate per leaf area depends not only on photosynthetic biochemistry 

but also on the mesophyll structure of leaves (Retkute et al., 2015). Since resistance to 

CO2 diffusion from the sub-stomatal cavity to the stroma is substantial, mesophyll 

structure affects Pn by affecting the diffusion of CO2 (Terashima et al., 2001) and the 

penetration of light in leaves (Vogelmann and Martin, 1993). Increased Gs under higher 

DLIs indicated that basil leaves were able to open their stomata much wider than plants 

grown under lower DLIs, which increased E accordingly (Table 2). This certainly appears 

to be an important factor for increased Pn under higher DLIs (Table 2, Fig. 5).  

     Basil leaves developed in lower DLIs are thinner and smaller than those growing in 

higher DLIs (Table 4), which reduced the respiratory cost of basil leaves to help 

compensate for the greatly decreased photosynthetic capacity (Dai et al., 2009). 

Meanwhile, mesophyll cells of basil leaves under higher DLIs are more compact 

(associated with higher dry matter content) than plants grown under lower DLIs (Fig. 3B). 

Under lower DLIs, decreased Pn produced insufficient ATPs with low carbon fixation and 

carbohydrate biosynthesis, resulting in smaller plant canopy (Table 3) and decreased shoot 

and root FW/DW (Fig. 2). Accordingly, the shortage of photo-assimilate supplies and 

inadequate sucrose synthesis led to a reduction of soluble sugar content (Table 5) 

compared to plants grown under higher DLIs. 

2.5.2 Enhanced nutritional quality of basil plants under higher DLIs  

     Plant leaves adapt to light conditions not only anatomically and morphologically, but 

also biochemically. In addition to stimulating photosynthetic pigments, high DLIs also 
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stimulate the biosynthesis and accumulation of non-photosynthetic pigments and 

antioxidants, e.g., anthocyanins, phenolics, and flavonoids, (Albert et al., 2009; Bian et 

al., 2015; Cominelli et al., 2008; Dou et al., 2017; Wu et al., 2007), acting as screens to 

reduce excess light received by photosynthetic apparatuses (Logan et al., 2015). All these 

pigments and antioxidants have generated significant interest among consumers and 

researchers due to their health-promoting properties and considerable antioxidant potential 

in preventing cardiovascular and chronic diseases (Colonna et al., 2016; Khanam et al., 

2012).  

     Synthesis of phenolic compounds including phenolic acids, flavonoids, and 

anthocyanins is enhanced under strong UV and visible light conditions (Takahashi and 

Badger, 2011; Winkel-Shirley, 2002). Across a range of plant species, phenolic 

compounds act as light attenuators, light-screening, and photoprotective roles, which are 

supported by a large body of experimental evidences (Agati and Tattini, 2010; Akula and 

Ravishankar, 2011; Gould et al., 2010; Hatier et al., 2013; Solovchenko, 2010). For 

example, purple basil ‘Red Rubin’ had lower metabolic cost of photoprotective 

mechanisms and higher biomass increase than green basil ‘Tigullio’ when being moved 

from 30% to 100% sunlight, which means purple basil with more anthocyanins was more 

tolerant of higher DLIs than green basil plants (Tattini et al., 2014). Corroborating existing 

empirical studies and theoretical predictions, total anthocyanin content of basil leaves was 

positively influenced by DLIs (Fig. 4A). It was also reported that flavonoids play a more 

important role than xanthophylls in protecting arabidopsis (Arabidopsis thaliana) leaves 

from long-term visible light-induced oxidative damage (Havaux and Kloppstech, 2001). 
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Total phenolic and flavonoid concentration of basil leaves were both enhanced under 

higher DLIs (Table 5), and total phenolic and flavonoid content of basil plants were 

positively correlated with DLIs (Fig. 4B). Similarly, petunia [Petunia axillaris x (Petunia 

axillaris x Petunia hybrida cv. 'Rose of Heaven')] plants displayed intense anthocyanin 

content throughout the leaves and stems when grown under 750 µmol·m-2·s-1 compared to 

50-350 µmol·m-2·s-1, as well as the activation of the early and late flavonoid biosynthetic 

genes required for flavonoids and anthocyanin production (Albert et al., 2009).  

     Antioxidant capacity is an important parameter in assessing the quality of fresh herbs, 

since antioxidant molecules play a fundamental role in inhibiting the formation of free 

radicals in both plants and humans (Khanam et al., 2012). The enrichment of potent 

antioxidants, namely, anthocyanins, phenolics, and flavonoids, resulted in higher 

antioxidant capacity of basil leaves grown under higher DLIs (Table 5).  

2.5.3 Future research perspectives 

     This experiment was conducted at five DLIs created by growing basil plants under five 

different light intensities with the same 16-h photoperiod. As one factor of the lighting 

conditions, photoperiod also influences leaf expansion, plant yield, and nutritional content 

accumulation of plants (Beaman et al., 2009). Few studies on responses of basil plants to 

different photoperiods in indoor controlled environment were published since it is 

believed that basil is a long-day plant, and a 16-h photoperiod was used in most studies on 

basil cultivation in IVFs (Beaman et al., 2009; Piovene et al., 2015). However, what are 

the responses of basil plants to DLIs created by different photoperiods with the same light 
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intensity? Furthermore, what are the responses of basil plants to different combinations of 

light intensity and photoperiod at the same optimal DLI? These might be the future 

research perspectives.   

2.6 Conclusion 

     Under indoor controlled environment, basil plants grown under higher DLIs had 

increased photosynthetic capacity per unit leaf area, Chl content, leaf DW, and higher Chl 

a/b ratios than plants grown under lower DLIs. Higher photosynthetic capacity resulted in 

larger canopy and branching, larger and thicker leaves, greater leaf and shoot yield, as 

well as higher dry matter content under DLIs of 12.9, 16.5, and 17.8 mol·m-2·d-1, compared 

to 9.3 and 11.5 mol·m-2·d-1. Meanwhile, nutritional contents of basil leaves (soluble sugar, 

anthocyanin, phenolic compounds, and flavonoids) were positively correlated with DLI, 

and antioxidant capacity of basil leaves at DLI of 17.8 mol·m-2·d-1 was 73% higher than 

9.3 mol·m-2·d-1. Combining results in growth, yield, and nutritional quality of basil plants, 

we suggest a DLI of 12.9 mol·m-2·d-1 for basil commercial production in indoor vertical 

farming to minimize the energy cost while maintain a high yield and nutritional quality. 



 

 
48 

 

CHAPTER III  

PHOTOSYNTHESIS, GROWTH, AND SECONDARY METABOLITES 

ACCUMULATION IN BASIL, KALE, AND MUSTARD PLANTS UNDER 

DIFFERENT PROPORTIONS OF RED, BLUE, AND GREEN LIGHT 

3.1 Synopsis 

     Effects of light quality on plant growth and nutritional quality were evaluated on 

culinary herbs and leafy greens, including basil (Ocimum basilicum) ‘Improved Genovese 

Compact’ (green) and ‘Red Rubin’ (purple), green kale ‘Siberian’ (Brassica napus 

pabularia), red kale ‘Scarlet’ (Brassica oleracea), green mustard ‘Amara’ (Brassica 

carinata), and red mustard ‘Red Giant’ (Brassica juncea). There were five light quality 

treatments including three combined red and blue (R&B) light emitting diode (LED) lights 

with different blue light proportions, R88B12 (the percentage of red and blue light was 88% 

and 12%, respectively), R76B24, and R51B49, and two red and blue and green (R&B&G) 

light (additional green light to combined R&B light), R43B13G44 and R34B25G41 applied to 

plants with the same photosynthetic photon flux density (PPFD) at 224 µmol·m-2·s-1 with 

a 16-h photoperiod. Plants were sub-irrigated as needed using a nutrient solution with 

electrical conductivity of 2.0 dS·m-1 and pH of 6.0. Results indicated that increase of blue 

light proportions from 12% to 49% increased net photosynthetic rate and chlorophyll 

content in purple basil plants by 30% and 10%, respectively, while higher red light 

proportions increased plant height, leaf area, and subsequently plant yield in all plant 

species except red mustard plants. Additional green light decreased net photosynthetic rate 
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and chlorophyll content in red kale and purple basil plants, respectively, compared to 

combined R&B light treatments with similar blue light proportions. Meanwhile, additional 

green light increased plant height in green basil and green mustard plants at low blue light 

proportion of 12%, while decreased plant height in purple basil, green kale, red kale, and 

green mustard plants at high blue light proportion of 24%. Increases of blue light 

proportions induced synthesis of secondary metabolites. Effects of additional green light 

on plant secondary metabolites accumulation is species specific, which decreased 

concentrations of phenolics and flavonoids in basil plants but increased phenolics 

concentration in green kale plants. 

3.2 Introduction 

     In recent years, food production under controlled environment, especially crop 

production in indoor vertical farms (IVFs), has been drawing a lot of attention due to 

increasing world population and urbanization, global climate change, competition of 

resources (e.g. land, water, and energy), and increasing demand of local and fresh food 

with high quality (Despommier, 2013; Kozai et al., 2015; Tornaghi, 2017). Light is a key 

environmental factor affecting plant growth, development, and secondary metabolism, 

and artificial lighting is one of the largest operation-cost factors in IVFs (Dou et al., 2017; 

Dou et al., 2018; Hosseini et al., 2018). Therefore, choosing the optimal light would 

significantly reduce the production cost in IVFs while improve plant biomass productivity 

and enhance bioactive secondary metabolites accumulation (Kozai et al., 2015). Recently, 

LED light has become a widely used light source in IVFs because of its high energy 
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utilization efficiency, spectra specificity, low surface temperature, long durability, and 

higher operating capability compared to the conventional fluorescent lamps (FLs), 

incandescent lamps, or high intensity discharge lamps (Mitchell et al., 2015; Stutte, 2009). 

With the development of LED technology, a number of studies have been conducted to 

characterize the effects of light quality on plant growth and nutritional quality to optimize 

the selection of light sources in IVFs (Darko et al., 2014; Ouzounis et al., 2015). 

     Red and blue lights are the most efficient light wavelengths in plant biomass 

accumulation affecting plant photosynthesis and photomorphogenesis. Supplemental blue 

light to dominant red light was reported to achieve greater plant yield, while plants grown 

under monochromatic red light had physiological disorders (Bondada and Syvertsen, 

2003; Li, 2010; Wollaeger and Runkle, 2014). For instance, monochromatic red light 

decreased Fv/Fm, stomata density, photosynthetic capacity, and impaired growth in 

cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) plants, which was 

defined as the “red light syndrome”, and none of these effects occurred in leaves that were 

grown under combined R&B light (Hogewoning et al., 2010; Savvides et al., 2011; 

Trouwborst et al., 2016). Furthermore, spinach (Spinacia oleracea) and non-heading 

Chinese cabbage (Brassica campestris, ‘Te Ai Qing’) had greater leaf area, and shoot fresh 

weight (FW) and dry weight (DW) under combined R&B LED light compared to 

monochromatic red or blue LED light (Fan et al., 2013; Ohashi-Kaneko et al., 2007). 

     Although it is clear that combined R&B LED light is more suitable for plant growth 

and biomass combination, the optimal red or blue light proportions in combined R&B 

light is still unknown, and studies indicated it is species specific. For instance, when blue 
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light proportion was increased from 11% to 28% at a PPFD of 500 µmol·m-2·s-1 with a 16-

h photoperiod, the dry mass in tomato, cucumber, radish (Raphanus sativus), and pepper 

(Capsicum annum) plants decreased, while the blue light proportions did not affect dry 

mass in soybeans (Glycine max), lettuce (Lactuca sativa) or wheat (Triticum aestivum) 

(Snowden et al., 2016). He et al. (2015) reported that blue light proportion at 16% 

treatment achieved the highest photosynthetic capacity and biomass productivity for 

Chinese broccoli (Brassica alboglabra) plants grown under combined R&B LED light 

(blue light proportions ranging from 0% to 24%). However, the shoot FW of basil plants 

was the highest under combined R&B light with blue light proportion at 59%, and 

decreased by 16%, 39%, and 68% compared to light treatments with blue light proportions 

of 48%, 40%, and 15%, respectively (Piovene et al., 2015). Hypotheses on how light 

quality affecting plant growth were attributed to the effects of red and blue lights on plant 

photosynthesis and photomorphogenesis. Red light increases total chlorophyll content in 

plant leaves to promote the gas exchange rate while blue light improves activities of 

ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase (Rubisco) 

and promotes stomatal opening to improve plant photosynthesis (Bondada and Syvertsen, 

2003; Li, 2010). Moreover, red light stimulates plant extension growth via phytochromes 

while blue light inhibits stem elongation and leaf expansion via cryptochromes and 

phototropins, which regulate plant morphogenesis antagonistically (Anpo et al., 2018; 

Bugbee, 2016).  

     Effects of red and blue lights on secondary plant metabolites accumulation depend on 

plant species and specific phytochemical compounds. For example, concentration of 



 

 
52 

 

rosmarinic acid, the major phenolic acid in basil plants, was twice in plants grown under 

red and white light compared to those grown under monochromatic blue light, while 

content of chicoric acid, the second major phenolic acid in basil plants, was higher under 

blue light than red light (Amaki et al., 2011; Shiga et al., 2009; Shoji et al., 2011). 

Consistently, expression of polyphenol oxidase (PPO), a key metabolism enzyme in the 

synthesis of phenolics, increased under supplemental red and blue light in lettuce and 

salvia (Salvia miltiorrhiza) plants (Li et al., 2010). Similarly, l-menthol content in 

Japanese mint (Mentha arvensis) plants enhanced under red light, while polyphenol, total 

antioxidants, anthocyanin and carotenoid concentration in leaf lettuce, and β-carotene and 

lutein concentrations in spinach plants increased by blue light (Johkan et al., 2010; Li and 

Kubota, 2009; Nishioka et al., 2008).  

     Green light is less studied compared to red and blue lights due to its low absorptivity 

in the absorption spectra of purified chlorophylls. However, in a living leaf or whole plant 

canopy, the relative quantum efficiency for broadband green light is 0.87, which is slightly 

lower than that for red light (0.91) and higher than that for blue light (0.73) (Sager et al., 

1988). In addition, while red and blue lights are strongly absorbed by the upper level plant 

canopy, green light penetrates into deeper plant canopy, which could potentially increase 

plant yield (Terashima et al., 2009; Wang and Folta, 2013). In fact, at the same PPFD of 

150 µmol·m-2·s-1 with a 18-h photoperiod, leaf area and shoot FW and DW in 

‘Waldmann’s Green’ lettuce grown under R61B15G24 (the proportion of red, blue, and 

green light at 61%, 15%, and 24%, respectively) treatment increased by 31%, 45%, and 

47% compared to plants grown under R84B16 treatment, respectively, indicating additional 
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green light at a similar blue light proportion could increase plant biomass accumulation 

(Kim et al., 2004). Moreover, additional green light to combined R&B light would make 

plant appear normal green color instead of purplish, which makes visual assessment of 

physiological disorders easy, also offer psychological benefit to the farm workers. 

However, some researchers reported that green light reverses blue or red light induced 

responses, which played a negative role or have no effects on plant photosynthesis or 

growth (Folta and Maruhnich, 2007; Talbott et al., 2006). For instance, net photosynthetic 

rate (Pn) and chlorophyll concentration of ‘Green Skirt’ lettuce decreased by red, blue and 

green (R&B&G) light compared to combined R&B LED lights with the same blue light 

proportion at a PPFD of 150 µmol·m-2·s-1 with a 16-h photoperiod, while  the combined 

R&B&G light showed no effects on the leaf length or width (Kang et al., 2016). As green 

light proportion increased, anthocyanin concentrations in arabidopsis (Arabidopsis 

thaliana) and ‘Red Sails’ lettuce plants decreased significantly (Zhang and Folta, 2012; 

Zhang et al., 2011). It is also reported that stomatal opening stimulated by blue light was 

reversed by green light in a range of plant species, and additional green light to R&B LEDs 

induced the shade growth symptoms in arabidopsis plants (Frechilla et al., 2000; Talbott 

et al., 2002; Zhang and Folta, 2012).  

     Fore-research indicated that a certain amount of blue light is required for normal plant 

growth and secondary metabolites accumulation, but responses of individual species to 

different blue light proportions in combined R&B light is still an ongoing discussion, as 

well as the effects of green light on plant photosynthesis and photomorphogenesis. Basil 
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and Brassica plants are highly diverse in species and cultivars and are a valuable part of 

human diet owing to their relatively high levels of bioactive secondary metabolites 

(Keservani et al., 2010; Makri and Kintzios, 2008; Qian et al., 2016). Therefore, the 

objective of this study was to investigate the effects of different blue light proportions and 

additional green light to combined R&B lights on photosynthesis, morphology, yield, and 

secondary metabolism in culinary herbs (green and purple leaf basil plants) and leafy 

greens (green and red leaf kale, and mustard plants), overall leading to the definition of 

optimal light composition for increasing yield and nutritional quality in culinary herbs and 

leafy greens cultivated in IVFs. 

3.3 Materials and Methods 

3.3.1 Plant materials and growing conditions 

     Six plant species including basil (Ocimum basilicum) ‘Improved Genovese Compact’ 

(green) and ‘Red Rubin’ (purple), green mustard ‘Amara’ (Brassica carinata), red 

mustard ‘Red Giant’ (Brassica juncea), green kale ‘Siberian’ (Brassica napus pabularia), 

and red kale ‘Scarlet’ (Brassica oleracea) (Johnny’s Selected Seeds, Winslow, ME, USA) 

were studied in a walk-in growth room in Texas A&M AgriLife Research and Extension 

Center at El Paso, TX. For all experiments, one seed per cell was sown in 72 square cell 

trays (cell size: 3.86 cm L × 5.72 cm H, with a volume of 59 cm3) with Metro-Mix 360 

(peat moss 41%, vermiculite 34%, pine bark 25%, Sun Gro® Horticulture, Bellevue, WA, 

USA). All trays were placed under mist in a greenhouse for germination. Seedlings were 

moved from mist after the emergence of cotyledon and grown in a greenhouse until 
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transplanting. With one pair of true leaves expanded, plant seedlings were transplanted 

into square pots (pot size: 9.52 cm L × 8.26 cm H, with a volume of 574 cm3) with Metro-

Mix 360, and uniform plants were selected and moved to the walk-in growth room for 

different light quality treatments described as below.  

3.3.2 Light quality treatments 

     There were five light quality treatments in total, including three combined R&B LED 

lights with different blue light proportions and two R&B&G light (additional green light 

to combined R&B light). Three combined R&B LED lights were R88B12 (the percentage 

of red and blue light was 88% and 12%, respectively, Model GEHL48HPPR, Hort 

Americas, Bedford, TX, USA), R76B24 (Model GEHL48HPPB), and R51B49 (Model 

GEHL48HPPV) treatments. Two R&B&G light treatments were R43B13G44 (white LED 

light, in which the red, blue, and green light percentage is 43%, 13%, and 44%, 

respectively, Model GEHL48HWTB), and R34B25G41 (white fluorescent light, Philips 

Lighting, Somerset, NJ, USA) treatments. All treatments were maintained at the same 

PPFD level at 224 µmol·m-2·s-1 with a 16-h photoperiod. The light spectrum distribution 

in all experiments was measured at 15 cm underneath the light at 9 spots using PS-100 

spectroradiometer (Apogee Instruments, Logan, UT, USA) before placing the plants (Fig. 

7). To minimize light distribution being disproportionate within each treatment, all plants 

were systematically rearranged every three days.  
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Figure 7. Light spectrum distribution of different light quality treatments including 
R88B12 (combined red (R) and blue (B) LED light, in which the red and blue light 
percentage is 88% and 12%, respectively), R76B24, R51B49, R43B13G44, and R34B25G41 

treatments. Photosynthetic photon flux density and light spectrum distribution was 
measured using a PS-100 spectroradiometer. 

     After transplanting, all plants were sub-irrigated as needed with nutrient solution 

containing 1.85 g·L-1 (277.5 ppm N) 15N-2.2P-12.5K (Peters 15-5-15 Ca-Mg Special, The 

Scotts Company, Marysville, OH, USA), maintaining electrical conductivity of 2.0 dS·m-

1 and pH of 6.0. Mechanical mini fans (LS1225A-X, AC Infinity, City of Industry, CA, 

USA) were used to circulate the air to achieve uniform temperatures across treatments. 

Plant canopy temperatures in each experiment were recorded by a data logger (CR1000, 

Campbell Scientific, Logan, UT, USA) and maintained at 23.5/21.3ºC, 23.4/20.2ºC, and 

22.5/20.0ºC day/night for basil, mustard, and kale plants, respectively. 

     All plants were harvested when plant height reached about 25 cm. The green and purple 

basil plants were harvested at 21 and 28 days after treatment (DAT), respectively, which 

meant at 42 and 49 days after sowing (DAS), respectively. The green and red kale plants 
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were harvested at 18 and 25 DAT (32 and 39 DAS), respectively. The green and red 

mustard were both harvested at 21 DAT (35 DAS). In each experiment, there were 18, 10, 

and 10 basil, kale, and mustard plants per treatment per cultivar, respectively. 

3.3.3 Measurements  

1. Gas-exchange and chlorophyll content 

     A portable gas-exchange analyzer (CIRAS-3, Portable Photosynthesis Systems 

International, Amesbury, MA, USA) was used to measure Pn of plant leaves at harvest. A 

PLC3 leaf cuvette with LED light unit was used, and PPFD, relative air humidity, and CO2 

concentration inside the leaf chamber were kept constant at 800 µmol·m-2·s-1, 50%, and 

390 µmol·mol-1, respectively. Five plants per treatment per cultivar were randomly 

selected for measurement.  

     The soil plant analysis development (SPAD) index of plant leaves was recorded at 

harvest to quantify the relative chlorophyll content in plant leaves using a chlorophyll 

meter SPAD-502 (Konica-Minolta cooperation, Ltd., Osaka, Japan).  

2. Growth parameters 

     Growth characteristics including plant height and leaf area were recorded at the end of 

the experiment. Crop yield including shoot FW and DW were also measured at the end of 

the experiment. Five plants per treatment were randomly selected for measurement. Leaf 

area was measured using a leaf area meter (LI-3100, LI-COR, Lincoln, NE, USA), and 

the shoot tissues were dried at 80ºC in a drying oven (Grieve, Round Lake, IL, USA) for 

3 days to determine the shoot DW. 
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3. Secondary plant metabolites measurement 

     Four plants per treatment per cultivar were randomly selected for measurements of 

anthocyanin concentration, total phenolic concentration, total flavonoid concentration, 

and antioxidant capacity of plant leaves at harvest. Fresh leaves were collected in a cooler 

and immediately stored in a deep freezer (IU1786A, Thermo Fisher Scientific, Marietta, 

OH, USA) at -80ºC until phytochemical analyses.  

     Extraction. Approximately 2 g fresh basil leaves were ground in liquid nitrogen and 

extracted with 15 mL 1% acidified methanol in darkness. After overnight extraction, the 

mixture was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Fisher Scientific, 

Madison, WI, USA) at 13,200 rpm (26,669 ×g) for 15 min, and the supernatant was 

collected for phytochemical analyses (Xu and Mou, 2016), 2016).  

     Anthocyanin analysis. The absorbance of extracts was measured at 530 nm using a 

spectrophotometer (Genesys 10S ultraviolet/ Vis, Thermo Fisher Scientific, Madison, WI, 

USA), and the anthocyanin concentration was expressed as mg cyanidin-3-glucoside 

equivalents using a molar extinction coefficient of 29,600 (Connor et al., 2002). Since the 

extracts were freshly prepared from leaf tissues maintained at -80ºC and did not undergo 

extensive processing or significant browning, a pH differential method for anthocyanin 

content was considered unnecessary (Connor et al., 2002).  

     Phenolics analysis. The total phenolics concentration of basil leaves was determined 

using the modified Folin-Ciocalteu reagent method described as the following: 100 μL 

extraction sample was added to a mixture of 150 μL distilled water and 750 μL 1/10 

dilution Folin-Ciocalteu reagent. After 6 min reaction, 600 μL 7.5% Na2CO3 was added 
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and the mixture was incubated at 45°C in water bath for 10 min before the absorbance was 

measured at 725 nm using a microplate reader (ELx800, BioTek, Winooski, VT, USA). 

Results were expressed as mg of gallic acid equivalent per g FW of basil leaves (Xu and 

Mou, 2016).  

     Flavonoids analysis. The total flavonoid concentration of basil leaves was determined 

as the following: 20 µL extraction sample was added to a mixture of 85 µL distilled water 

and 5 µL 5% NaNO2. After 6 min reaction, 10 µL of 10% AlCl3·6H2O was added to the 

mixture. Five min later, 35 µL of 1M NaOH and 20 µL distilled water were added to the 

mixture and the absorbance was measured at 520nm using the aforementioned microplate 

reader (Dou et al., 2018). The results were expressed as mg of (+)-catechin hydrate 

equivalent per g FW of basil leaves. 

     Antioxidant capacity analysis. The antioxidant capacity of basil leaves was measured 

using the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method 

(Arnao et al., 2001) described as the following: add a mixture of 150 µL basil leave 

extracts to 2.85 mL of ABTS+ solution and incubate at room temperature for 10 min. The 

absorbance of mixed solution was measured at 734 nm using the aforementioned 

spectrophotometer. Antioxidant capacity of basil leaves was expressed as mg of Trolox 

equivalent antioxidant capacity per 100 g FW of basil leaves. 

3.3.4 Statistical analysis 

     One-way analysis of variance was conducted to analyze the effects of light quality on 

all measured parameters. Multiple means comparison among treatments was conducted 



 

 
60 

 

using Student’s t method. Correlation test was conducted using Pairwise Correlations 

method. All statistical analyses were performed using JMP software (Version 13, SAS 

Institute Inc., Cary, NC, USA), and a P < 0.05 was considered as significant. 

3.4 Results  

3.4.1 Gas exchange rate and chlorophyll content as influenced by red, blue, and green 

light 

1. Green and purple basils 

     Net photosynthetic rate and SPAD readings of green basil plants showed no differences 

amongreen light quality treatments (Tables 6, 7), while in purple basil plants, both 

parameters were the highest under R51B49 treatment, which increased by 15%-34% and 

10%-24% compared to other treatments, respectively. In purple basil plants, Pn was 

positively correlated with blue light proportions with a coefficient of 0.9107. Additional 

green light showed no effects on Pn in purple basil plants compared to plants grown under 

combined R&B light with similar blue light proportion, while it decreased SPAD readings 

(Tables 6, 7).  
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Table 6. Net photosynthetic rate of green basil ‘Improved Genovese Compact’, 
purple basil ‘Red Rubin’, green kale ‘Siberian’, red kale ‘Scarlet’, green mustard 
‘Amara’, and red mustard ‘Red Giant’ plants under different light quality 
treatments. 

z Means followed by different lowercase letters indicate significant difference, according 
to Student’s t mean comparison (P < 0.05). 
Asterisks (*) indicate significant differences (*P < 0.05; **P < 0.01). NS indicates means 
are not significantly, or correlation between net photosynthetic rate and blue light 
proportions (BPs) is not significant (P < 0.05).  
Correlation test between net photosynthetic rate and BPs was conducted using Pairwise 
Correlation method, and coefficient (γ) is presented when correlation is significant.  

  

Treatment BP (%) 
Net Photosynthetic Rate (µmol·m-2·s-1) 

Green 
Basil 

Purple  
Basil 

Green  
Kale 

Red 
Kale 

Green 
Mustard 

Red 
Mustard 

R88B12 12 10.7 az 6.3 b 11.0 b 12.5 ab 19.2 a 17.8 a 
R43B13G44 13 11.1 a 6.1 b 10.5 b 11.5 bc 15.2 a 17.9 a 
R76B24 24 10.1 a 6.1 b   12.3 ab  13.4 a 18.1 a 18.0 a 
R34B25G41 25 11.5 a 7.1 ab 11.8 b  10.1 c 16.0 a 15.2 a 
R51B49 49 12.9 a 8.2 a 13.2 a 12.5 ab 19.3 a 16.9 a 
ANOVA NS * * ** NS NS 

Correlation Test γ - 0.9107 0.9279 - - - 
P NS * * NS NS NS 
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Table 7. Soil plant analysis development (SPAD) of green basil ‘Improved Genovese 
Compact’, purple basil ‘Red Rubin’, green kale ‘Siberian’, red kale ‘Scarlet’, green 
mustard ‘Amara’, and red mustard ‘Red Giant’ plants under different light quality 
treatments. 

z Means followed by different lowercase letters indicate significant difference, according 
to Student’s t mean comparison (P < 0.05). 
Asterisks (*) indicate significant differences (*P < 0.05). NS indicates means are not 
significantly different among treatments, or correlation between tested parameters and 
blue light proportions (BPs) is not significant (P < 0.05).  
Correlation tests between tested parameters and BPs were conducted using Pairwise 
Correlation method, and coefficient (γ) is presented when correlation is significant.  

2. Green and red kales  

     Net photosynthetic rate of green kale plants was the highest under R51B49 treatment and 

was positively correlated with blue light proportions with a coefficient of 0.9279 (Table 

6). In red kale plants, Pn was not influenced by blue light proportions among three 

combined R&B LED treatments, while additional green light significantly decreased Pn 

regardless of blue light proportions (Table 6). SPAD readings of green kale plants were 

not affected by light quality treatments. Increases of blue light proportions increased the 

SPAD readings in red kale plants among combined R&B LED treatments. At a blue light 

Treatment BP  
(%) 

SPAD 
Green  
Basil 

Purple  
Basil 

Green  
Kale 

Red  
Kale 

Green 
Mustard 

Red 
Mustard 

R88B12 12 37.9 az 41.9 b 44.3 a 46.2 c 48.0 a 37.2 a 
R43B13G44 13 40.2 a 37.2 c 43.9 a 53.1 a 50.0 a 36.9 a 
R76B24 24 40.2 a 45.6 a 44.0 a 50.6 ab 49.7 a 34.7 a 
R34B25G41 25 36.5 a 41.4 b 47.6 a 48.1 bc 49.0 a 37.8 a 
R51B49 49 37.7 a 46.1 a 45.2 a 53.2 a 50.1 a 36.2 a 
ANOVA NS * NS * NS NS 

Correlation Test γ - - - - - - 
P NS NS NS NS NS NS 
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proportion at 12%, additional green light increased the SPAD readings in red kale plants 

by 15%, while additional green light showed no effects at a blue light proportion at 24% 

(Table 7). 

3. Green and red mustards 

     No differences were observed on Pn or SPAD readings in green or red mustard plants 

among different light quality treatments (Tables 6, 7).  

3.4.2 Growth parameters and crop yield as influenced by red, blue, and green light 

1. Green and purple basils 

     Without additional green light, plant height in green and purple basil plants was the 

lowest under R51B49 treatment. Additional green light increased plant height of green basil 

plants at a blue light proportion at 12%, while it showed no effects in purple basil plants. 

In contrary, at a blue light proportion at 24%, additional green light showed no effects on 

plant height in green basil plants but decreased it in purple basil plants (Table 8). Leaf area 

in green and purple basil plants both decreased with increasing blue light proportions 

among combined R&B LED treatments, while additional green light decreased leaf area 

by 8%-44% regardless of cultivar (Table 8). No correlations between growth parameters 

(i.e. plant height and leaf area) and blue light proportions were observed in green or purple 

basil plants (Table 9). Similarly, shoot FW and DW in green and purple basil plants both 

decreased with increasing blue light proportions among the three combined R&B LED 

treatments. Additional green light decreased the shoot FW and DW by 27%-41% in purple 

basil plants compared to combined R&B LED lights with similar blue light proportions, 
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while it decreased the shoot FW in green basil plants at a blue light proportion at 12% 

(Table 9). No correlations between plant yield (i.e. shoot FW and DW) and blue light 

proportions were observed in green or purple basil plants (Table 9). 

