

A K-MEDOIDS-BASED SHAPE CLUSTERING METHOD AND ITS

APPLICATIONS IN GENERATIVE DESIGN AND OPTIMIZATION SYSTEMS

A Dissertation

by

SHERMEEN AHMED YOUSIF YOUSIF

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Wei Yan

Co-Chair of Committee, Charles Culp

Committee Members, Stephen Caffey

 Philip Galanter

Head of Department, Robert Warden

August 2019

Major Subject: Architecture

Copyright 2019 Shermeen Ahmed Yousif Yousif

ii

ABSTRACT

As the number of design candidates in generative and design optimization systems is

often excessive and overwhelming, with similar and redundant shapes of design candidates

evolving, there is a need for an articulation mechanism that assists designers in the exploration

and examination of the design set in a feasible manner. This work is focused on introducing a

new Generative Design System (GDS) that facilitates the designers’ interaction with such

systems and accommodates decision making in the process. The proposed system incorporates

an innovative Shape Clustering using K-Medoids (SC-KM) method into other routine processes

of parametric modeling and design optimization.

The research methods include an extensive literature study, experimenting, prototyping,

and validation procedures. A prototype was carried out, as the apparatus to demonstrate and test

the proposed GDS, and the clustering method. In developing, demonstrating, and testing the

prototype, three test-cases were pursued. Within the prototype, at first, a process of parametric

form generation was carried out to initiate a design model parametrically to allow for a possibly

heterogeneous or/and similar set of design options to be produced, in an algorithmic manner.

Second, a design optimization process was pursued where the initial parametric model was

subjected to building performance evaluation inside a Multi-Objective Evolutionary Algorithm,

such as in Test-case 3. In the third process, the new SC-KM method was formulated and applied,

using two functionalities: (1) a grid-based shape descriptor was used for a pair-wise shape

comparison with the implementation of the Hungarian’s algorithm, carried out to find the shape

difference score matrix for the analyzed shapes, (2) K-Medoids clustering was employed to

group the design shapes into different subsets, each of similar shapes, and identify each group’s

iii

Medoid–the representative shape in the group. Applying the algorithmic definition to the

samples of three test-cases, the results of the SC-KM showed satisfactory clusterings.

Furthermore, verification procedures were conducted for each test-case, and in particular,

external validation with the calculation of clustering evaluation metrics was pursued in Test-case

2.

In contrast to the accepted practice of current generative design systems that lack

organizational methods, the significance of this work is to expand and advance such systems

incorporating cluster analysis as a big-data management strategy and a potential solution. The

research provides contributions through the following: (1) introduction and illustration of a fully

working prototype of a new generative design system, (2) development, testing, and validation of

a new package of algorithms for the developed SC-KM, method. The package of plugins and

algorithms will be made available for designers to download as an open-source in a visual

programming interface, to be applied to a wide range of related design problems.

iv

DEDICATION

To my role model and the most loving, giving, and caring person who will be proud the

most of this doctoral degree, my father,

to my mother in heaven,

to my supportive family whose unconditional love was my strength,

to my loving husband,

 and to my precious boys,

I dedicate this dissertation.

v

ACKNOWLEDGEMENTS

First, and foremost, I would like to thank my committee chair, Dr. Wei Yan, one of the

kindest, most knowledgeable, and most supportive and encouraging professors I have ever seen,

to whom I owe my success in academia. I also want to thank my co-chair Dr. Charles Culp, who

taught me how to succeed in the doctoral study and has been guiding me for years, my

committee member, Dr. Stephen Caffey who was always there for me and has been supportive

throughout the course of this research, and to Dr. Prof. Galanter, for his guidance and

supervision.

I would like to express my gratitude to other faculty members in the department,

particularly, Dr. Mark Clayton, for his contributions to my knowledge of computational design

research. In addition, I want to thank Dr. Geoffrey Booth and Dr. Valerian Miranda for their

encouragement and support to the BIM-SIM computational research group. I also thank Dr.

Gabriela Campagnol for her assistance.

My very special thanks to my family members, my father, my beloved husband for his

patience and love, and particularly my sisters for their encouragement.

I want also to extend my gratitude to thank my Ph.D. friends Dr. Nessrine Mansour, soon

to be Dr. Bara Safarova, Dr. Emad Al-Qattan, soon to be Dr. Nancy AlAssaf, Dr. Jawad Al-

Tabtabai, Dr. Chengde Wu, Dr. Hyoungsub Kim, soon to be Dr. Maki Isaka and Amreen

Shahjahan, who have been really good friends and supportive throughout this Ph.D. In addition, I

would like to thank my other Ph.D. friends, Mehdi Farah Bakhsh, Fatemeh Shahsavari, Zohreh

Shaghaghian, Mohammad Alawadhi and all the members of the BIM SIM research group at

vi

Texas A&M University. Also, I want to thank the Aggie Coding Club, particularly Ruben

Vazquez-Chapa for his help.

vii

CONTRIBUTORS AND FUNDING SOURCES

This work was supervised by a dissertation committee consisting of Dr. Wei Yan (chair),

Dr. Culp (co-chair), and Dr. Stephen Caffey (member) of the Department of architecture and

Professor Phillip Galanter (member) of the Department of Visualization.

All work for the dissertation was completed independently by the student. Some of the

dissertation content is being published in (Yousif & Yan, 2019).

Graduate study was supported by multiple scholarships from the Department of

Architecture, Texas A&M University.

viii

NOMENCLATURE

2D Two-Dimensional

3D Three-Dimensional

CAD Computer-Aided Design

EA Evolutionary Algorithm

EPSAP Evolutionary Program for Space Allocation Program

EP Energy Plus

F1 F-Score

FN False Negative

FP False Positive

GB Grid-Based

GDS Generative Design System

GH Grasshopper

HVAC Heating, Ventilating, and Air Conditioning

IDF Input Data File

LEED Leadership in Energy and Environmental Design

MOEA

ML

Multi-Objective Evolutionary Algorithm

Machine Learning

MOO Multi-Objective Optimization

MPEG Moving Picture Experts Group

PAM Partitioning Around Medoids

ix

RI Rand Index

SC-KM Shape Clustering using K-Medoids

sDA Spatial Daylight Anatomy

SPEA-2 Strength Pareto Evolutionary Algorithm

TN True Negative

TP True Positive

WWR Window-Wall-Ratio

x

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION ... iv

ACKNOWLEDGEMENTS .. v

CONTRIBUTORS AND FUNDING SOURCES .. vii

NOMENCLATURE .. viii

TABLE OF CONTENTS .. x

LIST OF FIGURES ... xiii

LIST OF TABLES .. xvii

1. INTRODUCTION .. 1

1.1. Background and Terminology ... 2

1.2. Research Problems ... 5
1.3. Research Overview .. 6

1.3.1. Objectives and Propositions .. 7
1.3.2. Research Strategy (Methods) .. 7

1.4. Research Contributions .. 9
1.5. Research Significance .. 10
1.6. Outline of the Sections ... 11

2. BACKGROUND .. 13

2.1. Form Finding ... 16
2.1.1. Parametric Form Generation ... 17

2.1.2. Parametric Generative Design Systems .. 18
2.2. Design Evaluation and Optimization ... 18

2.2.1. Building Performance Simulation ... 19
2.2.2. Design Optimization ... 19
2.2.3. Issues in Current Generative and Design Optimization Systems 22
2.2.4. The Problem with Genetic Diversity in Evolutionary Algorithms 24
2.2.5. Interactive Evolutionary Computation .. 25

2.3. Shape clustering and Design Presentation ... 26
2.3.1. Shape Description ... 27

xi

2.3.2. Shape Difference Measure .. 30

2.3.3. Cluster Analysis .. 33

2.3.4. The Representative Object-Based, K-Medoids Algorithm ... 35
2.4. Summary of the Section ... 38

3. RESEARCH METHODS ... 39

3.1. Literature Review to Identify the System’s Purposes .. 42
3.2. System Design (Experimenting and Prototyping) ... 44

3.2.1. Process 1: Parametric Form Generation: (Routine) .. 46
3.2.2. Process 2: Design Optimization (Routine) ... 47
3.2.3. Process 3: The SC-KM Method (Innovative) ... 47

3.3. Specify the Reasoning to Analyze the System (Identify the Objectives) 48

3.4. Testing (Create the System Interface) ... 50
3.5. Validation ... 51
3.6. Summary of the Section ... 52

4. TEST-CASES AND VALIDATION .. 54

4.1. Test-case Experiment 1 .. 55

4.1.1. Introduction to the Test-case Experiment ... 55
4.1.2. Parametric Form Generation ... 56
4.1.3. Developing the Shape Clustering Method .. 58

4.1.4. Experimental Clustering Outcome .. 68
4.1.5. Validation Study ... 69

4.1.6. Discussion and Conclusions ... 70
4.2. Test-case Experiment 2 .. 71

4.2.1. Introduction to the Test-case Experiment ... 72
4.2.2. Modeling the Synthetic Dataset of Shapes ... 75

4.2.3. Applying the Clustering Method .. 79
4.2.4. Experimental Clustering Outcome .. 81
4.2.5. Validation Study ... 89

4.2.6. Discussion and Conclusions ... 101
4.3. Test-case Experiment 3 .. 102

4.3.1. Introduction to the Test-case Experiment ... 102

4.3.2. Parametric Form generation .. 104
4.3.3. Design Optimization (Performance Evaluation and Optimization) 108

4.3.4. Applying the Clustering Method .. 125
4.3.5. Experimental Clustering Outcome .. 126
4.3.6. Validation Study ... 131
4.3.7. Discussion and Conclusions ... 132

4.4. Summary of the Section ... 133

5. CONCLUSIONS AND FUTURE WORK ... 134

5.1. Concluding Points on Experimental Test-cases ... 134

xii

5.2. Contributions to the Body of Knowledge .. 136

5.2.1. A New Generative Design System ... 137

5.2.2. A New (SC-KM) Method ... 137
5.3. The User Interface ... 139
5.4. Limitations in the Proposed SC-KM and the New GDS ... 141

5.4.1. Required Computation Time ... 142
5.4.2. Randomness as a Limitation ... 142

5.4.3. Orientation, Reflection, and Scaling of Clustered Shapes .. 143
5.4.4. Inevitable Complexity of the Design Process ... 144

5.5. Future Work ... 144
5.5.1. Improving the SC-KM Method ... 144
5.5.2. Application of the Clustering Method to 3D Forms ... 145

5.5.3. Use of Machine Learning in the SC-KM .. 145

REFERENCES ... 147

xiii

LIST OF FIGURES

Page

Figure 2-1. 2D Search space with two objective functions and the Pareto front curve with its

non-dominated solutions in green, and the feasible area in grey, with the dominated

solutions in orange. By convention, the minimums of Object Function 1 and 2

(origin in the coordinate system) are considered optimal. .. 21

Figure 2-2. The test-data solution set of Pareto Optimization with three objective functions;

each point is an optimal solution. Reprinted with permission from (Kalvelagen,

2015). ... 23

Figure 2-3. An example of grid-based shape description. Left: a grid overlaid on an

architectural floor plan; right: a matrix of 0s (cells outside the shape) and 1s (cells

inside the shape). Reprinted from Automation in Construction, 80, Rodrigues et al.,

Clustering of Architectural Floor Plans: A Comparison of Shape Representations,

Pages 48-65, Copyright 4585091348148, with permission from Elsevier. 29

Figure 2-4. A typical K-Medoids clustering algorithm. Adapted from (Jin & Han, 2016). 37

Figure 3-1. The Research methods used for the system development, following Kunz’

Principles. .. 42

Figure 3-2. Workflow of the proposed system. .. 46

Figure 4-1. Workflow and tools of Test-case 1 with the SC-KM method as a major

component. .. 56

Figure 4-2. From left to right, the process of generating the mass model based on adjacency,

non-overlap, and boundary-detection constraints. The dots represent feasible

locations for the next appended unit.. 57

Figure 4-3. Examples of shapes generated from the grid-based pattern. 58

Figure 4-4. A sample of shapes used to apply and test the clustering method. 59

Figure 4-5. Four selected of the 100 overlap cases of the compared pair (Shape 0 in grey,

Shape 1 in blue, and the overlapping cells are in red). .. 60

Figure 4-6. The GH_CPython-based Grasshopper node of the Pair-wise Shape Difference

algorithm, with its input and output. ... 62

Figure 4-7. Overlap case 97 of the pair-wise comparison of two overlapping sample shapes

(Shape 0 in grey and Shape 1 in blue), with five cells overlapping (in red). 63

xiv

Figure 4-8. The Grasshopper node of the K-Medoids Algorithm with its input and output. 67

Figure 4-9. The output of the developed K-Medoids-based shape clustering; three groups of

shapes are automatically clustered and represented in three colors, with the Medoids

in a darker tone for each group. ... 68

Figure 4-10. The correct clustering results: the same colored shapes indicate that they are in

the same cluster in two additional test cases (above and below), with the Medoids

circled, and in a darker shade for each group. ... 69

Figure 4-11. The workflow of Test-case 2 with the incorporation of the packing algorithm and

the clustering evaluation metrics. .. 71

Figure 4-12. The 72 shapes used for test-case 2 as a reference clustering. Reprinted from

Automation in Construction, 80, Rodrigues et al., Clustering of Architectural Floor

Plans: A Comparison of Shape Representations, Pages 48-65, Copyright

4585091348148, with permission from Elsevier. ... 74

Figure 4-13. A visualization of a packed rectangle-shape A’-0 with contained cells’ center-

points in red, and external cells in green. .. 77

Figure 4-14. The 9 cluster representative shapes of the reference clustering set, subjected to

the packing algorithm with 64 cells. ... 79

Figure 4-15. Above: the reference set; below: the clustering results of the 72 shapes using 36

cells packing, and the medoid of each cluster represented in a darker tone.................. 83

Figure 4-16. The clustering results of the 72 shapes using 64 cells packing, and the medoid of

each cluster represented in a darker tone... 87

Figure 4-17. Two sample clustering results of the 36 cell-packing-scenario that emerge from

running the K-Medoids clustering algorithm twice. ... 94

Figure 4-18. Above: the clustering subsets of the 64 cell-packing-scenario re-illustrated as a

reference set; below: the clustering results of the 36 cell-packing-scenario re-

illustrated according to the 64 cells with new color-coding. ... 97

Figure 4-19. Two sample clustering results of the 64 cell-packing-scenario that emerge from

running the K-Medoids clustering algorithm twice. ... 100

Figure 4-20. The workflow of Test-case 3 with the incorporation of the building performance

evaluation and optimization process. .. 103

Figure 4-21. Top view of the initial setup of the layout of Test-case 3. 105

Figure 4-22. Above: Samples of exterior walls, parametrization of WWR for east and west

facades, from left to right: WWR of (0, 0.1, 0.2, 0.3, 0.4) respectively. Below:

xv

Samples of exterior walls, parametrization of WWR for north and south facades,

from left to right: WWR of (0.4, 0.5, 0.6, 0.7, 0.8) respectively. 107

Figure 4-23. A sample of 4 possible shapes that the parametric layout of Test-case 3 produces.

Above: 3D mass models with the inner cells; middle: 3D of possible fenestration

added to the mass models; below: top view of the options with the inner cells

highlighted. .. 107

Figure 4-24. The first set of the Honeybee and Ladybug Plugins required for preparing energy

simulation. From left to right: List-Zone-Programs, Mass-to-Zone, Solve-

Adjacencies. .. 110

Figure 4-25. The second set of the Honeybee and Ladybug Plugins required for preparing

energy simulation. From left to right: Parameters of WWR for each façade, Glazing-

Parameter-List, Glazing-Creator. .. 111

Figure 4-26. The third set of the Honeybee and Ladybug Plugins required for preparing

energy simulation. From left to right: Analysis-Period, Energy-Sim-Par, Open-

Weather-File, Export-to-Open-Studio, Read-EP-Result. .. 113

Figure 4-27. The first set of Honeybee and Ladybug Plugins required for daylight simulation.

From left to right: 3 rows of Radiance-Material nodes for glass and opaque surfaces,

Set-Rad-Materials, Decompose-by-Type. ... 115

Figure 4-28. The second set of Honeybee and Ladybug Plugins required for preparing

daylight simulation. From left to right: Generate-Test-Points, Gen-Standard-CIE-

Sky. .. 117

Figure 4-29. The third set of Honeybee and Ladybug Plugins required for preparing daylight

simulation. From left to right: Grid-Based Simulation, Run-Daylight-Analysis. 118

Figure 4-30. The Pareto front and Elite solutions (total 100 solutions) at generations 20, in

regards to the monthly cooling loads (x-axis) and the daylight illuminance ratio (y-

axis) as objective functions. Sample solution #1, #34, #67, and #100 are labeled in

the figure. .. 121

Figure 4-31. Patterns of each of the four selected solutions and its energy use in terms of

monthly cooling loads, and the daylight illuminance performance (left: top view,

center: 3D, right: top view of the daylight illuminance mesh). 124

Figure 4-32. Shapes of the 100 Pareto front and Elite design solutions generated at generation

20. .. 125

Figure 4-33. Results of clustering using 5 clusters, with each cluster represented in a different

color. .. 128

xvi

Figure 4-34. Results of clustering using 10 clusters, with each cluster represented in a

different color. ... 130

Figure 5-1. The application of the SC-KM in relation to architectural design (y-axis) and the

three environments (x-axis). .. 139

Figure 5-2. The workflow of the user interface. ... 141

xvii

LIST OF TABLES

Page

Table 2-1. A matrix of cost, an assignment problem example to be solved by the Hungarian

algorithm. The best assignments of job per employee for the lowest cost is indicated

in red numbers inside grey boxes. ... 33

Table 4-1. Matrix for distance calculations for center-points’ coordinates (a-e), and (1-5).

Border-outlined boxes are for a random assignment and shaded boxes for the

optimum assignment by the Hungarian algorithm. ... 64

Table 4-2. A triangle of the symmetric “Shape Difference Score Matrix” of Shapes 0-19 in the

explained sample. .. 65

Table 4-3. Confusion Matrix (4-3-a) for comparing clustering results of the Grid-based

descriptor of (adapted from Rodrigues et al., 2017) to the reference clustering, and

Matrix (4-3-b) for comparing the test-case results to the reference. 90

Table 4-4. Results of the metrics for the clustering evaluation comparing the two confusion

matrices discussed above, (4-3-a) and (4-3-b). ... 93

Table 4-5. Confusion Matrix (4-5-a) for comparing the clustering results of the test-case

results with 64 cell-packing to the reference clustering, and Matrix (4-5-b) for

comparing the test-case results of 36 cell- packing to the 64 cell-packing. 96

Table 4-6. Results of the metrics for the clustering evaluation comparing the two confusion

matrices discussed above, (4-5-a) and (4-5-b). ... 98

Table 4-7. Building parameters (variables). ... 107

Table 4-8. Model envelope thermal physical properties. .. 111

Table 4-9. Radiance-based building component material attributes. .. 115

1

1. INTRODUCTION

The development and implementation of generative design systems (GDSs) have been

extensively studied and researched for architectural design. Such generative models have been

applied to whole-building design, structural design, façade, space allocation, optimization of

building form and performance, computational reproduction of architectural styles, and urban

design (Rodrigues et al., 2017). Despite their capabilities in generating and evaluating a

population of design alternatives, GDSs lack organization (articulation) methods of the produced

design set, particularly in terms of geometric shapes/forms. This drawback leads to an excessive

number of redundant and unnecessary design alternatives that evolve in the process and require

extended computation time. In particular, such a large number of evolved designs can be

overwhelming for designers and can inhibit effective interaction with the system. There is a

significant need to improve current GDSs to facilitate a better examination by designers of the

shape qualities of the generated architectural designs and to allow for effective decision making

by designers to select and evaluate further their designs of interest.

The basic idea of this research is that methods of clustering, such as those found in

statistical analysis that support organizing big data, can be applied to GDSs as articulation

methods for the produced forms/shapes, leading to a new generative model. Thus, an

organization method, a Shape Clustering using K-Medoids (SC-KM) method, was proposed,

developed, and incorporated into GDSs in this work. Departing from a routine parametric

generative process to create architectural shapes, and a routine design optimization process, an

innovative clustering process was developed and integrated to articulate the set of shapes leading

to a clustered and diverse set of design shapes that represent a much larger set of similar and

2

wanted/unwanted ones. The most important contribution of this study is the method it proposes,

rather than the specificities of the particular applied test cases developed to validate that method.

The general prototype of the new generative model, functionalities of the new clustering method,

application test cases, and validation procedures are explained in this dissertation.

1.1. Background and Terminology

Progress in computational design can be traced from the simple use of computational

tools for modeling and representation in the 1980s and 1990s to the more recent complex use for

analytic and eventually for automotive, generative and explorative purposes (Celani & Eduardo

Verzola Vaz, 2012; Mark et al., 2001). Primarily, the interest in generative methods has

significantly increased after the introduction of digital fabrication allowing for free-form

exploration as well as mass-customization in a new way (Celani & Eduardo Verzola Vaz, 2012).

The rapid prototyping of computational design methods with the integration of programming

(scripting) capabilities, interwoven with the recent advancement in computer-based design tools

that offer new possibilities of complex geometry modeling, had become essential for architects

and designers in today’s design process (Shea et al., 2005). Generally, a shift has occurred from

using the computer to assist in design to employ the computer as a generative collaborator in the

design process. GDSs, as described by Mitchell (1975), are devices capable of generating

potential solution candidates for a given design problem. Often in those systems, computation-

based parametric variation and transformation rules are used as the main approaches (Celani &

Eduardo Verzola Vaz, 2012).

Those generative systems involve two main modules: parametric modeling and

programming (Shea et al., 2005). In parametric design, designers can generate a large set of

design alternatives based on explicit rules and parameters, allowing for evaluation of those

3

design alternatives in terms of design quality (Aish & Woodbury, 2005). Representation methods

of computational tools include graph-based and text-based (visual programming and scripting).

Generative systems are now commonly implemented in the architectural design process through

the use of computational methods such as parametric modeling (Woodbury, 2010), and

numerical simulations and performance-driven frameworks (Malkawi, 2005) for enhancing the

design process (Wortmann & Nannicini, 2017).

Form finding is associated with GDSs; it refers to the search process that often start with

parametrization of the initial design, and progress to finding the successful or best candidates

from the generated set of designs, often after a process of evaluation of form quality or/and

performance to find the best designs (Barnes, 1999). In regards to building performance

evaluation, the process often involves the search for fitter solutions in terms of certain

performance criteria. In such a performance-driven framework, often building simulation of

particular performance criteria is coupled up with optimization to find optimum solutions that

satisfy those objectives. Optimization refers to the procedure of making something, such as a

design candidate, as effective as possible (Nguyen et al., 2014). Simulation-based optimization is

commonly used within generative design systems.

Although they are promising models, a significant drawback in generative protocols is

that they can produce an excessive number of design alternatives for humans to perceive and

evaluate (Rodrigues et al., 2017), and, thus, can be overwhelming for designers in terms of

decision-making and interaction with the systems. Also, in the produced set of designs, multiple

shapes can be redundant and very similar in various measures, leading to extended computation

time, with no need to be taken into account in the explorative process. This redundancy distracts

designers from in-depth examining or from focusing on the diverse design candidates. For

4

managing this problem, the solution set should be organized and condensed to the highly diverse

set, and similar designs need to be eliminated (Brown & Mueller, 2019; Yousif et al., 2018).

Ideally, it would be useful to articulate the design solutions according to their shape/form

(similarity/dissimilarity) and present the subsets of similar characteristics and highlight only

those diverse solutions or designs of interest to the designers for evaluation. This allows for

comparing the organized group types of designs and examining particular candidates (Rodrigues

et al., 2017). Clustering, one of the methods for managing a collection of data to lead to

meaningful clusters of similar characteristics, can offer a solution. Meaningful in this context

refers to an organized set that can be feasibly analyzed by designers. Generally, clustering is

associated with another data organization approach, classification. Classification deals with

predefined and well-known labels and features, while clustering is unsupervised and handles data

with no need for preexisting labels. Clustering is a numerical method for partitioning the dataset

(Everitt, 2011). As a promising approach to achieving this articulation goal, the statistical

method “cluster analysis” or clustering can be used in generative systems. Cluster analysis is a

collective term that includes a range of methods and techniques that delineate groups in a

collection of data (Anderberg, 1973). It refers to partitioning data points or objects into multiple

clusters so that those objects inside a cluster share similar characteristics but are very different to

the objects in other clusters (Han et al., 2011). Clustering’s main purpose is exploratory in data

mining and has been used in Machine Learning, pattern recognition, image analysis, information

retrieval, and other areas (Han et al., 2011).

Importantly, there is no established method to integrate articulation techniques for

architectural forms/shapes in generative design (Brown & Mueller, 2019). Despite its potentials,

the incorporation of clustering methods into architectural GDSs remains limited. One related

5

study of using clustering techniques for architectural floor plans is the work of Rodrigues et al.

(2017). The study of Brown & Mueller (2019) offers an insight to the issues of overwhelming

number and redundancy of produced solutions in generative protocols, and reviews recent

attempts of diversity techniques and metrics to solve the problem. Both studies assert the

importance of further investigations in finding and implementing articulation methods in

generative systems.

Despite that, there are few studies that attempt to address and solve the excessiveness of

unwanted design solutions in architectural design, more tools, and plugins for Machine Learning

and big data management are being produced. Developed recently, the three tools (Ivy, Owl, and

Ant) represent experimental plugins for combining Machine Learning techniques into the visual

programming platform (Grasshopper) and include K-Means clustering methods. However, in

those tools, the use of clustering was designed for mesh segmentation and not for architectural

shapes. Away from clustering, other commercial tools are available for shape comparison to find

discrepancies between two CAD models such as the commercial tool “Kubotek3D Compare”,

which has been tested in the preparatory phase of this study. While having various functions, the

tool lacks the capability to give a shape difference score, which is important in the shape

clustering method formulated in those work. Given this initial background, there is still a gap in

the area of incorporating shape comparison and clustering into generative systems, that this

research attempts to fill in.

1.2. Research Problems

Computational tools are useful for rapidly producing design solutions with varied

parameters and powerful in evaluating the performance of those designs (Cvetkovic & Parmee,

2002); however, the creative process is done by the designers, and the generative exploratory

6

scheme should be effective and support successful interaction between designers and the system.

Reviewing existing literature and methods, current GDSs still lack established articulation

mechanisms implemented for successful form finding (Brown & Mueller, 2019; Rodrigues et al.,

2017; Yousif & Yan, 2019). Collectively, for designers, “it is just not feasible to rate solutions

according to a performance criterion and then select the top-ranked ones, especially for unclear

and subjective problems” (Rodrigues et al., 2017, p. 1). Importantly, in the search for expressive

designs in generative schemes, the range of the design solutions must be diverse in terms of

forms/shapes, since the selection done by designers from the optimal solution set is often based

on aesthetic preferences (Brown & Mueller, 2019), in addition to functional performances. As

such, it is required to organize the design solutions resulting from generative systems to be

presented to the designers so they can examine the generated solutions in an organized and

feasible way. For architectural form/shape examination, it would be important to compare the

geometric features and rate the design set based on shape similarity and difference.

1.3. Research Overview

Given the general background of the research and the identified problems, the following

subsections are dedicated to addressing the research objectives and methods. As a primary

objective, this research is directed to introduce a new generative design system that can benefit

designers and architects in the explorative search process in enhancing their selection and

examination activity of the emerging design solutions in such systems in terms of geometric

characteristics. The methods used in this work have been determined to achieve the purposes and

functionalities of the developed clustering method and the system framework.

7

1.3.1. Objectives and Propositions

Investigating and experimenting with current generative design methods and studies, as

well as identifying their potentials and limitations have motivated this work. In response to the

identified problems, the research was targeted to improve GDSs systems in terms of achieving

the following: (1) find a shape similitude/dissimilitude measure, (2) develop and implement a

clustering method, and (3) incorporate the clustering method into a generative framework with

testing and validation. Thus, the two main objectives pursued were:

1. To develop a new shape clustering method consisting of a series of algorithmics that

is capable of clustering a dataset of shapes into groups of similar geometric

characteristics and finding the representative shape for each group. The clustering

results would be an articulated and condensed set of design shapes.

