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ABSTRACT

Many engineering problems have multiscale features. These problems usually require some

model reduction since the computational cost of a fine-scale solution is extremely expensive. Ex-

isting model reduction methods such as Generalized Multiscale Finite Element Method (GMs-

FEM) and Non-local multi-continuum approach (NLMC) have shown extensive success in solving

multiscale problems especially on various flow simulation problems.

However, there are still challenges in developing effective multiscale models for flow in more

complicated heterogeneous media. The geometries of domain, coexistence of multiple continuum,

and lack of observation data can all give rise to the difficulty of developing the reduced-order

model. In this thesis, I will concentrate on the development of novel multiscale methods following

the idea of the existing model reduction methods to address such problems. Moreover, deep learn-

ing techniques are combined to overcome certain difficulties met along model construction. These

proposed models are targeted to tackle specific problems, where the performance is verified both

numerically and analytically.

For instance, flow simulation within a heterogeneous thin domain is one of such challenging

problems. Though homogenization methods are proven to be successful when the media have clear

scale separation, that’s not always the case for flow simulation within a capillary system. Using

only one basis function in each coarse region can lead to large errors. We thus design a customized

GMsFEM instead, which is able to automatically enrich the approximation space and significantly

reduce the error.

When simulating flow in a fractured vuggy reservoir, on the other hand, I develop a coarse

solver under the framework of GMsFEM by combining it with multi-continuum model and Dis-

crete Fracture Model (DFM). Instead of treating the media as a single continuum, I treat the mul-

tiscale formation hierarchically and consider it as a coupled system of matrix, fractures and vugs.

This allows us to explicitly represent the mass transfers between continuum as well as model the

local effects of the discrete fractures.
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We further investigate how deep learning can facilitate multiscale model construction for non-

linear flow dynamics. Utilizing a multi-layer neural network to approximate the reduced order

model, the observed data can be easily incorporated to adjust the model. Deep learning techniques

are also used to conduct model reduction. With a soft thresholding operator as an activation func-

tion, a novel neural network is proposed which can identify important multiscale features that are

crucial in modeling the underlying flow. The forward input-output maps are thus learned in a

reduced way.

Extensive applications to engineering problems and numerical analysis are presented in supple-

ment of the proposed approaches. It is shown that our proposed methods can significantly advance

the computational efficiency and accuracy for multiscale flow simulation in various heterogeneous

media.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Modeling of multiscale process has been of great interest in diverse applied fields. These

include flow in porous media, mechanics, biological applications, and so on. Among many tools

that have been developed to address the characteristics of such problems, an easy and convenient

way to explore such process is to use a fine scale simulation. A common fine scale simulation can

be conducted under the frameworks such as the Finite Element Method (FEM) [1], Finite Volume

Method (FVM) or Finite Difference Method (FDM). However, resolving the fine-scale features of

such processes could be computationally expensive due to scale disparity.

For example, when considering mass transfer process in porous media, the media properties

can vary over many scales. Due to the multiscale nature of the medium and the coexistence of

different continua, the fine-grid resolution gives rise to a large number of degrees of freedom.

Thus, simulating flow in a multiscale media could be considerably demanding.

Therefore, some types of reduced-order models are derived to cut down the computational cost.

Such models are commonly constructed following a local model reduction scheme. In particular,

researchers find ways to bring the fine-grid information to the coarse grid. This generally reduces

to constructing appropriate low-order approximation spaces when solving a governing PDEs nu-

merically. A fine partition is first required to divide the domain into local pieces and then a global

description of the flow is obtained by putting the local solutions together.

Homogenization is one commonly used local model reduction method. The domain of interest

is first partitioned into many coarse blocks, and the effective properties are then calculated for

each coarse block. The idea is to homogenize local heterogeneous media using information in

finer scales within the block. These pre-computed properties can thus catch and average fine-scale

characteristics and further calibrate the coarse solution accordingly [2]. This up-scaling scheme

has been proved to be quite effective for simulations on media with scale separation or periodicity
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[3], but it fails to model other cases especially when multiple continuum coexist [4, 5, 6, 7, 8, 9, 10].

In order to overcome the limitations of the homogenization scheme and enrich the hetero-

geneous information at the local fine-scale region, many other multiscale methods and solvers

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 9, 24, 25, 26, 27, 28] are also designed.

These methods usually construct coarse spaces and sustain unresolved scales to a desired accu-

racy via additional computing. Examples include the Multiscale Finite Element Method (MsFEM)

[29, 30, 31, 32], the Generalized Multiscale Finite Element Method (GMsFEM), the Nonlocal

Multicontinuum Method (NLMC), etc.

For these methods, like homogenization, the computational domain is first partitioned with a

coarse grid T H . A local model reduction methods is then able to identify the local multiscale basis

functions supported in each coarse region on the fine grid T h, which is essentially a refinement

of T H that resolves all multiscale features. Therefore, the macroscopic equations can then be

formulated as a coarse-scale system using the local multiscale basis functions. Moreover, the

space that formed by these basis functions has a much smaller dimension compared to that of a

fine-scale space.

As in many model reduction techniques, the computations of multiscale basis functions, can be

performed in an offline manner. For a fixed multiscale parameter, these multiscale basis functions

are reusable for any force terms and boundary conditions. Therefore, these methods provide a

substantial computational savings in the online stage, in which a coarse-scale system is constructed

and solved on the reduced-order space.

The GMsFEM was first developed in [33]. It has been proven that GMsFEM can strengthen

the ability of MsFEM on solving multiscale problems. By conducting a spectral decomposition

over the local snapshot space, GMsFEM can identify basis functions corresponding to dominant

modes of local heterogeneous regions and eliminate unnecessary degrees of freedom on a coarse-

grid level. This makes automatic enrichment of the multiscale space possible [34, 35]. In the

paper [36], a one-on-one correspondence between GMsFEM basis functions and high-conductivity

networks was presented. This property of basis makes GMsFEM a necessity when dealing with
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practical examples like carbonate reservoir simulations, as many fracture channels may coexist in a

single local region. Additionally, GMsFEM can also be easily adopted to couple with other models

such as DFM and Multi-continuum Models, which provides a way to describe a fractured vuggy

reservoir in a hierarchical fashion. It allows us to consistently develop an approximation space that

contains prominent sub-grid scale information based on the multi-continuum and DFM.

NLMC [37], on the other hand, identifies the coarse-grid parameters in each cell and their

connectivity to neighboring variables. This approach derives its foundation from the Constraint

Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) [38], which

has a convergence rate H/Λ, where Λ represents the local heterogeneities. Using the concept

of CEM-GMsFEM, NLMC defines new basis functions such that the degrees of freedom have

physical meanings (in this case, they represent the solution averages). In this dissertation, we will

limit our study of model reduction methods to GMsFEM and NLMC.

These methods have been successfully applied to construct reduced-order model for various

multiscale process. Though the accuracy and affordability of them are widely celebrated, greater

demands have been placed on such models. We expect the models to reflect not only the governing

PDE but also the observation data from the realistic process. However, such forward models are

difficult to construct.

The deep learning concepts, on the other hand, provides a straightforward approach to con-

struct data-based models. Taking the observed data as training data, a deep neural network can

be optimized to "learn" the underlying true process. Mathematically speaking, the neural network

will approximate the operator that maps inputs to output from the given examples.

We thus would like to apply the deep learning in multiscale model constructions. Hence, we

remove the limitations that current multiscale models have in honoring observation while main-

taining their advantages as successful coarse solvers. In fact, for nonlinear problems that are in

the presence of observed data, deep learning can be used to construct multiscale models that are

conditioned to these data [39, 40, 41]. Alternatively, by supplementing observation training data

with the data simulated using a coarse model, a deep neural network can build a desired model that
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interpolates between observation and simulation.

A common neural network is usually composed of a relatively large number of layers of non-

linear processing units, called neurons, for feature extraction. The neurons are connected to other

neurons in the successive layers. The information propagates from the input, through the inter-

mediate hidden layers, and to the output layer. In the propagation process, the output in each

layer is used as the input in the consecutive layer. In between layers, a nonlinear activation func-

tion is used as the nonlinear transformation on the input, which increases the descriptive power of

neural networks. Extensive applications show that neural networks can accurately represent and

approximate a large class of non-linear functions with complicated forms or even without explicit

expression. Convincing cases include speech recognition, image recognition, as well as natural

language processing[42, 43, 44].

Scientists have also explored other ways to apply deep learning to model reductions and partial

differential equations. In [8], the authors studied deep convolution networks for surrogate model

construction on dynamic flow problems in heterogeneous media. In [45], the authors studied the

relationship between the residual networks (ResNet) and characteristic equations of linear trans-

port, and proposed an interpretation of deep neural networks by continuous flow models. In [46],

the authors combined the idea of the Ritz method and deep learning techniques to solve elliptic

problems and eigenvalue problems. In [47], a neural network has been designed to learn the phys-

ical quantities of interest as a function of random input coefficients. The concept of using deep

learning to generate a reduced-order model for a dynamic flow has also been applied to proper

orthogonal decomposition (POD) [48].

In this dissertation, we concentrate on constructing reduced-order model for multiscale process

under the framework of GMsFEM and NLMC. Moreover, the multiscale models are improved

when the deep learning techniques are combined.

1.2 Outline of the Dissertation

In Chapter 2, we present preliminary background materials. We first state the physical model

that we are interested in. Later, the constructions of multiscale models following GMsFEM and
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NLMC are illustrated. Additionally, a general introduction of deep learning is provided.

In Chapter 3, we propose a numerical scheme based on the GMsFEM and a triple-continuum

model to simulate flow in a highly heterogeneous reservoir. We aim to obtain a more efficient

numerical approach that can explicitly represent the interactions among different continua. To

enhance the applicability of our proposed model, we also combine the Discrete Fracture Model

(DFM). In the proposed model, the GMsFEM, as an advanced model reduction technique, enables

capturing the multiscale flow dynamics. This is accomplished by systematically generating an ap-

proximation space through solving a series of local snapshot and spectral problems. The resulting

eigenfunctions can pass the local features to the global level when acting as basis functions in the

global coarse problems. Several numerical experiments are conducted to confirm the success of

our proposed method, and a rigorous convergence proof is also given.

In Chapter 4, we further study GMsFEM for simulation of flow in a narrow domain. In par-

ticular, we consider the mixed form of the elliptic equation. We aim to analyze how the geometry

affects the convergence rate of our multiscale approximation. We limit our study to the case when

the length/width ratio of the domain is large. Numerical results also validate the necessity of using

GMsFEM as adopting more than one basis function in each coarse neighborhood can significantly

improve the accuracy.

In Chapter 5, we introduce the idea of deep learning to the construction of multiscale model.

We would like to model the fluid dynamics within a heterogeneous domain utilizing field data. The

neural network is used to model the forward map underlying the fluid dynamics. The network is

defined in a way that the connections between layers are decided by the NLMC. The observation

data are then used as training data together with computational data to condition the model. Nu-

merical examples show that the design can naturally lighten the network training. Moreover, the

learned model is able to honor the realistic physical process under observation.

In Chapter 6, we further develop the idea of multiscale learning. We reformulate the feed-

forward neural network as the solution to an optimization problem with l1 regularization. The

weights and biases learned can then be shown to have a solid relationship with the operator been
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approximated. Based on this understanding, we then present a neural network architecture that can

conduct further global model reduction to the reduced-order solutions while sustaining accurate

flow simulation.

Finally, Chapter 7 concludes this dissertation.
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2. PRELIMINARY

In this chapter, we present an overview of the problems in heterogeneous domains, as well as

the construction of some multiscale models. We also introduce the general concepts of the deep

learning.

2.1 Problems of Interest

In this dissertation, we consider the flow problem in highly heterogeneous media

−div
(
κ∇u

)
= g, in Ω. (2.1)

We also consider a time-dependent flow problem in heterogeneous domain , that is

∂u

∂t
− div(κ∇u) = g(t), in Ω, (2.2)

where Ω is the computational domain, κ is the permeability coefficient in L∞(Ω), and g is a source

function in L2(Ω) while u represents the solution to be sought. We assume the coefficient κ is

highly heterogeneous with high contrast in space (see Figure 2.1 for an illustration). The classical

finite element method for solving (2.1) is given by: find uh ∈ Vh such that

a(uh, v) = (f, v), v ∈ Vh. (2.3)

For (2.2), that is:

(
∂uh
∂t

, v) + a(uh, v) = (g, v), for all v ∈ Vh. (2.4)
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Here, Vh is a standard conforming finite element space over a partition T h of Ω with mesh size h,

and the bilinear forms a(·, ·) and (·, ·) are defined as

a(u, v) :=

∫
Ω

κ∇u · ∇v dx,

(u, v) :=

∫
Ω

uv dx.

(2.5)

However, with the highly heterogeneous property of coefficient κ, the domain has to be parti-

tioned into extremely small elements to capture the underlying fine-scale features of κ. This ends

up with a large computational cost.

(a) Random channel (b) Channelized high-contrast domain

Figure 2.1: Examples of heterogeneous domain.

2.2 Multiscale Basis Construction

To reduce the dimension of the resulting system, we would like to construct an approxima-

tion space Vms that has less degrees of freedom while sustaining the approximation accuracy. As

discussed in 1.1, such approximation space can be taken as the expansion of multiscale basis func-

tions, which are constructed following GMsFEM or NLMC.
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2.2.1 Construction of Basis Functions for GMsFEM

For GMsFEM, basis functions are computed locally to capture the underlying dominant modes[33].

More specifically, a local snapshot space is first constructed followed by a spectral decomposition

aiming at keeping only the dominant degrees of freedom.

• Step 1: Partition of domain

We first partition the computational domain Ω with a coarse mesh T H . The coarse mesh is

then refined to a fine mesh T h with mesh size h � H , which is fine enough to restore the

multiscale properties of the problem. Let VH := {xi |1 ≤ i ≤ Nv} be the set of nodes of the

coarse mesh T H . For each coarse grid node xi ∈ VH , the coarse neighborhood ωi is defined

by

ωi :=
⋃
j

{Kj ∈ T H | xi ∈ Kj}, (2.6)

that is, the union of the coarse elements Kj ∈ T H that contains the coarse grid node xi. An

example of the coarse and fine mesh, coarse blocks and a coarse neighborhood is shown in

Figure 2.2.

Figure 2.2: An illustration of coarse mesh (left), a coarse neighborhood and coarse blocks (right).
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For each coarse neighbourhood ωi, we construct multiscale basis functions {ψms,ωi
k }Lωik=1. Fur-

ther, the global multiscale finite element space Vms is constructed with all such ψms,ωi
k in each

coarse neighborhood ωi. Moreover, we have dim(Vms)� dim(Vh).

• Step 2: Snapshot problem

To construct the GMsFEM basis functions, we first construct a snapshot space V ωi
snap spanned

by local snapshot basis functions φsnap,ωi
k for each coarse neighborhood ωi. The snapshot

basis function φsnap,ωi
k is the solution to the local problem

−div(κ∇φsnap,ωi
k ) = 0, in ωi,

φsnap,ωi
k = δik, on ∂ωi.

(2.7)

The fine grid functions δik is a function defined for {xs | xs ∈ ∂ωi} which denotes the fine

degrees of freedom on the boundary of ωi. In specific,

δik(xs) =


1, if s = k,

0, if s 6= k.

The linear span of these harmonic extensions forms the local snapshot space

V ωi
snap := span

k

{φsnap,ωi
k }. (2.8)

One can also use randomized boundary conditions to reduce the computational cost associ-

ated with snapshot calculations [49].

• Step 3: Spectral problem

Next, an analysis-based spectral problem is used to further reduce the dimension of the local

multiscale space. More precisely, we seek for eigenvalues λωik and corresponding eigenfunc-
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tions ψωik ∈ V ωi
snap satisfying

ai(ψ
ωi
k , v) = λωik si(ψ

ωi
k , v), ∀v ∈ V ωi

snap, (2.9)

where the bilinear forms in the spectral problem are defined as

ai(u, v) =

∫
ωi

κ∇u · ∇v,

si(u, v) =

∫
ωi

κ̃uv,

(2.10)

and κ̃ =
∑

j κ|∇χj|2, while χj denotes the multiscale partition of unity function for each

coarse block Kj ⊂ ωi. We arrange the eigenvalues λωik of the spectral problem (2.9) in

ascending order, and select the first Lωi eigenfunctions {ψωik }
Lωi
k=1 corresponding to the small

eigenvalues as the multiscale basis functions.

An alternative way to construct the multiscale basis function is using the idea of simplified basis

functions. This approach assumes the number of channels and positions of the channalized perme-

ability field are known. Therefore, we can obtain multiscale basis functions {ψωik }
Lωi
k=1 using this

information without solving the spectral problem [37].

2.2.2 Construction of Basis Functions for NLMC

In the NLMC approach, the multiscale basis functions are selected such that the degrees of

freedom have physical meanings and correspond to average solutions[50]. This method derives its

foundation from CEM-GMsFEM [38], and starts with the definition of the auxiliary space. The

idea here is to use a constant as auxiliary basis for the matrix in each coarse block, and another

constant for each separate fracture network within the block. The simplified auxiliary space uses

only essential degrees of freedom in each continua, thus one can obtain an upscaled equation with

a minimal size where each degree of freedom represents the average of the solution over each

continua.

In this section, we describe NLMC in detail following [37]. We consider the time dependent
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Figure 2.3: Example of a fractured media.

flow equation (2.2) in a fractured media (see Figure 2.3 for an illustration).

• Step 1: Partition of the domain

Ω = ΩM

⊕
s

dsΩF,s. (2.11)

where M and F correspond to matrix and fracture respectively, and ds is the aperture of

fracture ΩF,s. Denoted by κ(x) = κm the permeability in the matrix, and κ(x) = κs the

permeability in the s-th fracture. The permeabilities of matrix and fractures can differ by

orders of magnitude.

Assume T H is a coarse-grid partition of the domain Ω with a mesh size H which is fur-

ther refined into a fine mesh T h (see Fig3re 2.4 for an illustration of the fine and coarse

mesh, where coarse elements are blue rectangles and fine elements are unstructured black

triangles). Denoted by {Ki| i = 1, · · · , Nc} the set of coarse elements in T H , where Nc

is the number of coarse blocks. We also define the oversampled region K+
i for each Ki,

with a few layers of neighboring coarse blocks, see Figure 2.4 for the illustration of Ki

and K+
i . We further define the set of all fracture segments within the coarse block Kj as

F j = {f (j)
s |1 ≤ n ≤ Lj} = {∪sΩF,s} ∩Kj where Lj = dim(F j).
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Figure 2.4: Illustration of coarse and fine meshes.

• Step 2: Computation of local basis functions in K+
i .

The basis for each over-sampled region ψ(i)
m solves the following local constraint minimizing

problem on the fine grid

a(ψ(i)
m , v) +

∑
Kj⊂K+

i

µ(j)
0

∫
Kj

v +
∑

1≤s≤Lj

µ(j)
s

∫
f
(j)
s

v

 = 0, ∀v ∈ V0(K+
i ),

∫
Kj

ψ(i)
m = δijδ0m, ∀Kj ⊂ K+

i ,∫
f
(j)
n

ψ(i)
m = δijδnm, ∀f (j)

n ∈ F (j), ∀Kj ⊂ K+
i ,

(2.12)

where a(u, v) :=
∫

ΩM
κm∇u · ∇v +

∑
s

∫
ΩF,s

κs∇fu · ∇fv. µ
(j)
0 and µ

(j)
s are Lagrange

multipliers while V0(K+
i ) := {v ∈ V (K+

i )|v = 0 on ∂K+
i } and V (K+

i ) is the fine grid

space over an over-sampled region K+
i . By this way of construction, the average of the basis

ψ
(i)
0 equals 1 in the matrix part of the coarse element Ki, and equals 0 in other parts of the

coarse blocks, Kj ⊂ K+
i as well as any fracture inside K+

i . As for ψ(i)
m ,m ≥ 1, it has an

average of 1 on the m-th fracture continua inside the coarse element Ki, and an average of

0 in other fracture continua as well as the matrix continua of any coarse block Kj ⊂ K+
i . It

13



indicates that the basis functions separate the matrix and fractures, and each basis represents

one continua.

2.2.3 Multiscale Approximation Space

Once the multiscale basis functions {ψωik } are constructed, the span of the multiscale basis

functions will form the offline space Vms

V (i)
ms = span{ψωik }

Lωi
k=1,

Vms = ⊕
i
V (i)
ms .

(2.13)

The multiscale solution ums ∈ Vms is then defined such that it satisfies

a(ums, v) = (g, v), for all v ∈ Vms, (2.14)

or

(
∂ums

∂t
, v) + a(ums, v) = (g, v), for all v ∈ Vms. (2.15)

These multiscale approximation spaces are justified by their construction such that they sustain

the fine-level information while having reduced dimensions. Therefore, the multiscale solutions

can be accurately approximated in such space with fewer degrees of freedom. However, difficulties

arise in situations with uncertainties in the media properties in some local regions. To quantify

the uncertainties, one needs to sample realizations of media properties and construct a distinct

approximation spaces for each realization. The computational cost can thus grow very huge. To

this end, building a functional relationship between the media properties and the multiscale model

in an offline stage can avoid repeating computations and thus vastly reduce the computational

complexity. Cases are common in which one needs to construct a nonlinear map when building

a multiscale model. Modelling such a relationship typically involves high-order approximations.

Therefore, it is natural to use machine learning techniques to derive such complex models. In

particular, we adopt deep learning to facilitate the construction.
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2.3 Deep Learning

As discussed in Section 1.1, deep learning techniques are introduced to construct data-aware

multiscale models by using a training data set that is constituted by both simulation and observation

data. Therefore, the network will learn an interpolated map from the existing data sampled from

both models. Investigations have also been made in using deep learning for fast computation of

multiscale basis [51]. Using the existing data, we can learn the complicated forward map between

heterogeneous coefficients and the corresponding basis. Thanks to the ability of the neural net-

works to generalize, predictions of basis functions from multiscale coefficients become effortless

once the network is well-trained.

In either case, when adopting deep learning in multiscale problems, we take advantage of

the neural network that it is able to express complicated maps. This is guaranteed by its unique

structure together with supporting algorithms for optimization. In this section, we will focus on

these aspects of the neural networks and provide a general procedure to construct and tune a general

deep neural network. Our later discussion will be based on the general cases provided in this

section.

