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ABSTRACT 

 

Bacteria encode a variety of ways to sense and respond to their dynamic 

environments. Consequently, in order to implement the appropriate response to execute 

changes in metabolism or subcellular organization, gene expression is tightly 

coordinated with the cell’s ability to recognize a perturbation. For instance, the 

devastating effects of a toxic compound can be mitigated by expressing gene products to 

export or metabolize the compound. The Gram-positive model organism Bacillus subtilis 

utilizes a variety of gene expression programs in order to survive the diverse 

environments it encounters. Intriguingly however, nearly 40% of the genes in B. subtilis 

are either unannotated or annotated without experimental validation. Genes that play 

important roles in regulating gene expression, metabolism and regulating essential cell 

processes are likely found within this set. The lack of gene characterization is due in part 

to our inability to obtain tractable phenotypes from which to form testable hypotheses 

regarding gene function. To associate gene products with phenotypes, we utilized a gene 

misexpression library comprising more than 800 strains as a tool to uncover gene 

products that perturb growth and/or subcellular organization when artificially expressed. 

From this set, 10 DNA-binding proteins predicted to be transcription factors were 

selected for transcriptomic analysis and uncovered candidate regulatory targets for 8/10 

of the DNA-binding proteins.  Artificial expression of one of the transcriptional 

regulators, YxaD, resulted in cells unable to properly segregate chromosomes or 

replicate DNA, and confirmed a prior observation that YxaD is capable of interaction 

with ScpA, a subunit of the Structural Maintenance of Chromosome (SMC) complex. 



 

iii 

 

Additionally, we showed that YxaD acts as a repressor of its own promoter as well as a 

divergently transcribed operon encoding the cid/lrg homologs, yxaKC.  Transcriptional 

profiling revealed that yxaKC is expressed both in a specific region of a biofilm, and in 

glucose-containing medium, with expression peaking during stationary phase growth 

just as glucose is depleted.  Using untargeted NMR-based metabolomics, we showed 

that cells artificially expressing YxaKC show enhanced export of the overflow 

metabolite 2-acetolactate.  We hypothesize that YxaKC helps to maintain cellular 

homeostasis possibly by acting as a passive transporter of 2-acetolactate.   
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1. INTRODUCTION 

 

 Advancements in next-generation sequencing (NGS) have led to increased 

sequence data output, with reduced costs, making projects involving large-scale DNA 

sequencing more feasible. Personalized medicine, in which healthcare is tailored to an 

individual based on genetics and environment, among other factors, was once a futuristic 

dream; however the cost to sequence a human genome has dropped to approximately 

$1,000 (https://www.genome.gov/sequencingcostsdata/), bringing personalized 

treatments closer to reality. 

Currently, there are nearly 8,000 eukaryotic and 190,000 bacterial genomes in 

GenBank, with the number of sequenced genomes increasing exponentially. The 

International Nucleotide Sequence Database Collaboration (INSDC), a collaboration 

amongst the DNA Data Bank of Japan at the National Institute for Genetics in Mishima, 

Japan (DDBJ), the European Nucleotide Archive (ENA) at EMBL-EBI, and GenBank at 

NCBI, reported a near doubling in assembled/annotated sequenced bases from 2015 to 

2017 alone; from 1.432 trillion to 2.650 trillion bases (Karsch-Mizrachi et al., 2018). It 

is remarkable then, given the fundamental importance of understanding the function of 

gene products to understanding system-level "ome" data (genomes, transcriptomes, 

proteomes, metabolomes, etc.) and the large amount of sequencing data available, that 

approximately 30-50% of annotated genomes lack functional annotations (Hanson et al., 

2009). A recent search for “hypothetical proteins” in GenBank listed over 140 million 

gene products lacking both experimental validation and predictions based on homology. 

Surprisingly, nearly 30% of uncharacterized gene products have functions predicted to 
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be enzymatic (Ellens et al., 2017). Furthermore, we have yet to attribute more than 800 

out of 6,322 known enzymatic reactions (>12.5%) to gene products (Shearer et al., 

2014). This highlights that significant gaps in our understanding of metabolism still exist 

impacting scientific goals and future endeavors.  

 

1.1. Implications for gene annotation and discovery 

           The lack of gene characterization presents major challenges to genome editing, 

metabolic engineering, and our understanding of the minimal components required for 

life. How can we artificially express genes in biological systems without functional 

annotations or understanding the effects artificial gene expression may have? The 

potential to use genome editing for disease treatments and preventions has been largely 

impacted by recent discoveries. CRISPR-based (Clustered Regularly Interspaced Short 

Palindromic Repeats) genome editing has transformed biological research and has the 

potential to transform medicine. However, as with any manipulation of DNA, the 

possibilities of off-target effects in eukaryotic organisms are still prevalent (Komor et 

al., 2017) and the development of CRISPR requires further investigation. The precision 

of genome editing is expected to improve with the discovery of novel DNA-binding 

and/or cleavage proteins to be used in CRISPR-based systems.  

           Gene discovery is also important for the field of synthetic biology. Synthetic 

biology is an area of study in which scientists engineer biological systems to carry out 

new functions or produce desired compounds like pharmaceuticals, chemicals, and food 

additives. In general, biological components with a desired function, such as specific 

enzymes, are combined in combinatorial fashion to create new systems. One limitation 
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of synthetic biology is that it relies heavily on the availability of known components 

which are limited by gene discovery. For example, 12% of enzymatic activities 

occurring in nature have yet to be associated with a gene product (Shearer et al., 2014). 

The discovery of the genes responsible for these enzymatic functions (Ellens et al., 

2017) could have a major impact on synthetic biology. 

Closely related to the field of synthetic biology is synthetic genomics, which 

involves the synthesis or manipulation of organisms to define a minimal genome (Konig 

et al., 2013). Early work performed in Escherichia coli K-12 revealed how deleting 12 

K-islands, reducing the genome by 8.1% but did not affect growth on minimal media 

(Kolisnychenko et al., 2002). To create this simplified organism, we first need to 

understand the minimal components a cell needs for life. In this way, synthetic biology 

and synthetic genomics converge in that they face a similar limitation – they both rely on 

functional gene discovery to expose the repertoire of biological components encoded by 

various organisms. One of the major challenges in characterizing gene functions is that 

they can be redundant and/or only important only under specific, often undefined growth 

conditions. Current approaches in gene discovery attempt to address these challenges 

(discussed (Brochado & Typas, 2013)). 

 

1.2. Sequence annotations 

Why are so many genes left unannotated or misannotated? At the onset of the 

genomic era, as sequences were deposited into databases, similarities, especially in 

protein coding sequence were observed, leading to the initial hypothesis that similar 

sequences would possess similar functions. Therefore, sequences were often annotated 
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based on sequence similarity to an experimentally characterized gene product. In 1990, 

the creation of the program BLAST (Basic Local Alignment Search Tool) enabled 

scientists to search their sequences against a database of published sequences. The 

BLAST tool allowed scientists to hypothesize function based on sequence similarity 

(Altschul et al., 1990). Although the development of bioinformatic tools, like BLAST, 

have aided many projects, they also have limitations that introduce new problems. Even 

at their best, automated annotations are estimated to have an accuracy of only 70% 

(Bork, 2000). This leads to misannotations, which can impede research by leading 

researchers to follow unproductive research trajectories. The detrimental effect of 

incorrect annotations is exemplified in the case of the plant plastid terminal oxidase 

(PTOX)(expressed in stoma cells and function in photosynthetic electron transport) and 

alternative oxidases (AOX)(expressed in the mitochondria and involved in respiratory 

electron transport families). At least seven proteins belonging to the PTOX family were 

misannotated to belong to the AOX family, despite the fact that each have distinct 

functions and localizations (Nobre et al., 2016). Inaccurate annotations can severely 

impact or delay scientific progress by introducing biases and leading researchers the 

wrong conclusions.  

When enzymes are characterized, the enzyme is assigned a four-digit Enzyme 

Commission (EC) number for each reaction performed (Green & Karp, 2005). However, 

when an enzyme is only partially characterized, and it is only known that an enzyme 

catalyzes one reaction in a family of reactions, the enzyme is assigned a partial EC 

number. Later, additional enzyme functions may be discovered, but in the meantime 

putative enzymes may be assigned the same partial EC value as the characterized 
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enzyme. This can result in misleading annotations (Green & Karp, 2005). These partial, 

incorrect, or misleading annotations can be difficult to amend because they themselves 

go into databases that are used to curate newly sequenced genes. In addition, even if 

gene annotations are correct, the functional predictions for the unknown are only as good 

as the reference. Thus, although bioinformatics approaches are powerful tools, ultimately 

experimental validation is still required for gene characterization. 

Many of the inaccuracies associated with automated annotation can be attributed 

to context-specific parameters that are not taken into consideration (e.g. different 

species, pathways, metabolic processes, growth conditions, etc.). For example, most 

prediction tools rely on data related to core metabolic pathways and lack predictions for 

secondary metabolism. For instance, a recent study compared four annotation programs 

and found that most agreed on predictions involving core metabolic pathways while 

nearly none agreed on predictions involved in degrading fatty acids, aromatic 

compounds or secondary metabolites (Griesemer et al., 2018). Another challenge is that 

some protein functions are inherently difficult to predict from sequence alone such as 

whether a protein with a predicted transmembrane domain is a transporter if so, what the 

substrate is, and the substrate of a particular enzyme (Griesemer et al., 2018). Some of 

these challenges have been mitigated by recent developments in transporter prediction 

software, for instance, the TransportDB 2.0 database uses an automated annotation 

pipeline called TransAAP to help predict if membrane proteins are transporters 

(Elbourne et al., 2017). Furthermore, alternative splicing and post-translational 

modifications can significantly alter gene product function, making the in vivo function 

difficult if not impossible to predict (Bork, 2000). Accurate gene annotation will require 
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not only functional predictions, but must be determined experimentally and therefore, 

more tools are needed to accurately annotate genomes and further. 

 

1.3. Current tools for gene characterization 

Historically, gene discovery and characterization in bacteria involved forward 

genetic approaches, where a mutagen (chemical agent, transposon, virus, etc.) was used 

to enhance mutation rate. Then, depending on the mutation, a subsequent phenotype 

could be screened or selected for, and the location of the gene responsible for the 

phenotype mapped and identified. More recently however, the availability of sequencing 

information, robotics, and bioinformatics has enabled scientists to take reverse genetic 

approaches that utilize ordered loss-of-function (LOF) and/or gain-of-function (GOF) 

libraries. Libraries facilitate gene discovery of genes by permitting high throughput 

screening for phenotypes that respond to a genetic or chemical perturbation. 

A vast array of LOF libraries are available including full non-essential knock-out 

collections, saturated transposon libraries, antisense RNA silencing, and more recently, 

CRISPR-Cas knockdown libraries (Brochado & Typas, 2013). Arrayed libraries have 

been created for organisms across all domains of life and are ubiquitously useful to 

measure the overall fitness of an organism under a given growth condition. Examples of 

libraries include 1) the International Mouse Phenotyping Consortium, which contains 

5,000 knockout strains encompassing 20,000 protein-coding genes made with either a 

reporter gene or more recently using CRISPR-Cas9 (Meehan et al., 2017, Chakravorty & 

Hegde, 2018), 2) the yeast deletion library comprised of over 21,000 mutants strains of 

6,000 different open reading frames (Giaever & Nislow, 2014) 3) the Keio collection 
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with 3,985 single gene deletions in E. coli (Baba et al., 2006), and more recently 4) 

erythromycin and kanamycin resistant knock-out libraries consisting of 3,970 genes in 

the Gram-positive model organism Bacillus subtilis (Koo et al., 2017). Because ordered 

libraries are large, experiments often require high-throughput equipment, such as 

robotics to handle the large number of samples. This puts limits on the viability of such 

approaches to research groups with access to the technology required. 

Limitations for using gene knockouts are prevalent when studying genes that are 

essential under a desired growth condition. As an alternative, gene knockdowns are often 

used. For instance, a Drosophila RNAi knockdown library was used to identify genes 

contributing to congenital heart disease (Zhu et al., 2017a), which would likely not 

appear in a deletion library. Loss-of-function tools like morpholinos and antisense oligos 

that block translation, have been used in zebrafish, frogs, chicks, mice and other 

organisms where genetic techniques are less developed, to elucidate mechanisms of 

embryo development (Heasman, 2002, Blum et al., 2015). More recently, our improved 

understanding of CRISPR has made the design and execution of targeted gene 

knockdowns more feasible for individual labs and knockdown libraries have been 

created in organisms such as mice (Chakravorty & Hegde, 2018), Drosophila (Bassett et 

al., 2014), B. subtilis (Peters et al., 2016), and even all 20,500 protein-coding genes in 

human cell lines (Morgens et al., 2017). Because many knockdown techniques involve 

plasmids, multiple gene products can be targeted at once with compatible vectors 

drastically enhancing the range of these applications.  
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1.3.1. Limitations of current approaches 

Unfortunately, robotics and other expensive equipment required for large-scale 

screens may not be accessible, and as a result, alternative approaches have to be sought 

out. One approach is to pool libraries, either in their entirety or in groups or sub-

collections. Pooled libraries are screened with reporters or by having the population of 

mutants to compete with one another and subsequently measuring the relative abundance 

of each mutant, generally by sequencing (Brochado & Typas, 2013). Many deletion 

libraries have been created with a unique small DNA sequence corresponding to each 

mutant, called a barcode, which can simplifies the process of identifying mutants 

(Hensel et al., 1995, Giaever et al., 2002, Koo et al., 2017). 

Essential genes are often described as genes that are required in a common lab 

medium, for instance, for bacteria this common growth medium is Lysogeny Broth (LB) 

(Koo et al., 2017). However, LB medium is artificial and quite different from the 

environments bacteria evolved and naturally inhabit. Because of this, many of the genes 

that are still uncharacterized may not be necessary for growth in LB but may be required 

under another growth regime (i.e. higher or lower temperature or pH, different carbon 

sources, salt or ethanol stress, presence of toxins, etc.). Genetic knockouts and 

knockdowns reach additional limitations due to functional redundancies and homeostatic 

control mechanisms. For example, 10 of the 12 penicillin-binding proteins encoded by E. 

coli can be deleted before any discernible morphological defect is observed (Denome et 

al., 1999). To overcome some of the challenges of screening for essential genes, a 

technique involving a transposon screen followed by deep sequencing (Tn-seq) was 

developed to identify synthetically lethal mutants (van Opijnen et al., 2009, Meeske et 
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al., 2015, Meeske et al., 2016). For instance, Meeske et. al used Tn-seq to identify a 

novel lipid II flippase in B. subtilis. Meeske et al. found that although MurJ alone was 

sufficient for lipid II transport in E. coli (Sham et al., 2014), deleting all 10 MurJ-like 

proteins in B. subtilis resulted in no discernible effect, indicating that an additional 

factor(s) was able to perform the essential function (Meeske et al., 2015). To identify the 

redundant factor, the four MurJ homologs (∆4) most similar to E. coli MurJ were deleted 

in B. subtilis. The ∆4 and wild-type strains were subject to transposon mutagenesis; the 

cultures were then pooled, allowed to grow, followed by sequencing of both cultures. 

Transposon insertions that resulted in synthetic lethality were underrepresented in the ∆4 

strain compared to wildtype. Tn-seq revealed a gene amj, which was later found to 

support lipid II flippase activity in E. coli (Sham et al., 2014). The identification and 

eventual characterization of Amj by Tn-seq is further support to use bioinformatics is a 

tool, but proper validation of gene function requires experimental evidence. 

 

1.3.2. Gain-of-Function  

The utilization of LOF libraries and ability to screen thousands of mutants for a 

desired phenotype has helped discover gene function as well as develop extensive 

genetic interaction maps (Babu et al., 2011, Brochado & Typas, 2013). For instance, 

multiple pathways involved in cell envelope biogenesis were identified in E. coli by 

screening for compensatory relationships between mutant combinations of putative 

integral membrane proteins (Babu et al., 2011). Assigning genes to pathways can 

provide mechanistic insight to a protein’s function but stop short at functional 

annotation. A major limitation to using LOF libraries is the existence of redundancies to 
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where knockouts have no detectable phenotype. It can be nearly impossible to make and 

screen all possible combinations of mutations required for the phenotype being screened. 

Considering the example above, screening a library of two mutant combinations would 

not have identified 10 of the 12 PBP in E. coli, at least under the growth condition 

tested, as there would likely be no discernible phenotype (Denome et al., 1999). In 

addition, many screens involving LOF libraries or knockouts measure a change in fitness 

corresponding to a mutation, but this often provides little insight into the genes possible 

function, and no details on mechanism. GOF approaches offer a complementary 

approach to loss-of-function studies as a way to gain insights into gene function.  

GOF approaches involve the overexpression or misexpression of genes either on 

a plasmid or directly from the chromosome. We use the term misexpression as opposed 

to overexpression when a gene product is produced outside of its native context and we 

lack information about its native and artificially induced expression levels.  Similar to 

gene knockouts, cell perturbation by misexpression creates a flux that can result in a 

tractable phenotype, which can then be used to provide insights into protein function. 

Artificial gene expression was used to identify a protein that regulates FtsZ in B. subtilis, 

called RefZ (Wagner-Herman et al., 2012). Briefly, misexpression of RefZ led to cell 

filamentation, a phenotype often indicative of a defect in cell division. In support of a 

defect in cell division, it was found that RefZ misexpression results in the disruption of 

FtsZ (a cell division protein) and this phenotype was rescued by ftsZ suppressor 

mutations. Interestingly, a ΔrefZ mutant does not display a growth or morphological 

phenotype on its own when grown in LB medium, but it was eventually determined to be 

important for positioning the location of the division septum relative to the chromosome 
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during sporulation (Miller et al., 2016). Therefore, by using misexpression to obtain a 

phenotype, a testable hypothesis and eventual function could be assigned to an unknown 

gene. In addition GOF libraries have been constructed using “ORFeomes”, libraries that 

contain all the open reading frames in an organism, and have been created in organisms 

such as yeast (Liu et al., 1992, Gelperin et al., 2005), Pseudomonas aeruginosa PA01 

(Labaer et al., 2004), E. coli (Kitagawa et al., 2005), and Neisseria gonorrhoeae (Brettin 

et al., 2005). Compatible LOF and GOF libraries can be combined creating ‘synthetic 

toolboxes’ enhancing the potential of gene characterization studies. Furthermore, many 

GOF libraries have been created on ‘entry’ vectors, which enable the gene(s) of interest 

to be easily shuttled into other vectors to examine protein expression, protein 

localization, and protein-protein interactions (Labaer et al., 2004, Brettin et al., 2005, 

Gelperin et al., 2005, Kitagawa et al., 2005, Brandner et al., 2008). These libraries can 

also be combined with systems level “omics” approaches such as transcriptomics, 

metabolomics, transcriptomics, and proteomics to develop working hypotheses. 

Ultimately, functional gene discovery requires a multiprong strategy.  

 

1.4. Application of “omics” Tools for Gene Discovery and Characterization 

Gene or protein sequence alone does not provide mechanistic information as to 

how the gene product is functioning to contribute to the observed phenotype, though 

with the handle of an associated activity or phenotype, it is generally possible to drill 

down to the level of molecular mechanism using classical hypothesis-driven studies. 

Uncharacterized genes that lack associated activities or phenotypes pose a significant 

challenge to performing hypothesis-driven studies.  One way to approach this, in 
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addition to GOF studies, is to obtain data from global ‘omics’ methodologies.   Current 

“omics” methodologies include transcriptomics, metabolomics, proteomics, lipidomics, 

and glycomics, among others. Combining data sets in combinatorial fashion (functional 

genomics) can provide details about global changes that occur in an organism by 

changing conditions, treating with a chemical, or as a result of changes in genotype. 

Below I will review the omics most relevant to my dissertation. 

 

1.4.1. Transcriptomics 

The genetic material of an organism is considered quite static, with the exception 

of mutations that can occur as a result of environmental conditions or DNA replication.  

In contrast, expression of genes is primarily controlled at the level of transcription, with 

many genes only bring expressed when they are required. The transcriptome, or total 

RNA expressed in a population or single cell, is a function of genotype, cell type, 

environment, epigenetics, and stochasticity. Since the activity of gene products is 

associated with their expression, transcriptomics is extremely valuable for discovering 

genes that are expressed and function under a condition of interest. In addition, the 

precision of transcriptomics permits collection of temporal data, allowing deduction of 

what genes are expressed in direct response to a particular signal, as well as what genes 

are induced as a secondary consequence.  

The field of transcriptomics has made significant advancements in the last few 

decades. The original method for measuring RNA, Northern blot hybridization, was 

limited to measuring an individual RNA with a specific probe (Alwine et al., 1977). 

With advances in molecular genetic techniques such as polymerase chain reaction 



 

 

 

13 

(PCR), chemical DNA synthesis, and sequencing, came the advent of large-scale 

technologies like microarrays and RNA-seq which enabled transcription to be monitored 

globally (Passos, 2014). These techniques have been instrumental in understanding how 

cells exhibit precise control over gene expression, including identifying the regulons of 

various transcriptions factors. 

Microarrays are large, ordered arrays of DNA probes (usually on a silica chip).  

To assess differential transcription, mRNA is collected from an experimental and a 

control and converted to uniquely labeled cDNA.  The two samples are mixed in 

equimolar ratio to compete for hybridization with the ChIP DNA (Gershon, 2002). The 

amount of signal is proportional to the amount of hybridization, so differences in relative 

transcription in the two samples can be easily monitored. Microarrays made it possible 

to monitor the transcription of all genes simultaneously. Microarrays have also been 

used to identify large genomic deletions or single nucleotide polymorphisms (SNPs), 

making them a much less expensive and faster approach than whole genome sequencing 

in some cases (Gershon, 2002). There a few drawbacks to microarrays however, and it is 

no longer a common methodology. First, gene chips were only commercially available 

for organisms with the broadest user base. Although large companies like Thermo 

Fisher, Qiagen, and Bio-Rad offer hundreds of microarrays, those available are limited 

to common organisms or diagnostic tests.  This means researchers working on less 

commonly studied organisms have to generate their own chips or have them custom 

made. Second, microarrays are typically made of DNA probes of 30-60 bp which limits 

the information available about the full-length mRNA, including the precise 

transcription start site. Finally, since the method relies on hybridization, it is relatively 
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noisy compared to next-generation methods developed.  Relative differences in 

abundance generally need to be 2-3X different to detect with confidence. 

An alternative approach, which has virtually replaced microarrays for 

transcriptomic studies is RNA-sequencing, or RNA-seq.  In RNA-seq, isolated RNA is 

converted to cDNA and subjected to next-generation sequencing, providing both 

qualitative and quantitative information on highly and lowly expressed genes 

(Hrdlickova et al., 2017). Once sequencing data is obtained, analysis often requires 

advanced software or coding experience. The first step is generally aligning the data to a 

reference genome. While many existing reference genomes are available and are useful, 

reference genomes are not required as individual transcripts can be assembled de novo. 

RNA-seq has the additional advantage in that because multiple samples can be 

differentially labeled with unique adapters containing barcodes, samples can be 

multiplexed and loaded into the same sequencing run (Hrdlickova et al., 2017). The 

conversion of mRNA to cDNA prior to sequencing can introduce bias results. Further 

sample processing is sometimes required for instance, PCR amplification to generate 

large amounts of cDNA, a process that can lead to uneven amplification and skew 

results.  

