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ABSTRACT 

 

Since the discovery of [Mn12O12(CH3COO)16(H2O)4], research in the area of 

molecular magnetism has been directed at designing single molecule magnets (SMMs) 

whose slow paramagnetic relaxation occurs with long relaxation times and at relatively 

high temperatures.  Both polynuclear and mononuclear compounds have been studied with 

respect to the fundamental characteristics required to make SMMs viable options for 

device applications including memory storage, spintronics, and quantum computing.  In 

recent years much progress has been made with respect to mononuclear magnets, but 

approaches that incorporate knowledge of strong anisotropy in exchange coupled systems 

are still underexplored. Specifically, anisotropic exchange represents an important option 

for improving the properties of polynuclear SMMs. Despite growing interest in the topic, 

lack of numerous examples of such systems have hampered progress in this area. This 

dissertation describes studies of new molecules and synthetic techniques to systematically 

study conditions that lead to Ising-type anisotropic exchange in heavier transition element 

molecules.  

By drawing on previous work with the cyanometallate moieties [MoIII(CN)7]4- and 

[(triphos)ReII(CN)3]-, new precursors and synthetic strategies were developed to aid 

research in the area of anisotropic exchange interactions. Mo-Ln chains with the formula 

{K[Ln(tmphen)2(H2O)2MoIII(CN)7]} were characterized structurally and magnetically, 

and revealed that more work could lead to interesting Mo-Ln nanomagnets. A 

cyanometallate wheel with the formula [MoIII(CN)7]6[Ni(L)]12×24H2O demonstrated that 
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incorporating [MoIII(CN)7]4- into known architectures can improve magnetic properties. A 

new, heteroleptic MoIII cyanometallate was isolated that will facilitate synthesis of new 

molecules. Three new compounds that incorporate ReII and VII demonstrate the 

requirements for observing anisotropic exchange with [(triphos)ReII(CN)3]-. Future work 

with these strategies will be helpful for investigating the importance of anisotropic 

exchange as an alternative for the design of single molecule magnets with higher barriers 

for both the d and f-block elements. 
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CHAPTER I  

INTRODUCTION  

 

Single Molecule Magnetism 

In the 21st century, research into the potential applications of nanotechnology, 

including new types of nanomaterials, has exploded. Molecular magnets have attracted 

considerable interest from both chemists and physicists since 1993, when single molecule 

magnet (SMM) behavior was discovered in [Mn12O12(CH3COO)16(H2O)4] (Figure 1).1-2 

The structure – first reported in 1980 – is interesting due to the arrangement of MnIV and 

MnIII ions, with four MnIV atoms comprising a cubane-like structure in the core surrounded 

by the eight acetate-bridged MnIII ions in the outer ring. At the time of publication, Lis 

predicted that if there was significant magnetic communication between the twelve 

manganese centers in the molecule, the magnetic properties would prove to be interesting. 

However, further development would have to wait more than a decade. In 1991, EPR and 

magnetization studies performed by Gatteschi and coworkers corroborated that 

[Mn12O12(CH3COO)16(H2O)4] has an S = 10 ground state and that the sign of the zero-

field splitting term, D, is negative.3 In the same work, AC susceptibility measurements 

were also performed and it was determined that the out of phase component of the AC 

susceptibility was frequency dependent, which was previously seen in spin glasses and 

superparamagnets but had never been observed in a molecular system. Two years later, in 

1993, additional work cemented the molecular origin of the phenomenon in 

[Mn12O12(CH3COO)16(H2O)4].4-5 In particular, the discovery of magnetic hysteresis,  



 

2 

 

 

 

Figure 1. Structure of the molecule [Mn12O12(CH3COO)16(H2O)4] along the tetragonal 
axis (c axis). The manganese ions are reported as large grey spheres, oxygen in black, and 
carbon as small grey spheres. Only oxygen atoms of water molecules have been drawn for 
the sake of clarity. Reprinted with permission from reference 7, copyright 2006 Oxford 
University Press. 
 
 
 
complete with steps, was convincing evidence that the origin of the effect was molecular 

in nature. The ability to induce magnetic memory effects in a single molecule was, at the 

time, unprecedented. These materials, along with single-chain magnets (SCMs), are 

potentially useful for applications where their small size and magnetic properties could 

lead to novel uses, such as spin carriers in spintronic devices and quantum computers.6-12 

The problem with including SMMs or SCMs in devices is that their most interesting 

property, magnetic memory, only expresses itself at very low temperatures. The blocking 

temperature, Tb, is a value that researchers have used to help compare the molecular  
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Figure 2. Structure of [(CpiPr5)Dy(Cp*)]+, the SMM with the highest known Tb to date, 
and the relaxation mechanism of the complex. Blue arrows show the most probable 
relaxation pathway, while red arrows show other pathways with non-negligible 
contributions. Adapted with permission from reference 13, copyright 2018 American 
Association for the Advancement of Science. 
 
 
 
magnets by quantifying the magnetic memory effect. Tb defined as either the highest 

observed temperature for magnetic hysteresis or the temperature at which the magnetic 

relaxation time, t, equals 100s for a particular SMM.7 The Tb value is ~4K for Mn12-

acetate1 and 80K for the current record-holding molecule, [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = 

penta-iso-propylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl).13 Also shown in 

Figure 2 are the relaxation pathways that constitute the barrier to reversal of the 

magnetization in [(CpiPr5)Dy(Cp*)]+. This barrier between the spin pointing up or pointing 

down is the key characteristic that allows molecules to function as SMMs. While classical 

magnets also have barriers to reversal of the magnetization, the origin of that barrier is 

different for SMMs. To help explain that difference, it is helpful to make a side-by-side 

comparison of classical magnets and SMMs.  
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In a typical bulk magnet, the spins are organized into magnetic domains, areas 

where the spins are aligned along a common axis. Domain walls – areas where the spins 

are intermediate between two domains – split the domains within this material, but the 

walls themselves have a finite thickness. When a sufficient field is applied, the domain 

that aligns with that field grows (by moving the domain walls) until it dominates the 

majority of the magnet’s area, giving rise to the net magnetic moment of the material. One 

of the key measurements that can be used to verify the existence of magnetic memory is 

the measurement of magnetic hysteresis. In this measurement, the sample is placed in a 

magnetic field that is swept positive to negative and back along a single direction. In 

materials that exhibit magnetic memory, the material will stay magnetized even when 

there is no applied field. In bulk magnets, there can be steps in the hysteresis loop as 

domain walls change size and move to minimize the magnetic energy in the sample 

(Figure 3).7,14 When the particle is so small that it can no longer accommodate domain 

walls, the entire particle adopts a single domain. For these “single domain particles,” 

hysteresis loops do not have well-pronounced steps because the spins are compelled to 

flip as a unit or not at all. As shown in Figure 3, SMMs also exhibit magnetic hysteresis. 

The origin of the magnetic behavior in SMMs, however, is distinct from that of 

classic magnets. Magnetic memory arises because of an energy barrier to
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Figure 3. Hysteresis loops for various types of magnets. Reprinted with permission from 
reference 7, copyright 2006 Oxford University Press and reference 14, copyright 2001 
John Wiley & Sons. 
 
 

reversal of the magnetization. In bulk magnets, that energy barrier is linked to the large 

number of spins that communicate with each other in the material. In both multidomain 

and single domain magnets, cooperativity is key to understanding the data. Each spin has 

a local magnetic field that exerts magnetic force on its neighbors, making alignment of 

their magnetic axes energetically favorable. These interactions between spins are the 

origin of the barrier to reversal of the magnetization. But in SMMs, each molecular spin 

carrier has magnetic anisotropy that arises from its own electronic environment, meaning 

that they have a fundamentally different origin to their magnetic behavior than classical 

magnets. As seen in Figure 3, there are steps in the hysteresis loops of SMMs; these steps 
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imply that the magnets can flip independently of each other. While single domain particles 

are compelled to act as a unit due to the lack of domain walls, SMMs have no such 

restriction. Rather than originating from the cooperativity between spin carriers, the 

barrier in most transition metal SMMs such as [Mn12O12(CH3COO)16(H2O)4] (those that 

have only quenched or second order spin-orbit coupling) is defined as U = S2|D| or U = 

½S2|D| for integer and half-integer spin systems, respectively, where S is the ground state 

spin and D is the axial zero-field splitting parameter. The parameter D typically has a 

negative value in SMMs. A negative value of D imparts axial anisotropy to the magnetic 

moment, giving it a directional bias along one axis. The energy barrier responsible for the 

magnetic memory effect is a barrier between the moment pointing up or down along that 

easy axis. So, in SMMs, the origin of the barrier is present in each and every SMM, rather 

than being a result of the collection of spin carriers. Each spin carrier has local anisotropy 

and its own spin that can respond independently to the environment. While this 

fundamental difference in the origin of magnetic behavior is interesting, the low 

temperature necessary to observe this behavior imposes a significant restriction on 

implementation of SMMs in technological applications. As mentioned above, the record 

Tb for molecular magnets remains 80 K, barely higher than the boiling temperature of 

liquid nitrogen. Finding molecules with higher Tb would help propel research forward in 

this area.  

There are three main parameters that help researchers compare SMMs: Tb - which 

was mentioned above, U - the theoretical size of the barrier to reversal of magnetization, 

and Ueff - the observed barrier to reversal of the magnetization. Ueff is always smaller than 
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U in SMMs. SMMs typically do not perform as well as the parameter U would suggest 

because U does not adequately address the full complexity of magnetic relaxation in 

nanomagnets. U describes what is known as the “thermal barrier” to relaxation of the 

magnetization, but there are other mechanisms by which SMMs can reverse their 

magnetization. One of the most significant of these is quantum tunneling of the 

magnetization (QTM), which limits the performance of SMMs by allowing spins to tunnel 

through the barrier. This can happen only when a pair of degenerate states, one of each 

side of the barrier, exists so that the magnetization can tunnel between the two. The 

phenomenon of quantum tunneling explains why “steps” exist in the hysteresis loops of 

SMMs; only some magnetic fields meet the requisite conditions for tunneling to occur. 

Quantum tunneling and other non-thermal relaxation mechanisms result in a measured 

Ueff that is lower than U. Nonetheless, efforts to increase the barrier height have been a 

major focus in the field of nanomagnets. Because of the exponential dependence of the 

barrier on S, early research focused on making large molecules with the largest ground 

spin state possible. The molecule with the largest spin ground state known to date is 

[MnIII12MnII7(µ4O)8(µ3,h1N3)8(L)12(MeCN)6]Cl2·10MeOH·MeCN  (L = 2,6-bis-

(hydroxy-methyl)-4-methylphenol) with a S = 83/2.15 The largest spin ground state for a 

cyanide-bridged molecule is S = 31, held by the molecule [Mn(dpop)(H2O)2]2-

[{Mo(CN)7}8{Mn(dpop)}10{Mn(dpop)(H2O)}4]·xH2O (dpop = 2,13-dimethyl-

3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene) prepared in the 

Dunbar group (Figure 4).16 Despite the impressive S values for such molecules, neither of 

these two molecules exhibit SMM behavior. A paper published by Oliver Waldmann 
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Figure 4. Structures of some notable molecules with large spin ground states. Left: 
structure of [MnIII12MnII7(µ4O)8(µ3,h1N3)8(L)12(MeCN)6]2+. Reprinted with permission 
from reference 14, copyright 2006 John Wiley & Sons. Right: structure of 
[Mn(dpop)(H2O)2]2[{Mo(CN)7}8{Mn(dpop)}10{Mn(dpop)(H2O)}4]. Reprinted with 
permission from reference 15, copyright 2010 John Wiley & Sons. 
 

 
explains why maximizing S is not a generally successful strategy for making high 

temperature SMMs.17 D and S are not truly independent variables; D is inversely 

proportional to S so that Ueff, the observed barrier, is proportional to S0. Waldmann notes 

that researchers who focused on increasing the value of D were seeing more success in 

raising Tb, which helped shift the focus of the field. Later, a groundbreaking paper from 

the Ruiz research group elucidated the origin of D and extrapolated their prediction to all 

first-row transition metals.18 There has been incredible progress in this line of work from 

synthetic groups and computational groups, leading to new transition metal magnets that 

outperform the earliest examples.19-20 However, the predictions by Ruiz and coworkers 

are limited to first-row transition metals. The story is more complicated for metal centers 

with significant spin-orbit coupling, such as heavier transition metals and f-block metals. 
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The anisotropy in compounds with these heavy metals can no longer be properly described 

by S and D; they have first order spin-orbit coupling such that spin is no longer a good 

quantum number, so the magnetic states are better described in terms of MJ levels.21 Much 

of the recent work in the field focused on lanthanides, which have significant spin-orbit 

coupling, complicating the interpretation of their magnetic properties.22 The shift to 

lanthanide chemistry, though, does extend and improve the work on mononuclear SMMs, 

since a single lanthanide center often has significantly improved magnetic properties than 

a single transition metal center. Most record-holding compounds are lanthanide based, and 

many have only one metal center. Research into polynuclear compounds, however, could 

provide new insights into how to build high temperature SMMs that may be suitable for 

technological applications. In this work, particular attention will be paid to polynuclear 

structures bridged by cyanide. 

 

Cyanide Ligand and the Building Block Approach 

One ligand that has a long history of mediating relatively strong and predictable 

exchange between metal centers is cyanide. As a result, cyanide-bridged materials have 

been a staple of molecular magnetism almost since its inception. Some of the most 

impressive extended networks in magnetism are Prussian Blue analogues, which are 

infinite networks composed of divalent and trivalent metal centers bridged by cyanide. 

Arguably the most impressive compound of this type, VII[CrIII(CN)6]0.86·2.8 H2O, exhibits 

magnetic ordering above room temperature.23 In order to utilize these properties for 

applications, it is necessary to understand them at a basic level. The spin Hamiltonian 
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proposed by Heisenberg, Dirac, and Van Vleck is the Hamiltonian that we still use today 

to understand most coupling between two metal centers: 

(1)	ℋ = –2JSMSM′  

where J is the magnitude of the magnetic interaction between the two spins SM and SM′. 

When J is positive, the coupling is ferromagnetic (the spins align parallel to each other) 

and when J is negative, the coupling is antiferromagnetic (the spins align antiparallel to 

each other). Larger J values necessarily mean that the energy gap between magnetic states 

is larger i.e. the interaction is stronger between those spins. Cyanide mediates this coupling 

because its orbitals overlap with the magnetic orbitals on SM and SM′. This phenomenon is 

known as superexchange in cases where the bridging ligand is diamagnetic.24-25 When the 

symmetry of the magnetic orbitals is such that they can mix with the same orbital on the 

CN- ligand, this results in antiferromagnetic exchange. If the mixing is symmetry 

forbidden, then the result is ferromagnetic coupling (Figure 5). These simple rules, known 

generally as the “Goodenough-Kanamori rules” can be used to rationalize superexchange 

and are particularly effective in the case of cyanide-bridged complexes. In large 

compounds, the complexity of the Hamiltonian increases as a function of the number of 

magnetic centers: 

(2)	ℋ = S[–2Jij(SM)i(SM′)j] 

However, the symmetry of the structure often simplifies the expression, in practice. For 

metal pairs that are symmetry equivalent, the same J is often used to describe the coupling 

between those pairs. Large values of J lead to a more isolated ground state in the molecule, 
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Figure 5. Depiction of the orthogonality principle in cyanide-bridged compounds. Top: 
symmetry allowed overlap leads to antiferromagnetic exchange due to paired spins. 
Bottom: orthogonal magnetic orbitals lead to ferromagnetic exchange. 
 
 
 
which is important for magnetic properties in polynuclear compounds because it mitigates 

the population of excited states. Compounds with large coupling and appropriate 

anisotropy can exhibit SMM behavior — although since the community began focusing 

on maximizing the anisotropy of single metal atoms, fewer examples of polynuclear 

SMMs are being reported. Nonetheless, some design principles have emerged. In the 

series with the formula [LNNNCoLnCoLNNN]NO3 (L = N,N′,N′′-tris(2-hydroxy-3-methoxy- 
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Figure 6. Molecular structure of [LNNNCoGdCoLNNN]+ with both a side and axial view. 
The red dashed line denotes the local anisotropy axis on Co, and the red and green arrows 
show the local magnetic moments on Co and Gd in one of the components of the ground 
state Kramer’s doublet. Reprinted with permission from reference 27 Copyright 2013 
American Chemical Society. 
 

 
benzili-dene)-2-(aminomethyl)-2-methyl-1,3-propanediamine; Ln = Gd, Tb, Dy),26-27 all 

three compounds in the series are SMMs, but [LNNNCoGdCoLNNN]NO3 is the best SMM 

(Figure 6). The authors of the work conclude that the isotropic nature of Gd makes it the 

best match to the anisotropic Co centers. For the Tb and Dy analogues, the conflicting 

magnetic axes of the lanthanide and Co ions interfere with the anisotropy barrier to 

reversal of the magnetization. While this realization is valuable, these particular 

compounds are not particularly impressive examples of SMMs. Increased coupling and a 

better source of anisotropy would certainly lead to better results.  

