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ABSTRACT 

 

The two-scale continuum (TSC) model for simulating carbonate acidizing gained 

substantial attention recently. The previous studies mainly dealt with matching 

experimental homogenous limestone experiments. The previous work only considered 

the pore volume to breakthrough (PVBT) to match experimental results and assumed 

linear kinetics for HCl-carbonate. The objectives of the current study are to 1) build a 

robust model for dolomite matrix acidizing simulation, 2) account for the effect of rock 

types in the TSC model, 3) study acid performance under field scale, 4) modify the 

traditional upscaling schemes utilizing the TSC model, and 5) quantify the effect of 

wormhole growth in vuggy and naturally fractured using field scale radial model. 

Unlike previous studies, experiments were performed on 6 in. length and 1.5 in. 

diameter vuggy dolomite cores at two sets of temperatures (150 & 200⁰F) and acid 

concentrations (15 and 20 wt% HCl). Computer tomography (CT) was used to generate 

porosity distribution and non-linear reaction kinetics was applied. The acid reaction rate 

and diffusion coefficient were modified based on X-ray fluorescence (XRF) results and 

effluent chemical analysis. Wormhole 3D shape and experimental PVBT were used to 

assess the quality of model results. 

 The tuned model was used to simulate a hypothetical 18 in. core as well as large 

scale radial experiments to assess its prediction capabilities, and then the model was 

utilized to predict the dolomite acidizing performance under field conditions. Simulation 

results were compared with traditional 1-D models. Finally, the radial model were used 
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to simulate multiple cases including vugs and natural fractured to assess the effect on the 

acidizing process. 

The simulation runs emphasize that the exclusion of the wormhole shape and 

branching from the matching process results in an unrealistic match. It is important to 

simulate the cylindrical shape of the core using the actual porosity distribution to capture 

the wormhole growth, which is increasingly important when the wormhole propagates 

near the core perimeter.  

The radial field scale model results show that the optimum velocity can be higher 

or lower than those predicted from lab experiments. Accordingly, caution must be taken 

when linear core flood data is used to predict acid propagation in the field. The 

simulations showed that traditional upscaling models over predict acid volumes, as the 

predicted volumes are double at moderate to high injection rates. Models using 

statistically distributed porosity can provide accurate acid propagation predictions, with 

a relative percentage error less than 25% at extremely high injection rates.  

The simulation results of vuggy carbonates show that the presence of vugs results 

in faster and deeper acid propagation in the formation when compared with homogenous 

reservoirs at injection velocities lower than 8E-4 m/s. Results also revealed that the size 

and density of the vugs have a significant impact on acid consumption and the overall 

performance of the acid treatment. The output of the fractured model illustrates that 

under field conditions, fracture orientations do not affect the acid propagation velocity. 

The acid does not touch all the fractures around the well. 
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Current model was able to match multiple sets of experiments (Dolomite and 

Limestone) and follow the experimental trend of longer cores and large-scale radial 

experiments.  It was used to predict acid performance under field conditions and to 

adjust the traditional upscaling models. The effect of vugs and natural fractures on 

carbonate acidizing was quantified utilizing the field scale model. A new workflow for 

carbonate matrix acidizing based on petrophysical, experimental, and simulation results 

is introduced. 
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NOMENCLATURE 

 

a  Parameter in the Freundlich isotherm, 1/T, K-1 

avo  Initial interfacial area per unit volume of the medium, 1/L, m-1 

av  Interfacial area per unit volume of the medium, 1/L, m-1 

C  Covariance function 

C/C0                Normalized tracer concentration 

Cf  Original concentration of acid in the fluid phase, n/L3, mol/L 

Cs  Concentration of acid at the solid-fluid interface, n/L3, mol/L 

CT        Computed tomography 

Da  Damköhler number defined as the ratio of reaction rate to convection rate 

De  Effective dispersion tensor, L2/t, m2/s 

DeX  Effective longitudinal dispersion coefficient, L2/t, m2/s 

DeT  Effective transverse dispersion coefficient, L2/t, m2/s 

Dm  Acid diffusivity, L2/t, m2/s 

E  Activation energy, mL2/nt2, J/mol 

K   Permeability tensor, L2, m2 

K  Covariance matrix of the GP model 

k  Vector of covariances  

Kc  Local mass transfer coefficient, L/t, m/s 

kf  Actual fracture permeability, L2, m2 

Ko   Initial permeability tensor, L2, m2 
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kr  Rock permeability, L2, m2 

kt  Total (simulated fracture) permeability, L2, m2 

ks   Surface dissolution reaction rate constant, L/t, m/s 

kso   Frequency factor, L/t, m/s 

n  Reaction exponent 

N  Number of simulation runs conducted.  

P  Dimension of the input data  

PV   Pore volume 

PVBT  Pore volume to breakthrough 

Q  Acid injection rate, L3/t, m3/s 

R  Universal gas constant, mL2/nTt2, J/mol/K 

R(Cs)  Reaction rate, n/t/L2, mol/s/m2 

Rep   Pore scale Reynold’s number 

rpo   Initial pore radius, L, m 

rp   Pore radius, L, m 

Sc  Schmidt number 

Sh  Sherwood number 

Sh∞  Asymptotic Sherwood number 

T  Absolute temperature, T, K 

TSC      Two-scale continuum  

U  Superficial velocity vector, L/t, m/s 

wr  Width of the rock (simulated fracture), L, m 
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wf  Width of the actual fracture, L, m 

Xm  Parameter in the Freundlich isotherm, mL2/nt2, J/mol 

x*  Untried test location at which a prediction is desired.  

Y  Vector of outputs 

𝑌̂(𝒙∗)  Prediction of the GP model at any untried test location 𝑥∗ 

α  Dissolving power of acid, m/n, g/mol 

αos  Constant in dispersion correlations 

β  Pore broadening parameter 

γ   Pore-connectivity parameter 

𝜎2  Variance parameter in the GP covariance function 

𝜃𝑖  Scale parameter in the GP covariance function 

Ε  Porosity of the porous medium 

ρ   Fluid density, m/L3, kg/m3 

ρs  Rock density, m/L3, kg/m3 

λX  Constant in the axial dispersion correlation 

λT  Constant in the transverse dispersion correlation 

µ   Fluid viscosity, m/Lt, mPa.s 

ν  Kinematic viscosity, L2/t, m2/s 
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1. INTRODUCTION 1  

 

Oil and gas wells are prone to damage while drilling, completion, or during the 

life of the well due to the injection of incompatible fluids or poor production practices. 

Based on the source of the damage and reservoir depth and conditions, wells are treated 

or stimulated to by-pass/remove the damage and restore the performance of these wells. 

Among these stimulation methods is acidizing, which is divided into matrix acidizing 

and acid fracturing according to whether the injection pressure is below or above the 

formation fracturing pressure. The aim of matrix acidizing in carbonates is to bypass the 

damage by generating highly conductive channels called wormholes. In the oil and gas 

industry HCl solutions are usually used as acidizing fluids, but reservoir, fluids, and 

completion conditions may dictate the use of organic acids, chelating agents, or 

emulsified acids. 

     The understanding of the carbonate acidizing process was acquired through 

experimental work. Lund et al. (1973, 1975) studied the reaction kinetics of HCl 

solutions with both dolomite and limestone cores at different temperatures. Daccord 

(1987) studied the dissolution of plaster porous medium with de-ionized water in a radial 

geometry. Hoefner and Fogler (1988) conducted a set of experiments on both limestone 

and dolomite cores on linear mode. Wang et al. (1993) investigated the effect of 

injection rate, acid concentration, rock mineralogy, and temperature on the volume of 

                                                 

1 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by 

M. Ali and H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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acid required to fully penetrate a linear core. Fredd and Fogler (1999) conducted 

experiments to study the performance of organic acids and chelating agents as carbonate 

acidizing alternatives for HCl solutions. Bazin (2001) showed the effect of acid 

concentration, temperature, and permeability on acid efficiency curves. Taylor et al. 

(2006) had an insight on the effect of clays on acid reactivity with carbonates. A large-

scale radial experiments were conducted on both dolomite and limestone samples by 

McDuff et al. (2010). Zakaria et al. (2015) showed the effect of carbonates pore structure 

on acidizing performance. 

     Many researchers translated their understanding of the acidizing phenomena 

into mathematical models to predict optimum injection rate, dissolution pattern, and/or 

to monitor the propagation of the wormhole (Hoefner and Fogler 1988; Hung et al. 1989, 

Daccord et al. 1993; Wang et al. 1993, Buijse 2000; Liu et al. 1997; Huang et al. 1997; 

Fredd and Fogler 1998, 1999; Golfier et al. 2002; Panga et al. 2002, 2005; Buijse and 

Glasbergen 2005; Kalia and Balakotaiah 2007, 2009; Izgec et al. 2010; Maheshwari et 

al. 2012, 2016; Furui et al. 2012; Tansey 2014; Wu et al. 2015; Ghommem et al. 2015, 

2016; Akanni et al. 2017; Schwalbert et al. 2017; Mahrous et al. 2017; Beletskaya et al. 

2017). For an extensive review of the different models and their applicability limits, we 

refer to Akanni and Nasr-El-Din (2015), and Fredd and Miller (2000).  According to 

Akanni and Nasr-El-Din (2015), there are seven categories for carbonate acidizing 

models; the capillary tube approach, Damköhler number approach, transition pore 

theory, network models, Péclet number approach, semi-empirical approach, and two-

scale (averaged continuum) models. The last two categories are the most used. The semi-
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empirical for its simplicity and the two scale models as it captures the physics and flow 

mechanics of the acidizing process. 

Buijse and Glasbergen (BG) (2005) introduced the first semi-empirical model for 

designing acid treatments. The model was based on matching experimental data. BG 

model requires information about optimum conditions from linear lab experiments to 

design field treatments. Tardy et al. (2007) conducted both linear and radial experiments 

and the results of the study demonstrated that BG model over-predicts acid volumes 

required. The outcome of Tardy et al. (2007) study was to multiply the wormhole 

velocity from BG model by a factor to obtain a more realistic result. Furui et al. (2012) 

conducted a comprehensive study based on experiments, field data, and numerical 

simulations. Unlike Tardy et al. (2007), they found that BG model underestimates the 

propagation velocity of the wormhole in carbonate wells. Furui et al. (2012) model 

requires lab experiments and information about the number of wormholes around the 

wellbore and wormholes diameter. 

     The two-scale models gained substantial attention lately for their capabilities 

of capturing the different dissolution patterns and accurately matching the pore volume 

of acid to breakthrough. The two-scale model was introduced by Liu et al. (1997) to 

model sandstone acidizing, but it was shown that it can capture the wormholing 

phenomenon in carbonates, as well. The main drawback of their model is that the effect 

of mass transfer on the reaction rate was not considered. Golfier et al. (2002) extended 

the work to develop a 3D linear model for carbonates, but their model ignored the 

reaction kinetics. Panga et al. (2002, 2005) developed a model that captures both mass 
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transfer and reaction kinetics, and built a 2D model. The work was extended by Kalia 

and Balakotaiah (2007) to simulate 2D radial flow, while Cohen et al. (2008) considered 

3D radial flow simulations. Maheshwari et al. (2013) extended the work further to 

include 3D simulations. Their model showed a good match in comparison with Fredd 

and Fogler (1998) experimental data, which used uniform porosity distribution and 

changed the exponents of Carman-Kozeny correlation to tune the model. Ghommem et 

al. (2015) used Panga et al. (2002, 2005) model to match limestone acidizing 

experiments. The porosity was populated from the CT scan, and the same matching 

parameters as Maheshwari et al. (2012) were used. While the model PVBT matches 

well, it couldn’t capture the wormhole tortuous path. Safari et al. (2014, 2016) 

performed a set of core flood experiments on dolomite cores from a gas reservoir in Iran, 

and they used the two-scale model to simulate the face dissolution of a dolomite core.  

     Liu et al. (2012) examined the effect of normally distributed porosities on 

wormholing patterns using radial geometry, and they showed that a substantial 

difference exists in PVBT between normally and uniformly distributed porosity models. 

Ghommem et al. (2015) mentioned in their study that porosity was distributed from CT 

scans, but they gave no elaboration or references for that step.  Liu et al. (2016) used a 

spatial correlation for porosity distribution, the PVBT was similar to the case with 

uniform distribution, but they showed that wormhole shapes are closer to the 

experimental results.  

     Unlike the Panga et al. (2002, 2005) model, which relied on Darcy’s equation 

for describing the fluid flow, De Oliveira et al. (2012), Wu et al. (2015), Akanni et al. 
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(2017) and Schwalbert et al. (2017) used Navier-Stokes equation with their two-scale 

model. Wu et al. (2015) compared the wormhole simulation with the Darcy and Darcy-

Brinkman-Frochheimer (DBF) equation (an extended form of Navier-Stokes equation) 

and concluded that DBF equation gives more accurate simulations than Darcy equation 

for carbonate acidizing. Akanni et al. (2017) concluded that simulations with Navier-

Stokes equation at very high injection rates require less wall-clock runtime when 

qualitatively compared with the Darcy equation (Maheshwari and Balakotaiah 2013).  

     Previous work on carbonate simulation (Maheshwari et al. 2012, 2016; 

Ghommem et al. 2015; Schwalbert et al. 2017) considered only limestone experiments. 

Those studies simulated the core as cuboid and assumed linear reaction kinetics for the 

HCl-CaCO3 reaction. These studies relied on changing Carman-Kozeny exponents to 

match acidizing experiments.  

     In the current study, two sets of experiments were performed on vuggy 

dolomitic cores using straight acid. The core was modeled as a cylinder inscribed inside 

a rectangular cube and porosity was generated from CT scans. The non-linear kinetics 

were included in our simulations and the reaction rate and diffusion coefficient were 

modified to match acidizing experiments. This combination of domain shape, porosity 

distribution, non-linear kinetics, and matching parameters were found to provide high 

quality and reliable match for both PVBT and wormhole 3D path. Also, the two-scale 

model was used to predict the acid performance in different limestone rock types. The 

tuned dolomite model was used to conduct simulations under radial flow conditions, and 

to study dolomite acidizing performance under field conditions. Finally, the effects of 
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vugs and natural fractures on the acidizing process were studied in Dolomite formations 

using the radial model. 



7 

 

2. OBJECTIVES 

 

The objectives of the present study are to: 1) Build a robust model for dolomite matrix 

acidizing simulation that matches both PVBT and wormhole shape, 2) Predict acid propagation 

in carbonate rocks based on the actual porosity distribution, 3) Utilize the tuned model to predict 

acid behavior under field scale, 4) Assess/Modify the prediction capabilities of the semi-

empirical upscaling models, and 5) Quantify the effect of vugs and natural fractures on acid 

propagation under field scale. 
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3. TWO-SCALE MODEL USING NAVIER-STOKES FORMULATION2  

3.1. Model Description 

Current simulations were conducted using ANSYS FLUENT, a computational fluid dynamics 

(CFD) software. In ANSYS FLUENT, the flow field is described by Navier-Stokes momentum 

formulation. The equations for the Darcy scale and pore-scale are presented below. 

 

3.1.1. Darcy Scale Equations 

The fluid flow field is given by the Navier-Stokes formulation: 

𝜕(𝜌𝐮)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝐮𝐮) = −𝛻𝑝 + μ∇2𝐮 −

𝜇

K
𝐮 … … … … … … … … … … … … … . …  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏 

Where u is the superficial velocity vector, ρ is the fluid density, K is the permeability 

tensor, p is pressure, and 𝜇 is the fluid viscosity. The left-hand side of Equation 1 accounts for 

the change in momentum where the first term is the rate of change and the second term is the 

convective acceleration. The right-hand side of Equation 1 accounts for the forces acting on the 

fluid where the three terms are the pressure drop, diffusion, and the Darcian losses, respectively. 

