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ABSTRACT

This work presents three analyses of the NIH-AARP Study of Diet and Health. Each analy-

sis develops recommendations for nutritional intake or physical behaviors, or alters existing rec-

ommendations. New statistical methodology for nonlinear and nonparametric regression is in-

troduced. Each methodology results in consistent estimation of relative risk of disease (cancer,

mortality, etc.). Technical details and proofs are collected in separate appendices for each chapter.

First, a major collaborative project to create a composite scoring system for physical activity

is presented. A scoring system allows quick assessment of physical activity levels which can then

be used to estimate disease risk. This score, denoted Physical Behavior Score (PBS), is verified to

predict mortality using a subset of the NIH-AARP Study of Diet and Health withheld for validation.

The Physical Behavior Score is highly predictive of mortality. Women in the highest quintile of

scores had a 54% reduction in all-cause mortality risk, and men in the highest quintile had a 45%

reduction in all-cause mortality risk.

Next, the Healthy Eating Index is used as a case study to provide a general method for reeval-

uating composite scores. The Healthy Eating Index breaks nutritional intake into 12 components.

A method is presented that can be used to reassess the relative importance of these components

using a weighted logistic regression model applied across many populations and diseases. Vari-

able selection is performed by taking an asymptotic approximation and adding an adaptive Lasso

penalty. This approximation simplifies variable selection into a simple least squares minimization.

Oracle properties of this variable selection technique are established, which is different from the

usual one population and one disease context.

Finally, the problem of the first chapter in which a physical activity score is created then applied

to analysis of disease or mortality is revisited. Sample splitting is used to partition the sample

into two disjoint subsets, using the first subset to build the score and using the remaining data

to estimate relative risk of this score. For parametric models, the limiting distribution of risk

estimates is derived. An obvious question is what happens if multiple sample splits are performed.
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It is shown that as the number of sample splits increases, the combination of multiple sample splits

is effectively equivalent to performing no sample splits. This suggests there is no clear benefit to

performing multiple splits.

iii



ACKNOWLEDGMENTS

This work would not be possible without my advisor Dr. Raymond Carroll. I am lucky to have

him as a mentor and friend. I have grown as a statistician, and as a person, thanks to his guidance

and encouragement. I will miss having a resident statistical expert down the hall from me, but I

will miss my friend and mentor even more.

I worked with a wonderful group of collaborators on material in Chapter 2. In particular, I

would like to thank Dr. Sarah Kozey-Keadle, who I worked with closely from the inception of the

project. Dr. Keadle taught me so much about her field and how to present complicated statistical

analyses to a general audience. Of everything I worked on during my PhD, I am most proud of this

paper.

Dr. David Ruppert was helpful in developing the material in Chapter 4. Working with Dr.

Ruppert was one of my favorite experiences in graduate school. Dr. Ruppert taught me how to

make an educated guess, test it with computer simulations, and then refine my guess. This is one

of the most useful skill I learned during my studies.

I would like to thank my committee members: Dr. Tanya Garica, Dr. Suojin Wang, and Dr.

Sivakumar. Dr. Garica was a constant source of encouragement. Dr. Wang was one of the first

faculty member I met when I moved here, and I’m glad we have remained close through my PhD.

Dr. Sivakumar managed to push some mathematics into my brain.

I am thankful for the many friends I have made at Texas A&M. Some of them are still here,

and many of them have moved away. My life is better for having known them. I have shared an

office with Yabo Niu for years, and it will be strange not seeing him every day.

Kim Ritchie has funded me as a Technology Teaching Assistant (TTA) for my entire time at

Texas A&M. I appreciate having a supervisor I could talk and joke with, and I appreciate how

invested she is in all the TTA’s.

Dr. Longnecker provided me constant guidance and support, especially in the early stages of

my PhD. I made more trips to his office than I can possibly count. My time in graduate school

iv



would not have been the same without him.

I am thankful for my family who have supported me during this time of my life. In particular I

would like to thank my parents, my sister Hannah, and my aunt Paula. Hannah, I hope we are both

Dr. Kravitz soon.

I am thankful to my new family in Texas: Brittney and Franklin the dog. With you rural Texas

feel like New York City. I look forward to the next step in our lives.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Raymond Carroll

as committee chair, Professors Tanya Garcia and Suojin Wang of the Department of Statistic, and

Professor N. Sivakumar of the Department of Mathematics

All data analyzed in this dissertation was provided by Dr. Raymond Carroll. Dr. Carroll’s

research was supported by a grant from the National Cancer Institute (U01-CA057030). The work

depicted in Chapter 2 was published in 2019 in an article listed in the footnote of Chapter 2.

The work in Chapter 4 was done under the joint supervision of Professor David Ruppert of the

Department of Statistical Science at Cornell University and Raymond Carroll.

All other work conducted for the dissertation was completed independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and from employ-

ment as a Technology Teaching Assistant in the Department of Statistics.

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. DEVELOPMENT AND TESTING OF AN INTEGRATED SCORE FOR PHYSICAL
BEHAVIORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 End Point Ascertainment and Covariate Assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Development of the PBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Example Physical Behavior Score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Predictive Validity of PBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Technical Description of Score Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. RE-EVALUATING COMPOSITE SCORES: ADAPTIVE LASSO VARIABLE SELEC-
TION FOR NONLINEAR MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 A Nonlinear Model Across Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Least Squares Approximation and Adaptive Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Model Selection and Oracle Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Subset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Variable Selection and Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. SAMPLE SPLITTING AS AN M-ESTIMATOR WITH APPLICATION TO PHYSI-
CAL ACTIVITY SCORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Motivating Example: Physical Activity and Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Sample Splitting Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Basic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 A Single Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Many Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Asymptotic Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Single Split Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Multiple Split Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Increasing Number of Splits Asymptotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Step 1: Developing the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.2 Step 2: Rescaling the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.3 Step 3: Risk Prediction Based on the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2. . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 R Code to Generate Physical Behavior Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Testing Proportional Hazards Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Physical Activity Questionnaire and Met Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3. . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 R Code and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.4 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.5 Variance Calculation of Rescaled Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4. . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1 R Code and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



C.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.1.2 Taylor Expansions from Sections 4.4.1 and 4.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.1.3 Theory for Infinite Splits from Section 4.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.1.4 Asymptotic Equivalence to Stacked Estimating Equations. . . . . . . . . . . . . . . . . . . . . 77

ix



LIST OF FIGURES

FIGURE Page

2.1 Shape constrained additive regression (SCAR) returns 8 sets of predicted values,
one for each function that is fit to describe the relationship between physical activ-
ity and mortality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The relative hazard of all-cause mortality plotted from the 5th percentile, 53.5, to
the maximum score of 100, separately for men and women. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Stratified analysis of Physical Behavior Score in relation to all-cause mortality . . . . . . 24

2.4 Unscaled shape constrained functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Distribution of physical behavior scores in the NIH-AARP Diet and Health Study
Cohort, 2004-2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Three of the eight marginal model plots from the binary regression model. . . . . . . . . . . . 52

4.2 Log odds ratio of the physical activity score as the number of sample splits increases 55

A.1 Schoenfeld residuals plotted against time. A straight line indicates that the coeffi-
cients fit with Cox regression do not change with time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2 Log Hazard, equivalent to log of negative log of Survival time, against time. . . . . . . . . . 67

A.3 NIH-AARP Study of Diet and Health questionnaire for physical activity. . . . . . . . . . . . . . 68

A.4 NIH-AARP Study of Diet and Health questionnaire for sedentary behaviors . . . . . . . . . 69

x



LIST OF TABLES

TABLE Page

2.1 Description and pairwise correlations for each of the physical behavior score com-
ponents in the NIH-AARP Diet and Health Study Cohort, 2004-2006. Rows A-E
are measured in MET-hr/wk, and Rows F-H are measured in hr/day. Reprinted
with permission from Wolters Kluwer Health Inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Reported physical behaviors and corresponding Physical Behavior Score for max-
imum, median, and two hypothetical people in the NIH-AARP Diet and Health
Study Cohort, 2004-2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Baseline Participant Characteristics and Physical Behavior Components by quintile
of physical behavior score in the NIH-AARP Diet and Health Study Cohort, 2004-
2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Comparison of physical behavior score to groups components for all-cause and
cause-specific mortality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Description of the Healthy Eating Index 2005 scoring system . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Summary of the NIH-AARP data for cancer occurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Summary of the NIH-AARP data for mortality. Cardiovascular disease has been
abbreviated as CVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Results from Section 3.4.2 when the outcome of interest is cancer occurrence, var-
ious types of mortality, and aggregated all-cause mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Results of the subset analysis in Section 3.5.1 when all-cause mortality is the out-
come of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Simulation results from Section 3.5.2 showing coverage and the percent of time
the true model was selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Results of the simulation in Section 4.5 using the linear model.. . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Results of the simulation in Section 4.5 using the logistc model. . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Each of the 8 physical activity variables with their expected relationship and marginal
model when predicting survival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Example physical activity score developed using half of the data . . . . . . . . . . . . . . . . . . . . . . 54

xi



A.1 Physical activity variables are expressed as MET-hrs per week, which is the MET-
value for each activity multiplied by the reported hours per week. . . . . . . . . . . . . . . . . . . . . . 69

xii



1. INTRODUCTION

The work in this thesis presents several analyses of the NIH-AARP Study of Diet and Health

Schatzkin et al. (2001) and the new methodology developed to perform these analyses. Each

chapter develops a composite scores or alters an existing composite score. A composite score

compares a person’s health behavior to an idealized standard and assigns them a number, usually

between 0 and 100, to indicate their compliance to this health behavior. A composite score of 100

indicates perfect compliance while a score of 0 indicates poor compliance. This measure of health

behavior is applied across populations and health outcomes (colon cancer, breast cancer, etc.) to

create a single interpretable score. This single measure of health is used to estimate disease risk,

rather than using the health behavior directly. Composite scores simplify statistical analysis by

converting a complicated health behavior into a single continuous covariate. Composite scores are

used extensively in nutritional epidemiology (Guenther et al., 2008a, 2013a; Panagiotakos et al.,

2006; McCullough et al., 2002).

The new methodology in this dissertation focuses on regression models of the form

g{E(Yi|Xi, Zi)} = β0(X
T
i θ) + ZT

i β, (1.1)

where g(·) is a known link function, Yi is a response of interest which is generally binary, (Xi, Zi)

are two types of covariates, and (θ, β) are unknown parameters. The L2 norm of θ is constrained

so β and θ are both identifiable, though other constraints are possible. Model 1.1 is a very general

nonlinear model which includes a range of statistical models as specific cases. X and θ define a

shape-constrained spline model in Chapter 2, a weighted logistic regression model in Chapter 3,

and a combination of 4-parameter logistic functions, linear functions, and quadratic functions in

Chapter 4. In each application, β0 estimates the relative risk of disease. Consistent estimation of

β0 and asymptotically consistent variance estimates are emphasized.

Chapter 2 presents collaborative work to develop a composite score for physical activity. Using
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the NIH-AARP Study of Diet and Health, physical activity is discretized into eight components. A

Generalized Additive Model (Hastie and Tibshirani, 1986; Wood, 2017) is proposed to described

the relationship between physical activity and survival. That is,

pr(Yi = 1, Xi, Zi) = H{
∑J

j=1fj(Xij) + ZT
i β}, (1.2)

where H(·) is the logistic distribution function, Xij are physical activity measurement, fj is an

unknown smooth function, Zi is a vector of covariates, and β is an unknown parameter. We have

additional information that can be incorporated into our model: the relationship between the eight

components and survival have well established functional forms in the physical activity literature.

For example, kinesiologists have shown the relationship between vigorous activity and survival is

relatively concave and non-decreasing. That is, vigorous activity is beneficial to overall health but

the positive benefits eventually plateau. Using the methods of Chen and Samworth (2016), we use

this information to enforce shape constraints on each of the smooth functions in the Generalized

Additive Model so the fitted functions, f̂j(·), are consistent with existing literature. The functions

are not allowed to vary freely, but instead must satisfy a specified shape constraint.

After the shape constrained additive model is fit, the fitted values are transformed to be between

0 and 100 to put these fitted values on a comparable scale to other composite scores. People with a

high probability of survival are assigned a score close to 100 and people with a low probability of

survival are assigned a score close to 0. This new composite score is verified to predict mortality

in an independent population using a Cox proportional hazards model.

Chapter 3 gives a general methodology for reevaluating composite scores through weighted

logistic regression and variable selection. The 2005-Health Eating Index Guenther et al. (2008a)

is used as an example to motivate the methods. A previous analysis by Reedy et al. (2008) for

predicting colorectal cancer uses the model

pr(Yi = 1|Xi, Zi) = H(β0
∑J

j=1Xij + ZT
i β), (1.3)
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where Yi = 1 denotes occurrence of colorectal cancer, Zi is a vector of covariates, Xij is the

Healthy Eating Index score for a particular dietary components,
∑J

j=1Xij is the combined Healthy

Eating Index score, and (β0, β) is a vector of unknown parameters. β0 estimates the relative risk of

colorectal cancers as a function of Healthy Eating Index scores.

Model 1.3 is extended by adding parameters which allow the effect of diet to vary by population

and disease. Model 1.3 becomes,

pr(Yik` = 1|Xikj, Zik`) = H(βk`
∑J

j=1Xijk` + ZT
ik`θk`), (1.4)

where k denotes population and ` denotes disease. Here βk` gives the relative risk of disease ` in

population k as a function of a person’s Healthy Eating Index score. Next, a vector of weights, θ, is

introduced to (1.4) to allow the relative importance of each nutritional component to vary. Model

1.4 becomes

pr(Yik` = 1|Xikj, Zik`) = H(βk`
∑J

j=1Xijk`θj + ZT
ik`θk`), (1.5)

If θj > 1 the relative importance of the jth dietary component is increased, and if θj < 1 the relative

importance is decreased. Finally, we add an adaptive Lasso penalty (Zou, 2006) to the likelihood

associated with (1.5). The penalty is only on θ. This is used to perform variable selection to see if

any nutritional components are unnecessary in predicting disease risk.

Chapter 3 considers verifying a composite score is predictive of a disease without an indepen-

dent population for validation. To alleviate concerns of overfitting, Model (1.1) is fit by sample

splitting: first estimating θ on a portion of sample then estimating β using θ̂ and the remaining

sample. The analysis from Chapter 2 is used as a case study, with the shape constrained model re-

placed with a parametric model. Sample splitting is used to first build the score on half the dataset,

and then separately evaluate its use in disease or mortality risk.

Sample splitting is formalized with estimating equations and M-estimator theory (Huber, 1964,

1967; Stefanski and Boos, 2002). Assume two responses (Wi,Yi) are observed and two covariate
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vectors are observed, (Xi,Zi). There are two parameters, θ and β. The responseW and (X,Z, θ)

are related by the estimating equation Ψ(W ,X,Z, θ). The response Y and (X,Z, β, θ) are related

K(Y, f(X; θ),Z, β), where f(·; ·) is a known function. Assume δ = (δ1, ..., δn) is a vector of

independent and identically distributed Bernoulli(π). δ is used as an indicator variable to denote

which portion of the sample is used to estimate θ and which portion is used to estimate β. The

parameter θ is estimated by solving

0 =
∑n

i=1δiΨ(Wi,Xi,Zi, θ),

and β is estimated by solving

0 =
∑n

i=1(1− δi)K(Yi,Xi,Zi, β, θ̂).

