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ABSTRACT

The coming decades may see the large scale deployment of networked cyber-physical systems

to address global needs in areas such as energy, water, healthcare, and transportation. However,

as recent events have shown, such systems are vulnerable to cyber attacks. They are not only

econoically important, but being safety critical, their disruption or misbehavior can also cause

injuries and loss of life. It is therefore important to secure such networked cyber-physical systems

against attacks. In the absence of credible security guarantees, there will be resistance to the

proliferation of cyber-physical systems, which are much needed to meet global needs in critical

infrastructures and services.

This study addresses the problem of secure control of networked cyber-physical systems.

This problem is different from the problem of securing the communication network, since cyber-

physical systems at their very essence need sensors and actuators that interface with the physical

plant, and malicious agents may tamper with sensors or actuators, as recent attacks have shown.

We consider physical plants that are being controlled by multiple actuators and sensors com-

municating over a network, where some sensors and actuators could be “malicious." A malicious

sensor may not report the measurement that it observes truthfully, while a malicious actuator may

not apply actuation signals in accordance with the designed control policy.

In the first part of this work, we introduce, against this backdrop, the notions of securable and

unsecurable subspaces of a linear dynamical system, and show that they have important opera-

tional meanings for both deterministic and stochastic linear dynamical systems in the context of

secure control. These subspaces may be regarded as analogs of the controllable and unobservable

subspaces reexamined in an era where there is intense interest in cybersecurity of control systems.

In the second part of the work, we propose a general technique, termed “Dynamic Watermark-

ing,” by which honest nodes in the system can detect the actions of malicious nodes, and disable

closed-loop control based on their information. Dynamic Watermarking employs the technique

of honest actuators injecting a “small" random noise, known as private excitation, into the system
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which will reveal tampering of measurements by malicious sensors. We lay the foundations for

the theory for how such an active defense can be used to secure networked systems of sensors and

actuators.
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ARX Autoregressive Input

ARMAX Autoregressive Moving Average Input

CPS Cyber-Physical System

DoS Denial of Service

IID Independent and Identically Distributed

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

MIMO Multiple-Input-Multiple-Output

MMSE Minimum Mean-Square Error

MST Martingale Stability Theorem
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1. INTRODUCTION*

The 21st century could well be the era of large-scale system building. Several large-scale

cyber-systems are envisioned to be formed by the interconnection of many embedded devices com-

municating with each other, and interacting with the physical world. They include smart energy

grid, intelligent transportation systems, internet of things, telesurgical systems, distributed chemi-

cal plants, and robotics. Their operation requires tight integration of communication, control, and

computation, and they have been broadly termed as Cyber-Physical Systems (CPS).

While the importance and benefits of cyber-physical systems require no emphasis, their sus-

tained proliferation is contingent on some key challenges being addressed, security being a primary

one. Since CPSs have many applications in safety-critical scenarios, security breaches of these sys-

tems can have adverse consequences including economic loss, injury and death.

There have been many instances of demonstrated attacks on cyber-physical systems in the re-

cent past [3, 4]. In Maroochy-Shire, Australia, in the year 2003, a disgruntled ex-employee of a

sewage treatment corporation hacked into the computers controlling the sewage system and issued

commands which led to a series of faults in the system [5, 3]. This is an insider attack, where the

adversary has the necessary credentials to access and issue control commands to the system. We

will return to this point later. Another example is the attack on computers controlling the Davis-

Besse nuclear power plant in Ohio. The Slammer worm, which infected about 75, 000 hosts in the

internet in under ten minutes, also infected the computers controlling the nuclear power plant, dis-

abling the safety monitoring systems [3]. While the Slammer worm was not designed to target the

nuclear power plant, the use of commodity IT software in control systems made them vulnerable

to such attacks [3]. A more recent example is the cyber attack on the Ukrainian power system in

the year 2015 which caused a power outage which affected about 200, 000 customers for several

*Reprinted with permission from “Dynamic Watermarking: Active Defense of Networked Cyber-Physical Sys-
tems," by B. Satchidanandan and P. R. Kumar in Proceedings of the IEEE, vol. 105, no. 2, pp. 219-240, Feb. 2017 by
IEEE.
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Figure 1.1: A Cyber-Physical System

hours [6]. Another pertinent example is the Stuxnet worm which, in the year 2010, exploited a

vulnerability in Microsoft Windows to subvert critical computers controlling centrifuges in Iran’s

uranium enrichment facility [7]. Having subverted the computers, it issued control commands that

caused the centrifuges to operate at abnormally high speeds, causing them to tear themselves apart.

In order to keep the attacks undetected by software-implemented alarm routines and officials in the

control room, Stuxnet recorded the sensor values in the facility for twenty-one seconds before car-

rying out each attack, and replayed those twenty-one seconds in a constant loop during the attack.

Stuxnet has been claimed to be the first known digital weapon [7], and, since then, cyberwarfare

has emerged as a serious concern for cyber-physical systems due to the many advantages it offers

to the attacker such as allowing it to remain anonymous, and attack without geographical con-

straints, etc. Today, the resources required to carry out such attacks on critical infrastructures are

generally available [8], underlining the urgent need for the research community to pay attention to

the problem.
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In this thesis, we examine the problem of detecting attacks on networked cyber-physical sys-

tems. These systems can be thought of as having two layers - a physical layer, which consists of

the plant, actuators, controllers, and sensors, that interact with physical signals, and a cyber layer,

that networks the components of the physical layer. Components in both the cyber layer as well

as the physical layer could be subverted or “malicious," as illustrated in Fig. 1.1. While securing

the cyber layer is certainly of importance, by itself, it does not address the security of the cyber-

physical system as a whole. The Maroochy-Shire incident is a classic illustration of this point,

where the malfunctioning of the plant was not the result of an attack on the network layer, but of

authorized individuals attacking the physical layer by the issue of improper control commands.

At first glance, it appears as though securing the physical layer is more difficult than secur-

ing the cyber layer. In the problem of network security, there is a clear distinction between an

honest party and an adversary. Attributes such as credentials and cryptographic keys distinguish

honest parties from adversaries. However, when it comes to securing the physical layer, no such

demarcation exists. Any authorized party is also a potential adversary.

However, we show in this thesis that what works in favor of securing the physical layer, and

what we exploit, is the fact that the actions of every node interfacing with the physical layer get

transformed into physical signals, and these signals can be subjected to scrutiny for semantic con-

sistency. To elaborate, consider a physical system consisting of a plant, a set of actuators, and a

set of sensors. If the input-output relation of the physical plant is known, then, by observing the

signals at various points in the system, it is possible to make inferences about the actions of the

sensors and the actuators in the system. By combining this inference with the knowledge of how

the various nodes are expected to behave, malicious behavior can potentially be revealed. This

intuition will be made precise in subsequent chapters.

The ideas of controllable and unobservable subspaces of a linear dynamical system, introduced

by Kalman in [9], play a central role in the theory of control systems. They provide, for example,

necessary and sufficient conditions for the existence of a stabilizing control law for any linear dy-

namical system of interest. Analogous to the notions of controllable and unobservable subspaces,

3



we begin by examining in this thesis the notions of “securable" and “unsecurable" subspaces of

a linear dynamical system, which we show have operational significance in the context of secure

control.

Consider a multiple-input, multiple-output, discrete-time linear dynamical system, an arbitrary

subset of whose sensors and actuators may be malicious. The malicious sensors may not truthfully

report the measurements that they observe, and the malicious actuators may not apply their control

inputs in accordance with the specified control law. Moreover, the malicious actuators and sen-

sors may act in collusion when applying malicious inputs and reporting inaccurate observations.

They may strategically tailor them to disrupt the system. In such a setting, even if the system is

controllable and observable, the desired control objective of the honest sensors and actuators may

not be achievable. The honest nodes in the system may believe the state trajectory to be a certain

sequence {x[0],x[1], . . .}, whereas the actual state trajectory of the system may be very different.

It is against this backdrop that we define the notions of securable and unsecurable subspaces of a

linear dynamical system as, roughly, the set of states that the system could actually be in, or ever

reach, without the honest sensors ever being able to detect, based on their measurements, that the

system had visited that state, or that there was any malicious activity in the system. Our results

characterize the securable and unsecurable subspaces of a linear system. The unsecurable subspace

is an invariant subspace in that if the system is initialized in such a subspace, the malicious nodes

can synthesize control actions that keep the system in that subspace without the honest nodes ever

being able to detect any malicious activity in the system. They may be regarded as the analogs of

the controllable and unobservable subspaces reexamined in an era where there is intense interest

in cybersecurity of control systems. The aforementioned characterization is amenable to computa-

tion. We also address the case of systems with noise, i.e., linear stochastic dynamical systems. We

show that the securable and unsecurable subspaces defined in the context of deterministic systems

also have operational meaning in the context of stochastic systems.

One way to view these results is as negative or impossibility results which state that given a

linear control system with certain malicious sensors and actuators, it is impossible for the honest

4



sensors in the system to distinguish certain state trajectories from others. Consequently, it may be

impossible to guarantee that the system does not reach certain states that are considered “unsafe.”

An alternate viewpoint is to look at these results from a system designer’s perspective. The results

could be regarded as providing guidelines to an engineer for designing secure control systems. For

example, for a specified amount of resilience required of the control system, typically quantified by

a set of Byzantine nodes that the system should tolerate, or for a specification that the system should

not visit certain “unsafe” states, the results can be translated into conditions that the securable

and unsecurable subspaces should satisfy in order to meet the security specifications. This can

potentially constitute a principled approach to design systems that are secure by construction, as

opposed to designing systems to maximize a performance metric, and only subsequently installing

ad-hoc security measures as an afterthought.

In the next part of this thesis, we propose a technique of active defense, termed “Dynamic

Watermarking,” which enables the designer to expand the securable subspace of a linear system.

The fundamental idea of Dynamic Watermarking is this: If an actuator injects into the system a

random probing signal that is not disclosed to other nodes in the system, then, combined with the

knowledge of the plant dynamics, the actuator expects the signals to appear in transformed ways at

various points in the system. Based on the information that the actuator receives from the sensors

about the signals at various points, it can potentially infer if there is malicious activity in the system

or not.

We develop the technique of watermarking to secure the physical layer of a noisy dynamical

system. We examine the protocol whereby honest actuator nodes deliberately superimpose certain

stochastically independent probing signals on top of the control law they are intended to apply. We

propose specific "tests" that the actuator nodes perform to infer malicious activity, and establish

their effectiveness. As a particular illustration of the results, we show that even if all the sensors

are malicious, and the actuators have no measurements that they can directly make and have to

completely rely on the malicious sensors for all their purported measurements, then even in such

an adverse environment, the actuators can under appropriate conditions ensure that the additional

5



distortion on performance that the malicious sensors can cause is of mean-square zero, if they are

to remain undetected. Using this approach of active defense, we establish that under appropriate

conditions, no matter in what way the adversarial sensors collude, the amount of distortion that

they can add without exposing their presence can have an average power of only zero.