The porous medium inertial term was not included in the model, as it is only effective at 

extremely high velocities. In laminar flow through porous media, where the pressure drop 

becomes proportional to velocity, the convective acceleration and diffusion terms can be ignored 

and the model reduces to Darcy’s equation. In the wormholes, the diffusion term becomes 

dominant, while the Darcian losses become negligible as permeability approaches infinity. 

                                                 

2 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali and 

H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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The continuity, Equation 2, derived from the mass balance of fluids, accounts for the 

effect of local volume change during dissolution on the flow field: 

𝜕𝜀

𝜕𝑡
+ 𝛻 ∙ 𝐮 = 0 … … … … … … … … … … … … … … … … … … … . … … … … … . …  𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 

The Darcy scale description of the transport of acid species, from fluid phase balance of 

reacting acid species, is given by: 

𝜀
𝜕𝐶𝑓

𝜕𝑡
+ 𝒖. 𝛻𝐶𝑓 = 𝛻 ∙ (𝜀𝑫𝒆 ∙ 𝛻𝐶𝑓) − 𝑘𝑐𝑎𝑣(𝐶𝑓 − 𝐶𝑠) … … … … … … … … . … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 

 

 

 

Where ε is the porosity of the medium, Cf  is the concentration of the acid in the fluid 

phase, Cs is the concentration of the acid at the fluid-solid interface, De is the effective dispersion 

tensor, kc is the local mass-transfer coefficient, and av is the interfacial area available for reaction 

per unit volume of the medium.  

     The local mass transfer and effective dispersion coefficients are obtained using correlations 

developed by Gupta and Balakotaiah (2001) and Balakotaiah and West (2002): 

𝑆ℎ =
2𝒌𝒄𝒓𝒑

𝐷𝑚
= 𝑆ℎ∞ + 0.7𝑅𝑒𝑝

1/2
𝑆𝑐1/3 … … … … … … … … … … … … … … . … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 

𝑫𝒆𝑿 = 𝛼𝑜𝑠𝐷𝑚 +
2𝜆𝑋‖𝐮‖𝒓𝒑

𝜀
… … … … … … … … … … … . . … … … … . … … … . . 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓 

𝑫𝒆𝑻 = 𝛼𝑜𝑠𝐷𝑚 +
2𝜆𝑇‖𝒖‖𝒓𝒑

𝜀
… … … … … … … … … . … … . . … … … … . . … … … . 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟔 

Where Sh is the Sherwood number or dimensionless mass-transfer coefficient, rp is the pore 

radius, Dm is the acid diffusivity, Sh∞ is the asymptotic Sherwood number, Rep is the pore scale 

Acid 

Accumulation 

Acid 

convection 

Acid 

dispersion 

Amount of acid transported to 

the rock surface from the 

fluid phase 



 

10 

 

Reynold’s number defined by Re𝑝 =
2‖u‖𝒓𝒑

𝑣
, and Sc is the Schmidt number given by 𝑆𝑐 =

𝑣

𝐷𝑚
 , v 

is the kinematic viscosity, αos is a constant that depends on the structure of the porous medium 

(pore connectivity); DeX is the longitudinal dispersion coefficient; DeT is the transverse dispersion 

coefficient in the y- and z- directions; λX and λT are constants that depend on the structure of the 

medium. Equations 4 through 6 account for both diffusive and convective contributions 

(Maheshwari and Balakotaiah 2013). 

The reaction rate in Equation 7 balances the amount of acid transferred from the fluid 

phase to the surface to the amount reacted at the surface: 

𝑘𝑐(𝐶𝑓 − 𝐶𝑠) = 𝑅(𝐶𝑠) … … … … … … … . . … … … … … … … … … … … … … . . … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟕     The 

porosity evolution equation as derived from the balance between the solid dissolved and fluid 

consumed, is given by: 

𝜕𝜀

𝜕𝑡
=

𝑅(𝐶𝑠)𝑎𝑣𝛼

𝜌𝑠
… … … … … … … … … … … … … … … … … … … … … … … … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟖 

     R (Cs) represents the reaction rate, ρs is the density of the rock, and α is the dissolving power 

of the acid.  The reaction rate equation can be written as 𝑅(𝐶𝑠) = 𝑘𝑠𝐶𝑠
𝑛 (where ks is the 

dissolution rate constant and n is the reaction exponent).  

    The dissolution rate constant and the reaction exponent are obtained for HCl-dolomite system 

using correlations developed by Lund et al. (1973): 

𝑘𝑠 =  𝑘𝑠𝑜𝑒−
𝐸

𝑅𝑇 … … … … … … … … … … … … … … … … … … … … … . … … … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟗 

𝑛 =  
𝑅𝑇

(1 − 𝑎𝑇)𝑋𝑚
  … … … … … … … … … … … … … … … … … … … … … … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟎 
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Where 𝑘𝑠𝑜 is the frequency factor, E is the activation energy, R is the ideal gas constant, 

T is the absolute temperature, and a and Xm are parameters in the Freundlich isotherm. For HCl-

Limestone system, the reaction exponent was set equal to 0.63 as proposed by Lund et al. (1975). 

 

3.1.2. Pore Scale Equations 

The acid propagation through the porous medium dissolves part of the solid phase. That 

acid reaction increases the rock porosity, which results in changes in permeability, pore-radius, 

and interfacial surface area per unit volume. The relationship between these rock properties and 

porosity are adapted from the Carman-Kozeny correlation and are given by the following pore 

scale equations (Maheshwari and Balakotaiah 2013): 

 

𝑲

𝑲𝑜
=  (

𝜀

𝜀𝑜
)

𝛾

(
𝜀(1 − 𝜀𝑜)

𝜀𝑜(1 − 𝜀)
)

2𝛽

… … … … … … … … … … … … … . . … … … … . … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟏 

𝒓𝒑

𝒓𝒑𝒐
= (

𝜀(1 − 𝜀𝑜)

𝜀𝑜(1 − 𝜀)
)

𝛽

… … … … … … … … … … … … … … … … … … … . … … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟐 

𝒂𝒗

𝒂𝒗𝒐
= (

𝜀

𝜀𝑜
) (

𝜀(1 − 𝜀𝑜)

𝜀𝑜(1 − 𝜀)
)

−𝛽

… … … … … … … … … … … … … … … … . . … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟑 

Where γ is the pore-connectivity parameter, and β is the pore broadening parameter. 

 

3.1.3. Initial and Boundary Conditions 

To solve Equations 1 and 3, boundary conditions should be defined at the inlet, outlet and 

side walls. At model inlet, a constant acid concentration is injected at a constant velocity, while a 

constant pressure is applied at the outlet. In the transverse direction, a no flow boundary 

condition is applied. Before injection, acid concentration is zero all over the domain with an 

initial porosity obtained from Computer Tomography (CT) scans or uniformly distributed, as 

will be shown below. 
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3.2. Comparison with Previous Studies 

Carbonate acidizing models utilizing Navier-Stokes formulation were proven to capture 

all dissolution patterns occurring during the acidizing process (De Olivera, 2012; Akanni et al. 

2017). The model accuracy was studied by Wu et al. (2015). In the current section, the 

simulation runs conducted by Maheshwari et al. (2012) will be reproduced. We built a 

rectangular cube of 3.5 cm x 1.4 cm x 1.4 cm and was divided into 540,000 grid blocks. The 

simulations were run on Texas A&M University (TAMU) High Performance Research 

Computing (HPRC) clusters.  The time step used ranged from 2 seconds for the highest injection 

rate to 50 seconds at the lowest injection rate. The wall-clock runtime using 8 processing cores 

was in days at very low injection rates, about 10 hours around the optimum rate, and about 3 

hours at the very high injection rate. In comparison with Maheshwari et al. (2012) and 

Ghommem et al. (2015) simulation models, which were based on Darcy’s law, the current model 

is less computationally expensive at very high injection rates. This finding was noticed by 

Akanni et al. (2017) based on a qualitative comparison. 

The porosity distribution and all model parameters were extracted from Maheshwari et al. 

(2012). In their work, they defined the breakthrough of the acid as a 50 time decrease in the 

pressure drop across the core from the initial value. Figure 1 shows a plot of the PVBT versus 

the inverse of Damköhler number (Da), defined as the ratio between reaction rate and convective 

mass transport rate, for the Maheshwari et al. (2012) and current model simulations. Current 

model PVBT is always lower than the Maheshwari et al. (2012) model, because our model uses 

Navier-Stokes equation, which simultaneously considers flow through porous media and 

wormholes. Wu et al. (2015) highlighted the advantages of using Navier-stokes in comparison 

with Darcy simulations.  
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Figure 1 Acid efficiency curves. A comparison of present work with Maheshwari et al. 

(2012) simulation results.  
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4. EXPERIMENTAL STUDIES3 

4.1. Core-flood Experiments 

Silurian dolomite cores of 6 in. length and 1.5 in. diameter were used to conduct linear 

acidizing coreflood experiments with regular 15 wt% HCl acid at 150⁰F and regular 20 wt% HCl 

acid at 200⁰F. After cutting the cores, they were dried in an oven for minimum 6 hours at 200⁰F, 

then were completely saturated for 4 hours in deionized water (resistivity of 18.2 MΩ.cm at 

room temperature) obtained from an in-house purification water unit. The weight difference 

method was used to calculate porosity and pore volume. The cores were imaged using a CT 

scanner before and after saturation. The stimulation hydrochloric acid was prepared by diluting a 

36.46 wt% ACS grade HCl with deionized water. 1 wt% corrosion inhibitor was added to protect 

equipment from corrosion.  

The core flood setup used is shown in Figure 2. A back pressure of 1,200 psi was applied 

to keep most of CO2 in solution. A confinement pressure of 1,800 psi was applied to ensure that 

no fluids bypass the core. First, deionized water was injected at room temperature at 3 different 

injection rates (3, 5, and 7 cm3/min) to measure core permeability. Then, the system was heated 

to 150⁰F for 3 hours while injecting deionized water and waiting for pressure stabilization. 

Finally, acid solution was injected while monitoring the pressure drop using a pressure 

transducer; the acid breakthrough was marked by a negligible pressure drop across the core. 

Tables 1 and 2 summarize the dolomite cores properties and core flood experiment results, 

                                                 

3  Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali 

and H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 

. 
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while Figure 3 shows the cores after acidizing for the experiments conducted using 15 wt% HCl 

acid at 150⁰F. 

 

 

 
Figure 2 Core flood setup.  

 

 

Table 1 Properties of dolomite cores and coreflood results. 15 wt% HCl at 150⁰F.  

Core 

ID 

Injection rate, 

cm3/min 

PV,   

cm3 

Initial 

total 

porosity, 

vol% 

Initial Vugs 

Volume/PV, 

%* 

Initial 

permeability, 

md 

PVBT 

1008 1 25.91 14.91 40 65 4.65 

1001 3 28.11 16.18 26 80 4.20 

1007 5 23.18 13.34 48 50 3.30 

1003 7 29.66 17.07 15 50 3.70 

1010 10 26.41 15.20 21 65 4.85 

* Calculated from CT scan data, voxels with porosities higher than 35 vol% are considered vugs.  

 

 

Hand pump 



 

16 

 

 

Table 2 Properties of dolomite cores and coreflood results. 20 wt% HCl at 200⁰F.  

 

Core 

ID 

Injection rate, 

cm3/min 

PV,   

cm3 

Initial 

total 

porosity, 

vol% 

Initial 

permeability, 

md 

PVBT 

1201 1 26.23 15.25 62 2.82 

1203 3 28.12 16.35 80 1.84 

1204 5 23.35 13.57 40 1.65 

1202 7 24.36 14.16 47 1.88 

1206 10 27.72 16.12 76 2.09 

 

 

 
Figure 3 Dolomite cores after injection of 15 wt% HCl at 150⁰F.  

 

 

 

 

 

 

Inlet 
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4.2. Vugs Characterization using X-ray CT Scanning 

The vugs present in the cores were determined qualitatively from the CT images, as 

shown in Figure 4. CT numbers are indicators of material density where the negative numbers 

indicate low-density material (air) and high positive numbers indicate high-density material 

(solid). Accordingly, in Figure 4, the blue color (negative CT number) indicates vugs, the red 

color (high positive CT number) indicates solid or matrix with very low porosity and white color 

indicates moderate to high porosity matrix. After identifying the vugs of the cores qualitatively, 

they were quantified following Izgec et al. (2010). In their work, they divided the porosity voxels 

generated from the CT scan into matrix for low range porosity, mud filled vugs for average 

porosity and clean vugs for very high porosity values. In the current study, the cores did not 

contain mud. Therefore, the porosities were divided into matrix and vugs based on a 35 vol% 

porosity cut-off. The well-packed balls into a box give 45 vol% porosity; accordingly, 35 vol% 

porosity is a reasonable cut-off. The vugs as a fraction of the total pore volume are given in 

Table 1. The next section discusses the porosity generation from CT images. 
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Figure 4 CT scan images (1.5 in. diameter) for the studied dolomite cores. Blue color 

(negative CT number) indicates vugs/void spaces, red color (high positive CT number) 

indicates solid/ low porosity and white color indicates medium to large porosity. Numbers 

inside the boxes are the cores ID’s.  
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5. EFFECT OF POROSITY DISTRIBUTION ON ACID PROPAGATION IN CARBONATES4 

5.1. Generating Porosity Distribution 

An important step in building an acidizing simulation model is the initial porosity 

distribution. Panga et al. (2002, 2005) and Maheshwari et al. (2012, 2016) used a uniform 

distribution for porosity. Liu et al. (2012) showed that normal distribution provides better 

simulation results against Tardy’s (2007) experimental data. Later, Liu et al. (2016) concluded 

that models with porosity distributed using spatially correlated techniques yields more realistic 

simulation results. Porosity distribution was built from CT scans by Ghommem et al. (2015). 

In the present study, dry and wet CT scans were translated into porosity distribution. The 

core was marked, as shown in Figure 3 (the black line along core 1008), to ensure that the scan 

starts from the same point, and more importantly, that dry and wet images coincide with each 

other. Finally, porosity is generated using Equation 14. (Akin and Kovscek 2003): 

𝜀 =
𝐶𝑇𝑤𝑒𝑡−𝐶𝑇𝑑𝑟𝑦

𝐶𝑇𝑤𝑎𝑡𝑒𝑟−𝐶𝑇𝑎𝑖𝑟
   … … … … … … … … … … … … … … … … … … … … … … … … 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏𝟒           

The porosity distribution is assessed by comparing high porosity voxels with negative CT 

values, as shown in Figure 5. Then, the porosity values from CT scan were adjusted, so the 

average matches the weight difference porosity value. It is worth noting that the erroneous high 

porosity voxels around the edges shown in Fig. 5 were removed before comparing CT scan 

porosity average with the experimental average. 

                                                 

4 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali and 

H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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Figure 5 CT scan slices from the dry (left) and wet (middle) cores. Porosity distribution 

(right), high porosity voxels are indicated in white. Red circles show the good match 

between the original CT scans and calculated porosity.  

 

 

5.2. Predicting Acid Performance Using Porosity Distribution 

Bize and Ziauddin (2007) studied the effect of pore structure on acid performance. Zakaria et al. 

(2015) conducted a detailed study of 6 different types of limestone and generated a master curve 

based on the flowing fraction; which is defined as the volume injected that corresponds to the 

normalized tracer concentration at 
𝐶

𝐶0
= 0.5.  In the following, we are investigating the use of 

porosity distribution from the CT scanner as a non-destructive tool to predict acid performance.  

     Figure 6 shows the 3D images of the dry CT scan of 6 limestones and one dolomite cores. 

The images were created using ImageJ software. The vugs are shown in white. The number of 

vugs changes significantly between rock types. Indiana Limestone and Austin chalk have almost 

no vugs and the number of vugs increases from Pink desert to Edwards yellow to Winterset. 