Specifically, if we are given samples {(xi, yi)}Li=1 from the map F : X → Y , i.e., F(xi) =

yi for 1 ≤ i ≤ L, and would like to learn the map from existing data and further predict the

values of F(xi) for i = L + 1, · · · , L + M , we first reformulate this problem as an optimization

problem with the help of neural network. The optimization takes {(xi, yi)}Li=1 as training samples

and produces a proper network coefficient θ∗ starting from some initialization chosen at random

such that NN (·; θ∗) ≈ F(·). Moreover, if the neural network NN (·) has a feed-forward fully-

connected structure, then

NN (x; θ) := Wnσ(· · ·σ(W2σ(W1x+ b1) + b2) · · · ) + bn. (2.16)

Here, θ represents all tuneable coefficients in the neural networkNN (·) and σ(·) is some nonlinear

activation function. There are many choices of such nonlinear functions [52], while the most
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common ones used are ReLU and tanh.

For the network NN (·) defined above, we will use the output NN (xi) to approximate the

desired output yi. The difference between them will be measured using a cost function C(·). For

example, we can take the mean square error as the loss function:

C(θ) :=
1

N

N∑
i=1

(yi −NN (xi; θ))
2, (2.17)

which measures the average squared difference between the estimated values and the observed

values. The neural network is then optimized by seeking θ∗ to minimize the loss function, i.e.

θ∗ = argmin
θ

C(θ). (2.18)

Numerically, this optimization problem can be solved with a stochastic gradient descent (SGD)

type method [53]. By calculating the gradient of the loss function, the coefficient θ is iteratively

updated in an attempt to minimize C(θ). This process is also referred to “training.” Once the

loss is minimized to a satisfactory small level, the neural network parameters θ∗ is decided, and

further, the overall neural network architectureNN (·; θ∗) is constructed. The predictions can then

be given by NN (xi; θ
∗) for i = L+ 1, · · · , L+M .

In this dissertation, we not only utilize deep learning as a powerful tool to approximate sophis-

ticated maps but also aim to understand why it works. We further develop the neural networks

such that they are tailored to the targeted multiscale problems based on the underlying multiscale

concepts. On the other hand, by deepening the understanding of the mechanism behind, we utilize

neural networks to direct the model reduction in return. The in-depth discussions over these topics

are presented in Chapter 5 and Chapter 6.
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3. GENERALIZED MULTISCALE MULTICONTINUUM MODEL FOR FRACTURED

VUGGY CARBONATE RESERVOIRS

In this chapter, a coarse solver is designed for flow simulations in a fractured and vuggy do-

main. We especially focus on the case that multiple discrete fractures locate in a single coarse

neighborhood when MsFEM fails. Fractures and vugs are treated hierarchically with DFM and

multicontinuum model. Highly developed fractures with only global effects are modeled as a frac-

ture continuum, while fractures that have local effects are embedded as discrete fracture networks.

For independent vugs, a continuum is used to represent their effects with specific configurations

such that no intra-flow is considered. The heterogeneous media is then described as a coupled

system of three continuum: matrix, fractures, and vugs. The system coupling DFM and three con-

tinuum is discretized spatially following GMsFEM to reduce the degrees of freedom while sustain

its accuracy.

This chapter is organized as follows: In Section 3.1, the problem under discussion is clarified,

followed by Section 3.2 which briefly reviews the multi-continuum model. In Section 3.3, a step-

by-step illustration on GMsFEM together with a priori error estimate is provided. The details of

time discretization of our problem is also discussed in this section. In Section 3.4, we present

multiple numerical results to verify the effectiveness of the proposed methods. Lastly, this chapter

is concluded by Section 3.5.

3.1 Problem Setting

In this chapter, we consider a 2-dimensional flow problem in a multiscale porous media. In

specific, we consider a Darcy flow. For simplicity, we ignore the gravity and the capillary pressure

effects.
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3.1.1 Equation for Slightly Compressive Flow in Porous Media

In specific, we consider the following equation for slightly compressive flow in a heterogeneous

porous media, we remark that this equation is just a special case of (2.1),

φc

B◦
∂u

∂t
− 1

µ
∇ · ( κ

B
∇u) = g in Ω. (3.1)

Here, Ω is the computational domain. c is compressibility and µ is viscosity of the liquid. B◦ is the

formation volume factor (FVF) at reference pressure u0 andB is a FVF at reservoir condition. They

are used to quantify the compressibility of the target liquid. φ represents porosity of the fractured

vuggy media, while κ is a permeability function that bears multiscale features (See Figure 3.1 for

an illustration). The solution to be sought is pressure u, given a production rate g.

Figure 3.1: Permeability field κ(x) with multiscale features.

Limiting our interests to slightly compressible liquid, we can further employ the simplified
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correlation between the formation volume factor B and the pressure u that

B =
B◦

1 + c(u− u0)
(3.2)

to rewrite (3.1) and get

φc

B◦
∂u

∂t
− 1

µ
∇ · (κ1 + c(u− u0)

B◦
∇u) = g, in Ω. (3.3)

In the following sections, we will derive our method based on (3.3) along with Dirichlet or Neu-

mann boundary conditions on ∂Ω.

Throughout this chapter, we assume c, φ µ andB◦ are constants. (3.2) can then be reformulated

as

b
∂u

∂t
−∇ · (κ(x)α(u)∇u) = g (3.4)

where

b =
φc

B◦

is a constant, while

α(u) =
1

µ
· (1 + c(u− u0))

is a linear map in u.

3.1.2 Fine-scale Spatial Discretization

For flow in a fractured and vuggy media, the multiscale flow problem described in (3.4) be-

comes more complicated as the fractures and vugs have very different hydraulic properties from

its background matrix. They can bring in extra transfer and storage mechanics to the flow. The

fractures amplify the complexity of modeling as they can have a wide range of scales and topology.

In order to delicately model the their effects on flow, we apply a hierarchical approach. Fractures

that have only local effects can be resolved by fine mesh. Thus, the computational domain can be
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partitioned as in (2.11)

Ω = ΩM

⊕
s

dsΩF,s.

Those fractures that have global effects and are not resolved by mesh can later be handled by

representing them as one continua. So are the effects of vugs, which will be discussed in details in

next section.

For a fine-scale approximation of u, we discretize the PDE on a fine grid, and apply Finite

Element Method as well as the Discrete Fracture Model (DFM). Specifically, all integrations in

the weak form of (3.4), will now be taken separately in both ΩM and ΩF,s with distinct hydraulic

parameters. To compromise arbitrary fractures ΩF,s, one need to adopt an unstructured fine-scale

mesh. The resulting semi-discrete numerical system is

∫
ΩM

bM
∂uh
∂t

vh dx+
∑
s

∫
ΩF,s

bF,s
∂uh
∂t

vh dx

+

∫
ΩM

κM(x)α(ph)∇uh∇vh dx+
∑
s

∫
ΩF,s

κF,s(x)α(uh)∇Fuh∇Fvh dx

=

∫
Ω

gvh dx, ∀vh ∈ Vh.

(3.5)

Here, vh is a standard FEM basis function. ∇F means taking directional derivative along the

degenerated 1-D fracture ΩF,i. Note that the aperture effects are considered in κF,s(x). bM =
φM c

B◦

and bF,s =
φF,s c

B◦
are constants.

3.2 Multi-continuum Model

To explicitly represent the global effects of unresolved fractures, vugs and matrix, we introduce

the multi-continuum methods. We consider the media as a coupled system of three parallel con-

tinua: matrix, unresolved fractures (usually natural fractures), and vugs. They coexist everywhere

in our computational domain, while they interact with each other via mass transfer (see Figure

3.2 for an illustration). Without of loss of generality, we assume that all continuum interact with

each other. If we denote the flow pressure for continua i as ui, and write the interaction between

continua i and j as Qi,j , we can then establish a system of PDEs following (3.4) to describe the
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Figure 3.2: Illustration of triple-continuum model.

flow mechanism in each continua as:

bi
∂ui

∂t
−∇ · (κi(x)α(ui)∇ui) = gi −

∑
j 6=i

Qi,j (3.6)

with bi =
φic

B◦
. Here i can be m, f ,or v which stands for matrix, unresolved fractures and vugs

respectively. We further assume that there is no intra-flow inside the vugs and all vugs only act as a

storage in this system. That is to say, we only consider the case when all vugs are independent from

each other. Mass transfer due to inflow of liquid along vugs can be disregarded in any element of

the domain. Therefore, flow equation for vugs can be written as

bv
∂uv

∂t
= gv +Qf,v +Qm,v. (3.7)

The term Qi,j represents the mass transfer from continua i to continua j. This transfer can be

modeled using [54, 55]

Qi,j = σ
κi,j

µ
(ui − uj) = qi,j(ui − uj),

where qi,j = qj,i. Here σ is a shape factor, and κi,j is taken to be the harmonic mean of the

permeability κi and κj .

With (3.6) and (3.7), we can derive the weak formulation of our proposed triple-continuum
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system. For matrix and unresolved fractures, we have

∫
Ω

bi
∂ui

∂t
vi dx+

∫
Ω

κi(x)α(ui)∇ui∇vi dx+
∑
j 6=i

∫
Ω

Qi,jvi dx =

∫
Ω

gividx, i = m, f. (3.8)

For vugs, we have

∫
Ω

bv
∂uv

∂t
vv dx−

∫
Ω

Qm,vvv dx−
∫

Ω

Qf,vvv dx =

∫
Ω

gvvvdx. (3.9)

Here, vi is any testing function in the same space as ui. We mention that equation of um, uf and uv

are coupled through term Qi,j . Thus, this coupled system should be solved in a Cartesian product

space (um, uf , uv) ∈ V m × V f × V v. In our proposed approach, we take V i = H1
0 (Ω) for all

continuum.

To express the effects of both unresolved and resolved fractures on flow dynamics, we manage

to incorporate DFM when solving this multicontinuum equation system (3.8)–(3.9). Like what

we have in (3.5), we assume ΩF,s corresponds to a 1-D domain that serves as a resolved fracture

region. All integrations on Ω can thus be rewritten as
∫

Ωm
+
∑

s

∫
ΩF,s

. For example, (3.8) can be

rewritten as

∫
ΩM

bi
∂ui

∂t
vi dx+

∑
s

∫
ΩF,s

bF,s
∂ui

∂t
vi dx

+

∫
ΩM

κi(x)α(ui)∇ui∇vi dx+
∑
s

∫
ΩF,s

κF,s(x)α(ui)∇Fu
i∇Fv

i dx

+
∑
j 6=i

∫
Ω

Qi,jvi dx =

∫
Ω

givi dx,

(3.10)

for i = m, f, after applying DFM to its original form. Similarly, incorporating DFM in (3.9) yields

∫
ΩM

bv
∂uv

∂t
vv dx+

∑
s

∫
ΩF,s

bF,s
∂uv

∂t
vv dx−

∫
Ω

Qm,vvv dx−
∫

Ω

Qf,vvv dx =

∫
Ω

gvvv dx. (3.11)

The fine-scale FEM solution (um, uf , uv) should be sought in Vh = V m
h × V

f
h × V v

h , where the V i
h
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is a conforming finite element space of the continuum i on a fine partition T h of the domain. We

also remark that the shape factor σ is taken to be proportional to h−2.

For the purpose of simpler notations in the analysis presented in Appendix A.1, we rewrite

the derived system (3.10)– (3.11) in a more general N -continuum setting. First, we denote the

Sobolev space V = [H1
0 (Ω)]N . On each continuum, given a fixed wi ∈ H1

0 (Ω), we define the

bilinear forms:

bi(ui, vi) =

∫
ΩM

biuivi dx+
∑
s

∫
ΩF,s

bF,su
ivi dx,

ai(ui, vi;wi) =

∫
ΩM

κiα(wi)∇ui · ∇vi dx+
∑
s

∫
ΩF,s

κF,sα(wi)∇Fu
i · ∇Fv

i dx.

(3.12)

Given a fixed w ∈ V , we further define the following coupled bilinear forms on V

b(u, v) =
∑
i

bi(ui, vi),

a(u, v;w) =
∑

1≤i<N

ai(ui, vi;wi),

q(u, v) =
∑
i

∑
j 6=i

qi,j
∫

Ω

(ui − uj)vi dx.

(3.13)

Then the generalized weak formulation (3.10)–(3.11) can be written as: find u = (u1, u2, · · · , uN),

where u(t, ·) ∈ V , we have such that for all v = (v1, v2, · · · , vN), where v(t, ·) ∈ V ,

b

(
∂u

∂t
, v

)
+ a(u, v;u) + q(u, v) = (g, v), t ∈ (0, T ). (3.14)

Specifically, for N = 3 case in this paper, the continuum indices representing the matrix, fractures

and vugs components in order.

3.3 GMsFEM

In order to reduce the computational cost, we would like to solve the equation system (3.6) and

(3.7) on a coarse mesh. However, permeability coefficient κ(x) is heterogeneous in space, thus a
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standard FEM solution on coarse mesh will be inaccurate as it loses subgrid information. There-

fore, we use GMsFEM to construct multiscale basis that contains local heterogeneous permeability

information. By replacing the standard FEM basis with GMsFEM basis, we are able to obtain a

better accuracy and sustain an affordable computational cost.

In this section, we briefly review the procedure for GMsFEM. Roughly speaking, the construc-

tion of GMsFEM basis consists of two stages: solving snapshot problems and conducting spectral

decomposition. Both steps are performed locally as discussed in Section 2.2.1. The fine and coarse

partition of the computational domain Ω is same as in 2.2.1. We remark that the fine mesh should

be taken in surrendering the discrete fracture network (see Figure 3.3b for an illustration).

3.3.1 Snapshot Space

Recall that the coarse neighborhood ωi of node xi on a coarse mesh T H is defined as:

ωi =
⋃
j

{Kj ∈ T H |xi ∈ K̄j}.

A snapshot space is an auxiliary space constructed within each coarse neighborhood ωi. We omit

the subscript i for simplicity. There are a few different ways to construct snapshot space [33].

In this chapter, we take solutions to the following coupled harmonic extension problems as the

snapshot basis functions.

The snapshot problems are designed analogue to the steady state equation of (3.6) and (3.7).

We consider a coupled snapshot system in a coarse neighborhood ω, in which we find

φsnap,ω
k,s =

(
φ1,snap,ω
k,s , φ2,snap,ω

k,s , · · · , φN,snap,ω
k,s

)
∈ Vh(ω)
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such that

−∇ · κ
i(x)

µ
∇φi,snap,ω

k,s +
∑
j 6=i

qi,j(φi,snap,ω
k,s − φj,snap,ω

k,s ) = 0, in ω i = 1, 2, · · · , N − 1,

∑
j 6=v

qi,j(φi,snap,ω
k,s − φj,snap,ω

k,s ) = 0, in ω, i = N,

φsnap,ω
k,s = δk,s, on ∂ω.

(3.15)

δk,s is defined on all fine-scale nodes of ∂ω. If the set {xωi |1 ≤ i ≤ Nω
v } represents all fine-scale

nodes on boundary, we have

δk,s(x
ω
i ) =

 es i = k,

0 i 6= k.

Here, {es}Ns=1 are standard basis in RN . So far, we construct the local snapshot space as:

V ω
snap = span{φsnap,ω

k,s | 1 ≤ k ≤ Nω
v , 1 ≤ s ≤ N}.

The global snapshot space is defined as the sum of all local snapshot spaces, i.e.

Vsnap = span{φsnap,ωi
k,s | 1 ≤ i ≤ Nv, 1 ≤ k ≤ Nωi

v , 1 ≤ s ≤ N}.

Remark When solving local snapshot problem (3.15) on the fine mesh within ω, one should also

apply the idea of DFM and replace all integral
∫
ω

by
∫
ωM

+
∑

s

∫
ωF,s

and all coefficients corre-

spondingly.

3.3.2 Spectral Problem

To further reduce the dimension of the resulting system, we conduct a spectral decomposition

on V ω
snap. More precisely, we sought eigenpairs (λωm, ψ

ω
m) ∈ R×V ω

snap for the following local spectral

problem

aω(ψωk , v) = λωksω(ψωk , v), ∀v ∈ V ω
snap, (3.16)
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where

aω(u, v) =
∑

i∈{m,f}

aiω(ui, vi) +
∑
i

∑
j 6=i

∫
ω

qi,j(ui − uj)vi dx,

sω(u, v) =
1

µ

∑
i

∫
ω

κi(x)uivi dx.

The form of aω(u, v) and sω(u, v) are inspired by analysis which will be demonstrated in next

section along with Appendix A.1. We sort the eigenvalues {λωk} of (3.16) in ascending order, and

we take the first Lω eigenfunctions ψωk = (ψ1,ω
k , ψ2,ω

k , · · · , ψN,ωk ). Then the k-th multiscale basis

function ψms,ω
k = (ψ1,ms,ω

k , ψ2,ms,ω
k , · · · , ψN,ms,ω

k ) in ω is defined by

ψi,ms,ω
k = χωψi,ωk , i = 1, 2, · · · , N,

where χω is a partition of unity function for coarse grid T H on a coarse neighborhood ω. By

multiplying χω, we obtained a set of conforming multiscale basis functions supported in ω. Using

the multiscale basis functions {ψms,ωi
k } for all coarse regions ωi, we construct the multiscale space

Vms = span{ψms,ωi
k | 1 ≤ k ≤ Lωi , 1 ≤ i ≤ Nv}.

We remark that dim(Vms) � dim(Vh), where Vh = [V i
h ]N is the standard FEM approximation

space on T h. When the multiscale space is established, we can then find a coarse-scale solution on

Vms with less computational effort.

Once the multiscale space is constructed, the general GMsFEM solution is given by: find ums =

(u1
ms, · · · , uNms), where ums(t, ·) ∈ Vms, such that for all v = (v1, v2, · · · , vN), where v(t, ·) ∈ Vms,

b

(
∂ums

∂t
, v

)
+ a(ums, v;ums) + q(ums, v) = (f, v), t ∈ (0, T ). (3.17)
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3.3.3 A-priori Error Estimates

In this section, we present some a-priori error estimates of the semi-discrete problem. The

proofs of these estimates will be left to Appendix A.1.

We suppose κ has a upper bound κ+ and a lower bound κ− in Ω. We further assume that α(ui)

and α(uims) has a uniform upper bound α+ and a uniform lower bound α−, i.e.

0 < α− ≤ α(ui), α(uims) ≤ α+. (3.18)

Next, we introduce some metrics on V . The bilinear form b(·, ·) can further induce a norm

‖u‖b := (b(u, u))1/2.

We also define a norm ‖ · ‖aQ by

‖u‖aQ := (|u|2a + |u|2q)
1
2 , (3.19)

where|u|2a :=
∑

1≤i<N

(∫
ΩM

κi|∇ui|2 dx+
∑
s

∫
ΩF,s

κF,s|∇Fu
i|2 dx

)
and |u|2q := q(u, u).

The first theorem provides an estimate of the error between the weak solution u and the multi-

scale solution ums by the projection error of u onto the multiscale space Vms in various metrics.

Theorem 3.3.1. Let u be the weak solution in (3.14) and ums be the multiscale numerical solution

in (3.17). Assume ∇u ∈ L4(ΩM) and ∇Fu ∈ L2(ΩF,s). Then we have

‖u(t, ·)− ums(t, ·)‖2
b +

∫ T

0

‖u− ums‖2
aQ
dt

≤ C inf
w∈Vms

(

∫ T

0

‖∂(w − u)

∂t
‖2
b dt+

∫ T

0

‖w − u‖2
aQ
dt+ ‖w(0, ·)− u(0, ·)‖2

b).

(3.20)

In light of Theorem 3.3.1, we have to establish an estimate of the projection error of u onto
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the multiscale space Vms on the right hand side of (3.20), in order to complete the convergence

analysis. With the assumption that the irreducible error between the Sobolev space V and the

snapshot space Vsnap is small, which holds when a sufficiently large number of snapshot solutions

is taken, we define an approximation usnap(·, t) ∈ Vsnap of u(·, t) in the snapshot space by

usnap(x, t) =
Nv∑
i=1

N
ωi
v∑

k=1

N∑
s=1

u(xk, t)χ
ωi(xk)φ

snap,ωi
k,s (x), (3.21)

and provide an estimate of the projection error of usnap onto the snapshot space Vms.

Theorem 3.3.2. Let u and usnap be the reference solution and the snapshot projection of u as

defined in (3.14) and (3.21). We then have

inf
w∈Vms

∫ T

0

‖∂(w − usnap)

∂t
‖2
b dt+

∫ T

0

‖w − usnap‖2
aQ
dt+ ‖w(0, ·)− usnap(0, ·)‖2

b

≤ C

Λ
(

∫ T

0

‖∂u
∂t
‖2
aQ
dt+

∫ T

0

‖u‖2
aQ
dt+ ‖u(0, ·)‖2

aQ
)

(3.22)

with Λ = min
j
{λωjLωj+1}.

3.3.4 An Implementation View

In this section, we derive the fully discrete system and present the implementation details.

We adopt the implicit Euler scheme for time discretization to the semi-discrete GMsFEM system

(3.17). Suppose the time domain (0, T ) is partitioned into equal subintervals of length ∆t, and

denote the n-th time instant by tn = n∆t. Using backward difference, the fully discrete GMsFEM

scheme is to, successively for n = 1, 2, . . . , find unms ∈ Vms such that

b

(
unms − un−1

ms

∆t
, v

)
+ a(unms, v;unms) + q(unms, v) = (gn, v), ∀v ∈ Vms, (3.23)

where the subscript n denotes the evaluation of a time-dependent function at the time instant tn and

for an given initial condition u0
ms. At each time instant tn, (3.23) gives rise to a nonlinear algebraic

system with respect to the multiscale basis functions. With a sufficiently small time step size, we
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can adopt a direct linearization approach by replacing the field α(unms) by α(un−1
ms ) and derive

b

(
unms − un−1

ms

∆t
, v

)
+ a(unms, v;un−1

ms ) + q(unms, v) = (gn, v), ∀v ∈ Vms. (3.24)

Alternatively, we can use an iterative approach. More precisely, we can construct a sequence

{unms,m}∞m=0 ⊂ Vms whose fixed point is the solution unms and truncate the successive iterations

when a stopping criterion is fulfilled. In this case, we start with an initial guess unms,0 = un−1
ms and

solve for

b

(
unms,m − un−1

ms

∆t
, v

)
+ a(unms,m, v;unms,m−1) + q(unms,m, v) = (gn, v), ∀v ∈ Vms. (3.25)

We remark that it is equivalent to the linearization approach if we stop after one iteration.

