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ABSTRACT

Remotely tracking users’ activity and physiology can help on disease treatment and health

monitoring. For example, in nutrition management, tracking food intake helps on weight control.

However, to train tracking algorithms, annotated data is needed which is typically obtained man-

ually. Users’ manual annotation is challenging as it’s affected by factors such as recall bias and

may become a burden, causing them to stop annotating. Automatic approaches exist, but they may

not personalize to individual users, resulting in inaccurate annotations. Therefore, personal pattern

identification and adaptation are needed to achieve a satisfactory annotation process. We present

a system capable of personal patterns’ identification and intelligent data annotation for accurate

personal monitoring without burdening the user.
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1. INTRODUCTION

Personal health monitoring and tracking has become increasingly feasible through pervasive

and ubiquitous wearable sensors such as smartwatches [1]. Systems built around these devices

are able to track personal activity and query individuals for behavior and health [2, 3], and are

better at tracking than smartphones that are often in proximity but not on the individual [4]. In

order to successfully track users, tracking algorithms are trained on datasets that are often obtained

from groups of users. However, the algorithms might be used in different groups of users. As

a consequence, it is necessary to personalize the recognition algorithms to each user in order to

accomplish successful personal monitoring. Additionally, large amounts of annotated data are

needed in order to train such tracking algorithms.

The annotation process, is a process on which labels for data used for training recognition algo-

rithms is obtained. This process is usually performed in laboratories [5] which can be considered

as controlled environments. When users go to laboratories for data collection, the researcher is

usually who annotates the data, and he does so following protocol which dictates how the data

should be collected. As a consequence, the collected data does not necessarily represent that of

natural environments. Therefore, any algorithm trained in these datasets tend to perform poorly

when tested in natural environments [6].

Different works have reported this type of data collection issues. The reliability of accelerom-

etry for activity recognition in and out the laboratory has been investigated [6]. The authors found

out that despite the miss-classification rates for activity recognition with data collected in-lab was

as low as 9%, the miss-classification rates increased significantly in the out-lab data up to 33.3%.

This work supports the belief that the laboratory settings can bias data and hide valuable informa-

tion resulting in algorithms performing poorly in natural environments. Different classifiers for the

activity recognition task [5] have also been investigated. In this work, the authors have mentioned

the drawbacks of data collection under controlled environments, which they argued was diminished

by following a semi-naturalistic protocol. This semi-naturalistic protocol has as a main goal to ask
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the participants what to do in an "open" way without giving out specific details on how a given

activity should be performed. Also, no supervision was made once the experiments began. Their

idea was to not bias the data collection by telling the user how to perform the activities. Despite

their approach seems more realistic, it still lacks of flexibility. The subjects were recruited at a lab-

oratory and the activities were all performed following a circuit designed by the researchers. As a

result, there were no external factors that might be present in a natural environment and that can af-

fect the way the subjects perform the given activities. A solution to this problem of bias, is to train

the algorithms on annotated data obtained in natural environments. However, obtaining annotated

data in natural environments is challenging as it usually implies multiple user’s interactions.

In natural environments, annotations are usually performed manually by users. This approach

is often affected by user’s recall bias and if the process is not carried carefully, it can become a bur-

den to users who then stop the data annotation process, resulting in a lack of annotations. Manual

logging of activities such as dietary intake, activities performed, and locations visited, is a burden-

some process that often sees greatly reduced user compliance [7, 8]. An example of this reduced

user’s compliance can be seen in remote cardiac rehabilitation. Remote cardiac rehabilitation al-

lows patients to perform their rehabilitation exercises remotely without having to be physically at

the clinic facilities [9]. To accomplish this monitoring, patients are asked to self-log their exercise

and activities and communicate their notes to their physicians. Unfortunately, this often becomes

a burden, which causes them to drop out the rehabilitation programs [10, 11]. Similarly, a study in

mental wellness reported reduced adherence rates on their users when they were asked to answer

an average of 8 surveys a day [8]. On the other hand, in dietary monitoring, adherence reduction

has also been observed, as the participants leave what is known as the novelty period which is a

period of motivation just because the novelty of the tool [12]. People forget to log food intake,

do not want to log for privacy reasons, or simply find the benefits are not outweighed by the bur-

den of annotating their eating patterns. If systems leverage technology that involves additional

passive sensing, observations captured can infer logging and reduce the burden of manual logging

by automatizing most of the process, likely increasing user adherence. In other words, automatic

2



approaches can improve the annotation process through reduced annotation burden.

Different approaches to automatic data annotation have been proposed that aim to ask users for

annotations only when is needed. Such algorithms are mostly based on the classification model’s

probability output. For example, semi-supervised approaches, such as self-learning [13], and co-

training [14], use the probability returned by the classifier to guide their labeling process, requiring

annotations only when the model’s output probability is below a threshold. However, these ap-

proaches tend to overfit and may ignore samples for which the classifier’s probability output was

high, even though the assigned label was incorrect. Automatic labeling approaches, such as active

learning (AL) and experience sampling methods (ESM) that obtain labels directly from the user

increase accuracy at higher rates [15, 16]; however, such approaches do not limit the number of

interactions, likely impacting the adherence [17]. We need a system for data collection and anno-

tation that is pervasive enough to be used for long periods of time, capable of collecting data in

natural environments, and that has smart annotation capabilities to reduce user’s annotation burden.

Smartwatches are a flexible platform that provide a potential solution to optimizing this manual

logging burden. Studies have shown that recognition of activities can be performed through the

analysis of sensor data captured by smartwatches. For example, accelerometer and gyroscope data

captured from the watch can be used for the recognition of several activities, such as walking or

jogging [18], for the detection of eating moments [17], and for posture detection [19]. Therefore,

we propose a smartwatch based system for automatic data annotation that intelligently prompts

user for annotations only when required with aims at minimizing user’s annotation burden. In this

thesis, we introduce a smartwatch based platform for longitudinal data collection. We also provide

an offline analysis for intelligent annotation and personalization. Additionally, we include an on-

line analysis on the impact of running deep learning models on a device with limited computing

power such as a smartwatch. The analysis provided by this work are all performed on real world

data obtained through a diet monitoring study.