2. To create a system framework of a generative design model that incorporates the

formulated clustering method into the whole form-finding process. The clustering

method was developed and implemented in two test-cases (Test-case 1 and 2), and the

fully working system prototype was illustrated and tested in Test-case 3. In each test-

case, a validation study was conducted.

1.3.2. Research Strategy (Methods)

The methods used in this study include literature study, experimenting, prototyping,

testing, and validation of findings. The suggested generative system was developed through five

tasks following the methods described by Kunz (1989) as required tasks to create a

computational model, and informed by the required characteristics of design prototypes offered

by (Gero, 1990). Those tasks can be briefly explained as:

8

1. Identifying the purposes of the system: for this task, literature review and experimenting

with existing models and methods were needed to identify the research problems and

determine how the propositions of the new proposed system should be achieved. The

primary problems found were the lack of a fully developed clustering method and the

need for a design system that illustrates the incorporation of the proposed SC-KM into

the generative design process.

2. Describing the representation model of the domain: in this task, a prototype would be

developed to represent the suggested model and test its functionalities. To achieve the

system’s purposes, the sub-tasks/processes were determined to be the following:

(a) Parametric form generation: a parametric modeling functionality for allowing

parametric modifications leading to the generation of multiple design shapes.

(b) Design optimization (performance evaluation and optimization): the process includes

the use of a generative tool with simulation and optimization capabilities.

(c) Developing the SC-KM method for design presentation: a clustering process in which

the generated designs are clustered according to their geometric differences. The

complete process of the suggested SC-KM consists of sub-tasks to (1) implementing a

shape description technique, (2) measuring shape difference according to geometric

analysis and comparison, and (3) performing the SC-KM. To find geometric

differences, a cross-reference shape analysis amongst the generated solutions was

conducted. This method consists of a set of algorithms, incorporating the Hungarian

algorithm in shape comparison. The K-Medoids algorithm, a distance-based cluster

analysis, was used to cluster the shapes into groups of similarities and find the

representative of each group.

9

3. Specifying the reasoning to analyze the model: throughout its development, each

functionality had to be tested and evaluated (and improved) to achieve the system’s

purposes.

4. Creating an interface: to communicate the system, an interface is needed for

demonstrating the prototype and its components (connected functionalities and

algorithms).

5. Testing the model validity: importantly, to achieve successful clustering of architectural

shapes, the modules and functionalities of the SC-KM method were tested and validated.

1.4. Research Contributions

The developed clustering method has applications in GDSs to organize the resulting data

in a conceivable manner to support designers’ exploration and evaluation. Using the clustering

process as the final phase in a generative design process, the architects and designers can be

presented with the clustered design shapes and their representatives, and can then choose the

ones that they prefer, thus changing the existing workflow of the generative system.

Alternatively, the clustering process can be done at any time in the generative run, to filter the

shapes with high dissimulate in the generative process. For instance, in early iterations, this

organization of shapes will help eliminate the shapes with similar geometric characteristics and

select the representative shapes of these many similar ones, leading to a diverse but smaller

population for designers to examine, and reduction in computation time for following processes

of performance simulation or optimization. Another use of the method is to help designers focus

on their shapes of interest, the specific shape they want to further evolve.

10

1.5. Research Significance

This research provides a validated clustering method and a fully working generative

system as a prototype that enables designers to evaluate and choose from a clustered set of

designs more effectively in the process. The research introduces a system that impacts the

architectural design process by:

• prototyping a new GDS in which the SC-KM is incorporated to demonstrate the

system workflow and functionalities to facilitate applications by designers to

design problems.

• providing a scientific contribution by developing a new SC-KM through

formulating an algorithmic set for achieving successful clustering of design

shapes.

• improving generative systems to allow for better human-computer interaction.

The significance of this work lies in its applicability in general design frameworks, and in

particular in the architectural design process for both education and practice endeavors. In terms

of practice, the main value is that the SC-KM integrated generative model can be applied directly

in conceptual and schematic design phases of generative protocols. Architects and design

practitioners can benefit from the method proposed here to control the design search space,

working in a hybrid mode of moving between the evaluation of building performance, and

evaluation of shape characteristics in an organized process. For design education, the

applications of this work are situated in the parametric and generative exploration design process

where architecture students can use the SC-KM method in both speculative projects and real

building design.

11

The value of this work is to help overcome the challenge of considering the building

design process as simply a building performance optimization problem. Such an assumption

leads to an ill-defined problem based on mere performance and thus results in designs that can be

misleading in the sense that they are optimal without addressing other important design criteria.

The argument here is that complexity of architectural design process is inevitable and thus has to

be considered, and one important aspect of architecture is the design shape and its characteristics,

and shape studies can be facilitated as explained in this dissertation.

1.6. Outline of the Sections

This dissertation includes 5 sections, described as follows:

• Section 1 - Introduction: This section gives an introductory overview to the

dissertation, offers a background on the research, describes the research problems

in GDSs, proposes the research objectives to solve such problems, explains the

needed clustering method and its incorporation into the proposed system, and

finally gives a brief introduction to the expected contributions and research

significance.

• Section 2 - Background: This section provides a review of literature on the

methods related to three processes of form-finding in the proposed generative

model: (1) parametric modeling and GDSs, (2) design optimization including

evaluation and optimization, and (3) SC-KM-related methods and studies. The

gap in the body of knowledge is identified, and an introduction to the methods

and algorithms for the suggested clustering method is made.

• Section 3 - Research Methods: This section gives a detailed description of the

methods used to conduct this study. It also elaborates on the development of the

12

system prototype, its components, functionalities, applications, and validation

procedures.

• Section 4 - Test-Cases Development and Validation: This section provides the

details on the development process of the three experimental test-cases carried

out. For each test-case, an introduction is given, its development phases are

explained, its outcomes are presented and discussed, and its validation studies are

elaborated.

• Section 5 - Conclusion and Future Work: This section includes the contributions

of the research, the limitations as well as future work.

13

2. BACKGROUND

In this section, first, background is offered, dedicated for a description of related work

done by other scholars who studied similar methods to the one described here or brought new

insights for further development. In addition, a review of the tools and algorithms that were most

significant to the development of this project is carried out. Importantly, some earlier

applications and testing of some of the methods, applied to architectural design problems, were

conducted and also briefly described in the following subsections.

Research on articulating design solutions produced in computational generative schemes

in architecture has been only recently addressed (Brown & Mueller, 2019; Rodrigues et al.,

2017). In organizing big data, particularly in Machine Learning, two methods are typically

pursued: classification and clustering (Rodrigues et al., 2017). Clustering is an important

research area; it refers to the process of creating groups of objects that are similar in some way

(Velmurugan & Santhanam, 2010). Clustering is labeled as an unsupervised learning method, as

it deals with finding a structure or organizing a collection of unlabeled data (Jain et al., 1999;

Velmurugan & Santhanam, 2010). Unlike classification, which deals with predefined classes,

clustering does not tackle classified data which makes it advantageous in finding interesting

hidden patterns with no predefined knowledge (Velmurugan & Santhanam, 2010).

There is limited use of clustering methods in research on generative design systems. One

of the few related studies is the work of Rodrigues et al. that compares multiple descriptors of 2D

shapes and utilizes the Ward linkage clustering method for architectural floor plans (Rodrigues et

al., 2017; Ward Jr, 1963). The Ward linkage method, that is explained in Subsection 2.3.3, was

used to cluster a synthetic dataset of 72 floor plans, applying and comparing four shape

14

representations: (1) point distance, (2) turning function, (3) grid-based model, and (4) tangent

distance (Rodrigues et al., 2017). The study authors point out the need to further investigate

clustering algorithms for architectural layouts.

Relevant to this work is the study of Brown & Mueller (2019) on exploring and

reviewing different diversity metrics used in generative design protocols. For (Brown & Mueller,

2019), seeking design diversity amongst the possible design alternatives is important to avoid

obtaining, or simulating, repeated and similar candidates and to enhance generative mechanisms

ensuring that “the results they produce are diverse enough to be interesting to designers” (p. 2).

Importantly, their work reviews available approaches to diversity and asserts that there is no

established method yet to achieve diversity in exploratory systems. In a prior work of this

research, a diversity measure was developed to condense the design set into a highly diverse one

(Yousif et al., 2017). In continuing experimentation with design diversity, it became obvious that

clustering methods have the capability to lead not only to a highly diverse set of designs but also

retain and organize all designs and thus clustering techniques were further investigated.

In mechanical engineering and product design, the work of Jayanti et al. (2009)

represents one of the early attempts to address the need for clustering in managing CAD

repositories to sort and retrieve the 3D models according to shape similarity. The aim is to

provide engineers with an organized design repository. The study compares five shape

representation techniques that are often applied in engineering, targeted for clustering evaluation.

It considers the 2D drawings of the 3D CAD models and applies a K-Means clustering method

(Jayanti et al., 2009). The work focuses on evaluation mechanisms of the clustering results, and

encourages further investigation of shape representations, clustering methods, and clustering

15

effectiveness measures; it asserts the need to research how different clustering algorithms are

suitable for different shape representations (Jayanti et al., 2009).

Shape representation and shape comparison are significant for performing the shape

clustering method investigated here. Shape representation is associated with finding effective and

descriptive shape features (Zhang & Lu, 2004). An area related to shape comparison is pattern

recognition; the work of (Cha & Gero, 1998) has laid foundations for a shape pattern recognition

system based on structural shape representation. In another work, de las Heras, et al. (de las

Heras et al., 2014) have used an approach to retrieve designs with similar properties from a

dataset, while Dutta et al. applied a graph-based method to recognize symbols in floor plans such

as furniture and fenestration (Dutta et al., 2014).

An attempt to introduce clustering, particularly K-Means clustering, to generative design

in visual programming platforms has been done by the authors of the Ivy tool for Grasshopper

(Nejur & Steinfeld, 2016). However, the K-Means clustering in the tool was applied to mesh

segmentation and analysis, and not to the whole building shape or form. Other tools that use

clustering include the Machine Learning-based tools: “Owl” (Zwierzycki et al., 2018), and “Ant”

(Abdelrahman & Toutou, 2019), both for the Grasshopper platform. The K-Means clustering in

the Owl tool has been tested in experimentation studies for this research. Those tools are general

and not specifically targeted to achieve shape clustering based on shape description and shape

difference analysis.

Apart from clustering, another approach to identify shape difference is CAD-based

geometric comparison. As part of the preparatory experiments for this work, testing of the

industrial tool “Kubotek3D Compare” was conducted. It is one of the available commercial

software surveyed by Brière.-Côté et al. (2012). The software accepts CAD-based models,

16

performs a pair-comparison of the 3D CAD models to find discrepancies between the two

models, and it highlights the discrepant elements. It is often used for mechanical products,

however, when tested with two Revit models of single-family house design, the tool successfully

found the different elements. One of its drawbacks is that it doesn’t provide a shape difference

score between the compared models, which is needed for our clustering method.

Given this preliminary background, the lack of established shape clustering methods in

form finding remains an unsolved problem. Therefore, this study was targeted to introduce a new

SC-KM method that improves form finding and can be integrated into generative design systems.

To describe the developed clustering method, there is a need to first introduce the methods and

studies most relevant to this research. The order used to describe those methods in the following

subsections was also carried out throughout the development of the GDS prototype and the

clustering method described in Section 3 in the sequence of (1) parametric form generation and

initiating a generative design system, (2) design optimization (performance evaluation and

optimization): the use of evolutionary algorithms for multi-objective optimization, (3) shape

clustering: shape description and shape different calculation, the Hungarian algorithm, and the

K-Medoids Algorithm.

2.1. Form Finding

Form finding is a process, in which a set of design forms are generated and subjected to

evaluation for either performance optimization or examination of their aesthetic qualities, in

order to determine the optimum designs or preferred design aesthetics. The process can be

started from arbitrary parametrization or specification of the design form (Barnes, 1999). Prior to

the use of computational design tools for form finding, architects conducted analog geometric

analysis experiments to determine the final designs (Piker, 2013). In the current implementation

17

of computational form finding, a generative tool, or a search mechanism such as Evolutionary

Algorithms is often employed, coupled up with the evaluation of certain design criteria.

In this study, the term form finding refers to the entire process, consisting of the subdivided

processes of (1) parametric form generation, (2) design optimization, and (3) shape clustering

and design presentation. Yet, the overall process did not always include evaluation and

optimization (such as in Test-case 1 and 2) in which form-finding was abridged to parametric

form generation and shape clustering.

2.1.1. Parametric Form Generation

Parametric modeling is associated with geometry modeling when rules are applied to

govern geometrical or other relations within design morphing for surface or structure

modification (Holzer, 2015). Practically, parametric modeling is applied during the conceptual

design phase to test a range of design options, for intuitive design explorations (Holzer, 2015). It

allows for variation in design using variables and constraints in model elements and relations and

enables generative explorations of design options that automatically update and change

according to performance change (Aish & Woodbury, 2005). Designers work in parametric

design systems on two levels: 1) defining schemata and constraints and 2) searching for best

instances within a defined schema (Aish & Woodbury, 2005). Parametric design tools provide

rapid iterations, often to achieve aesthetic form evaluation and to respond to environment-related

requirements of energy savings, maximized daylight performance or/and respond to other

criteria. This makes parametric design methods significant to achieve performance-based design

objectives by aiding in the generation of multiple, discrete solutions (Caplan, 2011).

18

2.1.2. Parametric Generative Design Systems

Use of parametric modeling enables a designer to transition from designing one solution

to designing a system that generates multiple solutions (Stocking, 2009). These systems can be

called “Generative Design Systems” or GDSs. They can be simply defined as systems that are

capable of producing potential design candidates for a particular design problem (Mitchell,

1975). In such systems, the generative components are parametric modeling and programming

(Aish, 2003; Shea et al., 2005). In another definition, the components of a generative system

involve performance simulation and the search mechanism (Caldas, 2001). In using generative

methods, the computer becomes a “design generator” or a “collaborative partner” in the design

process, capable of generating design alternatives, when rigorously defining design parameters

and constraints (Shea et al., 2005). In this study, the term GDS refers primarily to the system

composed of a parametric definition of an initial model and a generative component. In such

systems, parametric variation and transformation rules are employed (Celani & Eduardo Verzola

Vaz, 2012). This generative component can be simply a manual change of the model parameters

leading to produce a set of design alternatives or a generative tool with random population and

search mechanism for fitter solutions such as the Multi-Objective Evolutionary Algorithm

described in Section 2.2.2.

2.2. Design Evaluation and Optimization

In the case of pursuing evaluation and optimization (in Test-case 3 of Section 4), the

process consists of two coupled components: building performance simulation and multi-

objective optimization. Those building performance criteria may include construction costs

(Radford & Gero, 1987), energy consumption considering Heating, Ventilation, and Air

19

Conditioning (HVAC) systems (Zhang et al., 2006), and daylight measures (Torres & Sakamoto,

2007). The following subsections describe the two components.

2.2.1. Building Performance Simulation

Building simulation has emerged through energy reduction demand and sustainable

practices (Clarke, 2001). Simulation of building energy performance has become essential to

meet the challenges of expected high performing buildings (Samuelson et al., 2016). The

obstacle to achieving energy efficiency is related to ineffective decision making, especially in the

early design stages (Clarke, 2001). Energy analysis has been primarily done too late in the design

process, while the most effective decisions can be made earlier in the process (Samuelson et al.,

2016). Therefore, energy modeling has to be performed in the early design stage to make better

decisions (Anderson, 2016).

Simulation of daylighting performance is highly related to the recent escalated focus on

energy efficiency and environmentally-conscious building design (Elghazi et al., 2014; Lagios et

al., 2010). In such a performance-based design approach, there is a current need to integrate

platforms that run simultaneous environmental simulations of daylight analysis and energy

simulation (Roudsari et al., 2013). Therefore, daylight analysis has been targeted as a

performance objective in addition to energy simulation in Test-case 3 of this work as samples of

design performance evaluation sought for optimization.

2.2.2. Design Optimization

In decision-making, it is often required to simultaneously consider several criteria or

objectives during the design process, thus, multi-criteria or Multi-Objective Optimization (MOO)

is approached (Hauglustaine & Azar, 2001; Radford & Gero, 1987; Wang et al., 2005). MOO

leads to finding optimal solutions for any problem with multiple objective functions and results

20

in an optimal set of solutions compared to one solution in single-objective optimization (Collette

& Siarry, 2013). Mathematically, optimization refers to the process of finding the best solution

from a set of different alternatives (Nguyen et al., 2014). In terms of building performance,

optimization does not require finding the absolute optimal solution to a problem, as it could be

unfeasible for particular problems or for certain simulation programs; rather, optimization

indicates an iterative process of improvement using simulation tools to achieve sub-optimal

solutions. Thus, it is usually accepted in building performance simulation to use the term

optimization to indicate an automated process based on mathematical optimization and

numerical simulation (Nguyen et al., 2014).

There are two approaches to solve MOO problems: 1) combine the multiple objectives

into a single (composite) objective by determining a weight for each objective and using the

weighted sum method, and 2) determine a Pareto optimal solution set, which is a representative

set of solutions that are non-dominated by each other (Konak et al., 2006). When a change to a

parameter value of a solution leads to an improvement in one objective without making the other

objective worse off, it is considered a Pareto improvement; when no Pareto improvements could

be made, the solutions are called Pareto optimal (Radford & Gero, 1987; Yan et al., 2015).

(Figure 2-1) depicts an abstracted two-dimensional performance search space that includes two

objective functions with the dominated solutions (orange) shown in the grey area and the non-

dominated or Pareto solutions (green) represented along the Pareto front. The figure is an

adaptation of the Pareto ranking method developed by (Fonseca & Fleming, 1993). The ultimate

aim of a MOO process is to find the Pareto optimal solutions set or Pareto Front (Konak et al.,

2006).

21

Figure 2-1. 2D Search space with two objective functions and the Pareto front curve with its non-dominated solutions in

green, and the feasible area in grey, with the dominated solutions in orange. By convention, the minimums of Object

Function 1 and 2 (origin in the coordinate system) are considered optimal.

Evolutionary Algorithms (EAs), biologically-inspired algorithms and considered a branch

of computer science (Yi et al., 2012), are commonly used to solve MOO problems. An EA

process begins with a population, often initiated randomly (Konak et al., 2006). Each candidate

in the population is tested against fitness functions to determine whether it is an attractive

candidate. The population is culled to include only attractive candidates, which are then

combined to produce the next generation population. This new population is then used as the

initial population in the EA process and the process repeats until satisfactory solutions are found

(Yousif et al., 2018). The operations of EAs exploit the characteristics of good solutions

according to different objectives and create new non-dominated solutions in parts of the Pareto

front; such characteristics make EAs the most attractive approach to MOO problems (Konak et

al., 2006). A Multi-Objective Evolutionary Algorithm (MOEA) employs Pareto optimality to

assist the optimization of all the objectives (Fonseca & Fleming, 1993). Since it is a commonly

22

used method, and a promising generative tool, in this work, an MOEA-based tool was tested and

aimed to be used for performance evaluation and optimization in the application of the overall

form-finding process in Test-case 3.

2.2.3. Issues in Current Generative and Design Optimization Systems

The methods and tools used for optimization and integrated into generative systems, are

promising approaches for the architectural design process, yet they are not always performed in a

formalized way (Wortmann & Nannicini, 2017). A significant drawback in generative protocols

is that “they may produce an excessive number of solutions for a human to cope with”

(Rodrigues et al., 2017, p. 48), which can be overwhelming for designers, in terms of decision-

making and interaction with the system. Collectively, available generative design systems lack

articulation mechanisms of the design shapes produced in the process (Brown & Mueller, 2019).

An example of a large set of solutions in design optimization systems is the Pareto front

illustrated in (Figure 2-2) that shows hundreds of data points as Pareto optimal solutions which

satisfy three objectives: cost, weight, and performance (Kalvelagen, 2015). More importantly, for

designers, it is not feasible to rate the design solutions based on their performance and select the

best ones for unclear and subjective problems such as evaluating the designs’ form

characteristics; alternatively, it would be advantageous to organize the produced designs into

groups based on common features (Rodrigues et al., 2017). Yet, organizing the design solutions

produced in generative schemes, based on their shape characteristics, is still under-addressed in

research.

23

Figure 2-2. The test-data solution set of Pareto Optimization with three objective functions; each point is an optimal

solution. Reprinted with permission from (Kalvelagen, 2015).

One of the relevant approaches that have been investigated for this research, and used

inside the MOEA-based generative tools is genetic diversity. In such methods, given that none of

the Pareto front solutions is better than the other ones in satisfying all the objectives, the goal in

searching for fitter solutions becomes to find as many Pareto solutions as possible. This may lead

to premature convergence of the population set towards certain areas in the solution space

(Toffolo & Benini, 2003). Consequently, there is a need to maintain diversity during the search

mechanism, to find truly diverse Pareto solutions. Except for the Strength Pareto method of

(Zitzler and Thiele, 1999), existing MOEAs generally use two distinct methods to solve the

problem of early convergence towards the Pareto-optimal set and to maintain genetic diversity.

The first method is an approach to assign individual candidates a fitness value other than their

24

performance value, and the other method corrects the assignments to assure diversity through

introducing artificial parameters that need to be determined a priori in unknown fitness

objectives (Toffolo & Benini, 2003). In these approaches, the selection issue is mainly addressed

towards the Pareto-optimal set, and its early convergence effects are reduced by the introduction

of diversity-preserving mechanisms (Toffolo & Benini, 2003). However, this genetic diversity is

problematic in terms of the shape characteristics as described in the following subsection.

2.2.4. The Problem with Genetic Diversity in Evolutionary Algorithms

Evolutionary Algorithms, often used by designers in optimization studies, includes a

genetic diversity method. However; this genetic diversity does not necessarily lead to a diverse

set in terms of the shapes of the generated design set. According to Brown & Mueller (2019),

EAs operate a crowding distance to make sure that the solutions in the objective space are

scattered and representative along the Pareto front (Deb et al., 2002). The concept of distance-

based diversity measure relies on the fact that an individual that is distant from all the others has

more chances, when mating, to produce offspring in regions of the search space not covered by

the current population (Toffolo & Benini, 2003). Such a distance metric can be calculated

mathematically using the (normalized) Euclidean distance in the objective function space, and

the measure of diversity of an individual is the sum of its distances from all the other individuals

(Toffolo & Benini, 2003; Yousif et al., 2017). The issue of this stance-based genetic diversity in

the objective space is explained by Brown & Mueller (2019) as follows:

“This distance is only considered in objective space and does not directly

translate to diverse solutions in the design space, meaning that designs with

different performances could still look the same and not be diverse enough for

explorative design. Many optimization techniques are similarly limited by

focusing only on differences in objective function values.”

25

This entails that there is a need to find another method to achieve diversity in optimization

methods in generative design. It would be promising to find approaches that lead to highly

diverse design shapes that represent other similar ones. Searching for an articulation mechanism

that is capable of so doing has led to investigating and experimenting with shape comparison and

clustering methods, particularly the representative object-based clustering algorithm of K-

Medoids described in Subsection 2.3.4.

2.2.5. Interactive Evolutionary Computation

The area of Human-Computer Interaction or (HCI) began in the 1980s when the

interaction was an issue worth of research (MacKenzie, 2012). HCI is an extensive research field

often associated with advancing software, interfaces, or processes that people use to develop a

new or improved interaction (MacKenzie, 2012). The challenge or the complexity in HCI lies

within the human factor, due to variabilities in humans while computers, by comparison, are

simple. The interaction happens when the user performs a certain task using the computer and

according to elements such as the control-display relationships, in addition to other elements

(MacKenzie, 2012). In his article: “Designing Interaction, not Interfaces”, Beaudouin-Lafon

argues that the emphasis in advancing computers has been on the interface while a shift in focus

is needed to target designing successful interaction (2004).

A relevant area to HCI is Interactive Evolutionary Computation (IEC) (Harding &

Brandt-Olsen, 2018). In terms of parametric generative design, the process of programming and

the inclusion of search mechanisms and evolutionary methods in an interactive mode should be

guided to mediate and adapt to the user’s interaction (Harding & Brandt-Olsen, 2018). The

important question becomes “how can a designer better interfere with computational heuristics

and understand the search struggle” (Harding & Brandt-Olsen, 2018, p. 145). IEC has become

26

important for designers. While heuristic search algorithms use objective functions to evaluate

designs at each iteration, interactive selection replaces this by designers’ participation, who are

required to make explicit their design intents and constantly change and interfere in the

evolutionary process (Harding & Brandt-Olsen, 2018).

In this research, facilitating IEC is focused on two modes of interaction. The first mode is

hybrid, in which the shape clustering method is used intermediately in the search process where

the evolutionary search can be stopped and the SC-KM method is applied. Next, the organized

design set or selected subsets can be used for further search in an iterative back and forth mode,

alternative between design optimization and clustering. This way, the clustering method

facilitates the designers’ interaction in the interference in evaluating the emerged designs in

generative and optimization systems in terms of the geometric characteristics of those designs.

To do so, according to Harding & Brandt-Olsen, whereas large populations are favorable for

generative and objective-based evolutionary computation, smaller populations are often used for

interactive evolution, thus at each generation (iteration), the population can be reduced in size to

achieve such interaction (2018). This mode is still under investigation in our study. In another

mode, the SC-KM can be applied post to design optimization or after terminating the search

mechanism, as demonstrated in this research case studies. In both ways, the clustering allows for

management of the large population and leads to an in-depth examination of the organized and

reduced design set, and the methods and tools for this clustering are explained in the following

subsections.

2.3. Shape clustering and Design Presentation

The focus of this research project is to develop a new articulation method to find geometric

dissimilitude amongst the produced design shapes, and to articulate (cluster) the designs

27

according to this dissimilitude measure, to be implemented into the form-finding process.

Accordingly, the complete method of shape clustering consists of sub-tasks to (1) implement a

shape description/representation method and find and compute a shape geometric difference, and

(2) employ and perform a clustering method that is based on the computed shape difference.

Ultimately, the resulting clustered shapes represent the articulated set, visualized and presented

to the designers for facilitating their examination of designs. The following subsections explain

and introduce the most influential methods and algorithms used for the developed shape

clustering method.

2.3.1. Shape Description

Shape description, or representation, is a method concerned with defining and retrieving

effective and perceptually important shape characteristics, based on either shape boundary or/and

interior features (Zhang & Lu, 2004). Multiple shape descriptors have been designed and

researched, and often assessed by how accurately they describe and retrieve similar shapes from

the analyzed set (Zhang & Lu, 2004). Such studies that define shape representation techniques

include a shape boundary descriptor, e.g. (Joshi & Srivastava, 2003), or other shape descriptors

such as the point distance, turning function, grid-based model, and tangent distance descriptors in

(Rodrigues et al., 2017)’s work. Another approach to shape representation is to find the common

structure that captures the structure information for a set of shapes based on a skeleton graph, it

is called Common Structure Skeleton Graph (CSSG) (Shen et al., 2013).

According to (Zhang & Lu, 2004), certain characteristics should be considered when

describing shapes, identified as follows:

• It is advantageous if shape descriptors have a hierarchal (coarse to fine)

representation feature, leading to a high level of matching efficiency. When

28

matching occurs at a coarse level, it leads to the elimination of a large set of

similar/dissimilar shapes, while other shapes can be further matched at a finer

level.

• It is favorable for shape descriptors to be applied to a wide range of shape types,

instead of performing well only for certain types of shapes.

In classifying shape description techniques, two main categories can be identified:

contour-based, and region-based; both categories can be subdivided into structural and global-

based sub-classes, and each sub-class contains multiple approaches (Zhang & Lu, 2004). The

global class of region-based representations includes a grid-based description. The grid-based

shape description method has been further investigated for this study because it satisfies the

desired characteristics of well-performing shape descriptors described above.