This is extended to the case of many splits. The estimates of θ and β are combined with the

sample mean. The limiting distribution of (θ̂, β̂) is derived. From this confidence intervals and

hypothesis tests can be constructed.
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2. DEVELOPMENT AND TESTING OF AN INTEGRATED SCORE FOR PHYSICAL

BEHAVIORS ∗

2.1 Introduction

Accumulating evidence indicates that a variety of physical behaviors affect health in positive

and negative ways. A physically active lifestyle, including time spent in moderate and vigorous

physical activities and strength training, improves longevity and quality of life and decreases risk of

many chronic diseases. (Office of Disease Prevention and Health Promotion, 2019) Mortality risk

is also inversely associated with light intensity activity (Katzmarzyk, 2014) positively associated

with time spent in sedentary behaviors (The Obesity Society et al., 2016; Grøntved and Hu, 2011)

and with both too little and too much sleep (Xiao et al., 2014; Ma et al., 2016).

Analyzing the independent vs. combined effects of several different physical behaviors on

health outcomes is challenging. Studies have historically focused on isolating an independent be-

havior while adjusting for other behaviors – for example, does the association between sedentary

time and mortality risk persist when adjusting for time spent in moderate-vigorous intensity physi-

cal activity (Ekelund et al., 2016)? More recently, recognizing time trade-offs among sleep, seden-

tary behavior, and physical activity, researchers have examined the effect of substituting time spent

in one behavior with another using isotemporal substitution or compositional analyses (Mekary

et al., 2013; Chastin et al., 2015) – for example, does replacing one hour of sitting with one hour

of light-intensity activity result in mortality benefits (Mekary et al., 2013; Whitaker et al., 2017;

Stamatakis et al., 2015; Matthews et al., 2015, 2016)? Both of these approaches provide insight

into the behavior-disease relationship, but neither quantifies the joint impact of different physical

behaviors on health and longevity.

Studies in nutritional epidemiology demonstrate the utility of indices to characterize overall

∗Reprinted with permission from Wolters Kluwer Health Inc: Medicine & Science in Sports & Exercise, “Develop-
ment and Testing of an Integrated Score for Physical Behaviors”, Advance online publication, 2019, by Keadle, Sarah
Kozey, Kravitz, Eli S., Matthews, Charles, Tseng, Marilyn, and Carroll, Raymond J. In accordance Wolters Kluwer’s
copyright no modifications have been made except formatting.
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patterns of behavior (Guenther et al., 2013b, 2008b,a; Hu et al., 2000), but to date there have been

few attempts to integrate multiple physical behaviors into a single index. Investigators for the Eu-

ropean Investigation into Cancer and Nutrition study developed an index that included physical

activity at work, sport, cycling, television viewing and computer use by selecting the self-reported

activity variables that were the most strongly associated with accelerometer counts Cust et al.

(2008). Another study used National Health and Nutrition Examination Survey data to exam-

ine the cross-sectional relationship of a physical index that included combined moderate-vigorous

physical activity, sitting time, grip strength and estimated fitness with various health-outcomes

Keadle et al. (2017). Both approaches relied on simple scoring systems that do not account for

established non-linear relationships of health with aerobic activity and sedentary time Arem et al.

(2015); Matthews et al. (2016), and neither method considered sleep duration despite its estab-

lished association with health Yin et al. (2017). Moreover, to our knowledge, no previous studies

have examined the prospective association of such an index with mortality.

There is a need for new approaches to analyze the joint effects of distinct but inter-related

physical behaviors with health outcomes. We developed a physical behavior score (PBS) (ranging

from 0-100) that integrated different types and intensities of physical activity, sitting and sleep

behaviors. To demonstrate the predictive validity of the new score, we estimated the relationship

between it and mortality from any-cause and sub-types including cardiovascular disease, cancer

and other mortality in a large prospective cohort of American adults.

2.2 Methods

The National Institutes of Health-AARP Diet and Health Study cohort was established in 1995-

1996, when 566,398 AARP members (50–71 yr) in six states and two metropolitan areas responded

to a questionnaire about their medical history, diet, and demographics Schatzkin et al. (2001). Be-

tween 2004-2006, 313,835 participants completed a follow-up questionnaire that asked detailed

questions about active and sedentary behaviors, medical history, and risk factors. Those eligible

for this analysis (N =163,016) personally responded to both questionnaires, were free of major

diseases at the start of follow-up (2004–2006), and had sufficiently complete exposure data. Spe-
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cific reasons for exclusions are as follows: questionnaire was completed by proxy respondents

(N=18,600), and at the time of follow-up questionnaire, self-rated poor health (N=38,550), pre-

existing degenerative or chronic diseases (e.g., Parkinson’s, end stage renal disease) (N= 22,475),

or missing primary exposure data (i.e., physical activity, sleep duration or sedentary time) (N=

71,194). Questionnaire completion was considered to imply informed consent and the U.S. Na-

tional Cancer Institute’s Special Studies institutional review board approved the study.

The physical activity questionnaire asked how much time per week was spent in 16 activities

during the past 12 months (Figure A.3). Activities were classified as exercise and sports (8 ques-

tions) or as non-exercise activities (8 questions), which included household chores and lawn and

garden activities. For each of the physical activity questions, response options were: none, 5 min,

15 min, 30 min, 1 hour, 1.5, 2-3, 4-6, 7-10, >10 hours/wk. The energy cost of each activity was

assigned using standard methods, and physical activity energy expenditure was calculated (MET-

hrs/d). Three sitting questions asked about the number of hours spent “in a typical 24-hour period

during the past 12 months”, with eight possible response options: None, <3, 3-4, 5-6, 7-8, 9-10,

11-12, or ≥12 hours/day (Figure A.4). The exercise items have been validated against physical

activity diaries, (r=0.62 and 0.65) (Chasan-Taber et al., 1996; Wolf et al., 1994). Estimates of

physical activity from the survey have been correlated with total energy expenditure as assessed

by doubly labeled water (r=0.33) and estimates of sitting time were significantly, although weakly,

correlated with activPAL accelerometer (r=0.16) Matthews et al. (2018)

For this analysis, survey responses were classified into one of eight physical behaviors (includ-

ing five types of physical activity, two types of sedentary behavior, and sleep duration) as follows:

1. Light household activity (MET-hrs/wk; 1 question): cooking, cleaning, laundry, dusting.

2. Moderate-vigorous household activity (MET-hrs/wk; 6 questions): household chores (e.g.,

vacuuming), moderate outdoor chores (e.g., weeding), vigorous outdoor chores (e.g., carry-

ing lumber), home repairs (e.g., painting), caring for children, caring for another adult.

3. Moderate Exercise (MET-hrs/wk; 3 questions): walking for exercise, walking for other daily
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activities, playing golf.

4. Vigorous Exercise (MET-hrs/wk; 5 questions): tennis, swimming laps, bicycling, jogging,

other aerobic exercise.

5. Weight training (MET-hrs/wk; 1 question): weight training using free weights and machines.

6. Sitting watching television, video or DVD (hrs/day; 1 question).

7. Other sitting (hrs/day; 1 question): reading, knitting, using a computer.

8. Sleeping at night or napping during the day (hrs/day; 1 question).

For each category, extreme values (> 95th percentile) were truncated to the 95th percentile,

plus random error.

2.3 End Point Ascertainment and Covariate Assessment

Vital status was determined through linkage with the Social Security Administration Death

Master File and the National Death Index. The primary end points for our analysis were mor-

tality from all causes, and cause-specific mortality. Cause specific mortality was assigned using

International Classification of Diseases, 10th revisions (ICD-10) codes. We categorized cancer

mortality (C00-C44, C45.0, C45.1, C45.7, C45.9, C48-C97, and D12-D48). Cardiovascular dis-

ease mortality included ICD-10 coded I00-I09, I10-I13, I20-I51, I60-I69 and I70-I78. Remaining

causes of death were categorized as other-causes. Mortality follow-up was through December 31,

2011. Demographic characteristics (sex, race/ethnicity, education) were assessed on the baseline

questionnaire and other covariates (age, smoking, body mass index [BMI)] based on self-reported

height and weight, health status and disease history) were based on values reported on the follow-

up questionnaire.

2.4 Statistical Analyses

Overall approach to development and testing. First, we analyzed descriptive statistics for each

of the eight physical behaviors and determined Spearman correlations among them (Table 2.1).
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Overall, the correlations between components were weak, but statistically significant, with the ex-

ception of vigorous exercise and weight training (R=0.43). The next highest correlations were for

moderate-vigorous household activity and moderate exercise (R=0.28) and light-intensity house-

hold activity (R=0.28). To develop the PBS, we took a data-driven approach by using generalized

additive models Hastie and Tibshirani (1986), adjusting for covariates, to quantify the relationship

between each physical behavior and survival. We then rescaled the fitted probabilities to produce

an overall score ranging from 0-100. Finally, we examined predictive validity of the composite

PBS. Specific details of the analyses are described below.

Physical Behavior Median (25th, 75th) Range A B C D E F G H
A. Moderate exercise 13.7 (7.2, 28.8) (0.0, 68.8) 1
B. Vigorous exercise 0.00 (0.0, 12.5) (0.0, 50.0) 0.15 1

C. Light-intensity Household 7.0 (3.3, 21.3) (0.0, 43.2) 0.20 0.04 1
D. Moderate-vigorous Household 13.3 (5.4, 28.8) (0.0, 83.0) 0.28 0.08 0.28 1

E. Weight Training 0.0 (0.0, 0.0) (0.0, 9.7) 0.14 0.43 -0.01 0.03 1
F. Sitting other than TV 3.0 (3.0, 5.0) (0.0,12.0) 0.03 0.02 0.06 -0.03 0.01 1

G. Television sitting 3.5 (1.5, 3.5) (0.0, 8.5) -0.05 -0.10 0.00 -0.06 -0.09 0.04 1
H. Sleep 7.5 (5.5, 7.5) (0.0, 10.5) 0.01 0.01 -0.01 0.00 0.02 0.01 0.02 1

Table 2.1: Description and pairwise correlations for each of the physical behavior score com-
ponents in the NIH-AARP Diet and Health Study Cohort, 2004-2006. Rows A-E are measured
in MET-hr/wk, and Rows F-H are measured in hr/day. Reprinted with permission from Wolters
Kluwer Health Inc

2.5 Covariates

Covariates were selected to be consistent with previous analyses of mortality and physical

activity and sedentary time in this dataset Matthews et al. (2015). The fully adjusted models for

both the score development and predictive validity were adjusted for the following covariates:

age (yr), sex, education (<12 y, high school graduate, some college, college graduate, unknown),

smoking history (never, stopped 10+ yr, stopped 5–9 yr, stopped 1–4 yr, stopped <1 yr, current

smoker, unknown), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, Other, unknown),
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overall health (excellent, very good, good, fair, unknown), body mass index (<25, 25–29.9, 30+

kg/m2, unknown), physician diagnosed depression (yes, no, or missing), physician diagnosed heart

disease (yes, no, missing).

2.6 Development of the PBS

A technical description of the score development is available in Section 2.12. We randomly

selected half of the sample to develop the PBS. To obtain the scores for each of the eight phys-

ical behavior variables, we fit a logistic regression with survival (non-mortality) as the outcome,

using a non-parametric Generalized Additive Model (Hastie and Tibshirani, 1986) using a ran-

domly selected half of the sample. Based on previous research, the shape of the relationship

between each physical behavior and mortality was incorporated into the model using the Shape

Constrained Additive Regression(SCAR) method of Chen and Samworth (2016)(SCAR package;

https://cran.r-project.org/web/packages/scar/index.html). Specifically, the dose-response relation-

ship between aerobic activity and survival is concave and increasing (Arem et al., 2015), sedentary

time is concave and decreasing, and hours of sleep is concave (Grøntved and Hu, 2011; Yin et al.,

2017; Prince et al., 2014). Models were adjusted for the covariates described above.

Maximum logit scores from each of the eight behavior-survival functions were summed to

produce a maximum total score, such that components more strongly associated with survival

contributed more towards the total score (Figure 2.4). This total was rescaled to range from 0-100,

with 0 being highest risk and 100 being lowest risk, to be consistent with composite scores from

other fields, such as the Healthy Eating Index (Guenther et al., 2008a) Sedentary behavior values

were reverse coded because more sedentary time decreases survival probability. Because of its

inverted U-shaped relationship with survival, scores for sleep duration were scaled such that that

long-sleepers (>10 hours/d) and those whose reported no hours of sleep received a 0 score. Figure

2.1 shows plots for the rescaled values for each of the eight components, with y-axes indicating the

relative importance of each physical behavior to the overall PBS. Table 2.2 shows the final scoring

system, and Figure 2.5 shows the histogram of the total score across the data set.
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Maximum Score Median Values
Physical Behavior Criteria for Max Max PBS Reported behavior Assigned PBS
Moderate Exercise >50 MET-hrs/wk 32 13.7 MET/hrs 27.25
Vigorous Exercise >20 MET-hrs/wk 10 0 MET/hrs 0

Light Household Activity >3 MET-hrs/wk 3 7 MET/hrs 2.47
MVPA Household Activity >20 MET-hrs/wk 25 13.25 MET/hrs 22.9

Weight Training >2 MET-hrs/wk 3 0 MET/hr 0
Sitting Other than TV 0 hrs/day 5 3 hrs/day 4.66
Hours of TV Sitting 0 hrs/day 14 3.5 hrs/day 10.32

Hours of Sleep 7.5 hrs/day 8 7.5 hrs/day 7.54
Total Score (quintile) 100 (Q5) 75.14 (Q3)

Person A Person B
Physical Behavior Reported behavior Assigned PBS Reported behavior Assigned PBS
Moderate Exercise 8 MET/hrs 24.36 8 MET/hrs 24.36
Vigorous Exercise 0 MET/hrs 0 0 MET/hrs 0

Light Household Activity 3.5 MET/hrs 2.42 3.5 MET/hrs 2.42
MVPA Household Activity 4 MET/hrs 17.9 4 MET/hrs 17.9

Weight Training 0 MET/hr 0 0 MET/hr 0
Sitting Other than TV 3 hrs/day 4.66 5 hrs/day 4.11
Hours of TV Sitting 3.5 hrs/day 10.32 7 hrs/day 3.1

Hours of Sleep 7 hrs/day 7.54 6 hrs/day 6.5
Total Score (quintile) 69.94 (Q2) 61.12 (Q1)

Table 2.2: Reported physical behaviors and corresponding Physical Behavior Score for maximum,
median, and two hypothetical people in the NIH-AARP Diet and Health Study Cohort, 2004-2011.
Person A meets guidelines NIH guidelines with average time spent sitting and Person B meets NIH
guidelines with high reported sedentary behavior.
Note: PBS is physical behavior score. MET-hrs/wk is the Metabolic equivalent (MET)-value for
each activity multiplied by the reported hours per week; MVPA is moderate-vigorous intensity
physical activity. Moderate ≥ 3 METs; Vigorous ≥ 6 METs. PBS score for quintiles are Q1
(0 to 66.47); Q2 (>66.47 to 73.63); Q3 (>73.63 to 79.03); Q4 (>79.03 to 84.85); Q5 (>85.85).
Reprinted with permission from Wolters Kluwer Health Inc

2.7 Example Physical Behavior Score

In Table 2.2 we show a breakdown of how much each behavior contributes to the overall score.

