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 ABSTRACT 

 

Being able to control nonlinear oscillators, which are ubiquitous, has significant 

engineering implications in process development and product sustainability design.  The 

fundamental characteristics of a vibro-impact oscillator, a non-autonomous time-delayed 

feedback oscillator, and a time-delayed vibro-impact oscillator are studied.  Their being 

stochastic, nonstationary, non-smooth, and dynamically complex render the mitigation 

of their behaviors in response to linear and stationary inputs very difficult if not entirely 

impossible.  A novel nonlinear control concept featuring simultaneous control of 

vibration amplitude in the time-domain and spectral response in the frequency-domain is 

developed and subsequently incorporated to maintain dynamic stability in these 

nonlinear oscillators by denying bifurcation and route-to-chaos from coming to pass.  

Convergence of the controller is formulated to be inherently unconditional with the 

optimization step size being self-adaptive to system identification and control force 

input.  Optimal initial filter weights are also derived to warrant fast convergence rate and 

short response time.  These novel features impart adaptivity, intelligence, and universal 

applicability to the wavelet based nonlinear time-frequency control methodology.  The 

validity of the controller design is demonstrated by evaluating its performance against 

PID and fuzzy logic controllers in controlling the aperiodic, broad bandwidth, 

discontinuous responses characteristic of the time-delayed, vibro-impact oscillator.  

 



 

iii 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chairman, Dr. Suh, and my committee 

members, Dr. Hur, Dr. Tai, and Dr. Vorobets, for their guidance and support throughout 

the writing of this dissertation. 

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience.  

Finally, I want to thank my loving parents for their encouragement and to my 

wife for her patience and love. You are always there for me. 

  



 

iv 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by dissertation committees consisting of Professor 

Steve Suh, Professor Bruce Tai, and Professor Pilwon Hur of the Department of 

Mechanical Engineering and Professor Yaroslav Vorobets of the Department of 

Mathematics.  

 

Funding Sources 

No outside funding was received for the research and compilation of this 

document. 



 

v 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGEMENTS ............................................................................................. iii 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ..........................................................................................................vii 

LIST OF TABLES ...........................................................................................................xii 

CHAPTER I INTRODUCTION AND LITERATURE REVIEW .................................... 1 

Current State of Affairs .................................................................................................. 1 
Literature Review ........................................................................................................... 2 

Vibro-Impact Oscillators ............................................................................................ 2 
Time-Delayed Oscillators ........................................................................................... 5 
Control Methodology ................................................................................................. 8 

Research Objectives ..................................................................................................... 11 

CHAPTER II WAVELET BASED NONLINEAR TIME-FREQUENCY CONTROL 

THEORY WITH LOCAL ADAPTABILITY .................................................................. 13 

Adaptive Filter and Filtered-x LMS Algorithm ........................................................... 14 
Wavelet Filter Banks .................................................................................................... 19 
Simultaneous Time-Frequency Control ....................................................................... 22 
Local Adaptability to Nonlinear and Nonstationary Response .................................... 25 

Adaptable Optimization Step Size for System Identification .................................. 25 
Adaptable Optimization Step Size for Input Control ............................................... 27 

Initial guess for filter coefficient .................................................................................. 41 

CHAPTER III GRAZING CONTROL OF A VIBRO-IMPACT OSCILLATOR .......... 46 

Introduction .................................................................................................................. 46 
Vibro-Impact Oscillator Model .................................................................................... 47 
Grazing Bifurcation of Vibro-Impact Oscillator .......................................................... 48 
Controlled Response .................................................................................................... 51 



 

vi 

 

Summary ...................................................................................................................... 63 

CHAPTER IV CONTROL OF A NON-AUTONOMOUS TIME-DELAYED 

SYSTEM WITH CUBIC ORDER FEEDBACK ............................................................. 65 

Introduction .................................................................................................................. 65 
Non-Autonomous Time-Delayed Feedback Oscillator Model .................................... 66 
Nonlinearity of Time-Delayed Feedback Oscillator .................................................... 66 
Controlled Response .................................................................................................... 69 
Concluding Remarks .................................................................................................... 86 

CHAPTER V TIME-DELAYED VIBRO-IMPACT OSCILLATOR ............................. 88 

Model System ............................................................................................................... 88 
Dynamics and System Properties ................................................................................. 90 
Bifurcation Analysis ..................................................................................................... 95 

CHAPTER VI CONTROL OF TIME-DELAYED VIBRO-IMPACT OSCILLATOR .. 98 

Adaptability of Time-Frequency Control ..................................................................... 98 
Evaluation of Controlled Performance ....................................................................... 106 
Summary .................................................................................................................... 124 

CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS ............................... 126 

Conclusion .................................................................................................................. 126 
Contribution and Impact............................................................................................. 128 
Recommendation for Future Work ............................................................................ 129 

REFERENCES ............................................................................................................... 130 

APPENDIX A ................................................................................................................ 140 

 

 

 

 

  



 

vii 

 

LIST OF FIGURES 

 Page 

Figure 1 Schematic of an adaptive filter. ......................................................................... 14 

Figure 2 LMS-based adaptive system identification configuration. ................................ 16 

Figure 3 Scheme of Filtered-x LMS algorithm. ............................................................... 18 

Figure 4 Wavelet based time-frequency control incorporating FxLMS. ......................... 23 

Figure 5 Schematic of a system identification algorithm. ................................................ 42 

Figure 6 Schematic of a FxLMS algorithm with 
1TW  representing the nonlinear 

system. .............................................................................................................. 44 

Figure 7 Vibro-impact model system [23]. ...................................................................... 48 

Figure 8 Time response of vibro-impact model system without controller. .................... 49 

Figure 9 Phase portrait of uncontrolled response. ............................................................ 49 

Figure 10 Instantaneous frequency of uncontrolled impact oscillator. ............................ 50 

Figure 11 Time Response of controlled impact oscillator with a desired amplitude of 

1. ....................................................................................................................... 52 

Figure 12 Phase portrait of controlled response with a desired amplitude of 1. .............. 52 

Figure 13 Instantaneous frequency of controlled response with a desired amplitude of 

1. ....................................................................................................................... 53 

Figure 14 Error tracking of controlled response with a desired amplitude of 1. .............. 53 

Figure 15 Time Response of controlled impact oscillator with a desired amplitude of 

0.5. .................................................................................................................... 54 

Figure 16 Phase portrait of controlled response with a desired amplitude of 0.5. ........... 54 

Figure 17 Instantaneous frequency of controlled response with a desired amplitude of 

0.5. .................................................................................................................... 55 

Figure 18 Error tracking of controlled response with a desired amplitude of 0.5. ........... 55 



 

viii 

 

Figure 19 Time Response of controlled impact oscillator with a desired amplitude of 

0.2. .................................................................................................................... 56 

Figure 20 Phase portrait of controlled response with a desired amplitude of 0.2. ........... 56 

Figure 21 Instantaneous frequency of controlled response with a desired amplitude of 

0.2. .................................................................................................................... 57 

Figure 22 Error tracking of controlled response with a desired amplitude of 0.2. ........... 57 

Figure 23 Poincare section of uncontrolled system response. ......................................... 60 

Figure 24 Poincare section of controlled system response with a desired amplitude of 

1 (before controller is brought online). ............................................................. 60 

Figure 25 Poincare section of controlled system response with a desired amplitude of 

1 (after controller is brought online). ................................................................ 61 

Figure 26 Poincare section of controlled system response with a desired amplitude of 

0.5 (before controller is brought online). .......................................................... 61 

Figure 27 Poincare section of controlled system response with a desired amplitude of 

0.5 (after controller is brought online). ............................................................. 62 

Figure 28 Poincare section of controlled system response with a desired amplitude of 

0.2 (before controller is brought online). .......................................................... 62 

Figure 29 Poincare section of controlled system with a desired amplitude of 0.2 (after 

controller is brought online). ............................................................................ 63 

Figure 30 (a) Time response and (b) phase portrait of the time-delayed feedback 

oscillator with time-delay td = 0.22 sec. ........................................................... 68 

Figure 31 (a) Time response and (b) phase portrait of the time-delayed feedback 

system with time-delay td = 0.27 sec. ............................................................... 68 

Figure 32 (a) Time response and (b) phase portrait of the time-delayed feedback 

system with time-delay td = 0.3 sec. ................................................................. 69 

Figure 33 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback oscillator with 

controller initiated at time t = 30 sec and time-delay td = 0.22 sec. ................. 71 

Figure 34 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with controller 

initiated at time t = 30 sec and time-delay td = 0.27 sec. .................................. 72 



 

ix 

 

Figure 35 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback oscillator with 

controller initiated at time t = 30 sec and time-delay td = 0.3 sec. ................... 73 

Figure 36 PID controller for displacement tracking of time-delayed feedback system. .. 75 

Figure 37 FLC for displacement tracking of time-delayed feedback system. ................. 76 

Figure 38 Input membership function. ............................................................................. 76 

Figure 39 Output membership function. .......................................................................... 77 

Figure 40 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback system with PID 

controller initiated at time t = 30 sec and time-delay td = 0.22 sec. ................. 79 

Figure 41 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback system with PID 

controller initiated at time t = 30 sec and time-delay td = 0.27 sec. ................. 80 

Figure 42 Time response, (b) Error response, (c) Phase portrait, and (d) Instantaneous 

frequency of the time-delay feedback system with PID controller initiated at 

time t = 30 sec and time-delay td = 0.3 sec. ...................................................... 81 

Figure 43 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy 

controller initiated at time t = 30 sec and time-delay td = 0.22 sec. ................. 82 

Figure 44 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy 

controller initiated at time t = 30 sec and time-delay td = 0.27 sec. ................. 83 

Figure 45 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy 

controller initiated at time t = 30 sec and time-delay td = 0.3 sec. ................... 84 

Figure 46 Time-delayed vibro-impact model system. ..................................................... 90 

Figure 47 (a) Time response and (b) phase portrait of the time-delayed vibro-impact 

oscillator with time-delay td = 0.05 sec. ........................................................... 91 

Figure 48 (a) Time response and (b) phase portrait of the time-delayed vibro-impact 

oscillator with time-delay td = 0.1 sec. ............................................................. 92 

Figure 49 (a) Time response and (b) phase portrait of the time-delayed vibro-impact 

oscillator with time-delay td = 0.15 sec. ........................................................... 93 



 

x 

 

Figure 50 Bifurcation analysis results with time-delay (a) td = 0, (b) td = 0.05,          

(c) td = 0.1, and (d) td = 0.15. ............................................................................ 95 

Figure 51 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 

0.05 sec. ............................................................................................................ 99 

Figure 52 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 

0.1 sec. ............................................................................................................ 101 

Figure 53 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 

0.15 sec. .......................................................................................................... 103 

Figure 54 Displacement tracking of time-delayed vibro-impact oscillator using PID. . 107 

Figure 55 Displacement tracking of time-delayed vibro-impact oscillator using FLC. . 108 

Figure 56 Input membership function ............................................................................ 108 

Figure 57 Output membership function ......................................................................... 109 

Figure 58 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

PID controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay 

td = 0.05 sec..................................................................................................... 110 

Figure 59 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

PID controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay 

td = 0.1 sec....................................................................................................... 112 

Figure 60 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

PID controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay 

td = 0.15 sec..................................................................................................... 114 

Figure 61 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

Fuzzy controller initiated at t = 300 sec, closed at t = 900 sec, and time-

delay td = 0.05 sec. .......................................................................................... 116 



 

xi 

 

Figure 62 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

Fuzzy controller initiated at t = 300 sec, closed at t = 900 sec, and time-

delay td = 0.1 sec. ............................................................................................ 118 

Figure 63 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with 

Fuzzy controller initiated at t = 300 sec, closed at t = 900 sec, and time-

delay td = 0.15 sec. .......................................................................................... 120 

Figure 64 Wider frequency spectrum with Fuzzy controller initiated at t = 300 sec, 

closed at t = 900 sec, and time-delay td = 0.15 sec. ........................................ 122 

 

 

 



 

xii 

 

LIST OF TABLES 

 Page 

 

 

Table 1 Dimensionless parameters of the vibro-impact model ........................................ 48 

Table 2 Fuzzy Rules ......................................................................................................... 77 

Table 3 Fuzzy Rules of Fuzzy Logic Controller ............................................................ 109 

 

 

 

 



1 

 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Current State of Affairs 

Vibro-impact oscillators and time-delayed systems are nonlinear systems 

commonly found in science and engineering applications.  Time-delayed vibro-impact 

oscillators govern many real-world systems such as bearing, gear drivers, machining, 

hammer-like percussion drilling, shock absorbers, and processes involving rolling 

contact.  These dynamic systems exhibit prominent nonlinear behaviors.  Time-delayed 

vibro-impact oscillators have various states of motion between non-impacting and 

impacting that induce complex dynamical responses.  As a type of dynamic instability 

commonly observed in time-delayed vibro-impact oscillators where the impact velocity 

approaches zero, grazing bifurcation is a state in which the system switches suddenly 

from being periodic to chaotic.  If not properly controlled, these nonlinear dynamic 

responses can lead to catastrophic failure.  To comprehensively study time-delayed 

vibro-impact systems in search for a better control solution, a vibro-impact oscillator and 

a time-delayed system are studied in the dissertation.  Once a feasible control method is 

developed, it can be further improved to enable manufacturing at increasing speed, 

extending equipment life, and reducing power consumption. 
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Literature Review 

In this section, literatures on vibro-impact oscillators and time-delayed oscillators 

are reviewed.  In addition, the strength and weakness of several common control 

methodologies are also discussed. 

 

Vibro-Impact Oscillators 

A vibro-impact system, or otherwise known as impact oscillator, is a discrete- or 

continuous-time dynamic system whose state-space is divided into different regions by a 

discontinuity set [1-4].  Real-world systems such as bearings, gear drives, machining, 

hammer-like percussion drilling, shock absorbers, and processes involving rolling 

contact are impact oscillators whose dynamics are characterized by complex bifurcation.  

Such systems can inadvertently experience the undesirable effect of abruptly changing 

from being non-impacting to impacting [5-8].  As a dynamic instability commonly 

observed in vibro-impact systems in which the impact velocity approaches zero [9], 

grazing bifurcation is a state in which the dynamics of a system switches suddenly from 

being periodic to chaotic.  If not properly mitigated, grazing can lead to catastrophic 

failure.   

Grazing is inherent to becoming chaotic [10, 11].  Low velocity impact may 

create several types of grazing bifurcation including period adding cascades with or 

without chaotic bands [12].  When certain conditions are met, the corresponding grazing 

trajectory would be periodic and stable [13, 14] and the grazing intersection of a quasi-

periodic oscillation with a two-dimensional impact mechanism in a three-dimensional 
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state space can be predicted by discontinuity mapping [15].  Through the application of 

singularity theory [16, 17], nondegenerate grazing, minimally degenerate grazing, and 

extra degenerate grazing are also identified as the probable dynamic responses to low-

velocity impact [18] whose further deterioration into chaotic motion can be sufficiently 

described [19].  It was shown using a test apparatus that a low-velocity impact oscillator 

can be effectively modelled as a singular system [20].  While such systems of singularity 

demonstrated more abundant dynamics than hard collisions [21] and that most orbits 

near a grazing condition are chaotic, nonetheless, there are periodic and stable orbits to 

be found [22].  An extensive amount of knowledge about low-velocity grazing 

bifurcation have since been physically confirmed [23, 24]. 