The remaining chapters discuss the related work, approach, and the results of this thesis. Chap-

ter 2 discusses the relevant work related to data collection platforms, annotations in natural envi-

3



ronments, and diet monitoring. The goals of this thesis are listed and discussed in Chapter 3. The

approach taken in this thesis is presented in Chapter 4 and the results obtained are discussed in

Chapter 5. Finally, the conclusions and future directions of this work are discussed in Chapter 6.
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2. RELATED WORK

Data collection platforms are often developed by scientists in order to collect the data on which

they want to perform their research. However, they often do not care about device’s pervasive-

ness as well as annotation burdens as the data collection platforms are usually used in laboratory

settings. Automatic annotation approaches have also been proposed that aim at minimizing user’s

imposed burden on manual annotations. They are mostly based on the prediction model’s output

probability. On the other hand, annotations in diet monitoring are important as they give a better

understanding of user’s patterns of behavior. In this chapter, we discuss some related works on

data collection platforms, automatic annotation approaches, and diet monitoring.

2.1 Data collection platforms

Data collection platforms are not new and different works have tried to provide a tool for data

collection that facilitates the data collection process. A data collection platform for mental health

research which captures information provided by the user has been proposed [20]. In this platform,

data is manually introduced by the user, and data such as HR and activity information are also

captured. Despite they mention that the platform is able to collect data from an electrocardiogram

(ECG) sensor, they didn’t mention if their app supports the addition of any other external sensor

besides the ECG. Despite this is a good way to obtain information from the user, the burden that

this implies is not desired. Another data collection platform called OmniTrack [21] is a smartphone

based, semi-automated tracking app that attempts to overcome the main shortcomings of already

available self-tracking apps. OmniTrack allowed subjects to track several custom activities such as

sleeping, or exercising. It also allowed users to log their tracking information either manually, or

semi-automatically through the configuration of triggers that automatically log information based

on events. However, even if the users decide to set up triggers that would help them to log their

information through reminders, the system did not learn the user’s behavior and therefore its still

highly dependent on the users. The result is a constant need of tuning the triggers to adapt to users.
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On the other hand, in a longitudinal study a smartwatch and a smartphone were used as a data

collection platform for personal risk detection [22]. In their study, they collected data 24 hours

a day for 1 week from multiple sensors found in a Microsoft band. During the data collection

process, the participants manually logged their activities but longer term data collection was not

investigated.

Another approaches to data collection platforms propose both, the hardware that collects the

data and the software that handles the collected information. A data collection system using a

smartwatch, smartphone, and microlocation information provided by Bluetooth low energy (BLE)

beacons has been introduced [23]. Despite they claim that their proposed framework can be con-

figured to integrate more sensors, their work is based on custom-made beacons which is a not so

easily scalable solution. Also, they do not cover a personalization of the models and their platform

design might not be pervasive enough as it would require users not only to carry a smartwatch,

but also a smartphone as depicted in Figure 2.1. Another data collection platform has also been

proposed motivated by the idea of having a centralized device for activity related data collection

instead of multiple devices [24]. The platform is a wearable device capable of performing activity

recognition based on multiple sensor data. Despite the platform is able to wireless transfer the

data to a mobile device, the data that can be collected is restricted by the type of sensors that have

been embedded into their hardware, which are sensors they have determined that are required to

properly recognize subjects’ activities. In other words, this device has been built with the solely

purpose of collecting activity related data and does not allow extra sensors to be added, at least not

in an easy way.

2.2 Annotations

The influence of the laboratory setup on the data collection process has previously been ob-

served on studies on which the performance of predictive models decreased significantly when

comparing test results in-the-lab against out-the-lab settings [6]. It has also been suggested that

allowing the users to collect and label their own data with no influence by researchers for the ac-

tivity prediction task can improve their models accuracy [5]. The authors argue that most data is

6



Figure 2.1: Data collection platform with BLE for micro-location. Reprinted from: [23]

collected on laboratory setups under controlled situations, therefore, the models built out of such

data does not generalize well and when deployed in a real word setting the performance drops

significantly. Having users collect and label their own data allowed them to show a good predictive

performance in a semi-real world setting. However, they did not propose a remote data collection

platform and their results were based on data collected from their experiments performed at their

laboratory, which was just a simulation of a real world setting. Therefore, its performance in a

real-world setup it’s yet to be analyzed.

Different methods have been proposed to annotate data in natural environments that try to over-

come the problem of annotations on a laboratory. Some of them involve automatic approaches and

some others require the user to manually provide labels on the data. Despite manual approaches

exist, they often require significant interaction from the user, this causes them to stop using the

system in the long term since the compliance levels are affected by the burdensome task of anno-

tating data too often [8, 25]. This burden was reported in mental wellness study where a platform

for the assessment of mental stress in college students was proposed [8]. The platform automat-

ically collected activity data from a smartphone and asked an average of 8 questionnaires a day,

which ranged from 3 to 13 questions each. They observed that on average, 6 questionnaires were

answered a day during the first days of the study and the number of solved surveys diminished as

the study progressed. By the end of the study, the number of responses significantly dropped to

2 surveys a day. In dietary monitoring, adherence reduction has also been observed, as the par-
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ticipants leave the novelty period [12]. People forget to log food intake, do not want to log for

privacy reasons, or simply find the benefits are not outweighed by the burden. If systems leverage

technology that involves additional passive sensing, observations captured can infer logging and

reduce the burden of manual logging by automatizing most of the process, likely increasing user

adherence.

Some other approaches to annotations attempt to reduce the user burden by asking the users

for annotations only when needed instead of asking indiscriminately, and sometimes not asking

them at all. To this end, a base classifier is trained on the data from which annotations will be

taken. The base classifier is then trained using a small dataset with few available labels and the

classifier is given to the user for its use. Self-learning approaches use the probability output of the

classifier when this assigns labels to samples [13]. When predictions are made, the sample used

for prediction is annotated with its predicted label if the probability returned by the classifier is

above a threshold. This prediction is considered as a valid annotation, and therefore, its added to

the training set for the retraining of the classifier. Despite this approach improves the accuracy

of the model without having to interact with the user, it can add noise to the dataset when high

confidence predictions are made, but they are wrongly labeled.