Moderate exercise, vigorous exercise and moderate-vigorous household activity accounted for the

majority of the score (57/100 points). We also provide the PBS for a hypothetical person who is

at the median for all reported behaviors, resulting in a score of 75.14 (Q3). (13.7 MET-hrs/wk of

moderate activity, 0 MET-hrs/wk of vigorous activity per week, 7 MET-hrs/wk of light household
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activity, 13.25 MET-hrs/wk of MVPA household activity, 0 MET-hrs/wk of weight training, 3.0

hrs/day sitting non watching television, 3.5 hrs/day of television sitting, and 7.5 hrs of sleep).

Table 2.2 also shows two hypothetical people who achieve physical activity recommendations (8

MET-hrs/wk of moderate exercise and 4 MET-hrs/week of MVPA household activity) but vary

by levels of sitting time and sleep, which results in different PBS scores and classifies them in

different quintiles. The provided R code in Section A.1 includes a function to calculate the PBS

either for an individual or for a dataset with information on the same eight physical behaviors.

2.8 Predictive Validity of PBS

To model the relationship between the PBS and mortality risk, we used Cox Proportional Haz-

ards Regression to examine mortality risk across PBS quintiles in the second half of the sample.

We tested the proportional hazards assumption using Schoenfeld residuals Schoenfeld (1982) and

found this assumption was not violated. See Figures A.1 and A.2 We also determined the mortality

risk by quintiles of aerobic activity and sedentary time, and sleep quartiles (Q1: <5hr/day; Q2 is 5-7

hr/day; Q3: 7-8 hr/day [referent], Q4 is >9hr/day) in multivariate adjusted models as a comparator

for the PBS. Separate models were fit for all-cause and cause-specific mortality (cardiovascular

disease, cancer and other causes). We repeated the categorical (quintile or quartile) analysis sepa-

rately for men and women, and also conducted a sex-stratified Cox proportional hazards regression

analysis using PBS as a continuous variable. For the continuous analysis, the referent point was

set at the 5th percentile (PBS of 53.5). We also conducted stratified analyses by sex, age group

(median split), BMI categories (normal weight BMI <25 kg/m2; overweight BMI 25-29.9 kg/m2;

obese ≥30 kg/m2) and self-reported health status (fair, good, very good and excellent). All sub-

group analyses were adjusted for covariates. All models adjusted for the same confounders, and

all analyses were done in R (version 3.4.3), with an alpha-level of 0.05.

2.9 Results

Table 2.3 shows the baseline participant characteristics by PBS quintile. There tended to be

more variation in physical activity compared to sedentary time and sleep across quintiles. The
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quintile cut-offs were Q1 (0 to 66.47); Q2 (>66.47 to 73.63); Q3 (>73.63 to 79.03); Q4 (>79.03

to 84.85); Q5 (>85.85). Participants in the first quintile (Q1) tended to be more obese, have lower

education levels, were less likely to report health status as excellent compared to those in Q5. Over

an average of 6.6y of follow-up, there were 8,732 deaths (3,503 Cancer, 2732 CVD, 2,497 other

cause). There was a strong graded decline in risk of all-cause mortality across quintiles of PBS

(Table 3). Compared to the first quintile of PBS, HRs (95% CI) were 0.72 (0.68, 0.77), 0.64 (0.60,

0.69), 0.58 (0.555, 0.62), and 0.53 (0.49, 0.57) for quintiles 2-5 respectively. Results were similar

but stronger for cardiovascular disease mortality (Q5 vs Q1= 0.42 [0.37, 0.48]) and other mortality

(Q5 vs Q1 = 0.42 [0.36, 0.48]). The PBS was also associated with graded decreased risk of cancer

mortality (Q5 vs Q1 = 0.75 [0.68, 0.85]).

We then compared the magnitude of the mortality associations using the combined PBS to the

individual behavioral components in isolation. For all-cause mortality, when comparing Q5 to Q1,

the HR for PBS 0.53 (0.49, 0.57) was a stronger association than those observed for the individual

score components (i.e., aerobic activity 0.63 (0.57, 0.69), sedentary time 0.74 (0.67, 0.82) and

sleep duration 1.24 (1.17, 1.30), (7-8 hrs vs 9+h/day)). Aerobic activity consistently had stronger

associations than sedentary time or sleep for all-cause and cause-specific mortality. For cause-

specific mortality, the relationship with PBS was consistently stronger (7-13% lower HR) than for

that of aerobic activity alone (Table 2.4).

The relationship between physical behaviors and mortality was stronger for women than for

men, although there was still a strong, dose-response relationship between PBS score for both men

and women (Figure 2.2). In sex-specific quintiles for all-cause mortality, women in the highest

quintile had 54% reduction in all-cause mortality (Q5 vs Q1= 0.46 [0.41, 0.52)), while men in the

highest quintile had a 45% reduction in mortality risk (Q5 vs Q1= 0.55 [0.50, 0.60)). This observed

sex-difference was consistent across cause-specific mortality (Supplemental Digital Content Table

2). To investigate potential confounding and reverse causation, stratified analyses were conducted

for all-cause mortality by sub-groups. We found the relationship between PBS and mortality was

associated with decreased mortality risk in both younger and older groups, across category of self-
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Q1 Q2 Q3 Q4 Q5
Age (yrs, mean [SD]) 71.2 (5.4) 70.7 (5.4) 70.4 (5.4) 70.1 (5.3) 69.7 (69.7)
Sex (% Female) 54.7 57.2 59.6 60.7 60.6
White (%) 90.8 92.6 93.4 93.8 93.9
BMI category (%) Normal 24.9 29.7 34.2 37.5 42.7

Overweight 36.2 40.6 40.7 40.9 40.3
Obese 33.1 24.5 20.5 16.9 12.6

Smoking Status (%) Never 35.4 37.8 38.9 40.4 41.2
Current 7.4 6 5.2 4.3 2.8

Education High school 36.5 34.6 31.8 28.5 23.3
College graduate 37.3 39.9 43.1 46.8 52.5

Depression (%) 16.6 12.8 11 9.8 8.8
Heart Disease (%) 26 21.1 19.7 18.8 17.4
Health status (%) Excellent 7.7 10.7 13.6 16.9 23.3

Very Good 28 36.7 40.4 43.7 46
Good 42.2 40.4 37.1 32.9 26.6
Fair 22.2 12.2 8.8 6.4 4.1

Physical Behavior Components (median [ 25th, 75th ])
Moderate exercise 4.4 (2.5 9.4) 9.4 (5.1 18.0) 13.7 (7.3 25.9) 20.7 (11.6 36.0) 28.8 (15.1 51.1)
Vigorous exercise 0.0 (0.0 0.0) 0.0 (0.0 1.9) 0.0 (0.0 7.3) 3.8 (0.0 17.5) 18.3 (8.8 36.5)
Light household activity 5.3 (1.5 12.5) 6.3 (2.5 21.3) 7.8 (3.8 21.3) 12.5 (3.8 22.8) 12.5 (6.3 30.0)
Household activity 3.5 (0.9 8.4) 9.1 (4.5 18.1) 14.4 (7.5 28.3) 19.3 (10.4 36.0) 26.4 (16.0 47.0)
Weight training 0.0 (0.0 0.0) 0.0 (0.0 0.0) 0.0 (0.0 0.0) 0.0 (0.0 0.9) 0.9 (0.0 5.3)
TV sitting 3.5 (3.5 5.5) 3.5 (1.5 5.5) 3.5 (1.5 3.5) 1.5 (1.5 3.5) 1.5 (1.5 3.5)
Non-TV sitting 5.0 (3.0 7.0) 5.0 (3.0 7.0) 3.0 (3.0 5.0) 3.0 (3.0 5.0) 3.0 (3.0 5.0)
Sleep 7.5 (5.5 7.5) 7.5 (5.5 7.5) 7.5 (5.5 7.5) 7.5 (7.5 7.5) 7.5 (7.5 7.5)

Table 2.3: Baseline Participant Characteristics and Physical Behavior Components by quintile of
physical behavior score in the NIH-AARP Diet and Health Study Cohort, 2004-2006. Note: De-
mographic characteristics (education, sex, race/ethnicity) were assessed on the baseline question-
naire (1995) and other variables were assessed on follow-up questionnaires (2004-2006) (i.e., age,
physical behaviors smoking, body mass index [BMI)] based on self-reported height and weight,
health status and disease history) were based on values reported on the follow-up questionnaire.
Exercise and sport activities are measured in METhr/wk and sedentary behaviors are measured in
hr/day. MET-hrs/wk is the Metabolic equivalent (MET)-value for each activity multiplied by the
reported hours per week Moderate ≥ 3 METs; Vigorous ≥ 6 METs.Reprinted with permission
from Wolters Kluwer Health Inc

reported health status and BMI categories. (Figure 2.3).

2.10 Discussion

This paper presents a new method to combine a number of distinct physical activities, sedentary

behaviors and sleep into an integrated score. In a large sample of US adults, we showed this score
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Q1 Q2 Q3 Q4 Q5
All-cause Physical Behavior Score ref 0.72 (0.68, 0.77) 0.64 (0.60, 0.69) 0.58 (0.55, 0.62) 0.53 (0.49, 0.57)

Aerobic activity ref 0.74 (0.68, 0.80) 0.63 (0.57, 0.69) 0.65 (0.58, 0.72) 0.63 (0.57, 0.69)
Sedentary time ref 0.88 (0.80, 0.96) 0.84 (0.78, 0.91) 0.77 (0.71, 0.84) 0.74 (0.67, 0.82)

Sleep - 1.15 (1.07, 1.23) 1.02 (0.98, 1.09) Ref 1.24 (1.17, 1.30)

CVD Physical Behavior Score ref 0.63 (0.56, 0.71) 0.58 (0.52, 0.65) 0.52 (0.47, 0.58) 0.42 (0.37, 0.48)
Aerobic activity ref 0.69 (0.58, 0.79) 0.53 (0.41, 0.64) 0.54 (0.42, 0.66) 0.55 (0.43, 0.67)
Sedentary time ref 0.88 (0.74, 1.01) 0.78 (0.65, 0.89) 0.68 (0.56, 0.80) 0.65 (0.52, 0.78)

Sleep - 1.20 (1.07, 1.34) 1.01 (0.92, 1.11) Ref 1.24 (1.14, 1.36)

Cancer Physical Behavior Score ref 0.91 (0.83, 1.01) 0.81 (0.73, 0.90) 0.79 (0.72, 0.88) 0.75 (0.68, 0.85)
Aerobic activity ref 0.92 (0.82, 1.01) 0.84 (0.73, 0.94) 0.83 (0.73, 0.94) 0.82 (0.72, 0.87)
Sedentary time ref 0.91 (0.79, 1.02) 0.91 (0.79, 1.01) 0.92 (0.81, 1.02) 0.88 (0.80, 0.96)

Sleep - 1.12 (1.02, 1.21) 0.97 (0.88, 1.05) ref 1.11 (1.02, 1.21)

Other Physical Behavior Score ref 0.64 (0.57, 0.72) 0.53 (0.47, 0.60) 0.44 (0.38, 0.50) 0.42 (0.36, 0.48)
Aerobic activity ref 0.63 (0.52, 0.75) 0.58 (0.46, 0.70) 0.55 (0.43, 0.67) 0.51 (0.38, 0.64)
Sedentary time ref 0.87 (0.74, 1.01) 0.77 (0.65, 0.90) 0.68 (0.56, 0.80) 0.65 (0.52, 0.78)

Sleep - 1.24 (1.09, 1.39) 1.15 (1.06, 1.26) ref 1.40 (1.29, 1.51)

Table 2.4: Comparison of physical behavior score to groups components for all-cause and cause-
specific mortality. Multivariate models adjusted for age (yr), sex, education (< 12 y, high school
graduate, some college, college graduate, unknown), smoking history (never, stopped 10+ yr,
stopped 5–9 yr, stopped 1–4 yr, stopped <1 yr, current smoker, unknown), race/ethnicity (Non-
Hispanic White, Non-Hispanic Black, Other, unknown), overall health (excellent, very good, good,
fair, unknown), body mass index (<25, 25–29.9, 30+ kg/m2, unknown), physician diagnosed de-
pression (yes, no, or missing), physician diagnosed heart disease (yes, no, missing). For aerobic
activity Q1 is low physical activity (0-27.8 MET-hr/wk), for sedentary time Q1 is high sitting
(10.5+ hr/day) and for sleep referent (Q3) is 7-8 hr/day, Q1 is <5hr/day, Q2 is 5-7 hr/day and Q4 is
>9hr/day. Aerobic activity, sedentary time and sleep were mutually adjusted in the same models.
Reprinted with permission from Wolters Kluwer Health Inc

has strong predictive validity for both men and women. It also showed a strong-dose-response

relationship with mortality risk in both men and women, and it was more strongly associated with

mortality risk than its individual components, indicated by non-overlapping confidence intervals

(Table 2.4). In addition to being novel from a statistical perspective, the physical behavior score

has important practical applications that may advance the field of physical behavior epidemiology.

A primary application of the PBS is in its potential to estimate the overall association between a

comprehensive range of physical behaviors, morbidity and mortality. In 2012, Lee and colleagues
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estimated the global mortality burden due to lack of leisure-time physical activity was 5.3 million

deaths annually, but this estimate was based on inactivity alone Lee et al. (2012). Given that

the observed risk estimates using the PBS were stronger than for aerobic activity alone, our study

suggests that the burden due to the combination of low activity, high sitting time and sleep duration

may even higher. Moreover, physical behaviors are inherently interrelated and synergistic, and this

type of indexed score accounts for this relationship. An important next step will be to determine if

the scoring system we empirically developed in this cohort can be translated to other studies that

assess physical behaviors in similar questionnaires (Mekary et al., 2013; Chasan-Taber et al., 1996;

Wolf et al., 1994; Patel et al., 2017). To facilitate this, we have provided R-code to calculate the

PBS in Section A.1.

A second application of this approach is in epidemiologic analyses using the composite score

reflecting multiple physical behaviors as a single covariate. Given the growing list of physical

behaviors that have been linked with health-related outcomes, it may be advantageous to use an

overall index that represents multiple domains and types of physical behavior. The UK Biobank

has elected a similar approach for accelerometer-measured activity, by including a single summary

variable representing overall movement as the primary covariate for activity, rather than categoriz-

ing sedentary, light and moderate-vigorous physical activity (Doherty et al., 2017). Our approach

may require additional questions to ensure the range of physical behaviors are covered, but it al-

lows researchers to adjust for multiple dimensions of physical behavior without having to enter

separate variables for each behavior into their model. This application of the PBS will have partic-

ular importance in studies where physical behavior is a covariate rather than the primary exposure

of interest, when investigating the link between physical behaviors and rare disease outcomes or in

small samples where statistical efficiency is a primary concern.

The statistical approach we used is innovative. While shape constrained regression has been

used in a variety of fields(see Chen and Samworth (2016)) this is, to our knowledge, the first time it

has been applied in the analysis of physical activity, sedentary behavior, and sleep. This approach

is a unique way of letting previous knowledge guide the choice of statistical model. Additionally,
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when the relationship between two variables is known to satisfy a predefined relationship, shape

constrained regression has been shown to give results that are, on average, closer to the truth than

comparable methods without shape constraints (Chen and Samworth, 2016; Pya and Wood, 2015)

This may help to explain the strong, statistically significant results we obtained.