As alluded to above, the method we examine is a dynamic version of "watermarking," [10]

where certain indelible patterns are imprinted into a medium that can detect tampering [10, 11, 12].

It shows how one can watermark dynamic signals so that one can detect malicious misbehavior on

the part of sensors or actuators. On top of a secure communication system, it provides overall

security to a cyber-physical system against malicious sensors and actuators.

The rest of this thesis is organized as follows. Chapter 2 presents an overview of related work

on this subject. In Chapter 3, we introduce the notions of the securable and unsecurable subspaces

of a linear dynamical system, and present a sequence of results that culminate in a characterization

these subspaces. These results are the discrete-time analogs of those developed in [13, 14, 15] for

continuous-time linear dynamical systems, and some of them are also contained in [16]. Chapter 4

extends the results of Chapter 3 to the case of a perfectly observed stochastic discrete-time linear

dynamical system, and shows that the notions of securable and unsecurable subspaces also have

operational meaning in this context. Chapter 5 further extends the above results to one of the most

general system models used in modern control theory - partially observed stochastic linear dynam-

ical systems with both process and measurement noise. In Chapter 6, we move away from passive

defense techniques and introduce the concept of active defense of networked cyberphysical sys-

tems, and describe the approach of Dynamic Watermarking. We establish the security guarantees

that it provides in a variety of popular control system contexts. Chapter 7 addresses the problem

of designing security-guaranteeing dynamic watermarks. Specifically, given a finite-dimensional

perfectly-observed linear system with arbitrarily distributed process noise, we derive the neces-

sary and sufficient conditions that the watermark should satisfy in order to provide a fundamental

security guarantee. Chapter 8 addresses a scenario in which there are malicious sensors and actu-

ators mixed with honest sensors and actuators, and wherein the honest actuators watermark their
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control inputs and conduct certain tests to detect malicious sensors. The state space of any such

system can be decomposed into two orthogonal subspaces, called the watermark-securable and the

watermark-unsecurable subspaces, such that the malicious sensors and actuators cannot degrade

the state estimation performance of the honest sensors and actuators along the watermark-securable

subspace. A certain subset of the watermark-securable subspace is characterized in this chapter.

Chapter 9 extends the above results to a class of nonlinear systems describing a vehicular cyber-

physical system, and presents the results of a laboratory demonstration of Dynamic Watermarking

to secure an automated transportation system. Chapter 10 concludes the thesis.
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2. RELATED WORK*

The vulnerability and the need to secure critical infrastructure from cyberattacks has been rec-

ognized at least as early as 1997 [17]. Subsequent reports [18, 19, 20, 21, 22, 23] cited demon-

strated attacks, identifying potential threats, and analyzing the effects of successful attacks on

specific systems. The large-scale replacement of proprietary control software and protocols by

commodity IT software and protocols by the industry in order to allow for interoperability and

rapid scalability has increased the vulnerability of Industrial Control Systems (ICS) to cyberat-

tacks, and roadmaps were prepared to address security of control systems in various sectors such

as the energy sector [24], water sector [25], chemical sector [26], and the transportation sector

[27].

Some of the initial work [28] has addressed the definition of what constitutes a secure control

system. Certain key operational goals such as closed-loop stability and performance metric of

interest are noted in [28], and it is proposed that a secure control system must achieve these opera-

tional goals even when under attack, or at least cause only a gradual degradation. It also identifies

how the problem of secure control of networked systems departs from the traditional problems of

network security and information security. In the former, authorized users or insiders can launch

attacks on the system causing physical damage, as in the Maroochy-Shire incident. Hence, net-

work and information security measures such as intrusion prevention and detection, authentication,

access control, etc., fundamentally cannot address these attacks. Therefore, securing the network

does not amount to securing the NCS. In this thesis, we build a framework on top of a secure com-

munication network to secure the NCS. There has been recent work showing how one can indeed

build such a communication network that provides provable guarantees on security, throughput as

well as delays [29].

*Parts of this chapter are reprinted with permission from “Dynamic Watermarking: Active Defense of Networked
Cyber-Physical Systems," by B. Satchidanandan and P. R. Kumar in Proceedings of the IEEE, vol. 105, no. 2, pp.
219-240, Feb. 2017 by IEEE.
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A theoretical study of secure control benefits from having a model for the adversary, and [30]

defines certain adversary and attack models. A popular attack on communication networks is the

Denial-of-Service (DoS) attack, in which the adversary floods the communication network with

useless packets, rendering it incapable of transporting useful information. Another attack is the

deception attack, where an adversary impersonates another node and transmits false information

on its behalf. In the context of a networked control system, the adversary could employ a Denial-

of-Service (DoS) attack to prevent the controller and actuator from receiving the data required for

their operation, and could employ deception to cause an actuator node to issue incorrect actuation

signals. A framework to study the evolution of the physical process under DoS and deception

attacks is presented in [30].

Classical estimation algorithms such as the Kalman filter can be extended to include the pres-

ence of an unreliable network, which may stem from either the characteristics of the network or

from adversarial presence, with some packets dropped. This affects the performance of the estima-

tion and control algorithm. Motivated by this scenario, a large body of research has been devoted

to addressing the stability of estimation and control algorithms for systems with intermittent ob-

servations, c.f. [31, 32, 33, 34, 35] and references therein. Though this line of work does not

explicitly model adversarial behavior, some of these ideas have been employed in the literature of

secure control. For instance, [36] studies, using some of the machinery developed in [31] in the

context of control over lossy communication networks, the effect of a DoS attack on the control

performance. Also addressed in the literature is the effect of deception attacks on estimation and

control performance. In [37], the effect of false data fed by the compromised sensors to the state

estimator is studied. The goal is to characterize the set of all estimation biases that an adversary

can inject without being identified. A related work is [38], where fundamental trade-offs between

the detection probability (for a fixed false alarm rate) and the estimation error that the adversary

can cause, are studied for single-input-single-output systems.

Attack strategies that are designed to be undetected are referred to as stealthy attacks. Refer-

ence [16] addresses the problem of taking pro-active measures to reveal stealthy attacks, and also
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develops methods to design a system in a manner that renders such attacks infeasible. Characteriza-

tion of attacks are feasible without detection or identification in continuous-time linear dynamical

systems are presented in [13, 14, 15].

Several techniques have also been developed to counter attacks on cyber-physical systems. A

technique for correct recovery of the state estimate in the presence of malicious sensors is presented

in [39],along with a characterization of the number of malicious sensors that can be tolerated by

the algorithm. A well-known attack on control systems is the replay attack, where the adversary

records the sensor measurements for a fixed period of time and replays them during the attack so

as to maintain the illusion of a normal operating condition. It was shown in [40] that only systems

for which the matrix (A + BL)(I − KC) is stable are susceptible to replay attacks, where L is

the feedback gain and K is the steady-state Kalman gain. Consequently, a method to secure the

system from replay attack is presented in [40, 41, 42, 43]. The fundamental idea is to inject into

the actuation signal a component that is not known in advance. Specifically, [40, 42] consider

the replay attack, employed in Stuxnet, and introduce a technique, termed Physical Watermarking,

wherein the controller commands the actuators to inject into the system a component that is ran-

dom and not known in advance in order to secure the system against such an attack. To the best

of our knowledge, this is the first use of the idea of watermarking. It is shown that by employing

Physical Watermarking, the covariance of the innovations process when the system is "healthy"

and that when it is under attack, are significantly different, enabling the estimator to detect the at-

tack using a χ2 detector. This technique is extended in [43] to detect an adversary employing more

intelligent attack strategies. Specifically, the adversary is assumed to possess a set of capabilities,

based on which a specific attack strategy, consisting of the adversary generating false measurement

values that are reported to the estimator, is identified. It is shown that Physical Watermarking can

counter such an adversary. Including a random component in the actuation signal would clearly

affect the running cost, and [44] develops an optimal policy to switch between cost-centric and

security-centric controllers, by formulating the problem as a stochastic game between the system

and the adversary. A method to detect false-data injection is presented in [45], where the focus is
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on zero-dynamics attacks, attacks which cannot be detected based on input and output measure-

ments. A method to verify the measurements received from multiple sensors is presented in [46],

which exploits correlations between sensor measurements and other features to weed out the mea-

surements from malicious sensors. Though not presented in the context of a dynamical system, the

ideas presented in [46] could in principle be extended to incorporate system dynamics.
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3. THE SECURABLE AND UNSECURABLE SUBSPACES OF A LINEAR CONTROL

SYSTEM*

3.1 Introduction

The ideas of controllable and unobservable subspaces of a linear dynamical system, introduced

by Kalman, play a central role in the theory of control systems. They provide, for example, neces-

sary and sufficient conditions for the existence of a stabilizing control law for a linear dynamical

system of interest. Analogous to the notions of controllable and unobservable subspaces, we ex-

amine in this chapter the notions of “securable" and “unsecurable" subspaces of a deterministic

linear dynamical system, and show that they have important operational meanings in the context

of secure control.

3.2 Problem Formulation

Consider a pth order discrete-time linear dynamical system with m inputs and n outputs de-

scribed by

x̄[t+ 1] = Ax̄[t] +Bū[t],

ȳ[t+ 1] = Cx̄[t+ 1],

x̄[0] = x0. (3.1)

where x̄[t] ∈ Rp denotes the state of the system at time t, ū[t] ∈ Rm denotes the input applied to

the system at time t, ȳ[t] ∈ Rn denotes the output of the system at time t, and A,B, and C are real

matrices of appropriate dimensions.

Throughout this thesis, we will denote by z[t] the values reported by the sensors at time t.

*Reprinted with permission from “Control systems under attack: The securable and unsecurable subspaces of a
linear stochastic system," by B. Satchidanandan and P. R. Kumar in Emerging Applications of Control and Systems
Theory. Cham, Switzerland: Springer, 2018, pp. 217-228.
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If sensor i, i ∈ {1, 2, ..., n}, is honest, then zi[t] = ȳi[t] for all t. We assume that an arbitrary,

known, possibly history-dependent control policy g = {g1, g2, ...} is in place, and denote by ūg[t]

the control policy-specified input at time t, the policy being applied on the reported sequence {z}

and not on {ȳ}. I.e., ūg[t] = gt(z
t), where zt := [zT [0] zT [1] . . . zT [t]]T . Since ū[t] denotes the

input applied to the system at time t, if actuator i, i ∈ {1, 2, ...,m}, is honest, then ūi[t] = ūgi [t] for

all t.

We assume the adversarial nodes in the system to be near-omniscient, in the sense that at time

t = 0, they have perfect knowledge of the initial state x0 of the system. On the other hand, the

honest nodes in the system, at any time t, have access only to the measurements zt that are reported

until that time. Clearly, this assumption represents a worst-case scenario from the point of view

of the honest nodes in the system. Consequently, the results presented in this chapter serve as

fundamental bounds that apply regardless of the capabilities of the attacker, and in particular, even

for systems where the adversary’s knowledge may be more limited.