Eukaryotic mRNAs are polyadenylated, and this property can be used both to 

remove rRNAs and prime reverse transcription. Bacterial mRNAs, on the other hand, 

require specialized kits designed to deplete rRNAs and generate cDNA libraries. To 

control for experimental variables that might affect the results of RNA-seq studies, 

complementary methodologies are usually utilized to test the reproducibility. RNA 

levels can be monitored directly using RT-PCR or qPCR. Transcription from a promoter 
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can also be monitored in vivo using microscopy, flow cytometry, and microfluidics 

devices, methods that are scalable if global analyses are required (Ambriz-Avina et al., 

2014, Martins & Locke, 2015). Usually these methodologies require a reporter molecule 

be fused to a promoter of interest and measuring transcription indirectly through reporter 

protein production. 

One benefit of reporter protein production is that it allows for single cell analysis.  

Flow cytometry followed by cell sorting, or fluorescence-activated cell sorting (FACS), 

is an exciting technique because it provides not only a method to look at distribution of 

transcription in single cells of a population, but also a way to separate and collect those 

cells for further analyses. This is of particular interest to researchers studying 

heterogeneity among cells within a population (Muller & Nebe-von-Caron, 2010). 

Rosenthal et. al used a fluorescent reporter followed by microscopy to show that sucC 

expression was highly heterogenous, with only ~3.8% of the population expressing 

detectable production of the reporter (Rosenthal et al., 2018). To further characterize this 

subpopulation and to understand how sucC is regulated, the authors separated sucC-

expressing cells and subjected them to RNA-seq. Interestingly, sucC expression was 

correlated with competence genes and was later shown to be regulated by the master 

competence regulator, ComK. Even though the ComK regulon was previously described, 

it had not been previously shown to regulate genes involved in central carbon 

metabolism (Rosenthal et al., 2018). These observations would likely not have been 

made using a whole-population approach because only a subset of cells in a population 

need to express the gene at any given time. Transcriptomic studies have the potential to 

discover genes or uncover regulatory networks. In addition to transcriptomics, additional 
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“-omics” tools such as metabolomic (described below) can used to aid functional 

discovery.  

 

1.4.2. Metabolomics 

Organisms utilize, produce, and secrete a variety of metabolites in response to 

external and internal cues. Metabolites act not only as intermediaries in metabolism, but 

also as important signals controlling metabolic flow along central pathways (Sonenshein, 

2007). In addition, metabolites can interact with transmembrane proteins which, 

depending on the function of the protein, can affect substrate transport or initiate 

signaling cascades (Johnson et al., 2016). Furthermore, the secretion of certain 

metabolites can affect intra- and extracellular environments. For example, during growth 

on acetogenic carbon sources, such as glucose, E.coli produces acetate which is secreted 

to regenerate NAD+ (Wolfe, 2005). As a result, secretion of acetate raises the 

intracellular pH while lowering the extracellular pH. Since metabolite pools have a 

primary role in fitness, there is a growing need to determine the function of metabolites 

and the pathways in which they are involved by linking metabolic information to 

phenotypes, followed by additional hypothesis-driven mechanistic and functional 

analyses.  

The most common methods for metabolomics are untargeted and targeted mass 

spectrometry. First, particles are converted into ions by an ionization source, often 

Matrix-Assisted Laser Desorption/Ionization (MALDI) and electrospray ionization 

(ESI). Second, ions are sorted based on their mass/charge (m/z) with a mass analyzer 

such as time-of-flight (TOF), ion trap, and quadrupole. Finally, the m/z is measured with 
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an ion detector. MS technologies were greatly improved with tandem mass spectrometry 

(MS/MS) where after the first analyzer, ions are fragmented, separated, and detected 

again. In untargeted metabolomics, the spectrum obtained from a sample is compared to 

a database of available m/z ratios, allowing putative identifications (IDs) to be made.  

Since MS/MS provides limited structural information and metabolites generally do not 

contain unique peptide sequences, sometimes multiple compounds share identical m/z, 

complicating assignments. Although a wide range of metabolites are detectable, 

detection depends on many variables, including the abundance and lability of the 

metabolite, the method of extraction and chromatographic separation, and the type of 

MS. Therefore, untargeted metabolomics generally requires the use of multiple 

extraction and separation techniques to ensure the largest array of metabolites is 

sampled. In contrast, targeted metabolomics measures a specific metabolite of interest. 

Although targeted approaches are more sensitive and selective, they require prior 

knowledge and optimized methods for the specific metabolite (Johnson et al., 2016) . 

Neither untargeted or targeted approaches offer information on metabolic rates, which is 

important for determining if a metabolic change is a direct cause of the perturbation or if 

it is a downstream effect. However, the general methodology can be coupled with stable-

isotope labeling to follow metabolic flow and in terms of functional characterization, can 

aid in identifying the most likely pathway associated with a particular genotype or 

phenotype (Johnson et al., 2016). One major challenge to metabolomics is metabolite 

identification and validation. This so called ‘dark matter’ makes up over 95% of spectra 

identified in an untargeted metabolomics experiment (da Silva et al., 2015). To 

overcome the metabolite identification challenge, multiple methods can be combined to 
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examine both intracellular and extracellular (exometabolome) metabolomes including 

nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC), 

and Fourier transform infra-red spectroscopy (Bingol, 2018, Pinu & Villas-Boas, 2017) 

for metabolite identification.  

Following metabolite identification, assigning a function to a particular 

metabolite can still be challenging. With advancements in data analysis and data storage, 

as well as the use of robotics, we now have the proper tools to obtain and combine big 

data from multiple omics approaches, allowing us to examine the relationships between 

the molecules that make up the cell and understand how they influence each other.  

Environments can be altered to determine how organisms respond, or we can look at 

entire communities to examine how signals from one cell or bacterium can influence 

others in a population. More targeted approaches can also be taken; for examples, 

deleting a gene with a potential enzyme activity and comparing the mutant metabolome 

to the wild type to identify a possible pathway involved in metabolism. Progress on the 

uncharacterized gene problem has been slow.  Aside from being technically difficult, it 

is difficult to provide justification to study genes that lack obvious significance.  From a 

technical standpoint, I have outlined above some of the approaches being used to gain 

the phenotypic insight needed for hypothesis-driven analyses. The justification challenge 

is in some ways more difficult, as impact has to be judged in retrospective, though the 

history of discovery and innovation in science research makes a good case for why we 

should study basic science. 
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1.5. Gene characterization in Bacillus subtilis 

At the onset of the post-genomics era, most global studies initially focused on 

yeast. Later advances in bacterial genomics and molecular biology approaches allowed 

us to extend studies to other model organisms.  The most well-studied model bacterium 

is the Gram-negative organism E. coli. The E. coli genome was closed in 1997.  Despite 

the relatively small genome size (approximately 4,500 genes) and reduced complexity 

compared to yeast, many gene products remain experimentally uncharacterized in E. 

coli. Nevertheless, it was recently shown that the number of E. coli gene products with 

gene ontology (GO) terms associated with experimental evidence (albeit not necessarily 

an assigned function) has increased from 2,462 (Keseler et al., 2013) to 3,350 (Keseler 

et al., 2017) in just four years, reflecting an increase from 54% to 74%. Most of what we 

know about microbial metabolism is based on E. coli (and Salmonella). Our increase in 

understanding E. coli, however, has not necessarily led to a concomitant increase in our 

understanding of other bacteria. This is exemplified by a study that compared four 

annotation tools and found that the number of annotations derived by three out of four 

tools for E. coli was nearly double that of Clostridium difficile 630 (Griesemer et al., 

2018). The need for better representation among other organisms is emphasized by the 

number of discrepancies in essential processes between E. coli and other bacteria. For 

instance, DNA replication is generally thought of as somewhat uniform among bacteria, 

yet is quite different in the Gram-positive model organism, B. subtilis. Whereas DNA 

replication in E. coli is regulated by proteins that affect the levels of active replication 

initiator, DnaA-ATP, no regulators of DnaA-ATP hydrolysis are known in B. subtilis 

(Camara et al., 2005, Jameson & Wilkinson, 2017). Instead, B. subtilis DnaA is 
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regulated by protein-protein interactions with the negative regulator YabA (Scholefield 

& Murray, 2013) and Soj (Scholefield et al., 2012). Furthermore, unlike E.coli, DNA 

replication in B. subtilis is also regulated during the process of sporulation (Jameson & 

Wilkinson, 2017), whereas E. coli does not generate spores.  Since gene identification 

and characterization are critical to understanding essential, fundamental processes as 

well as the more complex specialized processes such as survival in harsh environments 

and cellular communities, additional efforts must be made to identify gene functions. 

Making gene characterization difficult is that some genes are expressed in a 

fraction of a population. This heterophysiology, thought to reflect “bet-hedging” (Seger, 

1987), is evident in bacterial communities such as biofilms, and makes studies that 

utilize population-level data problematic. Biofilms are dense communities of cells held 

together by a matrix, usually consisting of extracellular polymeric substances, proteins, 

and DNA, making their removal difficult. Cell differentiation is thought to contribute to 

the resilience of biofilms by delegating certain energy-costly tasks (such as matrix 

production) only to a subpopulation (Kearns, 2008). This “division of labor” enables 

other subpopulations to divert energy to processes such as sporulation, motility, or 

competence which can enable those cells to proliferate if environmental conditions 

worsen (Kearns, 2008). Another challenge to studying these complex community 

structures is that extracellular factors like quorum-sensing molecules and metabolites act 

as mobile signals that can be produced and detected by different cell types in a 

community (Rutherford & Bassler, 2012). B. subtilis is an exceptional model organism 

for studying bacterial developmental processes such as biofilm formation as it can 

undergo numerous cell differentiation programs including sporulation, competence, 
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matrix producing and motile (Lopez & Kolter, 2010). Surprisingly, only 60% of the B. 

subtilis genome has been annotated using experimental evidence.  

In this dissertation, I used a misexpression library from B. subtilis to identify 

putative DNA-binding proteins that, when misexpressed, lead to changes in subcellular 

organization. Specifically, alterations in DNA structure, cell morphogenesis and cell 

division. I analyzed a set of putative DNA-binding proteins and examined their effects 

on gene expression and subcellular organization when misexpressed. Eight proteins, 

yxaD, yesS, yvmB, yhjH, ywhA, mdxR, ywbI, and ywgB appear to act as transcriptional 

regulators and two putative DNA-binding proteins, ycxD and ykoM that do not appear to 

regulate transcription. In addition, I further characterized the MarR-like protein, YxaD. 

YxaD misexpression disrupts chromosome segregation and DNA replication. Since 

YxaD was shown to interact with ScpA and HolA by yeast two hybrid (), I examined the 

possible involvement of this interaction with YxaD’s misexpression phenotype. By 

RNA-sequencing, I showed that YxaD represses the yxaKC operon. I identified and 

classed variants of YxaD that do not result in the misexpression phenotype. I further 

analyzed YxaD as a transcriptional regulator and showed that it binds to two sites in the 

intergenic region between yxaD and yxaKC to regulate expression of both operons. 

Lastly, I used NMR to analyze the excreted overflow metabolites from ΔyxaD, ΔyxaKC 

and wild type cells and found that ΔyxaD cells excreted more 2-ACL and less acetoin. 

These results suggest a possible role of YxaKC in regulated overflow metabolism and/or 

utilization of secreted metabolites 



 

 

 

22 

2. THE BACILLUS ECTOPIC INDUCIBLE GENE EXPRESSION LIBRARY 

(BEIGEL): A MULTIFUNCTIONAL RESEARCH TOOL FOR GENE DISCOVER 

 

2.1. Introduction 

Post-genomic techniques and methodologies provide incredible insight into 

systems biology and allow us to examine global effects in response to a change or 

perturbation. For example, we now have the ability to sequence an organism’s genome 

and monitor the transcriptome, proteome and metabolome, enabling systems-level 

analyses for understanding differences between genetically distinct isolates and 

responses to changing nutrient availability and other environmental signals. Even with 

these advances, our inability to link gene products with observed biological variations 

remains a major challenge for post-genomic biology. The problem is underscored by the 

fact that nearly half of the genes in even some of the most well studied organisms remain 

uncharacterized, are misannotated, or are annotated based solely on bioinformatic 

approaches without experimental validation (Bork, 2000), (Gerdes et al., 2011), (Riley et 

al., 2006). 30% of these are estimated to be enzymes (Ellens et al., 2017), consistent 

with the fact that a large number of enzymatic reactions are known to exist that have yet 

to be associated with a particular gene product (Hanson et al., 2009), (Sorokina et al., 

2014). Many of the uncharacterized genes are conserved across multiple genera or even 

all domains of life, suggesting they encode for important functions that have yet to be 

elucidated. 

 Functional characterization of uncharacterized genes remains the major challenge 

to post-genomic biology and it has been challenging for several reasons. First, 
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uncharacterized genes often lack obvious knockout phenotypes because of functional 

redundancy and buffering mechanisms within cells. For instance, a study in E. coli found 

that 10 out the 12 genes encoding known penicillin binding proteins needed to be deleted 

before an obvious phenotype was detected (Denome et al., 1999). Moreover, standard 

laboratory conditions are not often adequate to detect a knockout phenotype due to 

context specific functions. For instance, the genes that make up SMC condensin 

complexes in B. subtilis, smc, scpA, and scpB, are required for growth on LB media at 37 

°C but are not required at low temperatures (Gruber et al., 2014), whereas B. subtilis 

yvcK is not essential for growth on LB but is required when grown on gluconeogenic 

substrates (Gorke et al., 2005). Interestingly, these studies highlight the importance of 

studying genes in various growth conditions as genes considered to be ‘essential’ in the 

laboratory might not be in native environments and vice versa. The construction and 

analysis of a B. subtilis knockout library found that out of an estimated 4,245 encoded 

genes, only 257 were considered to be essential for growth on LB media at 37 °C (Koo 

et al., 2017); however this number would be expected to go up or down depending on 

growth context.  The lack of easily discernible phenotypes is a problem because it 

increases the difficulty of forming testable hypotheses regarding an unknown gene’s 

function.  

Gene characterization in the post-genomic era has seen some recent success by 

assaying gene knockout libraries for fitness in response to changes in growth conditions 

and compounds (Nichols et al., 2011, Koo et al., 2017). These datasets, termed 

‘phenomics’, are particularly useful for revealing how uncharacterized genes are situated 

within pathways. One study examined an E.coli mutant library under different growth 
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conditions and was able to class 25% of E. coli’s unknown genes into categories (i.e. 

heat shock) (Nichols et al., 2011). While these designations are useful, this information 

alone often does not provide enough information to inform specific hypotheses regarding 

function. 

 An additional strategy to link gene products to phenotypes is by screening for 

gain-of-function phenotypes following misexpression. Artificial expression of gene at 

either higher than wild-type levels or in a non-native expression context can perturb 

homeostasis and thus produce phenotypes that can then be utilized to form testable 

hypotheses regarding gene function. For this study, we utilized misexpression strains 

from a library of B. subtilis misexpression strains the Bacillus Ectopic Inducible Gene 

Expression Library (BEIGEL) (Figure 2.1) (Duan et al., 2016b) . The BEIGEL 

comprises 810 strains, each with one uncharacterized gene under the control of an 

inducible promoter. Each strain has a misexpression construct integrated into the B. 

subtilis chromosome at an ectopic locus providing titratable expression from a single 

gene copy.  

 We screened the BEIGEL for phenotypes associated with misexpression that 

affect growth and subsequently, those that perturb DNA replication, cell division, and 

overall cell morphology. Forty-nine strains with phenotypes were identified. In addition, 

we combined phenotypic data with suppressors selections followed by whole-genome 

sequencing to probe genetic interaction partners of a subset of the induced genes. Of the 

49 strains with phenotypes, 26 corresponded to uncharacterized DNA-binding proteins. 

Ten of these, none of which had obvious knockout phenotypes under standard laboratory 

growth conditions, were selected for further analysis. Many DNA-binding proteins act as 
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transcription factors, whereas others, such as E. coli SlmA (Bernhardt & de Boer, 2005) 

and B. subtilis RefZ (Miller et al., 2016) have been shown to use their DNA-binding 

activity to localize another activity to a specific subcellular location.  To assess if the 

DNA-binding proteins identified in the screen acted as transcription factors, RNA-seq 

was performed on a subset, mdxR, ycxD, yesS, yhjH, ykoM, yvmB, ywbI, ywgB, ywhA, 

yxaD. For each strain, we analyzed transcription for wild type, an unmarked deletion 

strain, and the BEIGEL strain following induction. The strains were grown in expression 

conditions where the gene of interest was previously shown to be expressed (Nicolas et 

al., 2012). We identified eight genes, mdxR, yesS, yhjH, yvmB, ywbI, ywgB, ywhA, and 

yxaD that appeared to affect transcription and two genes, ycxD and ykoM that I not show 

altered transcription relative to wild type. 
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Figure 2.1 BEIGEL strategy for gene characterization. 
Stage I: screen BEIGEL for growth phenotypes on plates containing inducer. Stage II: 
screen strains with growth phenotypes for morphological phenotypes by fluorescence 
microscopy. Stage III: suppressor selection to identify genetic targets of misexpressed 
genes. Stage IV: RNA-sequencing performed on putative DNA-binding proteins. Stage 
V: form testable hypotheses and perform experiments to stage VI: assign gene functions.  
 

 

STAGE I: Screen for growth phenotypes

STAGE II: Screen strains with growth phenotypes for morphological phenotypes
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2.2. Materials and Methods 

2.2.1. Gibson Assembly 

UP fragments were generated by an initial assembly of the fragments: amyEdown 

PCR amplified with OAM009 and OAM010 from B. subtilis 168 and lacI (OAM011 and 

OAM012) from pDR111 to generate a fragment of 5,612 bp. DOWN fragments were 

generated by a similar initial assembly of amyEup OAM001 and OAM002 from B. 

subtilis 168, specR-optRBS-lacO- Phyperspank using OAM013 and OAM014 from pDR111 

generating a 6,012 bp fragment. UP and DOWN fragments were gel purified using the 

QIAQuick gel purification system and used as templates in a final PCR using primers 

OAM001 and OAM012 for UP and OAM011 and OAM010 to generate final DOWN. 

The UP and DOWN constructs were introduced into the chromosome of Bs168 using 

Gibson assembly with UP and DOWN fragments and a test gene product PCR amplified 

with extensions complementary to UP and DOWN fragments at an equimolar ratio and 

subsequently transformed into Bs168 competent cells. Bs168 with the correct insertion 

were selected for on plates containing spectinomycin (100 µg/ml). Correct insertion into 

the amyE locus was verified by patching colonies on starch containing plates and by 

PCR amplifying the gene of interest. Once confirmed, genomic DNA of this strain was 

used as template to generate stocks of UP (OAM010 and OAM013) and DOWN 

(OAM001 and OAM014). Stocks of UP and DOWN were diluted to a working 

concentration of 20 ng/µl enabling more efficient normalization of BEIGEL gene 

fragments to equimolar ratios. 
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Table 2.1 Strains used in Chapter 2 
Strain Description Reference 
Bacillus subtilis 168   
BAM083 amyE::Phyperspank-optRBS (spec) This study 
BAM049 amyE::Phyperspank-ykoM (spec) This study 
BSH050 amyE::Phyperspank-yxaD (GTG start) (spec) This study 
BEA089 amyE::Phyperspank-mdxR (spec) This study 
BEA121 amyE::Phyperspank-ycxD (spec) This study 
BEA136 amyE::Phyperspank-yesS (spec) This study 
BEA144 amyE::Phyperspank-yhjH (spec) This study 
BEA170 amyE::Phyperspank-yvmB (spec) This study 
BEA174 amyE::Phyperspank-ywbI (spec) This study 
BEA176 amyE::Phyperspank-ywgB (spec) This study 
BEA177 amyE::Phyperspank-ywhA (spec) This study 
BSH062 ΔycxD This study 
BSH063 ΔmdxR This study 
BSH064 ΔyvmB This study 
BSH065 ΔywgB This study 
BSH067 ΔywbI This study 
BSH068 ΔyhjH This study 
BSH069 ΔykoM This study 
BSH070 ΔyxaD This study 
BSH071 ΔyesS This study 
BSH072 ΔywhA This study 
BYD080 amyE::Phyperspank-mdxR (spec), 

sacA::Phyperspank-lacZ (erm), 
yycR::Phyperspank-mdxR (cat) 

 

BYD034 amyE::Phyperspank-yttP (spec), 
yhdG::Phyperspank-yttP (phleo), 
ycgO::Phyperspank-yttP (tet), 
sacA::Phyperspank-lacZ (erm) 

 

BYD048 amyE::Phyperspank-yodL (spec), 
ycgO::Phyperspank-yodL (tet), 
yhdG::Phyperspank-yodL (phleo), 
sacA::Phyperspank-lacZ (erm) 

 

BYD076 amyE::Phyperspank-yisK (spec), 
yhdG::Phyperspank-yisK (phleo), 
yycR::Phyperspank-yisK (cat), 
sacA::Phyperspank-lacZ (erm) 

 

BEA052 amyE::Phyperspank-yisK (spec)  
BEA098 amyE::Phyperspank-yodL (spec)  
BJH026 amyE::Phyperspank-yttP (spec)  
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Table 2.2 Oligonucleotides used in Chapter 2 
Oligo Sequence 5’-3’ 
OAM001 agaagcgttagcggcagcaagtgat 
OAM002 ccatgtctgcccgtatttcgcgtaaggaaatccattatgtactatttcgatcagaccag 
OAM009 gaaaacaataaacccttgcatagggggatcgggcaaggctagacgggacttacc 
OAM010 atggacacaacaacagcaaaacaggc 
OAM011 TAATGGATTTCCTTACGCGAAATA 
OAM012 GCTAGccgCATGCAAGCTAATT 
OAM013 agtagttCCTCCTTAtgtAAGC 
OAM014 GATCCCCCTATGCAAGGGTTTATT 
OJH001 CATATGTAAGATTTAAATGCAACCG 
OJH002 CTACAAGGTGTGGCATAATGTGT 

 

2.2.2. BEIGEL Construction 

BEIGEL primers were designed using a computer algorithm. Lyophilized primer 

sets were provided in 96-well plate formats by IDT and resuspended to a final 

concentration of 10 µM each primer. BEIGEL genes were PCR amplified using Phusion 

HF Polymerase and primer sets for each gene in 25 µl reactions. Purified PCR products 

were normalized by a standard molar concentration for all BEIGEL PCR fragments 

(based on a test quantification) of 1000 bp at a concentration of 30 ng/µl. BEIGEL gene 

products were assembled with UP and DOWN fragments in 96-well format using 

Gibson assembly using a ratio of 1 µl, 2 µl and 2 µl respectively. Fifteen µl reactions 

were incubated for 1 hr at 50 °C. Assembled fragments were then transformed into B. 

subtilis and selected for on LB plates containing 100 µg/ml spectinomycin and 0.2% 

glucose (w/v) (LB-S-G). Single colonies were streaked for isolation on LB-S-G plates 

and patched on starch containing plates to check for integration at the amyE locus. 