Some other approaches have tried to improve the simplistic self-learning approach by adding

multiple classifiers. Instead of having a single classifier predicting the label for a sample, ap-

proaches such as co-training [14] , En-Co-Training [26], and democratic co-learning [27] use mul-

tiple classifiers to predict a label for each sample. Co-training uses two classifiers of the same type

(e.g. Decision trees) each one trained from two different and independent views of the data. When

each classifier issues a prediction, the label is defined as the annotation for the sample if the two

classifiers agree on the same prediction and each classifier augments the training set of the other

and a retrain process is made to improve the classifier [14]. However, the restriction on the two

views of the data on which its independence has to be ensured prevents this approach from being

applicable to multiple problems.

En-Co-Training tries to improve the co-training approach by integrating an additional classifier.
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However, the restriction on which different views are required from the data imposed by co-training

is removed, and now, three classifiers from different types are trained on the same view of the data.

When the classifiers predict a label for a sample, the new sample and label are added to the training

set if the three classifiers agree on the same label [26]. On the other hand, democratic co-learning

improves co-training in a similar way as en-co-training. The only difference is that now each

classifier has its own training set. When a prediction is made, the sample is annotated with the

label agreed by the majority of the classifiers. Then, the sample and label are added to each the

training set of each classifier that disagree with the majority [27].

Despite the automatic approaches as described before are desirable since they do not have in-

teractions with the users, methods on which interaction from the user is needed have shown better

accuracy improvements on the base classifier when annotations are made [16]. However, one of

the key points on this approaches is to obtain the information from the user without representing

a burden. Previous studies on ESM have reported that when the interaction from the user is too

often, the interest from them on providing information is reduced, causing a loss of adherence

[28]. Additionally, cumbersome approaches for requesting labels to the user can result in annota-

tion problems such as annotating data the wrong way, or not annotating it at all [25]. Therefore,

different approaches attempt to reduce the number of interactions needed from the user with more

intelligent algorithms for requesting annotations.

Similarly to self-learning, active learning approaches based on the uncertainty of a classifier

have been proposed. However, as a difference from the self-learning methods, this approach asks

for an annotation when the uncertainty levels are below a threshold [29]. It has also been reported

that the interaction between the user and the system has to be minimized in order to ensure adher-

ence, yet, obtaining important labels is also desirable since from that depends a good re-training

process. However, most of the approaches that seek to ask for annotations only when the uncer-

tainty level is low, do not pay special attention on limiting the number of annotations requested

a day [30]. In other words, despite they claim the interactions are reduced by setting up a proper

threshold, there is no restriction in the number of annotations required by the user.
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2.3 Diet monitoring

Several approaches have been developed for the prediction of eating moments. Audio process-

ing, inertial measurement unit (IMU) data processing, and the design of wearable devices were

among the most popular solutions proposed by researchers. For example, the detection of family

eating moments was designed through the analysis of audio recordings taken from smartphones

placed at the family’s house [31]. With the processing of audio signals, the researchers were able

to identify gathering sounds, which were then translated into family eating moments. Addition-

ally, when available, they used motion data captured from smartwatches worn by some members

of a family for their predictions. However, their goal was not to detect eating moments of partic-

ular subjects when alone. Furthermore, their approach was only tested at in-home settings, which

means that meal predictions can be only made at their home and not a restaurant, for example.

Another approach to the recognition of eating moments involved the usage of IMU data only

from a smartwatch [17]. In order to train their classifiers for the recognition of eating moments,

authors had to collect labeled data by capturing a video of each participant in their lab settings.

Then, they tested their platform in natural settings, where they asked subjects to hang a smartphone

around their necks, which captured images every 60 seconds. This way they were able to manually

label the starting and ending times of the eating moments. The smartphone was also used as a hub

for the data captured by the smartwatch. Regardless of the effectiveness of their labeling approach,

it involved a large number of interactions from the users on the processing of the captured images

as they needed to look at the images and make sure they were correct as depicted in Figure 2.2 In

fact, the authors mentioned that in an attempt to run a longitudinal trial the participant had to carry

a power bank, which was reported as burdensome by the participant.

Other approaches to eating detection developed wearable devices that are placed around the

neck or close to the mouth for detecting chewing events like the EarBit [32]. The EarBit is a wear-

able device composed of two IMU units, one proximity sensor, and one microphone. Through the

analysis of the signals collected by their sensors, authors were able to successfully predict eating

moments. Furthermore, in order to achieve labeling in their proposed solution, video recordings
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Figure 2.2: Annotation process of images taken in natural environments. Reprinted from: [17]

were needed, which might require users or researchers to manually process such information. A

similar work built a wearable device composed of a necklace with an embedded piezoelectric sen-

sor that captured vibrations in the neck of the users [33]. Whenever the users would eat, the sensor

would capture the vibrations produced by muscle contractions in the throat. Such vibrations would

then be correlated to the eating movements from which they were able to recognize solids and

liquid food swallow events. Similarly, another approach used piezoelectric and accelerometer sen-

sors embedded in eyeglasses for the real-time recognition of eating movements and non-eating

moments [34]. The development of new wearable sensors should be investigated further for us-

ability and pervasiveness. Smartwatches are more ubiquitous devices that are more likely to be

worn long-term.
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3. RESEARCH GOALS

After discussing the motivation for this thesis in Chapter 1 and some related works in Chapter 2,

this chapter describes the specific goals pursued on this work. In order to provide a pervasive

data collection platform with smart annotation capabilities, the main goals were proposed. The

following sections describe each of them in detail.

3.1 Goal 1: To develop a platform for continuous sensor data collection with annotations

Collecting data in natural environments along with its annotations is a challenging process that

has been discussed in previous chapter for which it has been stated the need of smart annotation.

However, there is a first need that must bee accomplished in order to achieve smart annotation

and is to successfully collect data in natural environments. In order to collect data in natural

environments a platform that allowed for its collection was needed. As it was mentioned before,

one of the key problems on data annotation is the lack of adherence from users to annotate data.