Note that if all the nodes in the system are honest, and if the pair (A,C) is observable, then the

nodes can correctly estimate the initial state x0 of the system by time p − 1. Consequently, they

can correctly estimate the state x̄[t] of the system at any time t. However, when there are malicious

sensors and/or actuators present in the system, this need not be the case. Specifically, the honest

nodes in the system could be under the impression that the state of the system at some time t is

x̂[t], while in reality, the system could be in state x̄[t] 6= x̂[t]. This brings us to the central question

that is addressed in this chapter: Suppose that there are malicious nodes present in the system and

that they act in a fashion that keeps them undetected. Suppose also that the honest nodes believe

the system’s state evolution to be {x̂[0], x̂[1], x̂[2], . . .}. Under these conditions, what are the set

of states that the system can actually be in, or ever reach? This set essentially contains the set

of states that the malicious nodes can steer the system to. For this reason, we term this set as the

“unsecurable" subspace of the system (A,B,C). The orthogonal complement of this is called

the “securable" subspace. The projection of the uncertain state on this subspace is actually what

the honest sensors and actuators believe it is, whether the system is not under attack or is under a
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stealthy attack. It is the largest such subspace. A formal definition of securable and unsecurable

subspaces is presented in the next section.

3.3 Securable and Unsecurable Subspaces of Linear Control Systems

In order to determine if malicious nodes are present in the system or not, each honest sensor i

subjects the reported measurement sequence {z} to the following test. If and only if the test fails

(at any time t) does the sensor declare that malicious nodes are present in the system. It raises an

alarm only when it is sure that the system is under attack. When there is no evidence of an attack,

it does not raise an alarm.

The rest of the chapter follows the notation specified in the appendix of this chapter.

Test: At each time t, check if the reported sequence of measurements up to that time zt satisfies

the following condition: ∃x̂0 ∈ Rp such that,

zt − F [t− 1]ūg
t−1

= Γ[t]x̂0. (3.2)

Proposition 1. If all the nodes in the system are honest, the reported measurements {z} pass (3.2)

at each time t. Conversely, if the reported measurements {z} pass (3.2) at each time t, then there

exists an initial state x[0] such that z[t] is the output of the system at time t under control {ūg}, and

so, there is no definitive reason for the honest sensor to declare that malicious nodes are present

in the system.

Proof. First assume that all the nodes in the system are honest. Then, z[t] = ȳ[t] for all t, and so,

zt− F [t− 1]ūg
t−1

= ȳt− F [t− 1]ūg
t−1

= Γ[t]x0. Consequently, (3.2) reduces to checking if ∃x̂0

such that ∀t, Γ[t]x0 = Γ[t]x̂0, which is clearly true.

Next assume that the reported measurement sequence {z} satisfies (3.2). Then, if the initial

state x̄[0] = x̂0, and ū ≡ ūg (i.e., d̄ ≡ 0), we would have ȳt = Γ[t]x̂0 +F [t− 1]ūg
t−1

= zt, where

the last equality follows from (3.2).

In what follows, we assume that the measurements reported by the malicious sensors pass the

above test, and examine the limits of what the malicious nodes can do under this constraint.
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Since the reported measurements {z} pass (3.2), it follows in particular that ∃x̂0 ∈ Rp such

that ∀t,

zt−1 − F [t− 2]ūg
t−2

= Γ[t− 1]x̂0, (3.3)

ȳH [t]−
t−1∑
i=0

CHA
iBūg[t− 1− i] = CHA

tx̂0. (3.4)

The following proposition is a (partial) converse of the above statement.

Proposition 2. Suppose that there exist x̂0, zτ−1
M , and d̄τ−1 such that (3.3) and (3.4) hold for t = τ .

Then, there is a vector zM [τ ] that satisfies Test (3.2) at time τ .

Proof. Consider zM [τ ] = CMA
τ x̂0 +

∑τ−1
i=0 CMA

iBūg[τ − 1 − i]. It is straightforward to verify

that it satisfies (3.2).

The above proposition states that it is sufficient for the malicious nodes to consider strategies

that only ensure “consistency" at the outputs of the honest sensors. The outputs to be reported by

the malicious sensors can be fabricated accordingly.

The next proposition, along with Theorem 2, shows that one can consider a simpler system

consisting of only malicious actuators, honest sensors, and a control policy that is identically zero,

and translate the conclusion obtained from the analysis of such a system to the more general system

(3.1). In other words, one can dispense with the honest actuators and malicious sensors. There is

no loss of generality in assuming that the control policy is identically equal to zero, and that the

system has only honest sensors and malicious actuators.

Given the system described by (3.1), consisting of honest and malicious nodes as described

before, consider the following reduction of the system where all sensors are honest, all actuators

15



are malicious, and the control policy is identically equal to zero:

x[t+ 1] = Ax[t] +BMd[t],

yH [t+ 1] = CHx[t+ 1],

x[0] = x0. (3.5)

where yH [t] are the measurements observed by the (honest) sensors at time t, d[t] are the inputs

applied by the (malicious) actuators at time t. We will refer to system (3.5) as the “reduced system"

of system (3.1), or simply the “reduced system" when there is no ambiguity. Note that the reduced

system has the same state space as its parent system (3.1), and is also initialized with the same

state as its parent. It is only the inputs and the outputs of the systems that are different. As before,

the malicious actuators are assumed to be near-omniscient so that they have perfect knowledge

of the initial state x0. It is also worth noting that the reduced system may be neither controllable

nor observable, even if the parent system is. For the reduced system, Test (3.2) reduces to the

following, and is performed by the (honest) sensors.

Test for the reduced system: Check if ∃x̃0 ∈ Rp such that for all t,

ytH = ΓH [t]x̃0. (3.6)

Proposition 3. Suppose that there exists a sequence {d} for the reduced system satisfying test

(3.6). Then, if the malicious actuators in the parent system (3.1) inject {d̄} ≡ {d}, there exist

fabricated measurements {zM} that can be reported by the malicious sensors in the parent system

that pass Test (3.2) with x̂0 = x̃0.

Proof. For the reduced system, we have

yH [t] = CHA
tx0 +

t−1∑
i=0

CHA
iBMd[t− 1− i]. (3.7)

Now, suppose for induction that there exist measurements zM [0], zM [1], . . . , zM [t − 1] that the
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malicious sensors can report for system (3.1) when the malicious actuators inject d̄[i] = d[i],

i = 0, 2, ..., t − 2, such that the reported measurements pass test (3.2) up to time t − 1 with

x̂0 = x̃0. The base case of t = 1 holds since the malicious sensors in the parent system can report

zM [0] = CM x̃0. This amounts to assuming that (3.3) holds with x̂0 = x̃0. Now, if the malicious

actuators in the parent system inject, at time t− 1, d̄[t− 1] = d[t− 1], then,

ȳH [t] = CHA
tx0 +

t−1∑
i=0

CHA
iBūg[t− 1− i] +

t−1∑
i=0

CHA
iBMd[t− 1− i].

Substituting (3.7) in the above gives

ȳH [t] = yH [t] +
t−1∑
i=0

CHA
iūg[t− 1− i].

Since the output of the reduced system satisfies (3.6), we have yH [t] = CHA
tx̃0. Substituting this

into the above equation gives

ȳH [t]−
t−1∑
i=0

CHA
iūg[t− 1− i] = CHA

tx̃0,

which satisfies (3.4) for x̂0 = x̃0. The desired result follows from Proposition 2.

The following definition is of central importance.

Definition 1. Consider a system (A,B,C) of the form (3.1) with initial state x0. The unsecurable

subspace for state s0 of the system is the maximal set of states V(s0) such that for each v ∈ V(s0),

there exist t, {d̄}, {zM} such that x̄[t] = v and (3.2) holds for x̂0 = s0.

In particular, for the reduced system (A,BM , CH), the unsecurable subspace for state s0 is the

maximal set of states VR(s0) such that for each v ∈ VR(s0), there exist t, {d} such that x[t] = v

and (3.6) holds for x̃0 = s0.

In other words, the unsecurable space for s0 is the set of states that the system can be in if the

honest nodes are deceived into inferring the initial state as s0. Note that for the reduced system (or
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even the parent system for that matter), the vector sequence that the honest nodes believe is the

state trajectory is completely determined by what they believe the initial state is (or the set that

they believe the initial state lies in, if the system is unobservable). If the unsecurable subspace is

of dimension greater than zero, it (i) states that the malicious nodes cannot distort certain linear

combinations of the state without being detected, and (ii) specifies those linear combinations that

are “intact."

The following theorem characterizes the unsecurable subspace and provides an algorithm to

compute it.

Theorem 1. Consider a reduced system (A,BM , CH) of the form (3.5). For such a system,

(i) The unsecurable subspace VR(0) for state 0 is the maximal set W ⊆ Rp such that ∀w ∈ W,

(a) CHw = 0, and

(b) ∃d such that Aw +BMd ∈ W.

(ii) The unsecurable subspace for state s0, VR(s0), is

VR(s0) = {s0 + w : w ∈ VR(0)}. (3.8)

Proof. We begin with the following lemma.

Lemma 1. The set W is a subspace.

Proof. Let w1,w2 ∈ W . We have from the definition of W , that HM [t− 1]dt−1
i = ΓH [t]wi has a

solution dt−1
i for all t, i = 1, 2. It follows that the equation HM [t− 1]dt−1 = ΓH [t](k1wi + k2w2)

has a solution dt−1, viz., dt−1 = k1d
t−1
1 +k2d

t−1
2 for all t, which in turn implies that k1w1+k2w2 ∈

W.

We now show that W is equal to VR(0). The crux of the argument is that W is an invariant

subspace in the following sense.
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Lemma 2. If the system’s state visits W at any time t, then the malicious actuators can synthesize

control actions that keep the state in W at all subsequent times.

Proof. We show this via induction. Let w ∈ W, and let x[t] = w, which also serves as the base

case for induction. Assume for induction that x[τ ] ∈ W , where τ ≥ t is a fixed time. Then,

x[τ + 1] = Ax[τ ] +BMd[τ ]. Since x[τ ] ∈ W, it follows from the definition of W that there exists

a control choice d for d[τ ] such that Ax[τ ] +BMd[τ ] ∈ W, implying that x[τ + 1] ∈ W.

Remark: Owing to the above Lemma, W is called the “controlled invariant subspace" in linear

system theory [47].

Now, suppose that x[0] = w and w ∈ W. We then have from Lemma 2 that there exists a

sequence {d} that the malicious actuators can apply as inputs such that x[t] ∈ W for all t. Since

W ⊆ N(CH) by definition, we have yH [t] = CHx[t] = 0 for all t. Consequently, (3.6) holds for

x̃0 = 0, and it follows from Definition 1 that w ∈ VR(0). Hence, W ⊆ VR(0).

Now suppose that v ∈ VR(0). We then have from Definition 1 that ∃{d} that the malicious

actuators can apply as inputs to the system such that x[t] = v for some t and (3.6) holds for x̃0 = 0.

