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 ABSTRACT 

 

 Technology evolution prediction is critical for designers, R&D managers, and 

policy makers to make important design and R&D decisions and to develop effective 

government incentives. Many descriptive models (e.g., logistic S-curve model and 

Moore’s Law) have been developed for technology performance prediction, but these 

descriptive models do not identify what factors shape future technology performance and 

how designers, firms, or governments can manipulate them. In this dissertation, a 

quantitative ecological based theory is created for technology evolution prediction and 

manipulation. The quantitative ecological based theory consists of a Lotka-Volterra 

ecosystem model and a generic method for prediction intervals generation. The 

ecosystem model and the generic method are able to help designers, R&D mangers, and 

policy makers to predict technology technical performance (e.g., speed, capacity, and 

energy efficiency), to discern the causality of technology evolution, and to develop 

effective strategies to improve technology technical performance. 

 The Lotka-Volterra ecosystem model is extended from Lotka-Volterra equations 

in community ecology. The ecosystem model considers the interaction between a system 

technology and its component technologies in the relationships of symbiosis, 

commensalism, and amensalism. In addition, every parameter in the ecosystem model is 

associated with its causal factors, such as R&D investment and technical difficulty. The 

values and interpretations of these parameters are used to identify the key component 
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technologies in a system technology and to develop effective strategies on improving 

system technology performance.  

 The generic method uses bootstrapping to generate prediction intervals for 

technology evolution. The prediction intervals help practitioners to assess future 

uncertainty and make contingency plans accordingly. The method can be applied to any 

prediction model based on mathematical functions or differential equations involving 

time. Parameter uncertainty and data uncertainty are considered in the method and the 

empirical probability distributions of these uncertainties are established. The appropriate 

confidence level α required to generate prediction intervals is determined using a holdout 

sample analysis rather than setting α=0.05 as is frequently done in previous research.  

 The quantitative ecological based theory is proven to be effective through four 

case studies of three representative technologies (i.e., concrete skyscraper, passenger 

aircraft, and central processing unit) in this dissertation.   
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1. INTRODUCTION  

 

Technology is a basic building block of modern civilization and economy. 

Technology has a broad definition that includes hardware (e.g., aircraft, automobile, cell 

phone) and software (e.g., know-how, human knowledge, programs) [1]. The 

performance, function, and architecture of a technology continuously changes over time. 

The evolution of passenger aircraft illustrates the significant performance changes of 

technologies over time. The Benoist XIV that achieved the first scheduled commercial 

airline flight in 1914 carries only one passenger with a maximum speed of 103 

kilometers per hour (km/h) and flies within a range of 200 kilometers (km); the Airbus 

A380 introduced in 2007 carries 853 passengers with a cruise speed of 903 km/h and a 

maximum range of 14,800 km [2]. The functional change is also apparent during the 

evolution of a technology. The cell phones of the 1990’s could only make phone calls 

and send and receive text messages. However, current cell phones are equipped with 

cameras and internet access. The performance and functional changes of a technology 

are usually accompanied by technology architecture modification or reconstruction. For 

example, to improve energy efficiency of automobiles, gasoline engines were displaced 

by electric motors. The automobile architecture has been modified to accommodate the 

motor and the battery required by an electric power train.  

Research in technology evolution not only tracks the historical technical 

performance and the functional and architectural changes of existing technologies, but 

also studies how and why these changes occur and searches for patterns behind these 
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evolutions. The research results of technology evolution are valuable for designers, R&D 

managers, and policy makers to make important design and R&D decisions and to 

develop effective government incentives. 

Prior research in the area of technology evolution, called technological 

forecasting or diffusion of innovations, is focused solely on business indicators of 

technologies, such as cost, price, production, sales revenue, and profit [3-11]. This 

dissertation focuses on technical performance (e.g., speed, capacity, and energy 

efficiency) evolution of technologies. In this dissertation, a quantitative ecological based 

theory is created for technology evolution prediction and manipulation. The quantitative 

ecological based theory consists of a Lotka-Volterra ecosystem model and a generic 

method for prediction intervals generation. The Lotka-Volterra ecosystem model and the 

prediction intervals generation method are able to help designers, R&D mangers, and 

policy makers to discern the causality of technology evolution, to predict future 

technology technical performance, and to develop effective strategies to improve 

technology technical performance.  

As the first chapter of this dissertation, this chapter begins with the significance 

of the research in modeling the technical performance changes of technologies. The 

descriptive models that are commonly used in technological forecasting are reviewed, 

and the drawbacks of these descriptive models are discussed. Based on the drawbacks of 

existing descriptive models, the research motivation and objective of this dissertation are 

introduced. This chapter is concluded with an overview of the following chapters in this 

dissertation.          
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1.1. Research Significance 

It is important for designers, R&D mangers, and policy makers to understand the 

technology evolution of interest and to predict future technical performance of the 

technology. Specifically, the research results in technology technical performance 

evolution help designers, R&D managers, and policy makers to establish stable product 

architecture, set reasonable R&D targets, and develop effective incentive policies. 

Technology evolution has significant impact on product architecture. If the 

technical performance of a technology used in a product is changing rapidly, the 

designer may choose to include that technology into the product in a modular fashion. If 

the technology is mature, the designer may decide to include that technology into the 

product in an integral way. For example, central processing unit (CPU) and random-

access memory (RAM) are designed as pluggable modules on the computer motherboard 

because the technical performance of CPU and RAM changes much faster than that of 

the other technologies. Similarly for product family design, the maturity of a technology 

impacts its suitability for inclusion in a product family platform. A technology is not 

appropriate to be shared among the product variants in a family if the technology is 

evolving rapidly [12]. 

R&D managers rely on the technical performance prediction results to set 

reasonable R&D targets. For example, R&D managers in semi-conductor industries use 

Moore’s Law to predict CPU transistor count evolution and set target values for future 

CPU technical performance (e.g., clock speed) accordingly [13]. Reasonable R&D 

targets are critical for a company to succeed in the industry. The company cannot 



 

4 

 

compete with industry rivals and will lose market share if the company sets a low target 

value for technology performance in R&D planning. On the other hand, the company 

may not be able to achieve expected outcomes and will exhaust limited R&D capital and 

human resources if the target value is too high.  

Policy makers can also benefit from the research of technology technical 

performance evolution. Knowing the technology interaction and predicting the evolution 

of a technology of interest, professionals in public policy can fund key research 

initiatives that may improve the technology technical performance rapidly. Moreover, 

public policy officials could develop appropriate regulations and incentive structures for 

future technology development if they can identify the key factors that have significant 

impact on the evolution of a technology. For example, government policy makers may 

consider providing economic benefits (e.g., R&D funding support and tax credit) to not 

only the passenger aircraft manufacturers but also to the key component (e.g., aero-

engine) developers and manufacturers in order to maintain the prosperity of the 

passenger aircraft industry. 

The research results in technology technical performance evolution may also 

useful for entrepreneurs, business managers, investors, and government officials to make 

various decisions. In this dissertation, “practitioners” is used to represent the people who 

are interested in technology technical performance evolution and may employ the 

quantitative ecological based theory. 
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1.2. Descriptive Models and Their Drawbacks 

Researchers often believe that an underlying law governs the technical 

performance changes of technologies over time [14]. Such an underlying law is 

described by continuous mathematical functions involving time, which are called 

descriptive models. The logistic S-curve model [15, 16] and the simple exponential 

model (Moore’s Law) [13] are two commonly used descriptive models in technology 

technical performance evolution, where the technical performance evolution is modeled 

as a standard S-curve and a simple exponential function, respectively. The parameters in 

these models are estimated based on past technical performance data. Future technology 

technical performance is predicted by mathematical extrapolation.  

There are more descriptive models developed for technological forecasting that 

focuses on the business indicators, such as cost, price, production, sales revenue, and 

profit, of technologies [5, 17]. Several popular descriptive models are listed in Table 1, 

where Xt is the technology performance function with time t.  

Despite some successful applications, these descriptive models suffer from 

several drawbacks. Practitioners have to go through tedious procedures to select an 

appropriate model or a class of possible models for their problem [5, 17]. Moreover, 

most of parameters in these models lack physical meaning or interpretation. These 

models often are at best curve fits rather than richer models that indicate some descriptor 

of causality. In other words, these models don’t allow for the fact that technology 

evolution is affected by external or internal factors. These models do not identify what 

factors shape future technology performance and how designers, firms, or governments 
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can manipulate it. Importantly, these descriptive models consider a technology in 

isolation and not as interconnected with other technologies, which may lead to 

significant prediction error [18-20]. In addition, the prediction results generated by these 

descriptive models are expressed as single numbers (i.e., point forecasts) rather than 

prediction intervals. In practice, practitioners often want to supplement point forecasts 

by computing prediction intervals to assess future uncertainty and make contingency 

plans accordingly [21]. 

 

 Table 1.1 Popular Descriptive Models in Technology Evolution 

Model Formula Parameters 

Logistic 𝑋𝑡 =
𝑎

1 + 𝑐 ∙ 𝑒𝑥𝑝⁡(−𝑏𝑡)
 a, b, c 

Moore’s Law 𝑋𝑡 = 𝑐 ∙ 𝑒𝑥𝑝⁡(𝑏𝑡) b, c 

Gompertz 𝑋𝑡 = 𝑒𝑥𝑝⁡(−𝑐 ∙ 𝑒𝑥𝑝⁡(−𝑏𝑡)) b, c 

Weibull 𝑋𝑡 = 1 − 𝑒𝑥𝑝⁡(−(
𝑡

𝑎
)𝑏) a, b 

Mansfield 𝑙𝑛 (
𝑋𝑡

1 − 𝑋𝑡
) = 𝑎 + 𝑏𝑡 a, b 

Log-Logistic 𝑋𝑡 =
𝑎

1 + 𝑒𝑏−𝑐 ln 𝑡
 a, b, c 

Erto-Lanzotti 𝑋𝑡 = 𝑋0 + (1 − 𝑒−𝑏𝑡
𝑐
)(𝑎 − 𝑋𝑜) a, b, c 

Richards 𝑋𝑡 =
𝑎

(1 + 𝑒𝑏−𝑐𝑡)
1
𝑑

 a, b, c, d 

 



 

7 

 

1.3. Motivation and Research Objective 

 In this dissertation, a product is referred to as a system technology. The system 

technology is realized through the integration and support of hardware and software [1, 

19, 22], which are referred to as component technologies. For example, the smart phone 

is a system technology that is supported by several component technologies, such as 

touch screen, CPU, integrated circuit (IC), battery, and operating system. The descriptive 

models do not take the interaction between a system technology and its component 

technologies into account as stated earlier. To overcome this shortcoming, this work 

seeks inspiration in community ecology. The interaction modes between two species in 

community ecology are used to study the interaction between a system technology and 

its component technologies. The Lotka-Volterra equations, which are initially developed 

to describe the population changes of a predator and its prey in mathematical ecology 

[23], are analyzed and extended to model the technical performance changes of system 

and component technologies. 

 The objective of this research is to develop a quantitative ecological based theory 

that helps practitioners to predict and manipulate future technology evolution. Unlike the 

descriptive models, shown in Table 1.1, the quantitative ecological based theory 

indicates the causality and the uncertainty of technology evolution through a Lotka-

Volterra ecosystem model and a generic method for prediction intervals generation. 

 The Lotka-Volterra ecosystem model comprises a set of differential equations 

that model the technical performance changes of system technology and its component 

technologies simultaneously. The ecosystem model includes several interaction terms 
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that represent the interactions between a system technology and multiple component 

technologies. In addition, the parameters in the ecosystem model are associated with 

causal factors of technical performance variation. Thus, the Lotka-Volterra ecosystem 

model is able to help practitioners identify the key component technologies that have a 

significant impact on system technology performance evolution. The identified key 

component technologies also provide effective strategies to improve system technology 

performance.     

 The generic method for prediction intervals generation helps practitioners to 

assess the uncertainty of future technology evolution and make contingency plans 

accordingly. The generic method can be applied to any model that predicts technology 

performance changes (e.g., the logistic S-curve model, Moore’s Law, and the Lotka-

Volterra ecosystem model). The method is based on a bootstrapping approach [24-26] 

and does not rely on any parametric assumptions (e.g., assumptions of normality). In 

addition, this method provides the probability distribution of each parameter in a 

prediction model. The probability distribution is valuable for practitioners when 

parameter values are associated with the impact factors of technology evolution (e.g., 

performance upper limit in the logistic S-curve model or technology interaction in the 

Lotka-Volterra ecosystem model). 

     

1.4. Overview of Chapters 

 This dissertation begins with a short review of interaction modes (between two 

species in community ecology and their analogies in technology evolution) and the 
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Lotka-Volterra equations. The Lotka-Volterra ecosystem model is also introduced in 

Chapter 2. In Chapter 3, the Lotka-Volterra ecosystem model is validated as an advanced 

technology evolution prediction model through the mathematical analysis. In Chapter 4, 

technology commensalism and amensalism are discussed. Commensalism and 

amensalism are two special cases of technology interactions in which system technology 

development has a negligible influence on component technologies. Analytic solutions 

of the Lotka-Volterra ecosystem model are derived under these two special cases. The 

prediction for concrete skyscraper is carried out using the analytic solutions. In Chapter 

5, the general case of technology interaction, including the relationships of symbiosis, 

commensalism, and amensalism, is examined. Three steps are introduced to apply the 

Lotka-Volterra ecosystem model in technology evolution prediction and manipulation. 

The application of the Lotka-Volterra ecosystem model is illustrated using a case study 

of passenger aircraft fuel efficiency. In Chapter 6, a generic method for prediction 

intervals generation is developed. Four steps to implement the method are summarized. 

The application of the generic method is illustrated using two case studies of CPU and 

passenger aircraft overall performance. Conclusions of this dissertation and future 

research directions are provided in Chapter 7.      
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2. BACKGROUND AND RELATED WORK* 

 

The descriptive models do not consider the interaction between a system 

technology and its component technologies as stated in Chapter 1.2. To overcome this 

shortcoming, the relationships between a system technology and its component 

technologies should be studies first, a mathematical model then could be established 

based on the relationships, also called interaction modes, between the technologies. 

This chapter seeks inspiration from community ecology to describe the 

relationships between a system technology and its component technologies. The 

interaction modes between two species in community ecology are provided, and their 

analogies in technology evolution are discussed. The background of the Lotka-Volterra 

equations is then reviewed. These equations are extended as a Lotka-Volterra ecosystem 

model for technology evolution prediction and manipulation. 

 

2.1. Interaction Modes between Component Technology and System Technology 

 The interaction between a system technology and its component technologies 

critically determines the evolution of the system technology. For example, the fast 

development of the computer relies on the performance improvement of the CPU; the 

evolution of electric automobile depends on the advancement of battery performance. To 

                                                 

* Reprinted with permission from “System Evolution Prediction and Manipulation Using 

a Lotka-Volterra Ecosystem Model” by Guanglu Zhang, Douglas Allaire, Venkatesh 

Shankar, and Daniel A. McAdams, 2019. Design Studies, 60, 103-138, Copyright 2019 

by Elsevier. 
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capture the evolution of technology performance, concepts from community ecology are 

employed to study the interaction modes between the component technology and the 

system technology. There are six different interaction modes between two species in an 

ecosystem [27]. The six interaction modes are shown on Table 2.1. 

 In Table 2.1, “0” indicates no significant interaction; “+” indicates growth, 

survival, or other population attribute benefited; and “-” indicates a reduction of species 

population or other attribute inhibited. Among the six interaction modes, symbiosis, 

commensalism, and amensalism are appropriate to describe the interaction between a 

system technology and a component technology [18]. 

 

Table 2.1 Interaction Modes between Two Species in an Ecosystem 

Mode of interaction Species 1 Species 2 General nature of interaction 

Neutralism 0 0 Neither species affects the other 

Predation  

(and Parasitism) 
- + 

Species 2 (predator) is benefited, 

Species 1 (prey) is inhibited 

Competition - - 
Direct or indirect inhibition of 

each species by the other 

Symbiosis (include 

Protocooperation and 

Mutualism) 

+ + 
Interaction is favorable to both 

species 

Commensalism 0 + 
Species 2 is benefited, Species 1 

is unaffected 

Amensalism 0 - 
Species 2 is inhibited, Species 1 

is unaffected 

 

 Symbiosis describes two species that benefit each other in community ecology. 

For example, a clownfish and a sea anemone establish a symbiotic relationship. The 
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clownfish feeds on small invertebrates that harm the sea anemone, and the sea anemone 

protects the clownfish from its predator [28]. Such a symbiotic relationship is also 

common in technology evolution because a system technology is often supported by one 

or more component technologies. For example, the areal density of hard disk drives 

(HDD) has increased from 10-3 Gb/in2 to 103 Gb/in2 over a forty-year period [29]. The 

improvement in HDD performance supported the boom of the computer. At the same 

time, the fast development of the computer also demands that the HDD has larger areal 

density. Thus, the interaction is favorable to both the system technology and its 

component technology. 

 Commensalism is a one-way relationship between two species. In Table 2.1, 

Species 1 has a beneficial effect on Species 2, but Species 1 is not affected by Species 2. 

A well-known example of commensalism is the relationship between remora and sharks. 

A remora adheres to the body of a shark and feeds on the leftovers of the shark’s meal, 

but a shark is neither benefited nor harmed by a remora [30]. In technology evolution, 

commensalism could be observed when one component technology serves a diverse set 

of system technologies. One system technology has a negligible impact on the evolution 

of the component technology. For example, steel is an essential component technology 

of bridges. Improved steel properties lead to better bridge performance, but the evolution 

of bridges has negligible impact on steel improvement because steel is also used in many 

other system technologies, such as automobiles and spacecraft. 

 Similar to commensalism, amensalism is also a one-way relationship between 

two species in community ecology. Unlike commensalism, Species 1 has a detrimental 
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effect on Species 2 if they have an amensalism relationship. A typical example of 

amensalism in community ecology is the relationship between a short tree and a tall tree. 

The short tree lives in the shadow of the tall tree. The short tree suffers adverse effects 

from the tall tree but has little impact on the tall tree. It is possible for a component 

technology and a system technology to also exhibit an amensalism relationship. For 

example, while technological development has resulted in more compact CPUs, the 

development has also induced more unwanted heat in the CPU. In this way, the thermal 

dissipation performance of a laptop system is impaired by the fast development of the 

CPU component. Meanwhile, the evolution of the CPU is not affected by the laptop 

because the CPU is also utilized in other system technologies (e.g., desktops and 

workstations). Of note, the relationship between a system technology and its component 

technologies depends on the performance metric of interest. For instance, the 

relationship between a laptop system and its CPU component may vary if practitioners 

focus on a different performance metric.  

 

2.2. Lotka-Volterra Ecosystem Model 

The Lotka-Volterra equations were introduced by Vito Volterra in the early 20th 

century to model the population changes of sharks and fishes in the Adriatic Sea. At the 

beginning, the model only described the predation relationship between two species (one 

predator and one prey). Since then, these equations have been expanded to model other 

relationships (e.g., competition) between two species and have been successfully applied 

in demography and ecology during the last century [23, 31]. 
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Pistorius and Utterback modified the traditional Lotka-Volterra equations in 

community ecology to study the interaction between two technologies [32]. Their model 

has the mathematical form as follows 

 
𝑑𝑁

𝑑𝑡
= 𝑎𝑛𝑁 − 𝑏𝑛𝑁

2 + 𝐶𝑛𝑚𝑁𝑀 (2.1) 

 
𝑑𝑀

𝑑𝑡
= 𝑎𝑚𝑀− 𝑏𝑚𝑀

2 + 𝐶𝑚𝑛𝑀𝑁⁡, (2.2) 

where N(t) and M(t) denote the performances of two technologies. The derivatives dN/dt 

and dM/dt represent the performance change rates of the two technologies, respectively. 

Parameters a (an and am), b (bn and bm), and C (Cnm and Cmn) are constants derived 

through a data fitting process. 