Single isolates were inoculated in 5 ml LB + 0.2% glucose (w/v) and 5 µl was 

immediately spotted on LB plates containing 100 µg/ml spectinomycin and 1.0 mM 
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isopropyl-β-D-thiogalactopyranoside (IPTG). Insertions of the correct gene fragments 

were confirmed by PCR amplifying the gene region in amyE with OJH001 and OJH002. 

 

2.2.3. Microscopy-based morphological screen 

BEIGEL strains were streaked from frozen glycerol stocks onto LB-S-G plates. 

Single colonies were inoculated in 5 ml LB containing 0.2% (w/v) glucose and grown to 

mid exponential at 37 °C. Cultures were back diluted in 25 ml LB media to an 

OD600=0.00625 in 250 ml baffled flasks at 37 °C shaking in a water bath set to 280 rpm. 

Cultures were induced with 1.0 mM IPTG at OD600 = 0.05. Samples for microscopy 

were taken 90’ post induction unless otherwise indicated. Fluorescence microscopy was 

performed with a Nikon Ti-E microscope equipped with a CFI Plan Apo lambda DM 

100× objective, Prior Scientific Lumen 200 illumination system, C-FL UV-2E/C 4′,6-

diamidino-2-phenylindole, and a CoolSNAP HQ2 monochrome camera. All images 

were captured with NIS Elements Advanced Research (version 4.10), and processed 

with NIS Elements and ImageJ64 (W., 1997-2015). For image capture, 1 ml of cells 

were pellet at 6,010 x g for 1 min in a tabletop microfuge at room temperature, 

supernatants were removed by aspiration, and pellets were resuspended in 7 µL of 1X 

PBS containing 0.02 mM 1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene 

(TMA-DPH) or 7 μl 1X PBS containing DAPI DNA stain (2 μg/ml) (Molecular Probes) 

and FM4-64 membrane stain (3 μg/ml) (Molecular Probes). Cells were mounted on glass 

slides with polylysine-treated coverslips.   
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2.2.4. Spontaneous suppressor selection 

 Independent cultures were started from six single colonies of BYD034, BYD048, 

BYD076, or BYD080. Individual colonies were used to inoculate 5 ml LB cultures. 

Cultures were grown at 37 °C for 6 hrs when 0.3 µl of each culture was diluted in 100 µl 

LB and subsequently plated on LB agar plates with 100 µg/ml spectinomycin (LB-spec) 

and 1 mM IPTG. Plates were incubated overnight at 37 °C until suppressor colonies 

grew. Suppressors were patched on LB-spec and LB-spec with 1mM IPTG, 40 µg/ml 5-

bromo-4- chloro-3-indolyl-β-D-galactopyranoside (X-gal). The patched plates were 

grown at 37 °C overnight. Only patches that appeared blue in the presence of X-gal were 

selected for further analysis. In addition, each misexpression cassette was moved into a 

clean genetic background to ensure the original construct remained functional in the 

presence of IPTG.     

 

2.2.5. RNA sequencing 

Individual colonies were used to inoculate independent cultures of Phy-mdxR, Phy-

ycxD, Phy-yesS, Phy-yhjH, Phy-ykoM, Phy-yvmB, Phy-ywbI, Phy-ywgB, Phy-ywhA, Phy-yxaD, 

and Phy-empty in 5 ml LB + 0.2% (w/v) glucose and grown to mid exponential. Cultures 

were then back diluted into a 25 ml LB to a final OD600 = 0.01875 in 250 ml baffled 

flasks at 37 °C shaking in a water bath set to 280 rpm. After 1 hr 15 minutes, cultures at 

OD600 = 0.3 were induced with 1.0 mM IPTG. After 15 minutes, 500 µl samples of 

culture were added to 1 ml RNA Protect Reagent (Qiagen). For RNA isolated from 

deletions in stationary or exponential phase, cultures were grown similar to Phy- cultures 

except grown in LB + 0.3% (w/v) glucose (Nicolas et al., 2012). For growth in 
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sporulation, cultures were grown as previously in LB (no glucose) to and OD600 = 0.5. 

Sporulation was induced by resuspension at 37 °C according to the Sterlini-Mandelstam 

method and samples for RNA-seq were taken 1 hr or 6 hr into growth (Sterlini & 

Mandelstam, 1969). Five-hundred µl samples were collected 1 hr or 6 hr into sporulation 

as indicated. RNA was isolated using the RNeasy mini kit (Qiagen), with the exception 

that the 6 hr sporulation samples were vortexed for 1 hr with lysozyme treatment. RNA 

isolation was followed by DNase I treatment (Qiagen) to remove DNA and ribosomal 

RNA was removed using Ribo-Zero rRNA Removal Kit (Gram-Positive Bacteria) 

(Illumina). 50-bp single end read libraries were prepped with a TruSeq Stranded Total 

RNA Kit (Illumina) and sequenced on an Illumina HiSeq 2500. Reads were mapped to 

each open reading frame (ORF) in the B. subtilis 168 genome (GenBank: NC_000964.3) 

using with kallisto (Bray et al., 2016) and used edgeR (Robinson et al., 2010) for 

differential gene expression analysis. Lowly expressed ORFs were filtered (<1 count per 

million). The single-factor exact test was used and differentially expressed genes were 

reported with a false discovery rate cutoff of <0.05. 

 

2.3. Results 

2.3.1. Generation of the Bacillus Ectopic Inducible Gene Expression Library 

(BEIGEL) 

To create the BEIGEL, we selected genes annotated in BsubCyc (Caspi et al., 

2014) as hypothetical (131), conserved hypothetical (537), putative transcriptional 

regulators (100), putative integral membrane proteins (101), and putative membrane 

proteins (21) (See Table 2.3).  While this is a substantial fraction of the total B. subtilis 
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genes (~20%, or 894/4175), it is not inclusive of all genes annotated as experimentally 

uncharacterized.  

 To generate the large number of misexpression constructs while avoiding 

passage through E. coli, we assembled each misexpression construct in vitro using the 

Gibson assembly method (Gibson et al., 2009) and took advantage of the natural 

competence of B. subtilis to transform and select for integration of each linear construct 

into the genome through homologous recombination at an ectopic locus (Figure 2.2). 

Genome integration also mitigated the potential off-target effects associated with 

plasmid-borne, multicopy expression systems, the final constructs were introduced in 

single copy into the chromosome (Figure 2.2). Successful transformants were judged by 

spectinomycin resistance and the integration of the appropriate size DNA fragment in 

amyE. In total, we readily obtained for 810/894 strains, and the remaining 84 strains 

were not successfully generated for unknown reasons, despite multiple attempts. 

 

Figure 2.2 BEIGEL construction. 
PCR generated “UP” and “DOWN” fragments were assembled to an uncharacterized 
gene of interest, geneX, by Gisbson assembly. Constructs were integrated into to the B. 
subtilis chromosome by double crossover integration at the amyE locus. 

upstream amyE specR lacO geneX lacI downstream amyE

upstream amyE downstream amyEamyE

IPTG inducible promoter

Ectopic exchange by double crossover

Misexpression strains are generated by enzymatic assembly 
followed by integration into the 

Bacillus subtilis amyE locus by transformation.

“UP” “DOWN”
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2.3.2. Primary screen to identify gene products that resulted in growth defects 

To discern which gene products were associated with disruptions in growth, we 

performed a primary screen on LB solid medium containing inducer. Growth phenotypes 

were evaluated as a primary screen because in a prototype screen, reduced growth 

phenotypes were most strongly associated with morphological perturbation phenotypes 

related to the nucleoid, cell division, and morphogenesis. Under one inducing growth 

condition, we identified 35/810 misexpression strains that did not grow, 33/810 that 

grew slow or with reduced viability, and 7 strains that grew well, but exhibited increased 

colony transparency after 72 hr indicating delayed lysis (Table 2.3). 

 

Table 2.3 Current status of BEIGEL 
 

Total strains in BEIGEL 

 

810 

No growth 35/810 

Slow growth 33/810 

Transparent after 72 hr 7/810 

Total growth phenotype when misexpressed 75/810 

Morphological phenotype when misexpressed 49/75 

Morphological phenotype without growth phenotype 0/22 

Suppressors selection analysis 6 
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2.3.3. Secondary screen to identify gene products that perturb subcellular 

organization 

To identify genes that affect DNA replication, cell division and cell shape, we 

carried out a microscopy-based screen of the 35/35 strains with no growth phenotypes, 

33/33 strains with slow growth phenotypes, and 7/7 strains that produced transparent 

colonies following extended growth. Additionally, we screened 22 strains that did not 

have a growth phenotype. To screen for morphological phenotypes, strains were grown 

in rich liquid media under rapid growth conditions to mid-exponential phase, back-

diluted, and expression was induced with IPTG. Samples of each strain were taken 30, 

60, 90, or 120 min post-induction, stained with both membrane and DNA stains, and 

imaged. A montage of the observed phenotypes is shown in Figure 2.3. In total, 49 

strains displayed obvious changes in cell shape, cell division (longer or shorter cells), 

and/or DNA structure after 90’ or 120’ induction. 48/97 strains do not show obvious 

changes in cell structure under the tested growth condition (Table 2.4).  
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Figure 2.3 Morphological phenotypes associated with DNA.  
Fluorescence microscopy of B. subtilis 168 cells grown in LB medium and 
overexpressing the indicated gene for the indicated time. Membranes are stained with 
FM4-64 (red) and DNA is stained with DAPI (blue) for all images.  

+yhjH

60’

+yesS

90’

+ykvN

90’

+ywgB

90’

+yxaD

45’

+yybE

60’

+yetN

90’

+ynzI

30’

+yozO

45’

WT



 

 

 

37 

 

 

 

Figure 2.3 Continued. 
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Figure 2.4 Morphological phenotypes associated with cell shape. 
Fluorescence microscopy performed as in Fig. 2.3.  
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Figure 2.5 Morphological phenotypes associated with cell division. 
Fluorescence microscopy performed as in Fig. 2.3.  
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Table 2.4 Classed morphological phenotypes 

DNA 
ysnB, ybgA, yesM, yesS (+cell shape), yhjH, 
ykvN, ywgB, yxaD, yybE, yetN, ynzI, yozO, ytoI, 
yunF, ycxD, ygzD, ypoP (+cell shape), ywbI, 
yvlD, yybL, yvcD, yydD 

Cell Shape ykoM, yyaN, rbgA, yisK, ytxC, catR (+DNA), 
ycjM, yrzR, yjzF, yodL, yvmB, ykuO, yukF 

Cell Division mdxR, ylmC, ycbG, ydeP(+DNA), ywhA 
(+DNA), ydfR, yocA, yozG, yraN, yydK 

 

2.3.4. Suppressor selection analysis to reveal genetic targets 

Since some morphological phenotypes are still difficult to link to testable 

hypotheses to ascertain an uncharacterized gene’s function, we next sought to identify 

genetic targets for a select set of uncharacterized genes by performing suppressor 

selection analysis. We selected one previously characterized misexpression strains with a 

known target Phy-refZ (Wagner-Herman et al., 2012), and three new strains, Phy-mdxR, 

Phy-yodL and Phy-yisK that had not been experimentally characterized at the time of the 

study. Expression of mdxR and refZ during vegetative growth resulted in cell 

filamentation while expression of yodL and yisK results in rounded-up cells (Figure 2.6). 

Several strategies were used to exclude suppressors possessing mutations in the 

expression constructs. First, a second (Phy-mdxR) or third (Phy-refZ, Phy-yodL, and Phy-

yisK) cassette was introduced into the chromosome to ensure that each strain would 

produce enough gene product to present a growth defect even if one copy acquired a 

mutation that was non-functional. Second, each strain expressed Phy-lacZ as a reporter, 

allowing us to identify suppressors carrying dominant alleles of lacI that were unable to 

derepress the Phy promoter in the presence of IPTG. Lastly, after suppressors were 

isolated, we confirmed that expression cassettes were still present and functional by 



 

 

 

41 

moving the cassette into a clean genetic background. We reduced the likelihood of 

obtaining clones by growing suppressors in multiple independent cultures and by 

classing each suppressor by growth on plates and morphological phenotypes by 

microscopy.  

 Targeted and whole-genome sequencing were used to identify mutations that 

conferred resistance to refZ, mdxR, yodL and yisK misexpression. Since FtsZ suppressors 

were found to confer resistance to RefZ misexpression, we first sequenced the coding 

regions for ftsZ. All suppressors obtained for refZ were in the previously identified ftsZ 

target. Since the targets of MdxR, YodL and YisK were not known, we performed 

whole-genome sequencing to identify mutation(s) in suppressors. The YodL and YisK 

suppressors were found in gene products that regulate cell elongation, mbl and mreB 

(Duan et al., 2016b). These data suggested a possible role for YodL and YisK in 

regulating Mbl and MreB activity. MdxR suppressors were found in ftsZ and were 

G227D and D199V, a result that is consistent with the fact that MdxR induced 

filamentation. 
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Figure 2.6 Misexpression phenotypes for suppressors. 
Fluorescence microscopy of B. subtilis 168 grown in CH medium and overexpressing the 
indicated gene for 90 minutes. Cell membranes are stained with TMA-DPH. 
 

2.3.5. RNA-seq to identify transcriptional regulators 

Bacteria, for the most part, lack subcellular compartmentalization and therefore 

rely on other organizational cues to temporally and spatially localize molecules within 

the cell. The nucleoid is a major structure in the cell and possesses positional cues that 

help direct important functions such as where to initiate and terminate DNA replication 

and where to divide. We hypothesized that among the uncharacterized DNA-binding 
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proteins, we might identify not only transcription factors, but also proteins that use DNA 

to localize functions that affect cellular organization. The BEIGEL misexpression strains 

harboring genes for putative DNA-binding proteins (100/810) were characterized by 

protein family, growth and morphological phenotypes, and RNA-sequencing (Table 2.5). 

Of the 100 strains analyzed, 17 strains did not grow, 9 strains had weak growth, and 4 

strains exhibited the delayed reduced transparency phenotype. Strains with growth 

phenotypes were evaluated by microscopy for morphological defects. In total, 

morphological phenotypes related to DNA structure, morphology and/or cell division 

were associated with misexpression of 17/17 strains that did not grow, 7/9 strains with 

weak growth and 2/4 with reduced colony transparency led to defects in DNA structure, 

morphology and/or cell division. Representative images are shown in Figure 2.7.  

 

Table 2.5 Putative DNA-binding proteins in BEIGEL. 

Putative DNA-binding Proteins 100 

Growth phenotype when misexpressed 30/100 

Morphological phenotype when misexpressed 26/30 

RNA-seq performed on 10/26 

Transcriptional Regulators identified by RNA-seq 8/10 

 



 

 

 

44 

 

Figure 2.7 Morphological phenotypes of expressed DNA-binding proteins. 
Fluorescence microscopy phenotypes of cells overexpressing DNA-binding proteins 
analyzed by RNA-seq. Membranes are stained with FM4-64 (red) and DNA is stained 
with DAPI (green). 
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 We chose to proceed with a subset of 10 putative DNA-binding proteins: mdxR, 

ycxD, yesS, yhjH, ykoM, yvmB, ywbI, ywgB, ywhA, yxaD because misexpression of these 

10 gene products sampled the diverse morphological phenotypes we observed and 

appear to be regulated under similar growth conditions (Nicolas et al., 2012) (Figure 

2.7). In order to determine if any of the 10 putative DNA-binding proteins were acting as 

transcriptional regulators and altering the transcriptional profile, we performed RNA-

sequencing experiments on induced cells. In order to measure changes in transcription 

that are a direct result of the DNA-binding protein and not a regulatory response induced 

by the cell, samples for RNA processing were collected 15 min post induction. Since we 

still suspected that 10 min post expression would still result in indirect changes to the 

transcriptome, we used a global gene expression study to examine growth conditions 

with maximal expression for each of the 10 DNA-binding proteins (Nicolas et al., 2012). 

Samples were also collected from markerless deletions of ΔmdxR, ΔycxD, ΔyesS, ΔyhjH, 

ΔykoM, ΔyvmB, ΔywbI, ΔywgB, ΔywhA, ΔyxaD strains grown to the maximum 

expression detected in either rich, LB media or during sporulation. RNA isolated and 

sequenced from cells expressing Phy-mdxR, Phy-ycxD, Phy-yesS, Phy-yhjH, Phy-ykoM, Phy-

yvmB, Phy-ywbI, Phy-ywgB, Phy-ywhA, Phy-yxaD, was compared to that of a Phy-empty 

control. In addition, RNA isolated and sequenced from the deletion strains grown under 

the appropriate growth condition were compared against a wild-type control. Expression 

of genes that decreased or increased by at least 2-fold compared to an empty vector 

control, and reciprocally, increased or decreased by at least 2-fold in the deletion versus 

wild type are listed in Table 2.6.  



 

 

 

46 

In total, we implicated five genes, yhjH, ywgB, yxaD, yvmC, and ywhA in the 

regulation of synonymous gene(s) in both the deletion strain and upon misexpression 

(Figure 2.9). No synonymous regulation was detected for five genes, ywbI, mdxR, yesS, 

ykoM and ycxD. Since transcriptional regulators often regulate expression of nearby 

genes and can be autoregulatory, we examined the genomic locus of the differentially 

expressed genes in relation to the putative DNA-binding proteins. This analysis 

identified three additional genes, ywbI, mdxR, and yesS that when misexpressed, led to 

increased expression of divergent genes or genes in the same operon, suggesting that 

YwbI, MdxR and YesS could be transcriptional activators (Figure 2.9). Two genes, ycxD 

and ykoM, did not appear to affect synonymous gene expression in both misexpression 

and deletion samples or the expression of nearby genes in either condition suggesting 

that YcxD and YkoM are not transcriptional regulators in the conditions we tested 

(Table 2.6).  

yhjH, ykoM, ywhA, yxaD, and yvmB encode MarR-like DNA-binding proteins, a 

family of DNA-binding proteins that typically regulate divergently expressed genes 

which contribute to survival in hostile environments (Deochand & Grove, 2017). 

Consistent with this conserved role, YhjH, YxaD and YvmB appeared to regulate 

divergently expressed genes in both tested conditions. Based on expression data, it 

appears that YhjH represses yhjG, encoding a putative aromatic compound 

monooxygenase/hydrolase, YxaD represses yxaKC encoding Cid/Lrg homologs and 

YvmB represses yvmC and cypX, genes involved in pulcherriminic acid biosynthesis. 

The YvmB regulation we observed is consistent with a previous study by Randazzo and 

collogues (Randazzo et al., 2016); notably, this study also demonstrated that YvmB 
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negatively regulates yvmBA and yvnB and positively regulates yisI (Randazzo et al., 

2016) which we did not observe. Although our results indicate that YvmB affects 

expression of sunT, bdbA, and gcvTPA in both the misexpression and deletion, these 

levels were lower than yvmC and cypX (log2FC of ~2 vs log2FC 3-6) possibly indicating 

that their activation is indirect or only occurring in a small subpopulation of cells. While 

most characterized MarR-like proteins act as transcriptional repressors (Deochand & 

Grove, 2017), ywhA appears to activate glpFK, encoding a glycerol permease and 

kinase, and appears to repress ydaB, a putative acyl-CoA ligase. Interestingly, even 

though glpFK was observed as being regulated in both conditions, we identified glpF 

activation in yxaD, and glpD activation in ywbI indicating a possible connection between 

activating glycerol utilization genes, possibly if ywhA, yxaD and ywhI act in similar 

pathways. In addition, yxaD misexpression was found to activate two genes in a nearby 

operon, gntRK, encoding a gluconate operon repressor and a gluconate kinase. 

Surprisingly, the MarR-like protein YkoM did not appear to directly affect transcription 

of any genes, suggesting DNA-binding serves a different function, possibly binding 

DNA to localize a function. It is also possible that the YkoM is autoregulatory, as this 

could not be inferred from the RNA-seq data. 

 YwbI belongs to the LysR-type transcriptional regulator (LTTR) family, a 

highly conserved and characterized family of proteins (Maddocks & Oyston, 2008), and 

in addition to glpD, appeared to activate ywbHG. Similar to yxaKC, ywbHG are 

annotated as cid/lrg like genes. Our finding that YwbI appears to activate ywbHG is 

consistent with a recent study that observed activation of ywbHG by YwbI in the 

presence of acetate (Chen et al., 2015).  



 

 

 

48 

 YesS belongs to the AraC/XylS family of proteins which are typically associated 

with regulated virulence genes and typically regulate transcription as activators 

(Santiago et al., 2016, Tobes & Ramos, 2002). Our finding that YesS apparently 

activates yesWXYZ, lplABCD and yetAF is consistent with previous reports 

demonstrating YesS activation of these genes in B. subtilis (Poncet et al., 2009). 

 YwgB is a Rrf2-type protein. Rrf2-types are a poorly characterized family of 

transcriptional regulators that often coordinate with Fe-S clusters (Shepard et al., 2011). 

YwgB appeared to repress mmr encoding a putative toxic compound efflux transporter 

without experimental validation.  

 MdxR is part of the LacI family of regulators which have been shown to regulate 

genes involved in a variety of responses to changes in environment and metabolism 

(Meinhardt et al., 2012). Consistent with this, we found that MdxR appears to repress 

the maltodextrin utilization genes encoded by mdxDEFG and yvdJKLM (Shim et al., 

2009).  

 Lastly, YcxD is part of the GntR-like family of DNA-binding proteins. GntR 

proteins are a large, well-studied class typically consisting of transcriptional regulators. 

Interestingly, however, YcxD is annotated as a PLP-dependent regulator, and part of the 

MocR subfamily of GntR. MocR proteins catalyze a reversible reaction with the help of 

binding pyridoxal 5’-phosphate (PLP) as a cofactor and transfer an amino group form an 

amino acid to an 𝛼-keto acid (Rigali et al., 2002). Consistent with being a member of the 

PLP-dependent GntR-protein family, we did not find any genes to be regulated by 

YcxD.  
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Table 2.6 Transcriptional profiles of by DNA-binding proteins. 

Gene 
Highest Native 

Expression Condition 
>2X IPTG induced/wt >2X Δ/wt 

yhjH Exponential - yhjG‡ 

ywgB Exponential - mmr‡ 

ywbI Exponential ywbHG§, glpD‡ - 

yxaD Stationary glpF‡, gntRK** yxaK‡C§, yxnA§ 

yvmB Stationary sunT‡, bdbA‡, gcvTPA‡ yvmC‡, cypX‡,  

ycxD 1 hr into sporulation - - 

mdxR 1 hr into sporulation mdxDEFG*, yvdJKLM* - 

yesS 6 hr into sporulation yesWXYZ**, lplABCD*, yetAF* - 

ywhA 6 hr into sporulation glpFK‡ ydaB‡ 

ykoM 6 hr into sporulation - - 

‡ Differential expression in both deletion and misexpression 
§ Only detected in deletion 
*Only detected in misexpression 
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Figure 2.8 Transcription factor activity of DNA-binding proteins by RNA-seq. 
Regulated genes that are near or predicted to be in the same operon as the regulated gene 
are represented on one strand (line). Genes or operons that appear to be activated or 
repressed by the DNA-binding protein are represented as green “+” or a red “X”, 
respectively. DNA-binding proteins that are predicted to autoregulate based on protein 
family are shown as faded symbols. 
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2.4. Discussion 

The BEIGEL provides a conduit with which to link uncharacterized gene 

products with identified functions. Our approach uses artificial gene expression to 

perturb cells to produce functionally revealing phenotypes. We found that by expressing 

a gene in a non-native environment, we created a sensitized context more prone to 

tractable phenotypes. A key characteristic of our approach is that once phenotypes are 

observed, they can be exploited further to identify genetic targets for our ultimate goal of 

identifying and characterizing gene functions. The BEIGEL currently holds 810 strains 

that can be used to generate tractable hypotheses in order to identify gene function. So 

far, our lab has used this misexpression system to identify key targets and variants for 

both characterized and putative gene products: RefZ, SirA, YodL and YisK.  