Controlling grazing so as to stabilize vibro-impact induced instability in non-

smooth systems is essential for many engineering applications [25].  When a system 

experiences grazing, the corresponding dynamic response contains an infinite number of 

unstable periodic orbits.  Furthermore, the trajectory of the system rapidly appears in the 

vicinity of each other.  Of the handful efforts documented in addressing grazing control, 

one was on applying a synchronization scheme to stabilize a chaotic impact oscillator 

[26].  The linear scheme that was followed, however, could not fully represent the 

chaotic motion and the impact dynamic response did not enter the grazing bifurcation 

state.  The same control method was subsequently utilized to constrain the displacement 

of an impact oscillator with double-sided walls to a predefined position [27].  Another 

was on applying an external force to wind-up or wind-down a cantilever beam 

undergoing period-1 motion and grazing bifurcation to be controlled [28].  Fast 
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harmonic base displacement was shown to be effective in controlling a single-sided 

Hertzian contact forced oscillator [29].  Feedback loop control with a time-delay was 

also reported as being viable for improving the stability of periodic orbits of a vibro-

impact system [30].  

Unlike high-velocity impact problems, grazing as the particular state of 

bifurcation associated with low-velocity impact is extremely challenging to deal with. 

This is primarily because grazing creates singularity in mapping from one motion state 

to another.  Linearization along with the incorporation of linear control theory is 

oftentimes considered for grazing control.  However, as the linearized dynamics does not 

fully represent the true response of the nonlinear system, the approach is not widely 

embraced for real-world applications.  Another approach reported for grazing control 

employs the Lyapunov stability theory.  However, as the Lyapunov function required of 

the task is very difficult to define, the Lyapunov-based approach is not as well received 

as the Ott-Grebogi-Yorke (OGY) method [31] which allows a targeted chaotic unstable 

periodic orbit to be stabilized by applying a small perturbation to the control parameter.  

The OGY method has been applied to (1) the control of a mechanical oscillator that 

describes the dynamics of an impulsive hybrid non-autonomous system [32], (2) the 

stabilization of a gear-rattling model where both ideal and non-ideal energy sources are 

considered [33], and (3) the suppression of chaotic vibro-impact response with 

prescribed damping laws [34, 35].  Albeit being preferred for impact oscillator control, 

nevertheless, the OGY method has been shown to be infeasible for reigning in nonlinear 

systems that are non-stationary [36].  The OGY method has its limitations rooted in the 
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followings - The first is that it is based on linearizing the corresponding Poincaré map 

and ignoring the nonlinear terms.  The second is that the exact form of the unstable 

periodic orbit required to perform the control scheme is very difficult to obtain.  In 

addition, the method allows no target response to be stipulated for the controlled 

oscillator to follow.  In other words, the OGY method does not warrant that the 

controlled vibro-impact motion would be of the desired time and frequency qualities.  

OGY based schemes are unable to prevent further collisions from subsequently 

occurring once the controller is online. 

 

Time-Delayed Oscillators 

Time-delayed systems are ubiquitous in science and engineering.  They are found 

governing a broad set of physical processes ranging from quantum dot laser [37] to 

electrical power transmission [38] to manufacturing chatter.  Early interests were in 

characterizing time-delayed systems subject to the combined action of the time-delay 

and feedback parameters.  Phase portrait and Poincaré section are commonly adopted for 

the task.  For example, phase portraits were employed for the reconstruction of the 

chaotic data from an experiment performed on the Belousov-Zhabotinskii reaction [39] 

and the study of an autonomous rotary system [40].  Poincaré sections on the other hand 

were employed in the control of nonlinear ionization waves using time-delayed auto-

synchronization [41] and for locating the periodic orbits of a time-delayed system [42].  

Other characterization tools were also explored including the determination of the largest 

Lyapunov exponents for continuous as well as discrete systems [43, 44], the calculation 
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of proper delay time for chaotic time series [45], and the use of fractal dimension for 

searching for the proper embedding dimension that is also one of the parameters of the 

Method of Delays [46].  While being widely applied, nonetheless, the tools above are not 

without limitations.  Phase portrait and Poincaré section are not feasible for erratic 

responses that are innately chaotic [47].  Lyapunov exponents or fractal dimensions are 

oftentimes insufficient for resolving chaotic responses because different attractors may 

generate the same Lyapunov numbers [48].   

Time-delayed systems are rich in complex dynamical behaviors [49].  For 

example, an autonomous system requires two dimensions to demonstrate periodic 

responses, but it can display the same behaviors in one dimension with time-delay [50].  

Besides rendering complex dynamical behaviors, time-delay parameters are also used for 

mitigating chaos [51].  The complex dynamical responses of aeroelasticity was mitigated 

using time-delayed feedback control [52].  An electrodynamic tether satellite system 

perturbed by its own electromagnetic interaction with the magnetic field of the earth was 

controlled by employing time-delayed autosynchronization [53].  A harmonic delayed 

system [54] and a van der Pol-Duffing oscillator [55] were stabilized by applying 

parametric delayed feedback control.  Quantum systems affected by the filter-based 

control input and measurement-based feedback aberration were presented by 

manipulating time-delay parameters and non-smooth time-delayed control following a 

new Lyapunov–LaSalle-like stochastic stability criterion [56].  By employing a proper 

Lyapunov-Krasovskii functional and utilizing the new inequality on both the slowly- and 
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quickly-varying delayed systems, system dynamics were effectively bounded.  More 

references focusing on time-delay parameter control can be found in [57, 61].  

In general, it is difficult to tweak time-delay parameters without catastrophically 

perturbing the system to display route-to-chaos.  For example, since material removal is 

inherently characterized by time-delayed feedback, machining speed is always set within 

a maximum cap to avoid the emergence of chaotic response.  Thus, the manufacturing 

quality, efficiency, productivity could be enhanced markedly provided a viable control 

methodology is available.  Controlling time-delayed physical processes is of great 

interest for several decades.  For instance, state feedback controller designed based on 

the linear matrix inequality technique could handle both continuous and discrete time-

delayed systems [62] but was insufficient in controlling nonlinear systems.  Although 

Krasovskii-Lyapunov theory can be followed to synchronize Machey-Glass delayed 

differential equation [63], the linearization process mandated by the approach 

inadvertently skewed the true dynamics dictated by the high-order nonlinear terms.  

Nonlinear time-delayed systems [64] and a class of stochastic nonlinear time-delayed 

systems with a nonstrict-feedback structure [65] have been synthesized with fuzzy 

control.  However, the fuzzy control approach is not generally applicable to higher order 

nonlinear systems since the systems cannot be known a priori.  

Recently, control was employed to stabilize a pinning synchronizd system that 

was in a network of coupling delays [66].  Qiu et al. [67] focused on analyzing the delay-

dependent stability and control of a class of continuous Markovian jump linear systems 

with time-varying delay.  In addition to traditional control methodologies, fuzzy logic 
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control and sliding mode control are the choice methodologies for manipulating time-

delayed feedback systems.  Wu et al. [68] employed sliding mode control to a 

Markovian jump singular time-delayed system.  Qi et al. [69] applied fuzzy logic control 

to stabilize a class of uncertain single-input-single-output (SISO) strict-feedback 

nonlinear time-delayed systems.  They also considered an observer-based adaptive 

neural network control for the same system with unknown time-delays.  In addition, 

Goyal [70] applied neural-network approximation and the Lyapunov-Krasovskii 

function theory based sliding mode control scheme to a class of unknown nonlinear 

discrete time systems.  A new control scheme developed around the decentralized 

adaptive neural output feedback control law was also reported for a class of large-scale 

time-delayed systems [71] where exact a priori knowledge of the system parameters was 

not required.  Predictive fuzzy control network was employed to address the random 

delays existed in communication channels [72].  Control of a delayed discrete-time 

system was demonstrated using the inverse reduction method to construct the 

corresponding recursive control algorithm [73].  Although these control methodologies 

are shown to be adaptable to these time-delayed systems, they are not viable for 

addressing nonlinear time-delayed systems of higher order. 

 

Control Methodology 

To stabilize a nonlinear oscillator, a small perturbation can be given to its input 

or system parameter.  Parseval’s theorem states that the total energy computed in the 

time-domain is equal to the total energy computed in the frequency-domain, thus 
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implying that time-domain control can be facilitated along with frequency-domain 

control simultaneously.  Discrete Wavelet Transform (DWT) is a tool of choice using 

which dynamic aberrations indicative of bifurcation and deteriorating state of stability 

can be identified with simultaneous time–frequency resolution.  In the dissertation, DWT 

is applied to address the non-stationary nature of the vibro-impact time-delayed 

oscillator by adopting the concept of active noise control [74] along with the filtered-x 

least mean square (FxLMS) optimization algorithm.  In addition to noise control, 

FxLMS has been used to suppress the vibrations of composite structure [75], gear pairs 

[76], buildings [77], and machine tools [78].  It has combined with controllers such as 

feedback robust controller [79] and LQR controller [80] to promote the convergence 

speed and increase robust performance. 

A novel nonlinear control scheme valid for the stabilization of non-autonomous 

time-delayed cubic order feedback oscillators and the mitigation of vibro-impact induced 

instability associated with a particular low-velocity impact oscillator is presented in the 

subsequent chapters.  The basic ideas for the control scheme are derived from previous 

works [81-83] where nonlinear, non-stationary systems undergoing dynamic 

deteriorations including bifurcation and route-to-chaos were effectively controlled in 

both the time and frequency domains simultaneously.  The scheme requires no 

linearization to allow the true dynamics of the time-delayed vibro-impact system being 

studied to be retained and properly interpreted.  A system identification feature ensures 

that a desired target response is followed by the oscillator to mitigate the mapping 

singularity characteristic of grazing.  The nonlinear oscillator traces the target which is 
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designed to be harmonic and of a prescribed vibration amplitude to realize 2 definitive 

objectives that signify control and stabilization: denying future collision and maintaining 

orbits that are spectrally bandwidth-limited and periodic.  Albeit viable for mitigating 

chaotic behaviors in many nonlinear systems, however, the convergence property of the 

novel control scheme is yet to be investigated. 

The primary configuration of this novel control follows the FxLMS algorithm.  

Although FxLMS has been widely used in adaptive filtering, derivation of the proper 

optimization step size that guarantees unconditional convergence remains to be provided 

[84].  It has been shown certain convergence conditions applied to FxLMS are not 

sufficient for the adaptive process [85].  By assuming that the input signal is abroad-

band white signal and the secondary path is a pure delay system, a theoretical 

convergence condition for FxLMS has been derived by Long [86].  With the same 

secondary path and the input signal being a stochastic narrow-band signal, an FxLMS 

convergence analysis was conducted by Bjarnason [87].  In addition, another FxLMS 

convergence condition was derived considering the same secondary path with the 

narrow-band input signal being modeled as a combination of multiple sinusoids [88]. 

Another type of secondary path, which is a moving average process, is also available.  

Xiao [89] extended Vicente’s analysis on this secondary path with the input signal being 

modeled as a combination of multiple sinusoids.  Introduced by Gardener to simplify the 

complexity of deriving the FxLMS model while analyzing the convergence condition 

[90], the stochastic adaptation algorithm assumes the consecutive vectors of the input 

signal to be statistically independent.  Based on the independence assumption, Ardekani 
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[91] derived the sufficient condition for the convergence of the FxLMS applicable to a 

more general secondary path.  Furthermore, addressing the need for carefully choosing 

the regression step size, Bismor [92] derived a necessary condition for the convergence 

of the LMS algorithm.  Other than providing convergence conditions, their study did not 

consider domain transform which is essential to the time-frequency control algorithm to 

be presented in the dissertation. 

 

Research Objectives 

The primary objective of this research is to develop a nonlinear time-frequency 

control concept for the control of time-delayed vibro-impact oscillators that are 

inherently nonlinear and non-stationary.  A new time-delayed vibro-impact oscillator is 

formulated for the study.  The wavelet-based nonlinear time-frequency control theory 

[36] is explored to develop a controller concept.  Although it has been shown to be 

feasible for controlling a wide range of nonlinear systems, the convergence and 

controllability of the nonlinear time-frequency control theory is yet to be established.  

Setting the regression step size for the FxLMS algorithm is crucial for ensuring solution 

stability.  If the step size is too small, convergence to the steady state solution could be 

too slow for the system identification to catch up to the unstable nonlinear system 

response, thus aggravating the error between the controlled output response and the 

desired target.  As the secondary objective, this study examines mathematically the time-

frequency control theory and derives the ranges of the regression step sizes, μ1 and μ2, 

that ensure fast convergence and solution stability of the controller design. 
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Due to the nature of this research, considerable challenges lie in the 

computational aspect of numerically integrating the governing equations.  To fully 

resolve the underlying nonlinearity and to ensure convergence with accuracy, small 

integration time steps are required.  Since the vibro-impact oscillator is inherent of 

grazing bifurcation and time-delayed characteristics, designing a viable controller to 

properly mitigate the system response is as involved as it is demanding.  Due to the fact 

the time-frequency control theory is defined using continuous time functions, 

implementing the control algorithm using discrete series presents another challenge.  

The other challenge is to maintain a balance between the use of computing resources and 

the time required to facilitate proper control of the nonlinear time-delayed vibro-impact 

oscillator.  These challenges necessitate an in-depth study of the solver algorithm to 

determine optimal optimization step sizes. 
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CHAPTER II  

WAVELET BASED NONLINEAR TIME-FREQUENCY CONTROL THEORY WITH 

LOCAL ADAPTABILITY* 

 

Three specific implications need be considered to properly control time-delayed 

vibro-impact oscillators.  First, control needs be performed in the time- and frequency-

domains simultaneously.  Because the location and the stability of the equilibrium point 

vary in time when the system is undergoing route-to-chaos, it is hard to predict the 

system in high-dimension.  For this very reason online system identification and control 

need to be conducted at the same time. As nonlinear systems undergoing route-to-chaos 

are very sensitive to initial conditions, a small perturbation can either render a system 

unstable or, as had demonstrated in many early studies of chaos control, restore stability.  

The three implications along with the Parseval’s theorem, which states that the total 

energy computed in the time-domain equals the total energy computed in the frequency-

domain, explicitly suggest incorporating time-domain control with frequency-domain 

measure. 

 

 

 

                                                 

*Part of this chapter is reprinted with permission from “A case of mitigating non-autonomous time-delayed 

system with cubic order feedback” by Chi-Wei Kuo, C. Steve Suh, 2017. Journal of the Franklin Institute, 

Volume 354, Pages 6651-6671, Copyright [2017] by Elsevier Ltd. 
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Adaptive Filter and Filtered-x LMS Algorithm 

A control concept with physical features effective in addressing the identified 

properties is described in the section.  

 

 

 

Figure 1 Schematic of an adaptive filter. 

 

 

Before presenting the time-frequency control scheme, discrete-time FIR Wiener 

Filter and Least Mean Square (LMS) method should be mentioned.  In Figure 1, the 

excitation sequence ( )nx  is modified by a filter, W .  The error signal, ( )e n , is the 

difference between the system output, ( )y n , and the desired response, ( )d n  .  LMS 

algorithm is employed to optimize the mean-square value of ( )e n  to update W .  

Consider the instantaneous rough estimate of the performance function defined as 

follows 

( ) ( )2J E e n =  W  (2.1) 
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where the adaptive filter coefficient vector W  is of the order of i   

 1 2 iw w w=T
W   (2.2) 

and the estimation error is therefore 

( ) ( ) ( )Te n d n n= −W x   (2.3) 

To obtain the optimal filter coefficient 
0W , the gradient of the performance function 

must be zero 

( )0 0J =W   (2.4) 

so that  

( )
( )

( ) ( ) ( ) ( ) ( )2 2 T

n
J d n n n n n = − +

W
W x x x W   (2.5) 

The task which is updating the filter with the optimal set by solving Eq. (2.4) at each 

time step could have heavy computational cost when the filter length is large, and the 

input data rate is high.  By implementing Gradient Descent optimization (non-linear 

regression), which is the tool of choice for finding the global minimum of the error 

performance surface, the computational complexity at each time step can be reduced.  