Therefore, such data collection platform had to be able to collect data for longitudinal studies while

ensuring user’s adherence.

This research goal aims at the development of a platform capable of running for long periods of

time without supervision to enable longitudinal studies. The platform should continuously collect

sensor data and provide an interface to the users that allows annotations to be made.

3.2 Goal 2: To evaluate the feasibility of smart data annotations for improved diet monitor-

ing

In order to prove that smart annotations is achievable, this goal aims at proving that recognition

models can be improved as more annotated data becomes available, but that such improvement can

be maintained if the annotated data is intelligently selected. The goal is to show that even with

reduced annotations to ensure user’s adherence, it is still possible to achieve the same accuracy as

if the annotations were indiscriminately requested. This goal focuses on diet monitoring through

smart data annotations and model’s retraining processes, particularly in the accurate detection of
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eating moments and additional activities that may correlate to eating patterns.

3.3 Goal 3: To run and evaluate the performance of deep learning models in wearable

devices with reduced computing power

As the annotations are expected to occur in natural environments, the platform’s main compo-

nent is a wearable device from which data and annotations are taken. However, wearable devices

are often constrained in computing power. Therefore, it is important to understand such constraints

and to identify the limits of running recognition algorithms, in particular deep learning algorithms,

wearable devices. This goal focuses on the evaluation on the impact that running deep learning

models has in the wearable component of the data collection platform.
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4. METHODS

In this chapter, the methods that were followed in this thesis are described. Each of the fol-

lowing sections describe the methods that correspond to each of the research goals that have been

previously discussed in Chapter 2.

4.1 Data collection platform

In order to accomplish longitudinal data collection as described by our research goal 1 de-

scribed in Chapter 3, one of the main concerns was to keep high user’s compliance levels. This

motivated our design decisions to be towards a wearable solution. Today’s smartwatches are ca-

pable of collecting multiple sensor data such as IMU data, and heart rate through photoplethys-

mography (PPG) [35]. Additionally, most smartwatches are equipped with Bluetooth technologies

which makes them suitable to connect with additional sensors such as chest straps which can pro-

vide additional sensor information such as breathing rate [36], increasing the range of possible

sensor data that can be collected on the device. On the other hand, smartwatches are considered

off-the-shelf devices meaning that they are greatly available for general public usage [37], mak-

ing them a perfect tool to reach out people more easily. Therefore, given the sensing potential of

smartwatches, as well as their pervasiveness in today’s lifestyle, we decided to use a smartwatch

as a main component of our data collection platform.

Despite all the positive features we have described about smartwatches, there is one important

weakness that we must consider and is their reduced computing power. This restrictions plays an

important role as in our work the retraining of deep learning models is something that constantly

happens, and the training of deep learning models is well known for needing high computing

power for training [38]. In order to accomplish a successful retraining process of recognition

models, we needed to somehow perform these highly resource demanding tasks offline. Therefore,

the platform has been designed in such a way that it can communicate with an external computer

for offline processing.

14



The platform design is shown in Figure 4.1. For this particular work, the smartwatch device

has been chosen to be a Polar watch model M600 as it’s wearable component, and an Intel Next

Unit of Computing (NUC) as their external server component. Despite the Polar watch being

chosen because of its storage capacity, power efficiency, and features such as water resistance, it

is important to mention that it can be replaced by any other Android based smartwatch as needed.

The smartwatch can collect internal sensor data such accelerometer and gyroscope data provided

by the IMU, as well as heart rate data provided by the PPG sensor. However, the smartwatch

can also collect data from external sensors that provide data through Bluetooth technology using

interfaces that allow a proper communication with the watch. Additionally, the smartwatch also

captures BLE addresses from nearable devices with aims at collecting additional information that

can be potentially used to aid in the annotation process. For example, BLE beacons can be placed

at specific locations which can serve as a low energy alternative for location detection [39] instead

of Global Positioning System (GPS) data as it tends to consume a lot of energy and sometimes

users might feel that their privacy is compromised [40, 41, 42]

The smartwatch runs an Android app that is in charge of orchestrating the data collection pro-

cesses, annotations, and recognition algorithms. The app has been designed to be versatile and

extensible, allowing user’s to collect and annotate data at will. An example of user’s interaction

with the app is shown in Figure 4.2, however, additional user interfaces were designed to suit dif-

ferent research needs that allowed GPS data collection and annotations through audio recordings.

The app, intelligently manages the collection of sensor data to ensure power efficiency. There is

also a notification module that is used to ask users for annotations based on rules that are set up on

the watch such as timers or the decision of an intelligent annotation algorithm.

The proposed platform has been designed to be able to continuously collect data for an average

of 10-12 hours. The idea of its usage is that user’s use the smartwatch during the day to collect and

annotate data. Then, at the end of the day the user plugs in the watch into the NUC for charging

which activates the data transfer between devices. Then, the models are retrained overnight and

transferred back to the smartwatch to have them updated for the next morning. Despite in this

15



Figure 4.1: The proposed platform for data collection composed of a smartwatch for sensor data
collection and an external server for high resource demanding computing processing. The smart-
watch collects IMU and HR data from its internal sensors and also captures nearable BLE ad-
dresses. The server processes the information collected by the watch and updates the algorithms
that are to be used by the watch.

particular work the platform is tested in a diet monitoring study, it has been designed to be scalable

and easily adaptable to other research areas. For example, the platform can be used for remote car-

diac rehabilitation monitoring for patients with cardiac conditions on the the smartwatch can track

the user’s activity and help to keep track of the user’s performance throughout their rehabilitation

program. The platform can potentially help to enhance continuous glucose monitoring (CGM) for

patients with diabetes by providing activity data as context information to the glucose levels to

better understand its changes.