3.4 Numerical Results

In this section, we apply our proposed methods to a realistic fractured and vuggy reservoir. All

three continuum have heterogeneous permeability background (see Figure 3.1 for the permeability

of matrix) and discrete fracture networks are embeded in this reservoir like in Figure 3.3a. An

unstructured fine mesh is used to resolve the discrete fractures networks (see Figure 3.3b). The de-

scriptive parameters of this reservoir are listed in Table 3.1. All numerical results are implemented

using FEniCS Library.

The numerical experiments are conducted from different aspects. Performances are compared

between MsFEM and GMsFEM, nonzero source term and nonzero mixed boundary condition.

We also discuss the impact of the number of basis functions selected to the solution accuracy. We

remark that all examples are conducted using direct linearization approach as the iterative approach

do not significantly improve the results for our problem.

3.4.1 Comparison of MsFEM and GMsFEM

In this subsection, we discuss the necessity to apply GMsFEM. From Figure 3.4, we can tell

that, even with similar number of degrees of freedom, the MsFEM is not able to recover the true
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Quantity Value
Size of model 15000ft× 15000ft

φm 0.2
φf 0.01
φv 0.1
φF,j 1
κf 10−12

κv 10−13

κF,j 8.2606× 10−8

c 1.4504× 10−8

µ 8× 10−3

u0 2.0684× 107

B◦ 1.1
δ 1/h2

min

Table 3.1: Values of all quantities.

(a) Idealized discrete fracture net-
work(DFN)

(b) Unstructured fine mesh

Figure 3.3: DFN and fine scale mesh.

solution, thus GMsFEM must be applied to generate meaningful results. This is especially true

when there are multiple discrete fracture networks coexist in a single coarse neighborhood. Many

numerical experiments have shown that MsFEM basis functions are not able to handle homoge-

neous background and multiple discrete fracture networks simultaneously. Figure 3.4 shows the
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solution we obtained using MsFEM and GMsFEM respectively when a single source is placed at

the bottom left corner. The relative error of MsFEM solution can be as large as 30%.

Figure 3.4: Comparison between GMsFEM and MsFEM solution with heterogeneous background
and discrete fracture network. Left: GMsFEM solution with DOF=2646. Right MsFEM solution
with DOF =2400.

3.4.2 GMsFEM Solution for Different Boundary Condition and Source

In this subsection, we demonstrate the performance of our proposed triple continuum GMs-

FEM methods applied to problem (3.6) and (3.7), where lagging coefficient scheme is used to

linearize the problem. Different boundary conditions and source term settings are tested for cou-

pled GMsFEM approach.

Number of Basis Day 1 Day 10 Day 20
2 17.21 27.22 66.44
4 14.88 17.27 43.65
8 4.72 11.86 13.31

16 4.24 12.05 12.58

Table 3.2: L2 relative errors(%) of numerical results for mixed boundary condition. Nonzero
Dirichlet boundary condition is imposed on top and bottom boundary. Zero Neumann boundary is
applied to left and right boundary.
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Figure 3.5: Triple-Continuum, heterogeneous background flow simulation of matrix with top and
bottom nonzero Dirichlet boundary condition. Zero Neumann boundary is applied to left and right
boundary. First row: fine-scale reference solution, DOF = 80229. Second row: Coupled coarse-
scale GMsFEM solution with 8 basis, DOF = 3528.

Figure 3.6: Illustration of error trend with time for different number of basis for dirichlet boundary
condition case.

From both error tables and solution figures , we come to the conclusion that: 1) For nonzero
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Figure 3.7: Flow simulation results for a triple continuum heterogeneous background matrix with
no flow boundary condition. Injector locates at bottom left corner. First row : Fine-scale reference
solution. Second row: Coupled coarse-scale GMsFEM solution. DOF is same as in Figure 3.5.

Number of Basis Day 1 Day 10 Day 20
2 15.79 10.05 11.42
4 5.48 5.89 8.53
8 2.84 6.20 8.51

16 1.12 6.30 8.49

Table 3.3: L2 relative errors(%) of numerical results for zero Neumann boundary condition.

mixed boundary condition case, the GMsFEM solution can obtain a good result when using 8 basis

or more. 2) For zero Neumann boundary and single point source term case, the coupled approach

can obtain good approximation of fine-scale solution with 4 basis or more. 3) For both cases, the

coupled approach can give us an acceptable solution.

From Figure 3.8 , Figure 3.6, Table 3.3 and Table 3.2, we can tell that the error of solution

decreases when we increase the number of eigenfunctions used.
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Figure 3.8: Illustration of error trend with time for different number of basis for single source case.

3.5 Conclusion

In this chapter, we proposed a triple continuum GMsFEM method as a fast solver of flow

problems in a heterogeneous domain. A fractured and vuggy reservoir is modeled as a system of

three continuum. Coupled assembling is provided to construct GMsFEM multiscale space. The

convergence of our proposed method is proved strictly following mild assumptions. Later, the

performance is tested using multiple examples with different settings. We conclude that with a

GMsFEM framework, a multicontinuum model, and the discrete fracture network, our proposed

method can inherit the merits of the three. By coupling them together, we improved the capability

as well as accuracy of our simulation and obtained competitive approximations for both mixed

boundary conditions and a single source case.

In short, we claim that our proposed method can accomplish the flow simulation task with

both accuracy and efficiency. Nevertheless, we notice that our proposed method is only good for

the case when discrete fracture network is known. For reservoirs containing uncertainties, further

exploration is desired. Besides, for vugs with turbulent flow inside, one will end up with a coupled

PDE system containing Navier-Stokes equation. Future investigations are required to expand our

work to such cases.
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4. GMSFEM FOR MIXED ELLIPTIC EQUATION IN A NARROW DOMAIN

When simulating flow in capillary or fissured systems, homogenization method is commonly

used. However, when there is no scale separation of the media, for example, modeling blood circu-

lation within a nonuniform vessel, using only one basis function will result in imprecise solutions

due to the loss of local multiscale information [56]. Thus, we would like to address such prob-

lems using GMsFEM instead. By constructing multiscale basis functions, we pass microscopic

information from the local system to the global system instead of averaging it out. Moreover,

by the design of GMsFEM, we are able to construct an approximation space with rich multiscale

information where the leading basis correspond to the dominant feature modes.

Additionally, we want to study how the geometry of the computational domain influences the

approximation accuracy of our proposed method through rigorous analysis.

4.1 Problem Setting

In this chapter, we aim to solve a mixed elliptic equation in a narrow domain, especially for

the case when a single basis in each coarse neighborhood is not enough to represent the underlying

multiscale features of the domain.

4.1.1 Mixed Formulation of Flow Equation

We consider the steady state flow equation (2.1),

−div
(
κ∇u

)
= g, in Ω.

Here, κ represents the heterogeneous permeability of the medium, u is pressure, Ω is a narrow

domain with large length/width ratio and g is a source or sink function. If we assume the flow is

governed by Darcy’s Law, and the viscosity of the target liquid is 1, then the flux σ satisfies

σ = −κ∇u. (4.1)
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Now we introduce the new variable σ (which is vector-valued), we have the mixed formulation of

the above PDE:

κ−1σ +∇u = 0, (4.2a)

∇ · σ = g. (4.2b)

More specifically, Dirichlet Boundary condition is imposed to pressure u for left and right

boundary while a no flow boundaries condition is imposed to flux σ on both top and bottom bound-

aries, i.e.

u = −1, on ∂Ω1, (4.3a)

u = 1, on ∂Ω3, (4.3b)

σ · n = 0, on ∂Ω2,4. (4.3c)

Here, n denotes the outward normal vector on Ω2,4. For source term g, we let:

g = 0. (4.3d)

We will derive GMsFEM solution based on (4.2) for the rest of this chapter.

4.1.2 Variational Forms and Fine-scale Discretization

We first derive the weak form of the system (4.2). After multiplying Equation (4.2) by test

functions τ and v, integrating over the domain, and integrating the gradient term by parts, one

obtains the following variational formulation of the problem: find σ and u satisfying

∫
Ω

κ−1σ · τdx−
∫

Ω

u∇ · τ dx = −
∫
∂Ω

uτ · nds, ∀τ ∈ Σ0, (4.4a)∫
Ω

∇ · σvdx =

∫
Ω

gvdx, ∀v ∈ U. (4.4b)
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By summing up (4.4) and applying the boundary conditions, we obtain a bilinear form acting on

the trial function (σ, u) and test function (τ, v). The problem is then formulated as: find σ ∈ Σ0

and u ∈ U such that

a((σ, u), (τ, v)) = L(τ, v), ∀(τ, v) ∈ Σ0 × U, (4.5)

where the bilinear form a(·, ·) is defined as

a((σ, u), (τ, v)) :=

∫
Ω

κ−1σ · τ dx−
∫

Ω

u∇ · τ dx+

∫
Ω

∇ · σv dx

and L(·) is defined as

L(v, q) := −
∫
∂Ω

uτ · n ds+

∫
Ω

gv dx =

∫
∂Ω1

τ · n ds−
∫
∂Ω3

τ · nds+

∫
Ω

gv dx.

We also define the space Σ0 :=
{
τ ∈ H(div)

∣∣ τ · n|∂Ω2,4 = 0
}

, and U := L2(Ω).

To discretize the above formulation in fine mesh T h, two discrete function spaces Σ0
h ⊂ Σ0

and Uh ⊂ U are needed to form a mixed function space Σ0
h × Uh. A common choice of finite

element space is Raviart–Thomas space . Specifically, we use a standard lowest order RT0 space

[57]. Then, the fine-scale problem can be written as:

∫
Ω

κ−1σh · τh dx−
∫

Ω

uh∇ · τh dx = −
∫
∂Ω

uhτh · n ds, ∀τh ∈ Σ0
h, (4.6a)∫

Ω

∇ · σhvh dx =

∫
Ω

gvh dx, ∀vh ∈ Uh. (4.6b)

or similar to (4.5):

ah((σh, uh), (τh, vh)) = Lh(τh, vh), ∀(τh, vh) ∈ Σ0
h × Uh, (4.7)
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where

ah((σh, uh), (τh, vh)) :=

∫
Ω

1

κ
σh · τh dx−

∫
Ω

uh∇ · τh dx+

∫
Ω

∇ · σhvh dx

and

Lh(vh, vh) := −
∫
∂Ω

uhτh · n ds+

∫
Ω

gvh dx =

∫
∂Ω1

τh · n ds−
∫
∂Ω3

τh · n ds+

∫
Ω

gvh dx.

We finally obtain a discrete fine-scale system:

Ah Bh

BT
h 0


σh
uh

 =

bh
0

 . (4.8)

4.2 Coarse Problem

4.2.1 Coarse Partition of Domain

We let T H be a coarse partition of the computational domain Ω with a mesh size H . The fine

grid T h should be a refinement of T H with a mesh size h. Generally, h � H . Let EH be the set

of all faces in the coarse grid T H , and the number of coarse faces is defined to be Ne. A coarse

neighborhood of Ei ∈ EH is then defined as:

ωi :=
⋃
j

{Kj ∈ T H | Ei ∈ ∂Kj}. (4.9)

See Figure 4.1 for an illustration. With a coarse partition of the domain, we aim to construct a

GMsFEM space Σms = span
i,k

{ψms,ωi
k } for σ corresponds to T H which has a smaller dimensional

size while containing the dominant information of the local region. Note that we will construct

ψms,ωi
k in a way that it is supported only in the coarse neighborhood ωi.
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Figure 4.1: Illustration of the coarse partition T H of Ω and the coarse neighborhood ωi associated
with coarse face Ei.

4.2.2 Variational Form for Coarse Problem

Similar to the fine-scale problem (4.5), the coarse problem can be formulated as: find (σms, ums) ∈

Σms × Ums such that:

a((σms, ums), (τ, v)) = L(τ, v), ∀(τ, v) ∈ Σms × Ums. (4.10)

Here, we take Ums :=
{
u ∈ L2(Ω)

∣∣ u|K ∈ P0(K),∀K ∈ T H
}

to be a discontinuous piece-

wise constant space, and Σms will be constructed using GMsFEM in the following sections. The

corresponding numerical system then writes as :

RσAhR
T
σ RσBhR

T
u

RuB
T
hR

T
σ 0


σms
ums

 =

Rσbh

0

 ,
where

Rσ = [ψ1, · · · , ψNσ ] , Ru = [r1, · · · , rNu ] .

Here, {ψi}Nσi=1 are multiscale basis functions for flux σ and {ri}Nui=1 are restriction basis functions

from Uh into UH . Nσ and Nu are the dimensions of space Σms and space Ums, respectively.

4.2.3 Construction of Snapshot Space

The key feature of GMsFEM is that it can construct a set of basis functions that capture

the micro-fine characteristics of the media. We first construct a snapshot space that can reflect

the multiscale features of this particular coarse region. As discussed in (2.2.1), we can obtain
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the snapshot basis functions by solving the local harmonic extension problems. For mixed for-

mulation of the flow equation, the snapshot problem is defined locally on ωi as follows: find

(φsnap,ωi
k , ξsnap,ωi

k ) ∈ Σh(ωi)× Uh(ωi) such that

κ−1φsnap,ωi
k +∇ξsnap,ωi

k = 0, in ωi, (4.11a)

∇ · φsnap,ωi
k = cik, in ωi, (4.11b)

φsnap,ωi
k ·mi = δik, on Ei, (4.11c)

φsnap,ωi
k · ni = 0 on, ∂ωi. (4.11d)

Here, ni denotes the outward unit-normal vector on ∂ωi and mi is a fixed unit-normal vector on

Ei. Constant cik is defined as

cik :=
1

|Ki
j|

∫
Ei

φsnap,ωi
k ·mi ds =

1

|Ki
j|

∫
Ei

δik ds, j = 1, 2.

In this scenario, ωi = Ki
1 ∪Ki

2. Notice that the coarse edge Ei is constituted by fine edges ek, i.e.

Ei = ∪Jik=1ek. δik is defined as a piece-wise constant function on Ei such that

δik :=


1, on ek,

0, on es, s 6= k.

The snapshot space on ωi is then defined as

Σωi
snap := span

k

{φsnap,ωi
k }. (4.12)

Moreover, the global snapshot space is defined

Σsnap := ⊕
i
Σωi

snap. (4.13)
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4.2.4 Construction of GMsFEM Basis

To further reduce the space dimension, we want to select those multiscale modes that directly

reflect the major features of the media. By conducting a spectral decomposition to the snapshot

space, we are able to construct the offline multiscale space Σms. We first seek eigen-functions

ψms,ωi
k ∈ Σωi

snap to the spectral problem

ai(ψ
ms,ωi
k , v) = λωik si(ψ

ms,ωi
k , v), ∀v ∈ Σωi

snap, (4.14)

where

ai(u, v) :=

∫
Ei

κ−1(u ·mi)(v ·mi) ds

and

si(u, v) :=

∫
ωi

uv dx+

∫
ωi

∇ · u∇ · v dx.

We then sort the eigenvalues in ascending order and choose the first Lωi eigenfunctions that corre-

spond to the smallest eigen-values. The multiscale space is then formed as

Σms := span{ψms,ωi
k | 1 ≤ k ≤ Lωi , 1 ≤ i ≤ Ne}. (4.15)

4.3 Stability Analysis

In this subsection, we would like to present a precise analysis of the approximation error of our

proposed multiscale space. The large length/width ratio of the domain is also taken into consider-

ation. We first define the following norms and symbols:

||u||2L2(Ω) :=

∫
Ω

u2 dx,

for a scalar function u ∈ L2(Ω):

||σ||2κ−1,Ω :=

∫
Ω

κ−1|σ|2 dx,

41



for vector function v;

||σ||2H(div,Ω);κ−1 := ||σ||2κ−1,Ω + ||∇ · σ||2L2(Ω) dx,

for vector function σ; we further denote

α � β

if there exist a constant C > 0 such that α 6 Cβ.

Let K be any coarse block from T H . Then, the projection of σ onto Σsnap restricted to each K

is defined to be σ̂ as following:

Lemma 4.3.1. Let (σh, uh) ∈ Σh × Uh be fine solution of (4.7) and σ̂ be the weak fine-scale

solution of (4.16)

κ−1σ̂ +∇û = 0, in K, (4.16a)

∇ · (σ̂) = ḡ, in K, (4.16b)

σ̂ · n = σh · n, on ∂K, (4.16c)

subject to the condition ∫
K

û =

∫
K

uh. (4.17)

Here, n is the outward normal vector on ∂K and ḡ :=
1

|K|

∫
K

g. We then have

∫
Ω

κ−1|σh − σ̂|2 dx � max
K∈TH

(κmin,K−1)
Ne∑
i=1

||g − ḡ||2L2(Ki)
. (4.18)

Proof. We first notice that by the construction of σ̂ and that of Σsnap, we have σ̂ ∈ Σh ∩ Σsnap.
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Then, in each corase block K, by subtracting the variational form (4.5) from (4.7), we have

∫
K

κ−1(σh − σ̂) · τh dx−
∫
K

∇ · (τh)(uh − û) dx = 0, ∀τh ∈ Σ0
h(K), (4.19a)∫

K

∇ · (σh − σ̂)vh dx =

∫
K

(g − ḡ)vh dx, ∀vh ∈ Uh(K). (4.19b)

Taking τh = σh − σ̂ and vh = uh − û in (4.19), we can then get

∫
K

κ−1(σh − σ̂)2 dx =

∫
K

(g − ḡ)(uh − û) dx. (4.20)

Since Raviart-Thomas space enjoys an inf-sup condition, i.e. it satisfies

||vh||L2(K) � sup
τh∈Σ0

h(K)

∫
K
∇ · (τh)vh dx

||τh||H(div,K);κ−1

, ∀vh ∈ Uh(K). (4.21)

Combining condition (4.21) with (4.19), we can get:

||uh − û||L2(K) � κ
− 1

2
min,K ||σh − σ̂||κ−1,K , (4.22)

where, κmin,K is the minimum value of κ over K. Then, by (4.20)

||uh − û||L2(K) � κ
− 1

2
min,K ||g − ḡ||κ−1,K . (4.23)

Now, summing up the results for all coarse blocks, we obtain the desired conclusion.

To simplify, we only consider the type of "thin domain" Ω = [0, 1] × [0, Ly], where ε :=

Ly

1
� 1. We generate the coarse grid by dividing the "x-axis" of the rectangle. Since Ly � 1,

H = Ly = ε. No-flow condition is imposed merely on the upper and bottom sides of the rectangle.

Thus, the multiscale basis is only taken at the vertical edges of the coarse grid.

Before we state and prove inf-sup condition for our approximation space Σms×Ums, we consider

a snapshot problem on a reference coarse neighborhood ω̃i = [xi−1, xi+1]× [0, Ly]. We aim to find
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(φ̃snap,ω̃i
k , ξ̃snap,ω̃i

k ) ∈ H(div, ω̃i)×L2(ω̃i) that solves the following snapshot problem. For simplicity,

we denoted (φ̃snap,ω̃i
k , ξ̃snap,ω̃i

k ) as (φ̃ik, ξ̃
i
k). The reference snapshot problem is defined as

κ̃−1φ̃ik +∇ξ̃ik = 0, in ω̃i, (4.24a)

∇ · φ̃ik = c̃ik, in ω̃i, (4.24b)

φ̃ik · m̃i = δ̃ik, on Ẽi, (4.24c)

φ̃ik · ñi = 0, on ∂ω̃i. (4.24d)

where

κ̃(x, y) =

κ(x, εy) 0

0 ε−2κ(x, εy)

 ,

c̃ik, ñi and m̃i are defined similar to cik, ni and mi in the reference coarse neighborhood ω̃i. We

solve this problem weakly, i.e., we seek the solutions to

ãsnap
i ((φ̃ik, ξ̃

i
k), (τ̃ , ṽ)) = L̃snap

i (τ̃ , ṽ), ∀(τ̃ , ṽ) ∈ Σh(ω̃i)× Uh(ω̃i), (4.25)

where

ãsnap
i ((φ, ξ), (τ, v)) =

∫
ω̃i

κ̃−1φ · τ dx−
∫
ω̃i

ξ · ∇τ dx+

∫
ω̃i

∇ · φv dx,

L̃snap
i (τ, v) =

∫
ω̃i

c̃ikv dx.

Let

Ṽ i
snap := span

k

{φ̃ik}.
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By proper scaling, we can get

φ̃ik(x, y) =

 (φsnap,ωi
k )1(x, εy)

ε−1(φsnap,ωi
k )2(x, εy)

 , (4.26a)

ξ̃ik(x, y) = ξsnap,ωi
k (x, εy). (4.26b)

Similarly, we have a reference spectral problem in ω̃i:

ãi(ψ̃
i
k, τ̃) = λ̃iks̃i(ψ̃

i
k, τ̃), ∀ṽ ∈ Ṽ i

snap, (4.27)

where s̃i(σ, τ) :=
∫
ω̃i
κ̃−1σ ·τ dx+

∫
ω̃i

(∇·σ)(∇·τ) dx, and ãi(σ, τ) :=
∫
Ẽi
κ̃−1(σ ·m̃i)(τ ·m̃i) ds.

Moreover, by scaling, we are able to get

εãi(ψ̃
i
k, ψ̃

i
k) = ai(ψ

ms,ωi
k , ψms,ωi

k ). (4.28)

Theorem 4.3.2. Assume ∪[xi, xi+1] is an partition of [0, 1]. Thus, Ω =
⋃

1≤i≤Ne
[xi, xi+1] × [0, Ly].

For any given u ∈ UH with
∫

Ω
u = 0, we have

||u||L2(Ω) ≤ C sup
σ∈Σms

∫
Ω
∇ · σu dx
||σ||a

(4.29)

for some constant C. Here, || · ||a is defined as

||σ||a := (
∑
i

ai(σ, σ))
1
2 .