• Grid-based Shape Description

An approach to grid-based descriptions has been proposed by (Lu & Sajjanhar, 1999) and

implemented in studies e.g. (ChakrabartiOrtega-BinderbergerPorkaew & Mehrotra, 2000; Huang

et al., 1997; Safar et al., 2000). In grid-based shape description, a grid of cells is overlaid on the

shape under analysis; the grid is scanned from the left to the right corner, in a top to bottom

direction resulting in a bitmap; it is a binary assignment with the cells overlapped by the shape

assigned 1, and those not overlapped by the shape given 0 (Zhang & Lu, 2004). Afterward, the

shape can be described as a binary vector, and the Hamming distance is used to calculate the

similarity between two shapes (Zhang & Lu, 2004). The Hamming distance for two strings of

equal length represents the number of locations at which the corresponding symbols are

dissimilar (Norouzi et al., 2012). \It is relevant to note here that reviewing the grid-based

description method in (Rodrigues et al., 2017)’s work, the overlaid grid has been scanned

29

according to (Sajjanhar & Lu, 1997)’s work, from left to right, top to bottom, considering the

grid-cells’ center-points for correspondence, leading to a vector-based code as a matrix.

An example of grid-based shape representations is depicted in (Figure 2-3). To prepare

shapes in the grid-based method for scanning, they need to be normalized, to accommodate other

transformation operations of scaling, translation, or/and rotation; however, mirrored and flipped

shapes are considered different (Zhang & Lu, 2004). A significant task is to scale the shapes

under examination to a fixed bounding rectangle, moved to the upper left corner, and preferably

rotated to get the primary shape horizontal axis (Zhang & Lu, 2004).

Figure 2-3. An example of grid-based shape description. Left: a grid overlaid on an architectural floor plan; right: a matrix

of 0s (cells outside the shape) and 1s (cells inside the shape). Reprinted from Automation in Construction, 80, Rodrigues et

al., Clustering of Architectural Floor Plans: A Comparison of Shape Representations, Pages 48-65, Copyright

4585091348148, with permission from Elsevier.

The main advantages of the grid-based method include its simplicity in representation, its

characteristic to satisfy and agree with an intuitive visual examination, as well as its agreement

with the shape coding in MPEG-4, which makes the grid-based descriptor attractive for shape

analysis (Zhang & Lu, 2004). The term MPEG-4 refers to a method of defining compression of

visual digital data that has been introduced and designated as a standard for a group of video

30

(and audio) coding formats and related technology, agreed upon by the ISO/IEC Moving Picture

Experts Group (MPEG) (Wiegand et al., 2003).

However, the main drawback of this grid-based method is the major-axis based rotation

normalization which makes it sensitive to noise (Zhang & Lu, 2004). Improvements to grid-

based shape descriptions have been proposed by studies, including the work of

(ChakrabartiOrtega-BinderbergerPorkaewZuo et al., 2000) that utilizes an adaptive resolution

representation acquired by implementing quadtree decomposition on the grid (bitmap) of the

shape. Quadtree grid decomposition is a method used to describe a class of hierarchical data

structures with common property based on the recursive decomposition of shapes (Samet, 1984).

In response to the potentials of the grid-based shape description, and the possibility to

improve the method, it was selected to be carried out for defining shape representation in this

work. After determining the shape description method, there was a need to define a shape

difference analysis measure, in terms of geometric correspondences. Such a shape difference

retrieval method has also to be employed successfully to attain accurate shape clustering, as

explained next.

2.3.2. Shape Difference Measure

In clustering shapes, geometric analysis of the shapes is often conducted, in order to

identify the shape characteristics (Joshi & Srivastava, 2003). The reason for pursuing a method

to define shape difference in this study was due to the fact, supported by research, that a

quantified definition of shapes is difficult but a quantified definition of shape difference is

possible. In using the grid-based shape description, a particular set of procedures need to be

carried out for shape comparison and shape difference retrieval. In grid-based shape description,

after applying transformation procedures for scanning the shapes and retrieving the binary

31

number of 0s and 1s (i.e. indexing), shapes are subjected to a similarity/dissimilarity measure

(Sajjanhar & Lu, 1997). The difference between two shapes can be computed as the number of

cells in the overlaid grids that are overlapped by one shape but not the other; an important

criterion here is to normalize the number of cells for the overlaid grids prior to indexing and

comparison for accuracy reasons (Sajjanhar & Lu, 1997). In the case of a different number of

cells between the compared shapes, also means different decimal number, the length of this

binary number has to be fixed for all shapes and this can be done by adding trailing zeros to the

binary number (Sajjanhar & Lu, 1997).

As a common measure in grid-based shape description, the Hamming distance calculation

is used; in considering two binary strings or codes of equal length, the number of non-

corresponding positions between the two is the Hamming distance (Robinson, 2008). In other

words, it is a similarity/difference measure (Norouzi et al., 2012) of the minimum number of

changes required to match one code to the other, or the minimum number of errors that can

transform one code into the other (Robinson, 2008). The method is used by (Sajjanhar & Lu,

1997) with a query or a reference shape, against which all the shapes under analysis are

compared. The similarity measure for shapes is calculated by sequential comparison of the

shapes’ binary numbers against the query shape; the sequence of the 1s (for the cells of the grid

wholly covered by the shape), and 0s (for the cells outside the shape). To measure the difference

between two shapes, the number of cells in the grids that are overlaid by one shape and not the

other shape is computed, and this calculation is intuitively accurate as the maximum matched

shapes are those with minimum distance from the query shape (Sajjanhar & Lu, 1997).

Distance-based methods are fundamental to design the clustering method and can take

advantage of optimization techniques (Han et al., 2011); optimization techniques refer here to

32

calculating the distance of non-overlapping cells in the most efficient way. Importantly, in an

early attempt at developing the shape difference method in the published work (Yousif et al.,

2017), I used a similar method to the Hamming distance considering only the number of the non-

overlapping cells as a measure that indicates shape difference for a given set of shapes. Yet, in

further developing the method, it became clear that the number of non-overlapping cells is not

always the accurate difference measure of shape comparison. Rather, the sum of distances

between the non-overlapping cells was considered as the actual difference measure of the pair.

To obtain a reasonable distance measure for shape analysis, a problem appears in pair-

wise shape comparison on the best matching of the non-overlapping cells between two shapes for

similarity/dissimilarity measure. As such, another algorithm is needed to solve this assignment

problem, explained in the following sub-section.

• The Hungarian Algorithm

Developed by Kuhn and later revised by Munkers, the Hungarian algorithm is a

combinatorial optimization algorithm, often used to solve assignment problems, applicable to

many fields (Korsah et al., 2007). It can be explained using the following example: when given a

matrix of workers and the cost of each worker to perform a certain job, the Hungarian algorithm

can find the best possible assignment of workers to jobs so that the total cost is minimized

(Korsah et al., 2007) as illustrated in (Table 2-1). The best assignment of jobs per employees to

get the minimum sum of costs is: (employee 1-job 2, employee 2-job 1, employee 3-job 3)

leading to ($8+$9+$8=$25) as the lowest cost, while other assignment combinations would lead

to a higher cost.

33

Table 2-1. A matrix of cost, an assignment problem example to be solved by the Hungarian algorithm. The best

assignments of job per employee for the lowest cost is indicated in red numbers inside grey boxes.

 job 1 job 2 job 3

employee 1 12$ 8$ 10$

employee 2 9$ 11$ 12$

employee 3 10$ 12$ 8$

In this study, the Hungarian algorithm will be used to match the geometric components

(cells in grid-based shapes) between each pair of compared shapes, in order to find the smallest

overall sum of Euclidean cell distance between the pair, for calculating the pair’s shape

difference measure. In particular, the Hungarian algorithm is needed to be incorporated inside

the pair-wise shape difference functionality that will be explained in Section 4.

2.3.3. Cluster Analysis

As a method, cluster analysis has been used for more than 80 years, established by Zubin

(1938) and Tryon (1939) in the field of psychology, as wells as in anthropology by Driver and

Kroeber (1932). Prior to the computer’s invention, cluster calculations were very difficult, hence,

the development of clustering methods was made possible through and after the use of

computation in the 1950s (Bailey, 1994). Clustering is the process of partitioning or separating a

set of data objects into multiple subsets or clusters in a way that objects within a cluster have

high similarity, yet are very dissimilar to objects in other subsets (Han et al., 2011), and the

objects’ identities are unknown in advance (Wilks, 2011). Generally, the correct number of

clusters in which the objects should be grouped is also unknown beforehand, therefore, in K-

Means and K-Medoids the number of clusters is pre-determined with estimation. Primarily, it is

34

the degree (measure) of similarity and dissimilarity amongst the objects that determines the

groups and assigns the group membership (Wilks, 2011).

To assess similarity and dissimilarity, the attribute values that describe the object are

computed and this task often involves distance calculation (Han et al., 2011; Wilks, 2011).

According to (Han et al., 2011), cluster analysis techniques can be classified into 4 categories:

(1) partitioning methods including K-Means and K-Medoids clustering, (2) hierarchal methods

of which the Ward method used in (Rodrigues et al., 2017)’s study is an example, (3) distance

measure, and (4) grid-based methods. Clustering leads to discovering unknown patterns (groups)

within the observed data (Han et al., 2011; Velmurugan & Santhanam, 2010; Wilks, 2011).

It is relevant here to briefly explain the Ward linkage clustering method, an

agglomerative hierarchal decomposition of a given dataset, based on a minimum variance

criterion or objective function to minimize the total within-cluster variance (Han et al., 2011). It

begins with each object forming a separate cluster, and a successive merge among the objects

with close distances occur in a hierarchal manner until all the groups are merged through

multiple steps into one top-level of the hierarchy, then termination happens (Han et al., 2011;

Ward Jr, 1963). The minimum variance criterion considers squared Euclidean distances between

the examined objects. Overall, hierarchal methods suffer from rigidity due to the fact that once a

step of merge occurs, it is irreversible, yet this also leads to comparatively less computational

burden as the method does not require combinatorial consideration of the possible choices (Han

et al., 2011). Primarily, the method does not support correcting erroneous decisions, and several

methods have been proposed to improve hierarchal clustering (Han et al., 2011).

As a tool and a branch in statistics, clustering has been widely studied, particularly

focusing on distance-based cluster analysis. K-means, K-Medoids, and other clustering methods

35

have been applied and became part of statistical analysis software packages (Han et al., 2011).

Also, clustering methods have applications in “data mining, statistics, Machine Learning, spatial

database technology, information retrieval, Web search, biology, marketing, and many other

application areas.” (Han et al., 2011, p. 445). For Machine Learning, in classification, since class

label information is given in advance, the learning is supervised, while in clustering, there is no

previous label to the cluster, and this makes clustering categorized as an unsupervised technique

(Han et al., 2011).

2.3.4. The Representative Object-Based, K-Medoids Algorithm

There are certain clustering algorithms developed and investigated in research, of which

K-Means and K-Medoids are considered significant (Velmurugan & Santhanam, 2010). K-

Means is a simple clustering algorithm that can solve well-known clustering problems through

partitioning the data set into a number of clusters (k) (Velmurugan & Santhanam, 2010). The

algorithm proceeds by calculating k initial cluster centers (means) and iteratively refining them

by minimizing the distance between each medoid and the objects grouped within its cluster as

follows: (1) each datum (object) is assigned to its closest cluster, (2) each cluster center is

updated to be the mean of its constituent data, and (3) the algorithm then converges when there is

no further update in the assignment of data to clusters (Wagstaff et al., 2001).

In K-Medoids clustering, the algorithm considers a Medoid, which is the most centrally

located object in each cluster, as an alternative to the mean in K-Means; since the means can be

easily impacted by extreme values, this makes the K-Means algorithm sensitive to outliers and

can significantly distort the partitioning (Velmurugan & Santhanam, 2010). K-Medoids

clustering is more robust to outliers and more efficient compared to K-Means (Jin & Han, 2016).

It is based on a Partitioning Around Medoid (PAM) method that minimizes the sum of

36

dissimilarities between each object and its corresponding reference or Medoid (Velmurugan &

Santhanam, 2010).

To put it simply, the basic concept behind K-Medoids can be explained as follows: the

algorithm selects K representative points to create initial clusters and then repeatedly update to

find better cluster representatives (Jin & Han, 2016). Importantly, all the possible combinations

of medoid (representative) and nonrepresentative points can be examined, and the resulting

clustering is calculated for each pair of medoid and non-medoid. The original representative

point is updated (replaced) with the new point which causes the greatest reduction in distortion

function; at each iteration, the groups of best points for each cluster create the new respective

medoids (Jin & Han, 2016). In (Figure 2-4), the workflow and main procedures of a typical K-

Medoids algorithm are illustrated, based on (Jin & Han)’s work.

37

Figure 2-4. A typical K-Medoids clustering algorithm. Adapted from (Jin & Han, 2016).

Finding the Medoid is very useful for a generative design system because it is the

representative of a cluster of design options and an actual design (in contrast, the Mean in K-

Means is not an actual design but a calculated mean of design options). Also importantly, the K-

Medoids algorithm is faster and saves computation time when compared to the K-Means, for

cases of normal and uniform distributions of the given data points (Velmurugan & Santhanam,

2010).

The rationale for using K-Medoids in this research can be explained as follows: (1) the K-

Medoids algorithm uses data points’ dissimilarities for clustering and it minimizes the sum of

general pairwise dissimilarities; the possible choice of the dissimilarity function is very rich,

however, in our application we used the Euclidean distances of cells in compared pairs of shapes,

38

(2) the Medoids are representatives for clusters, and thus in our method they are actual design

solutions, and (3) the K-Medoids algorithm doesn’t need data points (or quantified shape

definition, which is difficult to define), but their differences and this matches the objective in this

work.

2.4. Summary of the Section

In its first part, this section offered a literature review on parametric form generation and

generative design systems, methods and tools for design evaluation and optimization. Afterward,

the limitations and the issues accompanied in using such methods were identified. Next, the

suggested method to be incorporated into generative systems was introduced. The method

constitutes a method for shape representation, a method for shape difference measure and the

cluster analysis method, and the related and inner components and algorithms were also

introduced.

39

3. RESEARCH METHODS

The research methods used in this study can be identified as mixed-methods, comprised

of literature study, experimentation, prototyping, testing, and validation of findings. These

methods can be explained through John Kunz’s “maximum anxiety heuristic” organizing

principles for building a model-based (computational) system. In Kunz’s approach (1989), to

develop a system, it is significant to adhere to the following protocol: (1) identify the purposes of

the system, (2) describe the representation or model of the domain, (3) specify the reasoning to

analyze the model, (4) create an interface, and (5) test the model validity. These five tasks have

to be developed simultaneously in order to be perceived at an equal level of maturity at each

phase throughout the process of system development, and this approach is called the “maximum

anxiety heuristic” (Kunz, 1989, p. 1). To explain the “maximum anxiety heuristic” principle,

Kunz (1989) defines it as an organizing rule to direct the developer of a system to focus on these

tasks in a way that the attention should be on each task until some other tasks appear to be ill-

defined or cause greater anxiety. The advantage of using this approach is that it provides a direct

and effective method for guiding the system development, through explicitly addressing the

issues of each developed activity/task so that it helps to reveal and explain the other tasks’ issues

(Kunz, 1989).

In this study, the system framework was developed using Kunz’s method, following his

heuristic. The five processes of system development can be explained as follows (Kunz, 1989):

1. Identify the purposes of the system: In developing a knowledge-based system, there

should be a clear purpose of that system, from two perspectives, the perspective of the

expert/developer and of the user/designer. For a computational system, it is a good design

40

goal to target users with good general domain knowledge and basic computation skills.

The purposes here refer to the objectives of the system, implemented as its top-level

capabilities that can be performed and achieved by the user of the system. It is important

to differentiate these purposes from the tasks that the system can achieve; the goals of

developing the system are to potentially achieve those tasks.

2. Describe the representation or model of the domain: In this activity, the researcher has to

identify and describe the domain where the research problem exists, and the overall

concepts or methods used in the domain and their potentials and limitations as described

by experts. Also, in domain representation, it is helpful to identify the specific existing

examples of the concepts that can be found in a modeled system that attempts to solve the

research problem. The concepts here can be viewed as the actions or functions described

in the system and their corresponding objectives.

3. Specify the reasoning to analyze the model: Here, the system’s developer has to identify

the system’s behavior, the criteria by which the problems have to be analyzed, and the

decisions to be taken for each problem in the system. It is essential to define the

functionalities and the criteria that would be applied to evaluate those functionalities.

Certain decision-making criteria can outline implementations in a specific discipline,

such as developing algorithms for solving computational issues. The system’s behavior

includes procedures and illustrates the structure or workflow of the system. Reasoning

has to accompany the activities or functions performed by the system, providing

guidelines on the attributes that have to accompany those functions.

4. Create an interface: Knowledge systems often include user interfaces as platforms of

data and destinations of the results. The primary purpose of the user interface is to

41

communicate the system to the user, collect and receive data, and convey the results. The

user interface is not necessarily required to be a stand-alone application; it is aimed to

present and justify the reasons for the assumptions and decisions made when developing

the system.

5. Test (create procedures to test the model validity): Any developed system must be tested

throughout its development to verify and assure its validity and to decide if changes are

needed when problems occur. Testing includes defining criteria for choosing particular

test-cases, and ideally for selecting a standard procedure verifying the accuracy of the

cases being tested. When a standard procedure is carried out to test multiple cases, it is

important to find the expected behavior of the system at each test-case and to identify the

procedures to compare the output of the system of all cases.

Following Kunz’s heuristic, the processes carried out in this study for developing the system

are illustrated in (Figure 3-1) and can be each described as following subsections.

42

Figure 3-1. The Research methods used for the system development, following Kunz’ Principles.

3.1. Literature Review to Identify the System’s Purposes

To identify the research problems, and the purposes of the system to solve those

problems, an extensive literature study was continuously carried out throughout the five tasks,

focusing on the most recent relevant work. Analyzing existing studies, the emphasis was on

potentials and limitations of available articulation methods in form finding of generative

systems, if there are any. A list of criteria has been utilized to determine the gaps and problems

of existing methods, and was categorized as the following:

• The Domain of Generative Systems: The domain of our system is identified as

computational generative systems such as parametric modeling systems in which

hundreds, thousands or a higher number of design options are generated.

43

• Users of Generative Systems: The users here are designers, the audience who uses

generative systems to create and explore a wide range of design alternatives, and

often possess advanced design knowledge, yet basic to moderate computational

skills. Therefore, the system developed in this work is to be introduced to such an

audience and has to be modeled to be run successfully by those designers.

• Problem-Specification in Form Finding: In form finding, designers face an issue

of an overwhelming number of design alternatives that emerge when running the

system, as identified by multiple studies, e.g. (Brown & Mueller, 2019; Rodrigues

et al., 2017). As a consequence, the designers find it difficult to control the system

when too many solutions evolve making it unfeasible to examine the solutions’

formal qualities and to interact with the system.

• Lack of Available Articulation Methods: Analyzing literature, the lack of

articulation methods in form finding remains an unsolved issue. Therefore, the

system’s functions and tasks have been determined to lead to solve this problem

and to achieve a successful articulation of the design options in terms of

geometric correspondences.

• Use of Shape Clustering Methods: The purposes of building the system in this

work are to develop and incorporate a new shape clustering method in form

finding. It is important to note that shape clustering methods are not commonly

used in generative design or optimization systems.

These criteria helped shape the system’s purposes and suggested the functions needed

inside the system, particularly the need to develop an original method for clustering to support

successful form finding.

44

3.2. System Design (Experimenting and Prototyping)

To represent the design process, a system’s framework that includes sufficient expressive

capability to capture the characteristics of the ideas that support the process can be used (Gero,

1990). Schemas or system prototypes are often used to represent design knowledge and

demonstrate the framework (Gero, 1990). Design prototypes are conceptual schemas for

representing a family of abstracted groups of components derived from similar design cases, and

behave similarly to the design process, with the a priori knowledge required for the design

situation, all combined into one schema (Gero, 1990). The use of design prototypes can be

described as “matching a cognitive view of a process model of design” (Gero, 1990).

The use of prototyping allows for separating architectural design knowledge from the

computational processes that operate upon that knowledge; such representation is usually

effective as an interpreter that articulates between the structure or the syntax of design, and the

function or the semantics of a design (Gero, 1990). This design articulation is advantageous in

producing designs as well as in analyzing and evaluating those designs (Gero, 1990). The aim of

using software tool prototypes is to meet the expectations of a designer who uses computational

processes for producing designs as it provides a framework that assists in both routine and

nonroutine design processes (Gero, 1990).

 In this study, to achieve the suggested system’s purposes, prototyping became essential to

demonstrate the functionalities of the system and to serve as an apparatus by which applications

are tested and data are collected. The system’s tasks were formulated and connected together to

create a fully working prototype of a generative system that performs all the tasks seamlessly and

with reasonable computational time. The prototype comprises routine, and nonroutine (including

innovative) processes, as described by (Coyne et al., 1987). A routine process can be described

45

as a well-defined state space of potential designs, in which all the variables and the knowledge to

calculate their values are based on existing prototypes (Coyne et al., 1987). An innovative

process, differently, can be defined as a “design prototype-instance adaptation” with

modifications of some of the knowledge regarding applicable values of the variables. A

nonroutine, creative process involves introducing new variables into the prototype, leading to

produce a new prototype (Coyne et al., 1987). Following this categorization, in developing the

prototype of this study, three processes have been pursued of which two are considered routine

and one is innovative; the parametric form generation and design optimization are routine

processes, and shape clustering is the innovative process, all illustrated in (Figure 3-2).

46

Figure 3-2. Workflow of the proposed system.

The three processes constitute the prototypical protocol explained in the following

subsections.

3.2.1. Process 1: Parametric Form Generation: (Routine)

According to (Coyne et al., 1987) ’s categorization, this process is routine-based, as it

comprises a typically-used activity of parametric modeling to set-up the initial mass model. To

47

create the parametric model, an architectural design project is modeled and parametrized. The

initial parametric model setup involves establishing the constraints and variables that control the

model and allow for a variety of alternatives to emerge.

3.2.2. Process 2: Design Optimization (Routine)

This is a routine process as well, where an optimization tool is used, coupled with

building performance evaluation tools. The process involves the use of a generative tool that

allows for the model parameters to change and captures and evaluates each resulting design

options at every iteration. Before running the tool, the parametric model and its parameters are

first prepared for energy and daylight performance evaluation (as in Test-case 3). This requires

adding physical properties to the mass model, such as adding windows and assigning materials to

all building components. In the pursuit of this approach, a Pareto optimization method is targeted

using an MOEA tool for evaluating and retrieving efficient design solutions, fitness functions

have to be determined, with fitness values. Once the optimization run starts, a random population

of solutions are generated in the solution space, and the run of generations leads to fitter

solutions which will eventually form the Pareto front.

3.2.3. Process 3: The SC-KM Method (Innovative)

The innovative process in this study is the process of developing a new method for

clustering the design options’ shapes, and the incorporation of the developed method into the

generative system. The set of design alternatives retrieved from the generative process are used

as the input for the shape clustering method. The clustering method required formulating a set of

algorithms to perform the following functions:

i. Pair-wise comparison for finding geometric correspondences: This activity requires

a comparison of all design alternatives to compare and analyze their geometric

48

correspondences. For all the design solutions (shapes), a pair-wise comparison is

targeted in which the compared shapes are overlapped for all possible cases in

order to find a “Shape Difference Score” for the pair. The algorithm utilizes the

difference of shapes, instead of the shapes themselves. As a result, a “Shape

Difference Score Matrix” is constructed, a cross-reference matrix of difference

values for all the shapes compared. This method differs from the typical grid-based

shape comparison explained in Section 2. In a typical grid-based shape description,

the vectors/codes of the whole overlaid grids are considered, and calculation of

shape difference is often performed using the Hamming distance approach. In our

method, scanning the cells inside the shapes is performed within a pair-wise shape

comparison, directed to achieve exhaustive search for the overlap case where the

shape difference is minimum. This exhaustive search requires another algorithm for

the optimum assignment of the non-overlapping cells so that the sum of their

Euclidean distances is the minimum, which necessitated the incorporation of the

Hungarian algorithm.

ii. K-Medoids clustering: The distance-based “Shape Difference Score Matrix” is used

as an input to the K-Medoids algorithm that clusters the solutions into groups of

similar shapes, and identifies a medoid, a representative solution for each cluster.

The clustering algorithmic set was applied to multiple test samples of shapes as will

be explained in Section 4.

3.3. Specify the Reasoning to Analyze the System (Identify the Objectives)

In designing the system, each function (process) was pursued to achieve its expected

objective, based on collected knowledge from studying the literature, and based on

49

experimenting with each process separately. The objectives were determined upfront, to address

and solve the research problems, defined as follows:

i. the capability of the system to initiate similar/different shapes, or a building mass model

with customized parameters and constraints to create a wide range of shapes.

ii. a generative component should be pursued to allow for parametric change to occur to

produce a set of design options.

iii. the capability of the developed clustering method to cluster the generated shapes of

design options into clusters of similar shapes, and to find the representative shape of

each cluster.

iv. the system has to be easily implanted by designers, with adaptability to different design

problems.

The design of the system was changed and improved in the prototype development process,

according to the issues faced, and to the modifications needed to assure that the system behaves

correctly, as expected. To achieve the above objectives, the system’s functionalities were

decided to be the following:

i. a parametric modeling functionality, with different test-cases to allow for parametric

modifications

ii. the parametric model should be changed in a generative manner to provide a rapid

generation of design options, within possibly (optional) an evaluation-based search

mechanism

iii. the selected solutions should be articulated and clustered according to their geometric

differences. This required a cross-reference geometric difference finding amongst all the

50

compared solutions. The clustering method can incorporate and benefit from the K-

Medoids algorithm to cluster the solutions into groups of similarities, and find the

representative shape of each group.

3.4. Testing (Create the System Interface)

To communicate the system, the interface for the prototype has to be a programming-

based platform because the prototype is comprised of several connected algorithms. Also, the

platform has to be compatible with the determined functions of parametric modeling, design

optimization, and clustering algorithms. Preferably, the platform can accept external input, store

and display data, and capable of representing architectural geometric models. Therefore, a visual

programming platform (Grasshopper/Rhino) was selected as the platform; however, other

platforms such as (Dynamo/Revit) can be used alternatively.

The primary reason for favoring Grasshopper/Rhino is its advancement and compatibility

with multiple plugins and tools such as the simulation tools (Honeybee and Ladybug), the multi-

objective evolutionary algorithm (Octopus), and more importantly the programming tool

(GH_CPython) that that allows for incorporation of numerical and scientific Python libraries in

order to develop and perform the clustering and related algorithms. The resulting interface of the

developed system is a framework of a written and customized set of algorithms and nodes inside

the Grasshopper platform that can be adapted to other test-cases and design problems.

For testing the prototype, three experimental cases were conducted. In the first test-case

an abstracted model, a grid-based layout that is capable of generating similar and different

geometric shapes, was used to develop the shape clustering method. In the second carried out

test-case, and upon inspecting published studies on generative systems, a decision was made to

51

apply the developed SC-KM method to the shapes of Rodrigues et al. (2017)’s study, for testing

the clustering method and comparison. The third test-case was based on modeling a parametric

spatial configuration that represents zones and spaces of the building and included the design

optimization process.

3.5. Validation

Collectively, this study is rational, empiricist, and logical; thus validation was based on the

results of the tests and evaluations done through comparing the processes of the prototype with

corresponding studies (Sargent & Balci, 2017). As mentioned, the developed system was applied

to three different test-cases to demonstrate and test the behavior and functionalities of its

components, and its usefulness. For validation, verification processes were carried out internally

and externally. Since the system framework was developed using two routine processes, and one

innovative process, validating the routine tasks was simplified to verification and comparison of

the results since those routine tasks are based on inherently validated components and methods

(Phillips et al., 2002) such as parametric modeling, and the optimization method. The innovative

method of clustering needed to be thoroughly validated. As such, overall, the validation

procedures can be explained as follows:

a) For the parametric from generation process, verification tests were made by flexing the

model, changing its parameter to assure the update of the other related parameters.

b) For design optimization, validation was pursued in testing the results of optimization

through manual checking and calculating the resulting values.

c) In terms of validating the clustering method, two approaches were pursued: internally

(qualitative), visual examination perceptual coherence of the clustering results, and

52

externally (quantitative), comparing the results to reference clusterings of an existing

study and conducting clustering evaluation measure procedures.