4.2 Case study: Diet monitoring

In order to accomplish goals 2 and 3 described in Chapter 3, we wanted to perform the analysis

on a real case scenario. Being diet monitoring an important matter as it helps for better nutrition

and diseases management such as in diabetes management, we performed a diet monitoring study

on which our goal was to improve eating moment detection through an intelligent data annotation

process. In order to accomplish this, we wanted to not only be able to detect eating moments, but
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Figure 4.2: The Android based app that allows users to initiate the data collection process, and
the lets them annotate data at will. From left to right we can see an annotation process as follows.
First, the user decides to annotate data (can be because of a reminder based of a smart annotation
algorithm). Then, the user selects the activity that is performing. Finally, the user can be prompt
for additional information. The result is an annotation for the data being collected by the sensors.

also additional activities which might give a better insight of user’s patterns of behavior in corre-

lation to their eating patterns. In this study, 5 participants were given a smartwatch and they were

asked to annotate whether they were eating or doing any other activity every 15 minutes for ground

truth data collection and approximately 1 month of data was collected from each participant. The

activities that were considered in this study are shown in Table 4.1. Through this study we aimed at

using deep learning models for automatic feature extraction, and at understanding the constraints

of running them on our smartwatch device.

This study was reviewed and approved by the Texas A&M University Institutional Review

Board (IRB #2018-0998D). Therefore, informed consents were given to the participants and they

were asked to sign them before participating in the study.
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Activities
Eating Sitting Walking Exercising Other

Table 4.1: The table shows the activities that were predicted in this work, where Other represents
the unknown class.

4.3 Intelligent annotation

In order to accomplish goal 2 as discussed in Chapter 2, we first needed to demonstrate that

there was a need for personalization. Then, we needed to demonstrate that deep learning algorithms

can actually automatically extract features and recognize activities out of raw sensor data provided

by the smartwatch. We then needed to demonstrate that we can in fact improve the model’s perfor-

mance through personalization accomplished by re-training models with more annotated data as it

gets available. However, we also needed to demonstrate that such given improvements were still

possible even through reduced annotations when such were intelligently obtained from users. The

approaches we followed in order to accomplish each of the aforementioned needs are described in

the following subsections.

4.3.1 Evaluating the need for personalization

In order to show that regardless of the type of activity being the same, different users tend

to perform the same activity differently. It could be because each activities’ restrictions on each

user’s lifestyles, or just because they performed differently by nature. Regardless of the reason,

some models might not perform well in some subjects because of this particularities. We evaluated

the raw sensor data collected from participants, being this the accelerometer and gyroscope data.

We looked at multiple ways of data visualization that allowed us to understand how the data looks

like for each subject.

In order to understand such subject’s specific differences we looked at the mean value of each

sensor channel for each subject. We also visualized the magnitudes of accelerometer and gyro-

scope data which gives a general perspective of the intensities captured by each given sensor. The

magnitudes of accelerometer and gyroscope were calculated by Equation 4.1 and Equation 4.2
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respectively. Where, the subscripts x, y, z indicates the channel for each given sensor reading.

accmag =
√

acc2x + acc2y + acc2z (4.1)

gyromag =
√
gyro2x + gyro2y + gyro2z (4.2)

4.3.2 Activity recognition through neural networks

As described in previously, we aimed at detecting eating moments and some activities that

might correlate to it (See Table 4.1). Usually, feature engineering is performed on the raw sensor

data and then, the extracted features are used to train the recognition models [43, 44, 45]. However,

this approach requires some expert knowledge on the type of information being processed, and the

manually extracted features may not necessarily serve as good predictors for a given activity [45].

In other words, important information contained in the raw sensor data might get ignored in the

feature extraction process. Therefore, we wanted to get one step ahead and avoid this manual

feature extraction process to avoid losing any information from the collected data.

In order to obtain the most out of the raw data, we opted for training neural network based

models. In particular, we looked into convolutional neural networks (CNN) and long short-term

memory (LSTM) networks which are two types of networks that can abstract information from

raw data for automatic feature extraction [46]. The training process of neural networks is well

known for being computationally demanding, however, running inferences is not necessarily as

demanding as it can be as simple as a multiplication of weights. Therefore, since we already

decided that any further training and processing of the data would be performed offline in a server

as described in Figure 4.1, neural networks seemed like the perfect fit to our problem as inferences

can be run in devices with limited processing power. Additionally, by using CNN and LSTM we

can avoid any extra pre-processing of data that might be needed in order to manually compute the

features that will be feed to any given model.

To this end, we had proposed 4 different model architectures for different automatic feature

extraction with aims at finding the model that better fits our needs. Figure 4.3 describes in an
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Figure 4.3: Architecture 1 designed to extract low and high level features. Architecture 2 and 3
designed as an alternative to architectures 2 and 3 with aims at reducing the model’s parameters.
Architecture 4 was designed with aims at explicitly extracting time related features.

intuitive way the architecture designs that we proposed. The architecture 1 is one of the most

commonly used in CNN approaches. The first two convolutional layers allow us to extract low and

high level features respectively, then the Drouput layer was added to reduce the model’s likelihood

of overfitting to the training data. The MaxPooling layer was added in order to reduce the mod-

els parameters complexity which is from fundamental importance as the final number of model’s

parameters correlates to the computation power that will be needed for running inferences. Ar-

chitecture 2 and 3 had been proposed as an alternative to the complex architectures 1 and 3, the

only difference between the two being the last dense layer in order to reduce the number of the

model’s parameters. In terms of the Dropout and MaxPool layers, the reasoning behind is the same

as for architecture 1 and architecture 3. Architecture three is similar two architecture 1, with the

difference that here we explicitly expect the network to extract time features through the LSTM

layer.

After defining the architectures, we then needed to select the one that better fit our needs.

Therefore, we trained each of the architectures using the data collected in the diet study. In order

to feed the data to the models, we used a sliding window of 6 seconds with 50% overlap on the
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Figure 4.4: The first weeks of data were used as training set, and the last week as the test set to
measure our model’s accuracy.

6 sensor channels from accelerometer and gyroscope. Each window of data was then assigned its

proper label and the window of data along with its label was feed into each model. Then, in order to

select the best architecture to predict both our target activities and eating moments, we tested their

performance on the last week of data when training on the first weeks. The train and test sets are

depicted in Figure 4.4. For each architecture, we evaluated different batch sizes and epoch numbers

and selected the architecture that showed best performance. After selecting the architecture that

better suited our purposes, we performed hyperparameter tuning following a grid-search approach

on which we evaluated different parameters for each of the layers.