Edwards white contains highly connected vugs. The CT scan of the Silurian Dolomite shows 

many vugs as well. 
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Figure 6 3D images of the dry CT scan of seven carbonate rocks: (a) Indiana limestone, (b) 

Austin chalk, (c) Pink desert, (d) Edwards yellow, (e) Winterset, (f) Edwards white, and (g) 

Silurian dolomite. White color indicates vugs.  

 

 

Figure 7 presents the porosity histograms of 7 rock types. The porosity was created by 

subtracting the wet and dry CT images (Ali and Nasr-El-Din 2019). The porosity histograms 

shown in Figure 7 were generated using ImageJ software. The shape of the histogram and the 

standard deviation agree well with the CT scan 3D images shown in Figure 6.  Indiana limestone 

and Austin chalk have the lowest standard deviation values of 0.09 and 0.11, respectively. As the 
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number of vugs increases in Pink desert, Edwards yellow, and Winterset, the standard deviation 

values increased to 0.178, 0.17, and 0.25, respectively.  The Edwards white didn’t show a high 

value of standard deviation because the total volume of vugs is relatively small. The large 

number of vugs in Silurian dolomite agrees well with the high standard deviation of 0.19. 

Zakaria et al. (2015) conducted tracer experiments on 6 limestone rock types to find the 

flowing fraction for each rock type. In the current paper, the flowing fraction was measured for 

Silurian dolomite cores and it was found to be 0.89 (Figure 8).  A comparison between the 

flowing fraction and the porosity standard deviation for the 7 rock types is shown in Figure 9. 

There is an inverse relationship between the flowing fraction and the standard deviation of 

porosity for all the rock types studied except for Edwards White limestone. Although the high 

connectivity in the vugs system of Edwards white affects the flowing fraction, it doesn’t result in 

high standard deviation in porosity.  

The effect of the porosity distribution on the TSC model performance will be discussed in 

the next chapter. 
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Figure 7 Porosity histogram of 7 carbonate rocks: (a) Indiana limestone, (b) Austin chalk, 

(c) Pink desert, (d) Edwards yellow, (e) Winterset, (f) Edwards white, and (g) Silurian 

dolomite. 
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Figure 8 Tracer Profile for Silurian Dolomite Core. 

 

 

 
Figure 9 Correlation Between Flowing Fraction and Porosity Distribution Standard 

Deviation of the Seven Rock Types Presented in This Study.   
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6. SIMULATING LINEAR ACIDIZING EXPERIMENTS 5 

6.1. Introduction. 

Simulating acidizing experiments using a rectangular cube domain (Maheshwari and Balakotaiah 

2013; Ghommem et al. 2015; Maheshwari et al. 2016; Schwalbert et al. 2017) facilitates the task 

of building a high-quality mesh avoiding many of the convergence problems, but the real 

cylindrical shape of the core is ignored. Matching of the wormhole propagation and branching 

using rectangular cube domain is impossible, especially when the wormhole propagates near the 

core edges. De Olivera et al. (2012), Safari et al. (2016), and Akanni et al. (2017) built 

cylindrical domains for their simulations. Although it matches the real shape, building a high-

quality mesh for that domain is a time consuming and tedious process. In the current work, a 

rectangular cube domain was built with the cylindrical core inscribed inside to model the real 

shape of the core without losing solution accuracy (Figure 10).  In the model, the part out of the 

cylindrical core is given a very low porosity (< 0.3 vol%) to act as a no-flow boundary; porosity 

was not set to zero to avoid solution divergence errors in the simulation model. The current 

model dimensions are 1.5 in. x 1.5 in. x 6 in., and it contains 495,000 of equal sized cells. 

     Maheshwari and Balakotaiah (2013), Ghommem et al. (2015), Maheshwari et al. (2016), and 

Schwalbert et al. (2017) modeled the acidizing experiments by modifying the exponents in the 

Carman-Kozeny correlation. Safari et al. (2016) did not mention changing any parameters in 

their matching process of a dolomite core face dissolution. The β parameter in Carman-Kozeny 

correlation (Eq. 9) was determined experimentally for carbonates by McCune et al. (1979) using 

                                                 

5 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali and 

H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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a 1.5 in. diameter x 0.25 in. thickness disk, and more recently by Rötting et al. (2015) using a 25 

mm diameter x 12 mm thickness disk and was found to be as high as 242 in some cases. Here, 

we question using high numbers in simulations for matching the carbonate acidizing 

experiments, because in simulation, the Carman-Kozeny correlation is applied at the pore scale. 

As an example, Maheshwari and Balakotaiah (2013) applied Carman-Kozeny correlation on cells 

with volumes of nearly 1.7e-4 cm3 in comparison with Rötting et al. (2015) work, which has a 

volume of approximately 59 cm3. 

 

 

 
Figure 10 Simulation domain, showing the cylindrical core inscribed inside a rectangular 

cube domain.  
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6.2. Dolomite Experiments Using 15 wt% HCl at 150⁰F. 

In the current work, Carman-Kozeny exponents γ and β were set to unity. Experiments 

were matched by increasing both the reaction rate and diffusion coefficient. That was supported 

by the XRF data of two samples (1.5 in. x 1 in.), which gave a Ca/Mg molar ratio larger than 

one. That confirms the presence of calcite in the studied cores. Table 3 shows the XRF data, 

while Table 4 shows the calculated molar ratio of Ca/Mg for the two samples. Also, the 

chemical analysis of the effluent of the 3 cm3/min experiment showed a molar ratio of Ca/Mg 

greater than unity, as shown in Figure 11. The presence of calcite will result in a higher overall 

reaction rate constant, but it will not have a perceptible effect on the reaction exponent because it 

is 0.63 for the HCl-calcite system and 0.65 for the HCl-dolomite system at 150⁰F (Lund et al. 

1973, 1975). Also, the presence of two competing minerals (dolomite and calcite) will result in 

an increase in the acid species dispersion. For simplicity, the diffusion coefficient was increased 

to account for the effect of dispersion. 

The reaction exponent value was calculated from Lund et al. (1973), and the 15 wt% HCl 

solution viscosity at 150⁰F was extracted from Nishikata et al. (1981) by extrapolation. Initial 

mean pore size, initial interfacial area per unit volume, constant in dispersion correlation, 

constant in axial dispersion correlation, and constant in transverse dispersion correlation values 

were considered as given by Maheshwari and Balakotaiah (2013). The list of the simulation 

parameters used for matching dolomite cores acidizing is given in Table 5. 
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Table 3 Elemental analysis of two dolomite cores using the XRF technique.   

 

 
Concentration, wt% 

Element Sample #1 Sample#2 

Ca 45.9 44.2 

O 32.5 33.2 

Mg 18.1 19.3 

Fe 0.8 0.4 

Si 0.7 0.3 

Cl 0.7 0.3 

S 0.5 1.3 

K 0.4 0.7 

Al 0.4 0.2 

 

 

 

Table 4 Calcium/Magnesium molar ratio in dolomite cores used in the present study.  

  
Moles Molar Ratio of 

Ca/Mg 

Sample #1 Ca 1.15 1.54 

Mg 0.74 

Sample #2 Ca 1.10 1.39 

Mg 0.79 

 

 

 

Unlike previous studies, the PVBT, along with the 3D wormhole shape, are considered in 

the matching process because considering the wormhole propagation path in the tuning process 

will increase the model accuracy and reliability. This allows models to be tuned with a low 

number of experiments, and then be used with confidence in predicting additional experiments. 
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Figure 11 Dissolved calcium ion and magnesium ion concentrations and 

calcium/magnesium molar ratio for the 3 cm3/min experiment as a function of cumulative 

volume injected. 15 wt% HCl at 150⁰F.  

 

 

 

For the following simulations, the PVBT is defined as a two order of magnitude pressure 

drop reduction over the core. The simulation time step was varying between 0.06 to 0.5 seconds, 

and the wall-clock runtime was in the range of 24 to 72 hours using 8 processing cores at TAMU 

high performance research computing clusters. Figure 12 presents a comparison between the 

experimental and simulation PVBT. A good agreement with experimental results is obtained, as 

shown in Fig. 8. The absolute percentage error varies between 3% for the 5 cm3/min rate 

experiment and 8% for the 7 cm3/min rate experiment, with an average percentage error of 3.8% 

for the five experiments.   
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Table 5 List of the simulation parameters used in the present study. 15 wt% HCl at 150⁰F.  
Parameter Value Source 

Length 6 in. Measured 

Initial average porosity (ε) 13.3-17.1 vol% Measured 

Initial average permeability (k) 50-80 md Measured 

Initial mean pore size (rpo
) 1 μm Maheshwari and Balakotaiah 

(2013) 

Initial interfacial area per unit volume (avo
) 50 cm

-1
 Maheshwari and Balakotaiah 

(2013) 

Pore connectivity parameter (γ) 1 Carman (1956) 

 Pore broadening parameter (β) 1 

Rock density (ρ
s
) 2.77 g/cm

3
 Measured 

Surface reaction rate constant (k
s
) 5 X 10

-3
 

mole1−n/(cm2−3n.s) 

Matching parameter 

Surface reaction exponent (n) 0.65 Lund et al. (1973) 

Acid diffusion coefficient (D
m
) 5 X 10

-4
 cm2/s Matching parameter 

15 wt% HCl viscosity (μ) 0.65 cp Nishikata et al. (1981) 

Constant in dispersion correlation (α
os

) 0.5 Maheshwari and Balakotaiah 

(2013) 

Constant in axial dispersion correlation (λ
x
) 0.5 Maheshwari and Balakotaiah 

(2013) 

Constant in transverse dispersion 

correlation (λ
l
) 

0.1 Maheshwari and Balakotaiah 

(2013) 

 

 

 

Figure 12 Acid efficiency curve. A comparison between simulation and experimental 

results using 15 wt% HCl at 150⁰F.  
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  Figure 13 shows the simulated dissolution pattern along with the after acidizing CT scan 

for the 1 cm3/min experiment. The match is considered moderate because the simulation shows 

the same dissolution pattern and wormhole path for more than half of the core, but a reduction in 

the pressure drop of 100 times is observed before actual acid breakthrough. The reason is the 

small tilting of the wet core during the CT scan operation as shown in Figure 14. Because the 

two scan images did not coincide with each other, the error in the calculated porosity increases 

and does not reflect the actual porosity distribution. It is concluded that even a small tilting in the 

core during the CT scan could have an immense effect on the wormhole dissolution pattern. It is 

also recommended to run the dry core CT scan, then saturate the core under the CT scanner (in 

place), and finally run the wet core CT scan to ensure the coincidence of the two images. This 

simulation run shows the importance of including the spatial wormhole propagation in assessing 

the match quality. Because in the current simulation, although the match was very good for the 

PVBT, no actual breakthrough was observed in the simulation.  

Figure 15 shows the simulated dissolution pattern, along with the after acidizing CT scan 

for the 3 cm3/min experiment. The match is considered well to excellent because the model was 

able to capture the correct wormhole path and the branching near the middle of the core. Also, 

the curvature in the wormhole near the core outlet was well captured. 
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Figure 13 Dissolution pattern. A comparison between simulation (right) and CT scan (left) 

for the 1 cm3/min experiment. 15 wt% HCl at 150⁰F.  

 

 

 
Figure 14 CT scan 3D view. A position comparison between the dry core (left) and wet core 

(right).  
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Figure 15 Dissolution pattern. A comparison between simulation (right) and CT scan (left) 

for the 3 cm3/min experiment. 15 wt% HCl at 150⁰F.  

 

 

Figure 16 shows the simulated dissolution pattern, along with the after acidizing CT 

scan, for the 5 cm3/min experiment. The match is considered well to excellent because the highly 

tortuous path of the wormhole was accurately captured by the model. The real core image 

(Figure 3, core 1007) showed a dissolution on the edge of the core close to the inlet, which was 

captured by the model. That emphasizes the importance of considering the real cylindrical shape 

of the core in simulation models. The abrupt change in the wormhole path is attributed to the 

high concentration of vugs in that region, as shown in Figure 17.  
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Figure 16 Dissolution pattern. A comparison between simulation (right) and CT scan (left) 

for the 5 cm3/min experiment. 15 wt% HCl at 150⁰F.  

 

 

 
Figure 17 Initial porosity distribution (porosity > 0.45 is shown). The red circle indicates 

the high concentration of vugs region.  

 

 

High concentration of vugs 
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Figure 18 shows the simulated dissolution pattern, along with the after acidizing CT 

scan, for the 7 cm3/min experiment. The match is considered well to excellent because the path 

of the wormhole was captured by the model. There was a delay in the model at the beginning in 

capturing the wormhole curvature, and a delay in the branching was noticed near the outlet. 

However, the wormhole was initiated near the core edge, and the presence of two competing 

wormholes at the beginning was well captured. The model was also able to capture the wormhole 

thinning and breakthrough near the middle of the core. 

 

 

 
Figure 18 Dissolution pattern. A comparison between simulation (right) and CT scan (left) 

for the 7 cm3/min experiment. 15 wt% HCl at 150⁰F.  
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Figure 19 shows the simulated dissolution pattern along, with the after acidizing CT 

scan, for the 10 cm3/min experiment. The match is considered good because the curvy path of the 

wormhole was captured by the model. The model captures the curvature in the wormhole path, 

but the actual wormhole path was curvier. 

 

 

 
Figure 19 Dissolution pattern. A comparison between simulation (right) and CT scan (left) 

for the 10 cm3/min experiment. 15 wt% HCl at 150⁰F.  

 

 

     The matching process included four experiments, while the fifth experiment (10 cm3/min) 

was used to validate the prediction capabilities of the tuned model. It was realized from the 

matching runs performed for the first set of experiments that the model parameters can be 

adjusted using as low as three experiments. The three experiments account for the mass transfer 
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controlled regime (the lowest injection rate), kinetically controlled regime (the highest injection 

rate), and the combined effect of mass transfer and reaction kinetics (moderate injection rate). 

 

6.3. Dolomite Experiments Using 20 wt% HCl at 200⁰F. 

To study the predictability of the model under different acid concentration and 

temperature, a second set of experiments were conducted at 200⁰F using 20 wt% HCl. The 

increase in acid concentration will result into higher reactivity as the number of H+ cations in 

solution increases, while the higher temperature will result in higher reactivity through the 

increase in both reaction kinetics (constant and exponent) and acid diffusion coefficient. In the 

model, the acid concentration was increased to 20 wt% while the reaction exponent was 

increased to 0.8 to account for both the increase in temperature and the presence of Calcite in the 

dolomitic cores (Lund et al. 1973, 1975). To be consistent with previous simulations, only 

diffusion coefficient and reaction constant were modified to match the second set of experiments. 

The rest of the simulation parameters were kept the same as previous section (Table 5). 

Unlike the previous section simulations where we built a porosity distribution for every 

single experiment, the second set of experiments was matched using one porosity distribution, 

namely, core 1010 porosity distribution. The properties of core 1010 are close to the average of 

the five cores used in the second set of experiments (Table 2). Using one porosity distribution for 

matching the five experiments was encouraged by the fact that under field conditions, it is 

impossible to have a detailed porosity distribution similar to the one provided by CT scanner. 

Only three experiments were used to match the model, the lowest rate (1 cm3/min), the highest 

rate (10 cm3/min), and a moderate rate (5 cm3/min), validating our proposed approach from the 

first set of experiments. To match the three experiments, the diffusion coefficient was set to 3 X 
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10-3 cm2/s and the reaction rate constant was an order of magnitude higher than the value 

presented in Table 5. The high values of the matching parameters can be attributed to the 

presence of pure calcite in the cores as discussed in the previous sections and proved 

experimentally from the effluent samples as shown in Fig. 20. The matching parameters may be 

a little bit different if the actual porosity distribution of each core was used instead of using one 

porosity distribution to match the five experiments. But, in the context of validating our 

matching approach by considering different acid concentrations and temperatures, we believe 

that using one averaged porosity distribution that considers the actual distribution and pore 

structure is enough. 