In the three applications of the systems (the three test-cases explained in the next section);

validation of the clustering method was performed as the following:

i. In the first test-case, the clustering results were evaluated perceptually and compared

against predetermined reference clusters.

ii. For the second test-case, the clustering method was applied to a sample of shapes from

the study of (Rodrigues et al., 2017) after modeling those shapes and using them as input

to our clustering method. In addition, a comparison and evaluation study of the resulted

clusterings was conducted using clustering evaluation techniques and measures.

iii. In the third test-case, validation was targeted to test the application of the clustering

method into the optimization process. Also, the clustering results were visually analyzed

according to their perceptual coherence and the existence of a dominant shape in each

cluster subset.

3.6. Summary of the Section

The section describes the methods used to carry out this research. The development

protocol of the proposed system followed a framework of computational model development

principles suggested by Kunz (1989) and often followed in the computational model-based

inquiry. The literature review offered in Section 2 revealed a gap in generative design research

resembled in the lack of organizational strategies. In response, developing the new system was

targeted to solve the problem and achieve the objectives of developing a new shape clustering

method incorporated into the system. This necessitated a demonstration of a fully working

53

prototype with the determined functionalities. The system development had to culminate in an

illustrated interface, a package of fully working algorithms to achieve the determined shape

articulation tasks and the integration of the method into a generative system. In addition, testing

the shape clustering method is necessary to verify that the components are working successfully

as expected.

54

4. TEST-CASES AND VALIDATION*

Three test-cases were developed as applications to the developed prototype, to

demonstrate its framework, explore its functionalities, and to test and evaluate those

functionalities. For the first two test-cases, the processes of parametric modeling, and the

clustering method were carried out with the absence of the design optimization process. In Test-

case 3, design optimization was followed, achieved by using the MOEA tool, leading to a fully

working prototype. In every test-case application, the following phases and tasks were conducted

and detailed in the subsequent subsections: introduction to the experiment, developing the test-

case experiment, retrieving the experimental outcome, evaluating of the experimental outcome,

and conducting the validation procedures.

The platform used for all the test-cases was Grasshopper/Rhino, a visual algorithmic

environment, often used for parametric exploration and is compatible with other plugins and

tools. For parametric modeling, in addition to the available functions and nodes inside

Grasshopper, there was a need to write customized algorithms in some test-cases such as for

creating the grid-based layout in the first test-case. In developing the SC-KM, the programming

tool (GH_CPython) which is a plugin that allows for using modules and scientific Python

libraries to be incorporated into Grasshopper. In addition, the typical Iron-Python language was

used to write other programs, and sometimes C# language was used for specific algorithms. In

the process of generative exploration and performance evaluation in Test-case 3, the energy and

* Part of this section is reprinted with permission from “Incorporating Form Diversity into Architectural Design

Optimization” by Yousif, S., Yan, W., & Culp, C. (2017). Paper presented at the ACADIA 2017: DISCIPLINES &

DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in

Architecture (ACADIA), MIT, Cambridge, MA.

55

daylight simulation tools (Honeybee and Ladybug), and the MOEA-based Octopus tool were

used. Octopus is a multi-objective evolutionary algorithm that provides efficient design

exploration to achieve high-performance designs. A more detailed explanation of the algorithmic

tools and methods used is offered in the following subsections with elaboration on each test-case

pursued.

The specifications of the PC used for the three test-cases are as follows: The Processor is

Intel® Core™ i7 8086K (6-Core/12-Thread, 12MB Cache), the Operating System is Windows

10 Pro 64-bit English, and the Video Card is Dual NVIDIA® GeForce® GTX 1080 Ti graphics

with 11GB GDDR5X each.

4.1. Test-case Experiment 1

In this experiment, the prototype was applied to a grid-based test-case, with the focus on

two main processes: (1) the generation of a large dataset of shapes with similarities and

differences, and (2) the development and testing of the clustering method with its algorithms and

components. Preceding to this test-case, multiple experiments were carried out that include the

process of generative exploration and performance evaluation in addition to the early experiment

of creating a form diversity articulation algorithm, as explained in the published paper (Yousif et

al., 2017). This test-case was carried out in the following phases: programming a parametric

setup of a grid-based layout to generate a dataset of shapes, developing a clustering algorithmic

definition, testing and evaluating the clustering results, and conducting validation procedures.

The following sub-sections describe these tasks in detail.

4.1.1. Introduction to the Test-case Experiment

This experiment was designed to apply the prototype to a test-case in which, the two

processes of generative parametric modeling and development of the clustering method were

56

carried out and tested. Throughout its development, the major challenges faced were the

functionalities of the developed clustering method, and its credibility (validity). Therefore, in

explaining this test-case, the focus is on the newly developed clustering method and its

algorithms. The processes of developing test-case 1 can be illustrated in (Figure 4-1) and

explained in the following subsections.

Figure 4-1. Workflow and tools of Test-case 1 with the SC-KM method as a major component.

4.1.2. Parametric Form Generation

The set of shapes, in this case, was created using a generative algorithmic layout, a grid-

based setup. This algorithmic layout combines the use of available nodes in Grasshopper for

parametric modeling and specifically formulated algorithms. The layout setup is based on a

configuration of 10 modular cells, each represents a building space, allocated to a 2D grid

57

composition. The cells can be allocated flexibly, allowing for modification possibility in the

solid/void relation, where solid is the existence of a cell and the void is its absence. The 2D grid

contains 11 x 11 units, with each measuring 10 x 10 m. Each allocated cell is 10 m high,

represents an open volume that can contain multiple floors. Inside the 121 unit-grid, only 10 cells

are parametrized and allocated on the grid, leading to 121! / (121-10)! or (4.5913309e+20) of

possible configurations to be generated. This large number of design alternatives requires an

aggregation mechanism, in order for users to compare the generated designs, and this is the

reason for conducting this study as described in the introduction section. The allocation of cells

was done using an algorithm, based on an agglomerative combinatory, a cell-by-cell approach.

The first cell (Cell 1), was located in the grid center (x=6, y=6), and the other 9 cells were

appended subsequently (Yousif et al., 2017). This cell-allocation method is illustrated in (Figure

4-2).

Figure 4-2. From left to right, the process of generating the mass model based on adjacency, non-overlap, and boundary-

detection constraints. The dots represent feasible locations for the next appended unit.

Adding each cell was parametrically-driven, through coding customized algorithmic

definitions to limit the possible configurations to three constraints:

a) Adjacency constraint: each cell must be adjacent to at least one side of the previous

cell(s)

b) Non-overlap constraint: a cell cannot be located on an occupied cell

58

c) Boundary-detection constraint: the added cell cannot be appended (or moved when

changing parameters) outside the grid boundary.

Changing the 9 location parameters except for the first cell (each parameter controls the

changing location of one cell), the adjacency relations among those units change, based on

repositioning, which changes the shape configuration. Examples of the shapes resulting from this

grid-based pattern are shown in (Figure 4-3). The rationale for using this pattern was due to its

simplicity yet capability to allow possibly for a diverse/similar set of shapes, and its

appropriateness to test the clustering algorithm (Yousif & Yan, 2018), as will be explained later

in this test-case. The grid-based pattern can also approximate more complex forms characterized

by curvatures or angles, using a high-resolution grid. In addition, the application of the clustering

algorithmic definition to this grid-based descriptor will be feasible as the clustering will consider

shape difference based on the center points of the grid cells. The layout is invariant to scaling

with all shapes of the same area, yet variant to rotation and reflection.

Figure 4-3. Examples of shapes generated from the grid-based pattern.

4.1.3. Developing the Shape Clustering Method

An algorithmic set was developed to achieve shape clustering. This clustering set

represents the complete version of the algorithms that perform shape clustering, with the

implementation of the K-Medoids and other algorithms, applied to a set of shapes generated in

59

this case through parametric changes. For formulating the clustering algorithms, applying and

testing the clustering method, a sample of shapes was needed. In this case, the grid-based layout

was changed manually and purposefully to generate three perceptually identified clusters. This

was done to produce twenty shapes comprised of three groups; each group contains shapes with

only one cell-location changed within the group, as illustrated in (Figure 4-4), a top-view of the

sample of shapes. In this sample set, one group of seven vertically linear shapes, another of

seven horizontally linear shapes, and the third group of six zig-zag (meandering) shapes were

created. The shapes were intentionally shuffled and randomized for verification purposes (Yousif

& Yan, 2019).

Figure 4-4. A sample of shapes used to apply and test the clustering method.

The clustering method was developed using two main algorithms: The Pair-wise Shape

Difference and the Hungarian Algorithm, and the K-Medoids Algorithm, as explained in the

following sub-sections.

4.1.3.1. The Pair-wise Shape Difference and the Hungarian Algorithm

To explain the importance of pair-wise comparison, it is essential to note that in formulating

this algorithm, the objective was to compare all the sample shapes in an agglomerative pair-wise

method, pair by pair. In each pair-comparison, the pair is overlapped, moving, for example, each

cell of Shape 0 over all the ten cells of Shape 1 of (Figure 4-4), leading to hundred cases of

60

overlap, of which 4 cases are shown in (Figure 4-5). The rationale here is that the optimum pair

overlap should be considered out of all the possible overlaps, for retrieving the actual geometric

difference between the two shapes. This assumption is based on operations often applied to

shape comparison studies, where certain procedures are applied to the compared shapes before

determining their differences. In such shape comparison analysis, there is a need to align the

compared shapes, using transformation operations such as scaling, translation, to best find their

similarities and differences (Funkhouser et al., 2005). We utilized the alignment approach for

overlapping the shapes to compare them. Readily, all the shapes used in this test-case are of

similar area and did not require a scaling procedure. In terms of rotation and reflection, the

decision made here was that the pair-wise comparison is variant to rotated and reflected shapes,

for example, a T-Shape and a rotated T-Shape represent two different shapes.

Figure 4-5. Four selected of the 100 overlap cases of the compared pair (Shape 0 in grey, Shape 1 in blue, and the overlapping

cells are in red).

Using the GH_CPython plugin, with its capabilities to use Python scientific libraries, the

algorithm was developed. In each overlap case, the non-overlapping cells between the two

shapes are subjected to a Euclidean distance measure, considering their center-points. The reason

for the 100 cases of translation (overlap) is to check all possible shape overlap cases and to find

the smallest sum of Euclidean distances between cells in the pair. This exhaustive search for the

best overlap leads to a problem of cell assignment. The optimum assignment is to determine

61

what non-overlapping cells of shape 0 that would be best assigned to the non-overlapping cells

of shape 1 for a minimum sum of distances, for which we will utilize the Hungarian algorithm to

resolve.

The GH_CPython-based algorithmic node (Pairwise Shape Difference and the Hungarian

Algorithm), represented in (Figure 4-6), was formulated using three parts. First, preliminary

functions were created for defining: a vector for translation (move), coordinates checking, and

Euclidean distance calculation. The second part of the written algorithm is the function: “Shape

Difference Calculation for a Pair of Shapes” for calculating the distance-based difference for a

pair of shapes. The third component is the “Get the Shape Difference Score Matrix” function to

retrieve the “Shape Difference Score Matrix”, to be used for the K-Medoids algorithm.

62

Figure 4-6. The GH_CPython-based Grasshopper node of the Pair-wise Shape Difference algorithm, with its input and

output.

Those three parts can be explained as follows:

I. Preliminary Functions:

The three following functions are called in the two main successive functions.

• Function A: Defines a translation (move function) that moves a shape to overlap with

another shape.

• Function B: Defines a checking function that checks if two shapes are on the same

coordinates (x, y, z).

63

• Function C: Defines a distance function that performs a Euclidean distance calculation

between two points.

II. Function 1: Shape Difference Calculation for a Pair of Shapes

As an input to this function, the main important input variable is a data tree (a list of lists)

that represents the list of shapes, each with its ten cells’ center-points. In this function, a “Shape

Difference Score” is defined as a pair-wise shape comparison result, which is, across all

overlapping cases, the smallest sum of distances for the best matching non-overlapping cells. In

every overlap case, to achieve the best matching of the non-overlapping cells, the Hungarian

algorithm was implemented to compute the optimum assignment of matching cells between each

pair of shapes so that the sum of Euclidian distances between the non-overlapping cells of the

pair is minimized. As an example, in Overlap Case 97 in (Figure 4-7), the optimum assignment

of the non-overlapping cells (1-5) of Shape 0, to the non-overlapping cells (a-e) of Shape 1,

which has been shaded in (Table 4-1), was needed.

Figure 4-7. Overlap case 97 of the pair-wise comparison of two overlapping sample shapes (Shape 0 in grey and Shape 1 in

blue), with five cells overlapping (in red).

64

Table 4-1. Matrix for distance calculations for center-points’ coordinates (a-e), and (1-5). Border-outlined boxes are for a

random assignment and shaded boxes for the optimum assignment by the Hungarian algorithm.

In Overlap case 97, depicted in (Figure 4-7), an assignment makes a one-to-one match

between the non-overlapping cells of shape 0 and shape 1. Thus, the number of all possible

assignments is 5! (factorial of 5), from which we need to find the best assignment. For instance,

to understand the need of the best assignment, we have the following two possible assignments:

one is random, which results in the sum of Euclidean distances between the 5 pairs of cells

(center points) to be 21.91, while the optimum assignment selected by the Hungarian algorithm

is 19.13, the minimum sum of distances possible. (Note that the 19.13 may or may not be the

overall minimum for all 100 overlapping cases.)

𝒔𝒖𝒎 𝒐𝒇 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒔 (𝒓𝒂𝒏𝒅𝒐𝒎 𝒂𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕) = (𝒂, 𝟑) + (𝒃, 𝟐) + (𝒄, 𝟏) + (𝒅, 𝟒) + (𝒆, 𝟓) = 𝟐𝟏. 𝟗𝟏

𝒔𝒖𝒎 𝒐𝒇 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒔 (𝒐𝒑𝒕𝒊𝒎𝒖𝒎 𝒂𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕) = (𝒂, 𝟓) + (𝒃, 𝟒) + (𝒄, 𝟏) + (𝒅, 𝟐) + (𝒆, 𝟑) = 𝟏𝟗. 𝟏𝟑

After finding the minimum sum of distances in each overlap case, 100 shape difference

values are retrieved of which the minimum value is selected to represent the actual difference

between the pair. The algorithm for calculating the “Shape Difference Score” of the two shapes

can be expressed as follows:

 a b c d e

 (5, 5) (4, 4) (2, 2) (2, 1) (2, 0)

1 (3, 6) 2.24 2.24 4.12 5.10 6.08

2 (3, 5) 2.00 1.41 3.16 4.12 5.10

3 (3, 4) 2.24 1.00 2.24 3.16 4.12

4 (3, 7) 2.83 3.16 5.10 6.08 7.07

 5 (3, 8) 3.61 4.12 6.08 7.07 8.06

65

Shape Difference Score = min ((min sum of distances of overlap case 1),

 (min sum of distances of overlap case 2),

 ……

)

As a result, across all the 100 overlap cases of the pair, the minimum sum of distances is

9.30 for Overlap cases: 34, 41, 52, and 95 (identical overlaps). It is important to note that a

repetition of overlap was expected (but they could be eliminated to make the algorithm more

efficient).

III. Function 2: Get the Shape Difference Score Matrix

For all the paired shapes, the algorithm constructs a “Shape Difference Score Matrix”: a

cross-reference matrix of values that represents the Shape Difference between each two

compared shapes of the twenty sample shapes illustrated in (Table 4-2). In (Figure 4-6), the

“Shape Difference Score Matrix” (as a list of lists in Grasshopper) is illustrated as an output of

the (Pair-wise Shape Difference and the Hungarian Algorithm) node.

Table 4-2. A triangle of the symmetric “Shape Difference Score Matrix” of Shapes 0-19 in the explained sample.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 9.30 2.00 27.14 2.00 1.00 2.24 10.71 8.89 27.91 27.91 11.12 1.00 27.14 25.55 26.37 26.37 11.54 9.48 2.83

1 10.67 20.38 7.89 9.06 8.71 2.24 1.00 20.72 21.38 2.00 9.89 19.94 18.38 19.16 19.38 2.24 1.41 9.71

2 28.39 2.83 3.00 2.24 11.54 9.89 29.17 29.16 12.08 1.00 28.39 26.87 27.62 27.62 12.72 11.48 2.00

3 27.10 26.51 27.74 20.52 21.21 2.24 1.00 19.88 27.74 2.00 2.00 2.24 1.00 19.16 18.97 28.40

4 2.24 1.00 8.89 7.06 27.88 27.87 9.30 2.24 27.10 25.55 26.32 26.32 9.89 9.30 2.00

5 2.83 10.47 8.65 27.28 27.28 10.89 2.00 26.51 24.91 25.73 25.73 11.30 8.48 3.61

6 9.30 7.89 28.51 28.51 9.89 2.00 27.74 26.21 26.96 26.96 10.67 10.12 1.00

7 2.00 19.80 21.33 1.00 11.12 19.16 18.52 18.52 19.52 2.00 3.61 9.89

8 21.33 22.21 2.24 9.30 20.56 19.21 19.80 20.21 2.83 2.24 8.89

9 2.00 19.16 28.51 1.00 3.61 2.00 2.83 18.52 19.35 29.15

10 20.56 28.51 2.24 3.00 2.83 2.00 19.80 19.97 29.16

11 11.54 18.38 17.88 17.75 18.88 1.00 3.16 10.71

12 27.74 26.20 26.96 26.96 12.08 10.48 2.24

13 2.83 1.00 2.24 17.75 18.61 28.40

14 2.24 1.00 17.29 16.97 26.87

15 2.00 16.97 17.79 27.65

16 18.29 17.97 27.65

17 3.00 11.64

18 11.12

19

66

4.1.3.2. Implementing the K-Medoids Algorithm

The next task was to implement the K-Medoids algorithm, with additional modifications

to apply it to the sample shapes, using their “Shape Difference Score Matrix”. Conceptually

speaking, in K-Medoids clustering, the initial medoids or representative objects are selected

randomly, then, iterations of replacing the medoid with other (non-medoid) objects occurs to

improve the clustering (Han et al., 2011). Importantly, all the possible replacements are tested in

an iterative process that continues until the clustering accuracy cannot be further improved

through replacement; the accuracy or quality of clustering is often calculated as a cost function

of the average difference between an object and its cluster representative (Han et al., 2011).

To explain its functionality in details, a typical K-Medoids algorithm performs the

Partitioning Around Medoids (PAM) method (Velmurugan & Santhanam, 2010) as follows:

• Input:

K: The number of clusters

D: The matrix of data containing n objects (shapes)

• Method:

Random initiation of cluster medoids: first, the algorithm arbitrarily

selects medoids in D as the initial representative objects. Next, the

algorithm assigns each remaining object to the cluster with its nearest

medoid.

Repeat, update of cluster medoids:

While the total cost (sum of distances of points to their medoid) of

the assignment decreases:

For each medoid m, for each non-medoid data point o:

1. Swap m and o, assign each data point to the closest medoid,

recompute the cost

2. If the total cost increased, undo the swap

• Output: A set of k clusters that minimizes the total cost.

The specific K-Medoids implementation is a NumPy/SciPy function. In our

implementation of the algorithm, it called the function inside the GH_CPython coding tool,

67

which enables the importation of NumPy/SciPy. The reason for selecting this implementation of

K-Medoids is due to its validated method and robustness to applications, designed particularly to

consider distance matrices and cluster them based on user-defined difference values (Bauckhage,

2015).

According to Bauckhage (2015), the distance matrix-based K-medoids clustering method

solely relies on distances between data points (or shapes), therefore, the distance matrix becomes

the most important component of the algorithm. The “Shape Difference Score Matrix” was

already retrieved from the shape difference algorithm described in the previous section. The

input data of the K-Medoids becomes the following: the number of shapes, the “Shape

Difference Score Matrix” (as a list of lists), the number of clusters, and the number of iterations

of the K-Medoids as illustrated in (Figure 4-8).

Figure 4-8. The Grasshopper node of the K-Medoids Algorithm with its input and output.

68

The outputs of the K-Medoids are primarily: the list of clusters of shapes and the

medoids. The outputs have been articulated as lists of clusters (each cluster with their shape IDs),

the medoids’ indices (IDs), and the cluster size (number of shapes in each cluster) as depicted in

(Figure 4-8).

4.1.4. Experimental Clustering Outcome

Applying the described clustering algorithmic set to the above-illustrated sample of

twenty shapes, the results showed correct clustering of shapes with the given numbers of clusters

(3) and identified the medoid of each cluster (Figure 4-9). Further, more scenarios were tested

and the results were perceived accurate too (Figure 4-10). To analyze the outcome of this

clustering method, it is important to note that the sample cases used were intentionally created in

advance to have three clusters each by manually typifying shapes from the grid-based layout to

create three groups of perceptually similar shapes. Perceptual refers here to the visual

identification of shape similarity/difference. Therefore, the samples were already clustered as

reference clusters. For instance, in (Figure 4-9), the selected sample of shapes includes a group

of seven horizontally linear shapes (in cyan color) with only one cell changing in location,

making the change of shape minimal. The method resulted in accurately identified clusters.

Despite that in the bottom of (Figure 4-10), the shapes become more complex to differentiate, the

clusters were correctly identified by the clustering method.

69

Figure 4-9. The output of the developed K-Medoids-based shape clustering; three groups of shapes are automatically

clustered and represented in three colors, with the Medoids in a darker tone for each group.

Figure 4-10. The correct clustering results: the same colored shapes indicate that they are in the same cluster in two

additional test cases (above and below), with the Medoids circled, and in a darker shade for each group.

4.1.5. Validation Study

For verification purposes, before clustering each sample, the shapes were shuffled

randomly in location to make sure the algorithmic set worked regardless of the order of shapes in

terms of locations. In addition to the presented samples, more other tests were conducted,

applying the algorithmic set to multiple samples of two or three clusters, and the algorithm

identified the clusters as expected.

As a measure to determine the accuracy of the clusterings, the results were compared to

the reference clustering; the algorithmic set is expected to cluster the similar typified shapes in

70

one cluster, given the same number of clusters determined in the reference clustering such as 3 in

the illustrated samples. Also, perceptual coherence was considered a measure for clustering

accuracy; a cluster is considered coherent if it presents a dominant shape that appears at a high

number of times in the cluster (Rodrigues et al., 2017). In the results of the explained method, for

all the tested samples, the results showed a successful outcome of the clustering method to

determine dominant shapes in a cluster, and correct clusters compared to the intended reference

clusters. However, the next validation procedure was thought to be external, comparing the

results of clustering to other studies, and this was implemented in the second test-case, explained

in 4.2.

4.1.6. Discussion and Conclusions

The development of the shape clustering method was demonstrated in this experiment

through formulating two functionalities: (1) using grid-based shape description and conducting

pair-wise comparison for computing a shape difference score, and (2) implementation of the K-

Medoids clustering. The test-case showed how the method can be applied to cluster samples of

grid-based shapes and how it is applicable to other samples, through changing the input

variables. The resulting clusters showed successful articulation of the shapes, retrieving the

similar clusters and representing each cluster with its medoid. It is important to note here that the

sample shapes do not necessarily represent building shapes, yet, the sample sets are grid-based

abstract shapes with low resolution (only 10 cells), created for the purpose of developing and

testing the method. Therefore, in the next test-cases, other shape samples are utilized.

One of the important discussion points for the K-Medoids clustering algorithm used is its

characteristic of randomness, embedded in the algorithm to initiate the medoids at the first step.

However, in running the algorithm multiple times using the above samples, the results were

71

always consistent and converged to the same results. This random initiation can be impacted by

the number of shapes. For a small sample of shapes, and a high number of iterations, it is

expected that the results will converge to the optimum assignment of items to their medoids. This

was proved in this test-case, since for all the tested samples, running the clustering algorithm

multiple times, the same clusterings were retrieved. In particular, as a number of iterations for

the K-Medoids algorithm in this experiment, 1000 was used.

4.2. Test-case Experiment 2

To test the prototype, a new experiment was conducted in which the SC-KM was further

developed. The objectives of pursuing this experiment were threefold: (1) to apply the prototype

to a new sample of shapes, architectural building layouts, (2) to add an algorithm to convert the

boundary-based building shapes into grid-based in order to apply the clustering method, and (3)

to apply clustering evaluation metrics to test the results of the clustering method in comparison

with the results of an existing study for external validation. The workflow, processes, and tools

of this experiment are illustrated in (Figure 4-11).

72

Figure 4-11. The workflow of Test-case 2 with the incorporation of the packing algorithm and the clustering evaluation

metrics.

4.2.1. Introduction to the Test-case Experiment

In this test-case, a set of 72 shapes were remodeled based on the shapes used in the study

of (Rodrigues et al., 2017). The shapes represent designs of architectural floor plans of a three-

bedroom single-family house, generated through a hybrid computation scheme combining an

Evolutionary Program for Space Allocation Program (EPSAP) along with a Stochastic Hill

Climbing approach in a two-stage method (Rodrigues et al., 2013). The EPSAP produced design

alternatives of multi-story floor plans based on parametric non-rigid, and non-fixed circulation

elements that emerge throughout the search interacting with the other spaces (Rodrigues et al.,

2013). This generative design process initializes a random population of arbitrarily arranged

rectangles of which each rectangle represents space, and the search proceeds with the evaluation

of each design options against defined objectives. Those objectives include connectivity amongst

the spaces, the proximity of those spaces, spatial dimensions and area for minimum side and

73

minimum floor footage, compactness of the floor arrangement, space’s overflow in regards to the

boundary, and fenestration dimensions and their orientation (Rodrigues et al., 2013). The search

mechanism produced a large set of alternative floor plans, and using certain requirements, the

EPSAP algorithm generated 72 design alternatives that represent the improved fitness values to

satisfy the objectives out of 576 design candidates (Rodrigues et al., 2017). Next, the resulted set

of 72 design alternatives was chosen as the sample for shape representation and clustering

studies.

In preparing for clustering the generated set, (Rodrigues et al., 2017) have conducted an

online survey asking design experts to group the 72-floor plans, considering the main design

features such as shape, and interior configuration arrangement (Sousa-Rodrigues et al., 2015).

Analyzing the survey responses, a conclusion was drawn that human experts are inconsistent in

clustering the sample, sometimes grouping them according to outline shapes, and other times by

their interior configurations. For example, one clustering results in grouping dissimilar floor

plans, such as grouping floor plan A’ (the first raw of rectangle shapes in Figure 4-12) in the

same group as floor plan B’ (the first raw of L-Shapes). Also, the subjects in the study

considered floor plan B’ as a design of the same interior arrangement of floor plan C’, leading to

grouping A’, B’, and C’ together. For that reason, the results of the survey were dismissed and

considered inaccurate; alternatively, a reference clustering was utilized, determined by typifying

and labeling the 72 designs (from A’, first raw to I’, last raw) as depicted in (Figure 4-12). This

typifying approach was done by the authors, considering the shapes’ characteristics and their

interior arrangements of spaces (Rodrigues et al., 2017). For comparison purposes, in our use of

the 72 shapes, the reference clustering was used for evaluating our clustering results, following

(Rodrigues et al.)’s use of this clustering set as a reference.

74

Figure 4-12. The 72 shapes used for test-case 2 as a reference clustering. Reprinted from Automation in Construction, 80,

Rodrigues et al., Clustering of Architectural Floor Plans: A Comparison of Shape Representations, Pages 48-65, Copyright

4585091348148, with permission from Elsevier.