This implies that yH [t] = 0 for all t. Since 0 = yH [t] = CHx[t] = CHv, we have that v ∈ N(CH),

satisfying the first condition to be an element of W . Since {d[t],d[t + 1], ...} is a sequence that

the malicious actuators can apply such that x[t′] ∈ N(CH) for all t′ ≥ t, v satisfies the second

condition to be an element of W . Therefore, v ∈ W, and VR(0) ⊆ W . Combining the two results,

we have W = VR(0).

(ii) Let v ∈ {s0 + w : w ∈ VR(0)}, and let x[0] = v. Then, ytH = ΓH [t]v + HM [t − 1]dt−1 =

ΓH [t]s0 + ΓH [t]w + HM [t − 1]dt−1 for all t. Since w ∈ VR(0), it follows from the definition of

VR(0) that there exists sequence {d} so that ΓH [t]w + HM [t − 1]dt−1 = 0 for all t. Therefore,

if the actuators inject such a sequence {d}, then, ytH reduces to ytH = ΓH [t]s0. Therefore, (3.6)

holds with x̃0 = s0, and so, {s0 + w : w ∈ V(0)} ⊆ VR(s0).

Next, let v ∈ VR(s0). Then, we have from the definition of VR(s0) that ∃{d′}, τ such that

x[τ ] = v and ΓH [t]s0 = ytH for all t. This in turn implies that ∃{d} such that x0 = v and
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ΓH [t]s0 = ytH for all t. Also, when x0 = v, we have for all t, ytH = ΓH [t]v + HM [t − 1]dt−1.

Combining the two, we have that there exists {d} such that ΓH [t]s0 = ΓH [t]v + HM [t − 1]dt−1

for all t. This means that v solves, for all t,

[ΓH [t] HM [t− 1]]

 v

dt−1

 = [ΓH [t] HM [t− 1]]

s0

0

 ,
so that for all t,

 v

dt−1

 =

s0

0

+ w̃,

where w̃ ∈ N([ΓH [t] HM [t − 1]]). Denote by w the first p entries of w̃, and it follows from the

definition of VR(0) that w̃ ∈ VR(0). Hence, v must be of the form s0 + w,w ∈ VR(0), and hence,

VR(s0) ⊆ {s0 + w : w ∈ V(0)}.

Combining the two results, we have VR(s0) = {s0 + w : w ∈ V(0)}.

The following theorem translates the above conclusions obtained from the reduced system (3.5)

to the original system (3.1) that is of interest.

Theorem 2. The unsecurable subspace V(s0) for the system (A,B,C) is the same as the unsecur-

able subspace VR(s0) for its reduction (A,BM , CH).

Proof. Let v ∈ VR(s0). Then, it follows form the definition of VR(s0) that for the reduced system

(3.5), there exists {d} that can be applied by the actuators so that (3.6) is satisfied for x̃0 = s0

when x0 = v. Therefore, by Proposition 3, v ∈ V(s0), and so, VR(s0) = V(s0).

Next, let v ∈ V(s0). Then, from the definition of V(s0), we have for system (3.1) that ∃{d}, {zM}

such that for all t, zt = Γ[t]s0 + F [t − 1]ūg
t−1 when x0 = v. This implies that ȳtH = ΓH [t]s0 +

H[t − 1]ūg
t−1
. Since we also have ȳtH = ΓH [t]v + H[t − 1]ūg

t−1
+ HM [t − 1]dt−1, substituting
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this in the previous equation gives

ΓH [t]v +HM [t− 1]dt−1 = ΓH [t]s0. (3.9)

Now, if the actuators apply the above sequence {d} to the reduced system (with initial state v), we

have for each t, ytH = ΓH [t]v + HM [t − 1]dt−1 = ΓH [t]s0, where the last equality follows from

the (3.9). Hence, (3.6) is satisfied with x̃0 = s0, and hence, V(s0) ⊆ VR(s0).

Combining the two results, we have V(s0) = VR(s0).

The characterization of VR(0) given in Theorem 1 allows one to use standard algorithms that

compute (A,R(BM))−controlled invariant subspaces of a linear dynamical system for computing

its unsecurable subspace.

Definition 2. The securable subspace S of a discrete-time linear dynamical system of the form

(3.1) is the orthogonal complement of V(0), the unsecurable subspace of the zero state.

The securable subspace has the interpretation of the maximal set of states that the malicious

nodes cannot steer the system to without leaving a nonzero trace at the output of the honest sensors.

Chapters 4 and 5 examine the performance of a stochastic linear dynamical system in the securable

subspace, which provide further operational meaning to it.

3.4 Concluding Remarks

In this chapter, we have introduced the notions of the securable and the unsecurable subspaces

of a linear dynamical system. The unsecurable subspace has the interpretation as a set of states

that the system could actually be in, or ever reach, as a consequence of malicious actions of the

adversarial nodes, without the honest sensors in the system ever detecting definitively any mali-

cious activity. This is an invariant subspace in the sense that once the state of the system enters this

space, the malicious sensor and actuator nodes in the system can collude to keep the system in this

space forever without the honest sensors ever being able to confirm any malicious activity based

on their own observations or the ones being reported to them. The orthogonal complement of this
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subspace, the securable subspace, has the interpretation in the context of deterministic systems as

the set of states that the malicious nodes cannot steer the system to without leaving a nonzero trace

at the output of the honest sensors. A characterization of these subspaces, and an algorithm to

compute them for any linear system and any combination of malicious sensors and actuators is ob-

tained by a standard recourse to geometric control methods. These subspaces also have relevance

to the case where the system is noisy, and these are elaborated in the following chapters.

Notation

The following notation is used throughout this chapter.

1. Let s1 < s2 < ... < shs denote the indices of the honest sensors, ψ1, ψ2, ..., ψms denote those

of the malicious sensors, and a1 < a2 < ... < ama denote those of the malicious actuators.

Then,

• CH is the hs × p matrix whose ith row is the sthi row of C, i = 1, 2, ..., hs,

• BM is the p×ma matrix whose ith column is the athi column of B, i = 1, 2, ...,ma,

• ȳH [t] is the hs × 1 vector whose ith component is the sthi entry of ȳ[t], i = 1, 2, ..., hs,

• zM [t] is the ms × 1 vector whose ith entry is the ψthi entry of z[t], i = 1, 2, ...,ms,

• d̄[t] is thema×1 vector whose ith component is d̄i[t] := ūai [t]− ūgai [t], i = 1, 2, ...,ma.

2. xt denotes [xT [0] xT [1] . . . xT [t]]T .

3. Γ[t] := [CT (CA)T (CA2)T . . . (CAt)T ]T .

4. ΓH [t] := [(CH)T (CHA)T . . . (CHA
t)T ]T .
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5.

F [t] :=



0 0 . . . 0

CB 0 . . . 0

CAB CB . . . 0

...
... . . . ...

CAtB CAt−1B . . . CB


,

6.

H[t] :=



0 0 . . . 0

CHB 0 . . . 0

CHAB CHB . . . 0

...
... . . . ...

CHA
tB CHA

t−1B . . . CHB


,

HM [t] :=



0 0 . . . 0

CHBM 0 . . . 0

CHABM CHBM . . . 0

...
... . . . ...

CHA
tBM CHA

t−1BM . . . CHBM


.

7. N(·) denotes the null space of a matrix, andR(·) denotes the range space of a matrix.
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4. THE SECURABLE SUBSPACE OF A LINEAR STOCHASTIC SYSTEM WITH

MALICIOUS SENSORS AND ACTUATORS*

4.1 Introduction

In the previous chapter, we introduced the notions of securable and unsecurable subspaces

of a deterministic linear dynamical system. In this chapter, we view these subspaces from the

standpoint of stochastic linear dynamical systems, and establish important operational meanings

for them in the stochastic context. Of the many potential applications that the results developed

in this chapter may have, perhaps the most significant is in synthesizing control systems that are

provably secure by design.

The rest of the chapter is organized as follows. Section 4.2 formulates the problem, and reca-

pitulates the notions of securable and unsecurable subspaces of a linear dynamical system. Section

4.3 is devoted to establishing certain key geometric properties of the securable subspace. These

properties are exploited in Section 4.4 to establish an operational meaning for the securable and

the unsecurable subspace in the context of fully-observed stochastic systems.

Notation: Given a vector x and a subspace W , xi denotes the ith entry of x and xW denotes the

projection of x on the subspace W . Given a matrix A, Ai,× denotes the ith row of A, and A×,i

denotes its ith column. Given a vector x, we denote by xTT the expression xTx, and by xTTW , the

expression xTWxW .

*Reprinted with permission from “The securable subspace of a linear stochastic system with malicious sensors
and actuators," by B. Satchidanandan and P. R. Kumar in Proceedings of the 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 911-917, 2017, IEEE.
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4.2 Securable and Unsecurable Subspaces of Linear Dynamical Systems

Consider an m× n stochastic linear dynamical system of order p described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1], (4.1)

where x[t] ∈ Rp is the state of the system, u[t] ∈ Rm is the input applied to the system, y[t] ∈ Rn

is the output of the system, w[t] ∼ N (0, σ2
wI) is i.i.d across time and denotes the process noise.

The matrices A, B, and C are assumed to be known. While the results pertaining to the stochastic

case (contained in Section 4.4) assume that C = I, the results contained in this section and Section

4.3 hold for arbitrary C, unless otherwise specified.

As mentioned before, throughout this thesis, we denote by z[t] the measurements reported by

the sensors at time t. If sensor i, i ∈ {1, . . . , n} is honest, then, zi[t] ≡ xi[t]. A malicious sensor

may report zi[t] 6= xi[t].

We suppose that a known but arbitrary and possibly history-dependent control policy {git}, i =

1, . . . ,m is in place, so that actuator i, if honest, applies the input git(z
t) at time t, where zt :=

(z[0], . . . , z[t]). Note that since the honest actuators may not have access to the actual output

sequence xt due to the presence of malicious sensors, they apply the control law on the reported

measurements rather than the actual measurements. The malicious actuators, however, may not

adhere to the control law, and can apply any input that they please.

Let a1, . . . , ama denote the indices of thema malicious actuators, ai ∈ {1, . . . ,m}, i = 1, . . . ,ma.

Define for malicious actuator ai, the input distortion at time t as dai [t] := uai [t]− g
ai
t (zt), which is

the difference between the actual input that it applies and the control law-specified input that it is

supposed to apply. Then, the system evolves in closed loop as

x[t+ 1] = Ax[t] +Bgt(z
t) +BMd[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1], (4.2)

25



where d[t] := [da1 [t] . . . dama
[t]]T is the vector containing the distortions of the malicious ac-

tuators at time t, and BM := [B×,a1 . . . B×,ama
] is the submatrix of B formed by the columns

corresponding to the malicious actuators.

Denote by o1, . . . , ohs the indices of the hS honest sensors in the system, oi ∈ {1, . . . , n}, i =

1, . . . , hs. Define CH := [CT
o1,× . . . CT

ohs ,×]T , which is the submatrix of C formed by the rows

corresponding to the honest sensors.