Fig. 21 presents a comparison between the experiments and the simulation runs using 20 

wt% HCl at 200⁰F. The absolute percentage error between the experiment and the simulation 

varies between 16.8% for the 3 cm3/min and 4.2% for the 5 cm3/min. The average percentage 

error for the five experiments is nearly 2.6%. The results show a good agreement between the 

experiments and the simulation runs. The 3 cm3/min and the 7 cm3/min experiments were not 

included in the matching process but they were used to validate the prediction capabilities of the 

tuned model. The two sets of experiments confirm that a few number of experiments can be used 

to build a robust model for modeling dolomite matrix acidizing. 
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Figure 20 Dissolved calcium ion and magnesium ion concentrations and 

calcium/magnesium molar ratio for the 3 cm3/min experiment as a function of cumulative 

volume injected. 20 wt% HCl at 200⁰F.  

 

 

 

Figure 21 Acid efficiency curve. A comparison between simulation and experimental 

results using 20 wt% HCl at 200⁰F.  
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6.4. Limestone Experiments Using 15 wt% HCl at 150⁰F. (Effect of Rock Type) 

It was shown in the previous chapter that the porosity distribution exported from CT 

scanner change from rock type to another. Hereafter, we are studying the ability of the TSC to 

predict carbonate rock types based on the initial porosity distribution from the CT scanner. 

 Fig. 22 presents a comparison between Zakaria et al. (2015) experiments and the TSC 

model simulations for Indiana Limestone cores acidizing using 15 wt% HCl at 150°F. Similar to 

the Dolomite cases, the diffusion coefficient and the reaction rate constant were the only tuning 

parameters. A good match with an absolute average percentage error (AAPE) around 11% was 

achieved between experiments and simulations. 

 

 

 

Figure 22: A comparison between Zakaria et al. (2015) Indiana Limestone experiments 

(symbols) and TSC model simulations (line) using 15 wt% HCl at 150°F. 
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The effect of the porosity distribution on the TSC model was studied and assessed by simulating 

Edwards White experiments using the simulation matching parameters of the Indiana limestone 

experiments. Fig. 6 shows a comparison between Zakaria et al. (2015) experiments and the TSC 

model simulations for Edwards White cores acidizing using 15 wt% HCl at 150°F. A moderate 

match between the experiments and the simulations was achieved. The AAPE was nearly 26%, 

the decrease in the quality of match for the Edwards White experiments can be attributed to the 

effect of the pore connectivity on the acid dispersion, which requires further tuning of the 

simulation model. A more holistic way to assess the capabilities of the TSC model to simulate 

different rock types using the same parameters is the ratio between Indiana Limestone PVBT to 

Edwards White PVBT. Fig. 7 presents the ratio for experiments and TSC model simulations 

which reveals that at the low and the high rate the TSC model can capture the effect of the rock 

type, but the percentage error increases near the optimum conditions to reach 29%. For the two 

sets of experiments, the simulation model can capture the effect of the rock type to up to 15%. 

The ability of the TSC model to capture the effect of rock types will have a prominent effect on 

field stimulation treatment designs. 



 

42 

 

 

Figure 23 A comparison between Zakaria et al. (2015) Edwards White experiments (dots) 

and TSC model simulations (line) using 15 wt% HCl at 150°F. 

 

 

 

Figure 24 The ratio between Indiana Limestone PVBT to Edwards White PVBT at 

Different Rates from Zakaria et al. (2015) Experiments and Simulation Data. 
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7. SIMULATING RADIAL FLOW OF ACID IN HOMOGENEOUS DOLOMITE 

RESERVOIRS 6 

7.1. Large Scale Radial Experiments 

Before using the current model to simulate actual field scale, the tuned model for 15 wt% 

HCl at 150⁰F was utilized to simulate McDuff et al. (2010) results. To the best of our knowledge, 

McDuff et al. (2010) conducted the largest acidizing experiment on both limestone and dolomite 

blocks. They drilled a hole inside a 14 ft3 block to mimic the radial flow geometry in field 

conditions. In their study, they used smaller blocks of 0.8 ft3 for dolomite experiments. To 

simulate McDuff et al. (2010) experiments, a radial model was built with a diameter of 1 ft. and 

thickness of 1 ft. and wellbore diameter of 0.05 ft. The initial porosity distribution was generated 

using the distributions generated by CT scanner for the previously studied Dolomite cores; to 

ensure that porosity distribution is closest to natural distribution (Figure 25). The spatial 

propagation of the wormhole from simulation (Figure 26) and McDuff et al. (2010) study 

(Figure 27) are very similar. 

 

                                                 

6 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali and 

H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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Figure 25 Initial porosity distribution for the 1 ft. diameter radial model.  

 

 

 

Figure 26 Top and side views of dissolution pattern from the optimum rate simulation. A is 

the original wellbore diameter, while B is the after acidizing wellbore diameter. 15 wt% 

HCl at 150⁰F.  
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Figure 27 Top views of wormhole structures from Silurian dolomite.    

 

 

7.2. Field Scale Radial Simulations. 

To mimic field conditions, a radial model was built with 1 ft. thickness and borehole of 

0.5 ft. diameter. Two domains were built with formation depth of investigations of 0.5 and 1 ft. 

as shown in Figure 28. The porosity distributions were generated as previously discussed using 

the five cores CT scan data. In the absence of actual porosity distribution from CT scans, it is 

recommended to distribute the porosity in a spatially correlated manner as proposed by Liu et al. 

(2016). The tuned model for 15 wt% HCl at 150⁰F was used. Figure 29 shows the acid 

efficiency curve for the experimental data, radial 1.5 ft. diameter domain, and radial 2.5 ft. 

diameter domains. The graph depicts that the optimum PVBT and velocity were strictly lowered 

for the radial flow cases in comparison to the linear core flood. Furui et al. (2012) results show 

that lower PVBT is expected under radial geometry. The increase of the domain diameter for 

radial model increases the optimum injection velocity, this result agrees with that from linear 

core flooding (Duong et al. 2014). The higher optimum injection velocity can be attributed to the 

fluid losses. Contrarily, the optimum PVBT decreases with the increase of the domain diameter, 

which is opposite to the trend from linear core flooding. That trend in the radial models can be 
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explained by the increase in the volume with the diameter (volume α (diameter)2), which 

surpasses the effect of the fluid losses. 

 

 

 

Figure 28 Field scale models initial porosity distribution. (a) 1.5 ft. diameter model and (b) 

2.5 ft. diameter.  

 

 

Figure 29 confirms that the PV of acid required in the field applications is strictly lower 

than that required for linear core-flood. But, the upscaling of velocity from linear core-flood to 

field application will remain questionable because as shown in Figure 28, the optimum velocity 

for the radial cases increases with the increase in the acid traveling depth into the formation. 

Accordingly, it can be lower, equal, or higher than the optimum velocity from linear core-flood. 

Besides, it is proven by Bazin (2001), Furui et al. (2012), and Duong et al. (2014) that the change 
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in the optimum velocity will be attributed to changes in the core dimensions (length and 

diameter). 

 

 

 

Figure 29 A comparison of acid efficiency curves for linear experiments (green), 1.5 ft. 

diameter model (maroon), and 2.5 ft. diameter model (blue).15 wt% HCl at 150⁰F.  

 

 

To overcome the core dimensions issue, especially when optimum PVBT and injection 

velocity are to be used into upscaling models (Buijse-Glasbergen 2005; Tardy et al. 2007; Furui 

et al. 2012), it is proposed to modify those models based on radial simulations as will be shown 

in next section. 

Figures 30 to 32 present the dissolution pattern for the radial 1.5 ft. diameter domain at 

low, moderate, and high injection rates, respectively. The acidizing process at field scale is 
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accompanied with wellbore enlargement. The degree of the enlargement is high at low injection 

rate to low/moderate at moderate and high injection rates. The wellbore enlargement 

phenomenon was firstly noticed by McDuff et al. (2010) while conducting the radial large-scale 

acidizing experiments.   

 

 

 

Figure 30 Top and side views of dissolution pattern from the low rate simulation. A is the 

original wellbore diameter, while B is the after acidizing wellbore diameter. 15 wt% HCl at 

150⁰F.  
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Figure 31 Top and side views of dissolution pattern from the optimum rate simulation. A is 

the original wellbore diameter, while B is the after acidizing wellbore diameter. 15 wt% 

HCl at 150⁰F. 

 

 

 

Figure 32 Top and side views of dissolution pattern from the high rate simulation. A is the 

original wellbore diameter, while B is the after acidizing wellbore diameter. 15 wt% HCl at 

150⁰F.  



 

50 

 

At low injection rates, a wellbore enlargement from 6 in. diameter to nearly 10 in. was 

noticed. The total injection time to penetrate the 0.5 ft. of the formation was about 17 hours using 

a total volume of 4.5 gallons of acid. The injection rate seems to be unpractical, but under real 

field conditions where hundreds of feet’s of different properties and formation pressures are 

treated. It is not uncommon to have zones with near zero injection rates. At moderate and high 

injection rates, a wellbore enlargement from 6 in. diameter to about 7.5 in. was noticed. Near 

optimum injection time to penetrate the 0.5 ft. of the formation was about 1 hour using a total 

volume of 1 gal of acid. It is intuitively obvious that for rates higher than the optimum, the 

higher the rate, the less the time and the higher the total acid volumes. Figure 33 presents the 

total volume of acid to breakthrough as a function of the inlet velocity. Regardless the injection 

rate, the deeper the acid penetration, the more volume of acid will be required (Fig. 33). This 

explains the low volumes of acid in current simulations in comparison with real field data, where 

the volumes of acid reaches 75 gal/ft. for an average stimulation radius of 15 ft. (Furui et al. 

2012). 
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Figure 33 A comparison of the acid volume to breakthrough curves for the 1.5 ft. diameter 

model (maroon, dashed line), and the 2.5 ft. diameter model (green, solid line). 15 wt% HCl 

at 150⁰F.  

 

 

Based on the previous results, it is expected to have large volumes of unspent acid around 

the wellbore during acidizing operations. Those volumes are mainly driven by gravity, leading to 

acid flow downward. That causes cross-flow and in worst case acid flow path can invade the 

underlying water. That may explain the increase in water production after many acidizing 

operations. Accordingly, current acidizing design simulators should account for the gravity 

component during acidizing operations to provide a more realistic design. 

 

 



 

52 

 

7.3. Adjusting The 1-D Upscaling Models Based on Radial Simulations 

In this section, a half-cylinder model was built to allow deeper investigations inside the 

formation. The model was built with a wellbore of 0.5 ft. and formation that extends 3 ft. deep; 

the thickness of the model is 1 ft. as shown in Figure 34. Like the previous radial models, the 

porosity distribution was obtained from the Dolomite cores CT scans to assure natural porosity 

distribution. 

 

 

 

Figure 34 Initial porosity distribution of the Semi-cylindrical simulation model. 

 

 

Figures 35 and 36 show the simulations of the large-scale model for 15 wt% HCl at 

150°F and 20 wt% HCl at 200°F in comparison with the lab experiments, respectively. Injection 

velocity in the range of 8e-5 to 8e-2 m/s was studied using the large-scale model, lower rates are 

computationally expensive. The simulations of the 15 wt% HCl with dolomite at 150°F show 
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that the optimum injection velocity under field conditions is smaller than the optimum obtained 

using the 6 in. long and 1.5 in. diameter cores. Contrarily, the 20 wt% HCl with dolomite at 

200°F simulations show that higher injection velocities are required to reach optimum conditions 

under field conditions. The discrepancy in the field behavior of the two studied cases can be 

attributed to the increase in the reaction rate and diffusive forces. As temperature increased from 

150 to 200ºF and acid concentration increased from 15 to 20 wt%, higher injection rates are 

required to overcome both the increase in the reaction rate and the H+ diffusion. Figures 37 

presents a comparison between large-scale model simulations using 15 wt% HCl at 150°F and 20 

wt% HCl at 200°F in field units. 

 

 

 

Figure 35 A comparison between lab experiments and large-scale model simulations. 15 wt% HCl 

at 150°F. 
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Figure 36 A comparison between lab experiments and large-scale model simulations. 20 wt% HCl 

at 200°F. 

 

 

 

Figure 37 A comparison between large-scale model simulations using 15 wt% HCl at 150°F and 20 

wt% HCl at 200°F. 
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Figure 38 shows a comparison between the two studied conditions on both lab and field 

scale. The results reveal that relations between different conditions of temperature and acid 

concentrations at field scale can be different than what established from linear core-flood 

experiments. This raises a concern about the accuracy of the traditional upscaling models (Buijse 

and Glasbergen 2005; Tardy et al. 2007), which rely on linear experiments to predict acid 

propagation in carbonate wells. 

 

 

 

Figure 38 A comparison between lab experiments and radial model simulations using 15 

wt% HCl at 150°F and 20 wt% HCl at 200°F. 

 

 

Figure 39 presents a comparison between the large-scale model simulations, BG model 

and Tardy et al. model using 15 wt% HCl at 150°F. The simulation results show that acid 

treatment designs based on BG model can result in higher acid volumes. The results of the 
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simulation agree with the post field jobs analysis, which shows lower skin values than predicted 

based on the BG model (Furui et al. 2012). It is recommended to modify the BG model based on 

large scale simulations for better field designs. In the present study, the BG model was modified 

by changing the optimum interstitial velocity, the optimum PVBT, and the gamma exponent. 

Gamma exponent represents the loss in wormholing efficiency at velocities above the optimum 

(Buijse and Glasbergen 2005). Lower optimum conditions and higher gamma exponent were 

used to modify BG model. The modified BG model is shown in Figure 39. 

 

 

 

Figure 39 A comparison between simulation, BG, Tardy et al., and modified BG models. 15 

wt% HCl at 150°F. 

 

 

 

The comparison between the large-scale model simulations, BG model and Tardy et al. 

model using 20 wt% HCl at 200°F is shown in Figure 40. Contrarily to Fig. 11, the simulation 
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model predicted higher optimum injection velocity. Similar to the previous case, BG and Tardy 

et al. models predicted higher acid volumes than the large-scale simulation model. BG model 

was modified to follow the simulation model by decreasing the optimum PVBT and increasing 

both optimum injection velocity and gamma exponent. 

 

 

 

Figure 40 A comparison between simulation, BG, Tardy et al., and modified BG models. 20 

wt% HCl at 200°F. 
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7.4. Using Radial Model in The Absence of Experiments 

Collecting cores from the field and running CT scans and linear experiments is time-

consuming and expensive. In the following, we present a methodology to predict acid 

performance using data from well logs only. 

Figures 22 and 23 show that the porosity distribution can capture the effect of acid on 

different rock types. In the previous simulations, porosity distributions were extracted from CT 

scans, which is not available on the field scale. Accordingly, a reliable approach is to distribute 

the porosity statistically based on the natural porosity distribution in different rock types. Figure 

7 shows the porosity distribution in seven carbonate rocks; every rock type has its unique 

distribution. We recommend to statistically produce porosity distributions similar to natural 

porosity distributions found from CT scans. 

Figure 41 shows the effect of porosity distribution on simulation results for dolomite 

acidizing at 150℉ using 15 wt% HCl. Two of the distributions were generated based on CT scans, 

while the other three are statistically distributed. Statistical distribution was generated by fitting 

the CT scan based distribution to a gamma distribution or by randomly selecting values from the 

CT scan based distribution to generate the new distribution. Figure 41 reveals that porosity 

distribution can cause up to 23% difference in the predicted acid volumes. 
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Figure 41 Effect of porosity distribution on simulation model results. 15 wt% HCl at 150°F. 