 Eqs. (2.1) and (2.2) are extended to model the interaction between one system 

technology and multiple component technologies in the relationships of symbiosis, 

commensalism and amensalism. The Lotka-Volterra ecosystem model is developed as 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 − 𝑏0𝑦0
2 +∑𝐶0𝑖𝑦0𝑦𝑖

𝑛

𝑖=1

 (2.3) 

 
𝑑𝑦1
𝑑𝑡

= 𝑎1𝑦1 − 𝑏1𝑦1
2 + 𝐶10𝑦1𝑦0 (2.4) 

 … …  

 𝑑𝑦𝑗

𝑑𝑡
= 𝑎𝑗𝑦𝑗 − 𝑏𝑗𝑦𝑗

2 + 𝐶𝑗0𝑦𝑗𝑦0 (2.5) 

 … …  

 𝑑𝑦𝑛
𝑑𝑡

= 𝑎𝑛𝑦𝑛 − 𝑏𝑛𝑦𝑛
2 + 𝐶𝑛0𝑦𝑛𝑦0⁡. (2.6) 
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Eqs. (2.3) - (2.6) represent (n+1) equations that model the interaction between one 

system technology and n component technologies, where i, j and n are positive integers 

with i∈{1,…, n}, j∈{1,…, n}; y0 is system technology performance, yi and yj are 

component technology performances; a0, aj, b0, bj, C0i, and Cj0 are constant parameters 

derived through a data fitting process. 

 Unlike the descriptive models, the parameters a (i.e., a0, aj, an), b (i.e., b0, bj, bn), 

and C (i.e., C0i, Cj0) in the Lotka-Volterra ecosystem model are associated with causal 

factors in both community ecology and technology evolution [19, 33]. 

 Parameter a represents unlimited growth rate in community ecology. The 

unlimited growth originates from the breeding instinct of species. In technology 

evolution, the parameter a indicates the system or component technology performance 

independent growth rate. The independent growth rate depends on R&D investment, 

government policy encouragement, and other stimulation factors. For example, the 

parameter a0 in Eq. (2.3) will have a larger value if R&D managers invest more in the 

R&D of the system technology. Generally, the parameter a has a positive value because 

practitioners want to improve the system and the component technology performances. 

In rare cases, the parameter a may have a negative value (e.g., due to government 

regulation restrictions). 

 Parameter b describes the self-crowding effect of a species in an ecological 

system. The negative effect arises from shortage of resources, such as food or water. In 

technology evolution, the parameter b represents technical difficulty, which is the 

hardship that a component technology or a system technology has to overcome for its 
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performance improvement. The value of parameter b sets the upper limit value of system 

or component technology performance. For example, the system technology 

performance y0 will be bounded by a lower upper limit value if the parameter b0 has a 

larger value in Eq. (2.3). Because there is a negative sign in front of the b terms (e.g., 

b0y0
2 in Eq. (2.3)) in the Lotka-Volterra ecosystem model, the parameter b has a positive 

value. 

 Parameter C denotes the beneficial or detrimental effect from other species in 

community ecology. Similarly, the parameter C describes the interaction between the 

system technology and its component technologies in technology evolution. The 

parameter C could be positive or negative based on the relationship between the system 

technology and the component technology. 

 The interaction between system technology performance y0 and component 

technology performance y1 is taken as an example. The parameter C01 in Eq. (2.3) 

represents the impact of the component technology on the system technology; the 

parameter C10 in Eq. (2.4) represents the impact of the system technology on the 

component technology. The values of parameters C01 and C10 are not equal in a general 

case. If the system technology and the component technology have a symbiotic 

relationship, the parameters C01 and C10 are positive. The positive C01 and C10 show that 

the system technology and the component technology have beneficial effects on each 

other. If the system technology and the component technology have a commensalism 

relationship, the parameter C01 is positive and the parameter C10 equals zero. The 

positive C01 and null C10 indicate that the component technology has a beneficial effect 
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on the system technology, but the system technology has a negligible effect on the 

component technology. Similarly, if the system technology and the component 

technology have an amensalism relationship, the parameter C01 is negative and the 

parameter C10 equals zero. The negative C01 and null C10 indicate that the component 

technology has a detrimental effect on the system technology, but the system technology 

has negligible effect on the component technology. The sign of C01 and C10 under 

different component technology and system technology interaction modes are shown in 

Table 2.2. 

 

Table 2.2 The Signs of Parameter C01 and C10 under Different Interaction Modes 

Mode of interaction Symbiosis Commensalism Amensalism 

C01 + + - 

C10 + 0 0 

 

 The interaction between component technologies is neglected in Eqs. (2.3) - (2.6). 

Specifically, the term C12y2y1 is not included in Eq. (2.4) to consider the impact of the 

component technology performance y2 on the component technology performance y1. 

This simplification is valid in many real cases. For example, the touch screen and the 

CPU are two major component technologies of a smartphone system technology. These 

two component technologies have significant impacts on smartphone system technology 

performance. However, the interaction between the touch screen and the CPU is 

negligible because the performance evolutions of these two component technologies are 

independent. The interaction between the component technologies may be prominent in 
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some cases. In the laptop system technology example, the advancement of the HDD 

(hardware) may facilitate the improvement of the operating system (software). Such 

cases are beyond the scope of this dissertation but provide an interesting and likely 

important avenue for future research.  

 

2.3. Summary 

 In this chapter, the interaction modes between two species in community ecology 

are employed to study the relationships between a system technology and its component 

technologies in technology evolution. Among the six interaction modes between two 

species in community ecology, symbiosis, commensalism, and amensalism have 

analogies in technology evolution. The system technology performance and the 

component technology performance benefit each other when they have a symbiotic 

relationship. In the relationships of commensalism and amensalism, the component 

technology performance is unaffected by the system technology performance. However, 

as the component technology performance improves, the system technology 

performance is enhanced in commensalism but inhibited in amensalism. 

 The Lotka-Volterra equations in community ecology are extended as a Lotka-

Volterra ecosystem model for technology evolution prediction and manipulation. The 

mathematical form of the Lotka-Volterra ecosystem model is shown in Eqs. (2.3) - (2.6). 

The ecosystem model is able to describe the interaction between one system technology 

and multiple component technologies in the relationships of symbiosis, commensalism 

and amensalism. In addition, the parameters a, b, and C used in the Lotka-Volterra 
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ecosystem model are associated with causal factors of technology evolution. Specifically, 

the parameter a represents technology performance independent growth rate that 

depends on R&D investment, government policy encouragement, and other stimulation 

factors; the parameter b describes technical difficulty, which sets the upper limit value of 

system or component technology performance; the parameter C indicates the 

relationship of symbiosis, commensalism, or amensalism between the system technology 

and its component technologies. The signs of parameter C under different interaction 

modes are shown in Table 2.2.  
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3. MATHEMATICAL ANALYSIS OF THE LOTKA-VOLTERRA ECOSYSTEM 

MODEL AND IMPLICATIONS FOR PRACTITIONERS* 

 

 The Lotka-Volterra ecosystem model is introduced as a new mathematical model 

for technology evolution prediction and manipulation in Chapter 2. It is necessary to test 

whether the Lotka-Volterra ecosystem model is able to depict the typical technology 

evolution curves. The relationships between the Lotka-Volterra ecosystem model and the 

popular descriptive models are also need to be explored.  

 This chapter presents the functional equivalence and equilibrium point analysis 

of the Lotka-Volterra ecosystem model. These mathematical analyses demonstrate that 

the Lotka-Volterra ecosystem model can be used as an advanced model for technology 

evolution prediction and manipulation. The analysis also provides important 

implications for practitioners, such as designers, R&D managers, and policy makers. 

 

3.1. Simplification of the Lotka-Volterra Ecosystem Model 

The Lotka-Volterra ecosystem model, shown in Eqs. (2.3) - (2.6), are coupled 

differential equations. Eq. (2.3) could be reduced if the interaction between the system 

technology and the component technology is negligible. The parameter C0i in Eq. (2.3) 

equals zero in this case, and Eq. (2.3) reduces to 

                                                 

* Reprinted with permission from “System Evolution Prediction and Manipulation Using 

a Lotka-Volterra Ecosystem Model” by Guanglu Zhang, Douglas Allaire, Venkatesh 

Shankar, and Daniel A. McAdams, 2019. Design Studies, 60, 103-138, Copyright 2019 

by Elsevier. 
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𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 − 𝑏0𝑦0
2⁡. (3.1) 

The solution of Eq. (3.1) has the form 

 
𝑦0 =

𝐴

𝑏0
𝑎0

+ 𝐵𝑒−𝑎0𝑡
⁡, 

(3.2) 

where A and B are integral constants. The logistic S-curve model is obtained from Eq. 

(3.2) when b0 equals a0 as 

 
𝑦0 =

𝐴

1 + 𝐵𝑒−𝑎0𝑡
⁡, (3.3) 

 If the technical difficulty term b0y0
2 in Eq. (3.1) is neglected, the Lotka-Volterra 

ecosystem model is further reduced to 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0⁡. (3.4) 

The solution of Eq. (3.4) is 

 𝑦0 = 𝐷𝑒𝑎0𝑡⁡, (3.5) 

where D is an integral constant. Eq. (3.5) models technology performance evolution as 

an exponential function, which is also known as Moore’s Law. Moore’s Law is a special 

case of the logistic S-curve model. It was proposed by Gordon E. Moore in 1965 and is 

widely used in the semiconductor industry [13]. 

 The simplification from Eq. (3.1) to Eq. (3.5) shows that the Lotka-Volterra 

ecosystem model could be reduced to the logistic S-curve model and Moore’s Law. In 

other words, the logistic S-curve model and Moore’s Law are only special cases of the 

Lotka-Volterra ecosystem model. The ecosystem model also covers Gompertz, Bass, 

Non-Symmetrical Responding Logistic (NSRL) and Sharif-Kabir models [34]. Thus, the 
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Lotka-Volterra ecosystem model has a greater data fitting accuracy than the logistic S-

curve model, Moore’s Law, and the other aforementioned models. 

 

3.2. Equilibrium Point Analysis of the Lotka-Volterra Ecosystem Model 

 In community ecology, the population change rate of a species equals zero at the 

equilibrium point. If an equilibrium point exists on the first quadrant of the phase 

diagram of the traditional Lotka-Volterra equations, it signifies that the population of the 

species reaches an upper limit value as an asymptote [35]. Similarly, the equilibrium 

point analysis of the Lotka-Volterra ecosystem model could help practitioners determine 

whether system or component technology performance reaches an upper limit as it 

evolves. The mathematical expression of the upper limit value also offers guidelines for 

practitioners on improving technology performance. 

 The simple case where one system technology interacts with one component 

technology is considered first [33]. The Lotka-Volterra ecosystem model has the form 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 − 𝑏0𝑦0
2 + 𝐶01𝑦0𝑦1 (3.6) 

 
𝑑𝑦1
𝑑𝑡

= 𝑎1𝑦1 − 𝑏1𝑦1
2 + 𝐶10𝑦1𝑦0⁡ (3.7) 

where y0 is the system technology performance, and y1 is the component technology 

performance. The equilibrium points of Eqs. (3.6) and (3.7) are defined as 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 − 𝑏0𝑦0
2 + 𝐶01𝑦0𝑦1 = 0 (3.8) 

 
𝑑𝑦1
𝑑𝑡

= 𝑎1𝑦1 − 𝑏1𝑦1
2 + 𝐶10𝑦1𝑦0 = 0⁡ (3.9) 
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The system and the component technology performance change rates equal zero at the 

equilibrium points. 

 There are four equilibrium points in this case. The first point is at the origin of 

the performance phase diagram where both y0 and y1 equal zero. The second and third 

equilibrium points have the coordinates (0, a1/b1) and (a0/b0, 0). These three equilibrium 

points have little implication for technology evolution prediction and manipulation 

because system or component technology performance always has a positive value. 

Solving Eqs. (3.8) and (3.9), the coordinates of the fourth equilibrium point are 

 𝑦0
(𝑒)

=
𝑎0𝑏1 + 𝑎1𝐶01
𝑏0𝑏1 − 𝐶01𝐶10

 (3.10) 

 𝑦1
(𝑒)

=
𝑎1𝑏0 + 𝑎0𝐶10
𝑏0𝑏1 − 𝐶01𝐶10

⁡. (3.11) 

The parameters a and b have positive values in general as discussed in Chapter 2.2. The 

case that parameter C has positive value is considered here because symbiosis and 

commensalism are the most common relationships between a system technology and a 

component technology [18]. The rare case that parameter C has a negative value is not 

discussed as it is outside the scope of this chapter. Thus, the fourth equilibrium point is 

located in the first quadrant (b0b1>C01C10 and y0
 (e)>0, y1

 (e)>0) or in the third quadrant 

(b0b1<C01C10 and y0
 (e) <0, y1

 (e) <0) of the performance phase diagram. 

 The performance phase diagram for b0b1>C01C10 is shown in Figure 3.1. The 

equilibrium point is located in the first quadrant (y0
 (e)>0, y1

 (e)>0). The initial values of 

the system technology performance y0 and the component performance y1 could be 
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located in the four areas in Figure 3.1. The performance change rates dy0/dt and dy1/dt in 

the four areas have 

Area (a) 
𝑑𝑦0
𝑑𝑡

> 0,
𝑑𝑦1
𝑑𝑡

> 0⁡ (3.12) 

Area (b) 
𝑑𝑦0
𝑑𝑡

< 0,
𝑑𝑦1
𝑑𝑡

> 0 (3.13) 

Area (c) 𝑑𝑦0
𝑑𝑡

< 0,
𝑑𝑦1
𝑑𝑡

< 0 
(3.14) 

Area (d) 𝑑𝑦0
𝑑𝑡

> 0,
𝑑𝑦1
𝑑𝑡

< 0⁡. 
(3.15) 

 

 

Figure 3.1 Performance Phase Diagram when b0b1>C01C10 

 

In this case, the system technology performance y0 and the component technology 

performance y1 converge to corresponding upper limit values no matter where the initial 

values of y0 and y1 are located in area (a), (b), (c), or (d). The typical evolution curves of 

component technology performance and system technology performance in each of the 
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four areas are illustrated in Figure 3.2. These curves are derived using the numerical 

method recommended in Chapter 5. 

 

 

Figure 3.2 Typical Performance Evolution Curves when b0b1>C01C10 

 

The performance of a component technology or a system technology has a positive value 

and continually increases during its evolution. Thus, only the curves in area (a) have 

clear interpretation in technology evolution because the curves in areas (b), (c), and (d) 

have decreasing periods. In area (a), the system technology performance evolution 

accelerates significantly when the component technology is under a certain stage of 
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development, and both the system and the component technology performances 

converge to their respective upper limit values along S-shape curves. The upper limit 

values are the corresponding equilibrium point coordinates on the performance phase 

diagram (Figure 3.1). Although the curves in areas (b), (c), and (d) do not have clear 

interpretation in technology evolution, they are appropriate to describe product or firm 

interaction, where the performance metrics are sales revenue or market share. These 

metrics may increase or decrease with time rather than monotonically increasing [36]. 

 Similarly, the performance phase diagram for b0b1<C01C10 is shown in Figure 3.3. 

The equilibrium point is located in the third quadrant (y0
 (e) < 0, y1

 (e) < 0). The initial 

values of the system technology performance y0 and the component technology 

performance y1 could be located in the three areas in Figure 3.3. The performance 

change rates dy0/dt and dy1/dt in the three areas have 

Area (e) 
𝑑𝑦0
𝑑𝑡

< 0,
𝑑𝑦1
𝑑𝑡

> 0⁡ (3.16) 

Area (f) 
𝑑𝑦0
𝑑𝑡

> 0,
𝑑𝑦1
𝑑𝑡

> 0 (3.17) 

Area (g) 𝑑𝑦0
𝑑𝑡

> 0,
𝑑𝑦1
𝑑𝑡

< 0⁡ 
(3.18) 
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Figure 3.3 Performance Phase Diagram when b0b1 < C01C10 

 

The system technology performance y0 and the component technology performance y1 

have no upper limit values in this case. The typical evolution curves of the component 

technology performance and the system technology performance in areas (e), (f), and (g) 

are illustrated in Figure 3.4. 
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Figure 3.4 Typical Performance Evolution Curves when b0b1 < C01C10 

 

 As shown in Figure 3.2 and Figure 3.4, the Lotka-Volterra ecosystem model has 

the ability to model component or system technology performance evolution regardless 

of whether the performance has an assumed upper limit. Such a model is useful when the 

component or the system is sufficiently new, making mature performance estimation 

uncertain. 

 The equilibrium point analysis can be extended to the general case in which one 

system technology interacts with n component technologies. In this case, the Lotka-
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Volterra ecosystem model has the same form as Eqs. (2.3) - (2.6). Using the same 

approach as reflected by Eqs. (3.8) and (3.9), the coordinates of the equilibrium point in 

the general case are 

 𝑦0
(𝑒)

=
𝑎0 + ∑

𝑎𝑖
𝑏𝑖
𝐶0𝑖

𝑛
𝑖=1

𝑏0 − ∑
𝐶𝑖0𝐶0𝑖
𝑏𝑖

𝑛
𝑖=1

 (3.19) 

 𝑦𝑗
(𝑒)

=
𝑎𝑗

𝑏𝑗
∙

𝑏0 +
𝑎0𝐶𝑗0
𝑎𝑗

+∑ (
𝐶𝑗0
𝑎𝑗

−
𝐶𝑖0
𝑎𝑖
)
𝑎𝑖
𝑏𝑖
𝐶0𝑖

𝑛
𝑖=1

𝑏0 − ∑
𝐶𝑖0𝐶0𝑖
𝑏𝑖

𝑛
𝑖=1

⁡. (3.20) 

Eqs. (3.19) and (3.20) reduce to Eqs. (3.10) and (3.11) if j=n=1. Similar to the simple 

case (one system technology interacting with one component technology), the system 

technology and n component technology performances do not have upper limits when 

the denominator of Eq. (3.19) has a negative value. In contrast, the performances 

converge to the upper limit values along S-shape curves when the denominator of Eq. 

(3.19) has a positive value. The corresponding upper limit values are determined by Eqs. 

(3.19) and (3.20). 

 

3.3. Implications for Practitioners 

 The analysis in Chapter 3.2 offers important implications for practitioners. It 

helps practitioners to identify key component technologies in a system technology and 

also provides guidelines to improve system technology performance. 

 In the Lotka-Volterra ecosystem model, the parameter C describes the interaction 

between the system technology and the component technology in technology evolution. 

A larger value of parameter C indicates a higher dependency level between the 
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component technology and the system technology. Specifically, in Eq. (2.3), a higher 

positive value of parameter C0i indicates greater significance of component technology i 

performance to the system technology performance evolution. From the perspective of 

system design, practitioners (i.e., designers and R&D mangers) could identify the 

component technologies with the highest C0i values as the key features of the system. 

For these key component technologies, practitioners may wish to develop and 

manufacture the key component technologies in-house. This strategy preserves the core 

competency of the firm. If in house development or manufacture is not feasible, the firm 

might consider acquiring the component technology manufacturer or at least establish a 

more synergistic relationship with the manufacturer through joint R&D or exclusive 

supply. For the component technologies with the smallest C0i values, however, 

practitioners may consider outsourcing these component technologies. Such outsourcing 

strategies could reduce costs for the firm and make its product more price competitive. 

 The identification of key component technologies is crucial for new system 

technology development. For example, electric automobile practitioners cannot develop 

every component technology (e.g., battery, motor, steering) of the automobile in-house. 

They likely would want to invest their limited R&D budget on designing the component 

technologies that have significant impacts on electric automobile (system technology) 

performance. Practitioners would like to purchase the component technologies having 

relatively little impact on the electric automobile (system) performance from suppliers. 