Anisotropic exchange has emerged as a strategy to improve the properties of 

polynuclear SMMs by introducing anisotropy to the coupling, rather than relying on 

localized sources of single ion anisotropy.21,28-30 Anisotropic exchange is not a novel 

phenomenon, but very few SMMs that exhibit this specific kind of exchange exist. Despite 
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its rarity, it is possible to intentionally design molecules that exhibit anisotropic 

exchange.31 The most important requirement is the existence of an orbitally degenerate 

electronic ground state for a metal center with significant spin-orbit coupling. In orbitally 

degenerate compounds, the first order spin-orbit interaction renders S an invalid quantum 

number. The magnetic properties of these building blocks are often described in terms of 

pseudo-spin states and fictitious spins to simplify the explanation while acknowledging 

the limitations of S in that context. Coupling that involves such a metal center splits J into 

Jx, Jy, and Jz. When Jz is large and Jx » Jy » 0, the anisotropic coupling gives rise to an easy 

axis in a distinctly different way than D does for mononuclear transition metal SMMs. 

This easy-axis anisotropy is referred to as “Ising type” anisotropy. Since the barrier 

originates from Jz, its height is also dependent on the magnitude of the coupling. 

Theoretically, stronger coupling leads to a larger barrier in anisotropically coupled 

systems, but there are not yet experimental results to back up this claim. It is important to 

study molecules that exhibit this type of anisotropy in detail to determine its potential for 

developing high temperature SMMs. Because the primary requirement for anisotropic 

exchange is an orbitally degenerate metal center, it is possible to take advantage of the 

building block approach32-33 to make these types of SMMs.  

The central idea of the building block approach is using discrete compounds as 

components of a larger structure. Cyanide chemistry represents this approach very well, 

as cyanometallates are stable and constitute excellent linkers for polynuclear compounds. 

Many geometries can be accessed for a single cyanometallate based solely on the shape 

and denticity of the blocking ligands on the second metal complex (Figure 7). Pairing two  
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160 MICHAEL SHATRUK, CAROLINA AVENDANO, AND KIM R. DUNBAR

Figure 7. Schematic diagram showing possible structures from reactions of a 
hexacyanometallate and a metal complex with a pentadentate blocking ligand. Note that the 
stoichiometry can, hypothetically, control the outcome of the reaction. Reprinted with 
permission from reference 32, copyright 2009 John Wiley & Sons. 
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building blocks that will form a specific geometry allows one to design a structure that 

takes advantage of each component’s unique properties. This strategy is especially 

attractive from the perspective of engendering anisotropic exchange; the ability to choose 

an orbitally degenerate building block greatly simplifies many of the key challenges when 

designing systems that exhibit Ising-type anisotropic exchange. Two building blocks that 

have been previously used in the Dunbar group are standout candidates for this strategy, 

namely [MoIII(CN)7]4- and [(triphos)ReII(CN)3]- (triphos = 1,1,1-

Tris(diphenylphosphinomethyl)ethane). What makes these building blocks good 

candidates for engendering anisotropic exchange is their orbitally degenerate ground state 

and the presence of cyanide ligands that allow for reliable coordination to other metal 

centers. These compounds have been used to synthesize impressive molecules with 

interesting magnetic properties.16,34-39 However, most of these molecules do not have the 

ideal geometry for maximizing anisotropic exchange. Thus, one of the major thrusts of 

research on anisotropic exchange-coupled complexes is the development of reliable 

methods to synthesize compounds with the correct geometry for Ising-type anisotropic 

exchange. The requirements for Ising-type anisotropic exchange vary by building block, 

so the explanations must be treated as separate cases. 

The main goal for designing SMMs that incorporate [MoIII(CN)7]4- is to maintain 

an undistorted pentagonal bipyramidal arrangement of CN- ligands and to coordinate 

metal complexes to the apical CN- ligands. For MoIII, with its d3 electron count, pentagonal 

bipyramidal symmetry leads to an orbitally degenerate pseudo-S = ½ ground state (Figure 

8).  If that symmetry is broken, the orbital degeneracy is quenched and anisotropic 
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exchange will be minimized or quenched. Evidence for this claim can be found in the 

molecules [Mn(L1)(H2O)]2[Mo(CN)7]·2H2O and [Mn(L1)(H2O)]2[Mn(L)]2[Mo(CN)7]2 

(Figure 9).39 These molecules are interchangeable by the addition and removal of water in 

the crystals, but, while the former trinuclear molecule exhibits SMM behavior, the latter 

hexanuclear one does not, despite theoretical predictions that these ladder-type 

compounds should exhibit better magnetic behavior than their trinuclear counterparts.40 

The lack of SMM behavior in the hexanuclear molecule occurs because the distortion of 

the pentagonal bipyramid of [MoIII(CN)7]4- quenches the orbital degeneracy of that moiety 

and eliminates the easy axis of magnetization. The coordination of metal centers to the 

axial cyanide ligands is equally important, as shown by the three compounds 

[Mn(LN5Me)(H2O)]2[Mo(CN)7]·6H2O (LN5Me = 2,2'-(((1E,1'E)-pyridine-2,6-diylbis(ethan-

1-yl-1-ylidene))bis(azaneylylidene))bis(N-methylethan-1-amine), [MnII(LN3O2)(H2O)]2-

[MoIII(CN)7]·7H2O (LN3O2 = (2E,12E)-2,13-dimethyl-6,9-dioxa-3,12-diaza-1(2,6)-

pyridinacyclotridecaphane-2,12-diene), and [Mn(LDAPSC)(H2O)]2[Mo(CN)7]-

·6H2O·MeCN] (LDAPSC = (2E,2'E)-2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))- 

bis(hydrazine-1-carboxamide)  (Figure 10).38 The latter two compounds have MnII 

coordinated to the apical cyanide ligands of [MoIII(CN)7]4- and exhibit no SMM behavior, 

while the former has MnII coordinated to the apical cyanide ligands and shows the highest 

temperature hysteresis loops for any cyanide-bridged SMM compound. Theoretical work 

shows that coupling to apical CN- ligands of [MoIII(CN)7]4- can induce Ising-like 

anisotropic exchange.28 If the anisotropic exchange has sufficient contribution from Jxy, 

then an easy axis does not develop and SMM behavior is not observed. As shown with the  
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Figure 8. Electronic structure of [MoIII(CN)7]4-: (a) 4d orbital energies in a D5h pyramid, 
(b) energy spectrum of MoIII in D5h geometry, (c) energy spectrum of MoIII in this 
geometry with spin-orbit coupling applied. The orbital composition of the ground  j(±1/2) 
and excited  c(±1/2) Kramers doublets is shown, (d) the splitting of the 4d orbital energies 
in distorted complexes of [MoIII(CN)7]4-. Reprinted with permission from reference 28, 
copyright 2003 American Chemical Society. 
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Figure 9. Structures of [Mn(L1)(H2O)]2[Mo(CN)7]·2H2O and [Mn(L1)(H2O)]2[Mn(L)]2-
[Mo(CN)7]2. The red circle on the left shows the water molecules that can be removed by 
dehydration and the red arrows show the new coordination bonds that form because of 
that process. Reprinted with permission from reference 39, copyright 2017 Americal 
Chemical Society. 
 

 
 

 
 
Figure 10. (a) structures of LN5Me, LN3O2, and LDAPSC (b), (c), and (d) structures of each 
ligand incorporated in to a Mn2Mo trinuclear compound. Reprinted with permission from 
reference 38, copyright 2013 American Chemical Society. 
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molecules in Figure 10, even changes to the ligands on the 3d metal can change the 

coordination geometry in unpredictable ways. Thus, the biggest barrier to creating better 

SMMs with [MoIII(CN)7]4- is the synthetic challenge involved. In the subsequent chapters, 

this work will demonstrate those challenges through the lens of some reactions of 

[MoIII(CN)7]4- and propose some guidelines for improving the SMM behavior of 

molecules that incorporate this moiety. This work also introduces a new building block, 

[MoIII(DAPB)(CN)2]- (DAPBH2 = diacetylpyridinebis(benzoylhydrazone)) that may 

improve the properties of future MoIII-based exchange coupled systems by imposing a 

pentagonal bipyramidal geometry on MoIII that is more rigid than the geometry in 

[MoIII(CN)7]4-.  

 The moiety [(triphos)ReII(CN)3]- has different requirements than [MoIII(CN)7]4- for 

Ising-type anisotropic exchange. Due to the influence of the trigonal crystal field, the 

ground state of [(triphos)ReII(CN)3] is orbitally degenerate,34 allowing for the observation 

of spin-orbit coupling. The small separation of the ground state and the first excited state 

also leads to a large amount of temperature independent paramagnetism (TIP) in all 

reported compounds of [(triphos)ReII(CN)3]-. The only reported SMMs that contain this 

moiety are the molecular cube [{MnCl}4{Re(triphos)(CN)3}4] and the trigonal  

bipyramidal molecules (Et4N)2[((triphos)Re(CN)3)2(Ln(NO3)3)3]·4MeCN (Ln = Dy, 

Tb).36-37,41 The trigonal bipyramidal molecules are understood to be SMMs based solely 

on the magnetic properties of the lanthanide ions; the rhenium center does not significantly 

contribute to those properties. In the molecular Mn4Re4 cube, which is the first known 

example of a 5d transition metal SMM, anisotropic exchange is responsible for the 



 

20 

 

 

Figure 11. Left: Plot of [{MnCl}4{Re(triphos)(CN)3}4] with thermal ellipsoids drawn at 
the 25% probability level. Carbons in the phenyl rings of the triphos ligands are shown 
with arbitrary radius, and hydrogen atoms omitted for clarity. Reprinted with permission 
from reference 41, copyright 2007 American Chemical Society. Right: Z-axes of the local 
and molecular frames and the network of exchange pathways for the Mn4Re4 cube. 
Reprinted with permission from reference 29, copyright 2007 Elsevier.  
 
 
 
observed SMM behavior.29 Magnetic axes develop on the C3 axis of each 

[(triphos)ReII(CN)3]- moiety, so each diagonal of the cube has a magnetic axis (Figure 11). 

The net magnetic moment in the ground state is significantly reduced due to partial 

cancellation of those individual magnetic moments. Theoretically, SMM properties of a 

molecule that incorporates [(triphos)ReII(CN)3]- could be improved by ensuring that 

anisotropic exchange occurs along one unique axis in a molecule. To date, there are no 

molecules that incorporate this building block with strong coupling and all 

[(triphos)ReII(CN)3]- sharing one magnetic axis. This work will show that it is possible to 

synthesize such a compound and provides evidence that such a strategy will lead to new 

advanced in the area of anisotropic exchange coupled systems. 
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CHAPTER II  

CYANIDE BRIDGED CHAINS OF LANTHANIDE AND MOLYBDENUM IONS 

 

Background 

While the attention and focus on SMMs has occupied much of the work in the field 

of molecular magnetism, significant work has also been carried out in the area of single 

chain magnets (SCMs). SCMs were first proposed by Glaber in 196342 and finally realized 

by Gatteschi and coworkers in 2001.43 SCMs are excellent candidates to study the effects 

of magnetic coupling and anisotropy on magnetic behavior and also offer an opportunity 

to study multi-functionality through optical, conducing, and other properties.44-45 Like 

SMMs, SCMs can be made using a variety of strategies. They can be made from one 

building block or multiple building blocks; as long as the magnetic units in the chain 

communicate via exchange, there is a chance to observe interesting properties. Notably, 

the anisotropy in the chain can be different from the anisotropy of the building blocks. In 

the case of catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4, the selected building blocks exhibit 

easy-plane anisotropy, but the resulting chain has easy-axis anisotropy, which the authors 

attribute to the twisting of the easy planes with respect to each other (Figure 12).46 Because 

of the difficulty in predicting how building blocks with arrange themselves in a 1D chain, 

it is challenging to predict the resulting magnetic properties. As such, it is important to 

investigate 1D chains with different types of building blocks.  
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Figure 12. Structure of catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 and spin arrangment of the 
high-spin FeII and low-spin FeIII centers contained therein. The OA and OB labels show the 
two different types of oxygen ligands for the high spin FeII centers. Reproduced with 
permission from reference 46, copyright 2005 American Chemical Society.  

 

In the case of SCMs, often there is one cyanide containing building block and one 

other metal center, in order to take advantage of the cyanide ligand’s ability to mediate 

magnetic coupling. While many cyanide-bridged SCMs have been made using octahedral 

cyanometallates,47-52 there are none reported that utilize a 7-coordinate derivative. This is 

an important area because 7-coordinate geometries can lead to unexpected arrangements 

of atoms, which, as shown above, can heavily influence the behavior of the resulting chain. 

While there are a number of 3D and 2D coordination polymers that incorporate 

[MoIII(CN)7]4-,53-65 there are no reported 1D chains that incorporate this anion. Many of 
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those reports note that the seven coordinate structure of [MoIII(CN)7]4- reduces the 

symmetry present in the system as compared to six-coordinate cyanometallates that are 

frequently used in preparation of these Prussian Blue analogs. The lower symmetry leads 

to increased anisotropy and more interesting magnetic properties. Those qualities provide 

a solid rationale for looking into the synthesis of new 1D chains that incorporate 

[MoIII(CN)7]4-. Our group previously reported a variety of lanthanide-3d chains that 

provided us with inspiration for this work. We decided to synthesize new compounds 

analogous to {[Sm(tmphen)2(H2O)2Fe(CN)6]·MeOH·13H2O}∞ and {[Sm(tmphen)2-

(H2O)2Cr(CN)6]·MeOH·9H2O}∞ (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline).66 

These compounds (Figure 13) were found to exhibit ferromagnetic exchange between the 

3d and 4f metal centers and showed signs of glassy behavior. With similar conditions 

using [MoIII(CN)7]4-, it may be possible to observe SCM behavior, particularly if 

anisotropic exchange can be induced between the orbitally degenerate MoIII center and the 

lanthanide ion. As a result of this work, a new series of chains with the formula 

{K[Ln(tmphen)2(H2O)2MoIII(CN)7] was synthesized to investigate the effect of installing 

[MoIII(CN)7]4- in a 1D magnetic chain.  
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Figure 13. Thermal ellipsoid plots of {[Sm(tmphen)2(H2O)2Fe(CN)6]·MeOH·13H2O}∞ 
(left) and {[Sm(tmphen)2(H2O)2Cr(CN)6]·MeOH·9H2O}∞ (right) drawn at the 50% 
probability level. The atoms from solvent molecules have been omitted for the sake of 
clarity. Reproduced with permission from reference 66, copyright 2007 Royal Society of 
Chemistry. 

 

Experimental Details 

Synthesis 

Syntheses were performed under air free conditions in a nitrogen filled glove box. 

Solvents were deoxygenated by sparging with argon gas on a Schlenk line. K4[MoIII(CN)7] 

× 2H2O was synthesized using literature methods.67 All other chemicals were used as 

received from commercial sources.  

{K[Gd(tmphen)2(H2O)2MoIII(CN)7]} (1) – 47 mg tmphen (0.2 mmol) and 37mg 

GdCl3 (0.1 mmol, anhydrous basis) were dissolved in a mixture of 2 mL H2O, 2 mL DMF, 

and 1 mL MeCN. This solution was added dropwise to a solution of 50 mg (0.1 mmol) 

sample of K4[MoIII(CN)7] × 2H2O dissolved in 2 mL H2O and 2 mL DMF. The yellow 

solution of K4[MoIII(CN)7] × 2H2O gradually turned orange over the course of the addition. 

After being left to stand overnight, X-ray quality dark orange crystals were harvested by 

filtration and washed with DMF and Et2O, 20 mg, 20% yield. Samples were dried under 
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vacuum prior to submission for elemental analysis and SQUID measurements. Found: C, 

46.45; H, 4.47; N, 15.66%. Calculated for {K[Gd(tmphen)2(H2O)2MoIII(CN)7]} × 2H2O × 

MeCN: C, 46.45; H, 4.09; N, 15.85%.  