 We set out to identify DNA-binding proteins that play roles in regulating 

subcellular organization. Out of 100 putative DNA-binding proteins, 30 had some form 

of growth inhibition on plates when misexpressed. Surprisingly, 87% of those that 

exhibited growth defects were found to have morphological phenotypes associated with 

DNA organization, cell division, or cell morphogenesis. Intriguingly, such growth 

phenotypes are not only advantageous in forming testable hypotheses or genetic targets 

but can be exploited to characterize the underlying mechanisms of the proteins as DNA-

binders. For example, we found that the DNA-binding proteins RefZ, YxaD and YhjH 

required DNA-binding to exhibit a growth defect. By employing a selection process 

similar to that of the suppressor selection detailed early, we obtained mutations in the 

open reading frames of each gene that confer resistance to misexpression. So far we have 

identified variants that are unable to bind DNA, bind DNA with higher affinities, 
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recognize alternative or nonspecific DNA sequences, disrupt the dimerization interface, 

are dominant negative, and variants that predictably lose the ability to disrupt target 

proteins.  

 By using RNA-sequencing analysis we identified two out of 10 putative DNA-

binding proteins, ykoM and ycxD, that do not regulate gene expression suggesting they 

have other responsibilities in the cell. We analyzed RNA isolated from strains 

overexpressing the gene of interest, and those harboring a deletion grown under a 

condition the gene is expressed and considered genomic loci. Although we feel confident 

that these gene products do not affect transcription, we acknowledge that YkoM and 

YcxD could be regulating genes under growth conditions we did not test, but we do not 

expect that to be the case. Four out of the 10 genes appeared to regulate transcription of 

the same genes under both conditions. Interestingly, we observed regulation of genes 

involved in glycerol utilization, glp, in the deletions of 5 genes, yxaD, ywbI, ywhA, 

ywgB, and yhjH suggesting that 1) regulation of glp genes may be indirect and/or 2) that 

these genes may be involved in regulated metabolic pathways. Only two genes, mdxR 

and yesS appeared to regulate expression in the misexpression strain only, but this 

regulation appeared direct since the regulated genes were in the same operon as mdxR 

and yesS. Furthermore, our observations were consistent with a previous study 

characterizing YesS as a transcriptional activator (Poncet et al., 2009). 

We found that that misexpression of 75/810 strains exhibited a growth phenotype 

and 49/75 resulted in morphological phenotypes associated with the DNA, cell division, 

and/or cell shape under just one growth condition (LB at 37 °C). We believe that 

perturbing other aspects of growth (i.e. temperature, pH, nutrient limitation) could 
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identify additional gene products that lead to growth or morphological phenotypes that 

we did not observe. Additionally, the BEIGEL could be grown in the presence of 

compounds, peptides, or other metabolites (for example, antibiotics) and screened for 

effects related to fitness. Lastly, since each strains is selected for by a spectinomycin 

resistance marker, the BEIGEL (in its entirety or as individuals stains) can be combined 

with the kanamycin and/or erythromycin resistant deletion libraries in B. subtilis (Koo et 

al., 2017). Combinatory studies of both libraries would create additional sensitized 

backgrounds that can be screened for perturbations in growth or morphology. Thus, we 

see many applications for the BEIGEL that can aid in gene discovery and 

characterization. 
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3. CHARACTERIZATION OF B. SUBTILIS YXAD 

 

3.1. Introduction 

MarR proteins are a family of DNA-binding proteins that regulate expression of 

genes involved in diverse cellular processes (Deochand & Grove, 2017). The first MarR 

protein was discovered in E. coli and disruptions in marR (multiple antibiotic resistance 

regulator) resulted in increased resistance to many antibiotics (George & Levy, 1983), 

fluoroquinolones, oxidative stress and organic solvents (Alekshun & Levy, 1997). 

MarR-like proteins have since been characterized in other bacteria as having roles in 

regulating virulence factors, drug efflux pumps, antibiotic resistance genes, and 

metabolism (Deochand & Grove, 2017). MarR-like proteins regulate gene expression as 

transcriptional activators or, more commonly, repressors. MarR proteins typically 

regulate their own expression (autoregulatory) and one or more divergent genes by 

binding specific DNA sequences in gene promoters. The binding of MarR to DNA can 

be regulated by ligand binding or cysteine modification, usually resulting in a 

conformation change that releases the protein from DNA. 

          MarR-like proteins bind DNA as homodimers forming a ‘safety triangle’-like 

shape (Alekshun et al., 2001, Hong et al., 2005, Kumaraswami et al., 2009). Structurally 

characterized MarR proteins consist of six α-helices and three β-strands with the 

following topology: α1-α2-β1-α3-α4-β2-β3-α5-α6 (Figure 3.1AB) (Deochand & Grove, 

2017). Contacts between the buried hydrophobic residues of helices α1, α5 and α6 (and 

sometimes α2) and α1’, α5’ and α6’ of the dyadic subunit, form a hydrophobic core and 

are important for dimerization (Hong et al., 2005, Kumaraswami et al., 2009). Contacts 
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with the major groove are facilitated by α4, whereas a loop of approximately seven bp 

formed between β2 and β3 interacts with the minor groove (Hong et al., 2005, Dolan et 

al., 2011). The loop possesses a conserved DXR motif, with the conserved Arginine 

making contacts with the DNA minor groove (Hong et al., 2005). The winged helix-

turn-helix (wHTH) DNA-binding domain is made up of β1, α3, α4, β2 and β3 (Hong et 

al., 2005). The overall positive surface potential observed on MarR structures is likely 

advantageous for DNA-binding (Hong et al., 2005, Kim et al., 2016). MarR-like 

proteins typically bind 12-18 bp motifs consisting of two inverted repeats separated by 

2-5 bp (Wilkinson & Grove, 2006) in promoters regions. For MarR proteins that act as 

repressors, the motifs commonly overlap -10 promoter elements, positioning the MarR 

protein to repress transcription by blocking access of RNA polymerase to the promoter 

(Deochand & Grove, 2017). Although MarR-like proteins bind to diverse sequences, the 

crystal structure of B. subtilis OhrR bound to DNA reveals hydrogen bonding between 

the NH of R94 and the O2 of thymine (Hong et al., 2005). Because of the nature of this 
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bond, the conserved Arginine in the loop is exclusive to pyrimidine recognition sequence 

at this position.  

 

Figure 3.1 MarR-like protein family. 
(A) Multiple sequence alignment of MarR-like proteins generated by Clustal Omega 
(Sievers et al., 2011). Secondary structures are represented by colored boxes and arrows 
for 𝛼 helices and β strands. (B) Predicted structure of YxaD generated from Itasser 
(Yang et al., 2015, Roy et al., 2010, Zhang, 2008). Secondary structures are separated by 
color and match the MSA in (A). 
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MarR DNA-binding activity is typically altered by oxidation or by binding small 

ligands (Deochand & Grove, 2017). MarR-like proteins have been shown to be 

allosterically regulated by phenolic ligands such as plant-derived aromatic compounds or 

antibiotics, carboxylic acids (Huang & Grove, 2013), proteins (Daigle et al., 2007, Jerga 

& Rock, 2009, Grove, 2017) metals such as zinc (Reyes-Caballero et al., 2010, Pagliai et 

al., 2018) or by oxidation of at least one cysteine residue (Newberry et al., 2007, Hong 

et al., 2005). More recently, a pH dependent MarR-like regulator was found to change 

topology of promoter DNA in response to altered pH (Deochand et al., 2016).  

Mutations in marR genes have been discovered in drug resistant isolates of many 

bacteria. These marR mutations often result in a regulator that is unable to bind DNA 

and, therefore, unable to repress genes involved in cell survival in the presence of 

antibiotic stress (Jalal & Wretlind, 1998, Srikumar et al., 1999, Oh et al., 2003, Brooks 

et al., 2007, Schindler et al., 2013). Discerning how MarR-like proteins bind and 

recognize DNA sequences is critical in learning how they regulate virulence, oxidative 

stress, antibiotic resistance, and metabolic genes. In addition, characterizing the roles of 

other MarR-like proteins will likely contribute to our understanding on how bacteria are 

capable of surviving diverse and hostile environments.  

The Gram-positive model organism Bacillus subtilis possesses 23 annotated 

MarR-like proteins, 16 of which have not been experimentally characterized.  In the 

present work, we characterize the MarR-like protein YxaD.  YxaD was identified in a 

misexpression screen to uncover factors involved in regulating subcellular organization 

in B. subtilis, we identified the MarR-like protein, YxaD. Here we describe the 



 

 

 

58 

phenotypes and possible causes of yxaD overexpression, YxaD’s function as a 

transcriptional regulator, and the mechanism YxaD uses to bind DNA.  

 
 

3.2. Materials and Methods 

3.2.1. General Methods 

All B. subtilis strains were derived from B. subtilis 168. Cloning, bacterial two-

hybrids and protein purification were carried out in E. coli DH5α, E.coli DHP1, and 

E.coli BL21, respectively. All B. subtilis and E. coli strains used in this study are listed 

in Table 3.1. Plasmids are listed in Table 3.2. Oligonucleotide primers are listed in Table 

3.3. All strains containing Phy- misexpression constructs were streaked on LB plates 

containing 0.2% (w/v) glucose. For all growth experiments, strains were grown in 25 ml 

LB or 25 ml CH () in 250 ml baffled flasks at 37 °C shaking in a water bath set to 280 

rpm. For transcriptional fusions experiments, strains were grown in LB supplemented 

with 0.3% (w/v) glucose. The following antibiotic concentrations were used for E. coli: 

chloramphenicol (25 µg/ml), kanamycin (25 µg/ml), ampicillin (100 µg/ml or when used 

in combination with other antibiotics, 50 µg/ml). For B. subtilis, antibiotics were used in 

the following concentrations: spectinomycin (100 µg/ml), chloramphenicol (7.5 µg/ml), 

kanamycin (10 µg/ml), phleomycin (0.8 µg/ml), and for erythromycin resistance, 1 

µg/ml erythromycin (erm) and 25 µg/ml lincomycin. Unless otherwise indicated, 

isopropyl-β-D-thiogalactopyranoside (IPTG) was added to 1 mM and xylose was added 

to 1% (w/v).  
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Table 3.1 Strains used in Chapter 3 
Strain Genotype Reference 
Parental   
B. subtilis 168   
E. coli DH5α  

 

F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 
nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, 
hsdR17(rK- mK+), λ– 

 

E. coli DHP1 F-, cya-99, araD139, galE15, galK16, rpsL1 (Strr), 
hsdR2, mcrA1,mcrB1;  

Thomas 
Bernhardt  

E. coli BL21 
(DE3) Codon 
Plus RIL 

(F-  ompT hsdS- dcm+ TetR gal  λ(DE3) endA Hte 
[argU ileY leuW CamR])  

Stratagene 

B. subtilis 168   
BSH050 amyE::Phyperspank-yxaD (GTG start) (spec) This study 
BSH52 amyE::Phyperspank-yxaD (GTG start) (spec), dnaX-

yfp (phleo)  
This study 

BSH43 ycgO::PftsW tetR-cfp (phleo), yycR::tetO48 (cat) This study 
BSH53 ycgO::PftsW tetR-cfp (phleo) , amyE::Phyperspank-

yxaD (spec), yycR::tetO48 (cat) 
This study 

BSH144 PyxaD yxaD-gfp (spec) This study 
BSH190 pSH041- PyxaD (erm)(cat), PyxaD yxaD-gfp (spec) This study 
BSH189 pSH041 (erm)(cat) This study 
BSH041 yxaD::erm This study 
BSH094 Δ(soj-spo0J)::cat, yxaD::erm This study 
BSH085 Δ(soj-spo0J)::cat This study 
BSH089 amyE::Pxyl-scpA (spec) This study 
BSH097 yycR::Phyperspank-yxaD (cat), amyE::Pxyl-scpA 

(spec) 
This study 

BSH059 yycR::Phyperspank-yxaD (cat) This study 
BSH107 scpA::erm (erm) This study 
BSH143 scpA::erm (erm), amyE::Phyperspank-yxaD (spec) This study 
BSH141 amyE::Phyperspank-yxaD  R82A(spec) This study 
BSH139 amyE::Phyperspank-yxaD R90A This study 
BSH305 amyE::spoVG-lacZ (cat), ΔyxaD This study 
BSH306 amyE::PyxaD-spoVG-lacZ (cat), ΔyxaD This study 
BSH307 amyE::PyxaKC-spoVG-lacZ (cat), ΔyxaD This study 
BSH522 yycR::Phy-yxaD (gtg start) (kanR) , amyE::PyxaKC-

spoVG-lacZ (cat), ΔyxaD 
This study 

BSH523 yycR::Phy-yxaD* (kanR) R90A  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH524 yycR::Phy-yxaD* (kanR) D88A  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH525 yycR::Phy-yxaD* (kanR) R82A  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 
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Table 3.1 Continued 

Strain Genotype Reference 
BSH526 yycR::Phy-yxaD* (kanR) K29E  , amyE::PyxaKC-

spoVG-lacZ (cat), ΔyxaD 
This study 

BSH527 yycR::Phy-yxaD* (kanR) G49E  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH528  yycR::Phy-yxaD* (kanR) G49R , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH529 yycR::Phy-yxaD* (kanR) R52C , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH530 yycR::Phy-yxaD* (kanR) R52L  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH531  yycR::Phy-yxaD* (kanR) K54Q , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH532 yycR::Phy-yxaD* (kanR) L79P , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH533  yycR::Phy-yxaD* (kanR) D85E , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH534  yycR::Phy-yxaD* (kanR) G89E , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH535 yycR::Phy-yxaD* (kanR) R90G  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH536 yycR::Phy-yxaD* (kanR) R90K  , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH537 yycR::Phy-yxaD* (kanR) L103P, amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH538 yycR::Phy-yxaD* (kanR) L133M, amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH539 yycR::Phy-yxaD* (kanR) N138 , amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH540 yycR::Phy-yxaD* (kanR) N138Y, amyE::PyxaKC-
spoVG-lacZ (cat), ΔyxaD 

This study 

BSH290 amyE::spoVG-lacZ (cat) This study 
BSH291 amyE::PyxaD-spoVG-lacZ (cat)  This study 
BSH292 amyE::PyxaKC-spoVG-lacZ (cat) This study 
E. coli DHP1   
cSH025 yxaD-T18 + scpA-T25 This study 
cSH027 yxaD-T18 + empty-T25 This study 
cSH028 empty-T18 + scpA-T25 This study 
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Table 3.2 Plasmids used in Chapter 3 
Plasmid Description Reference 
pSH041 PyxaD (erm) (cat) This study 
pSH052 6His-yxaD (kan) This study 

 

Table 3.3 Oligonucleotides used in Chapter 3 
Oligo Sequence 5’-3’ 
OSH108 AAAGTCGTCAGCTCATATTCAATTA 
OSH109 CATATAACGACTTGTATTTATTCAGTTAATGT 
OSH110 CCAATCTCCGGCATTGAC 
OSH111 GGTTCTGAGGAATCGCTTTACTT 
OSH112 AATAAATACAAGTCGTTATATGACTAAATCAA 
OSH113 ATCAAGTGCTGCTCTCCAATC  

 

3.2.2. Microscopy 

For microscopy experiments in LB, all samples were grown in LB media for 2-3 

hours to mid-exponential, then back-diluted to OD600 = 0.00625 in 25 ml LB. For growth 

in CH, samples were grown overnight in CH media to mid-exponential, then back-

diluted to OD600=0.00625 in 25 ml CH. All cultures were grown at 37 °C shaking in a 

water bath set to 280 rpm. When indicated, cells were grown to OD600 = 0.05, and 

induced with 1 mM IPTG. Time refers to time post induction. Fluorescence microscopy 

was performed with a Nikon Ti-E microscope equipped with a CFI Plan Apo lambda 

DM 100× objective, Prior Scientific Lumen 200 illumination system, C-FL UV-2E/C 

4′,6-diamidino-2-phenylindole, C-FL green fluorescent protein (GFP) HC HISN Zero 

Shift and C-FL YFP HC HISN Zero Shift filter cubes, and a CoolSNAP HQ2 

monochrome camera. All images were captured with NIS Elements Advanced Research 

(version 4.10), and processed with NIS Elements and ImageJ64 (W., 1997-2015). For 

image capture, 1 ml of cells were pellet at 6,010 x g for 1 min in a tabletop microfuge at 

room temperature, supernatants were removed by aspiration, and pellets were 
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resuspended in ~7 μl 1X PBS containing DAPI DNA stain (2 μg/ml) (Molecular Probes) 

and FM4-64 membrane stain (3 μg/ml)(Molecular Probes). Cells were mounted on glass 

slides with polylysine-treated coverslips.   

3.2.3. Bacterial two-hybrid 

Bacterial two-hybrids were performed as previously described (9576956), except 

cloning was performed in the presence of 0.2% glucose (w/v) in addition to antibiotics. 

E. coli DHP1 harboring the applicable pT25 and pT18 interaction plasmids were grown 

in LB containing ampicillin (50 μg/ml) and kanamycin (25 μg/ml) to mid-exponential 

phase and normalized by OD600. Five μl normalized cells were spotted on M9-glucose 

minimal plates with 250 μM isopropyl-β-D-thiogalactopyranoside (IPTG), 40 μg/ml 5-

bromo-4-chloro-3-indolyl-β- D-galactopyranoside (X-gal), ampicillin (50 μg/ml), and 

kanamycin (25 μg/ml). Plates were incubated at room temperature for 72 hours before 

imaged.  

 

3.2.4. Screen for yxaD variants 

Single colonies of BSH310 were used to inoculate 5 ml LB independently. Three 

independent cultures were grown for each strain. Following 5 hr growth at 37 °C, 

cultures were spun at 6,010 x g for 2 min. Supernatants were removed by aspiration and 

resulting pellets were resuspended with 150 μl 1X PBS. 1:1, 1:2 and 1:5 dilutions of 

each resuspension were made in 1X PBS. Fifty μl of each dilution was plated on LB 

plates containing 100 μg/ml X-gal and either 50 μM, 250 μM, or 500 μM IPTG. Plates 

were incubated at room temperature until colony growth was observed and color was 

detected (~3 days). Only white colonies were selected for further analysis; this screen 
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eliminated YxaD variants unable to bind DNA and LacI mutants unable to derepress 

yxaD expression. Fifty individual colonies obtained from the selection were streaked for 

isolation on LB plates supplemented with 0.2% glucose (w/v). To select for dominant 

negative yxaD variants, single colonies of BSH082 or BSH098 were used to inoculate 

independent 5 ml LB cultures. Four independent cultures of each strain were then grown 

for 5 hr at 37 °C. Cells were treated as before and resuspended in 150 µl 1 XPBS, but no 

further dilutions were made after resuspension. Fifty μl were plated on LB plates 

containing 50 μM IPTG. Individual colonies were streaked for isolation and patched on 

LB plates containing 40 μg/ml X-gal and 50 μM IPTG to check for lacI mutants. Only 

blue colonies were proceeded with as these passed the screen for functional LacI.   

 

3.2.5. In vivo YxaD DNA-binding assay 

The yxaD gene from each suppressor (or variant from site-directed mutagenesis) 

was PCR amplified with oSH037 and oSH038. Enzymatic assembly was used to ligate 

each yxaD variant (yxaD*) PCR product to a kanamycin resistant marker, Phy-promoter, 

and region of homology to yycR for integration into the B. subtilis chromosome. 

Genomic DNA of the transformants was transformed into the DNA-binding reporter 

strain, BSH307, to analyze DNA-binding ability. Single colonies were used to inoculate 

5 ml LB + 0.2% glucose (w/v). Cultures were grown at 37 °C until OD600 reached 0.25-

0.6 and were then normalized to a final OD600 = 0.25. Two µl of normalized cultures 

were spotted on plates containing kanamycin, 40 µg/ml X-gal and either 50 µM, 250 

µM, 500 µM, or 1.0 mM IPTG. Plates were left at 30 °C until blue color developed, ~48 

hours.  
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3.2.6. β-galactosidase assays 

Strains for transcriptional fusion assays were generated by cloning the intergenic 

region between yxaD and yxaKC from both directions into pDG1661 creating a lacZ 

fusion. The construct was then integrated into the non-essential locus, amyE, of B. 

subtilis. Three colonies were inoculated into 3 independent 5 ml cultures of LB 

supplemented with 0.3% glucose (w/v). Cultures were grown to mid-exponential and 

back-diluted to OD600=0.00625 in 25 ml LB with 0.3% glucose (w/v) in 250 ml baffled 

flasks at 37 °C shaking in a water bath set to 280 rpm. OD readings and samples for β-

galactosidase assay were taken every hour. β-galactosidase assays were performed as 

described previously (Ababneh & Herman, 2015), except 600 μl was collected for each 

sample. 

 

3.2.7. Purification of YxaD 

To obtain purified 6His-YxaD, E.coli BL21(λDE3) Codon Plus RIL cells were 

transformed with pSH038. Freshly transformed cells were inoculated in 25 mL Teknova 

Cinnabar High-Yield Protein Expression Media with 0.4% glucose (w/v) to a starting 

OD of 0.1. Cultures were grown for 28 hours at 30 °C at 280 rpm then centrifuged for 10 

minutes at 9,639 x g at 4 °C. Pellets were resuspended in 30 mL of lysis buffer 

containing 50mM Phosphate, pH 8.0, 300 mM KCl, 20 mM Imidazole, 20% sucrose, 5 

mM β-Mercaptoethanol, 1 mM protease inhibitor, and 100 U/µl lysozyme. Harvested 

cells were spun at 112,000x g for 45 min to remove cell debris. Cell supernatant was 

loaded onto 1 mL of Ni-NTA Agarose (Qiagen). Column was washed with 10 mL of 

wash buffer (50mM Phosphate, pH 8.0, 300 mM KCl, 20 mM Imidazole, 20% sucrose). 
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6His-YxaD was eluted with increasing imidazole concentrations (50 mM Phosphate, pH 

8.0, 300 mM KCl, and either 100 mM, 200 mM, 250 mM, or 500 mM Imidazole). 

Expression and purification of 6His-YxaD were checked by running samples on a 12% 

SDS-PAGE gel stained with Colloidal Coomassie Blue Stain. Fractions showing a single 

band representing 6His-YxaD were pooled and dialyzed three times into 300 mL of 50 

mM TrisHCl pH 8.0, 300 mM KCl 0.5 mM EDTA, 1 mM DTT and 15% glycerol. 

Aliquots of purified protein were kept at -80 °C until needed. 