4.2.1 Securable and Unsecurable Subspaces

Definition 3. For the system (4.1) consisting of some malicious sensors and actuators, the unse-

curable subspace for state 0, or simply the unsecurable subspace, is the maximal subset V of the

state space such that ∀v ∈ V ,

1. CHv = 0,

2. ∃d, possibly dependent on v, such that Av +BMd ∈ V.

It is the maximal (A,BM)−invariant subspace contained in N (CH).

Definition 4. The securable subspace S of system (4.1) is the orthogonal compliment of its unse-

curable subspace. I.e.,

S := V ⊥.

An operational meaning for these subspaces in the context of deterministic linear dynamical

systems is presented in [48]. Specifically, in deterministic systems, the unsecurable subspace has

the interpretation as the set of states that the malicious nodes can steer the system to ever, without

the honest nodes ever detecting that the system had visited that state or that there is any malicious

activity in the system. This interpretation does not extend to systems that are stochastic in nature,

such as (4.1). In the following sections, we establish an operational meaning for the securable

subspace for stochastic linear dynamical systems described by (4.1) for the case of a fully observed

system, i.e., C = I. Specifically, we show that the securable subspace is the maximal subspace

of the state space along which the state estimation error of the honest nodes is of zero covariance,
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where the state estimate x̂[t] of the honest nodes at time t is simply x̂[t] = z[t], and their state

estimation error at time t is x̂[t]− x[t].

To elaborate, note that if all the sensors in a fully observed system were honest, then the state

estimation error of the honest sensors and actuators would be identically zero. However, since

certain sensors could be malicious, the honest nodes in the system may not have perfect estimates

of the state, thereby incurring a state estimation error at each time. However, as we show in the

subsequent sections, this state estimation error, when projected on the securable subspace, has

zero covariance. One of the implications of this is that if the malicious nodes wish to remain

undetected, then no matter what attack strategy they employ, they cannot distort the projection of

the actual state on the securable subspace beyond adding a zero-power sequence.

4.3 The Geometry of the Securable Subspace

This section is devoted to establishing certain key structural properties of the securable sub-

space that are used in Section 4.4 to establish its operational meaning.

Definition 5. A k−step unsecurable subspace, denoted by Uk, is defined as

Uk := {v : ∃d0, . . . ,dk−2 s.t.

CHv = 0,

CH(Av +BMd0) = 0,

CH(A2v + ABMd0 +BMd1) = 0,

...

CH(Ak−1v + . . .+BMdk−2) = 0.}, (4.3)

for k = 1, . . . , r, where r := min{i ∈ N : Ui = V }.

For finite-dimensional linear systems, it can be shown that r < ∞ (in fact, r ≤ p). Note also

that U1 = N (CH).

Intuitively, Uk is the set of states which, if the system is initialized at, can be made indistin-
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guishable to the honest sensors from the zero initial state for at least k epochs by some choice of

inputs of the malicious actuators.

Note from (4.3) that the (k + 1)−step unsecurable subspace contains the k−step unsecurable

subspace, i.e., the subspaces are monotone decreasing in k. The r−step unsecurable subspace is

simply the unsecurable subspace:

V = Ur ⊂ Ur−1 ⊆ . . . ⊆ U1 ⊆ X , (4.4)

whereX := Rp denotes the state space of the system. Note that in the above hierarchy, by definition

of r, we have Ur 6= Ur−1. It is equally straightforward to verify that U1, . . . ,Ur are subspaces.

The following lemma shows that in (4.4), the set containments are in fact strict, so that the

k−step unsecurable subspaces are strictly decreasing in k.

Lemma 3. Suppose that r > 1. Then, ∀i ≤ r − 1, Ui+1 ⊂ Ui.

Proof. The proof for the case when i = r−1 follows trivially by the very definition of r. Consider

the case when i ≤ r − 2, and suppose for contradiction that for some i ≤ r − 2, Ui = Ui+1. Then,

it follows from (4.3) that ∀v ∈ Ui+1, ∃d such that Av + BMd ∈ Ui = Ui+1. This implies, from

the definition of V , that Ui+1 ⊆ V, which contradicts (4.4) since V ⊂ Ui+1.

The case N (CH) = X is of limited interest, as is made clear in the next section. We assume

henceforth that this is not the case. Combining this assumption with Lemma 1, we have

V = Ur ⊂ Ur−1 ⊂ . . . ⊂ U1 ⊂ X . (4.5)

The above hierarchy is sufficient to assert the existence of orthonormal bases B̃0, B̃1, . . . , B̃r

for X ,U1, . . . ,Ur, respectively, with B̃r ⊂ B̃r−1 ⊂ . . . ⊂ B̃0. Now, using X ,U1, . . . ,Ur, we derive

r + 1 orthogonal subspaces as follows.
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Definition 6. For k = 1, . . . , r − 1, define the k−step securable subspace as

Sk := Uk 	 Uk+1, (4.6)

where Uk	Uk+1 := Span{B̃k\B̃k+1}. The 0−step securable subspace is defined as S0 := X	U1 =

N (CH)⊥.

Intuitively, the k−step securable subspace is a set of states which when the system is initialized

at, can be made indistinguishable to the honest sensors from the zero initial state for exactly k

epochs by some choice of inputs of the malicious actuators. In particular, it cannot be made

indistinguishable for k + 1 epochs. A precise interpretation is given in Lemma 3.

The following lemma establishes the geometry of the securable subspace: The securable sub-

space is the span of all k−step securable subspaces.

Lemma 4. The securable subspace S := V ⊥ is composed of k−step securable subspaces in that

S = S0 + . . .+ Sr−1.

Proof. S0 + . . .+ Sr−1 = (X 	 U1) + (U1 	 U2) + . . .+ (Ur−1 	 V ) = X 	 V = V ⊥.

Lemma 5. For every sk ∈ Sk, ∃d0, . . . ,dk−2 such that

CHsk = 0,

CH(Ai−1sk + Ai−2BMd0 + . . .+BMdi−2) = 0, i = 2, . . . , k.

Moreover, for every 0 6= sk ∈ Sk, @d0, . . . ,dk−1 such that CHsk = 0, CH(Ai−1sk+Ai−2BMd0 +

. . .+BMdi−2) = 0, i = 2, . . . , k + 1.

Proof. The first statement of the lemma follows from the fact that Sk ⊂ Uk. To prove the second

statement of the lemma, suppose the contrary. Then, it follows that sk ∈ Uk+1. Since Sk ⊥ Uk+1

and sk 6= 0, we have sk /∈ Sk, a contradiction.

Lemma 6. For every 0 6= sk ∈ Sk, k ∈ {1, . . . , r − 1},∃d such that Ask +BMd ∈ Sk−1.
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Proof. Omitted.

4.4 Operational Meaning of the Securable Subspace for Stochastic Systems

In this section, we establish operational meanings for securable and unsecurable subspaces in

the context of fully-observed stochastic linear dynamical systems of the form (4.1).

Observe that if there are no malicious nodes in the system, then, x[t+ 1]−Ax[t]−Bgt(zt) =

w[t+ 1], and hence,

lim
T→∞

1

T

T−1∑
t=0

[x[t+ 1]− Ax[t]−Bgt(zt)][x[t+ 1]− Ax[t]−Bgt(zt)]T = σ2
wI.

Based on this observation, each honest node performs the following tests to detect the presence of

malicious nodes:

• Test: Check if

lim
T→∞

1

T

T−1∑
t=0

(z[t+ 1]− Az[t]−Bgt(zt))(z[t+ 1]− Az[t]−Bgt(zt))T = σ2
wI. (4.7)

If the reported measurements {z} do not pass this test, then the honest nodes declare the presence

of malicious nodes in the system.

Recall from Section 4.1 that the notation (x)Q denotes the projection of vector x on the sub-

space Q. Let Pk denote the projection matrix corresponding to the subspace
∑k

j=1 Sj. It follows

from (4.7) that for k = 0, . . . , r − 1,

lim
T→∞

1

T

T−1∑
t=0

(z[t+ 1]− Az[t]−Bgt(zt))T∑k
j=1 Sj

(z[t+ 1]− Az[t]−Bgt(zt))∑k
j=1 Sj

= Tr[( lim
T→∞

1

T

T−1∑
t=0

(z[t+ 1]− Az[t]−Bgt(zt))TP T
k Pk(z[t+ 1]− Az[t]−Bgt(zt))]

= σ2
wTr[PkP

T
k ]. (4.8)
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Defining σ2
k := σ2

wTr[PkP
T
k ], from (4.8) we have that for k = 0, . . . , r − 1,

lim
T→∞

1

T

T−1∑
t=0

(z[t+ 1]− Az[t]−Bgt(zt))T∑k
j=1 Sj

(z[t+ 1]− Az[t]−Bgt(zt))∑k
j=1 Sj

= σ2
k. (4.9)

The following theorem establishes the operational meaning for the securable subspace in the

context of fully observed stochastic linear dynamical systems.

Theorem 3. Let m[t] := z[t] − x[t] be the state estimation error of the honest nodes at time t. If

the reported measurements {z} pass the test (4.7), then,

lim
T→∞

1

T

T−1∑
t=0

||mS[t]||2 = 0.

Proof. We show by induction on k that

lim
T→∞

1

T

T−1∑
t=0

||mSk
[t]||2 = 0

∀k ∈ {0, . . . , r − 1}. I.e., the projection of the state estimation error on the k−step securable

subspaces has zero power. This in turn implies the desired result.

We first note that since we have a system where all the states are directly observed, i.e., C = I ,

we have S0 = N (CH)⊥ = Span({ei : i ∈ {o1, . . . , ohS}}), where ei is a p × 1 vector whose ith

entry is unity and all other entries are zero. It follows that mS0 [t] =
∑hS

i=1 moi [t]eoi = 0, where

the last equality follows from the fact that at any time t, the distortion introduced by the honest

sensors is zero. It follows that mS0 [t] ≡ 0, and so,

lim
T→∞

1

T

T−1∑
t=0

mT
S0

[t]mS0 [t] = 0.

This serves as the base case for induction.
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Assume for induction that

lim
T→∞

1

T

T−1∑
t=0

mT
Si

[t]mSi
[t] = 0

for i = 0, . . . , q. Since z[t + 1] − Az[t] − Bgt(zt) = m[t + 1] − Am[t] + BMd[t] + w[t + 1],

substituting this in (4.9) for k = q gives (recall from Section 4.1 the notation of (x)TTW )

lim
T→∞

1

T

T−1∑
t=0

(m[t+ 1]− Am[t] +BMd[t] + w[t+ 1])TT∑q
j=0 Sj

= σ2
q . (4.10)

Now, write m[t] = mV [t]+mS[t], and mS[t] = mS0 [t]+ . . .+mSr−1 [t]. It follows from the defini-

tion of the unsecurable subspace that for all t, there exists dV [t] such thatAmV [t]+BMdV [t] ∈ V ,

and from Lemma 4 that there exist dSq+2 [t], ...,dSr−1 [t] such that (−AmSi
[t] + BMdSi [t]) ∈

Si−1, i = q + 2, . . . , r − 1. Define dU [t] := d[t] − dSq+2 [t] − . . . − dSr−1 [t] − dV [t]. Substi-

tuting these in (4.10) gives

lim
T→∞

1

T

T−1∑
t=0

(mS0 [t+ 1]− AmS0 [t]

+ mS1 [t+ 1]− AmS1 [t]

+ . . .