Table 8. Plant height and leaf area of green basil ‘Improved Genovese Compact’, 
purple basil ‘Red Rubin’, green kale ‘Siberian’, red kale ‘Scarlet’, green mustard 
‘Amara’, and red mustard ‘Red Giant’ plants under different light quality 
treatments. 

Treatment BP 
(%) 

Plant Height (cm) 
Green 
Basil 

Purple 
Basil 

Green 
Kale 

Red 
Kale 

Green 
Mustard 

Red 
Mustard 

R88B12 12 24.3 bz  18.3 ab 33.8 a 25.2 a 24.8 b 28.1 a 
R43B13G44 13 26.1 a  17.4 ab 34.9 a 25.2 a 26.6 a 27.6 a 
R76B24 24 22.5 c 18.9 a  32.2 ab 25.2 a 24.2 b 28.1 a 
R34B25G41 25 22.1 c 17.3 b 27.9 c 22.0 b 22.7 c 26.3 a 
R51B49 49 22.1 c 17.2 b  30.5 bc 20.8 b 21.1 d 28.3 a 
ANOVA  *** * ** *** *** NS 

Correlation Test γ - - - - -0.8958 - 
P NS NS NS NS * NS 

  Leaf Area (cm2) 
R88B12 12 669 a 631 a 817 a 660 a 697 a 812 a 
R43B13G44 13  605 ab 356 d  820 ab  631 ab   658 ab  735 ab 
R76B24 24  606 ab 552 b  708 bc  615 ab    626 abc 829 a 
R34B25G41 25 560 b  407 cd 637 c  536 bc  574 bc 576 b 
R51B49 49 546 b 456 c 625 c 505 c 547 c 782 a 
ANOVA  * *** ** * * * 

Correlation Test γ - - - -0.8831 -0.8844 - 
P NS NS NS * * NS 

z Means followed by different lowercase letters indicate significant difference, according 
to Student’s t mean comparison (P < 0.05). 
Asterisks (*) indicate significant differences (*P < 0.05; **P < 0.01; ***P < 0.001). NS 
indicates means are not significantly different among treatments, or correlation between 
tested parameters and blue light proportions (BPs) is not significant (P < 0.05).  
Correlation tests between tested parameters and BPs were conducted using Pairwise 
Correlation method, and coefficient (γ) is presented when correlation is significant.  
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Table 9. Shoot fresh weight of green basil ‘Improved Genovese Compact’, purple 
basil ‘Red Rubin’, green kale ‘Siberian’, red kale ‘Scarlet’, green mustard ‘Amara’, 
and red mustard ‘Red Giant’ plants under different light quality treatments. 

Treatment BP 
(%) 

Shoot Fresh Weight (g) 
Green  
Basil 

Purple  
Basil 

Green  
Kale 

Red  
Kale 

Green  
Mustard 

Red  
Mustard 

R88B12 12 25.0 az 19.4 a  49.4 ab 35.8 a 45.6 a 48.9 a 
R43B13G44 13 21.3 b 12.7 c 51.1 a  32.2 ab  43.3 ab 43.5 a 
R76B24 24 21.7 b 18.8 a  47.8 ab 33.9 a  39.3 bc 49.5 a 
R34B25G41 25 20.2 b  13.6 bc 37.9 c 24.3 c 35.6 c 33.5 b 
R51B49 49 20.1 b 15.5 b  40.5 bc  27.2 bc 35.5 c 46.4 a 
ANOVA  * *** * ** ** * 

Correlation Test γ - - - - - - 
P NS NS NS NS NS NS 

  Shoot Dry Weight (g) 
R88B12 12 1.91 a 1.53 a 3.5 a   3.8 ab 2.94 a 2.79 a 
R43B13G44 13   1.75 ab 0.91 d 3.5 a 4.4 a 2.80 a  2.43 ab 
R76B24 24 1.63 b 1.47 a 3.1 a    3.7 abc 2.56 a 2.90 a 
R34B25G41 25 1.51 b 1.08 c 2.7 a 2.7 c 2.59 a 2.06 b 
R51B49 49 1.56 b 1.28 b 2.7 a  2.9 bc 2.64 a 2.81 a 
ANOVA  ** *** NS * NS * 

Correlation Test γ - - - - - - 
P NS NS NS NS NS NS 

z Means followed by different lowercase letters indicate significant difference, according 
to Student’s t mean comparison (P < 0.05). 
Asterisks (*) indicate significant differences (*P < 0.05; **P < 0.01; ***P < 0.001). NS 
indicates means are not significantly different among treatments, or correlation between 
tested parameters and blue light proportions (BPs) is not significant (P < 0.05). 
Correlation tests between tested parameters and BPs were conducted using Pairwise 
Correlation method.  

2. Green and red kales  

     Plant height and leaf area of green and red kale plants decreased with increasing blue 

light proportions among the combined R&B LED treatments and additional green light 

decreased plant height and leaf area at a blue light proportion at 24% regardless of cultivar 

(Table 8). Leaf area in red kale plants was negatively correlated with blue light proportions 
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with a coefficient of -0.8831 (Table 8). Shoot FW of green and red kale plants had a similar 

trend as plant height and leaf area (Table 9). Shoot FW of green and red kale plants 

increased by 22% and 32% with decreasing blue light proportions from 49% to 12%. 

Shoot DW of red kale plants had a similar trend as the shoot FW, while different light 

quality had no influence on the shoot DW of green kale plants. No correlations between 

plant yield and blue light proportions were observed in green or red basil plants (Table 9). 

3. Green and red mustards 

     Plant height and leaf area of green mustard plants were both negatively correlated with 

blue light proportions with a coefficient of -0.8958 and -0.8844, respectively (Table 8). 

Plant height and leaf area in green mustard plants increased by 17% and 27% with 

decreasing blue light proportions from 49% to 12%, respectively. Additional green light 

increased plant height of green mustard plants at a blue light proportion at 12% but 

decreased it at a blue light proportion at 24%. Light quality treatments showed no 

influence on plant height in red mustard plants, while additional green light decreased its 

leaf area at a blue light proportion at 24% (Table 8). No correlations between growth 

parameters and blue light proportions were observed in red mustard plants (Table 8). Shoot 

FW of green mustard plants decreased with increasing blue light proportions, while the 

shoot FW of red mustard plants only decreased with additional green light at a blue light 

proportion at 24% (Table 9). Similarly, shoot DW of red mustard plants decreased with 

additional Green light at a blue light proportion at 24%, while different light quality had 

no influence on the shoot DW in green kale plants. No correlations between crop yield 

and blue light proportions were observed in mustard plants (Table 9). 
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3.4.3 Secondary metabolites accumulation as influenced by red, blue, and green light 

1. Green and purple basils 

     Different light quality treatments had no influence on anthocyanin concentration of 

green or purple basil plants (Table 10). Phenolic concentration in green basil plants was 

not affected by blue light proportions among combined R&B LED treatments, while 

additional green light decreased it regardless of blue light proportion (Table 10). In purple 

basil plants, increases of blue light proportions also increased phenolic concentration, 

while additional green light decreased it at a blue light proportion at 24%. Flavonoid 

concentration of green basil plants was the highest under a blue light proportion at 24% 

and decreased by blue light proportions at 12% and 49%, while in purple basil plants, 

flavonoid concentration was the lowest under a blue light proportion at 12% and showed 

no differences between blue light proportions of 24% and 49%. Additional green light 

decreased flavonoid concentration in purple basil plants regardless of blue light proportion 

(Table 10). Similarly, antioxidant capacity of green and purple basil plants decreased by 

11%-30% with additional green light. No correlations between phytochemical parameters 

and blue light proportions were observed in green or purple basil plants (data not shown). 

     Total amount of anthocyanin, phenolics, flavonoids, and antioxidant capacity per plant 

was calculated by multiplying the concentrations of each parameter with leaf FW per 

plant. Among combined R&B LED treatments, the total amount of anthocyanin, 

phenolics, flavonoids, and antioxidant capacity in both basil cultivars were all the highest 

under a blue light proportition at 24%, while decreased by a higher blue light proportion 
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at 49% (Table 11). Additional green light decreased the total amount of phytochemicals 

per plant regardless of cultivar or blue light intensity except the total amount of 

anthocyanin in green basil plants (Table 11). 

Table 10. Concentrations of anthocyanin, phenolics, and flavonoids and antioxidant 
capacity in green basil ‘Improved Genovese Compact’, purple basil ‘Red Rubin’, 
green kale ‘Siberian’, red kale ‘Scarlet’, green mustard ‘Amara’, and red mustard 
‘Red Giant’ plants grown under different light quality treatments with different blue 
light proportions (BPs). 

Treatment BP 
(%) 

Anthocyanin Concentration (mg·100g-1) 
Green 
Basil 

Purple 
Basil 

Green 
Kale 

Red 
Kale 

Green 
Mustard 

Red 
Mustard 

R88B12 12 2.54 az 13.5 a 6.74 b 9.73 a 7.22 a  9.93 ab 
R43B13G44 13 2.77 a 14.1 a 7.51 a 9.51 a 7.90 a 9.57 b 
R76B24 24 2.77 a 13.8 a  7.15 ab 9.61 a 7.53 a 9.47 b 
R34B25G41 25 2.95 a 13.9 a 7.61 a 10.16 a 7.86 a  9.90 ab 
R51B49 49 2.75 a 14.1 a 7.44 a 9.74 a 7.70 a 10.27 a 
  Phenolics Concentration (mg·g-1) 
R88B12 12 1.28 a 2.81 c 0.75 c  1.40 bc 0.98 c 1.22 a 
R43B13G44 13 1.04 b 2.67 c   0.79 bc 1.22 c 1.12 b 1.09 a 
R76B24 24 1.37 a 3.21 b   0.81 bc  1.47 ab 1.13 b 1.21 a 
R34B25G41 25 1.01 b 2.62 c 1.11 a 1.65 a 1.12 b 1.27 a 
R51B49 49 1.30 a 3.47 a   0.98 ab 1.64 a 1.25 a 1.26 a 
  Flavonoids Concentration (mg·g-1) 
R88B12 12   0.49 bc 2.43 b 0.97 a 1.22 a 0.87 a 0.86 a 
R43B13G44 13   0.48 bc 1.92 c 1.01 a 1.17 a 0.96 a 0.85 a 
R76B24 24 0.84 a 2.70 a 0.97 a 1.26 a 0.96 a 0.87 a 
R34B25G41 25 0.40 c 1.87 c 1.07 a 1.13 a 0.95 a 0.85 a 
R51B49 49 0.53 b 2.70 a 1.04 a 1.22 a 0.90 a 0.90 a 
  Antioxidant Capacity (mg·100g-1) 
R88B12 12 295 b 1570 b   141 bc 279 a 176 a   221 ab 
R43B13G44 13   290 bc 1394 c 112 c 210 b 151 a 146 b 
R76B24 24 389 a 1755 a   121 bc 294 a 186 a   213 ab 
R34B25G41 25 249 c 1229 d 178 a 314 a 172 a 232 a 
R51B49 49   251 bc 1873 a   151 ab 334 a 198 a 220 a 

z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05). 
  



 

 
69 

 

Table 11. Total amount of anthocyanin, phenolics, and flavonoids and antioxidant 
capacity per plant in green basil ‘Improved Genovese Compact’, purple basil ‘Red 
Rubin’, green kale ‘Siberian’, red kale ‘Scarlet’, green mustard ‘Amara’, and red 
mustard ‘Red Giant’ plants grown under different light quality treatments with 
different blue light proportions (BPs). 

Treatment BP 
(%) 

Total Amount of Anthocyanin (mg·plant-1) 
Green 
Basil 

Purple 
Basil 

Green 
Kale 

Red 
Kale 

Green 
Mustard 

Red 
Mustard 

R88B12 12 0.51 az 2.01 a 3.33 b 3.48 a 3.14 b 4.70 a 
R43B13G44 13 0.46 ab 1.39 c 3.84 a 3.06 c 3.42 a 4.16 b 
R76B24 24 0.49 ab 2.01 a 3.42 b 3.26 b 2.96 bc 4.85 a 
R34B25G41 25 0.48 ab 1.46 c 2.89 c 2.47 e 2.80 cd 3.32 c 
R51B49 49  0.44 b 1.71 b 3.01 c 2.65 d 2.67 d 4.76 a 
  Total Amount of Phenolics (mg·plant-1) 
R88B12 12 25 a 42 b 37 a 50 a 43 b 58 a 
R43B13G44 13 18 c 26 c 40 a 39 b 49 a 47 b 
R76B24 24   24 ab 47 a 39 a 50 a   45 ab 62 a 
R34B25G41 25 17 c 27 c 42 a 40 b 40 b 43 b 
R51B49 49 21 b 42 b 40 a 45 ab 42 b 59 a 
  Total Amount of Flavonoids (mg·plant-1) 
R88B12 12 10 b 36 b   48 ab 44 a 38 ab   41 ab 
R43B13G44 13   8  bc 19 d 52 a 38 b 41 a 37 b 
R76B24 24 15 a 39 a    46 abc 43 a 38 ab 42 a 
R34B25G41 25 7   c 20 d 41 c 27 d 34 bc 29 c 
R51B49 49 9   b 33 c   42 bc 33 c 31 c 42 a 
  Total Amount of Antioxidant Capacity (mg·plant-1) 
R88B12 12 59 b 234 b 70 a  100 a 76 a 103 a 
R43B13G44 13 49 c 138 c 57 a 68   c 65 a 63   b 
R76B24 24 68 a 255 a 58 a 100 a 74 a 101 a 
R34B25G41 25 41 d 129 c 67 a 76   bc 61 a 78   b 
R51B49 49 40 d 227 b 61 a 91   ab 69 a 102 a 

z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05).  

2. Green and red kales  

     Anthocyanin concentration of green kale plants decreased by 9%-11% under R88B12 

treatment compared to other treatments, while light quality treatments showed no effects 
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on the anthocyanin concentration in red kale plants (Table 10). Phenolics concentration in 

green and red kale plants both increased with increasing blue light proportions among 

combined R&B LED treatments, while additional green light increased phenolics 

concentration in green kale plants at a blue light proportion at 24%. Flavonoid 

concentration in green or red kale plants was not affected by light quality treatments. 

Antioxidant capacity of green kale plants increased with the increases of blue light 

proportions, while additional green light increased it at a blue light proportion at 24%. 

Antioxidant capacity in red kale plants was not affected by blue light proportions and 

decreased with additional green light at a blue light proportion at 12%. No correlations 

between phytochemical parameters and blue light proportions were observed in green or 

red kale plants (data not shown). 

     Among combined R&B LED treatments, changes of blue light proportitions showed 

no effects on the total amount of phenolics, flavonoids, and antioxidant capacity in green 

kale plants, or the total amount of phenolics and antioxidant capacity in red kale plants 

(Table 11). The highest blue light proportion at 49% decreased the total amount of 

anthocyanin by 10%-24% in both cultivars and decreased the total amount of flavonoids 

by 25% in red kale plants compared to lower blue light proportion at 12% (Table 11). In 

green kale plants, addtitional green light treatment increased the total amount of 

anthocyanin at a lower blue light proportion at 12%, while decreased it at a higher blue 

light proportion at 24%. Additional green light treatments showed no effects on the total 

amount of phenolics, flavonoids, or antioxidant capacity per plant in green kale plants. In 
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red kale plants, additional green light treatment decreased the total amount of 

phytochemicals per plant despite blue light proportions (Table 11). 

3. Green and red mustards 

     Different light quality treatments had no influence on anthocyanin concentration, 

flavonoid concentration, or antioxidant capacity in green mustard plants, while its 

phenolic concentration was positively correlated with blue light proportions with a 

coefficient of 0.8642 (data not shown). Additional green light increased the phenolic 

concentration by 14% in green mustard plants at a blue light proportion at 12%. In red 

mustard plants, light quality treatments showed no effects on concentrations of phenolics 

or flavonoids (Table 10). Anthocyanin concentration in red mustard plants was the lowest 

under R76B24 treatment and was not influenced by additional green light. Antioxidant 

capacity of red kale plants was not affected by blue light proportions or additional green 

light (Table 10). 

     Among combined R&B LED treatments, the highest blue light proportition at 49% 

decreased the total amount of anthocyanin and flavonoids in green mustard plants, while 

changes of blue light proportions showed no effects on the total amount of phytochemicals 

per plant in red mustard plants (Table 11). In green mustard plants, additional green light 

treatment increased the total amount of anthocyanin and phenolics at a lower blue light 

proportion at 12%, while additional green light treatment showed no effects on total 

amount of phytochemicals at a higher blue light proportion at 24% (Table 11). In red 

mustard plants, additional green light treatment decreased the total amount of 

phytochemicals despite blue light proportions (Table 11). 
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3.5 Discussion 

3.5.1 Photosynthesis and chlorophyll content as influenced by red, blue, and green light 

     Photosynthesis is the basis of plant growth and biomass accumulation, and Pn generally 

increased with increasing blue light proportions in combined R&B lights (Bugbee, 2016). 

Consistently in this study, increase of blue light proportions from 12% to 49% 

significantly increased Pn in purple basil and green kale plants by 30% and 20%, 

respectively (Table 6). Studies suggested increased Pn under higher blue light proportions 

could be attributed to blue light enriched chloroplast density, increased stomatal opening, 

and improved enzyme activity (Fan et al., 2013; Li, 2010). For example, leaf mass per 

area, chlorophyll concentration, and stomatal conductance in cucumber plants increased 

at higher blue light proportions (Hernández et al., 2016; Hogewoning et al., 2010). 

Biosynthetic intermediates of chlorophylls, such as 5-aminolevulinic acid, protoporphyrin 

IX, Mg-protoporphyrin IX and protochlorophyllide in Chinese cabbage were the lowest 

under monochromatic red light and increased by blue light addition (Fan et al., 2013). 

Activities of photosynthetic enzymes, such as Rubisco, and stomatal opening was 

improved by blue light (Bondada and Syvertsen, 2003; Li, 2010), while monochromatic 

red light decreased stomatal density and stomatal conductance in cucumber leaves, largely 

due to a positive effect on epidermal cell size (Hogewoning et al., 2010; Savvides et al., 

2011). Consistently, SPAD readings in purple basil and red kale plants increased with 

increasing blue light proportions from 12% to 49% in the present study (Table 7). It was 

postulated that increasing blue light proportions could stimulate “high irradiance leaf 
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characteristics” even under constant irradiance, which improved plant photosynthesis 

(Hogewoning et al., 2010). Another hypothesis of blue light increased Pn was that red light 

inhibits the transportation of photosynthate from leaves to sinks, which suppressed the 

photosynthesis with a high level of carbohydrates in leaves (Bondada and Syvertsen, 

2003). However, increases of blue light proportions in other plant species showed no 

effects on plant photosynthesis or chlorophyll concentration, i.e., changes of blue light 

proportions from 12% to 49% did not affect Pn in green basil, red kale, green mustard, or 

red mustard plants, and showed no influence on SPAD readings in green basil, green kale, 

green mustard, or red mustard plants (Tables 6, 7). He et al. (2015) also reported that 

increasing blue light proportions from 0% to 24% did not affect chlorophyll and 

carotenoid concentrations in Chinese broccoli plants. These results suggest that increasing 

blue light proportions in combined R&B light could improve or have no effects on plant 

photosynthesis, depending on plant sensitivity. 

     Additional green light to combined R&B light with similar blue light proportions 

decreased Pn in red kale plants, and a similar trend was observed in green mustard plants, 

but not in the other tested plant species (Table 6). This was consistent with previous 

research results, additional green light repressed or have no effects on plant photosynthesis 

(Folta and Maruhnich, 2007). Kang et al. (2016) reported that additional green light 

decreased Pn and chlorophyll concentration in ‘Green Skirt’ lettuce plants compared to 

combined R&B light, while Pn in ‘Waldmann’s Green’ lettuce grown under R61B15G24 

treatment was slightly lower compared to plants grown R84B16 treatment, but without 

significant difference (Kim et al., 2004). Similarly, SPAD readings in purple basil plants 
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decreased by additional green light when the other plant species were not affected (Table 

7). This may be caused by the different sensitivity of plant species to green light (i.e., red 

kale, green mustard, and purple basil plants) where additional green light reversed the blue 

light induced stomatal opening and chlorophyll formation, resulting in decreased Pn and 

SPAD readings, while blue light dominated the photosynthetic responses in other plant 

species and was not affected by additional green light. 

3.5.2 Plant growth and yield as influenced by red, blue, and green light 

     In the present study, Pn in plants increased with blue light proportions while plant 

growth rate (i.e., plant height and leaf area) and plant yield decreased with the increases 

of blue light proportions, indicating that plant photomorphogenesis dominated the biomass 

accumulation in tested plant species instead of photosynthesis, at least under the 

experimental setups. Since measured Pn is the instantaneous gas exchange rate on a unit 

leaf area basis, the total CO2 assimilation per plant depends largely on plant leaf area, 

which is positively related with light interception (Kim et al., 2004). Plant expansion 

growth (stem elongation and leaf expansion) in response to blue light is mediated by 

dynamic, direct interactions between cryptochromes and phytochromes-interacting factors 

(PIFs) (Pedmale et al., 2016). With relatively higher blue light proportions in light source, 

the suppression of PIFs 4 and 5 by cryptochromes and proteasomal degradation of CRY 2 

and PIF 5 together inhibit stem elongation and leaf expansion, resulting in reduced light 

interception (Pedmale et al., 2016). Indeed, plant height of Chinese cabbage was the 

highest under monochromatic red light, followed by R86B14 treatment, and the lowest 
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under monochromatic blue light at a PPFD of 150 µmol·m-2·s-1 with a 12-h photoperiod 

(Fan et al., 2013). This was consistent with the study presented by Hernández et al. (2016), 

where plant height, leaf area, and shoot FW and DW in ‘Cumlaude’ cucumber plants 

decreased with increasing blue light proportion from 10% to 75% at a PPFD of 100 

µmol·m-2·s-1, whereas Pn, stomatal conductance, and chlorophyll concentration increased. 

Similarly, leaf length and width of ‘Green Skirt’ lettuce plants decreased with increasing 

blue light proportion from 0% to 30% at a PPFD of 150 µmol·m-2·s-1 with a 16-h 

photoperiod (Kang et al., 2016). However, contradictory results in plant growth rate were 

also observed in other plant species, where the presence of blue light was not reported to 

alter basil plant height or plant FW (Carvalho et al., 2016; Schwend et al., 2016). Leaf 

area and shoot FW and DW of Chinese broccoli were the highest under blue light 

proportion at 16%, followed by 24%, then 8%, and the lowest under monochromatic red 

light at a PPFD of 210 µmol·m-2·s-1 with a 12-h photoperiod (He et al., 2015). A possible 

explanation among these conflicting results could be the interactive responses in plant 

photosynthesis and photomorphogenesis to blue light. As mentioned above, tested plant 

species in the present study all had the largest leaf area and greatest shoot FW under 

treatment with the lowest blue light proportion at 12%, suggesting that the inhibition of 

plant expansion by blue light dominated in biomass accumulation. However, in Chinese 

broccoli, a small blue light proportion (16%) may increase biomass accumulation due to 

blue light increased photosynthetic capacity and a continued increase of blue light 
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proportion (24%) may eventually lead to the domination of blue light-inhibition of plant 

expansion growth and result in reduced biomass accumulation (He et al., 2015). 

     Green light could reverse blue light induced responses such as inhibition of extension 

growth and evoke shade-avoidance responses, which result in increasing green light 

interception and biomass accumulation (Folta and Maruhnich, 2007; Zhang et al., 2011). 

However, higher green light proportions will reduce the photon flux of red and/or blue 

light, resulting in passive effects on plant growth. For example, leaf area, leaf thickness, 

and shoot FW and DW in ‘Waldmann’s Green’ lettuce plants increased by R61B15G24 

treatment (supplemental green fluorescent light to combined R&B LED light) compared 

to plants grown under combined R&B light with the same blue light proportion (R84B16) 

at a PPFD of 150 µmol·m-2·s-1 with a 18-h photoperiod, while a higher green light 

proportion at 51% (R30B19G51, white fluorescent light) showed no effects on leaf area, 

shoot FW and DW, and green fluorescent light (R4B10G86) decreased its leaf area, shoot 

FW and DW (Kim et al., 2004). Similarly, Hernández et al. (2016) reported that a green 

light proportion at 28% (R52B20G28) treatment did not affect plant growth in ‘Cumlaude’ 

cucumber seedlings as all growth parameters (leaf mass per area, plant height, and leaf 

area) followed the trend of other combined R&B treatments (R90B10, R70B30, R50B50, and 

R25B75), although they didn’t directly compare it to a R80B20 treatment. In the present 

study, at a low blue light proportion at 12%, additional green light significantly increased 

plant height in green basil and green mustard plants, while at a higher blue light proportion 

at 24%, additional green light decreased plant height in purple basil, green kale, red kale, 

and green mustard plants (Table 8). We postulate that at a low blue light proportion at 
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12%, green light reverses the blue light inhibition responses and induces stem elongation 

(shade avoidance response), while at a high blue light proportion at 24%, predominant 

suppression of expansion growth by blue light may override weaker control of expansion 

growth by green light and resulted in shorter plant heights. These results were consistent 

with the results reported by Wang and Folta (2013), in which hypocotyl length in 

arabidopsis plants increased with additional green light to a low R&B photon flux (< 1-10 

µmol·m-2·s-1) and showed no effects at a high R&B photon flux (≥ 10 µmol·m-2·s-1). A 

different pattern was observed in leaf area and shoot FW, where additional green light 

decreased or tended to decrease (no significant difference) leaf area and shoot FW at both 

low and high blue light proportions (Tables 8, 9). Kang et al. (2016) also reported that leaf 

length or width in lettuce plants was not affected by additional green light to combined 

R&B light with blue light proportions from 0% to 30%. The hypothesis is that green light 

effects on leaf expansion was minimal compared to its effects on stem elongation. 

Furthermore, we concluded that leaf area is the major contribution to plant biomass 

accumulation compared to Pn, since leaf area has the similar trend as shoot FW under 

different light quality treatments. 

3.5.3 Secondary metabolites accumulation as influenced by red, blue, and green light 

     Although mechanism of light spectrum affecting phytochemical biosynthesis is still 

unclear, both red and blue lights are believed to be involved in the synthesis of secondary 

metabolites, and their effects are dependent on plant species and cultivars (Cocetta et al., 

2017; Taulavuori et al., 2016). For example, anthocyanin concentration in lettuce, sage 
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(Salvia miltiorrhiza), and kale plants increased under blue light treatment, as well as 

phenolics concentration in purple basil plants (Hosseini et al., 2018; Li, 2010; Meng et al., 

2004; Qian et al., 2016). Similarly, antioxidant capacity in lettuce and kale plants both 

increased under enriched blue light treatments (Qian et al., 2016; Son and Oh, 2013). 

Induced synthesis of secondary metabolites by blue light is supported by Li (2010) and 

Meng et al. (2004), who reported that expression of key enzymes in the synthesis of 

polyphenols, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and 

dihydroflavonol 4-reductase (DFR) increased under blue light. However, in other plant 

species, blue light played a negative role or showed no effects on the synthesis of 

secondary metabolites. For instance, monochromatic red light enhanced anthocyanin 

concentration in red leaf cabbage seedlings (Brassica oleracea ‘Red Rookie’) compared 

to monochromatic blue or green light, while light quality did not affect anthocyanin 

concentration in green leaf cabbage seedlings (‘Kinshun’) at a PPFD of 50 µmol·m-2·s-1 

with a 16-h photoperiod (Mizuno et al., 2009). Antioxidant capacity of basil plants 

decreased with increases of blue light proportions from 30% to 58% and showed no 

differences with increases of blue light proportions from 19% to 30%, while flavonoid 

concentration was the highest under treatment with blue light proportion at 23%, followed 

by 30% and 44%, and the lowest under 19% and 58% (Pennisi et al., 2019). Piovene et al. 

(2015) also reported that antioxidant capacity and concentrations of polyphenol and 

flavonoids in basil plants was not affected by changes of blue light proportions from 7% 

to 38% in combined R&B LEDs. In the present study, increases of blue light proportions 

enriched concentrations of anthocyanin, phenolics, and flavonoids in most species (Table 



 

 
79 

 

10), but decreased the total amount phytochemicals per plant (Table 11). Therefore, two 

mechnisms of increased phytochemical concentrations under higher blue light proportions 

were postulated. One hypothesis is that higher blue light proportions induced expression 

of key enzymes in the phenylpropanoid pathway, such as PAL, CHS, and DFR, which 

induced synthesis of anthocyanin, phenolics, and flavonoids (Li, 2010; Meng et al. 2004). 

The other hypothesis is the dilution effect caused by red light. Which is, with similar total 

amount of phytochemicals per plant, plant shoot FW increased and resulted in decreased 

phytochemical concentrations under higher red light proportions.  

     The interactions between green and combined R&B light are hard to predict, but are 

known to be mediated by photosensory pathways, as photoreceptors such as 

phytochromes, phototropins, and cryptochromes also absorb green light (Folta and 

Maruhnich, 2007; Wang and Folta, 2013; Zhang and Folta, 2012). Folta and Maruhnich 

(2007) reported that green light reversed blue light induced anthocyanin accumulation, 

which was confirmed in arabidopsis and ‘Red Sails’ lettuce plants (Zhang and Folta, 2012; 

Zhang et al., 2011). Similarly, additional green light (R29B31G40, white FLs) significantly 

decreased the antioxidant capacity and flavonoid concentration in basil plants compared 

to plants grown under R62B30 treatment at a PPFD of 215 µmol·m-2·s-1 with a 16-h 

photoperiod (Pennisi et al., 2019). However, green light showed both positive and negative 

effects on the phytochemical accumulation in the present study. Specifically, additional 

green light decreased concentrations of phenolics, flavonoids and antioxidant capacity in 

green and purple basil plants regardless of blue light proportion, while in green kale plants, 
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additional green light increased phenolic concentration and antioxidant capacity at a 

higher blue light proportion at 24% (Table 10).  

3.6 Conclusion  

     Plant photosynthesis, growth, morphology, and yield in tested plant species were 

primarily influenced by R&B light than green light. Increases of blue light proportions 

significantly increased Pn and SPAD readings in purple basil and red kale plants, but 

negatively influenced plant growth rate or biomass accumulation, indicating blue light 

inhibition of plant expansion growth dominated in biomass accumulation. Additional 

green light to combined R&B light played a negative role or had no effects on Pn, SPAD 

readings, leaf area, or plant yield in tested plant species, and the green light effects on leaf 

expansion were minimal compared to background R&B light. Effects of red, blue, and 

green lights on secondary metabolites accumulation are more complicated: increases of 

blue light proportions played a positive role or had no effects on the synthesis of 

anthocyanin, phenolics, and flavonoids in tested plant species, while additional green light 

showed both positive and negative effects on the accumulation of phytonutrients. 

However, considering plant yield decreased by green light, combined R&B light with 

lower blue light proportions would be recommended for culinary herbs and leafy greens 

production in IVFs. 
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CHAPTER IV  

SUBSTITUTING RED AND/OR BLUE LIGHT WITH GREEN LIGHT INDUCED 

SHADE AVOIDANCE RESPONSES BUT DECREASED PHOTOSYNTHESIS AND 

SECONDARY MEATBOLITES ACCUMULATION IN BASIL PLANTS 

4.1 Synopsis 

Green light penetrates into deeper plant canopy due to its high transmittance and 

reflectance than the other wavelengths, while red and blue lights are mostly absorbed by 

the upper level leaves. Theoretically, substituting partially red and/or blue light with green 

light could increase light interception by inner canopy, which could potentially increase 

plant yield. Therefore, we studied the effects of substituting partial red and/or blue light 

with green light on plant photosynthesis, growth, and development in basil (Ocimum 

basilicum) ‘Improved Genovese Compact’ (green) and ‘Red Rubin’ (purple) plants. There 

were four treatments including combined red and blue (R&B) light treatment as control, 

R76B24 (the percentage of red and blue light was 76% and 24%, respectively), substituting 

partial red light with green light, R44B24G32, substituting partial blue light with green light, 

R74B16G10, and substituting partial red and blue light with green light, R42B13G45. All 

experiments were conducted in a growth room with the same photosynthetic photon flux 

density (PPFD) of 224 µmol·m-2·s-1 with a 16-h photoperiod. Plants were sub-irrigated as 

needed using a nutrient solution with electrical conductivity of 2.0 dS·m-1 and pH of 6.0. 