4.3.3 Smart annotation and model personalization

In order to accomplish goal 2 as mentioned in Chapter 3, we wanted to show that personaliza-

tion was possible through user annotated data and that by adding more annotations as we get them

we can actually improve the model’s performance. We also wanted to show that we could selec-

tively decide whether a data sample needed to be annotated or not while maintaining accuracy, in

order to reduce user’s annotation burden.

To simulate the availability of new user’s annotations in our offline analysis we divided each

subject’s data in 3 datasets as depicted in Figure 4.5. The first dataset was used to train a baseline

model. The second dataset, was used as a simulation for annotation’s availability. The third dataset

was used to test the performance of the models as they are retrained with the availability of new data

obtained from the second dataset. The process is described as follows, we first trained a model on

the baseline dataset and tested against the test set. Then, in order to evaluate the impact of getting
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Figure 4.5: The first week of data was used to train a baseline model. The corresponding to the
weeks between the first week and the last week was used to simulate annotations provided by the
user. Finally, the last week of data was used to test the models.

multiple annotations, we progressively added annotated data from the annotations dataset in a daily

basis and captured the model’s accuracy. We wanted to show that the more data we get from the

user, the better we get at predicting their activities.

On the other hand, we also wanted to minimize the need for annotations through an intelligent

selection of data samples. On the retraining process of the baseline model, instead of adding all the

data for retraining, we selected important data samples based on the model’s output probability.

First, we took the probability of all the samples in the train set per class that gets returned by the

baseline model and take stored the average. Then, when a new sample was available we predicted

its label with the current model and if the probability for that class was not within 1 standard

deviation from the average, we simulated the need for it’s annotation by simply adding the data

sample to our train set to retrain the model.

4.4 Online evaluation

The third goal of this thesis mentioned in3 was to evaluate the implications of running deep

learning models in devices with limited computing power such as are the smartwatches. It is

well known that training neural networks is usually a resource demanding task. Running model’s

inferences is a whole different story, but still requires some computing power. We wanted to

evaluate the CPU usage and energy impact of running our best model with different hyperparameter

configurations. Since running inferences involves the usage of our model’s parameters, the amount

of operations needed to perform an inference greatly depends on the number of parameter, which

depend on the hyperparameter configurations such as number of filters in a convolutional layer, or
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the number of neurons in a dense layer. Three different hyperparameter settings were evaluated

considering, low, medium, and a high number of parameters. The CPU and energy impact were

monitored and recorded through Android Studio’s monitoring tool.
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5. RESULTS

5.1 Data collection platform

The proposed data collection platform described in Section 4.1 has been tested in a real case

scenario in this thesis through a diet monitoring study. The users were asked to wear the smart-

watch for a whole day during approximately 1 month. The platform was able to successfully collect

the data from users and let them annotate it at will using the designed user interface. In a previous

work on which a custom made score for annotation requests was proposed, the platform was also

used as the data collection platform. The platform was able to provide a tool for researchers to col-

lect and annotated data through a custom made user interface that additionally allowed to record

audio, and GPS data at will [47].

5.2 Intelligent annotation

In this section, we discuss the results obtained on the methods discussed in Section 4.3

5.2.1 Evaluating the need for personalization

We evaluated different ways on which we could visualize the need for personalization in an

intuitive way. First, we looked at the mean and variances on the sensor channels per each activity.

The goal was to be able to see differences on the average values on each channel per user on both

the accelerometer data as seen in Figure 5.1, and gyroscope data as seen in Figure 5.2. However,

it was not clear if there were actually differences between users, at least not in all sensor channels.

This motivated another approach on which instead of looking at the mean and variances of each

sensor channel, we looked at the same statistics on the magnitude on each sensor calculated through

equation 4.1 and equation 4.2. This time, the differences between activities were a little clearer.

However, this was still not an intuitive way of noticing user’s need for personalization.

Another approach we followed was to 3d plot the accelerometer and gyroscope raw data per

activity per user, however, given the amount of data samples corresponding to each activity, it was

not easy to distinguish any clear differences between subjects. In order to give this approach a
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Figure 5.1: The figure shows the mean values per accelerometer channel per each subject.

spin, we decided to 2d plot the magnitude data from the accelerometer and gyroscope per subject.

This approach resulted in a more intuitive visualization as can be seen in Figure 5.3 which shows

the results obtained by plotting the accelerometer magnitude versus the gyroscope magnitude on

three subjects for the sitting while working activity.

5.2.2 Activity recognition through neural networks

We followed the approach described in Section 4.3.2 for the architecture selection (See Fig-

ure 4.3). Figure 5.4 shows the results when training each architecture with different batch sizes.

This process helped us to identify which from the 4 architectures was the one more likely to learn

good features and predict our activities successfully. We observe that there are two architectures

that perform better than the others, and are architectures 1 and 2. As we recall, these architectures

were supposed to extract more complex features at the expenses of having more model’s parame-
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Figure 5.2: The figure shows the mean values per gyroscope channel per each subject.

ters, so it is not surprising that they perform better than the others. In an attempt to minimizing the

number of final model’s parameters, we proposed architectures 2 and 3. As for architecture 2, we

note that the model was not even able to learn through the epochs. On the other hand, architecture

3 was able to learn but it was not able keep up improving and stopped learning at some point.

Therefore, our final decision was to be made between architectures 1 and 2.

As we recall, our end goal was to run these types of architectures in a smartwatch. Therefore,

besides accuracy, another important factor to consider on this selection process was the number

of final parameters needed per architecture. As mentioned before, the final number of parameters

plays an important role on the number of operations needed for inferences, which ultimately results

in more processing power. Considering this last requirements, we decided to go for architecture 1,

as it showed similar performance as architecture 4 both in terms of accuracy and f1 score. However,

as architecture 4 has one more layer (the LSTM layer), it implies more parameters and therefore,
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Figure 5.3: The figure shows the magnitude of accelerometer and gyroscope data corresponding to
the activity sitting while working. Three subjects are shown in this figure. We can see that despite
subject 1 and subject 2 seemed to share similar patterns, subject 3 seems to be clearly different and
has its own patterns. This visualization suggests that users might perform activities differently.

more processing was going to be needed.