+ mSq [t+ 1]− AmSq [t]

+ mSq+1 [t+ 1]− AmSq+1 [t] +BMdU [t]

+ mSq+2 [t+ 1]− AmSq+2 [t] +BMdSq+2 [t]

+ mSq+3 [t+ 1]− AmSq+3 [t] +BMdSq+3 [t]

+ . . .

+ mSr−1 [t+ 1]− AmSr−1 [t] +BMdSr−1 [t]

+ mV [t+ 1]− AmV [t] +BMdV [t]

+ w[t+ 1])TT∑q
j=0 Sj

= σ2
q . (4.11)
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Since −AmSi
[t] + BMdSi [t] ∈ Si−1 for i = q + 2, . . . , r − 1, they vanish when projected on the

subspace
∑q

j=0 Sj, i.e., their projection is the zero vector. Similarly, mSq+1 [t+1], . . . ,mSr−1 [t+1]

also vanish when projected on the subspace
∑q

j=0 Sj. Therefore, the above reduces to

lim
T→∞

1

T

T−1∑
t=0

(mS0 [t+ 1]− AmS0 [t]

+ mS1 [t+ 1]− AmS1 [t]

+ . . .

+ mSq [t+ 1]− AmSq [t]

− AmSq+1 [t] +BMdU [t] + w[t+ 1])TT∑q
j=0 Sj

= σ2
q . (4.12)

Note that from the induction hypothesis, we have that the term

lim
T→∞

1

T

T∑
t=1

(mS0 [t+ 1]− AmS0 [t]

+ mS1 [t+ 1]− AmS1 [t]

+ . . .

+ mSq [t+ 1]− AmSq [t])
TT∑q

j=0 Sj
= 0.

Expanding (4.12) and substituting the above equality yields

lim
T→∞

1

T

T−1∑
t=0

(−AmSq+1 [t] +BMdU [t] + w[t+ 1])TT∑q
j=0 Sj

= σ2
q . (4.13)

Using the martingale stability theorem [49, Lemma 2(iii)], it follows after some algebra that

lim
T→∞

1

T

T−1∑
t=0

(−AmSq+1 [t] +BMdU [t])TT∑q
j=0 Sj

= 0. (4.14)
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Lemma 7. ∀q ∈ {1, . . . , r − 2}, ∃ε > 0 such that ∀sq+1 ∈ Sq+1 and for any d,

(Asq+1 +BMd)TT∑q
j=0 Sj

≥ ε sTq+1sq+1. (4.15)

Proof. Let ŝq+1 ∈ Sq+1 with ||̂sq+1|| = 1. Define I(ŝq+1) := infd ||(Aŝq+1 + BMd)∑q
j=0 Sj

|| =

infd ||Ãŝq+1 + B̃Md||, where Ã := PqA, B̃
M := PqB

M , and Pq is the projection matrix for the

subspace
∑q

j=0 Sj. Clearly, the value I(ŝq+1) can be achieved by a vector d =: d̂(ŝq+1), not

necessarily unique, all of whose entries are finite. It is also easy to verify that for any k ∈ R,

I(kŝq+1) = kI(ŝq+1), (4.16)

and that d̂(kŝq+1) = kd̂(ŝq+1).

Now, the function I(x) is continuous in x. To see this, let α(x) := Ãx, and β(x) :=

dist(x,R(−B̃M)) be the distance function to set R(−B̃M). Then, I = β ◦ α. Since both α

and β are continuous functions, it follows that I is a continuous function.

Now, consider ε′ = inf ||sq+1||=1 I(sq+1), which is the minimization of a continuous function

over a compact set ∆ := {s ∈ Sq+1 : ||s|| = 1}. It follows that the infimum is attained by some

element s∗q+1 ∈ ∆, i.e., ε′ = ||(As∗q+1 + BMd∗)∑q
j=0 Sj

|| for some d∗. Note that since 0 6= s∗q+1 ∈

Sq+1, we have (As∗q+1 +BMd)∑q
j=0 Sj

6= 0 for all choices of d, and hence, ε′ > 0. Combining this

with (4.16), we have

||(Asq+1 +BMd)∑q
j=0 Sj

|| = ||(A||sq+1||
sq+1

||sq+1||
+BMd)∑q

j=0 Sj
|| = I(||sq+1||

sq+1

||sq+1||
)

= ||sq+1||I(
sq+1

||sq+1||
) ≥ ||sq+1||ε′.

Squaring the above inequality completes the proof.
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Combining (4.15) with (4.14), we have

0 = lim
T→∞

1

T

T−1∑
t=0

||(−AmSq+1 [t] +BMdU [t])∑q
j=0 Sj

||2 ≥ ε lim
T→∞

1

T

T−1∑
t=0

||(mSq+1 [t])
∑q

j=0 Sj
||2,

which completes the proof.

The following corollary shows that the unsecurable subspace is, in general, the minimal sub-

space “containing" all of the covariance of the state estimation error.

Corollary 1. Under the same conditions as in Theorem 1,

lim
T→∞

1

T

T∑
t=1

mS[t]mT
S [t] = 0. (4.17)

Consequently,

lim
T→∞

1

T

T∑
t=1

m[t]mT [t] = lim
T→∞

1

T

T∑
t=1

mV [t]mT
V [t]. (4.18)

Proof. Let mS,i[t] denote the ith entry of mS[t]. Then, it follows from Theorem 1 that

lim
T→∞

1

T

T∑
t=1

m2
S,i[t] = 0

for i = 1, . . . , p. It follows that for all i, j,

lim
T→∞

1

T

T∑
t=1

mS,i[t]mS,j[t] = 0.

The above results establish the extent to which malicious sensors can distort the actual mea-

surements in a stealthy attack. Given a control objective, this also has implications on the extent to

which malicious actuators can deviate from their control law-specified inputs, and consequently,

the extent to which the actual performance metrics of the system deviate from their optimal values.
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4.5 Concluding Remarks

The notions of securable and unsecurable subspaces of a linear dynamical system, introduced

in the context of secure control, have important operational meanings for deterministic linear dy-

namical systems. This chapter has examined these subspaces from the vantage point of a fully-

observed stochastic linear dynamical system, and has established operational meanings for them

in the stochastic context. Specifically, the securable subspace is shown to be, in general, the max-

imal subspace of the state space on which the projection of the state estimation error incurred by

the honest nodes, due to the presence of malicious nodes, has zero covariance. Consequently, the

unsecurable subspace is, in general, the minimal subspace that “contains" all of the covariance of

the state estimation error. Extensions of this result to more general models such as that of partially-

observed stochastic linear dynamical systems with both process and observation noise are reported

in the next chapter.
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5. ON THE OPERATIONAL SIGNIFICANCE OF THE SECURABLE SUBSPACE FOR

PARTIALLY OBSERVED LINEAR STOCHASTIC SYSTEMS*

5.1 Introduction

In this chapter, we generalize the results in Chapters 3 and 4 and establish the operational

meaning of the securable subspace in the context of general multiple-input-multiple-output par-

tially observed stochastic linear dynamical systems with both Gaussian process and observation

noise, which class constitutes one of the most general models used in modern linear system theory.

Specifically, we show that for these systems, the securable subspace has the operational meaning

as that subspace of the state space along which the malicious sensors and actuators cannot distort

the MMSE state estimate that would be obtained had there been no malicious nodes in the system,

beyond adding a zero power sequence, if they wish to remain undetected. This in turn implies that

the covariance of the projection of the state estimation error of the honest nodes on the securable

subspace remains at its designed value in spite of arbitrary attack strategies of the malicious nodes,

if the malicious activity is to remain undetected.

The rest of the chapter is organized as follows. Section 5.2 describes the problem setting

that we consider in this chapter. Section 5.3 is devoted to establishing the operational meaning

of the securable subspace in the context of general partially-observed stochastic linear dynamical

systems. Section 5.4 concludes the chapter.

Notation: Given a vector x, we denote by xTT the outer product xxT .Given subspacesW1, . . . ,Wp

of some vector space, we denote by ⊕pl=1Wl the span of subspacesW1, . . . ,Wp. Given a vector x

and a subspaceW , we denote by xW the projection of x onW .

*Reprinted with permission from “On the Operational Significance of the Securable Subspace for Partially Ob-
served Linear Stochastic Systems," by B. Satchidanandan and P. R. Kumar in Proceedings of the 2018 IEEE Confer-
ence on Decision and Control (CDC), pp. 2068-2073, 2018, IEEE.
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5.2 Problem Setup

Consider a pth order linear dynamical system with m inputs and n outputs described by

x(t+ 1) = Ax(t) +Bu(t) + w(t+ 1),

y(t+ 1) = Cx(t+ 1) + n(t+ 1), (5.1)

where x(t) ∈ Rp, u(t) ∈ Rm, y(t) ∈ Rn, w(t) ∼ N (0, Q) is the process noise distributed i.i.d.

across time, n(t) ∼ N (0, R) is the measurement noise distributed i.i.d. across time, the process

and measurement noise processes are independent, and A,B,C,Q,R are matrices of appropriate

dimensions. We further assume that (A,C) is observable, (A,Q1/2) is reachable, and R > 0.

As throughout this thesis, the scenario that we address in this chapter is one where an arbitrary

subset of the sensors and actuators in the system could be malicious. A malicious sensor need not

report the measurements that it observes truthfully, and a malicious actuator need not apply inputs

in accordance with the designated control policy. The honest nodes in the system do not know

the identity of the malicious nodes in the system, or even if there are any malicious nodes in the

system or not. The malicious nodes, however, know the identity of all other malicious nodes in the

system, so that they can exchange information among themselves thereby allowing them to carry

out coordinated attacks.

We assume that an arbitrary, possibly history-dependent control policy {gt} is in place which

specifies the control input ug(t) that has to be applied at time t as a function of the reported

measurements zt := (z(0), . . . , z(t)) upto time t, i.e., ug(t) = gt(z
t). If actuator i, i ∈ {1, . . . ,m},

is honest, then ui(t) ≡ ugi (t) for all t. However, if actuator-i is malicious, then this need not

be the case, and the actuator can apply any input that it wishes. We denote by d(t) the “input

distortion" introduced by the malicious actuators, i.e., d(t) := uM(t) − ugM(t), where uM(t) is

a vector that collects the entries of u(t) corresponding to the malicious actuators, and ugM [t] is

a vector that collects the control policy-specified inputs corresponding to the malicious actuators.