The method used for describing and clustering this synthesized dataset of shapes is

invariant to scaling, yet variant to rotation and reflection. Examining the 72 shapes, it can be

noticed that four cluster subsets belong to the L-Shape family, two clusters belong to the T-

Shape, and two clusters are of the Z-Shapes. One can argue that the rotated and reflected L-

Shapes, for instance, are in fact one big L-Shape family and need to be clustered all together.

This may apply to the other rotated/reflected, similar or/and identical shape families. However,

75

the choice to have a variance to reflection and rotation in this set of shapes has been rationalized

by (Rodrigues et al., 2017, p. 50) as follows:

“…Despite floor plans being generated on a blank canvas, human experts

continue to have a notion of north-south and east-west framework, thus a

rotated or a reflected floor plan is considered as an alternative design.

Buildings have a strong relation with their environment and their form

depends on the surrounding buildings, landscape, solar orientation, and so on.

However, because there are no visual references around each floor plan,

translation does not affect the human perception of that shape. As a result,

rotation and reflection were considered as features that influence the

clustering result.”

4.2.2. Modeling the Synthetic Dataset of Shapes

Modeling the 72 shapes in Grasshopper/Rhino was done for converting the shapes into a

grid-based dataset for the purpose of applying our clustering method as will be explained in the

following section. The conversion was performed considering the outline shape characteristics

similar to (Rodrigues et al.)’s grid-based description. In modeling, the 72 shapes were abstracted

to mass models and needed to be prepared for the clustering method. The clustering method

described in Test-case 1 considers shape difference as the calculation of the distances between

geometric cells or spaces’ center-points, in a pair-wise manner. Thus, the method requires a grid-

based shape descriptor, with an equal number of cells’ center-points across all shapes to be

compared in order for the clustering algorithmic set to function properly. This has led to a need

for an approach to pack cells inside the 72 shapes to convert them to grid-based. The packing

technique is explained in the next subsection.

4.2.2.1. The Bin-packing Algorithm

In packing problems, often, for a defined set of numbers and a determined bin capacity,

the question is to assign each number to a bin so that the sum of numbers for each bin does

76

exceed the bin capacity (Korf, 2002). The solutions to bin-packing problems abound. The

optimum solution to bin-packing issues is to use the least possible number of bins; one of the

best existing bin-packing algorithms is the one of (Martello & Toth, 1990a, 1990b) in which a

method is proposed to pack a set of different-sized items into a minimum number of identical

bins (Korf, 2002).

Different from the typical bin-packing algorithm, in our packing technique, the items to

be packed are unified in size, and the bins (the shapes to be packed) are variant in size and

characteristics. Therefore, a modified packing algorithm has been developed for the purpose of

packing the 72 shapes. This algorithm was formulated by the author utilizing Grasshopper/Rhino

nodes, in addition to writing a program in Python to perform the packing. The algorithm consists

of the following functions:

i. Scaling and translation operation: since each of the 72 shapes has a different

area, all shapes were scaled to the same area, utilizing a formula to assure that the

scale ratio is adaptive and leads to the same number of area units. The number of

packed area units (number of cells) can be changed parametrically to allow for a

range of units to be packed. Also, each shape was surrounded by a bounding box

and translated (moved) so that the upper left corner is at the origin point (x=0,

y=0).

ii. Packing with an array of cells: a simple Python code was written to create an

array of units (each unit is 1x1). Next, a check-node was used to separate the

cells’ center-points that are inside the shapes (in red), and those outside the shape

(in green) as depicted in (Figure 4-13).

77

iii. Normalizing the list of contained cells’ center-points: The list of center-points

that are contained in the shape was retrieved and subjected to analysis to check

their numbers. All shapes had to be packed with the same number of cells, which

was not always the case. Therefore, the resulting number of packed cells was

evaluated against the predefined number of units to be packed, and if the

contained cells are more than the defined number, the excessive cells will be

deleted. When the packed cell number was smaller, the difference will be added

to the list of cells. The decision for reducing the excessive cells was made in

deleting the inner cells, while the addition was made by duplicating the last cells

and moving them inside the shape, in a vector of (x = -0.5, y=0), without affecting

the shape outline.

Figure 4-13. A visualization of a packed rectangle-shape A’-0 with contained cells’ center-points in red, and external cells

in green.

78

The 72 shapes were first packed with 36 cells in the first scenario, and for comparison

purposes, another packing procedure, Scenario 2, was performed using 64 cell-packing, as

illustrated in (Figure 4-14). The reason for increasing the number of packed cells is to test the

impact of two scenarios on the clustering results. Yet, it is not expected that the higher resolution

(the higher number of packed cells), would necessarily lead to better clustering performance, in

comparison with the reference set. That is because the reference set was not clustered

algorithmically, rather, was a result of typifying the shapes according to their typological

characteristics.

79

Figure 4-14. The 9 cluster representative shapes of the reference clustering set, subjected to the packing algorithm with 64

cells.

4.2.3. Applying the Clustering Method

Since two packing experiments were pursued, after the packing task, two calculation

procedures of the “Shape Difference Score Matrix” for both experiment cases of 36 cells-

packing and 64 cells-packing were conducted. The higher numbers of cells, compared to the 10

cells in Test-case 1, required extended computation time and necessitated the integration of a

new plugin, an algorithm called Batch-run. Developed by Ramsden (2015) for Grasshopper, the

Batch-run component enables the run of parametric change in an iterative process, changing one

80

value of a parameter at a time while keeping all the connected parameters’ values constant.

Connecting two parameters’ sliders that represent the 72 shapes, each slider of (0-71) indices, for

the cross-reference shape difference calculation, this calculation was performed for the Pairwise

Shape Difference and the Hungarian Algorithm definition. The shape difference calculation has

led to (72*71/2=2556) calculation steps.

As such, calculation of the shape difference for the 72 shapes was done in an

agglomerative manner using the Batch-run component, and in each step, one case of pair-wise

comparison is calculated for finding the shape difference value. Thus, a recorder component was

needed to store every output shape difference value obtained from the pair-wise comparison. For

Scenario 1, in each step of the Batch-run, the compared pair of shapes was overlapped in

(36*36=1296) cases of overlap for every single pair-wise comparison of which the computation

time needed was 10 seconds. Therefore, the total cases of 2556 comparisons required 25560

seconds, or 7 hours and 6 minutes. This was performed using an Intel® Core™ i7 8086K (6-

Core/12-Thread, 12MB Cache) processor, and a video card of Dual NVIDIA® GeForce® GTX

1080 Ti graphics with 11GB GDDR5X each.

Using the same PC, in the second scenario, the 64 cell-packing, each pair-wise shape

difference calculation took 80 seconds, leading to an overall calculation of the “Shape Difference

Score Matrix” of (80*2556=204480) seconds, or 56 hours and 48 minutes. The extended

computation time was expected due to the Hungarian Algorithm runs in all 64*64=4096

overlapping cases to find the smallest sum of cell distances, at each pair-wise shape comparison.

Yet, an improvement can be made to reduce the computation time needed, as suggested in

Section 5. Next, the cross-reference-based Shape Difference Score Matrix was constructed and

81

stored (recorded), first for the 36 cell-packing, and next for the 64 cell-packing. (Detailed

explanation of Shape Difference Score and Matrix calculations can be found in Test-case 1.)

Similar to Test-case 1, the “Shape Difference Score Matrix” in both scenarios becomes

the main input for the K-Medoids Algorithm. In addition, the variable of “Number of Clusters”

was kept 9, for the purpose of comparison to the reference clusterings and the grid-based

clustering result of (Rodrigues et al., 2017). In terms of computation time, the K-Medoids

clustering algorithm performed relatively similar to Test-case 1, in less than 5 seconds, the

algorithm organizes the set and performs the clustering results successfully. This computation

time applies to the second scenario of 64-packed-cells as well.

For both scenarios, the outputs of the K-Medoids algorithm were: the nested list of

clusters (C) with their shapes’ IDs and the IDs of the medoids (M). Articulating the outputs and

visualizing them were done next, using a color-coding to each cluster, and a darker tone for the

medoid of each cluster. The clustering results for the two scenarios were compared to two

clustering sets: (1) the reference clustering, and (2) the grid-based descriptor in (Rodrigues et al.,

2017)’s study as described in the following subsections.

4.2.4. Experimental Clustering Outcome

To visualize and discuss the clustering results, it is important to note that in our

algorithmic clustering, the shape type or label is unknown a priori, as it is unsupervised

clustering. This means that the reference clustering set was not used for labeling or classifying

the dataset; rather, the reference was only used for result comparison post to running the

clustering algorithmic definition. Despite that the reference clusterings do not necessarily

represent the most accurate clustering data or ground truth as it was performed subjectively and

some shapes can be re-clustered differently, comparing our results to the reference set was

82

pursued implementing and testing clustering evaluation measures, explained the following

subsection. Another method used to evaluate the clustering results was perceptual coherence or

the presence of a dominant shape in each cluster.

4.2.4.1. Clustering Results of the 36 Cell-Packing-Scenario

The outcome of the clustering method, using 36 packed cells for the 72 shapes is

illustrated in the below image of (Figure 4-15) compared to the reference set above. For

discussing the resulting cluster subsets, labeling was added to the reference set with each subset

labeled numerically as depicted in the top left corner above the shapes in (Figure 4-15). In

addition, each reference cluster was given a color.

Our resulting clusters were given labels from A to I, similar to the reference set A’ to I’.

However, this labeling does not mean that the order of the resulting clusters follows the order of

the reference set since it does not necessarily matter for the results to match the order of the

reference set, as will be explained in the Subsection 4.2.5. What is important for accurate

clustering results is the presence of a high number shapes that belong to the family (typology) of

the dominant shape (Rodrigues et al., 2017) regardless of how the clusterings’ order corresponds

with the reference set.

As can be noticed in (Figure 4-15), the number of shapes per cluster varies from 3 for

Cluster B to 16 for Cluster I. The cluster with the highest number of dominant shapes was cluster

I with 11 mirrored L-shapes. Importantly, the clustering results show 7 unique dominant groups,

represented in the medoids of the 7 clusters (A, B, D, E, G, H, I), and two clusters are repeated

(Cluster C can be considered as a repeated dominant shape similar to Cluster B despite the

different proportions, and Cluster F is similar to Cluster E with differences). In terms of

perceptual coherence of the clusterings, almost every cluster has a dominant shape represented

83

by the medoid (darker tone) in each group; however, outliers do exist, when considering the

reference clustering. The outliers can be identified as the shapes with different labels and colors

from the dominant label and shape. It is noticeable that in several cases, two or more typological

dominant shapes are present, except Cluster H with one dominant shape (the mirrored Z-Shape)

and no outliers.

Figure 4-15. Above: the reference set; below: the clustering results of the 72 shapes using 36 cells packing, and the medoid

of each cluster represented in a darker tone.

84

To explain the clusters with outliers, it is relevant to note that the clustering algorithmic

definition calculates the shape difference and performs a region-based clustering, according to

the Euclidean distance computation, regardless of the typified and boundary characteristics,

whether it is an L-shape or a rectangle. In Cluster A, the L-shape (D’-30) was identified as the

medoid, making 3 dominant shapes of D’-26, D’-27 and the medoid. The outliers can be divided

into two groups, the two rectangles: A’-1, and A’-3, and the two L/rotated left (T-Shapes in the

reference set) of F’-35 and F’-37. A user may assert that the actual outliers are only the two

rectangles. To explain such behavior of clustering the rectangles with the dominant L-Shapes, it

can be noticed that those L-Shapes and the rectangles have similar proportions, and the L/ rotated

left T-Shapes have some slightly projected parts outside the L shapes.

Such importance of proportions is noticeable in Cluster B as well with the Shapes B’-16,

C’-21, and H’-44 clustered together. The cluster dominant shape is the top-right L-Shape,

represented in the medoid C’-21, and it is a very similar shape to H’-44. The possible outlier can

be B’-15 with a different direction in the projected part that makes it a top-left L-Shape.

However, what is in common amongst the three shapes is the width-to-height proportions which

make them significantly different in proportions compared to other clusters. Obvious is that the

height/width ratio is large.

This aspect of proportion is important in grid-based shape description, and it applies to

other clusters; shapes with similar proportions of height to width tend to be clustered together.

Also, it is significant to note that the shapes illustrated in (Figure 4-15) are visualized exactly as

they appear in the reference set (of different areas), while in fact, they were subject to procedures

of scaling, packing, and normalizing the number of cells in the bin-packing as illustrated in

85

(Figure 4-13). The reason for showing them as they are in the reference clustering is to facilitate

the visual comparison of the results to the reference set.

Cluster C, which is similar to Cluster B yet with different proportions, has an evident

perceptual coherence with dominant top-right L-Shapes (or similar to L-Shapes), and the medoid

C’-20 is the representative shape. Two other L-Shapes of C’-22, and C’-23 are included in the

cluster, with relative outliers of G’-41 and H’-45. Particularly, the Shape G’-41 is almost a top-

right L-Shape with a marginal extrusion of its upper right corner which makes its membership to

this cluster reasonable. Possibly, the reason for including Shape H’-45 into this group is due to

its similar proportions to the other shapes and that it represents a small variation to the dominant

top-right L-Shape.

Cluster D attains coherence, represented by the dominant rectangular shape, with the

inclusion of proportionally similar non-rectangular shapes that make them almost rectangles. The

medoid of Shape A’-0 makes it a dominantly rectangle cluster, along with Shapes A’-2, A’-4,

A’-5, A’-6. In the case of Shapes B’-11, I’-53, and I’-70, they are almost rectangles with

minimal projections outside an inscribed rectangle in each. Shapes C’-24, and E’-34 can be

considered outliers, yet they can be considered of similar height/width ratios to the rectangles.

Examining the rest of clusters: E, G, H, and I, coherence was maintained with few

possible outliers. It is noticeable that Cluster F is similar to Cluster E in shape dominance, yet

with different proportions. Cluster F is less coherent with two dominant shapes included, the L-

Shape and Z-Shape. Memberships of some of the outliers to their clusters can be attributed to the

number of 36 cell-packing that makes some few differences in cells marginal. It is expected that

packing the shapes with more cells will enhance the subsets’ perceptual coherence. Another

reason for the existence of outliers is that the reference set was clustered differently, with focus

86

on shape typologies and space distributions inside each building, which makes it challenging to

compare to this method’s results.

An important point of discussion in regards to the clustering results is that there can be a

different result, each time running the K-Medoids clustering algorithm; that is the algorithm has

a random function in initiating the medoids (Bauckhage, 2015). Such randomness will be

explained in the following subsection of validation. Despite this characteristic, examining each

clustering result, overall, proportions are important to determine the clusterings. In using grid-

based description, it is sensitive to variation in proportions since it relies on the cells contained in

the shape and lower height of a rectangle compared to a higher rectangle represent two different

shapes (Rodrigues et al., 2017); it is primarily a region-based and does not consider shape

boundaries.

4.2.4.2. Clustering Results of the 64 Cell-Packing-Scenario

In the scenario of 64 cell-packed shapes, the outcome of the clustering method is

illustrated in the lower part of (Figure 4-16), in relation to the reference set above. As in the case

of 36 cell-packing, the clusters were illustrated and color-coded according to the same colors and

labeling used for the reference clustering. The number of shapes per cluster varies from 5 for

cluster F and I to 14 for cluster D. Overall, the 9 clustering sets show 7 unique dominant shapes,

signified by the 7 medoids of the clusters (A, C, D, E, F, G, H), while Cluster B can be

considered similar to Cluster A with a dominant rectangle shape, and Cluster I is related to

Cluster H with a dominant mirrored or reflected Z-Shape. It is noticeable in the resulting sets that

overall, perceptual coherence has been relatively improved from the results of the first scenario

with a slightly higher number of dominant shapes and somewhat higher accuracy measure, as

will be explained in the Validation subsection. Dominant shapes were completely attained in

87

Clusters F and H with no outliers. Other clusters are perceptually coherent, yet include outliers

that belong to other dominant shapes, particularly in Clusters (A and B) with three or more

typified outlier shapes within each cluster, while the remaining sets have 2 or less typified

outliers.

Figure 4-16. The clustering results of the 72 shapes using 64 cells packing, and the medoid of each cluster represented in a

darker tone.

88

To explain the clusters with multiple typified shapes of outliers, such as Cluster A, the

dominant shape represented in the medoid, the rectangle, is of particular proportions that are

similar to the L-shapes clustered within this group. In the case of Cluster B, although it can be

considered as another rectangle-dominated shape because of the rectangle medoid, the

proportions are different here with less height to width ratio in comparison with Cluster A. In the

clusters (C, D, E, G, and I), it can be noticed that L-Shapes were clustered with Z-Shapes and

other shapes of similar direction or/and proportions.

In Group A, the five rectangular shapes (A’-0, A’-2, A’-4, A’-5, A’-6) have been

accurately clustered together, yet outliers of (B’-13, C’-24, D’-30, E’-34, I’-53) are included, and

inscribe similarly proportioned rectangle inside with some projected parts, while D’-29 can be

regarded as the only obvious outlier with a relatively bigger projected portion out of the

rectangle and represents an actual L-Shape. The same applies to Cluster B with rectangle shapes

(A’-1, A’-3) and related shapes with similar proportions and slightly projected parts out of the

rectangle-inscriptions of (B’-11, G’-38, G’-40, G’-41, I’-70). Group C shows evident perceptual

coherence with a dominant L-Shape (D’-26, D’-27, D’-28) and an almost L-Shape of (F’-37),

while the shapes (F’-35 and H’-43) have slightly projected parts to the L-Shape inscription.

Group D combines two families of shapes, the dominant top-right L-Shape and the Z-Shape with

similar direction to the L-Shape. Cluster E is the largest coherent set with 10 top-left L-Shapes

and very similar shapes of (F’-36 and I’-54) as possible outliers. Cluster G represents another

case of a group with two dominant shapes (a mirrored L-Shape and mirrored Z-Shape) with

similar direction. Clusters F and H, as mentioned, contain fully attained coherence with no

outliers. In Cluster I, the mirrored Z-Shapes (I’-66, I’-67, I’-68) are accurately clustered, while

89

Shape B’-12 shares similarities in terms of the lower projected part being similar to the mirrored

Z-Shapes, while Shape E’-33 signifies similarities of the upper projected part to those Z-Shapes.

4.2.5. Validation Study

The clustering results of the two scenarios have been subjected to validation studies with

quantified analysis of the clustering accuracy as explained in the next subsection.

4.2.5.1. Validation Study of Clustering the 36 Cell-Packing-Scenario

To validate the clustering result of 36-cell-packing, it was first compared to the reference

clustering of (Rodrigues et al., 2017). To compare the resulted clustering set to the reference set,

a clustering accuracy calculation was utilized. The most common method to compute the

accuracy of resulting clustering data is to calculate the percentage of the data that has been

correctly clustered with reference data (Story & Congalton, 1986). This calculation is often done

using an error or a confusion matrix that can be represented as a table of the clustered data as

columns, and the reference data as the rows of the matrix (Story & Congalton, 1986) or vice

versa. Considering the Confusion Matrices (a) and (b) in (Table 4-3), Matrix (a) represents the

comparison of the clustering results of the grid-based (GB) descriptor of (Rodrigues et al., 2017)

to the reference clustering, and Matrix (b) is the comparison of the clustering results of this test-

case using the 36-packed cells, against the same reference clustering.

It is important to emphasize here that both the shape description method and the

clustering method of this work are different from Rodrigues et al.’s work. In their shape

description method, Rodrigues et al. have used the grid’s binary vector as a matrix with each

matrix contains the corresponding values of the overlaid grid, while in our grid-based shape

comparison, an exhaustive search for an optimum overlap enabled by the Hungarian algorithm in

the pair-wise shape comparison was pursued. The other difference is the clustering method; in

90

their work, the Ward linkage clustering method was used for grouping the shapes, while we used

K-Medoids clustering. Those two differences can explain the reason for different clustering

results.

The two matrices, (4-3-a) and (4-3-b), depict how the shapes in Clusters (A to I) in the

grid-based descriptor in Rodrigues et al. (2017)’s study and our clustering sets have been

dispersed in relation to (A’ to I’) in the reference clustering set respectively. In our clustering

results in Matrix (4-3-b), for instance, in the column of Cluster A, 2 shapes correspond with the

A’, 3 shapes belong to Cluster D’, and 2 belong to Cluster F’. Similarly, all the other columns

were organized, via scattering the shapes according to their reference clusters. The highest value

in each column has been shaded in grey. For the accuracy calculation that will be explained next,

the shaded boxes are considered for the SUM function.

Table 4-3. Confusion Matrix (4-3-a) for comparing clustering results of the Grid-based descriptor of (adapted from

Rodrigues et al., 2017) to the reference clustering, and Matrix (4-3-b) for comparing the test-case results to the

reference.

Results of clustering using a grid-based

descriptor (Rodrigues et al.) compared to the

reference set

Clustering Results (Fixed aspect ratio)

A B C D E F G H I

R
e
fe

r
e
n

c
e
 C

lu
st

e
ri

n
g

A' 3 4

B' 1 3 8 1

C' 2 1 3

D' 2 3

E' 2 1 1

F' 1 1 1

G' 1 1 2

H' 4 3 3

I' 2 8 5 3 2

(4-3-a)

Results of clustering using 36 cell-packing

compared to the reference set

Clustering Results (36-cell-packing)

A B C D E F G H I

R
e
fe

r
e
n

c
e
 C

lu
st

e
ri

n
g

A' 2 5

B' 1 1 11

C' 1 3 1 1

D' 3 2

E' 1 3

F' 2 2 1

G' 1 1 2

H' 1 1 5 3

I' 8 6 4

(4-3-b)

91

The methods used for evaluating the clustering accuracy in their study were also pursued

here for comparison, using the same two metrics: accuracy, and the Rand Index. One method to

calculate the overall level of accuracy in confusion matrices is performed by dividing the sum of

the highest values in each column in the above matrices over the total number of the sample data.

This accuracy measure of each cluster was computed using the following formula:

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑺𝑼𝑴 (𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒆𝒂𝒄𝒉 𝒄𝒐𝒍𝒖𝒎𝒏)/𝑺𝑼𝑴 (𝒎𝒂𝒕𝒓𝒊𝒙)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒊𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 (𝟒 − 𝟑 − 𝒂) = 𝟒𝟎/𝟕𝟐 = 𝟓𝟓. 𝟓%

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒊𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 (𝟒 − 𝟑 − 𝒃) = 𝟒𝟓/𝟕𝟐 = 𝟔𝟐. 𝟓%

According to this calculation, the average accuracy of all clusters’ accuracies of

Confusion Matrix (4-3-b) is 62.5%, in contrast to 55.5% of accuracy for the Rodrigues et al.

(2017)’s grid-based clustering results with fixed aspect ratio illustrated in Matrix (4-3-a). In their

study, Rodrigues et al. have used two scenarios, one with a fixed aspect ratio, and another with a

non-fixed aspect ratio for each descriptor, including the grid-based. Our comparison study was

carried out in relation to the fixed aspect ratio of Rodrigues et al.’s work since in our bin-packing

algorithm, the aspect ratio was also maintained.

Further, other metrics were pursued evaluating the clustering results of which the Rand

Index was considered important. Developed by Rand in statistics, the index is particular for

measuring data clustering by calculating the similarity between two sets of clusterings (Rand,

1971). For Rand (1971), evaluation of a clustering method requires either comparing its results to

standard results or to another result. For two clustering sets that need comparison such as

X={X1,…, Xn} and Y={Y1,…, Yn} calculating the Rand Index is performed as follows: (Rand,

1971).

𝑹𝒂𝒏𝒅 𝑰𝒏𝒅𝒆𝒙 = (𝑻𝑷 + 𝑻𝑵) / (𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵)

92

Where:

TP: True Positives, the number of pairs of items in X that are in the same

subsets in Y

TN: True Negatives, the number of pairs of items that are in different subsets in

X and in different subsets in Y

FP: False Positives, the number of pairs of items that are in the same subsets in

X and in different subsets in Y

FN: False Negatives, the number of pairs of items that are in different subsets

in X and in the same subsets in Y

In addition to the Rand Index, other metrics were calculated for additional comparisons.

One of the metrics that is often used for clustering evaluation is Precision which can also be

called the confidence value that ”denotes the proportion of predicted positive cases that are

correctly real positives” (Powers, 2011, p. 2). Another important measure for assessing clustering

is the Recall or Sensitivity metric which is used to identify the rate of real positive items that are

correctly predicted positive; the measure considers the ratio of the True Positives over the total

amount of items that are True Positives and False Negatives (Powers, 2011). Calculating those

two measures facilitates the retrieval of one more metric called the F1-Score or F-measure which

is the harmonic average of both measures Precision and Recall (Powers, 2011). When F1-Score

reaches its maximum value at 1, this means perfect precision and recall are attained (Sasaki,

2007). The three metrics are calculated as follows: (Powers, 2011).

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = (𝑻𝑷) / (𝑻𝑷 + 𝑭𝑷)
𝑹𝒆𝒄𝒂𝒍𝒍 = (𝑻𝑷) / (𝑻𝑷 + 𝑭𝑵)
𝑭𝟏 = (𝟐. 𝟎 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍) / (𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)

Calculating the four measures, the Rand Index, Precision, Recall, and F1-Score was

performed through implementing the Python program-based algorithm of (Tom, 2014) that has

been developed according to Manning et al.’s work (2008). Examining the values of those

93

measures in Table 4-4, Matrix (4-3-b) of our clustering results using the 36 cell-packing-scenario

gives higher values with the Rand Index of 0.85, Precision of 0.44, Recall of 0.41, and F1-Score

of 0.42, compared to 0.82, 0.37, 0.28, and 0.32 respectively for Matrix (4-3-a) of the (Rodrigues

et al., 2017)’s grid-based results.

Table 4-4. Results of the metrics for the clustering evaluation comparing the two confusion matrices

discussed above, (4-3-a) and (4-3-b).

Clustering Metrics of Confusion Matrix (4-3-a) Clustering Metrics of Confusion Matrix (4-3-b)

TP: 105, FP: 182, TN: 2000, FN: 269

Rand Index: 0.823552

Precision: 0.365854

Recall: 0.280749

F1: 0.317700

TP: 141, FP: 182, TN: 2030, FN: 203

Rand Index: 0.849374

Precision: 0.436533

Recall: 0.409884

F1: 0.422789

4.2.5.2. Randomness in Clustering the 36 Cell-Packing-Scenario

It is important to signify that our results (45/72) have been retrieved in one instance of

running the K-Medoids clustering method, with 1000 iterations, and when re-running the

algorithm, different clustering results emerge. For 8 cases of different clustering results retrieved

from running the algorithm 8 times, the range of accuracy was between (42-45/72). Two

examples of those emerged clustering results are illustrated in (Figure 4-17) with accuracy

measures of (43/72=59.7%) for the upper clustering, and (45/72=62.5%) for the lower clustering,

respectively. Overall, the clustering results may not be of significantly higher accuracy compared

to Rodrigues et al.’s results because the reference set was determined subjectively, and through

typifying the shapes by human examiners. The higher accuracy result was not the exact target of

our clustering method, but the comparison helps us understand whether our clustering results are

reasonable and comparable to the reference.

94

Figure 4-17. Two sample clustering results of the 36 cell-packing-scenario that emerge from running the K-Medoids

clustering algorithm twice.

This behavior of retrieving different clustering results at each time running the clustering

method can be attributed to the randomization used in the K-Medoids clustering (Bauckhage,

95

2015). In implementing the K-Medoids algorithm of Bauckhage (2015), when importing the

Numpy library, the random function was called and utilized. In particular, randomness was used

when initializing the medoids, which is performed early in the program (Bauckhage, 2015). Yet,

despite the initial randomness in selecting the representative objects, the search in K-Medoids

exploits all the possible combinations of representatives (medoids) and non-representatives (non-

medoids) which are analyzed (Jin & Han, 2016) . It has been noticed that after certain repeated

clustering runs (5-10 runs) the clustering results start to repeat in a random order. This means

that the clustering results can be reproducible by the users of the method yet with multiple tests.