In green basil plants (5 internodes at harvest), net photosynthetic rate of the upper level 

leaves was the highest under R76B24 treatment, while no difference was observed in the 
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lower level leaves. In purple basil plants (7 internodes at harvest), net photosynthetic rate 

of the upper level leaves showed no differences among R76B24, R44B24G32, or R74B16G10 

treatments, while the highest under R44B24G32 and R74B16G10 treatments in the lower level 

leaves. Plant height of both cultivars increased under R44B24G32 and R42B13G45 treatments. 

Shoot fresh weight of green basil plants was not affected by green light treatments, while 

increased under R76B24 and R74B16G10 treatments in purple basil plants. Nutritional quality 

of green basil plants, including concentrations of anthocyanin, total phenolics and 

flavonoid, and antioxidant capacity of plant leaves, increased with increasing blue light 

proportions (R76B24 and R44B24G32 treatments), while in purple basil plants, it increased 

with increasing red light proportions (R76B24 and R74B16G10 treatments).  

4.2 Introduction 

     Plants sense and respond to a broad range of light spectra from ultraviolet to far-red 

regions, while photosynthetically active radiation, ranging from 400-700 nm [blue (400-

499 nm), green (500-599 nm), red (600-700 nm)], significantly affects plant 

photosynthesis, morphology, and secondary metabolism (Amaki et al., 2011; Brazaitytė 

et al., 2016). The development of light emitting diode (LED) technology provided 

researchers opportunities to regulate plant yield and nutritional quality using different light 

wavelength, which was proven to be a good tool for plant production in indoor vertical 

farms (IVFs) (Bantis et al., 2018; Dou et al., 2017; Piovene et al., 2015).  

     Among all light spectra, red and blue lights are the most important for plant biomass 

accumulation by affecting plant photosynthesis and photomorphogenesis (Mccree, 1972). 
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It was reported that dominant red with supplemental blue light reached greater plant yield 

compared to monochromatic red or blue light for crop production under controlled 

environment (Bondada and Syvertsen, 2003; Wollaeger and Runkle, 2014). For example, 

leaf area, shoot fresh weight (FW), and shoot dry weight (DW) in spinach (Spinacia 

oleracea) and non-heading Chinese cabbage (Brassica campestris ‘Te Ai Qing’) increased 

under combined R&B LED light compared to monochromatic red or blue LED light (Fan 

et al., 2013; Ohashi-Kaneko et al., 2007). Similarly, leaf area and shoot FW in baily 

(Brassica alboglabra) plants grown under combined R&B light (blue light proportion 

ranging from 8% to 24%) were 36-121% and 34-119% higher compared to plants grown 

under monochromatic blue light, respectively (He et al., 2015). 

     Comparing to red and blue lights, green light is less studied due to its low absorptivity 

coefficient in the absorption spectra of chlorophylls compared to red or blue lights. 

However, green light also contributes to plant growth, which can trigger specific and 

necessary responses of plant growth (Meng et al., 2019). According to Sager et al. (1988), 

in a living leaf or whole plant canopy, the relative quantum efficiency for broadband green 

light is 0.87, which is slightly lower than for red light (0.91) but higher than for blue light 

(0.73). Furthermore, green light penetrates into deeper plant canopy, scatters between 

cellular components within leaves, while red and blue lights are mostly absorbed by the 

upper level plant canopy and drives photosynthesis through abundant lower chloroplasts 

(Meng et al., 2019; Terashima et al., 2009; Wang and Folta, 2013). Theoretically, quantum 

yield of a dense plant canopy should be more equalized under green light by increasing 

the light interception of lower level leaves, which could potentially increase plant yield. 
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In fact, Paradiso et al. (2011) validated that canopy quantum efficiency of green light was 

not much lower than that of red light in ‘Akito’ rose (Rosa) plants. Kim et al. (2004) also 

reported that substituting partial red light with green light increased leaf area and shoot 

FW and DW in ‘Waldmann’s Green’ lettuce (Lactuca sativa) plants by 31%, 45%, and 

47%, respectively, compared to plants grown under combined R&B light. Supplementing 

green light to continuous R&B light also alleviated the degree of photosynthetic capacity 

reduction and/or injury in ‘Butterhead’ lettuce plants (Bian et al., 2016; Bian et al., 2018). 

Compared to the other light spectra, green light was reported to induce disease resistance 

to strawberry anthracnose (Glomerella cinglata) and spider mite in ‘Sachinoka’ 

strawberry (Fragaria × ananassa) plants grown in the field (Kudo et al., 2011). Moreover, 

additional green light to combined R&B light would make plants appear normal green 

color instead of purplish, which makes visual assessment of physiological disorders easy, 

and also offer a psychological benefit to farm workers.  

     It is not surprising that the known photoreceptors such as phytochromes and 

cryptochromes can respond to green light due to their broad band absorption spectrum that 

tails into the green light waveband. Banerjee et al. (2007) reported that upon excitation by 

blue light, the flavin chromophore of cryptochrome is reduced to a semiquinone that can 

absorb green and yellow lights. Green light could activate phytochrome responses such as 

seed germination in arabidopsis (Arabidopsis thaliana) plants (Wang and Folta, 2013). 

Consistently, plant responses to green light showed a tendency to counteract blue or red 

light induced responses, such as inhibition of stem elongation, stomatal opening, or 

anthocyanin accumulation (Talbott et al., 2006; Zhang and Folta, 2012). For example, 
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stomatal opening stimulated by blue light could be reversed by green light in a range of 

plant species (Frechilla et al., 2000; Talbott et al., 2002), and increasing green light 

proportions significantly decreased anthocyanin concentrations in arabidopsis and ‘Red 

Sails’ lettuce plants (Zhang and Folta, 2012; Zhang et al., 2011). Furthermore, plant 

responses to green light were affected by green light peak wavelength and light intensity 

(Johkan et al., 2012). Specifically, the biomass accumulation of red leaf lettuce (‘Red 

Fire’) showed no differences among three monochromatic green light treatments (G510, 

G520, and G530, in which the peak wavelength of green light is at 510 nm, 524 nm, and 

532 nm, respectively) and white fluorescent light treatment at a PPFD of 100 µmol·m-2·s-

1, while it was the highest under G510 treatment and showed no differences among the 

other treatments at a PPFD of 300 µmol·m-2·s-1 (Johkan et al., 2012). 

     Previous studies raise the hypothesis that substituting green light for red and/or blue 

light may increase plant yield and alter plant secondary metabolites accumulation, and its 

effects depend on the light intensity or green light proportions. Therefore, in the present 

study, we partially substituted red and/or blue light with green light at different green light 

proportions to investigate the effects of green light addition on plant photosynthesis, 

growth, yield, and secondary metabolites accumulation. 

4.3 Materials and Methods 

4.3.1 Plant materials and growing conditions  

     The experiment was conducted in a walk-in growth room in Texas AgriLife Research 

and Extension Center at El Paso, TX using green basil ‘Improved Genovese Compact’ 
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(Ocimum basilicum) and purple basil ‘Red Rubin’ plants (Johnny’s Selected Seeds, 

Winslow, ME, USA). For both cultivars, one seed per cell was sown in 72 square cell trays 

(cell size: 3.86 cm L × 5.72 cm H, with a volume of 59 cm3) with Metro-Mix 360 (peat 

moss 41%, vermiculite 34%, pine bark 25%, Sun Gro® Horticulture, Bellevue, WA, USA). 

All trays were put under mist in a greenhouse for germination. Seedlings were moved out 

from mist after germination and grown in a greenhouse for two weeks. Seedlings were 

then transplanted to 4” square pots (length 9.52 cm, height 8.26 cm; volume 574 cm3) with 

Metro-Mix 360 when roots were visible on the outside of the plug root ball, and uniform 

plants were selected and moved to the walk-in growth room for different treatments.   

4.3.2 Green light treatments 

     There were four different light quality treatments including the combined R&B light 

treatment as control, R76B24 (the percentage of red and blue light was 76% and 24%, 

respectively; Model GEHL48HPPB, Hort Americas, Bedford, TX, USA), substituting 

partial red light with green light, R44B24G32 (ESW X6, Illumitex, Austin, TX, USA), 

substituting partial blue light with green light, R74B16G10 (ESW F3, Illumitex, Austin, TX, 

USA), and substituting partial red and blue lights with green light, R42B13G45 (Model 

GEHL48HWTB, Hort Americas, Bedford, TX, USA) (Table 12, Fig. 8). The PPFD of 

each treatment was set at the same level of 220 µmol·m-2·s-1 with a 16-h photoperiod. To 

minimize light distribution being disproportionate within each treatment, all plants were 

systematically rearranged every three days. The PPFD in each treatment was measured at 
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15 cm underneath the light sources at 9 spots using PS-100 spectroradiometer (Apogee 

Instruments, Logan, UT, USA).  

     All plants were sub-irrigated with a nutrient solution containing 1.88 g·L-1 (277.5 ppm 

N) 15N-2.2P-12.5K (Peters 15-5-15 Ca-Mg Special, The Scotts Company, Marysville, 

OH, USA) as needed, maintaining electrical conductivity of 2.0 dS·m-1 and pH at 6.0. 

Plant canopy temperature was recorded and maintained at 24.0/21.6ºC day/night. 

Mechanical mini fans (LS1225A-X, AC Infinity, City of Industry, CA, USA) were used 

to circulate the air to achieve uniform temperatures across treatments. All plants were 

harvested when plant height reached about 25 cm. The green and purple basil plants were 

harvested at 21 and 28 days after treatment (42 and 53 days after sowing), respectively. 

There were 12 plants per treatment for each experiment. 

Table 12. Light spectrum distribution of different light quality treatments including 
R76B24, R74B16G10, R44B24G32, and R42B13G45 treatments. 
 Single-band Photon Flux Density (µmol·m-2·s-1) 

Treatment R76B24 R44B24G32 R74B16G10 R42B13G45 
B         53     54    36      28 
G          -     70    22      98 
R        169     97   165      93 

R:B   3.26 1.81 4.70 3.29 
PPFDz   222 221 223 219 

z Photosynthetic photon flux density (PPFD, 400-700 nm) was measured using a PS-100 
spectroradiometer. 



 

 
88 

 

 

Figure 8. Light spectrum distribution of different light quality treatments including 
R76B24 [in which the red (R, 600-699 nm), blue (B, 400-499 nm), and green (G, 500-
599 nm) light percentage is 76%, 24%, and 0%, respectively], R74B16G10, R44B24G32, 
and R42B13G45 treatments. The photosynthetic photon flux density (PPFD, 400-700 
nm) and light spectrum distribution was measured using a PS-100 
spectroradiometer. 

4.3.3 Measurements 

1. Gas exchange and chlorophyll concentration  

     A portable gas exchange analyzer (CIRAS-3, PP Systems International, Amesbury, 

MA, USA) was used to measure the gas exchange rate including net photosynthetic rate 

(Pn), transpiration rate (E), and stomatal conductance (Gs) of plant leaves at harvest. A 

PLC3 leaf cuvette with LED light unit was used, and light intensity, relative air humidity, 

and CO2 concentration inside the leaf chamber were kept constant at 800 µmol·m-2·s-1, 

50%, and 390 µmol·mol-1, respectively. The third and fifth pair of leaves from the top 

were used for measuring the upper and lower leaves gas exchange rate, respectively, in 

both green and purple basil leaves. Soil plant analysis development (SPAD) index of basil 

was measured using the third pair of leaves at harvest to quantify relative chlorophyll 
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content in basil leaves using a chlorophyll meter SPAD-502 (Konica-Minolta cooperation, 

Ltd., Osaka, Japan).  

2. Growth characteristics 

     Growth characteristics such as plant height, two perpendicular widths, and number of 

internodes were recorded at harvest. Five plants per treatment were randomly selected for 

measurement. Leaf area was measured using a leaf area meter (LI-3100, LI-COR, Lincoln, 

NE, USA), and shoot and root FW were recorded at harvest. Shoot and root tissues were 

dried at 80ºC in a drying oven (Grieve, Round Lake, IL, USA) for 3 days to determine the 

shoot and root DW.  

3. Secondary metabolites  

     Five uniform plants were randomly selected for the measurements of concentrations of 

anthocyanin, phenolics, and flavonoids, and antioxidant capacity at harvest. Fresh plant 

leaves were collected in a cooler and immediately stored in a deep freezer (IU1786A, 

Thermo Fisher Scientific, Marietta, OH, USA) at -80ºC until phytochemical analyses.  

     Extraction. Approximately 2 g fresh plant leaves were ground in liquid nitrogen and 

extracted with 15 mL 1% acidified methanol at 4ºC in darkness. After overnight 

extraction, the mixture was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Fisher 

Scientific, Madison, WI, USA) at 13,200 rpm (26,669 ×g) for 15 min, and the supernatant 

was collected for phytochemical analyses (Xu and Mou, 2016).  

     Anthocyanin analysis. The absorbance of extracts was measured at 530 nm using a 

spectrophotometer (Genesys 10S ultraviolet/ Vis, Thermo Fisher Scientific, Madison, WI, 
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USA), and the anthocyanin concentration was expressed as mg cyanidin-3-glucoside 

equivalent per 100 g FW of basil leaves using a molar extinction coefficient of 29,600 

(Connor et al., 2002). Since the extracts were freshly prepared from leaf tissues maintained 

at -80ºC and did not undergo extensive processing or significant browning, a pH 

differential method for anthocyanin content was considered unnecessary (Connor et al., 

2002).  

     Phenolics analysis. The total phenolics concentration of plant leaves was determined 

using the modified Folin-Ciocalteu reagent method described as the following: 100 μL 

extraction sample was added to a mixture of 150 μL distilled water and 750 μL 1/10 

dilution Folin-Ciocalteu reagent. After 6 min reaction,  600 μL 7.5% Na2CO3 was added 

and the mixture was incubated at 45°C in water bath for 10 min before the absorbance was 

measured at 725 nm using a microplate reader (ELx800, BioTek, Winooski, VT, USA). 

Results were expressed as mg of gallic acid equivalent per g FW of basil leaves (Xu and 

Mou, 2016).  

     Flavonoids analysis. The total flavonoid concentration of plant leaves was determined 

as the following: 20 µL extraction sample was added to a mixture of 85 µL distilled water 

and 5 µL 5% NaNO2. After 6 min reaction, 10 µL of 10% AlCl3·6H2O was added to the 

mixture. After another 5 min reaction, 35 µL of 1M NaOH and 20 µL distilled water were 

added to the mixture and the absorbance was measured at 520 nm using the 

aforementioned microplate reader (Dou et al., 2018). Results were expressed as mg of (+)-

catechin hydrate equivalent per g FW of basil leaves. 
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     Antioxidant capacity analysis. The antioxidant capacity of plant leaves was measured 

using the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method 

(Arnao et al., 2001) described as the following: add a mixture of 150 µL basil leave 

extracts to 2.85 mL of ABTS+ solution and incubate at room temperature for 10 min. The 

absorbance of mixed solution was measured at 734 nm using the spectrophotometer 

mentioned above. Antioxidant capacity of basil leaves was expressed as mg of Trolox 

equivalent antioxidant capacity per 100 g FW of basil leaves. 

4.3.4 Statistical analysis 

     One-way analysis of variance (ANOVA) was conducted to analyze the effects of light 

quality treatments on all measured parameters. Mean comparison among treatments was 

conducted using Student’s t method. Correlation test was conducted using Pairwise 

Correlations method. All statistical analyses were performed using JMP software (Version 

13, SAS Institute Inc., Cary, NC, USA). 

4.4 Results  

4.4.1 Photosynthesis and chlorophyll content 

     In green basil plants, Pn of the upper leaves was the highest under combined R&B light 

treatment, namely R76B24, while it showed no differences among treatments in the lower 

leaves (Fig. 9A). In contrast, E and Gs in green basil plants showed no differences among 

treatments regardless of the measuring position (Fig. 9B-C). In purple basil plants, Pn, E 

and Gs of the upper leaves showed a similar trend, which increased under treatments with 
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lower green light proportions, namely R76B24, R44B24G32, and R74B16G10, and the lowest 

under R42B13G45 treatment (Fig. 9A-C). In contrast, Pn of the lower leaves increased under 

R44B24G32 and R74B16G10, compared to R76B24 or R42B13G45 (Fig. 9A), whereas E and Gs 

was the highest under R44B24G32, followed by R74B16G10 and R76B24, and the lowest under 

R42B13G45 (Fig. 9B-C). SPAD readings in green basil plants showed no differences among 

treatments, while in purple basil plants, it was the highest under R76B24, followed by 

R44B24G32 and R74B16G10, and the lowest under R42B13G45 (Fig. 10). 

 

Figure 9. Net photosynthetic rate (Pn) (A), transpiration rate (E) (B), and stomatal 
conductance (Gs) (C) of green basil ‘Improved Genovese Compact’ and purple basil 
‘Red Rubin’ plants under different light quality treatments, including R76B24, 
R44B24G32, R74B16G10, and R42B13G45. Means followed by the same lower/upper case 
letters are not significantly different, according to Student’s t mean comparison (P < 
0.05). Bars represent standard errors. 
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Figure 10. Soil plant analysis development (SPAD) of green basil ‘Improved 
Genovese Compact’ and purple basil ‘Red Rubin’ plants under different light quality 
treatments, including R76B24, R44B24G32, R74B16G10, and R42B13G45. Means followed 
by the same lower/upper case letters are not significantly different, according to 
Student’s t mean comparison (P < 0.05). Bars represent standard errors. 

4.4.2 Plant growth and yield 

     Plant height in green and purple basil plants both increased under treatments with 

higher green light proportions, R44B24G32 and R42B13G45 compared to R76B24 and 

R74B16G10 (Fig. 11A). Plant width (Fig. 11B), leaf area (data not shown), and leaf 

thickness (Fig. 113C) showed no differences among treatments in green basil plants. In 

purple basil plants, plant width increased significantly under treatment with the highest 

green light proportion, R42B13G45, which was 15%-18% greater compared to the other 

treatments (Fig. 11B). Leaf thickness in purple basil plants was the highest under R76B24, 

followed by R74B16G10, and the lowest under treatments with higher green light 

proportions, R44B24G32 and R42B13G45 (Fig. 11C), while leaf area was not influenced by 

light quality treatments (data not shown). 
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     Plant yield (i.e., shoot FW and DW, root FW and DW) in green basil plants showed no 

differences among treatments (Fig. 12A). In purple basil plants, shoot and root FW and 

DW showed a similar trend, which was higher under treatments with no green light or 

lower green light proportions, R76B24 and R74B16G10 compared to R44B24G32 and R42B13G45 

(Fig. 12A-B). Specifically, shoot FW and root FW under R74B16G10 was 30% and 88% 

greater compared to plants grown under R42B13G45, respectively. Shoot FW was 

significantly correlated to leaf area in purple basil plants, while it was not correlated in 

green basil plants (Fig. 13A). Shoot FW was not correlated to leaf thickness regardless of 

cultivar (Fig. 13B). 
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Figure 11. Plant height (A), plant width (B), and specific leaf area (SLA) (C) of green 
basil ‘Improved Genovese Compact’ and purple basil ‘Red Rubin’ plants under 
different light quality treatments, including R76B24, R44B24G32, R74B16G10, and 
R42B13G45. Means followed by the same lower/upper case letters are not significantly 
different, according to Student’s t mean comparison (P < 0.05). Bars represent 
standard errors. 
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Figure 12. Shoot fresh weight (FW) and dry weight (DW) of green basil plants (A) 
and purple basil ‘Red Rubin’ plants (B) under different light quality treatments, 
including R76B24, R44B24G32, R74B16G10, and R42B13G45. Means followed by the same 
lower/upper case letters are not significantly different, according to Student’s t mean 
comparison (P < 0.05). Bars represent standard errors. 
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Figure 13. Correlation between shoot FW and leaf area (A), and correlation between 
shoot FW and leaf thickness (B) in green basil ‘Improved Genovese Compact’ and 
purple basil ‘Red Rubin’ plants under different light quality treatments. Dash line 
shows the regression between shoot FW and leaf area, according to Pairwise 
Correlation method. 

4.4.3 Accumulation of secondary metabolites 

     In green basil plants, concentrations of anthocyanin, phenolics, and flavonoids and 

antioxidant capacity all decreased under R74B16G10 and R42B13G45 (Table 13). Specifically, 

concentrations of anthocyanin, phenolics, and flavonoids and antioxidant capacity in green 

basil plants grown under R76B24 was 17%, 18%, 15%, and 20% greater compared to plants 
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R42B13G45, while anthocyanin concentration was not influenced by the light quality 

treatments (Table 13). 

     Green light treatments decreased the total amount of phytochemicals by 17%-21% in 

green basil plants (Table 14). In purple basil plants, the total amount of anthocyanin, 

phenolics, and flavonoids were the highest under R76B24 and R74B16G10 treatments, 

followed by R44B24G32 treatment, and the lowest under R42B13G45 treatment (Table 14). 

The total amount of antioxidant capacity per plant was the highest under R74B16G10 

treatment, which was 5%, 41%, and 63% higher compared to R76B24, R44B24G32, and 

R42B13G45 treatments, respectively (Table 14). 

Table 13. Anthocyanin concentration (conc.), phenolics conc., flavonoids conc., and 
antioxidant capacity of green basil ‘Improved Genovese Compact’ and purple basil 
‘Red Rubin’ plants under different light quality treatments, including R76B24, 
R44B24G32, R74B16G10, and R42B13G45. 

Cultivar Treatments 
Anthocyanin 

Conc. 
(mg·100g-1) 

Phenolics 
Conc. 

(mg·g-1) 

Flavonoids  
Conc. 

(mg·g-1) 

Antioxidant  
Capacity 

(mg·100g-1) 

Green 
basil 

R76B24 8.11 az 2.06 a 1.77 ab 366 a 
R44B24G32 8.23 a 1.89 ab 1.84 a 353 a 
R74B16G10 7.58 ab 1.75 b 1.67 bc 319 b 
R42B13G45 6.95 b 1.75 b 1.54 c 306 b 

Purple 
basil 

R76B24 13.36 A 3.71 A 2.29 AB 1293 A 
R44B24G32 14.15 A 3.46 B 2.16 B 1174 B 
R74B16G10 13.33 A 3.81 A 2.34 A 1367 A 
R42B13G45 12.92 A 2.94 C 1.82 C 1101 B 

z Means followed by the same lower/upper case letters are not significantly different, 
according to Student’s t mean comparison (P < 0.05).  
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Table 14. Total amount of anthocyanin, phenolics, flavonoids, and antioxidant 
capacity per plant of green basil ‘Improved Genovese Compact’ and purple basil 
‘Red Rubin’ plants under different light quality treatments, including R76B24, 
R44B24G32, R74B16G10, and R42B13G45. 

Cultivar Treatments 
Total Amount of Phytochemicals (mg·plant-1) 

Anthocyanin Phenolics Flavonoids Antioxidant Capacity 

Green 
basil 

R76B24 1.63 az 41 a 35 a 73 a 
R44B24G32 1.54 a 35 b 34 a 66 b 
R74B16G10 1.51 a 35 b 33 a 64 b 
R42B13G45 1.32 b 33 b 29 b 58 c 

Purple 
basil 

R76B24 1.90 A 53 A 33 A 184 B 
R44B24G32 1.66 B 41 B 25 B 138 C 
R74B16G10 1.90 A 54 A 33 A 194 A 
R42B13G45 1.40 C 32 C 20 C 119 D 

z Means followed by the same lower/upper case letters are not significantly different, 
according to Student’s t mean comparison (P < 0.05).  

4.5 Discussion 

4.5.1 Substituting red or blue light with green light increased photosynthesis in the lower 

level plant canopy 

     Additional green light repressed or had no effects on plant photosynthesis due to low 

absorption of green light by chlorophylls (Folta and Maruhnich, 2007; Mccree, 1972; 

Wang and Folta, 2013), which was confirmed in this study where Pn in the upper leaves 

decreased in both cultivars (Fig. 9A). It was evidenced that decreased Pn by green light 

was contributed to, or at least partially contributed to, green light reversed blue light 

induced stomatal opening and chloroplast synthesis, which was found in a diversity of 

plant species (Talbott et al., 2006; Talbott et al., 2002). Consistently, in purple basil plants, 

E and Gs of the upper leaves decreased under R42B13G45 treatment, while SPAD readings 
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decreased under all green light treatments, but the depression by green light was not 

observed in green basil plants (Fig. 9B-C, 10). These phenomena suggested that low 

absorption of green light by chlorophylls is the major reason of decreased Pn in green basil 

plants, while in purple basil plants, decreased Pn might be caused by the coactions of 

reduced stomatal opening, decreased chloroplast accumulation, and low absorption of 

green light by chloroplasts.  

     Red and blue lights were strongly absorbed on the upper level plant canopy, but green 

light, which is hard for chloroplasts to absorb, penetrated and was absorbed by the 

chloroplasts in the lower level plant canopy (Terashima et al., 2009). This resulted in 

increased PPFD in lower level plant canopy under green light treatments compared to 

combined R&B light treatment, and accordingly a different pattern between Pn in the lower 

leaves and upper leaves was observed. Specifically, in green basil plants, Pn in the lower 

leaves was not influenced by light quality treatments while it was decreased under green 

light treatments in the upper leaves, and in purple basil plants, Pn in the lower leaves 

increased under green light treatments with green light proportions at 10% and 32% while 

it showed no differences in the upper leaves (Fig. 9A). Therefore, increased PPFD in the 

lower level plant canopy by green light may potentially increase the photosynthetic 

productivity of whole plant canopy, which may result in greater plant yield.   

     Plant photosynthetic responses to green light depend on plant species and green light 

intensity or green light proportion. Specifically, Pn in purple basil plants only decreased 

under treatment with the highest green light proportion of 45%, whereas Pn in green basil 

plants decreased under all green light treatments (Fig. 9A). The different responses 



 

 
101 

 

between green and purple basil plants may be due to their different sensitivity to green 

light. Another hypothesis is due to their different plant canopy density. Although both 

cultivars were harvested at similar plant height, green basil plants were treated for 3 weeks 

and harvested with 5 internodes, while purple basil plants were treated for 4 weeks and 

harvested with 7 internodes. The denser plant canopy in purple basil plants strengthened 

the effects of green light since green light penetrates deeper in dense plant canopy. Other 

researchers also reported different plant responses to green light treatments. For instance, 

substituting green light for red light decreased Pn and chlorophyll concentration in ‘Green 

Skirt’ lettuce plants compared to combined R&B light treatment, while Pn in ‘Waldmann’s 

Green’ lettuce was not affected (Kang et al., 2016; Kim et al., 2004). However, none of 

the studies evaluated the relationship between effects of green light and plant canopy 

density, which should be paid attention to in future studies. 

4.5.2 Substituting green light for red and/or blue light induced shade avoidance 

responses  

     It has been widely reported that green light could induce shade avoidance responses 

including promotion of petiole elongation and hyponasty in arabidopsis plants (Folta and 

Maruhnich, 2007; Zhang et al., 2011). Shade avoidance responses induced by green light 

are likely mediated in two categories, cryptochrome-dependent and cryptochrome-

independent pathways, suggesting an unknown green light receptor through a novel 

mechanism (Folta, 2004; Wang and Folta, 2013). It was evidenced in the present study 

when substituting green light for red or red and blue light resulted in increased plant height 
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and decreased leaf thickness (Fig. 12A). Meanwhile, plant width in purple basil plants 

increased under treatments of substituting red and blue light with green light, but not leaf 

area, indicating green light treatment increased petiole elongation but not leaf expansion. 

Similarly, Meng et al. (2019) reported that substituting blue light with green light 

increased petiole length in kale (Brassica oleracea) plants at a PPFD of 180 µmol·m-2·s-1. 

However, biomass accumulation in purple basil plants decreased under treatments 

substituting red or red and blue light with green light, which was different from the results 

reported by Meng et al. (2019), in which green light induced shade avoidance responses 

in kale and lettuce plants and resulted in greater shoot FW. Differences between the 

present study and Meng’s et al. (2019) study might be due to different plant canopy 

architecture or density (e.g. leaf area index) among lettuce, kale and basil plants. Lettuce 

and kale plants are almost stemless and have rosette-like ground leaves during vegetative 

stage (when grown as vegetable crop, and not seed crop), while basil plants have stems, 

and the compactness of plant canopy of lettuce and kale plants would strengthen the effects 

of green light, which increases plant shade avoidance responses and thus increases light 

interception, resulting in greater biomass accumulation. Similarly, green light treatment 

increased leaf area, leaf thickness, and shoot FW and DW in ‘Waldmann’s Green’ lettuce 

plants (Kim et al., 2004), but did not affect the growth of ‘Cumlaude’ cucumber (Cucumis 

sativus) seedlings (Hernández et al., 2016), which has a different plant canopy 

architecture/density from lettuce plants. 
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4.5.3 Substituting green light for red and/or blue light decreased secondary metabolites 

accumulation  

     Although mechanisms of how light quality affects plant secondary metabolism is still 

unclear, shared facts were evidenced that green light could reverse the red and blue light 

induced phytochemical accumulation through photoreceptor pathways (Zhang and Folta, 

2012; Zhang et al., 2011).  In chapter III, substituting green light for red light (green light 

proportions of 44% and 41%) decreased phenolic and flavonoid concentrations and 

antioxidant capacity in both green and purple basil plants regardless of blue light 

proportions (12% and 24%). Similar results were reported by Pennisi et al. (2019), in 

which substituting green light for red light significantly decreased antioxidant capacity 

and flavonoid concentration in basil plants. In the present study, substituting green light 

for red and/or blue light decreased both secondary metabolites concentrations and total 

amounts of phytochemicals per plant in both basil cultivars. Noticeably, substituting blue 

light with green light decreased phytonutrients accumulation and antioxidant capacity in 

green basil plants, while substituting red light with green light decreased phytonutrients 

concentration and antioxidant capacity in purple basil plants (Table 13). Therefore, it was 

postulated that blue and red light plays a major function in inducing the secondary 

metabolites accumulation in green and purple basil plants, respectively.  