There is a large body of evidence in nutritional epidemiology that has demonstrated the con-

ceptual and etiologic value in assessing dietary patterns (i.e., combinations of foods and nutrients)

in relationship to health (Guenther et al., 2008a,b; Hu et al., 2000; Guenther et al., 2013c). Dietary

pattern analyses recognize that, in contrast to isolating a single component of food (e.g., carbo-

hydrates), the foods people eat are likely to be correlated and synergistic. Dietary pattern indices

have been developed a posterori (using a data driven approach like principal component analyses)

or a priori, using score-based approaches (e.g., the Healthy Eating Indices derived from federal

dietary guidelines). Our approach borrows strengths from each of these, a priori we identified key

physical behaviors to be included in the PBS, and then used a data-driven approach to weight each

of the individual components of the total score in relation to the outcome of interest – in this case,

survival.

The PBS recognizes that individuals can achieve health benefits through different combinations

of behavior, for example engaging in high volume of moderate exercise, or engaging in a lot

of household activity, limiting sedentary time and adequate sleep. The strongest contributors to

the PBS score were moderate exercise and television viewing, which is consistent with previous

research and the 2018 Physical Activity Guidelines, which state that adults who sit less and do any

amount of moderate-to-vigorous physical activity gain health benefits (Ekelund et al., 2016; Piercy

et al., 2018). This may have implications for developing and evaluating interventions that target

multiple behaviors, which is an important area for future research.

There are important limitations to note. Our sample is fairly well educated, predominantly

white older adults (59-80 years). Although this is an important demographic given the aging US

population, we do not know if these results generalize to younger samples or those with different

racial/ethnic compositions. Physical behaviors were self-reported, which is subject to recall and
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measurement error. However, the use of a questionnaire enables details about activity domain that

are not differentiated well using an accelerometer (e.g., household vs. leisure) and activity types

(e.g., biking and weight lifting) that are not accurately captured by activity monitors. In contrast

to a previous day recall or activity monitoring, the survey was not designed to capture a complete

24-hr cycle of daily activity, sitting and sleep. Activities were reported as duration per week and

then converted to MET-hrs/week to account for differing energy cost of different activities. Future

research is needed to determine the utility of this approach using instruments like previous day

recalls or activity monitors that are designed to assess a complete 24-hr period (Matthews et al.,

2018). Sleep duration is strongly associated with health (Yin et al., 2017), but there are other

aspects of sleep quality that are associated with health outcomes that we did not assess (Kabat

et al., 2018).

This study has important strengths including a large sample with considerable statistical power.

The questionnaire included a wide range of activities, which enabled the multi-dimensional evalua-

tion of physical behaviors. The statistical approach is a novel application that incorporates both the

strength and shape of associations into an easily interpretable overall score (0-100). The method

for developing a PBS score presented in this paper would generalize to a different sample and/or a

different instrument to assess physical behavior, but may result in different weighting of the com-

ponents. An additional strength is the dissemination of R-code for individuals to calculate their

PBS score based on these data, and for researchers to apply to full datasets to estimate PBS in

independent samples.

2.11 Conclusions

This paper presents a statistical method to generate a composite physical behavior that has high

predictive validity for mortality outcomes. Although widespread in other areas of epidemiology

(Guenther et al., 2008a, 2013a, 2008b) this is one of the first attempts to characterize integrate

multiple distinct physical behaviors into a single physical composite score. This score can be

applied to quantify the overall disease burden of physical behaviors rather than looking at different

types of physical activity in isolation, and it can be used as a parsimonious covariate to adjust for
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physical behaviors. Future research is needed to test this approach in an independent sample and

with different health outcomes.

2.12 Technical Description of Score Development

Using the NIH-AARP Study of Diet and Health (Schatzkin et al., 2001), we break physical

activity into 8 discrete components. The relationship between physical activity and survival for

each activity component was first modeled using a Generalized Additive Model (Hastie and Tib-

shirani, 1986; Wood, 2017). Suppose Yi is a binary indicator of survival of the ith person until the

end of the study, Xi = (Xi1, . . . , Xi8) is a vector containing the ith person’s 8 physical activity

measurements, and Zi is the vector containing the additional covariates like age, sex, education,

and other demographic information. We model the probability of survival as

pr(Yi = 1|Xi, Zi) = H{
∑8

j=1fj(Xij) + ZT
i θ}, (2.1)

where H(·) is the logistic distribution function, each fj is an unknown smooth function, and θ is a

vector of unknown parameters.

The expected relationship between each physical behavior and mortality - the functions, fj ,

in (2.1) - can be restricted to be consistent with previous studies. In the statistics literature, these

restrictions are referred to as shape constraints. The dose-response relationship between aerobic

activity and survival has been established as somewhat concave and non-decreasing (Arem et al.,

2015). That is, aerobic activity has positive effect but levels off after a certain point. Sedentary time

is known to have a negative effect on overall health (Grøntved and Hu, 2011; Prince et al., 2014).

Sleep is known to be beneficial in reasonable doses but too much or too little sleep is indicative of

poor health (Yin et al., 2017), suggesting a concave, parabolic relationship with overall health. To

incorporate this information into Model (2.1) we used the Shape Constrained Additive Regression

(SCAR) method of Chen and Samworth (2016) for fitting Generalized Additive Models with shape

constraints.

The fitted values, as they are reported by SCAR, represent the logits of the effect of each
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physical behavior on survival. This is not a scale that is desirable to work with. The regression

results should be scaled to be between 0 and 100 to put it on the same scale as scores from other

fields, such as the Healthy Eating Index (Guenther et al. 2008). Fitted values from (2.1) indicating

a low probability of survival are translated to values near 0, and fitted values indicating a high

probability of survival are translated to a value near 100. This creates the scoring system for

physical activity.

Time spent sitting adversely impacts survival and fitted values for sitting variables are negative.

Since one of the aims of this analysis is to create a score which ranges from 0 to 100, a number

lower than 0 is undesirable. In the scoring system we develop, a person with a score of 0 should

be getting no positive benefits from physical activity, and a score below 0 has no meaning. Fitted

values were rescaled to force the functions to take on only positive values. Denote the scaled

function by f ∗(·) and the index of the function corresponding to TV sitting as j = A and the index

for non-TV sitting as j = B Both function, fA(·) and fB(·), are rescaled by adding the absolute

value of the minimum of both functions. That is,

f ∗j (Xij) = fj(Xij) + |min
j
fj(Xij)| (2.2)

for j = A,B. The smallest value fitted value of the functions f ∗A(·) and f ∗B(·) is 0 after applying

(2.2).

Additionally, the estimated function for hours of sleep becomes negative for values greater than

about 9.5 hours of sleep. Instead of shifting the function by a constant (such as |min
j
| for the sitting

functions) negative values are set to 0, so that,

f ∗(Xij) = fj(Xij) ∗ I{f(Xij) > 0}, (2.3)

where I{f(Xij) > 0}is an indicator function. This function takes on value 1 if f(Xij) is positive

and 0 if f(Xij) is negative.

For simple notation, all shape constrained functions are referred to by f ∗j even if they have not
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been modified as in (2.2) and (2.3). As a final step, the maximum values of each f ∗j is calculated

and then summed. Denote this quantity as T. Formally,

T =
∑J

j=1max
j
f ∗j (Xij). (2.4)

The fitted values for every subject in the dataset are then divided by T. This is the Physical Behavior

Score reported in the paper. The result is denoted by Si, i.e.,

Si = 100/T
∑J

j=1f
∗
j (Xij) (2.5)

At this stage, S is between 0 and 100 for every individual in the NIH-AARP dataset. A plot of

the original function is given in Figure 2.4 and the distribution of physical activity scores is given

in Figure 2.5.
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Figure 2.1: Shape constrained additive regression (SCAR) returns 8 sets of predicted values, one
for each function that is fit to describe the relationship between physical activity and mortality.
The values on the x-axis are MET’s expended during a particular physical behavior or hours spent
in a particular physical behavior. The values on the y-axis show the relative importance of each
physical behavior on the total Physical Behavior Score. Reprinted with permission from Wolters
Kluwer Health Inc
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Figure 2.2: The relative hazard of all-cause mortality plotted from the 5th percentile, 53.5, to the
maximum score of 100, separately for men and women. Model adjusted for age (yr), sex, edu-
cation (< 12 y, high school graduate, some college, college graduate, unknown), smoking history
(never, stopped 10+ yr, stopped 5–9 yr, stopped 1–4 yr, stopped <1 yr, current smoker, unknown),
race/ethnicity (Non-Hispanic White, Non- Hispanic Black, Other, unknown), overall health (ex-
cellent, very good, good, fair, unknown), body mass index (<25, 25–29.9, 30+ kg/m2, unknown),
physician diagnosed depression (yes, no, or missing), physician diagnosed heart disease (yes, no,
missing). Shading indicates 95% confidence intervals. Reprinted with permission from Wolters
Kluwer Health Inc
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Figure 2.3: Values are Hazard Ratio and confidence interval per 10 unit increase in Physical Be-
havior Score. All models were adjusted for age (yr), sex, education (<12 y, high school graduate,
some college, college graduate, unknown), smoking history (never, stopped 10+ yr, stopped 5–9
yr, stopped 1–4 yr, stopped <1 yr, current smoker, unknown), race/ethnicity (Non- Hispanic White,
Non-Hispanic Black, Other, unknown), overall health (excellent, very good, good, fair, unknown),
body mass index (<25, 25–29.9, 30+ kg/m2, unknown), physician diagnosed depression (yes, no,
or missing), physician diagnosed heart disease (yes, no, missing) Reprinted with permission from
Wolters Kluwer Health Inc
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Figure 2.4: Shape constrained additive regression (SCAR) returns 8 sets of predicted values, one
for each function that is fit to describe the relationship between physical activity and mortality. The
values on the x-axis are MET’s expended during a particular physical behavior or hours spent in
a particular physical behavior. The values on the y-axis show the additive effect of each physical
behavior on the logits (log-odds) of survival. These are the fitted values described in Section
2.12.Reprinted with permission from Wolters Kluwer Health Inc
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Figure 2.5: Distribution of physical behavior scores in the NIH-AARP Diet and Health Study
Cohort, 2004-2006. Reprinted with permission from Wolters Kluwer Health Inc
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3. RE-EVALUATING COMPOSITE SCORES: ADAPTIVE LASSO VARIABLE

SELECTION FOR NONLINEAR MODELS

3.1 Introduction

In epidemiology and other public health fields there is a need to reduce complicated behav-

ioral patterns into simple, interpretable terms. A composite score, also referred to as an index,

is commonly used to achieve this end, so as to be applied to different populations and different

health outcomes. Composite scoring systems compare an individual’s health behavior to an ide-

alized standard. Based on compliance to a set of health behaviors, an individual is assigned a

score between 0 and 100. A score of 0 indicates poor compliance, and 100 is a theoretical perfect

behavior.

We look at one particular challenge of working with composite scoring systems derived to be

applied to multiple populations and diseases: Given an existing scoring system, are all components

in the system necessary? We follow the ideas put forward by Ma et al. (2017) and fit a logistic

regression model using people from many populations who suffer from many diseases to develop a

score. We include nonlinear terms in our regression model which capture the effect of the score on

the risk of particular disease in a population of interest. Ma et al. (2017) perform a similar analysis

but include a nonparametric component in their model that we do not. The authors found that the

flexibility of their semiparametric model was not needed in their real-world data analysis.

We include an adaptive lasso penalty (Zou, 2006) to perform variable selection. The literature

for the Lasso is well developed but does not apply to our particular model because of identifiability

issues discussed in Section 3.2. Additionally, typical software packages for fitting Lasso problems

such as glmnet (Friedman et al., 2010) or Least Angle Regression (Efron et al., 2004) are not able

to handle these nonlinear models. To remedy this, we use the Least Squares Approximation of

Wang and Leng (2007). The Least Squares Approximation allows us to translate our estimation

problem into a simpler asymptotically equivalent least squares minimization. We establish that our
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variable selection technique chooses, asymptotically, the correct subset of components and has the

optimal convergence rate. That is, it has oracle properties.

While our methods are general, we apply them to the 2005 Healthy Eating Index and use the

2005 Healthy Eating Index to motivate our methods. We will refer to the 2005 Healthy Eating

Index as the Healthy Eating Index, omitting the year. The Healthy Eating Index is based on the

key recommendations of the 2005 Dietary Guidelines for Americans (http://www.health.

gov/dietaryguidelines/dga2005/document/default.htm). The index includes

ratios of interrelated dietary components to energy (caloric) intakes. The 2005 Healthy Eating

Index comprises 12 distinct component scores and a total summary score. See Table 3.1 for a list

of these components and the standards for scoring, and see Guenther et al. (2008b,a) for details on

how the Healthy Eating Index was developed and validated.

Intakes of each food or nutrient, represented by one of the 12 components, are expressed as a

ratio to energy intake, assessed, and ascribed a score. There are other, competing measures of diet

such as the 2010 Healthy Eating Index (Guenther et al., 2013a), the Modified Mediterranean Diet

Score (Trichopoulou et al., 2005) and the MedDietScore (Panagiotakos et al., 2006), all of which

are associated with lowered mortality risk and better overall health. Our aims are (a) to suggest

improvements to the dietary guidelines of the Healthy Eating Index; and (b) to use model selection

techniques to evaluate the relative importance of the 12 components. We find the unexpected fact

that empty calories (SoFAAS) are not predictive of increased mortality risk.

3.2 A Nonlinear Model Across Populations

We will to use the term disease in a generic way, until our data analysis. The term should

be understood to mean a collection of health outcomes, which, for example, could be various

combinations overall mortality, mortality from various diseases, different chronic conditions, or

the development of different cancers.

Denote j = 1, ..., J as the index of the Healthy Eating Index components. There are k = 1, ...K

populations and ` = 1, ...LK diseases in each population. There are i = 1, ...nk` individuals be

evaluated for disease ` in population k. The data observed are
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Component Units Healthy Eating Index 2005 score calculation
Total Fruit cups min (5, 5× (density/.8))
Whole Fruit cups min (5, 5× (density/.4))
Total Vegetables cups min (5, 5× (density/1.1))
DOL cups min (5, 5× (density/.4))
Total Grains ounces min (5, 5× (density/3))
Whole Grains ounces min (5, 5× (density/1.5))
Milk cups min (10, 10× (density/1.3))
Meat and Beans ounces min (10, 10× (density/2.5))
Oil grams min (10, 10× (density/12))
Saturated Fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8− (8× (density− 10)/5)
else, score = 10− (2× (density− 7)/3)

Sodium milligrams if density ≥ 2000 score=0
else if density ≤ 700 score=10
else if density ≥ 1100

score = 8− {8× (density− 1100)/(2000− 1100)}
else score = 10− {2× (density− 700)/(1100− 700)}

SoFAAS % of if density ≥ 50 score = 0
energy else if density ≤ 20 score=20

else score = 20− {20× (density− 20)/(50− 20)}

Table 3.1: Description of the Healthy Eating Index 2005 scoring system. Here, “SoFAAS” are
calories from solid fats, alcoholic beverages and added sugars, while “DOL” are dark green and
orange vegetables and legumes. Except for saturated fat and SoFAAS, density is obtained by
multiplying usual intake by 1000 and dividing by usual intake of kilo-calories. For saturated fat,
density is 9×100 usual saturated fat (grams) divided by usual calories, i.e., the percentage of usual
calories coming from usual saturated fat intake. For SoFAAS, the density is the percentage of
usual intake that comes from usual intake of calories, i.e., the division of usual intake of SoFAAS
by usual intake of calories. The total Healthy Eating Index-2005 score is the sum of the individual
component scores.