 

3.2.8. Electrophoretic mobility shift assays (EMSA) 

Putative YxaD-binding sites were identified by entering the intragenic sequence 

of yxaD and yxaKC into the palindrome finder EMBOSS Explorer. DNA probes were 

generated containing either binding site or both sites using the following primer pairs: 

Binding Site I (BS-I), OSH108 and OSH109; Binding Site II (BS-II), OSH112 and 

OSH113; Binding Sites I and II (BS-I+II), OSH110 and OSH111. PCR products were 

purified then subsequently quantified using the Quant-iT PicoGreen dsDNA Assay Kit 

(ThermoFisher). Prior to reactions, 6His-YxaD aliquots were dialyzed against 300 ml of 

50 mM Tris-HCl pH 8.0, 300 mM KCl 0.5 mM EDTA, 1 mM DTT to remove residual 

glycerol. Binding reactions were performed with 0.1 ng of DNA, 5x Reaction Buffer 

(100 mM TrisHCl, pH 8.0, 100 mM KCl, and 5 mM EDTA), and varying concentrations 

of purified 6His-YxaD to a final volume of 10 μl. Once mixed, reactions were incubated 

at room temperature for 15 min. Following the incubation period, 2 μl of loading reagent 

(20 mM TrisHCl, pH 8.0 and 15% Ficoll 400) was added to each reaction. Glycerol or 

dye was not added as either appeared to abolish the protein-DNA interaction. Ten μl of 
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each reaction were loaded onto 5% native polyacrylamide gels containing 0.5X TBE 

pre-run at 120 V for 1 hr. Gels were run at 120 V for 30 min then stained with SYBR 

Green I (ThermoFisher). 

 

3.3. Results 

3.3.1. YxaD misexpression leads to a defect in chromosome segregation and DNA 

replication 

In a screen to discover B. subtilis genes involved in DNA replication and 

subcellular organization, we identified yxaD, encoding a putative MarR-like DNA-

binding protein. Fluorescence microscopy on cells overexpressing yxaD revealed a loss 

in their bilobed nucleoid structure after 1.5-2 doublings (Figure 3.2A). After 90 min in 

LB media, most of the chromosomal DNA was either present at midcell or guillotined by 

cell division. DNA staining suggested there was no qualitative increase in DNA 

accumulation associated with each DNA mass, suggesting that YxaD misexpression may 

also lead to a defect in DNA replication. To assess if replisomes were assembled in the 

cells, we utilized a strain containing the DNA polymerase clamp loader subunit, DnaX, 

fused to YFP and imaged cells using fluorescence microscopy. DnaX-YFP foci are only 

observed when replisomes are formed (Lemon & Grossman, 1998, Lemon & Grossman, 

2000). Wild type cells growing in LB medium exhibit DnaX-YFP foci throughout the 

cell, consistent with prior observations (Lemon & Grossman, 1998) (Figure 3.2B). Upon 

yxaD misexpression, the DnaX-YFP foci appeared similar to wildtype after 30 min (Fig 

3.2B), when changes in the nucleoid by DAPI staining are already evident.  At later 
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timepoints, the DnaX-YFP foci appear less spread out and brighter relative to wild type, 

possibly due to pleotropic effects (Figure 3.2B).  

 

Figure 3.2 yxaD misexpression phenotypes. 
Cells harboring one copy of (A) Phy-yxaD (BSH050) or (B) Phy-yxaD and DnaX-YFP 
(BSH052). Cells were grown in LB media (left) until OD600 reached 0.05 when IPTG 
was added followed by images taken at 30, 60, and 90 min. Cell membranes were 
stained with FM4-64 (red), DNA was stained with DAPI (pseudocolored green), and 
DnaX-YFP foci are falsely colored white. 
 

 Cells misexpressing yxaD exhibited a clear defect in segregation, but continued 
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to ask whether DNA replication origins were segregated after DNA replication. During 

growth in LB medium, B. subtilis cells double every 18 min and typically possess two to 

eight origins of replication at one time. To more easily visualize individual origins, we 

utilized CH medium (Sterlini & Mandelstam, 1969) in which the doubling time is 30 

min and there are fewer origins per cell. Importantly, yxaD misexpression in CH results 

in phenotypes similar to that observed in LB (Figure 2.3A).  
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Figure 3.3 yxaD misexpression phenotypes in CH media. 
(A) Bs 168 cells harboring one copy of Phy-yxaD (BSH050) grown in CH liquid media 
for 1.5 hr and 2 hr. Yellow arrows indicate anucleate cells or cells containing bulk of 
nucleoid at midcell. (B) Cells grown in CH expressing tetR-cfp and tetO arrays at -7° 
only (TOP) or with Phy-yxaD (BOTTOM). 1 ng/μl aTC was added to inhibit TetR bound 
tetO arrays from forming roadblock (20807205). Prior to imaging, collected samples 
were washed twice with 1X PBS to remove aTC. TetR-CFP foci are falsely colored 
white. Membranes are stained with FM4-64 (red) and DNA is stained with DAPI 
(psuedocolored green). 
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To monitor origins of replication, an array of 48 TetR operator sites (tetO48) was 

integrated near oriC (at 353°) in cells constitutively expressing TetR-CFP. In this assay, 

one TetR-CFP focus is observed for each resolved oriC, thus providing a proxy for the 

number of chromosomes associated with each nucleoid mass. Using this assay, we 

observed that cells expressing yxaD for 90 min exhibited similar numbers of foci (2-6 

per cell) compared to wild-type cells, although the foci were qualitatively brighter 

(Figure 3.3B). In contrast to wild type, the YxaD-expressing strain possessed fewer 

nucleoid masses after 90 min of yxaD expression (~3 cell doublings in CH). At the same 

time, there was no qualitative increase in signal from stained DNA. These results suggest 

that artificial expression of YxaD results in both replication and segregation defects.   

Next, we examined the localization of YxaD-GFP fusion (native promoter) and 

observed YxaD-GFP in a similar pattern to that of oriC. This observation is consistent 

with YxaD binding to the yxaD and yxaKC promoters at 351° to regulate transcription 

(Figure 3.4AB) (Chapter 2). Introducing a plasmid harboring a copy of the yxaD/KC 

intergenic region onto a self-replicating medium copy plasmid in a yxaD-gfp expressing 

strain resulted in the presence of additional foci (Fig 3.4C). The signal of YxaD-GFP 

was also brighter, which would be expected if YxaD were titrated away from repressing 

it’s own promoter. 



 

 

 

71 

 

Figure 3.4 YxaD-GFP localization. 
(A) Map of yxaD and yxaKC with respect to oriC. Intergenic region used in pSH041 (C 
and D) shown in red. Cells harboring (B) YxaD-GFP only (BSH144), (C) YxaD-GFP 
and pSH041 (BSH190) or (D) pSH041 only (BSH189). Membranes are stained with 
FM4-64 (red), DNA is stained with DAPI (pseudocolored green) and YxaD-GFP foci 
are falsely colored white. 
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associated with the phenotypes of YxaD misexpression. A search of the IntAct 

Molecular Interaction Database (Hermjakob et al., 2004, Kerrien et al., 2012) revealed 

yeast two-hybrid (Y2H) interactions between YxaD and three B. subtilis proteins: ScpA, 

a subunit of the Structural Maintenance of Chromosome (SMC) condensin system, 

HolA, the delta subunit of DNA polymerase, and TkmA, modulator of PtkA protein 

tyrosine kinase activity (Marchadier et al., 2011, Shi et al., 2014). Since ScpA and HolA 

have known roles in chromosome segregation and DNA replication, respectively, we 

attempted to recapitulate the YxaD-ScpA and YxaD-HolA interactions by bacterial two-

hybrid (B2H). However, we were only successful in recapitulating the interaction 

between YxaD and ScpA (Figure 3.5A).  

           ScpA is a component of the SMC complex, or condensin, and is responsible for 

proper segregation of chromosomes (Gruber et al., 2014). SMC recruitment to the 

origin-proximal region of the chromosome is partially mediated by an interaction with 

the DNA-binding protein ParB (Gruber & Errington, 2009), yet parB is not required for 

growth. Therefore, we explored the possibility that yxaD and parB had redundant roles 

in recruiting ScpA and/or SMC complexes to origin-proximal DNA. To determine if 

ParB and YxaD were redundant, we created a ΔparB ΔyxaD double mutant. If parB and 

yxaD were redundant and required for SMC recruitment, we would expect a ΔparB 

ΔyxaD strain to have similar or the same growth defects as a strain lacking SMC. Since 

the ΔparB ΔyxaD strain construction was successful and grew under conditions that 

require SMC (growth at 37 °C), we deduced that their functions are not redundant 

(Figure 3.5B). In order to further probe the potential interaction between YxaD and 

ScpA, we asked whether artificial expression of scpA could rescue yxaD misexpression. 



 

 

 

73 

Therefore, we placed scpA under a xylose-inducible promoter at a nonessential locus 

(amyE) and introduced this construct in yxaD overexpressing cells. Overexpression of 

scpA did not detectably rescue cells from the effects of yxaD misexpression (Figure 

3.5C). However, this observation could be expected if YxaD only targets ScpA when in 

complex with SMC. Accordingly, the amount of “targetable ScpA” (i.e. in SMC 

complexes) might not be altered when scpA is overexpressed if ScpB and Smc are 

present at same levels as the uninduced sample. Therefore, to determine if ScpA was 

required for YxaD’s misexpression phenotype, we introduced ΔscpA into the yxaD 

overexpression strain. When grown at permissive temperature (25 °C), killing was 

observed, demonstrating that scpA is not required for the yxaD misexpression phenotype 

(Figure 3.5D). These data suggest that whether or not YxaD targets ScpA, there exists at 

least one additional target for YxaD. In support of this idea, we attempted to obtain 

mutants resistant to yxaD misexpression by preforming a suppressor selection, but only 

obtained mutants in the expression construct (LacI dominant) (see below). 
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Figure 3.5 ScpA is not required for phenotypes associated with artificial induction 
of YxaD. 
(A) B2H of YxaD-T18 and ScpA-T25 (cSH025), YxaD-T18 and empty-T25 (cSH027), 
and empty-T18 and ScpA-T25 (cSH028). (B) Single colonies of Bs 168 or strains 
harboring ΔyxaD (BSH041), Δsoj Δspo0J ΔyxaD (BSH094), or Δsoj Δspo0J (BSH085) 
were streaked on LB agar plates. (C) Fluorescence microscopy images of cells 
overexpressing ScpA only (BSH089), ScpA and YxaD (BSH097), or YxaD only 
(BSH059). Membranes are stained with FM4-64 (red) and DNA is stained with DAPI 
(pseudocolored green). (D) Single colonies of Bs 168, Phy-yxaD (BSH050), ΔscpA 
(BSH107), or Phy-yxaD and ΔscpA (BSH143). 
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3.3.3. DNA-binding is required for YxaD misexpression phenotype 

Since YxaD belongs to the MarR family and appears to bind DNA, we wondered 

whether DNA-binding was required for the morphological defect observed from yxaD 

misexpression. DNA-binding in MarR-like proteins is facilitated by the conserved 

wHTH motif composed of β1, α3, α4, β2 and β3 (Deochand & Grove, 2017). The loop 

formed between β2 and β3 contains a conserved DXR motif, and the arginine in DXR is 

required for DNA-binding (Alekshun et al., 2001, Saito et al., 2003). To identify the 

DXR motif and to distinguish any additional residues that might be important for DNA-

binding, we created a multiple sequence alignment (MSA) of MarR-like proteins and 

generated a predicted structure of YxaD using ITASSER (Yang et al., 2015, Roy et al., 

2010, Zhang, 2008)(Figure 3.1AB). Using the MSA and predicted structure, we 

identified R90 as the arginine residue and D88 as the aspartate residue from the DXR 

motif, as well as R82, which all appear to be conserved in other MarR-like proteins and 

possibly located on β2. Point mutations were made in the yxaD misexpression construct 

for the overexpression of YxaD R82A or R90A by site-directed mutagenesis. 

Overexpression of either R82A or R90A variant did not lead to a growth or 

morphological defect (Figure 3.6B), suggesting that DNA-binding is required for 

YxaD’s misexpression phenotype. In addition, we mutated the aspartate residue in DXR 

to alanine, D88A, but misexpression of this variant still killed cells in the presence of 1.0 

mM IPTG. The observation that D88A still reduced growth was surprising considering 

D88 is located in the loop that makes contacts with DNA and is conserved in MarR-like 

proteins.  
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Figure 3.6 DNA-binding is required for the YxaD misexpression phenotype. 
Fluorescence microscopy of cells grown in CH media harboring one copy of (A) Phy-
yxaD (BSH050), (B) Phy-yxaD R82A (BSH141), or (C) Phy-yxaD R90A (BSH139). 
Images were taken 90 min after induction with IPTG. Membranes are stained with FM4-
64 (red) and DNA is stained with DAPI (pseudocolored green). 
 

3.3.4. YxaD suppressor mutants 

We next asked whether we could obtain YxaD variants that are able to bind DNA 

that no longer exhibited a growth defect upon misexpression. We hypothesized that this 

class of variants would shed more light on the mechanism of DNA-binding by MarR-

like proteins and more specifically, on the YxaD misexpression phenotype. To identify 

such variants, we created a loss-of-function (LOF) selection that also screens for YxaD 

binding to DNA using a lacZ reporter (Figure 3.7A). Our original findings indicated that 

YxaD was likely repressing yxaKC by binding to the intergenic region between yxaD 

and yxaKC (Figure 3.4C). In order to determine if YxaD represses yxaKC on agar plates, 

we constructed a PyxaKC-lacZ reporter strain in wild-type and ΔyxaD backgrounds and 

spotted each on LB plates containing X-gal. In the presence of wild-type yxaD, colonies 

appeared white (Figure 3.7B). In contrast, ΔyxaD colonies turned blue, consistent with 

the RNA-seq data suggesting YxaD represses yxaKC. To select for mutants that were 
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resistant to yxaD misexpression but still maintained YxaD’s DNA-binding activity, we 

inserted Phy-yxaD into the PyxaKC-lacZ ΔyxaD reporter strain and plated on medium 

containing both inducer and X-gal. Suppressors that grew up were screened for YxaD’s 

ability to bind DNA by identifying white colonies. In addition, the PyxaKC-lacZ, ΔyxaD 

reporter eliminates LacI mutants that are unable to derepress in the presence of inducer. 

In the initial testing of this screen, we noticed that few suppressors were obtained at the 

levels of inducer used for microscopy (1 mM IPTG). Therefore, we attempted to isolate 

variants with different toxicities by performing the suppressor selection on IPTG 

concentrations ranging from 50 µM-500 µM. From this screen we isolated 30 total 

suppressors: 9 on 50 µM, 15 on 250 µM and 6 on 500 µM IPTG. Sequencing of the 

yxaD open reading frame revealed these mutations to be in G49E, D85E, R90G, L103P, 

N138H, and N138Y. In addition, some suppressors had mutations in lacO which 

presumably led to decreased yxaD expression.  

In addition to isolating YxaD variants that retain DNA-binding activity, we also 

wanted to see if we could isolate dominant negative variants as well. To select for 

dominant negative variants, we performed the suppressor selection using strains 

harboring two copies of Phy-yxaD in the nonessential loci amyE and yhdG. Since only 

one copy of Phy-yxaD is required for the no growth defect, only dominant negative 

variants or suppressors in both constructs will grow in the presence of inducer. In total, 

we obtained five different yxaD suppressor mutants coding for R52L, K54Q, G89E, 

R90G, and R90K substitutions. We noticed that all suppressors we obtained from this 

screen were found in the yxaD misexpression construct in the amyE locus. We attributed 

this to the result of higher expression levels from the amyE locus over the yhdG locus. 
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Thus, we constructed another strain carrying two copies of Phy-yxaD, this time in the 

nonessential loci yycR and yhdG. Using this strain, we observed a more equal 

distribution of suppressors isolated from either yycR or yhdG. In total, we identified six 

unique mutations: G49R, R52C, R52L, L79P, R90G, and L133M.  

 We next sought to verify if LOF variants we obtained retained DNA binding in 

vivo. The misexpression constructs were introduced into isogenic backgrounds carrying 

a PyxaKC-lacZ reporter and cultured on solid medium containing inducer and X-gal. In 

addition, since the LOF variants were selected on concentrations varying from 50 µM-

500 µM IPTG, we examined growth defects in addition to DNA-binding by culturing on 

50 µM, 250 µM, 500 µM, and 1.0 mM IPTG (Figure 3.7C). The results (summarized on 

Table 3.4), reveal that 10 out of the 18 variants, K29E, G49E, G49R, R52C, R52L, 

K54Q, L79P, D85E, L103P, and N138Y maintained DNA-binding activity. We refer to 

this class of LOF variants with retained (+) DNA-binding activity as LOFDNA(+). In 

contrast, five variants, G89E, R90G, R90K, L133M, and N138H were not able to bind 

DNA, in addition to and unsurprisingly, R90A and R82A. This class of loss of function 

variants is referred to as LOFDNA(-) for not binding DNA. D88A was able to grow on 

very low levels of inducer, suggesting that it was not fully functional with regard to the 

artificial expression phenotypes. In addition, we observed some blue coloration in the 

D88A expressing colonies; however, this blue appeared to spread out from a region of 

the colony suggesting a second site mutation developed. Interestingly, the N138Y and 

N138H variants both grew in the presence of low levels of IPTG (50 µM-250 µM) but 

only N138H grew in the presence of 1.0 mM IPTG. Furthermore, N138Y retained DNA-

binding activity and N138H was unable to bind DNA suggesting an importance for this 
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residue on DNA-binding activity. Another very interesting finding was that while both 

retained DNA-binding activity, misexpression of G49E and G49R showed different 

colony morphologies. The YxaD G49R expressing colony appeared glossy and did not 

grow out as the others did. It is curious if the G49R variant could be targeting a different 

protein than wild type YxaD or lost the ability to target one or more of its potential 

protein targets.  
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Figure 3.7 YxaD DNA-binding activity for LOF variants. 
(A) Schematic of screen designed to identify mutants that bind (white colonies) or do not 
bind (blue colonies) DNA. (B) Strains harboring ΔyxaD expressing either Pempty-lacZ 
(BSH305), PyxaD-lacZ (BSH306), or PyxaKC-lacZ (BSH307) spotted on LB agar 
containing 40 μg/ml X-gal. For screen for DNA-binding activity, cells were grown in LB 
liquid cultures, normalized to OD600 = 0.025 and 2 μl were spotted on LB plates 
containing X-gal and indicated IPTG concentrations. Numbers in figure correspond to 
variants in Table 3.4 and 3.5. 
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Table 3.4 In vivo DNA-binding activity of YxaD* LOFDNA(+) Variants 

 

 

 

 

 

 

 

Table 3.5 In vivo DNA-binding activity of YxaD* LOFDNA(-) Variants 
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 The suppressor mutations were mapped onto the predicted YxaD structure and 

revealed that most of the variants unable to bind DNA reside near the DNA-binding 

region (Figure 3.8). Additional LOF variants unable to bind DNA map to the 

dimerization domain of YxaD. Surprisingly, many of the residues that retain DNA-

binding activity also map near the predicted DNA-binding motif. K29E, L103P and 

somewhat L79P map to the conserved ligand pocket of MarR proteins.  

 

 

Figure 3.8 YxaD LOF variants mapped to predicted structure. 
(A) LOFDNA(-) and (B) LOFDNA(-) variants are shown as blue and red spheres, 
respectively. (C) Both variant classes as in (A) and (B) with the exception of N138 
variants (purple) that belong to both classes. 
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3.3.5. YxaD regulates yxaKC and yxaD 

Although RNA-sequencing revealed that YxaD appeared to repress yxaKC 

activity (Chapter 2), we wanted to test this idea further and also address the 

physiological context of this regulation. In addition, since the RNA samples for RNA-

seq were collected during yxaD overexpression or from ΔyxaD, it was not possible to 

determine if YxaD regulates its own promoter. Thus, we constructed fusions of the 

yxaKC and yxaD promoters, PyxaKC and PyxaD respectively, to the reporter gene, lacZ, and 

performed β-galactosidase assays in LB + 0.3% glucose (w/v) (LB-G). Expression from 

both PyxaKC and PyxaD increased over time from exponential to stationary, with maximal 

expression in stationary near OD600~2.0, consistent with previously published 

transcription data (Nicolas et al., 2012) (Figure 3.9A). Lastly, to determine if yxaD and 

yxaKC expression was a result of YxaD derepression, we examined transcription from 

PyxaKC and PyxaD in ΔyxaD. In the absence of yxaD, we observed an increase of 

expression by nearly two orders of magnitude from both promoters (Figure 3.9B). These 

data suggest that YxaD regulates yxaKC and yxaD, consistent with what has been 

observed for MarR-like proteins (Deochand & Grove, 2017) and in support of our RNA-

seq analysis. Notably, expression from PyxaKC  decreased with time even in the absence of 

yxaD suggesting this promoter is subject additional regulation. In order to determine if 

regulation of yxaKC had any effect on YxaD’s misexpression phenotype, we generated 

strains harboring Phy-yxaD and either Phy-yxaKC or ΔyxaKC. The yxaD misexpression 

still occurred in the DyxaKC background. Moreover, overexpression yxaKC did not 
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affect cell viability or nucleoid morphology. These results suggest that YxaD’s effects 

do not occur because of misregulation of yxaKC (data not shown).  

 

Figure 3.9 Expression levels of yxaD and yxaKC promoters in LBG. 
Expression from putative yxaD and yxaKC promoter regions with (A) wild type yxaD 
(BSH290, BSH291, BSH292) or (B) ΔyxaD (BSH305, BSH306, BSH307) was 
monitored in LBG at 37 °C over the time course. The production of beta-galactosidase 
(left) or OD600 (right) were monitored at 1 hr intervals.   
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3.3.6. YxaD binds two sites in the yxaDKC promoter 

MarR-like proteins generally bind to palindrome sequences or palindromic 

repeats within their promoters to regulate transcription (Deochand & Grove, 2017). 

More specifically, MarR-like proteins generally bind sequences that overlap the -10 

promoter region, thereby blocking RNA-polymerase. Therefore, we sought to determine 

if YxaD bound a similar motif in intergenic region of yxaD and yxaKC. Thus, we 

analyzed the 221 bp region of the yxaDKC operon using the EMBOSS palindrome 

sequence finder (Rice et al., 2000) and identified two sets of potential 18 bp binding 

sites [Binding Site I (BS-I) and Binding Site II (BS-II)] (Figure 3.10A). Each potential 

binding site overlaps the predicted -10 of both PyxaD and PyxaKC, consistent with 

characterized binding sites of MarR-like proteins (Deochand & Grove, 2017). The 18 bp 

palindromic repeats, TTGTAC/TTATACAAGTATA, were nearly identical, with the 

exception of a single base pair (Figure 3.10B). No other motifs were identified from 

these putative motifs (allowing for up to two mismatches) within the B. subtilis genome. 

Interestingly, the putative YxaD binding sites were not exact palindromes, but instead 

consisted of two sets of 5 bp inverted repeats (IR) that overlapped; this is contrast to 
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most characterized MarR-like binding sites, which consist of only one IR. 