4.6 Conclusion 

     Green and purple basil plants showed different sensitivity to red, blue, and green light 

regarding to photosynthesis, morphology, and secondary metabolites accumulation. In 
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general, substituting red and/or blue light with green light decreased plant photosynthesis 

in the upper level plant canopy, while increased photosynthesis in the lower level plant 

canopy due to increased PPFD. Meanwhile, substituting red and/or blue light with green 

light induced plant shade avoidance responses (such as stem and petiole elongation) and 

decreased secondary metabolites accumulation, but did not influence leaf expansion. In 

conclusion, substituting red and/or blue light with green light decreased plant yield and 

phytochemical production in basil plants, which has a relatively low plant canopy density. 
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CHAPTER V  

RESPONSES OF PHOTOSYNTHESIS, GROWTH, AND SECONDARY 

METABOLITES ACCUMULATION IN BASIL, KALE, AND MUSTARD PLANTS 

TO PRE-HARVEST UV-B RADIATION AND PHOTOSYNTHETIC PHOTON FLUX 

DENSITY 

5.1 Synopsis 

     Supplemental ultraviolet-B (UV-B) radiation and photosynthetic photon flux density 

(PPFD) are both important environmental factors that influence plant photosynthesis, 

growth, yield, and the accumulation of secondary metabolites, and interaction effects were 

observed between supplemental UV-B radiation and PPFD. Two experiments were 

conducted to investigate the responses of basil (Ocimum basilicum) and Brassica plants 

to supplemental UV-B radiation and PPFD. In the first experiment, green basil ‘Improved 

Genovese Compact’ and purple basil ‘Red Rubin’ plants grown at two PPFDs, 160 and 

224 µmol·m-2·s-1, were treated with supplemental UV-B radiation at five pre-harvest doses 

including control (no UV-B), 1 h·d-1 for 2 days, 2 h·d-1 for 2 days, 1 h·d-1 for 5 days, and 

2 h·d-1 for 5 days. In the second experiment, four Brassica plant species were exposed to 

five UV-B radiation doses including control, 0.5 h·d-1 for 1 day (0.5H1D), 1 h·d-1 for 1 

day (1H1D), 1 h·d-1 for 2 days (1H2D), or 1 h·d-1 for 3 days (1H3D). Results indicated 

that plant growth and yield of both basil cultivars decreased under all UV-B treatments, 

while increased by high PPFD despite UV-B radiation doses. Shoot fresh weight in green 

and purple basil plants decreased under UV-B treatments by 12-51% and 6-44%, 
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respectively. Although UV-B depressed plant photosynthesis in Brassica plants, it showed 

no effects on plant growth or yield. Concentrations of anthocyanin, phenolics, and 

flavonoids in green basil leaves increased under all UV-B treatments by 9-18%, 28-126%, 

and 80-169%, respectively, and the magnitude of increase was greater under low PPFD 

compared to high PPFD. Antioxidant capacity in green kale, red kale, and green mustard 

plants increased under 1H2D and 1H3D treatments. However, in purple basil plants, UV-

B radiation showed no effects on anthocyanin concentration, while 2 h·d-1 for 2 days and 

5 days UV-B treatments increased concentrations of phenolics and flavonoids. Among all 

treatments, a pre-harvest UV-B radiation of 1 h·d-1 for 2-3 days with PPFD of 224 µmol·m-

2·s-1 enriched plant secondary metabolite accumulation without reducing biomass 

accumulation, which was recommended for green basil and Brassica plants production 

under controlled environment. 

5.2 Introduction 

     Ultraviolet radiation is an important environmental signal that initiates plant responses 

in photosynthesis, cell division, plant growth, and development (Goto et al., 2016; 

Wargent, 2016). In previous studies, UV-B radiation was mainly considered as a stress 

factor to plants, focusing on the effects of increasing solar UV-B radiation reaching earth’s 

surface due to stratospheric ozone depletion (Caldwell and Flint, 1994; Wargent et al., 

2009). Recent studies have highlighted supplemental UV-B radiation as “positive stress” 

which induces a range of beneficial processes in plants including DNA repair, antioxidant 

induction, and increased synthesis of UV-absorbing compounds, such as phenolics, 
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flavonoids, carotenoids, and glucosinolates (Sun et al., 2012; Castagna et al., 2014; 

Moreira-Rodríguez et al., 2017). Epidemiological studies suggested that diets high in 

antioxidants, especially polyphenolic compounds such as flavonoids and phenolic acids, 

can reduce the risks of cardiovascular and chronic diseases (Schreiner et al., 2012). This 

has drawn a lot of attention on using supplemental UV-B radiation as a tool to increase 

concentrations of these phytonutrients in horticultural crops (Connor et al., 2002; Colonna 

et al., 2016; Henry-Kirk et al., 2018).  

     Studies to date have demonstrated at least two UV-B signaling pathways are 

determined by UV-B radiation doses (Schreiner et al., 2012; Dotto and Casati, 2017).  

Firstly, the UV-B specific photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), initiates 

UV-B mediated signaling pathways in response to low UV-B radiation dose, the UVR8-

dependent pathway (Henry-Kirk et al., 2018). Under low UV-B radiation doses, UVR8 

stimulates the expression of genes such as CONSTITUTIVELY 

PHOTOMORPHOGENIC 1 (COP1), ENLONGATED HYPOCOTYL 5 (HY5), and HY5 

HOMOLOG (HYH), which play key roles in the synthesis of phenolic compounds, as well 

as growth retardation such as the inhibition of hypocotyl elongation (Jansen and Bornman, 

2012; Holl et al., 2018). Secondly, high UV-B radiation doses induce damage responses 

in plants, through UVR8-independent pathway (Brown and Jenkins, 2008; Dotto and 

Casati, 2017). High UV-B radiation doses induce the formation of reactive oxygen species 

(ROS), causing damage to plant cells, DNA, proteins, and photosynthesis apparatus, and 

subsequently affect plant growth and development (Brown and Jenkins, 2008; Favory et 

al., 2009).  



 

 
108 

 

     In addition to being dose-dependent responses, plant responses to supplemental UV 

radiation also varied among species and cultivars (Suchar and Robberecht, 2018). For 

example, anthocyanin concentration of red leaf lettuce (Lactuca sativa ‘Red Cross’) 

increased by 11% after 12-days UV-A radiation at 18 µmol·m-2·s-1 for 16 h·d-1 prior to 

harvest (controlled environment, PPFD of 300 µmol·m-2·s-1) (Li and Kubota, 2009). 

Another study reported that synthesis of anthocyanins and other polyphenols in a different 

red leaf lettuce cultivar (‘Red Fire’, controlled environment, PPFD of 150 µmol·m-2·s-1) 

increased significantly after 3-days UV-B radiation at 1.5 µmol·m-2·s-1 for 16 h·d-1 prior 

to harvest (Goto et al., 2016). In 7-day-old broccoli (Brassica oleracea) sprouts 

(controlled environment, PPFD not mentioned), glucosinolate concentration was 

enhanced by 19% after 1-day UV-B radiation at 7.0 µmol·m-2·s-1 for 2 h·d-1, compared to 

63% enhancement at 10.3 µmol·m-2·s-1 for 2 h·d-1 (Moreira-Rodríguez et al., 2017). 

Therefore, the use of supplemental UV-B radiation to increase concentrations of 

secondary plant metabolites requires “precise manipulation” with respect to different plant 

species or cultivars.  

     Basil and Brassica plants are highly diverse in species and cultivars and are a valuable 

part of human diet owing to their relatively high levels of bioactive secondary metabolites 

(Keservani et al., 2010; Makri and Kintzios, 2008; Qian et al., 2016). For stable and 

reliable supplies of culinary herbs and leafy greens, more growers are adopting to 

controlled environment production, especially indoor vertical farms (IVFs), which has 

been proven to be a suitable alternative to open field and greenhouse production (Liaros 
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et al., 2016). However, crops cultivated in IVFs are not exposed to UV-B radiation, which 

is known to influence the accumulation of bioactive phenolic compounds. For this reason, 

there is increasing interest in the use of supplemental UV-B radiation in IVFs, which allow 

for year-round production of horticultural crops with high value bioactive compounds 

(Hogewoning et al., 2012; Stutte, 2016; Wargent, 2016). Although some studies have 

investigated the effects of UV-B radiation on secondary metabolites accumulation in 

plants, most were conducted in open field or greenhouse using color filters, and results 

varied tremendously in both biomass production and phenolic contents (Johnson et al., 

1999; Sakalauskaite et al., 2012, 2013). Furthermore, most studies only focused on the 

effects of UV-B radiation on secondary metabolites accumulation or yield, instead of 

studying on both bioactive compound accumulation and yield systematically (Johnson et 

al., 1999; Mosadegh et al., 2018).  

     Plants response to UV-B radiation is dependent on other environmental factors such as 

the PPFD (Schreiner et al., 2012). For example, Behn et al. (2010) reported that UV-B 

radiation can compensate for the reduced accumulation of monoterpene concentration in 

peppermint (Mentha x piperita) leaves (controlled environment) grown under low PPFD 

(550 µmol·m-2·s-1) compared to high PPFD (1,150 µmol·m-2·s-1). However, after being 

treated with UV-B radiation of 0.65 kJ·m-2·h-1 (controlled environment), concentration of 

quercetin derivatives in arabidopsis (Arabidopsis thaliana) plants was significantly greater 

under high PPFD (1,310 µmol·m-2·s-1) compared to low PPFD (540 µmol·m-2·s-1) (Götz 

et al., 2010). In our previous study, PPFD was positively correlated with the phytonutrient 

concentration including anthocyanin, phenolics, and flavonoids in green basil ‘Improved 
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Genovese Compact’ plants (Dou et al., 2018). However, little information is known about 

the interactive effects between supplemental UV-B radiation and PPFD on the growth and 

accumulation of phenolic compounds in basil plants grown under controlled environment 

with artificial lighting. 

     In this study, we conducted two experiments to investigate the optimal UV-B radiation 

dose and its combination with different PPFD levels. In the first experiment, we exposed 

two cultivars of basil plants to five pre-harvest supplemental UV-B radiation doses to 

investigate the responses of basil plants to UV-B radiation at two PPFDs in IVFs. 

Photosynthetic photon flux density of 224 µmol·m-2·s-1 was selected for basil plants based 

on our previous study (Dou et al., 2018), and a lower PPFD, 160 µmol·m-2·s-1, was 

selected to investigate if UV-B radiation can compensate for the reduced accumulation of 

phytonutrients in basil plants grown under low PPFD. In the second experiment, we 

investigated responses of four Brassica plant species to five pre-harvest supplemental UV-

B radiation doses. Accordingly, an optimal UV-B radiation dose and PPFD level was 

determined to achieve enhanced accumulation of secondary plant metabolites in basil and 

Brassica plants without significant yield reduction. 

5.3 Materials and Methods 

5.3.1 Plant materials and growing conditions 

     Two experiments were conducted in a walk-in growth room in Texas AgriLife 

Research Center at El Paso, TX. The first experiment was conducted to investigate the 
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interactive effects between pre-harvest supplemental UV-B radiation and PPFD on basil 

(Ocimum basilicum) ‘Improved Genovese Compact’ (green) and ‘Red Rubin’ (purple) 

(Johnny’s Selected Seeds, Winslow, ME, USA). The second experiment was conducted 

to investigate different pre-harvest supplemental UV-B radiation doses on the growth and 

nutritional quality in green kale ‘Siberian’ (Brassica napus pabularia), red kale ‘Scarlet’ 

(Brassica oleracea), green mustard ‘Amara’ (Brassica carinata), and red mustard ‘Red 

Giant’ (Brassica juncea) plants (Johnny’s Selected Seeds, Winslow, ME, USA). In both 

experiments, one seed per cell was sown in 72 square cell trays (length 3.86 cm; height 

5.72 cm; volume 59 cm3) with Metro-Mix® 360 (peat moss 41%, vermiculite 34%, pine 

bark 25%, Sun Gro® Horticulture, Bellevue, WA, USA). All trays were put under mist in 

a greenhouse for germination. The temperature under the mist was maintained at 

32.7ºC/22.2ºC day/night. Seedlings were moved out from the mist after emergence of 

cotyledons and grown in a greenhouse for two weeks. The temperature and relative 

humidity in the greenhouse were maintained at 29.1ºC/21.6ºC and 48%/66% day/night, 

respectively. When one pair of fully expanded true leaves was observed, plant seedlings 

were transplanted into square pots (length 9.52 cm, height 8.26 cm, and volume 574 cm3) 

filled with the Metro-Mix® 360, and uniform plants were selected and moved to the walk-

in growth room for the various UV-B and PPFD treatments. 

      After transplanting, multi-layer cultivating shelves were used with mechanical mini 

fans (LS1225A-X, AC Infinity, City of Industry, CA, USA) circulating air to achieve 

uniform temperatures across treatments. Plant canopy temperatures in basil, kale, and 

mustard plants were maintained at 23.9ºC/21.2ºC, 23.8ºC/21.1ºC, and 23.3ºC/20.1ºC 
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day/night, respectively. All plants were sub-irrigated as needed with a nutrient solution 

containing 1.85 g·L-1 (277.5 mg·L-1 N) 15N-2.2P-12.5K (Peters 15-5-15 Ca-Mg Special, 

The Scotts Company, Marysville, OH, USA), at electrical conductivity of 2.0 dS·m-1 and 

pH of 6.0.  

5.3.2 Supplemental UV-B radiation and PPFD treatments 

Exp. I: 

     Uniform green and purple basil plants were grown under two PPFDs of 160 and 224 

µmol·m-2·s-1 with a 16-h photoperiod provided by cool white fluorescent lamps (Philips 

Lighting, Somerset, NJ, USA). Two or five days prior to harvest, UV-B lamps were 

switched on and basil plants were exposed with one of the five UV-B radiation doses 

including no supplemental UV-B radiation (control), 1 h·d-1 for 2 days (1H2D), 2 h·d-1 for 

2 days (2H2D), 1 h·d-1 for 5 days (1H5D), or 2 h·d-1 for 5 days (2H5D) at 16.0 µmol·m-

2·s-1 (equal to 18.7 kJ·m-2·h-1). There were ten treatments (2 PPFD x 5 UV-B) and 12 plants 

per treatment. Supplemental UV-B radiation treatments were applied at 8:00 am using 

Philips TL 40W/12 and 20W/12 UV-B broadband lamps (wavelength: 270-400 nm, 

Svetila.com d.o.o., Domzale, Slovenia, EU). The UV-B light intensity and PPFD in each 

treatment were measured 15 cm underneath the lamps at 9 spots using MU-200 UV 

radiation meter (Apogee Instruments, Logan, UT, USA) and PS-100 spectroradiometer 

(Apogee Instruments, Logan, UT, USA), respectively, before placing the plants. To 

minimize the disproportionate light distribution within each treatment, all plants were 

systematically rearranged every three days. All plants were harvested when plant height 
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reached about 25 cm. The green and purple basil plants were harvested at 19 and 23 days 

after transplanting (DAT), respectively, equivalent to 40 and 42 days after sowing (DAS), 

respectively.  

Exp. II: 

     Uniform kale and mustard plants were grown under the same PPFD level of 224 

µmol·m-2·s-1 with a 16-h photoperiod provided by cool white fluorescent lamps (Philips 

Lighting, Somerset, NJ, USA). Lower UV-B radiation doses compared to Exp. I were used 

in this experiment. One to three days prior to harvest, UV-B lamps were switched on and 

plants were exposed with one of the five UV-B radiation doses including no supplemental 

UV-B radiation (control), 0.5 h·d-1 for 1 day (0.5H1D), 1 h·d-1 for 1 day (1H1D), 1 h·d-1 

for 2 days (1H2D), or 1 h·d-1 for 3 days (1H3D) at 16.0 µmol·m-2·s-1. All the other 

environmental conditions were the same as Exp. I and plants were harvested when plant 

height reached about 25 cm. Green and red kale plants were harvested at 17 and 27 DAT 

(34 and 46 DAS), respectively. Green and red mustard were both harvested at 21 DAT (35 

DAS).  

5.3.3 Measurements  

1. Gas-exchange rate, SPAD index, and chlorophyll fluorescence 

     A portable gas exchange analyzer (CIRAS-3, PP Systems International, Amesbury, 

MA, USA) was used to measure the gas exchange rate, including net photosynthetic rate 

(Pn), transpiration rate (E), and stomatal conductance (Gs) of plant leaves at harvest. A 

PLC3 leaf cuvette with LED light unit was used. The PPFD, temperature, relative air 



 

 
114 

 

humidity, and CO2 concentration inside the leaf cuvette were set at 800 µmol·m-2·s-1, 

25ºC, 50%, and 390 µmol·mol-1, respectively. The third pair of leaves from the top was 

used for measuring gas exchange rate and measurements were taken when the net 

photosynthetic rate reached a steady state. 

     Soil plant analysis development (SPAD) index of plant leaves was recorded at harvest 

to quantify the relative chlorophyll content of basil leaves using chlorophyll meter SPAD-

502 (Konica-Minolta cooperation, Ltd., Osaka, Japan). The third pair of leaves from the 

top were measured for SPAD. Three measurements were taken for each leaf and the 

average was recorded for data analysis.  

     Chlorophyll fluorescence of plant leaves was measured at harvest using a pocket Plant 

Efficiency Analyzer chlorophyll fluorimeter (PEA, Hansatech Instruments Ltd., Norfolk, 

UK). The leaves were dark adapted for at least 30 min prior to taking measurements. 

Minimal fluorescence values in the dark-adapted state (F0) were obtained by application 

of a low intensity red LED light source (627 nm), whereas maximal fluorescence values 

(Fm) were measured after applying a saturating light pulse of 3,500 μmol·m-2·s-1, and 

maximum quantum use efficiency of photosystem II (PSII) in the dark-adapted state was 

calculated as Fv/Fm = (Fm-F0)/Fm. The performance index (PI ABS, where “ABS” specifies 

that the reaction centers’ density is expressed per absorption), dissipation of energy per 

cross section (DI0/CS), trapped energy flux per cross section (TR0/CS), and electron 

transport flux per cross section (ET0/CS) parameters were calculated using the PEA Plus 

software (V1.10, Hansatech Instruments Ltd., Norfolk, UK). 
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2. Growth parameters 

     Growth parameters such as plant height, width, number of internodes, leaf area, and 

plant yield including shoot fresh weight (FW) and dry weight (DW) were recorded at 

harvest. Plant width was calculated as the average of the widest point and its perpendicular 

width of the basil plant canopy, while leaf length and width in Brassica plants were 

recorded as plant height and width. Leaf area was measured using a leaf area meter (LI-

3100, LI-COR, Lincoln, NE, USA). Shoot DW was determined after the shoot tissues 

were dried at 80ºC in a drying oven (Grieve, Round Lake, IL, USA) for 3 days. Specific 

leaf area (leaf area per unit leaf dry weight) was calculated as an indicator of leaf thickness. 

3. Secondary plant metabolites  

     Five uniform plants were randomly selected for the measurements of concentrations of 

anthocyanin, phenolics, and flavonoids, and antioxidant capacity at harvest. Fresh plant 

leaves were collected in a cooler and immediately stored in a deep freezer (IU1786A, 

Thermo Fisher Scientific, Marietta, OH, USA) at -80ºC until phytochemical analyses.  

     Extraction. Approximately 2 g fresh plant leaves were ground in liquid nitrogen and 

extracted with 15 mL 1% acidified methanol at 4ºC in darkness. After overnight 

extraction, the mixture was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Fisher 

Scientific, Madison, WI, USA) at 13,200 rpm (26,669 ×g) for 15 min, and the supernatant 

was collected for phytochemical analyses (Xu and Mou, 2016), 2016).  

     Anthocyanin analysis. The absorbance of extracts was measured at 530 nm using a 

spectrophotometer (Genesys 10S ultraviolet/Vis, Thermo Fisher Scientific, Madison, WI, 
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USA), and the anthocyanin concentration was expressed as mg cyanidin-3-glucoside 

equivalent per 100 g FW of basil leaves using a molar extinction coefficient of 29,600 

(Connor et al., 2002). Since the extracts were freshly prepared from leaf tissues maintained 

at -80ºC and did not undergo extensive processing or significant browning, a pH 

differential method for anthocyanin content was considered unnecessary (Connor et al., 

2002).  

     Phenolics analysis. The total phenolics concentration of plant leaves was determined 

using the modified Folin-Ciocalteu reagent method described as the following: 100 μL 

extraction sample was added to a mixture of 150 μL distilled water and 750 μL 1/10 

dilution Folin-Ciocalteu reagent. After 6 min reaction, 600 μL 7.5% Na2CO3 was added 

and the mixture was incubated at 45°C in water bath for 10 min before the absorbance was 

measured at 725 nm using a microplate reader (ELx800, BioTek, Winooski, VT, USA). 

Results were expressed as mg of gallic acid equivalent per g FW of basil leaves (Xu and 

Mou, 2016).  

     Flavonoids analysis. The total flavonoid concentration of plant leaves was determined 

as the following: 20 µL extraction sample was added to a mixture of 85 µL distilled water 

and 5 µL 5% NaNO2. After 6 min reaction, a 10 µL of 10% AlCl3·6H2O was added to the 

mixture. After another 5 min reaction, 35 µL of 1M NaOH and 20 µL distilled water were 

added to the mixture and the absorbance was measured at 520nm using the aforementioned 

microplate reader (Dou et al., 2018). The results were expressed as mg of (+)-catechin 

hydrate equivalent per g FW of basil leaves. 
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     Antioxidant capacity analysis. The antioxidant capacity of plant leaves was measured 

using the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method 

(Arnao et al., 2001) described as the following: 150 µL basil leave extract was added to 

2.85 mL of ABTS+ solution and incubate at room temperature for 10 min. The absorbance 

of mixed solution was measured at 734 nm using the aforementioned spectrophotometer. 

Antioxidant capacity of basil leaves was expressed as mg of Trolox equivalent antioxidant 

capacity per 100 g FW of basil leaves. 

5.3.4 Statistical analysis 

Exp. I:  

     The experiment was arranged in a two factors factorial design. Five plants per treatment 

were randomly selected for measurements. A two-way ANOVA with two factors, 

supplemental UV-B radiation and PPFD, and their interaction were analyzed separately 

for green basil and purple basil plants. After verifying the significance of the two main 

effects and their interaction, a one-way ANOVA among all treatments was conducted on 

each variable separately using Student’s t method. Some data were pooled from two 

PPFDs because effect of PPFD was not statistically significant. The correlation test 

between parameters was conducted using Pairwise Correlations method. All statistical 

analyses were performed using JMP software (Version 13, SAS Institute Inc., Cary, NC, 

USA). Differences among means were considered significant at p<0.05. 
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Exp. II:  

     One-way ANOVA among all treatments was conducted on each cultivar using 

Student’s t method. The γ between parameters was conducted using Pairwise Correlations 

method. All statistical analyses were performed using JMP software (Version 13, SAS 

Institute Inc., Cary, NC, USA). Differences among means were considered significant at 

p<0.05.  

5.4 Results  

5.4.1 Gas exchange rate, SPAD, and chlorophyll fluorescence 

Exp. I:  

     Gas exchange rates including Pn, E, and Gs in green and purple basil leaves decreased 

under UV-B treatments, while PPFD showed no effects (Table 15). Treatment 2H5D 

decreased Pn, E, and Gs in green/purple basil leaves by 68%/70%, 55%/68%, and 65%/76% 

compared to control, respectively. Similarly, UV-B radiation decreased SPAD readings in 

green and purple basil leaves by 9-15% and 6-8%, respectively, while PPFD showed no 

effects on green basil plants but increased the SPAD in purple basil plants (Fig. 14). 

     All supplemental UV-B radiation treatments decreased Fv/Fm and PI ABS in green basil 

plants, while in purple basil plants, Fv/Fm showed no differences between control and 

1H2D treatment, and PI ABS decreased by the highest UV-B radiation dose, 2H5D 

treatment (Fig. 15A-B). Similarly, the decreases of TR0/CS and ET0/CS were only 

observed in green basil plants, while purple basil plants showed no differences among all 

treatments (Fig. 15D-E). In comtrast, DI0/CS in purple basil plants significantly increased 
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with higher UV-B radiation dose treatments, 1H5D and 2H5D, while in green basil plants, 

no treatment effect was observed (Fig. 15C). Chlorophyll fluorescence parameters in 

green or purple basil plants were not affected by PPFD levels. 

Table 15. Net photosynthetic rate (Pn), transpiration rate (E), and stomatal 
conductance (Gs) of green basil ‘Improved Genovese Compact’ and purple basil ‘Red 
Rubin’ plants under different supplemental UV-B radiation treatments. The five 
supplemental UV-B radiation treatments included no supplemental UV-B radiation 
(control), 1 h·d-1 for 2 days (1H2D), 2 h·d-1 for 2 days (2H2D), 1 h·d-1 for 5 days 
(1H5D), and 2 h·d-1 for 5 days (2H5D). Data were pooled from two photosynthetic 
photon flux density (PPFD) treatments. 

Cultivar Treatment Pn  
(µmol·m-2·s-1) 

E 
(mmol·m-2·s-1) 

Gs 
(mmol·m-2·s-1) 

Green 
basil  

Control 13.2 az 2.76 a 130 a 

1H2D 7.8 b 1.74 bc 79 b 

2H2D 8.5 b 1.93 b 93 ab 

1H5D 7.4 b 1.82 b 71 b 

2H5D 4.2 c 1.24 c 46 c 

Purple 
basil 

Control 7.4 A 2.73 A 131 A 

1H2D 4.3 B 1.49 B 60 B 

2H2D 3.1 C 1.20 B 42 CD 

1H5D 3.8 BC 1.33 B 49 BC 

2H5D 2.2 D 0.86 C 31 D 

z Means followed by the same lower/upper case letters are not significantly different, 
according to Student’s t mean comparison (P < 0.05). 
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Figure 14. Soil plant analysis development (SPAD) readings of green basil ‘Improved 
Genovese Compact’ and purple basil ‘Red Rubin’ plants at different photosynthetic 
photon flux density (PPFD) and supplemental UV-B radiation treatments. There 
were 10 treatments created by the combination of two PPFDs of 160 and 224 µmol·m-

2·s-1 and five UV-B radiation treatments including no supplemental UV-B radiation 
(control), 1 h·d-1 for 2 days (1H2D), 2 h·d-1 for 2 days (2H2D), 1 h·d-1 for 5 days 
(1H5D), and 2 h·d-1 for 5 days (2H5D). Means followed by the same lower/upper case 
letters are not significantly different, according to Student’s t mean comparison (P < 
0.05). Bars represent standard errors. 
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Figure 15. Chlorophyll fluorescence parameters, including maximal photochemical 
efficiency of Photosystem II (Fv/Fm) (A), performance index (PI ABS, where “ABS” 
specifies that the reaction centers’ density is expressed per absorption) (B), 
dissipation of energy per cross section (DI0/CS) (C), trapped energy per cross section 
(TR0/CS) (D), and electron transport flux per cross section (ET0/CS) (E) of green 
basil ‘Improved Genovese Compact’ and purple basil ‘Red Rubin’ plants under 
different supplemental UV-B radiation treatments including control, 1H2D, 2H2D, 
1H5D, 2H5D. Data were pooled from two photosynthetic photon flux density (PPFD) 
treatments. Means followed by the same lower/upper case letters are not significantly 
different, according to Student’s t mean comparison (P < 0.05). Bars represent 
standard errors. 
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Exp. II:  

     Supplemental UV-B radiation decreased Pn in all tested plant species except red 

mustard plants (Fig. 16A). In green kale plants, Pn was the highest under control treatment, 

followed by 0.5H1D, 1H1D, and 1H2D treatments, and the lowest under 1H3D treatment. 

In red kale plant, Pn decreased by 1H1D, 1H2D, and 1H3D treatments, but showed no 

difference between 0.5H1D or control treatments. In green mustard plants, Pn decreased 

by 1H3D treatment. Supplemental UV-B radiation decreased E regardless of cultivar, with 

the highest under control treatment, and the lowest under 1H3D treatment (Fig. 16B).  

Supplemental UV-B radiation did not affect Gs in green or red kale plants. In green 

mustard plants, Gs was the lowest under 1H1D treatment and showed no differences 

among other treatments, while in red mustard plants, it was higher under control and 1H2D 

treatments compared to 0.5H1D, 1H1D, and 1H3D treatments (Fig. 16C). Supplemental 

UV-B radiation showed no effects on SPAD readings regardless of plant cultivar (data not 

shown). 

     Lower UV-B radiation dose treatments, namely 0.5H1D and 1H1D, did not affect 

Fv/Fm in Brassica species compared to control, which higher UV-B radiation dose 

treatment, namely 1H3D increased Fv/Fm regardless of cultivar (Fig. 17A). Supplemental 

UV-B radiation did not affect PI ABS in green or red kale plants, while 1H1D and 0.5H1D 

treatments increased PI ABS in green and mustard plants, respectively (Fig. 17B). In green 

kale and green mustard plants, DI0/CS both decreased under 1H1D treatment and 

increased under 1H3D treatment (Fig. 17C). In red kale and green mustard plants, TR0/CS 

decreased under 1H2D, 1H3D and 0.5H1D, 1H1D, 1H3D treatments, respectively (Fig. 
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17D). Supplemental UV-B radiation did not affect ET0/CS regardless of cultivar (data not 

shown). 

 

Figure 16. Net photosynthetic rate (Pn) (A), transpiration rate (E) (B), and stomatal 
conductance (Gs) (C) of green kale ‘Siberian’, red kale ‘Scarlet’, green mustard 
‘Amara’, and red mustard ‘Red Giant’ plants under different supplemental UV-B 
radiation treatments including no supplemental UV-B radiation (control), 0.5 h·d-1 
for 1 day (0.5H1D), 1 h·d-1 for 1 day (1H1D), 1 h·d-1 for 2 days (1H2D), and 1 h·d-1 
for 3 days (1H3D). Means followed by the same lowercase letter are not significantly 
different, according to Student’s t mean comparison (P < 0.05). Bars represent 
standard errors. 
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Figure 17. Chlorophyll fluorescence parameters, including maximal photochemical 
efficiency of Photosystem II (Fv/Fm) (A), performance index (PI ABS, where “ABS” 
specifies that the reaction centers’ density is expressed per absorption) (B), 
dissipation of energy per cross section (DI0/CS) (C), and trapped energy per cross 
section (TR0/CS) (D) of green kale ‘Siberian’, red kale ‘Scarlet’, green mustard 
‘Amara’, and red mustard ‘Red Giant’ plants under different supplemental UV-B 
radiation treatments including control, 0.5H1D, 1H1D, 1H2D, 1H3D. Means 
followed by the same lowercase letter are not significantly different, according to 
Student’s t mean comparison (P < 0.05). Bars represent standard errors. 
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5.4.2 Growth parameters and plant yield  

Exp. I:  

     Supplemental UV-B radiation decreased plant height, width, and leaf area in both green 

and purple basil plants, and the detriment increased with increasing UV-B radiation doses 

(Table 16). Specifically, under high PPFD (224 µmol·m-2·s-1), plant height of both green 

and purple basil plants was the highest under control and 1H2D treatments, followed by 

2H2D and 1H5D treatments, and the lowest under 2H5D treatment. Leaf area of 

green/purple basil plants reduced under all supplemental UV-B radiation treatments, 

which was 14%/17%, 28%/30%, 28%/34%, and 44%/44% lower under 1H2D, 2H2D, 

1H5D, and 2H5D treatments, respectively, compared to control. In contrast, leaf thickness 

of both cultivars increased with supplemental UV-B radiation, expressed as a decrease in 

specific leaf area (Table 16). Under higher UV-B exposure doses such as 1H5D and 2H5D 

treatments, basil plants also showed leaf bronzing, chlorosis, waxy appearance, and 

premature leaf defoliation (Fig. 18).  

     Shoot FW and DW of green and purple basil plants generally decreased under 

supplemental UV-B radiation, and interactions between UV-B radiations and PPFD in 

shoot FW (P = 0.01) and shoot DW (P = 0.02) were observed in purple basil plants, while 

only interactions in shoot DW were observed in green basil plants (P = 0.03). Specifically, 

under low PPFD (160 µmol·m-2·s-1), 1H2D UV-B treatment showed no effects on shoot 

FW in green basil plants compared to control, so as the 1H2D and 1H5D treatments in 
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purple basil plants (Fig. 19A-B). Supplemental UV-B radiation significantly reduced 

shoot FW of basil plants under high PPFD (224 µmol·m-2·s-1) in both cultivars.  

     Plant height, leaf area, leaf thickness, and shoot FW and DW in both green and purple 

basil plants significantly increased at high PPFD (Table 16, Fig. 19A-B). Under control 

treatment without supplemental UV-B radiation, high PPFD (224 µmol·m-2·s-1) increased 

plant height, leaf area, leaf thickness, and shoot FW and DW in green and purple basil 

plants by 16%/12%, 24%/21%, 15%/9%, 44%/34%, and 59%/35%, respectively, 

compared to low PPFD (160 µmol·m-2·s-1). 

Table 16. Two-way ANOVA results for analyzing effects of photosynthetic photon 
flux density (PPFD), supplemental UV-B radiation, and their interaction 
(PPFD×UV-B) on plant height, width, leaf area, and specific leaf area of green basil 
‘Improved Genovese Compact’ and purple basil ‘Red Rubin’ plants. 