This impact of the random function in the K-Medoids algorithm on retrieving different

clustering results running the algorithm multiple times and despite using a high number of

iterations, such as 1,000,000, is expected. The behavior can be explained as follows. In initiating

the medoids, for 9 clusters, the possible options represent a huge number calculated as

(72x71x70x69x68x67x66x65x64, or 72! /63! = 3.0885807e+16). Even when using 1,000,000

iterations of K-Medoids clustering, it is still a fraction of the possible options of medoids. It is

the complexity caused by the number of shapes, and the number of clusters that is impactful, and

not the actual shape difference values since the algorithm is straightforward in calculating

distances. However, despite that the randomness leads to different results, all the results are

reasonable and consistent, with no substantial difference (Han et al., 2011).

4.2.5.3. Validation Study of Clustering the 64 Cell-Packing-Scenario

Applying the same validation method to the second scenario of 64 cell-packing has led to

different clustering results, thus, different clustering evaluation measure values. In comparing the

clustering results of the 64 cells-packing to the reference set in (Rodrigues et al., 2017)’s work,

the results are illustrated in the Confusion Matrix (4-5-a) in Table 4-5.

96

Table 4-5. Confusion Matrix (4-5-a) for comparing the clustering results of the test-case results with 64 cell-packing to

the reference clustering, and Matrix (4-5-b) for comparing the test-case results of 36 cell- packing to the 64 cell-packing.

Results of clustering using 64 cell-packing

compared to the reference set

Clustering Results (64-cell-packing)

A B C D E F G H I

R
e
fe

r
e
n

c
e
 C

lu
st

e
ri

n
g

A' 5 2

B' 1 1 10 1

C' 1 5

D' 2 3

E' 1 2 1

F' 2 1

G' 3 1

H' 1 9

I' 1 1 1 5 3 6 3

(4-5-a)

Results of clustering using 36 cell-packing

compared to the clustering results using 64

cell-packing

Clustering Results (36-cell-packing)

A B C D E F G H I

C
lu

st
e
r
in

g
 R

e
su

lt
s

6
4

 c
e
ll

-p
a

c
k

in
g
 A 1 8 1 1

B 2 2 1 1

C 4 2

D 2 4 2

E 1 6 11

F 5

G 1 3 2 1

H 3 1 2

I 1 3 1

(4-5-b)

Calculating the accuracy measure of Matrix (4-5-a) was done using the same equation

considering the highest number in each column as follows:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒊𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 (𝟒 − 𝟓 − 𝒂) = 𝟒𝟕/𝟕𝟐 = 𝟔𝟓. 𝟐%

Another comparison study was pursued, considering the resulting clusterings of the 64

cells-scenario as a reference set, and comparing the 36 cells-scenario to it as represented in

(Figure 4-18). The objective of this comparison was to additionally test the clustering results, and

to internally examine the two different results of Scenario 1 (36 cell-packing) and Scenario 2 (64

cell-packing), with no consideration of the reference set of the (Rodrigues et al., 2017)’s

research. Articulating the clustering results of Scenario 1 in reference to Scenario 2 is illustrated

in Matrix (4-5-b), leading to an accuracy value of 62.5%, calculated as follows:

97

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒊𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 (𝟒 − 𝟓 − 𝒃) = 𝟒𝟓/𝟕𝟐 = 𝟔𝟐. 𝟓%

Figure 4-18. Above: the clustering subsets of the 64 cell-packing-scenario re-illustrated as a reference set; below: the

clustering results of the 36 cell-packing-scenario re-illustrated according to the 64 cells with new color-coding.

This comparison offered insight into the reasonable results of comparing two clusters

internally, without the use of a reference set. The assertion here is that when comparing two

98

clustering results, using one as reference, the metrics show that the results are comparable and

reasonable. Such comparison informs that the algorithm performs consistently with different

resolutions.

In regards to the other clustering evaluation measures, Matrix (4-5-a) of 64 cell-packing

compared with the reference set has led to values of Rand Index of 0.85, somewhat higher

Precision with 0.48, a lower Recall measure of 0.38, and a marginally lower F1-Score of 0.42 in

relation to the clustering evaluation measures of Matrix (4-3-b). When calculating the four

measures for Matrix (4-5-b), this comparison shows the results of 0.85 for the Rand Index, 0.42

Precision, 0.42 Recall, and 0.42 F1-Score as shown in Table 4-6. In comparing the metrics of

Matrix (4-5-b) to Matrix (4-5-a), the Rand Index and Recall values are slightly higher, while the

Precision and F1 measures are somewhat lower in (4-5-b). In analyzing the results of changing

the reference set in Matrix (4-5-b), the metrics were somewhat similar, with marginal

differences, reasonable in each case.

Table 4-6. Results of the metrics for the clustering evaluation comparing the two confusion matrices

discussed above, (4-5-a) and (4-5-b).

Clustering Metrics of Confusion Matrix (4-5-a) Clustering Metrics of Confusion Matrix (4-5-b)

TP: 142, FP: 156, TN: 2026, FN: 232

Rand Index: 0.848200

Precision: 0.476510

Recall: 0.379679

F1: 0.422619

TP: 136, FP: 187, TN: 2047, FN: 186

Rand Index: 0.854069

Precision: 0.421053

Recall: 0.422360

F1: 0.421705

99

4.2.5.4. Randomness in Clustering the 64 Cell-Packing-Scenario

Similar to the first scenario, in this scenario of 64 cell-packing, the K-Medoids clustering

gives more than one result when re-running the algorithm, leading to a range of accuracy

measures (42-47/72) for 8 results retrieved. Two of those results are depicted in (Figure 4-19),

with accuracy measures of (45/72=62.5%) for the upper clustering, and (43/72=59.7%) for the

lower clustering, respectively. Noticeable is the similarities of the cluster subsets between the

two results, and in some cases like Clusters D and I in the top image, and Clusters C and E in the

bottom, the subsets are identical. This leads to the assertion that despite randomness, the results

can converge to the optimum assignment of shapes to their medoids, in grouping the clusters.

100

Figure 4-19. Two sample clustering results of the 64 cell-packing-scenario that emerge from running the K-Medoids

clustering algorithm twice.

101

4.2.6. Discussion and Conclusions

In this test-case, the SC-KM method was further improved, incorporating a packing

algorithm to assign a grid-based description to the selected shapes. More importantly, the pursuit

of clustering evaluation and external validation was conducted in this experiment. In this external

validation, the accuracy measure and all the 4 clustering measures used show higher values than

the compared study for the two carried out scenarios, as illustrated in the cases shown in the

tables. However, due to K-Medoids algorithm’s randomness, some clustering can be lower. One

reason for the differences between the results of this SC-KM method and the compared method

can be the pair-wise shape comparison that yielded an impact to the improved results. In

addition, the difference between the K-Medoids clustering used here and the Ward linkage used

by Rodrigues et al. can be the reason to lead to different results. It is expected that the K-

Medoids and partitioning clustering methods, in general, perform better in comparison with other

methods (Jayanti et al., 2009).

In terms of comparing the two scenarios, it is important to note that despite the higher

resolution, it was not predicted that the results can be improved from 32 cell-packing to 64 cell-

packing due to the use of the reference set which is not the ground truth. The reference set does

not necessarily represent the best clustering since it was created by human examiners typifying

the shapes into subsets of typological characteristics without the use of an algorithmic clustering

(Rodrigues et al., 2017). Overall, perceptual coherence of the clusterings can be considered

satisfactory, with the existence of outliers.

In terms of the impact of randomness, it has been noticed that it does not necessarily lead

to a substantial change in clustering accuracy; the results are reasonable in every run of the

clustering algorithm. Important to mention here are the studies that aimed to replace the random

102

selection of initial medoids, e.g. (Gullo et al., 2008) in which a refined strategy of Kaufmann &

Rousseeuw (Kaufmann & Rousseeuw, 1987) was used instead of random initiation of the

medoids. However, the replacement of randomness with another procedure did not give a

considerable improvement.

4.3. Test-case Experiment 3

In order to apply the SC-KM method to various architectural shapes that could evolve in

GDSs and are beyond the specific setup of Test-case 1, or the 72 sample shapes in Test-case 2,

this test-case was carried out. More importantly, in this experiment, the three prototypical

processes discussed in Section 3 were pursued, with the inclusion of building performance

evaluation and optimization, leading to a fully working prototype that demonstrates the new

system. In addition to those processes, a discussion of the clustering method applied to the

optimal and near-optimal generated design solutions is offered. The following sub-sections

describe those processes and tasks in detail. Subsequently, the clustering outcome is visualized

and discussed. Finally, at the end of this experiment part, an overall discussion and concluding

points are given.

4.3.1. Introduction to the Test-case Experiment

The prototypical processes pursued in this experiment can be briefly explained again as

follows. In Process 1, the parametric form generation was carried out through programming a

parametric setup of a spatial configuration to generate a dataset of building shapes with

similarities and differences. Process 2, design optimization, involved conducting building

performance evaluation and optimization of the design candidates. Process 3 is the application

and testing of the SC-KM to the resulted optimal and near-optimal solutions with visualization

103

and presentation. The three processes are represented in the workflow in (Figure 4-20) with the

tools used.

Figure 4-20. The workflow of Test-case 3 with the incorporation of the building performance evaluation and optimization

process.

In creating the initial model for this test-case, the building layout was parametrically

modeled as a simple abstracted arrangement of four masses or spaces, with adjacency and

connection relations. Such a layout can be simple, yet in adding additional masses or zones, it is

representative of a large array of spatial arrangements. The masses’ dimensions were

parameterized, and constrained, to allow for the building configuration to change to produce a

range of design shapes to respond to the environmental performance objectives sought for

simulation and optimization. In addition to the parametrized width and length dimensions of each

of the four masses, the Window-Wall-Ratio (WWR) was parametrized as well. It is expected that

for satisfying minimum energy, particularly the minimum cooling loads for a hot climate in the

104

summer (that was used as the fitness value), the building configuration will tend to be compact

with the lowest surface area/volume ratio, or minimum surface area exposed to the exterior

thermal conditions and heat gain, and with low WWR to avoid direct solar heat gain. However,

for achieving an appropriate interior daylight illuminance, which was another determined fitness

value, it is predicted that the building configuration would be fragmented (distributed) to

increase the surface area/volume ratio and the possibilities to have a high WWR (Caldas, 2001).

In terms of preparing for shape comparison and clustering, the parametric building layout

was determined to always contain an exact number of grid-based cells (48) for all the generated

shapes, to facilitate accurate shape clustering, and thus the exact number of cells became a

constraint. Overall, the layout was parameterized and constrained to prepare for testing the

clustering method into a generative scheme with environmental performance evaluation and

optimization.

4.3.2. Parametric Form generation

The building layout was set up to contain four adjacent masses, originating from the

origin point of the coordinates (x=0, y=0) as illustrated in (Figure 4-21). Each mass is composed

of 12 cells, each of which is 5 meters by 5 meters, in dimensions. A sample of the possible

shapes that are generated from this layout model is shown in (Figure 4-23). The north orientation

is the green axis shown in the figure, a default in the modeling software Rhino. With 12 cells in

each mass, a fixed area of (25*12=300 square meters) results as the area of any mass, and

(4*300=1200 square meters) becomes the total area of the building. The height was left as a fixed

dimension of 10 meters, assuming that the interior spatial program inside the building is flexible

to include multiple levels (Yousif et al., 2017). The layout has been governed by the following

constraints:

105

• A fixed number of cells: the reason for selecting the number of cells for each mass to be

always 12 is for the purpose of facilitating the grid-based descriptor’s pair-wise

comparison in the SC-KM method, in order to retrieve the same number of cells for all

shapes, which is (12*4=48).

• A determined range of parametric values: for each of the four masses, the dimensions are

parametrically driven by the number of cells. Each side of any mass has to be one of the

factors of 12 within the range of (2, 3, 4, 6) leading to possible dimensions of (10 m, 15

m, 20 m, 30 m) respectively. The reason for avoiding factors 1 (cell) and 12 (cells) is

practical, as space will be too narrow (5 meters) when using such values. Those values

represent the possible options for one dimension of each rectangular mass which is the

length (x), while the width (y) is dependent on the length, computed as the outcome of

the following formula:

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒆𝒍𝒍𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒘𝒊𝒅𝒕𝒉 = 𝑻𝒐𝒕𝒂𝒍 𝒄𝒆𝒍𝒍𝒔 (𝟏𝟐)/ 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒆𝒍𝒍𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒏𝒈𝒕𝒉

Figure 4-21. Top view of the initial setup of the layout of Test-case 3.

As such, the layout consisted of 4 explicit (independent) parameters for the length, and 4

indirectly changeable (dependent) parameters for dimensions of the width, driven by the change

in length. The cells of each mass were subjected to solid union operation to convert them into

106

one solid volume of the rectangular mass as the cells are not needed for simulation or

optimization, and they are only important for clustering purposes. After setting up the initial

mass model, for each façade (north, south, east and west), windows were added according to a

list of parameters of the Window-Wall-Ratio (WWR) of (0, 0.1, 0.2, 0.3, 0.4) for each of the east

and west façades, and (0.4, 0.5, 0.6, 0.7, 0.8), also for each of the north and south façades. The

rationale for using lower values for the east and west façades is due to the research-backed rule

that for east and west facades, large glazed surfaces are not favorable for excessive thermal heat

gain (Caldas, 2001), particularly for the selected hot climate of College Station, TX, with its

dominated cooling loads. Also, the reason for choosing high WWRs for north and south facades

is to balance the low ratios of east and west and to test what design solutions would the MOEA

run evolve. Samples of the resulting parameters of the WWR are illustrated in (Figure 4-22).

This setup yields 4 length parameters of 4 values for the mass model, 2 parameters of 5, and

other 2 parameters of 5 ranges for the WWR leading to thousands of possible options, of which 4

possible shapes are illustrated in (Figure 4-23). The figure four columns of 4 different shapes,

and three rows for different views of those shapes. For each shape, the top image is for a 3D

view that depicts the 4 masses in dark grey, the middle image is a 3D view showing the shape

with windows added, while the bottom image is a top-view of the shape with the cells

highlighted in green grid lines. The overall specified building parameters are illustrated in (Table

4-7).

107

Figure 4-22. Above: Samples of exterior walls, parametrization of WWR for east and west facades, from left to right: WWR

of (0, 0.1, 0.2, 0.3, 0.4) respectively. Below: Samples of exterior walls, parametrization of WWR for north and south facades,

from left to right: WWR of (0.4, 0.5, 0.6, 0.7, 0.8) respectively.

Figure 4-23. A sample of 4 possible shapes that the parametric layout of Test-case 3 produces. Above: 3D mass models with

the inner cells; middle: 3D of possible fenestration added to the mass models; below: top view of the options with the inner

cells highlighted.

Table 4-7. Building parameters (variables).

Geometry Variables Dimensions, Length Limits (m) Dimensions, Width Limits (m) Variable Type

Mass 1 (Northeast) (10, 15, 20, 30) (10,15,20,30) Discrete

Mass 2 (Northwest) (10, 15, 20, 30) (10,15,20,30) Discrete

Mass 3 (Southwest) (10, 15, 20, 30) (10,15,20,30) Discrete

Mass 4 (Southeast) (10, 15, 20, 30) (10,15,20,30) Discrete

Window-Wall-Ratio WWR Range Step Variable Type

North Façade (0.4, 0.8) 0.1 Continuous

South Façade (0.4, 0.8) 0.1 Continuous

East Façade (0.0, 0.4) 0.1 Continuous

West Façade (0.0, 0.4) 0.1 Continuous

108

It is important to note that the building program was simplified in this setup to an open

office area for the 4 masses, considering an early conceptual design phase. However, in real

building design, more complex program and other factors like design intents dictate the spatial

layout. Often, proximity amongst the program spaces is desired. In following this simplified

model setup, it is expected that designers can freely set up the initial layout considering the

building program requirements, and more importantly, pack the model with cells for retrieving

grid-based shapes. In the next phase, the building mass model is converted into an analytical

(simulation) model assigning building materials, site conditions, and other components to

describe the building and prepare for energy simulation and daylight analysis as described in the

following parts.

4.3.3. Design Optimization (Performance Evaluation and Optimization)

The parametric mass definition was then prepared for simulation in several tasks. The

environmental analysis was conducted using Ladybug and Honeybee simulation tools that rely

on other environmental analysis engines such as EnergyPlus, DAYSIM, and OpenStudio

(Roudsari et al., 2013). Octopus, the Multi-Objective Evolutionary Algorithm MOEA-based tool

was utilized as the search mechanism to generate an initial population and search for fitter

solutions in regards to predetermined objective functions. Octopus is based on the Strength

Pareto Evolutionary Algorithm (SPEA-2), an improved elitist multi-objective evolutionary

algorithm (Vierlinger & Bollinger, 2014). The two building performance metrics chosen for

simulation and optimization here were the minimum cooling loads and maximum preferred

daylight illuminance ratio. The preparation needed for both objectives is explained in the

following subsections.

109

4.3.3.1. Preparation for Energy Simulation

The minimum energy consumption of the building model was considered as a metric to

parametrically improve the building performance in the generative run. In particular, the

minimum cooling loads for the month of July were sought to be a fitness value for optimization.

The reason for using this metric is that it will be conflicting with the maximized daylight

illuminance that is sought to be satisfied simultaneously, especially for the specified hot climate

with dominated cooling loads. Choosing those two conflicting fitness values is to look for the

best tradeoffs between the reduction of cooling loads and maximization of a preferred threshold

of daylight illuminance, using the search tool, the MOEA.

The experiment uses a hypothetical project site, and for the energy simulation and

daylight analysis, the TMY3 format of the EnergyPlus weather file of College Station-

Easterwood Field 722445, in the climate zone 2A (hot-humid) as identified by ASHRAE, was

utilized. In addition to the weather data, energy simulation requires information such as

assigning thermal zones, glazing attributes, analysis period, the configuration of the HVAC

systems, and other information. The primary variable used for this simulation study was the

WWR, and all the other building features and thermal properties were kept as default and

template as configured in the Honeybee and Ladybug nodes. The building was considered one

thermal zone for all the 4 masses that constitute the described model, and the entire building has

been considered for the whole building energy simulation.

The following steps show the tasks needed for setting up energy simulation:

1. Assign Program to Zones. In terms of the early tasks needed for preparing building

energy simulation, often, zoning becomes important. The building program was

110

determined to be an office building, and all the 4 masses were considered as an open

office area.

2. Convert Mass to Zone. All the 4 masses were converted to one thermal zone, using

the Convert-Mass-to-Zone node. The node requires inputs of the geometric masses

and the zone program and gives Honeybee-based thermal zones as an output.

3. Solve Adjacencies. The adjacency amongst the 4 zones was solved using the Solve

Adjacencies node in order to match the zone surfaces and their constructions

considering the inner adjacent walls as interior surfaces with controlled thermal

conditions as explained by the author of Honeybee and Ladybug nodes, Roudsari

(2018). The nodes used for Steps 1-3 are illustrated in (Figure 4-24).

Figure 4-24. The first set of the Honeybee and Ladybug Plugins required for preparing energy simulation. From left to

right: List-Zone-Programs, Mass-to-Zone, Solve-Adjacencies.

4. Assign Glazing. As described, the primary variable for energy simulation was

determined to be the glazing ratio or WWR. Thus, for this task, the WWR variables

drive the change of the building energy performance and daylight performance, in

combination with the change in the layout dimensions. The list of glazing ratio

parameters was then connected to the Glazing-Creator node, which requires the

created thermal zones as well and assigns Radiance-based window materials to the

111

glazed surfaces. The attributes of the Radiance materials are described in the

following Preparation for Daylight Simulation part. It is important to mention that by

default, this Glazing-Creator node adds the glazing surface in an offset manner from

the wall peripheries as one continuous surface to each wall of each façade, with

respect to the façade orientation. This means that all north façade glazing surfaces, for

instance, are of the same ratio. The Honeybee and Ladybug nodes for this task are

illustrated in (Figure 4-25). In terms of the parameters and physical properties of the

building envelope, they are shown in (Table 4-8).

Figure 4-25. The second set of the Honeybee and Ladybug Plugins required for preparing energy simulation. From left to

right: Parameters of WWR for each façade, Glazing-Parameter-List, Glazing-Creator.

Table 4-8. Model envelope thermal physical properties.

Opaque Materials Reflectance

U-Factor with Film

[W/m2K]

U-Factor no Film

[W/m2K]

Exterior Wall 0.3 0.429 0.459

Interior Floor 0.7 1.174 1.449

Exterior Roof 0.5 1.209 1.449

Exterior Fenestration

Glass U-Factor

[W/m2K] Glass SHGC

Glass Visible

Transmittance

Exterior Window 2.72 0.761 0.807

112

5. Add Simulation Time-step and Analysis Period. In terms of energy simulation

time-step, it was set up to be for the month of July with hourly simulation; thus, the

analysis period is between the 1st and the 31st of July. The rationale for using this

analysis period is to test the behavior of the optimization run since satisfying the

minimum energy cooling loads will be challenging, particularly for the month of July.

6. Prepare the Energy Simulation Output. To set up the energy simulation task that

will run within the MOEA optimization, the primary node for running the energy

simulation used was Export-to-OpenStudio that takes the above-mentioned assigned

attributes as inputs and generates an IDF file (EnergyPlus-based simulation file

format) as the output. This IDF file refers to the input data file that contains the data

describing the building and HVAC system to be used for simulation (EnergyPlus,

2015).

7. Prepare the Read Output and Retrieve the Cooling Loads Value. The resulting

IDF file is then connected to the Read-EnergyPlus-Result node that gives results such

as total thermal loads, cooling loads, heating loads, electric light, and equipment

loads. The cooling loads’ value was considered to be the fitness value for

minimization and connected to the objectives input in the MOEA-based optimization

tool, Octopus. The plugins required for steps 5-7 are depicted in (Figure 4-26).

113

Figure 4-26. The third set of the Honeybee and Ladybug Plugins required for preparing energy simulation. From left to

right: Analysis-Period, Energy-Sim-Par, Open-Weather-File, Export-to-Open-Studio, Read-EP-Result.

4.3.3.2. HVAC System Used for Simulation

The energy consumption calculation is performed by modeling the whole building

simulation. The type of HVAC system used in this simulation was the Ideal Loads Air System,

which is often used to study the building performance without detailed modeling of a full HVAC

system (Simergy, 2013), to avoid complex input data, which can be less important in such an

early design stage of this experiment. In this Ideal Loads Air System, the needed parameters are

the zone controls, zone equipment configurations and the Ideal Loads system component, with

no need to specify the parameters of the air loops and water loops. The system can operate with

finite or infinite heating and cooling capacity, and for both cases, the designer can determine the

schedules for on/off states of the heating and cooling, in addition to the outdoor air controls

(Simergy, 2013).

As mentioned, the building model was simplified to a single thermal zone. The table for

the HVAC components and their properties/variables for the system: Ideal Loads Air System

used here can be found in the Simergy documentation (Simergy, 2013), based on the EnergyPlus

114

IDF Objects in the Input-Output Reference. In terms of schedules, the occupancy schedule of

Medium Office Building was considered. The internal loads (people, lighting, infiltration, etc.)

and heating/cooling setpoints comply with the requirements for office building specification. The

compact schedules of Medium Office Building in EnergyPlus were used, and such schedules of

office buildings can be found in the National Renewable Energy Laboratory (NREL)

documentation (NREL, 2011).

For the energy simulation, the fitness function is calculated by hourly simulation of the

whole building energy use for the month of July, and the cooling loads were retrieved and

considered for minimization. The process of energy simulation using the above-mentioned tools

starts with collecting the required information of geometry, building materials, and the weather

data. The workflow includes generating the IDF file that can be opened and modified using the

EnergyPlus engine. The modified file can then be used for further simulation tasks.

4.3.3.3. Preparation for Daylight Simulation

For preparing the daylight analysis, other tasks were required. Primarily, for daylight

analysis purposes, defining building materials, generating a grid of daylight sensors, and

assigning sky conditions were required, as well as other tasks for retrieving the analysis results

and visualization purposes. Those tasks can be described as follows:

1. Assign Radiance-material attributes for building components. Materials for the

interior building components: windows, walls, ceilings were customized. For

windows, glass material was assigned using the Radiance-based material definition

node Rad-Glass-Material with the transmittance values in (Table 4-9). Walls were

described using the Rad-Opaque-Material node, which requires RGB reflectance

values. Similarly, the same node was used for assigning the ceiling materials, with

115

higher reflectance values, as shown in (Table 4-9). This method of customizing the

material properties is derived from the Radiance 5.1 Synthetic Imaging System

developed by the Lawrence Berkeley National Laboratory that considers RGB

radiance values to define materials (Radiance, 1997). The plugins used for assigning

materials are shown in (Figure 4-27).

Table 4-9. Radiance-based building component material attributes.

Radiance Material Attributes

R

Transmittance

G

Transmittance

B

Transmittance

Window

Material 0.4 0.4 0.4

 R Reflectance G Reflectance B Reflectance

Wall Material 0.75 0.75 0.75

 R Reflectance G Reflectance B Reflectance

Ceiling Material 0.9 0.9 0.9

Figure 4-27. The first set of Honeybee and Ladybug Plugins required for daylight simulation. From left to right: 3 rows of

Radiance-Material nodes for glass and opaque surfaces, Set-Rad-Materials, Decompose-by-Type.

2. Create a grid of daylight sensors (Test-Points). The created Honeybee thermal

zone was used to retrieve the parameterized surface area for adding the daylight

116

sensors or test-points for the daylight grid-based simulation pursued in this

experiment. The zone was decomposed using Decompose-by-Type node, to get the

building surfaces as separate components. The ground floor was retrieved from the

node, and connected to a gen-Test-Points node, to create those test-points, which

requires the grid-size and distance from the selected surface (ground floor). The grid-

size or spacing used was 1 meter apart, and the distance between the location of the

test-points and the ground surface was determined to be the default desk-level of 0.76

meters. The height of those test-points determines the daylight grid mesh that can be

used to visualize the level of illuminance as a color-coded grid where each cell’s

center-point is the daylight test-point.

3. Assign Sky Conditions. The sky conditions are important to assign for daylight

analysis. Thus, gen-Standard-CIE-Sky was the node used for generating the sky. This

node requires the weather file, the time of the day, and the type of sky to be

determined for the analysis. The daylight simulation time was chosen to be one hour

at 9 am under equinox. This assumption is often pursued in such grid-based daylight

simulation. The sky type used was: sunny with the sun to test the effect of heat

generated by such sky conditions on the building energy performance, including the

cooling loads. The nodes for Steps 2 and 3 are depicted in (Figure 4-28).

117

Figure 4-28. The second set of Honeybee and Ladybug Plugins required for preparing daylight simulation. From left to

right: Generate-Test-Points, Gen-Standard-CIE-Sky.

4. Add a Reflective Exterior Surface. Another important component for accurate

daylight simulation is to add an exterior reflective surface that would bounce the

indirect light to the building. This was done by retrieving the mass model and

creating a ground surface in front of it.

5. Prepare the Grid-Based Illuminance Simulation. In particular, an additional task is

needed for the selected grid-based daylight simulation, which is preparing the

parameters for the Grid-Based-Simulation node. This step requires the above-

mentioned parameters and attributes of the sky, grid of test-points, their vectors

pointing up, and the created mesh to illustrate the daylight illuminance values.

6. Setup the node of Run-Daylight-Analysis. For this simulation, the primary node is

the Run-Daylight-Analysis, which takes the analysis recipe, the Honeybee objects

118

(zones) of the building along with the exterior reflective surface, and the path and

name of the file that will be written when the daylight simulation is initiated, in

addition to other customizable parameters. Nodes of Tasks 5 and 6 are illustrated in

(Figure 4-29).

Figure 4-29. The third set of Honeybee and Ladybug Plugins required for preparing daylight simulation. From left to right:

Grid-Based Simulation, Run-Daylight-Analysis.

7. Add a Colored Mesh for Visualizing Daylight Analysis. For visualization of the

illuminance values at each test-point, a colored mesh was used. A legend can be

appended to the mesh to show the illuminance values and their representative colors

indicated in the colored mesh.