Of note, practitioners typically make these decisions based on experience or qualitative 

analysis [37]. The Lotka-Volterra ecosystem model allows practitioners to quantify the 



 

31 

 

significance of each component technology through the value of parameter C0i and make 

more informed R&D and outsourcing decisions. 

 Moreover, the Lotka-Volterra ecosystem model not only measures the 

dependency between component technology and system technology, but also offers 

several strategies for practitioners to improve the performance of an existing system 

technology. As discussed in Chapter 2.2, the parameter a in the Lotka-Volterra 

ecosystem model denotes the independent growth rate, the parameter b represents the 

degree of technical difficulty, and the parameter C indicates the dependency level 

between the component technology and the system technology. The values of b and C 

are fixed once practitioners decide to integrate a system using n specific component 

technologies. It might be hard for practitioners to change the values of b and C after 

integration. However, the value of parameter a is associated with the stimulation factors 

such as R&D investment and government policy encouragement. Practitioners have the 

chance to manipulate the value of parameter a to boost system technology performance. 

 In practice, two accessible strategies exist for practitioners to boost system 

technology performance. The first strategy is to increase a0 in Eq. (2.3) through the 

investment on the system technology to create superior integration of component 

technologies [38]. The other strategy is to subsidize component technology j or 

otherwise improve the independent growth rate aj in Eq. (2.5). Eq. (3.19) specifies the 

upper limit value of system technology performance. By comparing the value of a0 and 

ajC0j/bj, practitioners can make an informed decision on investing system technology or 

component technology j. Here a0 and ajC0j/bj are used as indicators to evaluate the 
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effects of different strategies (investment on the system technology or the component 

technology j) regardless of whether the system technology performance y0 has an upper 

limit or not. Specifically, if a0>> ajC0j/bj, the investment on the system technology is 

more effective to improve system technology performance than investment on the 

component technology j; by the same token, investment on the component technology j 

is preferable if a0<< ajC0j/bj. 

 In some cases, it may be expensive to adopt either of the two proposed strategies 

when system technology performance or component technology performance 

approaches its upper limit. In this case, large amounts of R&D investment can only lead 

to small improvements on the a0 or aj value. In such a case, practitioners have to 

consider innovative strategies. One alternative could be to adopt a new technology in 

component design [39], which can decrease the value of bj in Eq. (2.5) and may also 

change the value of Cj0 in Eq. (2.5) at the same time. Practitioners could also substitute 

one or more new component technologies for old component technologies in their 

system. This strategy alters the parameters aj, bj, Cj0 and C0i in Eqs. (2.3) and (2.5). As 

the result of these two innovative strategies, the denominator of Eqs. (3.19) and (3.20) 

may change its value from positive to negative. The component or system technology 

performance will start a new growth period due to this change. Several real cases 

validate the effectiveness of these innovative strategies. For instance, the traditional 

keyboard mobile phones approached a performance upper limit around 2005. 

Manufacturers such as LG, Samsung and Apple used a capacitive touch screen (a new 

component technology) to displace keyboard (an old component technology) on mobile 
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phones (system technology) [40], which greatly improved the customer experience and 

spawned a new era in the industry. 

 

3.4. Summary 

 This chapter validates the Lotka-Volterra ecosystem model as an advanced 

mathematical model for technology evolution prediction and manipulation through 

functional equivalence and equilibrium point analysis of the Lotka-Volterra ecosystem 

model. The functional equivalence results show that the Lotka-Volterra ecosystem 

model could be reduced to logistic S-curve model and Moore’s Law, which are two 

popular descriptive models in technology evolution prediction. The equilibrium point 

analysis indicates that the Lotka-Volterra ecosystem model has the ability to model 

component or system technology performance evolution regardless of whether the 

performance has an assumed upper limit. 

 The equilibrium point analysis provided in this chapter also offers important 

implications for practitioners. The values of parameter C in the Lotka-Volterra 

ecosystem model help practitioners to identify key component technologies in a system 

technology. Practitioners may wish to develop and manufacture the key component 

technologies with the highest C0i values in-house and may consider outsourcing the 

unimportant component technologies with the smallest C0i values. In addition, based on 

the values of parameters a, b, and C in the Lotka-Volterra ecosystem model, 

practitioners can select one or more effective strategies to improve system technology 

performance. The proposed strategies include investment on the system technology to 
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create superior integration of component technologies, subsidizing key component 

technologies or otherwise improve the independent growth rate of these component 

technologies, adopting a new technology in component design, and substituting one or 

more new component technologies for old component technologies in the system 

technology.  
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4. ANALYTIC SOLUTIONS OF THE LOTKA-VOLTERRA EQUATIONS IN 

COMMENSALISM AND AMENSALISM* 

 

 The Lotka-Volterra ecosystem model is a set of ordinary differential equations. It 

is necessary to solve these differential equations when practitioners apply the Lotka-

Volterra ecosystem model to predict and manipulate future technology performance. The 

analytic solutions of these differential equations can ease the application process of the 

Lotka-Volterra ecosystem model. However, the analytic solutions of the Lotka-Volterra 

equations have not been reported in prior research.   

 Although the analytic solutions of the Lotka-Volterra equations are not available 

in general case, this chapter derives the analytic solution for system technology 

performance in technology commensalism and amensalism. Commensalism and 

amensalism are two special cases of technology interactions in which system technology 

development has a negligible influence on component technology evolution. The 

corresponding solutions are also derived when the component technology performance 

follows a logistic function or simple exponential growth. Although these analytic 

solutions are derived in technology evolution context, these analytic solutions also can 

be applied in other areas, such as community ecology and demography. The application 

of the analytic solutions is demonstrated through a case study of the concrete skyscraper.  

                                                 

* Reprinted with permission from “Modeling the Evolution of System Technology 

Performance when Component and System Technology Performances Interact: 

Commensalism and Amensalism” by Guanglu Zhang, Daniel A. McAdams, Venkatesh 

Shankar, and Milad Mohammadi Darani, 2017. Technological Forecasting and Social 

Change, 125, 116-124, Copyright 2017 by Elsevier.  



 

36 

 

 

4.1. Solution of the Lotka-Volterra Ecosystem Model in Technology Commensalism 

and Amensalism 

The Lotka-Volterra ecosystem model is shown as Eqs. (2.3) - (2.6). Each 

component technology performance yi is assumed as a known function of time in Eq. 

(2.3) because component technology is not affected by system technology in technology 

commensalism and amensalism. Eq. (2.3) has the form of Bernoulli differential equation 

[41]. The general solution of Eq. (2.3) is as follows 

 𝑦0 =
𝑒∫(𝑎0+∑ 𝐶0𝑖𝑦𝑖

𝑛
𝑖=1 )𝑑𝑡

∫𝑏0𝑒
∫(𝑎0+∑ 𝐶0𝑖𝑦𝑖

𝑛
𝑖=1 )𝑑𝑡𝑑𝑡 + 𝐷

⁡ (4.1) 

where y0 is system technology performance, and D is an integral constant.  

 The solution Eq. (4.1) is valid no matter if the parameters a0, b0, and C0i are 

constants or functions of time. This property is useful in real cases because the 

underlying meaning of parameters a0, b0, and C0i, such as R&D investment and technical 

difficulty may keep changing during technology evolution. A decision maker may wish 

to explore the impact of changing the values of the a0, b0, and C0i on system technology 

performance. 

 As a special case, if the system technology only interacts with one component 

technology, Eq. (4.1) reduces to 

 𝑦0 =
𝑒∫(𝑎0+𝐶01𝑦1)𝑑𝑡

∫𝑏0𝑒∫(𝑎0+𝐶01𝑦1)𝑑𝑡𝑑𝑡 + 𝐷
⁡ (4.2) 

where y0 is system technology performance, y1 is component technology performance, 

and D is an integral constant. 
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4.2. System Technology Solutions for Specific Component Technology Evolution 

Curves 

The underlying assumption for the solution Eqs. (4.1) and (4.2) is that the impact 

of the system technology on the component technology is negligible. Thus, some 

evolution behavior for the component technology needs to be assumed. Based on the 

current understanding and descriptive models of technology evolution, the logistic 

function and the exponential function are chosen as the representative component 

technology performance growth curves and are substituted into Eq. (4.2). The 

parameters a0, b0, and C01 are assumed to be constants in this section. Other component 

technology evolution curves and parameter assignments in technology commensalism 

and amensalism can be applied in a similar manner. 

 

4.2.1. Component Technology Follows Logistic Growth 

 The logistic function is the most commonly used descriptive model in technology 

evolution prediction [5, 42]. In this case, the component technology performance y1 is 

assumed to be of the following form 

 
𝑦1 =

1

1 + 𝑒−(𝑚+𝑛𝑡)
 

(4.3) 

where m is the “width” or “steepness” of the S-curve, and n specifies the time when the 

curve reaches midpoint of the growth trajectory [43]. 

 Substituting Eq. (4.3) into the solution Eq. (4.2) of the system technology 

performance y0, the integral in the numerator of Eq. (4.2) is obtained as follows 
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∫(𝑎0 + 𝐶01𝑦1)𝑑𝑡 = 𝑎0𝑡 +

𝐶01
𝑛

𝑙𝑛(1 + 𝑒𝑚+𝑛𝑡) + 𝐷1 
(4.4) 

 Similarly, the integral in the denominator of Eq. (4.2) becomes 

 
∫𝑒∫𝑎0+𝐶01𝑦1𝑑𝑡𝑑𝑡 =

𝑒𝑐1+𝐾1𝑡

𝐾1
𝐹1 (

𝑎0
𝑛
,−

𝐶01
𝑛
;
𝑛 + 𝑎0
𝑛

;−𝑒(𝑚+𝑛𝑡))2 +𝐷2 
(4.5) 

where c1, D1 and D2 are integral constants in Eqs. (4.4) and (4.5). 2F1 is the 

Hypergeometric Function defined by [44] 

 𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛
(𝑐)𝑛

𝑧𝑛

𝑛!

∞

𝑛=0

2  (4.6) 

 Substituting Eq. (4.4) and Eq. (4.5) into Eq. (4.2) and simplifying the integral 

constants, the system technology performance y0 is derived as follows 

 
𝑦0 =

𝑒𝑎0𝑡+
𝐶01
𝑏
𝑙𝑛(1+𝑒𝑚+𝑛𝑡)+𝐷3

𝑏0
𝑎0

∙ 𝑒𝑎0𝑡 ∙ 𝐹1 (
𝑎0
𝑛
,−

𝐶01
𝑛

;
𝑛 + 𝑎0
𝑛

;−𝑒(𝑚+𝑛𝑡))2 + 𝐷4

 

(4.7) 

where D3 and D4 are integral constants and the other terms are as defined earlier. 

 The analytic solution Eq. (4.7) is valid only in the commensalism condition (i.e., 

when C01 > 0).  A numerical approach should be applied in the case of amensalism (i.e., 

when C01 < 0). Numerical integration can be used for Eq. (4.2). The Dormand-Prince 

method [45], which belongs to Runge-Kutta formula family, can also be employed to 

solve Eq. (2.3) directly. 

 

4.2.2. Component Technology Follows Exponential Growth 

 Some research shows that technology evolutions follow the simple exponential 

function [13, 46]. It is a special case of the logistic S-curve model when time t is much 
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smaller than the midpoint (inflection point) t0 of the logistic curve (t<<t0). To simulate 

this phenomenon, the function of component technology performance y1 is given by 

 𝑦1 = 𝑒(𝑚+𝑛𝑡) (4.8) 

 Substituting Eq. (4.8) into the solution of system technology performance Eq. 

(4.2), the integral in the numerator of Eq. (4.2) is given by 

 
∫(𝑎0 + 𝐶01𝑦1)𝑑𝑡 = 𝑎0𝑡 +

𝐶01
𝑛

𝑒(𝑚+𝑛𝑡) + 𝐷5 
(4.9) 

 Similarly, the integral in the denominator of Eq. (4.2) is 

 
∫𝑒∫𝑎0+𝐶01𝑦1𝑑𝑡𝑑𝑡 =

𝑒−
𝑎0𝑚
𝑛

𝑛
[−𝑦1

𝑎0
𝑛 ∙ (−

𝐶01
𝑛

𝑦1)
−
𝑎0
𝑛
∙ Г (

𝑎0
𝑛
, −

𝐶01
𝑛

𝑦1) + 𝐷6] 

(4.10) 

where D5 and D6 are integral constants. Г(a, x) is the Incomplete Gamma Function and 

defined as follows [44] 

 
Г(𝑎, 𝑥) =

1

Г(𝑎)
∫ 𝑒−𝑡𝑡𝑎−1𝑑𝑡
𝑥

0

 
(4.11) 

where Г(a) is the Gamma Function defined as follows [44] 

 
Г(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡

∞

0

 
(4.12) 

 The solution of the system technology performance y0 is obtained after 

simplifying integral constants. D7 and D8 are integral constants and the solution for y0 

has the form 

 
𝑦0 =

𝑒𝑎0𝑡+
𝐶01
𝑛
𝑒(𝑚+𝑛𝑡)+𝐷7

𝑏0 [𝑒(𝑚+𝑛𝑡)
𝑎0
𝑛 ∙ (

𝐶01
𝑛 𝑒(𝑚+𝑛𝑡))

−
𝑎0
𝑛
∙ Г (

𝑎0
𝑛 ,−

𝐶01
𝑛 𝑒(𝑚+𝑛𝑡))] + 𝐷8

 

(4.13) 
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 Because n > 0 in technology performance growth, the analytic solution Eq. (4.13) 

is only valid in the amensalism case when C01 < 0. In the commensalism condition (i.e. 

when C01 > 0), numerical methods have to be applied. Numerical integration or 

Dormand-Prince method [45] can be used as stated earlier. 

 

4.3. Case Study of Concrete Skyscraper* 

 The application of the analytic solutions derived in Chapter 4.2 is demonstrated 

through a case study of the concrete skyscraper in this section. As with any technology 

evolution study, the data of interest are challenging to acquire and limited in volume. 

Nevertheless, this empirical application demonstrates the validity of the ecosystem 

model in the real world of technology interaction. 

 Similar to the example of steel and bridge in Chapter 2.1, concrete also has a 

commensalism relationship with concrete skyscraper. Concrete is the component 

technology which supports the system technology of concrete skyscrapers. The 

development of concrete skyscraper has a negligible effect on the concrete because 

concrete is also used to build other structures such as roads, bridges, and dams. 

 Compressive strength is an important performance metric of concrete. The 

compressive strength of concrete is also an important component technology 

performance measure of skyscraper construction. Looking at concrete and skyscrapers, 

there should be a positive performance evolution between concrete compressive strength 

                                                 

* Appendix A includes the data sets used in the case study of concrete skyscraper. 



 

41 

 

and skyscraper height. Thus, concrete compressive strength and skyscraper height allow 

us to explore a commensalism relationship between the two technologies. 

 A government report indicates that concrete compressive strength has an upper 

limit value of 200 megapascal (MPa) [47] that will be achieved in the near future. This 

upper limit value is used as the characteristic value of the component technology 

performance [18]. The concrete compressive strength history data is extracted from an 

ACI technical report [48]. The component technology performances data points are 

divided by its corresponding characteristic value (200 MPa in this case study) as a 

dimensionless treatment [18, 19]. The non-dimensionalized data is fitted by the logistic 

function. The best-fitting curve is 

 𝑦1 =
1

1 + 𝑒−(−2.1 +0.062 𝑡)
 (4.14) 

The coefficient of determination R2 for the curve fitting is 0.9685. 

 The height of concrete skyscraper is chosen as the metric of system technology 

performance as stated earlier. Eq. (4.14) is substituted into the solution of Eq. (4.2) to fit 

the historical data of concrete skyscraper height in the world from 1950 to 2010, which 

is collected from The Global Tall Building Database of the CTBUH. The characteristic 

value of the system technology performance y0 is 423 meters, which is the highest value 

in the historical data. This value (i.e., 423 meters) is used for dimensionless treatment of 

the system technology performance data. The best-fitting values for parameters a0, b0, 

and C01 are then given by 

 
𝑑𝑦0
𝑑𝑡

= 3.64𝑦0 − 18.53𝑦0
2 + 18.80𝑦0𝑦1 (4.15) 
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The coefficient of determination R2 for the curve fitting is 0.9708. 

 The curve fitting results for concrete compressive strength and concrete 

skyscraper height are illustrated in Figure 4.1. The dependency indicator a0/ C01 equals 

0.194 in this case, which shows that concrete skyscraper technology relies heavily on 

concrete technology as one would expect. The model also gives a prediction that the 

concrete skyscraper height will reach an upper limit value 505 meters by around 2050 

when compressive strength of concrete increases to almost 200 MPa. 

 

 

Figure 4.1 Forecasted Concrete Compressive Strength and Skyscraper Height 

Based on Historical Data (1950-2010) 

 

 The significant difference between the Lotka-Volterra ecosystem model and the 

existing descriptive models is that the ecosystem model considers the influence of the 

component technology. This consideration is critical for the technology evolution 

prediction when practitioners have an adequate understanding of the component 

technology evolution but lack some information on system technology. For example, the 
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upper limit value of system technology performance is typically necessary for a logistic 

model extrapolation prediction. The logistic model may produce an unreasonable result 

if the upper limit value is set as an unknown parameter in data fitting, but the ecosystem 

model works well in this circumstance. The performance of the ecosystem model is 

verified through a holdout sample test (Figure 4.2) at the end of this section. Moreover, 

the linkage between system and component technologies in the ecosystem model is also 

helpful for long term prediction. For example, the prediction for the concrete skyscraper 

height from 2050 to 2150 can be made if the concrete compressive strength starts 

another S-shaped curve evolution at 2050 and reaches 600 MPa [49] in 2150. 

Importantly, the interpretation of the parameters a0, b0, and C01 in the ecosystem model 

also gives practitioners some practical hints to manipulate the future of a specific 

technology. For example, more R&D investment increases the value of a0 in the 

ecosystem model. Practitioners will be able to predict the impact of their investment on 

system technology performance if the empirical formula between the amount of 

investment and the a0 value is established for an interested system technology in future 

research. Specifically, if the R&D investment on the concrete skyscraper technology is 

doubled, which can increase the value of a0 by 10% (this relationship is assumed to be 

provided by future research), the concrete skyscraper height in the year 2050 will 

increase from 505 meters to 513 meters as a result of this investment. 

 The main purpose of this empirical application is to demonstrate the ability of the 

Lotka-Volterra ecosystem model to explain technology commensalism. The system 

technology evolution curve in Figure 4.1 is close to the logistic S-curve partly because 
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the limited data points of concrete compressive strength is fitted for the logistic function. 

Fitting the data points with a different mathematical function may lead to different 

concrete skyscraper height predictions. However, the prediction accuracy of the 

ecosystem model still can be compared with that of the existing descriptive models by a 

holdout sample test. 

 The concrete skyscraper height data from 1950 to 1996 is fitted through the 

Lotka-Volterra ecosystem model, logistic S-curve model, and simple exponential 

function. The results appear in Figure 4.2. The prediction errors of these three models for 

2009 range from 6.1% (Lotka-Volterra ecosystem model) to 23.4% (logistic S-curve 

model) and to 24.8% (simple exponential model). It is clear that the prediction 

performance of the Lotka-Volterra ecosystem model significantly exceeds that of 

logistic S-curve model and simple exponential model. Moreover, logistic S-curve model 

and simple exponential model predict that the concrete skyscraper height will exceed 

600 meters around 2020 and reach 1,000 meters during the year 2040. The reason of 

these unreasonable predictions is the descriptive models don’t consider the impact from 

component technology. 
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Figure 4.2 Forecasted Concrete Skyscraper Height Based on Historical Data (1950-

1996) 

 

4.4. Summary 

 System technology development has a negligible impact on component 

technology evolution if these two technologies have the relationship of commensalism or 

amensalism. This chapter derives the general integral form solution of the Lotka-

Volterra ecosystem model as Eq. (4.1) in technology commensalism and amensalism. 