Cultivar Treatment Height 
(cm) 

Width 
(cm) 

Leaf Area 
(cm2) 

Specific Leaf Area 
(cm2·g-1) 

Green basil 
PPFD *** ** *** *** 
UV-B  *** *** *** *** 
PPFD×UV-B  NS NS NS ** 

Purple 
basil 

PPFD *** NS *** *** 
UV-B  *** *** *** *** 
PPFD×UV-B  NS NS * NS 

Asterisks (*) indicate significant differences (*P < 0.05; **P < 0.01; ***P <0.001). NS 
indicates means are not significantly different among treatments (P < 0.05).   
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Figure 18. Green basil ‘Improved Genovese Compact’ and purple basil ‘Red Rubin’ 
plants under different photosynthetic photon flux density (PPFD) and supplemental 
UV-B radiation treatments at harvest. There were 10 treatments created by the 
combination of two PPFDs of 160 and 224 µmol·m-2·s-1 and five UV-B radiation 
treatments including control, 1H2D, 2H2D, 1H5D, 2H5D. 
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Figure 19. Shoot fresh weight and dry weight of green basil ‘Improved Genovese 
Compact’ plants (A) and purple basil ‘Red Rubin’ plants (B) under different 
photosynthetic photon flux density (PPFD) and supplemental UV-B radiation 
treatments. There were 10 treatments created by the combination of two PPFDs of 
160 and 224 µmol·m-2·s-1 and five UV-B radiation treatments including control, 
1H2D, 2H2D, 1H5D, 2H5D. Means followed by the same lower/upper case letter are 
not significantly different, according to Student’s t mean comparison (P < 0.05). Bars 
represent standard errors. 

Exp. II:  

     Supplemental UV-B radiation showed no effects on plant height, width, leaf area, leaf 

thickness, shoot FW, or shoot DW regardless of cultivar, except 0.5H1D treatment 

increased the shoot DW in green mustard plants (data not shown).  
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5.4.3 Secondary plant metabolites accumulation and antioxidant capacity 

Exp. I:  

     Supplemental UV-B radiation enhanced phenolic compounds accumulation in basil 

plants, especially flavonoids concentration in green basil leaves, varying from 80% to 

169% compared to control, while anthocyanin and phenolics increased by 9-23% and 28-

126%, respectively (Table 17). Anthocyanin and flavonoid concentrations in green basil 

plants were not influenced by PPFD, while phenolics concentration increased with higher 

PPFD (Table 17). In purple basil plants, only 2 h·d-1 UV-B treatment enriched 

concentrations of phenolics and flavonoids, while UV-B radiation did not affect 

anthocyanin concentration (Table 17). Specifically, phenolics and flavonoids 

concentrations in purple basil plants increased by 29-63% and 37-79% under 2H2D and 

2H5D treatments, respectively. High PPFD (224 µmol·m-2·s-1) increased anthocyanin and 

phenolics concentrations in purple basil plants but showed no effects on flavonoid 

concentration (Table 17). 

     Total amounts of anthocyanin, phenolics, and flavonoids per plant were calculated by 

multiplying the concentrations of anthocyanin, phenolics, and flavonoids by leaf FW per 

plant (Table 4). In green basil plants grown under low PPFD (160 µmol·m-2·s-1), total 

amount of anthocyanin decreased by 23% under treatment 2H5D, while total amount of 

phenolics increased by 49% under treatment 2H5D, and total amount of flavonoids 

increased by 73-79% under treatments 1H2D, 1H5D, and 2H5D (Table 4). In green basil 

plants grown under high PPFD (224 µmol·m-2·s-1), total amount of anthocyanin decreased 
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by 18-39% under treatments 1H2D, 1H5D, and 2H5D, and total amount of phenolics 

decreased by 15% under treatment 2H5D, while total amount of flavonoids increased by 

43-44% under treatments 1H2D and 1H5D (Table 4). In purple basil plants, all 

supplemental UV-B radiation treatments showed negative or no effects on the total amount 

of phenolic compounds regardless of PPFD (Table 4). 

     Antioxidant capacity in green basil plants increased under all supplemental UV-B 

radiation treatments, while it only increased under 2 h·d-1 UV-B treatment in purple basil 

plants (Fig. 20A). Antioxidant capacity in both green and purple basil plants were 

positively related to UV-B radiation doses (Fig. 20A). In contrast, purple basil plants after 

1 h·d-1 UV-B radiation treatments (1H2D and 1H5D) showed no relationship between 

antioxidant capacity and supplemental radiation dose (P = 0.1994), while plants after 2 

h·d-1 UV-B radiation treatments (2H2D and 2H5D) showed a significant correlation. 

     Correlations between antioxidant capacity with concentrations of phenolic compounds 

were analyzed in green and purple basil plants. In green basil plants, concentrations of 

anthocyanin, phenolics, and flavonoids were all positively related to antioxidant capacity 

(Fig. 21A). In purple basil plants, concentrations of phenolics and flavonoids were 

positively related to antioxidant capacity, while anthocyanin concentration showed no 

relationship (P = 0.8812) (Fig. 21B). 
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Table 17. Anthocyanin concentration, phenolics concentration, and flavonoids 
concentration in green basil ‘Improved Genovese Compact’ and purple basil ‘Red 
Rubin’ plants at different photosynthetic photon flux density (PPFD) and 
supplemental UV-B radiation treatments. There were 10 treatments created by the 
combination of two PPFDs of 160 and 224 µmol·m-2·s-1 and five UV-B radiation 
treatments including control, 1H2D, 2H2D, 1H5D, 2H5D. 

Cultivar Treatment 
Anthocyanin 
Concentration 

(mg·100g-1 FW) 

Phenolics 
Concentration 
(mg·g-1 FW) 

Flavonoids 
Concentration 
(mg·g-1 FW) 

Green 
Basil 

160_ Control 3.19 dz 1.10 e 0.45 e 
160_1H2D 3.68 abcd 1.41 de 0.92 cd 
160_2H2D 3.92 a 1.48 d 0.81 d 
160_1H5D 3.49 abcd 1.68 cd 1.00 abcd 
160_2H5D 3.87 ab 2.49 a 1.21 a 
224_ Control 3.29 cd 1.38 de 0.54 e 
224_1H2D 3.39 bcd 2.06 b 0.97 bcd 
224_2H2D 3.78 abc 1.95 bc 0.99 abcd 
224_1H5D 3.35 bcd 2.13 ab 1.15 abc 
224_2H5D 3.89 ab 2.34 ab 1.19 ab 
PPFD NS *** NS 
UV-B  ** *** *** 
PPFD×UV-B  NS NS NS 

Purple 
Basil 

160_ Control 10.63 A 2.06 CD 0.94 CD 
160_1H2D 11.02 A 1.63 E 0.82 D 
160_2H2D 10.84 A 2.66 B 1.41 B 
160_1H5D 10.74 A 2.18 C 1.14 C 
160_2H5D 10.75 A 3.35 A 1.68 A 
224_ Control 10.97 A 2.03 CD 1.04 C 
224_1H2D 11.43 A 1.93 CD 1.09 C 
224_2H2D 10.97 A 2.62 B 1.49 B 
224_1H5D 10.85 A 1.85 DE 1.03 C 
224_2H5D 11.07 A 2.85 B 1.42 B 
PPFD * * NS 
UV-B NS *** *** 
PPFD×UV-B NS *** ** 

z Means followed by the same lower/upper case letter are not significantly different, 
according to Student’s t mean comparison (P < 0.05).  
Asterisk (*) indicates significant differences (*P < 0.05; **P < 0.01; ***P < 0.001). NS 
indicates means are not significantly different, according to Student’s t mean comparison 
(P < 0.05).
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Table 18. Total amount of anthocyanin, phenolics, and flavonoids per plant in green 
basil ‘Improved Genovese Compact’ and purple basil ‘Red Rubin’ plants at different 
photosynthetic photon flux density (PPFD) and supplemental UV-B radiation 
treatments. There were 10 treatments created by the combination of two PPFD of 
160 and 224 µmol·m-2·s-1 and five UV-B radiation treatments including Control, 
1H2D, 2H2D, 1H5D, 2H5D. 

Cultivar Treatment 
Total Amount of 

Anthocyanin 
(mg·plant-1) 

Total Amount of 
Phenolics 

(mg·plant-1) 

Total Amount of 
Flavonoids 

(CHE mg·plant-1) 

Green 
basil 

160_Control 0.47 cdez 16.0 d  6.6 d  
160_1H2D 0.47 cde 18.0 d 11.8 b 
160_2H2D 0.42 def  16.0 d 8.8 cd 
160_1H5D 0.40 ef 19.2 cd 11.4 bc 
160_2H5D 0.36 f 23.8 bc 11.6 bc 
224_Control 0.67 a 28.4 ab 10.8 bc 
224_1H2D 0.55 bc 33.2 a 15.4 a 
224_2H2D 0.59 ab 25.6 b 12.8 ab 
224_1H5D 0.52 bcd 31.0 a 15.6 a 
224_2H5D 0.41 ef 24.0 bc 12.2 b 

Purple 
basil 

160_Control 0.63 C  12.0 BC  5.6 DE  
160_1H2D 0.58 D 8.6 E 4.2 F 
160_2H2D 0.51 E 12.6 BC 6.0 CDE 
160_1H5D 0.57 D 11.0 CD 5.2 EF 
160_2H5D 0.38 G 11.4 BC 5.6 DE 
224_Control 0.83 A 15.4 A 8.0 A 
224_1H2D 0.72 B 12.2 BC 7.0 ABC 
224_2H2D 0.57 D 13.0 B 7.2 AB 
224_1H5D 0.54 D 9.4 DE 5.4 DE 
224_2H5D 0.47 F 12.2 BC 6.4 BCD 

z Means followed by the same lower/upper case letters are not significantly different, 
according to Student’s t mean comparison (P < 0.05). 
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Figure 20. Correlations between antioxidant capacity with five supplemental UV-B 
radiation treatments including control, 1H2D, 2H2D, 1H5D, 2H5D (A), control and 
1 h·d-1 UV-B radiation treatments (B), and control and 2 h·d-1 UV-B radiation 
treatments (C) in green basil ‘Improved Genovese Compact’ and purple basil ‘Red 
Rubin’ plants. Antioxidant capacity of basil leaves is expressed as mg of Trolox 
equivalent antioxidant capacity (TEAC) per 100 g FW basil leaves. Data were pooled 
from two photosynthetic photon flux density (PPFD) treatments. Means followed by 
the same lower/upper case letter are not significantly different, according to 
Student’s t mean comparison (P < 0.05). Bars represent standard errors. Dash lines 
show regression between antioxidant capacity with supplemental UV-B radiation 
dose according to Pairwise Correlation method. 
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Figure 21. Correlations between antioxidant capacity and concentrations of phenolic 
compounds including anthocyanin, phenolics, and flavonoids in green basil plants 
(A), and purple basil plants (B). Antioxidant capacity of basil leaves is expressed as 
mg of Trolox equivalent antioxidant capacity (TEAC) per 100 g FW basil leaves. 
Dash lines show regression between concentrations of phenolic compounds with 
antioxidant capacity according to Pairwise Correlation method. 

Exp. II:  

     Supplemental UV-B radiation showed no effects on concentrations of anthocyanin, 

phenolics, or flavonoids in green or red kale plants, except 0.5H1D treatment increased 

anthocyanin concentration in green kale plants (Table 19). In green mustard plants, 

concentrations of phenolics and flavonoids showed a similar trend, which were the highest 

under 1H2D and 1H3D treatments, followed by the 0.5H1D and 1H1D treatments, and the 
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lowest under control, while anthocyanin concentration was not affected by UV-B 

treatments (Table 19). In contrary, concentrations of phenolics and flavonoids in red 

mustard plants were not affected by UV-B treatments, while anthocyanin concentration 

increased under 0.5H1D and 1H1D treatments (Table 19). 

     Antioxidant capacity in green kale and green mustard plants both increased under 

1H2D and 1H3D treatments by 33%-47% and 54%-71% compared to plants grown under 

control, respectively, and showed no differences among control, 0.5H1D, or 1H1D 

treatments (Fig. 22). In red kale plants, antioxidant capacity was the highest under 1H3D 

treatment, followed by 1H2D treatment, and showed no differences among control, 

0.5H1D, or 1H1D treatments (Fig. 22). Antioxidant capacity in green kale, red kale, and 

green mustard plants was all positively correlated with supplemental UV-B radiation 

doses, while not affected by UV-B treatments in red mustard plants (Fig. 22). 

Table 19. One-way ANOVA results for analyzing effects of supplemental UV-B 
radiation on concentrations of anthocyanin, phenolics, and flavonoids in green kale 
‘Siberian’, red kale ‘Scarlet’, green mustard ‘Amara’, and red mustard ‘Red Giant’ 
plants. 

Treatment Parameters Green kale Red kale Green mustard Red mustard 

UV-B 
Anthocyanin ** NS NS ** 
Phenolics  NS NS *** NS 
Flavonoids  NS NS ** NS 

Asterisks (*) indicate significant differences (**P < 0.01; ***P < 0.001). NS indicates 
means are not significantly different, according to Student’s t mean comparison (P < 0.05). 
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Figure 22. Correlations between antioxidant capacity with five supplemental UV-B 
radiation treatments including control, 0.5H1D, 1H1D, 1H2D, and 1H3D in green 
kale ‘Siberian’, red kale ‘Scarlet’, green mustard Amara’, and red mustard ‘Red 
Giant’ plants. Means followed by the same lowercase letter are not significantly 
different for each cultivar, according to Student’s t mean comparison (P < 0.05). Bars 
represent standard errors. Dash lines show regression between antioxidant capacity 
with supplemental UV-B radiation dose according to Pairwise Correlation method. 

5.5 Discussion 

5.5.1 Impacts of UV-B and PPFD on photosynthesis, SPAD, and chlorophyll 

fluorescence 

     Photosynthesis is one of the most sensitive metabolic processes in plants responding to 

environmental condition changes, such as supplemental UV-B radiation and PPFD. In this 

study, decreased Pn in basil and Brassica leaves under UV-B radiation was mainly caused 

by direct damage of PSII components, which led to reduced photosynthetic capacity, and 

subsequently decreased Gs (Sullivan and Teramura, 1990; Lidon et al., 2012; Yadav et al., 

2017). Meanwhile, relative chlorophyll content in basil leaves also decreased under UV-
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B radiation treatments (Fig. 14), either through degradation or inhibition of enzymes 

involved in the chlorophyll biosynthetic pathways (Yadav et al., 2017). Decreased gas 

exchanged rate and SPAD readings in Exp. I compared to unaffected parameters in Exp. 

II suggested that plant responses to UV-B radiation are species/dose dependent (Table 15, 

Fig. 14&16).  

     Unaffected gas exchange rate by PPFD levels in basil leaves may be due to the large 

variation caused by UV-B radiation at both PPFD treatments: Pn of green basil leaves 

ranged from 3.7 to 12.6 µmol·m-2·s-1 at low PPFD (160 µmol·m-2·s-1), and ranged from 

4.8 to 13.8 µmol·m-2·s-1 at high PPFD (224 µmol·m-2·s-1). Compared to depressed 

photosynthesis and reduced chlorophyll content by UV-B radiation in this study, a meta-

analysis of field studies (more than 450 reports from 62 papers) showed that these 

parameters were not affected by supplemental UV-B radiation (Searles et al., 2001). 

Differences between our study (controlled environment with artificial lighting) and field 

studies (sunlight) were probably due to PPFD influencing the response of plants to UV-B 

treatments. Under controlled environment, due to the high cost of powering artificial 

lighting, much lower PPFDs are normally used compared to that of sunlight in open field. 

Accordingly, a depressed photochemical protection system of plants under low PPFD, 

such as decreased leaf thickness and reduced concentrations of UV-absorbing agents, 

resulted in severe plant damage by UV-B radiation (Dou et al., 2018). 

     Chlorophyll fluorescence parameters provide precise and objective data with regard to 

photochemical efficiency and the processes of non-photochemical de-excitation involved 

in the conversion of light energy under different conditions (Strasser et al., 2000; 
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Mosadegh et al., 2018). Less depressed chlorophyll fluorescence activity in purple basil 

plants (Fig. 17A-B, Fig. 17D-E) clearly indicates its improved capacity to process excess 

UV-B energy through PSII compared to green basil plants (Rai and Agrawal, 2017). 

Meanwhile, uninfluenced DI0/CS under UV-B treatments in green basil plants suggests its 

inability to dissipate the absorbed UV-B radiation energy as harmless heat, even with the 

smallest UV-B radiation dose, 16.0 µmol·m-2·s-1 at 1 h·d-1 for 2 days, while purple basil 

plants after high UV-B radiation doses (1H5D and 2H5D treatments) coped with excess 

energy by increasing the rate of heat dissipation. Similarly, Mosadegh et al. (2018) also 

reported that the DI0/CS of green basil plants after 2-weeks supplemental UV-B radiation 

at 68 and 102 kJ·m-2·d-1 showed no difference from control, indicating a failure to dissipate 

UV-B energy as heat. Under lower UV-B radiation doses in Exp. II, the firstly decreased 

DI0/CS after 1-day UV-B treatment then increased DI0/CS after 2 or 3-days UV-B 

treatment in green kale and mustard plants indicated plants could adapt to UV-B radiation 

by improving their heat dissipation within 2 or 3 days (Fig. 17C).  

     Differences in chlorophyll fluorescence parameters between green and purple/red leaf 

plants may be due to higher concentrations of UV-protective antioxidants in purple/red 

leaves (Table 17, Fig. 22), which are known to provide plants with stronger protection 

from excess UV-B radiation (Takahashi and Badger, 2011). Noticeably, green basil plants 

after different UV-B radiation treatments at similar doses (2H2D and 1H5D treatments) 

showed no differences in Fv/Fm, PI ABS, TR0/CS, or ET0/CS, indicating that 

photochemistry responses of green basil plants to UV-B radiation are more dose dependent 
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instead of radiation patterns (different combinations of radiation period per day and 

radiation days), which is also thought to be true in purple basil plants.  

5.5.2 Impacts of UV-B and PPFD on plant growth and development  

     Plant leaf expansion is invariably inhibited by UV-B radiation and other leaf 

morphogenesis changes such as reduced leaf area, increased leaf thickness, and 

accumulation of leaf surface waxes are also observed across a number of plant species 

(Cen and Bornman, 1993; Jansen and Bornman, 2012; Wargent and Jordan, 2013). Similar 

to studies on other species, both green and purple basil plants in this study displayed a 

reduced leaf area with increased leaf thickness by supplemental UV-B radiation (Table 

16), which may provide plants improved tolerance to other stress factors, such as 

mechanical handling during postharvest (Wargent et al., 2009). Similarly, waxy 

appearance of leaf surface in both green and purple basil plants indicated increased 

epicuticular wax deposit in basil leaves (Kakani et al., 2003), which can also provide basil 

leaves protection from excess UV-B radiation and other adverse environmental 

conditions. 

     Internode length is a very sensitive growth parameter that responds to UV-B radiation 

(Zhao et al., 2003). Kaiserli (2018) showed that most cell-wall elongation genes induced 

by BRI1-EMS-SUPPRESSOR 1 are negatively regulated by UV-B radiation. Meanwhile, 

the biosynthesis and signaling of plant growth hormone auxin, a key regulator of stem 

elongation, was also suppressed in arabidopsis and coriander (Coriandrum sativum) after 

UV-B radiation, thereby reducing plant stem elongation and promoting a compact 
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phenotype (Fraser et al., 2017). Similarly, in this study, plant height was shorter under 

supplemental UV-B radiation compared to plants under control treatment with similar 

internode number (data not presented). 

     Decreased gas exchange rate, reduced leaf expansion, and inhibition of stem elongation 

of basil plants under supplemental UV-B radiation resulted in smaller plant size (Fig. 18) 

and decreased shoot FW and DW (Fig. 19A-B). The greater yield reduction by UV-B 

radiation under high PPFD (224 µmol·m-2·s-1) may be due to its taller plants, which 

shortened the distance between basil plants and UV-B light tube compared to low PPFD 

(160 µmol·m-2·s-1), resulting in increased UV-B radiation intensity sustained by basil 

plants. Plant responses to supplemental UV-B radiation including inhibited leaf expansion 

and stem elongation, increased leaf thickness, accumulation of leaf surface wax, and leaf 

defoliation serve together as a protective mechanism to protect basil plants from receiving 

excess UV-B radiation. 

     In Exp. II, there was a discrepancy between the effects of UV-B radiation on plant 

photosynthesis and growth. Although plant gas exchange rate decreased under 

supplemental UV-B radiation, plant growth parameters (i.e., leaf length, width, leaf area, 

leaf thickness) or biomass accumulation (i.e., shoot FW and DW) were not influenced, 

suggesting that photosynthesis was the most sensitive response and was primarily affected 

in plants after UV-B radiation. Combining results from Exp. I and Exp. II, supplemental 

UV-B radiation had negative or no effects on plant growth or yield depending on UV-B 

radiation doses, specifically, plant growth and yield won’t be decreased by preharvest, 

short term, and relatively low UV-B radiation dose treatment. 
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5.5.3 Impacts of UV-B and PPFD on phenolics accumulation and antioxidant capacity 

     Across a range of plant species, phenolic compounds, especially flavonoids, act as 

efficient UV-screening agents to reduce the excess UV light received by photosynthetic 

tissues to protect plant from possible harm (Takahashi and Badger, 2011; Logan et al., 

2015). Enhanced accumulation of phenolic compounds by UV-B treatments has been 

supported by a large body of experimental evidences (Agati and Tattini, 2010; Hatier et 

al., 2013), which was also confirmed in this study (Tables 17, 19). Upon supplemental 

UV-B radiation, gene expression of phenylalanine ammonia lyase (PAL) and chalcone 

synthase (CHS), two key molecular markers for phenolic compounds biosynthesis 

increased significantly (Fraser et al., 2017; Rodriguez-Calzada et al., 2019). Ghasemzadeh 

et al. (2016) also reported that a 13 kJ·m-2·h-1 post-harvest UV-B radiation for 4-10 h 

increased the total phenolic and flavonoid content by 16% and 85% in green basil plants, 

respectively, and no anthocyanin content was measured. Enhancement of flavonoids and 

phenolics by UV-B radiation was greater compared to the increase of anthocyanin in basil 

plants (Table 17). Consistently, improved antioxidant capacity by UV-B radiation was 

mainly attributed to concentrations of phenolics and flavonoids in both green and purple 

basil plants, and marginally to the anthocyanin concentration in green basil plants, while 

not related to the anthocyanin concentration in purple basil plants (Fig. 23A-B). Csepregi 

et al. (2017) also reported such differential regulation of different phenolic compounds by 

UV-B radiation, which was probably due to higher ROS-scavenging capacity of phenolics 

and flavonoids than anthocyanins. 
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     Responses of secondary metabolites accumulation to supplemental UV-B radiation in 

Brassica plants are species specific. Concentrations of phenolics and flavonoids in green 

mustard plants increased under UV-B radiation, whereas antioxidant capacity in green 

kale, red kale, and green mustard plants all increased under UV-B radiation (Fig. 22), 

indicating the synthesis of other antioxidants in kale plants were stimulated by UV-B 

radiation instead of phenolics and flavonoids. For example, Nasibi and M-Kalantari 

(2005) reported that the thiobarbituric acid reactive substances (TBARS, a reliable 

indicator of free radical formation in plant tissues), ascorbic acid, dehydroascorbic acid, 

and total ascorbate in kale plants increased significantly under supplemental pre-harvest 

UV-B radiation for 21 days, in addition to flavonoids. Similarly, the total phenolics, 

flavonoids, and ascorbic acid in broccoli plants increased by 14%-75%, 4%-13%, and 

67%-115%, respectively, after different pre-harvest UV-B radiation doses for 76 days 

(Topcu et al., 2015). Both studies reported enrichment of other phytochemicals by UV-B 

radiation in addition to phenolics and flavonoids, but both studies had significantly longer 

UV-B radiation periods than the present study, and neither of them characterized the 

effects of UV-B radiation on biomass accumulation. We postulate that low radiation dose 

and/or short radiation period is the reason of unaffected concentrations of phenolics and 

flavonoids in green or kale plants, and the clarification of enriched antioxidant(s) in kale 

plants by UV-B radiation need further investigation.  

     Relatively high concentrations of phenolic compounds in purple/red leaf plants acted 

as potent UV-screening agents as well as free-radical scavengers to protect purple/red leaf 

plants from excess UV-B light and led to less biochemical changes under UV-B radiation 
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compared to green leaf plants (Tables 17, 19). Under high PPFD (224 µmol·m-2·s-1) 

without UV-B treatment, concentrations of anthocyanin, phenolics, and flavonoids in 

purple basil leaves were 3.33, 1.47, and 1.93 times of those in green basil leaves, 

respectively (Table 17), while its antioxidant capacity was 3.72 times that in green basil 

leaves (Fig. 21A). Similarly, antioxidant capacity in red kale and red mustard plants were 

1.70 and 1.98 times of those in green kale and green mustard plants, respectively. Tattini 

et al. (2014) also reported that purple basil ‘Red Rubin’ showed lower metabolic cost of 

photoprotective mechanisms and higher biomass increase than green basil ‘Tigullio’ when 

being moved from 30% to 100% sunlight condition.  

     In our previous study, concentrations of phenolics and flavonoids in green basil leaves 

were positively related to PPFD (Dou et al., 2018), and a similar trend was observed in 

phenolics concentration in this study. Under low PPFD (160 µmol·m-2·s-1), enhancement 

of phenolic compounds in both green and purple basil plants caused by UV-B radiation 

was greater compared to plants grown under high PPFD (224 µmol·m-2·s-1), indicating 

basil plants are more sensitive to UV-B radiation under low PPFD. In a similar way, Behn 

et al., (2010) reported that under low PPFD (550 µmol·m-2·s-1), essential oil quality in 

peppermint plants was improved in terms of enhanced menthone to menthol conversion 

by UV-B exposure, while not affected by UV-B radiation under high PPFD (1,150 

µmol·m-2·s-1). As aforementioned, this may be due to a depressed protection system of 

plants grown under low PPFD, such as decreased leaf thickness and reduced 

concentrations of UV-absorbing agents (Dou et al., 2018). Meanwhile, concentrations of 
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flavonoid in green basil plants grown under low PPFD with UV-B radiation was 

significantly higher compared to those of plants grown under high PPFD without UV-B 

radiation, suggesting that UV-B radiation compensated for the reduced accumulation of 

phytonutrients in green basil plants grown under low PPFD. 

5.5.4 Impacts of UV-B radiation doses and radiation patterns on phenolics accumulation 

and antioxidant capacity in basil plants 

     Plant responses to supplemental UV-B radiation are cultivar specific. With the 

radiation doses and patterns used in this study, green basil plants were more dose 

dependent, while purple basil plants were more radiation pattern dependent. The 

antioxidant capacity in green basil plants was significantly correlated with UV-B radiation 

doses for both 1 h·d-1 and 2 h·d-1 UV-B radiation treatments (Fig. 21B-C), indicating total 

UV-B radiation dose was the determining factor in regulating plant biochemical responses 

to UV-B radiation. Mosadegh et al. (2018) also reported that with the same UV-B radiation 

dose of 102 kJ·m-2, phenolics concentration of green basil ‘Genovese’ was the same level 

at 24 h, 48 h, and 72 h after two UV-B radiation patterns, continuous 1-d UV-B radiation 

and discontinuous 6-d UV-B radiation treatments. However, at 72 h after UV-B radiation 

doses of 8.5, 34, and 68 kJ·m-2, phenolics concentration of ‘Genovese’ basil plants treated 

with continuous 1-d UV-B radiation increased by 239%, 193%, and 139% compared to 

those of plants treated with discontinuous 6-d UV-B radiation, respectively. Thus, the 

effects of radiation patterns on green basil plants may vary according to different radiation 

doses. Different from green basil plants, the antioxidant capacity of purple basil plants 
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showed no relationship with 1 h·d-1 UV-B radiation treatments while being positively 

related to 2 h·d-1 UV-B radiation treatments (Fig. 21B-C), indicating radiation patterns 

had more effects on purple basil plants’ responses to UV-B radiation instead of the total 

UV-B radiation dose. With similar UV-B radiation dose (1H5D and 2H2D treatments), 

after 1 h·d-1 UV-B radiation treatments, the recovery time (23 h) until next day treatment 

allowed purple basil plants’ signaling and metabolic adaptation to (at least partially) reset 

to prestress levels, without increasing phenolic compounds accumulation, while after 2 

h·d-1 UV-B radiation (recovery time of 22 h until next treatment), purple basil plants failed 

to recover from UV-B radiation stress and resulted in an overall increase of phenolic 

compounds to cope with excess UV-B energy.  

5.5.5 Implications of study findings 

     Plant responses to UV-B radiation are different in studies conducted in open field with 

sunlight and controlled environment with artificial lighting, due to different PPFDs 

(Searles et al., 2001; Li et al., 2010; Henry-Kirk et al., 2018). That is, under controlled 

environment with artificial lighting, plants are grown under much lower PPFDs, compared 

to sunlight. When treated with the same dose of UV-B radiation as that of sunlight, plants 

are more sensitive to supplemental UV-B radiation, and the negative effects were 

aggravated (Behn et al., 2010; Wargent et al., 2011). Therefore, for controlled 

environment crop production with low PPFDs, a lower UV-B radiation dose should be 

applied to reduce its negative effects in plant photosynthesis, growth, or yield.  
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     Plant responses to supplemental UV-B radiation lead to plant cross-protection against 

other environmental stresses, through both morphological and biochemical mechanisms 

(Yin and Ulm, 2017). For example, UVR8 was recently shown to be involved in regulating 

thermomorphogenesis, shade-avoidance response, and plant immunity, underlining the 

importance of signaling crosstalk among UV light, hormone, and defense pathways 

(Teklemariam and Blake, 2003; Schultze and Bilger, 2019). As a result, in addition to 

plant nutritional quality improvement, supplemental UV-B radiation can also be applied 

to horticultural crops to improve plant tolerance to other adverse environmental 

conditions. However, the interactions between supplemental UV-B radiation and other 

key environmental conditions still need to be studied. 

     Furthermore, we see differential responses in green and purple basil plants to 

supplemental UV-B radiation. The accumulation of phenolic compounds in green basil 

plants mainly depended on the total UV-B radiation dose, while in purple basil plants, 

radiation patterns had more effects. Therefore, to better understand plant responses to 

supplemental UV-B radiation, more plant species and cultivars and radiation doses and 

patterns should be investigated. 

5.6 Conclusion 

     Results of this study suggest that plant responses to UV-B radiation are cultivar, 

radiation dose, and radiation pattern dependent. Specifically, all supplemental UV-B 

radiation doses efficiently improved concentrations of secondary metabolites and 

antioxidant capacity in green basil, green kale, red kale, and green mustard plants while 
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higher UV-B radiation doses significantly reduced plant size and yield in basil plants and 

lower doses showed no effects on plant growth or biomass accumulation in Brassica 

plants. Meanwhile, effects of UV-B radiation on basil plants interacted with PPFD, which 

is, low PPFD increased plant sensitivity to UV-B radiation and UV-B radiation 

compensated for the reduced accumulation of flavonoids in green basil plants grown under 

low PPFD. In conclusion, a pre-harvest UV-B radiation (16.0 µmol·m-2·s-1) of 1 h·d-1 for 

2-3 days under a PPFD of 224 µmol·m-2·s-1 could enrich plant secondary metabolites 

accumulation without reducing biomass accumulation, which was recommended for green 

basil and Brassica plants production under controlled environment. 
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CHAPTER VI  

SUBSTITUTING PHOTOSYNTHETICALLY ACTIVE RADIATION LIGHT WITH FAR-

RED LIGHT INCREASED BIOMASS AND SECONDARY METABOLITES 

ACCUMULATION IN BASIL PLANTS 

6.1 Synopsis 

     Although far-red light is poorly absorbed compared to photosynthetically active radiation 

(PAR) light, recent research indicated that supplemental far-red light to PAR light or substituting 

far-red light for PAR light increases plant yield of lettuce (Lactuca sativa), kale (Brassica 

oleracea), and several ornamental seedlings because far-red light induces plant expansion growth 

and a better-balanced excitation of the two photosystems. Therefore, the effects of substituting 

PAR light with far-red light was investigated in the present study in green basil (Ocimum basilicum 

‘Improved Genovese Compact’) plants. There were five treatments without far-red light 

substitution, including R53B47, R80B20, R91B9, R42G43B12FR3, and R33G40B24FR3 (subscripted 

numbers indicating percentage; R, red light; G, green light; B, blue light; FR, far red light). Five 

far-red light substitution treatments were created by adding R/FR light tubes to each 

aforementioned light treatment, including R47B40FR13, R66B21FR13, R80B7FR13, R36G37B10FR17, 

and R27G33B20FR20, a total of ten treatments. The experiment was conducted in a growth room 

with the same total photon flux density (TPFD) of 230 µmol·m-2·s-1 with a 16-h photoperiod. 