Clearly, these vectors belong to Rma , wherema is the number of malicious actuators in the system.
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Consequently, the system (5.1) evolves in closed loop according to

x(t+ 1) = Ax(t) +Bug(t) +BMd(t) + w(t+ 1),

y(t+ 1) = Cx(t+ 1), (5.2)

where BM denotes the submatrix of B formed by the columns corresponding to the malicious

actuators.

In the previous chapters, we considered special cases of system (5.1), viz., the case of deter-

ministic systems where there is no process or measurement noise, and the only uncertainty is in

the initial conditions of the system [48], and the case of fully-observed stochastic systems (i.e.,

C = Ip and there is no measurement noise) [50], and established operational meanings for the

securable subspace in these contexts. In this chapter, we generalize the above results and estab-

lish the operational meaning of these subspaces in the general context of partially observed linear

stochastic systems of the form (5.1) with both process and measurement noise, which is one of the

most general models describing linear systems.

5.3 Operational Meaning of the Securable Subspace for Partially Observed Systems

This section is devoted to establishing the operational meaning of the securable subspace for

partially observed linear stochastic systems.

Consider the linear dynamical system (5.1) evolving in closed loop according to (5.2). The

MMSE-optimal state prediction x̂R(k + 1|k), given the true actuation inputs and sensor measure-

ments, is obtained from the Kalman filtering equations as

x̂R(k + 1|k) = Ax̂R(k|k) +Bug(k) +BMd(k),

x̂R(k + 1|k + 1) = x̂R(k + 1|k) + LνR(k + 1). (5.3)

where νR(k+1) := y(k+1)−Cx̂R(k+1|k) is the “real" innovations at time k, and L is the steady-
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state Kalman gain. For simplicity, we are assuming here that the system is in steady state and we

are employing the steady-state Kalman gain. The proof extends in a straightforward manner to the

use of time-varying gain, and is omitted for brevity of exposition. Note that the honest nodes in the

system may not be able to compute x̂R(k+ 1|k) or x̂R(k+ 1|k+ 1) since they may not be privy to

the true measurements {y} or the input distortion {d}.

The honest nodes in the system, in the absence of any evidence on the contrary, begin with the

presumption that all nodes in the system are honest, and based on this, compute the state estimates

x̂F (k + 1|k + 1) as

x̂F (k + 1|k) = Ax̂F (k|k) +Bug(k),

x̂F (k + 1|k + 1) = x̂F (k + 1|k) + LνF (k + 1). (5.4)

where νF (k + 1) := z(k + 1)− Cx̂F (k + 1|k). In order to check whether there are any malicious

nodes in the system or not, the honest nodes conduct the following test.

Test: For all q ∈ {1, . . . , r−1}, check if the reported sequence of measurements {z} satisfy (recall

the notation (·)TT from Section 5.1)

lim
T→∞

1

T

T−1∑
k=0

(z(k + q)− Cx̂F (k + q|k))TT = Σq, (5.5)

where Σq := E[(y(k + q) − Cx̂R(k + q|k)TT ] is the covariance matrix of the MMSE-optimal

q−step-ahead output prediction error. Note that if there are no malicious nodes in the system,

the above test would be passed by the reported measurements almost surely, and therefore, if the

reported measurements fail the above test, then the honest nodes can conclude the presence of

malicious nodes in the system. Therefore, if the malicious nodes wish to remain undetected, then

they are constrained to reporting measurements that pass (5.5). While the above test is presented in

an asymptotic form, it can be converted into a finite-time test with certain false alarm and detection

rates using standard methods.
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The following theorem establishes the operational significance of the securable subspace in the

context of partially observed stochastic linear dynamical systems.

Theorem 4. Consider the system (5.1) with malicious sensors and actuators, and suppose that the

pair (A,C) is observable, (A,Q1/2) is reachable, and R > 0. If the reported measurements {z}

satisfy (5.5), then,

lim
T→∞

1

T

T−1∑
k=0

∥∥∥(x̂F (k + 1|k)− x̂R(k + 1|k))S

∥∥∥2

= 0.

Proof. Define

δ(k + q|k) := x̂F (k + q|k)− x̂R(k + q|k). (5.6)

Since the reported measurements pass test (5.5), we have that for every q ∈ {1, . . . , r − 1}

lim
T→∞

1

T

T−1∑
k=0

(z(k + q)− Cx̂F (k + q|k))TT = Σq.

Let hS be the number of honest sensors in the system, and assume without loss of generality that the

sensors measuring the outputs y1 through yhs are honest (since the rows ofC and the corresponding

entries of y, etc., can be rearranged to achieve this). We note that the upper hs entries of z(k + 1),

denoted zH(k+ 1), agree with the upper hs entries of y(k+ 1), denoted yH(k+ 1), since these hs

sensors are honest. Hence, equating the upper-left hs × hs sub-matrix of the above equality yields

lim
T→∞

1

T

T−1∑
k=0

(yH(k + q)− CH x̂F (k + q|k))TT = Σq
H ,

where Σq
H is the upper-left hs × hs sub-matrix of Σq. Using (5.6), the above can be written as

lim
T→∞

1

T

T−1∑
k=0

(yH(k + q)− CH x̂R(k + q|k)− CHδ(k + q|k))TT = Σq
H ,
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Denoting the vector CHδ(k+ q|k) by δH(k+ 1|k), and the vector yH(k+ q)−CH x̂R(k+ q|k) by

ỹH(k+q|k), and noting that limT→∞
1
T

∑T−1
k=0 (ỹH(k+q|k))TT = Σq

H , the above equality simplifies

to

lim
T→∞

1

T

T−1∑
k=0

δH(k + q|k)δH
T

(k + q|k)− ỹH(k + q|k)(δH(k + q|k))T

−δH(k + q|k)(ỹH(k + q|k))T = 0. (5.7)

Now, the second term in the above sum can be rewritten as

lim
T→∞

1

T

T−1∑
k=0

ỹH(k + q|k)δH(k + q|k)
T

=

q−1∑
i=0

lim
τ→∞

1

τ

τ∑
g=1

ỹH(i+ gq|i+ (g − 1)q)

δH(i+ gq|i+ (g − 1)q).

Now, ỹH(i+gq|i+(g−1)q) is independent ofFi+(g−1)q whereas δH(i+gq|i+(g−1)q) ∈ Fi+(g−1)q.

Moreover, {ỹH(i + gq|i + (g − 1)q)δH(i + gq|i + (g − 1)q)}, viewed as a sequence in g, is i.i.d.

across time. Using the Martingale Stability Theorem (MST) [49], (5.7) reduces to

lim
T→∞

1

T

T−1∑
k=0

δH(k + q|k)δH
T

(k + q|k) = 0. (5.8)

Now, note that

x̂R(k + q|k) = Aq−1x̂R(k + 1|k) +

q−2∑
l=0

AlBug(k + q − l − 1|k)

−
q−2∑
l=0

AlBM d̂(k + q − l − 1|k), (5.9)

and that

x̂F (k + q|k) = Aq−1x̂F (k + 1|k) +

q−2∑
l=0

AlBug(k + q − l − 1|k), (5.10)
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where d̂(k+q−l−1|k) := E[d(k+q−l−1)|Fk)]. Subtracting (5.9) from (5.10) and left-multiplying

the result by CH yields

CHδ(k + q|k) = CH [Aq−1δ(k + 1|k)−
q−2∑
l=0

AlBM d̂(k + q − l − 1|k)].

Since the sequence {CHδ(k + q|k)} is of zero power following (5.8) for all q ∈ {1, . . . , r}, we

have

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣CH [Aq−1δ(k + 1|k)−
q−2∑
l=0

AlBM d̂(k + q − l − 1|k)]
∣∣∣∣2 = 0. (5.11)

Now, in order to show that {δS(k+ 1|k)} is of zero power, we show, via induction, that each of the

sequences {δS0(k + 1|k)}, . . . , {δSr−1(k + 1|k)} is of zero power.

Note that substituting the value q = 1 in (5.8) gives limT→∞
1
T

∑T−1
k=0

∥∥CHδ(k + 1|k)
∥∥2

= 0,

which in turn implies that

lim
T→∞

1

T

T−1∑
k=0

∥∥δS0(k + 1|k)
∥∥2

= lim
T→∞

1

T

T−1∑
k=0

∥∥∥CHT (CHCHT )−1CHδ(k + 1|k)
∥∥∥2

= 0.

This establishes the base case for induction.

Now, we assume for induction that

lim
T→∞

1

T

T−1∑
k=0

∥∥δSi(k + 1|k)
∥∥2

= 0

for all i ∈ {0, . . . , j}. Substituting q = j + 1 in (5.11) and expanding δ(k + 1|k) in terms of its

components in S0, . . . ,Sr−1 and V gives

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣CH [
r−1∑
f=0

AjδSf (k + 1|k) + AjδV (k + 1|k)−
j−1∑
l=0

AlBM d̂(k + j − l|k)]
∣∣∣∣2 = 0.
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Using the induction hypothesis, the above reduces to

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣CH [
r−1∑

f=j+1

AjδSf (k + 1|k) + AjδV (k + 1|k)−
j−1∑
l=0

AlBM d̂(k + j − l|k)]
∣∣∣∣2 = 0.

(5.12)

Now, it follows from the definition of the unsecurable subspace that there exist d̂V (k+j|k), . . . , d̂V (k+

1|k) such that

AjδV (k + 1|k)−
j−1∑
l=0

AlBM d̂V (k + j − l|k) ∈ V ⊆ N (CH). (5.13)

Similarly, it follows from Lemma 1 that for every f ∈ {j + 2, . . . , r − 1}, there exist d̂f (k +

1|k), . . . , d̂f (k + j|k) such that

AjδSf (k + 1|k)−
j−1∑
l=0

AlBM d̂f (k + j − l|k) ∈ N (CH). (5.14)

Consequently, define for l = 0, . . . , j − 1,

γ(k + j − l|k) := d̂(k + j − l|k)− d̂V (k + j − l|k)−
r−1∑

f=j+2

d̂f (k + j − l|k).

Substituting for d̂(k + j − l|k) in (5.12) using the above equality and then applying (5.13) and

(5.14) on the result gives

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣CH [AjδSj+1
(k + 1|k)−

j−1∑
l=0

AlBMγ(k + j − l|k)]
∣∣∣∣2 = 0. (5.15)

Using Lemma 1 and Lemma 2, the above yields, after some algebra, that

lim
T→∞

1

T

T−1∑
k=0

∥∥δSj+1
(k + 1|k)

∥∥2
= 0,
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thereby completing the induction.

Let x̃F (k + 1|k) := x(k + 1)− x̂F (k + 1|k), and define x̃R(k + 1|k) likewise. The following

result presents an equivalent operational meaning for the securable subspace.

Corollary 2. Assume as in Theorem 1. If the reported measurements {z} satisfy the test (5.5),

then,

lim
T→∞

1

T

T−1∑
k=0

x̃FS (k + 1|k)(x̃FS (k + 1|k))T = lim
T→∞

1

T

T−1∑
k=0

x̃RS (k + 1|k)(x̃RS (k + 1|k))T .