The corresponding solutions are also derived as Eq. (4.7) and Eq. (4.13) when the 

component technology performance follows a logistic function and simple exponential 

growth, respectively. These solutions ease the application process of the Lotka-Volterra 

ecosystem model in practical projects when technology commensalism or amensalism 

exists. In addition, these analytic solutions are also applicable in other areas, such as 

community ecology and demography. 

 A case study of concrete skyscraper is performed to demonstrate the application 

of the analytic solutions of the Lotka-Volterra ecosystem model, where the concrete 



 

46 

 

skyscraper (system technology) has a commensalism relationship with the concrete 

(component technology). In the case study of concrete skyscraper, a holdout sample test 

shows that the prediction performance of the Lotka-Volterra ecosystem model 

significantly exceeds that of logistic S-curve model and simple exponential model (i.e., 

Moore’s Law). This result validates the prediction accuracy of the Lotka-Volterra 

ecosystem model.   
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5. MODELING TECHNOLOGY EVOLUTION USING LOTKA-VOLTERRA 

ECOSYSTEM MODEL* 

 

The analytic solutions of the Lotka-Volterra ecosystem model are derived in 

Chapter 4 when the system technology and its component technologies have the 

relationship of commensalism or amensalism. The analytic solution of the Lotka-

Volterra ecosystem model is not available when there is a symbiotic relationship 

between the system technology and any of its component technologies.  

This chapter begins with the discussion of the numerical methods to solve the 

Lotka-Volterra equations in general case. Three steps are then introduced to apply the 

Lotka-Volterra ecosystem model for technology evolution prediction and manipulation 

when the system technology and its component technologies have the relationship of 

symbiosis, commensalism or amensalism. The application of the Lotka-Volterra 

ecosystem model is illustrated using a case study of passenger aircraft fuel efficiency.  

 

5.1. Numerical Methods for Solving the Lotka-Volterra Equations 

 Solving the differential equations given by Eqs. (2.3) - (2.6) is necessary to apply 

the Lotka-Volterra ecosystem model for technology evolution prediction and 

manipulation. Unfortunately, the analytic solution of the Lotka-Volterra equations is not 

                                                 

* Reprinted with permission from “System Evolution Prediction and Manipulation Using 

a Lotka-Volterra Ecosystem Model” by Guanglu Zhang, Douglas Allaire, Venkatesh 

Shankar, and Daniel A. McAdams, 2019. Design Studies, 60, 103-138, Copyright 2019 

by Elsevier. 
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available for the general case. Thus, numerical methods must be implemented to solve 

these equations. Employing an appropriate numerical method is crucial to apply the 

Lotka-Volterra ecosystem model in technology evolution, since numerical instability 

previously hamstrung the progress of research in this area. 

 The finite difference scheme developed by mathematical ecologists to solve Eqs. 

(2.1) and (2.2) has the following form [23, 50] 

 𝑁(𝑡 + ℎ) =
𝜆𝑁
ℎ𝑁(𝑡)

1 + 𝑐𝑁(𝜆𝑁
ℎ − 1)𝑁(𝑡) + 𝑐𝑁

′ (𝜆𝑁
ℎ − 1)𝑀(𝑡)

 (5.1) 

 𝑀(𝑡 + ℎ) =
𝜆𝑀
ℎ 𝑀(𝑡)

1 + 𝑐𝑀(𝜆𝑁
ℎ − 1)𝑀(𝑡) + 𝑐𝑀

′ (𝜆𝑁
ℎ − 1)𝑁(𝑡)

⁡ (5.2) 

where t is time, h is step length, and 

 𝜆𝑁 = 𝑒𝑎𝑛  (5.3) 

 𝑐𝑁 =
𝑏𝑛
𝑎𝑛

 (5.4) 

 
𝑐𝑁
′ = −

𝐶𝑛𝑚
𝑎𝑛

 
(5.5) 

 𝜆𝑀 = 𝑒𝑎𝑚 (5.6) 

 𝑐𝑀 =
𝑏𝑚
𝑎𝑚

 (5.7) 

 
𝑐𝑀
′ = −

𝐶𝑚𝑛

𝑎𝑚
⁡. 

(5.8) 

This difference scheme is developed to model the competition between two species in an 

ecological community where the parameters Cmn and Cnm have negative values. 
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 Pistorius and Utterback studied competitive, symbiotic and predator-prey 

relationships between two technologies using Eqs. (2.1) and (2.2) [33, 51, 52]. They 

simplified Pielou’s approach shown in Eqs. (5.1) - (5.8) by setting h=1 to solve the 

Lotka-Volterra equations. The numerical solution showed oscillations in the mature 

phase of an S-shape curve when two technologies have symbiotic relationships, where 

Cmn and Cnm have positive values. Pistorius and Utterback termed the oscillatory pattern 

as a chaos-like state. They postulated that this state represents the nature of a symbiotic 

interaction between two technologies. Such oscillatory pattern and its interpretation 

prevented the research stream from moving forward. 

 One example given by Pistorius and Utterback [33, 51] is as follows 

 
𝑑𝑁

𝑑𝑡
= 0.1𝑁 − 0.01𝑁2 + 0.0157𝑁𝑀 (5.9) 

 
𝑑𝑀

𝑑𝑡
= 0.15𝑀 − 0.01𝑀2 + 0.005𝑀𝑁 (5.10) 

 𝑁(𝑡 = 0) = 0.01 (5.11) 

 𝑀(𝑡 = 0) = 0.01⁡. (5.12) 

The solid line in Figure 5.1 shows the numerical solution of Eqs. (5.9) - (5.12) for step 

length h=1. The result has oscillation around t=250. 

 However, the oscillation is not present if smaller step length is used. The dashed 

line in Figure 5.1 illustrates the result with the same numerical approach as shown in Eqs. 

(5.1) and (5.2) for step length h=0.1. The performances N(t) and M(t) converge to upper 

limit values when t→∞, and the chaos-like state vanishes. Similarly, the oscillatory 

pattern also does not appear in other cases [33] if smaller step length is used. 
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 Of note, the difference scheme illustrated by Eqs. (5.1) - (5.8) is a first order one-

step method for solving ordinary differential equations. Researchers has proved that the 

one-step method solution converge to exact solution when step length h→0 [53]. When 

the step length h is too large, the convergence problem results in an oscillatory pattern. 

Researchers need to choose appropriate step length when they use the one-step 

numerical approach to solve the Lotka-Volterra equations. In addition, the approach is a 

first order difference scheme. The truncation error of the approach is O (h2). This 

dissertation recommends high order Runge-Kutta methods such as Dormand-Prince 

method [45] to improve efficiency and accuracy for solving the Lotka-Volterra equations. 

The mathematical theories of these methods are well established [54]. The Runge-Kutta 

methods can be applied to solve Eqs. (2.3) - (2.6) without convergence concern. 

 

 

Figure 5.1 Numerical Solution of Eqs. (5.9) - (5.12) 
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5.2. Application of the Lotka-Volterra Ecosystem Model in Technology Evolution  

The mathematical analysis in Chapter 3 demonstrates the Lotka-Volterra 

ecosystem model as an advanced model for technology evolution prediction and 

manipulation. The ecosystem model covers a variety of mathematical functions and thus 

has improved data fitting accuracy. The Lotka-Volterra ecosystem model also considers 

the interaction between the system technology and its component technologies through 

the interaction C terms in the ecosystem model. Moreover, the parameters a, b, C in the 

Lotka-Volterra ecosystem model are associated with their respective causal factors (e.g., 

R&D investment and government policy change), which offers guidelines for 

practitioners to identify the key component technologies in a system technology and 

develop strategies to improve system technology performance. In addition, the numerical 

methods to solve the Lotka-Volterra equations are also discussed in Chapter 5.1. The 

cause of numerical instability that hamstrung the progress of research in this area is 

identified and thus the reasonableness of the Lotka-Volterra ecosystem model for 

technology evolution understanding is reinforced. 

In this section, three steps to apply the Lotka-Volterra ecosystem model for 

technology evolution prediction and manipulation are developed. Practitioners could 

follow these steps to make system and component technology performance prediction. 

Through this approach, practitioners could also evaluate different strategies to improve 

future system technology performance. 
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5.2.1. Component Technology Selection and Data Collection 

 The definition of the system technology and its component technologies is 

crucial for the successful application of the Lotka-Volterra ecosystem model. 

Practitioners first define the system technology performance of interest. A system 

technology often has more than one performance metric [55, 56]. Practitioners should 

determine one specific performance metric they want to predict and list all the 

component technologies that may impact this system technology performance. The 

component technologies can include tangible hardware and intangible software. 

 To avoid omitting any component technology, practitioners are recommended to 

first list all component technologies that constitute the system technology and select the 

component technologies that have a significant impact on the system technology 

performance for incorporation into the model. In this process, team effort is preferred 

and practitioners could use design tools such as a relationship table [19] to identify the 

appropriate component technologies. The knowledge of industry experts also could be 

involved in the process. Once the component technologies are selected, practitioners 

determine a performance metric for each component technology. The performance 

metric should be a typical indicator of component technology evolution (e.g., clock 

speed of CPU), and the performance data should be available for the modeling time 

interval. 

 Practitioners then collect performance data of the system technology and the 

component technologies for the modeling time interval. The time interval usually starts 

from a past time period and ends in the current time period. The typical time unit of 
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performance evolution is a year. In some cases, the time unit could be a quarter or a 

month for fast developing component or system technology. More than one performance 

data point may exist during a specific sampled time period. For example, there are 

currently CPUs with slower and faster clock speed. In this case, practitioners use the 

data point with highest value as it represents the current state of CPU performance 

evolution. Practitioners also need to remove a data point if its performance value is 

smaller than that of any previous data points because each data point should represent 

the best system or component technology performance during the time period. This data 

screening process is illustrated using passenger aircraft fuel efficiency data in Chapter 

5.3. 

 Moreover, dimensionless treatment is necessary for every component and system 

technology performance evolution data set because each performance metric can be 

measured by several different units (e.g., kilogram and pound for weight). Practitioners 

should divide system technology performance y0 and component technology 

performance yj by their maximum performance value Y0 and Yj for the modeling interval 

respectively. The dimensionless treatment normalizes system and component technology 

performance data within the same range (0, 1]. In this way, each data point has the same 

weight in the following data fitting process. 

 

5.2.2. The Lotka-Volterra Ecosystem Model Development and Data Fitting 

 It is assumed that practitioners select n component technologies that have 

significant impact on system technology performance in the first step given by Chapter 
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5.2.1. In this case, practitioners develop the Lotka-Volterra ecosystem model as Eqs. 

(2.3) - (2.6). The system technology equation given by Eq. (2.3) has (n+2) parameters 

(a0, b0, and C0i) and each component technology equation given by Eq. (2.5) has 3 

parameters (aj, bj, and Cj0). There are (4n+2) parameters in the Lotka-Volterra ecosystem 

model. Practitioners should determine the range of each parameter in the Lotka-Volterra 

ecosystem model before the subsequent data fitting process. 

 As discussed in Chapter 2.2, the parameter a represents independent growth rate 

in technology evolution. The value of the parameter a is associated with stimulation 

factors such as R&D investment and government policy encouragement. The parameter 

a generally has a positive value and thus its data fitting range is (0, +∞). 

 The parameter b denotes technical difficulty in technology evolution. The value 

of the parameter b sets the performance upper limit value. The parameter b also has a 

positive value and its data fitting range is (0, +∞). 

 The parameter C describes the interaction between the component technology 

and the system technology. The data fitting range of the parameter C could be set as (-∞, 

+∞) in a general case. To improve the data fitting efficiency and utilize available expert 

knowledge, practitioners could also determine the data fitting range of each parameter C 

based on the interaction mode (symbiosis, commensalism, or amensalism) between the 

component technology and the system technology. 

 Practitioners could evaluate the application of a component technology to 

identify a commensalism or an amensalism relationship between the component 

technology and the system technology. If the component technology serves a variety of 
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system technologies, the impact from a single system technology on the component 

technology may be negligible. Commensalism or amensalism is appropriate to describe 

the interaction between the component technology and the system technology under this 

circumstance. The parameter Cj0 in Eq. (2.5) equals zero, the data fitting range of the 

parameter Cj0 in Eq. (2.3) is (0, +∞) in commensalism and (-∞, 0) in amensalism. 

 Practitioners also could determine the range of the parameter C by analyzing the 

component technology performance evolution curve with the help of industry experts. 

Three typical performance evolution curves are shown in Figure 5.2. 

 

 

Figure 5.2 Three Typical Performance Evolution Curves 

 

 If the component technology performance yj exhibits insignificant improvement 

during the modeling time interval, its evolution curve is a straight line as curve (a) in 

Figure 5.2. In this case, the interaction term C0jy0yj in Eq. (2.3) is reduced to Cyjy0 where 

constant Cyj equals C0jyj. The term Cyjy0 could be further combined with the independent 

growth term a0y0, eliminating the interaction term C0jy0yj in Eq. (2.3). This mathematical 

reduction shows that practitioners could remove the component technology j from the 
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Lotka-Volterra ecosystem model if the performance evolution curve of the component 

technology j is a straight line during modeling time interval. 

 Sometimes, the component technology performance may evolve along an S-

shape curve such as curve (b) shown in Figure 5.2. The component technology 

performance almost reaches its upper limit at the current time. Practitioners could use 

the logistic S-curve model to describe the component technology performance evolution 

in this case. The equation of the component j in the Lotka-Volterra ecosystem model has 

the form 

 𝑑𝑦𝑗

𝑑𝑡
= 𝑎𝑗𝑦𝑗 − 𝑏𝑗𝑦𝑗

2⁡ (5.13) 

The solution of Eq. (5.13) is the logistic S-curve model as discussed in Chapter 3.1. Here, 

the system technology has negligible impact on the component technology performance. 

The component technology j has a commensalism or an amensalism relationship with 

the system technology, and the parameter Cj0 in Eq. (2.5) equals zero. 

 If the component technology performance evolution curve is similar to curve (c) 

in Figure 5.2, practitioners have to interpret the relationship between the component 

technology and the system technology as symbiosis because the logistic S-curve model 

cannot cover this curve shape. Therefore, the data fitting ranges of the parameters C0j in 

Eq. (2.3) and Cj0 in Eq. (2.5) are (0, +∞). 

 Once practitioners determine the range of (4n+2) parameters in the Lotka-

Volterra ecosystem model, they fit the dimensionless system and component technology 

performance data with the ecosystem model as Eqs. (2.3) - (2.6). Of note, the initial 

value of each (n+1) equations (e.g., the value of y0 (t=0) for Eq. (2.3)) is also necessary 
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for the data fitting process. Practitioners could use the first data point (the earliest known 

component or system technology performance) in each data set as the initial value of Eqs. 

(2.3) - (2.6). To improve the accuracy of data fitting, practitioners also could set the 

initial values as unknown parameters. This treatment brings (n+1) extra parameters to 

the Lotka-Volterra ecosystem model, and the model has (5n+3) unknown parameters at 

the beginning of the data fitting process. 

 The purpose of data fitting is to search the parameter space (range) in order to 

determine the parameter values that minimize the sum of squared errors between the 

technology performance data sets and the solutions of Eqs. (2.3) - (2.6). Several 

optimization algorithms (e.g., genetic algorithms, trust region, and simulated annealing) 

are available for this purpose [57]. Practitioners could utilize available expert knowledge 

to find a good initial value for each parameter from where to start the optimization 

iteration. Of note, practitioners have to solve Eqs. (2.3) - (2.6) numerically at each 

optimization iteration step. As discussed in Chapter 5.1, high order Runge-Kutta 

methods such as the Dormand-Prince method [45] are recommended to solve the Lotka-

Volterra equations in the data fitting process. 

 

5.2.3. Analysis of Results 

 The data fitting process produces the optimal values of the parameters in the 

Lotka-Volterra ecosystem model. Practitioners could make component and system 

technology performance evolution prediction via mathematical extrapolation of the 

ecosystem model. Of note, the parameters a, b, and C are assumed to be constants in the 
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Lotka-Volterra ecosystem model. This assumption implies that the endogenous and 

exogenous factors that impact component and system technology evolution stays the 

same during the extrapolation time interval. This assumption may not hold true in some 

cases such as an economic crisis or a dramatic regulation change. Practitioners have to 

adjust the value of the corresponding parameter and update the prediction results to 

cover these cases. For example, a potential economic crisis will lead to less R&D 

investment. In order to predict the component technology and the system technology 

performances under such adverse circumstances, practitioners could decrease the values 

of a0 in Eq. (2.3) and aj in Eq. (2.5) to derive more conservative prediction results. 

 As stated in Chapter 3.3, practitioners could quantify the importance of each 

component technology through the data fitting results of Eq. (2.3). Practitioners would 

like to develop the component technologies with the highest C0i values in-house or build 

a synergistic relationship with the suppliers. In contrast, practitioners consider 

outsourcing the component technologies with the lowest C0i or purchase the component 

technologies in the market with competitive prices. 

 Practitioners could also evaluate the most effective strategies to boost system 

technology performance through the values of parameters in the Lotka-Volterra 

ecosystem model. Practitioners could establish the empirical function between the 

system technology performance boosting strategy and the parameter value based on prior 

data. For example, if practitioners establish the empirical function between R&D 

investment and the value of the parameter a0 in Eq. (2.3) and aj in Eq. (2.5), they can 

predict the investment return (on technology performance) of different strategies through 
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the Lotka-Volterra ecosystem model and determine the most effective strategy. If the 

prior data are not available, practitioners can compare the values of a0 and ajC0j/bj as a 

basis for their decision. If a0>> ajC0j/bj, the investment on the system technology is more 

effective to improve system technology performance than investment on the component 

technology j; similarly, investment on the component technology j is more favorable if 

a0<< ajC0j/bj. 

 In some cases, it may be hard to improve either parameter a0 or aj. For example, 

when both the component and the system technology performances are near their upper 

limits, even a large amount of R&D investment will likely result in small performance 

improvements. In such cases, practitioners have to consider innovative strategies, such 

as adopting new technology in component design or substituting one or more new 

component technologies for old component technologies in the system. These innovative 

strategies are typically more risky and expensive than traditional strategies, but they may 

produce a cutting-edge product. 

 

5.3. Case Study of Passenger Aircraft Fuel Efficiency* 

 Three steps to apply the Lotka-Volterra ecosystem model are developed in 

Chapter 5.2. In this section, passenger aircraft fuel efficiency is used as a case study to 

illustrate each step, which can be applied in similar fashion to other application scenarios. 

The system technology (passenger aircraft fuel efficiency) interacts with three 

                                                 

* Appendix B includes the data sets used in the case study of passenger aircraft fuel 

efficiency. 
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component technologies (aerodynamics, weight reduction, and aero-engine fuel 

efficiency) in this case study. The results of this specific case study demonstrate that the 

system technology and the three component technologies almost exhaust their growth 

potential at 2018. To improve passenger aircraft fuel efficiency significantly in the future, 

practitioners may spend extra funding to develop sophisticated system optimization 

techniques or consider adopting one or more new technologies to reduce the weight of 

the passenger aircraft. A holdout sample test is also used to show the improved 

prediction accuracy of the Lotka-Volterra ecosystem model compared with those of 

extant descriptive models. 

 

5.3.1. Component Selection and Data Collection 

 Passenger aircrafts have several performance metrics such as speed, passenger 

capacity, range, and fuel efficiency. This section focus on the fuel efficiency of 

passenger aircrafts. Because the fuel efficiency of the same passenger aircraft varies with 

flight range [58], the aircraft fuel efficiency for specific length trip of 3 000 nautical 

miles (5 556 kilometers) is considered, which is a typical transatlantic distance (e.g., 

from New York to London). Here, the maximum passenger capacity is divided by the 

fuel consumption of 3 000 nautical mile flight [59] as the definition of passenger aircraft 

fuel efficiency. 