 

 

The effect of porosity distribution on simulation results for dolomite acidizing at 200℉ 

using 20 wt% HCl is presented in Figure 42. Two porosity distributions are shown, one 

generated from the CT scan while the other was statistically generated. At these conditions of 

temperature and concentration, the porosity distribution can cause around 21% difference in the 

predicted acid volumes. To account for the effect of porosity distribution in field designs, 25% 

extra volumes should be pumped. 
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Figure 42 Effect of porosity distribution on simulation model results. 20 wt% HCl at 200°F. 

 

 

 

 



 

61 

 

8. SIMULATING RADIAL FLOW OF ACID IN HETEROGENEOUS DOLOMITE 

RESERVOIRS 

8.1. Introduction 

The presence of vugs and natural fractures in carbonate reservoirs is very common, and 

most of the world’s prolific fields produce from these reservoirs. The co-existence of porous 

rock and open spaces over a wide range of scale complicates these reservoirs characterization 

and fluid flow modeling (Lucia 2007, Fadlelmula et al. 2015). Vugs and fractures can be 

characterized on the reservoir scale using seismic attributes and well test analysis; on the well 

scale using a combination of conventional, borehole image and nuclear-magnetic resonance 

(NMR) logs; and on the lab scale using routine core analysis, thin section, capillary pressure 

measurements, X-ray computed tomography, and NMR (Cannon et al. 1998; Iwere et al. 2002; 

Mai and Kantzas 2002, 2003; Gomaa et al. 2006; Narr et al. 2006; Lucia 2007; Nair et al. 2008; 

Izgec et al. 2010; Al-Muraikhi et al. 2012; Shafiei and Dusseault 2012;  Ibrayev et al. 2016; Ali 

and Nasr-El-Din 2019). Fluid flow in these reservoirs should be described using equations that 

can simultaneously handle flow in porous and free-flow domains (Brinkman 1949; Arbogast and 

Brunson 2007; Popov et al. 2007; Yao et al. 2010). 

Matrix acidizing is not well understood for vuggy and naturally fractured reservoirs 

because it is difficult to study in the lab, especially in the presence of large-scale vugs and/or 

natural fractures (Lucia 2007; Nair et al. 2008). Dong et al. (1999) studied experimentally the 

acid propagation in one fracture and they concluded that the width of the fracture affects the 

etching pattern. Dong et al. (2001) developed a mathematical model based on experimental work 

to study acid propagation in naturally fractured reservoirs and concluded that deeper acid 

penetration is expected in the presence of natural fractures. Chen et al. (2018) used a 3D linear 
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model to study the effect of fracture size, orientation, and permeability on acid propagation. 

They concluded that more acid volumes are required for larger fracture perpendicular to the flow 

direction. Ma et al. (2018) extended the work to include the effect of temperature and studied the 

process using a small-scale 3D model. The fractures were normally distributed and they 

concluded that lower acid volume is required in the presence of natural fractures. Aidagulov et 

al. 2019 conducted large scale radial experiments on a block with pre-existing fractures and they 

concluded that most of the acid is consumed in the fracture system. Dong et al. 2019 proposed a 

new numerical scheme to simulate complex acidizing processes. They studied the effect of 

natural fractures using a 2D linear model and concluded that the wormhole growth is strongly 

affected by the fracture system. Qi et al. 2019 studied the effect of fractures orientation on 

wormhole growth using the Two-Scale model. They concluded that parallele fractures accelerate 

the growth of the wormhole, while the perpendicular fractures hinder the acid propagation. 

Izgec et al. (2010) conducted experiments and simulations to study the effect of vugs on 

acid propagation in limestone rocks. They used regular HCl acid at room temperature for the 

experiments and used the CT scan to predict the preferential flow path of the acid. They 

concluded that vugs accelerate the acid propagation in the carbonate rocks. Wang (2011) studied 

experimentally the acid response on homogeneous and vuggy carbonates using regular HCl acid 

at room temperature. Wang (2011) concluded that less acid is required for vuggy carbonates; the 

larger the vugs fraction the less the acid volume required. Also, it was shown that the size of the 

core has a significant effect of permeability and acid propagation. Zakaria et al. (2014) studied 

the propagation of emulsified acid at 230°F in vuggy dolomitic rocks. They concluded that 

smaller volume of acid is required in the presence of vugs. Akanni et al. (2017) studied the effect 
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of vugs on a 2D linear model and similar to the experimental results, they concluded that lower 

volumes of acid are required for the vuggy rocks. 

All the previous studies discussed the qualitative effect of vugs and natural fractures, but 

none of these studies took a step toward quantifying the effects of the vugs and/or natural 

fracture on acid treatments. Also, none of the previous studies cited herein examined the effect of 

vugs and natural fractures using a radial model. Vugs and natural fracture size can be too large to 

be studied under lab conditions (Lucia 2007), which complicates the use of the experimentally 

based predictive models.   

The objectives of this chapter are to use a field scale radial model to: (1) understand the 

effect of vugs size and number on acid propagation, (2) understand the effect of natural fractures 

length, angle, conductivity, and density on acid propagation, (3) build a surrogate model for each 

case to quantify the effect of vugs or natural fractures on acid propagation, and (4) study the 

composite effect of vugs and natural fractures on acid stimulation treatments. 

 

8.2. Simulation Model Description 

The 6.5 ft. diameter half-cylinder model presented in the previous section was utilized 

through this part of the study. The simulation parameters are identical to the values used for 

matching Silurian dolomite experiments using 15 wt% HCl at 150°F (Table 5). The simulations 

were run on the Texas A&M University (TAMU) High Performance Research Computing 

(HPRC) clusters. The wall-clock runtime using 32 processing cores was approximately 12 hrs at 

the highest rate, and nearly 10 days at the lowest studied rate (near optimum rate).  

The quantification of the effect of vugs and natural fractures on the volume of injected 

acid is challenging because it involves a large number of parameters. Three variables are 
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considered to study the effect of vugs, whereas five variables are taken into account with the 

study of natural fractures. The study of this relatively large number of variables requires an 

engineered approach to save time and effort and, more importantly, to obtain general 

conclusions. In this study, the design of the simulation runs was conducted using a space-filling 

experimental design approach instead of changing one factor at a time (OFAT) (Santner et al. 

2003). Initially, a number of runs were randomly generated for exploratory purposes, then a 

Latin Hypercube Design (LHD) is generated to augment the initial design with space-filling runs. 

Once the simulation runs have been conducted, a Gaussian Process (GP) model, which is a 

common statistical technique in computer simulation literature, was used to generate a surrogate 

model that accurately describes the functional relationship between the inputs and the 

corresponding response. The generated model can accurately predict acid performance at any 

condition within the space of variables. 

 

8.3. The Gaussian Process Model 

A Gaussian Process (GP) model is a non-parametric statistical technique commonly used 

in the computer simulation literature for surrogate modeling due to several desired properties 

including its flexibility and interpolative ability (Rasmussen et al. 2006). In a GP, the joint 

probability distribution of any finite collection of outputs 𝒀 = [Y1, … , YN]T follows as a 

multivariate normal distribution with an 𝑁 × 𝑁covariance matrix denoted 𝑲.  

The main challenge in constructing a GP model involves determining the entries of 𝑲 using 

a pre-specified parametric covariance function. A covariance function can be regarded as a 

measure of similarity between any pair of observations and is denoted by  𝑪(. , . ). Assuming 

stationarity, a common choice is the Squared Exponential (SE) covariance function, which only 
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depends on the distance between any pair of observations, and can be written as shown in 

Equation 15 (Rasmussen et al. 2006):  

 

𝑪(𝒙𝟏, 𝒙𝟐) = 𝜎2 exp(− ∑ 𝜃𝑖|𝑥1𝑖 − 𝑥2𝑖|2𝑝
𝑖=1 ) … … … … … … … … … … … …   𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟓  

 

where 𝑥1 = [𝑥11, 𝑥12, … , 𝑥1𝑝]
𝑇
is a realization of the set of input variables, 𝑝 is the dimension of 

the input data, and {𝜎2, 𝜃1, … , 𝜃𝑝} are the variance and scale parameters that are estimated given 

the available data using Maximum Likelihood Estimation (MLE). Once a GP is trained and the 

parameters are estimated, a point prediction at any untried test location 𝒙∗can be calculated as a 

linear combination of the observed outputs, as shown in Equation 16 (Rasmussen et al. 2006):  

 

 𝑌̂(𝒙∗) =  𝒌𝑲−1𝒀 … … … … … … … … … … … … … … … … … … … … … . . . 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟔   

 

where 𝒌  is the 1 × 𝑁 vector of covariances between the 𝑁 × 1 vector of observed outputs 

and 𝑌(𝒙∗).   For more details, authors refer to Rasmussen et al. (2006). 

 

8.4. Base (Homogeneous) Case 

In this case, the simulations were run without including the effect of vugs or natural 

fractures. Using the natural distribution obtained from the CT scans, four different injection 

velocities were studied to cover a broad range of field treatments. The radial model simulations 

for the 15wt% HCl at 150℉ is shown in Figure 35 (maroon curve) in terms of PVBT and in 

Figure 37 (blue curve) in terms of field volumes.  The dissolution patterns at the four rates 

appear in Figure 43, following the expected trend above the optimum point. At the lowest rate 

(near optimum), a wormhole pattern was achieved; as the rate increased, the wormholes became 
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thicker and more branched. The uniform dissolution was realized at the highest rate.  In the 

following sections, the lowest rate was excluded because it was computationally expensive. 

 

 

 

Figure 43 Acid dissolution patterns at different injection velocities. 15 wt% HCl at 150⁰F. 

 

 

8.5. Effect of Vugs 

Vugs exist over a wide range of scales and shapes (Lucia, 2007; Huang et al. 2011). 

Figure 44 shows actual examples of vuggy carbonates. Some vugs can be larger than the 

wellbore, which prohibits studying flow in these rocks under lab conditions. For simplicity, the 

current study assumes that all the vugs are spheres and have equal size. Vug radii ranging from 

0.05 - 0.5 ft. were studied. Also, the number of vugs in the vicinity of the wellbore ranged from 1 
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to 50. The current section is concerned with separate vugs; the effect of the connected vugs will 

be presented in the following section. 

 

 

 

Figure 44 Real examples of large vugs: A) Cavernous pore space in a Niagran reef (after 

Lucia 2007), B) Caverneous pore space in Miami oolite (after Lucia 2007), and C) Vuggy 

pore space in Silurian dolomite cores. 

 

 

 

Thirty-three simulations were run on the TAMU HPRC clusters to thoroughly study the 

effect of vug size and density on acid performance at three injection velocities. The vug parameters 

along with the injection rates were selected randomly (twenty-three runs) and using Latin 

hypercube sampling approach (ten runs) to ascertain full coverage of the variables. Table 6 

presents the simulation parameters for the thirty-three runs.  

Figure 45 shows the effects of the vug size and number on the acid injection performance 

at the three studied rates. The y-axis of Figure 45 quantifies the pore volume to breakthrough 
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(PVBT) indicator, which is the product of the injection velocity in m/s and time to breakthrough 

in seconds. At 8E-4 m/s injection rate (Figure 45 A and B), the increase in vug size and number 

results in a lower volume of acid to stimulate the reservoir; the presence of vugs always results in 

lower acid volumes. At 8E-3 m/s injection rate (Figure 45 C and D), there is no direct relation 

between vugs size and PVBT indicator but increasing the number of vugs decreases the PVBT 

indicator. At 8E-2 m/s injection rate (Figure 45 E and F), the relation between vug radius and 

PVBT indicator is almost constant up to vugs radii of 0.32 ft. and PVBT indicator decreases for 

higher vug radii. The relation between vug number and PVBT indicator is almost constant at the 

highest rate.  
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Table 6 A list of the simulation run inputs and outputs (injection rate, vug radius, and 

number of vugs). 15 wt% HCl at 150⁰F. 

 

 

 
Case Number Injection rate, m/s Radius, ft. Number of vugs 

V1* 8.E-04 0 0 

V2 8.E-04 0.5 1 

V3 8.E-04 0.25 1 

V4 8.E-04 0.1 1 

V5 8.E-04 0.25 2 

V6 8.E-04 0.1 12 

V7 8.E-04 0.1 32 

V8 8.E-04 0.25 32 

V9 8.E-04 0.05 32 

V10 8.E-04 0.25 18 

V11 8.E-04 0.45 8 

V12 8.E-04 0.21 21 

V13 8.E-04 0.30 40.5 

V14* 8.E-03 0 0 

V15 8.E-03 0.5 1 

V16 8.E-03 0.25 1 

V17 8.E-03 0.1 1 

V18 8.E-03 0.1 32 

V19 8.E-03 0.25 32 

V20 8.E-03 0.05 32 

V21 8.E-03 0.5 8 

V22 8.E-03 0.25 12 

V23 8.E-03 0.15 45 

V24 8.E-03 0.40 2 

V25 8.E-03 0.08 18 

V26* 8.E-02 0 0 

V27 8.E-02 0.5 1 

V28 8.E-02 0.25 1 

V29 8.E-02 0.1 1 

V30 8.E-02 0.1 32 

V31 8.E-02 0.25 32 

V32 8.E-02 0.05 32 

V33 8.E-02 0.05 50 

V34 8.E-02 0.13 32 

V35 8.E-02 0.18 36 

V36 8.E-02 0.32 24.5 

* Base case runs. 
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Figure 45 The effect of vug properties on PVBT indicator at different injection rates. A) 

Effect of vugs radius at 3E-4 m/s. B) Effect of the number of vugs at 3E-4 m/s. C) Effect of 

vug radius at 3E-3 m/s. D) Effect of the number of vugs at 3E-3 m/s. E) Effect of vug radius 

at 3E-2 m/s. F) Effect of the number of vugs at 3E-2 m/s. 

 

 

The results of Figure 45 shed light on the effect of large vugs. At the lowest rate, large 

vugs (radius > 0.45 ft.) resulted in an increase in PVBT indicator, because these large spaces will 

consume a large amount to be filled. At the highest rate, these large vugs assisted the acid 
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propagation because only a large low resistance path can drive the large volumes of acid injected. 

At the intermediate injection rate, the effect is a combination of the two previous cases. 

Figures 46 and 47 present the simulation results of case V12 in Table 6. Figure 46 shows 

the porosity distribution before and after acid injection. A comparison between Figures 43 and 46 

reveals that the presence of vugs guided the flow of acid and resulted in less branching. Figures 

43 and 46 explain the decrease in the PVBT indicator from 1.38 to 0.93 m due to the existence of 

vugs. Figure 47 presents the acid concentration in the model after acid injection, it draws attention 

to the substantial amount of acid present after acid injection. 

 

 

 

Figure 46 Case V12 porosity distribution before (top) and after (bottom) acid injection.  
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Figure 47 Case V12 acid concentration after acid injection. 

 

 

Figures 48 and 49 present the simulation results of case V22 in Table 6. A comparison 

between Figures 43 and 48 shows that the acid propagation path followed the vug pattern, 

decreasing the PVBT indicator from 3.05 to 2.34 m. Figure 49 presents the acid concentration in 

the model after acid injection. Similar to case V12, a substantial amount of acid is present after 

acid injection. 

Figures 50 and 51 present the simulation results of case V35 in Table 6.  Contrary to the 

two previous cases, Figure 50 shows that the presence of vugs results in guiding the acids to a 

larger volume around the wellbore when compared to the base case (Figure 43). The increase in 

PVBT indicator from 12.8 to 13.9 m complements the results shown in Figure 50. The acid 

concentration in the model after acid injection is shown in Figure 51. Again, a large amount of 

acid is present after acid injection. Acidizing flowback analyses in vuggy carbonates showed high 

acid concentrations in the samples. The field observations indicate the existence of unreacted acid 

at the end of the treatment and supports current simulation results. Accordingly, it is recommended 

to increase the soaking time in these reservoirs. 
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Figure 48 Case V22 porosity distribution before (top) and after (bottom) acid injection. 