 

Figure 3.10 Predicted binding sites of YxaD. 
 (A) Intergenic region between yxaD and yxaKC. Predicted -10 and -35 promoter 
elements for yxaD and yxaKC are shown in orange and red, respectively. Predicted 
binding sites are shown as purple letters and as purple boxes. IR elements are shown as 
blue or green arrows in the direction of the repeat. Regions of DNA used EMSA (Figure 
3.11) are shown as double-sided arrows. (B) Predicted YxaD DNA-binding site 
generated by MEME Suite (Bailey et al., 2009).  
 

           To determine if YxaD interacts with the yxaD yxaKC promoters directly, we 

purified a His-tagged form of YxaD. We determined the functionality of this fusion by 
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checking for the yxaD overexpression phenotype and determined 6His-YxaD was 

functional (data not shown). A 150 bp DNA probe was amplified from the intergenic 

region of yxaDKC, encompassing both BS I +II (Figure 3.10A), and used in an 

electrophoretic mobility shift assay (EMSA). YxaD produced a single shift at 2.5 nM 

protein and two shifts at 25 nM, indicating that YxaD binds to the predicted promoter 

region of yxaDKC (Figure 3.11A). The two shifts observed could correspond to: 1) 

YxaD initially bound as a monomer and then as dimer (or other combination of 

multimers, i.e. dimer then tetramer), or 2) binding of YxaD dimers at two sites on the 

DNA probe. Because MarR-like proteins typically bind DNA as dimers and since we 

identified two nearly identical DNA-binding motifs, we hypothesized the latter was 

more likely. To distinguish between 6His-YxaD higher-order binding with increasing 

protein concentration or binding to both sites simultaneously, we designed two 

additional 150 bp DNA probes containing either BS-I or BS-II and performed the EMSA 

with each probe. In agreement with 6His-YxaD binding to two sites, we observed only a 

single shift in the presence of either BS-I or BS-II (Figure 3.11BC). 6His-YxaD binding 

to BS-I or BS-II occurred at an apparent Kd of 50 nM and 100 nM, respectively. Taken 

together, these data suggest that YxaD binds two sites of the intergenic region between 

yxaD and yxaKC to regulate transcription of both operons.  
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Figure 3.11 YxaD binds two sites in the yxaD and yxaKC promoter region. 
EMSAs of increase amounts of purified 6His-YxaD and 0.1 ng of the following DNA 
pieces (A) DNA III (binding sites I and II), (B) DNA I (binding site I only), or (C) DNA 
II (binding site II only). 
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YxaD binds to two sites in the yxaD/yxaKC promoter regions consistent with other 

characterized MarR-like proteins. Cells grown in LB or CH overexpressing yxaD have 

clear defects in chromosome segregation and appear to have defects in DNA replication. 

ScpA was identified as a possible target for YxaD by Y2H (Marchadier et al., 2011), a 

finding we were able to recapitulate by B2H. However, the YxaD misexpression 

phenotype did not depend on the presence of scpA, suggesting perturbations due to 

YxaD overexpression are not simply a function of perturbation of the condensing 

complex. We explored the possibility that YxaD could be redundant with ParB. Since we 

successfully constructed a ΔparB ΔyxaD mutant, we deduced that ParB and YxaD are 

likely not redundant in loading SMC complexes. This is consistent with recent data 

indicating ParB and parS sites are required for the juxtaposition and long-range 

interactions of chromosome arms (Wang et al., 2015). Still, we do not exclude the 

possibility that YxaD and ScpA may interact in vivo. In support of this idea, ScpA has 

been shown to interact with proteins involved in recombination and repair, two-

component sensor kinases, and at least two other putative transcriptional regulators, 

YdeL and YlbO (Dervyn et al., 2004). Moreover, scpA mutants were isolated that 

resulted in defects in DNA repair and gene regulation (Dervyn et al., 2004) and further, 

a recent study that tracked ScpA-YFP foci relative to SMC found that 40% of ScpA is 

not associated with condensin, suggesting it may have roles outside the condensin 

complex (Schibany et al., 2018). The nucleoid phenotype associated with artificial 

induction of YxaD is non-physiological. However, the fact that YxaD interacts with two 

independent proteins involved in DNA replication (HolA and ScpA) in Y2H and Y2H 

and B2H assays respectively and that the phenotype appears to affect DNA replication 
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and segregation suggests there may be a relationship between the DNA replication 

machineries and YxaD function. At present, we lack hypotheses for why such an 

interaction, if any, might exist.  

We have additionally considered the possibility that the misexpression phenotype 

is not a result of direct targeting by YxaD, but merely due to elevated levels of DNA-

bound YxaD. MarR-like proteins such as MarR and OhrR have been shown to bend 

DNA when bound (Zhu et al., 2017b, Hong et al., 2005). Therefore, it’s possible that 

YxaD overexpression could lead to DNA-bending, or to the recruitment of large YxaD 

complexes creating something to the effect of a DNA replication roadblock. Although 

YxaD misexpression does not result in as dramatic a phenotype as DNA roadblocks 

introduced on the right arm of the chromosome of B. subtilis (Bernard et al., 2010), the 

effects on DNA replication and chromosome segregation are similar.  One reason to 

think the phenotype is not simply due to non-specific or enhanced binding of YxaD on 

the chromosome is that we were able to isolate a number of YxaD variants that retain the 

ability to bind the identified promoter region, but were unable to kill the cell (see below). 

Intriguingly, we obtained 10 YxaD LOFDNA(+) variants that lost the ability to kill 

cells yet still maintained DNA-binding activity, namely K29E, G49E, G49R, R52C, 

R52L, K54Q, L79P, D85E, L103P, and N138Y. Unexpectedly, most of these variants 

map to a region near the DNA-binding motif on the predicted structure of YxaD (Figure 

3.8, red spheres). An obvious explanation for the LOFDNA(+) variants is that they prevent 

interaction of YxaD with whatever target(s) lead to the misexpression phenotypes. 

Another possibility is that the LOFDNA(+) variants could have a higher affinity for DNA. 

YxaD might use DNA as a positional cue and once released from DNA (either by ligand 
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binding or on/off rates) is in a form capable of targeting its partner. In this way, more 

tightly bound variants would be expected to have less of a growth defect as they target 

less. This is consistent with a super-repressor identified in E. coli, that has a nearly 9-

fold increase in DNA binding activity compared to wildtype (Alekshun & Levy, 1999). 

This hypothesis could be tested by purifying the LOFDNA(+) variants and testing their 

affinity for DNA. Along with this idea, if ligand binding leads to release of YxaD from 

the DNA, some variants could be disrupting ligand binding. The ligand binding pockets 

of most MarR-like proteins are made up of 𝛼1, 𝛼2, and 𝛼1’ (Kim et al., 2016, 

Kumarevel et al., 2009). In addition, structural analysis of the MarR-like protein, MexR, 

in complex with its antirepressor peptide, ArmR, reveals a similar pocket created by 𝛼1, 

𝛼2, 𝛼1’ and 𝛼2 (Wilke et al., 2008). LOFDNA(+) variants K29E and G49E/R are predicted 

to lie on 𝛼1/ 𝛼1’ and at the C-terminal end of 𝛼2, respectively. Understanding the nature 

of these variants and YxaD’s interaction with a ligand is difficult to deduce without 

knowing the ligand.  

R52C, R52L and K54Q are charge changes and map to the DNA-binding region. 

Although these residues do not map to the winged loop or 𝛼4 which are important for 

interactions with the DNA minor groove and sequence specificity in the major groove, it 

is still possible that these residues aid in the overall positive charge of YxaD’s DNA-

interaction domain. Therefore, mutations in these residues to uncharged or negatively 

charged could affect DNA-binding. However, since the R52C, R52L and K54Q 

LOFDNA(+) variants are still able to recognize the binding sites on the yxaKC promoter 

DNA, we speculate these residues could make YxaD binding to this region more 

specific. A similar conclusion can be made for L79P and L103P located in β1 and 𝛼5, 
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respectively. The L79P substitution would likely disrupt the β-strand and 𝛼-helix 

secondary structure due to the rigid structure of proline, potentially displacing the wHTH 

motif and 𝛼5. The decrease in entropy associated with a proline substitution could also 

increase the stability of the DNA-binding motif, potentially reducing YxaD’s affinity for 

other sites or increasing YxaD’s affinity for yxaKC promoter DNA. D85 is conserved in 

YxaD, MepR and TamR and maps to the wHTH motif on the predicted YxaD structure 

which suggest a possible role for D85 in DNA-binding. However, the D85E substitution 

did not affect DNA-binding but lost the ability to kill when misexpressed. Oddly, the 

D85E substitution conserves the negative charge, suggesting that the change in size from 

aspartate to glutamate contributes to the reduced toxicity of this variant. This is 

supported by the susceptibility D85E still has to IPTG concentrations higher than 250 

µM, a growth phenotype not exhibited by the other isolated variants. Lastly, N138Y was 

very interesting as this variant maintained DNA binding while N138H, which was also 

isolated, did not. In addition, N138Y grew much more poorly on IPTG than N138H. 

N138 is located near 𝛼6 so the substitution could affect the dimerization interface. The 

N138Y is a relatively conservative substitution, with both residues being polar and 

uncharged.  The N138H substitutes the polar, uncharged residue for with a positively 

charged residue.  

 In addition to the LOFDNA(+), we isolated five YxaD variants that did not kill 

cells and also did not bind DNA in our in vivo assay (LOFDNA(-)). As expected, G89E, 

R90G and R90K were classed as LOFDNA(-)  which we anticipated since these residues 

map to the DXR motif in the loop region and are known to be required for DNA-binding 

for MarR proteins (Alekshun et al., 2001, Saito et al., 2003). Interestingly, even the 
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R90K substitution maintains the positive charge, it was disrupted in binding DNA in 

vivo (comparable to the R90A substitution). This could be due to role of arginine in 

DXR in making hydrogen bonds between the guanidinium side chain with the minor 

groove DNA (Hong et al., 2005). Similar to N138, L133M located on 𝛼6 could disrupt 

the dimerization interface, although both are hydrophobic. Another intriguing possibility 

is that YxaD formers higher order oligomers. Although not frequent, some MarR-like 

proteins bind as tetramers and other higher order oligomers (Kim et al., 2016, Chang et 

al., 2014) (MepR-4XRF). Specifically, for HcaR, it appears the 𝛼6s of each monomer 

interact to form a tetramer (Kim et al., 2016). Therefore, if YxaD forms tetramers in 

vivo, the substitutions at L133 and N138 could disrupt this formation. In contrast 

however, we did not observe banding patterns consistent with tetramer formation by 

EMSA assays. Nevertheless, further biochemical analysis is required to probe the 

LOFDNA(+)  and LOFDNA(-) variants and their roles in DNA-binding and misexpression. 

Furthermore, since most identified MarR-like variants are specific to those that abolish 

DNA-binding, we believe these variants could provide novel insight into the 

mechanisms MarR-like proteins use to bind DNA, ligands, or other proteins.  
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4. CHARACTERIZATION OF THE CID/LRG HOMOLOG, YXAKC 

 

4.1. Introduction 

A bacterium’s ability to adapt to environmental changes relies on its capacity to 

sense and respond to stimuli. This type of regulation is often mediated at the level of 

transcription, where genetic switches or transcriptional regulators impart changes in gene 

expression in response to stimuli (i.e. metabolites). By binding to ligands utilized or 

similar to those utilized by their regulated gene products, transcriptional regulators can 

limit gene expression to only when required. In addition, in order for bacteria to elicit a 

proper response, gene expression patterns must be tightly linked to nutrient availability, 

ensuring the requirements for growth are met, and not wasted. Bacteria encode different 

regulatory mechanisms to enable their survival in their diverse, native environments. For 

example, in the wild, the soil dwelling bacterium, Bacillus subtilis, must adapt to utilize 

plant materials secreted from roots and induce various developmental programs leading 

biofilm formation (Lugtenberg & Kamilova, 2009, Allard-Massicotte et al., 2016, 

Marschner, 2011). Even when considering a seemingly simplistic example such as 

growth in excess glucose, a variety of regulatory mechanisms still exist to finely tune 

gene expression to direct metabolic flux, for example, catabolite repression by cyclic 

AMP (cAMP) and the catabolite control protein A (CcpA) in E. coli and B. subtilis, 

respectively (Saier et al., 1995).  

B. subtilis CcpA is a global regulator of gene expression in response to available 

carbon and acts as both a transcriptional repressor as well as activator by binding to CRE 

DNA elements (Fujita, 2009, Warner & Lolkema, 2003). During growth in excess 
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glucose, or other fermentable sugars, CcpA-mediated transcription factor activity 

represses the TCA cycle to prevent excess ATP production and activates various genes 

involve in overflow metabolism. When grown in media containing excess glucose a 

large amount of imported glucose is metabolized to pyruvate and acetyl-CoA, which are 

then subsequently converted to compounds such as lactate, acetate and acetoin for 

excretion as overflow metabolites. Production of these overflow metabolites are needed 

to maintain homeostatic balance during growth on glucose. For instance, conversion of 

pyruvate to lactate regenerates the NAD+ required for glycolytic enzymes and in 

addition, the phosphotransacetylase (PTA) and acetate kinase (AK) conversion of acetyl-

CoA to acetate generates additional ATP. Furthermore, pyruvate is converted to acetoin, 

which mitigates overacidification of the cytoplasm due to accumulation of intracellular 

acetate and pyruvate. When glucose is depleted, overflow metabolites are imported and 

subsequently utilized through the citric acid cycle to generate ATP. Due to the 

complexity and potential for disastrous outcomes, timing and control of gene expression 

must be tightly coordinated with metabolism.   

 Cid/Lrg proteins are a family of transmembrane proteins shown to play multiple 

roles in response to overflow metabolism (Yang et al., 2005, Charbonnier et al., 2017). 

Cid/Lrg operons are ubiquitous in bacteria and generally consist of two genes encoding 

transmembrane proteins. Expression of both cidAB and lrgAB operons has shown to be 

regulated by two overlapping pathways (Yang et al., 2005). In some organisms, the 

cidAB operon is positively regulated by the LysR-like regulator, CidR, which activates 

expression in response to acetic acid (Yang et al., 2006, Yang et al., 2005). lrgAB have 

been shown to be regulated by a two-component system, encoded by lytST (Ahn et al., 
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2010). cidAB and lrgAB are differentially expressed and regulated by catabolite 

repression, and are therefore, dependent on glucose concentration and growth phase 

(Groicher et al., 2000, Ahn & Rice, 2016, Ahn et al., 2010, Kim et al., 2019). At low 

glucose concentrations (at the onset of stationary phase), lrgAB expression is high, 

whereas cidAB expression is low. In contrast, during growth in excess glucose, cidAB 

expression is high and lrgAB expression is low. Both cidAB and lrgAB operons were 

shown to be directly regulated by CcpA;  more specifically, CcpA activates cidAB and 

represses lrgAB (Kim et al., 2019).  

 Most of the studies on Cid/Lrg proteins have been primarily conducted in the 

human pathogen, Staphylococcus aureus, and the predominant bacterium found in 

human dental caries, Streptococcus mutans. In S. mutans, ΔlrgAB mutants are more 

susceptible to environmental stressors including oxidative stress, heat, and vancomycin 

(Ahn et al., 2010, Ahn & Rice, 2016, Rice et al., 2017, Ahn et al., 2017). In S. aureus, 

Cid/Lrg proteins are thought to regulate the coordination and timing of cell lysis in 

glucose rich media (Bayles, 2007, Rice & Bayles, 2008). It was proposed that Cid/Lrg 

proteins regulated lysis in a subpopulation of cells within a community to help form and 

stabilize biofilms by providing materials such as eDNA to the rest of the community 

(Bayles, 2007, Rice & Bayles, 2008). Recently, a study in S. mutans found the lrgAB 

genes to be the highest upregulated genes in thicker biofilms indicating a role for biofilm 

regulation across organisms (Shemesh et al., 2008). 

 Although not to the same extent as S. mutans and S. aureus, Cid/Lrg proteins 

have also been studied in Bacillus cereus and Bacillus anthracis. Both B. cereus and B. 

anthracis encode four Cid/Lrg-like operons, termed CidAB and LrgAB, and in addition, 
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ClhAB1 and ClhAB2 standing for cid/lrg homologues AB-1 and AB-2 (Chandramohan et 

al., 2009, Huillet et al., 2017). Similar to S. aureus and S. mutans, cidAB and lrgAB from 

B. cereus and B. anthracis are regulated by a LysR-like regulator, CidR, and a two-

component response regulator. In contrast, clhAB1 is expressed in an operon encoding a 

putative GntR-like transcriptional regulator and a hypothetical protein and clhAB2 is 

positively regulated by CodY. CodY is a global regulator that positively and negatively 

regulates genes to elicit adaption in response to nutrient availability by sensing the 

available pool of GTP and branched-chain amino acids (BCAAs) isoleucine, leucine and 

valine (ILV) (Brinsmade & Sonenshein, 2011, Levdikov et al., 2009, Levdikov et al., 

2006, Ratnayake-Lecamwasam et al., 2001, Shivers & Sonenshein, 2004). The CodY-

dependent clhAB2 transcription observed in B. cereus was independent of glucose. 

Interestingly however, clhAB2 were shown to be required for glucose-dependent cell 

chaining, and that therefore, clhAB2 leads to down-regulation of cell separation during 

growth in glucose (Huillet et al., 2017).  

 Intriguingly however, although Cid/Lrg proteins are implicated in programmed 

cell lysis (PCD), no direct mechanism for how this could be mediated has been 

elucidated (Bayles, 2007, Rice & Bayles, 2008). Recent analyses on the S. mutans 

transcriptome and proteome during oxidative, heat or vancomycin-related stress in 

ΔlrgAB revealed large shifts in metabolic genes (Rice et al., 2017, Ahn et al., 2017). In 

addition, the expression pattern observed for lrgAB closely mimicked that of the 

pyruvate dehydrogenase complex (PDH). These data and others more recently suggest a 

role for Cid/Lrg proteins in maintaining cellular homeostasis during growth in conditions 

of stress (Kim et al., 2019). In support of this idea, the B. subtilis encoded LrgAB-
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homologs, PftAB, were recently discovered to form a pyruvate transporter and are 

required for efficient growth in media where pyruvate is the sole carbon source (van den 

Esker et al., 2017, Charbonnier et al., 2017). These findings presented the first crucial 

link between overflow metabolism and Cid/Lrg function.  

 B. subtilis encodes three Cid/Lrg homologs, ywbHG, pftAB, and yxaKC, where 

YwbHG and PftAB are more similar to CidAB and LrgAB, respectively, and yxaKC are 

uniquely expressed in some Bacillus species (Figure 4.1). Similar to what was 

previously described in S. aureus, ywbHG (cidAB) expression was found to be induced 

by YwbI (CidR-like) in the presence of acetate (Yang et al., 2005, Chen et al., 2015) and 

pftAB (lrgAB) expression occurred during late exponential/stationary expression and was 

repressed by CcpA (van den Esker et al., 2017, Charbonnier et al., 2017). In addition to 

CcpA-mediated repression of pftAB, a CcpA-independent regulatory mechanism was 

identified involving pyruvate. High levels of extracellular pyruvate are sensed by LytST 

which induces expression of pftAB (Charbonnier et al., 2017). In contrast, intracellular 

pyruvate (or other metabolic intermediate) represses pftAB expression (Charbonnier et 

al., 2017).  

 Despite the wealth of data on Cid/Lrg proteins and their potential roles in biofilm 

formation, cell lysis, and adaption to environmental stress, mechanistic details 

surrounding how Cid/Lrg-like proteins may be regulating these processes is lacking. The 

recent discovery that PftAB transports pyruvate reveals a possible link between 

regulating cellular homeostasis and overflow metabolism (Charbonnier et al., 2017). 

Because of their diversely described roles in regulated cell lysis (Rice & Bayles, 2008) 

and pyruvate transport (Charbonnier et al., 2017), characterizing the Cid/Lrg proteins is 
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crucial in understanding how bacteria have evolved to survive and adapt to their 

environments. In addition, Cid/Lrg homologs might encode novel transport systems we 

have yet to discover. In support of this idea, a recently identified plant CidAB/LrgAB, 

PLGG1 (or AtLrgB), encoded by Arabidopsis thaliana was discovered to function as a 

glycolate/glycerate transporter (Yang et al., 2012, Pick et al., 2013). PLGG1 encodes a 

LrgA-LrgB fusion that likely originated from bacteria (Yang et al., 2012). Interestingly, 

little is known about B. subtilis encoded Cid/Lrg-like proteins, YxaKC, and if they have 

similar roles as PftAB. Here, we focus on the initial characterization of the yxaKC 

operon, how they are regulated and their potential role in regulating overflow 

metabolite(s) transport. We found that yxaKC expression is dependent on glucose 

depletion in addition to the MarR-like regulator, YxaD. In addition, we found cells 

overexpressing yxaKC accumulated higher levels of extracellular 2-acetolactate. Lastly, 

we examined context-specific expression of yxaKC in biofilms and observed yxaKC 

expression in a concentric ring in the center of the biofilm. Taken together, we 

hypothesize that cells in biofilm centers, which are more nutrient deprived than the outer 

rings, may induce YxaKC to scavenge extracellular 2-acetolactate. 
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Figure 4.1 Cid/Lrg homologs in B. subtilis. 
 

4.2. Materials and Methods 

4.2.1. General Methods 

All B. subtilis strains were derived from B. subtilis 168 or 3610. Cloning was 

carried out in E. coli DH5α. All B. subtilis and E. coli strains used in this study are listed 

in Table 4.1. Plasmids are listed in Table 4.2. Oligonucleotide primers are listed in Table 

4.3. M9 minimal media was prepared as described (Kleijn et al., 2010, Harwood, 1990). 

For M9-minimal plates, single carbon sources were added as follow: 3 g/L D-glucose, 6 

g/L sodium pyruvate, 6 g/L glycerol or 6 (potassium or sodium, 4 or 6 g/L) g/L 

potassium gluconate. Plates were solidified with bacto-agar to a final of 1.5 (w/v) %. For 

growth in liquid culture, M9-minimal was supplemented with either 3 g/L D-glucose 

(M9G) or 2 g/L D-glucose with 4 g/L L-malic acid (M9M). Before addition, malic acid 

was brought to pH 7.0 with NaOH. For transformation of E. coli, 100 µg/ml ampicillin 

was used. For transformation and selection of B. subtilis, antibiotics were used at the 

following concentrations where indicated: 7.5 µg/ml chloramphenicol, 1 µg/ml 
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erythromycin with 25 µg/ml lincomycin, 10 µg/ml kanamycin, and 100 µg/ml 

spectinomycin. 

For growth on plates, frozen glycerol stocks were streaked out onto LB plates. 

Single colonies were then streaked out onto M9-minimal plates with the designated 

carbon sources. Overexpression phenotypes were examined by inoculating single 

colonies into 5 mL LB media until cultures reached mid-exponential. Cultures were 

normalized to OD600 = 0.25 and 5 µl was spotted onto plates containing 1 mM isopropyl-

β-D-thiogalactopyranoside (IPTG) or 1 mM IPTG plus 0.3% glucose (w/v).  