 A passenger aircraft has thousands of component technologies. Aerodynamics, 

weight reduction, and aero-engine fuel efficiency are chosen as three major component 

technologies because they have significant impact on passenger aircraft fuel efficiency 
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[60, 61]. These three component technologies correspond to the three major disciplines 

(i.e., aerodynamics, structures, and propulsion) in aerospace. Passenger aircraft 

aerodynamics is often summarized in terms of either the lift-over-drag ratio or the drag 

coefficient. Often, this data is considered proprietary, and is thus unavailable. As a proxy 

for these more traditional performance metrics for aerodynamics, the wing aspect ratio is 

used, which correlates well with lift-to-drag ratio. The performance metric of weight 

reduction is defined as passenger aircraft maximum payload divided by the typical 

airline operating empty weight (OEW). The performance metric of aero-engine fuel 

efficiency is engine rated output divided by fuel consumption per landing and take-off 

(LTO) cycle [62]. 

 With the exception of the EEA and EASA data mentioned above, the passenger 

aircraft performance data (e.g., maximum passenger capacity, first flight year, wing 

aspect ratio, payload, and OEM) was compiled from multiple volumes of Jane's All the 

World's Aircraft and WIKIPEDIA. The system technology and the component 

technologies’ performance data from 1970 to 2017 are collected. The peak performance 

data every year are then selected for the modeling. For example, there are 33 passenger 

aircraft 3 000 nautical miles (nmi) fuel efficiency data points as shown on Figure 5.3. 

Among these 33 data points, only 7 data points (dots in Figure 5.3) are selected to 

represent the evolution of passenger aircraft 3 000 nmi fuel efficiency during 1970 - 

2017. 
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Figure 5.3 Passenger Aircraft 3 000 nmi Fuel Efficiency Data (1970-2017)  

 

 Each data point is also divided by its corresponding maximum performance value 

during modeling time interval. The value of every component technology and system 

technology data point is within the range (0, 1] after the dimensionless treatment. 

  

5.3.2. The Lotka-Volterra Ecosystem Model Development and Data Fitting 

 It is observed that the performances of wing aspect ratio and weight reduction 

almost reach their upper limit by 2017. Their evolution curves (Figure 5.5 and Figure 5.6 

in Chapter 5.3.3) are similar to curve (b) in Figure 5.2. The evolution curve of aero-

engine fuel efficiency (Figure 5.7 in Chapter 5.3.3) is similar to curve (c) in Figure 5.2. 

Thus, the first two component technologies (aerodynamics and weight reduction) have 

an assumed commensalism relationship with the system technology (passenger aircraft 

fuel efficiency), and the third component technology (aero-engine fuel efficiency) has an 

assumed symbiotic relationship with the system technology (passenger aircraft fuel 
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efficiency). The Lotka-Volterra ecosystem model is built based on these interaction 

modes as 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 + 𝑏0𝑦0
2 + 𝐶01𝑦0𝑦1 + 𝐶02𝑦0𝑦2 + 𝐶03𝑦0𝑦3 (5.14) 

 
𝑑𝑦1
𝑑𝑡

= 𝑎1𝑦1 + 𝑏1𝑦1
2 (5.15) 

 𝑑𝑦2
𝑑𝑡

= 𝑎2𝑦2 + 𝑏2𝑦2
2 

(5.16) 

 𝑑𝑦3
𝑑𝑡

= 𝑎3𝑦2 + 𝑏3𝑦2
2 + 𝐶30𝑦3𝑦0⁡, 

(5.17) 

where y0 is passenger aircraft fuel efficiency (maximum passenger capacity/3 000 nmi 

fuel consumption), y1 is aircraft wing aspect ratio, y2 is weight reduction parameter 

(maximum payload/typical airline operating empty weight),and y3 is aero-engine fuel 

efficiency (engine rated output/fuel consumption per LTO cycle). Of note, the above 

simplification is used to illustrate the methodology developed in Chapter 5.2. The same 

data fitting result is derived when the ranges of parameters C10, C20, and C30 are set as (-

∞, +∞) in this case study. 

 The data fitting range of the parameters a, b, and C in Eqs. (5.14) - (5.17) is (0, 

+∞). The initial values of each equation are set as unknown parameters with the range (0, 

1). In total, there are 16 unknown parameters in Eqs. (5.14) - (5.17). 

 The trust region reflective algorithm [63] is used to search the parameter space 

(range). In each search step, the Dormand-Prince method [45] is employed to solve Eqs. 

(5.14) - (5.17) numerically. The values of 16 parameters are derived, which minimize the 

sum of squared errors between passenger aircraft performance data sets and the solutions 
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of Eqs. (5.14) - (5.17). The parameter values are plugged into Eqs. (5.14) - (5.17) and 

have 

 

𝑑𝑦0
𝑑𝑡

= 0.0243𝑦0 − 0.0524𝑦0
2 + 5.0210−6𝑦0𝑦1 + 0.0314𝑦0𝑦2

+ 2.9210−5𝑦0𝑦3 

(5.18) 

 
𝑑𝑦1
𝑑𝑡

= 0.0855𝑦1 − 0.0826𝑦1
2 (5.19) 

 𝑑𝑦2
𝑑𝑡

= 0.114𝑦2 − 0.114𝑦2
2 

(5.20) 

 𝑑𝑦3
𝑑𝑡

= 0.372𝑦3 − 2.17𝑦3
2 + 1.81𝑦3𝑦0 

(5.21) 

 𝑦0(𝑡 = 0) = 0.577 (5.22) 

 𝑦1(𝑡 = 0) = 0.672 (5.23) 

 𝑦2(𝑡 = 0) = 0.759 (5.24) 

 𝑦3(𝑡 = 0) = 0.00394⁡. (5.25) 

 

5.3.3. Results Analysis 

 The performances of the system technology and the three component 

technologies in the years 2018-2030 are predicted through a mathematical extrapolation 

of the Lotka-Volterra ecosystem model as Eqs. (5.18) - (5.25). It is assumed that the 

endogenous and exogenous factors (e.g., economics and government policy) that impact 

component and system technology evolution stay the same, so that the parameters a, b, C 

remain the same during 2018-2030. The modeling result of passenger aircraft 3 000 nmi 

fuel efficiency is shown on Figure 5.4. It is observed that the aircraft fuel efficiency 
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increases slowly from 2018 to 2030. By 2030, the fuel efficiency will become 0.0149 

person/kg, a 2.6% improvement from Boeing 737 MAX’s in 2016. The upper limit of 

passenger aircraft fuel efficiency could be estimated from Eq. (3.19). That upper limit is 

0.0154 person/kg and passenger aircraft fuel efficiency will reach 99% upper limit 

around 2055. 

 

 

Figure 5.4 Passenger Aircraft 3 000 nmi Fuel Efficiency Modeling (1970-2030) 

 

 The wing aspect ratio and weight reduction parameter (maximum payload/OEW) 

of passenger aircraft will reach their upper limits soon. The modeling results are shown 

in Figure 5.5 and Figure 5.6 respectively. In 2030, the wing aspect ratio will reach 10.48, 

which is 99.6% of its upper limit of 10.52. The weight reduction parameter will touch 

0.497 (99.9% upper limit) in 2030, only a 0.2% improvement from Boeing 787-9’s in 

2013. 
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Figure 5.5 Passenger Aircraft Wing Aspect Ratio Modeling (1970-2030) 

 

 

Figure 5.6 Passenger Aircraft Weight Reduction Modeling (1970-2030) 

 

 As a component technology, aero-engine fuel efficiency has better growth 

potential than aerodynamics and weight reduction. Estimated from Eq. (3.20), the upper 

limit of aero-engine fuel efficiency is 0.417 kN/kg. The fuel efficiency performance of 
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Pratt & Whitney PW1133G-JM in 2014 is 0.393 kN/kg, which is 94.2% of the upper 

limit. The aero-engine fuel efficiency will rise to 0.404 kN/kg (97.0% of the upper limit) 

in 2030 and reach 99% of the upper limit around 2050. The modeling result of aero-

engine fuel efficiency is shown in Figure 5.7. 

 

 

Figure 5.7 Aero-engine Fuel Efficiency Modeling (1970-2030) 

 

 The importance of the three component technologies is evaluated from parameter 

C values in Eq. (5.18). It is observed that the value of C02 is three orders higher than C01 

and C03, which means that the weight reduction has a more significant impact on 

passenger aircraft fuel efficiency than those of the other two component technologies 

(aerodynamics and aero-engine fuel efficiency). The result suggests that passenger 

aircraft designers and R&D managers may focus on R&D projects (e.g., new material 

development) to reduce the weight of the passenger aircraft. Meanwhile, they may 
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consider outsourcing the R&D (e.g., wind tunnel test) and manufacture (e.g., aero-engine 

manufacture) of the other two components. 

 Figures 5.4 -5.7 show that both the system technology and the three component 

technologies almost exhaust their growth potential at 2018. To improve passenger 

aircraft fuel efficiency significantly in the future, practitioners have to find effective 

stimulation strategies. Since the historical R&D investment data of the system 

technology and the three component technologies are not available, the empirical 

relationship between R&D expenditures and the parameter values in the ecosystem 

model cannot be established. However, as discussed in Chapter 5.2.3, the values of a0 

and ajC0j/bj in Eqs. (5.18) - (5.21) can be compared to provide a basis for passenger 

aircraft practitioners. The comparison result is shown in Table 5.1, which indicates the 

most effective strategies are investing on the passenger aircraft (system technology) or 

on weight reduction (component technology 2) based on the discussion in Chapter 3.3 

and Chapter 5.2.3. Specifically, the strategies discussed in Chapter 3.3 and Chapter 5.2.3 

could be applied to improve the system technology performance. In this case, three 

effective strategies are an increase of a0 through R&D investment, one or more new 

technology adoption(s) in key component (weight reduction) design, and a component 

technology substitution in the system technology. 

 

 

 

 



 

69 

 

Table 5.1 The Comparison of a0 and ajC0j/bj values in Eqs. (5.18) - (5.21) 

Passenger Aircraft 

a0 

Aerodynamics 

a1C01/b1 

Weight reduction 

a2C02/b2 

Aero-engine  

a3C03/b3 

0.0243 5.1910-6 0.0315 5.0310-6 

 

 The value of the parameter a0 will increase if practitioners spend extra R&D 

funding on the passenger aircraft system design. Practitioners could use the funding to 

develop sophisticated optimization techniques to pursue an improved fuel efficiency 

design. For example, Boeing is trying to further stretch the fuselage of 737 for 

competing with Airbus A321neo [64]. This current R&D strategy of Boeing is consistent 

with the aforementioned guideline. If practitioners could improve the value of a0 by 10%, 

the passenger aircraft fuel efficiency will increase from 0.0149 person/kg to 0.0155 

person/kg in 2030. 

 The weight reduction parameter (maximum payload/OEM) almost reaches its 

upper limit at 2018. It will be hard to increase the value of the parameter a2 under this 

circumstance. Practitioners have to consider adopting one or more new technologies to 

further reduce the weight of the passenger aircraft. A major effort of weight reduction 

until now is the gradual replacement of aluminum by composite materials on passenger 

aircraft structure [65]. The potential weight reduction approach in the future may be 

innovative airborne equipment (e.g., generator) and passenger cabin design (e.g., CPI 

windowless fuselage), which decrease the non-essential weight of passenger aircraft [61]. 

 Practitioners could also consider the strategy of component technology 

substitution to improve passenger aircraft fuel efficiency. It represents a disruptive 
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evolution of aerodynamics or aero-engine. The substitution from piston aero-engine to 

turbofan aero-engine around 1960s is a typical example of passenger aircraft component 

technology substitution. The example of Virgin Galactic is a recent approach of 

component technology substitution. The aircraft would travel outside of the Earth's 

atmosphere and enter orbit, using gravitational forces to travel at incredibly fast speeds 

[66]. This approach could shift the design restriction (parameter b in the Lotka-Volterra 

ecosystem model) of both the system technology and the three component technologies 

and also change the interaction (parameter C in the ecosystem model) between them. 

  

5.3.4. Holdout Sample Test 

The prediction capability of the Lotka-Volterra ecosystem model is validated 

through a holdout sample test. The performance evolution of passenger aircraft 3 000 

nmi fuel efficiency during 1970 - 2000 is modeled using the Lotka-Volterra ecosystem 

model as Eqs. (5.14) - (5.17), Moore’s Law as Eq. (3.5), and the logistic S-curve model 

as Eq. (3.3). The system performance in the following years is derived through model 

extrapolation, and the predicted system performance is compared with the actual fuel 

efficiency data. The data fitting and prediction results appear in Figure 5.8. The 

prediction accuracy of the Lotka-Volterra ecosystem model exceeds those of Moore’s 

Law and the logistic S-curve model. The prediction errors of the three models for Boeing 

737 MAX 3 000 nmi fuel efficiency in 2016 range from 12.2% (the Lotka-Volterra 

ecosystem model) to 24.7% (the logistic S-curve model) to 26.1% (Moore’s Law). The 

improved prediction accuracy of the Lotka-Volterra ecosystem model is a result of 
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modeling the interactions between a system technology and its component technologies. 

The ecosystem model takes into account the impact from the three component 

technologies (aerodynamics, weight reduction, and aero-engine fuel efficiency) on the 

system technology (passenger aircraft fuel efficiency). 

 

 

Figure 5.8 Predicted Passenger Aircraft Fuel Efficiency on Historical Data (1970-

2000) 

 

5.4. Summary 

 This chapter discusses the numerical methods to solve the Lotka-Volterra 

equations at the beginning. Because of the convergence concern, high order Runge-Kutta 

methods such as Dormand-Prince method are recommended for solving the Lotka-

Volterra equations. To apply the Lotka-Volterra ecosystem model in practical projects, 

three steps (i.e., component technology selection and data collection, the Lotka-Volterra 

ecosystem model development and data fitting, and analysis of results) are developed for 
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practitioners to predict and manipulate the performances of the system technology and 

its component technologies. 

 Passenger airplane fuel efficiency is used as a case study to illustrate these three 

steps. The system technology (passenger airplane fuel efficiency) interacts with three 

component technologies (aerodynamics, weight reduction, and aero-engine fuel 

efficiency) in the case study. The modeling results show that the system technology and 

the three component technologies almost exhaust their growth potential at 2018. To 

improve passenger aircraft fuel efficiency significantly in the future, practitioners may 

spend extra funding to develop sophisticated system optimization techniques or consider 

adopting one or more new technologies to reduce the weight of the passenger aircraft. A 

holdout sample test is also used to compare the prediction accuracy of the Lotka-

Volterra ecosystem model with those of extant descriptive models. The test result 

suggests that the prediction accuracy of the Lotka-Volterra ecosystem model exceeds 

those of Moore’s Law and the logistic S-curve model. 
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6. PREDICTION INTERVALS GENERATION FOR TECHNOLOGY EVOLUTION* 

 

The prediction results generated by existing models (e.g., exponential function, 

logistic function, and Lotka-Volterra equations) of technology evolution prediction are 

expressed as single numbers, which are called point forecasts. Practitioners often want to 

supplement point forecasts by computing interval forecasts to assess future uncertainty 

and make contingency plans accordingly [21, 67]. For example, it is often necessary for 

practitioners to estimate the earliest and the latest time at which the technology of 

interest would achieve an expected performance. A comprehensive R&D plan is usually 

developed based on such estimation. However, prediction intervals generation for 

technology evolution has received scant attention in the literature. Researchers have used 

continuous mathematical functions or differential equations (e.g., exponential function, 

logistic function, and Lotka-Volterra equations) to model the performance change of a 

technology over time but seldom supplemented their point forecast results for future 

technology performance with prediction intervals [13, 19, 42].  

This chapter introduces a broadly applicable method to generate prediction 

intervals for technology evolution. The prediction interval generation method can be 

applied to any model that predicts technology performance changes. To ease the 

implementation of this method in practical projects of technology evolution prediction, 

                                                 

* Reprinted with permission from “Generating Technology Evolution Prediction 

Intervals Using a Bootstrap Method” by Guanglu Zhang, Douglas Allaire, Daniel A. 

McAdams, and Venkatesh Shankar, 2019. Journal of Mechanical Design, 141(6), 

061401, Copyright 2019 by ASME. 
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four steps are summarized to implement the method. The application of the prediction 

intervals generation method is illustrated using case studies of CPU and passenger 

aircraft. 

 

6.1. Uncertainty in Technology Evolution Prediction 

 There are three primary types of uncertainty encountered in prediction problems 

[68]. These uncertainties are often referred to as model uncertainty, parameter 

uncertainty, and data uncertainty. Model uncertainty comes from the structure of the 

model. Considerable error may occur if a prediction model is not appropriate for the 

problem [68, 69]. Parameter uncertainty is rooted in the estimation of the model 

parameters. Researchers usually assume that the model parameters are constants during a 

data fitting process. However, the value of each parameter may change over time [19, 

21], and the variation of each parameter may lead to prediction error. Data uncertainty 

covers the observed data’s random variations that are not explained by model 

uncertainty and parameter uncertainty. The random variation is often represented by a 

random error (or white noise) term, ε, in prediction models [21, 70-72]. Of note, 

researchers often categorize the sources of uncertainty as either aleatory or epistemic in 

engineering modeling for risk and reliability analysis [73]. Here, the model uncertainty 

and the parameter uncertainty belong to the epistemic category; the data uncertainty is 

characterized as aleatory. 

 Researchers have considered these three types of uncertainty and developed 

several methods to construct prediction intervals for time series problems [21, 72, 74]. 
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Although time series models are not commonly used in technology evolution prediction, 

these methods associated with time series models could provide a framework for new 

methods in uncertainty estimation of technology evolution prediction. A typical time 

series prediction model has the following mathematical form 

 𝑦𝑡 = 𝐹𝑡(𝑦𝑡−1, 𝑦𝑡−2, ⋯ 𝑦𝑡−𝑝; 𝜽) + 𝜀𝑡 , (6.1) 

where yt is the variable of interest at time t, F is a function that takes arguments y at 

previous time t-1, t-2, …, t-p and potential parameters θ, and ε is an independent random 

error term. Typical time series data (e.g., yearly United States oil production) are 

uniformly spaced. One data point is given at each time period (e.g., monthly or yearly). 

The current value of the series, yt, can be explained as a function of p consecutive past y 

values yt-1, yt-2, …, yt-p, and other variables θ (e.g., q past error ε values εt-1, εt-2, …, εt-q in 

a mixed autoregressive moving average model [72]). 

 To mitigate the model uncertainty and improve the robustness and efficiency of 

statistical models, researchers select an optimal prediction model from a wide range of 

time series models by minimizing a statistic such as Akaike’s Information Criterion 

(AIC) or Schwarz Bayesian Information Criterion (BIC) [68, 70]. Several procedures 

have been established to select an optimal model, which include but are not limited to, 

the Box-Jenkins procedure for autoregressive integrated moving average (ARIMA) 

models and the Holt-Winters procedure for exponential smoothing models [68, 70, 75, 

76]. Model uncertainty is generally neglected once the optimal prediction model is 

selected via one of these procedures. 
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 Many times, the parameter uncertainty is underemphasized in time series analysis. 

However, parameter uncertainty cannot be overlooked in a model with many parameters 

or when the number of observed data points is small [21]. Researchers often perform 

sensitivity analysis to assess parameter uncertainty [77]. Bayesian approach has also 

been widely adopted in time series problems to quantify parameter uncertainty [78]. 

 Data uncertainty is described by the random error term, ε, in Eq. (6.1). 

Researchers often assume the random error is an independent variable that follows a 

parametric distribution. Assumptions of normality are commonly used for the random 

error term ε [21] but no complete consensus exists among researchers regarding this 

choice. Harvey suggested the use of a t-distribution to describe the random error for a 

Gaussian time series model [76]. Williams and Goodman analyzed six time series of 

residences and the number of business main telephones in service on the last day of the 

month for three Michigan cities [79]. They found that the absolute values of the 

prediction error approximately follow a gamma distribution [79]. 