Proof. We consider

σ̃i = argmin
ψ̃∈Σ̃ms(ω̃i),

∫
Ẽi
ψ̃·mi=1

||ψ̃||2ã,
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where || · ||ã is defined similar to || · ||a, i.e. ||σ||ã := (
∑

i ãi(σ, σ))
1
2 . We then let

σi :=

 (σ̃i(x, ε
−1y))1

ε(σ̃i(x, ε
−1y))2

 ,

and

σ :=
∑
i

−[u]xiσi,

where [u]xi = ui+1 − ui. Therefore, we have

∫
Ω

∇ · σu dx =
∑
i

−[u]xi

∫
ωi

∇ · σi dx =
∑
i

[u]xi

∫
Ei

σi ·mi ds =
∑

ε[u]2xi =
∑
i

∫
Ei

[u]2xi ds.

Similarly to the proof of Poincare Inequality, we can easily prove that

1

H

∑
i

∫
Ei

[u]2xi ds ≥
∫

Ω

u2 dx,

thus we have ∫
Ω

∇ · σu dx ≥ ||u||2L2(Ω)

and

||σ||2a ≤ 2
∑
i

[u]2xi ||σi||
2
a

= 2
∑
i

[u]2xiε
−1||σ̃i||2ã

≤ 2
∑
i

∫
Ei

[u]2xiC
2
infsup ds,

where Cinfsup is defined to be Cinfsup =
1

H
1
2

(sup
i

inf
ψ̃∈Ṽms,

∫
Ẽi
ψ̃·mi=1

||ψ̃||2ã)
1
2 . Therefore, we finally have

∫
Ω
∇ · σu dx
||σ||a

=

∑
i

∫
Ei

[u]2xi ds

||σ||a
≥

(
∑∫

Ei
[u]2xi ds)

1
2

√
2Cinfsup

≥
∫

Ω

u2 dx.
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Theorem 4.3.3. Let σh be the fine-grid solution obtained in (4.6) and σH be the mixed GMsFEM

solution obtained in (4.10). Then, the following estimate holds:

∫
Ω

κ−1|σh − σH |2 dx � C2
infsupΛ

−1
∑
i

ai(σ̂, σ̂) + max
K∈TH

(κ−1
min,K)

∑
i

||g − ḡ||2L2(Ki)
(4.30)

where Λ = min
i
λωiLωi+1 and σ̂ is the projection problem solution of (4.16).

Proof. By (4.6), (4.10) and the fact that Σms ⊂ Σ0
h we get that

∫
Ω

κ−1(σh − σH) · τH dx+

∫
Ω

∇ · (τH)(uh − uH) dx = 0, ∀τH ∈ Σ0
ms,∫

Ω

∇ · (σh − σH)vH dx = 0, ∀vH ∈ UH .
(4.31)

Recall (4.19a), we have

∫
K

∇ · (σh − σ̂)τH dx =

∫
K

(g − ḡ)τH dx = 0, ∀vH ∈ UH .

Let ûH ∈ UH , such that ∫
K

(û) dx =

∫
K

(ûH) dx, ∀K ∈ TH .

Since vH is a constant in each coarse block K, and so is∇ · τH , by (4.16c) and (4.17), we have

∫
Ω

∇ · (τH)uh dx =

∫
Ω

∇ · (τH)û dx =

∫
Ω

∇ · (τH)ûH dx.

Therefore, (4.31) can be written as

∫
Ω

κ−1(σh − σH) · τH dx−
∫

Ω

∇ · τH(ûH − uH) dx = 0, ∀τH ∈ Σ0
ms,∫

Ω

∇ · (σ̂ − σH)vH dx = 0, ∀vH ∈ UH .
(4.32)
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Since σ̂ ∈ Σsnap, we can rewrite σ̂ as

σ̂ =
Ne∑
i=1

Ji∑
k=1

σ̂ikψ
ms,ωi
k ,

where Ji = dim(Σωi
snap). We then define σ̂ms ∈ Σms as

σ̂ms =
Ne∑
i=1

Lωi∑
k=1

σ̂ikψ
ms,ωi
k . (4.33)

Here, Lωi is the number of eigenfunctions we select for coarse neighborhood ωi . We can further

write (4.32) as

∫
Ω

κ−1(σh − σH) · τH dx−
∫

Ω

∇ · τH(ûH − uH) dx = 0, ∀τH ∈ Σ0
ms,∫

Ω

∇ · (σ̂ms − σH)vH dx =

∫
Ω

∇ · (σ̂ms − σ̂)vH dx, ∀vH ∈ UH .
(4.34)

Let τH = σ̂ms−σH and vH = ûH −uH and plug back to (4.34). If we add up the equations, we get

∫
Ω

κ−1(σh − σH) · (σ̂ms − σH) dx =

∫
Ω

∇ · (σ̂ms − σ̂)(ûH − uH) dx. (4.35)

Since ûH − uH ∈ UH and by inf-sup condition (4.29) and (4.34), we have

||ûH − uH ||L2(Ω) � Cinfsup sup
σ∈Σms

∫
Ω
∇ · σ(ûH − uH) dx

||σ||a

= Cinfsup sup
σ∈Σms

∫
Ω
κ−1(σh − σH) · σ dx

||σ||a

� Cinfsup sup
σ∈Σms

||σh − σH ||κ−1,Ω||σ||κ−1,Ω

||σ||a
.

Since Σms is a finite dimensional space, all norms are equivalent. Therefore,

||ûH − uH ||L2(Ω) � Cinfsup||σh − σH ||κ−1,Ω. (4.36)
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By the definition of bilinear form si(·, ·), we have

∫
Ω

(∇ · (σ̂ms − σ̂))2 dx �
Ne∑
i=1

∫
ωi

(∇ · (σ̂ms − σ̂))2 dx �
Ne∑
i=1

si(σ̂ms − σ̂, σ̂ms − σ̂).

Then, by (4.35) and the Cauchy–Schwarz Inequality, we can obtain

||σh − σH ||2κ−1,Ω =

∫
Ω

κ−1(σh − σH)2 dx

≤ |
∫

Ω

κ−1(σh − σH)(σh − σ̂ms)|+ |
∫

Ω

κ−1(σh − σH)(σ̂ms − σH)|

= |
∫

Ω

κ−1(σh − σH)(σh − σ̂ms)|+ |
∫

Ω

∇ · (σ̂ms − σ̂)(ûH − uH)|

� ||σh − σH ||κ−1,Ω · ||σh − σ̂ms||κ−1,Ω + ||∇ · (σ̂ms − σ̂)||L2(Ω) · ||ûH − uH ||L2(Ω)

� ||σh − σH ||κ−1,Ω · ||σh − σ̂ms||κ−1,Ω + (
Ne∑
i=1

si(σ̂ms − σ̂, σ̂ms − σ̂))
1
2 · Cinfsup||σh − σH ||κ−1,Ω.

By deviding ||σh − σH ||κ−1,Ω for both sides of the inequality, we then have

||σh − σH ||2κ−1,Ω � ||σh − σ̂ms||κ−1,Ω + (
Ne∑
i=1

si(σ̂ms − σ̂, σ̂ms − σ̂))
1
2 · Cinfsup. (4.37)

For the first term on the right-hand, by triangle inequality, we have

||σh − σ̂ms||κ−1,Ω ≤ ||σh − σ̂||κ−1,Ω + ||σ̂ms − σ̂||κ−1,Ω.

Moreover, by the definition of the spectral problem we have

||σ̂ms − σ̂||κ−1,Ω �
Ne∑
i=1

||σ̂ms − σ̂||κ−1,ωi �
Ne∑
i=1

si(σ̂ms − σ̂, σ̂ms − σ̂).

Thus, the following inequality holds:

||σh − σH ||2κ−1,Ω � ||σh − σ̂||κ−1,Ω + (
Ne∑
i=1

si(σ̂ms − σ̂, σ̂ms − σ̂))
1
2 · Cinfsup. (4.38)
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By (4.18) in Lemma 4.3.1, we can estimate the first term on the right hand side and determine the

second term as all eigenfunctions are orthogonal. We then have

si(σ̂ms − σ̂, σ̂ms − σ̂)) = si(
Ne∑
i=1

Ji∑
k=Lωi+1

σ̂ikψ
ms,ωi
k ,

Ne∑
i=1

Ji∑
k=Lωi+1

σ̂ikψ
ms,ωi
k )

=

Ji∑
k=Lωi+1

(λωik )−1(σ̂2
ik)ai(ψ

ms,ωi
k , ψms,ωi

k )

≤ (λωiLωi+1)−1ai(σ̂ms − σ̂, σ̂ms − σ̂)

≤ (λωiLωi+1)−1ai(σ̂, σ̂).

(4.39)

We thus proved the conclusion in the theorem.

From this theorem, we actually conclude that the approximation error can be reduced if more

eigenfunctions are used in each coarse neighborhood.

4.4 Numerical Results

In this section, we conduct a few numerical examples to test the performance of the proposed

GMsFEM on the thin domains where the length/width ratio is taken to be 40 : 1 in Example 1

and 80 : 1 in Example 2. Additionally, we also test the proposed methods on a wavy thin domain

to assess its performance in a more realistic case. Notice that some channelized heterogeneous

permeability will be used in Example 1 and Example 2. Besides, no sink or source is placed in the

computational domain for all examples.

4.4.1 Example 1

In this example we let the length/width ratio of the domain to be 40/1, the domain is partitioned

into 10 coarse blocks as shown in Figure 4.1. In this example, the permeability is taken as in Figure

4.2. κ(x) = 1.0 for the background while κ(x) = 0.01 in the channelized region. Figure 4.3 and

Figure 4.4 demonstrate the comparison of fine and coarse solutions for equation (4.4). Different

numbers of GMsFEM basis functions are selected in each attempt.
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Figure 4.2: Example 1: heterogeneous permeability κ(x).

L2 relative error (%) σH uH
1 basis 30.55 12.77
2 basis 5.90 12.01
4 basis 1.79 12.01
8 basis 1.01 12.01

Table 4.1: Example 1: L2 relative errors (%) of σH and uH with different numbers of GMsFEM
basis functions.

4.4.2 Example 2

In this example we let the length/width ratio of the domain to be 80/1, and the domain is again

partitioned into 10 coarse blocks. In this example, the permeability is taken as in Figure 4.5.

Figure 4.6 and Figure 4.7 show GMsFEM solutions for different numbers of basis functions.

L2 relative error (%) σH uH
1 basis 7.72 11.27
2 basis 0.93 11.22
4 basis 0.72 11.22
8 basis 0.52 11.22

Table 4.2: Example 2: L2 relative error(%) of σH and uH with different numbers of GMsFEM
basis.
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(a) Fine-scale reference pressure uh, DOF = 11278

(b) GMsFEM pressure solution uH with 1 basis in each coarse neighborhood, DOF =
10

(c) GMsFEM pressure solution uH with 2 basis in each coarse neighborhood, DOF =
10

(d) GMsFEM pressure solution uH with 4 basis in each coarse neighborhood, DOF =
10

(e) GMsFEM pressure solution uH with 4 basis in each coarse neighborhood, DOF =
10

Figure 4.3: Example 1: pressure solution with different numbers of basis functions.

52



(a) Fine-scale flux solution σh, DOF = 5580

(b) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 9

(c) GMsFEM flux solution σH with 2 basis in each coarse neighborhood, DOF = 18

(d) GMsFEM flux solution σH with 4 basis in each coarse neighborhood, DOF = 36

(e) GMsFEM flux solution σH with 8 basis in each coarse neighborhood, DOF = 72

Figure 4.4: Example 1: flux solutions with different numbers of basis functions.

4.4.3 Example 3

In this example, we let the computation domain to have curvy boundaries as shown in Figure

4.8. Here, we make use of a homogeneous permeability κ(x) = 1.0 everywhere of the domain
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Figure 4.5: Example 2: heterogeneous permeability κ(x).

to focus on studying the impacts of the domain geometry. The solution comparisons are then

presented as in Figure 4.9, Figure 4.10 and Table 4.3.

L2 relative error (%) σH uH
1 basis 1.38 10.00
2 basis 0.23 10.00

Table 4.3: Example 3: L2 relative error(%) of σH and uH with different numbers of GMsFEM
basis in a thin domain with wavy boundaries.

4.5 Conclusion

From both error tables and solution figures of Example 1, 2, and 3, we come to the conclusion

that: 1) When we have heterogeneous coefficients, GMsFEM solutions with a single basis in each

coarse neighborhood will lead to large errors. This necessitates using multiscale methods. 2) We

can obtain a good approximation of fine-scale solutions with 2 basis or more. 3) GMsFEM can be

easily extended to thin domains with more complicated geometry.

Both numerical and analytic results have shown the effectiveness of applying GMsFEM in such

problems. However, challenges can be foreseen if a more complex geometry of vessel (e.g. thin

domain with junctions) is considered in future works.
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(a) Fine scale reference pressure uh, DOF = 22524

(b) GMsFEM pressure solution uH with 1 basis in each coarse neighborhood, DOF =
10

(c) GMsFEM pressure solution uH with 2 basis in each coarse neighborhood, DOF =
10

(d) GMsFEM pressure solution uH with 4 basis in each coarse neighborhood, DOF =
10

(e) GMsFEM pressure solution uH with 8 basis in each coarse neighborhood, DOF =
10

Figure 4.6: Example 2: pressure solution with different numbers of basis functions.
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(a) Fine scale flux solution σh, DOF = 11263

(b) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 9

(c) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 18

(d) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 36

(e) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 72

Figure 4.7: Example 2: flux solution with different numbers of GMsFEM basis.

Figure 4.8: Coarse mesh of a wavy thin domain.
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(a) Fine-scale reference solution uh, DOF = 108316

(b) GMsFEM pressure solution uH with 1 basis in each coarse neighborhood, DOF =
10

(c) GMsFEM pressure solution uH with 2 basis in each coarse neighborhood, DOF =
10

Figure 4.9: Example 3: pressure solution with different numbers of GMsFEM basis.

(a) Fine scale reference solution σh, DOF = 54159

(b) GMsFEM flux solution σH with 1 basis in each coarse neighborhood, DOF = 9

(c) GMsFEM flux solution σH with 2 basis in each coarse neighborhood, DOF = 18

Figure 4.10: Example 3: flux solution with different numbers of GMsFEM basis.
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5. DEEP MULTISCALE MODEL LEARNING

In this chapter, we aim to construct a robust deep learning architecture for reduced-order model

of fluid dynamics. More precisely, the flow dynamics can be thought of as multi-layer networks,

where each layer, in general, is a nonlinear forward map and the number of layers relates to the

internal time steps. The network structure is designed in a sparsely-connected manner. We utilize

a reduced order model to determine the connectivity between the input layer and the first hidden

layer while each neuron in the input layer stands for a degree of freedom in the coarse model.

Specifically, we utilize the non-local multi-continuum approach [37] as our upscaled model.

Due to the lack of available observation data, the training data is supplemented with compu-

tational data as needed. Therefore, the trained network provides a model that inherits the merits

from both the computational model and the true model underlying the physical observations.

In this chapter, we will present the main ingredients of our approach as well as the numerical

results. In Section 5.1, we present the general multiscale concepts. Section 5.2 is dedicated to

neural network construction while in Section 5.3, we present numerical results.

5.1 Preliminaries

In general, we study
∂u

∂t
= F (x, t, u,∇u, I), (5.1)

where I denotes the input, which can include the media properties, such as the permeability field,

source terms (well rates), or initial conditions. F (·) can have a multiscale dependence with respect

to space and time. The coarse-grid equation for (5.1) can have a complicated form for many

problems (cf. [37]). This involves multiple coarse-grid variables in each computational coarse grid,

non-local connectivities between the coarse-grid variables, and complex nonlinear local problems

with constraints. In a formal way, the coarse-grid equations in the time interval [tn, tn+1] can

be written as uj,ni , where i is the coarse-grid block, j is a continuum representing the coarse-grid

variables, and n is the time step. More precisely, for each coarse-grid block i, one may need several
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coarse-grid variables, which will be denoted by j. The equation for uj,ni , in general, has a form

uj,n+1
i − uj,ni =

∑
i,j

F i,j(x, t,4t, uj,n+1
i ,∇uj,n+1

i , I), (5.2)

where uj,ni is the average solution at time tn, for the jth continuum within ith coarse block, and

the sum is taken over some neighborhood cells and corresponding connectivity continuum. The

computation of F can be expensive and involves local nonlinear problems with constraints. In

many cases, researchers use general concepts from upscaling, for example, the number of continua,

the dependence of F , and the non-locality, to construct multiscale models. We propose to use the

overall concept of the complex upscaled models in conjunction with deep learning strategies to

design novel data-aware coarse-grid models.

In this chapter, we consider a special case of (5.1), the diffusion equation in a fractured media

∂u

∂t
− div(κ(x)λ(t, x)∇u) = g(t), in Ω, (5.3)

subject to some boundary conditions. Our numerical examples consider the zero Neumann bound-

ary condition ∇u · n = 0. Here, Ω is the computational domain, u is the pressure of flow, g(t)

is a time dependent source term, and κ(x) is a fixed heterogeneous fractured permeability field.

The λ(t, x) is some given mobility which is time-dependent and represents the nonlinearities in the

two-phase flow. Our approach can be applied to nonlinear equations. Regarding the input param-

eter I , we will consider source terms g(t, I), which correspond to well rates. In general, we can

also consider permeability and initial conditions as the input parameters. In this chapter, we will

only solve the PDE for different source term configurations.
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5.1.1 Multiscale Model: Non-local Multi-continuum Approach

The fine-scale solution of (5.3) on the fine mesh T h can be obtained using the standard finite

element scheme, with the backward Euler method for time discretization:

(
un+1
f − unf

∆t
, v

)
+ (κλn+1∇un+1

f ,∇v) = (gn+1, v). (5.4)

Here, (·, ·) denotes the L2 inner product. In the matrix form, we have

Mfu
n+1
f + ∆tAfu

n+1
f = ∆tbf +Mfu

n
f , (5.5)

where Mf and Af are fine-scale mass matrix and stiffness matrix respectively, and bf is the right

hand side vector.

With a proper construction of NLMC basis functions {ψ(i)
m } as discussed in Section 2.2.2, we

then define the transmissibility matrix T by

T (i,j)
mn = a(ψ(i)

m , ψ
(j)
n ). (5.6)

We note that m and n denote different continua, and i, j are the indices for coarse blocks. Since

the multiscale basis are constructed in oversampled regions, the support of multiscale basis for

different coarse degrees of freedom will overlap, and this results in non-local transfers. The mass

transfer between continua m in coarse block i and continua n in coarse block j is T (i,j)
mn ([uT ]

(j)
n −

[uT ]
(i)
m ), where [uT ] is the coarse scale solution.

With a simple index, we can write T (transmissibilities) in the following form



t11 t12 . . . t1n

t21 t22 . . . t2n
...

... . . . ...

tn1 tn2 . . . tnn


, (5.7)
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where n =
∑N

i=1(1 + Li) is the total number of coarse degrees of freedom. Li is the number of

discrete fracture segments in the coarse block Ki, 1 stands for the degree of freedom in the matrix

and N is the number of coarse blocks.

The upscaled model for the diffusion problem (5.3) will be formed as follows

MTu
n+1 + ∆tATu

n+1 = ∆tbT +MTu
n, (5.8)

where AT is the NLMC coarse scale transmissibility matrix, i.e.



−
∑

j t1j t12 . . . t1n

t21 −
∑

j t2j . . . t2n
...

... . . . ...

tn1 tn2 . . . −
∑

j tnj


,

and MT is an approximation of the coarse scale mass matrix [37]. We note that both AT and MT

are non-local and defined for each continua.

To this point, we obtain an upscaled model from the NLMC method. We remark that the results

in [37] indicate that the upscaled equation in our modified method can use small local regions.

5.2 Deep Multiscale Model Learning (DMML)

We will utilize a rigorous NLMC model as stated in the previous section and Section 2.2.2

to solve the coarse scale problems and use the resulting solutions in deep learning framework to

approximate the operator F (·) in (5.1). The advantages of NLMC approach are that one can get not

only very accurate approximations compared to the reference fine grid solutions, but also coarse

grid solutions that have important physical meanings. That is, the coarse grid parameters are the

average pressure in the corresponding matrix or fracture in a coarse block. Usually, F is difficult

to compute and it is conditioned to data. The idea of this work is to use the coarse grid information

and available real data in combination with deep learning techniques to overcome the computation

difficulty of F .
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It is clear that the solution at the time instant n + 1 depends on the solution at the time instant

n as well as input parameters, such as permeability/geometry of the fractured media and source

terms. Here, we would like to learn the relationship of the solutions between two consecutive time

instants using a multi-layer network. If we simply take only computational data in the training

process, the neural network will provide a forward map to approximate our reduced-order models.

To be specific, let m be the number of samples in the training set. Suppose for a given set of

various input parameters, we use NLMC method to solve the problem and obtain the coarse grid

solutions

{u1
1, · · · , un+1

1 ,

u1
2, · · · , un+1

2 ,

· · · , · · · ,

u1
m, · · · , un+1

m }

at all time steps for these m samples. Our goal is to use deep learning to learn fluid dynamics from

the coarse grid solutions and find a network N (·) to describe the push-forward map between un

and un+1 for any training sample such that:

un+1 ∼ N (un, In), (5.9)

where In is some input parameter which can also change with respect to time, andN (·) is a multi-

layer network to be trained.

Remark: The proposed framework also considers nonlinear elliptic PDEs, where the map

N (·) corresponds to the linearized discrete system.

In deep network, we call un and In the inputs, and un+1 the output. One can take the coarse

solutions at time step 1 (initial time instant) to time step n as the inputs, and solutions at time 2 to

n+ 1 (final time instant) as corresponding outputs in the training process. In this case, a universal

neural netN (·) can be obtained. The solution at time 1 can be forwarded all the way to time n+ 1
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by repeatedly applying the universal network n times, that is,

un+1 ∼ N (N · · ·N (u1, I1) · · · , In−1), In). (5.10)

Then, in the future testing/predicting procedure, given a new coarse scale solution at initial time

u1
new, we can also easily obtain the solution at final time step by the deep neural network

un+1
new ∼ N (N · · ·N (u1

new, I
1) · · · , In−1), In). (5.11)

One can also train independent forward maps for any two consecutive time instants as needed.

That is, we will have uj+1 ∼ Nj(uj, Ij), for j = 1, · · · , n. In this case, to predict the final time

solution un+1
new given the initial time solution u1

new, we use n different networks N1(·), · · · ,Nn(·)

un+1
new ∼ Nn(Nn−1 · · · N1(u1

new, I
1) · · · , In−1), In).