Plants were sub-irrigated as needed using a nutrient solution with electrical conductivity of 2.0 

dS·m-1 and pH of 6.0. Results indicated that substituting partial PAR light with far-red light 

increased plant height and width in basil plants by 49%-65% and 10%-17%, respectively, and 

increased shoot fresh weight and dry weight by 6%-23% and 4%-28%, respectively. However, far-
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red light substitution did not affect leaf photosynthesis or leaf area, but decreased chlorophyll 

content. Concentrations of anthocyanin, phenolics, and flavonoids of basil leaves increased or 

tended to increase under far-red light treatments, while antioxidant capacity increased by 17%-

44% under far-red light treatments except treatment R36G37B10FR17. 

6.2 Introduction 

     Photosynthetically active radiation (PAR, 400-700 nm), including blue (400-499 nm), green 

(500-599 nm), and red (600-699 nm) light wavelengths, is crucial for plant growth with respect to 

providing light energy for photosynthesis and as a signal to regulate plant adaptive responses to 

environment (Dou et al., 2017; Snowden et al., 2016; Son et al., 2017). Radiation outside the PAR 

range, such as ultraviolet (UV, 280-399 nm) and far-red (700-780 nm) light, regulates numerous 

signaling pathways in plants (Ballaré, 2014; Casal, 2013; Wargent and Jordan, 2013). For example, 

in our previous study in Chapter V, pre-harvest UV-B radiation induced antioxidants synthesis and 

other protective mechanisms in basil and Brassica plant species. Far-red light is poorly absorbed 

compared to PAR light, and most is transmitted through or reflected by leaves. For instance, the 

red: far-red (R:FR) ratio of sunlight is around 1.0 to 1.3 at midday and varies little with different 

weathers or seasons, but it can be as low as less than 0.1 underneath a plant canopy (for example, 

it was 0.033 under a sugar-beet canopy)  (Holmes and Smith, 1975; Pedmale et al., 2016). Recent 

studies reported that far-red light can also affect plant productivity and nutritional quality via 

regulation of plant photosynthesis and photomorphogenesis (Demotes-Mainard et al., 2016; Meng 

et al., 2019; Yang et al., 2013; Zhen and Van Iersel, 2017).  

     Far-red light is best known for its role in shade avoidance responses, which is mediated by 

phytochrome photoreceptors. There are two reversible forms of phytochromes, the biologically 
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inactive form Pr (for red light absorbing, peaks at 660 nm) and active form Pfr (for far-red light 

absorbing, peaks at 730 nm) (Quail, 2002). The phytochrome photoequilibrium (PPE, also called 

photostationary state of phytochrome, PSS), which estimates the proportion of Pfr in total 

phytochromes, dynamically changes with the composition of light spectrum, and is strongly 

correlated with R:FR ratio (Mccree, 1972; Sager et al., 1988). A low R:FR ratio is indicative of 

shade environment that triggers plant shade avoidance responses, such as elongation growth, 

upward leaf orientation, and reduced branching (Meng and Runkle, 2017). These growth and 

developmental responses can enable plants to outgrow shade and capture more photosynthetic 

radiation, subsequently increase plant yield. For example, Meng and Runkle (2017) reported that 

adding far-red to combined red and blue (R&B) light increased leaf size and fresh weight (FW) in 

lettuce (Lactuca sativa) and basil plants but decreased the relative chlorophyll content in lettuce 

plants. However, some researchers hypothesized that the substitution of PAR light wavelengths 

with far-red light may decrease whole-plant photosynthetic efficiency due to a decreased 

photosynthetic photon flux density (PPFD), which decreases plant yield (Demotes-Mainard et al., 

2016). Park and Runkle (2017) reported that adding far-red light to combined R&B light increased 

the plant height, leaf area, and shoot dry weight (DW) in geranium (Pelargonium × hortorum) and 

snapdragon (Antirrhinum majus) seedlings significantly, while substituting far-red light for red 

light increased leaf area but showed no differences on shoot DW. It was also reported that low 

R:FR ratio decreased production of phytochemicals in plants, such as jasmonic acid and 

anthocyanins (Ballaré, 2014; Holopainen et al., 2018; Kadomura-Ishikawa et al., 2013). Therefore, 

how far-red interacts with PAR light wavelengths affecting plant production is still unclear.  
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     The low quantum yield of photosynthesis under far-red light is caused by unbalanced excitation 

of two photosystems, photosystem I (PSI) and photosystem II (PSII), which is preferentially 

excited by far-red and PAR light, respectively (Allen, 2003; Emerson and Rabinowitch, 1960; 

Myers, 1971). It is postulated that the excitations of two photosystems are unbalanced in plants 

grown under controlled environment with artificial lighting, where far-red light is absent. Zhen 

and Van Iersel (2017) reported that the quantum yield of PSII and net photosynthetic rate in ‘Green 

Towers’ lettuce plants increased immediately by adding far-red light to combined R&B light 

(B23G1R76) and white light (B12G43R41FR4), owning to a better balanced excitation of PSI and PSII. 

They suggested that far-red light and PAR light can have synergistic effects on photochemistry 

and photosynthesis, and far-red light is needed for efficient photochemistry, especially under light 

with wavelengths that over-excite PSII (Zhen and Van Iersel, 2017).  

     There is potential of using far-red light to obtain desirable morphological traits and improve 

plant photosynthesis, and subsequently increase plant yield. Therefore, the objective of this study 

was to investigate the effects of substituting far-red light for PAR wavelengths on photosynthesis, 

morphology, plant yield, and nutritional quality in basil plants.  

6.3 Materials and Methods 

6.3.1 Plant materials and growing conditions 

     An experiment was conducted in a walk-in growth room in Texas AgriLife Research and 

Extension Center at El Paso, TX using green basil ‘Improved Genovese Compact’ (Johnny’s 

Selected Seeds, Winslow, ME, USA). One seed per cell was sown in 72 square cell trays (cell size: 

3.86 cm L × 5.72 cm H, with a volume of 59 cm3) with Metro-Mix 360 (peat moss 41%, 

vermiculite 34%, pine bark 25%, Sun Gro® Horticulture, Bellevue, WA, USA). All trays were put 



 

 
152 

 

under mist in a greenhouse for germination. Seedlings were moved out from mist after germination 

and grown in a greenhouse for two weeks. Seedlings were then transplanted to 4” square pots 

(length 9.52 cm, height 8.26 cm; volume 574 cm3) with Metro-Mix 360 when roots were visible 

on the outside of the plug root ball, and uniform plants were selected and moved to the walk-in 

growth room for different treatments. 

6.3.2 Far-red light treatments 

     There were ten different light quality treatments comprised of blue, green, red, and far-red light 

(Table 20). The first group of five treatments had no far-red light substitution, and consisted of 

combinations of R&B light emitting diode (LED) treatments, namely R53B47 (Model 

GEHL48HPPV, Hort Americas, Bedford, TX, USA, where the percentage of red and blue light 

was 53% and 47%, respectively), R80B20 (Model GEHL48HPPB), and R91B9 (Model 

GEHL48HPPR); one white LED treatment R42G43B12FR3 (Model GEHL48HWTB); and one white 

fluorescent lamp treatment R33G40B24FR3 (Philips Lighting, Somerset, NJ, USA). The second 

group of five treatments consisted of substituting far-red light for partial PAR light via adding 

R/FR light tubes (Just Power Integrated Technology Inc., Taiwan) to each light quality treatment 

used in the first group. The treatments included R47B40FR13, R66B21FR13, R80B7FR13, 

R36G37B10FR17, and R27G33B20FR20. The total photon flux density (TPFD, 400-780 nm) of each 

treatment were adjusted to the same level of 230 µmol·m-2·s-1 with a 16-h photoperiod. There were 

12 plants per treatment. To minimize light distribution being disproportionate within each 

treatment, all plants were systematically rearranged every three days. The photon flux density in 

each treatment was measured at 15 cm underneath the light lamps at 9 spots using PS-100 

spectroradiometer (Apogee Instruments, Logan, UT, USA). Estimated PPE and yield photon flux 
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density (YPFD, product of photo flux density and relative quantum efficiency) were calculated by 

the SpectraWiz software (v5.3, StellarNet Inc., Tampa, FL, USA).  

     All plants were sub-irrigated with a nutrient solution containing 1.88 g·L-1 (277.5 ppm N) 15N-

2.2P-12.5K (Peters 15-5-15 Ca-Mg Special, The Scotts Company, Marysville, OH, USA) as 

needed, maintaining electrical conductivity of 2.0 dS·m-1 and pH of 6.0. Plant canopy temperatures 

were recorded and maintained at 25.3/22.0ºC day/night. Mechanical mini fans (LS1225A-X, AC 

Infinity, City of Industry, CA, USA) were used to circulate the air to achieve uniform temperatures 

across treatments. All plants were harvested when plant height reached about 25 cm, which was at 

19 days after treatment (DAT) and 40 days after sowing (DAS). 
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Table 20. Spectral characteristics of ten light quality treatments comprised of blue (B, 400-
499 nm), green (G, 500-599 nm), red (R, 600-699nm), and far-red (FR, 700-780 nm) light. 

Treatment Single-band Photon Flux Density (µmol·m-2·s-1) 
B G R FR 

R53B47
z 106 - 119 3 

R47B40FR13 91 - 108 31 
R80B20 44 - 181 4 
R66B21FR13 48 - 151 30 
R91B9 21 - 205 3 
R80B7FR13 17 - 182 30 
R33G40B24FR3 56 91 75 7 
R27G33B20FR20 46 75 63 46 
R42G43B12FR3 28 98 96 8 
R36G37B10FR17 24 84 83 38 
 Radiation Ratio 
 R:B R:FR B:FR B:G 
R53B47 1.12 - - - 
R47B40FR13 1.19 3.48 2.94 - 
R80B20 4.11 - - - 
R66B21FR13 3.15 5.00 1.60 - 
R91B9 9.76 - - - 
R80B7FR13 10.71 6.07 0.57 - 
R33G40B24FR3 1.34 10.71 8.00 0.62 
R27G33B20FR20 1.37 1.37 1.00 0.61 
R42G43B12FR3 3.43 12.00 3.50 0.29 
R36G37B10FR17 3.46 2.18 0.63 0.29 
 Integrated Photon Flux Density (µmol·m-2·s-1) PPEy  YPFDy PPFDx TPFDx 
R53B47 188 225 228 0.80 
R47B40FR13 175 199 230 0.79 
R80B20 210 225 229 0.87 
R66B21FR13 178 199 229 0.83 
R91B9 220 226 229 0.89 
R80B7FR13 193 199 229 0.86 
R33G40B24FR3 179 222 229 0.79 
R27G33B20FR20 157 184 230 0.75 
R42G43B12FR3 199 222 230 0.83 
R36G37B10FR17 180 191 229 0.78 

z Numbers indicate the percentage of R, B, G, and FR light in the total light intensity.  
y Estimated phytochrome photoequilibrium (PPE) and yield photon flux density (YPFD, product 
of photo flux density and relative quantum efficiency) were calculated by the SpectraWiz software. 
x Photon flux density (PPFD, 400-700 nm) and total photon flux density (TPFD, 400-780 nm) were 
measured using a PS-100 spectroradiometer and calculated accordingly. 
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6.3.3 Measurements 

1. Photosynthesis and chlorophyll content 

     A portable gas exchange analyzer (CIRAS-3, PP Systems International, Amesbury, 

MA, USA) was used to measure the gas exchange rate of plant leaves at harvest. A PLC3 

leaf cuvette with LED light unit was used, and light intensity, relative air humidity, and 

CO2 concentration inside the leaf chamber were kept constant at 800 µmol·m-2·s-1, 50%, 

and 390 µmol·mol-1, respectively. The third pair of leaves from the top was used for 

measuring gas exchange rate in green basil leaves. All measurements were taken until the 

net photosynthetic rate in basil leaves reached a steady state. 

      Soil plant analysis development (SPAD) index of basil was recorded weekly to 

quantify relative chlorophyll content in basil leaves using a chlorophyll meter SPAD-502 

(Konica-Minolta cooperation, Ltd., Osaka, Japan). At harvest, approximately 0.2 g of basil 

leaves were cut into small pieces, then extracted in 80% methanol (v:v) for three days. 

The absorbance of extracts was measured at 663 nm and 645 nm using a 

spectrophotometer (Genesys 10S UV/Vis, Thermo Fisher Scientific, Madison, WI, USA), 

and the concentrations of chlorophyll a and chlorophyll b were calculated according to 

Porra et al. (1989). Chlorophyll a+b concentration was calculated accordingly. 

2. Growth characteristics 

     Growth characteristics such as plant height, two perpendicular widths, and the number 

of internodes were recorded at harvest. Five plants per treatment were randomly selected 

for measurement. Leaf area was measured using a leaf area meter (LI-3100, LI-COR, 
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Lincoln, NE, USA), and shoot and root FW were recorded at harvest. The shoot and root 

tissues were dried at 80ºC in a drying oven (Grieve, Round Lake, IL, USA) for 3 days to 

determine the dry weight (DW).  

3. Nutritional quality measurement 

     Five uniform plants were randomly selected for the measurements of concentrations of 

anthocyanin, phenolics, and flavonoids, and antioxidant capacity at harvest. Fresh basil 

leaves were collected in a cooler and immediately stored in a deep freezer (IU1786A, 

Thermo Fisher Scientific, Marietta, OH, USA) at -80ºC until phytochemical analyses.  

     Extraction. Approximately 2 g fresh plant leaves were ground in liquid nitrogen and 

extracted with 15 mL 1% acidified methanol at 4ºC in darkness. After overnight 

extraction, the mixture was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Fisher 

Scientific, Madison, WI, USA) at 13,200 rpm (26,669 ×g) for 15 min, and the supernatant 

was collected for phytochemical analyses (Xu and Mou, 2016).  

     Anthocyanin analysis. The absorbance of extracts was measured at 530 nm using the 

aforementioned spectrophotometer, and the anthocyanin concentration was expressed as 

mg cyanidin-3-glucoside equivalent per 100 g FW of basil leaves using a molar extinction 

coefficient of 29,600 (Connor et al., 2002). Since the extracts were freshly prepared from 

leaf tissues maintained at -80ºC and did not undergo extensive processing or significant 

browning, a pH differential method for anthocyanin content was considered unnecessary 

(Connor et al., 2002).  

     Phenolics analysis. The total phenolics concentration of plant leaves was determined 

using the modified Folin-Ciocalteu reagent method described as the following: 100 μL 
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extraction sample was added to a mixture of 150 μL distilled water and 750 μL 1/10 

dilution Folin-Ciocalteu reagent. After 6 min reaction, 600 μL 7.5% Na2CO3 was added 

and the mixture was incubated at 45°C in water bath for 10 min before the absorbance was 

measured at 725 nm using a microplate reader (ELx800, BioTek, Winooski, VT, USA). 

Results were expressed as mg of gallic acid equivalent per g FW of basil leaves (Xu and 

Mou, 2016).  

     Flavonoids analysis. The total flavonoid concentration of plant leaves was determined 

as the following: 20 µL extraction sample was added to a mixture of 85 µL distilled water 

and 5 µL 5% NaNO2. After 6 min reaction, a 10 µL of 10% AlCl3·6H2O was added to the 

mixture. After another 5 min reaction, 35 µL of 1M NaOH and 20 µL distilled water were 

added to the mixture and the absorbance was measured at 520 nm using the 

aforementioned microplate reader (Dou et al., 2018). The results were expressed as mg of 

(+)-catechin hydrate equivalent per g FW of basil leaves. 

     Antioxidant capacity analysis. The antioxidant capacity of plant leaves was measured 

using the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method 

(Arnao et al., 2001) described as the following: add a mixture of 150 µL basil leave 

extracts to 2.85 mL of ABTS+ solution and incubate at room temperature for 10 min. The 

absorbance of mixed solution was measured at 734 nm using the aforementioned 

spectrophotometer. Antioxidant capacity of basil leaves was expressed as mg of Trolox 

equivalent antioxidant capacity per 100 g FW of basil leaves. 
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6.3.4 Statistical analysis 

     One-way analysis of variance (ANOVA) was conducted to analyze effects of light 

quality treatments on all measured parameters. Mean comparison among treatments was 

conducted using Student’s t method. Correlation test was conducted using Pairwise 

Correlations method. All statistical analyses were performed using JMP (Version 13, SAS 

Institute Inc., Cary, NC, USA). 

6.4 Results  

6.4.1 Photosynthesis and chlorophyll content as influenced by far-red light substitution 

     Substituting far-red light for partial combined R&B light or white light did not affect 

the net photosynthetic rate (Pn) of basil leaves, while combined R&B LED light treatments 

increased Pn in basil leaves compare to white light (Fig. 23). SPAD reading of basil leaves 

decreased under treatments of substituting far-red light for partial PAR light in R53B47 and 

R91B9, while chlorophyll a+b concentration per leaf FW decreased under treatment of 

substituting far-red light for partial PAR light in R91B47 (Fig. 24A-B).  
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Figure 23. Net photosynthetic rate (Pn) of green basil ‘Improved Genovese Compact’ 
under different light quality treatments. Means followed by the same lowercase 
letters are not significantly different, according to Student’s t mean comparison (P < 
0.05). Bars represent standard errors. 
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Figure 24. Soil plant analysis development (SPAD) (A) and chlorophyll a+b 
concentration (B) in green basil ‘Improved Genovese Compact’ under different light 
quality treatments. Means followed by the same lowercase letters are not 
significantly different, according to Student’s t mean comparison (P < 0.05). Bars 
represent standard errors. 

6.4.2 Plant growth and yield as influenced by far-red light substitution 

     Plant height and width in basil plants increased by 49%-65% and 10%-17%, 

respectively, by substituting far-red light for partial PAR light, except plant width under 

white LED (R42G43B12FR3) treatment (Fig. 25A-B). Substituting far-red light for partial 

PAR light increased leaf area by 12% in basil plants grown under R91B9 treatment but did 

not affect leaf area in the other treatments (Fig. 25C). Shoot FW and DW in basil plants 
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increased by 6%-23% and 4%-28%, respectively, by substituting far-red light for partial 

PAR light (Fig. 26A-B). Meanwhile, shoot FW was the lowest in basil plants grown under 

R53B47 and R33G40B24FR3 treatments among treatments without far-red light substitution. 

 

Figure 25. Plant height (A), plant width (B), and leaf area (C) in green basil 
‘Improved Genovese Compact’ under different light quality treatments. Means 
followed by the same lowercase letters are not significantly different, according to 
Student’s t mean comparison (P < 0.05). Bars represent standard errors. 
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Figure 26. Shoot fresh weight (A) and shoot dry weight (B) in green basil ‘Improved 
Genovese Compact’ under different light quality treatments. Means followed by the 
same lowercase letters are not significantly different, according to Student’s t mean 
comparison (P < 0.05). Bars represent standard errors. 

6.4.3 Accumulation of secondary metabolites as influenced by far-red light substitution 

     Substituting far-red light for partial PAR light increased concentrations of anthocyanin, 

phenolics, and flavonoids in basil plants grown under R80B20 and R42G43B12FR3 treatments 

and tended to increase in plants grown under R53B47 and R33G40B24FR3 treatments, but 

differences were not significant (Fig. 27A-C). Consistently, substituting far-red light for 

partial PAR light increased antioxidant capacity by 21%, 44%, 22%, and 17% in basil 
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plants grown under R53B47, R80B20, R33G40B24FR3, and R42G43B12FR3 treatments, 

respectively, while showed no effects in plants grown under R33G40B24FR3 treatment (Fig. 

27D). 

     The total amount of anthocyanin per plant increased by far-red light substitution under 

R53B47 treatment, while it was not affected under other treatments (Table 21). Under 

treatment R80B20, the total amount of phenolics and flavonoids per plant decreased and 

increased by far-red light substitution, respectively, while it was not affected under other 

treatments (Table 21). The antioxidant capacity per plant decreased by far-red light 

substitution under treatments R53B47, R80B20, and R42G43B12FR3, increased under 

treatment R33G40B24FR3, and was not affected under treatment R91B9 (Table 21). 
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Figure 27. Anthocyanin concentration (conc.) (A), phenolics conc. (B), flavonoid 
conc. (C), and antioxidant capacity (D) in green basil ‘Improved Genovese Compact’ 
under different light quality treatments. Means followed by the same lowercase 
letters are not significantly different, according to Student’s t mean comparison (P < 
0.05). Bars represent standard errors. 
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Table 21. Total amount of anthocyanin, phenolics, flavonoids, and antioxidant 
capacity per plant in green basil ‘Improved Genovese Compact’ under different light 
quality treatments. 

Treatments 
Total Amount of Phytochemicals (mg·plant-1) 

Anthocyanin Phenolics  Flavonoids Antioxidant Capacity  
R53B47 0.78 dz 21.8 cd 19.1 cde 47.5 c 
R47B40FR13 0.89 abc 24.3 bc 22.0 abc 60.3 b 
R80B20 0.89 abcd 19.0 ab 17.8 e 49.1 c 
R66B21FR13 0.98 a 25.8 d 24.0 a 64.4 b 
R91B9 0.86 bcd 21.4 cd 19.2 cde 47.6 c 
R80B7FR13 0.93 ab 20.2 d 19.7 bcde 51.3 c 
R33G40B24FR3 0.90 abcd 27.0 ab 21.6 abcd 62.1 c 
R27G33B20FR20 0.89 abcd 27.8 a 22.6 ab 71.9 a 
R42G43B12FR3 0.80 cd 19.9 d 18.6 de 44.0 b 
R36G37B10FR17 0.86 bcd 21.5 cd 20.3 bcde 47.3 c 

z Means followed by the same lowercase letters are not significantly different, according 
to Student’s t mean comparison (P < 0.05).  

6.4.4 Correlations between growth parameters and YPFD and PPE  

     Correlations between growth parameters with YPFD and PPE were measured in two 

groups, treatments without far-red light substitution and treatments of substituting PAR 

light with far-red light. In treatments without far-red light substitution, no correlations 

between measured parameters and YPFD or PPE was observed (data not shown). In 

treatments of substituting PAR light with far-red light, chlorophyll a+b concentration and 

shoot FW of basil plants were negatively and positively correlated to YPFD and PPE, 

respectively (Fig. 28A-D). 
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Figure 28. Correlations between yield photon flux density (YPFD) and chlorophyll 
a+b concentration per leaf fresh weight (A) and shoot fresh weight (B), and 
correlations between estimated phytochrome photoequilibrium (PPE) and 
chlorophyll a+b concentration per leaf fresh weight (C) and shoot fresh weight (D) 
in green basil ‘Improved Genovese Compact’ grown under different light quality 
treatments. Dash lines show regression between measured parameters and YPFD or 
PPE according to Pairwise Correlation method. 
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study, although Pn in basil leaves tended to decrease under far-red light treatments, the 

difference was not significant (Fig. 23). Similarly, Pn in white clover leaves (Trifolium 

repens ‘Huia’) was not affected by supplemental far-red light to PAR light, while 

chlorophyll content in treated leaves decreased (Heraut-Bron et al., 2000). We postulated 

that the excitation of two photosystems was better balanced by adding/substituting FR 

light to/for PAR light, which compensated reduced photosynthesis by decreased PPFD. 

This was evidenced by Zhen and Van Iersel (2017), who reported far-red light and PAR 

light had synergistic effects on photochemistry and photosynthesis. Another hypothesis 

was that under far-red light, a different localization of chloroplasts within cells could 

optimize the absorption of direct radiation, despite lower chlorophyll concentration or 

decreased PPFD (Heraut-Bron et al., 2000). However, Pn in ‘Hokushin’ cucumber 

(Cucumis sativus) plants decreased under treatment with lower R:FR ratio of 1.2 (metal-

halide lamps) compared to treatment with higher R:FR ratio of 10.5 (white fluorescent 

lamps) at different PPFDs (Shibuya et al., 2012). Differences between the present study 

and Shibuya et al. (2012) study might be caused by different far-red light proportions. 

Although the far-red light proportion in Shibuya et al. (2012) study was not given, its R:FR 

ratio (1.2) was lower than the R:FR ratio used in the present study (1.37-10.67), indicating 

higher far-red light proportions used and resulted in decreased Pn by largely decreased 

PPFD or YPFD. 

     It was widely reported that far-red light substitution would decrease chlorophyll 

content in plant leaves as a result of investing resources in the most efficient way into 

plant expansion growth, to compensate for the adverse effects (Meng et al., 2019; Shibuya 
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et al., 2012). For example, chlorophyll concentration in ‘Rouxai’ lettuce plants decreased 

under treatments of substituting blue light with far-red light at same TPFD of 180 µmol·m-

2·s-1 (Meng et al., 2019). Similarly, in the present study, relative chlorophyll content and 

chlorophyll a+b concentration in basil plants both decreased under far-red light treatments, 

and chlorophyll a+b concentration was positively correlated to PPE under FR light 

treatments (Fig. 24A-B, 30C).  

6.5.2 Plant growth and yield 

     As aforementioned, far-red light promotes plant expansion growth by triggering shade 

avoidance responses through photoreceptors (Demotes-Mainard et al., 2016). In general, 

plant expansion growth increases radiation interception and subsequently plant yield, 

which was confirmed in this study (Fig. 25, 26). Similarly, stem elongation and leaf 

expansion in geranium and snapdragon plants both increased under treatments of adding 

far-red light to combined R&B light and treatments of substituting R&B light with far-red 

light (Park and Runkle, 2017). Plant height, leaf length and width, and shoot FW and DW 

in lettuce and kale (Brassica napus) plants also increased under both treatments 

(supplemental far-red and substitution far-red light) (Li and Kubota, 2009; Meng et al., 

2019).  

     Stimulation of stem elongation by low R:FR ratio is due to greater internode elongation 

rather than a greater number of internodes. The internode itself can perceive the R:FR 

environment and displays strong sensitivity and quick response to far-red, and perception 

of blue light by the leaves is necessary and enhances perception of R:FR by the internodes 

(Casal, 2013; Demotes-Mainard et al., 2016). In sunflower internodes, low R:FR ratio 
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induced high levels of two phytohormones (gibberellin, GA1 and auxin, IAA), supporting 

that these hormones act as growth-effectors in this process (Kurepin et al., 2007). Being 

different with stem elongation, leaf growth responses to R:FR ratios significantly varies, 

ranging from inhibition to promotion, which depends on the activity of phyB and phyD, 

whose mutants (phyB and phyBphyD) displayed a reduced leaf area (Casal and Smith, 

1989; Demotes-Mainard et al., 2016). For example, leaf area in lettuce, kale, geranium, 

and snapdragon plants all increased under treatments of substituting PAR light with far-

red light, while leaf area in petunia (Petunia × hybrida) and impatiens (Impatiens 

walleriana) plants were not affected (Meng et al., 2019; Park and Runkle, 2017). In the 

present study, leaf area in basil plants only increased under R80B7FR13 treatment, while 

plant width increased under all far-red treatments except R36G37B10FR17 treatment (Fig. 

25C), indicating petiole elongation was the major contributor to plant width promotion 

instead of leaf expansion. Effects of far-red light on leaf expansion is the balance between 

far-red light induced leaf expansion by triggering shade avoidance responses and reduced 

leaf expansion due to the resource competition with stem, or due to auxin-induced 

cytokinin breakdown in leaf primordia, resulting in reduced leaf cell proliferation 

(Demotes-Mainard et al., 2016). Compared to PPFD, YPFD has been suggested a more 

accurate predictor of plant photosynthesis and biomass accumulation, since photons of 

each wavelength are weighed by the relative quantum efficiency (Cope and Bugbee, 2013; 

Mccree, 1972). In the present study, although PPFD varies among far-red light treatments, 

it showed no relationship with growth parameters or plant yield, while YPFD was 

positively correlated to shoot FW (Fig. 28B). 
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6.5.3 Accumulation of secondary metabolites 

     Unexpectedly, phytochemical concentrations and antioxidant capacity in basil leaves 

increased or tended to increase under far-red light treatments while the total amount of 

phytochemicals per plant was mainly not affected (Fig. 27A-D, Table 21). Similarly, 

decreasing R:FR ratio increased anthocyanin content in ‘Red Russian’ kale seedlings, 

indicating far-red light could positively regulate anthocyanin accumulation in plants 

(Carvalho and Folta, 2014). However, most previous studies reported that enriched far-

red light environments (low R:FR ratios) decrease the production of phytochemical in 

plants (Ballaré, 2014; Holopainen et al., 2018; Kadomura-Ishikawa et al., 2013). For 

example, rosmarinic acid concentration in basil and borage (Borago officinalis) plants 

showed a positive correlation with R:FR ratio (Schwend et al., 2016). Moreover, 

anthocyanin concentration in red leaf lettuce ‘Outredgeous’ was higher under combined 

R&B (PPE=0.73) and R&B&G (PPE=0.73) treatments, compared to plants grown under 

monochromatic red (PPE=0.72) and combined R&FR (PPE=0.53)  treatments with the 

same PPFD of 300 µmol·m-2·s-1, indicating the presence of blue light was critical in 

regulating the synthesis of anthocyanin, instead of R:FR ratio or PPE (Stutte, 2009). We 

postulated the difference between studies was due to the great variability in the 

experimental setups, with inconsistencies in growing conditions such as spectral 

composition (inclusion or exclusion of green or blue light and different R:B ratios), PPFD 

values, or plant densities. Changes of phytochemical concentrations were not affected only 

by far-red light or R:FR ratios, but the coactions of red, blue, green, and far-red light. In 

the present study, substituting PAR light with far-red light not only changed R:FR ratio, 
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but also the R:B, B:G, and B:FR ratios. Also, the R:B ratios varies among far-red 

treatments in Schwend’s et al. (2016) study. 

6.6 Conclusion 

     Substituting PAR light with far-red light induced stem and petiole elongation in basil 

plants, resulting in greater shoot FW and DW, but showed no effects on leaf 

photosynthesis or leaf area. Meanwhile, substituting PAR light with far-red light resulted 

in increased concentrations of anthocyanin, phenolics, and flavonoids and antioxidant 

capacity in basil plants, which might be the coactions of changing proportions of red, blue, 

green, and far-red light. Far-red light substitution could be used as a tool to shorten plant 

production cycle as it accelerates plant growth rate. 
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CHAPTER VII  

SUMMARY OF FINDINGS 

     With scenarios of increasing world population, resource (e.g. clean water, arable land) 

competition, and unusual climate/weather, there are increasing interests to produce 

culinary herbs and leafy greens in indoor vertical farms (IVFs), to supply fresh, local, and 

nutritious produce throughout the year. As one of the most important environmental 

factors, artificial lighting is one of the largest power consumption components in IVFs, in 

addition to altering plant photosynthesis, morphology, yield, and secondary metabolism. 

Therefore, to optimize the lighting environment in IVFs, we studied the effects of light 

quantity, light quality, and supplemental UV-B lighting on plant growth and development 

in the present study. The main effects of light environment on plant growth and yield are 

summarized in findings from (i) through (vi) and finding (vii) summarizes the effect of 

light environment on plant secondary metabolites accumulation. 