 If current time is defined as t, and researchers want to predict the value of 

variable y at time t+k as yt+k, the general form of a 100(1-α) % prediction interval for yt+k 

in a time series analysis is [21] 

 𝐹𝑡+𝑘 ± 𝑧𝛼/2√𝑣𝑎𝑟(𝜀𝑡+𝑘) , (6.2) 

where Ft+k is the value of the function F at time t+k, zα/2 is the α/2 percentage point of 

the parametric distribution of the random error ε, var (εt+k) is the variance of random 

error ε at time t+k. In practice, researchers often set confidence level α=0.05 and 

compute the 95% prediction intervals for their problem. Eq. (6.2) also assumes the 
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model prediction, Ft+k, is unbiased with expected mean squared prediction error. The 

analytic form of var (εt+k) could be derived for several time series modes. For example, 

the random walk with drift model has the form [72] 

 𝑦𝑡+1 = 𝛿 + 𝑦𝑡 + 𝜀𝑡+1 , (6.3) 

where the constant δ is called drift. The variance of the random error, ε, at time t+k has 

the form 

 𝑣𝑎𝑟(𝜀𝑡+𝑘) = 𝑘𝜎𝜀
2 , (6.4) 

where σε
2 equals var (εt+1), which is the variance of the one step ahead prediction error 

[21, 80]. For the time series models for which the analytic form of var (εt+k) is not 

available, researchers have to use approximate formulas [80] or numerical approaches 

(e.g., Monte Carlo simulation or bootstrapping) to estimate the variance [21, 81]. Of note, 

typical time series models (e.g., ARIMA and exponential smoothing [70]) represented 

by Eq. (6.1) require uniformly spaced data. Advanced time series models (e.g., ACD-

GARCH model [82]) exist for time series data with non-uniform spacing. 

 Time series models and the associated prediction interval generation methods 

have been successfully applied in several areas such as econometrics, demography, 

marketing, and medical science [70, 72, 74]. However, time series models are not 

commonly used in technology evolution prediction. Researchers often believe that an 

underlying law governs the technology performance change in technology evolution that 

involves a dominant design [14, 83, 84]. Such law is usually described by continuous 

mathematical functions or differential equations involving time rather than time series 

models. Moreover, a typical technology evolution problem involves fewer than 30 data 



 

78 

 

points. Statistical theorems, such as the central limit theorem, are not applicable with 

such a small sample size. It is also hard to validate a parametric distribution assumption 

for the error term ε because a parametric distribution test (e.g., normality test) has less 

power to reject the null hypothesis due to the small sample size [85]. 

 Popular technology evolution prediction models include but are not limited to, 

Moore’s Law, the logistic S-curve model, and the Lotka-Volterra ecosystem model [5, 

13, 19]. Researchers have fitted these models to non-uniformly spaced data and predict 

technology performance through mathematical extrapolation. However, researchers 

seldom supplemented their point forecast results with prediction intervals. The limited 

publications that consider uncertainty in technology evolution prediction include the 

works from Farmer & Lafond [3], Arendt, McAdams, & Malak [86], Naim & Lewis [56] 

and Nagy, Farmer, Bui, & Trancik [4]. Farmer & Lafond modified Moore’s Law as a 

correlated geometric random walk with drift model and constructed the prediction 

intervals through an approximate approach [3]. However, the model and the approach 

developed by Farmer & Lafond only work for uniformly spaced time series data. Arendt 

et al. fitted technology evolution data by an Erto-Lanzotti S-curve model and considered 

the parameter uncertainty through a Monte Carlo simulation [86]. The method provided 

by Arendt et al. is valuable for decision making in design, but the method cannot be 

applied to the technology evolution that does not follow the Erto-Lanzotti S-curve model. 

Naim & Lewis introduced an n-dimensional growth model for engineering system 

performance evolution [56]. They considered the uncertainty of one parameter 

(performance upper limit) through a Monte Carlo simulation. The data uncertainty and 
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the uncertainty pertaining to other parameters in their model were neglected. Nagy et al. 

tested six technology evolution models in their paper [4]. The technology performance 

Nagy et al. discussed was production or price rather than technical performance metrics 

(e.g., speed or capacity) that are of primary interest to the audience of this dissertation. 

 

6.2. Prediction Intervals Generation Using a Bootstrap Method 

Based on the capability void discussed in Chapter 6.1, a generic method is 

introduced to generate prediction intervals for technology evolution prediction. The 

generic method can be applied to any technology evolution prediction model that 

describes the incremental change in technology performance. The discussion of more 

fundamental or radical technological changes (e.g., changes in system configuration or 

functionality, and disruptive innovations) is beyond the scope of this dissertation. The 

three types of uncertainty in technology evolution prediction are discussed. The 

empirical probability distributions of parameter uncertainty and data uncertainty are 

established through bootstrapping. A holdout sample analysis is also presented to 

determine the confidence level, α, for prediction intervals generation. In addition, the 

probability distribution of each parameter in a prediction model is constructed. Of note, 

practitioners also could transform the non-uniformly spaced technology evolution data to 

uniformly spaced data through an interpolation approach. Typical time series models 

(e.g., ARIMA or exponential smoothing [70]) could then be used for technology 

evolution prediction. However, the interpolation approach introduces artificial data 
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points that bring fresh uncertainty in technology evolution prediction, and this new 

uncertainty is hard to address in prediction intervals generation. 

As a generic problem of technology evolution prediction, there are n technology 

performance data points from start time, T1, to current time, T2. Practitioners want to 

predict the technology performance from current time, T2, to future time, T2+τ, with 

prediction intervals. The n technology performance data at time t1, t2,…, tn are denoted 

by y1, y2,…, yn respectively. A technology evolution prediction model M(t; 𝞿) is chosen 

to fit the data, where t is time and 𝞿=(A, B, C, …) represents the constant parameters in 

the model M. Each technology performance data point is expressed as 

 𝑦𝑖 = 𝑀(𝑡𝑖; ⁡𝝋𝟎) + 𝜀𝑖 , (6.5) 

where i∈{1, 2, …, n}, 𝞿0=(A0, B0, C0, …) denotes estimated parameters derived from a 

data fitting process, and εi is the deviation from the model at each data point. 

 The point forecast of technology performance at time te, where T2< te < T2+τ, is 

obtained by mathematical extrapolation as M(te; 𝞿0). An optimal prediction model 

should be selected to minimize the model uncertainty. It is a challenging task to select an 

optimal model from a wide range of technology evolution prediction models. Such 

discussion is beyond the scope of this dissertation. M (t; 𝞿) is assumed to be the optimal 

model and the model uncertainty is not considered here. To incorporate the model 

uncertainty, practitioners could review the work of Chatfield [69], Meade & Islam [5], 

Young [17], and Draper [87]. 

 The parameter uncertainty is estimated using a bootstrap method. The bootstrap 

method, also called bootstrapping or the resample method, was introduced by Efron in 
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1977 [24]. The method has been used to construct prediction intervals for regression, 

time series, and growth curve models [25, 26, 81, 88, 89]. Here, an original sample is 

comprised of the deviation terms in Eq. (6.5) as Ε0=(ε1, ε2, …, εn). A resample Ε1 of size 

n is created by drawing elements from the original sample, Ε0, with replacement. Each 

element in sample Ε0 has an equal probability of 1/n to be drawn. The resampling 

process is repeated R times to generate R resamples as 

 𝜠𝒋 = (𝜀1
𝑗
, 𝜀2

𝑗
, ⋯ , 𝜀𝑛

𝑗
⁡) , (6.6) 

where j∈{1, 2, …, R}. Typically, R is at least 1,000 for prediction intervals generation 

[25]. Each resample is made up of the elements in the original sample (εi
j∈{ε1, ε2, …, 

εn}). The R bootstrapped technology performance data sets are then derived as Yj=(y1
j, 

y2
j,…, yn

j) where 

 𝑦𝑖
𝑗
= 𝑀(𝑡𝑖; ⁡𝝋𝟎) + 𝜀𝑖

𝑗
 . (6.7) 

 The model parameters can be estimated using a specified data fitting method 

(e.g., ordinary least squares) for the bootstrapped technology performance data sets Yj as 

𝞿j=(Aj, Bj, Cj, …). An empirical probability distribution Me(te; 𝞿) at time te is built by 

setting the same probability, 1/R, at each point M(te; 𝞿1), M(te; 𝞿2),…, M(te; 𝞿R) [90]. 

The empirical probability distribution Me(te; 𝞿) describes the parameter uncertainty in 

technology evolution prediction. Here, the empirical probability distribution of each 

parameter can also be built in the prediction model M from 𝞿j. For example, an 

empirical probability distribution Ae for parameter A can be built by setting the same 

probability, 1/R, at each point A1, A2,…, AR. If the parameters have a clear interpretation 
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in technology evolution context (e.g., technology performance upper limit in the logistic 

S-curve model or technology interaction in the Lotka-Volterra ecosystem model), the 

probability distributions of the parameters built here could be a key reference for 

practitioners to make R&D and outsourcing decisions, which is illustrated by the 

passenger aircraft case study in Chapter 6.4.2. 

 The data uncertainty is represented by the deviation term, ε. The deviation is 

assumed to be an independent random variable that is applied to any technology 

performance data from T1 to T2+τ. It is hard to assume any parametric distribution (e.g., 

normal distribution) for the random variable ε because a typical technology evolution 

problem has less than 30 data points. An empirical probability distribution Εe (ε) is 

constructed from the sample Ε0=(ε1, ε2,…, εn) by setting the same probability of 1/n to 

each element in the sample Ε0 [90]. The empirical probability distribution, Εe(ε), 

describes the data uncertainty in technology evolution prediction. 

 Above all, the prediction intervals could be generated using the empirical 

probability distributions Me(te; 𝞿) and Εe(ε). The percentile method is used because of 

its convenience [26]. A 100(1-α) % prediction interval for technology performance y at 

time te is given by 

 [𝑀𝑒
𝛼/2

+ 𝜀𝑒
𝛼/2

, 𝑀𝑒
1−(𝛼/2)

+ 𝜀𝑒
1−(𝛼/2)

] , (6.8) 

where Me
α/2 and Me

1-(α/2) are the α/2 and 1-α/2 percentiles of the Me (te; 𝞿) distribution, 

εe
α/2 and εe

1-(α/2) are the α/2 and 1-α/2 percentiles of the Εe (ε) distribution. For example, a 

95% prediction interval (α=0.05) for technology performance at time te is 
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 [𝑀𝑒
2.5% + 𝜀𝑒

2.5%, 𝑀𝑒
97.5% + 𝜀𝑒

97.5%] . (6.9) 

 Of note, a 100(1-α) % prediction interval does not cover 100(1-α) % possible 

technology performance in a future time period [21, 79, 80]. The value of α is considered 

a practitioner’s choice. It is of significance for practitioners to determine an appropriate 

value for the confidence level α to generate reasonable prediction intervals. Such 

reasonable prediction intervals should capture the uncertainty of future technology 

performance in a modest range rather than an exaggerated wide range. In practice, 

researchers often follow the convention in statistical hypothesis testing and take α=0.05 

to generate 95% prediction intervals. However, the 95% prediction intervals sometimes 

are too wide in technology evolution prediction (e.g., Figure 6.2 and Figure 6.3 in 

Chapter 6.4), and such wide intervals are not useful for practitioners to make R&D 

decisions. This dissertation suggests using holdout sample analysis to determine an 

appropriate value for the confidence level α and generate reasonable prediction intervals 

accordingly. The suggested holdout sample analysis gives an appropriate value of α 

based on prior technology performance evolution data rather than a constant value of α. 

This strategy considers the difference between diverse technologies on evolution trend 

and the associated uncertainty. First, the same model M is used to fit the data points from 

start time T1 to time T2-τ. The empirical probability distributions Me(te; 𝞿) and Εe(ε) at 

time te, where T2-τ < te < T2, can be derived following the preceding procedure. There are 

k known data points from time T2-τ to time T2, from which the narrowest prediction 

intervals that just cover the k data points can be identified. The confidence level αe 

associated with the narrowest prediction intervals is used as the appropriate value of 
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confidence level. The appropriate confidence level αe is then used to generate the 

prediction intervals from current time, T2, to future time, T2+τ. The underlying 

assumption of this method is that the prediction uncertainty from time T2 to time T2+τ is 

smaller than or equal to the uncertainty from time T2-τ to time T2. This assumption is 

validated through two case studies of CPU and passenger aircraft evolution predictions 

in Chapter 6.4. It is shown that the prediction intervals generated by the confidence level 

αe suffice to cover every actual data point in the holdout sample tests. Meanwhile, the 

95% prediction intervals are much wider than the prediction intervals generated by the 

confidence level αe. 

 

6.3. Four Steps to Generate Prediction Intervals for Technology Evolution 

Prediction 

 In Chapter 6.2, a method is presented to generate prediction intervals for a 

generic problem of technology evolution prediction. In this section, the procedure to 

implement the method is summarized in four steps. Practitioners can follow these 

guidelines to supplement point forecasts with prediction intervals in technology 

evolution prediction. 

 Step 1 - Data collection and pretreatment. Practitioners first collect the 

technology performance data for a time interval of interest. The time interval usually 

begins with a past time, T1, and ends in current time, T2. There may be more than one 

data point in a specific time period (e.g., several CPUs with different transistor counts 

are introduced in the same year). Practitioners retain only the greatest performance value 
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in each time period because that data point represents the best available technology 

performance at the time. Practitioners also delete performance values that are lower than 

those during previous time periods. The remaining data points are used for technology 

evolution prediction. Practitioners can transform (e.g., a log transformation) or 

normalize (e.g., dimensionless treatment) the data if necessary. 

 Step 2 - Model selection. Practitioners select a technology evolution prediction 

model for their specific problem. Descriptive models (e.g., S-curve models or Moore’s 

Law) are simple mathematical functions that are applicable for fundamental technology 

evolution prediction in which technology interaction is ignored. If technology interaction 

needs to be considered, a system model (e.g., the Lotka-Volterra ecosystem model) is 

preferable [18, 19]. Of note, the best fit model usually is not the best prediction model 

[69]. The model selection should be based on the results from several holdout sample 

tests as well as the advice from domain or subject matter experts. 

 Step 3 - Confidence level determination. Practitioners conduct a holdout sample 

analysis using the technology evolution data from time T1 to time T2-τ. The technology 

evolution prediction model selected in Step 2 is estimated using the holdout data set, and 

the empirical probability distributions for model prediction Me(te; 𝞿) and deviation Εe(ε) 

at time te, where T2-τ < te < T2, are derived as described in Chapter 6.2. Practitioners 

calculate a confidence level α associated with each data point during time interval (T2-τ, 

T2). The smallest value of confidence level α corresponds to the narrowest prediction 

intervals that can cover every data point during time interval (T2-τ, T2). The smallest 

confidence level is then used as the appropriate value αe in the next step. 
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 Step 4 - Prediction intervals generation. Practitioners predict technology 

performance and generate prediction intervals in the future time interval (T2, T2+τ) using 

data from start time, T1, to current time, T2. The technology evolution prediction model 

selected in Step 2 is estimated using the entire data set. Of note, the parameter estimates 

derived from the data fitting process are not the same as the parameter estimates from 

the holdout sample analysis in Step 3. Practitioners obtain the empirical probability 

distributions for model prediction Me(te; 𝞿) and deviation Εe(ε) in the future time 

interval (T2, T2+τ) through the method developed in Chapter 6.2. The probability 

distribution of each parameter in the model also could be built if necessary. The upper 

and lower limits of the prediction intervals are generated by Eq. (6.8) using confidence 

level αe derived in Step 3. Practitioners should substitute the latest technology 

performance (yn in Chapter 6.2) for the lower limit(s) of the prediction intervals 

generated by Eq. (6.8) if the lower limit(s) is smaller than the latest technology 

performance because technology performance monotonically increases over time. 

 

6.4. Case Studies of CPUs and Passenger Aircrafts 

 In this section, CPU and passenger aircraft are used as two case studies to 

illustrate the four steps of the process outlined in Chapter 6.3. In the holdout sample tests 

of these two case studies, the prediction intervals generated by the method developed in 

this dissertation cover every actual data point. These results validate the method and the 

associated assumptions. 
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 The holdout sample analysis also shows that the 95% prediction intervals are 

much wider than the 100(1-αe) % prediction intervals generated by the method 

developed in this chapter. In practice, this dissertation suggests that practitioners use 

100(1-αe) % prediction intervals for R&D planning and decision making. Practitioners 

also could estimate the earliest and the latest time at which the technology of interest 

would achieve the expected performance level using the 100(1-αe) % prediction 

intervals. The 95% prediction intervals can be used as a reference to make contingency 

plans if necessary. 

 The prediction intervals generation method developed in this chapter also 

provides the probability distribution of each parameter in a prediction model. In the 

passenger aircraft case study, the probability distributions of the parameters C01 and C10 

in the Lotka-Volterra ecosystem model indicate the interaction between the system 

technology (passenger aircraft) and its component technology (turbofan aero-engine). 

The probability distributions help practitioners to make more informed R&D and 

outsourcing decisions. 

 

6.4.1. CPU Transistor Count Evolution Prediction* 

 The prediction of CPU transistor count is important in the semi-conductor 

industry. The prediction results are critical for high technology companies in R&D 

                                                 

* Appendix C includes the data set used in the case study of CPU. 
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planning [13]. To validate the method developed in Chapter 6.2, the CPU transistor 

count data from 1970 to 2014 is used to generate prediction intervals during 2014-2018. 

 The CPU transistor count data during 1970-2018 are collected from Wikipedia 

first. There are 118 data points in total as shown in Figure 6.1. The top performance data 

point of each year is chosen, and then the data points that are lower than any previous 

data point are removed. Only 30 data points (dots in Figure 6.1) are selected to represent 

the CPU performance evolution from 1970 to 2018. As is common in the semi-

conductor industry, the natural logarithm of the 30 performance values is taken because 

of fast improvements in CPU performance. 

 

 

Figure 6.1 CPU Transistor Count Data during 1970-2018 

 

 Moore’s Law is used as the technology evolution prediction model for CPU 

performance evolution. Moore’s Law is the most influential model used widely in the 
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semi-conductor industry to predict the performances of CPU and dynamic random-

access memory (RAM) [13]. The mathematical model is given by 

 𝑦 = 𝑒𝐴+𝐵𝑡  (6.10) 

where y is technology performance, t is time, and A and B are constant parameters. A 

natural logarithm transformation is made to Eq. (6.10) and a simple regression model is 

obtained as 

 𝑧 = 𝐴 + 𝐵𝑡 , (6.11) 

where z=ln(y). Eq. (6.11) is a linear model that is used to fit the natural logarithm 

transformed data set. 

 To validate the prediction intervals generation method developed in this chapter, 

a holdout sample test is conducted. In this test, it is checked whether the prediction 

intervals cover the actual data points in the following years. Imagine practitioners are in 

2014 and want to predict the CPU transistor count evolution in the subsequent four years 

(τ=4) using the data from 1970 to 2014 (T1=0, T2=44). 