Gradient descent is a first-order iterative optimization algorithm and its solution strategy 

is to find the local minimum of a function by following the paths whose direction 

gradients are the steepest in the negative sense.  This is progressively performed 

following an iterative scheme till the gradient of the solution vector is zero.  By 

substituting Eq. (2.5) into the steepest gradient recursion,  

( ) ( ) ( ) ( )1 2n n J+ = − W W W   (2.6) 

a new recursive scheme is obtained as a result 
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( ) ( ) ( ) ( )1n n n e n+ = +W W x  (2.7) 

Thus, LMS algorithm is a stochastic implementation of the steepest gradient method. 

The adaptive filters running through the LMS algorithm are usually integrated 

into real-world applications such as the feedforward scheme depicted in Figure 2.  By 

updating the weights, the filters can estimate input, track system response, and exert 

proper compensation to facilitate control of the plant.  Modern day smart structures and 

bridges exploit this kind of active controllers to offset detrimental seismic trembles.   

 

 

 

Figure 2 LMS-based adaptive system identification configuration. 

 

 

In Figure 2, the LMS-based adaptive filter W  is employed to identify the 

system.  It estimates the response of the unknown plant P  which is excited by the input, 

𝑥(𝑛).  Since the configuration in the schematic is an integral part of the real-world plant 
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such as a sensory or a nonautonomous subsystem, it requires a compensation, S , which 

is the transfer function associated with the control mechanism.  Control is applied in the 

adaptive algorithm by tracking the plant dynamics in time through updating the filter 

coefficients and minimizing the residual error 𝑒(𝑛) in the least mean-square sense.  The 

primary path is defined by ( ) ( )z zP x , and the secondary path by ( ) ( ) ( )z z zS W x .  

Thus, the error ( )e n  is 

( ) ( ) ( ) ( ) ( )e n z z z z= −  P S W x   (2.8) 

When the coefficient vector ( )zW  is of sufficient order and optimized, that is,

( ) 0z =W W , ( )e n  converges to zero and the optimal transfer function ( )zW  is  

( ) ( ) ( )
0

z P z S z
=

=  W W
W  (2.9) 

There are two concerns related to the underlying attributes of the secondary path 

( )zS in Eq. (2.9).  First, it is difficult to solve the inherent time-delay caused by ( )zS if 

the primary path ( )zP  does not contain delays of the same time scale.  Second, if

( ) 0c =S  at an unobservable control frequency, 
c , it would render the equation 

mathematically singular and the systems physically unstable.  To approximate ( )1 zS  

with the secondary transfer function ( )zS  following the adaptive filter ( )zW , the LMS 

algorithm needs be modified and the filter must have sufficient length.  As shown in 

Figure 3, running the input sequence ( )nx  through an auxiliary estimate filter ( )ˆ zS  
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which is placed along the secondary path can effectively negate the noted negative 

effect.  At the sum junction, the output error ( )e n  is 

( ) ( ) ( ) ( ) ( )Te n d n z z z = −  S W x   (2.10) 

By substituting Eq. (2.10) into the steepest gradient recursion, W  is updated by 

( ) ( ) ( ) ( ) ( )1n n n n e n+ = + W W S x   (2.11) 

Eq. (2.11) shows that the adaptive updating scheme involves the ( ) ( )n nS x  term, 

indicating that S  must also be placed in the filter length update path.  In practice, S  is 

unknown and must be estimated by an additional filter Ŝ  as in Figure 3. 

 

 

 

Figure 3 Scheme of Filtered-x LMS algorithm. 
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Wavelet Filter Banks 

The concept of discrete wavelet transform (DWT) is central to the nonlinear 

time-frequency control to be developed in the next section.  In the overall architecture of 

the time-frequency control, DWT decomposition serves to represent a dynamic response 

with different level of spectral resolution without losing the corresponding temporal 

information. Any anomaly indicative of perturbation or instability is identified and 

properly addressed in the wavelet domain. The conditioning of the response is realized 

by the adaptive FxLMS algorithm that updates the wavelet representations of the 

response. These representations are then synthesized to create a conditioned response as 

the control output that meets a specific control target. Having a fundamental knowledge 

of the working principle and implementation of DWT is therefore essential for 

developing a full comprehension for the nonlinear time-frequency control theory.  As 

one of the physical components of nonlinear time-frequency control, the DWT 

decomposition algorithm and the corresponding synthesis algorithm incorporate a 

popular dyadic scheme. Various basic properties of DWT and inverse DWT render it 

possible for them to be implemented as digital filter banks for fast computing. These 

properties are best understood, and the underlying essences best presented, using the 

fundamental notions of multiresolution analysis (MRA).  A concise while also relatively 

comprehensive discussion on wavelets is given in the followings.  

Simultaneous time-frequency control is realized through manipulating discrete 

wavelet coefficients in the wavelet simultaneous time-frequency domain.  

Implementation of the unique and novel control idea includes incorporating DWT with 
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LMS adaptive filters to perform feedforward control and on-line identification by 

employing FxLMS to construct parallel adaptive filter banks.  DWT in the time domain 

is realized by passing the input signal through a two-channel filterbank iteratively.  

Assume that the infinite input signal sequence  x n  is of real numbers. The 

decomposition process convolutes the input  x n  with a high-pass filter 
0h  and a low 

pass filter 
1h , followed by down-sampling by two. The approximation coefficient  a n  

and detail coefficient  d n  it receives are calculated in the time-domain as follows 

     

   

0

0

2

       2

k

k

a n h n k x k

h k x n k

= −

= −




  (2.12) 

     

   

1

1

2

       2

k

k

d n h n k x k

h k x n k

= −

= −




 (2.13) 

where integer 𝑛 = 0,… ,∞.  Assume that the orthogonal sets are of equal and even 

length, and the lengths (or weights) of the high-pass filter 
0h  and low-pass filter 

1h  are 

both 4.  Eqs. (2.12) and (2.13) are carried out by multiplying the signal with a linear 

transformation matrix, 
aT , as 

a=Y T X   (2.14) 

where the infinite analysis matrix, 
aT , has the high-pass filter [ ]H   and the low-pass 

filter [ ]L   as follow 
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       
       

       

       
       

       

0 3 2 1 0 0 0 0 0 0

0 0 0 3 2 1 0 0 0 0

0 0 0 0 0 3 2 1 0 0

0 3 2 1 0 0 0 0 0 0

0 0 0 3 2 1 0 0 0 0

0 0 0 0 0 3 2 1 0 0

a

H H H H

H H H H

H H H H

L L L L

L L L L

L L L L

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

T  (2.15) 

and X  is an infinite array of the input signal. Y , which consists of wavelet 

approximation and detail coefficients, can be represented as  

           0 1 2 0 1 2a a a d d d =  Y   (2.16) 

To prevent adding nonzero entries, the finite signal is assumed to be periodic and uses 

the values within the finite signal to replace the missing samples – a process called 

periodization. Thus for an input signal X  of period N , 

           0 1 1 0 1 1
T

x x x N x x x N = − − X   (2.17) 

Eq. (2.17) can be truncated as follow 

     0 1 1
TN x x x N = − X   (2.18) 

Because the transformed signal is also periodic of period N , N  consecutive entries in 

Y   are selected to represent it.  Thus, a finite signal N
X  is transformed into a finite 

signal N
Y  of equal length. The analysis matrix Ta is also truncated to an N N  matrix, 

N

aT  , to avoid extending the signal.  The deleted filter coefficient in 
N

aT  is put back into 
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the proper position in the matrix to be consistent with the periodic signature of the 

signal.  The transformation of Eq. (2.14) then becomes 

1

N N N

k a k+ =Y T X  (2.19) 

where k is the level of transformation (decomposition). Substituting truncated Eq. (2.15), 

Eq. (2.19) can be arranged to take up a concise form below 

1

1

k N N

a k

k

+

+

 
= 

 

A
T X

D
 (2.20)  

with 

     1 0 1 2 1
T

k a a a N+  = − A  (2.21) 

     1 0 1 2 1
T

k d d d N+  = − D  (2.22) 

 

Simultaneous Time-Frequency Control 

Figure 4 illustrates the adaptive concept featuring FxLMS in the control 

architecture where the least-mean-square (LMS) algorithm is modified by adding an 

adaptive filter to identify the system in real-time.  The wavelet-based time-frequency 

controller thus constructed is capable of parallel on-line modeling.  The filter adaptively 

adjusts the coefficients of a Finite-Impulse-Response (FIR) filter and the wavelet 

transformation matrix, 𝐓, is placed before the two FIR adaptive filters to decompose the 

time-domain discrete signal into its corresponding wavelet coefficient arrays.  To 

characterize the input signal while also easing computational load, Daubechies-4 (db4) 

wavelet is employed. 
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Figure 4 Wavelet based time-frequency control incorporating FxLMS. 

 

 

T  convolutes with the input sequence of length 𝑁  

( ) ( ) ( ) ( )1 1
T

n x n x n x n N= − − +  X   (2.23) 

to generate the approximation and detail coefficients at time step, 𝑛.  Following the 

matrix 𝐓 is the first adaptive filter which is used to model the dynamic system on-line.  

Its weight vector at time step 𝑛 is 

( ) ( ) ( ) ( )1 1,1 1,2 1,

T

Nn w n w n w n =  W   (2.24) 

The second adaptive filter serves as a feed-forward controller and its weight vector is 

( ) ( ) ( ) ( )2 2,1 2,2 2,

T

Nn w n w n w n =  W  (2.25) 

The input control signal vector to the nonlinear system is 

( ) ( ) ( ) ( )1 1
T

n u n u n u n N= − − +  U  (2.26) 
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with 

( ) ( ) ( )1

Tu n n n= W TX  (2.27) 

The error sequence  e n  is obtained by subtracting the desired signal  d n  from  y n  

which is the output from the time-delayed vibro-impact oscillator 

( ) ( ) ( )e n d n y n= −  (2.28) 

The weights of the adaptive filter ( )2 nW  are updated by using the LMS algorithm as 

follow 

( ) ( ) ( ) ( )2 2 21n n n e n + = +W W TX   (2.29) 

with 
2  being the optimization step size and ( )nX  the compensated output signal 

vector output from the FIR filter 1Ŵ , 

( ) ( ) ( ) ( )1 1
T

n x n x n x n N   = − − +  X  (2.30) 

which is calculated through the operation below 

( ) ( )1

Tx n n = W TX  (2.31) 

The identification error ( )e n  between ( )y n  and the reconstructed signal ( )y n  is 

( ) ( ) ( )e n y n y n= −  (2.32) 

where the reconstructed signal ( )y n  is  

( ) ( ) ( )1

Ty n n n= W TU   (2.33) 



 

25 

 

Afterward ( )e n  is used to update the weights of the adaptive filter ( )1 nW  following the 

least-mean-square algorithm 

( ) ( ) ( ) ( )1 1 11n n n e n+ = +W W TU  (2.34) 

where 
1  is the optimization step size. 

 

Local Adaptability to Nonlinear and Nonstationary Response 

Adaptable Optimization Step Size for System Identification 

Assume that signals u(n) and y(n) are both discrete and finite-valued in the real 

domain. Substitute Eq. (2.32) into Eq. (2.34) to result in 

( ) ( ) ( ) ( ) ( )1 1 11n n n y n y n+ = + −  W W TU  (2.35) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 1
T

n n n n n y n  + = − +   
W TU TU W TU  (2.36) 

Eq. (2.36) is of the form 

( ) ( ) ( ) ( ) ( )1n n n n y n+ = +x A x B  (2.37) 

in which 

( ) ( ) ( )11
T

n n n= −   A TU TU   (2.38) 

For a discrete, stationary system the condition below warrants instability [92] 

( )
1

tr
N

ii

i

a N
=

= A   (2.39) 

where iia  is the i th−  element on the diagonal of the state matrix A , and N  is the size 

of matrix A . The stability of a discrete system requires that all the eigenvalues of the 
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system state matrix A  are within the unit disk.  In addition, the trace of the matrix 

equals to the sum of its eigenvalues. Thus, a trace greater than the size of the matrix 

means that at least one eigenvalue of the matrix is greater than one. 

Combining Eqs. (2.38) and (2.39), the divergence sufficient condition for the 

adaptive LMS filter can be formulated as: 

( ) ( )( ) ( )
2

1 1

1

tr 1 1
N

T

i

n n TU n i N 
=

− = − −       TU TU  (2.40) 

provided that N is sufficiently large. If the condition in Eq. (2.40) is true for a limited 

number of samples and becomes false afterwards, the filter may still remain convergent. 

Therefore, the convergence necessary condition is 

( )
2

1

1

1
N

i

n i N
=

− −    TU  (2.41) 

Numerical simulations showed that step sizes chosen close to violating the 

condition in Eq. (2.41) resulted in large excessive mean square errors (MSE) and abrupt 

growth of filter coefficients. Therefore, it would be prudent to strengthen this condition 

by mandating that  

( )
2

1
0 1

1 1
i N

n i
  −
 − −   TU  (2.42) 

Note that when the left-hand side of the inequality is fulfilled, the right-hand side of the 

inequality holds, but the opposite relation is not necessarily true.  The left-hand side of 

Eq. (2.42) can be expressed as 

( )
2

1
0 1

1 1 1
i N

n i
  −
 −  − −   TU  (2.43) 



 

27 

 

Thus, for real-number input data, considering that the above inequality should hold 

throughout the whole adaptation, the condition can be restated as 

( )
1 2

2
0

n n i
  

−  TU
 (2.44) 

The above condition specifies the upper limit on the step size when a fast adaptation is 

needed. It also serves as a basis for a preliminary choice of the step size. 