• Yik` is a binary indicator of disease ` for the ith person in population k.

• (Xi1, ..., XiJ) is the Healthy Eating Index score for person i with components j = 1, ..., J .

In the 2005 Healthy Eating Index, J = 12.

• For each population and disease, there may be different covariates which include terms such

as age, ethnicity, education, body mass index, smoking, physical activity, etc. These covari-
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ates are denoted as Zik`.

To better capture the risk of a particular disease, we introduce a vector α = (α1, . . . αJ)T which

allows flexible rescaling of the Healthy Eating Index components. We model the probability of a

subject i of population ` having disease k as

pr(Yik` = 1|Xikj, Zik`) = H(βk`
∑J

j=1Xijk`αj + ZT
ik`θk`) = pik`, (3.1)

where H(·) is the logistic distribution function. The parameter α reweighs each person’s original

Healthy Eating Index score,
∑J

j=1Xijk`, to create a new modified score,
∑

J Xijk`αj . If a par-

ticular αj is greater than 1, this indicates that a particular HEI component should be given more

relative importance in the 0-to-100 score than in the Healthy Eating Index while a αj < 1 indicates

it should be given less importance. The term βk` allows the effect of the modified score to vary

with population and disease. There is novelty in this modeling approach. We are able to provide

a single measure of diet for every population and disease. To emphasize this, and for notational

convenience, we omit the subscripts over k and ` in X This modeling approach is beneficial to

public health practitioners as a single predictor
∑
XijαJ can be used for any disease/population

of interest, and the effect of this predictor, βl`, can be reassessed as needed.

Model (3.1) results in the composite loglikelihood function

Ln(α, β, θ) =
∑

`

∑
k

∑
i{Yik`log(pik`) + (1− Yik`)log(1− pik`)}.

The multiplication of the parameters α and β in model (3.1) means that they are not identifiable,

and some kind of constraints are needed. A natural constraint would be to enforce that the max-

imum value of the new score,
∑

J Xijαj , is 100. We do eventually use this constraint, but not

initially. That particular constraint makes (3.1) difficult to fit from a computational perspective.

Instead we begin by setting β11 = −1. The remaining parameters, α, β, and θ are estimated in an

iterative profiling procedure, first fixing α and maximizing Ln with respect to β and θ, then fixing

β and θ and maximizing over α. This processes is repeated until convergence. Ma et al. (2017)
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provide guarantees that this procedure will converge to the correct value of the parameters.

Once the estimates have converged, we rescale the α coefficients so the new score is between 0

and 100. Define cmax = (cmax,1, . . . , cmax,J)Tas the maximum value that the original Healthy Eat-

ing Index assigns to a particular dietary component. Each element of α is set to α∗j = αj/α
Tcmax.

This puts the newly assigned score on a scale from 0 to 100, and the constraint on α allows β11 to

be estimated by refitting (3.1) with α∗ in place of α.

3.3 Variable Selection

3.3.1 Least Squares Approximation and Adaptive Lasso

In our context of multiple diseases and populations, we next establish which Healthy Eating

Index components have no effect on health status. To test this we add an adaptive lasso penalty

(Zou, 2006) to our likelihood (3.2). Like all Lasso style penalties, the adaptive Lasso can induce

perform variable selection by forcing some coefficients to take on a value of 0. The adaptive Lasso

has a number of desirable properties that are explored in Section 3.3.2.

In our problem, we focus only on penalization of the α parameters. In principle then, we would

minimize

Ln(β, α, θ) + λ
∑J

j=1|α̂full,j|
−γ|αj|, (3.2)

with respect to β,α, and θ, where λ is the tuning parameter, γ is a prespecified positive number,

and α̂full,j is an estimate of αj which has not been subject to any penalization, found by maximizing

(3.2). If a component in α is shrunk to 0 by the adaptive lasso method, we take this as an indication

that a particular Healthy Eating Index component is unnecessary in predicting outcomes of interest.

However, in practice, there is a computational problem. Typical tools for fitting Lasso problems

such as glmnet (Friedman et al., 2010) or Least Angle Regression (Efron et al., 2004) are designed

for standard linear and generalized linear models and do not handle the term
∑

j Xijαj correctly,

because they cannot penalize the α coefficient without also penalizing the β coefficient. For a

conceptually simple and computationally fast solution, Wang and Leng (2007) proposed a Least
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Squares Approximation for unifying computation of all Lasso models. Consider a problem with

parameters Ψ = (ψ1, . . . , ψP ) and a loss function Ln(Ψ). Let Ψ̃ be the minimizer of Ln(·). The

authors show that any reasonable loss function, in parameters denoted as Ψ,

Ln(Ψ) +
∑d

j=1λj|ψi|,

can be expressed as an asymptotically equivalent least squares problem

Q(Ψ) = (Ψ̃−Ψ)TΣ̂−1(Ψ̃−Ψ) +
∑d

j=1|ψj|,

where Ψ̃ is the vector than minimizes Ln(·) and Σ̂ is an asymptotically consistent estimate of the

covariance matrix of Ψ̃.

We approximate our loglikelihood as

Ln(Θ) + λ
∑J

j=1|α̂full,j|
−γ|αj| ≈ (Θ̃−Θ)TΣ̂−1(Θ̃−Θ) + λ

∑ J
j=1|α̂full,j|

−γ|αj|, (3.3)

where Θ = (β, α, θ).

The Least Squares Approximation in (3.3) can be solved with standard optimization software

or fit as a Gaussian family adaptive lasso model using the glmnet R package. Denote Θ̂LSA(λ) as

the value which minimizes the right hand side of (3.3) as a function of λ. In our computation we

take γ = 1, typical choice, though it can be set to any value satisfying Lemma 1 and Lemma 2 in

Section 3.3.2.

3.3.2 Model Selection and Oracle Properties

Variable selection procedures ideally should possess the oracle property. Fan and Li (2001)

give an overview for what it means for a selection procedure to have the oracle property. Denote

A = {j : Θj 6= 0} and Â(λ) = {j : Θ̂(λ)LSA,j 6= 0} The procedure should have

• Selection Consistency: pr{Â(λ) = A} → 1.
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• Optimal Estimation Rate:
√
n(Θ̂δ,Âδ

− ΘA) → N(0,ΣA) in distribution, where ΘA are

the nonzero components of Θ and ΣA is the covariance matrix knowing the true subset of

predictors

We derive the selection consistency and optimal estimation rate of the Least Squares Approxi-

mation in our problem in a similar manner as Zhang et al. (2015). The following result provides the

selection consistency for θ̂LSA(λ) .The proof of this theorem, as well as all the proofs in Section

3.3.2, is provided in Section B.

Lemma 1. As n→∞, if n1/2λ→ 0, and n(1+γ)/2λ→∞, then

pr{Â(λ) = A} → 1.

Wang and Leng’s proof of oracle properties relies extensively on they they call the covariance

assumption. The covariance assumption specifies a strict relationship between the asymptotic co-

variance matrix of the full model and the asymptotic covariance matrix of an over-fitted model.

The exact assumption is stated as follows: Let Σ denote the variance of the limiting distribution of

the parameters of the full model. Denote Ω = Σ−1, and Ω(S) as the sub-matrix of Ω correspond-

ing to the sub-model S. Let ΣS denote the variance of the limiting distribution of model S, and

ΩS = Σ−1S . The covariance assumption states that Ω(S) = ΩS for any over-fitted S .

The variance-covariance matrix of model (3.1) is fit using a sandwich estimator. A sandwich

estimator has the form Σ = J−1HJ−T where J = Jn(Θ) = ∇Ln(Θ), H = Hn(Θ) = ∇2Ln(Θ),

and J−T = (J−1)T. See Carroll et al. (2006) Section A.3.1 for a detailed treatment of sandwich

estimators. In general, Σ(S) = (J−1HJ−T )(S) 6= J−1S HSJ
−T
S = ΣS , and therefore covariance

matrices derived from sandwich estimators will not satisfy the covariance assumption of Wang and

Leng.

The selection consistency of Theorem 1 does not rely on the Wang and Leng’s covariance

assumption, but the optimal estimation rate does. Therefore, Wang and Leng’s theory will not

guarantee asymptotically consistent parameter or variance estimates. However, we can get param-
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eter and variance estimates by fitting the model (3.1) using only the selected components. This is

explained in the following theorem.

Lemma 2. Let A denote the set of nonzero covariates, θA denote these nonzero covariates, ΣA

denote the covariance matrix of the nonzero covariates, and θ̂(A) denote the estimates of θA found

by fitting the logistic model from Section 3.2. As n→∞, if n1/2λ→ 0 and n(1+γ)/2λ→∞, then

√
n{Θ̂(A)−ΘA} → N(0,ΣA).

The results of Lemma 1 and Lemma 2 rely the proper choice of λ. Like all Lasso methods,

the Least Squares Approximation provides a solution for any λ, however the optimal value of λ

must be selected. For finding the best fitting penalized model, Wang and Leng propose a BIC style

criterion, namely

BIC(λ) = {Θ̂LSA(λ)− Θ̃full}TΣ̂−1{Θ̂LSA(λ)− Θ̃full}+ gn/{nlog(n)},

where gn is the number of nonzero coefficients in Θ̂LSA(λ). Define Atrue as the set of nonzero

coefficients. The interval (0,∞) can be partitioned into three disjoint sets depending on whether

Â(λ) is over-fit, under-fit, or equal to the true model:

R− = {λ ∈ (0,∞) : Â(λ) ⊂ Atrue},

R0 = {λ ∈ (0,∞) : Â(λ) = Atrue},

R+ = {λ ∈ (0,∞) : Â(λ) ⊃ Atrue, Â(λ) 6= Atrue}.

Letting λ∗ ∝ n−2/3 which satisfies Theorem 1, then we have,

pr{Â(λ∗) = A} → 1.

Additionally, we have the following result for any λ ∈ R− and λ ∈ R+
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Lemma 3. As n → ∞, if Σ̂ is a consistent estimate of the variance-covariance matrix of the

limiting distribution of the full model, then

pr{ inf
λ∈R−∪R+

BIC(λ) > BIC(λ∗)} → 1 (3.4)

Theorem 3 tell us that any λ which produces the incorrect model, that is λ ∈ R− and λ ∈ R+,

will not be selected by the BIC criterion as the optimal tuning parameter. Wang and Leng’s BIC

criterion is consistent in selecting the optimal tuning parameter.

3.4 Data Analysis

3.4.1 Background

Of particular interest to nutritionists and epidemiologists is the relationship between diet and

cancer as well as diet and mortality. We conduct our analysis on the 2005 NIH-AARP Study

of Diet and Health. This longitudinal study tracks incidence of lung, colorectal, prostate, breast,

and ovarian cancer in adults between the ages of 51-75, as well as cause of death for those who

died while the study was conducted. Table 3.2 lists the number of adults surveyed as well as the

breakdown of cancer by men and women, and Table 3.3 lists mortality. The study follows mortality

caused by cancer, cardiovascular disease, as well as all other causes of mortality for both men and

women.

Men Women
Description # Cases Percentages # Cases Percentages
Sample size 294,673 199,285
Breast cancer 7,736 3.88%
Ovarian cancer 759 0.38%
Prostate cancer 23,477 7.97%
Colorectal cancer 4,693 1.59% 2,291 1.15%
Lung cancer 6,135 2.08% 3,630 1.82%

Table 3.2: Summary of the NIH-AARP data for cancer occurrence.
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Men Women
Description # Cases # Cases
Sample size 219,612 169,480
CVD mortality 8,112 4,028
Cancer mortality 12,247 7,344
Other cause mortality 10,821 6,547

Table 3.3: Summary of the NIH-AARP data for mortality. Cardiovascular disease has been abbre-
viated as CVD.

We consider three events of interest: cancer occurrence, morality, and all-cause mortality. Can-

cer occurrence is defined as diagnosis of any of the five types of cancer in Table 3.2, mortality is

defined as mutually exclusive outcome of one the three cause in Table 3.3, and all-cause mortality

is the aggregation of any type of mortality. We consider these outcomes separately and fit separate

models for each outcome. For each outcome the analysis is as follows.

• Model (3.1) is fit using all the components of the 2005 Healthy Eating Index.

• The Least Squares Approximation with an Adaptive Lasso penalty is used to identify the

relevant subset of Healthy Eating Index components.

• Model (3.1) is refit using only components selected by the Least Squares Approximation.

This results in three sets of selected components and three sets of parameter estimates

The α∗ coefficients, which correspond to the rescaled Healthy Eating Index described in Sec-

tion 3.2, are provided for cancer occurrence, morality, and all-cause mortality in Table 3.4. The

variance of the unscaled α coefficients is calculated with sandwich estimator, and variance of the

re-scaled α∗ is calculated using the Delta Method. This derivation is provided in Appendix B.5.

We do not provide confidence intervals for components in α∗ which are set to 0 by the Least

Squares Approximation.
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Cancer Mortality All-Cause Mortality
Whole Grains 3.98 (3.18, 4.78) 5.59 (5.04, 6.13) 5.61 (5.03, 6.18)
Total Grains 1.34 (0.59, 2.09) 0.87 (0.41, 1.33) 0.93 (0.47, 1.40)
Whole Fruit 1.56 (0.74, 2.37) 0.22 (-0.12, 0.57) 0.39 (0.02, 0.08)
Total Fruit 2.71 (1.87, 3.55) 0 0
Total Veg. 1.37 (0.47, 2.26) 2.13 (1.57, 2.68) 2.04 (1.46, 2.62)
DOL Veg. 1.52 (0.65, 1.14) 0.81 (0.39, 0.68) 0.73 (0.30, 1.17)

Dairy 0.90 (0.65, 1.14) 0.53 (0.39, 0.68) 0.58 (0.43, 0.74)
Meat & Beans 0 1.06 (0.81, 1.31) 0.98 (0.71, 1.25)

Oils 0.58 (0.30, 0.86) 0.59 (0.42, 0.77) 0.63 (0.44, 0.81)
Sodium 1.28 (0.95, 1.61) 1.96 (1.78, 2.13) 1.85 (1.66, 2.04)

Saturated Fats 1.00 (0.72, 1.28) 1.04 (0.88, 1.22) 1.09 (0.91, 1.27)
Empty Calories 0 0 0

Table 3.4: Results from Section 3.4.2 when the outcome of interest is cancer occurrence, various
types of mortality, and aggregated all-cause mortality. Provided estimates are found by fitting the
logistic regression model from Section 3.2 using only the subset of components chosen by the Least
Squares Approximation. Parentheses are 95% confidence intervals. Bold 0’s indicate components
which are set to 0 by the Least Squares Approximation.

3.4.2 Results

The Healthy Eating Index puts a large penalty on diets high in empty calories. Empty calories,

refereed to as SoFAAS in Table 3.1, and and made up of solid fats, alcohol and added sugars, make

up 20 points of the Healthy Eating Index score. This means that someone with a diet high in empty

calories will always be assigned a score below 80 regardless of their other nutritional intake. This

is the largest contribution by a single component. This is in stark contrast to our results. In each

analysis, the Least Squares Approximation forces Empty Calories to take a value of 0. That is, we

find that empty calories are not very predictive of mortality.