 

 

 

Figure 49 Case V22 acid concentration after acid injection. 
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Figure 50 Case V35 porosity distribution before (top) and after (bottom) acid injection. 

 

 

 
Figure 51 Case V35 acid concentration after acid injection. 

 

 

 



 

75 

 

The surrogate model was generated using the GP model, as mentioned earlier. For testing 

the predictive ability of the final surrogate model, six points were randomly selected out of the 

thirty-six available data points. As such, the remaining thirty data points are used to train the GP 

model as shown in Figure 52. The actual testing observations and their corresponding GP 

predictions are presented in Figure 53. The proximity of the predicted to the actual values indicates 

that the GP is able to produce a satisfactory prediction performance. The mean absolute percentage 

error is 10.3%. Figure 54 visualizes the actual observations versus the predictions, which 

approximately lie on the diagonal line, indicating quality predictive power. 

 

 

 

Figure 52 The match between actual observations (black dots) and GP model predictions 

(red x’s) for the vug case training data set. Y is the PVBT indicator.  
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Figure 53 The match between actual observations (black dots) and GP model predictions 

(red x’s) for the vugs case testing (blind) data set. Y is the PVBT indicator.  
 

 

Figure 54 Actual observations versus GP model predictions for the vug case. 
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8.6. Effect of Natural Fractures 

Natural fractures can be observed as microcracks or as mile-long features; these can be 

open or filled with fine-grained material and can take any direction based on the regional stresses 

(Narr et al. 2006).  Widths of the fractures range from 10-5 to 5*10-2 cm (Dong et al. 1999). In the 

current study, four fracture properties (length, azimuth, fracture density, porosity) were studied at 

three injection rates. The length was studied over the range from 0.1 to 1 ft, and the height was 

assumed to be equal to the length. Shorter fractures can be studied in the lab, whereas longer ones 

fall beyond current model limitations. Fractures were assumed to be all vertical and parallel for 

simplicity. Two to twenty fractures were studied, and they were set either parallel or perpendicular 

on the model X-axis. Fractures porosity ranged from 0.6 to 1. Because it is impractical to simulate 

the actual fracture width, it was fixed to 0.05 ft. The simulated fracture width can be related to the 

natural fracture width using Equation 17 (Dong et al. 1999) and Equation 11.  

 

𝑘𝑡 =
𝑘𝑟𝑤𝑟+𝑘𝑓𝑤𝑓

𝑤𝑟
… … … … … … … … … … … … … … … … … … … … … … … … . .  𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟏𝟕   

 

where 𝑘𝑡 is the total (simulated fracture) permeability, 𝑘𝑟 is the rock permeability, 𝑘𝑓  is the actual 

fracture permeability, 𝑤𝑟  is the width of the rock (simulated fracture) and wf is the width of the 

actual fracture.  

Thirty simulations were run to study the effect of fracture length, angle, number and 

porosity on acid performance at three injection velocities. The fracture parameters along with the 

injection rates were initially selected randomly (eleven runs), then augmented using a Latin 
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hypercube sampling approach (nineteen runs) to ensure full coverage of the variables. Details of 

the simulation runs are presented in Table 7. 

 

 

Table 7 A list of the simulation run inputs (injection rate, fracture length, porosity, angle 

on X-axis, and number of fractures). 15 wt% HCl at 150⁰F. 

 

 

 

Case Injection 
rate, m/s 

Length, ft. Porosity Angle on x-
Axis, deg. 

Number of fractures 

NF1* 8.E-04 0 0 0 0 

NF2 8.E-04 0.1 0.99 0 2 

NF3 8.E-04 0.4 0.6 90 20 

NF4 8.E-04 0.7 0.8 0 16 

NF5 8.E-04 1 0.7 0 5 

NF6 8.E-04 0.9 0.9 90 10 

NF7 8.E-04 0.26 0.90 0 9 

NF8 8.E-04 0.18 0.93 90 10 

NF9 8.E-04 0.30 0.98 90 8 

NF10 8.E-04 0.85 0.65 0 13 

NF11 8.E-04 0.75 0.70 90 15 

NF12 8.E-04 0.50 0.61 0 18 

NF13* 8.E-03 0 0 0 0 

NF14 8.E-03 0.1 0.6 0 16 

NF15 8.E-03 0.4 0.8 90 2 

NF16 8.E-03 0.7 0.9 0 5 

NF17 8.E-03 1 0.99 90 20 

NF18 8.E-03 0.9 0.7 90 10 

NF19 8.E-03 0.41 0.73 0 11 

NF20 8.E-03 0.89 0.88 0 7 

NF21 8.E-03 0.69 0.86 0 5 

NF22 8.E-03 0.58 0.69 0 16 

NF23 8.E-03 0.64 0.67 0 19 

NF24 8.E-03 0.60 0.63 0 12 

NF25* 8.E-02 0 0 0 0 

NF26 8.E-02 0.9 0.99 0 10 

NF27 8.E-02 0.53 0.84 90 3 

NF28 8.E-02 0.42 0.75 90 2 

NF29 8.E-02 0.34 0.80 0 17 

NF30 8.E-02 0.22 0.96 90 6 

NF31 8.E-02 0.82 0.79 90 1 

NF32 8.E-02 0.94 0.76 90 4 

NF33 8.E-02 0.12 0.82 90 14 

* Base case runs. 
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Figures 55 and 56 show the effects of fracture length, angle, number and porosity on the 

acid injection performance at the three studied rates. At 8E-4 m/s injection rate (Figure 55 A 

and B and Figure 56 A and B), the increase in the fracture length and number results in an 

earlier breakthrough. The PVBT indicator decreases with the increase of porosity until a certain 

limit is reached followed be an increasing trend. The composite effect (Figure 56B) shows that 

the increase in the fractures porosity, number, or length will be accompanied by a decrease in the 

PVBT indicator.  The fracture orientation does not have a significant effect on acid propagation. 

At 8E-3 m/s injection rate (Figure 55 C and D and Figure 56 C and D), the increase in 

the fracture length has no effect on acid volumes up to 0.5 ft., while longer fractures decrease the 

acid volumes required. The relation between fracture conductivity and the PVBT indicator is 

inversely proportional; the same correlation was observed between the number of fractures and 

the PVBT indicator. The composite effect (Figure 56D) shows that the increase in the fractures 

porosity, number, or length will be accompanied by a decrease in the PVBT indicator.  The 

fracture orientation does not have a significant effect on acid propagation.  
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Figure 55 The effect of fracture length and porosity on PVBT indicator at different 

injection rates: (A) Effect of fracture length at 3E-4 m/s, (B) Effect of fracture porosity at 

3E-4 m/s, (C) Effect of fracture length at 3E-3 m/s, (D) Effect of fracture porosity at 3E-3 

m/s, (E) Effect of fracture length at 3E-2 m/s, and (F) Effect of fracture porosity at 3E-2 

m/s. 
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Figure 56 The effect of the number of fractures and orientation of PVBT indicator at 

different injection rates: (A) Effect of the number of fractures at 3E-4 m/s, (B) Effect of 

fracture orientation at 3E-4 m/s, (C) Effect of the number of fractures at 3E-3 m/s, (D) 

Effect of fracture orientation at 3E-3 m/s, (E) Effect of the number of fractures at 3E-2 m/s, 

and (F) Effect of fracture orientation at 3E-2 m/s. 

 

 

 

At 8E-2 m/s injection rate (Figures 55E and F and Figures 56E and F), the increase in 

the fracture length up to 0.6 ft. has no effect on PVBT indicator; longer fractures decrease the 
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acid volumes required. The correlation between fracture conductivity and PVBT indicator is 

inversely proportional. The PVBT indicator decreases with the increase in fractures number until 

a certain limit is reached followed by an increasing trend. The composite effect (Figure 56F) 

shows that the increase in the fracture porosity, number, or length will be accompanied by a 

decrease in the PVBT indicator. The fracture orientation does not have a large effect on acid 

propagation. The acid propagation at 8E-2 m/s for the base case (Figure 43) was parallel to the 

X-axis. The 0-degree angle fractures are perpendicular to the X-axis, resulting in a higher PVBT 

indicator for these cases when compared with the 90-degree fractures in Figure 56F. The 

conclusions drawn from linear models about the effect of fracture and/or vugs orientation (Izgec 

et al. 2010; Chen et. al 2018) are not applicable under field flow conditions. Based on results of 

this study, the fracture orientation has a minimal effect on fluid flow in general and should not be 

considered in acid designs.   

Figures 57 and 58 present the simulation results of case NF11 in Table 7. Figure 57 

shows the porosity distribution before and after acid injection. Because the number of fractures is 

low, and the fractures are short in length, the dissolution patterns and PVBT indicator is close to 

the base case (Figure 43 and Table 7). The same observation can be drawn from the final acid 

concentration (Figure 58). 
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Figure 57 Case NF11 porosity distribution before (top) and after (bottom) acid injection. 
 

 

 

Figure 58 Case NF11 acid concentration after acid injection. 
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Figures 59 and 60 present the simulation results of case NF20 in Table 7. Figure 59 

shows the porosity distribution before and after acid injection. In this case, the long and 

conductive fractures guided the flow of the acid, leaving a minimal amount of acid to invade the 

porous media. A comparison between Figures 43 and 59 shows the substantial effect of the 

fractures on the dissolution pattern. The final acid concentration (Figure 60) shows that the acid 

touched only three fractures and illustrates the effect of long conductive fractures on the 

dissolution pattern.     

  

 

 

Figure 59 Case NF20 porosity distribution before (top) and after (bottom) acid injection. 
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Figure 60 Case NF20 acid concentration after acid injection. 

 

 

Figures 61 and 62 present the simulation results of case NF32 in Table 7. Figure 61 

shows the porosity distribution before and after acid injection. A comparison between the base 

case (Figure 43) and case NF32 (Figure 61) demonstrates that the existence of only four long 

fractures could have a substantial effect on the dissolution pattern and PVBT indicator (Table 7). 

The final acid concentration (Figure 62) confirms the actual dissolution pattern and shows that 

one of the fractures was not touched with the acid. 
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Figure 61 Case NF32 porosity distribution before (top) and after (bottom) acid injection. 
 

 

 

Figure 62 Case NF32 acid concentration after acid injection. 
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It can be concluded from the dissolution patterns of cases NF11, NF20, and NF32 that the 

acid will not reach all of the fractures, but it will flow into those fractures that carry the amount of 

acid injected. It is expected that at higher injection rates, more fractures will be touched by the 

acid. 

Similar to the previous section, a surrogate model was generated to quantify the effect of 

natural fracture on acid treatment performance. The GP model was trained using twenty-seven 

observations as shown in Figure 63. A total of six points were randomly selected to test the GP 

model predictive capabilities. Figure 64 shows the GP predictions for the test points. A mean 

absolute percentage error of 11.3% indicates that the GP is able to produce a satisfactory prediction 

performance. Figure 65 shows the actual observations versus the predictions, which almost lie on 

the diagonal line.  

 

 

 

Figure 63 The match between actual observations (black dots) and GP model predictions 

(red x’s) for the natural fractures case training data set. Y is the PVBT indicator.  
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Figure 64 The match between actual observations (black dots) and GP model predictions 

(red x’s) for the natural fractures case testing (blind) data set. Y is the PVBT indicator.  

 

 

 

 

Figure 65 Actual observations versus GP model predictions for the natural fracture case. 
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8.7. Composite Effect of Vugs and Natural Fractures 

In the previous sections, the effect of vugs and natural fractures were studied separately. 

But, the coexistence of vugs and fractures were observed in many carbonate fields (Camacho-

Velazquez et al. 2005; Kang et al. 2006; Fadlelmula et al. 2015; Zhang et al. 2016; Yong et al. 

2016). Lucia (2007) describes the coexistence of vugs and natural fractures as touching vugs. In 

the current section, the cases presented are combinations of cases from the two previous sections. 

Case NFV1 is a combination of cases V8 and NF4. Figure 66 shows the distribution of 

vugs and natural fractures (top part) and the porosity profile after acid injection (bottom). The 

existence of a conductive network of vugs and fractures limited the amount of acid that flows in 

the porous medium. Figure 67 presents the final acid concentration and helps in determining the 

actual path of acid. Also, the large amount of acid in the vugs can be observed in Fig. 67. The 

coexistence of vugs and fractures helped the acid to flow more easily than in the cases where 

fractures and vugs exist separately. The PVBT indicators for cases NFV1, V8 and NF4 are 0.67, 

0.82 and 0.81, respectively.   

Case NFV2 is a combination of cases V22 and NF17. Fig. 68 shows the distribution of 

vugs and natural fractures (top) and the porosity profile after acid injection (bottom). Similar to 

case NFV1, the existence of a conductive network of vugs and fractures limited the amount of 

acid that flows in the porous medium. Fig. 69 presents the final acid concentration and helps in 

determining the actual path of acid. The coexistence of vugs and fractures provided an easy path 

for acid in comparison with the cases where fractures and vugs exist separately. Because the rate 

for NFV2 is a fold higher than case NFV1, the impact of the coexistence of vugs and fractures on 

the volume of acid required is less. The PVBT indicators for cases NFV2, V22 and NF17 are 

2.21, 2.34, and 2.29, respectively.   
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Figure 66 Case NFV1 porosity distribution before (top) and after (bottom) acid injection. 
 

 

Case NFV3 is a combination of cases V36 and NF26. Fig. 70 shows the distribution of 

vugs and natural fractures (top) and the porosity profile after acid injection (bottom). The presence 

of vugs drove the acid to contact higher volume of the formation. Fig. 71 presents the final acid 

concentration and shows the acid passage. The reason behind the negative effect of the vugs is the 

high volume of acid consumed in vugs filling. The PVBT indicators for cases NFV3, V36 and 

NF26 are 11.2, 13.28 and 9.28, respectively. 
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Figure 67 Case NFV1 acid concentration after acid injection. 

 

 

 
Figure 68Case NFV2 porosity distribution before (top) and after (bottom) acid injection. 
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Figure 69 Case NFV2 acid concentration after acid injection. 

 

 

 
Figure 70 Case NFV3 porosity distribution before (top) and after (bottom) acid injection. 
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Figure 71 Case NFV3 acid concentration after acid injection. 
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9. CONCLUSIONS AND RECOMMENDATIONS 7 

The present work examines the simulation of experimental data for dolomite cores using 

the two-scale model utilizing Navier-Stokes formulation for describing the flow field. A 

comparison with Maheshwari et al. (2012) study showed that current model always provides 

lower PVBT. A set of acidizing experiments using dolomite cores were conducted and simulated 

using the two scale model. The tuning parameters were changed based on experimental data. The 

model was capable of matching experimental PVBT, along with the 3D wormhole propagation. 

The model capabilities of matching limestone experiments performed on different rock types 

were evaluated.  

Large scale radial models were used to study acid propagation in the field. Two 

conditions were studied using the radial model and the results were compared with the traditional 

upscaling model. The effect of porosity distribution on the model output (PVBT) was 

investigated. Finally, a robust workflow was introduced for acid stimulation designs. 

A 6.5 diameter large scale radial model was utilized to study the effect of vugs and 

natural fractures on acid flow. The scale of the vugs and fractures presented in the current work 

is beyond lab capabilities. Thirty-three simulations were run to study the effect of vugs, whereas 

thirty simulations were run to study the effect of natural fractures. The simulation runs were 

utilized to build two surrogate models. Three simulation runs were conducted to examine the 

effect of touching vugs. Based on the work done, the following conclusions can be drawn: 

                                                 

7 Partially reprinted with permission from “A Robust Model to Simulate Dolomite-Matrix Acidizing” by M. Ali and 

H. Nasr-El-Din, 2019. SPE-191136-PA, Copyright 2019 by Society of Petroleum Engineers. 
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1) This model can be tuned using a few acidizing experiments, and then can be used in 

generating acid efficiency curve with a high degree of confidence, avoiding additional 

experimental work. 