 To determine an appropriate value for confidence level αe, a holdout sample 

analysis is performed using the CPU transistor count data from 1970 to 2010 (T1=0, T2-

τ=40). The 25 data points (n=25) is fitted to minimize the sum of squared errors. The 

fitted model is 

 𝑧𝑖 = 7.183 + 0.3607𝑡𝑖 + 𝜀𝑖 , (6.12) 

where i∈{1, 2, …, 25}, zi is the natural logarithm transformed transistor count, ti is 

time, where T1≤ti≤T2-τ, and εi is the deviation at each data point. An original sample is 

created from the deviation term of Eq. (6.12) as Ε0=(ε1, ε2, …, ε25). Resamples with size 
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n=25 are generated by drawing elements from sample Ε0 with replacement. Each 

element in sample Ε0 has a probability of 1/25 to be drawn. 1,000 resamples (R=1,000) 

are created as 

 𝜠𝒋 = (𝜀1
𝑗
, 𝜀2

𝑗
, ⋯ , 𝜀𝑛

𝑗
) , (6.13) 

where j∈{1, 2, …, 1000}. 1,000 bootstrapped CPU transistor count data sets are then 

derived as Zj=(z1
j, z2

j,…, z25
j) where 

 𝑧𝑖
𝑗
= 7.183 + 0.3607𝑡𝑖 + 𝜀𝑖

𝑗
 . (6.14) 

 Bootstrapped model parameters Aj and Bj for each bootstrapped CPU transistor 

count data set Zj are estimated as 𝞿j=(Aj, Bj). An empirical probability distribution Me(te; 

𝞿) at time te (40< te <44) is built by setting probability 1/1000 at each point M(te; 𝞿1), 

M(te; 𝞿2),…, M(te; 𝞿1000) where 

 𝑀(𝑡𝑒; ⁡𝝋𝒋) = 𝐴𝑗 + 𝐵𝑗𝑡𝑒 . (6.15) 

The empirical probability distribution Me(te; 𝞿) describes the parameter uncertainty in 

CPU transistor count prediction. 

 To estimate data uncertainty in CPU transistor count prediction, an empirical 

probability distribution Εe(ε) is constructed from the sample Ε0=(ε1, ε2,…, ε25) by setting 

a probability of 1/25 to each element in the sample Ε0. 

 Above all, a 100(1-α) % prediction intervals is derived for natural logarithm 

transformed CPU transistor count z at time te (40< te <44) by 

 [𝑀𝑒
𝛼/2

+ 𝜀𝑒
𝛼/2

, 𝑀𝑒
1−(𝛼/2)

+ 𝜀𝑒
1−(𝛼/2)

] , (6.16) 
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where Me
α/2 and Me

1-(α/2) are the α/2 and 1-α/2 percentiles of the Me(te; 𝞿) distribution, 

εe
α/2 and εe

1-(α/2) are the α/2 and 1-α/2 percentiles of the Εe(ε) distribution. The actual data 

points exist in 2011, 2012, and 2014 (te=41, 42, and 44). The distribution percentile P% 

could be determined that overlap these actual data points at time te=41, 42, and 44. The 

three values of confidence level α associated with each prediction interval can be 

calculated by 1-|1-P/50|. A 100(1-α) % prediction interval corresponds to each α value. 

The results of the distribution percentile, the confidence level, and the prediction interval 

at each actual data point are listed in Table 6.1. 

 

Table 6.1 Distribution Percentile, Confidence Level, and Prediction Interval at 2011, 

2012, and 2014 of CPU Transistor Count Evolution 

Year Distribution Percentile (%) Confidence Level α Prediction Interval 

2011 36.0 0.720 28.0% 

2012 56.0 0.880 12.0% 

2014 24.1 0.482 51.8% 

 

 Table 6.1 shows that the 51.8% prediction intervals cover the three data points 

during 2010-2014, resulting in corresponding confidence level of αe=0.482 which is used 

to generate prediction intervals in the next step. 

 As the final step, the 28 data points of CPU transistor count (n=28) from 1970 to 

2014 (T1=0, T2=44) is fitted with Eq. (6.11). The ordinary least-squares estimation 

produces the fitted model as follows 

 𝑧𝑖 = 7.242 + 0.3568𝑡𝑖 + 𝜀𝑖 . (6.17) 
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 Following the same procedure as stated earlier in this section, 51.8% prediction 

intervals are generated for CPU transistor count from 2014 to 2018. The results are 

shown in Figure 6.2. The 51.8% prediction intervals create a grey area that covers the 

two actual data points (rhombuses in Figure 6.2) at 2015 and 2017. The 95% prediction 

intervals (α=0.05) are also shown in Figure 6.2. The Figure 6.2 shows that 95% 

prediction intervals are much wider than the 51.8% prediction intervals on the log 

coordinates. 

 

 

Figure 6.2 CPU Transistor Count Evolution Prediction Intervals from 2014 to 2018 
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6.4.2. Passenger Aircraft Overall Performance Evolution Prediction* 

 The evolution of the passenger aircraft has led to airliners with higher passenger 

capacity, faster speed, and longer range over time. The aircraft engine (hereafter referred 

to as the aero-engine) is a major component technology of the passenger aircraft. The 

interaction between the passenger aircraft and the aero-engine should be considered in 

the passenger aircraft performance evolution prediction [19]. Thus, the Lotka-Volterra 

ecosystem model [19] is used to model the technology interaction and predict the 

passenger aircraft performance evolution. Here, the passenger aircraft is the system 

technology. Passenger capacityspeedrange (km2/h) is taken as the overall performance 

metric of the system technology. The turbofan aero-engine is the component technology. 

Take-off thrust (kN) is used as the performance metric of the component technology. 

The point forecasts of the passenger aircraft and the turbofan aero-engine performance 

evolutions are found in a previous publication [19]. Prediction intervals generation is 

focused on in this section. To test the method developed in Chapter 6.2, the performance 

evolution data of the passenger aircraft and the turbofan aero-engine from 1960 to 2004 

is used to generate prediction intervals during 2004-2008. 

 The performance evolution data of the passenger aircraft and the turbofan aero-

engine during 1960-2008 are collected [2, 91, 92]. The top performance data point of 

each year is chosen and then the data points that are lower than any previous data point 

are removed. 10 data points are selected that represent the passenger aircraft 

                                                 

* Appendix D includes the data sets used in the case study of passenger aircraft overall 

performance. 
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performance evolution, and 15 data points are selected that represent the turbofan aero-

engine performance evolution from 1960 to 2008. To create dimensionless metrics, these 

data values are divided by the corresponding characteristic values [19]. The latest 

performance in a specified time interval is used as the characteristic value for each 

technology. 

 In this case study, the simplified Lotka-Volterra equations are 

 
𝑑𝑦0
𝑑𝑡

= 𝑎0𝑦0 − 𝑏0𝑦0
2 + 𝐶01𝑦0𝑦1 (6.18) 

 
𝑑𝑦1
𝑑𝑡

= 𝑎1𝑦1 − 𝑏1𝑦1
2 + 𝐶10𝑦1𝑦0⁡ (6.19) 

where y0 is the dimensionless passenger aircraft performance, y1 is the dimensionless 

turbofan aero-engine performance, and a0, b0, C01, a1, b1, and C10 are constant 

parameters. 

 Again, a holdout sample test is conducted to validate the prediction intervals 

generation method developed in this chapter. In the holdout sample test, it is checked 

whether the prediction intervals cover the actual data point(s) in the following years. It is 

assumed that practitioners are in 2004 and want to predict the passenger aircraft 

performance evolution for the subsequent four years (τ=4) using the data from 1960 to 

2004 (T1=0, T2=44). 

 To determine an appropriate value for confidence level αe, a holdout sample 

analysis is performed using the performance evolution data of the passenger aircraft and 

the turbofan aero-engine from 1960 to 2000 (T1=0, T2-τ=40). The 23 data points (n=23) 

is fitted to minimize the sum of squared errors using the trust region reflective algorithm 
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[63]. In the data fitting process, the simplified Lotka-Volterra equations, shown in Eqs. 

(6.18) and (6.19), are solved using high order Runge-Kutta method [45, 54]. The fitted 

model is 

 
𝑑𝑦0
𝑑𝑡

= 0.280𝑦0 − 0.616𝑦0
2 + 0.481𝑦0𝑦1 (6.20) 

 
𝑑𝑦1
𝑑𝑡

= 0.0509𝑦1 − 0.0319𝑦1
2 + 2.33 ∙ 10−14𝑦1𝑦0 (6.21) 

 𝑦0(𝑡 = 0) = 0.0796 (6.22) 

 𝑦1(𝑡 = 0) = 0.241⁡ (6.23) 

where t=0 represents the start year of 1960. Here, the technology performances at the 

start year are treated as unknown parameters in the data fitting process. The deviation 

term, εi, is derived by subtracting the corresponding solution of Eqs. (6.20) - (6.23) from 

the actual data at each data point, where i∈{1, 2, …, 23}. Here, the deviation terms of 

two technologies (the passenger aircraft and the turbofan aero-engine) are not treated 

differently in the following bootstrapping process because every data point is normalized 

in the same range (0, 1] by the dimensionless treatment. The cluster bootstrapping 

approach in technology evolution prediction using a system model may be explored in 

future research. Thus, an original sample from the deviation term is created as Ε0=(ε1, ε2, 

…, ε23). Resamples with size n=23 are generated by drawing elements from the sample 

Ε0 with replacement. Each element in the sample Ε0 has a probability of 1/23 to be 

drawn. 1,000 resamples (R=1,000) are created as 

 𝜠𝒋 = (𝜀1
𝑗
, 𝜀2

𝑗
, ⋯ , 𝜀𝑛

𝑗
) , (24) 
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where j∈{1, 2, …, 1000}. 1,000 bootstrapped passenger aircraft and turbofan aero-

engine data sets are then derived as Yj=(y1
j, y2

j, …, y23
j) by adding the bootstrapped 

deviation term εi
j to the corresponding solutions of Eqs. (6.20) - (6.23) for each data 

point. 

 Bootstrapped model parameters 𝞿j=( yt0
j, a0

j, b0
j, C01

j, yt1
j, a1

j, b1
j, C10

j,) for each 

bootstrapped technology performance data set Yj are estimated, where yt0=y0(t=0) and 

yt1=y1(t=0). An empirical probability distribution MPe(te; 𝞿) at time te (40< te <44) is 

built by setting a probability of 1/1000 at each point MP(te; 𝞿1), MP(te; 𝞿2),…, MP(te; 

𝞿1000), where MP(te; 𝞿j) is the solution of Eqs. (6.18) and (6.19) for the passenger 

aircraft dimensionless performance y0 at time te with eight parameter values given by 𝞿j. 

The empirical probability distribution MPe(te; 𝞿) describes the parameter uncertainty in 

the passenger aircraft performance prediction. The empirical probability distribution 

MAe(te; 𝞿) for the dimensionless turbofan aero-engine performance could be derived in 

the same manner. 

 To estimate data uncertainty, an empirical probability distribution Εe(ε) is 

constructed from the sample Ε0=(ε1, ε2,…, ε23) by setting a probability of 1/23 to each 

element in the sample Ε0. 

 Above all, a 100(1-α) % prediction intervals for the dimensionless passenger 

aircraft performance y0
 at time te (40< te <44) is derived by 

 [𝑀𝑃𝑒
𝛼/2

+ 𝜀𝑒
𝛼/2

, 𝑀𝑃𝑒
1−(𝛼/2)

+ 𝜀𝑒
1−(𝛼/2)

] , (6.25) 

where MPe
α/2 and MPe

1-(α/2) are the α/2 and 1-α/2 percentiles of the MPe(te; 𝞿) 

distribution, εe
α/2 and εe

1-(α/2) are the α/2 and 1-α/2 percentiles of the Εe(ε) distribution. 
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Similarly, the 100(1-α) % prediction intervals for the dimensionless turbofan aero-

engine performance y1 at time te (40< te <44) could be derived as 

 [𝑀𝐴𝑒
𝛼/2

+ 𝜀𝑒
𝛼/2

, 𝑀𝐴𝑒
1−(𝛼/2)

+ 𝜀𝑒
1−(𝛼/2)

] . (6.26) 

There is one turbofan aero-engine data point at 2002 (te= 42). The distribution percentile 

87.0% overlaps that actual data point at 2002. The 87.0% distribution percentile 

corresponds to 74.0% prediction interval. The confidence level α associated with the 

74.0% prediction interval equals 0.260. Thus, the confidence level αe=0.260 is used to 

generate prediction intervals in the next step. 

 As the final step, the 24 data points of the passenger aircraft and the turbofan 

aero-engine performance evolutions (n=24) from 1960 to 2004 (T1=0, T2=44) are fitted 

with Eqs. (6.18) and (6.19). The ordinary least-squares estimation produces the fitted 

model as follows 

 
𝑑𝑦0
𝑑𝑡

= 0.267𝑦0 − 0.612𝑦0
2 + 0.580𝑦0𝑦1 (6.27) 

 
𝑑𝑦1
𝑑𝑡

= 0.0346𝑦1 − 1.71 ∙ 10−8𝑦1
2
+ 4.32 ∙ 10−10𝑦1𝑦0 (6.28) 

 𝑦0(𝑡 = 0) = 0.0797 (6.29) 

 𝑦1(𝑡 = 0) = 0.224 (6.30) 

 Following the procedure described earlier in this section, 74.0% prediction 

intervals (αe=0.260) are generated for the passenger aircraft performance evolution from 

2004 to 2008. The results are shown on Figure 6.3. The 74.0% prediction intervals create 

a grey area that covers the actual data point (rhombuses on Figure 6.3) in 2005. The 95% 

prediction intervals (α=0.05) are also shown in Figure 6.3. Again, the Figure 6.3 shows 
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that the 95% prediction intervals are much wider than the 74.0% prediction intervals 

generated by the method developed in this case study. 

 

 

Figure 6.3 Passenger Aircraft Performance Evolution Prediction from 2004 to 2008 

 

 Of note, the lower limits of 74.0% prediction intervals are smaller than the latest 

passenger aircraft performance (the passenger aircraft performance at 1988) during 

1960-2004. In this case, practitioners should substitute the latest system technology 

performance for the lower limits of the prediction intervals generated by the method 

because technology performance monotonically increases over time. Although some 

technology performances in future periods may not exceed the top technology 

performance in the past, practitioners usually ignore these performances and focus on the 

better performance that a technology may achieve in a future period. 

 The Lotka-Volterra ecosystem model allows practitioners to predict the 

performance of system and component technologies with improved accuracy. The 
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ecosystem model also quantifies the interaction between the technologies [19]. For 

example, the parameter C01 in Eq. (6.18) captures the impact of the turbofan aero-engine 

on the passenger aircraft performance evolution; the parameter C10 in Eq. (6.19) reflects 

the impact of the passenger aircraft on the turbofan aero-engine performance evolution. 

Importantly, the method presented in this chapter provides the probability distribution of 

each parameter in a prediction model. For system models, practitioners could evaluate 

the interaction between the technologies from the probability distribution and make more 

informed R&D and outsourcing decisions. For example, empirical probability 

distributions for the eight parameters in Eqs. (6.20) - (6.23) can be constructed from 𝞿j. 

The histograms of C01/a0 and C10/a1 are shown on Figure 6.4 and Figure 6.5. The results 

indicate that the development of turbofan aero-engine has considerable impact on the 

passenger aircraft evolution because the value of C01/a0 has a median of 1.44 and a 

probability of 80.8% that C01/a0 > 0.1. Meanwhile, the advancement of passenger aircraft 

performance has limited impact on the turbofan aero-engine evolution. The value of 

C10/a1 has a median of 0.337 and a probability of 54.7% that C01/a0 > 0.1. Thus, in order 

to improve the passenger aircraft performance, the first priority is to invest in the R&D 

of the turbofan aero-engine. However, the opposite is not true. Investment in the R&D of 

the passenger aircraft is unlikely to be an effective strategy to improve the performance 

of the turbofan aero-engine. 
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Figure 6.4 Histogram of C01/a0 Distribution in Eq. (6.20) 

 

 

Figure 6.5 Histogram of C10/a1 distribution in Eq. (6.21) 

 

 This passenger aircraft case study models only the interaction between one 

system technology and one component technology. In the case of one system technology 

interacting with multiple component technologies, practitioners could use a system 

model associated with this method to identify the key component technologies that have 

significant impact on the system technology evolution (e.g., through the probability 
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distributions of parameters C in the Lotka-Volterra ecosystem model [19]). Practitioners 

would consider developing and manufacturing these key component technologies in-

house, or establish a partner relationship (e.g., through joint R&D, cross-shareholding, or 

exclusive supply) with the suppliers of these component technologies. Meanwhile, other 

component technologies that have limited impact on the system technology evolution 

may be considered for outsourcing [19]. 

 

6.5. Summary 

 This chapter introduces a general method that uses bootstrapping to generate 

prediction intervals for technology evolution prediction. The method can be applied to 

any technology evolution prediction model based on mathematical functions or 

differential equations involving time that predicts the incremental change in technology 

performance. Parameter uncertainty and data uncertainty are considered and their 

empirical probability distributions are established in the method. The appropriate 

confidence level α required to generate prediction intervals is determined using a holdout 

sample analysis rather than setting α=0.05 as is frequently done in previous research. In 

addition, this general method provides the probability distribution of each parameter in a 

prediction model. Four steps are outlined for practitioners to generate prediction 

intervals in technology evolution prediction in practice.  

 The prediction intervals generations of CPU and passenger aircraft are used as 

two case studies to illustrate these steps and validate the method. These case studies 

show that the prediction intervals generated by the method cover every actual data point 
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in the holdout sample tests. These results validate the effectiveness of this method to 

assess future technology evolution uncertainty. 
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7. CONCLUSIONS AND FUTURE WORK* 

 

 This dissertation establishes a quantitative ecological based theory to model the 

technical performance changes of technologies and to predict and manipulate future 

technology performance. The quantitative ecological based theory consists of a Lotka-

Volterra ecosystem model and a generic method for prediction intervals generation. The 

Lotka-Volterra ecosystem model and the prediction intervals generation method provide 

practically useful prediction intervals for the trend that technology evolution is expected 

to follow. The ecosystem model and the prediction intervals generation method also help 

practitioners to develop effective strategies to improve future technology performance. 

These prediction intervals and technology performance boosting strategies are important 

for practitioners (e.g., designers, R&D mangers, and policy makers) to establish stable 

product architecture, set reasonable R&D targets, and develop effective incentive 

policies. 

 As the last chapter of this dissertation, this chapter summarizes the contributions 

of this research. Future research directions in the areas of technology technical 

performance evolution, technology functional evolution, and technology architectural 

evolution are also discussed. 

 

                                                 

* Part of this chapter is reprinted with permission from “Generating Technology 

Evolution Prediction Intervals Using a Bootstrap Method” by Guanglu Zhang, Douglas 

Allaire, Daniel A. McAdams, and Venkatesh Shankar, 2019. Journal of Mechanical 

Design, 141(6), 061401, Copyright 2019 by ASME. 
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7.1. Research Contributions 

 The general contribution of this research is to introduce an ecosystem approach 

in technology evolution. Prior research assumes that every technology evolves in 

isolation and the interaction between technologies is not considered. This research 

creates a quantitative ecological based theory to model the technical performance 

changes of system technology and its component technologies simultaneously. The 

quantitative ecological based theory considers the interaction between technologies in 

the relationships of symbiosis, commensalism, and amensalism. Moreover, the 

quantitative ecological based theory helps practitioners to assess future technology 

evolution uncertainty, to discern the causality of technology evolution, and to develop 

effective strategies to improve technology performance accordingly. The quantitative 

ecological based theory consists of a Lotka-Volterra ecosystem model and a generic 

method for prediction intervals generation. The Lotka-Volterra ecosystem model and the 

generic method for prediction intervals generation have several specific contributions, 

respectively.  

 The Lotka-Volterra ecosystem model comprises a set of differential equations 

that is extended from Lotka-Volterra equations in community ecology. Every parameter 

in the Lotka-Volterra ecosystem model is associated with its causal factors, such as 

R&D investment and technical difficulty. Importantly, the values of parameter C in the 

ecosystem model represent the symbiosis, commensalism, or amensalism relationship 

between system technology and its component technologies. The values and 

interpretations of parameter C help practitioners to identify the key component 
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technologies in a system technology and make informed R&D investment and 

outsourcing decisions accordingly. The mathematical analysis of the Lotka-Volterra 

ecosystem model and the interpretation of other parameters (parameter a and b) in the 

ecosystem model offer practitioners guidelines on effective strategies to boost system 

technology performance. To apply the Lotka-Volterra ecosystem model in practical 

projects, a three-step procedure is developed for practitioners to predict and manipulate 

the performances of the system technology and its component technologies. Passenger 

aircraft fuel efficiency is used as a case study to illustrate the three steps procedure. The 

system technology (passenger aircraft fuel efficiency) interacts with three component 

technologies (aerodynamics, weight reduction, and aero-engine fuel efficiency) in the 

case study. 