 

Adaptable Optimization Step Size for Input Control 

To derive the optimized step size for input force control, rotated variable must be 

used. The correlation matrix of the input signal [91] 

( ) ( ) T

T TE n n=R X X  (2.45) 

can be decomposed as 

T=R FΛF  (2.46) 

where ( )T nX is the input sequence after wavelet transform, F  is the eigenvector matrix 

and Λ  is a diagonal matrix with eigenvalues    

( )0 1 1... Ldiag    −=Λ  (2.47) 

Hence, the input vector can be rotated as 

( ) ( )T

Tn nz F X  (2.48) 

and the rotated filtered input vector can be defined as 

( ) ( )T

f fn n=z F X  (2.49) 
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where ( )f nX  is obtained by filtering ( )T nX  through the wavelet transform filter 
1TW  

that is of the order of 1Q −  

( ) ( )
1

1 ,

0

Q

f T q T

q

n w n q
−

=

= −X X  (2.50) 

Note that ( ) ( ) ( ) ( )1 1 ,1 1 ,2 1 , 1

T

T T T T Qn w n w n w n−
 =  W .  Multiplying both sides of 

Eq. (2.50) by T
F   

( ) ( )
1

1 ,

0

Q

f T q

q

n w n q
−

=

= −z z  (2.51) 

The rotated error weight vector ( )nc  is defined as 

( ) ( )2 2,

T

optn n − c F W W  (2.52) 

where 2,optW  denotes the optimized filter weight vector.  Using Eq. (2.52), Eq. (2.29) 

can be transformed into the rotated domain as 

( ) ( ) ( ) ( )21 fn n e n n+ = +c c z  (2.53) 

Similarly, ( )e n  given by Eq. (2.28) can be expressed as  

( ) ( ) ( ) ( )
1

1 , 2

0

Q
T

T q T

q

e n d n w n q n q
−

=

= − − − W X  (2.54) 

Eq. (2.54) can be further simplified through the following manipulations   
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 , 2

0

1

1 , 2 2, 2,

0

1 1

1 , 2, 1 , 2 2,

0 0

1 , 2 2,

       

       

       

Q
T

T q T

q

Q
T T T

T q opt opt T

q

Q Q
T T T

T q opt T T q opt T

q q

T T T

opt T q opt T

q

e n d n w n q n q

d n w n q n q

d n w n q W n q n q

e n w n q n q

−

=

−

=

− −

= =

= − − −

 = − − − + − 

 = − − − − − − 

 = − − − − 





 

W X

W W W X

W X W W X

W W F FX

( ) ( ) ( )

1

0

1

1 ,

0

       

Q

Q
T

opt T q

q

e n w n q n q

−

=

−

=

= − − −



 c z

 (2.55) 

where ( )opte n  is the difference between ( )d n  and ( )2,OPT f nW X . Combing Eq. (2.4) 

with Eq. (2.55), the MSE can be expressed in terms of the rotated variables as 

( ) ( )min exJ n J J n= +  (2.56) 

where the minimum MSE 
minJ  is 

( )2

min optJ E e n     (2.57) 

and the excess MSE (EMSE) ( )exJ n  is 

( ) ( ) ( ) 
1

2

1 ,

0

Q
T

ex T q

q

J n w E n q n q
−

=

= −  − c c  (2.58) 

A detail derivation of Eq. (2.58) can be found in Appendix A.  Consequently the EMSE 

at the next time step is 

( ) ( ) ( ) 
1

2

1 ,

0

1 1 1
Q

T

ex T q

q

J n w E n q n q
−

=

+ = + −  + − c c  (2.59) 

where ( )1c n q+ −  can be expressed using Eq. (2.53) as 
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( ) ( ) ( ) ( )21 fn q n q n q e n q+ − = − + − −c c z  (2.60) 

Substituting Eq. (2.60) into Eq. (2.59) to get ( )1exJ n +  as follows 

( ) ( ) ( ) 

( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

1
2

1 ,

0

1
2

2 1 ,

0

1
2 2

2 1 ,

0

1

                2

                

Q
T

ex T q

q

Q
T

T q f

q

Q
T

T q f f

q

J n w E n q n q

w E n q n q e n q

w E n q e n q e n q n q





−

=

−

=

−

=

+ = − −

+ − − −

+ − − − −







c Λc

c Λz

z Λ z

 (2.61) 

With the first term being Eq. (2.58), Eq. (2.61) can be expressed as  

( ) ( ) ( ) ( )2

2 21 2ex exJ n J n n n   + = + +  (2.62) 

where 

( ) ( ) ( ) ( ) 
1

2

1 ,

0

Q
T

T q f

q

n w E n q n q e n q
−

=

− − − c Λz  (2.63) 

( ) ( ) ( ) ( ) 
1

2 2

1 ,

0

Q
T

T q f f

q

n w E e n q n q n q
−

=

− −  − z z  (2.64) 

To evaluate ( )1exJ n + , ( )n  and ( )n  need be solved.  To solve ( )n , the following 

scale function ( )b n  is defined 

( ) ( ) ( ) ( ) T

fb n E n n e nc Λz  (2.65) 

Substituting Eq. (2.55) into Eq. (2.65), ( )b n  is derived to look  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )  ( ) ( ) ( ) ( ) 

1

1 ,

0

1

1 ,

0

       

Q
T T

f opt T p

p

Q
T T T

f opt T p f

p

b n E n n e n w n p n p

E n n e n w E n n n p n p

−

=

−

=

   
= − − −  

   

= − − −





c Λz c z

c Λz c Λz c z

 (2.66) 
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Since ( )opte n  is a zero mean vector and statically independent of z  and c , the first term 

in Eq. (2.66) is approximately zero.  The second term, ( ) ( )T n p n p− −c z , can be 

transposed and substituted. Thus, 

( ) ( ) ( ) ( ) ( ) 
1

1 ,

0

Q
T T

T p f

p

b n w E n n n p n p
−

=

= −  − − c z z c  (2.67) 

According to the independence assumption, the correlation matrix between different 

vectors of a stationary input signal can be approximated as  

( ) ( )  ,

T

T T p qE n p n q − − =X X R   (2.68) 

where ,p q  is the Kronecker Delta function. Substitute Eq. (2.55) into Eq. (2.68) to have  

( ) ( )  ,

T T

T T p qE n p n q − − =X X FΛF  (2.69) 

Eq. (2.69) can be manipulated to look 

( ) ( )  ,

T T T T

T T p qE n p n q − − =F X X F F FΛF F   (2.70) 

With F  being a rotation matrix and its inverse equal to its transpose, Eq. (2.70) can be 

expressed as 

( ) ( )  ,

T T

T T p qE n p n q − − =F X X F Λ   (2.71) 

Substituting Eq. (2.57) into Eq. (2.71) to obtain 

( ) ( )  ,

T

p qE n p n q − − =z z Λ  (2.72) 

Combining Eq. (2.50) and Eq. (2.72),  
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( ) ( )  ( ) ( )

( ) ( ) 

1

1 ,

0

1

1 ,

0

1

1 , , 1 ,

0

                                

                                

Q
T T

f T q

q

Q
T

T q

q

Q

T q p q T p

q

E n n p E w n q n p

w E n q n p

w w

−

=

−

=

−

=

   
− = − −  

   

= − −

=  = 







z z z z

z z  (2.73) 

With the assumption that z  and c  are statically independent, Eq. (2.67) can be reduced 

to the following by substituting Eq. (2.73) 

( ) ( ) ( ) 
1

2 2

1 ,

0

Λ
Q

T

T p

p

b n w E n n p
−

=

= − − c c  (2.74) 

When the eigenvalues of the input signal’s correlation matrix are nearly equal, 2Λ  can 

be approximated as 

2

av    (2.75) 

where 
av  is the average of the eigenvalues.  Therefore, Eq. (2.74) can be reduced to  

( ) ( ) ( ) 
1

2

1 ,

0

Λ
Q

T

av T p

p

b n w E n n p
−

=

= − − c c  (2.76) 

Define ( )pr n  as 

( ) ( ) ( ) ΛT

pr n E n n p−c c  (2.77) 

The rotated error weight vector ( )nc  defined in Eq. (2.53) can be approximated using 

( ) ( ) ( ) ( )2

T T

fn n p p n p e n p − + − −c c z  (2.78) 

Substituting Eq. (2.78) into Eq. (2.77), one has 
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( ) ( ) ( ) ( ) ( ) 
( ) ( )  ( ) ( ) ( ) 

( ) ( )  ( ) ( ) ( ) 

2

2

2

2

        2

        2

T T

p f

T T

f

T T

f

r n E n p p n p e n p n p

E n p n p pE n p n p e n p

E n p n p pE n p n p e n p







 = − + − −  − 

= −  − + −  − −

= −  − + −  − −

c z c

c c z c

c c c z

 (2.79) 

After applying Eq. (2.65) to Eq. (2.79), ( )pr n  is reduced to 

( ) ( ) ( )  ( )2

T

pr n E n n b n p =  + −c c  (2.80) 

Eq. (2.81) is resulted after incorporating Eq. (2.80) into Eq. (2.76) 

( ) ( ) ( )  ( )
1 1

2 2

1 , 2 1 ,

0 0

Λ
Q Q

T

av T p av T p

p p

b n w E n p n p pw b n p  
− −

= =

= − − − − − c c  (2.81) 

Per Eq. (2.58), the first term in Eq. (2.81) is replaced with ( )av exJ n−  to get  

( ) ( ) ( )
1

2

2 1 ,

0

Q

av ex av T p

p

b n J n pw b n p  
−

=

= − − −  (2.82) 

Using the recursive property of Eq. (2.82), ( )b n  can be expanded further 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
2 2

2 1 , 2 1 ,

0 0

1 1 1
2 2 2 2 2 2

2 1 , 2 1 , 1 ,

0 0 0

       

Q Q

av ex av T p av ex av T q

p q

Q Q Q

av ex av T p ex av T p T q

p p q

b n J n pw J n p qw b n p q

J n pw J n p pqw w b n p q

     

    

− −

= =

− − −

= = =

 
= − −  − − − − − 

 

= − + − + − −

 

 

 (2.83) 

The third term in Eq. (2.83) can be neglected if 20 1  which gives 2

2 0  . Thus,  

( ) ( ) ( )
1

2 2

2 1 ,

0

Q

av ex av T p ex

p

b n J n pw J n p  
−

=

 − + −  (2.84) 

By substituting Eq. (2.84) into Eq. (2.65), Eq. (2.63) becomes 
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( ) ( )

( ) ( )

1
2

1 ,

0

1 1 1
2 2 2 2

1 , 2 1 , 1 ,

0 0 0

        

Q

T q

q

Q Q Q

av T q ex av T q T p ex

q q p

n w b n q

w J n q w pw J n p q



  

−

=

− − −

= = =

= −

= − − + − −



  
 (2.85) 

In case of adaptation, it can be assumed that  

( ) ( )ex exJ n q p J n q− −  −   (2.86) 

Then, ( )n  can be further approximated as 

( ) ( ) ( )
1 1 1

2 2 2 2

1 , 2 1 , 1 ,

0 0 0

Q Q Q

av T q ex av T q T p ex

q q p

n w J n q w pw J n q   
− − −

= = =

 − − + −    (2.87) 

Finally, ( )n  can be expressed as 

( ) ( ) ( )
1

2 2

1 ,

0

1
Q

av av s T q ex

q

n w J n q    
−

=

 − −  (2.88) 

where  

1
2 2

1 ,

0

Q

s T q

p

pw
−

=

  (2.89) 

From Eq. (2.64), ( )n  can be derived to have the following forms 

( ) ( ) ( ) ( ) 

( ) ( )

( ) ( ) 

1
2 2

1 ,

0

1 1
2 2 2

1 ,

0 0

1 1
2 2 2

1 ,

0 0

        

        

Q
T

T q f f

q

Q L

T q l f

q l

Q L

l T q f

q l

n w E e n q n q n q

w E e n q z n q l

w E e n q z n q l







−

=

− −

= =

− −

= =

= − −  −

 
= − − − 

 

= − − −



 



z z

 (2.90) 

where ( )2

fz n q l− −  is the l th−  element of ( )f n q−z  and l  is the l th−  eigenvalue of 

Λ .  According to the separation principle [91], ( )2

Tx n  and ( )2e n  are statically 
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independent. Consequently, ( )2

fz n  and ( )2e n  are independent. Following this 

assumption, Eq. (2.90) is simplified to read 

( ) ( ) 
( )

( ) 
1 1

2 2 2

1 ,

0 0

x f

Q L

l T q f

q l
PJ n q

n w E e n q E z n q l 
− −

= =
−

= − − −  (2.91) 

By definition, ( ) 2E e n q−  is equal to the MSE at time n q−  and the term  

( ) 2

fE z n q l− −  is the power of the filtered input signal, xfp .  Therefore, 

( ) ( )

( )

( )

1 1
2

1 ,

0 0

11
2

1 ,

0 0

1
2

1 ,

0

         =

        

f

f

f

Q L

l T q x

q l

QL

x l T q

l q

Q

x av T q

q

n w P J n q

P w J n q

P L w J n q

 





− −

= =

−−

= =

−

=

= −

 
− 

 

= −



 



 (2.92) 

By using Eq. (2.56), ( )n  can eventually be expressed as 

( ) ( )
1

2

1 , min

0
f

Q

x av T q ex

q

n LP w J J n q 
−

=

= + −    (2.93) 

To predict EMSE, by substituting Eq. (2.88) and Eq. (2.93) into Eq. (2.62), it can 

be expressed as 

( ) ( ) ( ) ( )

( )

1
2 2

2 2 1 ,

0

1
2 2

2 1 , min

0

1 2 1

                 
f

Q

ex ex av av s T q ex

q

Q

x av T q ex

q

J n J n w J n q

LP w J J n q

    

 

−

=

−

=

+ = + − −

+ + −  





 (2.94) 

In Eq. (2.94), av  can be calculated using 

( )  ( ) ( ) 
1 1

2

0 0

1 1 1 1
1

L L
T

av l z

l l

tr tr E E z n P
L L L L

 
− −

= =

= = = = − = Λ zz  (2.95) 
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where 
zP  is the power of the rotated input signal.  Because 

zP = 
xP , the power of the 

input signal, thus 

av xP =  (2.96) 

In addition, the power of the filtered input signal is 

( )  ( ) ( )

( ) ( ) 

1 1
2

1 , 1 ,

0 0

1 1

1 , 1 ,

0 0

     

f

Q Q

x f T p T T q T

p q

Q Q

T p T q T T

p q

P E x n E w x n p w x n q

w w E x n p x n q

− −

= =

− −

= =

 
= = − − 

 

= − −

 



 (2.97) 

If p q ,  ( ) ( )  0T TE x n p x n q− − = .  As such, Eq. (2.97) can be reduced to 

( ) 
1 1

2 2 2

1 , 1 ,

0 0
f

Q Q

x T p T T p x

p p

P w E x n p w P
− −

= =

= − =   (2.98) 

Combining Eq. (2.96) and Eq. (2.98), one has  

2

fx s avP  =  (2.99) 

where 

1
2 2

1 ,

0

Q

s T p

p

w
−

=

  (2.100) 

Using 
2

fav s xP  −=  to simplify ( )1exJ n +   

( ) ( ) ( ) ( )

( )

1
2 2 2 2

2 1 ,

0

1
2 2 2 2

2 1 , min

0

1 2 1

                 

f f

f

Q

ex ex s x s x s T q ex

q

Q

s x T q ex

q

J n J n P P w J n q

L P w J J n q

    

 

−
− −

=

−
−

=

+ = + − −

+ + −  





 (2.101) 

Let 
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2

2

s
eq

s




  (2.102) 

( )1exJ n +  can be further simplified to be 

( ) ( ) ( ) ( )

( )

1
2 2

2 1 ,

0

1
2 2 2 2

2 1 , min

0

1 2 1

                 

f f

f

Q

ex ex s x x eq T q ex

q

Q

s x T q ex

q

J n J n P P w J n q

L P w J J n q

  

 

−
−

=

−
−

=

+ = +  − −

+ + −  





 (2.103) 

Using the following defined scalar parameters m  and h  

( )2

2 22 2
f fx s x eqm P P L  −  − + 

 
 (2.104) 

and 

2 2

2 minfxh P LJ  (2.105) 

( )1exJ n +  in Eq. (2.103) is expressed as  

( ) ( ) ( )
1

2

1 ,

0

1
Q

ex ex T q ex

q

J n J n m w J n q h
−

=

+ = − − +  (2.106) 

which is a novel model for the prediction of FxLMS convergence.  A general FxLMS 

convergence condition is derived in the followings using Eq. (2.106).  When FxLMS 

converges, the optimal EMSE, which is a minimum value, can be obtained for the steady 

state when n→ . In this condition, it can be assumed that  

( ) ( ) ( ) ,min1 ...ex ex ex exJ n J n J n q J+ = = = − =  (2.107) 

Based on this assumption, Eq. (2.106) can be reduced to 

1
2

,min ,min 1 , ,min

0

Q

ex ex T q ex

q

J J m w J h
−

=

= − +  (2.108) 
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Then, the optimum EMSE can be obtained as 

,min 2ex

s

h
J

m
=  (2.109) 

By substituting Eq. (2.104) and Eq. (2.105) into Eq. (2.109), ,minexJ  can be expressed as 

( )
2 min

,min

22 2

f

f

x

ex

x eq

P LJ
J

P L




=

− + 
 (2.110) 

For a system to converge, it is necessary that the corresponding ,minexJ  is positive.  This 

requires that 

( )2

2

2
fx eqP L

 
+ 

 (2.111) 

The condition in Eq. (2.111) is also a sufficient condition for the convergence of the 

FxLMS algorithm.  Based on the same necessary condition as in the steady state, ( )exJ n  

in Eq. (2.58) is a positive function of ( )nc  that,  

( ) 0   exJ n n       (2.112) 

According to Lyapunov stability theory, if for some 
2 , the difference of ( )exJ n  is 

negative such as 

( ) ( ) ( )1 0   ex ex exJ n J n J n n = + −    (2.113) 

then ( )exJ n  is a Lyapunov function and the system is uniformly asymptotically stable in 

the Lyapunov sense.  In this case, the system converges to its equilibrium point at the 

origin, i.e. ( ) 0n →c . From Eq. (2.52), it can be shown that when ( ) 0n →c , the adaptive 
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filter weight converges to the optimum filter weight, i.e. ( )2 2,optn →W W .  Therefore, it 

can be stated that  ( ) 0exJ n   is a sufficient condition for FxLMS convergence.  