{K[Tb(tmphen)2(H2O)2MoIII(CN)7]} (2) – 47 mg tmphen (0.2 mmol) and 37 mg 

TbCl3 (0.1 mmol, anhydrous basis) were dissolved in a mixture of 2 mL H2O, 2 mL DMF, 

and 1 mL MeCN. This solution was added dropwise to a solution of 50 mg (0.1 mmol) 

sample of K4[MoIII(CN)7] × 2H2O dissolved in 2 mL H2O and 2 mL DMF. The yellow 

solution of K4[MoIII(CN)7] × 2H2O gradually turned orange over the course of the addition. 

After being left to stand overnight, X-ray quality dark, orange crystals were harvested by 

filtration and washed with DMF and Et2O, 23 mg, 23% yield. Samples were dried under 

vacuum prior to submission for elemental analysis and SQUID measurements. Found: C, 

47.05; H, 4.55; N, 15.71%. Calculated for {K[Tb(tmphen)2(H2O)2MoIII(CN)7]} × H2O × 

MeCN: C, 46.89; H, 4.22; N, 15.62%. 

{K[Dy(tmphen)2(H2O)2MoIII(CN)7]} (3) – 48 mg tmphen (0.2 mmol) and 38 mg 

DyCl3 (0.1 mmol, anhydrous basis) were dissolved in a mixture of 4 mL H2O, 4 mL DMF, 

and 2 mL MeCN. This solution was added dropwise to a solution of 50 mg (0.1 mmol) 

sample of K4[MoIII(CN)7] × 2H2O dissolved in 4 mL H2O and 4 mL DMF. The yellow 

solution of K4[MoIII(CN)7] × 2H2O gradually turned orange over the course of the addition. 

After being left to stand overnight, X-ray quality dark, orange crystals were harvested by 

filtration and washed with DMF and Et2O, 46 mg, 23% yield. Samples were dried under 

vacuum prior to submission for elemental analysis and SQUID measurements. Found: C, 
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46.88; H, 4.89; N, 15.26%. Calculated for {K[Dy(tmphen)2(H2O)2MoIII(CN)7]} × H2O × 

DMF: C, 46.73; H, 4.20; N, 15.57%. 

{K[Ho(tmphen)2(H2O)2MoIII(CN)7]} (4) – 48 mg tmphen (0.2 mmol) and 38 mg 

HoCl3 (0.2 mmol, anhydrous basis) were dissolved in a mixture of 4 mL H2O, 4 mL DMF, 

and 2 mL MeCN. This solution was added dropwise to a solution of 50 mg (0.1 mmol) 

sample of K4[MoIII(CN)7] × 2H2O dissolved in 4 mL H2O and 4 mL DMF. The yellow 

solution of K4[MoIII(CN)7] × 2H2O gradually turned orange over the course of the addition. 

After being left to stand overnight, X-ray quality dark, orange crystals were harvested by 

filtration and washed with DMF and Et2O, 40 mg, 20% yield. Samples were dried under 

vacuum prior to submission for elemental analysis and SQUID measurements. Found: C, 

49.45; H, 4.67; N, 14.00%. Calculated for {K[Ho(tmphen)2(H2O)2MoIII(CN)7]} × 2Et2O: 

C, 49.56; H, 4.96; N, 13.53%. 

{K[Er(tmphen)2(H2O)2MoIII(CN)7]} (5) – 48 mg tmphen (0.2 mmol) and 38 mg 

ErCl3 (0.1 mmol, anhydrous basis) were dissolved in a mixture of 4 mL H2O, 4 mL DMF, 

and 2 mL MeCN. This solution was added dropwise to a solution of 50 mg (0.1 mmol) 

sample of K4[MoIII(CN)7] × 2H2O dissolved in 4 mL H2O and 4 mL DMF. The yellow 

solution of K4[MoIII(CN)7] × 2H2O gradually turned orange over the course of the addition. 

After being left to stand overnight, X-ray quality dark, orange crystals were harvested by 

filtration and washed with DMF and Et2O, 45 mg, 22% yield. Samples were dried under 

vacuum prior to submission for elemental analysis and SQUID measurements. Found: C, 

50.43; H, 4.32; N, 12.94%. Calculated for {K[Er(tmphen)2(H2O)2MoIII(CN)7]} × 2Et2O: 

C, 49.46; H, 4.95; N, 13.5%. 
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Infrared Spectroscopy 

 Infrared spectra were collected on a Nicolet 740 Fourier transform IR 

spectrometer. Samples were prepared and measured as a Nujolâ mulls between KBr 

plates. 

 

 

Figure 14. IR spectrum for 1. The peaks at 2098 and 2048 are typical for bridging and 
terminal cyanide ligands, respectively. The features from 1700-1500 are attributed to the 
aromatic tmphen ligands. 
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Figure 15. IR spectrum for 2. The peaks at 2110 and 2046 are typical for bridging and 
terminal cyanide ligands, respectively. The features from 1700-1500 are attributed to the 
aromatic tmphen ligands. 
 
 

 

Figure 16. IR spectrum for 3. The peaks from 2120-2033 are typical for bridging and 
terminal cyanide ligands, respectively. The features from 1700-1500 are attributed to the 
aromatic tmphen ligands. 
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Figure 17. IR spectrum for 4. The peaks at 2098 and 2048 are typical for bridging and 
terminal cyanide ligands, respectively. The features from 1700-1500 are attributed to the 
aromatic tmphen ligands. 
 
 

 

Figure 18. IR spectrum for 5. The peaks at 2109 and 2097 are typical for bridging and 
terminal cyanide ligands, respectively. The features from 1700-1500 are attributed to the 
aromatic tmphen ligands. 
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Crystallography 

 Single crystals of the Ln-Mo chains were selected under Paratoneâ oil with a 

MiTGen microloop. Reflection data were collected on a Bruker D8-VENTURE 

diffractometer equipped with a IµS Cu microsource (λ = 1.54178 Å) and under a stream 

of N2 gas a 100 K. The frames were integrated and a semi-empirical absorption correction 

was applied using SADABS68 within the software package included in the APEX3 

software suite.69 The structure was solved using SHELXT70 and refined using SHELXL;71 

OLEX2 was used as an interface for the solution and refinement.72 Small Q-peaks in the 

structure that were consistent with the behavior of disordered solvent were removed using 

the SQUEEZE routine of the PLATON software package.73 Hydrogen atoms were placed 

in calculated positions. 

 The structures all contain a highly disordered [Mo(CN)7]4- moiety. Several 

methods of modeling were attempted; the {Mo(CN)7} fragment fit best with the data. 

When {Mo(CN)6} was used instead, both the geometry and areas of electron density 

around the Mo centers suggested that some cyanide ligands were unaccounted for. The 

geometry of the Mo center is significantly distorted from pentagonal bipyramidal. The 

geometry is between that of a pentagonal bipyramid and a capped trigonal prism. The 

lanthanide ions have the geometry of a flattened square antiprism. The vertices of the two 

square faces in the antiprism are occupied by two nitrogen atoms from the tmphen ligand, 

one nitrogen atom from the cyanide ligand, and one oxygen atom from the water ligand. 

As mentioned above, the two square faces are closer together than in a perfect square 

antiprism, giving the geometry a “squashed” appearance. While the structures all 
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crystallized with identical unit cells, the refinements have some variation based on what 

fit best with each data set. 

GdMo – The {Mo(CN)7} fragment is disordered in a 81:19 ratio. The Mo-C bond 

lengths for the major component ranged from 2.15(3) Å to 2.406(19) Å. The Mo-C bond 

lengths in the minor component ranged from 2.13(2) Å to 2.43(2) Å. The Gd-N bonds 

from tmphen are 2.548(4) Å and 2.543(4) Å, while the bond lengths of the Gd-N from 

cyanide and Gd-O are 2.71(5) Å and 2.369(4) Å, respectively. Selected bond angles 

around the lanthanide centers are described in Table 6. The SADI restraint was used to 

restrain the cyanide bond lengths to each other. This was necessary to maintain the stability 

of the {Mo(CN)7} fragment – the lack of this restraint led to chemically unreasonable 

refinement results. The SIMU restraint was similarly used to model the thermal parameters 

on the {Mo(CN)7} fragments; even with this restraint, the ISOR was needed to obtain a 

reasonable thermal parameter for nitrogen atom N8B. Additional details can be found in 

Table 1.  
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Table 1. Crystal data and structure refinement for 1. 
 
Identification code GdMo 
Empirical formula C39H36GdMoN11O2 
Formula weight 943.98 
Temperature/K 100.0 
Crystal system monoclinic 
Space group C2/c 
a/Å 21.1413(9) 
b/Å 20.1562(7) 
c/Å 13.5598(5) 
α/° 90 
β/° 110.624(2) 
γ/° 90 
Volume/Å3 5407.9(4) 
Z 4 
ρcalcg/cm3 1.159 
µ/mm-1 10.033 
F(000) 1876.0 
Crystal size/mm3 0.3 × 0.2 × 0.1 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 8.774 to 145.524 
Index ranges -26 ≤ h ≤ 26, -24 ≤ k ≤ 24, -16 ≤ l ≤ 12 
Reflections collected 33504 
Independent reflections 5345 [Rint = 0.0540, Rsigma = 0.0388] 
Data/restraints/parameters 5345/493/453 
Goodness-of-fita on F2 1.069 
Final R indexes [I>=2σ (I)] R1

b = 0.0565, wR2
c = 0.1569 

Final R indexes [all data] R1
b = 0.0593, wR2

c = 0.1602 
Largest diff. peak/hole / e Å-3 1.35/-0.79 
 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Figure 19. Repeating unit of 1. Only the major component of the {Mo(CN)7} fragment is 
shown. Hydrogen atoms are omitted for clarity. Ellipsoids drawn at the 50% probability 
level. 
 

 
2 – The {Mo(CN)7} fragment is disordered in a 82:18 ratio. The Mo-C bond 

lengths for the major component range from 2.237(10) Å to 2.256(10) Å. The Mo-C bond 

lengths in the minor component range from 2.242(10) Å to 2.267(18) Å. The Tb-N bonds 

from tmphen are 2.532(5) Å and 2.548(6) Å, while the bond lengths of the Tb-N from 

cyanide and Tb-O are 2.76(5) Å and 2.366(5) Å, respectively. Selected bond angles around 

the lanthanide centers are described in Table 6. SADI restraints were used on the cyanide 

bond lengths as well as the Mo-C bond lengths in the {Mo(CN)7} fragment. SIMU 

restraints were used on the thermal parameters of the atoms in the {Mo(CN)7} fragment. 

The ISOR restraint was again used on N8B, which was necessary to prevent a non-positive 

definite anisotropic thermal parameter. The constraints EXYZ and EADP were used on 
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N9A and N9B, as they were very close together and having a negative impact on the 

refinement when allowed to refine without those constraints. A SAME restraint was also 

used to restrain the geometries of the two {Mo(CN)7} fragments with respect to each other. 

Additional details can be found in Table 2.  

3 – The {Mo(CN)7} fragment is disordered in a 72.4:25.6 ratio. The Mo-C bond 

lengths for the major component range from 2.200(8) Å to 2.221(9) Å. The Mo-C bond 

lengths in the minor component range from 2.205(9) Å to 2.223(9) Å. The Dy-N bonds 

from tmphen are 2.524(4) Å and 2.527(4) Å, while the bond lengths of the Dy-N from 

cyanide and Dy-O are 2.62(3) Å and 2.317(4) Å, respectively. A similar list of restraints 

was used on 3 as with 2. Selected bond angles around the lanthanide centers are described 

in Table 6. There are SADI and restraints for the cyanide and Mo-C bond lengths, a SIMU 

and SAME restraint for the {Mo(CN)7} fragment, and one ISOR restraint for N8B. In 

addition, EXYZ and EADP were used for N9A and N9B. Additional details can be found 

in Table 3. 
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Figure 20. Asymmetric unit of 2. Only the major component of the {Mo(CN)7} fragment 
is shown. Hydrogen atoms are omitted for clarity. Ellipsoids drawn at the 50% probability 
level. 

 

 

 

Figure 21. Asymmetric unit of 3. Only the major component of the {Mo(CN)7} 
fragment is shown. Hydrogen atoms are omitted for clarity. Ellipsoids drawn at the 50% 
probability level. 
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Table 2. Crystal data and structure refinement for 2. 
 
Identification code TbMo 
Empirical formula C39H36MoN11O2Tb 
Formula weight 945.65 
Temperature/K 100.0 
Crystal system monoclinic 
Space group C2/c 
a/Å 21.2353(15) 
b/Å 20.0775(11) 
c/Å 13.7060(9) 
α/° 90 
β/° 110.594(3) 
γ/° 90 
Volume/Å3 5470.1(6) 
Z 4 
ρcalcg/cm3 1.148 
µ/mm-1 8.434 
F(000) 1880.0 
Crystal size/mm3 0.1 × 0.3 × 0.4 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 6.256 to 147.008 
Index ranges -26 ≤ h ≤ 26, -24 ≤ k ≤ 24, -16 ≤ l ≤ 16 
Reflections collected 31943 
Independent reflections 5441 [Rint = 0.0790, Rsigma = 0.0570] 
Data/restraints/parameters 5441/589/444 
Goodness-of-fita on F2 1.051 
Final R indexes [I>=2σ (I)] R1

b = 0.0757, wR2
c = 0.2149 

Final R indexes [all data] R1
b = 0.0861, wR2

c = 0.2265 
Largest diff. peak/hole / e Å-3 1.70/-0.59 
 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Table 3. Crystal data and structure refinement for 3. 
 
Identification code DyMo 
Empirical formula C39H36DyMoN11O2 
Formula weight 949.23 
Temperature/K 100.0 
Crystal system monoclinic 
Space group C2/c 
a/Å 21.1080(11) 
b/Å 20.4345(10) 
c/Å 13.6909(7) 
α/° 90 
β/° 111.924(3) 
γ/° 90 
Volume/Å3 5478.2(5) 
Z 4 
ρcalcg/cm3 1.151 
µ/mm-1 9.371 
F(000) 1884.0 
Crystal size/mm3 0.2 × 0.4 × 0.5 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 8.654 to 141.952 
Index ranges -25 ≤ h ≤ 25, -24 ≤ k ≤ 24, -14 ≤ l ≤ 16 
Reflections collected 35645 
Independent reflections 5211 [Rint = 0.0600, Rsigma = 0.0383] 
Data/restraints/parameters 5211/601/444 
Goodness-of-fita on F2 1.079 
Final R indexes [I>=2σ (I)] R1

b = 0.0563, wR2
c = 0.1687 

Final R indexes [all data] R1
b = 0.0618, wR2

c = 0.1747 
Largest diff. peak/hole / e Å-3 0.99/-0.73 

 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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4 – The {Mo(CN)7} fragment is disordered in a 84.8:15.2 ratio. The Mo-C bond 

lengths for the major component range from 2.14(3) Å to 2.26(3) Å. The Mo-C bond 

lengths in the minor component range from 2.11(4) Å to 2.31(2) Å. The Ho-N bonds from 

tmphen are 2.507(3) Å and 2.513(3) Å, while the bond lengths of the Ho-N from cyanide 

and Ho-O are 2.62(6) Å and 2.324(3) Å, respectively. Selected bond angles around the 

lanthanide centers are described in Table 6. A similar list of restraints was used on 4 as 

with 1-3. There are SADI and restraints for the cyanide, a SIMU and SAME restraint for 

the {Mo(CN)7} fragment, and one ISOR restraint for N8B. In addition, EXYZ and EADP 

were used for N9A and N9B. Additional details can be found in Table 4. 

 
 
 

 
Figure 22. Asymmetric unit of 4. Only the major component of the {Mo(CN)7} 
fragment is shown. Hydrogen atoms are omitted for clarity. Ellipsoids drawn at the 50% 
probability level. 
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Table 4. Crystal data and structure refinement for 4. 
 