     (i) Photosynthetic capacity in green basil (Ocimum basilicum ‘Improved Genovese 

Compact’) plants increased under higher daily light integrals (DLIs) of 12.9, 16.5, and 

17.8 mol·m-2·d-1, resulting in larger and thicker leaves, greater leaf and shoot yield, and 

higher dry matter content. No differences on shoot fresh weight in basil plants were 

observed among DLIs of 12.9, 16.5, and 17.8 mol·m-2·d-1.  

     (ii) Red light (600-699 nm) has the highest relative quantum efficiency (0.91) 

compared to other light spectra in the photosynthetically active radiation (PAR, 400-699 

nm) wavelength. Higher red light proportions in the combined red and blue (R&B) light 

increased stem elongation and leaf area in basil ‘Improved Genovese Compact’ (green) 
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and ‘Red Rubin’ (purple), green mustard (Brassica carinata ‘Amara’), red mustard 

(Brassica juncea ‘Red Giant’), green kale (Brassica napus pabularia ‘Siberian’), and red 

kale (Brassica oleracea ‘Scarlet’) plants, and subsequently greater plant yield due to 

increased light interception.  

     (iii) Increases of blue light (400-599 nm) proportions in the combined R&B light 

increased or tended to increase net photosynthetic rate (Pn) in basil and kale plants, due to 

increased chlorophyll content and stomatal opening. Changes of blue light proportions 

showed no effects on plant photosynthesis in mustard plants. However, increases of blue 

light proportions decreased plant yield because blue light induced inhibition of stem 

elongation and leaf expansion (leaf area), indicating plant photomorphogenesis dominated 

biomass accumulation in basil and Brassica species instead of photosynthesis.  

     (iv) Addition of green light (400-499 nm) to the combined R&B light played a negative 

role or had no effects on Pn, chlorophyll content, leaf area, or plant yield. Green light 

effects on leaf expansion were minimal compared to red or blue light. However, 

substituting partial red or blue light with green light increased Pn in the lower leaves in 

purple basil plants because green light penetrates into deeper plant canopy and increased 

photosynthetic photon flux density (PPFD) in the lower level plant canopy. This indicated 

compactness of plant canopy would strengthen the positive effects of green light, which 

could potentially increase plant yield.   

     (v) Substituting PAR light with far-red light (700-780 nm) induced shade avoidance 

responses in green basil plants such as stem and petiole elongation, resulting in greater 

plant yield, but showed no effects on leaf photosynthesis or leaf area. With far-red light 
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substitution, yield photon flux density (product of photon flux density and relative 

quantum efficiency) has been suggested a more accurate predictor of plant photosynthesis 

and biomass accumulation compared to PPFD, since photons of each wavelength are 

weighed by the relative quantum efficiency.  

     (vi) Supplemental ultraviolet-B (UV-B) radiation decreased plant height, width, and 

leaf area in both green and purple basil plants, and the detriment increased with increasing 

UV-B radiation doses. Under higher UV-B radiation doses such as 1 h·d-1 or 2 h·d-1 for 5 

days, basil plants also showed leaf bronzing, chlorosis, waxy appearance, and premature 

leaf defoliation. In Brassica species, lower UV-B radiation doses from 0.5 h·d-1 for 1 day 

to 1 h·d-1 for 3 days did not affect plant growth (e.g. plant height, width, leaf area) or yield, 

but decreased leaf photosynthesis. 

     (vii) Nutritional contents of green basil leaves (i.e. soluble sugar, anthocyanin, 

phenolics, and flavonoids) were positively correlated with DLI. All light spectrum, 

including red, blue, green, far-red, and UV-B lights are involved in the synthesis of 

secondary metabolites, and their effects are dependent on plant species and specific 

phytochemicals. Increases of blue light proportions in the combined R&B light enriched 

anthocyanin concentration in green kale and red mustard plants, but showed no effects in 

green or purple basil, red kale, or green mustard plants. Similarly, increases of blue light 

proportions enriched phenolic concentration in all tested plant species except red mustard 

plants, and increased flavonoid concentration in purple basil plants. However, the total 

amount of phytochemicals per plant decreased with increases of blue light proportions. 

Substituting partial red and/or blue light with green light decreased both concentrations 
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and total amount of phytochemicals in basil plants. Specifically, phytonutrients 

accumulation and antioxidant capacity in green basil plants decreased under treatments of 

substituting partial blue or R&B light with green light. Phytonutrients accumulation and 

antioxidant capacity in purple basil plants decreased under treatments of substituting 

partial red or R&B light with green light. This indicated blue and red light plays a major 

function in inducing the secondary metabolites accumulation in green and purple basil 

plants, respectively. Substituting PAR light with far-red light also resulted in increased 

concentrations of anthocyanin, phenolics, and flavonoids and antioxidant capacity in green 

basil plants, while the total amount of phytochemicals per plant was not affected. 

Supplemental UV-B radiation significantly improved concentrations of secondary 

metabolites and antioxidant capacity in green basil, green kale, red kale, and green mustard 

plants. Noticeably, supplemental UV-B radiation enhanced phytonutrients accumulation 

up to 169% in green basil plants. Antioxidant capacity in green basil, purple basil, green 

kale, red kale, and green mustard plants were all positively correlated with supplemental 

UV-B radiation doses, while not affected by UV-B treatments in red mustard plants. 

Meanwhile, effects of UV-B radiation on basil plants interacted with PPFD, which is, low 

PPFD increased plant sensitivity to UV-B radiation and UV-B radiation compensated for 

reduced accumulation of flavonoids in green basil plants grown under low PPFD.  

     In conclusion, a predominated red light with supplemental blue light and a small 

proportion of far-red light (13% in the present study) at a PPFD of 224 µmol·m-2·s-1 with 

a 16-h photoperiod was suggested for basil and Brassica species production in IVFs. 

Meanwhile, supplemental UV-B radiation (at 16.0 µmol·m-2·s-1) of 1 h·d-1 for 2-3 days 
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prior to harvest could enrich plant secondary metabolites accumulation without yield 

reduction. 



 

177 

 

REFERENCES 

Adams, S. and F. Langton. 2005. Photoperiod and plant growth: A review. J. Hortic. Sci. 

Biotechnol. 80:2-10. 

Aerofarms, 2017. US (NJ): IKEA & top chef David Chang round out financing for 

AeroFarms. Hortidaily. 11 Nov. 2017. http://www.hortidaily.com/article/38763/US-

(NJ)-IKEA-&-top-chef-David-Chang-round-out-financing-for-AeroFarms. 

Agati, G. and M. Tattini. 2010. Multiple functional roles of flavonoids in photoprotection. 

New Phytol. 186:786-793. 

Akula, R. and G.A. Ravishankar. 2011. Influence of abiotic stress signals on secondary 

metabolites in plants. Plant Signal. Behav. 6:1720-1731. 

Albert, N.W., D.H. Lewis, H. Zhang, L.J. Irving, P.E. Jameson, and K.M. Davies. 2009. 

Light-induced vegetative anthocyanin pigmentation in Petunia. J. Expt. Bot. 60:2191-

2202. 

Albright, L., A.J. Both, and A. Chiu. 2000. Controlling greenhouse light to a consistent 

daily integral. Trans. ASAE 43:421. 

Ali, M.B., L. Khandaker, and S. Oba. 2009. Comparative study on functional components, 

antioxidant activity and color parameters of selected colored leafy vegetables as 

affected by photoperiods. J. Food Agric. Environ. 7:392-398. 

Allen, J.F. 2003. State transitions--a question of balance. Science 299:1530-1532. 

Amaki, W., N. Yamazaki, M. Ichimura, and H. Watanabe. 2011. Effects of light quality 

on the growth and essential oil content in sweet basil. Acta Hort. 907:91-94. 

http://www.hortidaily.com/article/38763/US-(NJ)-IKEA-&-top-chef-David-Chang-round-out-financing-for-AeroFarms
http://www.hortidaily.com/article/38763/US-(NJ)-IKEA-&-top-chef-David-Chang-round-out-financing-for-AeroFarms


 

178 

 

Anpo, M., H. Fukuda, and T. Wada. 2018. Plant factory using artificial light: Adapting to 

environmental disruption and clues to agricultural onnovation. Elsevier Inc., 

Cambridge, MA. 

Arnao, M.B., A. Cano, and M. Acosta. 2001. The hydrophilic and lipophilic contribution 

to total antioxidant activity. Food Chem. 73, 239-244.  

Ballaré, C.L. 2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65:335-363. 

Banerjee, R., E. Schleicher, S. Meier, R.M. Viana, R. Pokorny, M. Ahmad, R. Bittl, and 

A. Batschauer. 2007. The signaling state of Arabidopsis cryptochrome 2 contains 

flavin semiquinone. J. Biol. Chem. 282:14916-14922. 

Bantis, F., S. Smirnakou, T. Ouzounis, A. Koukounaras, N. Ntagkas, and K. Radoglou. 

2018. Current status and recent achievements in the field of horticulture with the use 

of light emitting diodes (LEDs). Sci. Hort. 235:437-451. 

Beaman, A.R., R.J. Gladon, and J.A. Schrader. 2009. Sweet basil requires an irradiance 

of 500 µmol·m-2·s-1 for greatest edible biomass production. Hortscience 44:64-67. 

Behn, H., A. Albert, F. Marx, G. Noga, and A. Ulbrich. 2010. Ultraviolet-B and 

photosynthetically active radiation interactively affect yield and pattern of 

monoterpenes in leaves of peppermint (Mentha× piperita L.). J. Agric. Food Chem. 

58, 7361-7367.  

Bian, Z.H., Q.C. Yang, and W.K. Liu. 2015. Effects of light quality on the accumulation 

of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. 

Food Agr. 95:869-877. 



 

179 

 

Bian, Z.H., Q.C. Yang, T. Li, R. Cheng, Y. Barnett, and C. Lu, 2018. Study of the 

beneficial effects of green light on lettuce grown under short-term continuous red and 

blue light-emitting diodes. Physiol. Planta.164:226-240. 

Bian, Z.H., R.F. Cheng, Q.C. Yang, J. Wang, and C. Lu. 2016. Continuous light from red, 

blue, and green light-emitting diodes reduces nitrate content and enhances 

phytochemical concentrations and antioxidant capacity in lettuce. J. Amer. Soc. Hort. 

Sci. 141:186-195. 

Bochenek, G.M. and I. Fallstrom. 2016. The effect of diurnal light intensity distribution 

on plant productivity in a controlled environment. In: C.J. Currey, R.G. Lopez, and E.S. 

Runkle (eds.). Proc. VIII Intl. Symp. Light Hort. 1134:155-162. 

Bondada, B.R. and J.P. Syvertsen. 2003. Leaf chlorophyll, net gas exchange and 

chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol. 

23:553-559. 

Brazaityte, A., A. Virsile, G. Samuoliene, J. Jankauskiene, S. Sakalauskiene, R. Sirtautas, 

A. Novickovas, L. Dabasinskas, V. Vastakaite, J. Miliauskiene, and P. Duchovskis. 

2016. Light quality: Growth and nutritional value of microgreens under indoor and 

greenhouse conditions. In VIII Intl Sym. Light Hort. 1134:277-284. 

Briggs, W.R. and J.M. Christie. 2002. Phototropins 1 and 2: Versatile plant blue-light 

receptors. Trends Plant Sci. 7:204-210. 

Brown, B.A. and G.I. Jenkins. 2008. UV-B signaling pathways with different fluence-rate 

response profiles are distinguished in mature Arabidopsis leaf tissue by requirement 

for UVR8, HY5, and HYH. Plant Physiol. 146, 576-588.  



 

180 

 

Bugbee, B. 2016. Toward an optimal spectral quality for plant growth and development: 

The importance of radiation capture. Acta Hort. 1134:1-12. 

Caldwell, M.M. and S.D., Flint. 1994. Stratospheric ozone reduction, solar UV-B radiation 

and terrestrial ecosystems. Climatic Change 28, 375-394.  

Carvalho, S.D. and K.M. Folta. 2014. Sequential light programs shape kale (Brassica 

napus) sprout appearance and alter metabolic and nutrient content. Hort. Res. 1:8. 

Carvalho, S.D., M.L. Schwieterman, C.E. Abrahan, T.A. Colquhoun, and K.M. Folta. 

2016. Light quality dependent changes in morphology, antioxidant capacity, and 

volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci. 7:1328. 

Casal, J.J. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. 

Plant Biol.  64:403-427. 

Casal, J.J. and H. Smith. 1989. The function, action and adaptive significance of 

phytochrome in light-grown plants. Plant Cell Environ. 12:855-862. 

Castagna, A., C. Dall’Asta, E. Chiavaro, G. Galaverna, and A. Ranieri. 2014. Effect of 

post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh 

and peel of tomato fruits. Food Bioprocess Tech. 7, 2241-2250.  

Castilla, N. and J. Hernandez. 2006. Greenhouse technological packages for high-quality 

crop production. Acta Hort. 761:285-297. 

Cen, Y.P. and J.F. Bornman. 1993. The effect of exposure to enhanced UV-B radiation on 

the penetration of monochromatic and polychromatic UV-B radiation in leaves of 

Brassica napus. Physiol. Plantarum 87, 249-255.  



 

181 

 

Chang, X., P.G. Alderson, and C.J. Wright. 2008. Solar irradiance level alters the growth 

of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Exper. Bot. 

63:216-223. 

Chen, M. and J. Chory. 2011. Phytochrome signaling mechanisms and the control of plant 

development. Trends Cell Biol. 21:664-671. 

Chia, P.L. and C. Kubota. 2010. End-of-day far-red light quality and dose requirements 

for tomato rootstock hypocotyl elongation. HortScience 45:1501-1506. 

Chiang, L.C., L.T. Ng, P.W. Cheng, W. Chiang, and C.C. Lin. 2005. Antiviral activities 

of extracts and selected pure constituents of Ocimum basilicum. Clin. Exper. 

Pharmacol. Physiol. 32:811-816. 

Chory, J. 2010. Light signal transduction: an infinite spectrum of possibilities. Plant J. 

61:982-991. 

Christie, J.M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58:21-45. 

Cleveland, D.A., A. Carruth, and D.N. Mazaroli. 2015. Operationalizing local food: Goals, 

actions, and indicators for alternative food systems. Agric. Human Values 32:281-297. 

Cocetta, G., D. Casciani, R. Bulgari, F. Musante, A. Kołton, M. Rossi, and A. Ferrante. 

2017. Light use efficiency for vegetables production in protected and indoor 

environments. Eur. Phys. J. Plus 132:43. 

Colonna, E., Y. Rouphael, G. Barbieri, and S. De Pascale. 2016. Nutritional quality of ten 

leafy vegetables harvested at two light intensities. Food Chem. 199:702-710. 



 

182 

 

Cominelli, E., G. Gusmaroli, D. Allegra, M. Galbiati, H.K. Wade, G.I. Jenkins, and C. 

Tonelli. 2008. Expression analysis of anthocyanin regulatory genes in response to 

different light qualities in Arabidopsis thaliana. J. Plant Physiol. 165:886-894. 

Connor, A.M., J.J. Luby, and C.B. Tong. 2002. Variability in antioxidant activity in 

blueberry and correlations among different antioxidant activity assays. J. Am. Soc. 

Hortic. Sci. 127, 238-244. 

Cope, K.R. and B. Bugbee. 2013. Spectral effects of three types of white light-emitting 

diodes on plant growth and development: absolute versus relative amounts of blue 

light. HortScience 48:504-509. 

Csepregi, K., A. Coffey, N. Cunningham, E. Prinsen, E. Hideg, and M. Jansen. 2017. 

Developmental age and UV-B exposure co-determine antioxidant capacity and 

flavonol accumulation in Arabidopsis leaves. Environ. Exp. Bot. 140, 19-25.  

Dai, Y., Z. Shen, Y. Liu, L. Wang, D. Hannaway, and H. Lu. 2009. Effects of shade 

treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll 

content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Expt. Bot. 65:177-182. 

Darko, E., P. Heydarizadeh, B. Schoefs, and M.R. Sabzalian. 2014. Photosynthesis under 

artificial light: The shift in primary and secondary metabolism. Phil. Trans. R. Soc. B 

369:20130243. 

Demers, D.A., M. Dorais, C.H. Wien, and A. Gosselin. 1998. Effects of supplemental light 

duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit 

yields. Sci. Hort. 74:295-306. 



 

183 

 

Demotes-Mainard, S., T. Péron, A. Corot, J. Bertheloot, J. Le Gourrierec, S. Pelleschi-

Travier, L. Crespel, P. Morel, L. Huché-Thélier, and R. Boumaza. 2016. Plant 

responses to red and far-red lights, applications in horticulture. Environ. Exper. Bot. 

121:4-21. 

Department of Agriculture, Forestry and Fisheries of Republic of South Africa. 2012. 

Basil Production. Dept. Agr. For. Fish. Republic of South Africa. 

Despommier, D. 2010. The vertical farm: Feeding the world in the 21st century. 

Macmillan, New York, USA. 

Despommier, D. 2013. Farming up the city: The rise of urban vertical farms. Trends 

Biotechnol. 31:388-389. 

Dong, J.Z., C. Lei, X.J. Zheng, X.R. Ai, Y. Wang, and Q. Wang. 2013. Light wavelengths 

regulate growth and active components of Cordyceps militaris fruit bodies. J. Food 

Biochem. 37:578-584. 

Dotto M., and P. Casati. 2017. Developmental reprogramming by UV-B radiation in 

plants. Plant Sci. 264, 96-101.  

Dou, H., G. Niu, M. Gu, and J.G. Masabni. 2017. Effects of light quality on growth and 

phytonutrient accumulation of herbs under controlled environments. Horticulturae 

3:36. 

Dou, H., G. Niu, M. Gu, and J.G. Masabni. 2018. Responses of sweet basil to different 

daily light integrals in photosynthesis, morphology, uield, and nutritional quality. 

HortScience 53:496-503. 



 

184 

 

Dunwoody, R.K. 2014. Aquaponics and hydroponics: The effects of nutrient source and 

hydroponic subsystem design on sweet basil production. MS Diss. Univ. Ctr. Misso., 

Warrensburg, MI.  

De Wit, M., W. Kegge, J.B. Evers, M.H. Vergeer-van Eijk, P. Gankema, L.A. Voesenek, 

and R. Pierik. 2012. Plant neighbor detection through touching leaf tips precedes 

phytochrome signals. Proc. Natl Acad. Sci. 109(36): 14705-14710. 

Emerson, R. and E. Rabinowitch. 1960. Red drop and role of auxiliary pigments in 

photosynthesis. Plant Physiol. 35:477. 

Engelen-Eigles, G., G. Holden, J.D. Cohen, and G. Gardner. 2006. The effect of 

temperature, photoperiod, and light quality on gluconasturtiin concentration in 

watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 54:328-334. 

Fan, X., J. Zang, Z. Xu, S. Guo, X. Jiao, X. Liu, and Y. Gao. 2013. Effects of different 

light quality on growth, chlorophyll concentration and chlorophyll biosynthesis 

precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol. 

Planta. 35:2721-2726. 

Favory, J.J., A. Stec, H. Gruber, L. Rizzini, A. Oravecz, M. Funk, A. Albert, C. Cloix, 

G.I. Jenkins, and E.J. Oakeley, 2009. Interaction of COP1 and UVR8 regulates UV-

B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 

591-601.  

Figueiredo, A.C., J.G. Barroso, L.G. Pedro, and J.J. Scheffer. 2008. Factors affecting 

secondary metabolite production in plants: volatile components and essential oils. Flav. 

and Frag. J. 23:213-226. 



 

185 

 

Fischer, R., N. Nitzan, D. Chaimovitsh, B. Rubin, and N. Dudai. 2011. Variation in 

essential oil composition within individual leaves of sweet basil (Ocimum basilicum 

L.) is more affected by leaf position than by leaf age. J. Agr. Food Chem. 59:4913-

4922. 

Folta, K.M. 2004. Green light stimulates early stem elongation, antagonizingreen light-

mediated growth inhibition. Plant Physiol. 135:1407-1416. 

Folta, K.M. and S.A. Maruhnich. 2007. Green light: A signal to slow down or stop. J. 

Exper. Bot. 58:3099-3111. 

Fraser, D.P., A. Sharma, T. Fletcher, S. Budge, C. Moncrieff, A.N. Dodd, and K.A. 

Franklin. 2017. UV-B antagonizes shade avoidance and increases levels of the 

flavonoid quercetin in coriander (Coriandrum sativum). Sci. Reports 7(1), 17758.  

Fraszczak, B., A. Golcz, R. Zawirska-Wojtasiak, and B. Janowska. 2014. Growth rate of 

sweet basil and lemon balm plants grown under fluorescent lamps and led modules. 

Acta Sci. Pol. Hortorum Cultus 13:3-13. 

Frechilla, S., L.D. Talbott, R.A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-

stimulated stomatal opening by green light. Plant Cell Physiol. 41:171-176. 

Ghasemzadeh, A., S., Ashkani, A., Baghdadi, A., Pazoki, H., Jaafar, and A. Rahmat. 2016. 

Improvement in flavonoids and phenolic acids production and pharmaceutical quality 

of sweet basil (Ocimum basilicum L.) by ultraviolet-B 

irradiation. Molecules 21(9):1203. 

Giliberto, L., G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. 

Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor 



 

186 

 

cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit 

antioxidant content. Plant Physiol. 137:199-208. 

Goto, E., K. Hayashi, S. Furuyama, S. Hikosaka, and Y. Ishigami. 2016. Effect of UV 

light on phytochemical accumulation and expression of anthocyanin biosynthesis 

genes in red leaf lettuce, in: VIII Intl Symp. Light Hortic. 1134, 179-186.  

Götz, M., A. Albert, S. Stich, W. Heller, H. Scherb, A. Krins, C. Langebartels, H.K. 

Seidlitz, and D. Ernst. 2010. PAR modulation of the UV-dependent levels of flavonoid 

metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: Cumulative effects after 

a whole vegetative growth period. Protoplasma 243, 95-103.  

Gould, K.S., D.A. Dudle, and H.S. Neufeld. 2010. Why some stems are red: cauline 

anthocyanins shield photosystem II against high light stress. J. Expt. Bot. 61:2707-

2717. 

Hassanpouraghdam, M.B., G.R. Gohari, S.J. Tabatabaei, and M.R. Dadpour. 2010. 

Inflorescence and leaves essential oil composition of hydroponically grown Ocimum 

basilicum L. J. Serbian Chem. Soc. 75:1361-1368. 

Hatier, J.H.B., M.J. Clearwater, and K.S. Gould. 2013. The functional significance of 

black-pigmented leaves: photosynthesis, photoprotection and productivity in 

Ophiopogon planiscapus ‘Nigrescens’. PloS one 8(6):e67850. 

Havaux, M. and K. Kloppstech. 2001. The protective functions of carotenoid and 

flavonoid pigments against excess visible radiation at chilling temperature investigated 

in Arabidopsis NPQ and TT mutants. Planta 213:953-966. 



 

187 

 

He, J., L. Qin, Y. Liu, and T.W. Choong. 2015. Photosynthetic capacities and productivity 

of indoor hydroponically grown Brassica alboglabra bailey under different light 

sources. Am. J. Plant Sci. 6:554. 

Henry-Kirk, R.A., B. Plunkett, M. Hall, T. Mcghie, A.C. Allan, J.J. Wargent, and R.V. 

Espley. 2018. Solar UV light regulates flavonoid metabolism in apple (Malus x 

domestica). Plant Cell Environ. 41, 675-688.  

Heraut-Bron, V., C. Robin, C. Varlet-Grancher, D. Afif, and A. Guckert. 2000. Light 

quality (red: far-red ratio): Does it affect photosynthetic activity, net CO2 assimilation, 

and morphology of young white clover leaves? Ca. J. Bot. 77:1425-1431. 

Hernández, R., T. Eguchi, and C. Kubota. 2016. Growth and morphology of vegetable 

seedlings under different blue and red photon flux ratios usingreen light-emitting 

diodes as sole-source lighting, in: VIII Intl. Sym. Light Hort. 1134: 195-200. 

Hogewoning, S., G. Trouwborst, E. Meinen, and W. Van Ieperen. 2012. Finding the 

optimal growth-light spectrum for greenhouse crops, in: Proc. VII Intl. Sym. Light 

Hort. Systems 956: 357-363. 

Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. 

Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and 

chemical composition of Cucumis sativus grown under different combinations of red 

and blue light. J. Exper. Bot. 61:3107-3117. 

Holl, J., S. Lindner, H. Walter, D. Joshi, G. Poschet, S. Pfleger, T. Ziegler, R. Hell, J. 

Bogs, and T. Rausch. 2018. Impact of pulsed UVB stress exposure on plant 



 

188 

 

performance: How recovery periods stimulate secondary metabolism while reducing 

adaptive growth attenuation. Plant Cell Environ. 0-15.  

Holmes, M. and H. Smith. 1975. The function of phytochrome in plants growing in the 

natural environment. Nature 254:512. 

Holopainen, J.K., M. Kivimäenpää, and R. Julkunen-Tiitto. 2018. New light for 

phytochemicals. Trends Biotechnol. 36:7-10. 

Hosseini, A., M. Zare Mehrjerdi, and S. Aliniaeifard. 2018. Alteration of bioactive 

compounds in two varieties of basil (Ocimum basilicum) grown under different light 

spectra. J. Essent. Oil Bea. Pl. 21:913-923. 

Hou, J.L., W.D. Li, Q.Y. Zheng, W.Q. Wang, B. Xiao, and D. Xing. 2010. Effect of low 

light intensity on growth and accumulation of secondary metabolites in roots of 

Glycyrrhiza uralensis Fisch. Biochem. System. Ecol. 38:160-168. 

Hwang, C.H., Y.G. Park, and B.R. Jeong. 2014. Changes in content of total polyphenol 

and activities of antioxidizing enzymes in Perilla frutescens var. acuta Kudo and 

Salvia plebeia R. Br. as affected by light intensity. Hort. Environ. Biotechnol. 55:489-

497. 

Jansen, M.A. and J.F. Bornman. 2012. UV‐B radiation: From generic stressor to specific 

regulator. Physiol. Plantarum 145:501-504. 

Jenkins, G.I. 2009. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant 

Biol. 60:407-431. 



 

189 

 

Johkan, M., K. Shoji, F. Goto, S.N. Hashida, and T. Yoshihara. 2010. Blue light-emitting 

diode light irradiation of seedlings improves seedling quality and growth after 

transplanting in red leaf lettuce. HortScience 45:1809-1814. 

Johkan, M., K. Shoji, F. Goto, S.N. Hashida, and T. Yoshihara. 2012. Effect of green light 

wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca 

sativa. Envir. Exper. Bot. 75:128-133. 

Johnson, C.B., J. Kirbyb, G. Naxakisa, and S. Pearsonb. 1999. Substantial UV-B-mediated 

induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 

51:507-510.  

Kadomura-Ishikawa, Y., K. Miyawaki, S. Noji, and A. Takahashi. 2013. Phototropin 2 is 

involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa 

fruits. J. Plant Research 126:847-857. 

Kaiserli, E. 2018. Ultraviolet rays light up transcriptional networks regulating plant 

growth. Dev. Cell 44:409-411. 

Kakani, V., K. Reddy, D. Zhao, and A. Mohammed. 2003. Effects of ultraviolet-B 

radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann. Bot. 91, 

817-826.  

Kang, J.H., S. KrishnaKumar, S.L.S. Atulba, B.R. Jeong, and S.J. Hwang. 2013. Light 

intensity and photoperiod influence the growth and development of hydroponically 

grown leaf lettuce in a closed-type plant factory system. Hort. Environ. Biotechnol. 

54:501-509. 



 

190 

 

Kang, W.H., J.S. Park, K.S. Park, and J.E. Son. 2016. Leaf photosynthetic rate, growth, 

and morphology of lettuce under different fractions of red, blue, and green light from 

light-emitting diodes (LEDs). Hort. Envir. Biotechnol. 57:573-579. 

Keservani, R.K., R.K. Kesharwani, N. Vyas, S. Jain, R. Raghuvanshi, and A.K. Sharma. 

2010. Nutraceutical and functional food as future food: a review. Der Pharmacia Lettre 

2:106-116. 

Kevei, E., P. Gyula, A. Hall, L. Kozma-Bognar, W.Y. Kim, M.E. Eriksson, R. Toth, S. 

Hanano, B. Feher, and M.M. Southern. 2006. Forward genetic analysis of the circadian 

clock separates the multiple functions of ZEITLUPE. Plant Physiol. 140:933-945. 

Khanam, U.K.S., S. Oba, E. Yanase, and Y. Murakami. 2012. Phenolic acids, flavonoids 

and total antioxidant capacity of selected leafy vegetables. J. Func. Foods 4:979-987. 

Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation 

for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 

39:1617-1622. 

Kitajima, K. and K. Hogan. 2003. Increases of chlorophyll a/b ratios during acclimation 

of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ. 

26:857-865. 

Kopsell, D.E., D.A. Kopsell, W.M. Randle, T.W. Coolong, C.E. Sams, and J. Curran-

Celentano. 2003. Kale carotenoids remain stable while flavor compounds respond to 

changes in sulfur fertility. J. Agric. Food Chem. 51:5319-5325. 

Kozai, T. 2007. Propagation, grafting and transplant production in closed systems with 

artificial lighting for commercialization in Japan. Propag. Ornam. Plants 7:145-149. 



 

191 

 

Kozai, T. 2012. Sustainable plant factory: Closed plant production systems with artificial 

light for high resource use efficiencies and quality produce. Ohm Pub. Co., Tokyo. 

Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial 

light: Concept, estimation and application to plant factory. Proc. Jpn. Acad., Ser. B. 

89:447-461. 

Kozai, T., G. Niu, and M. Takagaki. 2015. Plant factory: An indoor vertical farming 

system for efficient quality food production. Acad. Press, San Diego, USA. 

Kozuka, T., G. Horiguchi, G.T. Kim, M. Ohgishi, T. Sakai, and H. Tsukaya. 2005. The 

different growth responses of the Arabidopsis thaliana leaf blade and the petiole 

during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol. 

46:213-223. 

Kruma, Z., M. Andjelkovic, R. Verhe, V. Kreicbergs, D. Karklina, and P. Venskutonis. 

2008. Phenolic compounds in basil, oregano and thyme. Foodbalt 5:99-103. 

Kudo, R., Y. Ishida, and K. Yamamoto. 2011. Effects of green light irradiation on 

induction of disease resistance in plants. Acta. Hort. 907: 251-254. 

Kurepin, L.V., R.N. Emery, R.P. Pharis, and D.M. Reid. 2007. Uncoupling light quality 

from light irradiance effects in Helianthus annuus shoots: Putative roles for plant 

hormones in leaf and internode growth. J. Exper. Bot. 58:2145-2157. 

Langton, F., S. Adams, and K. Cockshull. 2003. Effects of photoperiod on leaf greenness 

of four bedding plant species. J. Hort. Sci. Biotechnol. 78:400-404. 



 

192 

 

Lefsrud, M.G., D.A. Kopsell, R.M. Auge, and A. Both. 2006a. Biomass production and 

pigment accumulation in kale grown under increasing photoperiods. HortScience 

41:603-606. 

Lefsrud, M.G., D.A. Kopsell, D.E. Kopsell, and J. Curran‐Celentano. 2006b. Irradiance 

levels affect growth parameters and carotenoid pigments in kale and spinach grown in 

a controlled environment. Physiol. Plantarum 127:624-631. 

Li, F.R., S.L. Peng, B.M. Chen, and Y.P. Hou. 2010. A meta-analysis of the responses of 

woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica 

36:1-9. 

Li, J., G. Li, H. Wang, and X.W. Deng. 2011. Phytochrome signaling mechanisms. The 

Arabidopsis Book. Am. Soc. Plant Biol. 9. 

Li, J., S. Hikosaka, and E. Goto. 2009. Effects of light quality and photosynthetic photon 

flux on growth and carotenoid pigments in spinach (Spinacia oleracea L.). Acta Hort. 

907:105-110. 