( )exJ n  is also negative. When the algorithm is far from being convergent, 

EMSE is greater than its steady state value, ,minex exJ J .  Therefore,  

( ) 2
   ex

s

h
J n n

m
   (2.114) 

Apply 

1
2

1 ,

0

Q

T q

q

w
−

=

  to both sides of Eq. (2.114)  

( )
1 1

2 2

1 , 1 , 2
0 0

Q Q

T q ex T q

q q s

h
w J n q w

m

− −

= =

−    (2.115) 

Eq. (2.115) is equivalent to  

( )
1

2

1 ,

0

Q

T q ex

q

h
w J n q

m

−

=

−   (2.116) 

If 0m   then Eq. (2.116) can be rewritten as 

( )
1

2

1 ,

0

0
Q

T q ex

q

m w J n q h
−

=

− − +   (2.117) 

which is equivalent to 

( ) ( )1 0ex exJ n J n+ −   (2.118) 

Therefore, for 0m  , the difference of the proposed Lyapunov function is negative 

( ) 0   exJ n n    (2.119) 
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From the above discussion, it can be concluded that for 0m  , ( )exJ n  is a Lyapunov 

function.  Since the existence of the Lyapunov function is a sufficient condition for 

stability, it can be stated that 0m   is the sufficient condition for convergence.  Based 

on Eq. (2.104), 0m   requires that 

( )22 2 0
fx eqP L− +    (2.120) 

The sufficient condition for FxLMS convergence is therefore 

( )2

2

2
feq xL P

 
+ 

 (2.121) 

The convergence condition given by Eq. (2.121) is applicable to any arbitrary secondary 

path.  To ensure the fastest convergence rate, the optimum FxLMS convergence 

condition is derived below. According to the Lyapunov stability theory, the difference of 

the Lyapunov function must be minimum.  Based on Eq. (2.106), this difference function 

can be obtained as 

( ) ( )
1

2

1 ,

0

Q

ex T q ex

q

J n m w J n q h
−

=

 = − − +  (2.122) 

When the algorithm is far from being minimum MSE, ( ) minexJ n J , ( )exJ n  can be 

approximated as 

( ) ( )
1

2

1 ,

0

Q

ex T q ex

q

J n m w J n q
−

=

 = − −  (2.123) 

Since ( )exJ n  is a positive definite function and 0m  , to minimize ( )exJ n , m is 

maximized with respect to 2 .  Therefore, 
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2,
2

0

opt

m




 
 
  


=


 (2.124) 

where 2,opt  denotes the optimized step-size.  By substituting Eq. (2.104) into Eq. 

(2.124), it can be shown that 

( )2
2,2 2 2 0

f fx s x eqoptP P L −  
 
− +  =  (2.125) 

Solving Eq. (2.125) to obtain the optimum step-size 

( )
2,

1

2
f

opt

x eqP L
 =

+ 
 (2.126) 

It is noted that the optimized step-size is about half of the convergence bound for 2  and 

that Eq. (2.126) is valid for any arbitrary moving average secondary path. 

 

Initial guess for filter coefficient 

Although the optimized adaptive step-size is available, however, it is still not 

sufficient to adjust the filter coefficient vectors, 
1W  and 

2W , to their optimized values. 

For a highly nonlinear model, there are numerous solutions. If the initial filter coefficient 

vectors are improperly set, they will never be adjusted to the optimized values.  The 

initial guessed values for each filter 
1W  and 

2W  are derived in the present section. 
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Figure 5 Schematic of a system identification algorithm. 

 

 

As the system identification component of the control system seen in Figure 5, 

the wavelet transformed filter coefficient vectors 
1TW  represents the nonlinear system 

model.   The difference between the output from the actual nonlinear system and the 

filter coefficient vectors is therefore 

( ) ( ) ( )2 1 2e n y n n= −W TU   (2.127) 

where 

( ) ( ) ( ) ( )2 2 2 21 1
T

n u n u n u n N= − − +  U  (2.128) 

Noted that ( )2u n  here comes from the input signal directly since control is not yet 

engaged and initial guesses not yet provided. To solve 
1W  with N  unknow values, it 

requires N  equations.  Since the wavelet transformed filter coefficient vectors 

represents the system, the equivalent conditions in Eq. (2.127) is sufficient for time 
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( 1)n −  to ( )n N− .  Assume the wavelet transformed filter coefficient vectors 
1TW  fully 

represents the nonlinear system.  Since 

( ) ( ) ( )2 1 2n n n= −E Y W TX  (2.129) 

where 

( ) ( ) ( ) ( )2 2 2 21 1
T

n e n e n e n N= − − +  E  (2.130) 

( ) ( ) ( ) ( )2 2 21 1
T

n y n y n y n N= − − +  Y  (2.131) 

( ) ( ) ( ) ( )2 2 2 21 1n n n n N= − − +  X U U U   (2.132) 

the difference between the output of the model system and the filter coefficient vectors 

should be zero, that is 

( ) ( )1 20 n n= −Y W TX  (2.133) 

By manipulating Eq. (2.133), the filter coefficient vectors 
1W  can be solved as follow 

( ) ( )1 1

1 2n n− −=W Y X T  (2.134) 

Then, Eq. (2.134) can be used as the initial guess for the filter coefficient vectors 
1W  in 

the system identification component.  To properly control the input signal, the filter 

coefficient vectors 
2W  in the FxLMS algorithm is presented in Figure 6.  Again the 

wavelet transformed filter coefficient vectors 
1TW  is assumed to fully represent the 

nonlinear system FxLMS.  
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Figure 6 Schematic of a FxLMS algorithm with 
1TW  representing the nonlinear 

system. 

 

 

The difference between the desired target ( )d n  and the output ( )y n  is 

( ) ( ) ( )e n d n y n= −  (2.135) 

When ( )y n  is perfectly controlled, ( )e n  is zero.  Then Eq. (2.135) can be rewritten as 

( ) ( )d n y n=  (2.136) 

where 

( ) ( )1 2y n n= W TU   (2.137) 

and  

( ) ( )2 2u n n= W TX  (2.138) 
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By substituting Eq. (2.138) into Eq. (2.137), one has 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 2 2

1 2

1 1

        1 1

y n n n n N

n n n N

= − − +  

= − − +  

W T W TX W TX W TX

W TW T X X X
 (2.139) 

To solve 
2W  with N  unknown values, it requires N  equations.  Assume that Eq. 

(2.139) is valid in previous time steps, then Eq. (2.139) can be rewritten as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2

1 1 2

2 2 3 1

                                           

1 2 1

y n n n n N

y n n n n N

y n N n N n N n N

− = − − −  

− = − − − −  

− = − − − − +  

W TW T X X X

W TW T X X X

W TW T X X X

 (2.140) 

By solving Eq. (2.139) and Eq. (2.140), the initial guess for the filter coefficient vectors 

2W  is obtained. 
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CHAPTER III  

GRAZING CONTROL OF A VIBRO-IMPACT OSCILLATOR* 

 

Introduction 

Impact oscillators are found in many applications.  It is common for these 

applications to undergo the inadvertent state of grazing bifurcation.  Vibro-impact 

incited grazing and route-to-chaos are difficult to control.  The Newtonian model of a 

vibro-impact system rich of complex nonlinear behaviors is considered for the mitigation 

of impact induced instability and grazing.  A novel concept developed in the previous 

chapter capable of simultaneous control of vibration amplitude in the time-domain and 

spectral response in the frequency-domain is applied to formulate a viable control 

solution.  The developed controller explores wavelet adaptive filters and filtered-x least 

mean square algorithm to the successful moderation of the grazing and dynamic 

instability of the non-smooth system.  The qualitative behavior of the controlled impact 

oscillator follows a definitive fractal topology before settling into a stable manifold.  The 

controlled response is categorically quasi-periodic and of the prescribed vibration 

amplitude and frequency spectrum. [93] 

 

 

                                                 

*Reprinted with permission from “Mitigating Grazing Bifurcation and Vibro-Impact Instability in Time-

Frequency Domain” by Chi-Wei Kuo, C. Steve Suh, 2016. Journal of Applied Nonlinear Dynamics, 

Volume 5(2), Pages 169-184, Copyright [2016] by L&H Scientific Publishing, LLC. 
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Vibro-Impact Oscillator Model 

Grazing bifurcation induced by the collision of a periodic orbit with a switching 

manifold in a non-smooth system is potent in generating complex dynamics.  The 

dynamic behavior in the immediate neighborhood of grazing experienced by an impact 

oscillator is inherently unstable [10].  The one degree-of-freedom vibro-impact model 

shown in Figure 7 [23] that describes the motion of the cart at low speed subject to a 

force of a sinusoidal profile is considered.  The dynamic equation of the vibro-impact 

motion defined using the specified coordinate system is  

( ) ( )  2 sin wallM x R x K x A t k x d H x d + + = − − −  (3.1) 

where M is the mass of the moving cart, R is the damping coefficient, K  is the stiffness 

of the spring, A  is the excitation amplitude, and   is the excitation frequency.  The 

impact wall is located at x d=  and its stiffness is wallk  which is assumed to be much 

greater than K .  The stiffness of the spring is dictated by a Heaviside function, 

 H x d− .  Eq. (3.1) can be further manipulated to be of the following dimensionless 

form [24]: 

( ) ( )2 sin 2y y y y e H y e       = − − − − −  (3.2) 

where 
0y x x=  is the dimensionless displacement, 

0y x x=  is the dimensionless 

velocity, and 
0y x x=  is the dimensionless acceleration. The first term on the right hand 

side of Eq. (3.2) is the excitation force with 
0A x =  being the dimensionless excitation 

amplitude and 
n t =  being the dimensionless time in which n K M =  defines the 

nature frequency.  Also, ( )2 nc M =  is the damping ratio, 
wallk K =  is the stiffness 
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ratio, and 
0e d x=  is the dimensionless gap.  The arbitrary reference distance is defined 

at 
0 1 mmx = . 

 

 

Figure 7 Vibro-impact model system [23]. 

 

 

Grazing Bifurcation of Vibro-Impact Oscillator 

The time response of the vibro-impact model system corresponding to the 

parameters tabulated in Table 1 and subject to zero initial position and zero initial 

velocity is shown in Figure 8.  It is noted that the system parameters are adopted from 

[95] and that the integration time step used is 0.001 sec.  

 

 

Table 1 Dimensionless parameters of the vibro-impact model 

Excitation Amplitude    0.702 

Excitation Frequency    0.8 

Damping    0.01 

Stiffness Ratio    29 

Position of the wall e   1.26 



 

49 

 

 

 

Figure 8 Time response of vibro-impact model system without controller. 
 

 

 

Figure 9 Phase portrait of uncontrolled response. 
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Figure 10 Instantaneous frequency of uncontrolled impact oscillator. 
 

 

In the corresponding phase portrait shown in Figure 9, the trajectory on the right 

represents the discontinuous condition near where the wall is.  The figure indicates an 

unstable motion recognized as grazing.  The cluster of trajectories seen in the center of 

the figure registers the singularities fundamental to the vibro-impact dynamics of the 

oscillator.  As seen in Figure 10 where the corresponding instantaneous frequency 

response is presented, the particular bifurcated state of instability is broadband and of a 

time-varying (non-stationary) spectrum.  Together the 2 figures convey a state of 

instability that is bounded in the time-domain while simultaneously becoming unstably 

broadband in the frequency-domain due to the rapid switching of infinite numbers of 

unstable periodic orbits (UPOs) [81].  In order to effectively mitigate grazing bifurcation 

and prevent further dynamic deterioration, control needs to be performed in the time and 
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frequency domains concurrently.  With the location and the stability of the 

corresponding equilibrium point varying in time, the impact oscillator is seen to undergo 

non-stationary route-to-chaos, which is one of the basic properties universal of all 

temporal nonlinear processes.  The vibro-impact system is also highly sensitive to initial 

conditions.  A minor deviation between two adjacent initial trajectories may diverge 

exponentially with the progression in time, thus implying that a small perturbation could 

render the system unstable.  The figures necessarily indicate that the impact oscillator is 

difficult to control with linear control theory 

 

Controlled Response 

To mitigate the instability state of the broadband response shown in Figure 8, the 

nonlinear vibro-impact system is incorporated into the wavelet-based time-frequency 

control scheme given in Figure 4.  The initial filter vectors for both the filters are 

 0.01 0.01
T

 which is an 1N  matrix.  Step sizes 1  and 2  for both the LMS filters are 

set to be 
710−
, and N , the data size, is arbitrarily selected as 2048.  The desired target is 

a sinusoidal function ( )sin ta t   with the desired frequency 0.8=ta  and the 

corresponding desired amplitude 1 =  
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Figure 11 Time Response of controlled impact oscillator with a desired amplitude 

of 1. 

 

 

 

Figure 12 Phase portrait of controlled response with a desired amplitude of 1. 

 

http://en.wikipedia.org/wiki/Poincar%C3%A9_plot
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Figure 13 Instantaneous frequency of controlled response with a desired amplitude 

of 1. 

 

 

 

Figure 14 Error tracking of controlled response with a desired amplitude of 1. 
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Figure 15 Time Response of controlled impact oscillator with a desired amplitude 

of 0.5. 

 

 

 

Figure 16 Phase portrait of controlled response with a desired amplitude of 0.5. 

 

http://en.wikipedia.org/wiki/Poincar%C3%A9_plot
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Figure 17 Instantaneous frequency of controlled response with a desired amplitude 

of 0.5. 

 

 

 

Figure 18 Error tracking of controlled response with a desired amplitude of 0.5. 
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Figure 19 Time Response of controlled impact oscillator with a desired amplitude 

of 0.2. 

 

 

 

Figure 20 Phase portrait of controlled response with a desired amplitude of 0.2. 

 

http://en.wikipedia.org/wiki/Poincar%C3%A9_plot
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Figure 21 Instantaneous frequency of controlled response with a desired amplitude 

of 0.2. 

 

 

 

Figure 22 Error tracking of controlled response with a desired amplitude of 0.2. 