Identification code HoMo 
Empirical formula C39H36HoMoN11O2 
Formula weight 951.66 
Temperature/K 100.0 
Crystal system monoclinic 
Space group C2/c 
a/Å 20.9472(11) 
b/Å 20.2772(10) 
c/Å 13.5431(7) 
α/° 90 
β/° 111.534(2) 
γ/° 90 
Volume/Å3 5350.9(5) 
Z 4 
ρcalcg/cm3 1.181 
µ/mm-1 4.884 
F(000) 1888.0 
Crystal size/mm3 0.2 × 0.2 × 0.5 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 8.722 to 141.366 
Index ranges -24 ≤ h ≤ 25, -23 ≤ k ≤ 24, -16 ≤ l ≤ 16 
Reflections collected 30000 
Independent reflections 5065 [Rint = 0.0452, Rsigma = 0.0322] 
Data/restraints/parameters 5065/517/444 
Goodness-of-fita on F2 1.086 
Final R indexes [I>=2σ (I)] R1

b = 0.0433, wR2
c = 0.1389 

Final R indexes [all data] R1
b = 0.0473, wR2

c = 0.1416 
Largest diff. peak/hole / e Å-3 0.84/-0.53 
 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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5 – The {Mo(CN)7} fragment is disordered in a 82.2:17.8 ratio. The Mo-C bond 

lengths range from 2.220(8) Å to 2.246(9) Å and 2.229(9) Å to 2.243(9) Å for the major 

and minor component, respectively. The Er-N bonds from tmphen are 2.503(4) Å and 

2.507(4) Å, while the bond lengths of the Er-N from cyanide and Dy-O are 2.428(10) Å 

and 2.303(4) Å, respectively. Selected bond angles around the lanthanide centers are 

described in Table 6. There are SADI restraints for the cyanide and Mo-C bond lengths, a 

SIMU and SAME restraint for the {Mo(CN)7} fragment, and one ISOR restraint for N8B. 

In addition, EXYZ and EADP were used for each pair of disordered, terminal nitrogen 

atoms (N9A, N9B, N3A, and N3B). See Table 5 for details. 

 

 

Figure 23. Asymmetric unit of 5. Only the major component of {Mo(CN)7} is shown. 
Hydrogen atoms are omitted for clarity. Ellipsoids drawn at the 50% probability level. 
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Table 5. Crystal data and structure refinement for 5. 
 
Identification code ErMo 
Empirical formula C39H36ErMoN11O2 
Formula weight 953.99 
Temperature/K 100.0 
Crystal system monoclinic 
Space group C2/c 
a/Å 21.0503(7) 
b/Å 20.3290(6) 
c/Å 13.6886(5) 
α/° 90 
β/° 112.0963(18) 
γ/° 90 
Volume/Å3 5427.5(3) 
Z 46 
ρcalcg/cm3 8.288 
µ/mm-1 99.626 
F(000) 11272.0 
Crystal size/mm3 0.2 × 0.2 × 0.6 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 8.7 to 127.718 
Index ranges -24 ≤ h ≤ 24, -23 ≤ k ≤ 23, -15 ≤ l ≤ 15 
Reflections collected 30713 
Independent reflections 4466 [Rint = 0.0598, Rsigma = 0.0370] 
Data/restraints/parameters 4466/614/435 
Goodness-of-fita on F2 1.075 
Final R indexes [I>=2σ (I)] R1

b = 0.0511, wR2
c = 0.1618 

Final R indexes [all data] R1
b = 0.0570, wR2

c = 0.1664 
Largest diff. peak/hole / e Å-3 1.30/-0.52 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Table 6. Selected bond lengths and angles for the LnMo chains. All distances are given 
in Å and angles are given in degrees (°). 
 
 

1 2 3 4 5 

Ln - O1 2.369(4) 2.366(5)  2.317(4) 2.324(3) 2.303(4) 

Ln - N1 2.548(4) 2.548(6) 2.524(4) 2.513(3) 2.503(4) 

Ln - N2 2.543(4) 2.532(5) 2.527(4) 2.507(3) 2.507(4) 

Ln - N3A 2.46(3) 2.398(17) 2.448(13) 2.39(3) 2.428(10) 

Ln - N3B 2.71(5) 2.76(5) 2.62(3) 2.62(6) 2.428(10) 

O1 - Ln - O1' 82.8(2) 82.0(3) 83.2(2) 82.80(14) 82.7(2) 

O1 - Ln - N1 112.72(16) 113.2(2) 112.85(15) 112.80(10) 112.84(15) 

O1' - Ln - N1 145.40(15) 145.2(2) 144.84(14) 144.94(10) 144.97(15) 

O1 - Ln - N2 77.11(14) 77.09(18) 76.48(14) 76.45(10) 76.50(14) 

O1' - Ln - N2 150.43(14) 150.6(2) 150.67(14) 150.17(9) 150.03(14) 

O1 - Ln - N3A 76.6(10) 76.3(9) 77.2(7) 75.2(8) 76.6(5) 

O1' - Ln - N3A 81.4(10) 81.4(7) 82.3(4) 75.4(7) 81.2(4) 

N1 - Ln - N2 63.75(13) 63.55(18) 64.02(13) 64.35(10) 64.48(14) 

N1 - Ln - N3A 73.2(9) 72.9(6) 71.9(4) 78.7(8) 72.9(3) 

N2 - Ln - N3A 114.1(11) 112.9(8) 112.9(5) 118.6(7) 114.0(5) 

N3A -Ln - N3A' 150.486 150.252 152.644 140.37 150.384 
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Magnetic measurements 

 Measurements were performed on a Quantum Design MPMS-XL SQUID 

magnetometer equipped with a 7 T magnet. A polypropylene bag was used to secure the 

sample, and the diamagnetic contribution was subtracted from the raw data. Diamagnetic 

contributions from the sample were accounted for by using Pascal’s constants.74  

1 – Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 1 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 24). The room temperature value of 8.5 cm3 K mol-1 is consistent with one Gd 

center and one S = ½ MoIII center. The decrease, which accelerates as the sample is cooled 

to about 10 K, can be attributed to weak antiferromagnetic coupling between Gd and Mo, 

interchain interactions, or spin-orbit coupling. The reduced magnetization plot for 1 

(Figure 25) shows that there is a small amount of anisotropy in the system, with near 

overlap of some isofield lines. This anisotropy likely originates from the spin-orbit 

coupling of MoIII. Since there is evidence of magnetic coupling between the metal centers 

and the reduced magnetization indicates spin-orbit coupling, it is possible that there is 

minor anisotropic exchange in the system. Alternating current (AC) measurements were 

performed to evaluate the magnetic dynamics of 1 (Figure 26). There was no notable slow 

relaxation of the magnetization observed, including in measurements that included a static 

DC field up to 2000 Oe. The lack of signal in these measurements indicates there is no 

SCM behavior in this chain. 
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Figure 24. Magnetic susceptibility data of 1.  
 

 

Figure 25. Reduced magnetization plot for 1 with applied fields of 1-7 T in the 2-4 K 
range.  
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Figure 26. In-phase and out-of-phase susceptibility data for 1, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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2 – Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 2 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 27). The room temperature value of 11.3 cm3 K mol-1 is consistent with one Tb 

center and one S = ½ MoIII center. The sharp decrease near 2K is likely due to interchain 

interactions, though it is possible that there is also weak coupling between Mo and Tb. 

The reduced magnetization plot for 2 (Figure 28) does not have superimposed isofield 

lines, which indicates that there is magnetic anisotropy in the system. The anisotropy 

present is likely a combination of exchange anisotropy and single-ion anisotropy from Tb, 

as well as spin-orbit coupling from MoIII. Alternating current (AC) measurements were 

performed to evaluate the magnetic dynamics of 2 (Figure 29). A weak signal was 

observed in c¢¢, which indicates that there was some slow relaxation of the magnetization, 

but not at a level expected for SCM behavior.  
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Figure 27. Magnetic susceptibility data of 2. 
 

 

Figure 28.  Reduced magnetization plot for 2 with applied fields of 1-7 T in the 2-4 K 
range.  
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Figure 29. In-phase and out-of-phase susceptibility data for 2, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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3 – Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 3 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 30). The room temperature value of 14.0 cm3 K mol-1 is consistent with one Dy 

center and one S = ½ MoIII center. The decrease at low temperature can be attributed to 

antiferromagnetic coupling between Dy and Mo or interchain interactions, including the 

sharp increase near 4 K. The reduced magnetization plot for 3 (Figure 31) does not have 

superimposed isofield lines, which shows that there is magnetic anisotropy in the system. 

The anisotropy present is likely a combination of exchange anisotropy and single-ion 

anisotropy from Dy, as well as spin-orbit coupling from MoIII. Alternating current (AC) 

measurements were performed to evaluate the magnetic dynamics of 3 (Figure 32). The 

beginnings of an out-of-phase signal are be observed, but the frequency limitations of the 

instrument prevent the peaks from being visible under these conditions. 3 may have some 

weak magnetic memory behavior under an applied field, but it is not possible to quantify 

that behavior without the peaks in the data.   
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Figure 30. Magnetic susceptibility data of 3.  
 

 

Figure 31. Reduced magnetization plot for 3 with applied fields of 1-7 T in the 2-4 K 
range. 
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Figure 32. In-phase and out-of-phase susceptibility data for 3, measured at 2 K with 
applied static DC fields from 0-2000 Oe.  
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4 – Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 4 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 33). The room temperature value of 12.8 cm3 K mol-1 is close to the expectated 

spin-only value for one Ho center and one S = ½ MoIII center (13.9 cm3 K mol-1). The 

decrease at low temperature can be attributed to antiferromagnetic coupling between Ho 

and Mo or interchain interactions. The reduced magnetization plot for 4 (Figure 34) does 

not have superimposed isofield lines, which indicates the presence of magnetic anisotropy 

in the system. The anisotropy present is likely a combination of exchange anisotropy and 

single-ion anisotropy from Ho, as well as spin-orbit coupling from MoIII. Alternating 

current (AC) measurements were performed to evaluate the magnetic dynamics of 4 

(Figure 35). An out-of-phase signal is not observed for 4, despite the observation of 

magnetic anisotropy.    
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Figure 33. Magnetic susceptibility data of 4. 
 

 

Figure 34. Reduced magnetization plot for 4 with applied fields of 1-7 T in the 2-4 K 
range. 
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Figure 35. In-phase and out-of-phase susceptibility data for 4, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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5 – Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 5 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 36). The room temperature value of 12.1 cm3 K mol-1 is consistent with 

expectations for one Er center and one S = ½ MoIII center (11.8 cm3 K mol-1). The decrease 

at low temperature can be attributed to coupling between Er and Mo or interchain 

interactions. The reduced magnetization plot for 5 (Figure 37) does not have superimposed 

isofield lines, which shows that there is magnetic anisotropy in the system, although less 

anisotropy than was observed for 3 and 4. The anisotropy present is likely a combination 

of exchange anisotropy and single-ion anisotropy from Er, as well as spin-orbit coupling 

from MoIII. Alternating current (AC) measurements were performed to evaluate the 

magnetic dynamics of 5 (Figure 38). Like 4, 5 shows the beginnings of an out-of-phase 

signal, but it is likewise difficult to quantify the response due to frequency limitations of 

the SQUID instrument. 

The existence of a small amount of anisotropic exchange in these compounds is 

evident due to the anisotropy present in 1, but the small amount of anisotropy is 

insufficient to induce SCM behavior. In the other compounds in the series, if there is 

anisotropic exchange, it would likely have competing axes with single-ion sources of 

anisotropy on the lanthanide ions. It is possible that inducing stronger coupling to an 

orbitally degenerate metal center could lead to anisotropic exchange coupled SMMs or 

SCMs, but the weak coupling through cyanide is insufficient to induce that change. 
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Figure 36. Magnetic susceptibility data of 5. 
 

 

 

Figure 37. Reduced magnetization plot for 5 with applied fields of 1-7 T in the 2-4 K 
range. 
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Figure 38. In-phase and out-of-phase susceptibility data for 5, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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Conclusions and Future Studies 

A family of cyanide bridge LnIII - MoIII atoms were synthesized and characterized 

structurally and magnetic measurements. The inclusion of a 7-coordinate MoIII center in a 

chain with a lanthanide ion is novel, but did not lead to SCM behavior in this case. In 

future studies, other bridging ligands could be used to try to increase the amount of 

coupling between the lanthanide ion and the molybdenum center. Like in other cases that 

show anisotropic exchange, the best strategy would likely be strongly coupled MoIII to 

GdIII, because there would be no single-ion anisotropy from GdIII to interfere with the 

anisotropy from superexchange. In order to increase coupling, a different bridging ligand 

should be employed. Diamagnetic bridging ligands are known to provide limited coupling 

between transition metals and lanthanides due to the contracted f-orbitals on lanthanide 

centers. If a radical bridging ligand was used, it is possible that the coupling would be 

increased and better magnetic properties could be expected. 
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CHAPTER III  

PREPARATION AND REACTIONS OF SEVEN COORDINATE 

MOLYBDENUM(III) COMPOUNDS*  

 

Background 

The discovery of magnetic bistability for Mn12 acetate1 in 1993 opened the 

door to wide exploration of magnetic behavior in molecular materials. Cyanide 

compounds experienced a renaissance in this area owing to the discovery of 

fascinating magnetic properties in Prussian Blue analogues such as the material 

VII[CrIII(CN)6]0.86·2.8 H2O, which exhibits magnetic ordering above room temperature.23 

Over the past twenty years, hexacyanometallates, octacyanometallates, as well as 

heteroleptic cyanide precursors have been studied extensively vis-à-vis their 

capacity to be incorporated into extended networks as well as discrete 

molecules.33,75-76 In the latter category, single molecule magnets (SMMs) prepared from 

cyanometallate building blocks are especially intriguing due to their potential applicability 

to quantum computing, data storage, and spintronics.9,11,22,77 SMMs function as 

nanomagnets with a thermal energy barrier to reversal of their magnetization. Even in 

cases with record coupling78-79 and large ground state spin values,16 however,  SMM 

behavior is still relatively elusive in cyanide-bridged materials. Investigating 

 

*Data, figures, and text in this chapter were adapted with permission from reference 97, copyright 

2019 Royal Society of Chemistry. 
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underexplored geometries and architectures can aid in the understanding of including how 

to improve their magnetic properties. 

Molecular wheels are well-known in the magnetism and coordination chemistry 

communities, with many different bridging ligands having been used to obtain cyclic 

architectures. Among these wheels are examples that contain lanthanides and transition 

metals with a wide variety of bridging ligands including azides, carboxylates, polyolates, 

polyamines, oxides, polyols, and hydroxides.80-88 Wheel examples with cyanide, however, 

are rather limited,16,89-94 despite the interesting magnetic phenomena observed for some of 

those compounds. One of these molecules, [MnIII(salen)]6[FeIII(bpmb)(CN)2]6•7H2O 

exhibits magnetic hysteresis consistent with SMM behavior.90  Another interesting 

molecule reported by the Dunbar group, namely 

[Mn(dpop)(H2O)2]2[{Mo(CN)7}8{Mn(dpop)}10{Mn(dpop)(H2O)}4]·xH2O (dpop = 2,13-

dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene), has 

the largest spin ground state for a cyanide bridged molecule.16 Based on that result and the 

dearth of cyanide-bridged wheels, pursuit of other wheel architectures utilizing 

[MoIII(CN)7]4- as a building block is warranted. 