Besides the previous time step solutions, the other input parameters In such as permeability or

source terms can be different when entering the network at different time steps.

As mentioned previously, we can also take the input in the sense of “region of influence”.

It is important to use reduced-order model, since it will identify the regions of influence and an

appropriate number of variables. In NLMC approach, we construct a non-local multi-continuum

transmissibility matrix, which provides us information about the connections between coarse pa-

rameters. It has been shown in [37] that, due to the exponential decay of the global basis function

away from the target coarse region, one can use the constructed local basis functions to solve the

problem. These basis functions are only supported in a small oversampling local region and can

still provide us with a good accuracy in solutions compared with those using global basis functions.

Moreover, the transmissibility matrix formed by these local basis functions also indicates local

connections (in a slightly larger oversampling region) between a target coarse degree of freedom

(dofs) with others. Taking advantage of the underlying NLMC model, we can simplify the problem
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when designing neural networks. Typically, for specific coarse degrees of freedom (corresponding

to a coarse block matrix or a fracture in the coarse block) of the solution at time instant n + 1,

we can only activate the connections between this coarse degree of freedom and the coarse scale

degrees of freedom in some oversampling neighborhood at time instant n. The advantage of defin-

ing regions of the influence is to reduce the complexity of the deep network. An illustration of the

comparison between deep neural nets with full connections and a network with local connections

indicated by region of influence is shown in Figure 5.1. In Figure 5.1 (a), we illustrate the deep

network using full connections, where the input layer and the first hidden layer of the network are

fully connected. This means, for example, the matrix continua parameter in any coarse block Ki is

always connected with all the dofs in the matrix continua (blue shaded coarse blocks/neurons) and

all the dofs on the fracture continua (purple shaded coarse blocks/neurons). On the other hand, in

Figure 5.1 (b), the network applies some local connections in the first layer. For the coarse block

Ki, it only connects with a few matrix continua dofs (pink shaded areas/neurons) and a limited

number of fracture continua dofs (yellow shaded areas/neurons).

Besides all the ideas stated above, in this work, we also aim to incorporate available observed

data in the neural net, which will modify the reduced order model and improve the performance

of the model such that the new model will take into account real data effects. First, we introduce

some notations. We denote the simulation data by

{u1
s, · · · , un+1

s }

and denote the “observation” data by

{u1
o, · · · , un+1

o }

at all time steps for these m samples. To get the observed data, we can (1) perturb the simulation

data, (2) perturb the permeability or geometry of the fractured media, run a new simulation and use

the results as observed data, (3) use available experimental data. We want to investigate the effects
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(a) Deep network using full connections

(b) Deep network using local connections indicated by the region of influence.

Figure 5.1: Comparison of deep nets with full connections and neural net with local connections
indicated by "region of influence".
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of including observation data in the output of the deep neural nets.

As a comparison, we will consider three networks:

• Network A: No(·) uses all observation data as outputs,

un+1
o ∼ No(uno , In). (5.12)

• Network B: Nm(·) uses a mixture of observation data and simulation data as output,

un+1
mixed ∼ Nm(unmixed, I

n). (5.13)

• Network C: Ns(·) uses all simulation data (no observation data) as output,

un+1
s ∼ Ns(uns , In). (5.14)

where umixed is a mixture of simulation data and observed data.

In Network A, we assume the observation data is sufficient, and consider the observation data

at time n+ 1 as a function of the observation data at time n. In this case, the map fits the data well

but will ignore the simulation model if the data are obtained without using underlying simulation

model in any sense. This is usually not the case in reality, since the observation data are expensive

to get and deep learning requires a large amount of data to make the training effective. In Network

C, we simply take all data from simulation in the training process. One will get a network describ-

ing the simulation model (in our example, the NLMC model) as best as it can but ignoring the

observational data effects. This network can serve as an emulator (simplified forward map, which

avoids deriving/solving coarse-grid models) to do a fast simulation. We will utilize Network A

and C results as references and investigate more about Network B. Network B is the one where we

take a combination of computational data and observational data to train. It will not only take into

account the underlying physics but also use the real data to modify the model, thus resulting in a
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data-driven approach.

We expect that the proposed algorithm to provide a new upscaled model that can honor the data

while it follows our general multiscale concepts.

5.2.1 Network Structures

In our example, without loss of generality, we suppose that there are uncertainties in the in-

jection rates g, i.e., the value or the position of the sources can vary among samples. Suppose we

have a set of different realizations of the source {g1, g2, · · · , gm}, where m is a sufficiently large

number, we need to run simulations based on NLMC model and take the solutions as data for deep

learning. To obtain the observation data, we will solve the problem with the same set of source

realization using the fine scale model.

As discussed in the previous section, we consider three different networks, namely No(·),

Nm(·) and Ns(·). For each of these networks, we take the vector x = (unα, g
n) (α = o,m, s)

constituted by the coarse scale solution vector and the source term vector at a particular time step

as the input. As discussed before, we can take the input coarse scale parameters in the whole do-

main Ω or in the region of influence K+. Based on the availability of the observational data in the

example pairs, we will define an appropriate network among (5.12), (5.13) and (5.14) accordingly.

The output y = un+1
α is taken to be a coarse scale solution in the next time step, where α = o,m, s

corresponds to three networks. Assume for a large set of samples of the source terms, there exist

both corresponding computational data us and observation data uo. We will use these data to train

deep neural networks N (·), such that they can approximate the function F (·) in (5.1) well, with

respect to the loss functions. Then for some new source term gm+1, given the coarse scale solution

at time instant n, we expect the networks output N (unα, g
n
m+1; θ∗) is close to the output data un+1

α .

Here, we briefly summarize the architecture of the network Nα, where α = o,m, s for three

networks we defined in (5.12), (5.13) and (5.14), respectively.

• Input: x = (uns , g
n) is the vector containing the coarse scale solution vector and the source

term at a particular time step tn.

67



• Output: y = un+1
α is the coarse scale solution at the next time step.

• Sample pairs: N = mn example pairs of (xj, yj) are collected, where m is the number of

samples of flow dynamics and n is the number of time steps.

• Loss function: The typical cost function for regression problems is the mean squared error

function:
1

N

N∑
j=1

‖yj−Nα(xj; θ)‖2
2. In our numerical examples, our output is the coarse grid

solution vector, so we would like to consider the relative L2 error as the loss function, i.e.
1

N

N∑
j=1

||yj −Nα(xj; θ)||L2

||yj||L2

.

• Weighted loss function: In building a network in Nm(·) by using a mixture of N1 pairs of

observation data {(xj, yj)}N1
j=1 and N2 pairs of computational data {(xj, yj)}Nj=N1+1, where

N1+N2 = N , we may consider using weighted loss function, i.e.,w1

N1∑
j=1

||yj −Nα(xj; θ)||L2

||yj||L2

+

w2

N∑
j=N1+1

||yj −Nα(xj; θ)||L2

||yj||L2

, where w1 > w2 are user-defined weights.

• Activation function: The popular ReLU function (the rectified linear unit activation function)

is a common choice for activation function in training deep neural network architectures

[58]. In our numerical examples, we use ReLU activation in the hidden layers and use a

linear activation in the output layer.

• DNN structure: The number of layers and the number of neurons in each layer are specified

in the following numerical examples. For the connection between the input neurons and first

layer neurons, we will use dense connections or our self-designed local connections, and

compare their performance in the numerical examples.

• Training Optimizer: We use AdaMax [59], a stochastic gradient descent (SGD) type algo-

rithm well-suited for high-dimensional parameter space, in minimizing the loss function.

5.3 Numerical Results

In this section, we present some representative numerical results. We consider the fractured

media as shown in the Figure 5.2, where the red lines denotes the fractures. The permeability of the
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matrix is κm = 1, and the permeability of the fractures are κf = 103. We assume that the observed

data samples are obtained from the fine scale model solutions for different source terms. As for

the corresponding computational data, we compute the NLMC solutions on a 20 by 20 coarse

grid as shown in Figure 5.2, using the same set of source terms and permeability coefficients. As

discussed in [37], the local basis are constructed in the oversampled regions of each coarse block.

In our numerical examples, we choose two layers of oversampling. With this small oversampling

size, the NLMC simulation is fast, but as a trade-off, it sacrifices a little accuracy. Generally, in

practice, the relative upscaling errors for the NLMC solution and averaged fine scale solution are

5% − 15%. This guarantees the NLMC solutions acceptable errors and room for improvement.

We will train the networks Ns(·), No(·) and Nm(·) using the computational samples (from NLMC

model), observation samples (from fine scale model), and the mixture of them, respectively.

All the network training are performed using the Python deep learning API Keras [60] with

TensorFlow framework.

Figure 5.2: Geometry (permeability) for obtaining both simulation and observation data.

5.3.1 Example 1

In our first example, we use a time independent, constant mobility coefficient λ = 1. For the

source term, we use a piece-wise constant function. Namely, in one of the coarse blocks, the value
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of g is a positive number c. In another coarse block, the value of g is−c, and g = 0 elsewhere. This

represents a two-well source; one of the blocks is the injection well, the other is the production

well. Randomly selecting the location of the two wells, with the constraint that the two wells

are well separated in the domain, we get source samples g1, · · · , g1000. In this example, we set the

values of the source to be time independent. The equation (5.3) is solved using both the fine scale

and NLMC model, where we set T = 0.1, and divide T into 10 time steps.

For the 1000 source terms, we use the solutions correspond to the last 100 for validation, i.e,

they will not be seen in the training process. We will use 300, 500 and 900 out of the first 900

solutions to train the network separately.

As discussed before in (5.9), we would like to find a universal deep network to describe the

map between two consecutive time steps. We use the solution at time step n as input, and solution

at time step n + 1 as corresponding output, where n = 1, 2, 3, 4.....9. That is, each sample pair is

in the form of (un, un+1), n = 1, 2, ...9. For example, the solutions corresponding to 300 different

training source terms result in 300 ∗ 9 = 2700 samples, and the solutions corresponding to 100

testing source terms result in 100 ∗ 9 = 900 testing samples, where the multiplier 9 stands for 9

time steps (time steps 1 to 9, or time 2 to 10).

We will test the performance of the three networks (5.12), (5.13), and (5.14). For Ns(·), we

take all training samples to be the NLMC solutions. In this case, there is no observation data

in training, and the network will only approximate the NLMC model. For No(·), we use all the

fine scale solutions as training samples, thus the network aims to approximate the fine grid model

and will be used as reference. As for Nm(·), we take half training samples from us and the other

half from uo. Specifically, we assume the observation data are given for some well configurations

while for other configurations observation data can only be replaced by simulation data due to their

rarity. This is the case when the network is trained partially with true data. We expect the trained

networkNm(·) to produce an improved model compared withNs()̇. In the training process, we also

consider both the full connections and local connections indicated by the region of influence input

(see Figure 5.1), where we use multiscale concepts to reduce the region of influence (connections)
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between the nodes.

5.3.1.1 Full connection

The three networks are firstly constructed adopting the structure of DNN with densely con-

nected layers. The dimension of the input is 445, which is the degree of freedom in the NLMC

model associated to the 20 by 20 coarse grid and the fracture configuration as shown in Figure 5.2.

For this example, since the mobility coefficient is a constant which makes the map linear, we only

take 1 layer with 445 neurons. The activation function is chosen to be linear at the output layer.

The training was performed over 50 epochs, and the batch size is chosen to be 100. We use the

Adam algorithm as the optimizer, and the learning rate is 0.002. The number of trainable parame-

ters in this network is 198, 470. For the loss function, we use the relative L2 error between the true

data (samples computed from fine grid model) and predicted data (obtained from the output of the

neural networks) , i.e.
||un+1

o −Nα(uns , I
n+1)||L2

||un+1
o ||L2

, α = o, s,m.

The training and validation losses for No(·) are plotted in the left of Figure 5.3, and they have

similar behavior for the other two networks. We remark that, in order to compare the performance

for different sizes of the training data set (namely 2700, 4500, 8100), in the figure, the training

losses (vs epochs) are depicted at the end of learning all samples in the whole data set instead of

after every batch. We observe that, for each data set, the validation loss is very close to the training

loss, which indicates that the network performs and generalizes well.

Next, in the testing procedure, we input an identical input data set to three networks defined

in (5.12), (5.13), (5.14), and compare the predicted outputs from the three networks with the cor-

responding observation data. The errors are computed in relative L2 norm. The results are shown

in Table 5.1. We can see that, by mixing the computational and observation data (the second col-

umn in the table), we can get a better model, since the mean error of ‖Nm(uns , I
n)− un+1

o ‖ among

testing samples is closer to that of ‖No(uns , In)− un+1
o ‖.
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Relative Errors (%)
Number of Training Samples

∥∥ujpred,o − ujo∥∥ ∥∥ujpred,m − ujo∥∥ ∥∥ujpred,s − ujo∥∥
2700 6.5 6.7 7.1
4500 4.8 5.1 5.7
8100 3.7 4.0 4.7

Table 5.1: Example 1, fully connected network. Number of network parameters: 198, 470. Mean
error between prediction and true solutions for two consecutive time steps, 900 samples are tested
for three different networks.

5.3.1.2 Sparse connection: region of influence

Though we have obtained promising results using fully connected networks, the number of

trainable parameters is quite large. In this section, we would like to design a locally-connected

layer in the neural network by taking advantage of the region of influence in the underlying model.

This can help to reduce the trainable parameters in the network.

The idea is to reduce the full connections among the neurons between two layers. Thanks to

the NLMC model, we derive the transmissibility matrix T that describes the nonlocal connections

of coarse degrees of freedom, not only spatially but also across continua. This provides us a way

to define the connections between the input neurons to the first layer. That is, we design a layer

with the number of trainable weight parameters equal to the nonzero entries in the matrix T . This

can reduce the number of parameters due to the sparsity of T . The defined sparse weight will

only activate the connections between the input and nodes in the next layer as indicated in the

transmissibility matrix. The following hidden layers will still be fully connected if they exist.

Remark: We remark that a direct application of Convolutional Neural Network (CNN) is not

trivial for our problem. Since the samples we used in the network training are the coarse scale

solutions for the multi-continuum model, which contains the degrees of freedom from both matrix

and fracture continuum. In our example, the degrees of freedom for the matrix continuum lies in the

20 by 20 coarse grid (which is 400), but the additional fracture degrees of freedom only lies in the

coarse blocks which contain the fractures (which is 45 in the geometry as shown in Figure 5.2). The

multi-continuum solutions thus can not be directly represented by a square image which is needed
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for CNN. Furthermore, according to the NLMC model, the transmissibility connections exist not

only among coarse blocks but also among different continua, and the effects of the fracture continua

should not be ignored. We then try to extend the fracture continua solution to the 20 by 20 grid

using zero padding, and input the matrix and fracture continua solutions as two-channel images to

train CNN network. But the zero padding procedure increases the number of training parameters

(instead of decreasing as expected when using CNN), since we enlarge the input dimension from

445 to 800. And the training accuracy is also affected in a bad sense because the network has the

additional burden to learn the zeros in the second channel. Thus, a self defined locally connected

layer is needed.

We would like to compare the predicted results from the neural networks trained with different

types of coarse parameters. Specifically, two types of networks are trained with the coarse param-

eters in the whole domain and parameters only in the region of influence, respectively. Comparing

Table 5.1 and Table 5.2, we can see that, using the region of influence idea can result in similar re-

sults for all three networks No(·), Nm(·) and Ns(·) when we use similar network parameters such

as the number of layers, number of neurons (445) in each layer, training epochs (50), learning rate

(0.002), loss functions (relative l2 error) and activation functions (linear). The training/validation

losses are plotted in the right of Figure 5.3 for Locally Connected Networks (LCN). We observe

that the losses of LCN decay faster compared with those in DNN. As for the number of trainable

parameters, it is 198, 470 for the fully connected network, but is only 28, 107 for the sparsely con-

nected network. This suggests that, the data in the region of influence of the underlying model is

of dominant importance in deciding the outputs and thus enables reduction in training effort.

5.3.2 Example 2

In our second example, we use heterogeneous time-dependent mobility and source term. Here,

we fix the location of the source term and vary the value of the source. The distributions of the

mobility in some time steps are shown in Figure 5.4, which is from two-phase flow mobility. The

source term in the right hand side is defined as follows. At 0 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.1, we have

g = 10[(sin(αx))2 + (sin(βy))2] denotes an injection well, and at 0.9 ≤ x ≤ 1.0, 0.9 ≤ y ≤ 1.0
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Relative Errors (%)
Number of Training Samples

∥∥ujpred,o − ujo∥∥ ∥∥ujpred,m − ujo∥∥ ∥∥ujpred,s − ujo∥∥
2700 6.2 6.4 6.7
4500 5.1 5.3 5.8
8100 4.3 4.6 5.1

Table 5.2: Example 1, locally connected network. Number of network parameters: 28, 107. Mean
errors between prediction and true solutions for two consecutive time steps, 900 samples are tested
for three different networks.
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Figure 5.3: DNN (left) and Locally-connected Network (right) training/validation losses over
epochs for No(·), with different number of samples.

we have g = −10[(sin(αx))2 + (sin(βy))2] denotes an production well, where the parameters α

and β are randomly chosen in each time step, and are different among samples (which are obtained

using these different source terms g). So, for each sample, we have different values of the source

term, and, in each sample, the source term is time dependent.

For the computational data us, we use the solution obtained from NLMC model for n random

source terms. We note that, n = 200, 600 and 1000 in this example, and we take solutions asso-

ciated with 100, 500, 900 sources out of them for training correspondingly, and the other 100 for

validation/testing.
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(a) Mobility at time t = 0.01 (b) Mobility at time t = 0.05 (c) Mobility at time t = 0.1

Figure 5.4: Illustration of mobility λ(x, t).

For the observation data uo, we first solve the system from the fine grid model using the same

set of source terms, and use the coarse degrees of freedom fine solution average as the observation

population. As for the mixture um of computational and observation data, we take the samples

relating to half of the sources from us, and the samples relating to another half of the sources from

uo. In practice, to explain the mixture data um, we can assume we have the observation data in

the whole domain given some well configurations, but for some other well configurations, we only

have simulation results.

5.3.2.1 Full connection

We first build the three deep neural networks with densely connected layers. Due to the non-

liearity of the underlying problem in this example, we will take 4 hidden layers with ReLU acti-

vation function, and use linear activation at the output layer. The input vector has dimension 445

as before, which is the degree of freedom in the NLMC model. The first hidden layer also has 445

neurons, and they are fully connected with the input. We take 50 neurons in the other three hidden

layers. And the output has the dimension 445.

We solve the equation (5.3) with T = 0.1. Similarly, we use the solutions at time step 1 to time

step 9 as input data, and solutions at time step 2 to time step 10 as output data. In this example, we

have 900, 4500, 8100 training sample pairs, respectively. The validation set then has 900 samples
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in each case.

In the training process, we take the batch size to be 100. For the loss function, we use the

relative L2 error between the samples (computed from fine grid model/ NLMC model) and the pre-

dicted data (the output of the neural networks), same as in Example 1. We remark that (un, In+1)

is taken to be (un,4t · gn+1) in this examples, where g is the time dependent source term. The

training and validation loss for the networkNo(·) are shown in Figure 5.5, the loss history forNs(·)

and Nm(·) are similar.

0 50 100 150 200 250

Epochs

0

20

40

60

80

100

120

T
ra

in
in

g
 l
o
s
s
(%

)

Training loss: 100 source term samples

Training loss: 500 source term samples

Training loss: 900 source term samples

(a) Training loss

0 20 40 60 80 100 120 140 160 180 200

Epochs

10

20

30

40

50

60

70

80

90

100

V
a
lid

a
ti
o

n
 l
o
s
s
(%

)

Validation loss: 100 source term samples

Validation loss: 500 source term samples

Validation loss: 900 source term samples

(b) Validation loss

Figure 5.5: DNN training/validation loss vs. epochs for No(·), with different number of samples.

As we discussed before, we can use (5.10) or (5.11) to forward the solution from the initial

time step to the final time step using the “universal” deep neural nets. Assume we have 10 time

steps in total, for a given solution u1 at the initial time, we will apply Nα(·) for α = o,m, s for 9

times to obtain the final time predictions. That is,

u10
pred,α = Nα ◦ Nα ◦ · · · ◦ Nα︸ ︷︷ ︸

9 times

(u1)

for α = o,m, s.
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Finally, we compare the final time predictions u10
pred,α (for α = o,m, s) with the observation

data u10
o at the final time step given u1

s. The results are shown in Table 5.3. There are 100 samples

to test in total. As we increase the number of training samples, it is clear that
∥∥u10

pred,o − u10
o

∥∥
is decreasing. For

∥∥u10
pred,m − u10

o

∥∥, with the increasing size of the training sample, it will give

better and better prediction results. When we take 900 samples, the mean of
∥∥u10

pred,m − u10
o

∥∥ over

testing samples is 16.8%, which is very close to the reference case where
∥∥u10

pred,o − u10
o

∥∥ has a

mean error of 13.5%. This indicates that using a mixture of computational data and observation

data can enhance the performance of NLMC model induced by deep learning, as we compared the

predictions to the observation data (which is the fine grid solution). We also show the comparison

for one of the samples in Figure 5.6, where the solution produced by the network Nm(·) has almost

the same accuracy as the solution produced byNo(·), and is much more accurate than that ofNs(·).

Relative Errors (%)
Number of Training Samples

∥∥u10
pred,o − u10

o

∥∥ ∥∥u10
pred,m − u10

o

∥∥ ∥∥u10
pred,s − u10

o

∥∥
900 20.2 30.6 31.1

4500 14.6 17.8 37.1
8100 13.5 16.8 45.9

Table 5.3: Example 2, fully connected network. Mean error between final time step prediction and
true solutions over 100 testing samples for three different networks.

5.3.2.2 Sparse connection: Region of influence

In this section, we examine the region of influence input for this example. Different from

Example 1, the DNN network here has more layers. We will just replace the first fully connected

layer with a locally connected layer. In this section, we only show the results for the case that the

training samples are generated corresponding to 500 different source terms. The other two sample

sets perform similarly. The training and validation loss over some epochs are shown in Figure 5.7.

Compared the fully connected network and locally connected network, we can see that the training
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Figure 5.6: Example 2, fully connected network. DNN predicted solutions’ comparison for one of
the samples.