 The generic method for prediction intervals generation helps practitioners to 

supplement point forecasts by computing interval forecasts. Practitioners rely on the 

interval forecasts to assess future technology evolution uncertainty and make 

contingency plans accordingly. The novelty of this method is in the application of 

bootstrapping to estimate parameter and data uncertainty for technology evolution 

prediction and in determining confidence level α from a holdout sample analysis. The 

method can be applied to any technology evolution prediction model based on 

mathematical functions or differential equations involving time that predicts the 

incremental change in technology performance. Parameter uncertainty and data 

uncertainty are considered in the method and the empirical probability distributions of 

these uncertainties are established. The appropriate confidence level α required to 
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generate prediction intervals is determined using a holdout sample analysis rather than 

setting α=0.05 as is frequently done in previous research. In addition, the method 

provides the probability distribution of each parameter in a prediction model. Four steps 

are outlined for practitioners to generate prediction intervals in technology evolution 

prediction in practice. CPU and passenger aircraft prediction intervals generations are 

used as two case studies to illustrate these steps and validate the method. 

 

7.2. Recommendations for Future Work 

 As stated in Chapter 1, research in technology evolution tracks the historical 

technical performance and the functional and architectural changes of existing 

technologies, and also studies how and why these changes occur and searches for 

patterns behind these evolutions. This dissertation focuses on the technical performance 

changes of technologies and creates a quantitative ecological based theory for 

technology technical performance evolution prediction and manipulation. This research 

has several limitations that offer opportunities for future research in technology technical 

performance evolution. Moreover, it is promising to study the functional and 

architectural evolution of various technologies in future work. 

 

7.2.1. Technology Technical Performance Evolution 

 The historical technical performance data of three representative technologies 

(i.e., concrete skyscraper, passenger aircraft, and CPU) are used to illustrate the 

application of the quantitative ecological based theory in this dissertation. Researchers 
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could apply the quantitative ecological based theory in various technologies (e.g., 

automobile [93] and computer [94]) in the future. Such application may derive 

compelling prediction results and help practitioners generate effective strategies to boost 

technology performance. To facilitate technology evolution research, technical 

performance evolution data of several system technologies and their component 

technologies are collected from various sources, and a database is established. The 

database currently includes 90 data sets that belong to 27 performance metric categories 

of 6 system technologies (i.e., passenger aircraft, orbital launch system, automobile, 

computer, refrigerator, and lamp) and their corresponding component technologies. 

Table E.1 in Appendix E lists the performance metric categories of this database*. One 

category sometimes contains several data sets. For example, the category of passenger 

aircraft speed contains two data sets including propeller aircraft speed and jet aircraft 

speed. Importantly, most of these data sets have not been used for technology evolution 

research so far. 

 Moreover, the Lotka-Volterra ecosystem model introduced in this dissertation 

only considers the interaction between system technology and its component 

technologies. The Lotka-Volterra ecosystem model may still oversimplify the 

technology ecosystem. Researchers may find appropriate mathematical formulas to build 

advanced technology evolution models through an ecosystem analogy in future work. 

These advanced technology evolution models may have more than two layers. Figure 7.1 

shows a typical hierarchical technology ecosystem that includes a system layer, a 

                                                 

* Please contact the author (glzhang85@hotmail.com) to access these data sets. 
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component layer, and a fundamental layer. The system technology of interest represents 

the system layer. The system technology is realized through the integration of multiple 

hardware and software elements, commonly referred to as component technologies. 

These component technologies support the system technology but usually cannot fulfill 

end users’ functional requirements separately. These component technologies establish a 

component layer in the ecosystem. Further, fundamental technologies enable the 

invention of these component technologies. Each component technology consists of 

several fundamental technologies that constitute the fundamental layer in the ecosystem. 

For example, a microprocessor is a key component technology of a smartphone system 

technology. Improvements in microprocessor performance enable enhanced smartphone 

performance. In turn, this performance enhancement of the microprocessor relies on the 

advancement of lithographic technology that belongs to the fundamental layer of the 

smartphone technology ecosystem.   

 

  

Figure 7.1 A Typical Hierarchical Technology Ecosystem 



 

109 

 

 

 Importantly, such advanced ecosystem models cannot replace descriptive models. 

In many cases, descriptive models are still the best choice to model the technical 

performance changes of technologies. For example, practitioners may only have one 

historical data set available when they want to predict the future system or component 

technology performance. Sometimes, it may be legitimate to neglect the interactions in a 

technology ecosystem. In these cases, it is a challenging task for practitioners to select 

an appropriate model among many candidates. Methodologies have been developed to 

select appropriate models for technological forecasting that focus on business indicators, 

such as cost, price, production, sales revenue, and profit [5, 17]. Using the database 

mentioned in this section, future research could test whether these methodologies are 

effective in technology evolution with a focus on technical performance (e.g., speed, 

capacity, and energy efficiency) of technologies or could develop new model selection 

methodologies. There are also research opportunities to develop new descriptive models 

for technology evolution. The classical models in other areas (e.g., ecology, marketing, 

economics, and finance) may inspire new model development in technology technical 

performance evolution [23, 36, 82, 95]. 

 

7.2.2. Technology Functional Evolution 

 The functions that a system technology achieves usually change as the system 

technology evolves. For example, cell phones have undergone significant functional 

evolution since their commercial inception in the 1980s, as shown in Figure 7.2. The 
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first commercial cell phone introduced wireless calling to consumers in 1983. Several 

years later, cell phones had text messaging capabilities and the integration of cameras 

allowed users to store photos on their devices. In 2007, cell phone users were able to 

access the mobile web and use their device for music streaming. GPS navigation 

technology was eventually integrated which allowed users to rely on their cell phones for 

directions rather than separate navigation devices or printed maps. 

 

 

Figure 7.2 Cell Phone Functional Evolution 

 

 Understanding the functional evolution of system technologies can help 

designers establish system technology functional requirements at the beginning of the 

design process. It is risky to develop the functional requirements of a system technology 

through customer interviews and surveys only. The typical users for a current system 

technology may not be the early adopters of the new system technology [84]. For 

example, the early computers were designed for the military rather than household 

consumers. Moreover, revolutionary functional changes cannot be informed by any 

current users. For instance, nearly every function addition in Figure 7.2 was not expected 
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by the previous cell phone users. Future research in technology functional evolution has 

potential to fill this gap. R&D managers and designers can decide when and how to add 

one or more new functions into a system technology based on the research results of 

technology functional evolution. 

 To my knowledge, the functional evolution of system technologies has received 

scant research attention in the past. Although functional models [96, 97] have been 

developed and applied in engineering design since 2000, there are no research efforts 

that study the evolution of a functional model as its corresponding system technology 

evolves. Future research can also study why the new function was added into the system 

technology at the time. Based on these research results, new methods that can predict 

future functional requirements of a system technology may be developed. In addition, 

the functional change of a system technology often alters the human-system interaction 

in the meantime. Users typically operate the system in a different way when a new 

function is added into the system. For example, text messaging capabilities in cell 

phones began in the 1990s but did not experience complete integration until the early 

2000s. During the early days of text messaging development, designers and investors did 

not foresee this alternative form of communication competing with wireless calling. 

However, as text messaging technology advanced, cell phone users began using text 

messaging more frequently. By 2007, consumers on average used the text messaging 

function more than the wireless calling function [98]. Therefore, text messaging changed 

the way cell phone users communicate and operate their devices. Future research could 

also track the evolution of the activity diagram [15] or the action-function diagram [99] 
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as a system technology evolves. The evolution of human-system interaction will guide 

designers for new system technology development. 

 

7.2.3. Technology Architectural Evolution 

 Unlike technology functional evolution, technology architectural evolution has 

attracted research attention in recent years [12]. Such consideration is known as 

evolvable design [100]. The purpose of evolvable design is to reduce development time 

and cost for possible future system technologies through reusing current system 

technology architecture and associated processes (e.g., manufacturing) [101].  

 The guideline for evolvable design is clear. Designers should include a 

component technology into the system technology in a modular fashion if the component 

technology will evolve rapidly [12]. If the component technology is mature, designers 

need to include that component technology into the system technology in an integral way. 

Although the guideline is in place, the method for achieving this objective is challenging. 

Very few practical methodologies are available to achieve evolvable design in system 

architecture. The limited publications that develop evolvable design methodologies 

include the works from Tackett et al., Lim, and van Heerden et al. Tackett et al. 

introduced evolvability measures that designers can take into account in system 

architecture [102]. These evolvability measures are based on system excess and capacity. 

Lim developed a systematic approach for aircraft evolvable design [103]. The systematic 

approach builds on the premise that the commonality between current system 

architecture and possible future system architectures are specified. van Heerden et al. 
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developed a method that considers the evolution of airframe and subsystems at the same 

time [101]. Their method is able to predict commonality according to the scenario 

planning and technology roadmap of aircraft. 

 There are many remaining research questions in this research field. Current 

evolvable design methodologies rely on system development roadmaps, also called 

technology roadmaps [104], which includes possible system architectures in the future. 

To my knowledge, there is no general applicable method that can generate possible 

future system architectures based on the technical performance and functional evolution 

prediction of the technology. Moreover, designers can benefit from practical 

methodologies to achieve evolvable design in system architecture when possible future 

system architectures are not available. In addition, future research could study the 

historical architectures of system technologies. For example, researchers can observe 

how designers define module boundaries in different cell phones throughout history and 

discover system architectures that achieve evolvable design successfully. The lessons 

learned from history can improve designers’ ability to architect new systems in the 

future. 
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APPENDIX A 

TECHNICAL PERFORMANCE DATA SETS USED IN CONCRETE SKYSCRAPER 

CASE STUDY 

 

 Appendix A includes two data sets that are used in the concrete skyscraper case 

study in Chapter 4.3. The historical data of concrete compressive strength is shown in 

Table A.1. The concrete compressive strength data is extracted from an ACI technical 

report [48]. The historical data of concrete skyscraper height is shown in Table A.2. The 

concrete skyscraper height data is collected from The Global Tall Building Database of 

the CTBUH (http://www.skyscrapercenter.com/).    

 

Table A.1 Concrete Compressive Strength Evolution Data 

Year Compressive Strength (MPa) 

1955 34 

1965 52 

1975 62 

1995 138 
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Table A.2 Concrete Skyscraper Height Evolution Data 

Year Concrete Skyscraper Name Concrete Skyscraper Height (m) 

1950 Edificio Alas 141 

1957 Torre de Madrid 142 

1962 Sheraton New York 153 

1964 Tour de la Bourse 190 

1968 Lake Point Tower 196 

1970 One Shell Plaza 218 

1973 Carlton Centre 223 

1976 Water Tower Place 262 

1990 Two Prudential Plaza 303 

1992 Central Plaza 374 

1996 CITIC Plaza 390 

2009 Trump International Hotel & Tower 423 

 

 

 

 

 

 

 

 

 

 

 



 

129 

 

APPENDIX B 

TECHNICAL PERFORMANCE DATA SETS USED IN PASSENGER AIRCRAFT 

FUEL EFFICIENCY CASE STUDY 

 

 Appendix B includes four data sets that are used in the passenger aircraft fuel 

efficiency case study in Chapter 5.3. These data sets are collected from Air Pollutant 

Emission Inventory Guidebook [59], ICAO Aircraft Engine Emissions Databank [62], 

Wikipedia and multiple volumes of Jane's All the World's Aircraft. 

 

 

Table B.1 Passenger Aircraft Fuel Efficiency Evolution Data 

Aircraft Name First Flight Year 
Passenger 

Capacity 

Fuel Burn 

per 3,000 

nmi (kg) 

Fuel Efficiency 

(1000*person/kg) 

MD-10 series 10 1970 380 46360 8.20 

Airbus A300 – B4 1974 345 36726 9.39 

Boeing 757-200 1982 239 25014 9.55 

Airbus A320 1987 195 16932 11.52 

Airbus A330-300 1992 440 36333 12.11 

Boeing 787-8 2009 381 28391 13.42 

Boeing 737 MAX 2016 230 15890 14.47 
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Table B.2 Passenger Aircraft Wing Aspect Ratio Evolution Data 

Aircraft Name First Flight Year Wing Aspect Ratio 

MD-10 series 10 1970 6.8 

Boeing 747-200 1971 6.96 

MD-10 series 30&40 1972 7.5 

Airbus A300 – B4 1974 7.71 

Boeing 767-200 1981 7.89 

Airbus A310 1982 8.8 

Airbus A320 1987 9.4 

Tupolev TU 204 1989 9.49 

Airbus A340-200/300 1991 10 

Airbus A330-300 1992 10.06 

Boeing 737 MAX 2016 10.16 
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Table B.3 Passenger Aircraft Weight Reduction Evolution Data 

Aircraft Name First Flight Year Payload (kg) OEW (kg) Payload/OEW 

MD-10 series 10 1970 40600 111300 0.365 

Boeing 747-200 1971 67360 170100 0.396 

Airbus A300-B4 1974 37495 88505 0.424 

Boeing 757-200 1982 25970 58440 0.444 

Boeing 767-300ER 1988 43800 90011 0.487 

Boeing 757-300 1998 31600 64340 0.491 

Boeing 787-9 2013 63958 128850 0.496 

OEW - Typical Airline Operating Empty Weight  
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Table B.4 Aero-Engine Fuel Efficiency Evolution Data 

Manufacturer Engine Test Finish Year Rated Output/Fuel LTO 

Pratt & Whitney JT3D-3B 1974 0.1718 

Pratt & Whitney JT9D-7F 1975 0.2620 

GE Aircraft Engines CF6-6D1A 1979 0.2727 

GE Aircraft Engines CF6-80A3 1983 0.2979 

GE Aircraft Engines CF6-80C2B6F 1985 0.3202 

Pratt and Whitney PW4077 1994 0.3403 

GE GE90-92B 1995 0.3466 

GE GE90-92B 1997 0.3506 

GE GE90-94B 2000 0.3598 

GE GE90-94B 2007 0.3667 

GE Aviation GEnx-1B70 2009 0.3766 

Pratt & Whitney PW1133G-JM 2014 0.3932 
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APPENDIX C 

TECHNICAL PERFORMANCE DATA SET USED IN CPU CASE STUDY 

 

 Appendix C includes one data set that is used in CPU transistor count case study 

in Chapter 6.4.1. This data set is collected from Wikipedia 

(https://en.wikipedia.org/wiki/Transistor_count). 
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Table C.1 CPU Transistor Count Evolution Data 

Processor Date of Introduction Transistor Count 

Intel 4004 1971 2300 

Intel 8008 1972 3500 

TMS 1000 1974 8000 

Zilog Z80 1976 8500 

Intel 8086 1978 29000 

Motorola 68000 1979 68000 

Intel 80286 1982 134000 

Motorola 68020 1984 190000 

Intel 80386 1985 275000 

TI Explorer's 32-bit Lisp machine chip 1987 553000 

Intel 80486 1989 1180235 

68040 1990 1200000 

R4000 1991 1350000 

Pentium 1993 3100000 

Pentium Pro 1995 5500000 

AMD K6 1997 8800000 

Pentium II Mobile Dixon 1999 27400000 

Pentium 4 Willamette 2000 42000000 

Pentium III Tualatin 2001 45000000 

Itanium 2 McKinley 2002 220000000 

Itanium 2 Madison 6M 2003 410000000 

Itanium 2 with 9 MB cache 2004 592000000 

Dual-core Itanium 2 2006 1700000000 

Six-core Xeon 7400 2008 1900000000 

8-core Xeon Nehalem-EX 2010 2300000000 

10-core Xeon Westmere-EX 2011 2600000000 

61-core Xeon Phi 2012 5000000000 

18-core Xeon Haswell-E5 2014 5560000000 

32-core SPARC M7 2015 10000000000 

32-core AMD Epyc 2017 19200000000 

 



 

135 

 

APPENDIX D 

TECHNICAL PERFORMANCE DATA SETS USED IN PASSENGER AIRCRAFT 

OVERALL PERFORMANCE CASE STUDY 

 

 Appendix D includes two data sets that are used in passenger aircraft overall 

performance case study in Chapter 6.4.2. These data sets are collected from three data 

books [2, 91, 92], Wikipedia, and multiple volumes of Jane's All the World's Aircraft. 

 

Table D.1 Passenger Aircraft Performance Evolution Data 

Year Name Passenger Capacity Speed (km/h) Range (km) 

1960 Tupolev Tu-124 56 970 2100 

1961 Convair 990 Coronado 149 1000 5785 

1962 Vickers VC10 151 933 9412 

1963 Ilyushin IL-62 186 900 10000 

1965 DC-8-Super 60 Series 259 895 8334 

1969 Boeing 747-100 366 1136 8560 

1970 Boeing 747-200 366 1136 12150 

1982 Boeing 747-300 400 1136 11720 

1988 Boeing 747-400 416 1136 14200 

2005 Airbus A380-800 544 945 15200 
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Table D.2 Aero-engine Performance Evolution Data 

Year Aero-engine Rated Output (lb) 

1960 Pratt & Whitney TF33 (JT3D-1) 17000 

1961 Pratt & Whitney JT3D-3 18000 

1962 Pratt & Whitney JT3D-11 22000 

1963 Bristol Siddeley BS.100-3 38000 

1967 Pratt & Whitney JT9D-1 42000 

1968 General Electric TF39-1 43300 

1969 Pratt & Whitney JT9D-3A 48500 

1972 General Electric CF6-50C 52500 

1974 Pratt & Whitney JT9D-59A 53000 

1983 General Electric CF6-80C2 62000 

1991 Pratt & Whitney PW4073 77000 

1995 Pratt & Whitney PW4084 86760 

1996 Rolls-Royce Trent 890 92000 

1998 Rolls-Royce Trent 800 114500 

2002 General Electric GE90-115B 127900 
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APPENDIX E 

PERFORMANCE METRIC CATEGORIES OF TECHNOLOGY EVOLUTION 

DATABASE 

 

 Table E.1 lists the performance metric categories of the technology evolution 

database mentioned in Chapter 7.2.1. Please contact the author 

(glzhang85@hotmail.com) to access these data sets. 
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Table E.1 Performance Metric Categories of 6 System Technologies 

System Technology Performance Metric Data Set Time Span 

Passenger Aircraft 

Aircraft Speed 2 1913-2017 

Aircraft Passenger Capacity 2 1913-2017 

Aircraft Range 2 1913-2017 

Aircraft Fuel Consumption 16 1960-2017 

Aircraft Emission 32 1960-2005 

Aircraft Wing Aspect Ratio 1 1969-2017 

Aircraft Payload 1 1970-2017 

Aircraft Typical Airline Operating 

Weight Empty 
1 1970-2017 

Aero-engine Rated Output 1 1960-2018 

Aero-engine Bypass Ratio 1 1970-2018 

Aero-engine Pressure Ratio 1 1970-2018 

Aero-engine Emission 8 1970-2018 

Aero-engine Fuel Consumption 1 1970-2018 

Orbital Launch System Payload 3 1957-2018 

Automobile 
Automobile Speed 1 1894-2017 

Automobile Fuel Efficiency 3 1984-2019 

Computer 

CPU Transistor Count 1 1970-2018 

GPU Transistor Count 1 1997-2018 

FPGA Transistor Count 1 1997-2018 

Hard Disk Drive Areal Density 1 1955-2015 

Hard Disk Drive Moment 1 1950-2010 

Hard Disk Drive Grain Diameter 1 1997-2016 

Hard Disk Drive Head-medium 

Spacing 
4 1990-2015 

Flash Areal Density 1 1990-2015 

Refrigerator 
Refrigerator Volume 1 1972-2010 

Refrigerator Energy Consumption 1 1972-2010 

Lamp Lamp Energy Efficiency 1 1880-1980 
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