The S = ½ anion [MoIII(CN)7]4- has attracted interest in the area of cyanide 

magnetism due to its five-fold symmetry and atypical coordination geometries in magnetic 

systems. Early studies by Kahn and coworkers focused on the incorporation of 

[Mo(CN)7]4- into extended cyanide-bridged networks. The seven-coordinate geometry 

precludes the formation of the highly symmetric networks typically observed for hexa- 

and octacyanometallates and leads to increased magnetic anisotropy.55,57 Examples of 
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molecules containing the [MoIII(CN)7]4- moiety are scarce, however; results  from our 

laboratories have provided the only examples that satisfy the conditions for  SMMs, viz. 

the MoIII center having pseudo-D5h geometry and a 3d metal being coordinated to the 

apical cyanide ligands which maximizes Ising anisitropy.28,38-39,95 While one would not 

expect to preserve the D5h symmetry when incorporating [MoIII(CN)7]4- into wheel 

architectures, isolation of new cyclic molecules with this anion allows for more data to be 

added to the scarce information about the magnetism of this building block. One family 

of wheels that incorporates homoleptic cyanometallates have the formula 

[MIV(CN)8]6[Ni(L)]12(H2O)6 (M = Nb, Mo, or W). Weak antiferromagnetic interactions 

between the Ni centers in [MoIV(CN)8]6[Ni(L)]12(H2O)692 and antiferromagnetic 

interactions between Nb and Ni in [NbIV(CN)8]6[Ni(L)]12(H2O)6 were reported in the 

original publications.94 The magnetic properties of [WIV(CN)8]6[Ni(L)]12(H2O)6 were not 

reported.93  

In this report, the synthesis of the MoIII analogue [MoIII(CN)7]6[Ni(L)]12(H2O)6 (7) 

is shown to be possible by emulating reaction conditions used to prepare 

[MoIV(CN)8]6[Ni(L)]12(H2O)6 (8). The MoIV analogue, 8 was also re-synthesized and 

measured to directly compare data for the two molecules. A new, simpler procedure for 

the synthesis of K4[MoIII(CN)7]·2H2O (6)96 was also developed. Characterizing the new 

wheel compound reignited interest in syntheses that might yield proper geometries for 

anisotropic exchange with MoIII. As previously stated, the D5h geometry is critical to the 

observation of Ising-type anisotropic exchange. Rather than using [MoIII(CN)7]4- as a 

building block and hoping to preserve its pentagonal bipyramidal geometry, it would 
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significantly aid the efforts to make polynuclear SMMs if a starting material existed that 

would naturally enforce such a geometry. With that goal in mind, MoIIICl3(THF)3 was 

reacted with the organic Schiff base ligand DAPB ((2E,12E)-2,13-dimethyl-6,9-dioxa-

3,12-diaza-1(2,6)-pyridinacyclotridecaphane-2,12-diene).97-98 The reaction led to the 

isolation of the product [MoIIIDAPB(CN)2]- , which is an exciting new building block that 

optimizes the geometry of the orbitally degenerate MoIII center, satisfying the conditions 

for anisotropic exchange. DAPB has been used in a similar fashion before, but not with 

an orbitally degenerate metal center.99 Using a similar strategy with MoIII should enable 

new complexes to be prepared that exhibit Ising-type anisotropic exchange. 

 

Experimental Details 

Synthesis 

Syntheses were carried out under air free conditions using a nitrogen-filled glove 

box or Schlenk-line outfitted with argon gas. The solvents were deoxygenated by sparging 

with argon gas and the dry EtOH was dried over Mg and I2. Diethyl ether was purified 

using an MBRAUN purification system. MoIIICl3(THF)3, Ni(L)(ClO4)2, and DAPB were 

prepared by literature methods97-98,100-101; all other chemicals were purchased from 

commercial sources and used without further purification unless otherwise indicated. 

 

K4[MoIII(CN)7]·2H2O (6) 

A 3.2g (7.64 mmol) sample of MoIIICl3(THF)3 and 4.4g (66.9 mmol) of KCN were 

added to a flask containing 40 mL of H2O and heated to 70°C for 12 h to yield a dark 
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orange solution. MeOH was subsequently added until the solution became slightly cloudy. 

After left to stand overnight at 25°C, X-ray quality dark olive-green crystals were isolated 

(2.48g, 69% yield). IR (n for CºN): 2115sh, 2101s, 2067vs cm-1. 

 

[MoIII(CN)7]6[Ni(L)]12×24H2O (7) 

A 25mg (0.05 mmol) sample of K4[MoIII(CN)7]·2H2O was dissolved in 6 mL of 

H2O. A separate sample (25mg, 0.05 mmol) of Ni(L) was dissolved in 6 mL of H2O and 

added dropwise to the solution of K4[MoIII(CN)7]·2H2O. After standing overnight, the 

dark orange needle crystals were collected by filtration and washed with H2O and Et2O, 

27mg, 50% yield. Samples were dried under vacuum prior to submission for elemental 

analysis and SQUID measurements. Found: C, 44.94; N, 21.34; H, 5.17%. Calc. for 

[MoIII(CN)7]6[Ni(L)]12×24H2O: C, 45.15; N, 21.35; H, 5.33%. IR (n for CºN): 2090m,  

2077m, 2042sh, 2033m cm-1. 

 

[MoIV(CN)8]6[Ni(L)]12×30H2O (8) 

A 65 mg sample of K4[MoIV(CN)8]·2H2O was dissolved in 8 mL of H2O. A 

separate 50 mg sample of Ni(L) was dissolved in 8 mL of H2O and added dropwise to the 

solution of K4[MoIV(CN)8]·2H2O. After standing overnight, dark yellow needle crystals 

were collected by filtration and washed with H2O and Et2O, 34 mg, 32% yield. The sample 

was dried under vacuum prior to submission for elemental analysis and SQUID 

measurements. Found: C, 44.40; N, 21.74; H, 5.22%. Calc for 
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[MoIV(CN)8]6[Ni(L)]12·30H2O: C, 44.39; N, 21.79; H, 5.29%. IR (n for CºN): 2150sh, 

2144m, 2131m, 2119w, 2100s, 1626m, 1579m cm-1. 

 

MoIVDAPBCl2 (9) 

A 1.0 g sample (2.12 mmol) of MoCl3(THF)3 and an 850 mg sample (2.12 mmol) 

of DAPBH2 were added to a Schlenk fask with 50 mL MeCN. After refluxing for about 2 

hours, a black, crystalline powder was observed in the flask. It was left to stir for another 

hour and the X-ray quality crystals were filtered in air and washed with MeCN, 1.0 g, 83% 

yield.  

 

(NEt4)[MoIII(DAPB)(CN)2] (10) 

A 2.72 g (0.48 mmol) sample of MoIV(DAPB)Cl2 was placed in a Schlenk flask 

with a 225 mg (1.44 mmol) sample of (NEt4)CN and 20 mL MeCN. The mixture was 

subjected to reflux for 12 hours, after which there was a green solution and some dark 

particulate matter. The solution was filtered to separate the filtrate and the solid. After 

slow diffusion of Et2O into the filtrate, a small number of X-ray quality, dark green crystals 

were observed.  

 

K[MoIII(DAPB)(CN)2] (11) 

A 100 mg (0.177 mmol) sample of MoIVDAPBCl2 was placed in a Schlenk flask 

with 23 mg (0.354 mmol) KCN and 30 mL of dry ethanol. The mixture was refluxed for 

12 hours, which resulted in a yellow solution with brown solid. After filtration, the filtrate 
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was subjected to slow diffusion with Et2O and Xray quality, dark brown crystals were 

isolated, 13 mg, 12.5% yield. 

 

Crystallography 

Single crystals of each complex were selected under Paratoneâ oil with a MiTGen 

microloop. Reflection data were collected on a Bruker D8-VENTURE diffractometer 

equipped with a IµS Cu microsource (λ = 1.54178 Å) or a Bruker D8-QUEST 

diffractometer equipped with a IµS Mo microsource (λ = 0.71073 Å) under a stream of 

N2 gas a 100 K. The frames were integrated and a semi-empirical absorption correction 

was applied using SADABS68 within the software package included in the APEX3 

software suite.69 The structure was solved using SHELXT70 and refined using SHELXL;71 

OLEX2 was used as an interface for the solution and refinement.72 Small Q-peaks in the 

structure that were consistent with the behavior of disordered solvent were removed using 

the SQUEEZE routine of the PLATON software package.73 Hydrogen atoms were placed 

in calculated positions. 

 

[MoIII(CN)7]6[Ni(L)]12×24H2O (7) 

Compound 7 crystallizes in P1" with a unit cell that is metrically similar to that of 

8 which crystallizes in R3". The molecule of 7 resides on a crystallographic inversion center 

with one-half of the complex in the asymmetric unit (Figure 39). The structure consists of 

six [MoIII(CN)7]4- moieties bridged to six [Ni(L)] moieties in an alternating arrangement 

to give a wheel motif. The remaining six [Ni(L)]2+ act as capping ligands for the wheel 
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with one coordinated water in the Ni axial position opposite the cyanide ligand. The 

coordination geometry around the MoIII centers was evaluated using the SHAPE program, 

which calculates a continuous shape measurement (CShM) based on the positions of the 

atoms relative to their positions in ideal geometries (closer to 0 is a better match).102-103 

The coordination geometries of the Mo centers are best described as capped trigonal 

prismatic. Mo3 is a particularly good fit for that geometry and the results of those 

calculations are compiled in Table 7. The angles between the equatorial cyanide ligands 

range from 71.9(4)° to 76.4(3)°, which are close to the 72° for a perfect pentagon. OLEX2 

was used to calculate a mean plane of the equatorial cyanide ligands on each MoIII center 

in 7; the rmsd values for each of those planes are 0.549, 0.535, and 0.579 for Mo1-Mo3, 

further showing that the cyanide ligands are distorted compared to a perfect pentagonal 

arrangement. The NiII centers all adopt an approximately octahedral geometry, with the 

four equatorial positions being occupied by the N atoms of L and the axial positions filled 

with either two cyanide ligands (for the Ni atoms in the ring), or one cyanide ligand and 

one water ligand (for the Ni atoms on the outside). Additional information regarding the 

structure can be found in Table 8.  
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Table 7. SHAPE results for crystallographically independent MoIII centers in 7. 

 

 

 

Figure 39. Local geometry of the molybdenum atoms in 7 (Mo1, Mo2, and Mo3 left to 
right).  
 

 

Mo  Center CShM for Pentagonal 
Bipyramidal 

CShM value for Capped 
Trigonal Prism 

1 2.530 2.316 

2 2.441 2.233 

3 3.849 0.924 
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Figure 40. Structure of 7. The nickel atoms are green, molybdenum atoms are teal, 
carbon atoms are grey, nitrogen atoms are blue, and oxygen atoms are red. Hydrogen 
atoms are omitted for the sake of clarity. 
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Table 8. Crystal data and structure refinement for 7. 
Identification code $%&'''Ni12 
Empirical formula C222H276Mo6N90Ni12O6 
Formula weight 5581.47 
Temperature/K 110.0 
Crystal system triclinic 
Space group P() 
a/Å 20.8632(17) 
b/Å 20.9777(19) 
c/Å 21.0033(18) 
α/° 105.168(3) 
β/° 105.407(2) 
γ/° 104.914(2) 
Volume (Å3) 8008.0(12) 
Z 1 
ρcalcg (cm3) 1.157 
µ (mm-1) 0.968 
F (000) 2874.0 
Crystal size (mm3) 0.5 × 0.2 × 0.05 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.068 to 48.602 
Index ranges -24 ≤ h ≤ 24, -24 ≤ k ≤ 24, -24 ≤ l ≤ 24 
Reflections collected 89054 
Independent reflections 25768 [Rint = 0.0848, Rsigma = 0.0814] 
Data/restraints/parameters 25768/2764/2122 
Goodness-of-fita on F2 1.030 
Final R indexes [I>=2σ (I)] R1b = 0.0881, wR2c = 0.1838 
Final R indexes [all data] R1b = 0.1361, wR2c = 0.2110 
Largest diff. peak/hole / e Å-3 0.96/-1.01 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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[MoIV(CN)8]6[Ni(L)]12×30H2O (8) 

The structure of 8 was previously reported by the Wang group in 2017.92 The 

structure was collected at room temperature, and for the sake of direct comparison to 7, it 

was re-collected at 110 K. The structure is superficially similar to 7, and is reported in the 

rhombohedral setting to facilitate comparison of its unit cell to 7 (Table 9). The unit cell 

of this data is slightly smaller than the cell of the previously reported data, as might be 

expected from the lowered temperature. More details can be found in Table 10. 

 

Table 9. Comparison of the unit cell parameters for 7 and 8. 
Unit cell parameter 8 7 

Space Group R3" P1" 

a (Å) 21.1191(3) 20.8632(17) 

b (Å) 21.1191(3) 20.9777(19) 

c (Å) 21.1191(3) 21.0033(18) 

a (°) 105.6515(6) 105.168(3) 

b (°) 105.6515(6) 105.407(2) 

g (°) 105.6515(6) 104.914(2) 

V (Å3) 8116.0(2) 8008.1(12) 
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Table 10. Crystal data and structure refinement for 8. 
Identification code $%&'*Ni12 
Empirical formula C38H46MoN16Ni2O 
Formula weight 956.27 
Temperature/K 100.0 
Crystal system trigonal 
Space group R3" 
a/Å 33.6548(8) 
b/Å 33.6548(8) 
c/Å 24.8190(6) 
α/° 90 
β/° 90 
γ/° 120 
Volume/Å3 24344.9(13) 
Z 18 
ρcalcg (cm3) 1.174 
µ (mm-1) 3.005 
F(000) 8856.0 
Crystal size (mm3) 0.8 × 0.2 × 0.2 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection (°) 7.034 to 140.406 
Index ranges -41 ≤ h ≤ 41, -41 ≤ k ≤ 35, -30 ≤ l ≤ 30 
Reflections collected 84785 
Independent reflections 10294 [Rint = 0.0522, Rsigma = 0.0260] 
Data/restraints/parameters 10294/1/543 
Goodness-of-fita on F2 1.051 
Final R indexes [I>=2σ (I)] R1b = 0.0346, wR2c = 0.0863 
Final R indexes [all data] R1b = 0.0418, wR2c = 0.0894 
Largest diff. peak/hole / e Å-3 0.67/-0.43 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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MoIVDAPBCl2 (9) 

Compound 9 crystallizes in the space group P21/C. The structure was previously 

reported by the Yagubskii group,104 and they noted that the structure is remarkably close 

to pentagonal bipyramidal. There are no anions in the structure; the ligand, DAPBH2, 

becomes deprotonated during the reaction, leading to the formation of a neutral compound. 

The bond lengths to the two Cl- ligands are 2.3868(14) Å and 2.3912(14) Å. More details 

can be found in Table 11.  

 

 
 

 

Figure 41. Crystal structure of 9. Ellipsoids are drawn at the 50% probability level. 
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Table 11. Crystal data and structure refinement for 9. 
Identification code MoIVDAPBCl2 
Empirical formula C23H19Cl2MoN5O2 
Formula weight 564.27 
Temperature/K 138.0 
Crystal system monoclinic 
Space group P21/c 
a/Å 8.5335(3) 
b/Å 13.9276(7) 
c/Å 20.0337(9) 
α/° 90 
β/° 99.509(2) 
γ/° 90 
Volume/Å3 2348.31(18) 
Z 4 
ρcalcg/cm3 1.596 
µ/mm-1 0.817 
F(000) 1136.0 
Crystal size/mm3 .3 × .3 × .6 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.84 to 51.408 
Index ranges -10 ≤ h ≤ 10, -17 ≤ k ≤ 15, -24 ≤ l ≤ 24 
Reflections collected 26070 
Independent reflections 4466 [Rint = 0.1037, Rsigma = 0.0549] 
Data/restraints/parameters 4466/0/300 
Goodness-of-fita on F2 1.187 
Final R indexes [I>=2σ (I)] R1b = 0.0568, wR2c = 0.0976 
Final R indexes [all data] R1b = 0.0841, wR2c = 0.1059 
Largest diff. peak/hole / e Å-3 0.72/-0.81 

 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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(NEt4)[MoIII(DAPB)(CN)2] (10) 

10 crystallizes in the space group Pna21. The geometry of the MoIII center is still 

close to pentagonal bipyramidal, but the DABP ligand lies less flat than it does in 9. The 

[NEt4]+ moiety is disordered and was able to be modeled in two positions. The Mo-C 

bonds to the cyanide ligands are 2.177(7) Å and 2.172(6) Å, respectively. More 

information can be found in Table 12, and the structure is shown in Figure 42. 

 

 

 
Figure 42. Crystal structure of 10. Only one configuration of the disordered [NEt4]+ is 
shown. Ellipsoids are drawn at the 50% probability level. 
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Table 12. Crystal data and structure refinement for 10.  
Identification code (NEt4)[MoIII(DAPB)(CN)2] 
Empirical formula C33H41MoN8O2 
Formula weight 677.68 
Temperature/K 120 
Crystal system orthorhombic 
Space group Pna21 
a/Å 22.609(3) 
b/Å 10.8318(16) 
c/Å 13.0487(15) 
α/° 90 
β/° 90 
γ/° 90 
Volume/Å3 3195.5(8) 
Z 4 
ρcalcg/cm3 1.409 
µ/mm-1 0.454 
F(000) 1412.0 
Crystal size/mm3 0.576 × 0.106 × 0.076 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.768 to 52.202 
Index ranges -26 ≤ h ≤ 27, -13 ≤ k ≤ 13, -16 ≤ l ≤ 16 
Reflections collected 67594 
Independent reflections 6310 [Rint = 0.1095, Rsigma = 0.0480] 
Data/restraints/parameters 6310/190/480 
Goodness-of-fita on F2 1.140 
Final R indexes [I>=2σ (I)] R1b = 0.0462, wR2c = 0.0862 
Final R indexes [all data] R1b = 0.0641, wR2c = 0.0920 
Largest diff. peak/hole / e Å-3 0.34/-0.56 
Flack parameter -0.005(15) 
 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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K[MoIII(DAPB)(CN)2] (11) 

Compound 11 crystallizes in the space group P21/n. There are two [MoIII(DAPB)]- 

fragments in the unit cell. The geometry of the MoIII centers is slightly distorted due to the 

presence of the K+ ions, which bend the cyanide ligands away from the ideal geometry – 

the angle between these ligands is 167.584° and 167.060° for the two complexes in the 

unit cell, respectively, which is a significant deviation from the ideal of 180°. The Mo-C 

bond lengths for these axial cyanide ligands are 2.16(2) Å, 2.20(2) Å, 2.20(2) Å, and 

2.134(18) Å. There are large Q-peaks that appear to correspond to solvent molecules that 

act as ligands on K+ – all efforts to model those peaks resulted in chemically unreasonable 

refinements. The difficulty in modelling those peaks is due to disorder of the ligands, 

whose likely identity is EtOH. Additional details can be found in Table 13. The structure 

is shown from two angles in Figure 43. 