78



loss decays faster for locally connected network, and the validation loss have very similar behavior

for both networks. We remark that, the number of trainable parameters in fully connected network

is 318, 315, and that number in locally connected network is 154, 422, where we only replace the

first layer by a self defined locally connected layer. All the other hyperparameters in both networks

are chosen to be the same. The mean errors for the same testing samples as in the previous section

are presented in Table 5.4. Compared with Table 5.3, we observe slightly better results are obtained

by locally connected network.
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Figure 5.7: Comparison of fully connected network and locally connected network. Train-
ing/validation loss vs. epochs for No(·), number of source samples is 500.

Relative Errors (%)
Number of Training Samples

∥∥u10
pred,o − u10

o

∥∥ ∥∥u10
pred,m − u10

o

∥∥ ∥∥u10
pred,s − u10

o

∥∥
4500 13.7 17.9 33.5

Table 5.4: Example 2, locally connected network. Mean error between final time step prediction
and true solutions over 100 testing samples for three different networks.
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5.4 Conclusion

In this chapter, we use deep learning techniques to derive and modify upscaled models for

nonlinear PDEs. In particular, we combine multiscale model reduction (NLMC) with deep learning

techniques in obtaining better approximations of the underlying models, which takes into account

observed data. We show that the regions of influence derived from upscaling concepts can lighten

the neural network. Because of the coarseness of the upscaled model, the prediction is more robust

and computationally inexpensive. On the other hand, incorporating observation data in the training

can improve the coarse grid model. Numerical examples shows that DMML can obtain accurate

approximations, which also honors the observed data.

In conclusion, we believe DMML can be used as a new coarse-grid model for complex non-

linear problems with observed data, where upscaling of the computational model is expensive and

may not accurately represent the true observed model.
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6. REDUCED-ORDER DEEP LEARNING FOR FLOW DYNAMICS

6.1 Introduction

In this chapter, we investigate applying neural networks to multiscale simulations and discuss

a design of a novel deep neural network model reduction approach for multiscale problems.

The main contributions of the chapter are the following: (1) We study how neural network

captures the important multiscale modes related to the features of the solution. (2) We relate `1

minimization to model reduction and derive a more robust network for our problems using a soft

thresholding. (3) We suggest an efficient strategy for some class of nonlinear problems that arise

in porous media applications. (4) We use multi-layer networks for combined time stepping and

reduced-order modeling, where at each time step the appropriate important modes are selected.

We remark that we can use observed data to learn multiscale model as in [61].

The chapter is organized as follows. Section 6.2 will be a preliminary introduction of the mul-

tiscale problem. Section 6.3 mainly focuses on discussions on the reduced-order neural network.

The structure of the neural network is presented. Section 6.4 later discusses the proposed neural

network from different aspects and proposes a way to conduct model reduction with the neural

network coefficient. We also present the relation between the soft thresholding neural network and

a `1 minimization problem in this section. Section 6.5 provides various numerical examples to

verify the predictive power of our proposed neural network and provide support to the claims in

Section 6.4. Lastly, the chapter is concluded with Section 6.6.

6.2 Preliminaries

We consider a nonlinear flow equation

∂u

∂t
− div(κ(t, x, u)∇u) = g, (6.1)
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in the domain (0, T ) × Ω. Here, Ω is the spatial domain, κ is the permeability coefficient which

can have a multiscale dependence with respect to space and time, and g is a source function. The

weak formulation of (6.1) involves finding u ∈ H1(Ω) such that

(
∂u

∂t
, v

)
+ (κ(t, x, u)∇u,∇v) = (g, v), ∀v ∈ H1(Ω). (6.2)

If we numerically solve this problem in a m-dimensional approximation space Vh ⊂ H1(Ω), and

use an Euler temporal discretization, the numerical solution can be written as

uh(tn, x) = unh =
m∑
j=1

αnj ψj(x), (6.3)

where {ψj}mj=1 is a set of basis for Vh. Moreover, the problem (6.2) can then be reformulated as:

find uh ∈ Vh such that

(
un+1
h − unh

∆t
, vh

)
+ (κ(tn+1, x, u

ν
h)∇un+1

h ,∇vh) = (fn+1, vh), ∀vh ∈ Vh, (6.4)

where ν = n or n+ 1 corresponds to linear and nonlinear system respectively. Here, (·, ·) denotes

the L2 inner product.

For problems with multiple scales, a multiscale basis function for each coarse node is com-

puted following the idea of upscaling, i.e., the problem can be solved with a local model reduction.

Instead of using the classic piece-wise polynomials as the basis functions, we construct the local

multiscale basis following NLMC [61] and use the span of all such basis functions as the approxi-

mation space Vh. More specifically, for a fractured media (Figure 2.4), the basis functions of (6.1)

can be constructed following NLMC as discussed in Section 2.2.2.

Thus, the solution coefficient Un = (αn1 , α
n
2 , . . . , α

n
m)T satisfies the recurrence relation

Un+1 = (M + ∆tAν)−1(MUn + ∆tF n), (6.5)
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where M and Aν are the mass matrix and the stiffness matrix with respect to the NLMC basis

{ψj}mj=1, ν can be n or n+ 1 depending on the temporal scheme that we use. We have

[M ]ij =

∫
Ω

ψi(x)ψj(x) dx,

[Aν ]ij =

∫
Ω

κ(tn, x, u
ν
h)∇ψi(x) · ∇ψj(x) dx.

We claim that a global model reduction can be conducted to the problem described above, as

solution unh(x) in many cases can be sparse in Vh even if Vh is already a reduced-order space.

For instance, uh(tn, x) is strongly bonded to initial condition uh(t0, x). It can be foreseen that if

initial conditions are chosen from a small subspace of Vh(Ω), unh(x) = uh(tn, x) is also likely to

accumulate somewhere in Vh. In other words, the distribution of coefficients Un can hardly expand

over the entire Rm space but only lies in a far smaller subspace.

Other physical restrictions to the problem could also narrow down the space of solution. This

indicates that uh(tn, x) can be closely approximated with less degrees of freedom compared to

dim(Vh). Section 6.3 and Section 6.4 will be discussing how to identify dominant modes in the

space of Un using a neural network.

6.3 Reduced-order Neural Network

In this section, we present the construction of the reduced-order neural network. We propose a

reduced-order neural network that can model a time series. Moreover, if there exists a basis that can

represent the solutions for each time step with sparse coefficients, then the proposed neural network

can identify such basis from the training samples. Specifically, Subsection 6.3.1 will discuss the

macroscopic structure of the proposed neural network while Subsection 6.3.2 will discuss two

designs of the sub-network of the network with more details. Subsection 6.3.3 later assembles the

full multi-layer neural network.

6.3.1 Reduced-order Neural Network Structure

We propose a reduced-order neural network as shown in Figure 6.1a. Here, the full network

is constituted by several sub-networks. Each sub-network N n(·) is expected to model a one-step
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temporal evolution from xn to xn+1 in a time series ~x = [x0,x1, · · · ,xn].

Sub-networks should have a general structure as shown in Figure 6.1b. The specific design

will vary depending on the problem we are modeling (see discussions in Subsection 6.3.2). The

sub-network is built in a way that the input xn will first be fed into a multi-layer fully-connected

network named as “operation layer”. This layer is intended for the neural network to capture the

map between two solutions at consecutive time steps. The output of the operation layer is then

fed into a soft thresholding function to impose sparsity to the solution coefficient. Lastly, the data

will be processed with a “basis transform layer” in which a new basis set will be learned. With the

new basis set, one can represent the solution with sparse coefficients assuming such representation

exists.

(a) Multi-layer reduced-order neural network NN (·)

(b) Sub-network N n(·)

Figure 6.1: Reduced-order neural network structure.

6.3.2 Sub-network

In this subsection, we present two designs of the sub-network N n(·). One is for modeling

linear dynamics while the other is designed for nonlinear dynamics. One can choose from these
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two options when assembling the full network depending on the dynamics of interest. Both sub-

network designs are intended to learn a new set of basis and then impose the sparsity to the solution

coefficient in the new system while learning dynamics.

6.3.2.1 Sub-network for linear process

We first present the sub-network for modeling linear dynamics. It can be used to model the

one-step flow described in (6.1), where we define the sub-network for the n-th time step as

N n(xn; θn) := W 2
nSγ(W

1
n · xn + bn). (6.6)

Here, for the sub-network parameter θn = (W 1
n ,W

2
n , bn), W 1

n and bn are in the operation layer and

W 2
n works as the basis transformation layer. Sγ is the soft thresholding function defined point-wise

as Sγ : R→ R

Sγ(x) = sign(x)(|x| − γ)+


x− γ if x ≥ γ,

0 if − γ < x < γ,

x+ γ if x ≤ −γ.

(6.7)

We further require W 2
n to be an orthogonal matrix, i.e. (W 2

n)T · (W 2
n) = I . To this end, we train

the network (6.6) with respect to the cost function

Cn(θn) = ‖xn+1 −N n(xn; θn)‖2
2 + ηn‖(W 2

n)T · (W 2
n)− I‖1 (6.8)

with a penalty on the orthogonality constraint of W 2
n . η is a hyper coefficient for adjusting the

weight of the `1 regularization term. Here, xn is the input of N n(·; θn), and Cn(·) measures the

mismatch between true solution xn+1 and the prediction N n(xn) while forcing W 2
n to be orthog-

onal. We remark that this cost functions is only a part of the full cost function that we will be

discussing in Subsection 6.3.3.

With such a design, the trained neural sub-network N n(·; θ∗n) will be able to model the input-

output map specified by the training data while producing a matrix W 2
n whose columns forms an
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orthogonal basis in Rm.

6.3.2.2 Sub-network for nonlinear process

Similar to the linear case, a sub-network for nonlinear process can also be designed. When the

output xn+1 is non-linearly dependent on input xn, we make use of a dn-layer feed-forward neural

network Ñ (·) to approximate the input-output map. Ñ (·) will work as the operation layer of the

sub-network. The output of Ñ (·) is then processed with soft-thresholding and a basis transforma-

tion layer W 2
n . We define the sub-network to be

N n(xn; θn) := W 2
nSγ(Ñ (xn; θn)),

Ñ (xn; θn) := W 1,dn
n (· · · (σ(W 1,3

n σ(W 1,2
n σ(W 1,1

n xn + b1
n) + b2

n) · · ·+ bdnn ),

(6.9)

where θn =
(
W 1,1
n ,W 1,2

n , . . . ,W 1,dn
n ,W 2

n , b
1
n, b

2
n, . . . , b

dn
n

)
is the sub-network parameter, and σ(·)

is a nonlinear activation function. The cost function for training the sub-network parameter is again

defined in (6.8). We also remark that if dn = 1 and σ = 1 is the point-wise identify function, then

the network structure (6.9) is reduced to (6.6).

Another approach to reduce the difficulty of reproducing a nonlinear process is clustering.

Instead of using a single network to approximate complicated nonlinear relations, we use different

networks for different data clusters as the clusters of the solutions can be predicted in many cases.

Thus, separate the training samples by cluster can be an easy and effective way to accurately

recover complicated process. Discussions on clustering and numerical examples are presented in

Section 6.5.5.

6.3.3 Multi-layer Reduced Order Network

Now we construct the full neural networkNN (·; θ) by stacking up the sub-networkN n(·; θn).

More precisely, NN (·; θ) : Rm → Rm is defined as:

NN (x0; θ) := N n(· · · N 1(N 0(x0; θ0); θ1) · · · ; θn), (6.10)
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where N n(·; θn) is defined as in (6.6) or (6.9) depending the linearity of the process, and θ =

(θ0, θ1, . . . , θn) is the full network parameter. We use such NN (·; θ) to approximate time series

~x = [x0,x1, · · · ,xn+1]. Denote the output of (t + 1)-fold composition of the sub-network N t(·)

as

ot+1 := N t(· · · N 1(N 0(x0; θ0); θ1) · · · ; θt). (6.11)

Then ot+1 works as a prediction of the solution at time t+ 1. The full cost function is then defined

as

C(θ) =
n∑
t=0

‖ot+1 − xt+1‖2
2 + ηt‖(W 2

t )T · (W 2
t )− I‖1, (6.12)

where ~x is the true time sequence, and ηt is a hyper-parameter stands for the weight of the regular-

izer while θ represents all tuneable parameters of NN (·). Each layer (sub-network) corresponds

to a one-step time evolution of the dynamics.

Suppose we have L training samples,

~xi = [(x0
i ), (x

1
i ,x

2
i , · · · ,xn+1

i )], 1 ≤ i ≤ L.

The optimal parameter θ∗ of NN (·) is then determined by optimizing the cost function C(θ) sub-

ject to this training set {~xi}Li=1 as discussed Section 2.3. Once θ∗ is decided, predictions can be

made for testing samples [x1
i , · · · ,xn+1

i ] by NN (x0
i ), for i > L.

6.4 Discussions and Applications

In this section, we discuss some theoretical aspects of the proposed neural networks. Specifi-

cally, we use the proposed network to model fluid dynamics in heterogeneous media, as described

in (6.1). First, we relate the soft thresholding network with `1 optimization problem. Secondly,

we explore how learned coefficients of neural network are related to the map that is being approx-

imated. Thirdly, based on the understanding of the proposed neural network, we present a way to

utilize the trained network coefficients to construct a reduced-order model.
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Specifically, we consider a one-layer neural network for single-step linear dynamics

NN (x; θ) = N (x; θ) := W 2Sγ(W
1x + b), (6.13)

omitting the indices for time step n. We train the neural network NN (·; θ) with data pairs

{(Un
i , U

n+1
i )}Li=1, which are NLMC solution coefficients (see Section 2.2.2 for more details of

data generation) to (6.1) at tn and tn+1, respectively. More precisely, we consider the linear case

of (6.1), when κ(t, x) is independent of unh. In this case, the one step fluid dynamics (6.5) is indeed

a linear revolution such that An is only dependent on time. Further, we denote Ŵ and b̂ by

Ŵ := (M + ∆tAn)−1M,

b̂ := (M + ∆tAn)−1∆tF n.

(6.14)

Then

Un+1
i = ŴUn

i + b̂, 1 ≤ i ≤ L, (6.15)

for all training samples that we use in this section. We further define the linear map between Un
i

and Un+1
i as L̂(·) : Rm → Rm

L̂(x) := Ŵx + b̂. (6.16)

From now on, when there is no risk of confusion, we drop the optimal network parameter

θ∗ in the trained network NN (·). We expect NN (·) to learn the map L̂(·) from the data while

extracting a system W 2 in which the data Un+1
i can be represented sparsely.

6.4.1 Sparsity and `1 Minimization

To understand the trained neural network NN (·), we first assume the following.

Assumption 1. For a subspace S ⊂ Rm, there exist some orthogonal matrix Ŵ 2 ∈ Rm×m such

that (Ŵ 2)T L̂(x) can be approximated by a sparse vector in Rm for any x ∈ S. More precisely,

there exist an approximation error function ε(·) : N → R+, such that for any x ∈ S, there exist a
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corresponding s-sparse vector ys ∈ Rm satisfies

‖(Ŵ 2)T L̂(x)− ys‖2 ≤ ε(s). (6.17)

We then take {Un
i }Li=1 from S and defineUn+1,Ŵ 2

i := (Ŵ 2)TUn+1
i for all training pairs(Un

i , U
n+1
i )

of NN (·). By Assumption 1, there exist an s-sparse vector U s
i ∈ Rm such that

||Un+1,Ŵ 2

i − U s
i ||2 ≤ ε(s) (6.18)

for 1 ≤ i ≤ L.

Additionally, for any orthogonal matrix W 2 ∈ Rm×m, we define Un+1,W 2

i := (W 2)TUn+1
i

and denote it as [αn+1,W 2

i,1 , αn+1,W 2

i,2 , · · · , αn+1,W 2

i,m ]T . Recall (6.3), and the corresponding numerical

solution un+1
h,i at time step n+ 1 can be written as

un+1
h,i = ΨUn+1

i ,

letting Ψ = [ψ1, ψ2, · · · , ψm] be the multiscale basis functions, and Un+1
i be the corresponding

coefficient vector. By the orthogonality of W 2, un+1
h,i can be further written as

un+1
h,i = Ψ(W 2)Un+1,W 2

i = ΨW 2

Un+1,W 2

i , (6.19)

with ΨW 2 defined by

ΨW 2

:= ΨW 2. (6.20)

We further denote the columns of ΨW 2 as ψW 2

j ’s. Then {ψW 2

j }mj=1 is actually a new set of

multiscale basis functions such that un+1
h,i can be written as

un+1
h,i =

m∑
j=1

αn+1,W 2

i,j ψW
2

j . (6.21)
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If W 2 is taken to be Ŵ 2 as in Assumption 1, we will obtain

un+1
h,i =

m∑
j=1

αn+1,Ŵ 2

i,j ψŴ
2

j ,

where the coefficient Un+1,Ŵ 2

i = [αn+1,Ŵ 2

i,1 , αn+1,Ŵ 2

i,2 , · · · , αn+1,Ŵ 2

i,m ]T can be closely approximated

by a sparse vector U s
i .

We then claim that our proposed neural network NN (·) is able to approximate such Ŵ 2 and

a sparse approximation of the output from data. This is guaranteed by the following lemma from

[62]:

Lemma 6.4.1. We define N̂ (·),Rm → Rm as

N̂ (x) := Sγ(Wx + b).

The output of N̂ (x) is the solution to the `1-regularized problem

y∗ = argmin
y∈Rm

1

2
‖y − (Wx + b)‖2

2 + γ‖y‖1 (6.22)

by proximal gradient update.

Proof. It is straightforward to see that the directional derivative of the residual with respect to y is

given by y− (Wx+ b). On the other hand, the soft thresholding operator is the proximal operator

of the `1 norm, i.e.

Sγ(x) = proxγ‖·‖1(x) = argmin
y∈Rm

(
1

2
‖y − x‖2

2 + γ‖y‖1

)
.

With a zero initial guess, the 1-step proximal gradient update of (6.22) with a step size γ is therefore

y∗ = N̂ (x) = Sγ(Wx + b).
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Thus, for the one-step neural network NN (·) defined in (6.13), Lemma 6.4.1 implies that

NN (x) = argmin
y∈Rm

1

2
‖y −W 2W 1x +W 2b‖2

2 + γ‖(W 2)Ty‖1. (6.23)

That is to say, the output of the trained neural network NN (·) is actually the solution to a `1

optimization problem. We further define the linear operator L(·) : Rm → Rm from the coefficients

of NN (·) as

L(x) := W 2W 1x +W 2b. (6.24)

Equation (6.23) actually implies that

L(·) ≈ NN (·) (6.25)

as NN (x) minimizes ‖y −W 2W 1x + W 2b‖2
2. Moreover, the output of NN (·) is sparse in the

coordinate system W 2 as it also minimizes the ‖(W 2)Ty‖1 term.

Sγ is widely used in `1-type optimization for promoting sparsity and extracting important fea-

tures as discussed above. It is therefore also brought into neural network to extract sparsity from the

training data. For other network defined with activation functions such as ReLU, we also remark

there’s an correlation between Sγ and ReLU. Recall its definition in (6.7) :

Sγ(x) = sign(x)(|x| − γ)+


x− γ, if x ≥ γ,

0, if − γ < x < γ,

x+ γ, if x ≤ −γ.
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and that of ReLU : R→ R

ReLU(x) = max{x, 0} =


x, if x ≥ 0,

0, if x < 0.

We can explicitly represent the soft thresholding operator Sγ by the ReLU function as

Sγ(x) = ReLU(x− γ)− ReLU(−x− γ), ∀x ∈ R, (6.26)

or in an entry-wise sense, one can write

Sγ(x) = JmReLU(JTmx− γ12m), ∀x ∈ Rm, (6.27)

where Jm = [Im,−Im]. Activation functions Sγ(·) can thus be easily implemented with the help

of ReLU. Further, it also means that our proposed neural network is only a special class of neural

networks that are defined with ReLU.

6.4.2 Linear Operator L̂ ≈ NN

For neural network NN (·) as defined in (6.13)

NN (x) = W 2Sγ(W
1x + b),

we claim the following

Lemma 6.4.2. We assume Assumption 1 holds. Then, there exist a set of parameters (W 1,W 2, b) ∈

Rm×m × Rm×m × Rm such that

‖NN (x)− L̂(x)‖2 ≤ 2ε(s) + s
1
2γ, ∀x ∈ S. (6.28)

Proof. By Assumption 1, there exist some orthogonal matrix Ŵ 2 ∈ Rm×m such that for all x ∈ S,

92



we have

‖(Ŵ 2)T L̂(x)− ys‖2 ≤ ε(s), (6.29)

where ys is an s-sparse vector. Next, we consider W 1 = (Ŵ 2)T Ŵ , W 2 = Ŵ 2 and b = (Ŵ 2)T b̂.

We recall the definition of L̂(·)

L̂(x) := Ŵx + b̂.

The difference between NN (x) and L̂(x) can then be estimated by

‖NN (x)− L̂(x)‖2 = ‖Ŵ 2Sγ

(
(Ŵ 2)T Ŵx + (Ŵ 2)T b̂

)
− L̂(x)‖2

= ‖Ŵ 2
(
Sγ

(
(Ŵ 2)T Ŵx + (Ŵ 2)T b̂

)
− (Ŵ 2)T L̂(x)

)
‖2

= ‖Ŵ 2
(
Sγ

(
(Ŵ 2)T L̂(x)

)
− (Ŵ 2)T L̂(x)

)
‖2

= ‖Sγ
(

(Ŵ 2)T L̂(x)
)
− (Ŵ 2)T L̂(x)‖2.

Since |Sγ(z2)− Sγ(z1)| ≤ |z2 − z1|, ∀z1, z2 ∈ R, we have

‖Sγ
(

(Ŵ 2)T L̂(x)
)
− Sγ(ys)‖2 ≤ ‖(Ŵ 2)T L̂(x)− ys‖2 ≤ ε(s).

Thus, we obtain

‖Sγ
(

(Ŵ 2)T L̂(x)
)
− (Ŵ 2)T L̂(x)‖2

≤‖Sγ
(

(Ŵ 2)T L̂(x)
)
− Sγ(ys)‖2 + ‖Sγ(ys)− ys‖2 + ‖ys − (Ŵ 2)T L̂(x)‖2

≤2ε(s)+‖ys − Sγ(ys)‖.