 

Table 4.1 Strains used in Chapter 4 
Strain 
Parental Description Reference 

B. subtilis 168 Bacillus subtilis laboratory strain 168 trpC2  BGSC 
(1A866)  

B. subtilis PY79 Bacillus subtilis laboratory strain  
 

(Youngman 
et al., 
1983) 

BSH450 Bacillus subtilis laboratory strain 168 with PY79 
trpC2+ 

 

B. subtilis 3610 Bacillus subtilis wild type strain 3610 ΔcomI  Dan Kearns 
E. coli DH5α  F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 

nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, 
hsdR17(rK- mK+), λ–  

 

B. subtilis 168   

BSH388 ysbAB(pftAB)::cat (cat) This study 
BSH226 ywbHG::erm (erm) This study 
BSH420 yxaKC::kan (kan) This study 
BSH425 ysbAB(pftAB)::cat (cat), yxaKC::kan (kan) This study 
BSH426 ywbHG::erm (erm) (erm), yxaKC::kan (kan) This study 
BSH428 ywbHG::erm (erm), ysbAB(pftAB)::cat (cat) This study 
BSH427 ywbHG::erm (erm), ysbAB(pftAB)::cat (cat), 

yxaKC::kan (kan) 
This study 

BEA911 amyE::Phy-ywbH (spec) This study 
BEA912 amyE::Phy-ywbG (spec) This study 
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Table 4.1 Continued 

Strain 
Parental Description Reference 

BEA909 amyE::Phy-yxaK (spec) This study 
BEA910 amyE::Phy-yxaC (spec) This study 
BEA917 amyE::Phy-ysbA (pftA) (spec) This study 
BEA918 amyE::Phy-ysbB (pftB) (spec) This study 
BSH450   
BSH461 amyE::spoVG-lacZ (cat) This study 
BSH462 amyE::PyxaD-spoVG-lacZ (cat) This study 
BSH463 amyE::PyxaKC-spoVG-lacZ (cat) This study 
BSH451 yxaKC::kan (kan) This study 
BSH457 yxaD::kan (kan) This study 
B. subtilis 3610   
BSH293 amyE::spoVG-lacZ (cat) , ∆comI This study 
BSH294 amyE::PyxaD-spoVG-lacZ (cat) , ∆comI This study 
BSH295 amyE::PyxaKC-spoVG-lacZ (cat) , ∆comI This study 
BSH315 yxaD::spec, amyE::spoVG-lacZ (cat) , ∆comI This study 
BSH316 yxaD::spec, amyE::PyxaD-spoVG-lacZ (cat) , ∆comI This study 
BSH317 yxaD::spec, amyE::PyxaKC-spoVG-lacZ (cat) , ∆comI This study 

 

Table 4.2 Plasmids used in Chapter 4 
Plasmid Description Reference 
pDG1661 amyE-lacZ (cat)(spec)(amp)  
pSH042 amyE-PyxaD-lacZ (cat)(spec)(amp) This study 
pSH043 amyE-PyxaKC-lacZ (cat)(spec)(amp) This study 

 

Table 4.3 Oligos used in Chapter 4 
Oligo Sequence 5’ to 3’ 
OSH101 TAACTTCGTATAATGTATGCTATACGAACGGTAGAATTCATCAAGT

GCTGCTCTCCAATC 
OSH114 aaaaaGGATCCTCGCTCTCGCTCCCTATT 
OSH115 aaaaagaattcTCGCTCTCGCTCCCTATT 
OSH116 aaaaaGGATCCATCAAGTGCTGCTCTCCAATC 

 

4.2.2. β-galactosidase assays 

Strains for transcriptional fusion assays were generated by cloning the intergenic 

region between yxaD and yxaKC from both directions into pDG1661 creating a lacZ 
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fusion. The construct was then integrated into the non-essential locus, amyE, of B. 

subtilis. Three colonies were inoculated into three independent 5 ml cultures of LB and 

grown for 4-5 hours at 37 °C. Cultures were then subcultured into M9 supplemented 

with the indicated carbon source to dilutions of 1/500, 1/1250 and 1/2000 and grown 

overnight (8-10 hr) at 37 °C. Cultures that were between OD600 of 0.4-0.7 were then 

diluted to an OD600 of 0.03 in 30 mL of M9 with the appropriate carbon source. Cultures 

were grown in 250 ml baffled flasks at 37 °C shaking in a water bath set to 300 rpm. OD 

readings and samples for β-galactosidase assay were taken every hour. β-galactosidase 

assays were performed as described previously (Ababneh & Herman, 2015), except 600 

μl was collected for each sample. 

 

4.2.3. 1H NMR 

NMR experiments were conducted similar to what was previously described 

(Hochgrafe et al., 2008). Briefly, cells were grown in M9G for 7 hr to an OD600 of 3. 

One ml of cell culture was filter sterilized and kept at -20 °C until further analysis. For 

NMR experiments, 400 µl cell supernatant was mixed with 48 µl of 1 mM sodium 

hydrogen phosphate buffer, pH 7.0, 60 µl of 10 mM sodium 3-trimethylsilyl-[2,2,3,3-

D4]-1-propionic acid (TMSP) made up with 100% D2O and 92 µl ddH2O to final 

concentrations of 0.08 mM sodium hydrogen phosphate buffer, 1 mM TMSP and 10% 

D2O. Spectra were obtained at 500 MHz at 298.5 K with Bruker AVANCE III 500 MHz 

spectrometer operating TOPSPIN. In total, 128 free induction decays (FID scans) were 

obtained in 64k data points. 
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4.2.4. Biofilm formation 

MSgg plates were made as previously described (Branda et al., 2001) with the 

following exceptions: 15 ml was poured in 60 x 15 mm plates and 100 µg/ml 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-gal) was added. Bacillus subtilis 3610 strains 

were streaked from frozen glycerol stocks. Three individual colonies were used to 

inoculate 3 ml of LB media. Three independent cultures were grown for 3-4 hours at 37 

°C until culture density was between OD600 = 0.6-0.7. Individual cultures were then 

normalized to OD600 = 0.6 and 5 µl of the normalized dilution was spotted in the center 

of an MSgg plate.  

 

4.3. Results 

4.3.1. yxaKC are not required for growth on pyruvate, glucose, gluconate, or 

glycerol 

YxaKC are members of the Cid/Lrg protein family, encoded by B. subtilis which 

also encodes PftAB and YwbHG (Figure 4.1). PftAB has been shown to function as a 

facilitated pyruvate transporter and a ΔpftAB strain grew poorly when provided pyruvate 

as a sole carbon source (Charbonnier et al., 2017, van den Esker et al., 2017). In 

addition, the ywbHG operon was found to be induced by acetate (Chen et al., 2015). 

These recent findings that B. subtilis PftAB and YwbHG may play roles in central 

metabolism prompted us to ask whether YxaKC was regulated by or performed a similar 

function. Charbonnier and colleagues found that ΔpftAB had reduced growth in pyruvate 

compared to wild type (Charbonnier et al., 2017). Consistent with this finding, we grew 

ΔpftAB on plates containing pyruvate as the sole carbon source (M9P) and observed that 
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PftAB were required for efficient growth, though they were not essential (Figure 4.2B). 

Therefore, we asked whether YxaKC and/or YwbHG might be acting redundantly with 

PftAB as a pyruvate transporter. In order to test if ΔyxaKC and/or ΔywbHG had any 

growth effects on pyruvate we grew combinations of ΔpftAB, ΔyxaKC, and ΔywbHG on 

M9P. Combinatory mutations of ΔyxaKC or ΔywbHG did not alter the growth defects 

associated with ΔpftAB indicating that yxaKC and ywbHG likely do not play a direct role 

in pyruvate utilization (Figure 4.2B). In addition, to ask if yxaKC, ywbHG or pftAB were 

required for growth on additional carbon sources, we grew each deletion strain on M9-

glucose (M9G), M9-glycerol (M9-Gly), and M9-gluconate (M9-Glu). Neither ΔyxaKC, 

ΔywbHG, ΔpftAB, or combinations of all three mutants resulted in a growth defect on 

M9G, M9-Gly or M9-Glu indicating that these Cid/Lrg homologs likely do play a role in 

utilization of glucose, glycerol or gluconate (Figure 4.2C-E).  
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Figure 4.2 Growth of B. subtilis cid/lrg mutants on various carbon sources. 
Single colonies of strains harboring ΔpftAB, ΔywbHG, ΔyxaKC, or combinations of the 
three were streaked on M9 minimal plates supplemented with either (B) pyruvate, (C) 
glucose, (D) glycerol, or (E) gluconate.  
 
 
4.3.2. yxaC or yxaK overexpression foes not lead to cell lysis 

A recent study conducted in S. aureus found that a deletion in the two-

component response regulator, srrAB, resulted in increased cidAB expression and 

subsequent cell lysis during growth in a glucose-rich media. This phenotype appeared to 

be a result of SrrAB-mediated derepression of cidB, and consequent cidB overexpression 

(Windham et al., 2016) and could be observed on agar plates (Ahn et al., 2010). We 

wondered whether misexpression of the cidB/lrgB homologs encoded by B. subtilis, 

pftB, ywbG, and yxaC, acted in this way leading to slow growth or cell lysis. To test this, 
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we generated strains carrying an inducible copy of pftB, ywbG, or yxaC and spotted 

these strains on LB or glucose-rich LB agar plates in the presence of inducer. 

Overexpression of pftB, ywbG, or yxaC did not appear to result in a growth defect 

(Figure 4.3A). In addition, we constructed similar strains carrying pftA, ywbH, or yxaK 

under inducible promoters. However, overexpression of pftA, ywbH, or yxaK did not 

lead to a growth defect, consistent with what was previously reported for pftA and ywbH 

(Figure 4.3B) (van den Esker et al., 2017). Taken together, these data suggest that pftAB, 

ywbHG, and yxaKC do not affect cell lysis in B. subtilis. 

 

Figure 4.3 Misexpression of pftAB, ywbHG, and yxaKC. 
 

4.3.3. yxaD and yxaKC are expressed in stationary phase during glucose depletion 

Expression of cid/lrg operons in S. aureus and S. mutans is dependent on glucose 

concentration and growth phase (Groicher et al., 2000, Ahn & Rice, 2016, Ahn et al., 

2010, Kim et al., 2019). Growth in excess glucose leads to the accumulation of acetate 

which induces expression of cidAB(C) in S. aureus (Chaudhari et al., 2016) and B. 

WT

+ywbH +ywbG

+yxaK +yxaC

+pftA +pftB

WT

+ywbH +ywbG

+pftA +pftB

+yxaK +yxaC

+IPTG
+Glucose+IPTGA. B.



 

 

 

108 

subtilis (Chen et al., 2015). In contrast, expression of lrgAB and pftAB is repressed by 

CcpA (Charbonnier et al., 2017, van den Esker et al., 2017) and therefore, repressed 

until stationary phase when glucose is depleted and pftAB is activated by extracellular 

pyruvate. Thus, pftAB expression does not occur until not only glucose depletes, but 

extracellular pyruvate accumulates (Charbonnier et al., 2017). Based on these data, we 

tested if the third B. subtilis Cid/Lrg-like operon yxaKC, were regulated and if this 

regulation was similar to that of ywbHG or pftAB. We showed that yxaKC is repressed 

by the MarR-like protein, YxaD (Chapter 3). To our knowledge, this is the first Cid/Lrg-

like operon shown to be regulated by a MarR-like protein. Some MarR-like proteins 

alter gene expression in response to ligands and have regulatory roles in metabolic genes 

(Deochand & Grove, 2017, Grove, 2017). In Chapter 3, we showed that yxaKC were 

expressed during stationary phase in LB + 0.3% glucose (w/v) (LB-G) and repressed by 

YxaD but did not examine glucose-specific gene expression. To determine if yxaKC 

were expressed during growth in glucose, we constructed fusions of PyxaKC to the 

reporter gene, lacZ, and integrated this construct in the B. subtilis chromosome at a non-

essential locus. Since MarR-like proteins are generally autoregulatory, we also 

constructed a lacZ transcriptional fusion to the promoter of yxaD, PyxaD. Cells harboring 

both transcriptional fusions were grown in M9-minimal media with glucose (M9G) and 

samples were collected every hour for β-galactosidase assays. When grown in M9G, 

PyxaD and PyxaKC transcription increases with growth for about 8 hr until cells lyse as a 

result of glucose depletion (Figure 4.4A) (Hadjipetrou & Stouthamer, 1963). 

Interestingly, unlike growth in LB-G, expression from PyxaD was significantly lower than 

PyxaKC when grown in M9G. This observation could indicate there is an additional 
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unknown repressor for yxaD or activator for yxaKC. Interestingly, yxaKC expression 

increases gradually until hr 6 when there is a sharp increase in expression, which is 

consistent with timing of glucose depletion. We wondered whether the gene expression 

patterns for yxaD and yxaKC we observed was a result of being grown in glucose or due 

to growth-phase (i.e. stationary). B. subtilis has been shown to use malate at similar 

levels as glucose (Kleijn et al., 2010). Thus, we performed the transcriptional fusion 

assay on cells grown in M9 minimal media supplemented with malate and a lower 

amount of glucose than M9G (M9MG). The expression patterns of yxaD and yxaKC 

grown in M9MG were similar to that in M9G, increasing until lysis occurred around hr 6 

(Figure 4.4B). However, in contrast to M9G, expression in M9MG steadily increased 

throughout growth without the inflection point observed for M9G. These data reveal that 

yxaKC expression is most similar to pftAB, expressed in stationary phase when glucose 

is depleted.  

 The pftAB operon was found to be repressed by catabolite repression by CcpA 

(Charbonnier et al., 2017) and in addition, a genome-wide search for CcpA-regulated 

genes in B. subtilis revealed ywbHG activation by CcpA (Moreno et al., 2001). 

However, we or others have not observed CcpA binding sites (CRE) or other known 

regulator binding sites at or near the promoters of yxaD and yxaKC. Therefore, we 

speculated that expression of yxaKC could be the result of YxaD derepression as we 

have shown that yxaKC are regulated by YxaD. DNA-binding by MarR-like proteins is 

often attenuated by binding ligands (Deochand & Grove, 2017). This prompted us to ask 

whether the increase in yxaKC expression was the result of induction by YxaD in 

response to a ligand and further, if YxaKC could play a role in regulating metabolic flux 
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of that ligand or one similar. Such transcriptional regulation could act as a way to control 

metabolic flux in response to metabolites. This idea is consistent with activation of pftAB 

in response to extracellular pyruvate allowing cells to utilize excreted pyruvate in the 

absence of glucose. In this way, we hypothesized that YxaKC could form a similar 

transport system that allows for the uptake of an overflow metabolite(s).  

 

 

Figure 4.4 Expression levels of yxaKC and yxaD in M9 minimal. 
Expression levels of yxaD and yxaKC promoters during a time course in M9 minimal 
media supplemented with (A) glucose or (B) glucose and malate. Expression from an 
empty control (BSH461), yxaD (BSH462) and yxaKC (BSH463) promoter regions. The 
production of beta-galactosidase (left) or OD600 (right) were monitored at 1 hr intervals.   
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4.3.4. ΔyxaD (+yxaKC) affects excreted metabolites 

We explored the possibility that YxaKC were acting as a transporter using NMR-

based metabolomics and analyzed the exometabolome of B. subtilis. If YxaKC were 

acting as a transporter, we would expect the transport of specific compound(s) to 

correlate with yxaKC expression. Therefore, we hypothesized that deletions in yxaKC 

would prevent import or export of the compound(s) and that a strain overexpressing 

yxaKC would increase the import or export of the target metabolite(s). Thus, we grew 

wild type, ΔyxaKC, and ΔyxaD cultures in M9G and examined supernatants sampled at 

timepoints using 1H NMR. Samples were collected at 4 hr and 7 hr to examine excreted 

metabolites before the inflection point corresponding to increased yxaKC expression and 

during maximal yxaKC expression, but before lysis of the culture.  

Spectra obtained from secreted metabolites isolated from wild type, ΔyxaKC, and 

ΔyxaD were analyzed and compared. No obvious difference in secreted compounds 

between wild type and ΔyxaKC were observed. Conversely, supernatant from ΔyxaD 

(+yxaKC) had ~40% less acetoin than wild type and ΔyxaKC. Additionally, ΔyxaD 

(+yxaKC) supernatant possessed three additional peaks; a triplet resonance at 0.83 ppm, 

and two singlets at 1.46 ppm and 2.26 ppm (Figure 4.5). The singlet resonances at 1.46 

and 2.26 are consistent with 2-acetolactate (2-ACL) (Nemeria et al., 2005). The triplet at 

0.83 appears to be consistent with 2-hydroxybutyrate, but further analysis will be 

required to confirm the identify if this molecule. Although we did not detect a difference 

in 2-ACL between wild type and ΔyxaKC mutants, as would be expected, we attribute 

this to the low levels of 2-ACL detected. Taken together, these data suggest that YxaKC 

affect the transport and/or production of metabolites, particularly acetoin and 2-ACL. 
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These results are consistent with hypothesized roles of Cid/Lrg proteins in regulated 

cellular homeostasis. Additional studies will be required to determine if YxaKC are 

acting in the same way as PftAB, and directly transporting acetoin and/or 2-ACL or if 

YxaKC are affecting metabolite excretion by some other mechanism (Charbonnier et al., 

2017). 

 

 

Figure 4.5 1H NMR spectra of excreted metabolites. 
Representative 1H NMR spectra from supernatants collected from wild type, ΔyxaKC, 
and ΔyxaD grown for 7 hr in M9G, and the 2-ACL standard. Ranges of spectra shown 
are between (A) 1.2-1.6 ppm (B) 2.0-2.4 ppm. 
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4.3.5. yxaD and yxaKC are expressed in the center of biofilms 

Recently, it was found that the B. subtilis-encoded Cid/Lrg homologs, ywbHG, 

pftAB and yxaKC, were induced in the presence of acetic acid, which lead to the 

induction of biofilm formation, and deletions in all three genes resulted in decreased 

pellicle robustness (Chen et al., 2015). These observations led the authors to speculate a 

role for YwbHG, PftAB, and YxaKC in regulating proper timing of biofilm formation 

(Chen et al., 2015). Yet, a large-scale gene expression study that analyzed gene 

expression from B. subtilis grown in over 100 growth conditions, did not detect yxaKC 

expression during biofilm formation (Nicolas et al., 2012). This observation could be 

consistent with yxaKC functioning early in biofilm formation, before the 24 hr sample 

collection time from the study. Another possible reason for not detecting yxaKC 

expression in this study would be if yxaKC appears to only be expressed a subset of the 

cells in the biofilm population; this could result in it being below the detection limit.  

To examine yxaKC and yxaD expression during biofilm formation, we 

constructed the same PyxaKC-lacZ and PyxaD-lacZ reporters as before in a strain capable of 

forming biofilms, B. subtilis 3610, and grew the resulting strain on the biofilm-inducing 

medium, MSgg containing X-gal. Within two days, PyxaD-lacZ and more so, PyxaKC-lacZ, 

is expressed in a concentric ring around the center of the biofilm (Figure 4.6). Moreover, 

after 72 hr, yxaD and yxaKC expression spreads outward with biofilm growth. 

Expression of PyxaD-lacZ and PyxaKC-lacZ in a strain containing ΔyxaD reveals expression 

throughout the entire biofilm indicating that cells outside of the biofilm are capable of 

yxaD and yxaKC expression. Thus, the pattern of expression appears to be a function of 

YxaD-dependent regulation. Taken together, these data are consistent with differential 
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activation of both yxaD and yxaKC in a subset of cells comprising the biofilm structure. 

Biofilm centers are much more limited in access to nutrients than the outsides (Liu et al., 

2015) coinciding with differential gene expression and developmental programs 

throughout the biofilm as well (Vlamakis et al., 2008). Therefore, these data suggest that 

yxaKC and yxaD expression exclusive to biofilm centers are a result of or due to nutrient 

limitation.  
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Figure 4.6 Expression of yxaC and yxaD during biofilm formation. 
(A) B. subtilis 3610 strains capable of biofilm formation expressing Pempty-lacZ 
(BSH283), PyxaD-lacZ (BSH294), or PyxaC-lacZ (BSH295) harboring wild type yxaD 
(TOP) or ΔyxaD (BOTTOM) spotted on MSgg media with 100 μg/ml X-gal. Images 
were taken at 48 hr and 72 hr. (B) Predicted transmembrane regions for B. subtilis 168 
YxaK and YxaC and B. subtilis 3610 encoded YxaC. 
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4.4. Discussion 

Cid/Lrg proteins encoded by S. aureus and S. mutans are thought to control cell 

lysis in response to environmental changes (Bayles, 2007, Rice & Bayles, 2008). B. 

subtilis PftAB was recently found to transport pyruvate (Charbonnier et al., 2017). 

Consistent with what was previously published, we observed a defect in growth of pftAB 

lacking cells grown on minimal media agar plates containing pyruvate as the sole carbon 

source. Since pftAB was not essential for growth on pyruvate, we explored the possibility 

that the other encoded cid/lrg homologs, ywbHG and yxaKC, were needed for growth on 

pyruvate. We observed that ywbHG and/or yxaKC were not required for growth. The 

observation that ywbHG did not affect growth on pyruvate is consistent with ywbHG and 

pftAB having differential expression patterns in response to glucose, and likely, different 

roles in the cell (Chen et al., 2015, van den Esker et al., 2017, Charbonnier et al., 2017). 

In addition, we examined growth of combinations of ΔpftAB, ΔywbHG, and ΔyxaKC on 

glucose, glycerol, and gluconate. Expression of cid/lrg operons and their lytic behavior 

in S. aureus and S. mutans is dependent on glucose (Kim et al., 2019). Since we did not 

observe any growth phenotype for any combination of cid/lrg-like proteins in B. subtilis, 

we concluded that pftAB, ywbHG and yxaKC were not required for growth on glucose. 

YwbHG expression increased when grown on glycerol (Chen et al., 2015). 

Although this was likely due to glycerol eventually being converted into acetate which 

induces ywbHG, we were curious if there was a growth requirement for the cid/lrg 

mutants on glycerol. However, we did not observe any growth defects on glycerol, 

suggesting that pftAB, ywbHG and yxaKC do not play a direct role in glycerol uptake 

and utilization. yxaD and yxaKC genes are located near the gluconate utilization operon, 
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gntRKPZ and genes conserved in synteny have been shown to affect similar processes. 

Therefore, we examined growth of the ΔpftAB, ΔywbHG, and ΔyxaKC on minimal 

media with gluconate as a sole carbon source and found B. subtilis cid/lrg genes were 

not required for gluconate. Although we did not observe a growth requirement for pftAB, 

ywbHG, or yxaKC on various carbon sources, we attribute this to the hypothesis that the 

cid/lrg proteins in B. subtilis affect metabolic flux under the harsh conditions cells may 

encounter outside of standard laboratory growth.   

We observed yxaKC, and to a lesser extent, yxaD expression in M9G. 

Interestingly, expression of yxaD was much higher when grown in LB-G than in M9G. 