Table 14 contains some comparisons of the bond angles in 9, 10 and 11. 

Consistently, the O-Mo-O bond angle is the widest for the DAPB compounds, but their 

closeness to the perfect pentagonal angle of 72° is noteworthy because of the dependence 

of the orbital degeneracy on the geometry of the metal center. 
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Figure 43. Two views of the two [MoIII(DAPB)(CN)2]- fragments in the unit cell of 11. 
The ellipsoids are drawn the 50% probability level. 
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Table 13. Crystal data and structure refinement for 11.  
Identification code K[MoIII(DAPB)(CN)2] 
Empirical formula C50H42K2Mo2N14O4 
Formula weight 645.32 
Temperature/K 100.01 
Crystal system monoclinic 
Space group P21/n 
a/Å 12.0195(7) 
b/Å 23.6383(15) 
c/Å 25.3338(16) 
α/° 90 
β/° 101.438(2) 
γ/° 90 
Volume/Å3 7054.9(8) 
Z 8 
ρcalcg/cm3 1.215 
µ/mm-1 3.495 
F(000) 2579.0 
Crystal size/mm3 0.1 × 0.3 × 0.3 
Radiation CuKα (λ = 1.54178) 
2Θ range for data collection/° 5.162 to 86.308 
Index ranges -10 ≤ h ≤ 10, -20 ≤ k ≤ 19, -22 ≤ l ≤ 21 
Reflections collected 21400 
Independent reflections 5101 [Rint = 0.0936, Rsigma = 0.0586] 
Data/restraints/parameters 5101/402/653 
Goodness-of-fita on F2 1.059 
Final R indexes [I>=2σ (I)] R1b = 0.0849, wR2c = 0.2439 
Final R indexes [all data] R1b = 0.1024, wR2c = 0.2596 
Largest diff. peak/hole / e Å-3 2.72/-0.59 
 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Table 14. Comparison of bond angles of Mo with the chelating ligand DAPB. The O-
Mo-O angles are wider in each case, but the angles are generally close to the ideal for a 
pentagonal bipyramid (72°). 

Angle 9 10 11 (#1) 11 (#2) 

N-Mo-N 71.028° 72.069° 70.271° 70.191° 

N-Mo-O 71.549° 70.807° 71.478° 72.275° 

O-Mo-O 75.289° 75.311° 75.572° 75.2° 

O-Mo-N 71.269° 71.37° 72.09° 71.481° 

N-Mo-N 70.867° 70.717° 70.927° 70.953° 

 

 

Cyclic Voltammetry 

Cyclic voltammetry was performed on 9 to evaluate its redox potential. 

Electrochemical measurements were carried out under an inert N2 atmosphere using 

dichloromethane that had been dried over molecular sieves, using 0.1 M [n-Bu4N][PF6] as 

the supporting electrolyte. The setup used an HCH Electrochemical Analyzer model CH 

1620A with a glassy carbon working electrode, Pt wire auxiliary electrode, and a Ag/AgCl 

(3 M KCl(aq)) reference electrode at a 100 mV/s scan rate. The concentration of 9 was 

∼100 mM. Ferrocene was used as an internal standard and exhibited an E1/2 = 0.44 V vs 

Ag/AgCl for the Fc+ /Fc couple under the same experimental conditions. Data shown in 

Figure 44.  
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Figure 44. Cyclic voltammograms of 9 in CH2Cl2 (DCM). 
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The cyclic voltammogram exhibits a reversible oxidation at 1.21 V and reversible 

reduction couples located at E1/2 = -0.239 V and E1/2 = -1.08 V for 9. These results indicate 

that the MoIII analogue is accessible as well as the MoV and MoII species.  

 

Magnetic Measurements 

Magnetic measurements were performed on a Quantum Design MPMS-XL 

SQUID magnetometer equipped with a 7 T magnet. A polypropylene bag was used to 

secure the sample, and the diamagnetic contribution was subtracted from the raw data. 

Diamagnetic contributions from the sample were accounted for by using Pascal’s 

constants.74 

Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 7 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 45). The room temperature cmT value of 19.07 cm3mol-1K is higher than the spin-

only value of 14.25 cm3mol-1K (gMo = 2.0, SMo = ½, gNi = 2.0, SNi = 1) for the 18-metal 

center wheel. Calculations on seven-coordinate MoIII centers have revealed that, even in 

distorted geometries, the g-values are highly anisotropic, with gz ranging from 3.0 to 3.5 

and gx = gy ranging from 0.4 – 1.3.28 Calculations (vide infra) predict an average giso value 

between 2.23-2.24 for the NiII centers, which also has a substantial effect on cmT. The 

observed room temperature cmT value is easily explained when accounting for these 

highly anisotropic g values (19.10 cm3mol-1K, gMo = 1.80, SMo = ½, gNi = 2.40, SNi = 1). 

The cmT value increases from 19.07 cm3mol-1K at 300 K to a maximum of 22.92 cm3mol-

1K at 5 K before dropping precipitously as the temperature is lowered to 2 K. The decrease 
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in cmT at very low temperatures is the result of zero-field splitting of the NiII centers. The 

increase from 300 to 5 K is likely due to coupling between the NiII and MoIII centers. In 

the case where one set of Ni-Mo couplings is ferromagnetic and another set is 

antiferromagnetic (this is possible when inner-ring six NiII and all MoIII spins are parallel 

and the external six NiII centers are antiparallel), then S = 3 would be expected; the room 

temperature value of cmT rules out such a possibility, since cmT would be expected to be 

6 cm3mol-1K in that case. Both fully antiferromagnetic (S = 9, cmT = 45 cm3mol-1K, when 

all the NiII centers have a spin-up configuration and all the MoIII have a spin-down 

configuration) and fully ferromagnetic (S = 15, cmT = 120 cm3mol-1K, when all NiII and 

MoIII centers have a spin-up configuration) coupling would lead to an increase in cmT at 

low temperatures.  

 The magnetic susceptibility data for 8 reveal a value of 12.6 cm3mol-1K at 300 K, 

which is close to the previously reported value of 12.19 cm3mol-1K at 300 K.92 The data 

for the magnetic susceptibility of 8 are included in Figure 45 to facilitate direct comparison 

of the magnetic properties, which clearly exhibit differences in magnetic behavior. The 

number of metal centers present in 7 precludes the use of complete models to fit the data 

– attempts based on previously reported methods105 have not yielded satisfactory fits.  
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Figure 45. Magnetic susceptibility plots of 7 (black dots) and 8 (red dots). 
 

 
The magnetization data and reduced magnetization data are instructive in further 

exploring the magnetic properties of 7. The 1.8 K magnetization data for 7 (Figure 46) do 

not saturate up to a field of 7 T, at which field the magnetization is 21.8 µB. The spin-only 

value predicted for an S = 9 ground state (antiferromagnetic coupling between NiII and 

MoIII) is 18 µB, whereas the value predicted for S = 15 (ferromagnetic coupling) is 30 µB. 

While there is a lack of saturation, the expected value for antiferromagnetic coupling is 

already exceeded at 7 T, suggesting that the coupling is ferromagnetic. The reduced 

magnetization data (Figure 47) show that there is anisotropy in the system, even if it is not 

Ising-type anisotropy that would lead to SMM behavior. The lack of SMM behavior, even 

with applied DC fields, can be clearly seen in Figure 48. 
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Figure 46. 1.8K magnetization data for 7. The solid black line is a guide for the eyes. 
 

 

 

Figure 47. Reduced magnetization data for 7. Solid lines are a guide for the eye. 
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Figure 48. In-phase and out-of-phase susceptibility data for 7, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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Infrared Spectroscopy 

Infrared spectra were collected on a Nicolet 740 Fourier transform IR 

spectrometer. Samples were prepared and measured as a Nujolâ mulls between KBr 

plates. The data clearly show a difference between 7 and 8. 

 

 

Figure 49. IR spectra for 7 and 8. Large peaks at 2900, 1460, and 1377 are from the 
Nujolâ used in the mull. The lower spectrum is zoomed in on the cyanide stretching 
region. 
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Calculations 

DFT calculations, combined with the Broken-Symmetry (BS) approach were 

carried out to compute the exchange interactions. The calculations described herein 

were performed by Kuduva R. Vignesh. The B3LYP106 functionals were employed 

with Ahlrichs107-108 triple-ζ basis set for Ni atoms, a relativistic effective-core potential 

(ECP) LANL08(f) basis set 109 for Mo atoms and 6-31g* basis set for rest of the atoms 

as implemented in the Gaussian 09110 suite of programs to calculate the energies of the 

spin states as given in Table S5. The J values were computed from the energy 

differences between the high spin (EHS) state calculated using single determinant wave 

functions, and the low spin (EBS) state determined using the Broken Symmetry (BS) 

approach developed by Noodleman.111 The BS approach has a proven record of 

yielding good numerical estimates of J constants for a variety of complexes,112-113 such 

as dinuclear114-116, and especially, 4d/5d metal complexes117 and polynuclear 

complexes.112,118-119 The following Hamiltonian is used to estimate the isotropic 

exchange interaction (J).  

(3)   Ĥ = –2J(SMoSNi)   

In the case of a two spin system and using the spin Hamiltonian Ĥ = -2JijSiSj, the energy 

difference between the high spin and low spin state is: 

(4)   EHS – EBS/2SiSj = -2Jij 

Considerations related to the self-interaction error in commonly used exchange functional, 

non-dynamic pair correlation effects, and the application of spin projection techniques to 
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DFT calculations led to the following equation to describe the energy difference: 112-113,114-

116 

(5)   EHS – EBS/(2SiSj + Sj)= -2Jij, where Si>Sj. 

Application of this formalism to half of the MoIII6NiII12 complex that consists of six NiII 

ions and three MoIII with three J1 interactions (between the inner ring NiII ions and MoIII 

ions) and three J2 interactions (between the outer NiII ions and MoIII ions), leads to the 

following expressions for the differences between the energies for the nine spin states 

calculated by DFT methods: 

(6)   EBS1 – EHS = 2J (2 * 1 * ½ + ½) = 3J1 

For three possible J1 interactions the expression becomes, 	 

(7)   EBS1 – EHS = 9J1 

Similarly, for three possible J2 interactions the expression becomes, 

(8)   EBS2 – EHS = 9J2 

(9)   J1 = 1/9 (184.47 cm-1) = +20 cm-1 

(10)   J2 = 1/9 (74.36 cm-1) = +8.26 cm-1 

Ab initio calculations were performed to compute the g value and the zero-field splitting 

(D) of the NiII ions and g value for the MoIII ions in 1 using ORCA 3.0 suite of programs.120 

The BP86 functional was employed along with a scalar relativistic ZORA Hamiltonian 

and relativistic ZORA type of def2-TZVP basis set on the metal ions and on first 

coordination sphere, and def2-SVP for the rest of the atoms. The RI approximation with 

secondary TZV/J Columbic fitting basis sets were used along with increased integration 

grids (Grid 5 in ORCA convention). The tight SCF convergence was used throughout the 
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calculations (1x10-8 Eh). The SOC contributions in the ab initio frame work were obtained 

using second-order perturbation theory as well as employing the effective Hamiltonian 

approach which enables calculations of all matrix elements to be made of the anisotropic 

spin Hamiltonian from the ab initio energies and wave functions numerically. Here the 

state average-CASSCF (Complete Active Space Self-Consistent Field) method has been 

employed to compute the zero-field splitting. The active space comprises eight active 

electrons in five active d-orbitals (d8 system; CAS (8,5)) for NiII ion. With this active 

space, l 10 triplet and 15 singlet states for the NiII ion have been computed in the 

configuration interaction procedure. 

 

 

Figure 50. One-half of  the 7 complex, depicted above, was used for DFT calculations to 
compute the exchange interactions. 
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Table 15. Different spin configurations employed for extracting J values and its 
corresponding energies from DFT calcualtions in 7. Black arrows denote “spin-up” and 
red arrows denote “spin-down.”  

 

 

 

Figure 51. CASSCF computed d-orbital ordering for MoIII ions in 7. 
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Figure 52. The two Ni centers {Ni(CN)2} (left) and {Ni(CN)(H2O)} (right) used for 
CASSCF calculations. 
 

 

  

Figure 53. CASSCF-computed d-orbital ordering for NiII ions in 7. 
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Table 16. Values of g, D (in cm-1) and E/D values for both Ni and Mo centers in 7 
computed from ab initio CASSCF calculations. 

Complex calculated 

D E/D giso (gx, gy and gz) 

{Ni(CN)2} -6.2  0.13  2.23 (2.21, 2.22, 2.26) 

{Ni(CN)(H2O)} +11.2 0.23 2.24 (2.18, 2.25, 2.29)  

{Mo(CN)7} -- -- 1.76 (1.03, 1.05, 3.19) 

 

 
Table 17. CASSCF computed energies (cm-1) and contributions to the D value from the 
first four excited states for NiII ions in complex 7. 

Ni centers Excited state Energy D Contribution 

{Ni(CN)2} First 

Second 

Third 

Fourth  

8751.7 

10199.1 

10556.6 

16398.0 

-48.3 

20.7 

19.6 

0.06 

{Ni(CN)(H2O)} First 

Second 

Third 

Fourth 

7830.4 

8748.8 

11663.6 

15349.5 

26.7 

23.3 

-35.6 

-0.5 

 

These calculations provide key evidence that corroborates the magnetic data; the 

results predict that both the J1 and J2 interactions are ferromagnetic in nature with the 

values of +20.5 and +8.3 cm-1, respectively (Table 15). The ferromagnetic interaction 

values indicate that all MoIII and NiII ions have spin-up configurations, leading to a ground 

state of S = 15. These calculated ferromagnetic interactions are consistent with reported 

exchange constants values between 4d/5d and NiII ions.117,121 
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Ab initio CASSCF calculations were performed to compute the zero-field splitting 

(D) of Ni ions and g parameters for both Ni and Mo ions in 7.  Calculations suggest a g 

value of 1.76 (gx =1.03, gy= 1.05 and gz = 3.19) for {MoIIICN7} center which is in close 

agreement with the reported values28 and rationalizes the expected room temperature cmT 

value when considering anisotropic Ni centers (Figure 51 and Table 17). Calculations 

predict a negative D value (-6.2 cm-1) and g = 2.23 for the inner ring NiII ions with two –

CN groups in axial positions ({Ni(CN)2}), and a positive D value (+11.2 cm-1) and g = 

2.24 for the external NiII ions with a H2O molecule and a –CN group in their axial positions 

({Ni(CN)(H2O)}) (Figure 52 and Table 16). The computed crystal field splitting of the d 

orbitals for NiII ions are depicted in Figure 53. Based on the orbital splitting in the 

{Ni(CN)2} centers, the first excitation involves orbitals with the same |±ml| values (dxy to 

dx2-y2) resulting in a negative D value as expected. In contrast, for the {Ni(CN)(H2O)} 

centers, the first excitation occurs between the dxz and dyz orbitals (different |±ml| values) 

leading to a positive D value. In both cases, the major contribution to the D value arises 

from the triplet excited states (Table 17). The energy gaps between the ground and the 

first excited triplet states are relatively large, leading to either a small negative or positive 

D value. 