 

 

The time response in Figure 11 shows that the response becomes steady after the 

controller is brought online at t = 100 sec.  The corresponding phase portrait in Figure 12 
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indicates a limit-cycle bounded between +1 and -1, thus signifying that the oscillator is 

now in a state of stable motion.  In addition, given the finite number of time-invariant 

frequency components, the corresponding instantaneous frequency in Figure 13 shows 

that the system response after the controller is brought online is quasi-periodic.  The 

resulted state of stability of the discontinuous system is further ascertained by the rapid 

diminishing absolute error plotted in Figure 14 in which the time response is seen to 

rapidly converge to the desired target response.  

There are scenarios in which vibration amplitude needs be kept within a tight 

range of tolerance to ensure collision-free motions.  In the followings the desired 

amplitude is further reduced to 0.5 and 0.2 to facilitate much greater safety margin using 

the nonlinear controller.  The step sizes 1  and 2  for the two adaptive filters are kept 

the same as the previous case.  Results shown in Figure 15-Figure 18 are, respectively, 

the time response, phase portrait, instantaneous frequency response, and error that 

correspond to the case of 0.5 target amplitude.  It is evident that all the controlled 

responses in the time-domain are of the desired amplitude.  The controlled frequency 

response is both bounded and periodic.  The time response, phase portrait, instantaneous 

frequency response, and error that correspond to the case of a much tighter target 

amplitude, being set at 0.2, are given in Figure 19-Figure 22.  Unlike Figure 16 and 

Figure 18, the error seen in Figure 22 is a transient state that eventually settles into a 

steady state of zero magnitude, at which point the impact oscillator follows the desired 

target with the prescribed frequency response. 

http://en.wikipedia.org/wiki/Poincar%C3%A9_plot
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Poincaré sections are employed in the followings to further demonstrate the 

performance of the controller design.  Figure 23 is the corresponding Poincaré section of 

the uncontrolled vibro-impact system responses shown in Figure 8 and Figure 9.  No 

fractal patterns of any discernible scale can be identified in the figure.  In conjunction 

with Figure 10 where the instantaneous frequency response is seen to be broadband and 

time-varying (non-stationary), it is evident that the motion state of the uncontrolled 

system is chaotic.   Figure 24, Figure 26, and Figure 28 are the Poincaré sections 

associated with the 3 desired targets before the controller is activated.  There are no 

identifiable patterns or structures as expected.  After the controller is applied, as is 

readily evident from Figure 25, Figure 27, and Figure 29, as →t  all the 3 cases of 

response converge to a stable manifold with a readily discernible, definitive topology.  

The well-defined fractal structures signify that the grazing state is effectively mitigated, 

and instability is superseded by a stable state of motion characterized by a limit-cycle.  

As is indicated by the instantaneous frequency responses in Figure 13, Figure 17, and 

Figure 21, the controlled motions of the impact oscillator are all quasi-periodic responses 

of finite, time-invariant frequency components.  The motion of the harmonically excited 

vibro-impact system under the jurisdiction of the nonlinear time-frequency controller has 

become stationary, bounded, and predictable, wholly complying with the prescribed 

target response that is of the specific, desired temporal and spectral properties.   
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Figure 23 Poincare section of uncontrolled system response. 

 

 

 

Figure 24 Poincare section of controlled system response with a desired amplitude 

of 1 (before controller is brought online). 
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Figure 25 Poincare section of controlled system response with a desired amplitude 

of 1 (after controller is brought online). 

 

 

 

Figure 26 Poincare section of controlled system response with a desired amplitude 

of 0.5 (before controller is brought online). 
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Figure 27 Poincare section of controlled system response with a desired amplitude 

of 0.5 (after controller is brought online). 

 

 

 

Figure 28 Poincare section of controlled system response with a desired amplitude 

of 0.2 (before controller is brought online). 

 



 

63 

 

 

Figure 29 Poincare section of controlled system with a desired amplitude of 0.2 

(after controller is brought online). 

 

 

Summary 

Vibro-impact systems are prone to dynamic instability.  Non-smooth behaviors 

inherent of such systems such as grazing are detrimental because they impart strong 

nonlinearity to the systems’ time responses and cede to frequency responses that are 

non-stationary and broadband.  These imply that both the time and frequency responses 

need be considered if discontinuity and instability are to be effectively negated.  The 

developed wavelet-based time-frequency controller with parallel on-line modeling was 

shown to control and stabilize the dynamic response of the impact oscillator to follow a 

desired harmonic target of a specified amplitude.  Instantaneous frequency along with 

Poincare sections were employed to show the motion state of the oscillator in the time-

frequency domain before and after the controller was applied.  The controller 

demonstrated the ability to reduce the vibration amplitude of the system, which is 
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important for preventing the system from impacting the boundary.  In addition, the 

controller design was shown to be effective in resolving grazing behaviors and also in 

rendering dynamic stability that is qualitatively a limit-cycle.  The controlled motions of 

the vibro-impact system were all unconditionally stationary, quasi-periodically stable, 

and of the time and frequency characteristics dictated by the prescribed target response, 

thus demonstrating the feasibility of the simultaneous time-frequency controller design 

in stabilizing the discontinuous vibro-impact system. 
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CHAPTER IV  

CONTROL OF A NON-AUTONOMOUS TIME-DELAYED SYSTEM WITH CUBIC 

ORDER FEEDBACK* 

 

Introduction 

Time-delayed feedback of a small magnitude can perturb a nonlinear dynamic 

system to exhibit complex dynamical responses including route-to-chaos.  Such motions 

are harmful as they negatively impact the stability and thus output quality.  The 

performance, quality, and capacity can be improved enormously with a viable control 

solution.  The novel nonlinear time-frequency control theory formulated in Chapter II is 

explored to formulate a control methodology feasible for the mitigation of a non-

autonomous time-delayed oscillator having several higher order nonlinear 

feedback.  Featuring wavelet adaptive filters for simultaneous time-frequency resolution 

and filtered-x least mean square algorithm for system identification, the controller design 

is shown to successfully moderate the dynamic instability of the time-delayed feedback 

system with various time-delay parameters ranging from 0.22 sec to 0.3 sec.  The 

validity of the controller design is demonstrated by evaluating its performance against 

PID and Fuzzy logic in controlling displacement and frequency responses with the most 

chaotic dynamic response time-delay parameter. [94] 

                                                 

*Reprinted with permission from “A case of mitigating non-autonomous time-delayed system with cubic 

order feedback” by Chi-Wei Kuo, C. Steve Suh, 2017. Journal of the Franklin Institute, Volume 354, 

Pages 6651-6671, Copyright [2017] by Elsevier Ltd. 
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Non-Autonomous Time-Delayed Feedback Oscillator Model 

Consider the non-autonomous time-delayed feedback oscillator with high-order 

external forcing terms below  

( ) ( ) ( ) ( ) ( )     + − + = + − − + − −      
32 3

0 1 2 1 2cos f d dx x x x k t x t t x t x t t x t  (4.1) 

The oscillator which is subjected to time-delays and nonlinear feedback gains 

was found to display rich dynamics including double Hopf bifurcation and chaotic 

response [47].  In the following sections the innate dynamics of the oscillator is explored 

first to study the sensitivity of the system’s response to slightly different time-delay 

inputs.  All the system parameters in Eq. (4.1) are assumed to be positive with the 

following values: 
1 12.2a = , 

2 0.3a = , 
1 6.5 = , 

2 1 = , and 12k = .  The external 

driving frequency is set at 2f =  rad/s and the characteristic frequency of the oscillator 

is  =0 10  rad/s.  A dynamic model of the time-delayed feedback oscillator is built in 

MATLAB/Simulink and numerically time-integrated using a fourth-order Runge–Kutta 

algorithm.  The initial velocity and displacement are both zeros.  An integration time 

step of 610−  sec is used for all the three cases investigated in the present section 

 

Nonlinearity of Time-Delayed Feedback Oscillator 

The time-delay parameter set for the first case is 0.22dt =  sec.  The 

corresponding time response of the oscillator shown in Figure 30(a), though bounded, is 

a state of dynamic instability.  As will be made explicit later, the dt  being considered 

renders a bifurcated route-to-chaos behavior that is also of broad spectral bandwidth.  
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The associated phase portrait in Figure 30(b) conveys a better picture of the time-

delayed feedback system.  The cluster of trajectories seen in the center of the figure 

registers the singularities fundamental to the time-delayed feedback dynamics of the 

oscillator.  Together the two figures indicate that the response is bounded in the time-

domain while simultaneously becoming unstably broadband in the frequency-domain 

due to the rapid switching of the infinite number of unstable periodic orbits (UPOs).  It is 

infeasible to mitigate such a state of instability with linear control theory because of the 

higher-order feedback term in the equation of motion.  When the time-delay parameter 

dt  is set to be 0.27 sec, the system displays the most prominent nonlinear behavior of all 

the cases considered.  Figure 31(a) and Figure 31(b) show a chaotic state of response 

with many different frequencies and evidences of discontinuity.  Figure 32 presents the 

responses of the last case in which 0.3dt =  sec.  Although the time response seems to 

convey a false sense of bounded, stable state of motion, however, not unlike Figure 

31(b), the phase portrait in Figure 32(b) suggests multiple UPOs.  The UPOs in the 

phase portraits that correspond to the 3 different time-delay parameters indicate the level 

of difficulty in regulating the system with contemporary control approach.  To address 

the nonlinearity due to the time-delay feedback gain dictated by the higher order 

feedback terms in Eq. (4.1), a nonlinear control methodology is required to ensure 

stability. 
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(a)                                                      (b) 

Figure 30 (a) Time response and (b) phase portrait of the time-delayed feedback 

oscillator with time-delay td = 0.22 sec. 

 

 

 

(a)                                                       (b) 

Figure 31 (a) Time response and (b) phase portrait of the time-delayed feedback 

system with time-delay td = 0.27 sec. 
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(a)                                                       (b) 

Figure 32 (a) Time response and (b) phase portrait of the time-delayed feedback 

system with time-delay td = 0.3 sec. 

 

 

Controlled Response 

In the present section the wavelet-based time-frequency control concept is 

explored and evaluated to establish its feasibility in mitigating the complex states of 

dynamic instability of the time-delayed feedback oscillator whose nonlinear motions 

were seen in Figure 30-Figure 32.  The nonlinear system is incorporated into the control 

scheme given in Figure 6 and identical integration time step and time-delay are used to 

maintain consistency.  The 1N  initial filter vectors for both the filters are 

 0.0045 0.0045
T

 where the data collection size N  is discretionarily selected as 

256.  The optimization step sizes, 
1  and 

2 , of both the LMS filters are 
1610−

.  The 

desired target is a sinusoidal function, ( )cos tat  , where the target frequency is 2ta =  

rad/s and the amplitude is 0.4 = .  The time response in Figure 33(a) corresponds to the 

case in which = 0.22dt  sec.  Once the system response reaches steady-state the 
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controller is brought online at 30t =  sec.  The difference between the controlled 

response and the desired target in Figure 33(b) is satisfactory.  In contrast with Figure 

30(b) where the spectral response was broad in bandwidth, the phase portrait in Figure 

30(c) indicates that the oscillator is now in a quasi-periodic state of stable motion 

moving in a limit-cycle bounded between 0.9−  and 0.9+ .  The corresponding 

instantaneous frequency in Figure 33(d) also attests to the same observation by showing 

that the system response is a bandwidth-limited temporal-modal structure [78] indicative 

of dynamic instability and route-to-chaos.  After the controller is applied, the response 

stabilizes into a stable manifold of a definitive topology characteristically different from 

Figure 30(d) in which a discontinuous motion is indicated.  
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(a)                                                       (b) 

 

(c)                                                       (d) 

Figure 33 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback oscillator with controller 

initiated at time t = 30 sec and time-delay td = 0.22 sec. 
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(a)                                                       (b) 

 

(c)                                                       (d) 

Figure 34 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with controller initiated 

at time t = 30 sec and time-delay td = 0.27 sec. 
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(a)                                                       (b) 

 

(c)                                                       (d) 

Figure 35 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback oscillator with controller 

initiated at time t = 30 sec and time-delay td = 0.3 sec. 

 

 

The time-delayed feedback oscillator displayed the most prominent nonlinear 

behaviors of all the cases considered with 0.27dt = .  Following the same desired target 

the chaotic oscillator is seen in Figure 34(a) to respond in no time to the exertion of the 

controller initiated at time t = 30sec.  The associated phase portrait in Figure 34(c) 

indicates a stable motion of quasi-periodic type.  The corresponding instantaneous 

frequency for the controlled response in Figure 34(d) shows that as soon as the controller 



 

74 

 

is engaged the broad bandwidth chaotic motion is negated and the oscillator is stabilized 

into following a time-invariant spectrum of a finite number of frequencies.  This is also 

supported by Figure 34(b) in which the difference between the desired target and the 

controlled output in Figure 34(b) is periodic, thus stationary.   

The controller demonstrates similar performance for the case with time-delay 

0.3dt = .  After turning on the controller at time t = 30 sec to track the desired target with 

the frequency 2ta =  and amplitude 0.4 = , the time response in Figure 35(a) is 

effectively mitigated.  The phase portrait in Figure 35(c) indicates the controlled 

response is a limit-cycle type of motion whose spectral response in Figure 35(d) is 

characteristically similar to Figure 35(d).  That is, the driving frequency of the oscillator 

at 2f =  is properly tracked despite of the omnipresent linear and cubic order feedback 

gains.  The manifold of many UPOs in Figure 32(b) signifying the state of dynamic 

instability is reduced to a stable state of quasi-periodic motion characterized by 4 

definitive temporal-modal structures.  Figure 33-Figure 35 show that the motions of the 

harmonically excited non-autonomous time-delayed feedback oscillator under the 

jurisdiction of the nonlinear time-frequency controller are without exception stationary, 

bounded, and predictable, complying with the prescribed target response having specific 

temporal and spectral properties.   

The nonlinear time-frequency control concept is evaluated in this section against 

2 types of common controller designs, namely, PID and fuzzy logic control (FLC), for 

performance in mitigating the time-delayed feedback induced instabilities seen in Figure 

30-Figure 32.  The PID scheme employed for tracking the output displacement of the 
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time-delayed oscillator in Eq. (4.1) is illustrated in Figure 36.  The PID controller is 

designed based on the following,  

( ) ( ) ( )
( ) ( ) ( ) ( )1 1

1
2

p i d

e n e n e n e n
u n k e n k u n dt k

dt

+ − − − 
= + − + + 

 
  (4.2) 

where ( )u n   is the output from the controller, dt  is the integration time step, ( )e n   is 

the error between the desired signal and the actual output from the system.  Control 

parameters pk , 
ik , and 

dk   are proportional gain, integral gain, and derivative gain, 

respectively.  The optimal gain values selected for the PID controller are 1110.26pk = , 

0ik = , and 0dk = .  

 

 

 

Figure 36 PID controller for displacement tracking of time-delayed feedback 

system. 
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The FLC scheme employed for the output signal tracking of the time-delayed 

system is illustrated in Figure 37 where ( )e n  is the error between the desired target, 

( )d n , and the actual output signal, ( )y n .   

 

 

Figure 37 FLC for displacement tracking of time-delayed feedback system. 

 

 

 

Figure 38 Input membership function. 
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Figure 39 Output membership function. 