8. Daylight Illuminance Values. In terms of the daylight fitness value, at first, LEED

v4 spatial Daylight Anatomy (sDA), a metric for illuminance compliance, was

thought to be satisfied. This requires achieving illuminance levels (300–3000 lux) for

either a ratio of 75% of floor area (2 points) or 90% (3 points) for 9 a.m. and 3 p.m. at

the equinox (USGBC 2014). However, to reduce extended simulation time, the

measure was simplified to grid-based daylight simulation of one hour at 9 am on

119

March 21st for a grid of sensors 1 meter apart. The daylight illuminance fitness

function was calculated as follows (and sought to be minimized):

− 𝑰𝒍𝒍𝒖𝒎𝒊𝒏𝒂𝒏𝒄𝒆 𝑹𝒂𝒕𝒊𝒐 = − (𝑹𝒐𝒐𝒎 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒍𝒍𝒖𝒎𝒊𝒏𝒂𝒏𝒄𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟑𝟎𝟎 − 𝟑𝟎𝟎𝟎 𝒍𝒖𝒙 𝑻𝒐𝒕𝒂𝒍 𝒓𝒐𝒐𝒎 𝒂𝒓𝒆𝒂)⁄

For the task of daylight simulation, the building geometry information, the opaque

materials’ reflectivity, and the glazing properties are collected, and for each design candidate, the

grid-based daylight illuminance simulation is conducted.

Overall, the two objective functions of this experiment can be expressed as follows:

Eobj = min(JCL)

Dobj = max(DIR)

where

Eobj = Energy Performance Objective Function

Dobj = Daylight Performance Objective Function

JCL = July Cooling Loads

DIR = Daylight Illimunance Ratio (within the range)

4.3.3.4. Optimization Run and Discussion of Results

For the optimization run, the 8 parameters were connected to the Genotypes, the mesh of

the initial mass model was linked to the Phenotypes, and the fitness function values were linked

to the Objectives in Octopus. Running the tool, a random design population was initiated, and for

every design option in the objective space, daylight and energy analyses were conducted. The

MOEA run searches for fitter solutions; while daylight and energy performance are improved,

design options evolve and change in composition, and the fenestration openings change in ratio

to satisfy the two fitness values simultaneously. It is also relevant to note here that the

120

performance evaluation for each design candidate required 80 seconds for both energy

simulation and daylight illuminance analysis. At each iteration (or generation run), a pool of 191

candidates is evaluated for 100 Pareto front and Elite solutions. Therefore, running each

generation (iteration) required (240 minutes or 4 hours).

Optimization was terminated at generation 20. For demonstration and discussion

purposes of the optimization run, and more importantly for applying the clustering method, the

design solutions of generation 20 were used; in particular, the Pareto and Elite solutions (100

solutions) were selected to be recorded and reinstated into Grasshopper, as shown in (Figure

4-30). The Elite set refers to the best-fit solutions that are guaranteed as parent candidates in the

next generations; when a new solution set emerges, it is compared to the worst of the elite set,

and only if the new solution is better it will replace the worst Elite solution (Musnjak & Golub,

2004). The search space shows the Pareto and Elite solutions as red dots, and the two objective

function values in the 2D space in (Figure 4-30). It can be seen from the search space that the

solutions started to move towards defining a Pareto front at generation 20 although still not well

defined; yet, the results were thought to be satisfactory, and the design solutions are considered

worthy of discussion. Those Pareto and Elite design solutions were retrieved and reinstated from

the Octopus tool interface to the Grasshopper environment with their parameters and fitness

values, and geometric characteristics. As a sample, four solutions (Solution 1, 34, 67, 100) were

selected, labeled and visualized for discussing the optimization results as depicted in (Figure

4-30). All 100 solutions were subjected to the application of the clustering algorithmic definition.

121

Figure 4-30. The Pareto front and Elite solutions (total 100 solutions) at generations 20, in regards to the monthly cooling

loads (x-axis) and the daylight illuminance ratio (y-axis) as objective functions. Sample solution #1, #34, #67, and #100 are

labeled in the figure.

The four solutions depicted in (Figure 4-30), have been enlarged and visualized in

(Figure 4-31) in which for each solution from left to right the following views are shown: a top

view that shows the grid-based pattern, a 3D view that illustrates the generated shape and

openings, and a grid-based daylight mesh)a color-coded according to the illuminance values at

each sensor). In addition, for each design, the shape ID number, the energy consumption for the

July cooling loads, and the illuminance ratio value are presented in (Figure 4-31). It is important

122

for the discussion to state the expected behavior of the Pareto front method in MOO. The

solutions with the closest distance to the minimum of each objective function, the closest to the

origin point in the 2D search space shown in (Figure 4-30), will satisfy those objectives the best.

For instance, Solution 1 is one of the best solutions to satisfy minimum cooling loads due to its

closest distance to the origin in respect to the energy use objective function, yet it is one of the

poorly performing solutions in terms of illuminance ratio because it is one of the farthest to the

daylight illuminance ratio objective function’s origin point.

As expected, Shape #1 in (Figure 4-31), that is located on the top left corner in (Figure

4-30), adheres to the minimum energy cooling loads with 30,936.58 kWh. However, it represents

one of the lowest illuminance ratios within the range with 6%. The reason for such a behavior is

that it is a compact configuration that avoids windows, with few surfaces exposed to external

thermal conditions, which makes it efficient in terms of minimum cooling loads. Yet, less

external surfaces mean fewer opportunities for windows, and the lack of windows on the east

façade, in addition to the comparatively lower WWRs for the west facade, all causes the solution

to behave poorly in satisfying the preferred illuminance ratio. Such a result illustrates how

conflicting the two objectives of energy and daylight are. It is relevant to emphasize that for the

illuminance ratio calculation, the values above 3000 lux were not preferred as they might cause

glare issues in the interior space. Therefore, the preferred range between 300 lux and 3000 lux

was sought for maximization, and the higher or/and lower values to this range were not

considered in the ratio calculation. This explains the low illuminance ratios noticed in these

design solutions discussed here and makes satisfying the preferred illuminance ratio challenging,

and necessitating more iterations.

123

For Solution #34 (Figure 4-31), it is noticed that the daylight illuminance objective has

been improved with 22% illuminance ratio despite that the configuration is still compact, but

with higher WWRs, compared to Solution #1, and all façades contain windows. Nevertheless,

this solution is worse in terms of energy use (36,748.08 kWh) as more cooling loads are needed

for the increased glazing surfaces. In solution #67, the configuration becomes less compact, with

more extensions in the four zones, leading to larger surfaces exposed to exterior thermal

conditions. The has led to larger glazed surfaces and a higher illuminance ratio of 29%. In

response, the cooling loads are higher here, with 43,967.35 kWh. Finally, Solution #100

represents, with its fan shape, an extended configuration of the 4 zones with a higher number of

windows, and became one of the best solutions in illuminance ratio, with 41%. Yet, it is one of

the worst solutions in regards to the cooling loads, with 44,555.67 kWh. Overall, the

optimization results illustrate an expected response to satisfy the two conflicting criteria and

show consistency with the predicted optimization results, which verifies that the optimization

mechanism was working successfully.

124

Figure 4-31. Patterns of each of the four selected solutions and its energy use in terms of monthly cooling loads, and the

daylight illuminance performance (left: top view, center: 3D, right: top view of the daylight illuminance mesh).

Next, the 100 shapes, with their 48 cells each, were stored in a list, as a preparation step

for applying the clustering method. (Figure 4-32) shows the top-view of the 100 shapes of the

Pareto and Elite solutions.

125

Figure 4-32. Shapes of the 100 Pareto front and Elite design solutions generated at generation 20.

4.3.4. Applying the Clustering Method

As in Test-cases 1 and 2, the 100 shapes and their cells’ center-points were needed as the

main input for the clustering method. At first, the “Pair-wise Shape Difference and the

Hungarian Algorithm” was pursued with the list of 100 shapes to the input parameter. Similar to

Test-case 2, the Batch-run component was also needed here, as extended computation time was

126

expected for calculating the pair-wise shape difference. Using the Batch-run algorithm, two

parameters’ sliders that represent the 100 shapes, each indexed (0-99), cross-reference shape

difference calculation was carried out, running one pair-wise shape difference analysis at a time.

This has led to (100*99/2=4950) calculation steps for the shape difference calculation. Each step

took 20 seconds of computation time, totally requiring 27 hours and 30 minutes. However, the

K-Medoids clustering task requires less than 10 seconds for this experiment.

4.3.5. Experimental Clustering Outcome

Before discussing the outcomes of clustering, it is significant to mention that the shapes

here are generated from the Pareto optimization process, which is different from the shape

samples produced in Test-case 1 that have been generated through manual changes of the

parametric setup, and also different from the 72 shapes in Test-case 2 modeled after a set

synthesized in another study. To test the clustering results, two scenarios were followed. In the

first scenario, the input to the number of clustering was 5, generating 5 clusters as color-coded

and depicted in (Figure 4-33). In the other scenario, 10 clusters were generated, leading to

different clusterings as illustrated in 10 colors in (Figure 4-34). It is expected that for such a

variant large set of shapes, choosing 5 clusters might not lead to preferred results, as probably a

higher number like 10 can capture more coherent clusters.

In Scenario 1 of 5 clusters, apparently, perceptual coherence can be seen in a way that

shapes of similar geometric features and overall proportions are clustered together. Also, the

location of the extruded parts of the shapes that are most similar (top-left, top-right, bottom-right,

or bottom-left) becomes important to determine the clustering. The first 4 clusters are of two

rows as their member sizes are relatively large, while the fifth cluster set is of one row. Cluster 1

in red is comprised of 16 shapes with the wide T-Shape as the medoid. It can be noticed that the

127

shapes share similar characteristics in terms of similarity to the T-Shape or almost T-Shape in

most cases, with variances. Also noticeable is that there are three identical T-Shapes clustered

within this set (with different window configurations), which confirms that the clustering

algorithm is functioning correctly. This membership of repeated shapes together in one cluster

can be also seen in the other clusters.

In Cluster 2 in orange, the 30 shapes represent a family of larger height to width ratio in

terms of proportions, compared to Cluster 1. The circled medoid clearly represents this

characteristic of a vertical arrangement, almost a vertical rectangle. On the opposite, the 21

yellow shapes in Cluster 3 are of horizontal orientation. It is apparent that in this cluster, the

medoid approximately represents a horizontal rectangle. Also, 2 mirrored T-Shapes exist,

opposite in direction to the T-Shape medoid in Cluster 1. However, within the cluster, a left

rotated T-Shape and two right T-Shapes also exist, yet with similar proportions to the horizontal

rectangles that are clustered within, making it more of a horizontal rectangle cluster. In Cluster 4

in green, another typified shape, the left T-Shape is the medoid. The 20 shapes share some

similar characteristics to the left T-Shape, yet with changing in projected and recessed parts.

However, some outliers can be observed, when the shapes become less compact and different

from the medoid. This can be explained as there are variant shapes that exceed the 5 clusters

given here, and thus somehow some variant shapes of similar proportions are grouped in one

cluster. Cluster 5 with its 13 members in cyan color, shows the most homogeneity and perceptual

coherence, with almost all the shapes of similar verticality, represented in the dominant rotated

left T-Shape, yet with other cluster members with slight to moderate variations. Overall, for the

first four clusters, there is not just one dominant typified shape like in Cluster 5.

128

Figure 4-33. Results of clustering using 5 clusters, with each cluster represented in a different color.

In Scenario 2 (Figure 4-34), the clustering subsets show better results compared to

Scenario 1, as more homogeneity and increased perceptual coherence were attained here. Cluster

1 in red, with the medoid close to a T-Shape, contains 11 shapes most of which are similar to T-

Shapes, with certain similar proportions. The cluster contains 4 obvious T-Shapes, 3 of which are

identical wide T-Shapes, and one T-Shape is slightly more vertical. It can be labeled as a T-

Shape cluster. The shapes of Cluster 2 in orange, can be considered as a family of 18 vertical

rectangles with other shapes of similar verticality and proportions, clearly of a high height/width

ratio. Four redundant perfect rectangles can represent the characteristics of this subset. The

yellow Cluster 3, on the other hand, can be considered as a horizontal rectangle family of shapes.

129

The 10 shapes share low height to width ratio, and three repeated perfect horizontal rectangles

are contained within the group. Cluster 4, with its medoid as a rotated left T-Shape, contains 11

similar green shapes, close to the medoid’s T-Shape and with similar proportions, yet with slight

to moderate variations. In Cluster 5 in cyan, the 10 shapes share proportions of verticality and

can be considered as mirrored T-Shapes. The medoid is not perfectly a mirrored T-Shape, yet the

other shapes indicate approximation to this characteristic.

The 4 light blue shapes in Cluster 6 show a fragmented arrangement as a pattern, with

right and bottom arms clearly projected. It can be considered a clearly homogenous and

perceptually coherent group. Cluster 7 with its 4 members in dark blue shows another pattern

with one upper arm projected, and almost mirrored T-Shapes with one clearly rotated right T-

Shape. The purple shapes in Cluster 8 show somehow compact yet of a fan shape pattern,

represented in the medoid. Two wide mirrored T-Shapes and two rotated right T-Shapes are

clustered within the subset, due to the similarity in geometry. Similar to Scenario 1, there is a

homogeneous grouping of rotated left T-Shapes of large height to width proportions, represented

in Cluster 9 and its 13 pink members. Finally, Cluster 10 in grey shows 4 obvious fan-shape-

dominance with projected arms and distributed configurations making it a coherent subset.

130

Figure 4-34. Results of clustering using 10 clusters, with each cluster represented in a different color.

Overall, the results of Scenario 2 with its 10 clusters start to define typified dominant

shapes, thus show better perceptual coherence in comparison with Scenario 1. This can be due to

the relatively large set, the 100 shapes, with multiple variations of shapes which required 10 as a

number of clusters for the clustering algorithm to perform better. Another assertion can be drawn

from the results, which is consistent with the grid-based descriptor’s characteristics found in

research, is that proportions are of high importance to determine shape similarity and difference.

In addition, the results show that another factor, the shape characteristics in terms of

131

configuration or typological properties are also important. As noticed, particularly in Scenario 2,

the typified shapes such as L-Shapes or fan-shapes have determined the cluster pattern.

4.3.6. Validation Study

In this experimental test-case, a demonstration of incorporating the clustering method

into optimization was targeted, to validate the applicability of the system in a fully working

prototype. The significance of this experiment is that based on the results, there is a valid need

for the clustering method to organize the generated design solutions according to their shape

similarity/difference. The shapes of the resulted design set are variant and cannot be visually

articulated; application of the clustering algorithmic method has led to shape cohesion, evident

through examining the clustering subsets. Therefore, this test-case represents a validation case of

the successful use of the SC-KM method into the performance-driven generative design and

optimization frameworks.

In terms of evaluating the clustering results, there was no preexisting reference set, thus

the clustering evaluation metrics were not pursued. It was primarily perceptual coherence that

was considered as a visual measure of clustering consistency. The trend of a cluster to show a

dominant typified shape represents the cluster’s perceptual coherence, which has been retrieved,

more evidently in Scenario 2. Also, all repeated (identical) shapes were clustered together, with

no exception, which proves that the clustering method worked successfully. Internal validation in

Test-case 1 shows the accuracy of clustering results, and external validation of the clustering

method has been already performed in Test-case 2. Therefore, in this experiment, the focus was

less on clustering evaluation but more on incorporating the clustering method into optimization.

In terms of the randomness of clustering in this experiment, similar to Test-case 2, the

impact of a random function in initiating the medoids was evident in the somewhat different

132

resulting clusters that emerge when re-running the K-Medoids algorithm. The reason for the

randomness despite increasing the number of iterations to 1,000,000 in K-Medoids is that the

number of combinations of selecting 10 random medoids out of 100 shapes is excessive. The

number can be calculated as: (100x99x98x97x96x95x94x93x92x91, or 100! /90! =

6.2815651e+19), that is much larger than the number of iterations. Simply, there are many

different possible combinations not only in the first state of assigning the medoids but also for

later steps, when switching the medoids with non-medoids. The K-Medoids algorithm can only

test part of the combinatory possibilities to get relatively accurate results, and the search space is

a really big space for finding the best medoids and the clusters. At each search step, there is a test

to one or more of the possibilities, and even within a million or billion iterations, it is difficult to

get convergence of clustering results. Despite this randomness, from architectural perspective,

random yet reasonable results of clustering may be actually desired in the creative design

process.

4.3.7. Discussion and Conclusions

The experiment was designed to further test the SC-KM method, incorporating it to a

workflow that includes building performance simulation and an MOEA run, with multiple

preparation tasks and functionalities needed. To the best of the author’s knowledge, this is the

first time, a clustering method is integrated into an optimization process within a generative

system. This means that the clustering method has been tested within the framework of

optimization and proved useful as a shape articulation strategy.

The generated population of 100 Pareto front and Elite solutions at generation 20 shows

an expected behavior of the design solutions to respond to the two determined fitness values and

proves consistency with typical MOEA-based optimization results. Importantly, the July cooling

133

loads resulted were validated in a hand-worked example, utilizing a typical energy use for an

office building for the same area and climate conditions in Texas. The experiment results show

consistency with such examples.

The clustering results show an overall shape cohesion, with the cluster subsets attaining

coherence, more clearly in the 10-clusters scenario. In terms of the impact of randomness,

similar to Test-case 2, due to the random function embedded in initiating the first medoids, there

are different clustering results generated in multiple runs of the K-Medoids algorithm. Yet, the

results are all reasonable and consistent. Compared to Test-case 2, the clustering subsets of this

experiment are perceived better, and more homogeneous. The reason can be due to the packing

method used in the previous case, in which an adjustment to the number of cells to achieve the

same packed cells for all shapes was needed, while here the exact number of cells (48) was made

automatically, without the need of removing and adding cells.

4.4. Summary of the Section

The section is made of three parts, dedicated to demonstrating the three instances of the

prototype. In one instance, the first case, the protocol consisted of parametric form generation,

parametric change, and developing the clustering method. In particular, the methods and

algorithms used, and the workflow of developing the SC-KM method, applied to samples of

shapes, were explained. The second part offers a detailed explanation of another case in which

testing the developed method was carried out for a new set of shapes, with analysis of the

clustering results using multiple evaluation metrics. The experiment includes an external

validation study. The last part describes a third instance of the porotype, with coupling the SC-

KM method with performance evaluation and optimization methods.

134

5. CONCLUSIONS AND FUTURE WORK

This section provides remarks on concluding concepts on the developed Shape Clustering

K-Medoids (SC-KM) method and the proposed generative system, along with their expected

applications, limitations, and future work. The study produced a prototype for a new GDS that

couples two routine processes of parametric form generation and design optimization,

incorporating a third innovative process of shape clustering and design presentation. This new

shape clustering method was developed to articulate a dataset of shapes into groups of similar

ones, formulated using two main functionalities: (1) a pair-wise shape comparison using a grid-

based shape representation for retrieving shape similarities/differences, and (2) implementation

of the K-Medoids clustering algorithm. Demonstration and application of the prototype were

carried out through three test-cases, of which each experiment was conducted for specific

purposes, with modified functionalities and added components, leading to a fully working

prototype in Test-case 3. Within each of the test-cases, validation was conducted, and

particularly, external validation was carried out in Test-case 2.

5.1. Concluding Points on Experimental Test-cases

In carrying out the first experiment, the aim was to develop the shape clustering method

and test its performance. The algorithm performed as expected, successfully articulating the

sample shapes into groups of similar shapes, and the representative shapes were attained. The

samples of shapes were predetermined as reference sets to evaluate the clusterings. The results of

this experiment proved correct in clustering all the given samples accurately, in regards to the

expected cluster-sets and provided enough assurance for the clustering method to be applied to

other test-cases. Collectively, Test-case 1 has led to the successful development of the proposed

135

SC-KM and offered insight to limitations and potential improvements of the formulated

algorithmic package.

In Test-case 2, the clustering method was applied to a new dataset of shapes for further

testing. To apply the method to other shapes, one task is needed beforehand, which is to use a

packing algorithm to convert boundary-based shapes into grid-based ones. A sample of 72

shapes was used, and a new algorithm for packing was formulated. In packing, two scenarios

were pursued: Scenario 1 with 36 cell-packing and 2 with 64 cells. Also, the number of packed

cells in each shape needed to be matched for all the shapes for the accuracy of shape comparison.

Another objective was pursued as well, which was to conduct an extensive validation study in

order to evaluate the clustering results. The clustering evaluation metrics resulted from the two

scenarios showed improvement to the compared study. For better clustering results in our

method, it is expected that the non-fixed aspect ratio method in the grid-based description is the

next step. This modified grid-based description can reduce the impact of proportions as a

determining factor of shape similarity/difference. In addition, in Test-case 2, the impact of

randomness in initiating the medoids in K-Medoids clustering was observed, tested, and

discussed.

For Test-case 3, the main purpose to carry out the experiment was to test the SC-KM

inside a system with the building performance evaluation simulation and optimization process

integrated. At first, parametrizing the initial model was directed to achieve more realistic

building shapes (in compared to Test-case 1 with abstract shapes), defined by spatial

arrangement and adjacency relations. The packed cells became less important for defining the

shapes. Yet, it was obligatory to keep the number of packed cells exact for all the possible

produced shapes. The MOEA tool was the search mechanism for fitter design solutions resulted

136

in a set of designs with certain illuminance ratios and cooling loads which proved the success of

the optimization run to satisfy the two objectives. Overall, the clustering results showed

consistency, when visually examined. A conclusion was drawn that the 10 cluster-scenario led to

better results than the 5 cluster-scenario, for the variance of the 100 shapes. This leads to an

assertion that defining the number of clusters should be considered as a variable to be changed

and tested for better clustering results.

Using three experiments, the test-cases have led to satisfactory clustering results. The

three test-cases represent a series of improvement procedures, testing and validation studies of

the SC-KM, and the progress culminated in the complete prototype in Test-case 3.

5.2. Contributions to the Body of Knowledge

The aim of this research was to develop and explore mechanisms for making sense of the

generated design set in terms of form/shape evaluation, advancing the existing generative

protocols. The focus is on the idea that reviewing qualities of architectural shapes is essential for

the design process and thus needs to be facilitated and integrated into the GDS frameworks. The

underlying argument in this research is that architectural design is not merely focused on finding

the optimal solution in terms of certain performance-related criteria. More importantly, for

generative models, additional design criteria in regards to organizational mechanisms that

facilitate design exploration and shape-related decision making, need to be incorporated. In

addition, I argue that the designers and architects’ agency should be maintained, and their design

knowledge is significant to achieve successful production and exploration of design alternatives

in GDSs. Additionally, human-computer interaction needs to be accommodated in such systems.

This study’s contributions are primarily the new comprehensive generative design system and

137

the innovative SC-KM method. The following sub-sections describe these primary research

contributions.

5.2.1. A New Generative Design System

The study marks one of the early attempts to develop a working SC-KM method

incorporated into a new and comprehensive GDS, demonstrated by a prototype that is general

enough and applicable to a wide range of design problems. To the best of the author’s

knowledge, an extensive literature review has not revealed another existing attempt that brings

together parametric modeling, environmental performance evaluation and optimization, and an

automatic shape clustering method for achieving organized design presentation. Architectural

design is an inevitably complex process with multiple design criteria that need to be addressed

and satisfied. Aesthetics and shape features are important design aspects, and methods that

support successful design presentation and review in GDSs need to be further investigated.

5.2.2. A New (SC-KM) Method

Experimenting with shape comparison analysis with the search for optimum overlap,

finding a shape difference definition, and adopting a new strategy, the K-Medoids clustering that

is often used for organizing data and revealing hidden patterns, were through to be innovative

experimentations in this study. Developing the SC-KM involved a process of experimenting and

testing to formulate the functionalities needed in terms of finding a reliable shape description

method (the grid-based), a validated shape difference measure (distance-based), an algorithm

that solves the assignment problem (the Hungarian algorithm), and a validated distance-based

clustering method (K-Medoids). Improvements were continuously made to revise the algorithms,

and guarantee the seamless connection between those tools and algorithms. More importantly,

the method was applied to three tests, all led to successful clustering of the design options.

138

Implementing the K-Medoids algorithm has proved successful in combination with the

grid-based shape description. As confirmed by the experiments in this study and other research,

e.g. (Gullo et al., 2008), K-Medoids is robust and applicable to a wide range of datasets. One of

the advantages of the clustering method developed in this work is that it does not require

extensive computation time at each run (iteration) of the K-Medoids clustering. In fact, the “Pair-

wise Shape Difference and the Hungarian Algorithm” algorithmic set is an independent

GH_CPython node, separate from the K-Medoids algorithm. This means that computing the

shape difference is performed only once, and inside the k-Medoids node, multiple clustering runs

can be made with only seconds of computation time. This SC-KM method is applicable to a wide

range of shapes. The algorithmic set of this method will be open for download as an accessible

open-source package of algorithms for designers and architects in the near future.

Collectively, this method is applicable to the built and virtual environments, in the

framework of architectural design, including speculation, education, and practice, as illustrated

in (Figure 5-1). In this context, speculation refers to creative expression and imaginative design

rather than real building design. The circle size in the figure represents the magnitude (scale) of

the applicability of the SC-KM method and the new GDS at the intersection of the built and

virtual environments with each of the speculation, education and practice endeavors. For

instance, the application is expected to be most valuable for virtual and built environments in

education. Next comes speculation, and last is practice, with less use of generative design

systems is expected. However, this can change in the near future. The argument here is that we

now have the capability to explore different geometry and shapes in parametric methods, so we

will encounter more variable design shapes, in which the developed algorithm could be applied.

139

Figure 5-1. The application of the SC-KM in relation to architectural design (y-axis) and the three environments (x-axis).

5.3. The User Interface

The system’s user interface described in Section 3 and applied in Section 4 is from the

authors’ standpoint of developing the system. The user interface is thus a complete and arranged

package of plugins of algorithms with three test-case examples and variable input parameters, in

addition to a visualization package to view the results. For the user, the process can be linear,

which means it can be performed in a single iteration once the sample shapes are plugged in. An

alternative possibility for the user is to follow alternation, moving between the design

optimization, and the clustering and design presentation process. The system workflow was

140

designed to be performed automatically, without the need to configure or change the nodes of

algorithms.

The options in which users make use of the SC-KM and its functionalities can be

identified as follows:

• Use of SC-KM as the final process. The application of the SC-KM that has been carried

out in Test-case 3 suggests the use of the method as the final phase of the GDS. In this

case, the users can carry out their own parametric form generation, prepare the simulation

tasks and run the optimization tool, and when terminating optimization, the emerged

design set will be organized by the SC-KM. This requires first the form generation to

include a packing algorithm to convert the shapes into grid-based and retrieve a nested

list of each shape and its cells. Next, the pair-wise shape difference calculation would be

conducted. The Batch-run node can be necessary for shapes with 36 cells and above,

leading to an agglomerative calculation, and recording and storing the shape difference

matrix become important. Finally, the K-Medoids clustering can be applied with a few

seconds, and users can customize and change its parameters in terms of the number of

clusters and iterations.

• Use of SC-KM intermediately in the process. The SC-KM can also be applied early or in

an intermediate phase in the form finding process – this is expected but not tested in this

research. The diverse clustered set can be updated to avoid certain shapes, for example,

the clustering method can help remove certain shapes that are not preferred by designers.

This filtering of only desired shapes will save computation time early in the process. It is

not feasible for designers to foresee what forms will be generated in existing generative

systems and to articulate the shapes; therefore, the clustering system can help with

141

articulating the preferred shapes. In the case of using an evolutionary algorithm as a

generative tool, the users can pause the search and apply the SC-KM to organize and

filter the representative shapes. Next, the representative set or the shapes of interest can

be used for running new generative iterations focused on those representatives. In

addition, in the application of clustering to optimization, alternating between optimization

and examination of the optimized solutions, in a comprehensible way can be useful to

eliminate unwanted shapes, and this reduces the computational burden of simulating the

performances of such design candidates. A diagram of the user workflow is illustrated in

(Figure 5-2).