Total grains appear to be undervalued by the Healthy Eating Index. For example, a person

receiving a perfect score of 5 for whole grains in the original Healthy Eating Index would be

reassigned a score of 5.61 × 5 = 28.05 if all-cause mortality was of interest. Similarly, our

assessment gives total vegetables over twice its original weight when predicting mortality. It is

also apparent that for any kind of mortality, the 2005 Healthy Eating Index may overstate the
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importance of fruit in general.

To some, the 2005 Healthy Eating Index may appear more appropriate for predicting cancer

than it does for predicting mortality. This possible concern may have prompted the development

of the Alternative Healthy Eating Index by McCullough et al. (2002).

3.5 Simulations

We justify the numeric results from Section 3.4.2 and the theory from Section 3.3.1 with two

sets of simulations. The first simulation examines the stability of the estimation procedure as the

sample size changes. In the second simulation we generate data from a similar model to the data

example in Section 4.6.

3.5.1 Subset Analysis

To ensure that the results presented in Section 3.4.2 are robust and not an artifact of the large

sample size, we split the data by a factor of 1/4 and 1/8 and rerun the analysis. We present the

results when all-cause mortality is the outcome of interest. We want to ensure that the estimation

procedure and the variable selection procedure perform are roughly similar for each subset. These

results are given in Table 3.5. The results are fairly stable.

3.5.2 Variable Selection and Coverage

We simulate from the model

pr(Yik`|Xikj, Zik`) = H(βk`
∑J

j=1Xijk`αj + ZT
ik`θk`) = pik`, (3.5)

where there are k = 2 populations, L1 = 3 diseases in the first population, and L2 = 4 diseases in the

second population. We set β1 = (−1,−0.08,−0.04)T and β2 = (−0.09,−0.06,−0.03,−0.01)T.

The Healthy Eating Index Measurements, Xikj , and covariates, Zik` are sampled without replaced

from the NIH-AARP Study of Diet and Health. The Healthy Eating Index measurements for

total fruit and whole fruit, as well as total grains and whole grains are summed together to create

two components representing fruit and grains. This is done because the measurements are highly
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1/8 (N= 48636) 1/4 (N= 97273) 1 (N = 389092)
Total Grains 1.37 (-0.05, 2.8) 1.39( 0.76, 2.03) 0.93 (0.47, 1.40)
Total Fruit 0 0 0

Whole Fruit 0.29 (-0.83, 1.41) 0.47 (0.03 0.97) 0.39 (0.46, 1.40)
Whole Grains 5.26 (3.56, 6.96) 5.11 (4.34, 5.87) 5.60 (5.02, 6.18)

Total Veg. 1.64 (0.13, 3.4) 2.08 (1.29, 2.87) 2.04 (1.46, 2.62)
DOL Veg. 0.87 (-0.43, 2.17) 0.60 (0.01, 1.19) 0.73 (0.30, 1.17)

Dairy 0.6 (0.14, 1.06) 0.56 (0.35, 0.77) 0.58 (0.43, 0.74)
Meat & Beans 0.89 (0.10,1.68) 0.97 (0.61, 1.33) 0.98 (0.71, 1.25)

Oils 0.81 (0.26, 1.36) 0.65 (0.40 0.90) 0.63 (0.44, 0.81)
Sodium 1.9 (1.33, 2.48) 2.04 (1.79, 2.30) 1.85 (1.66, 2.04)

Saturated Fats 1.08 (0.53, 1.63) 0.95 (0.71,1.19) 1.09 (0.91, 1.27)
Empty Calories 0 0 0

Table 3.5: Results of the subset analysis in Section 3.5.1 when all-cause mortality is the outcome
of interest. The fraction refers to the proportion of the original data set used to fit the model. It
is followed in parenthesis by the sample size used in the analysis. All results refer to refitting
the stratified model of Section 3.2 using the subset of components identified by the Least Squares
Approximation. Point estimates are given and 95% confidence intervals follow in parenthesis.
Bold 0’s indicates parameters set to 0 by the Least Squares Approximation. The results are stable
through across all subsets.

correlated. This means the dimension of X is 10, instead of 12 as in the real data set. We set α

to be a vector of length 10 with 5 nonzero components. The nonzero components of α are set

to 3, 3, 2.5, 2.5 and 2. Two continuous covariates are selected from Z and the parameters θkl are

drawn from Uniform[−2, 2]. distribution We simulate N = 1000 data sets with a range of sample

sizes. The γ tuning parameter is set to 2.

The theory in Section 3.3.1 makes two guarantees: the probability of selecting the correct sub-

set of predictors approaches 1 and the asymptotic covariance matrix of the nonzero parameters, ΣT

is correctly estimated. We demonstrate these claims by simulation. We test for variable selection

with

N−1
∑N

i=1I(α̂LSA,i = αT ),

where α̂LSA,i is the subset of α chosen by the Least Squares Approximation on the ith simulation,
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αT is the set of true nonzero predictors, and “=” denotes set equality.

We demonstrate the asymptotic consistency of Σ̂T by showing that we can construct confidence

intervals for the nonzero components which have proper coverage. Coverage is tested separately

for each component of α with

N−1
∑N

i=1I{αj ∈ (α̂j − zα/2Σ̂1/2
jj , α̂j + zα/2Σ̂

1/2
jj )},

where αj is the jth nonzero component of α, Σ
1/2
jj is the standard error of α̂j , and zα/2 is the upper

α percentile of the standard normal distribution. The estimates α̂ and Σ̂ refer to the estimates

obtained after refitting (3.5) with only the variables selected by the Least Squares Approximation.

The results are given in Table 3.6. We point out that while the coverage probabilities are close

to nominal at n = 1000, consistent variable selection requires larger sample sizes. Proper variable

selection is seen at n = 10000, though acceptable results can be seen at smaller sample sizes. A

large sample size is likely required because we use two asymptotic approximations: a sandwich

estimator for the covariance matrix and the least squares approximation for variable selection.

Regardless of the sample size requirements, the NIH-AARP Study of Diet and Health is more than

large enough for consistent variable selection and proper confidence interval coverage.

Sample size % Selected V1 V2 V3 V4 V5
10000 97.9 94.6 95.6 96.0 94.7 96.8
5000 94.6 94.6 94.5 95.0 95.3 96.4
2500 94.4 94.4 94.9 94.6 94.6 96.0
1000 93.6 93.6 93.6 93.0 92.3 93.2

Table 3.6: SSimulation results from Section 3.5.2 showing coverage and the percent of time the
true model was selected. The second column gives the proportion of the 1000 simulations which
identified the correct 5 predictor subset. The remaining columns, V1 through V5, give the approx-
imate coverage of 95% confidence intervals for the 5 nonzero predictors.
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3.6 Discussion

Using nonlinear models and adaptive Lasso penalization, we have introduced a method to

continually reassess composite score techniques. Our method produces parameter estimates and

covariance estimates which are asymptotically consistent. Asymptotically, the penalization method

chooses the correct subset of coefficients. Our empirical results are similar to Ma et al. (2017),

though they included a nonparametric component in their model that we do not. The authors found

that the flexibility of their semiparametric model was not needed in their actual data analysis.

While highly technical, it is possible to expand our analysis into their framework.

If a researcher suspects that a particular composite score does not apply well to their population

of interest, they use the methods outlined in this paper to reweigh the relative importance of each

score component and see if each component is necessary. Analyzing composite scores in this way

can lead to important new finding. Our analysis of the Healthy Eating Index suggests that the

negative effects of empty calories may be overstated. Similarly, the relative importance of fruit

and whole grains can change dramatically when considering mortality risk instead of cancer risk.

There is considerable scope for future work. Empirically, future work should address the cor-

relation between many of the dietary components. It is, for example, impossible to consume Total

Grains without also consuming Whole Grains. The components selected and parameter estimates

may change if the collinearity is addressed. The methodology in this work may be may be extended

to variable selection while using a nonparametric or semiparameteric model for diet. Diet may be

modeled with a single index model (Carroll et al., 1997), letting the weighted sum of Healthy In-

dex Scores vary freely as in Ma et al. (2017), or with a Generalized Additive Model (Wood, 2017),

modeling each dietary component separately with a smooth function.
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4. SAMPLE SPLITTING AS AN M-ESTIMATOR WITH APPLICATION TO PHYSICAL

ACTIVITY SCORING

4.1 Introduction

In many applications it is useful to think of performing a statistical procedure in two stages:

model building and validation. When building a classification model, it is commonplace to reserve

a portion of the data set for testing predictive accuracy. Similarly, many nonparametric regression

methods depend on an unknown tuning parameter, λ, which may be chosen using cross-validation.

Here, model fit is determined using data which was not used to build the model. In both examples,

reusing data for model fitting and validation without withholding a portion will result in over-

fitting.

This two stage procedure can be seen in real-world problems. Consider providing dietary rec-

ommendations in the form of composite score or index. One particular example is the Healthy

Eating Index. The Healthy Eating Index was designed by the United States Department of Agri-

culture (USDA) to provide dietary recommendations to Americans (U.S. Department of Health

and Human Services and U.S. Department of Agriculture, 2005). The Healthy Eating Index was

later validated and confirmed to accurately measure diet and predict risk of disease with a 24-hour

food recall study (Guenther et al., 2008c).

In Section 4.2, we introduce a scenario of building a composite score and providing risk es-

timates without a second independent population. We may choose to treat this problem like the

nonparametric or classification problems and split the data set, D, into two pieces, Din and Dout.

The partition, Din, serves as a "training" data set for model fitting while Dout serves as a "valida-

tion" data set for checking model fit and performing hypothesis tests. In this way we can mimic

the building-to-validation of having two independent populations.

It is natural to extend this process: If one split is good, many splits must be better. A single

split has variability; a fortuitous split may give parameter estimates very close to their true value

42



while another split may yield poor estimates. We follow the ideas of Meinshausen et al. (2009),

though in a different context than in their variable selection paper. The authors create B copies of

the data and partition each of these b = 1, . . . , B copies to create, D(b)
in and D(b)

out. Model fitting is

done on each D(b)
in and hypothesis tests are performed on D(b)

out.

We explore multiple splitting for parametric models in Section 4.3. We fit a parametric model

on D(b)
in and then fit a model on D(b)

outusing a function of the parameter estimates as a predictor. We

find the surprising result that as the number of splits and the sample size approach∞, split sam-

ple estimators become equivalent to fitting both models simultaneously using stacked estimating

equations (Carroll et al., 2006, Appendix A.6.6).

Our method is similar to divide-and-conquer algorithms (Li et al., 2013; Battey et al., 2015),

particularly the average mixture algorithm (Chang et al., 2017; Zhang et al., 2012). These al-

gorithms reduce the computational cost of statistical inference on large datasets by dividing the

dataset into many smaller subsets which can be quickly analyzed with traditional software (R,

SAS, etc). The results from these subsets are then combined together, often with the sample mean.

None of this work, to our knowledge, incorporates a dependent parameter and fits a second model

to estimate this parameter.

This paper is organized as follows: In Section 4.2, we introduce a motivating example. In

Section 4.3 we describe sample splitting using estimating equations and M-estimators. Section

4.4 shows theoretical results for a single split, a finite number of splits, and when the number of

splits approach infinity. Section 4.5 has simulations that illustrate the asymptotic theory. Section

4.6 uses sample splitting to develop a physical activity index. Section 4.7 has a discussion. All

technical details are collected in Section C.

4.2 Motivating Example: Physical Activity and Survival

This work is partly motivated by the creation and analysis of a physical behavior score to

predict mortality. Researchers may be concerned about using the same data to create the score and

use that score to estimate risk ratios. We have found sample splitting appealing to practitioners

because the relative risks are estimated with different data from that which builds the score.
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We build the physical behavior score using the NIH-AARP Study of Diet (Schatzkin et al.,

2001). Participants self-reported physical behaviors which are then characterized into 8 discrete

components. We apriori specify the expected relationship between these physical activities and

survival to be consistent with the kinesiology literature. Using the training data Din for a single

sample split, we fit a binary regression model to survival that satisfies these relationships. The 8

components and their marginal models are listed in Table 4.3. The expected relationships are jus-

tified in Section 4.6. We rescale the fitted from this model so people with high levels of beneficial

activity are assigned a score near 100 and people with low levels of beneficial activity are assigned

a score close to 0. We denote the rescaled fitted values as f(X; θ̂)

We now ask: Is our composite score predictive of mortality? If so, how strong is the effect? We

use f(X; θ̂) as a predictor in a logistic regression, along with covariates, Z. In the test data Dout,

we the model the probability of mortality as

pr(Yi = 1|Xi, Zi) = H{β0f(Xi; θ̂) + ZT
i β}, (4.1)

where H(·) is the logistic distribution function. Our primary interest is in β0, which describes the

relative risks of survival as a function of the composite score.

4.3 Sample Splitting Methodology

Denote the total number of sample splits as B. We consider two cases: a single sample split

(B = 1) and many splits (1 < B < ∞). We describe the algorithm for sample splitting using

estimating equations. In Section 4.4, we provide an asymptotic theory for both of these cases, as

well when B →∞.

4.3.1 Basic Formulation

In what follows, we use the term estimating equation to also include a M-estimator equation.

We observe two types of responses (Wi,Yi) that are independent and identically distributed and

two types of covariates, (Xi,Zi). There are two parameters, θ and β. The relationship betweenW

and (X,Z, θ) is described by a model which has an estimating equation Ψ(W ,X,Z, θ). The rela-

44



tionship of Y and (X,Z, β, θ) is described a model that has an estimating equationK(Y,X,Z, β, θ).

We define θ and β as the solutions to Ψ(·) and K(·) respectively.

For a single data set, consistent estimation of (β, θ) can be done routinely by solving the stacked

estimating equation

0 =
∑n

i=1{Ψ
T(Wi, θ),KT(Yi, β, θ)}. (4.2)

Asymptotic theory for such estimators is well-known (Huber, 1964, 1967; Stefanski and Boos,

2002).

In the physical activity problem of Section 4.2 K(·) does not depend directly on θ but rather on

a function of θ and X, denoted with f(X; θ). That is,

K(Y,X,Z, β, θ) = K(Y, f(X; θ),Z, β).

Stacked estimating equations and the methods in this paper apply to this situation, but to simplify

notation we do not include f(X; θ) when writing K(·). The proofs in the Appendix consider this

case and make explicit the dependence of K(·) on f(X; θ), rather than just θ.

4.3.2 A Single Split

In our experience, there is concern among practitioners that solving (4.2) on the complete

data is somehow "cheating", because all the data are used to build the score while simultaneously

estimating risk. The concern is that risk estimators in such a scenario will overstate the usefulness

of the score. One way to alleviate this concern is to split the data into two disjoint groups, Din and

Dout, and use these to estimate θ and β respectively. Let (δ1, ..., δn) be independent and identically

distributed Bernoulli(π) random variables. In our applications we set π = 1/2 so that the splits

are approximately equal size. We denote the first partition, Din, by δ = 1, which estimates θ by

solving

0 =
∑n

i=1δiΨ(Wi,Xi,Zi, θ). (4.3)
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In the second partition, Dout, denoted by δ = 0, we estimate β by solving

0 =
∑n

i=1(1− δi)K(Yi,Xi,Zi, β, θ̂). (4.4)

Since the two groups are independent, solving (4.3)-(4.4) alleviates concerns about overfitting.