 

 

Table 2 Fuzzy Rules 

Rule Description 

1 If (err is NB) then (Force is NB) 

2 If (err is N) then (Force is N) 

3 If (err is Z) then (Force is Z) 

4 If (err is P) then (Force is P) 

5 If (err is PB) then (Force is PB) 

 

 

( )e n  is selected as the input to the fuzzy logic controller.  The corresponding 

membership functions and fuzzy rules are indicated in Figure 38 and Figure 39 and 

Table 1, where NL, NB, N, Z, P, PB, and PL stand for negative large, negative big, 

negativity, zero, positive, positive big, and positive large, respectively. 
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Although increasing the number of fuzzy rules can potentially improve 

performance, the fuzzy logic controller is deliberately designed to be simple out of the 

following considerations.  The first is that the controlled output from the fuzzy logic 

controller relies extremely on the input.  The second is that the feedback signal of the 

time-delayed system can be considered as the noise that distorts the information 

pertaining to the true dynamic state of the system.  The particular effect becomes more 

prominent when the system reaches steady-state and induces severe chattering in the 

output signal [96].  The fuzzy rules presented in Table 2 are the result of considering the 

above which is also tested to be sufficient for demonstration purpose. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 40 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback system with PID controller 

initiated at time t = 30 sec and time-delay td = 0.22 sec. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 41 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed feedback system with PID controller 

initiated at time t = 30 sec and time-delay td = 0.27 sec. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 42 Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with PID controller 

initiated at time t = 30 sec and time-delay td = 0.3 sec. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 43 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy controller 

initiated at time t = 30 sec and time-delay td = 0.22 sec. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 44 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy controller 

initiated at time t = 30 sec and time-delay td = 0.27 sec. 
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(a)                                                        (b) 

 

(c)                                                        (d) 

Figure 45 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delay feedback system with Fuzzy controller 

initiated at time t = 30 sec and time-delay td = 0.3 sec. 

 

 

The time-delayed feedback system is subsequently engaged with the PID and 

fuzzy logic controllers for the same 3 time-delay values considered in Figure 30-Figure 

32.  System parameters used in Figure 33-Figure 35 are also adopted to ensure a 

common basis for evaluation.  Figure 40(a) is the time response of the PID control with 

0.22dt =  sec.  The controller is initiated at 30t =  sec.  The phase portrait in Figure 

40(c) indicates that the oscillator is in a bifurcated state of quasi-periodic motion and the 
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instantaneous frequency response in Figure 40(d) shows that a high frequency 

component is generated as a result.  The feedback PID control is seen to instigate an 

artificial high frequency response that serves to destabilize the oscillator with its 

bandwidth-limited temporal-modal oscillations [78].  The PID design is applied to the 

time-delayed feedback system with delayed parameter equals to 0.27 sec and the 

corresponding responses are presented in Figure 41.  Chatter remains prominent in the 

time response after the controller is brought online at 30t =  sec.  The phase portrait in 

Figure 41(c) shows a toroid that is also a closure of unstable manifolds.  The 

corresponding instantaneous frequency in Figure 41(d) confirms an initially quasi-

periodic motion of the broadband frequency kind quickly breaking down to a chaotic 

response.  This is the most unstable response of the three time-delayed feedback cases 

considered herein.  The responses of the system with 0.3dt =  sec are presented in Figure 

42.  They are similar to the responses in Figure 40 except for the observation that the 

bandwidth-limited temporal-modal oscillations of the high frequency response is 

alarmingly worse.  Figure 43-Figure 45 are the corresponding fuzzy logic controlled 

responses of the system with dt  being 0.22 sec, 0.27 sec and 0.3 sec, respectively.  

Although the error chattering in each time responses is comparable to those with the PID 

controller, the instantaneous frequency plots in Figure 43(d), Figure 44(d), and Figure 

45(d) show that the high frequency responses as the results of the control action are non-

stationary (time-varying) and broad in bandwidth, thus necessarily indicating that the 

dynamic state of motion is fast deteriorating under the auspice of the controller.  The 
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corresponding phase portraits in Figure 43-Figure 45 also attest that the system remains 

highly bifurcated as an aperiodic motion after the controller was initiated. 

Both the PID and fuzzy logic controllers induce a high frequency noise after the 

control action is applied.  This is attributed to the fact that the feedback feature inherent 

of the controller design inadvertently perturbs the oscillator with the higher order 

nonlinear terms.  The instantaneous frequency responses of the time-frequency control 

indicate that the controller successfully mitigates the noise and stabilizes the time-delay 

feedback system.  PID and fuzzy logic control are seen to reduce the difference between 

the output and desired signals slightly better than the time-frequency control.  However, 

the error responses of the time-frequency controller are within tolerance and not 

affecting the proper functioning of the dynamic system.  The high frequency responses 

and broadband temporal-modal oscillations seen in Figure 40-Figure 45 could negatively 

impact the system with significantly higher power consumption, render poor accuracy, 

and destabilize the system to ultimate physical deterioration.  The time-frequency 

controller in contrast is feasible for the proper mitigation of the time-delayed feedback 

oscillator without the issues intimately associated with the PID and fuzzy logic control 

methodologies. 

 

Concluding Remarks 

Time-delayed feedback systems are sensitively prone to dynamic instability 

characterized by nonlinear, nonstationary time response and broad bandwidth spectral 

response.  Such a state of instability in manufacturing would result in premature tool 
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breakage, increased wear rate, and poor work piece quality.  The solution presented in 

the chapter can improve the performance, quality, and capacity of manufacturing 

enormously by applying the feedback force since sometimes the time-delay parameter 

cannot be adjusted.  A wavelet-base time-frequency controller with parallel online 

modeling was designed and subsequently implemented to control and stabilize the 

dynamic response of the non-autonomous time-delayed feedback system following a 

desired harmonic target of a specified frequency and amplitude.  The non-autonomous 

time-delayed feedback oscillator with various time-delay parameters were studied.  With 

the controlled motions being unconditionally stationary and quasi-periodically stable, the 

controller demonstrated the ability to mitigate the severe complex state of unstable 

motions dictated by the higher order feedback system. 
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CHAPTER V  

TIME-DELAYED VIBRO-IMPACT OSCILLATOR 

 

Time-delayed vibro-impact oscillators are commonly found in engineering.  

Chaotic motion and ultimate damage are probable if these oscillators are not properly 

controlled.  Knowing the dynamic characteristics of these systems is essential to 

controlling them.  In this chapter, system parameters such as delayed time and driving 

frequency are considered to generate system responses that are subsequently processed 

using phase plot and instantaneous frequency.  As discussed in previous chapters, 

changing driving frequency affects system responses in a profound way and time-delay 

may destabilize a system into catastrophe. The behaviors of time-delayed vibro-impact 

systems are significantly more complex than those of the two oscillators discussed in 

Chapter III and Chapter IV, for the reason that such systems demonstrate not only vibro-

impact gracing instability but also time-delayed induced chaos. 

 

Model System 

Grazing bifurcation generated by the collision of a periodic orbit with a 

switching manifold in a non-smooth system is potent for generating complex dynamics.  

The dynamic behaviors in the immediate neighborhood of grazing experienced by an 

impact oscillator are inherently unstable.  The one degree-of-freedom vibro-impact 

model shown in Figure 7 considers the motion of the cart at low speed subject to a force 
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of a sinusoidal profile.  The corresponding dynamic equation of the vibro-impact motion 

defined using the specified coordinate system is  

( ) ( )  2 sin wallM x R x K x A t k x d H x d + + = − − −  (5.1) 

where M  is the mass of the moving cart, R  is the damping coefficient, K  is the 

stiffness of the spring, A  is the excitation amplitude, and   is the excitation frequency.  

The impact wall is located at x d=  and its stiffness is 
wallk  which is assumed to be much 

greater than K .  The stiffness of the spring is dictated by a Heaviside function, 

 H x d− .  Eq. (5.1) can be further manipulated to be of the following dimensionless 

form: 

( ) ( )  2 sin 2y y y y e H y e    = − − − − −  (5.2) 

where 
0y x x=  is the dimensionless displacement, 

0y x x=  is the dimensionless 

velocity, and 
0y x x=  is the dimensionless acceleration.  The first term on the right-

hand side of Eq. (5.2) is the excitation force with 
0a A x=  being the dimensionless 

excitation amplitude and 
nt =  being the dimensionless time in which n K M =  

defines the nature frequency.  Also, ( )2 nc M =  is the damping ratio, 
wallk K =  is 

the stiffness ratio, and 
0e d x=  is the dimensionless gap where 

0x  is defined as the 

arbitrary reference distance. 
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Figure 46 Time-delayed vibro-impact model system. 

 

 

When a time-delayed reaction damping force from the wall is considered, the 

equation of motion becomes  

( ) ( )      2 sin 2 d dy y y y e H y e y t t H y t t e       = − − − − − − − − −   (5.3) 

where   is the damping factor, e  is the damping ratio from the wall, and 
dt  is the time-

delay parameter.  The damping force is interpreted as a delayed feedback response of the 

cart impacting the wall. 

 

Dynamics and System Properties  

In the following sections the innate dynamics of the oscillator is explored first to 

study the sensitivity of the system’s response to slightly different time-delay inputs.  All 

the system parameters in Eq. (5.3) are assumed to be positive with the following values: 

 =0.7 , =1.26e ,  = 29 ,  = 0.01 , and  = 0.1 .  The external driving frequency is 

set at =0.8  rad/s.  A dynamic model of the time-delayed feedback oscillator is built in 

MATLAB/Simulink and numerically time-integrated using a fourth-order Runge–Kutta 
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algorithm.  The initial velocity and displacement are both zeros.  An integration time 

step of 310−  sec is used for all the three cases investigated in the present section.   

 

 

(a) 

(b) 

Figure 47 (a) Time response and (b) phase portrait of the time-delayed vibro-

impact oscillator with time-delay td = 0.05 sec. 
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(a) 

(b) 

Figure 48 (a) Time response and (b) phase portrait of the time-delayed vibro-

impact oscillator with time-delay td = 0.1 sec. 
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(a) 

(b) 

Figure 49 (a) Time response and (b) phase portrait of the time-delayed vibro-

impact oscillator with time-delay td = 0.15 sec. 

 

 

The time-delay parameter set for the first case is 0.05dt =  sec.  The 

corresponding time response of the oscillator shown in Figure 47(a), though bounded, is 
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a state of dynamic instability.  As will be made explicit later, the particular 
dt  being 

considered renders a bifurcated route-to-chaos behavior that is also of broad spectral 

bandwidth.  The associated phase portrait in Figure 47(b) conveys a better picture of the 

time-delayed feedback system.  The cluster of trajectories seen in the center of the figure 

registers the singularities fundamental to the time-delayed feedback dynamics of the 

oscillator.  Together the two figures indicate that the response is bounded in the time-

domain while simultaneously becoming unstably broadband in the frequency-domain 

due to the rapid switching of the infinite number of unstable periodic orbits (UPOs).  It is 

infeasible to mitigate such a state of instability with linear control theory because of the 

feedback term in the equation of motion.  When the time-delay parameter 
dt  is set to be 

0.1 sec, the system displays similar nonlinear behaviors.  Figure 48(a) and Figure 48(b) 

show a chaotic state of response with a large number of different frequencies and 

evidences of discontinuity.  Figure 49 presents the responses of the last case in which 

0.15dt =  sec.  The phase portrait indicates similar chaotic motion. In Figure 49(a), there 

is no converge response seen after 900 sec.  Comparing all the time responses, time-

delay parameter affects the system more significantly when its value becomes larger. 

The UPOs in the phase portraits that correspond to the 3 different time-delay parameters 

indicate the level of difficulty in regulating the system with contemporary control 

approach.  To address the nonlinearity due to the time-delayed feedback gain dictated by 

the impact feedback terms in Eq. (5.1), a nonlinear control methodology is required to 

ensure stability. 
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Bifurcation Analysis 

To investigate the impact of time delay parameter a bifurcation analysis is 

performed.  With the same parameter and simulation environment, frequency is 

increased from 0.79 to 0.81.  The result presented in Figure 50 shows a prominent 

section of bifurcation between 0.8 and 0.802, which is a small range of frequency. 

However, as the time-delay parameter is increased from 
dt = 0 to 

dt  =0.15, the frequency 

range that registers bifurcation becomes wider, indicating that time-delay is significant 

in perturbing the system to chaotic state.  To control this highly nonlinear time-delayed 

vibro-impact oscillator, a wavelet-based time-frequency control scheme is developed in 

the next chapter. 

 

(a) 

Figure 50 Bifurcation analysis results with time-delay (a) td = 0, (b) td = 0.05,          

(c) td = 0.1, and (d) td = 0.15. 
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(b) 

 

(c) 

Figure 50 Continued. 
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(d) 

Figure 50 Continued. 
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CHAPTER VI  

CONTROL OF TIME-DELAYED VIBRO-IMPACT OSCILLATOR 

 

Adaptability of Time-Frequency Control 

In the present chapter the wavelet-based time-frequency control concept with 

local adaptability is explored and evaluated to establish its feasibility in mitigating the 

complex state of dynamic instability of the time-delayed feedback oscillator which 

demonstrates nonlinear bifurcated behaviors as seen in Figure 47-Figure 49 in Chapter 

V.  The nonlinear system is incorporated into the control scheme given in Figure 6 and 

identical integration time step and time-delay 
dt  are employed to maintain consistency.  

The 1N  initial filter vectors for both filters are calculated following the algorithm 

elaborated in Chapter II.  Regression step sizes are adjusted by meeting the conditions 

given in Eq. (2.44) and Eq. (2.126) in Chapter II.  The data size N  is discretionarily 

selected as 256.  The desired target is a sinusoidal function, ( )sin t  , where the target 

frequency is 0.8 =  rad/s and the amplitude is 0.7 = .  The time response in Figure 

51(a) corresponds to the case in which 0.05dt =  sec.  Once the system response reaches 

steady-state the controller is brought online at 300t =  sec.  The difference between the 

controlled response and the desired target in Figure 51(b) is satisfactory.  In contrast 

with Figure 47(b) where the spectral response is broad in bandwidth, the phase portrait 

in Figure 51(c) indicates that the oscillator is now in a periodic state of stable motion 

moving in a limit-cycle bounded between -0.6 and +0.6.  The corresponding 

instantaneous frequency in Figure 51(d) also attests to the same observation by showing 
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that the system response is a bandwidth-limited temporal-modal structure indicative of 

dynamic instability and route-to-chaos.  After the controller is applied, the response 

stabilizes into a stable manifold of a definitive topology characteristically different from 

Figure 47(a) where a discontinuous motion is indicated.  This instability state of motion 

is seen to abruptly return at the moment the controller is brought offline at 900t =  sec.  

Without the auspice of the nonlinear time-frequency controller the oscillator displays 

deteriorating time response (Figures 51(a) and 51(b)) and time-varying, broad bandwidth 

spectral response (Figure 51(d)) that are characteristically chaotic. 

 

 

(a) 

Figure 51 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with controller 

initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.05 sec. 
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(b) 

 

(c) 

Figure 51 Continued. 
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(d) 

Figure 51 Continued. 

 

 

(a) 

Figure 52 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with controller 

initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.1 sec. 
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(b) 

 

(c) 

Figure 52 Continued. 
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(d) 

Figure 52 Continued. 

 

 

(a) 

Figure 53 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with controller 

initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.15 sec. 
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(b) 

 

(c) 

Figure 53 Continued. 
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(d) 

Figure 53 Continued. 

 

 

The time-delayed vibro-impact oscillator also displays highly nonlinear 

behaviors in the case with 0.1dt = .  Following the same desired target, the chaotic 

oscillator is seen in Figure 52(a) to respond in no time to the exertion of the controller 

initiated at time 300t =  sec.  The associated phase portrait in Figure 52(c) indicates a 

stable motion of periodic type.  The corresponding instantaneous frequency for the 

controlled response in Figure 52(d) shows that as soon as the controller is engaged the 

broad bandwidth chaotic motion is negated and the oscillator is stabilized into following 

a time-invariant spectrum of a finite number of frequencies.  This is also supported by 

Figure 52(b) in which the difference between the desired target and the controlled output 

in Figure 52(b) is periodic, thus stationary.  The noted periodicity and stationarity are 
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lost upon the disengagement of the controller at t=900s.  Chaotic response is seen to 

restore just as the case with 0.1dt = . 