Li, Q. 2010. Effects of light quality on growth and phytochemical accumulation of lettuce 

and salvia miltiorrhiza bunge. PhD Diss. Northwest A&F University, Shanxi, China. 

Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and 

phytochemicals of baby leaf lettuce. Environ. Exper. Bot. 67:59-64. 

Li, Q.H. and H.Q. Yang. 2007. Cryptochrome signaling in plants. Photochem. Photobiol. 

83:94-101. 

Liaros, S., K. Botsis, and G. Xydis. 2016. Technoeconomic evaluation of urban plant 

factories: The case of basil (Ocimum basilicum). Sci. Total Environ. 554:218-227. 



 

193 

 

Lichtenthaler, H.K. 1985. Differences in morphology and chemical composition of leaves 

grown at different light intensities and qualities. Control Leaf Growth 1985:201-221. 

Lichtenthaler, H.K., A. Ač, M.V. Marek, J. Kalina, and O. Urban. 2007. Differences in 

pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun 

and shade leaves of four tree species. Plant Physiol. Biochem. 45:577-588. 

Lidon, F.J., F.H. Reboredo, M.M.A. Silva, M.P. Duarte, and J.C. Ramalho. 2012. Impact 

of UV-B radiation on photosynthesis-an overview. Emir. J. Food Agric. 546-556.  

Lobiuc, A., V. Vasilache, M. Oroian, T. Stoleru, M. Burducea, O. Pintilie, and M.M. 

Zamfirache. 2017. Blue and red LED illumination improves growth and bioactive 

compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. 

Molecules 22:2111. 

Logan, B.A., W.C. Stafstrom, M.J. Walsh, J.S. Reblin, and K.S. Gould. 2015. Examining 

the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by 

revisiting comparisons of green-and red-leafed varieties of coleus (Solenostemon 

scutellarioides). Photosyn. Res. 124:267-274. 

Makri, O. and S. Kintzios. 2008. Ocimum sp.(basil): Botany, cultivation, pharmaceutical 

properties, and biotechnology. J. Herbs Spices Med. Plants 13:123-150. 

Mao, J., Y.C. Zhang, Y. Sang, Q.H. Li, and H.Q. Yang. 2005. A role for Arabidopsis 

cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl Acad. Sci. 

102:12270-12275. 

McCree, K.J. 1972. The action spectrum, absorptance and quantum yield of 

photosynthesis in crop plants. Agric. Meteorol. 9:191-216. 



 

194 

 

Meng, Q. and E. Runkle. 2017. Far red is the new red. Inside Grower 2:2630. 

Meng, Q., N. Kelly, and E.S. Runkle. 2019. Substituting green or far-red radiation for blue 

radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. 

Exp. Bot. (online access) 

Meng, X., T. Xing, and X. Wang. 2004. The role of light in the regulation of anthocyanin 

accumulation in Gerbera hybrida. Plant Growth Regul. 44:243-250. 

Mills, H.A. and J.B. Jones Jr. 1996. Plant analysis handbook II: A practical sampling, 

preparation, analysis, and interpretation guide. Micro-Macro Pub. Athens, GA. 

Mitchell, C.A., M.P. Dzakovich, C. Gomez, R. Lopez, J.F. Burr, R. Hernández, C. Kubota, 

C.J. Currey, Q. Meng, and E.S. Runkle. 2015. Light-emitting diodes in horticulture. 

Hort. Rev. 43:1-87. 

Miyazaki, Y., T. Takase, and T. Kiyosue. 2015. ZEITLUPE positively regulates hypocotyl 

elongation at warm temperature under light in Arabidopsis thaliana. Plant Signal. 

Behav. 10:e998540. 

Mizuno, T., W. Amaki, and H. Watanabe. 2009. Effects of monochromatic light 

irradiation by LED on the growth and anthocyanin contents in leaves of cabbage 

seedlings, in: VI Intl Sym. Light Hort. 907:179-184. 

Moreira-Rodríguez, M., V. Nair, J. Benavides, L. Cisneros-Zevallos, and D.A. Jacobo-

Velázquez. 2017. UVA, UVB light doses and harvesting time differentially tailor 

glucosinolate and phenolic profiles in broccoli sprouts. Molecules 22, 1065. 

Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43:1947-1950. 



 

195 

 

Mosadegh, H., A. Trivellini, A. Ferrante, M. Lucchesini, P. Vernieri, and A. Mensuali. 

2018. Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. 

Sci. Horti. 229, 107-116.  

Moss, R. and W. Loomis. 1952. Absorption spectra of leaves. I. The visible spectrum. 

Plant Physiol. 27:370. 

Myers, J. 1971. Enhancement studies in photosynthesis. Annu. Rev. Plant Physiol. 22:289-

312. 

Nasibi, F. and K.H. M-Kalantari. 2005. The effects of UV-A, UV-B and UV-C on protein 

and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in 

Brassica napus. Iranian J. Sci. Technol. Trans. A. 29 (A1):39-48. 

Neff, M.M. and E. Van Volkenburgh. 1994. Light-stimulated cotyledon expansion in 

Arabidopsis seedlings (the role of phytochrome B). Plant Physiol. 104:1027-1032. 

Nishioka, N., T. Nishimura, K. Ohyama, M. Sumino, S. Malayeri, E. Goto, N. Inagaki, 

and T. Morota. 2008. Light quality affected growth and contents of essential oil 

components of Japanese mint plants, in: Intl Workshop Greenhouse Environ. Ctrl. 

Crop Production in Semi-Arid Regions 797:431-436. 

Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light 

quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Envir. 

Ctrl. Biol. 45:189-198. 

Ohyama, K., K. Manabe, Y. Omura, C. Kubota, and T. Kozai. 2003. A comparison 

between closed-type and opend-type transplant production systems with respect to 



 

196 

 

quality of tomato (Lycopersicon esculentum) plug transplants and resource 

consumption during summer. Environ. Control Biol. 41:57-61. 

Ohyama, K., M. Takagaki, and H. Kurasaka. 2008. Urban horticulture: Its significance to 

environmental conservation. Sustain. Sci. 3:241-247. 

Ohyama, K., T. Kozai, C. Kubota, C. Chun, T. Hasegawa, S. Yokoi, and M. Nishimura. 

2002. Coefficient of performance for cooling of a home-use air conditioner installed in 

a closed-type transplant production system. J.Soc. High Technol. Agr. 14:141-146. 

Ouzounis, T., E. Rosenqvist, and C.O. Ottosen. 2015. Spectral effects of artificial light on 

plant physiology and secondary metabolism: A review. HortScience 50:1128-1135. 

Paradiso, R., E. Meinen, J.F. Snel, P. De Visser, W. Van Ieperen, S.W. Hogewoning, and 

L.F. Marcelis. 2011. Spectral dependence of photosynthesis and light absorptance in 

single leaves and canopy in rose. Sci. Hort. 127:548-554. 

Park, Y. and E.S. Runkle. 2017. Far-red radiation promotes growth of seedlings by 

increasing leaf expansion and whole-plant net assimilation. Environ. Exper. Bot. 

136:41-49. 

Pedmale, U.V., R.B. Celaya, and E. Liscum. 2010. Phototropism: Mechanism and 

outcomes. The Arabidopsis Book. Am. Soc. Plant Biol. 8. 

Pedmale, U.V., S.S.C. Huang, M. Zander, B.J. Cole, J. Hetzel, K. Ljung, P.A. Reis, P. 

Sridevi, K. Nito, and J.R. Nery. 2016. Cryptochromes interact directly with PIFs to 

control plant growth in limiting blue light. Cell 164:233-245. 

Pennisi, G., S. Blasioli, A. Cellini, L. Maia, A. Crepaldi, I. Braschi, F. Spinelli, S. Nicola, 

J.A. Fernández, and C. Stanghellini. 2019. Unravelling the role of red: blue LED lights 



 

197 

 

on resource use efficiency and nutritional properties of indoor grown sweet basil. 

Front. Plant Sci. 10:305. 

Pessu, P., S. Agoda, I. Isong, and I. Ikotun. 2011. The concepts and problems of 

postharvest food losses in perishable crops. Afr. J. Food Sci. 5:603-613. 

Piovene, C., F. Orsini, S. Bosi, R. Sanoubar, V. Bregola, G. Dinelli, and G. Gianquinto. 

2015. Optimal red: blue ratio in LED lighting for nutraceutical indoor horticulture. 

Sci. Hort. 193:202-208. 

Polyakova, M., T.M. Yu, T. Dilovarova, and A. Kosobryukhov. 2015. Photosynthesis and 

productivity of basil plants (Ocimum basilicum L.) under different irradiation. Agr. 

Biol. 50(1):124-130. 

Porra, R., W. Thompson, and P. Kriedemann. 1989. Determination of accurate extinction 

coefficients and simultaneous equations for assaying chlorophylls a and b extracted 

with four different solvents: verification of the concentration of chlorophyll standards 

by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975:384-394. 

Pushpangadan, P. and V. George. 2012. Basil, p. 55-72. In: K. V. Peter (ed.). Handbook 

of herbs and spices. Elsevier, Atlanta. 

Qian, H., T. Liu, M. Deng, H. Miao, C. Cai, W. Shen, and Q. Wang. 2016. Effects of light 

quality on main health-promoting compounds and antioxidant capacity of Chinese kale 

sprouts. Food Chem. 196:1232-1238. 

Quail, P.H. 2002. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell 

Biol. 3:85. 



 

198 

 

Rai, K. and S.B. Agrawal. 2017. Effects of UV-B radiation on morphological, 

physiological and biochemical aspects of plants: An overview. J. Sci. Research 61, 87-

113. 

Retkute, R., S.E. Smith-Unna, R.W. Smith, A.J. Burgess, O.E. Jensen, G.N. Johnson, S.P. 

Preston, and E.H. Murchie. 2015. Exploiting heterogeneous environments: Does 

photosynthetic acclimation optimize carbon gain in fluctuating light? J. Expt. Bot. 

66:2437-2447. 

Rodriguez-Calzada, T., M. Qian, A. Strid, S. Neugart, M. Schreiner, I. Torres-Pacheco, 

and R.G. Guevara-Gonzalez. 2019. Effect of UV-B radiation on morphology, phenolic 

compound production, gene expression, and subsequent drought stress responses in 

chili pepper (Capsicum annuum L.). Plant Physiol. Biochem. 134, 94-102.  

Rouphael, Y., M. Cardarelli, A. Bassal, C. Leonardi, F. Giuffrida, and G. Colla. 2012. 

Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food 

Agr. Environ. 10:680-688. 

Sabzalian, M.R., P. Heydarizadeh, M. Zahedi, A. Boroomand, M. Agharokh, M.R. Sahba, 

and B. Schoefs. 2014. High performance of vegetables, flowers, and medicinal plants 

in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 34:879-

886. 

Sager, J., W. Smith, J. Edwards, and K. Cyr. 1988. Photosynthetic efficiency and 

phytochrome photoequilibria determination using spectral data. Trans. ASAE 

31:1882-1889. 



 

199 

 

Saha, S., A. Monroe, and M.R. Day. 2016. Growth, yield, plant quality and nutrition of 

basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agr. Sci. 61:181-

186. 

Sakalauskaite, J., P. Viskelis, E. Dambrauskien, S. Sakalauskien, G. Samuolien, A. 

Brazaityt, P. Duchovskis, and D. Urbonavi. 2013. The effects of different UV-B 

radiation intensities on morphological and biochemical characteristics in Ocimum 

basilicum L. J. Sci. Food Agr. 93:1266-1271. 

Sakalauskaite, J., P. Viskelis, P. Duchovskis, E. Dambrauskiene, S. Sakalauskiene, G. 

Samuoliene, and A. Brazaityte. 2012. Supplementary UV-B irradiation effects on basil 

(Ocimum basilicum L.) growth and phytochemical properties. J. Food Agr. Environ. 

10 (3&4): 342-346. 

Samuoliene, G., A. Brazaityte, A. Virsile, J. Jankauskiene, S. Sakalauskiene, and P. 

Duchovskis. 2016. Red light-dose or wavelength-dependent photoresponse of 

antioxidants in herb microgreens. PloS one 11:e0163405. 

Sarijeva, G., M. Knapp, and H.K. Lichtenthaler. 2007. Differences in photosynthetic 

activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters 

in green sun and shade leaves of Ginkgo and Fagus. J. Plant Physiol. 164:950-955. 

Savvides, A., D. Fanourakis, and W. van Ieperen. 2011. Co-ordination of hydraulic and 

stomatal conductances across light qualities in cucumber leaves. J. Exper. Bot. 

63:1135-1143. 



 

200 

 

Schnitzler, W. and R. Habegger. 2004. Perilla frutescens-Perilla red and its secondary 

plant metabolism, in: VII Intl. Sym. Prot. Cultiv. Mild Winter Clim: Prod. Pest Mgmt. 

Global Compet. 659, 371-374. 

Schreiner, M., I. Mewis, S. Huyskens-Keil, M.A.K. Jansen, R. Zrenner, J.B. Winkler, N. 

O'Brien, and A. Krumbein. 2012. UV-B-induced secondary plant metabolites- 

potential benefits for plant and human health. Crit. Rev. Plant Sci. 31:229-240. 

Schultze, M. and W. Bilger. 2019. Acclimation of Arabidopsis thaliana to low 

temperature protects against damage of photosystem II caused by exposure to UV-B 

radiation at 9˚C. Plant Physiol. Biochem. 134, 73-80.  

Schwend, T., D. Prucker, S. Peisl, A. Nitsopoulos, and H. Mempel. 2016. The rosmarinic 

acid content of basil and borage correlates with the ratio of red and far-red light. Eu. 

J. Hort. Sci. 81:243-247. 

Searles, P.S., S.D. Flint, and M.M. Caldwell. 2001. A meta-analysis of plant field studies 

simulating stratospheric ozone depletion. Oecologia 127, 1-10.  

Shafiee-Hajiabad, M., J. Novak, and B. Honermeier. 2016. Content and composition of 

essential oil of four Origanum vulgare L. accessions under reduced and normal light 

intensity conditions. J. Appl. Bot. Food Qual. 89:126-134. 

Shibuya, T., R. Endo, N. Hayashi, and Y. Kitaya. 2012. High-light-like photosynthetic 

responses of Cucumis sativus leaves acclimated to fluorescent illumination with a high 

red: far-red ratio: interaction between light quality and quantity. Photosynthetica 

50:623-629. 



 

201 

 

Shiga, T., K. Shoji, H. Shimada, S.N. Hashida, F. Goto, and T. Yoshihara. 2009. Effect of 

light quality on rosmarinic acid content and antioxidant activity of sweet basil, 

Ocimum basilicum L. Plant Biotechnol. 26:255-259. 

Shoji, K., E. Goto, S. Hashida, F. Goto, and T. Yoshihara. 2011. Effect of light quality on 

the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.), 

in VI Intl Sym. Light Hort. 907:95-99. 

Snowden, M.C., K.R. Cope, and B. Bugbee. 2016. Sensitivity of seven diverse species to 

blue and green light: interactions with photon flux. PloS one 11:32. 

Solovchenko, A. 2010. Localization of screening pigments within plant cells and tissues, 

p. 67-88, Photoprotection in Plants. Springer, New York. 

Somers, D.E., W.Y. Kim, and R. Geng. 2004. The F-box protein ZEITLUPE confers 

dosage-dependent control on the circadian clock, photomorphogenesis, and flowering 

time. Plant Cell 16:769-782. 

Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds 

of two lettuce cultivars grown under various combinations of blue and red light-

emitting diodes. HortScience 48:988-995. 

Son, K.H., J.H. Lee, Y. Oh, D. Kim, M.M. Oh, and B.C. In. 2017. Growth and bioactive 

compound synthesis in cultivated lettuce subject to light-quality changes. HortScience 

52:584-591. 

Son, K.H., J.H. Park, D. Kim, and M.M. Oh. 2012. Leaf shape index, growth, and 

phytochemicals in two leaf lettuce cultivars grown under monochromatic light-

emitting diodes. Korean J. Hort. Sci. Technol. 30:664-672. 



 

202 

 

Strasser, R.J., A. Srivastava, M. and Tsimilli-Michael. 2000. The fluorescence transient 

as a tool to characterize and screen photosynthetic samples, in: Yunus, M., Pathre, U., 

Mohanty, P. (Eds), Probing photosynthesis: Mechanisms, regulation and adaptation. 

Taylor and Francis Inc., New York, pp.445-483. 

Stutte, G.W. 2016. Controlled environment production of medicinal and aromatic plants, 

in: Jeliazkov V.D., Cantrell C.L. (Eds), Medicinal and aromatic crops: Production, 

phytochemistry, and utilization. Am. Chem. Soc. Washington, pp.49-63. 

Stutte, G.W. 2009. Light-emitting diodes for manipulating the phytochrome apparatus. 

HortScience 44:231-234. 

Stutte, G.W. 2015. Commercial transition to LEDs: A pathway to high-value products. 

HortScience 50:1297-1300. 

Suchar, V.A. and R. Robberecht. 2018. Integration and scaling of UV-B radiation effects 

on plants: The relative sensitivity of growth form and interspecies interactions. J. Plant 

Eco. 11(4), 656-670.  

Sullivan, J.H. and A.H. Teramura. 1990. Field study of the interaction between solar 

ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant 

Physiol. 92, 141-146.  

Sun, R., S. Hikosaka, E. Goto, H. Sawada, T. Saito, T. Kudo, T. Ohno, T. Shibata, and K. 

Yoshimatsu. 2012. Effects of UV irradiation on plant growth and concentrations of 

four medicinal ingredients in Chinese licorice (Glycyrrhiza uralensis), in: VII Intl. 

Symp. Light Hortic. Sys. 643-648.  



 

203 

 

Sysoeva, M.I., E.F. Markovskaya, and T.G. Shibaeva. 2010. Plants under continuous light: 

A review. Plant Stress 4:5-17. 

Takahashi, S. and M.R. Badger. 2011. Photoprotection in plants: A new light on 

photosystem II damage. Trends Plant Sci. 16:53-60. 

Talbott, L.D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light 

reversal of blue‐light‐stimulated stomatal opening is found in a diversity of plant 

species. Am. J. Bot. 89:366-368. 

Talbott, L.D., J.W. Hammad, L.C. Harn, V.H. Nguyen, J. Patel, and E. Zeiger. 2006. 

Reversal by green light of blue light-stimulated stomatal opening in intact, attached 

leaves of Arabidopsis operates only in the potassium-dependent, morning phase of 

movement. Plant Cell Physiol. 47:332-339. 

Tattini, M., M. Landi, C. Brunetti, C. Giordano, D. Remorini, K.S. Gould, and L. Guidi. 

2014. Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: 

Multiple consequences of light attenuation. Physiol. Plant. 152:585-598. 

Taulavuori, K., V. Hyöky, J. Oksanen, E. Taulavuori, and R. Julkunen-Tiitto. 2016. 

Species-specific differences in synthesis of flavonoids and phenolic acids under 

increasing periods of enhanced blue light. Environ. Exper. Bot. 121:145-150. 

Teklemariam, T. and T.J. Blake. 2003. Effects of UVB preconditioning on heat tolerance 

of cucumber (Cucumis sativus L.). Environ. Exp. Bot. 50, 169-182.  

Terashima, I., S.I. Miyazawa, and Y.T. Hanba. 2001. Why are sun leaves thicker than 

shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J. Plant 

Res. 114:93-105. 



 

204 

 

Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi. 2009. Green light drives 

leaf photosynthesis more efficiently than red light in strong white light: Revisiting the 

enigmatic question of why leaves are green. Plant Cell Physiol. 50:684-697. 

Topcu, Y., A. Dogan, Z. Kasimoglu, H. Sahin-Nadeem, E. Polat, and M. Erkan. 2015. The 

effects of UV radiation during the vegetative period on antioxidant compounds and 

postharvest quality of broccoli (Brassica oleracea L.). Plant Physiol. Biochem. 93:56-

65. 

Tornaghi, C. 2017. Urban agriculture in the food-disabling city: (Re)-defining urban food 

justice, reimagining a politics of empowerment. Antipode 49:781-801. 

Touliatos, D., I.C. Dodd, and M. Mcainsh. 2016. Vertical farming increases lettuce yield 

per unit area compared to conventional horizontal hydroponics. Food Energy Security 

5:184-191. 

Trouwborst, G., S.W. Hogewoning, O. van Kooten, J. Harbinson, and W. van Ieperen. 

2016. Plasticity of photosynthesis after the ‘red light syndrome’ in cucumber. Environ. 

Exper. Bot. 121:75-82. 

Vogelmann, T. and G. Martin. 1993. The functional significance of palisade tissue: 

penetration of directional versus diffuse light. Plant Cell Environ. 16:65-72. 

Wargent, J.J. 2016. UV LEDs in horticulture: From biology to application, in: VIII Intl. 

Symp. Light Hortic. 1134, 25-32.  

Wargent, J.J. and B.R. Jordan. 2013. From ozone depletion to agriculture: Understanding 

the role of UV radiation in sustainable crop production. New Phytol. 197:1058-1076. 



 

205 

 

Wargent, J.J., E.M. Elfadly, J.P. Moore, and N.D. Paul. 2011. Increased exposure to UV-

B radiation during early development leads to enhanced photoprotection and improved 

long-term performance in Lactuca sativa. Plant Cell Environ. 34, 1401-1413. 

Wargent, J.J., J.P. Moore, A. Roland Ennos, and N.D. Paul. 2009. Ultraviolet radiation as 

a limiting factor in leaf expansion and development. Photochem. Photobiol. 85:279-

286. 

Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Cur. Opin. Plant 

Biol. 5:218-223. 

Wittmann, C., G. Aschan, and H. Pfanz. 2001. Leaf and twig photosynthesis of young 

beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light 

regime. Basic Appl. Ecol. 2:145-154. 

Wollaeger, H.M. and E.S. Runkle. 2014. Growth of impatiens, petunia, salvia, and tomato 

seedlings under blue, green, and red light-emitting diodes. HortScience 49:734-740. 

Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 

2007. A novel approach of LED light radiation improves the antioxidant activity of pea 

seedlings. Food Chem. 101:1753-1758. 

Xu, C.P. and B.Q. Mou. 2016. Responses of spinach to salinity and nutrient deficiency in 

growth, physiology, and nutritional value. J. Amer. Soc. Hort. Sci. 141:12-21. 

Yadav, S., A.K. Shrivastava, C. Agrawal, S. Sen, A. Chatterjee, S. Rai, and L.C. Rai. 

2017. Impact of UV-B exposure on phytochrome and photosynthetic machinery: From 

cyanobacteria to plants, in: Singh, V.P., Singh, S., Prasad, S.M., Parihar, P. (Eds), UV-



 

206 

 

B radiation: from environmental stressor to regulator of plant growth. John Wiley & 

Sons, Ltd., West Sussex, pp.259-277. 

Yang, Z., Y. Li, J. Zhang, J. Zhang, J. Zhu, L. Gu, and B. Zhang. 2013. Effects of the red: 

far-red light ratio on photosynthetic characteristics of greenhouse cut Chrysanthemum. 

Hort. Sci. 40:40-43. 

Yin, R. and R. Ulm. 2017. How plants cope with UV-B: From perception to response. 

Cur. Opin. Plant Biol. 37:42-48. 

Yokoi, S., T. Kozai, T. Hasegawa, C. Chun, and C. Kubota. 2005. CO2 and water 

utilization efficiencies of a closed transplant production system as affected by leaf area 

index of tomato seedling populations and the number of air exchanges. J. Soc. High 

Technol. Agr. 18:182181. 

Yu, X., H. Liu, J. Klejnot, and C. Lin. 2010. The cryptochrome blue light receptors. The 

Arabidopsis Book. Am. Soc. Plant Biol. 8. 

Zhang, T. and K.M. Folta. 2012. Green light signaling and adaptive response. Plant Signal. 

Behav. 7:75-78. 

Zhang, T., S.A. Maruhnich, and K.M. Folta. 2011. Green light induces shade avoidance 

symptoms. Plant Physiol. 111: 180661. 

Zhao, D., K. Reddy, V. Kakani, J. Read, and J. Sullivan. 2003. Growth and physiological 

responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and 

ultraviolet-B radiation under controlled environmental conditions. Plant Cell Environ. 

26, 771-782.  



 

207 

 

Zhen, S. and M.W. Van Iersel. 2017. Far-red light is needed for efficient photochemistry 

and photosynthesis. J. Plant Physiol. 209:115-122. 

Zheng, L. and M.C. Van Labeke. 2017. Chrysanthemum morphology, photosynthetic 

efficiency and antioxidant capacity are differentially modified by light quality. J. Plant 

Physiol. 213:66-74. 

Zobayed, S.M., F. Afreen, and T. Kozai. 2005. Necessity and production of medicinal 

plants under controlled environments. Environ. Control Biol. 43:243-2. 


	Abstract
	Acknowledgements
	contributors and funding sources
	Table of Contents
	List of Figures
	List of Tables
	Chapter I  INTRODUCTION
	1.1 Introduction
	1.2 Advantages of Light Emitting Diodes (LEDs)
	1.3 Photosensory Photoreceptors
	1.3.1 Phytochromes
	1.3.2 Cryptochromes
	1.3.3 Phototropins
	1.3.4 Members of the Zeitlupe family
	1.3.5 UV Resistance locus 8

	1.4 Plant Responses to Lighting Environments
	1.4.1 Plant responses to light intensity, photoperiod, and daily light integral
	1.4.2 Plant responses to light quality
	1. Red and blue Light
	2. Red and far-red light
	3. Green light
	4. UV-B light


	1.5 Objectives

	Chapter II  RESPONSES OF BASIL PLANTS TO DIFFERENT DAILY LIGHT INTEGRALS IN PHOTOSYNTHESIS, MORPHOLOGY, YIELD, AND NUTRITIONAL QUALITY*
	2.1 Synopsis
	2.2 Introduction
	2.3 Materials and Methods
	2.3.1 Plant materials and growing conditions
	2.3.2 DLIs treatments
	2.3.3 Measurements
	1. Gas exchange and chlorophyll concentration analysis
	2. Growth parameters
	3. Nutritional quality measurement

	2.3.4 Statistical analysis

	2.4 Results
	2.4.1 Photosynthesis and chlorophyll content of basil leaves under different DLIs
	2.4.2 Morphological differences of basil plants influenced by DLIs
	2.4.3 Plant growth and yield of basil plants under different DLIs
	2.4.4 Nutritional quality of basil leaves under different DLIs

	2.5 Discussion
	2.5.1 Photosynthetic capacity, Chl content, leaf morphology, growth, and yield of basil plants
	2.5.2 Enhanced nutritional quality of basil plants under higher DLIs
	2.5.3 Future research perspectives

	2.6 Conclusion

	Chapter III  PHOTOSYNTHESIS, GROWTH, AND SECONDARY METABOLITES ACCUMULATION IN BASIL, KALE, AND MUSTARD PLANTS UNDER DIFFERENT PROPORTIONS OF RED, BLUE, AND GREEN LIGHT
	3.1 Synopsis
	3.2 Introduction
	3.3 Materials and Methods
	3.3.1 Plant materials and growing conditions
	3.3.2 Light quality treatments
	3.3.3 Measurements
	1. Gas-exchange and chlorophyll content
	2. Growth parameters
	3. Secondary plant metabolites measurement

	3.3.4 Statistical analysis

	3.4 Results
	3.4.1 Gas exchange rate and chlorophyll content as influenced by red, blue, and green light
	1. Green and purple basils
	2. Green and red kales
	3. Green and red mustards

	3.4.2 Growth parameters and crop yield as influenced by red, blue, and green light
	1. Green and purple basils
	2. Green and red kales
	3. Green and red mustards

	3.4.3 Secondary metabolites accumulation as influenced by red, blue, and green light
	1. Green and purple basils
	2. Green and red kales
	3. Green and red mustards


	3.5 Discussion
	3.5.1 Photosynthesis and chlorophyll content as influenced by red, blue, and green light
	3.5.2 Plant growth and yield as influenced by red, blue, and green light
	3.5.3 Secondary metabolites accumulation as influenced by red, blue, and green light

	3.6 Conclusion

	Chapter IV  SUBSTITUTING RED AND/OR BLUE LIGHT WITH GREEN LIGHT INDUCED SHADE AVOIDANCE RESPONSES BUT DECREASED PHOTOSYNTHESIS AND SECONDARY MEATBOLITES ACCUMULATION IN BASIL PLANTS
	4.1 Synopsis
	4.2 Introduction
	4.3 Materials and Methods
	4.3.1 Plant materials and growing conditions
	4.3.2 Green light treatments
	4.3.3 Measurements
	1. Gas exchange and chlorophyll concentration
	2. Growth characteristics
	3. Secondary metabolites

	4.3.4 Statistical analysis

	4.4 Results
	4.4.1 Photosynthesis and chlorophyll content
	4.4.2 Plant growth and yield
	4.4.3 Accumulation of secondary metabolites

	4.5 Discussion
	4.5.1 Substituting red or blue light with green light increased photosynthesis in the lower level plant canopy
	4.5.2 Substituting green light for red and/or blue light induced shade avoidance responses
	4.5.3 Substituting green light for red and/or blue light decreased secondary metabolites accumulation

	4.6 Conclusion

	Chapter V  RESPONSES OF PHOTOSYNTHESIS, GROWTH, AND SECONDARY METABOLITES ACCUMULATION IN BASIL, KALE, AND MUSTARD PLANTS TO PRE-HARVEST UV-B RADIATION AND PHOTOSYNTHETIC PHOTON flux density
	5.1 Synopsis
	5.2 Introduction
	5.3 Materials and Methods
	5.3.1 Plant materials and growing conditions
	5.3.2 Supplemental UV-B radiation and PPFD treatments
	Exp. I:
	Exp. II:

	5.3.3 Measurements
	1. Gas-exchange rate, SPAD index, and chlorophyll fluorescence
	2. Growth parameters
	3. Secondary plant metabolites

	5.3.4 Statistical analysis
	Exp. I:
	Exp. II:


	5.4 Results
	5.4.1 Gas exchange rate, SPAD, and chlorophyll fluorescence
	Exp. I:
	Exp. II:

	5.4.2 Growth parameters and plant yield
	Exp. I:
	Exp. II:

	5.4.3 Secondary plant metabolites accumulation and antioxidant capacity
	Exp. I:
	Exp. II:


	5.5 Discussion
	5.5.1 Impacts of UV-B and PPFD on photosynthesis, SPAD, and chlorophyll fluorescence
	5.5.2 Impacts of UV-B and PPFD on plant growth and development
	5.5.3 Impacts of UV-B and PPFD on phenolics accumulation and antioxidant capacity
	5.5.4 Impacts of UV-B radiation doses and radiation patterns on phenolics accumulation and antioxidant capacity in basil plants
	5.5.5 Implications of study findings

	5.6 Conclusion

	Chapter VI  SUBSTITUTING PHOTOSYNTHETICALLY ACTIVE RADIATION LIGHT WITH FAR-RED LIGHT INCREASED BIOMASS AND SECONDARY METABOLITES ACCUMULATION IN BASIL PLANTS
	6.1 Synopsis
	6.2 Introduction
	6.3 Materials and Methods
	6.3.1 Plant materials and growing conditions
	6.3.2 Far-red light treatments
	6.3.3 Measurements
	1. Photosynthesis and chlorophyll content
	2. Growth characteristics
	3. Nutritional quality measurement

	6.3.4 Statistical analysis

	6.4 Results
	6.4.1 Photosynthesis and chlorophyll content as influenced by far-red light substitution
	6.4.2 Plant growth and yield as influenced by far-red light substitution
	6.4.3 Accumulation of secondary metabolites as influenced by far-red light substitution
	6.4.4 Correlations between growth parameters and YPFD and PPE

	6.5 Discussion
	6.5.1 Photosynthesis and chlorophyll content
	6.5.2 Plant growth and yield
	6.5.3 Accumulation of secondary metabolites

	6.6 Conclusion

	Chapter VII  SUMMARY OF FINDINGS
	REFERENCES