Since |(Sγ(ys)− ys)i| ≤ γ, we have

‖Sγ(ys)− ys‖2
2 =

∑
(ys)i 6=0

|(Sγ(ys)− ys)i|2 ≤ sγ2,
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and therefore we have

‖NN (x)− L̂(x)‖2 ≤ 2ε(s) + s
1
2γ,

letting W 1 = (Ŵ 2)T Ŵ , W 2 = Ŵ 2 and b = (Ŵ 2)T b̂.

Since NN (·) is trained with (Un
i , U

n+1
i ), where Un

i ∈ S and L̂(Un
i ) = Un+1

i , we have

NN (x) ≈ L̂(x), x ∈ S. (6.30)

More specifically, this approximation error ‖NN (x)−L̂(x)‖2 is small for all x ∈ S providing suf-

ficient training. Therefore, by Lemma 6.4.2, we claim the trained parameters closely approximate

the optimal choice to guarantee the small error indicated in (6.28) , i.e.

W 2 ≈ Ŵ 2, W 2W 1 ≈ Ŵ , and W 2b ≈ b̂.

However, due to the high dimension of Ŵ , full recovery of Ŵ requires enormous number of

training and is thus impractical. However, by enforcing NN (x) = L̂(x) for x ∈ S, the neural

network learns a set of parameters W 2W 1 6= Ŵ , and W 2b 6= b̂ such that they function similarly

as L̂(·) on the subset S in the sense of linear operator. A validation of this is later provided in

Subsection 6.5.1. Recall definition of L(·) in (6.24) and the fact that it can approximateNN (·) as

in (6.25), we claim the linear operator have the following property:

L(x) ≈ L̂(x) ∀x ∈ S. (6.31)

In the following subsection, we further construct a reduced-order model with the help of L(·).

6.4.3 Model Reduction with W 2

In this subsection, we further assume the s-sparse vector ys in Assumption 1 has non-zero

entries only at fixed coordinates for all x in S. That is to say, we have a fix reordering {jk}mk=1 for

{1, 2 · · ·m}, such that (ys)jk = 0 for s+ 1 ≤ k ≤ m.
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Then, we will be able to utilize the coordinate system W 2 ≈ Ŵ 2 learned through training

network to construct a reduced-order operator Ls(·), such that it can approximate the linear map

L̂(·) and maps x in S to a s-sparse vector in Rm. To do so, we first define L(·) from the learned

coefficients of NN (·) as in last subsection, and Ls(·) will be exactly a truncation of it.

Moreover, let the new basis set {ψW 2

j }mj=1 be defined with trained coefficient W 2 as in (6.20).

When truncating W 2 in L(·), we also determine the dominant basis among {ψW 2

j }mj=1 simultane-

ously. Thus, we can view the model reduction from another aspect that we actually drop the basis

with less significance and represent the solution with only the dominant multiscale modes.

To construct such Ls(·), we follow the steps:

1. Find the dominant coordinates of the outputs NN (·) in the system W 2.

(a) Compute W 2 system coefficients of NN (Un
i ) for all training samples by

On+1,W 2

i := (W 2)TNN (Un
i ), 1 ≤ i ≤ L,

where i refers to the sample index. Notice (W 2)TNN (x) is sparse for x ∈ S by (6.23),

therefore On+1,W 2

i is also sparse.

(b) Calculate the quadratic mean of {On+1,W 2

i }Li=1 over all samples, coordinate by coordi-

nate:

Sj :=
1

L
(
L∑
i=1

|On+1,W 2

i,j |2)
1
2 , 1 ≤ j ≤ m.

(c) Sort the quadratic mean value Sj in descending order and denoted the reordered se-

quence as {Sjk}mk=1.

2. Keep the dominant jk-th columns of W 2 for k = 1, · · · , s. Then let the rest columns be

zero. Thus, we construct a reduced-order coordinate system W 2,s ∈ Rm×m. Consequently,

y = L̂(x) for any x ∈ S can be approximated with the reduced-order system W 2 as an
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s-sparse vector yW 2,s
:= (W 2,s)Ty, and

yW
2,s ≈ (W 2)Ty. (6.32)

As a result, for training/testing samples, we have Un+1,W 2,s

i ≈ Un+1,W 2

i . Thus, the func-

tion un+1
h,i can be approximated with only basis {ψW2

jk
|1 ≤ k ≤ s} correspond to dominant

multiscale modes.

un+1
h,i ≈ ΨW 2

Un+1,W 2,s

i =
s∑

k=1

αn+1,W 2

i,jk
ψW

2

jk
. (6.33)

3. We finally define the reduced linear operator Ls(·) : Rm → Rm as

Ls(x) = W 2,sW 1 · x +W 2,sb, x ∈ Rm. (6.34)

Here, the output of Ls(·) is an s-sparse vector in Rm.

This algorithm is designed based on the fact that On+1,W 2

i ≈ (W 2)TUn+1
i = Un+1,W 2

i as

NN (·) is fully trained with (Un
i , U

n+1
i ). Thus, the order of Sj can reflect not only the significance

of the coordinates of the output ofNN (·) but also that of (W 2)TL(x) for all x in S. Moreover, the

existence of the sparse approximation ys to (Ŵ 2)T L̂(x) as described in Assumption 1 guarantees

the effectiveness of the ordering.

We then claim that this reduced-order linear operator Ls(·) can approximate the true input-

output map L̂(·) on S: Since Ls(·) is simply a truncation of L(·), we have:

Ls −→ L, as s→ m. (6.35)

Moreover, recall (6.31)

L̂(x) ≈ L(x), ∀x ∈ S,

it implies the following

L̂(x) ≈ Ls(x), ∀x ∈ S. (6.36)
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This property of Ls(·) provides us a way to represent the projected vectors L̂(x) for x ∈ S

using a vector with only s nonzero coefficients, which corresponds to a reduced multiscale model

to represent the class of solution un+1
h that we are interested in.

Numerical examples are presented in Subsection 6.5.3 to verify this claim, from which we

actually observe that s can be taken as a fraction of the original number of multiscale basis m to

give the approximation in (6.36).

6.5 Numerical Examples

In this section, we present numerical examples in support of the previous discussions on the

reduced-order neural network. Specifically, Subsection 6.5.1 demonstrates that the L(·) and L̂(·)

functions similarly on a subspace by comparing the eigenvalues of the two operators; Subsection

6.5.2 later shows that a one-layer soft thresholding neural network can accurately recover a linear

dynamics with a sparse coefficient vector; Subsection 6.5.3 then uses the learned coefficient W 2

from the one-layer neural network to conduct model reduction as described in Subsection 6.4.3;

Subsection 6.5.4 later presents the predicting results for multi-layer reduced-order neural network

which corresponds to Subsection 6.3.3; and Subsection 6.5.5 applies the clustering scheme to

the nonlinear process modeling. All training are performed using the Python deep learning API

TensorFlow [63].

6.5.1 L̂ ≈ L in a Subspace of Rm

We recall that the one-layer neural network for a single-step linear dynamics in (6.13)

NN (x) := W 2Sγ(W
1x + b),

and the definition of L̂(·) and L(·) in (6.16) and (6.24) respectively:

L̂(x) := Ŵx + b̂, L(x) = W 2W 1x +W 2b,
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where Ŵ andb̂ are defined as in (6.14), while W 2, W 1 are trained parameters of NN (·). We also

recall (6.31):

L|S ≈ L̂|S,

for S ⊂ Rm.

To support this claim, we design a special subspace S ⊂ Rm. For r < m, we then let

S = Vr := span{vi, 1 ≤ i ≤ r} ⊂ span{vi, 1 ≤ i ≤ m} = Rm, (6.37)

where {vi}mi=1 are eigenvectors of Ŵ corresponding to eigenvalues λi in descending order. We also

define matrix V as

V := [v1, v2, · · · , vm]. (6.38)

We then randomly pick training input U ∈ Vr such that U =
∑r

i=1 civi. The NN (·) is then

trained with (U, L̂(U))-like training pairs, and we obtain a corresponding operator L(·) with the

trained coefficients. The linear operators of L(·) and L̂(·) are compared by their eigenvalues, i.e.

V T ŴV and V TW 2W 1V . By the definition of V , the former will exactly be a diagonal matrix with

λi be its diagonal value. We expect W 2W 1 functions similarly to Ŵ on Vr, and further the r-by-r

sub-matrix of V TW 2W 1V should be similar to that of V T ŴV .

Figure 6.2 compares V TW 2W 1V and V T ŴV for the case when Vr is constructed letting r =

30. We can tell that the first 30× 30 submatrix are very much alike. That is to say, despite the fact

that the operator L(·) and L̂(·) are different on Rm, their behavior on the subspace Vr are the same.

Moreover, Figure 6.3, shows that such similarity only exist in Vr as for the ith diagonal values of

V TW 2W 1V and that of V T ŴV distinct when i > s. This also makes sense as the operator L(·)

is defined from the trained parameters ofNN (·) where only subspace Vr is visible to the network.
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(a) V T ŴV (b) 30× 30 sub-matrix of V T ŴV

(c) V TW 2W 1V (d) 30 × 30 sub-matrix of
V TW 2W 1V

Figure 6.2: Ŵ and W 2W 1 function similarly on S, where r = 30.

Figure 6.3: Comparison of the eigen-values of Ŵ and W 2W 1 when r = 30.
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6.5.2 One-layer Reduced Order Neural Network

In this example, we consider the one-layer reduced-order neural network as defined in (6.13).

We use this neural network to predict one-step fluid dynamics, where the data are taken to be

NLMC solution coefficients to (6.1) in the form of (U0
i , U

1
i ). We fix κ(t, x) and f(t, x) among

samples, thus all data describes linear dynamics for different initial conditions.

We take 2% out of all data pairs as testing samples and the remaining 98% as training sam-

ples and use only the training sample to train NN (·). We then evaluate the neural network by

examining the accuracy of the following approximation for the unseen testing samples:

U1 ≈ NN (U0).

The `2 relative error of the prediction is computed by

||U1 −NN (U0)||2
||U1||2

. (6.39)

Table 6.1 is the error table for the case when we use 500 data pairs with 490 to be training

samples and 10 to be testing samples. These data are generated with different choices of initial

condition U0
i . To match the realistic physical situation, we took all initial conditions to be the

NLMC terminal pressure of a mobility driven nonlinear flow process.

From Table 6.1, we can see that the prediction of our proposed network NN (U0) is rather

effective with an average `2 error of 5.34%.

We also verify that U1 is sparse in the learned W 2-system for all data (training and testing).

We first reorder the columns of W 2 by their dominance as discussed in Subsection 6.4.3, then

compute the corresponding W 2-system coefficients U1,W 2 , which should be a roughly decreasing

vector. From Figure 6.4, we can tell that the W 2-system coefficients U1,W 2 are sparse. This can

be an reflection of successful learning of Ŵ 2 in Assumption 1. Moreover, only a few dominant

modes are needed to recover the solution as the quadratic averages of coordinates |U1,W 2

j | decays
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Sample Index Error(%)
#1 0.25
#2 0.43
#3 10.02
#4 9.91
#5 3.90
#6 8.18
#7 17.27
#8 1.57
#9 1.13

#10 0.76
Mean 5.34

Table 6.1: `2 relative error of NN (·) prediction.

fast when j > 100.

(a) U1,W 2
for all data samples (b) quadratic average of U1,W 2

among all data
samples

Figure 6.4: Sparsity of the output of NN (U0) in W 2 .

To summarize, the proposed neural network can indeed learn the dominant multiscale modes

needed to represent U1 from training data while properly reproducing the map between U0 and U1.
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6.5.3 Model Reduction with W 2

As discussed in Subsection 6.4.3, we would like to use the reduced-order systemW 2,s to further

conduct a model reduction. The reduced-order solution coefficient is defined with the reduced-

order linear operator Ls(·):

Un+1
sN = Ls(Un). (6.40)

We notice that Un+1
sN is the coefficient of un+1

h in the original basis system {ψj}mj=1 and it is sparse

in W 2-system. In fact, Un+1,W 2

sN is sparse and has a maximum s nonzero elements.

The numerical experiments is conducted based on a one-layer neural network as defined in

(6.13) for one-step linear dynamics. We would like to compare the following coefficient vectors:

U1
sN := Ls(U0) = W 2,sW 1 · U0 +W 2,sb,

U1
true = ŴU0 + b̂,

and

U1
N := NN (U0).

Here U1
true is the true solution to (6.15), while U1

N is the prediction of NN (·).

Figure 6.5 shows the error decay of U1
sN compared to U1

true. As s grows, the error gets smaller.

This figure actually verified (6.36), i.e. the reduced operator Ls(·) can approximate L̂(·). More-

over, this approximation gets more accurate as s gets larger. The error in Figure 6.5 at s = m = 445

is also an expected consequence of the training error. Besides, we observe that the error decays

fast when s > 40 for our training samples.

Table 6.2 further facilitates such conclusion. The errors of U1
sN in testing samples are less than

12% when s ≥ 80. We can thus represent the multiscale solution u1
h using s = 80 basis with little

sacrifice in the solution accuracy. We notice that the order of the reduce operator Ls(·) is only

around 18% that of the original multiscale model.

We lastly present the comparison between U1
true, U

1
N , and U1

sN . From Table 6.3, we can tell that
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Figure 6.5: Decay of relative error ||U
1
sN−U

1
true||2

||U1
true||2

as s grows for training samples.

Sample Index
s

5 10 20 40 80 160 320

#1 66.71 46.80 29.02 17.01 8.44 3.53 1.11
#2 66.55 46.58 29.03 17.41 9.48 4.62 1.59
#3 66.35 46.77 29.70 18.59 12.26 10.92 10.16
#4 67.95 48.58 31.23 19.87 12.59 10.03 9.90
#5 66.22 46.31 28.99 17.73 10.49 6.49 4.34
#6 66.47 46.76 29.40 17.89 10.86 9.12 8.33
#7 69.59 51.33 36.01 27.42 22.33 18.62 17.29
#8 66.60 46.61 28.81 16.39 7.47 3.86 1.96
#9 66.90 47.13 29.21 16.94 8.02 3.58 1.67

#10 67.14 47.39 29.44 17.23 8.23 3.19 1.32
Mean 67.05 47.43 30.08 18.65 11.02 7.40 5.77

Table 6.2: Decay of error ||U
1
sN−U

1
true||2

||U1
true||2

with respect to number of selected dominant modes in W 2,s

for testing samples.
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for a single testing sample, we have

||U1
sN − U1

true||2
||U1

true||2
>
||U1

N − U1
true||2

||U1
true||2

,
||U1

sN − U1
true||2

||U1
true||2

>
||U1

sN − U1
N ||2

||U1
N ||2

,

which are as expected since ||U
1
N−U

1
true||2

||U1
true||2

and ||U1
sN−U

1
N ||2

||U1
N ||2

are exactly the two components of error
||U1

sN−U
1
true||2

||U1
true||2

. These components stand for neural network prediction error and Ls truncation error,

respectively. The latter can be reduced by increasing s, while the former one can only be improved

with more effective training.

Sample Index ||U1
N−U

1
true||2

||U1
true||2

||U1
sN−U

1
true||2

||U1
true||2

||U1
sN−U

1
N ||2

||U1
N ||2

#1 0.25 6.48 6.41
#2 0.43 7.65 7.55
#3 10.02 11.59 5.81
#4 9.91 11.28 5.83
#5 3.90 8.93 8.38
#6 8.18 10.00 5.80
#7 17.27 20.98 10.25
#8 1.57 5.85 5.83
#9 1.13 6.13 6.03

#10 0.76 6.17 6.12
Mean 5.34 9.50 6.80

Table 6.3: Relative error percentage of solutions obtained in full W 2 system and reduced-order
system W 2,s for s = 100.

6.5.4 Multi-layer Reduced Order Neural Network

In this example, we use a multi-layer reduced-order neural network NN (·) to predict multi-

step fluid dynamics. Recall (6.10), it is defined as

NN (x0) := N n(· · · N 1(N 0(x0))).
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The input of NN (·) is taken to be U0, the initial condition, while the outputs are the collection

of outputs at nth-layer sub-network N n(·) which correspond to the true values [U1, U2, · · · , U9].

Here, Un+1 are all taken to be the NLMC solutions of (6.1) at time step n for n = 0, · · · , 8.

Prediction accuracy is measured with the `2 relative error that is defined similar to (6.39).

Sample Index U1 U2 U3 U4 U5 U6 U7 U8 U9

#1 1.62 1.17 1.69 1.91 1.95 1.92 1.92 1.91 1.96
#2 3.33 1.86 2.10 1.98 2.15 1.53 1.04 0.94 0.77
#3 11.62 13.32 9.39 9.57 8.89 10.36 11.67 11.86 12.97
#4 9.74 9.00 4.21 3.45 3.46 3.17 2.93 2.87 2.81
#5 5.63 4.68 2.65 2.28 2.52 1.89 1.49 1.74 1.91
#6 9.54 11.50 9.30 9.70 9.14 10.50 11.73 12.00 13.09
#7 21.46 14.82 5.42 4.24 3.27 5.06 6.52 6.77 7.81
#8 5.72 1.40 0.67 0.77 1.11 1.49 1.95 2.54 3.20
#9 4.03 2.16 3.21 3.66 3.47 4.36 5.15 5.35 5.97

#10 4.62 1.01 3.14 3.84 3.81 4.47 5.05 5.24 5.68
Mean 7.73 6.09 4.18 4.14 3.98 4.47 4.95 5.12 5.62

Table 6.4: `2 relative error (%) of prediction of Un+1 using NN (·).

In Table 6.4, the columns show the prediction error for Un+1, n = 0, 1, · · · 8 where the average

error is computed for all time steps among testing samples which are less than 10% in average.

Therefore, we claim that the proposed multi-layer reduced order neural networkNN (·) is effective

in the aspect of prediction. We also claim that the coefficients Un+1,W 2
n for n = 0, 1, · · · , 8 are

sparse in the independent systemsW 2
n . These systems are again learned simultaneously by training

NN (·).

6.5.5 Clustering

In this experiment, we aim to model the fluid dynamics correspond to two different fractured

media as shown in Figure 6.6. More specifically, the permeability coefficient of matrix region is

κm = 1 and the permeability of the fractures is κf = 103. The one-step NLMC solution pairs

(U0
i , U

1
i ), 1 ≤ i ≤ L, generated following these two different configurations of fractures are then
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referred as “Cluster 1” and “Cluster 2” (see Figure 6.7 for an illustration). We will then compare

the one-step prediction of networks NN 1,NN 2 with that of NNmixed. The inputs are taken to

be U0
i , which are the terminal solutions of mobility driven 10-step nonlinear dynamics, while the

output is an approximation of U1
i .

NN 1,NN 2 andNNmixed share the same one-layer soft thresholding neural network structure

as in (6.13) while the first two network are trained with data for each cluster separately and the

latter one is trained with the mixed data from two clusters.

(a) Cluster 1 (b) Cluster 2

Figure 6.6: Fracture networks for two clusters.

Figure 6.6 shows the fracture networks we use to generate data for two clusters, while Figure

6.7 shows an example of solution U0 and U1 for each cluster (sample index i is omitted for sim-

plicity). As observed from the profiles of U0 and U1 for both clusters, we can see that the solutions

to Cluster 1 and Cluster 2 are very different due to the translation of the fractures. Moreover, since

the data resulted from both clusters have non-uniform map between U0 and U1, the mixed data set

can be considered as obtained from a nonlinear map.

Table 6.5 demonstrates the comparison of the prediction accuracy when the network is fed

with a single data cluster and when the network is fed with mixed data. This simple treatment can

significantly improve the accuracy. For Cluster 1, the average prediction error of NN 1 is around
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(a) Coarse-scale NLMC solution u0 –
Cluster 1

(b) Coarse-scale solution of pressure
u0 – Cluster 2

(c) Coarse-scale solution of pressure
u1 – Cluster 1

(d) Coarse-scale solution of pressure
u1 – Cluster 2

Figure 6.7: Example solution pairs for two different clusters.
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Sample Index Cluster
1 Error

Cluster
2 Error

#1 0.87 0.26
#2 3.19 0.45
#3 13.62 0.79
#4 12.36 0.49
#5 7.64 0.43
#6 10.69 1.00
#7 19.08 0.53
#8 2.57 0.92
#9 0.77 0.46

#10 3.70 0.38
Mean 7.45 0.57

(a) Relative `2 prediction error(%) of N1 and
N2.

Sample Index Cluster
1 Error

Cluster
2 Error

# 1 36.25 84.83
#2 35.08 84.20
#3 28.20 111.05
#4 44.60 69.35
#5 32.32 89.30
#6 30.03 106.41
#7 48.61 57.76
#8 35.63 88.46
#9 36.89 88.67

#10 38.78 83.85
Mean 36.64 86.39

(b) Relative `2 prediction error(%) of Nmixed.

Table 6.5: Prediction error of N1, N2 and Nmixed.

7.45% while that of NNmixed is around 36.64%. Similar contrast can also be observed for Cluster

2.

6.6 Conclusion

In this chapter, we discussed a novel deep neural network approach of model reduction for mul-

tiscale problems. To numerically solve the multiscale problems, a fine mesh needs to be used but

leads to large degrees of freedom. To this end, non-local multicontinuum (NLMC) upscaling [37]

is used as a dimensionality reduction technique. In flow dynamics problems, multiscale solutions

at consecutive time instants are regarded as an input-output mechanism and learnt with the deep

neural networks techniques.

By exploiting a relation between a soft-thresholding neural network and a `1 minimization

problem, multiscale features of the coarse-grid solutions are extracted using neural networks. This

provides us with a new network-based construction of a reduced-order model, which involves

extracting appropriate important modes at each time step. We also suggest an efficient strategy

for a class of nonlinear flow problems. Finally, we present numerical examples to validate the

effectiveness of our method.
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7. SUMMARY AND CONCLUSIONS

In this thesis, our discussions mainly focused on two topics. The application of current mul-

tiscale methods and the development of deep learning techniques. In specific, in Chapter 3 and

Chapter 4, we considered elliptic equations in heterogeneous domain. Chapter 3 targeted on de-

signing a coarse solver that can hierarchically treat the fractured and vuggy domain while Chapter

4 concentrated on analyzing the impacts of the geometry to the multiscale model. In both chapters,

we obtained accurate solutions with the reduced-order model following GMsFEM and reduced the

computational cost significantly.