The controller demonstrates similar performance for the case with time-delay 

0.15dt = .  After turning on the controller at time 300t =  sec to track the desired target 

with 0.8 =  and 0.7 = , the time response in Figure 53(a) is effectively mitigated.  

The phase portrait in Figure 53(c) indicates the controlled response is a limit-cycle type 

of motion whose spectral response in Figure 53(d) is characteristically not unlike Figure 

53(d).  That is, the driving frequency of the oscillator at 0.8 =  is properly tracked 

despite of the omnipresent vibro-impact feedback gains.  The manifold of many UPOs in 

Figure 49(b) signifying the state of dynamic instability re-emerges along with the 

unstable state of aperiodic motions when the controller is turned off at t=900s as seen in 

Figure 53(d).  Figure 51-Figure 53 show that the motions of the harmonically excited 

time-delayed vibro-impact oscillator under the jurisdiction of the nonlinear time-

frequency controller are without exception stationary, bounded, and predictable, 

complying with the prescribed target response having specific temporal and spectral 

properties. 

 

Evaluation of Controlled Performance 

The nonlinear time-frequency controller design is evaluated in this section 

against 2 common controller designs, namely, PID and fuzzy logic control (FLC), for 

performance in mitigating the time-delayed feedback induced instabilities seen in Figure 

47-Figure 49.  The PID scheme employed for tracking the output displacement of the 
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time-delayed vibro-impact oscillator in Eq. (6.1) is given in Figure 54.  The PID 

controller is designed based on the followings,  

( ) ( ) ( )
( ) ( ) ( ) ( )1 1

1
2

p i d

e n e n e n e n
u n k e n k u n dt k

dt

+ − − − 
= + − + + 

 
  (6.1) 

where ( )u n   is the output from the controller, dt  is the integration time step, ( )e n   is 

the error between the desired signal and the actual output from the system.  Control 

parameters pk , 
ik , and 

dk   are proportional gain, integral gain, and derivative gain, 

respectively.  The optimal gain values selected for the PID controller are 2.2083pk = , 

0ik = , and 0dk = .  

 

 

Figure 54 Displacement tracking of time-delayed vibro-impact oscillator using PID. 

 

 

The FLC scheme employed for output signal tracking of the time-delayed system 

is found in Figure 55 with ( )e n  being the error between the desired target, ( )d n , and 

the output signal, ( )y n .   
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Figure 55 Displacement tracking of time-delayed vibro-impact oscillator using 

FLC. 

 

 

 

Figure 56 Input membership function 
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Figure 57 Output membership function 

 

 

Table 3 Fuzzy Rules of Fuzzy Logic Controller 

Rule Description 

1 If (err is NB) then (Force is NB) 

2 If (err is N) then (Force is N) 

3 If (err is Z) then (Force is Z) 

4 If (err is P) then (Force is P) 

5 If (err is PB) then (Force is PB) 

 

 

𝑒(𝑛) is selected as the input to the fuzzy logic controller.  The corresponding 

membership functions and fuzzy rules are indicated in Figure 56, Figure 57 and Table 3, 

where NL, NB, N, Z, P, PB, and PL stand for negative large, negative big, negativity, 

zero, positive, positive big, and positive large, respectively. 
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Although increasing the number of fuzzy rules can potentially improve 

performance, the fuzzy logic controller is deliberately designed to be simple out of the 

following considerations.  The first is that the controlled output from the fuzzy logic 

controller relies extremely on the input.  The second is that the feedback signal of the 

time-delayed vibro-impact system can be considered as the noise that distorts the 

information pertaining to the true dynamic state of the system.  The effect becomes more 

prominent when the system reaches steady-state and induces severe chattering in the 

output signal.  The fuzzy rules presented in Table 3 are the result of considering the 

above which is also tested to be sufficient for demonstration purpose. 

 

 

(a) 

Figure 58 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with PID 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.05 sec. 
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(b) 

 

(c) 

Figure 58 Continued. 
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(d) 

Figure 58 Continued. 

 

 

(a) 

Figure 59 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with PID 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.1 sec. 
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(b) 

 

(c) 

Figure 59 Continued. 
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(d) 

Figure 59 Continued. 

 

 

(a) 

Figure 60 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with PID 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.15 sec. 
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(b) 

 

(c) 

Figure 60 Continued. 
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(d) 

Figure 60 Continued. 

 

 

(a) 

Figure 61 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with Fuzzy 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.05 sec. 
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(b) 

 

(c) 

Figure 61 Continued. 
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(d) 

Figure 61 Continued. 

 

 

(a) 

Figure 62 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with Fuzzy 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.1 sec. 
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(b) 

 

(c) 

Figure 62 Continued. 
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(d) 

Figure 62 Continued. 

 

 

(a) 

Figure 63 (a) Time response, (b) Error response, (c) Phase portrait, and (d) 

Instantaneous frequency of the time-delayed vibro-impact oscillator with Fuzzy 

controller initiated at t = 300 sec, closed at t = 900 sec, and time-delay td = 0.15 sec. 
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(b) 

 

(c) 

Figure 63 Continued. 
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(d) 

Figure 63 Continued. 

 

 

 

Figure 64 Wider frequency spectrum with Fuzzy controller initiated at t = 300 sec, 

closed at t = 900 sec, and time-delay td = 0.15 sec. 
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The time-delayed vibro-impact oscillator is engaged with the PID and fuzzy logic 

controllers for the same 3 time-delay values considered in Figure 47-Figure 49.  System 

parameters used in Figure 51-Figure 53 are also adopted to ensure a common basis for 

evaluation.  Figure 58(a) is the PID-controlled time response with 0.05dt =  sec.  The 

controller is initiated at 300t = .  The phase portrait In Figure 58(c) indicates that the 

oscillator is in a broad bandwidth state of aperiodic motion and the instantaneous 

frequency response in Figure 58(d) shows that multiple frequency responses are 

generated as a result.  The PID design is applied to the time-delayed feedback system 

with the delayed parameter equals to 0.1 sec and the corresponding responses are 

presented in Figure 59.  Chatter remains prominent in the time response after the 

controller is brought online at 300t = .  The phase portrait in Figure 59(c) shows a limit-

cycle.  The corresponding instantaneous frequency in Figure 59(d) confirms an initially 

quasi-periodic motion of the broadband frequency kind slowly converging to a weak 

aperiodic response.  The responses of the system with 0.15dt =  sec are presented in 

Figure 60.  They are similar to the responses in Figure 58 and Figure 59 where 

bandwidth-limited temporal-modal oscillations of multiple frequency components are 

observed.  Figure 61-Figure 63 are the fuzzy logic-controlled responses of the system 

with 
dt   = 0.05 sec, 0.1 sec and 0.15 sec, respectively.  Although the error chattering in 

each time responses is comparable to those of the PID controller, the instantaneous 

frequency plot in Figure 64 shows that the high frequency responses as the results of the 

control action are non-stationary (time-varying) and broad in bandwidth, thus necessarily 

indicating that the dynamic state of motion is fast deteriorating under the jurisdiction of 
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the controller.  The corresponding phase portraits in Figure 61-Figure 63 also attest that 

the system converges to broad bandwidth aperiodic motion after the controller is 

initiated. 

 

Summary 

The wavelet-based nonlinear time-frequency controller with parallel on-line 

modeling and local adaptability developed in Chapter II was implemented to control the 

time-delayed vibro-impact oscillator.  The controller demonstrated the ability to reduce 

the vibration amplitude of the system, which is important for preventing the system from 

impacting the boundary.  The controlled motions of the system were all unconditionally 

stationary, periodically stable, and of the time and frequency characteristics dictated by 

the prescribed target response, thus demonstrating the feasibility of the simultaneous 

time-frequency controller design in stabilizing the discontinuous vibro-impact system.  

The two common controller designs, namely PID and fuzzy logic controllers, all induced 

a multi-frequency noise after the control action was applied.  This was attributed to the 

fact that the feedback features inherent of the controller design inadvertently perturbed 

the oscillator with the nonlinear and time-delay terms.  The instantaneous frequency 

responses of the time-frequency control indicated that the controller successfully 

mitigated the noise and stabilized the time-delayed vibro-impact system.  PID and fuzzy 

logic controllers on the other hand were seen to reduce the difference between the output 

and desired signals slightly better than the time-frequency control.  However, the error 

responses of the time-frequency controller were within tolerance and not affecting the 
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proper functioning of the dynamic system.  The broadband temporal-modal oscillations 

seen in Figure 58-Figure 60 and high frequency responses in Figure 61-Figure 63 

negatively impact the system with significantly higher power consumption, render poor 

accuracy, and destabilize the system to eventual physical deterioration.  The time-

frequency controller in contrast is feasible for the proper mitigation of the time-delayed 

vibro-impact oscillator without the issues that are intimately associated with the PID and 

fuzzy logic control methodologies. 
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CHAPTER VII  

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusion 

In Chapter II, a novel nonlinear control theory was presented.  By synergizing 

system identification LMS and Filtered-x LMS algorithm, filters of local adaptability 

were developed to adjust the input force for mitigating nonlinear responses that are non-

smooth and non-stationary.  Wavelet filterbanks were employed to characterize the 

system in both the time and frequency domains, thus rendering simultaneous time-

frequency control. With the optimization step size self-adaptive to system identification 

and control force input, convergence of the control methodology is unconditional.  

Derivation was also given to identify the optimal proper initial filter weights that ensured 

fast convergence rate and short response time.  These novel features render the wavelet 

based nonlinear time-frequency control theory adaptive, intelligent, and universally 

applicable. 

In Chapter III, the wavelet-based time-frequency controller with parallel on-line 

modeling developed in Chapter II was subsequently implemented to control and stabilize 

the dynamic response of a vibro-impact oscillator. The controller demonstrated the 

ability to reduce the vibration amplitude of the system, which is important for preventing 

the system from impacting the boundary.  The controlled motions of the vibro-impact 

system were all unconditionally stationary, quasi-periodically stable, and of the time and 

frequency characteristics dictated by the prescribed target response, thus demonstrating 
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the feasibility of the simultaneous time-frequency controller design in stabilizing the 

discontinuous vibro-impact system. 

In Chapter IV, a non-autonomous time-delayed feedback oscillator with high-

order external forcing and various time-delay parameters was studied.  Characterized by 

nonlinear, nonstationary time response and broad bandwidth spectral response, the 

oscillator was sensitive to the time-delay parameter.  By implementing the wavelet-

based time-frequency controller to adjust the input force to the system, the performance, 

quality, and capacity of the system response was significantly improved.  With the 

controlled motions being unconditionally stationary and quasi-periodically stable, the 

controller demonstrated the ability to mitigate the severe complex state of unstable 

motions dictated by the higher order feedback system. 

In Chapter V and Chapter VI, a novel time-delayed vibro-impact oscillator was 

investigated. By using phase portraits and bifurcation plots, it was seen that the oscillator 

is sensitively prone to dynamic instability characterized by nonlinear, nonstationary time 

response and broad bandwidth spectral response.  Such a state of instability in 

manufacturing would result in premature tool breakage, increased wear rate, and poor 

workpiece quality.  Improvements of the discontinuous system in performance and 

stability were consequential with the implementation of the wavelet-based time-

frequency controller with parallel on-line modeling.  The performance of the time-

frequency control algorithm was evaluated against two popular control methodologies 

with the time-delay parameter as the controlled variable.  The time-frequency controller 

demonstrated the most notable property in the frequency domain.  As was evident in the 
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instantaneous frequency domain, the motions of the oscillator controlled by the time-

frequency controller were unconditionally stable, stationary and periodic, while those 

controlled by PID and Fuzzy logic controllers were chattering and aperiodic. 

 

Contribution and Impact 

In this doctoral dissertation, a vibro-impact oscillator and a non-autonomous 

time-delayed feedback oscillator are investigated along with a newly formulated time-

delayed vibro-impact oscillator.  Characterized by nonlinear, nonstationary time 

response and broad bandwidth spectral response, and sensitively prone to dynamic 

instability, these three nonlinear systems are stochastic, aperiodic, and hard to control 

using classical approach.  High frequency nonlinear responses are detrimental to system 

reliability and operation efficiency in terms of cost and power consumption.  The 

wavelet-based time-frequency control theory developed in this work features parallel 

online modeling and local adaptability that generates optimal initial filter values and 

warrants unconditional, fast convergence.  The local adaptability is novel, intelligent, 

self-adjusting, and universally applicable to addressing bifurcated and chaotic responses.  

Incorporating the control theory into designing dynamic systems governed by 

discontinuous, time-delayed nonlinear oscillators in particular would realize 

unconditional stability and high performance quality and operation efficiency.  
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Recommendation for Future Work 

Although the wavelet-based time-frequency control theory is enhanced with the 

local adaptivity featuring self-adaptive optimization step size and optimal initial filter 

weights, other controller parameters such as the size of the wavelet filterbank and the 

order of the (Daubechies) decomposition and synthesis wavelet functions need be 

investigated to further evolve the control methodology.  It is recommended that the 

numerical experiments considered in this dissertation be used to inspire the development 

of physical experiments, allowing comprehensive insight into the complex dynamics of 

the vibro-impact oscillator with time-delay effect to be generated. 
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APPENDIX A 

 

By substituting Eq. (2.55) into the performance function, ( )J W , one has 
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c z ( )
1

0

Q

q

n
−

=

  

 (A.1) 

Since ( )opte n  is assumed to be a zero mean signal and statistically independent of 

weights and the input signal, the 3rd term in Eq. (A.1) is therefore zero.  The MSE can be 

expressed using the rotated variables as  

( ) ( )min exJ n J J n= +  (A.2) 

where the minimum MSE 
minJ  is 

( ) 2

min optJ E e n   (A.3) 

and the excess MSE (EMSE) ( )exJ n  is 

( ) ( ) ( ) ( ) ( )
1 1

1 , 1 ,

0 0

Q Q
T T

ex T q T p

q p

J n w w n q n q n p n p
− −

= =

 = − − − −  c z z c   (A.4) 

Based on independent assumption that correlation matrix between different vector of a 

stationary input signal can be approximated as 

( ) ( )  ,

T

T T p qE n p n q − − =X X R   (A.5) 
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where   is the Kronecker delta function. Then, Eq. (A.5) can be further derived as 

( ) ( )  ,

T T

T T p qE n p n q − − =X X FΛF  (A.6) 

By multiplying F  and T
F  to both sides of Eq. (A.6), one has 

( ) ( ) 

( ) ( ) 

( ) ( ) 

, ,

         

         

         

T T

p q p q

T T

T T

T T

T T

T

E n p n q

E n p n q

E n p n q

 =

= − −

= − −

= − −

Λ F FΛF F

F X X F

F X X F

z z

 (A.7) 

Submitting Eq. (A.7) intro Eq. (A.4) to obtain ( )exJ n  as follows which is Eq. (2.58) 

( ) ( ) ( )

( ) ( )

1 1

1 , 1 , ,

0 0

1
2

1 ,

0

          

Q Q
T

ex T q T p p q

q p

Q
T

T q

p

J n w w E n q n p

w E n q n p


− −

= =

−

=

 = − − 

 = − − 





c Λc

c Λc

 (A.8) 

 

 