This is an analogue to the variable selection procedure of Wasserman and Roeder (2009), who also

propose a single split, with variable selection conditioned on the data with δ = 1.

4.3.3 Many Splits

Section 4.3.2 give a β̂ that depend on the particular random sample split. Meinshausen et al.

(2009) and Dezeure et al. (2015) criticize this and call it a "p-value lottery" as the p-value can vary

from 0 to 1 depending on the split. Instead, in their context, they suggest using multiple data splits

to eliminate simulation variability from choosing only a single split. Such an approach would

randomly split the data into two parts b = 1, ..., B times to create B partitions of the data.

DefineB to be the number of sample splits. We define an indicator vector for each sample split,

b. For b = 1, .., B and i = 1, ..., n, let (δ1b, ..., δnb)
B
b=1 be independent and identically distributed

Bernoulli(π) random variables. Set δib = 1 if the ith person is selected into the bth training set

D(b)
in . Then solve

0 =
∑n

i=1δibΨ(Wi,Xi,Zi, θ).

to get an estimate θ̂b. The subscript denotes the dependence on the parameter estimate of the bth

sample split.

Now, set δib = 0 if the ith person is selected into the test set, D(b)
out. We then get an estimate β̂b

by solving

0 =
∑n

i=1(1− δib)K(Yi,Xi,Zi, β, θ̂).

This gives B estimates of θ and β. We combine them with the sample mean to get θ̂ =
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B−1
∑B

b=1θ̂b and β̂ = B−1
∑B

b=1β̂b.

4.4 Asymptotic Theory

In this section we provide asymptotic theory for three cases of sample splitting: B = 1, 1 <

B < ∞, and B → ∞. We provide asymptotic expansions from which asymptotic normality and

the asymptotic covariance matrix can be derived. Hypothesis tests can be performed using Wald

test statistics and Normal-based confidence intervals.

4.4.1 Single Split Asymptotics

Suppose there is only a single split, b = 1. Define

Ωnb(θ) = n−1
∑n

i=1δibE{∂Ψ(W, θ)/∂θT};

Λnb(β, θ) = n−1
∑n

i=1(1− δib)E{∂K(Y, β, θ)/∂βT};

∆nb(β, θ) = n−1
∑n

i=1(1− δib)E{∂K(Y, β, θ)/∂θT}.

Using standard M-estimation theory (Stefanski and Boos, 2002), and suppressing the depen-

dence of {Ωnb(θ),Λnb(β, θ),∆nb(β, θ)} on (β, θ), we find that

n1/2(θ̂b − θ) = −Ω−1nb n
−1/2∑n

i=1δibΨ(Wi, θ) + oP (1). (4.5)

n1/2(β̂b − β) = −Λ−1nb n
−1/2∑n

i=1(1− δib)K(Yi, β, θ)

+Λ−1nb ∆nbΩ
−1
nb n

−1/2∑n
i=1δibΨ(Wi, θ) + oP (1). (4.6)

Define

Aib =

 −Ω−1nb δibΨ(Wi, θ)

−Λ−1nb (1− δib)K(Yi, β, θ) + Λ−1nb ∆nbΩ
−1
nb δibΨ(Wi, θ)

 ,
and define Âib as Aib with all unknown quantities replaced with their empirical estimates. Then

the joint asymptotic covariance matrix of (θ̂b, β̂b) can be estimated by n−1S(Âib), where S(·) is
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the sample covariance.

4.4.2 Multiple Split Asymptotics

Fix a finite number of splits, 1 < B <∞. The final estimates of θ and β are the average of the

single split estimates from Section 4.4.1. Thus, the expansions of θb and βb in (4.5) and (4.6) can

be replaced with their averages over B

n1/2(θ̂b − θ) = −B−1
∑B

b=1n
−1/2Ω−1nb

∑n
i=1δibΨ(Wi, θ) + oP (1),

n1/2(β̂b − β) = −B−1
∑B

b=1{Λ
−1
nb n

−1/2∑n
i=1(1− δib)K(Yi, β, θ)

−Λ−1nb ∆nbΩ
−1
nb n

−1/2∑n
i=1δibΨ(Wi, θ)}+ oP (1).

Define Ai = B−1
∑B

b=1Aib, where Aib is the same as in Section 4.4.1. Define Âi =
∑B

b=1Âib.

The joint asymptotic covariance matrix of (θ̂, β̂) can be estimated consistently by n−1S(Âi).

4.4.3 Increasing Number of Splits Asymptotics

We assume that B increases at a slower rate than n, B = Bn = oP (n−1/2+a) for any a > 0.

Since the user chooses B, this is not a restrictive assumption. Since the δib are independent of the

rest of the data, B−1
∑B

b=1δib → π and B−1
∑B

b=1(1− δib)→ (1− π). The asymptotic expansions

for θ̂ and β̂ simplify to

n1/2(θ̂ − θ) = −Ω−1n−1/2
∑n

i=1πΨ(Wi, θ) + oP (1); (4.7)

n1/2(β̂ − β) = −Λ−1n−1/2
∑n

i=1(1− π)K(Yi, β, θ̂b) +

Λ−1∆Ω−1
∑n

i=1πΨ(Wi, θ) + oP (1). (4.8)

The asymptotic expansions in (4.7) and (4.8) are also the expansion of β̂ and θ̂ using stacked

estimating equations with all the entire sample. This is justified in Appendix C.1.4. This shows

that when π = 1/2, the estimates from sample splitting become asymptotically equivalent to

estimates from the entire data set and not using any sample splitting.
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4.5 Simulations

We simulate from two configurations. We consider a single split (B = 1) and B = 25 sample

splits and set π = 1/2, so each D(b)
in and D(b)

out are approximately the same size. We express both

configurations as regression models to simplify interpretation but can be expressed as estimating

equations.

Both simulations are related to the problem of estimating the ratio of two normal random vari-

ables (Fieller, 1932, 1954), see Wang et al. (2015) for a recent review and some alternative meth-

ods. It is known that there is no confidence interval with guaranteed coverage and that has finite

length with probability one. It is also known that asymptotic standard errors based on estimating

equations and the delta method generally have somewhat less than nominal coverage probabilities

except for larger sample sizes. We will see the Fieller phenomenon occur in our simulations.

The first configuration is a set of two linear regression models,

Wi = XT
i θ + εi; Yi = β0(X

T
i θ) + εi. (4.9)

We set θ = c(1, 1, 1)/
√

3, β0 = 1/
√

3, εi ∼ N(0, 0.5), and vary n = 25, 50, 100, 250, 500. Results

are in Table 4.1. Confidence intervals have approximately 95% coverage for n > 250.

Linear
B = 1 B = 25

n = 50 92.60 90.45
n = 100 93.70 92.85
n = 250 94.90 94.15
n = 500 94.70 95.15
n = 1000 95.10 94.95

Table 4.1: Results of the simulation in Section 4.5 using the linear model. Coverage of asymptotic
95% confidence intervals is provided for B = 1 and B = 25 sample splits.
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The second configuration is two binary regression models, given as

pr(Wi = 1|Xi) = H(XT
i θ); pr(Yi = 1|Xi) = H{β0f(Xi; θ)}, (4.10)

where H(·) is the logistic distribution function. We set f(Xi, θ) = 2 + 1.5(XT
i θ)

2. The specific

f(X, θ) is set to mimic the case study in Section 4.2. This transformation also rescales the fitted

values, although not to the same 0 to 100 range, and contains a nonlinear transformation of the

parameters and data. The new scale is arbitrary; we choose the values 2 and 1.5, so there are are

a reasonable number of both 0’s and 1’s in Y. Again we set θ = (1, 1, 1)T/
√

3 and β0 = 1/
√

3

and vary n = 50, 100, 250, 500. Results for B = 1 and B = 25 are in Table 4.2, and are much the

same as in Table 4.1, with the Fieller phenomenon being observed. Logistic regression naturally

requires larger samples than linear regression to achieve nominal coverage.

Logistic
B = 1 B = 25

n = 50 · ·
n = 100 88.95 85.40
n = 250 93.85 90.40
n = 500 93.40 94.00
n = 1000 94.20 94.55

Table 4.2: Results of the simulation in Section 4.5 using the logistc model. Coverage of asymptotic
95% confidence intervals is provided forB = 1 andB = 25 sample splits. Results from the logistic
model are unstable at n = 50 and are omitted.

4.6 Data Analysis

Participants in the NIH AARP Study of Diet and Health were ask to complete a questionnaire

to measure physical behaviors, medical history, and risk factors for disease. Around a fifth of the

total participants (N = 163,106) responded and met criteria for inclusion. Survey responses were

translated to time or energy spent in five aerobic activities, two types of sitting activities, and sleep.
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We model each of the physical activity components to be consistent with the existing kinesi-

ology literature. The dose-response relationship between aerobic activity and survival has been

established as somewhat concave and non-decreasing (Arem et al., 2015), with benefits for overall

health which level off with increasing activity. Sedentary time is known to have a negative effect

on overall health (Grøntved and Hu, 2011; Prince et al., 2014). Sleep is known to be beneficial

in reasonable doses but too much or too little sleep is indicative of poor health (Yin et al., 2017),

suggesting a concave, parabolic relationship with overall health. Table 4.3 lists the expected rela-

tionships and the marginal models we enforce to describe these relationships.

Activity Expected Relationship Marginal Model
Vigorous Activity Concave Increasing 3-parameter Logistic
Moderate Activity Concave Increasing 3-parameter Logistic
Light Household Activity Concave Increasing 3-parameter Logistic
MVPA Household Activity Concave Increasing 3-parameter Logistic
Weight Training Concave Increasing 3-parameter Logistic
Hours Sitting Other than TV Decreasing Linear
Hours of TV Sitting Decreasing Linear
Hours of Sleep Concave Quadratic

Table 4.3: Each of the 8 physical activity variables with their expected relationship and marginal
model when predicting survival. The expected relationship is derived from physical activity liter-
ature.

4.6.1 Step 1: Developing the Score

On each D(b)
in we fit the model

pr(Yi = 1|Xi, Zi) = H

[∑5
j=1

{
dj −

dj
1 + (Xaerobj/cj)

bj

}
+ θTVXTV

+ θSitXSit + θSleep,1XSleep + θSleep,2X
2
Sleep + ZT

i θ

]
, (4.11)

where Yi = 1 indicates survival until the end of the study, Xi is a vector containing the 8 physical

activity levels of the ith person, Zi is a vector of covariates including sex, race, education status,
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and an intercept, and H(·) is the logistic distribution function.

The first row of Figure 4.1, shows the fitted marginal models for three types of activity: mod-

erate physical activity, sleep, and television sitting. The curves match their intended functional

form: moderate physical activity is concave and increasing, sleep is concave, and television sitting

is decreasing.

Figure 4.1: Three of the 8 marginal model plots from binary regression model. The first row shows
the marginal models in the original scale while the second rows shows them in a 0-to-100 scale.
Moderate activity is modeled to be concave and increase, sleep is modeled to be concave, and
television sitting is modeled to be decreasing.

52



4.6.2 Step 2: Rescaling the Score

The fitted values from (4.11) are the logits of the effect of each type of physical activity on

survival. We want to rescale the logits from the physical activity covariates so that their sum is

between 0 and 100 with 0 being highest risk and 100 being lowest risk. While we fit model (4.11)

with the additional covariates Z to prevent confounding due to demographic information, we do

not include the fitted values ZT
i θ̂ when developing the score.

To rescale the logits, we first force all the physical activity marginal models to be positive by

adding the absolute value of the minimum fitted value. For example, in the top row of Figure 4.1

we see that the marginal model for television sitting is negative for any amount of television sitting

greater than 0. The function has a minimum of -0.5 at around 8 hours per day of sleep. By adding

-0.5 to the fitted values, we can force this function to always be positive.

Next, we sum the maximum value obtained by each of the, now positive, marginal models and

denote this with T . We can transform the fitted values with

T

100

[∑5
j=1

{
dj −

dj
1 + (Xaerobj/cj)

bj

}
+ θTVXTV

+θSitXSit + θSleep,1XSleep + θSleep,2X
2
Sleep

]
(4.12)

which puts the fitted values from physical activity on a scale from 0 to 100. We refer to the rescaled

marginal models as the contributions to the total score. Three examples of these rescaled marginal

models are shown in the bottom row of Figure 4.1. The contribution to the total score is given

on the y-axis. Moderate activity, for example, accounts for up to 15 points of the total score of

100. Table 4.4 has an example of the physical activity score using the results from (4.12) on one

particular split of the data. Table 4.4 lists the 8 physical behaviors with their relative contribution

to a score of 100 and the criteria for receiving a perfect score in each criteria.
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Component Contribution to Total Criteria for Maximum
Vigorous Activity 10 >20 MET-hrs/wk
Moderate Activity 30 >50 MET-hrs/wk

Light Household Activity 3 >3 MET-hrs/wk
MVPA Household Activity 25 >20 MET-hrs/wk

Weight Training 2 > 2 MET-hrs/wk
Sitting Other than TV 6 < 3.5 hours
Hours of TV Sitting 14 < 2 hours

Hours of Sleep 10 7.5 hours
Total 100

Table 4.4: Example physical activity score developed using half of the data. We fit the binary
regression model from Section 4.2 and rescale the fitted values of the physical behaviors to be
between 0 and 100. The middle column gives the proportion of the total score of 100 that each
component can contribute. The third column gives the criteria for receiving the maximum score
for each component.

4.6.3 Step 3: Risk Prediction Based on the Score

We denote the physical activity score created in the previous section with f(X, θ). We then

estimate the relationship between the physical behavior score and mortality using a Logistic Re-

gression model on D(b)
out

pr(Yi = 1|Xi, Zi) = H{β0f(Xi; θ) + ZT
i β}. (4.13)

A plot of the estimates can be seen in Figure 4.2. The solid black line shows the value of β̂0

with an increasing sample splits. For a particular number of sample splits, k, the solid blue shows

k−1
∑k

b=1β̂
(b). The dashed red lines are a 95% confidence interval. The overall mean of all these

estimates is β̂ = −0.026 and is calculated with β̂ = 50−1
∑50

b=1β̂
(b). It is denoted with a dashed

black line.
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Figure 4.2: Log odds ratio of the physical activity score as the number of sample splits increases.
The solid blue line denotes the estimate of β, the log odds ratio of the physical activity score as the
number of sample splits increases. A 95% confidence interval is shown with the red dash-dotted
lines. The final estimate of β, averaged over all 50 splits, is shown with a dashed black line at
-0.026. The confidence intervals and parameter estimates are plotted using a smoothing spline.

There is variability when using a small number of number of splits. This is visible in Figure

4.2 for small values of b. Despite this β̂0 changes little. The difference between the estimates

of β0 when B = 1 and B = 50 is only 0.004 and the confidence intervals are almost entirely

overlapping.
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4.7 Discussion

We explored sample splitting to perform validation without a second data set using estimating

equations. We provided asymptotic expansions for a fixed sample split and a mean-aggregated

split which can be used for hypothesis testing and asymptotic confidence intervals. In particular

we are able to provide confidence intervals for a single split of the data. This scenario is of interest

to practitioners who want a formal distinction between the data used for model building and the

data used for validation (e.g. hypothesis testing).