Figure 5-2. The workflow of the user interface.

5.4. Limitations in the Proposed SC-KM and the New GDS

Throughout developing and experimenting with the algorithms and tools of the SC-KM,

some limitations have been identified. Since GDSs are widely used and experimented with by

designers, the focus of discussing the limitations is on the SC-KM method. The primary

limitations of SC-KM are described in the following sub-sections.

USER’S

DATASET OF

SHAPES

PAIR-WISE

SHAPE

DIFFERENCE

ANALYSIS

K-MEDOIDS

CLUSTERING

VISUALIZATION

PACKAGE

USER’S

PARAMETRIC

MODEL (GRID-

BASED)

PACKING

ALGORITHMIC

SET

OPEN-SOURCE PACKAGE OF ALGORITHMS/TOOLS OF THE SC-KM USER’S INPUT PACKAGE

142

5.4.1. Required Computation Time

One of the limitations of the introduced clustering method is its computation time needed,

particularly for running the pair-wise shape difference analysis. For low-resolution grids, like in

Test-case 1, the total computation time needed for performing the clustering method was 5

minutes and 20 seconds for each run of both plugins, the shape difference calculation, and the K-

Medoids clustering. In the experiment of Test-case 2, running the shape difference analysis for

the 72 shapes with 36 packed cells took 7 hours and 6 minutes of computation time. In the

second scenario, the pair-wise shape difference calculation took significantly longer computation

time, with 56 hours and 48 minutes. For Test-case 3, the shape difference calculation took 27

hours and 30 minutes. This means that when increasing the grid resolution, the increase in

computation burden was exponential. This extended computation is considered a limitation and

requires improvement, which is planned in Future Work.

5.4.2. Randomness as a Limitation

The random function used in the K-Medoids algorithm that caused the multiple

difference clustering results can be considered as a limitation although it still does lead to

comparable and reasonable clustering. This relative accuracy is assured due to one of the K-

Medoids clustering characteristics, its iterative process of switching medoids and non-medoids

until the quality of the emerging clustering cannot be enhanced in any replacement. Such

iteration is measured through a cost function of the average dissimilarity between the medoid and

non-medoid objects (Han et al., 2011), which makes the results accurate in spite of the medoids’

arbitrary initiation.

143

5.4.3. Orientation, Reflection, and Scaling of Clustered Shapes

Currently, the SC-KM method leads to shape clustering with invariance to scaling and

translation, yet variance to rotation and reflection. In terms of human perception, it can be

considered that rotated or/and reflected shapes are still the same shapes. However, human

perception of shape similarity/difference is complex. Such psychological analysis of shape can

be significantly affected by human experience, culture, and other factors. According to (Izard et

al.), studies show that in regards to human perception of shapes, angles, and proportions of

dimensions are considered defining features whereas orientations and positions are not as

definitive (2011). In addition, “geometric concepts may emerge spontaneously on the basis of a

universal experience with space or reflect intrinsic properties of the human mind” (Izard et al.,

2011, p. 319). Human analysis of shape similarity and difference is an important area that can be

researched in the future.

Overall, the method can be developed to lead to the invariance of rotation and reflection.

However, the choice of considering such variance to both rotation and reflection is from an

architectural standpoint; change in orientation leads to different design alternatives. This change

can be also visually perceived by humans from the building environment where other buildings

or environmental components exist in a context or background. In other words, from any fixed

point in the building physical environment, the view of a shape (perspective) will be different

from the view of the shape rotated or reflected (if not symmetric). Importantly, the functional

difference between identical but rotated shapes is already considered in the objective

(performance) space; rotated and reflected building shapes mean different energy consumption

and different daylight metrics. In regards to the geometric difference analysis, the rotation and

reflection operations can be included or excluded. When included, those procedures of rotation

144

and reflection can be incorporated as components into the algorithmic pair-wise shape

comparison definition yet will add computational burden.

5.4.4. Inevitable Complexity of the Design Process

It is significant to note that the clustering method proposed in this study was aimed to

support designers’ exploration and evaluation of the architectural designs produced in generative

models. It is to the author’s awareness that the design process cannot be simplified to merely

performance optimization, and this can be misleading and leads to ill-defined design problems.

In architectural design, other related design aspects that are important were not addressed here.

Simply, the complexity of the architectural design process is beyond the scope of this work; the

study is limited to solve one problem of lack of geometric articulation in computational

generative design and optimization systems.

5.5. Future Work

The direction of further development of the SC-KM can be threefold. The first direction

is the improvement of the current algorithmic set of the SC-KM. Another aspect of further

improvement involves the application of the method to three-dimensional forms. The third

direction is the method’s application to Machine Learning.

5.5.1. Improving the SC-KM Method

There are approaches to resolve the computing load problem in the future. In terms of

shape comparison, it is expected that the elimination of the identical overlap cases will lead to

saving in computation time. A different strategy, is to optimize the overlapping search, since we

used an exhaustive method which was too costly, and has led to increasing the calculation time

exponentially. The aim is to achieve a scalable solution with better computation time when the

number of shapes or/and the number of packed cells increase. The search for overlap within the

145

shape comparison task may be facilitated by the use of Genetic Algorithms as a search

mechanism. Another approach is to perform the shape comparison using cloud-computing.

5.5.2. Application of the Clustering Method to 3D Forms

One of the typical requirements of clustering is its capability to multiple or high

dimensional data; a dataset may contain numerous attributes, and each attribute can be

considered a dimension (Han et al., 2011). Most clustering methods behave well in handling

two-dimensional to three-dimensional data objects; however, clustering datasets with high

dimensionality is challenging (Han et al., 2011). In applying the SC-KM to 3D forms, there is a

need to take into account the computation time needed, as it is expected to be exponential for

adding the third dimension. More importantly, the algorithmic set needs to be updated allowing

for considering the third dimension. Nevertheless, this aspect yields important improvement to

the clustering method and is considered the next phase of its development.

5.5.3. Use of Machine Learning in the SC-KM

Observing the development of computational methods to support the design process, the

recent advancement is around the computer’s capability to be trained. As asserted by Steinfeld:

“computers are being trained to see, and this new capacity matters to design” (2017, p. 592).

Machine Learning (ML) is a sub-field in artificial intelligence that involves processes of

knowledge discovery (Provost & Kohavi, 1998) relying on preexisting large datasets (Steinfeld,

2017). Generally defined as learning through observation, in ML, patterns are mapped in a way

that allows the computer to learn through experience (Bechtel & Abrahamsen, 2002; DeLanda,

2002; Steinfeld, 2017) .

The primary aspect of Machine Learning is that it is not about programming the

computer, rather, training it; the training can be for instance on classification, and the computer

146

is supposed to recognize images and classify them correctly using a large dataset each of which

is labeled and this dataset is called “training set” (Steinfeld, 2017). The training set offers the

computer the experience to learn and later to predict new dataset outside the one used for training

(Steinfeld, 2017). It is expected that in applying the SC-KM into Machine Learning, the results

of the current test-cases can be used as the training set and new grid-based shapes will be the

input to the neural network that is trained. I predict that the neural network will cluster the new

set similarly to the results of the SC-KM with a faster speed. However, there will be a significant

amount of research to do for the feasibility and implementation of using Machine Learning in

this field of study.

147

REFERENCES

Abdelrahman, M. M., & Toutou, A. M. Y. (2019). [ANT]: A Machine Learning Approach for

Building Performance Simulation: Methods and Development. The Academic Research

Community Publication, 3(1), 205-213.

Aish, R. (2003). Extensible Computational Design Tools for Exploratory Architecture. In B.

Kolarevic (Ed.), Architecture in the Digital Age: Design and Manufacturing. New York,

NY: Spon Press.

Aish, R., & Woodbury, R. (2005). Multi-level Interaction in Parametric Design. In A. Butz, B.

Fisher, A. Krüger, & P. Olivier (Eds.), Smart Graphics: 5th International Symposium, SG

2005, Frauenwörth Cloister, Germany, August 22-24, 2005. Proceedings (pp. 151-162).

Berlin, Heidelberg: Springer.

Anderberg, M. R. (1973). Cluster analysis for applications. New York, NY: Academic Press.

Anderson, K. (2016). So Happy Together: Architects and Energy Modelers Informing Building

Design. Paper presented at the ASHRAE and IBPSA-USA SimBuild 2016: Building

Performance Modeling Conference, Salt Lake City, Utah.

Bailey, K. (1994). Numerical Taxonomy and Cluster Analysis. In M. S. Lewis-Beck (Ed.),

Typologies and Taxonomies: An Introduction to Classification Techniques. Thousand

Oaks, California: SAGE Publications, Inc. Retrieved from

https://methods.sagepub.com/book/typologies-and-taxonomies.

doi:10.4135/9781412986397

Barnes, M. R. (1999). Form Finding and Analysis of Tension Structures by Dynamic Relaxation.

International Journal of Space Structures, 14(2), 89-104.

doi:10.1260/0266351991494722

Bauckhage, C. (2015). NumPy / SciPy Recipes for Data Science: k-Medoids Clustering.

Retrieved from https://dx.doi.org/10.13140/2.1.4453.2009

Beaudouin-Lafon, M. (2004). Designing Interaction, not Interfaces. Paper presented at the

Proceedings of the Working Conference on Advanced Visual Interfaces (AVI '04),

Gallipoli, Italy.

148

Bechtel, W., & Abrahamsen, A. A. (2002). Connectionism and the mind : parallel processing,

dynamics, and evolution in networks. 2nd ed. William Bechtel and Adele Abrahamsen:

Malden, Mass. ; Oxford, England : Blackwell, 2002. 2nd ed.

Brière.-Côté, A., Rivest, L., & Maranzana, R. (2012). Comparing 3D CAD Models: Uses,

Methods, Tools and Perspectives. Computer-Aided Design & Applications, 9(6), 771-

794. doi:10.3722/cadaps.2012.771-794

Brown, N. C., & Mueller, C. T. (2019). Quantifying Dversity in Parametric Design: A

Comparison of Possible Metrics. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing: AIEDAM, 33(1), 40-53. doi:10.1017/S0890060418000033

Caldas, L. G. (2001). An Evolution-Based Generative Design System: Using Adaptation to Shape

Architectural Form. (Doctoral Dissertation), Massachusetts Institute of Technology, MIT

Press.

Caplan, B. (2011). Parametric Design’s Greatest Value to Architecture Is to Attain Eco-

sustainability. The Architectural Review, EMAP Architecture.

Celani, G., & Eduardo Verzola Vaz, C. (2012). CAD scripting and visual programming

languages for implementing computational design concepts: A comparison from a

pedagogical point of view. International Journal of Architectural Computing, 10(1), 121-

137. doi:10.1260/1478-0771.10.1.121

Cha, M. Y., & Gero, J. S. (1998). Shape Pattern Recognition Using a Computable Pattern

Representation. In J. S. Gero & F. Sudweeks (Eds.), Artificial Intelligence in Design ’98

(pp. 169-187). Dordrecht: Springer Netherlands.

Chakrabarti, K., Ortega-Binderberger, M., Porkaew, K., & Mehrotra, S. (2000). Similar shape

retrieval in MARS. Paper presented at the 2000 IEEE International Conference on

Multimedia and Expo.

Clarke, J. A. (2001). Energy simulation in building design. (2nd ed.) J.A. Clarke: Oxford ;

Boston : Butterworth-Heinemann, 2001.

Collette, Y., & Siarry, P. (2013). Multiobjective optimization : principles and case studies. Yann

Collette, Patrick Siarry: Berlin ; New York : Springer.

Coyne, R., Gero, J., Rosenman, M., & Radford, A. (1987). Innovation and creativity in

knowledge-based CAD. In J. S. Gero (Ed.), Expert Systems in Computer-Aided Design

(pp. 435-465). North-Holland, Amsterdam.

149

Cvetkovic, D., & Parmee, I. C. (2002). Preferences and their application in evolutionary

multiobjective optimization. IEEE Transactions on Evolutionary Computation, (1), 42.

doi:10.1109/4235.985691

de las Heras, L.-P., Fernández, D., Fornés, A., Valveny, E., Sánchez, G., & Lladós, J. (2014,

2014//). Runlength Histogram Image Signature for Perceptual Retrieval of Architectural

Floor Plans. Paper presented at the Graphics Recognition. Current Trends and

Challenges, Berlin, Heidelberg.

DeLanda, M. (2002). Deleuze and the Use of the Genetic Algorithm in Architecture. Paper

presented at the Architectural DesignBetween Bladerunner and Mickey Mouse: New

Architecture in Los Angeles, Madrid, Spain.

Dutta, A., Lladós, J., Bunke, H., & Pal, U. (2014). A Product Graph Based Method for Dual

Subgraph Matching Applied to Symbol Spotting, Berlin, Heidelberg.

Elghazi, Y., Wagdy, A., Mohamed, S., & Hassan, A. (2014). Daylighting driven design:

optimizing kaleidocycle facade for hot arid climate. Paper presented at the Aachen: Fifth

German-Austrian IBPSA Conference, RWTH Aachen University.

EnergyPlus. (2015). EnergyPlus Input-Output Reference 8.6. Retrieved from

https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/InputOutpu

tReference.pdf

Everitt, B. (2011). Cluster analysis. 5th ed. Brian S. Everitt ... [and others]: Chichester, West

Sussex, U.K. : Wiley, 2011.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimization:

FormulationDiscussion and Generalization. Paper presented at the Icga.

Funkhouser, T., Kazhdan, M., Min, P., & Shilane, P. (2005). Shape-Based Retrieval and

Analysis of 3D Models. Communications of the ACM, 48(6), 58-64.

doi:10.1145/1064830.1064859

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI

Magazine, 11(4), 26-36.

Gullo, F., Ponti, G., & Tagarelli, A. (2008). Clustering Uncertain Data Via K-Medoids, Berlin,

Heidelberg.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier.

https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/InputOutputReference.pdf
https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/InputOutputReference.pdf

150

Harding, J., & Brandt-Olsen, C. (2018). Biomorpher: Interactive evolution for parametric design.

International Journal of Architectural Computing, 16(2), 144-163.

doi:10.1177/1478077118778579

Hauglustaine, J.-M., & Azar, S. (2001). Interactive tool aiding to optimise the building envelope

during the sketch design. Paper presented at the Proceedings of the Seventh International

IBPSA Conference (BS2001), Rio de Janeiro, Brazil.

Holzer, D. (2015). BIM and Parametric Design in Academia and Practice: The Changing Context

of Knowledge Acquisition and Application in the Digital Age. International Journal of

Architectural Computing, 13(1), 65-82.

Huang, T., Mehrotra, S., & Ramchandran, K. (1997). Multimedia Analysis and Retrieval System

(MARS) Project. In B. Sandore (Ed.), Digital Image Access & Retrieval: Graduate

School of Library and Information Science, University of Illinois at Urbana-Champaign.

Izard, V., Pica, P., Dehaene, S., Hinchey, D., & Spelke, E. (2011). Chapter 19 - Geometry as a

Universal Mental Construction. In S. Dehaene & E. M. Brannon (Eds.), Space, Time and

Number in the Brain (pp. 319-332). San Diego: Academic Press.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing

Surveys (CSUR), 31(3), 264-323.

Jayanti, S., Kalyanaraman, Y., & Ramani, K. (2009). Shape-based clustering for 3D CAD

objects: A comparative study of effectiveness. Computer-Aided Design, 41(12), 999-

1007.

Jin, X., & Han, J. (2016). K-Medoids Clustering. In C. Sammut & G. I. Webb (Eds.),

Encyclopedia of Machine Learning and Data Mining (pp. 1-3). Boston, MA: Springer

US.

Joshi, S., & Srivastava, A. (2003). A geometric approach to shape clustering and learning. Paper

presented at the IEEE Workshop on Statistical Signal Processing, Piscataway, NJ, USA.

Kalvelagen, E. (2015). Visualization of large multi-criteria result sets with plot.ly. Retrieved

from http://amsterdamoptimization.com/viz/plota1.html

Kaufmann, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids. Delft: Faculty of

Mathematics and Informatics.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.

151

Korf, R. E. (2002). A new algorithm for optimal bin packing. Paper presented at the Eighteenth

National Conference on Artificial intelligence, Edmonton, Alberta, Canada.

Korsah, G. A., Stentz, A., & Dias, M. B. (2007). The Dynamic Hungarian Algorithm for the

Assignment Problem with Changing Costs. Retrieved from Carnegie Mellon University,

Pittsburgh, PA:

Kunz, J. (1989). Concurrent knowledge systems engineering. In: Stanford University, Center for

Integrated Facility Engineering.

Lagios, K., Niemasz, J., & Reinhart, C. F. (2010). Animated building performance simulation

(abps)-linking rhinoceros/grasshopper with radiance/daysim. Proceedings of SimBuild.

Lu, G., & Sajjanhar, A. (1999). Region-based shape representation and similarity measure

suitable for content-based image retrieval. Multimedia Systems, 7(2), 165-174.

MacKenzie, I. S. (2012). Human-Computer Interaction : An Empirical Research Perspective.

San Francisco, US: Elsevier Science & Technology.

Malkawi, A. M. (2005). Performance simulation: research and tools. In A. M. Branko Kolarevic

(Ed.), Performative Architecture: Beyond Instrumentality (pp. 85-96): Spon Press, New

York.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval:

Cambridge ; New York : Cambridge University Press, 2008.

Mark, E., Martens, B., & Oxman, R. (2001). The Ideal Computer Curriculum. Paper presented at

the Architectural Information Management, 19th eCAADe Conference, Helsinki

University of Technology, Helsinki, Finland.

Martello, S., & Toth, P. (1990a). Bin-packing problem. In Knapsack problems: Algorithms and

computer implementations (pp. 221-245): Chichester ; New York : J. Wiley & Sons.

Martello, S., & Toth, P. (1990b). Lower bounds and reduction procedures for the bin packing

problem. Discrete Applied Mathematics, 28(1), 59-70.

Mitchell, W. J. (1975). The theoretical foundation of computer-aided architectural design.

Environment and Planning B: Urban Analytics and City Science, 2(2), 127-150.

doi:https://doi.org/10.1068/b020127

152

Musnjak, M., & Golub, M. (2004). Using a set of elite individuals in a genetic algorithm. Paper

presented at the 26th International Conference on Information Technology Interfaces -

ITI 2004, Cavtat, Croatia.

Nejur, A., & Steinfeld, K. (2016). Ivy: Bringing a Weighted-Mesh Representation to Bear on

Generative Architectural Design Applications. ACADIA 2016: POSTHUMAN

FRONTIERS: Data, Designers, and Cognitive Machines, Proceedings of the 36th Annual

Conference of the Association for Computer Aided Design in Architecture (ACADIA),

140-151.

Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization

methods applied to building performance analysis. Applied Energy, 113, 1043-1058.

Norouzi, M., Fleet, D. J., & Salakhutdinov, R. R. (2012). Hamming Distance Metric Learning.

Paper presented at the NIPS'12 Proceedings of the 25th International Conference on

Neural Information Processing Systems, Lake Tahoe, Nevada.

NREL. (2011). U.S. Department of Energy Commercial Reference Building Models of the

National Building Stock Retrieved from https://www.nrel.gov/docs/fy11osti/46861.pdf

Phillips, J., Livingston, G., & Buchanan, B. (2002). Toward a computational model of hypothesis

formation and model building in science. In Model-Based Reasoning (pp. 209-225):

Springer.

Piker, D. (2013). Kangaroo: form finding with computational physics. Architectural Design,

83(2), 136-137.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37-63.

Provost, F., & Kohavi, R. (1998). Glossary of terms. Journal of Machine Learning, 30(2-3), 271-

274.

Radford, A. D., & Gero, J. S. (1987). Design by optimization in architecture, building, and

construction: John Wiley & Sons, Inc.

Radiance. (1997). The RADIANCE 5.1 Synthetic Imaging System. Retrieved from

http://radsite.lbl.gov/radiance/refer/ray.html#Materials.

Ramsden, J. (2015). Batchrun Component for Grasshopper. Retrieved from http://james-

ramsden.com/download/batchrun-component-for-grasshopper/

153

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical Association, 66(336), 846-850.

Robinson, D. J. (2008). An introduction to abstract algebra: New York : Walter de Gruyter.

Rodrigues, E., Gaspar, A. R., & Gomes, Á. (2013). An evolutionary strategy enhanced with a

local search technique for the space allocation problem in architecture, Part 1:

Methodology. Computer-Aided Design, 45(5), 887-897.

Rodrigues, E., Sousa-Rodrigues, D., de Sampayo, M. T., Gaspar, A. R., Gomes, Á., & Antunes,

C. H. (2017). Clustering of Architectural Floor Plans: A Comparison of Shape

Representations. Automation in Construction, 80, 48-65.

doi:https://doi.org/10.1016/j.autcon.2017.03.017

Roudsari, M. S. (2018). Ladybug 0.0.67 and Honeybee 0.0.64 [Legacy Plugins]. Retrieved from

https://www.food4rhino.com/app/ladybug-tools

Roudsari, M. S., Pak, M., & Smith, A. (2013). Ladybug: a parametric environmental plugin for

grasshopper to help designers create an environmentally-conscious design. Paper

presented at the Proceedings of the 13th International IBPSA Conference Lyon, France.

Safar, M., Shahabi, C., & Sun, X. (2000). Image retrieval by shape: a comparative study. Paper

presented at the Proceedings of International Conference on Multimedia and Expo. ICME

2000, New York, NY, USA.

Sajjanhar, A., & Lu, G. (1997). A grid-based shape indexing and retrieval method. Australian

Computer Journal, 29(4), 131-140.

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing

Surveys, 16(2), 187-260. doi:10.1145/356924.356930

Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y., & Romo-Castillo, A. (2016). Parametric

energy simulation in early design: High-rise residential buildings in urban contexts.

Building and Environment, 101, 19-31.

Sargent, R. G., & Balci, O. (2017, 3-6 Dec. 2017). History of verification and validation of

simulation models. Paper presented at the 2017 Winter Simulation Conference (WSC).

Sasaki, Y. (2007). The truth of the F-measure. In Teaching, Tutorial Materials (Version: 26th,

pp. 1-5).

154

Shea, K., Aish, R., & Gourtovaia, M. (2005). Towards integrated performance-driven generative

design tools. Automation in Construction, 14(2), 253-264.

Shen, W., Wang, Y., Bai, X., Wang, H., & Latecki, L. J. (2013). Shape clustering: Common

structure discovery. Pattern Recognition, 46(2), 539-550.

Simergy. (2013). Ideal Loads, Stencil: Zone HVAC Stencil: Ideal Loads System. Retrieved from

https://d-

alchemy.com/html/helpdocs/Simergy/Content/HVAC_Systems/ZHG_Components/Ideal

_Loads.htm

Sousa-Rodrigues, D., de Sampayo, M. T., Rodrigues, E., Gaspar, A. R., Gomes, Á., & Antunes,

C. H. (2015). Online survey for collective clustering of computer generated architectural

floor plans. Retrieved from http://arxiv.org.srv-proxy1.library.tamu.edu/abs/1504.08145

Steinfeld, K. (2017). Dreams May Come. Paper presented at the ACADIA 2017: DISCIPLINES

& DISRUPTION. Proceedings of the 37th Annual Conference of the Association for

Computer Aided Design in Architecture (ACADIA), MIT, Cambridge, MA.

Stocking, A. W. (2009). Generative Design Is Changing the Face of Architecture. Retrieved from

https://www.cadalyst.com/cad/building-design/generative-design-is-changing-face-

architecture-12948

Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective.

Photogrammetric Engineering and Remote Sensing, 52(3), 397-399.

Toffolo, A., & Benini, E. (2003). Genetic diversity as an objective in multi-objective

evolutionary algorithms. Evolutionary Computation, 11(2), 151-167. doi:https://doi-

org.srv-proxy1.library.tamu.edu/10.1162/106365603766646816

Tom. (2014). Rand index calculation. https://stats.stackexchange.com/q/110712. Retrieved from

(https://stats.stackexchange.com/users/23823/tom)

Torres, S., & Sakamoto, Y. (2007). Facade design optimization for daylight with a simple

genetic algorithm. Paper presented at the Proceedings of Building Simulation.

Velmurugan, T., & Santhanam, T. (2010). Computational complexity between K-means and K-

medoids clustering algorithms for normal and uniform distributions of data points.

Journal of Computer Science, 6(3), 363-368.

Vierlinger, R., & Bollinger, K. (2014). Acommodating Change in Parametric Design. Paper

presented at the ACADIA 14: Design Agency. Proceedings of the 34th Annual

155

Conference of the Association for Computer Aided Design in Architecture (ACADIA),

Los Angeles.

Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with

background knowledge. Paper presented at the ICML '01 Proceedings of the Eighteenth

International Conference on Machine Learning.

Wang, W., Zmeureanu, R., & Rivard, H. (2005). Applying multi-objective genetic algorithms in

green building design optimization. Building and Environment, 40(11), 1512-1525.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58(301), 236-244.

Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC

video coding standard. IEEE Transactions on Circuits and Systems for Video

Technology, 13(7), 560-576.

Wilks, D. S. (2011). Cluster analysis. In International Geophysics (Vol. 100, pp. 603-616):

Elsevier.

Woodbury, R. (2010). Elements of parametric design: Routledge.

Wortmann, T., & Nannicini, G. (2017). Introduction to Architectural Design Optimization. In

City Networks (pp. 259-278): Springer.

Yan, W., Asl, M. R., Su, Z., & Altabtabai, J. (2015). Towards Multi-Objective Optimization for

Sustainable Buildings with Both Quantifiable and Non-Quantifiable Design Objectives.

In Sustainable Human–Building Ecosystems (pp. 223-230).

Yi, Y. K., Jung, B. R., & Sullivan, J. (2012). Agent-based Geometry Control Optimized by

Genetic Algorithm for Daylighting. Paper presented at the ASim 2012 Proceedings,

Shanghai, China.

Yousif, S., Clayton, M., & Yan, W. (2018). Towards Integrating Aesthetic Variables in

Architectural Design Optimization. Paper presented at the The 106th ACSA Annual

Meeting, The Ethical Imperative, The Association of Collegiate Schools of Architecture

(ACSA), Denver, Colorado.

Yousif, S., & Yan, W. (2018). Clustering Forms for Enhancing Architectural Design

Optimization. Paper presented at the Learning, Adapting and Prototyping, The 23rd

Conference of the Association for Computer-Aided Architectural Design Research in

156

Asia (CAADRIA), Beijing, China. http://papers.cumincad.org/cgi-

bin/works/paper/caadria2018_257

Yousif, S., & Yan, W. (2019). Shape Clustering Using K-Medoids in Architectural Form

Finding. Paper presented at the Computer-Aided Architectural Design Futures

(CAADFutures) 2007: Proceedings of the 18th International CAAD Futures Conference,

Daejeon, Korea.

Yousif, S., Yan, W., & Culp, C. (2017). Incorporating Form Diversity into Architectural Design

Optimization. Paper presented at the ACADIA 2017: DISCIPLINES & DISRUPTION

Proceedings of the 37th Annual Conference of the Association for Computer Aided

Design in Architecture (ACADIA), MIT, Cambridge, MA.

http://papers.cumincad.org/cgi-bin/works/paper/acadia17_640.

Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern

Recognition, 37(1), 1-19.

Zhang, Y., Lin, K., Zhang, Q., & Di, H. (2006). Ideal thermophysical properties for free-cooling

(or heating) buildings with constant thermal physical property material. Energy and

Buildings, 38(10), 1164-1170.

Zwierzycki, M., Nicholas, P., & Ramsgaard Thomsen, M. (2018). Localised and Learnt

Applications of Machine Learning for Robotic Incremental Sheet Forming. In K. De

Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M.

R. Thomsen (Eds.), Humanizing Digital Reality: Design Modelling Symposium Paris

2017 (pp. 373-382). Singapore: Springer.