2) The porosity distributions from 7 carbonate rocks have demonstrated that porosity 

standard deviation can be used as a non-destructive tool for predicting acid performance 

in carbonates. 

3) Current model can be used to predict acid performance in the field scale. the model can 

capture the wellbore enlargement associated with acidizing operations. Wellbore 

enlargement may result into crossflow of acid inside the formation.  

4) Unlike linear core-flood experiments, deeper acid penetration under field conditions 

requires smaller pore volume of acid to breakthrough. Optimum PVBT in the field will 

always be lower than the one obtained from core-flood experiments.  

5) The relation between different temperatures and acid concentrations derived from linear 

lab experiments is not always the same on the field scale. 

6) Predicted field volumes using BG and Tardy et al. upscaling models are always higher 

than predicted using large scale model simulations. 

7) Statistically built porosity distribution yield prediction with accuracy higher than 75%. A 

25% extra volume can be added during design to consider the uncertainty associated with 

porosity distributions. 

8) There is no direct relation between experimental optimum injection velocity and field 

optimum injection velocity. The optimum velocity changes experimentally by the change 

in the core dimensions and in the field by the depth of penetration of the acid.  
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9) The developed surrogate models can accurately predict acid performance in vuggy and 

naturally fractured carbonate reservoirs. 

10) The effect of the vugs on acidizing can result in lower PVBT at low injection rates (<= 

8E-4 m/s) or higher PVBT at high injection rate (>= 8E-2 m/s) when compared with the 

homogeneous case.  

11) High acid concentrations are expected in the flowback after acidizing from vuggy 

carbonates. Accordingly, longer soaking time should be considered, before flowback 

from these reservoirs.   

12) The effect of natural fractures on the studied injection rates on acidizing is an increase in 

acid propagation velocity. Acid does not contact all the fractures around the wellbore. 

The first fracture touched carries all the flow, unless the size and conductivity of the 

fracture are too small to carry the injected acid volume.  

13) The coexistence of vugs and natural fractures lowers the PVBT when compared with the 

case where only vugs exist. If compared with the case where only fractures exist, the 

coexistence of vugs and fractures decreases the PVBT at injection rates lower than 8E-3 

m/s and increases the PVBT at injection rate higher than 8E-2 m/s.   

14) Unlike linear models, the orientation of the fractures and/or vugs does not impact acid 

performance. 

This study furnishes the road for reliable field predictions of acid treatments for relatively 

homogeneous and extremely heterogeneous carbonate reservoirs. It is recommended to integrate 

the petrophysical data in the acid design and make use of reactive flow simulators to predict acid 

propagation under field conditions. Acid volumes predicted from the TSC model should be 
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multiplied by a safety factor of 1.25 to account for uncertainty associated with porosity 

distribution. Figure 72 introduces an acid stimulation design workflow relatively homogeneous 

and extremely heterogeneous carbonate reservoirs. This design can be used in the presence or 

absence of rock samples from the field. The workflow integrates the experimental, petrophysical, 

and simulation studies in one platform to achieve accurate/reliable acid stimulation designs. 
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Figure 72 A petrophysical, experimental, and simulation-based workflow for acid design in 

carbonate formations. 

 

 



 

99 

 

REFERENCES 

 

Aidagulov, G., Gwaba, D., Kayumov, R., et al. 2019. Effects of Pre-Existing Fractures on 

Carbonate Matrix Stimulation Studied by Large-Scale Radial Acidizing Experiments. 

Presented at the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain. SPE-

163380-MS, 18-21 March. http://dx.doi.org/10.2118/195153-MS. 

Akanni, O. O. and Nasr-El-Din, H. A. 2015. The Accuracy of Carbonate Matrix-Acidizing Models 

in Predicting Optimum Injection and Wormhole Propagation Rates. Presented at the SPE 

Middle East Oil & Gas Show and Conference. Manama, Bahrain, 8–11 March. SPE 172575-

MS. http://dx.doi.org/10.2118/172575-MS. 

Akanni, O. O., Nasr-El-Din, H. A. and Gusain, D. 2017. A Computational Navier-Stokes Fluid 

Dynamics Simulation Study of Wormhole Propagation in Carbonate Matrix Acidizing and 

Analysis of Factors Influencing the Dissolution Process. SPE J. 22 (6): 2049-2066. SPE-

187962-PA.  http://dx.doi.org/10.2118/187962-PA. 

Akin, S. and Kovscek, A. 2003. Computed Tomography in Petroleum Engineering Research. 

Geological Society, London Special Publications 215:23-38. 

http://dx.doi.org/10.1144/GSL.SP.2003.215.01.03. 

Ali, M. T. and Nasr-El-Din, H. A. 2019. A Robust Model to Simulate Dolomite-Matrix Acidizing. 

SPE Prod  &  Oper 34 (01): 109-129. SPE-191136-PA.  http://dx.doi.org/10.2118/191136-PA. 

Al-Muraikhi, H. R., Joshi, D., and Al-bloushi A. F. 2012. Integrated Workflow for Small Scale 

Reservoir Characterization Using borehole Image, NMR and Core Data. Presented at the SPE 

Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10-12 

December. SPE-163380-MS. http://dx.doi.org/10.2118/163380-MS. 

http://dx.doi.org/10.2118/195153-MS
http://dx.doi.org/10.2118/172575-MS
http://dx.doi.org/10.2118/38166-MS
http://dx.doi.org/10.1144/GSL.SP.2003.215.01.03
http://dx.doi.org/10.2118/191136-PA
http://dx.doi.org/10.2118/163380-MS


 

100 

 

Arbogast, T. and Brunson, D. 2007. A Computational Method for Approximating a Darcy–Stokes 

System Governing a Vuggy Porous Medium. Computational Geosciences 11 (3): 207–218. 

http://dx.doi.org/10.1007/s10596-007-9043-0. 

Balakotaiah, V. and West, D. H. 2002. Shape Normalization and Analysis of Mass Transfer 

Controlled Regime in Catalytic Monoliths.  Chem Eng Sci 57 (8): 1269-1286. 

http://dx.doi.org/10.1016/S0009-2509(02)00059-3. 

Bazin, B. 2001. From Matrix Acidizing to Acid Fracturing: A Laboratory Evaluation of Acid/Rock 

Interactions. SPE Prod &  Fac 16 (01): 22-29. SPE-66566-PA. 

http://dx.doi.org/10.2118/66566-PA. 

Beletskaya, A., Ivanov, E., Stukan, M. et al. 2017. Reactive Flow Modeling at Pore Scale. 

Presented at the Russian Petroleum Technology Conference, Moscow, Russia, 16-18 October. 

SPE-187805-MS. http://dx.doi.org/10.2118/187805-MS. 

Brinkman, H. C. 1949. A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense 

Swarm of Particles. Applied Scientific Research 1 (1): 27–34. 

http://dx.doi.org/10.1007/BF02120313. 

Buijse, M. A. and Glasbergen, G. 2005. A Semi-Empirical Model to Calculate Wormhole Growth 

in Carbonate Acidizing. Presented at the SPE Annual Technical Conference and Exhibition, 

Dallas, Texas, 9-10 October. SPE 96892-MS. http://dx.doi.org/10.2118/96892-MS. 

Camacho-Velazquez, R., Vasquez-Cruz, M. A., Castrejon-Aivar, R. et al. 2005. Pressure Transient 

and Decline Curve Behaviors in Naturally Fractured Vuggy Carbonate Reservoirs. SPE Res 

Eval & Eng 8 (02): 95-112. SPE-77689-PA. http://dx.doi.org/10.2118/77689-PA. 

http://dx.doi.org/10.1007/s10596-007-9043-0
http://dx.doi.org/10.1016/S0009-2509(02)00059-3
http://dx.doi.org/10.2118/66566-PA
http://dx.doi.org/10.2118/187805-MS
http://dx.doi.org/10.1007/BF02120313
http://dx.doi.org/10.2118/96892-MS
http://dx.doi.org/10.2118/77689-PA


 

101 

 

Cannon, D. E., Minh, C. C., and Kleinberg, R. L. 1998. Quantitative NMR Interpretation. 

Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 

27-30 September. SPE-49010-MS. http://dx.doi.org/10.2118/49010-MS. 

Carman, C. 1956. Flow of Gases through Porous Media, first edition. New York: Academic Press. 

Chen, Y., Ma, G., Li, T., et al. 2018. Simulation of Wormhole Propagation in Fractured Carbonate 

Rocks with Unified Pipe-Network Method. Computers and Geotechnics 98: 58-68. 

https://doi.org/10.1016/j.compgeo.2017.11.009. 

Cohen, C.E., Ding, D., Quintard, M. et al. 2008. From Pore Scale to Wellbore Scale: Impact of 

Geometry on Wormhole Growth in Carbonate Acidization. Chem. Eng. Sc. 63 (12) 3088. 

http://dx.doi.org/10.1016/j.ces.2008.03.021. 

Daccord, G. 1987. Chemical dissolution of a porous medium by a reactive fluid. Phys. Rev. Lett. 

58: 479 

Daccord, G., Lenormand, R., and Liétard, O. 1993. Chemical Dissolution of a Porous Medium by 

a Reactive Fluid—I. Model for the “Wormholing” Phenomenon. Chem. Eng. Sci. 48 (1): 169-

178. http://dx.doi.org/10.1016/0009-2509(93)80293-Y. 

De Oliveira, T., De Melo, A., Oliveira, J. et al. 2012. Numerical Simulation of the Acidizing 

Process and PVBT Extraction Methodology Including Porosity/Permeability and Mineralogy 

Heterogeneity. Presented at the International Symposium and Exhibition on Formation 

Damage Control. Lafayette, Louisiana. 15–17 January. SPE 151823-MS. 

http://dx.doi.org/10.2118/151823-MS. 

Dong, C., Hill, A. D., and Zhu, D. 1999. Acid Etching Patterns in Naturally-Fractured Formations. 

Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 3-6 

October. SPE-56531-MS. http://dx.doi.org/10.2118/56531-MS. 

http://dx.doi.org/10.2118/49010-MS
https://doi.org/10.1016/j.compgeo.2017.11.009
http://dx.doi.org/10.1016/j.ces.2008.03.021
http://dx.doi.org/10.1016/0009-2509(93)80293-Y
http://dx.doi.org/10.2118/151823-MS
http://dx.doi.org/10.2118/56531-MS


 

102 

 

Dong, C., Zhu, D., and Hill, A. D. 2001. Acid Penetration in Natural Fracture Networks. SPE 

European Formation Damage Conference, The Hague, Netherlands, 21-22 May. SPE-68927-

MS. http://dx.doi.org/10.2118/68927-MS. 

Dong, K., Jin, X., Zhu, D., et al. 2014.The Effect of Core Dimensions on the Optimal Acid Flux 

in Carbonate Acidizing. Presented at the International Symposium and Exhibition on 

Formation Damage Control. Lafayette, Louisiana. 26–28 February. SPE-168146-MS. 

https://doi.org/10.2118/168146-MS. 

Dong, R., Lee, S., and Wheeler, M. 2019. Numerical Simulation of Matrix Acidizing in Fractured 

Carbonate Reservoirs Using Adaptive Enriched Galerkin Method. Presented at the SPE 

Reservoir Simulation Conference, Galveston, Texas, 10-11 April. SPE-193862-MS.. 

http://dx.doi.org/10.2118/193862-MS. 

Fadlelmula F., Fraim, M., He, J., et al. 2015. Discrete Fracture-Vug Network Modeling in 

Naturally Fractured Vuggy Reservoirs Using Multiple-Point Geostatistics: A Micro-Scale 

Case. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 28-

30 September. SPE-175092-MS. http://dx.doi.org/10.2118/175092-MS. 

Fredd, C. N. and Fogler, H. S. 1998. Influence of Transport and Reaction on Wormhole Formation 

in Porous Media. AIChE J. 44 (9): 1933. http://dx.doi.org/10.1002/aic.690440902. 

Fredd, C. N. and Fogler, H. S. 1999. Optimum Conditions for Wormhole Formation in Carbonate 

Porous Media: Influence of Transport and Reaction. SPE J. 4 (3): 196-205. SPE-56995-PA. 

http://dx.doi.org/10.2118/56995-PA. 

Fredd, C. N. and Miller, M. J. 2000. Validation of Carbonate Matrix Stimulation Models. 

Presented at the International Symposium on Formation Damage Control, Lafayette, Louisiana, 

23 – 24 February. SPE 58713-MS. http://dx.doi.org/10.2118/58713-MS. 

http://dx.doi.org/10.2118/68927-MS
https://doi.org/10.2118/168146-MS
http://dx.doi.org/10.2118/193862-MS
http://dx.doi.org/10.2118/175092-MS
http://dx.doi.org/10.1002/aic.690440902
http://dx.doi.org/10.2118/56995-PA
http://dx.doi.org/10.2118/58713-MS


 

103 

 

Furui, K., Burton, R., Burkhead, D. et al. 2012. A Comprehensive Model of High-Rate Matrix-

Acid Stimulation for Long Horizontal Wells in Carbonate Reservoirs: Part I--Scaling Up Core-

Level Acid Wormholing to Field Treatments. SPE J. 17 (1): 271-279. 

http://dx.doi.org/10.2118/134265-PA. 

Ghommem, M., Qiu, X., Brady, D. et al. 2016. Monitoring of Matrix Acidizing by Using 

Resistivity Measurements. Society of Petroleum Engineers.  

http://dx.doi.org/10.2118/181414-MS. 

Ghommem, M., Zhao, W., Dyer, S. et al. 2015. Carbonate acidizing: Modeling, analysis, and 

characterization of wormhole formation and propagation. J Pet Sci Eng 131: 18-33. 

http://dx.doi.org/j.petrol.2015.04.021. 

Golfier, F., Zarcone, C., Bazin, B. et al. 2002. On the Ability of a Darcy-Scale Method Model to 

Capture Wormhole Formation During the Dissolution of a Porous Medium. J. Fluid Mech. 457: 

213-254. http://dx.doi.org/10.1017/S0022112002007735. 

Gomaa, N. M., Azer, S. R., Ouzzane, D. E., et al. 2006. Case Study of Permeability, Vug 

Quantification, and Rock Typing in a Complex Carbonate. Presented at the SPE Annual 

Technical Conference and Exhibition, San Antonio, Texas, 21-24 September. SPE-102888-

MS. http://dx.doi.org/doi:10.2118/102888-MS. 

Gupta, N. and Balakotaiah, V. 2001. Heat and Mass Transfer Coefficients in Catalytic Monoliths. 

Chem Eng Sci 56 (16): 4771-4786. http://dx.doi.org/10.1016/S0009-2509(01)00134-8. 

Hoefner, M. L. and Fogler, H. S. 1988. Pore Evolution and Channel Formation During Flow and 

Reaction in Porous Media. AIChE J. 34 (1): 45-54. http://dx.doi.org/10.1002/aic.690340107. 

Huang, T., Hill, D., and Schechter, S. 1997. Reaction Rate and Fluid Loss: The Keys to Wormhole 

Initiation and Propagation in Carbonate Acidizing. Presented at the International Symposium 

http://dx.doi.org/10.2118/134265-PA
http://dx.doi.org/10.1017/S0022112002007735
http://dx.doi.org/doi:10.2118/102888-MS
http://dx.doi.org/10.1016/S0009-2509(01)00134-8
http://dx.doi.org/10.1002/aic.690340107


 

104 

 

on Oilfield Chemistry, Houston, Texas, 18 – 21 February. SPE 37312-MS. 

http://dx.doi.org/10.1016/10.2118/37312-MS. 

Huang, Z., Yao, J., Li, Y. et al. 2011. Numerical Calculation of Equivalent Permeability Tensor 

for Fractured Vuggy Porous Media Based on Homogenization Theory. Communications in 

Computational Physics 9 (01): 180-204. http://dx.doi.org/10.4208/cicp.150709.130410a. 