After having the architecture selected, we then performed a grid-search approach for hyperpa-

rameter tuning. Considering the most important hyperparameters found in the layers for architec-

ture 1, we list the covered hyperparameters in Table 5.1 and tested all the possible combinations

resulting in a total of 144 models being evaluated. Figure 5.5 shows the best 5 hyperparameter

configurations for architecture one.

5.2.3 Smart annotation and model personalization

As we discussed in Section 4.3.3, we wanted to improve our recognition models through re-

training processes motivated by the availability of new annotated data samples. Recalling that

we had 3 different we progressively added, trained, and tested models by adding data from the

27



Figure 5.4: The figure shows the accuracy results and f1 score (micro-averaged) for each of the
different architectures on different batch sizes. We note that architectures 1 and 4 perform better
than architecture 2 and 3 as they are more complex and therefore extract better features out of the
raw sensor data.

annotations dataset in a simulated daily basis. In other words, after adding the data collected

during one day, we would retrain the model and test it and repeat this with the following day. In

a first instance, we wanted to evaluate the models accuracy levels by assuming we would have

unlimited annotated data by the user, which was the same as simply adding all the available data

within a day under the annotations dataset. Figure 5.6 shows the AUROC values for each of the

activities that we were trying to classify. As we observe, it is hard to tell if there is any consistency

on the AUROC values as we add more data. We observe that for eating moments, there is a clear

improvement when we add data from days 1 through 6, however a significant drop appears after

the data for day 7 is added. Similarly, for sitting there is a decrease when the data from the last day

gets added. For walking, rather than showing any improvement when adding more data, it looks
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Hyperparameter Values
Number of filters ConvLayer 1 128, 64, 32
Number of filters ConvLayer 2 128, 64, 32
Kernel size ConvLayer 1 3, 6
Kernel size ConvLayer 2 3, 6
Dropout rate DropoutLayer 0.4, 0.6
Number of neurons DenseLayer 80, 120

Table 5.1: The table shows the hyperparameter values that were considered to evaluate for archi-
tecture 1 hyperparameter tuning.

like it is getting worst.

So, why would it be that some activities are improved, but some others are not? It could be

multiple things, for example, it could be possible that the 6 seconds window we have chosen is

using up portions of data with both motions related to the activity of interest, and other motions

that might not be part of the activity itself. For example, when eating out of 6 seconds maybe only

3 represent the motion of taking a spoon to the mouth, and the other 3 the actions of taking the

spoon. It could also be that the users have performed the same activity in a different way over time,

which is not necessarily wrong, it is simply that we might need to collect more data for more time

to be able to cover such cases. We also believe that the reason behind the performances’ drops

might be because not all the samples add value to our models, which suggests that we should also

consider which samples should we use rather than simply and blindly adding such results. This

aligns with our proposed approach for sample selection.

As described in Section 4.3.3, instead using every single sample collected through a day in

the annotations dataset, we only used the ones that we believed could contribute the most to the

training set. So, after training the baseline model we computed the average probability output

of our baseline model for each given class on the training set. When a new sample arrived and

its probability was estimated by the model, we checked if the probability was within 1 standard

deviation from its corresponding mean previously calculated. If the data was within 1 standard

deviation, we assumed that the new sample was not very different from what we have seen so far,

29



Figure 5.5: The figure shows the 5 configurations with highest accuracy. In the legend are the
values for each of the parameters and follows the next order: Number of filters ConvLayer 1,
Number of filters ConvLayer 2, Kernel size ConvLayer 1, Kernel size ConvLayer 2, Dropout rate
DropoutLayer, Number of neurons DenseLayer.

therefore, it might not be worth annotating and using for retraining our model. On the other hand,

if the probability output was outside 1 standard deviation from the mean, we assumed that this

new sample was considerably different from what we have seen so far, therefore, it may be worth

annotating and using for retraining. The results are shown in Figure 5.7. Despite the solution

stabilizes some activities, it doesn’t work for all of them suggesting that the intelligent selection is

possible but it still needs further analysis. For example, it could be that we might need to create

multiple models per user’s activity and sub-activity based on the details they provided. In other

words, rather than having a general model for sitting, we might need to have a model for sitting-

while-working, and one for sitting-while-watching-tv.
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Figure 5.6: The figure shows the AUROC values per activity for subject 3. The values correspond-
ing to day 0 are the ones obtained from evaluating the baseline model as it is against the test model.
Then, x represents the number of day that was added up to that point (considering the past have
already been added).

5.3 Online evaluation

After all the offline processing done so far, we needed to analyze what would it imply to run

our deep learning models in a device with such reduced computing power such as the smartwatch.

Therefore, we designed an experiment on which we evaluated the CPU usage and energy usage on

the smartwatch in 3 different architecture configurations as described in Section 4.4. We have inte-

grated a new module in our Android app running in our smartwatch for running model’s inferences

every 5 seconds.

In order to evaluate the impact of running inferences, we first needed to have a baseline to

compare against to. Therefore, we first evaluated the usual CPU and energy usage of our app with-

out running any inference. We used Android Studio’s built in tool for monitoring called Android

Profiler that gives estimates on the CPU usage and the impact that our app has in terms of energy
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Figure 5.7: The figure shows the AUROC values per activity for subject 3. The values correspond-
ing to day 0 are the ones obtained from evaluating the baseline model as it is against the test model.
Then, x axis represents the number of day that was added up to that point (considering the past
have already been added).

consumption. Figure 5.8 shows the impact that our app regularly has. We note that on average, the

CPU usage is around 5% and the energy impact has been categorized by Android Profiler as light.

Then, we wanted to evaluate how much would it impact running inferences in the smartwatch,

but more importantly, how this impact changes based on the model’s hyperparameters configura-

tion. Figure 5.9 shows the CPU and energy impact of running inferences in the smartwatch with

different configurations. The light configuration is the architecture 1 being trained with a small

number of filters and neurons. The medium configuration is the architecture 1 being trained with

some more filters and neurons. As for the heavy configuration, it is the architecture 1 being trained

with even more filters and neurons. The goal was to show that, the hyperparameter configuration

correlates to the final number of parameters each model will end up having after training, which

also correlates to the CPU and energy impact. Despite in Figure 5.10 we can see that Android
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Figure 5.8: The figure shows CPU and energy consumption when running our data collection app
in the smartwatch with no inferences, simply collecting data. The average CPU usage was 5% and
the average energy impact was categorized as light.