 

Conclusions and Future Studies 

This work demonstrates that syntheses of octacyanocyanometallate containing 

compounds can be extended to the heptacyano derivatives. By using [MoIII(CN)7]4- in this 

synthesis instead of [MoIV(CN)8]4-, an analogue was isolated that exhibits coupling 
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between the Mo and Ni centers. The magnetic data and the calculations, taken together, 

provide strong evidence that the coupling is ferromagnetic in nature. This strategy can be 

useful in future work as a method to reliably obtain new molecules that contain 

[MoIII(CN)7]4-. Specifically, molcules of Cu and Mo, which are previously known with 

[MoIV(CN)8]4-, may provide interesting photomagnetic properties.122-126 

 Additionally, the newly reported compounds of Mo and the ligand DAPB provide 

a new route to pentagonal bipyramidal structures that contain MoIII. While previous 

examples of SMMs that exhibit anisotropic exchange were limited to MnII, this new 

starting material may accelerate progress towards the realization of trinuclear compounds 

with other metal centers; the restricted geometry of the MoIII center highly encourages the 

formation of Ising-type anisotropic exchange. The rich electrochemistry for this molecule 

is another excellent reason to pursue work with MoDAPB fragments – changing the 

oxidation state could lead to changes in other physical properties, including magnetism. 

A series which was able to probe many similar MoDAPB molecules may lead to 

interesting insights into exchange interactions and other phenomena. By systematically 

varying the identity of the capping metal groups and their geometry, new insights will be 

gained into the requisite parameters to improve polynuclear transition metal magnets. 
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CHAPTER IV  

COMPOUNDS CONTAINING ORBITALLY DEGENERATE RHENIUM(II) 

 

Background 

Heavy metal atoms, such as 5d transition metals, are important in the field of 

molecular magnetism due to the influence of more diffuse orbitals and increased spin-orbit 

coupling parameters. The increased spin-orbit coupling effects directly influence the 

anisotropy in the compounds whereas more diffuse orbitals lead to increased coupling. 

Both of these characteristics are desirable qualities for molecular magnets and could help 

to increase the operating temperature of SMMs. As the first example of a 5d-metal 

containing SMM, the molecule [{MnCl}4{Re(triphos)(CN)3}4], published by the Dunbar 

group in 2004,36 underscores the benefits of the incorporation of 5d metal ions in magnetic 

compounds. Theoretical analysis of this molecule led to the conclusion that anisotropic 

exchange was responsible for the SMM behavior of the molecule.29 In spite of the 

observed SMM properties, the analysis revealed that the shape of the compound causes 

partial cancellation of the Ising-type anisotropy in the molecule. The anisotropy in the 

compound originates from the 3-fold axis in the [(triphos)ReII(CN)3]- moiety and the 

orientation of these moieties in [{MnCl}4{Re(triphos)(CN)3}4] results in less anisotropy 

than if the 3-fold axes were arranged coaxially (see Figure 11).  

As a result of that partial cancellation, a major goal of this work was to isolate a 

compound of [(triphos)ReII(CN)3]- with a geometry that is more conducive to the 

development of Ising-type anisotropy. In the case of [{MnCl}4{Re(triphos)(CN)3}4], there 
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is no organic ligand on the MnII center to restrict the formation of an octanuclear complex.  

The introduction of a ligand that blocks some sites on the 3d metal center is expected to 

lead to the formation of compounds with different shapes than a distorted cube. In this 

vein, tmphen (3,4,7,8-tetramethyl-1,10-phenanthroline) is an attractive choice due to its 

steric bulk and propensity to facilitate crystallization. Pentanuclear trigonal bipyramidal 

compounds that take advantage of this ligand were previously reported by the Dunbar 

group,78,127-128 which is a very promising geometry for compounds of [(triphos)ReII(CN)3]- 

because of the manner in which the threefold axes on both of the [(triphos)ReII(CN)3]- 

moieties would align. It has been shown that the bulk of the triphos ligand would not 

hinder the formation of a pentanuclear structure of this type, as the previously synthesized 

compound (Et4N)2[((triphos)ReII(CN)3)2(Ln(NO3)3)3]×4MeCN adopts this arrangement.129 

Despite the geometry of these structures, the very weak coupling to the lanthanide centers 

prohibits any Ising-type anisotropy from having a significant impact on the magnetism. It 

was hypothesized that replacing the lanthanide ions with 3d transition metal ions in a 

similar architecture could generate Ising-type anisotropy through the mechanism of 

anisotropic exchange. 

A second key design criterion involves the electronic structure of the 3d metal. 

Despite forming cubes with the formula [{MCl}4{Re(triphos)(CN)3}4] where M = Mn, 

Fe, Co, Ni, or Zn, only the Mn analog exhibits SMM behavior. This may be partially due 

to the introduction of a second source of anisotropy; other groups have reported that 

having multiple sources of anisotropy in polynuclear compounds sometimes results in 

diminished SMM behavior, as is the case for the series of compounds 
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[LNNNCoLnCoLNNN]NO3 (L = N,N′,N′′-tris(2-hydroxy-3-methoxy- benzili- dene)-2-

(aminomethyl)-2-methyl-1,3-propanediamine; Ln = Gd, Tb, Dy) (Figure 6).26-27 Notably, 

all SMMs that exhibit Ising-type anisotropic exchange couple an orbitally degenerate 

metal center with the isotropic 3d metal MnII.36-39 Another interesting choice that has yet 

to be explored is VII. The more diffuse orbitals are expected to lead to stronger coupling, 

which may also enhance the barrier since the barrier height is proportional to the strength 

of the coupling in anisotropically exchange-coupled systems. Therefore, VII was used for 

the reactions with [(triphos)ReII(CN)3]- in this chapter. 

Three new compounds of [(triphos)ReII(CN)3]- are reported herein, one of which 

successfully meets the criteria of lining up the threefold axes of the [(triphos)ReII(CN)3]- 

moieties. Two of these compounds, [{VII(tmphen)2}2{Re(CN)3(triphos)}2](CF3SO3)2 (12) 

and the decomposition product [{VII(tren)}(µ-CN)Re(triphos)]2(µ-O) (13) (tren = 

triethylamine) demonstrate that the presence of coupling and an orbitally degenerate ReII 

center are not sufficient to guarantee Ising-type magnetic exchange. The third molecule 

[VII(tmphen)Cl2]3[Re(CN)3(triphos)]2×2MeCN (14) is an excellent example to follow for 

future studies on molecules with the proper geometry to introduce Ising-type anisotropic 

exchange interactions.  

 

Experimental Details 

Synthesis 

Syntheses were carried out under air free conditions using a nitrogen-filled glove 

box or Schlenk line outfitted with argon gas. The solvents were deoxygenated by sparging 
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with argon gas. Diethyl ether was purified using an MBRAUN purification system. 

[VII(H2O)6](CF3SO3)2 and (NEt4)[(triphos)ReII(CN)3] were prepared by literature 

methods;34,130 all other chemicals were purchased from commercial sources and used 

without further purification unless otherwise indicated. 

 

[{VII(tmphen)2}2{Re(CN)3(triphos)}2](CF3SO3)2 (12)  

 [VII(H2O)6](CF3SO3)2 (34 mg, 0.075 mmol) of and tmphen (35 mg , 0.15 mmol) 

were dissolved in 2 mL of H2O, 2 mL of MeOH, and 1 mL of MeCN. 

(NEt4)[(triphos)ReII(CN)3] (50 mg, 0.05 mmol) was also dissolved in 2 mL of H2O, 2 mL 

of MeOH, and 1 mL of MeCN. The solution of (NEt4)[(triphos)ReII(CN)3] was added 

dropwise to the solution of [VII(H2O)6](CF3SO3)2 and tmphen which led to a cloudy green 

solution. After standing overnight at room temperature, dark green, X-ray quality crystals 

were isolated, 12 mg, 7.7% yield. Attempts to recover more product via Et2O diffusion 

were unsuccessful.  

 

[{VII(tren)}(µ-CN)Re(triphos)]2(µ-O) (13) 

[VII(H2O)6](CF3SO3)2 (23 mg, 0.05 mmol) and tren (8 g, 0.05 mmol) were 

dissolved in 2 mL of MeCN and 1 mL of MeOH and a separate sample of 

(NEt4)[(triphos)ReII(CN)3] (34 mg, 0.034 mmol) was dissolved in 2 mL of MeCN and 1 

mL of MeOH. The (NEt4)[(triphos)ReII(CN)3] solution was added dropwise to the solution 

of [VII(H2O)6](CF3SO3)2 and tren, which resulted in a slightly cloudy orange solution. 

After standing overnight at room temperature, X-ray quality dark orange crystals were 
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isolated; 8 mg, 10% yield. Attempts to recover more product via Et2O diffusion were 

unsuccessful.  

 

[VII(tmphen)Cl2]3[Re(CN)3(triphos)]2×2MeCN (14) 

[VII(H2O)6](CF3SO3)2 (23 mg, 0.05 mmol) and tmphen (24 mg, 0.1 mmol) were 

dissolved in 4 mL acetonitrile and added dropwise to a solution of 

(NEt4)[(triphos)ReII(CN)3] (50 mg, 0.05 mmol) in 4 mL of acetonitrile. The solution 

turned a dark blue color, and, after standing overnight, a small amount of Et2O was added. 

After 2 hours, a small crop of X-ray quality crystals was harvested from the solution.  More 

Et2O was diffused into the solution in an attempt to recover more product, but no more 

crystals were isolated.  

 

Crystallography 

Single crystals were selected under Paratoneâ oil with a MiTGen microloop or a 

glass fiber. Reflection data for 12 were collected under a stream of N2 at 100K using 

beamline 15-AD-B at the Advanced Photon Source at Argonne National Laboratory. 

Reflection data for 13 and 14 were collected on a Bruker D8-QUEST diffractometer 

equipped with a IµS Mo microsource (λ = 0.71073 Å) under a stream of N2 gas at 100 K. 

The frames were integrated and a semi-empirical absorption correction was applied using 

SADABS68 within the software package included in the APEX3 software suite.69 The 

structure was solved using SHELXT70 and refined using SHELXL;71 OLEX2 was used as 

an interface for the solution and refinement.72 Small Q-peaks in the structure that were 
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consistent with the behavior of disordered solvent were removed using the SQUEEZE 

routine of the PLATON software package.73 Hydrogen atoms were placed in calculated 

positions. 

 

[{VII(tmphen)2}2{Re(CN)3(triphos)}2](CF3SO3)2 (12)   

Compound 12 crystallizes in the space group P1". The refinement required 

modeling of a disorder of the triflate anion, the phenyl rings that are part of the triphos 

ligand, and one tmphen ligand. No additional restraints or constraints were used. The two 

vanadium and two rhenium units form the corners of a square-like core, where the edges 

are the CN- ligands connected to one rhenium and one vanadium atom each. The metal 

centers adopt a distorted octahedral geometry with the Re and V metal ions being capped 

by a triphos moiety and two tmphen ligands respectively. Each rhenium unit is bound to 

the V(tmphen)2 moieties through two of the three cyanide ligands with one terminal 

cyanide ligand. One square occupies into the unit cell and is accompanied by two triflate 

anions, so the square must have a +2 charge. In this case, the metal centers can be assigned 

as ReII and VII. The square sits on an inversion center so the asymmetric unit only contains 

half of the molecule. The Re-C bond lengths in the structure are 2.001(19) Å, 2.02(3) Å, 

and 1.996(17) Å. The V-N bond lengths to the cyanide ligands are 1.981(14) Å and 

1.986(17) Å. The square has angles at the corners of 86.374° for C-Re-C and 99.800° for 

N-V-N. 
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Figure 54. Plot of the asymmetric unit in 12. Ellipses are drawn at the 50% probability 
level. 
 

 

 

Figure 55. Full molecule of 12. Ligands are drawn in a wireframe mode to emphasize 
the structure of the cyanide-bridged core. 
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Table 18. Crystal data and structure refinement for 12. 
Identification code Re2V2 
Empirical formula C77H71F3N7O3P3ReSV 
Formula weight 1561.51 
Temperature/K 100 
Crystal system triclinic 
Space group P-1 
a/Å 15.474(5) 
b/Å 15.617(5) 
c/Å 15.993(5) 
α/° 73.460(4) 
β/° 85.974(4) 
γ/° 78.444(4) 
Volume/Å3 3629(2) 
Z 2 
ρcalcg/cm3 1.429 
µ/mm-1 1.950 
F(000) 1584.0 
Crystal size/mm3 .05 × .05 × .03 
Radiation Synchrotron (λ = 0.41328) 
2Θ range for data collection/° 3.264 to 51.622 
Index ranges -18 ≤ h ≤ 18, -18 ≤ k ≤ 18, 0 ≤ l ≤ 19 
Reflections collected 12498 
Independent reflections 12498 [Rint = 0.0140, Rsigma = 0.0827] 
Data/restraints/parameters 12498/1929/1301 
Goodness-of-fita on F2 1.144 
Final R indexes [I>=2σ (I)] R1b = 0.1131, wR2c = 0.3070 
Final R indexes [all data] R1b = 0.1359, wR2c = 0.3215 
Largest diff. peak/hole / e Å-3 4.44/-2.71 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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[{VII(tren)}(µ-CN)Re(triphos)]2(µ-O) (13)  

Crystals of 13 adopt the space group P21/n. The asymmetric unit contains one-half 

of the molecule of one [(triphos)ReII(CN)3]- moiety and one [VII(tren)]2+ moiety. There is 

an O2- bridge between the two VII centers in the molecule which was assigned based on 

the charges of the other atoms in the structure. No outer-sphere ions were identified in the 

structure, so the molecule is assumed to be neutrally charged. The phenyl rings in the 

triphos ligands are somewhat disordered and were successfully modeled over two 

positions. The V-O bond length is 1.760(2) Å, which is consistent with other examples of 

linear V-O-V bonds with oxide.131-132 V-OH-V examples are typically bent and have 

distances close to 2.0 Å, while bridging H2O is also bent and typically has an even larger 

distance of 2.4 or 2.5 Å.133-136  The Re centers are six-coordinate with Re-C bond distances 

of 2.034(17) Å, 2.067(15) Å, and 2.034(15) Å. The VII ions are also six-coordinate with a 

V-NCN bond distance of 2.068(12) Å.  The V-Ntren bond distances are 2.151(11) Å, 

2.208(11) Å, 2.162(11) Å, and 2.160(11) Å, with the longest bond being to the central N 

atom of tren. The angles around V are near 90°, with the N-V-O angles being the largest 

(93.225° - 102.671°) and the N-V-N angles being the smallest (79.887° - 91.033°).  
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Figure 56. Plot of the asymmetric unit in 13. Ellipses are drawn at the 50% probability 
level. 
 

 

 

Figure 57. Full molecule of 13. Ligands are drawn in a wireframe mode to emphasize 
the structure of the cyanide and oxide-bridged core. 
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Table 19. Crystal data and structure refinement for 13.  
Identification code Re2V2O 
Empirical formula C50H59N7O0.5P3ReV 
Formula weight 346.68 
Temperature/K 110 
Crystal system monoclinic 
Space group P21/n 
a/Å 12.291(4) 
b/Å 31.795(10) 
c/Å 14.107(4) 
α/° 90 
β/° 94.934(8) 
γ/° 90 
Volume/Å3 5493(3) 
Z 33 
ρcalcg/cm3 3.459 
µ/mm-1 20.022 
F(000) 5024.0 
Crystal size/mm3 .2 × .1 × .2 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 2.562 to 38.764 
Index ranges -11 ≤ h ≤ 11, -29 ≤ k ≤ 29, -13 ≤ l ≤ 13 
Reflections collected 30230 
Independent reflections 4654 [Rint = 0.1119, Rsigma = 0.0789] 
Data/restraints/parameters 4654/522/657 
Goodness-of-fita on F2 1.040 
Final R indexes [I>=2σ (I)] R1b = 0.0471, wR2c = 0.1199 
Final R indexes [all data] R1b = 0.0722, wR2c = 0.1363 
Largest diff. peak/hole / e Å-3 0.52/-0.66 

 

aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Na[VII(tmphen)Cl2]3[Re(CN)3(triphos)]2×2MeCN (14)  

Compound 14 crystallizes in the space group P1". The general shape is similar to 

previous examples of trigonal bipyramidal molecules – the three V units sit reside at the 

vertices of a triangular plane, which is capped by the two Re atoms. Interestingly, no 

sources of Na+ or Cl- were added to the reaction; however, NaCl is a possible contaminant 

from the metathesis of NaCN and (Et4N)Cl, which is used to make the (Et4N)CN. 