Hung, K. M., Hill, A. D., and Sepehrnoori, K. 1989. A Mechanistic Model of Wormhole Growth 

in Carbonate Matrix Acidizing and Acid Fracturing. J Pet Technol 41 (1): 59-66. SPE-16886-

PA. http://dx.doi.org/2118/16886-PA. 

Ibrayev, F., Fernandez-Ibanez, F., and DeGraff, J. M. 2016. Using a Genetic-Based Approach to 

Enhance Natural Fracture Characterization in a Giant Carbonate Field. Presented at the SPE 

Annual Caspian Technical Conference  and  Exhibition, Astana, Kazakhstan, 1-3 November. 

SPE-182565-MS. http://dx.doi.org/10.2118/182565-MS. 

Iwere, F. O., Moreno, J. E., Apaydin, O. G., et al. 2002. Vug Characterization and Pore Volume 

Compressibility for Numerical Simulation of Vuggy and Fractured Carbonate Reservoirs. 

Presented at the SPE International Petroleum Conference and Exhibition, Villahermosa, 

Mexico, 10-12 February. SPE-74341-MS. http://dx.doi.org/10.2118/74341-MS. 

Izgec, O., Zhu, D., and Hill, A. D. 2010. Numerical and Experimental Investigation of Acid 

Wormholing during Acidization of Vuggy Carbonate Rocks. J Pet Sci Eng 74 (1): 51-66. 

http://dx.doi.org/10.1016/j.petrol.2010.08.006. 

Kalia, N. and Balakotaiah, V. 2009. Effect of Medium Heterogeneities on Reactive Dissolution of 

Carbonates. Chem Eng Sci 64 (2): 376-390. http://dx.doi.org/10.1016/j.ces.2008.10.026. 

Kalia, N. and Glasbergen, G. 2009. Wormhole Formation in Carbonates under Varying 

Temperature Conditions. Presented at the 8th European Formation Damage Conference. 

http://dx.doi.org/10.1016/10.2118/37312-MS
http://dx.doi.org/10.4208/cicp.150709.130410a
http://dx.doi.org/2118/16886-PA
http://dx.doi.org/10.2118/182565-MS
http://dx.doi.org/10.2118/74341-MS
http://dx.doi.org/10.1016/j.petrol.2010.08.006
http://dx.doi.org/10.1016/j.ces.2008.10.026


 

105 

 

Scheveningen, The Netherlands, 27–29 May. SPE 121803-MS. 

http://dx.doi.org/10.2118/121803-MS. 

Kang, Z., Wu, Y.-S., Li, J. et al. 2006. Modeling Multiphase Flow in Naturally Fractured Vuggy 

Petroleum Reservoirs. Presented at the SPE Annual Technical Conference and Exhibition, San 

Antonio, Texas, 24-27 September. SPE-102356-MS. http://dx.doi.org/10.2118/102356-MS. 

Liu, M., Zhang, S., and Mou, J. 2012. Effect of Normally Distributed Porosities on Dissolution 

Pattern in Carbonate Acidizing. J Pet Sci Eng 94–95 (0): 28-39.  

http://dx.doi.org/10.1016/j.petrol.2012.06.021. 

Liu, P., Xue, H., Zhao, L., et al. 2016. Simulation of 3D multi-scale wormhole propagation in 

carbonates considering correlation spatial distribution of petrophysical properties. J Natural 

Gas Sci Eng 32: 81-94, https://doi.org/10.1016/j.jngse. 

Liu, X., Ormond, A., Bartko, K. et al. 1997. A Geochemical Reaction-Transport Simulator for 

Matrix Acidizing Analysis and Design.  J Pet Sci Eng 17 (1–2): 181-196. 

http://dx.doi.org/10.1016/S0920-4105(96)00064-2. 

Lucia, F. J. 2007. Carbonate Reservoir Characterization. 2nd edition. New York: Springer.   

Lund, K., Fogler, S. and McCune, C. 1973. Acidization I. The Dissolution of Dolomite in 

Hydrochloric Acid. Chem. Eng. Sci. 28: 691-700. 

Lund, K., Fogler, S., McCune, C. et al. 1975. Acidization II. The Dissolution of Calcite in 

Hydrochloric Acid. Chem. Eng. Sci. 28: 691-700. 

Ma, G., Chen, Y., Jin, Y., et al. 2018. Modelling Temperature-Influenced Acidizing Process in 

Fractured Carbonate Rocks. International J. Rock Mechanics and Mining Sciences 105: 73-84. 

https://doi.org/10.1016/j.ijrmms.2018.03.019.  

http://dx.doi.org/10.2118/121803-MS
http://dx.doi.org/10.2118/102356-MS
http://dx.doi.org/10.1016/j.petrol.2012.06.021
http://dx.doi.org/10.1016/S0920-4105(96)00064-2
https://doi.org/10.1016/j.ijrmms.2018.03.019


 

106 

 

Maheshwari, P. and Balakotaiah, V. 2013. Comparison of Carbonate HCl Acidizing Experiments 

with 3D Simulations. SPE Prod & Oper 28 (04): 402-413. SPE-164517-PA. 

http://dx.doi.org/10.2118/164517-PA. 

Maheshwari, P., Gharbi, O., Thirion, A. et al. 2016. Development of a Reactive Transport 

Simulator for Carbonates Acid Stimulation. Society of Petroleum Engineers. 

http://dx.doi.org/10.2118/181603-MS. 

Maheshwari, P., Ratnakar, R. R., Kalia, N. et al. 2012. 3-D Simulation and Analysis of Reactive 

Dissolution and Wormhole Formation in Carbonate Rocks. Chem Eng Sci 90 (0): 258-274. 

http://dx.doi.org/10.1016/j.ces.2012.12.032. 

Mahrous, M., Sultan, A. and Sonnenthal, E. 2017. Towards Geochemically Accurate Modeling of 

Carbonate Acidizing with HCl Acid. Presented at the Annual Technical Conference and 

Exhibition, San Antonio, Texas, 9–11 October. SPE-187183-MS. 

http://dx.doi.org/10.2118/187183-MS. 

Mai, A., and Kantzas, A. 2002. Porosity Distribution of Carbonate Reservoirs Using Low Field 

NMR. Presented at the Canadian International Petroleum Conference, Calgary, Alberta, 11-13 

June. PETSOC-2002-193. http://dx.doi.org/10.2118/2002-193. 

Mai, A., and Kantzas, A. 2003. Advances in Carbonate Characterization Using Low Field NMR. 

Presented at the Canadian International Petroleum Conference, Calgary, Alberta, 10-12 June. 

PETSOC-2003-106. http://dx.doi.org/ 10.2118/2003-106. 

McCune, C., Fogler, S. and Kline, E. 1979. An Experimental Technique for Obtaining 

Permeability-Porosity Relationships in Acidized Porous Media. Industrial Engineering 

Chemistry Fundamentals 18 (2): 188–191. http://dx.doi.org/10.1021/i160070a016. 

http://dx.doi.org/10.2118/164517-PA
http://dx.doi.org/10.1016/j.ces.2012.12.032
http://dx.doi.org/10.2118/187183-MS
http://dx.doi.org/10.2118/2002-193


 

107 

 

McDuff, D., Jackson, S., Shuchart, C. et al. 2010. Understanding Wormholes in Carbonates: 

Unprecedented Experimental Scale and 3D Visualization. J Pet Technol 62 (10): 78-81. SPE-

129329-JPT. http://dx.doi.org/10.2118/ 62 (10: 129329-JPT. 

Nair, N. G., Bryant, S. L., and Jennings, J. W. 2008. Finding the Continuum Scale in Highly 

Heterogeneous Rocks: Example of a Large Touching Vug Carbonate. Presented at the SPE 

Annual Technical Conference and Exhibition, Denver, Colorado, 21-24 September. SPE-

115347-MS. https://doi.org/10.2118/115347-MS. 

Narr, W., Schechter, D. S., and Thompson, L. B. 2006. Naturally Fractured Reservoir 

Characterization. Society of Petroleum Engineers: Richardson, TX. 

Nishikata, E., Ishii, T., Ohta, T. 1981. Viscosities of aqueous hydrochloric acid solutions, and 

densities and viscosities of aqueous hydroiodic acid solutions. J Chem Eng Data 26 (3):  254–

256. https://doi.org/10.1021/je00025a008. 

Panga, M. K. R., Balakotaiah, V., and Ziauddin, M. 2002. Modeling, Simulation and Comparison 

of Models for Wormhole Formation during Matrix Stimulation of Carbonates. Presented at the 

SPE Annual Technical Conference and Exhibition, San Antonio, Texas. 29 September-2 

October. SPE 77369-MS http://dx.doi.org/10.2118/77369-MS. 

Panga, M. K. R., Ziauddin, M., and Balakotaiah, V. 2005. Two-Scale Continuum Model for 

Simulation of Wormholes in Carbonate Acidization. AIChE J. 51 (12): 3231-3248. 

http://dx.doi.org/10.1002/aic.10574. 

Popov, P., Qin, G., Bi, L. et al. 2007. Multiscale Methods for Modeling Fluid Flow through 

Naturally Fractured Carbonate Karst Reservoirs. Presented at the SPE Annual Technical 

Conference and Exhibition, Anaheim, California, 11-14 November. SPE-110778-MS. 

http://dx.doi.org/10.2118/110778-MS. 

http://dx.doi.org/10.2118/%2062%20(10:%20129329-JPT
https://doi.org/10.2118/115347-MS
https://doi.org/10.1016/j.jngse.2014.05.017
http://dx.doi.org/10.2118/77369-MS
http://dx.doi.org/10.1002/aic.10574
http://dx.doi.org/10.2118/110778-MS


 

108 

 

Qi, N., Chen, G., Liang, C., et al. 2019. Numerical simulation and analysis of the influence of 

fracture geometry on wormhole propagation in carbonate reservoirs. Chem. Eng. Sci. 198: 124-

143. 

Rasmussen, E. C. and Williams, C. 2006. Gaussian Processes for Machine Learning. Boston: The 

MIT Press. 

Rötting, T., Luquot, L., Carrera, J. et al., 2015. Changes in porosity, permeability, water retention 

curve and reactive surface area during carbonate rock dissolution. Chemical Geology 403: 86-

98. http://dx.doi.org/10.1016/j.chemgeo.2015.03.008. 

Safari, A., Dowlatabad, M. M., Hassani, A., et al. 2016. Numerical simulation and X-ray imaging 

validation of wormhole propagation during acid core-flood experiments in a carbonate gas 

reservoir. J Natural Gas Sci and Eng 30: 539-547, https://doi.org/10.1016/j.jngse.2016.02.036. 

Safari, A., Rashidi, F., Kazemzadeh, E., et al. 2014. Determining optimum acid injection rate for 

a carbonate gas reservoir and scaling the result up to the field conditions: A case study. J 

Natural Gas Sci Eng 20:  2-7. https://doi.org/10.1016/j.jngse.2014.05.017. 

Santner, T., Williams, B., and Notz, W. 2013. The Design and Analysis of Computer Experiments. 

New York: Springer Science and Business Media.  

Schwalbert, P., Zhu, D., and Hill, A. D. 2017. Extension of an Empirical Wormhole Model for 

Carbonate Matrix Acidizing Through Two-Scale Continuum 3D Simulations. Society of 

Petroleum Engineers. http://dx.doi.org/10.2118/185788-MS. 

Shafiei, A., and Dusseault, M. B. 2012. Natural Fractures Characterization in a Carbonate Heavy 

Oil Field. Presented at the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, 

Illinois, 24-27 June. ARMA-2012-433. 

https://doi.org/10.1016/j.jngse.2016.02.036


 

109 

 

Tansey, J. 2014. Pore-Network Modeling of Carbonate Acidization. Society of Petroleum 

Engineers. http://dx.doi.org/10.2118/173472-STU . 

Tardy, P., Lecerf, B. and Christanti, Y. 2007. An Experimentally Validated Wormhole Model for 

Self-Diverting and Conventional Acids in Carbonate Rocks under Radial Flow Conditions. 

Presented at the European Formation Damage Conference, Scheveningen, The Netherlands, 

30 May–1 June. SPE-107854-MS. http://dx.doi.org/10.2118/107854-MS. 

Taylor, K. C., Nasr-El-Din, H. A., and Mehta, S. 2006. Anomalous Acid Reaction Rates in 

Carbonate Reservoir Rocks. Society of Petroleum Engineers.   

http://dx.doi.org/10.2118/89417-PA. 

Wang, Y., Hill, D., and Schechter, S. 1993. The Optimum Injection Rate for Matrix Acidizing of 

Carbonate Formations. Presented at the SPE Annual Technical Conference and Exhibition, 

Houston, Texas, 3-6 October. SPE 26578-MS. http://dx.doi.org/10.2118/26578-MS. 

Wang, Y., Hill, D., and Schechter, S. 1993. The Optimum Injection Rate for Matrix Acidizing of 

Carbonate Formations. Presented at the SPE Annual Technical Conference and Exhibition, 

Houston, Texas, 3-6 October. SPE 26578-MS. http://dx.doi.org/10.2118/26578-MS. 

Wang, Z. 2011. Study of Acid Response of Qatar Carbonate Rocks. MS thesis, Texas A&M 

University, College Station, Texas (December 2011). 

Wu, Y., Salama, A., and Sun, S. 2015. Parallel simulation of wormhole propagation with the 

Darcy–Brinkman–Forchheimer framework. Computers and Geotechnics 69: 564-577. 

https://doi.org/10.1016/j.compgeo. 

Yao, J., Huang, Z., Li, Y., et al. 2010. Discrete Fracture-Vug Network Model for Modeling Fluid 

Flow in Fractured Vuggy Porous Media. Presented at the International Oil and Gas Conference 

and Exhibition, Beijing, China, 8-10 June. SPE-130287-MS. 

http://dx.doi.org/10.2118/3482-PA
http://dx.doi.org/10.2118/107854-MS
http://dx.doi.org/10.2118/26578-MS
http://dx.doi.org/10.2118/26578-MS


 

110 

 

Yong, L., Baozhu, L., Jing, X., et al. 2016. Development Strategy Optimization and Application 

for Fractured-Vuggy Carbonate Gas Condensate Reservoirs. Presented at the Russian 

Petroleum Technology Conference, Moscow, Russia, 24-26 October. 

Zakaria, A. S., Nasr-El-Din, H. A. and Ziauddin, M. E. 2015. Predicting the Performance of the 

Acid-Stimulation Treatments in Carbonate Reservoirs With Nondestructive Tracer Tests. SPE 

J. 20 (06): 1238-1253. SPE-174084-PA. http://dx.doi.org/10.2118/174084-PA. 

Zakaria, A. S., Sayed, M., and Nasr-El-Din, H. A. 2014. New Insights into Propagation of 

Emulsified Acids in Vuggy Dolomitic Rocks. SPE J. 19 (01): 150-160. SPE-163288-PA. 

http://dx.doi.org/10.2118/163288-PA. 

Zhang, J., Ma, P., Liu, Y., et al. 2016. Control Modes of Multitype Strike-Slip Fault Systems on 

Fractured-Vuggy Carbonate Reservoir Development. Presented at the 2016 SEG International 

Exposition and Annual Meeting, Dallas, Texas, 16-21 October. SEG-2016-13879380. 

Ziauddin, M. E. and Bize, E. 2007. The Effect of Pore Scale Heterogeneities on Carbonate 

Stimulation Treatments. Society of Petroleum Engineers. Presented at the SPE Middle East 

Oil and Gas Show and Conference, Manama, Bahrain, 11-14 March. SPE-104627-MS. 

https://doi.org/10.2118/104627-MS. 

 

 

 

 

 

 

 

http://dx.doi.org/10.2118/174084-PA
http://dx.doi.org/10.2118/163288-PA
https://doi.org/10.2118/104627-MS