In Chapter 5 and Chapter 6, we investigated the neural networks applied to multiscale simu-

lations and discussed designs of a novel deep neural network model reduction approach for mul-

tiscale problems. In Chapter 5, low-order models are used to construct sparsely connected neural

networks. We formulated and learned input-output maps constructed with NLMC on a coarse grid.

Further, observation data are included to fine-tone the learned model. Chapter 6, on the other hand,

focused on deepening the order reduction of the multiscale model. By relating the input-output op-

timization to l1 minimization of PDE solutions, we proposed a multi-layer networks with a soft

thresholding activation function. Such neural network can learn the forward multiscale operators

in a reduced way by selecting the important multiscale features for modeling the underlying flow.

For a class of nonlinear problems, we also suggested clustering for effective modeling.

In all chapters, numerical examples are presented to confirm the success of our proposed

method along with in-depth discussions and rigid analysis. We finally conclude that our proposed

methods indeed improved the existing multiscale methods and some has been extended to more

complicated engineering applications. The novel neural network architecture has the potential to

be extended to broader areas.
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APPENDIX

A.1 Proofs of error estimates

In this section, we present the proofs of the error estimates in Theorem 3.3.1 and Theorem 3.3.2.

A.1.1 Proof of Theorem 3.3.1

Proof. Using (3.14) and (3.17), we have

b(
∂(u− ums)

∂t
, v)+

∑
1≤i<N

(ai(ui, v
i;ui)−ai(uims, v

i;uims))+q(u−ums, v) = 0 ∀v ∈ Vms, t ∈ (0, T ).

Let w ∈ Vms and take v = w − ums, we have

b(
∂(w − ums)

∂t
, w − ums) + q(w − ums, w − ums)−

∑
1≤i<N

ai(uims, w
i − uims;u

i
ms)

=b(
∂(w − u)

∂t
, w − ums) + q(w − u,w − ums)−

∑
1≤i<N

ai(ui, wi − uims;u
i)

From this equation ,we can further get the following by the definition of ai and the bounded con-

dition (3.18) of a(u),

b(
∂(w − ums)

∂t
, w − ums) + α−q(w − ums, w − ums) + α−|w − uims|2a

≤|b(∂(w − u)

∂t
, w − ums)|+ α+|q(w − u,w − ums)|+ α+|w − u|a|w − ums|a

+
∑

1≤i<N

∫
Ω

|(α(uims)− a(ui))κ
i∇ui · ∇(wi − uims)| dx
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By Cauchy-Schwarz Inequality, this implies

1

2

d

dt
‖w − ums‖2

b + α−‖w − ums‖2
aQ

≤‖∂(w − u)

∂t
‖b‖w − ums‖b + α+‖w − u‖aQ‖w − ums‖aQ

+
∑

1≤i<N

∫
Ω

|(α(uims)− α(ui))κi∇ui · ∇(wi − uims)| dx

(A.1)

The last term on the right-hand side of (A.1) can be written as

∫
Ω

|(α(uims)− α(ui))κi∇ui · ∇(wi − uims)| dx

=

∫
ΩM

|(α(uims)− α(ui))κi∇ui · ∇(wi − uims)| dx

+
∑
s

∫
ΩF,s

|(α(uims)− α(ui))κF,s∇Fu
i · ∇F (wi − uims)| dx

(A.2)

Following [64], we employ generalized Holder’s Inequality and the definition of α(·) to obtain

∫
ΩM

|(α(uims)− α(ui))κi∇ui · ∇(wi − uims)| dx

≤ ‖α(uims)− α(ui)‖L4(ΩM )‖(κi)1/2∇ui‖L4(ΩM )‖(κi)1/2∇(wi − uims)‖L2(ΩM )

=
c

µ
‖uims − ui‖L4(ΩM )‖(κi)1/2∇ui‖L4(ΩM )‖(κi)1/2∇(wi − uims)‖L2(ΩM )

(A.3)

Further, with Ladyzhenskaya’s Inequality, there exists some constant C1 > 0 dependent only on Ω

such that

‖uims − ui‖L4(ΩM ) ≤ C1‖uims − ui‖
1/2

L2(ΩM )‖∇(uims − ui)‖
1/2

L2(ΩM ) (A.4)

There also exist some constant K1, K2 such that

‖∇(uims − ui)‖2
L2(ΩM ) =

∫
ΩM

(∇(uims − ui))2 dx ≤ K1

∫
ΩM

κi

µ
(∇(uims − ui))2 dx,

‖uims − ui‖2
L2(ΩM ) =

∫
ΩM

(uims − ui)2 dx ≤ K2

∫
ΩM

bi(uims − ui)2 dx,

where K1 = maxi,x∈Ω{ µκi} and K2 = maxi{ 1
bi
}.
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For the fracture part, again from generalized Holder’s Inequality, we have

∫
ΩF,s

|(α(uims)− α(ui))κF,s∇Fu
i · ∇F (wi − uims)| dx

≤ C2‖uims − ui‖L2(ΩF,s)‖(κF,s)
1/2∇(wi − ums)‖L2(ΩF,s),

(A.5)

for C2 = c
µ

maxi,s ‖(κF,s)1/2∇ui‖L∞ .

To sum up, we have for any ζ > 0,

∫
Ω

|(α(uims)− α(ui))κi∇ui · ∇(wi − uims)| dx ≤ C3(
1

2ζ
‖uims − ui‖b +

ζ

2
|uims − ui|a) · |wi − uims|a

(A.6)

for some constant C3. Plug back to (A.1), and notice that | · |a ≤ ‖ · ‖aQ we can use Young’s

Inequality to derive

1

2

d

dt
‖w − ums‖2

b + α−‖w − ums‖2
aQ

≤ 1

2η
‖∂(w − u)

∂t
‖2
b +

η

2
‖w − ums‖2

b +
α+

2ξ
‖w − u‖2

aQ
+
α+ξ

2
‖w − ums‖2

aQ

+
C3

2εζ

∑
1≤i<N

bi(wi − ui, wi − ui) +
C3

2εζ
‖w − ums‖2

b +
C3ζ

2ε
‖w − u‖2

aQ

+
C3ζ

2ε
‖w − ums‖2

aQ
+
C3εζ

4
‖w − ums‖2

aQ
.

Rearrange the inequality we obtain that

1

2

d

dt
‖w − ums‖2

b − (
C3

2εζ
+
η

2
)‖w − ums‖2

b + (α− − α+ξ

2
− C3ζ

2ε
− C3εζ

4
)‖w − ums‖2

aQ

≤ 1

2η
‖∂(w − u)

∂t
‖2
b +

C3

2εζ

∑
1≤i<N

bi(wi − ui, wi − ui) + (
α+

2ξ
+
C3ζ

2ε
)‖w − u‖2

aQ

(A.7)

We carefully choose ε = 1, ζ = 2α−

3C3
=, ξ = α−

2α+ , η = 1 and let

K =
C3

εζ
+ η =

3C2
3

2α−
+ 1,
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then the previous equation can be simplified as

1

2

d

dt
‖w − ums‖2

b −
1

2
K‖w − ums‖2

b + (
α−

4
)‖w − ums‖2

aQ

≤ 1

2
‖∂(w − u)

∂t
‖2
b +

3C2
3

4α−

∑
1≤i<N

bi(wi − ui, wi − ui) + (
(α+)2

α−
+
α−

2
)‖w − u‖2

aQ

(A.8)

To get rid of term ‖ums − w‖2
b , we multiply a e−Kt ≤ 1 to the above inequality and integrate

over t from 0 to T for both sides, then we have

e−KT

2
‖w(T, ·)− ums(T, ·)‖2

b +
α− · e−KT

4

∫ T

0

‖w − ums‖2
aQ
dt

≤ 1

2

∫ T

0

‖∂(w − u)

∂t
‖2
b dt+ (

(α+)2

α−
+
α−

2
)

∫ T

0

‖w − u‖2
aQ
dt

+
3C2

3

4α−

∫ T

0

∑
1≤i<N

bi(wi − ui, wi − ui) dt+
1

2
‖w(0, ·)− ums(0, ·)‖2

b .

(A.9)

We further define initial value ums(0, ·) ∈ Vms, s.t.

b(ums(0, ·), v) = b(u(0, ·), v) ∀v ∈ Vms.

Thus,

‖w(0, ·)− ums(0, ·)‖b ≤ ‖w(0, ·)− u(0, ·)‖b. (A.10)

Making use of the Poincare Inequality, we also have for some constant K3 > 0

∑
1≤i<N

bi(wi − ui, wi − ui) ≤ K3‖w − u‖2
aQ
. (A.11)

Combining (A.9), (A.10) and (A.11), we conclude that there exist a constant C4 > 0, such that

‖w(T, ·)− ums(T, ·)‖2
b +

∫ T

0

‖w − ums‖2
aQ
dt

≤ C4(

∫ T

0

‖∂(w − u)

∂t
‖2
b dt+

∫ T

0

‖w − u‖2
aQ
dt+ ‖w(0, ·)− u(0, ·)‖2

b).

(A.12)
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With (A.12), we can start derive the inequality for Theorem 3.3.1,

‖u(T, ·)− ums(T, ·)‖2
b +

∫ T

0

‖u− ums‖2
aQ
dt

≤‖w(T, ·)− u(T, ·)‖2
b + ‖w(T, ·)− ums(T, ·)‖2

b +

∫ T

0

‖w − u‖2
aQ
dt+

∫ T

0

‖w − ums‖2
aQ
dt.

(A.13)

For the first term on the right hand side of Inequality (A.13), we have

‖w(T, ·)− u(T, ·)‖2
b ≤ 2

∫ T

0

‖∂(w − u)

∂t
‖2
b dt+ 2‖wi(0, ·)− ui(0, ·)‖2

b .

Combining the last estimate with (A.13) and (A.12), we conclude that for any w ∈ Vms, the in-

equality holds for a constant C > 0, such that

‖u(T, ·)− ums(T, ·)‖2
b +

∫ T

0

‖u− ums‖2
aQ
dt

≤ C(

∫ T

0

‖∂(w − u)

∂t
‖2
b dt+

∫ T

0

‖w − u‖2
aQ
dt+ ‖w(0, ·)− u(0, ·)‖2

b).

(A.14)

This completes our proof.

A.1.2 Proof of Theorem 3.3.2

Proof. Since usnap ∈ Vsnap, we can write

usnap(t, x) =
∑
j

∑
k

c
(j)
k (t)χωj(x)ψ

ωj
k (x), (A.15)

and we define the local component of usnap by

u(j)
snap(t, x) =

∑
k

c
(j)
k (t)ψ

ωj
k (x). (A.16)
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We define w ∈ Vms as the projection of usnap onto Vms by

w =
∑
j

Lωj∑
k=1

c
(j)
k (t)ψ

ωj
k,ms(x) =

∑
j

Lωj∑
k=1

c
(j)
k (t)χωj(x)ψ

ωj
k (x). (A.17)

From the definitions (A.15) and (A.17) ,we have

usnap − w =
∑
j

∑
k>Lωj

c
(j)
k (t)χωj(x)ψ

ωj
k (x), (A.18)

The desired result follows from the estimates in Lemma A.1.1, Lemma A.1.3 and Lemma A.1.4.

Lemma A.1.1. Let usnap ∈ Vsnap be defined in (3.21) and w ∈ Vms be defined in (A.17). Then there

exists a constant C > 0 such that

∥∥∥∥∂(usnap − w)

∂t

∥∥∥∥2

b

≤ C

Λ

∥∥∥∥∂u∂t
∥∥∥∥2

aQ

. (A.19)

Proof.
∂(usnap − w)

∂t
=
∑
j

∑
k>Lωj

(
d

dt
c

(j)
k (t))χωj(x)ψ

ωj
k (x)

Thus, for some constant D1 > 0, we have

‖
∂(usnap − w)

∂t
‖2
b ≤ D1

∑
j

‖
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x)‖2

b , (A.20)
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and the right-hand side can be estimated as

‖
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x)‖2

b

=
∑
i

∫
ΩM

bi(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx+

∑
i

∑
s

∫
ΩF,s

bF,s(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx

≤D2[
∑

1≤i<N

(

∫
ΩM

κi

µ
(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx+

∑
s

∫
ΩF,s

κF,s
µ

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx)

+ (

∫
ΩM

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

N,ωj
k (x))2 dx+

∑
s

∫
ΩF,s

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

N,ωj
k (x))2 dx)]

= D2[
∑

1≤i<N

(

∫
ωj,M

κi

µ
(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx+

∑
s

∫
ωj,F,s

κF,s
µ

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

i,ωj
k (x))2 dx)

+ (

∫
ωM

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

N,ωj
k (x))2 dx+

∑
s

∫
ωF,s

(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

N,ωj
k (x))2 dx)]

= D2s
(j)(

∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x),

∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x))

for some constant D2 > 0.

By spectral problem (2.9) and the orthogonality of eigenfunctions {ψωjk }k, we have

s(j)(
∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x),

∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x))

≤ 1

λ
ωj
Lωj+1

a
(j)
Q (

∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x),

∑
k>Lωj

(
d

dt
c

(j)
k (t))ψ

ωj
k (x))

≤ 1

λ
ωj
Lωj+1

a
(j)
Q (
∑
k

(
d

dt
c

(j)
k (t))ψ

ωj
k (x),

∑
k

(
d

dt
c

(j)
k (t))ψ

ωj
k (x))

=
1

λ
ωj
Lωj+1

a
(j)
Q (

∂u
(j)
snap

∂t
,
∂u

(j)
snap

∂t
).

(A.21)

Substituting this equation back to (A.20), we obtain

‖
∂(usnap − w)

∂t
‖2
b ≤ D1D2

∑
j

1

λ
ωj
Lωj+1

a
(j)
Q (

∂u
(j)
snap

∂t
,
∂u

(j)
snap

∂t
). (A.22)

123



Since usnap is the projection of u in each ωj by definition (A.16), so we have

ajQ(u(j), v) = ajQ(u(j)
snap, v) ∀v ∈ V (j)

snap.

More specifically, let v = u
(j)
snap we have

ajQ(u(j)
snap, u

(j)
snap) = ajQ(u(j), u(j)

snap),

‖u(j)
snap‖2

aQ
≤ ‖u(j)

snap‖aQ‖u(j)‖aQ .

Therefore,

ajQ(u(j)
snap, u

(j)
snap) ≤ ajQ(u(j), u(j)).

Similarly,

ajQ(
∂u

(j)
snap

∂t
,
∂u

(j)
snap

∂t
) ≤ ajQ(

∂u(j)

∂t
,
∂u(j)

∂t
). (A.23)

Thus, from (A.22), we have

‖
∂(usnap − w)

∂t
‖2
b ≤ D1D2

∑
j

1

λ
ωj
Lωj+1

ajQ(
∂u(j)

∂t
,
∂u(j)

∂t
) ≤ D1D2

minj{λ
ωj
Lωj+1}

‖∂u
∂t
‖2
aQ
. (A.24)

This completes the proof.

Lemma A.1.2. For coupled multiscale basis function, if u satisfies the following

∑
1≤i<N

∫
ωj,M

κi∇ui∇vi dx+
∑

1≤i<N

∑
s

κF,s
µ

∫
ωj,F,s

κF,s∇Fu
i∇Fv

i dx+ q(u, v) =

∫
ω

fv dx, ∀v ∈ V (j)
snap,

(A.25)
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there exists some constant C, such that

∑
1≤i<N

∫
ωj,M

κi(χωj)2(∇ui)2 dx+
∑

1≤i<N

∑
s

∫
ωj,F,s

κf,s(χ
ωj)2(∇Fu

i)2 dx+ q(χωju, χωju)

≤ C{
∑

1≤i<N

[

∫
ωj

(f i)2 (χωj)2

|∇χωj |2κi
dx+

∫
ωj,M

κi(ui∇χωj)2 dx+
∑
s

∫
ωj,F,s

κF,s(u
i∇Fχ

ωj)2 dx]

+

∫
ωj

(fN)2 (χωj)2

|∇χωj |2
dx}.

(A.26)

Proof. Let v = (χωj)2u and obtain

∑
1≤i<N

∫
ωj,M

κi∇ui∇((χωj)2ui) dx+
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ
∇Fu

i∇F ((χωj)2ui) dx+ q(u, (χωj)2u)

=

∫
ω

f(χωj)2u dx.

This can be further rewrite as

∑
1≤i<N

∫
ωj,M

κi(χωj)2(∇ui)2 dx+
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s(χ
ωj)2(∇Fu

i)2 dx+ q(χωju, χωju)

=
∑

1≤i<N

∫
ω

f i
(χωj)2

∇χωj
√
κi

√
κiui∇χωj dx+

∫
ω

fN
(χωj)2

∇χωj
uN∇χωj dx

− 2
∑

1≤i<N

∫
ωj,M

κi∇ui∇χωjuiχωj dx− 2
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s∇Fu
i∇Fχ

ωjuiχωj dx

≤ ε

2

∑
1≤i<N

∫
ωj

(f i)2 (χωj)4

|∇χωj |2κi
dx+

1

2ε

∑
1≤i<N

∫
ωj,M

κi(ui∇χωj)2 dx

+
ε

2

∫
ωj

(fN)2 (χωj)4

|∇χωj |2
dx+

1

2ε

∫
ωj,M

(uN∇)2 dx

+
∑

1≤i<N

∑
s

1

2ε

∫
ωj,F,s

κF,s(u
i∇F )2 dx+

∑
s

1

2ε

∫
ωj,F,s

(uN∇F )2 dx

+ ε
∑

1≤i<N

∫
ωj,M

κi(χωj∇ui)2 dx+
1

ε

∑
1≤i<N

∫
ωj,M

κi(ui∇χωj)2 dx

+ ε
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s(χ
ωj∇Fu

i)2 dx+
1

ε

∑
1≤i<N

∑
s

∫
ωj,F,s

κF,s(u
i∇Fχ

ωj)2 dx.
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Let ε = 1/2 and rearrange the inequality. Then, for some constantC > 0, we obtain the conclusion

of (A.26).

Lemma A.1.3. Let usnap ∈ Vsnap be defined in (3.21) and w ∈ Vms be defined in (A.17). Then there

exists a constant C > 0 such that

∫ T

0

‖w − usnap‖2
aQ
dt ≤ C

Λ

∫ T

0

‖u‖2
aQ
. (A.27)

Proof. By (A.18), we have

‖w − usnap‖2
aQ

= ‖
∑
j

∑
k>Lωj

c
(j)
k (t)χωj(x)ψ

ωj
k (x)‖2

aQ
≤ Nv

∑
j

‖χωj(x)
∑
k>Lωj

c
(j)
k (t)ψ

ωj
k (x)‖2

aQ
.

(A.28)

Let

e(j) =
∑
k>Lωj

c
(j)
k (t)ψ

ωj
k (x),

then

‖χωj(x)e(j)‖2
aQ

=
∑

1≤i<N

∫
ωj,M

κi

µ
(χωj)2[∇e(j),i]2 dx+

∑
1≤i<N

∫
ωj,M

κi

µ
(∇χωj)2[e(j),i]2 dx

+
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ

[∇F (χωj)]2[e(j),i]2 dx+
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ

(χωj)2[e(j),i]2 dx

+ q(χωj(x)e(j), χωj(x)e(j)),
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where

∑
1≤i<N

∫
ωj,M

κi

µ
(∇χωj)2[e(j),i]2 dx+

∑
1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ

[∇F (χωj)]2[e(j),i]2 dx

≤ D3

∑
1≤i<N

∫
ωj,M

κi

µ
[e(j),i]2 dx+D3

∑
1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ

[e(j),i]2 dx

≤ D3s
(j)(e(j), e(j))

for some constant D3. From Lemma A.1.2, there exists some constant D4 such that

∑
1≤i<N

∫
ωj,M

κi

µ
(χωj)2[∇e(j),i]2 dx

+
∑

1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ

(χωj)2[∇F e
(j),i]2 dx+ q(χωj(x)e(j), χωj(x)e(j))

≤ D4[
∑

1≤i<N

∫
ωj,M

κi

µ
|∇χωj |2(e(j))2 dx+

∑
1≤i<N

∑
s

∫
ωj,F,s

κF,s
µ
|∇Fχ

ωj |2(e(j))2 dx]

≤ D3D4 s
(j)(e(j), e(j)).

By bilinearity of a(j) and s(j) as well as the orthogonality of {ψωjk }k ,we finally have

‖w − usnap‖2
aQ
≤ Nv

∑
j

‖χωj(x)e(j)‖2
aQ
≤ D5

∑
j

s(j)(e(j), e(j))

≤ D5

∑
j

1

λ
ωj
Lωj+1

a
(j)
Q (e(j), e(j)) ≤ D5

Λ
aQ(usnap, usnap) =

D5

Λ
‖usnap‖2

aQ
,

(A.29)

for a properly selected constant D5.

Lemma A.1.4. Let usnap ∈ Vsnap be defined in (3.21) and w ∈ Vms be defined in (A.17). Then there

exists a constant C > 0 such that

‖w(0, ·)− usnap(0, ·)‖2
b ≤

C

Λ
‖u(0, ·)‖2

aQ
. (A.30)

127



Proof. Using a similar idea as in Lemma A.1.3, we let

e
(j)
0 =

∑
k>Lωj

c
(j)
k (0)ψ

ωj
k (x).

Then we have

‖usnap(0, ·)− w(0, ·)‖2
b = ‖

∑
j

χωj(x)
∑
k>Lωj

c
(j)
k (0)ψ

ωj
k (x)‖2

b = ‖
∑
j

χωj(x)e
(j)
0 ‖2

b

≤ D1

∑
j

‖e(j)
0 ‖2

b ≤ D1D2

∑
j

s(j)(e
(j)
0 , e

(j)
0 ) ≤ D1D2

1

Λ

∑
j

a
(j)
Q (e

(j)
0 , e

(j)
0 )

≤D1D2
1

Λ

∑
j

a
(j)
Q (u(j)

snap(0, x), u(j)
snap(0, x)) = D1D2

1

Λ

∑
j

a
(j)
Q (u(j)(0, x), u(j)(0, x))

= D1D2
1

Λ
‖u(j)(0, ·)‖2

aQ
.

(A.31)

This completes the proof.
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