(Et4N)CN is the cyanide source used to synthesize (Et4N)[(triphos)ReII(CN)3]. The Cl- 

ions are the only negatively charged species that is close to the right size for the ligands 

on VII in 14. The Na+ was assigned by observing electron density in the center of the 

structure which fits with Na+. Mg2+ is also a valid assignment, but is less likely to be a 

contaminant. This positively charged ion has close contacts with the CN- ligands in the 

structure, so it is not logical to assign it as a negatively charged ion. Further work is 

necessary to confirm these assignments, preferably by synthesizing this molecule 

intentionally in a higher yield and measuring the magnetic properties.  

 The bridging cyanide ligands occupy the edges of the resulting trigonal bipyramid. 

While the phenyl rings are not sufficiently disordered to warrant extensive disorder 

modelling, SIMU restraints were required to obtain reasonable ellipsoids for several of the 

carbon atoms in those ligands. Some of the thermal ellipsoids of the cyanide ligands are 

distorted, and ISOR restraints were used to obtain reasonable ellipsoids for those atoms. 

The Re atoms are not significantly distorted from their typical, trigonally distorted 

octahedral geometry. Re 1 has Re-C bond lengths of 2.064(11) Å, 2.050(11) Å, and 

2.045(10) Å while Re2 has Re-C bond lengths of 2.055(10) Å, 2.052(10) Å, and 2.038(9) 
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Å. The average length of the bonds is slightly longer for Re1, which can be attributed to 

the steric bulk of the tmphen ligands on the V centers, all three of which point towards 

Re1. The P-Re-P angles are less than 90°, ranging from 84.010° – 87.327°. The P-Re-C 

angles for cis positions vary from 98.118° to 93.611°, while the trans P-Re-C angles vary 

from 175.177° to 178.900°. The V atoms are also octahedral, with two ligands each of 

NCN, Ntmphen, and Cl. The bond lengths of the ligands around V are summarized in Table 

20. The smallest cis N-V-N angle is 76.554°, which is smallest bite angle of the three 

tmphen moieties. The largest angle for each V center is the Cl-V-Cl angle, of which the 

largest is 97.806° for V1.  

The V-NCN bond lengths do not indicate that there are distinct oxidation states of 

the V atoms; but the charge assignment for the Re and V centers is not straightforward 

due to the lack of counterions in the structure. The total negative charge is -12 (from 6 

CN- and 6 Cl-), but the total positive charge is only +11 if all V centers are divalent (3 VII, 

2 ReII, and Na+). Either the ion in the center of the structure is Mg2+ or there is one trivalent 

V center – there are no other obvious solutions to balance the charge in the structure. The 

V-NCN bond lengths, however, are very similar to the bond lengths in 

[VII(tmphen)2]3[MoIII(CN)6]2·(MeOH)12·(MeCN)2,78 a previously reported trigonal 

bipyramidal molecule in the Dunbar group, which is reported with three VII centers. The 

average VCN bond length in [VII(tmphen)2]3[MoIII(CN)6]2·(MeOH)12·(MeCN)2 is 2.028 Å, 

compared to 2.040 Å in 14. More data are needed, especially magnetic measurements, to 

confidently assign the oxidation states of the V centers in 14. 
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Figure 58. Thermal ellipsoids drawn at the 50% probability level and wireframe model 
of 14.  
 

 

 

Table 20. V-L bond distances for compound 14. 

 V1 V2 V3 

V-Cl 2.319(3) Å 2.328(3) Å 2.335(3) Å 

V-Cl 2.340(3) Å 2.330(3) Å 2.335(3) Å 

V-N(CN) 2.017(8) Å 2.005(8) Å 2.017(8) Å 

V-N(CN) 2.085(8) Å 2.059(8) Å 2.059(8) Å 

V-N(tmphen) 2.117(8) Å 2.115(7) Å 2.121(8) Å 

V-N(tmphen) 2.128(8) Å 2.150(8) Å 2.132(8) Å 
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Table 21. Crystal data and structure refinement for 14.  
Identification code ReTBP 
Empirical formula C140H132Cl6N14NaP6Re2V3 
Formula weight 2957.32 
Temperature/K 112.46 
Crystal system triclinic 
Space group P-1 
a/Å 17.564(3) 
b/Å 17.871(3) 
c/Å 24.958(4) 
α/° 82.009(5) 
β/° 79.018(5) 
γ/° 62.518(4) 
Volume/Å3 6810.8(18) 
Z 2 
ρcalcg/cm3 1.442 
µ/mm-1 2.214 
F(000) 2984.0 
Crystal size/mm3 .1 × .1 × .08 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.326 to 47.894 
Index ranges -20 ≤ h ≤ 18, -20 ≤ k ≤ 20, -28 ≤ l ≤ 28 
Reflections collected 225917 
Independent reflections 21153 [Rint = 0.1405, Rsigma = 0.0572] 
Data/restraints/parameters 21153/174/1560 
Goodness-of-fita on F2 1.120 
Final R indexes [I>=2σ (I)] R1b = 0.0645, wR2 = 0.1273 
Final R indexes [all data] R1b = 0.0884, wR2 = 0.1365 
Largest diff. peak/hole / e Å-3 2.81/-2.53 
 
aGoodness-of-fit = {Σ [w(Fo2 − Fc2)2]/(n−p)}1/2, where n is the number of reflections and 

p is the total number of parameters refined.  
bR = Σ || Fo | − | Fc || / Σ | Fo |   
cwR = {Σ [w(Fo2 − Fc2)2 ] / Σw(Fo2)2]}1/2 
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Magnetic Measurements 

Magnetic measurements were performed on a Quantum Design MPMS-XL 

SQUID magnetometer equipped with a 7 T magnet. A polypropylene bag was used to 

secure the sample, and the diamagnetic contribution was subtracted from the raw data. 

Diamagnetic contributions from the sample were accounted for by using Pascal’s 

constants.74 

There is substantial theoretical work to reference when interpreting the magnetic 

data for compounds containing [(triphos)ReII(CN)3]-. Theoretical treatments of both the 

starting material34 and the known SMM [{MnCl}4{Re(triphos)(CN)3}4]29 are relevant. In 

variable temperature static DC measurements of [Et4N][Re(triphos)(CN)3], the cT value 

is a straight line, due to the influence of TIP. One cause of TIP, or Van Vleck 

paramagnetism, is the presence of low lying excited states in magnetic molecules and 

manifests as a consistent increase in cT as the temperature increases. In both 

[Et4N][Re(triphos)(CN)3] and [{MnCl}4{Re(triphos)(CN)3}4], ReII can be treated as a 

pseudo S = ½ center as the strong trigonal ligand field on Re splits the ground cubic state 

2T2 into 2A1 and 2E, and the 2E term is the ground state.29 The low temperature 

magnetization data can reveal information about the coupling, as shown in the theoretical 

treatment of [{MnCl}4{Re(triphos)(CN)3}4], despite the high anisotropy of the g-tensor 

of ReII. Even in this case, where anisotropic exchange is involved, the saturation value of 

the low temperature magnetization was fit successfully with negative J values, suggesting 

antiferromagnetic exchange between the MnII and ReII centers.  
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 Variable temperature static DC magnetic susceptibility measurements were 

performed on crushed crystals of 12 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 59). The cT decreases from 4.5 emu×Kmol-1 at 300K to 2.2 emu×Kmol-1 at 30K, 

then drops precipitously to .8 emu×Kmol-1 at 2K. The steady decrease in cT as the 

temperature is dropped is due to temperature independent paramagnetism (TIP), which, as 

mentioned above, is well documented in compounds of [(triphos)ReII(CN)3]-.29,34,41,129 The 

increased slope of cT at low temperature suggests antiferromagnetic coupling. Zero-field 

splitting contributions will be absent from both VII and ReII in these geometries, because 

VII is isotropic (t2g3) and the ReII center in [(triphos)ReII(CN)3]- which is a pseudo S = ½ 

that does not have zero-field splitting.29 The 1.8 K magnetization data reach 1.9 µB in an 

applied field of 7T, but do not saturate. A value of 4 µB is the expected value for two S = 

3/2 (g = 2) centers coupled antiferromagnetically to two S = 1/2 centers (g = 2) (Figure 

60), which would lead to a ground state of S = 2, but the highly anisotropic ReII center is 

not expected to match that value due to large anisotropy of the g tensor.  
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Figure 59. Magnetic susceptibility plot of 12 from 300 K – 2 K in an applied field of 
1000 Oe. 
 

 

 

Figure 60. Magnetization data at 1.8 K of 12 at fields up to 7 T (70,000 Oe).  
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Non-superposition of the isofield lines in the reduced magnetization data (Figure 61) 

indicates that there is anisotropy in the system, which could originate from the spin-orbit 

coupling from Re. Despite the presence of anisotropy, Figure 62 shows a clear lack of 

SMM behavior. This result is attributed to the overall geometry of the molecule which 

does not exhibit an alignment of the 3-fold axes of the Re centers. Previous work with 

[{MnCl}4{Re(triphos)(CN)3}4] shows that the [(triphos)ReII(CN)3]- moiety has a 

proclivity to develop an easy axis along the C3 axis, but this may not translate to easy axis 

anisotropy for molecules that are not symmetric about this axis.29 Despite evidence of 

coupling to VII, the molecule is not 3-fold symmetric, which confirms that this easy axis 

will not develop without such symmetry. Even if there were Ising-type anisotropy locally 

for each Re center, the failure to align the 3-fold axes of those metal centers precludes the 

development of Ising-type anisotropy for the molecule. 
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Figure 61. Reduced magnetization data for 12. Solid lines are a guide for the eye. 
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Figure 62. In-phase and out-of-phase susceptibility data for 12, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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Variable temperature static DC magnetic susceptibility measurements were also 

performed on crushed crystals of 13 from 300 to 2 K under an applied field of 1000 Oe 

(Figure 63). The value of cT decreases linearly from 11.1 emu×Kmol-1 to 2.8 emu×Kmol-1 

as the temperature is lowered from 300 K to 2 K. This behavior can be attributed entirely 

to TIP. The magnetization data at 1.8 K saturate near 4µB (Figure 64), which is consistent 

with a ground state of S = 2 for isotropic centers. As mentioned for 12, though, ReII is 

expected to be very anisotropic in this geometry, so it may be coincidence that the 

magnetization data saturate at 4µB.  

The reduced magnetization of 13 (Figure 66) reveal complete overlap of the 

isofield lines which indicates a lack of anisotropy in the molecule, but probing for SMM 

behavior (Figure 65) shows minor beginnings of an out-of-phase signal. It is difficult to 

interpret the presence of an out-of-phase signal when there is no evidence of magnetic 

anisotropy, but the signal is very weak, as might be expected for a geometry that is not 3-

fold symmetric around the [(triphos)ReII(CN)3]- anion. 
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Figure 63. Magnetic susceptibility data for 13 from 300 K – 2K with an applied field of 
1000 Oe.  
 

 

 
Figure 64. Magnetization data at 1.8 K for 13 at fields up to 7 T.  
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Figure 65. In-phase and out-of-phase susceptibility data for 13, measured at 2 K with 
applied static DC fields from 0-2000 Oe. 
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Figure 66. Reduced magnetization data for 13. Solid lines are a guide for the eye. 
 

 
Conclusions and Future Studies 

The compounds 12 and 13 offer important insight regarding the need for specific 

geometries in compounds of [(triphos)ReII(CN)3]- to induce anisotropy. Compound 14 

demonstrates the possibility of obtaining the proper geometries to generate Ising-type 

anisotropic exchange. Future work should focus on optimizing reactions of this type so 

that the magnetic properties of such compounds can be fully explored.  

TIP remains an issue in the characterization of compounds that contain 

[(triphos)ReII(CN)3]-. Deeper theoretical treatment of the data would allow for more 

information to be gleaned by fitting the magnetization and magnetic susceptibility data.   
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Finally, it is noteworthy that reactions with VII resulted in no changes to the oxidation 

state of ReII, which is critical to maintain orbital degeneracy in this system. Compound 14 

is especially interesting due to the ambiguity of the oxidation states of the VII centers in 

the compound. Full magnetic characterization of this molecule is needed to confidently 

assign oxidation states for the V centers, which will have significant impact on the 

magnetic properties of the molecule. Three VII centers may be the best for SMM behavior 

in this molecule, but it may also be interesting to observe the effects of a VII/VII/VIII 

configuration, which cannot be ruled out based on the crystallographic data. In order to 

fully characterize this molecule, it should be pursued intentionally as a synthetic target, 

with stoichiometric amounts of Cl- and either Na+ or Mg2+ in the reaction, so that the yield 

is not limited to a few small crystals. If 14 is found to exhibit SMM behavior, it would be 

another step towards fully understanding anisotropic exchange and using it to full effect 

in new heavy transition metal complexes. 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

The work described in this thesis was directed at exploring new directions for 

orbitally degenerate cyanometallate building blocks that are promising for the design of 

SMMs that exhibit anisotropic exchange coupling. While no SMMs were discovered, 

several new strategies were developed that may lead to new SMMs in the future. 

In Chapter II, the potential for anisotropic exchange coupling with MoIII and 

lanthanide centers was investigated. The resulting chains of formula 

{K[Ln(tmphen)2(H2O)2MoIII(CN)7]} (Ln = Gd, Tb, Dy, Ho, Er) did not exhibit SCM 

properties, but there is evidence of antiferromagnetic coupling in several of the chains. 

The best approach for future work with these molecule is the incorporation of a radical 

bridging ligand, rather than a diamagnetic one, that will engender stronger direct coupling 

between the orbitally degenerate MoIII center and the lanthanide ion. In the case of 

superexchange, theoretical work on the [MoIII(CN)7]4- anion suggests that the best results 

are expected to occur with coupling an isotropic 3d metal to a pentagonal bipyramidal 

MoIII center, so Gd is the best option for future work of this type. 

In Chapter III, a new octadecanuclear wheel that incorporates [MoIII(CN)7]4- was 

described. This molecule is very similar to the octadecanuclear wheel that contains 

[MoIV(CN)8]4-, demonstrating that reactions of [MoIV(CN)8]4- can be mimicked with 

[MoIII(CN)7]4- to introduce magnetic exchange interactions. New precursors were 

prepared that are expected to facilitate the synthesis of MoIII containing SMMs. By 

imposing a pentagonal bipyramidal geometry on MoIII in [MoIIIDAPB(CN)2]-, it is 
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expected that the orbital degeneracy is maintained. That assertion can be tested using 

magnetic data and if true, it should be possible to prepare novel, polynuclear metal 

complexes that can be studied for Ising-type anisotropic exchange and SMM behavior. 

In Chapter IV, new reactions of [(triphos)ReII(CN)3]- were presented that led to 

new compounds with interesting geometries. While none of the synthesized molecules 

were confirmed to be SMMs, one of them presents a geometry that is promising for future 

study, and may lead to significant advances in future work. In order to observe Ising-type 

anisotropic exchange, it is necessary to impose C3 symmetry on compounds of 

[(triphos)ReII(CN)3]-, and Na[VII(tmphen)Cl2]3[Re(CN)3(triphos)]2×2MeCN (14) meets 

this requirement. Future work should expand on this strategy with other 3d metals, 

including MnII, for comparison and a systematic study of anisotropic exchange.  

The most promising compounds presented herein for generating Ising-type  

anisotropic exchange are Na[VII(tmphen)Cl2]3[Re(CN)3(triphos)]2×2MeCN (14), 

(NEt4)[MoIII(DAPB)(CN)2] (10), and K[MoIII(DAPB)(CN)2] (11). Magnetic 

measurements are needed for compound 14 to test the hypothesis that this molecule should 

exhibit Ising-type anisotropic exchange and therefore behave as an SMM. Compounds 10 

and 11 are excellent new starting materials for future work that seeks to probe the 

conditions and requirements for Ising-type anisotropic exchange. By attaching different 

transition metal centers to the apical positions of a pentagonal, bipyramidal MoIII center, 

it will be possible to tune the properties of the resulting molecules and draw important 

conclusions that can be leveraged to make progress in future experiments.  
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The incorporation of new organic ligands and new metal combinations can only 

serve to increase the knowledge in the field. As new methods and new molecules are 

developed, incorporating these ideas into novel electronic devices becomes increasingly 

promising. Anisotropic exchange is still poorly understood due to a dearth of results on 

the topic, but the work presented here offers good starting points for future work and may 

lead to promising directions for the field of molecular magnetism. 
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