In practice, there are two ways to evaluate a marginal score. One may treat the newly created

score as a fixed quantity and use it as a predictor in a regression model. This ignores the variability

due to estimating this score but results in smaller variance estimates. Instead, we consider the

score as a function of unknown parameters which are estimated with uncertainty. This results in

consistent parameter estimate which have higher variability than had the score been considered

fixed.

We find that as the number of splits increases, results become equivalent to doing no splitting.

Stated formally, the sample splitting estimator converges in probability to the stacked estimating

equations estimator as the sample size and number of splits (B) approach infinity. It is tempting to

split the data and average the results many times in an attempt to eliminate the simulation variability

of a single split. This is, however, unnecessary. A single split uses two independent sample for

training and then validation, mimicking the process described in Section 4.1 of developing a score

on one population and validating it on a separate population. As one repeats sample splitting, there

is longer independence between the training data and the validation data. In the extreme case with

an "infinite" number of splits, results are equivalent to using all the entire dataset for model filling

and validation, thus nullifying the original intention of splitting the dataset.
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5. SUMMARY

In Chapter 2 we introduced a composite score to provide physical behavior recommendations.

This is, to our knowledge, the first composite scoring system for physical activity. This score

was developed using shape constrained regression modeling. Shape constraints restrict function

estimates to be consistent with previous literature in physical activity.

In Chapter 3 we use the Healthy Eating Index to introduce a method of altering an existing

composite score. This is done using nonlinear regression models combined with adaptive Lasso

variable selection. We establish oracle properties of our estimators. We find the surprising result

that empty calories do not seem to predict mortality.

Finally in Chapter 4 we looked at risk estimation when building a composite score using sample

splitting. We developed theory for sample splitting in parametric models using estimating equation

theory. We provided asymptotic expansion which can be used for hypothesis tests.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 R Code to Generate Physical Behavior Score

The R code to generate the Physical Behavior Score is available by request or online at https:

//healthresearch.calpoly.edu/physical-behavior-score and https://github.

com/kravitzel/Physical-Behavior-Score.

A.2 Testing Proportional Hazards Assumption

We justify the proportional hazard assumption in two ways. First, we plot the weighted Schoen-

feld residuals against time. See Figure A.1 The relatively straight line in the plot indicates the pro-

portional hazards assumption is valid. To see that quintile-based analysis is correct, we look at the

log hazard, or equivalently the log of the negative log of survival time, stratified by the 5 quintiles

of the PBS. Nonparallel or crossing curves indicate that the proportional hazards assumption is not

valid. For very small values of time with few observations, the curves cross. However, as log time

increases to reasonable values the curves become parallel and do not cross each other. See Figure

A.1

A.3 Physical Activity Questionnaire and Met Conversion
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Figure A.1: Schoenfeld residuals plotted against time. A straight line indicates that the coefficients
fit with Cox regression do not change with time. Reprinted with permission from Wolters Kluwer
Health Inc
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Figure A.2: Log Hazard, equivalent to log of negative log of Survival time, against time. Parallel
lines indicate the proportional hazards assumption Is justified. Reprinted with permission from
Wolters Kluwer Health Inc
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Figure A.3: NIH-AARP Study of Diet and Health questionnaire for physical activity. Reprinted
with permission from Wolters Kluwer Health Inc
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Figure A.4: NIH-AARP Study of Diet and Health questionnaire for sedentary behaviors. Reprinted
with permission from Wolters Kluwer Health Inc

Activities MET (Compendium Code, 2001)
Light household chores 2.5 (05040)
Moderate-to-vigorous indoor household chores 3.5 (05026)
Moderate outdoor chores 4.0 (06127)
Vigorous outdoor chores 6.0 (08262)
Home repairs 4.5 (08261)
Caring for children 3.0 (05186)
Caring for adults. 4.0 (05200)
Walking for exercise, 4.3 (17200)
Walking for daily activities. 2.9 (avg METs for codes 17161, 17270, 05060)
Jogging or running 7.0 (12020)
Tennis, squash, racquetball 7.3 (15675)
Playing golf 4.8 (15255)
Swimming laps 8.3 (18290)
Bicycling or stationary bike 7.5 (01015)
Other aerobic exercise 7.3 (03015)
Weight training or lifting. 3.5 (02054)

Sedentary Behaviors
Sitting watching television 1.3 (07020)
Sitting or driving in a car, bus, or train 1.3 (16015)
Other sitting 1.3 (09030)

Sleep
Sleeping at night or napping during the day 1.0 (07030)

Table A.1: Physical activity variables are expressed as MET-hrs per week, which is the MET-
value for each activity multiplied by the reported hours per week. Molded correlation coefficients
indicate statistical significance at P<0.05 Thresholds for Moderate intensity is≥3 METs, Vigorous
intensity is ≥ 6 METs.Reprinted with permission from Wolters Kluwer Health Inc.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 R Code and Data

The R programs used in the simulations of Section 4.5 and the data analysis of Section 4.6 are

available by request or through Github at https://github.com/kravitzel/Composite_

Scores/

We do not have permission to distribute the actual data involved in Section 4.6: such data

can be obtained via a data transfer agreement with the National Cancer Institute, see https:

//epi.grants.cancer.gov/Consortia/cohort_projects.html.

B.2 Proof of Theorem 1

By Theorem 2 of Wang and Leng,

lim
n→∞

pr(Â ⊆ AT ) = 1, (B.1)

and by Theorem 1 of Wang and Leng,

lim
n→∞

pr(Â ⊂ AT ) = 0. (B.2)

Then (B.1) and (B.2) imply that

lim
n→∞

pr(Â = AT ) = 1. (B.3)
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B.3 Proof of Theorem 2

Denote Θ̂(A) as the estimates from regressing Y on the subset of Θ specified by A and Θ̂(AT )

as the estimates from regressing Y on the true subset of coefficients. Then (B.3) means that

lim
n→∞

pr{Θ̂(Â) = Θ̂(AT )} = 1. (B.4)

We have,

n1/2{Θ̂(AT )−ΘT} → N(0,ΣA).

Thus for any vector a,

n1/2[aT{Θ̂(AT )−ΘT}]→ N(0, σ2).

where σ2 = aTΣAa. Thus,

pr[n1/2aT{Θ̂(AT )−ΘT}/σ ≤ z]→ Φ(z).

where Φ(·) is the normal cumulative distribution function. Since (B.4) holds, we have

pr[n1/2aT{Θ̂(Â)−ΘT}/σ ≤ z]→ Φ(z).

71



This can be expressed as,

pr[n1/2aT{Θ̂(Â)−ΘT} σ ≤ z, Â = AT ]}+ pr[n1/2aT{Θ̂(Â)−ΘT} σ2 ≤ z, Â 6= AT ]

= pr[n1/2aT{Θ̂(AT )−ΘT} σ ≤ z, Â = AT ]}+ pr[n1/2aT{Θ̂(Â)−ΘT} σ2 ≤ z, Â 6= AT ]}

= pr[n1/2aT{Θ̂(AT )−ΘT}/σ ≤ z, Â = AT ] + op(1)

= pr[n1/2aT{Θ̂(AT )−ΘT}/σ ≤ z]− pr[n1/2aT{Θ̂(AT )−ΘT}/σ ≤ z, Â 6= AT ] + op(1)

= Φ(z) + op(1)

B.4 Proof of Theorem 3

Theorem 3 is a direct application of Wang and Leng’s Theorem 4.

B.5 Variance Calculation of Rescaled Coefficients

Let H = (h1, . . . , hJ)T, where hj(α) = αj/(cTmaxα). Define D = (d1, . . . , dJ , )
T where dj =

(∂hj/∂α1, . . . , ∂hj/∂αJ). The diagonals of matrix D are given by Dii = (
∑

k 6=i ckαk)/(c
T
maxα)2.

For i 6= j, Dij = (cjαi)/(c
T
maxα)2. The delta method states that the covariance of H is given by

cov{H(α)} ≈ DΣαD
T.

Now, we move on to calculating the variance of βk`. For k = 1, ..., K and ` = 1, ..., L, the

logits are

βk`X
Tα + ZTθk`,

with the initial constraint is that β11 = −1 for identifiability.

Denote c(α) = cTmaxα. After model (3.1) converges replace each α by α∗ = α/c(α), Then

the logits become

β∗k`X
Tα∗ + ZTθk` = βk`d(α)XTα∗ + ZTθk`.

For k = ` = 1, this means that β∗k` = −c(α), By the delta method, var(β̂∗k`) ≈ cov{c(α̂)} ≈
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cα(α̂)Tcov(α̂)dα(α̂), where the subscript α indicates the J × 1 vector of derivatives of d(α).

If (k, `) 6= (1, 1), we have that β̂∗k` = β̂k`c(α̂). We can express this as β∗k` = g(βk`,α) and

use the delta method to get var(β̂∗k`) ≈ ∇g(β̂k`, α̂)Tcov(β̂k`, α̂)∇g(β̂k`, α̂). Here ∇g(β̂k`) is the

gradient of g(·) with respect to βk` and α.

73



APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 R Code and Data

The R programs used in the simulations of Section 4.5 and the data analysis of Section 4.6 are

available by request or on Github at https://github.com/kravitzel/Sample_Splitting.

We do not have permission to distribute the actual data involved in Section 4.6: such data

can be obtained via a data transfer agreement with the National Cancer Institute, see https:

//epi.grants.cancer.gov/Consortia/cohort_projects.html.

C.1.1 Assumptions

Suppose θ̂ is the solution to

0 = n−1
∑n

i=1Ψ(Yi, θ), (C.1)

where Ψ(·) is a known influence function that does not depend on i and is continuous and twice

differentiable with respect to θ and β. Suppose β̂ is the solution to

0 = n−1
∑n

i=1K{Yi, f(X, θ̂), β)},

where K(·), as in (C.1), is a known function which does not depend on i, K(·) twice differentiable

with respect to β, and differentiable with respect to f(X, θ). Assume f(X, θ) is differentiable with

respect to θ.

We the estimators from different splits are exchangeable. We assume that they are also unbi-

ased. Therefore, E(θk) = E(θ`) = θ and E(βk) = E(β`) = β for all k, `.
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C.1.2 Taylor Expansions from Sections 4.4.1 and 4.4.2

Since θ̂b and β̂b are asymptotically linear they have expansions

n1/2(θ̂b − θ) = −Ω−1nb n
−1/2∑n

i=1δibΨ(Wi, θ) + oP (1). (C.2)

n1/2(β̂b − β) = −Λ−1nb n
−1/2∑n

i=1(1− δib)Kib{Yi, f(Xi, θ̂b)Zi, β}+ oP (1). (C.3)

Taking a Taylor expansion of (C.3) around θ we have

n−1/2
∑n

i=1(1− δib)K{Yi, f(Xi, θ̂b), β}

= n−1/2
∑n

i=1(1− δib)K{Yi, f(Xi, θ), β}

+n−1
∑n

i=1(1− δib)Kf{Yi, f(Xi, θ), β}fT
θ (Xi, θ)n

1/2(θ̂b − θ) + oP (1). (C.4)

Define

∆nb = n−1
∑n

i=1(1− δib)Kf{Yi, f(Xi, θ), β}fT
θ (Xi, θ).

Taking a Taylor expansion from (C.4) and plugging (C.2) in place of n1/2(θ̂b − θ) we get

n1/2(β̂b − β) = −Λ−1nb n
−1/2[

∑n
i=1 (1− δib)K{Yi, f(Xi, θ), β}

− ∆nbΩ
−1
nb

∑n
i=1δibΨ(Wi, θ)] + oP (1).

The asymptotic expansion of θ̂ = B−1
∑B

b=1θb and β̂ = B−1
∑B

b=1βb are the averages over B

of the previous expansion,

n1/2(θ̂b − θ) = −B−1
∑B

b=1Ω
−1
nb n

−1/2∑n
i=1δibΨ(Wi, θ) + oP (1), (C.5)

n1/2(β̂b − β) = −B−1
∑B

b=1Λ
−1
nb n

−1/2[
∑n

i=1(1− δib)K{Yi, f(X, θ), β}

−∆nbΩ
−1
nb

∑n
i=1δibΨ(Wi, θ)] + oP (1). (C.6)
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C.1.3 Theory for Infinite Splits from Section 4.4.3

We note of two technical details. First

Ω̂nb(θ̂b) = πE{∂Ψ(W, θ)/∂θT}+OP (n−1/2) = Ω +OP (n−1/2)

Λ̂nb(θ̂b, β̂b) = (1− π)E{∂K(Y, β, θ)/∂βT}+OP (n−1/2) = Λ +OP (n−1/2).

∆̂nb(θ̂b, β̂b) = (1− π)E[∂K{Y, β, f(X; θ)}/∂θT] +OP (n−1/2) = ∆ +OP (n−1/2).

Also, as in Carroll et al. (1996), the oP (1) terms in the expansion in (C.2) and (C.3) areOP (n−1/2+a)

for any a > 0. Combining these, we have,

n1/2(θ̂b − θ) = {−Ω−1 +OP (n−1/2)}n−1/2
∑n

i=1δibΨ(Wi, θ) +OP (n−1/2+a)

= −Ω−1n−1/2
∑n

i=1δibΨ(Wi, θ) +OP (n−1/2+a)

n1/2(β̂b − β) = −Λ−1n−1/2
∑n

i=1[(1− δib)K{Yi, f(Xi, θ), β}

+Λ−1∆Ω−1δΨ(Yi, θ)] +OP (n−1/2+a).

Since the δib are independent of the data, B−1
∑B

b=1δib = π + oP (1), and since B = Bn =

oP (n−1/2+a) by assumption, the expansion in (C.5) and (C.6) become

n1/2(θ̂ − θ) = −Ω−1n−1/2
∑n

i=1πΨ(Wi, θ) + oP (1)

n1/2(β̂ − β) = −Λ−1n−1/2
∑n

i=1(1− π)K(Yi, β, θ)

+Λ−1∆Ω−1n−1/2
∑n

i=1πΨ(Wi, θ) + oP (1). (C.7)
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C.1.4 Asymptotic Equivalence to Stacked Estimating Equations

Both θ and β can be estimated by the stacked estimating equations instead of the sample split-

ting of the previous sections. The stacked estimating equations are given by,

∑n
i=1

 Ψ(Yi,Xi, θ)

K{Wi, f(Xi, θ), β}

 =

 0

0

 .

Define

Φ =

 Φ11 0

Φ21 Φ22

 = E

 ∂Ψ(Yi,Xi, θ)/∂θ
T ∂Ψ(Yi,Xi, θ)/∂β

T

∂K{Wi, f(Xi, θ), β}/∂θT ∂K{Wi, f(Xi, θ), β}/∂βT


and

Φ−1 =

 Φ−111 0

−Φ−122 Φ21Φ
−1
11 Φ−122

 .

Then it follows that the stacked estimating equations estimator of β has influence function

Gi =
[
Φ−122 K{Wi, f(Xi, θ), β} − Φ−122 Φ21Φ

−1
11 Ψ(Yi,Xi, θ)

]
+ oP (1) (C.8)

Since Φ22 = (1 − π)−1Λ, Φ11 = π−1Ω and Φ21 = (1 − π)−1∆, then (C.8) simplifies to (C.7).

Therefore as B, n → ∞ and when π = 1/2, the sample splitting estimator becomes equivalent to

the estimator from stacked estimating equations.
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