In contrast, expression of yxaKC was lower in LB-G than in M9-G. Therefore, we 

hypothesize that yxaD and/or yxaKC are regulated by an additional factor that is 

currently unknown. Although the expression pattern of yxaKC is consistent with 

catabolite repression by CcpA, we did not identify a canonical CcpA binding site (CRE) 

at or near the yxaKC promoter. In addition, genome-wide studies on CcpA binding sites 

have been conducted in B. subtilis and no CcpA regulation on yxaKC or yxaD has been 

observed (Moreno et al., 2001). Our 1H NMR data indicated higher levels of 2-ACL in 

ΔyxaD (+yxaKC) cells, revealing a possible role of YxaKC as a transporter. We did not 

detect a substantial difference in 2-ACL between wild type and ΔyxaKC which could be 

explained if another 2-ACL transporter exists or if YxaKC do not transport 2-ACL 

directly, but influence its transport. We also suspect that the premature expression of 

yxaKC resulting from ΔyxaD, could subsequently lead to 2-ACL secretion concomitant 

with its synthesis.  This would be expected to lead to enhanced accumulation of 
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extracellular 2-ACL at 7 hr. It is also possible B. subtilis yxaKC-overexpressing cells are 

excreting 2-ACL as soon as it is made allowing it to accumulate.  

When grown in excess glucose, B. subtilis produces potentially detrimental 

concentrations of acetate. To reduce intra-and extracellular acidification, some of the 

pyruvate produced from glycolysis is irreversibly converted into 2-ACL which is 

subsequently metabolized into acetoin and CO2 or diacetyl and CO2. 2-ACL can 

spontaneously decarboxylate into diacetyl the rate of which is increased as pH decreases 

(below pH 6) temperature increases (Suomalainen & Ronkainen, 1968). Intracellular 

diacetyl can lead to reactive oxygen species (Kovacic & Cooksy, 2005, Wondrak et al., 

2002). Due to the detrimental effects that can result from increased intracellular diacetyl, 

2-ACL transporters might exist to export 2-ACL before being spontaneously 

decarboxyated to toxic diacetyl. Additional experimentation is required to confirm that 

2-ACL is transported and to determine if YxaKC is responsible for its transport. 
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5. CONCLUSIONS 

 

5.1. Misexpression of YxaD 

YxaD was identified in a misexpression screen for uncharacterized DNA-binding 

proteins involved in subcellular organization in B. subtilis. When YxaD is misexpressed, 

cells lose their bilobed nucleoid structure and divide, producing anucleate daughter cells. 

Growth continues without segregation of replication origins or a concomitant increase in 

nucleoids, suggesting that YxaD misexpression leads to a defect in both DNA replication 

and chromosome segregation.  

Interestingly, YxaD was found to interact with ScpA by Y2H (Marchadier et al., 

2011), but scpA is not required for the YxaD misexpression phenotype, as a ΔscpA strain 

is still sensitive to yxaD misexpression. YxaD and HolA (the delta clamp loader of DNA 

polymerase) also interact by Y2H (Marchadier et al., 2011), but this interaction could 

not be recapitulated in a B2H assay. Attempts to identify stable, extragenic suppressor 

mutations to YxaD misexpression were not successful; however, suppressor selections 

were used to identify intergenic mutations that resulted in loss of function phenotypes.  

Suppressor selections of similar design were used to identify extragenic genetic 

targets of RefZ, SirA, YodL and YisK in ftsZ, dnaA, mreB and mbl, respectively 

(Wagner-Herman et al., 2012, Duan et al., 2016a, Duan et al., 2016b). One reason we 

may have been unable to obtain YxaD suppressors may be that YxaD has more than one 

essential target, supported by Y2H data (Marchadier et al., 2011). If YxaD interacts with 

ScpA and HolA as indicated by Y2H (Marchadier et al., 2011), then multiple mutations 

may be required to obtain resistance. In addition, if YxaD were to target an essential 
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gene, it is possible that mutations rendering the target resistant to YxaD misexpression 

would compromise the target’s function, and therefore would not be isolated by our 

screen. One future consideration would be to perform suppressor selections using a 

chemical mutagen in order to increase the change of obtaining relatively rare mutations. 

YxaD misexpression appears to disrupt DNA replication and chromosome segregation, 

perhaps through ScpA and/or HolA. An alternative to identify the YxaD target would be 

to perform pull-downs with 6His-YxaD, which is fully functional based on its ability to 

bind DNA in vitro and in vivo and the observation that it retains killing capability when 

misexpressed (Chapter 3). 

 

5.2. DNA-binding activity of YxaD 

YxaD binds to two sites in the intergenic region of yxaD and yxaKC to repress 

expression of both genes. Most of the studied MarR-like proteins bind 12-18 bp motifs 

consisting of one IR, usually 4-7 bp, separated by 2-5 bp (Wilkinson & Grove, 2006). 

Interestingly, we identified two putative YxaD-binding sites that contain two 

overlapping inverted repeats of 5 (or 6) and 5 bp separated by 2 (or 1) and 2 bp (Chapter 

2). Such overlapping IRs could be a novel binding preference for MarR-like proteins or 

potentially the binding site of another regulator, for instance, GntR. GntR is known to 

regulate the gluconate utilization operon encoded by B. subtilis, gntRKPZ, by binding to 

the half site ATACTTGTA (Fujita & Fujita, 1986, Fujita & Miwa, 1989). Surprisingly, 

YxaD’s predicted binding sites contain a similar GntR half site. Further analysis is 

required to define the YxaD recognition sequence and to determine if YxaD recognizes 

both half sites. One future direction is to mutate each IR in the binding sites of YxaDand 
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perform EMSAs as in Chapter 3 to determine if YxaD recognizes the entire sequene or 

only a half site. In addition, one could use ChIP-seq on wild type and cells 

overexpressing YxaD in order to more accurately define the DNA sequences YxaD 

binds when overexpressed.  

 

5.3. YxaKC in overflow metabolism 

YxaD regulates the expression of yxaD and the divergent operon, yxaKC, 

encoding a Cid/Lrg-like operon (Chapter 4). B. subtilis encodes three Cid/Lrg homologs: 

pftAB, ywbHG and yxaKC. Recently, PftAB were found to transport pyruvate 

(Charbonnier et al., 2017) suggesting a possible role for other Cid/Lrg homologs in 

transport. In order to test if YxaKC were functioning as a transporter, we analyzed 

supernatants from wild type, ΔyxaKC and ΔyxaD by 1H NMR. Since a strain lacking 

yxaD results in derepressed yxaKC, ΔyxaD was used to examine overexpression of 

YxaKC (+YxaKC). While wild type and ΔyxaKC revealed no differences in extracellular 

metabolites, ΔyxaD (+YxaKC) secreted less acetoin than wild type and ΔyxaKC. In 

addition, ΔyxaD (+YxaKC) had three additional peaks, a triplet resonance at 0.83 ppm, 

and two singlets at 1.46 ppm and 2.26 ppm, that were higher in ΔyxaD (+YxaKC) than 

wild type and ΔyxaKC. The singlets at 1.46 ppm and 2.26 match peaks for 2-acetolactate 

(2-ACL) while the triplet at 0.83 ppm could not be identified.  

During growth in excess glucose, B. subtilis produces an abundant amount of 

acetate, which can be secreted. Intracellular acetate is converted to pyruvate to reduce 

intracellular acidification. Pyruvate can be secreted, or to reduce intracellular 

acidification further, pyruvate is irreversibly converted into 2-ACL by 𝛼-acetolactate 
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synthetase (AlsS). Subsequently, 2-ACL is metabolized into acetoin and CO2 or diacetyl 

and CO2 by acetolactate decarboxylase (AlsD)(Loken & Stormer, 1970) (Figure 5.1). In 

addition to overflow metabolism, pyruvate is converted to 2-ACL by IlvBH for synthesis 

of branched chain amino acids (BCAA). In total, B. subtilis encodes two acetolactate 

synthase enzymes: AlsS (Holtzclaw & Chapman, 1975)and IlvB (large subunit) and IlvH 

(small subunit). Interestingly, in a B. subtilis expression study that examined gene 

expression in over 100 growth conditions, alsS and yxaKC were both highly expressed at 

stationary and transition in LB supplemented with glucose (Nicolas et al., 2012).  

The additional triplet resonance at 0.83 ppm was difficult to assign as the low 

concentration prevented the determination of how many additional peaks corresponded 

to the compound of interest. However, we were able to deduce that a triplet peak at 0.83 

ppm likely corresponded to a methyl group in the formation CH3-CH2-R. Interestingly, 

the 0.83 ppm peak could be consisted with 2-aceto-2-hydroxybutanoate (2ACH) which 

is synthesized by condensing one molecule of pyruvate and one molecule of 𝛼-

ketobutyrate, performed by IlvBH, for isoleucine biosynthesis (Figure 5.1).  

 

5.3.1. Excretion of 2-ACL 

The observation that the ΔyxaD (+YxaKC) strain excretes more 2-ACL (and 

perhaps more 2-ACH) (Figure 4.5) suggests YxaKC directly transports 2-ACL or 

influences its transport. The observation that YxaKC could be a small molecule 

transporter is in line with the recent finding that B. subtilis encoded PftAB transports 

pyruvate (Charbonnier et al., 2017).  
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In addition to 2-ACL, strains carrying ΔyxaD (+YxaKC) also excreted less 

acetoin than wild type. If YxaKC were transporting 2-ACL, then YxaKC overexpression 

could lead to: 1) early excretion of 2-ACL relative to wild type and ΔyxaKC and/or 2) 

higher than normal levels of excreted 2-ACL. Early excretion of 2-ACL would deplete 

the intracellular pool of 2-ACL, resulting in less acetoin production and thus, less 

acetoin excretion. Similar findings were observed with pyruvate transport as a strain 

overexpressing PftAB led to earlier and more abundant excretion of pyruvate 

(Charbonnier et al., 2017). Alternatively, YxaKC could import acetoin, in which case, 

excess 2-ACL might be excreted in the media. As similar levels of acetoin were present 

in the supernatants of wild type and the ΔyxaKC mutant (Figure 4.5) suggests YxaKC is 

not a transporter of acetoin. In addition, we acknowledge that YxaKC could be 

influencing 2-ACL levels by affecting import/export of another transporter. For 

example, YxaKC could affect metabolic flux by transporting a compound we did not 

detect or YxaKC could interact directly with another transporter to inhibit or activate. 

Based on the recent discoveries implicating Cid/Lrg homologs in pyruvate transport, we 

hypothesize that YxaKC function as a transporter of 2-ACL (Charbonnier et al., 2017). 

In Saccharomyces cerevisiae, conversion of 2-ACL to 2,3-dihydroxyisovalerate (a 

precursor for valine synthesis) is the rate-limiting step in valine synthesis (Gibson et al., 

2015, Krogerus, 2013). Secretion of 2-ACL has been proposed as a method for S. 

cerevisiae to protect itself from carbonyl stress (van Bergen et al., 2006, 

Kosmachevskaya et al., 2015)(see below). It is likely that bacteria are susceptible to 

detrimental effects of carbonyl stress as well. Thus, if YxaKC is a 2-ACL transporter, it 

could have evolved as a way to minimize such stress. 
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5.3.2. Toxic accumulation of diacetyl 

In addition to conversion by enzymatic reactions, 2-ACL can spontaneous 

decarboxylate at low pH to diacetyl or undergo oxidative decarboxylation at neutral pH 

forming diacetyl (Park et al., 1995, Suomalainen & Ronkainen, 1968). Diacetyl is an 𝛼-

dicarbonyl, similar to methylglyoxal and glyoxal, a class of reactive carbonyl species 

(RCS) (Kovacic & Cooksy, 2005, Wondrak et al., 2002). RCS consist of aldehydes and 

ketones possessing a carbonyl group that provides an electrophilic carbon that are 

capable of reacting with the nucleophilic nitrogens of amino acids, peptides and guanine 

bases (Kosmachevskaya et al., 2015). 𝛼,β-dicarbonyls, are capable of reacting with 

arginine, lysine, and cysteine residues damaging proteins by forming cross-links. In 

addition to carbonyl stress, RCS can increase oxidative stress leading to reactive oxygen 

species (ROS). In humans, RCS generate advanced glycation end products (AGEs) 

which have been linked to diabetes, cancer, and neurodegenerative diseases 

(Kosmachevskaya et al., 2015). Although much less information is known about 

glycation in prokaryotes, carbonyl compounds have been shown to be produced in 

bacteria and glyoxylase systems that detoxify 𝛼-ketoaldehydes have been characterized 

(Sukdeo & Honek, 2008). B. subtilis does not encode a system for glyoxylate removal, 

suggesting additional mechanisms are in place to deal with carbonyl and oxidative stress. 

Taken together, we hypothesize that, similar to S. cerevisiae, B. subtilis secretes 2-ACL 

to reduce the potentially toxic effects from intracellular carbonyl stress (Gibson et al., 

2015, Milne et al., 2016).  

In addition to the potentially toxic effects of diacetyl formation, the spontaneous 

decarboxylation of 2-ACL has also been shown to reduce various flavins, nicotinamide 
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and quinone coenzymes (Park et al., 1995). Intriguingly, one group found that B. subtilis 

3610 carrying a transposon insertion between yxaD and yxaC requires menaquinone to 

form complex colonies on spreading agar plates (Pelchovich et al., 2013). Unfortunately, 

for unknown reasons, we were unable to observe consistent growth rates in the published 

medium. Nevertheless, a requirement for menaquinone in development of complex 

colonies is intriguing given the possible role of YxaC in 2-ACL secretion. In a strain 

harboring ΔyxaC, cells might be unable or less able to secrete 2-ACL into the medium. 

If so, the accumulated intracellular 2-ACL could undergo spontaneous decarboxylation 

resulting in reduction of flavins, quinones, and nicotinamide coenzymes, which could 

explain the requirement for exogenous menaquinone (Pelchovich et al., 2013).  

 

5.4. A possible mechanism for YxaD derepression 

We observed 2-ACL excretion from B. subtilis in a ΔyxaD mutant. MarR-like 

proteins are involved in regulating a variety of processes including antibiotic resistance, 

metabolism, and responses to oxidative stress. YxaKC could function to regulate 

oxidative stress by managing intracellular 2-ACL concentration. If so, yxaKC expression 

might be regulated by YxaD responding to 2-ACL levels or some form of oxidative 

stress. Commonly, MarR-regulated oxidative stress operons are induced by oxidation of 

redox-active cysteine residues, which subsequently causes release of the DNA-binding 

protein from DNA (Deochand & Grove, 2017). This cannot be the mechanism for YxaD, 

however, as YxaD has no cysteine residues. Although less common, another possible 

oxidation sensor is methionine, which has been shown for the LysR-like regulator in 
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E.coli, HypT (Drazic et al., 2013). YxaD possesses three methionine residues, one that 

maps to 𝛼5 and two that map to 𝛼6 in the predicted structure (Figure 4.1).  

MarR-like proteins form a ‘safety-triangle’ shape where the N- and C-termini of 

both monomers meet at the top burying 𝛼1 (Figure 4.1). In the case of OhrR, oxidation 

of the lone cysteine on	𝛼1 forms Cys-sulfenic acid (Cys-SOH) which disrupts DNA-

binding due to steric clash by two tyrosine residues on 𝛼1 (Hong et al., 2005). E.coli 

MarR undergoes a completely different mechanism where the oxidation of cysteine 

positioned on 𝛼2 near the DNA-binding domain leads to disulfide bond formation 

followed by tetramerization of two dimers (Hao et al., 2014). Since no structures of 

YxaD have been solved, we are not able to define the positioning of the methionine 

residues or any local residues that could facilitate an allosteric effect. Further 

experimentation will be required to determine if the YxaD DNA-binding activity is 

affected by oxidation. First, expression levels of yxaKC and yxaD in response to various 

oxidative stressors must be analyzed in order to determine if YxaD responds to oxidative 

stress in vivo. In addition, solving the structure of YxaD in the absence and presence of 

DNA would reveal the residues required for DNA binding and would reveal the position 

of methionine residues as well as how oxidation may or may not play a role in DNA-

binding of YxaD. To our knowledge, no MarR protein has been shown to be regulated 

by methionine oxidation. However, this does not exclude the possibility of a novel 

mechanism for MarR-like regulation. Prior to the recent finding that E. coli MarR is 

regulated by cysteine oxidation, it was long thought that DNA-binding of E. coli MarR 

was affected by directly binding phenolic compounds such as salicylate (Zhu et al., 

2017b, Hao et al., 2014). Transcriptomic and proteomic analyses of B. subtilis 
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performed in the presence of superoxide or peroxide stress did not significantly affect 

yxaD or yxaKC expression (Mostertz et al., 2004). This suggested that the genes are not 

expressed in response to oxidative stress or that their activation is specific to a particular 

stressor or compound.  

Another possibility is that YxaD is regulated by ligand binding, possibly 2-ACL 

or a related compound in the same pathway. Although most MarR-like proteinss are 

thought to be regulated by binding phenolic ligands, YxaD regulation by 2-ACL might 

be similar to the allosteric regulation of the MarR-like protein TamR of Streptomyces 

coelicolor, by binding trans-aconitate, cis-aconitate, citrate and isocitrate (Huang & 

Grove, 2013).  

 

5.5. Possible additional yxaKC regulation mechanisms 

Expression of yxaD and yxaKC in a ΔyxaD background resulted a gradual 

decrease in overall expression during growth in LB medium (Figure 3.9) which raises 

the question of whether yxaD and yxaKC are regulated by an additional regulator. In 

addition, we observed that ΔyxaD secreted more 2-ACL than wild type or ΔyxaKC in 

M9G medium (Figure 4.5). 2-ACL secretion by S. cerevisiae is believed to be the result 

of the rate-limiting step consisting of 2-ACL to 2,3-dihydroxyisovalerate during valine 

synthesis (Gibson et al., 2015). BCAA synthesis in B. subtilis is under tight control by 

the global regulators CodY (Shivers & Sonenshein, 2004) and CcpA (Fujita et al., 2014). 

Therefore, one possibility is that the regulation of yxaKC and yxaD could be mediated by 

CodY and/or CcpA (Gibson et al., 2015). In support of this, CcpA exhibits tight control 
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over the B. subtilis pyruvate transporter PftAB which is repressed in the presence of 

glucose (van den Esker et al., 2017, Charbonnier et al., 2017).  

Genome-wide CodY binding studies have been performed on B. subtilis and no 

CodY binding sites have been found at or near yxaD and yxaKC promoters (Belitsky & 

Sonenshein, 2013), suggesting that CodY likely does not directly regulate yxaD or 

yxaKC. A more recent study examined global gene expression under different 

concentrations of CodY and in CodY mutants (Brinsmade et al., 2014). Interestingly, 

yxaK and yxaC were overexpressed by nearly 2-fold in a ΔcodY strain (Brinsmade et al., 

2014) suggesting yxaKC are at least indirectly upregulated in the absence of codY. In 

addition, this study revealed similar regulation amongst yxaC and ilvD, ilvA, and ilvBH. 

This suggests the proteins may function in a common pathway. We also do not exclude 

the possibility that CodY could regulate yxaKC by directly binding to promoter DNA. 

Such an interaction might not have been observed before because of the conditions used 

in the in vitro assay (Belitsky & Sonenshein, 2013). Recently, it was found that CcpA 

regulates cidAB through a cryptic CcpA binding site in the cidAB promoter in S. mutans 

(Kim et al., 2019). In addition, B. cereus ClhAB2 was recently shown to require CodY 

for expression in glucose (Huillet et al., 2017). B. cereus ClhAB2 is most closely related 

to B. subtilis yxaKC, but B. cereus does not encode a nearby MarR-like regulator, like 

yxaD. Interestingly, since clhAB2 and yxaKC are functional homologs, both could be 

regulated by CodY, but yxaKC may have evolved YxaD as a more specific regulator in a 

common ancestor. 

 How and why might a ΔcodY strain lead to yxaKC overexpression? Interestingly, 

the only amino acids that have been shown to regulate CodY activity are branched-chain 
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amino acids, suggesting the pool of BCAA is critical for nutrient availability and 

subsequent cell response (Shivers & Sonenshein, 2004, Guedon et al., 2001). The altered 

regulation of yxaKC in ΔcodY, could be result from altered expression of BCAA genes 

that may affect pathways producing the ligand of YxaD and/or are transported or affect 

by YxaKC. Ultimately, further studies are needed to determine if yxaKC are regulated by 

CodY directly and to probe a possible role for YxaKC in BCAA pathways or overflow 

metabolism.  

 

5.6. Functions in the real-world: Biofilm formation 

The B. subtilis encoded cid/lrg operons were recently shown to be required for 

efficient pellicle formation in the B. subtilis 3610 (Chen et al., 2015). yxaD in B. subtilis 

3610 shares 100% sequence identity with that in B. subtilis 168. On the other hand, 

yxaKC in B. subtilis 3610 are expressed as a fusion protein in termed yxaC. We found 

that yxaD and yxaC are expressed as a concentric ring during biofilm formation which 

grew outward as the biofilm matured (Figure 4.6). Nutrients are more depleted in biofilm 

centers compared to the biofilm edge. In the ΔyxaD mutant, expression of yxaD and 

yxaC was observed throughout the entire biofilm, suggesting that YxaD represses yxaD 

and yxaC expression in the outer regions of the biofilm but that depression occurs in the 

biofilm center. These data are consistent with expression during nutrient depletion and 

repression during higher nutrient availability. Therefore, we hypothesize that if YxaC 

exhibits transporter activity, then YxaC transport activity preferentially occurs where 

nutrients are depleted in order to import metabolite(s). Under nutrient-limited conditions, 

tight regulation of facilitated transporters would be absolutely necessary in a community 
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environment such as a biofilm to ensure that vital compounds are not excreted and lost to 

other bacteria. Alternatively, under nutrient-depleted conditions, such transporters might 

become necessary for maintaining fitness.  

 

5.7. Final Remarks 

Here, we utilize misexpression to reveal growth and morphological phenotypes 

and assign preliminary functions to genes that lack deletion phenotypes under standard 

laboratory growth conditions. We quantified the expression of the yxaD and yxaKC 

genes during growth in LB, M9G and M9MG and found that expression increases with 

growth, consistent with glucose utilization. In addition, we defined the mechanism to 

which YxaD represses yxaD and yxaKC including the site YxaD binds as well as 

residues that likely facilitate contacts with the DNA. Furthermore, we have identified a 

role for YxaKC in affecting 2-ACL transport possibly to reduce the chances of 2-ACL 

mediated oxidative stress by spontaneous decarboxylation to diacetyl and/or to prevent 

reduction of flavins, nicotinamide and quinone coenzymes (Park et al., 1995). 

Accumulation of intracellular 2-ACL could result from the rate-limiting step of 2-ACL 

to 2,3-dihydroxyisovalerate or an additional step in valine biosynthesis (Figure 5.1B) 

(Gibson et al., 2015). Another possible mechanism is to utilize nutrients under starvation 

conditions, or to possibly to import and export a signal to communicate with nearby cells 

or communities (Figure 5.1C).  
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Figure 5.1 Possible mechanisms for 2-ACL secretion 
 (A) During growth in excess glucose, acetate and pyruvate accumulate. In order to 
reduce intracellular acidification, acetate and pyruvate are exported or converted into 
overflow metabolites. Similar precursors are required for BCAA synthesis. (B) Rate-
limiting reactions from valine synthesis could increase 2-ACL. Accumulated 2-ACL is 
secreted to prevent ROS and RCS as result of diacetyl formation. (C) Under nutrient-
limited conditions, 2-ACL may be imported for BCAA synthesis. 
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