Profiler has categorized the energy consumption as light, there is a slight increment on the energy

levels depicted by the purple barplots. This will add up with time and will clearly reduce the up-

time of the app for collecting data. This is clearer when we look at Figure 5.9 on which we observe

that the more parameters we have, the heavier the computation will be. Therefore, this suggests

that the hyperparameter configuration is something that we should also consider when training our

models and should be as important as paying attention to our model’s performance to ensure the

platform runs for extended periods of time.

After analyzing the information obtained by running the online experiments, we wanted to get

a better insight on what to expect in terms of our data collection. In other words, how would this

impact the overall data collection process? The smartwatch is able to continuously collect data for

approximately 10-12 hours. Knowing this information, and with our new findings we have created

a small projection to get the new estimated maximum duration our smartwatch would be able to

continuously collect data. This estimation is shown in Table 5.2

Despite our estimations might not seem encouraging, there are still multiple ways on which

we can improve the app’s efficiency and maximize the total time we can continuously collect data
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Figure 5.9: The figure shows CPU consumption when running our data collection app in the smart-
watch while running inferences with different hyperparameter configuration settings identified as
low, medium, and heavy referring to the final number of parameters each trained model will have.
We notice a clear trend on the CPU usage as it increases as the number of parameters increases,
which correlates to the hyperparameter configuration.

even while we run inferences on the smartwatch. We are currently running inferences constantly,

but we could instead run them only when needed. For example, inferences can be run every time

the accelerometer data has a significant change. Given that some activities are stationary, the

sensor readings for both the accelerometer and gyroscope might remain somewhat constant. Why

would we need to run an estimation if the sensor readings have not changed in a while? it is

very likely that we are still performing the same activity. Another approach could be to only run

inferences when specific activity levels are met considering the magnitude of the accelerometer and

gyroscope. If there is no significant activity level, why running inferences? Those are just some

possible approaches in terms of inferences, however, there are also a few other ways to improve

the energy usage.
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Figure 5.10: The figure shows energy consumption when running our data collection app in the
smartwatch while running inferences with different hyperparameter configuration settings identi-
fied as low, medium, and heavy referring to the final number of parameters each trained model will
have.

We also need to consider that the analysis we made had the smartwatch also capturing BLE

addresses. This can also consume a considerable amount of energy specially when a huge number

of devices is nearby. However, collecting this data continuously might not be necessary and we

could opportunistically turn this BLE collection on/off. BLE addresses are being collected with

the purpose of providing contextual information, however, such contextual information might not

always be needed. Therefore, we could just turn this BLE data collection on when the model’s

output probability for activity recognition is low (as context can help to improve this), or when the

probability for two or more classes is close to each other, the context provided by the BLEs can

serve as a tie breaker.
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Configuration Average CPU % Estimated duration
No model 5 10 - 12 hours

1 7 7.14 - 8.5 hours
2 13 3.8 - 4.6 hours
3 15 3.3 - 4 hours

Table 5.2: The table shows the new maximum duration estimation for data collection based on the
CPU usage according to each architecture configuration.
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6. CONCLUSIONS AND FUTURE WORK

In this thesis our main goal was to provide a data collection platform that enabled longitudinal

studies which also possessed capabilities for smart data annotation. More specifically, we have

defined 3 research goals described as follows:

1. Development of a data collection platform for longitudinal studies.

2. Analysis of a deep learning approach for personalization and smart annotation.

3. Performance analysis of a a deep learning approach on a wearable devices.

We have introduced a wearable based data collection platform with smart annotation capabili-

ties for longitudinal studies that is also able to run deep learning models in real time. The platform

is composed of a smartwatch for sensor data collection, and a server for offline data processing.

The feasibility of the platform for data collection had been previously tested on a prior contribution

[47] and was tested again in a second study on diet monitoring. However, the platform design is

not exclusive of diet monitoring and can be applied in different research areas such as in cardiac

rehabilitation, and enhanced glucose monitoring.

A diet monitoring study was performed on which 5 participants were recruited and were asked

to collect annotated data through our smartwatches for approximately 1 month. The data collected

during the diet monitoring study was used for further experiments on the detection of eating mo-

ments and model’s personalization as well as for the analysis of a smart annotation technique. We

analyzed different neural network architectures for automatic feature extraction and accurate de-

tection of activities. We also presented an evaluation of the performance improvements obtained

by intelligently requesting annotations for accurate detection of eating moments and activities such

as sitting, walking, and exercising.

Finally, we have evaluated the feasibility of running neural network models’ inferences in de-

vices with reduced computing power such as are the smartwatches. In particular, we evaluated
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those neural network architectures that automatically extract features from raw sensor data. We

found out that the impact on CPU and energy usage is dependent on the hyperparameter configura-

tion of the models and that it is an aspect of architecture design that must be considered. However,

the impact of running such models in an online fashion is still manageable and we discussed pos-

sible approaches to improving the data collection process’ overall performance.

Further research is needed in terms of personalization through reduced user’s annotations and

on better and more sophisticated techniques for sample selection for deciding whether or not an

annotation must be requested from the users.

Our platform enables for future work on behavior monitoring in different research areas such as

in cardiac rehabilitation and diabetes management. User’s can be monitoring through our platform

to determine whether they are doing a satisfactory set of exercises based on their rehabilitation

program, or their activities can be monitored in order to provide better context to their glucose

levels for a more informed diabetes management. Our contributions in this thesis also opens the

path for further research in the smart annotation process of data as we shown that it is feasible in a

diet monitoring study.

Further research can be accomplished to improve smart automatic data annotation by investi-

gating reinforcement learning approaches in order to learn user’s patterns of behavior and personal

information for improved adherence such as:

• Question asking rates

• Appropriate moments to request annotations

• Types of questions that better provide information to enhance the recognition models (de-

tailed question asking)
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