It follows from this that the covariance of the projection of the state estimation error of the

honest nodes on the securable subspace remains at its optimal value.

Proof. Note that

lim
T→∞

1

T

T−1∑
k=0

x̃FS (k + 1|k)(x̃FS (k + 1|k))T = lim
T→∞

1

T

T−1∑
k=0

(xS(k + 1)− x̂FS (k + 1|k))TT

= lim
T→∞

1

T

T−1∑
k=0

(xS(k + 1)− x̂RS (k + 1|k)− δS(k + 1|k))TT

= lim
T→∞

1

T

T−1∑
k=0

(xS(k)− x̂RS (k + 1|k))TT , (5.16)

where the last equality follows as a consequence of Theorem 1.

5.4 Concluding Remarks

In this chapter, we have considered multiple-input-multiple-output partially observed linear

stochastic systems with both process and measurement noise, in which an arbitrary subset of the

sensors and actuators could be malicious. We have shown that for any such system, its state

space can be decomposed into two orthogonal subspaces, called the securable and the unsecurable

subspaces, such that the covariance of the projection of the one-step-ahead state estimation error of

the honest nodes on the securable subspace remains at its optimal value regardless of what attack

strategy the malicious sensors and actuators choose to employ, as long as the malicious sensors
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and actuators wish to remain undetected. The malicious nodes, therefore, can degrade the state

estimation performance only along the unsecurable subspace of the linear dynamical system.
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6. DYNAMIC WATERMARKING: ACTIVE DEFENSE OF NETWORKED

CYBERPHYSICAL SYSTEMS*

6.1 Introduction

Fig. 6.1, reproduced from Chapter 1, illustrates the basic architecture of a Networked Cyber-

Physical System. At the heart of the system is a physical plant with m inputs and n outputs. Each

input is controlled by an independent actuator, and each output is measured by an independent

sensor. The dynamics of the physical plant along with the ambient noises map the actuation signals

applied by the actuators to outputs that are measured by the sensors. The plant model and the noise

statistics are known to all sensors and actuators in the system. The outputs observed by the sensors

are communicated to entities called controllers through an underlying communication network.

Each controller’s job is to compute, in accordance with a specified control policy, the particular

actuation signals that must be applied. The result of this computation is then communicated to the

actuators through the communication network, which then apply the actuation signals. We assume

that the network is complete, so that every node in the network can communicate with every other

node. We use the term “nodes" generically to refer to any entity in the network. Therefore, in

Fig. 6.1, some nodes are actuators, some are sensors, some are controllers, and some could just

be relays whose only job is to forward the information from one node to another. In this work, we

assume that each node has both communication and computational capabilities, thereby allowing

the controllers to be collocated with the actuators.

However, certain sensors in the system could be "malicious" (suggestive of this, some nodes

in Fig. 6.1 are marked in red), and the other nodes are said to be "honest." We further assume that

the malicious nodes know the identity of all other malicious nodes in the system, allowing them to

*All sections of this chapter except Section 6.9 are reprinted with permission from “Dynamic Watermarking:
Active Defense of Networked Cyber-Physical Systems," by B. Satchidanandan and P. R. Kumar in Proceedings of the
IEEE, vol. 105, no. 2, pp. 219-240, Feb. 2017, IEEE.
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Figure 6.1: A Networked Cyber-Physical System

collude to achieve their objective, whereas the honest nodes don’t know which of the other nodes

are malicious or honest. A malicious sensor is a sensor node which does not report accurately

the measurements that it observes. Rather, it reports a distorted version of the measurements. A

malicious router node may not forward the packets that it receives, may forward packets that it

does not receive (while claiming otherwise), alter packets before forwarding, introduce intentional

delays, impersonate some other node in the system, etc. Therefore, the challenges of securing a

Networked Cyber-Physical System are two-fold:

1) Secure the cyber layer that comprises the communication network, ensuring confidentiality,

integrity, and availability of network packets, and

2) Secure the sensors and actuators interfacing with the physical layer.

The former is achieved by a combination of traditional approaches such as cryptography and a

more recent line of work reported in [29, 51, 52], while the latter is the subject of this chapter.
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Based on our assumption that the communication network is complete, and that the cyber layer

has been secured, we suppose that every node in the network knows the identity of the node from

which a packet that it receives originated, and knows if a packet that it receives was tampered with

by any node along the route. Therefore, in the sequel, we abstract the cyber layer as consisting of

secure, reliable, delay guaranteed bit pipes between any pair of nodes in the network. In particular,

we imagine that there exists a secure, reliable, delay guaranteed bit pipe between any particular

sensor and actuator node.

Finally, the plant that is being controlled is abstracted as a stochastic linear dynamical system

described by time-invariant parameters. While any system that is of practical interest is most cer-

tainly non-linear, we focus on linear systems for two reasons. The first is that a linear system lends

itself to tractable analysis, and enables one to separate the complexity arising out of the problem

at hand from the complexity arising as a consequence of the system’s non-linearity. Secondly,

a theory developed for linear systems provides valuable insights and design principles that often

transcend the particulars of the model and apply to a much broader class of systems. The wide

applicability of Kalman’s pioneering work on linear control systems [53] stands testimony to this

fact.

This chapter is organized as follows. Section 6.2 provides a system-theoretic formulation of

the problem. Section 6.3 describes our approach of active defense for networked cyber-physical

systems. Section 6.4 opens by describing the method in the relatively simple context of a scalar

linear Gaussian system and rigorously establishes the associated theoretical guarantees. Section

6.5 treats the more general class of scalar auto-regressive systems with exogenous noise (ARX

systems) that is Gaussian. Section 6.6 extends these ideas to the more general ARMAX systems

with arbitrary delay, a model that is frequently encountered in process control. Section 6.7 deals

with partially observed SISO systems with Gaussian process and measurement noise. Section 6.8

considers perfectly observed multi-input, multi-output linear Gaussian systems in state-space form,

and Section 6.9 treats the general case of a partially observed MIMO system with both process and

measurement noise. Section 6.10 describes how our results can potentially be extended to non-
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Gaussian systems. Section 6.11 shows how the theoretical results lead to statistical tests that can

be used to detect malicious behavior within a delay bound with a controlled false alarm rate.

6.2 Problem Formulation

We are now in a position to state the problem in precise terms (with notation as indicated in the

Appendix). Consider an m× n stochastic linear dynamical system of order p, described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1], (6.1)

where A ∈ Rp×p, B ∈ Rp×m, u[t] is the input applied to the plant at time t, {w} is a sequence

of independent and identically distributed (i.i.d.) Gaussian random vectors with zero mean and

covariance martix σ2
wI , independent of the initial state x0 of the system.

While a malicious sensor can report different measurements to different actuators, the con-

sistency of the reported measurements can be checked by allowing the actuators to exchange the

reported measurements among themselves. This constrains the malicious sensors to report the

same value to all honest nodes in the system. The sensor node j reports to the honest nodes

in the system the value zj[t] as the measurement that it observes at time t. We define z[t] :=

[z1[t] z2[t] z3[t] · · · zn[t]]T . We will call z[t] for t ≥ 0 the measurements reported by the sensors.

Note that the sensor j is honest if zj[t] = xj[t] ∀t.

We assume that a control policy is in place, known to all nodes in the system, and allow for it

to be history dependent, so that the ith input at time t, ugi [t], dictated by the policy is

ugi [t] = git(z
t), (6.2)

where zt := {z[0], z[1], ..., z[t]}. We can suppose without loss of generality that the controller that

computes this control law is collocated with the actuator node.

Our goal is to secure the control system by developing techniques that prevent the malicious

nodes from causing excessive distortion if they are to remain undetected. We will suppose that the
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purpose of control law (6.2) is to improve the regulation performance of the system with respect to

the disturbances affecting it. For some of the performance results we will assume that the system is

open-loop stable, and show that the adversarial nodes cannot affect the performance of the system

without remaining undetected, and if detected then they can be disconnected, returning the system

to stable behavior. The fundamental results characterizing what is the most that the adversarial

nodes can do while remaining undetected, are applicable to all systems, stable or unstable.

6.3 Dynamic Watermarking

The key idea which allows the honest nodes to detect the presence of malicious nodes in the

system is the following. Let g denote the control policy in place that specifies inputs to be applied in

response to observed outputs. At each time instant t, an actuator node superimposes on its control

policy-specified input ugi [t], a random variable ei[t] that it draws independently from a specified

distribution. Therefore, the input that actuator i applies at time t is

ui[t] = ugi [t] + ei[t]. (6.3)

This is illustrated in Fig. 6.2. The random variables e0[t], e1[t], e2[t] · · · are independent and

identically distributed (i.i.d.), independent of the control policy-specified input. The distribution

that they are chosen from is made public (i.e., made known to every node in the system), but the

actual values of the excitation are not disclosed. In fact, this is how the honest actuators can check

whether signals are being tampered with as they travel around the control loop. We refer to these

random variables as an actuator node’s privately imposed excitation, since only that actuator node

knows the actual realization of the sequence.

To see why private excitation helps, consider the example of a single-input-single-output (SISO)

system where the sensor is malicious and the actuator is honest. Suppose that the control policy in

place is g = (g1, g2, . . . , gt, . . .), where gt specifies the input to be applied at time t in response to

outputs up till that time. The actual outputs of the plant up to time t are xt := (x[0], x[1], . . . , x[t]).

However the outputs reported to it by the malicious sensor are zt := (z[0], z[1], . . . , z[1]), which
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Figure 6.2: The actuator node i superimposes a private excitation whose realization is unknown to
other nodes on to its control inputs. Reprinted with permission from [1].

may differ from xt. The actuator therefore applies the control input u[t] = gt(z
t) at time t, without

using any private excitation. Then, we have the system

x[t+ 1] = ax[t] + bgt(z
t) + w[t+ 1], (6.4)

where w[t] is the zero-mean process noise with variance σ2
w.

If the actuator does not superimpose a private excitation, the sensor knows, for each time t,

the input u[t] applied by the actuator. This is because it knows both the measurement sequence

zt that it reported to the actuator as well as the control policy {g1, g2, ...} that the honest actuator

has implemented. Hence, the malicious sensor can report a sequence of measurements {z[t]} to

the actuator without even "looking" at the output, but by simply "simulating a linear stochastic

system" after generating its own i.i.d. process noise {w′} from the same distribution as that of

{w}, as follows.

z(t+ 1) = az(t) + bgt(z
t) + w′(t+ 1). (6.5)
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The actuator cannot detect that the sensor is malicious since the sequence {w′}, having been chosen

from the same distribution as {w}, could have been the actual process noise.

However, by superimposing a private excitation that is unknown to the sensor, the actuator

forces the sensor to report measurements that are correlated with {ei}, lest it be exposed, as we

will show in the sequel. In the following sections, we prove that thereby constraining the sensor to

report measurements that are correlated with the private excitation essentially limits the amount of

distortion that the sensor can get away with while remaining undetected to be essentially zero in a

mean-square sense.

This active defense technique is similar in spirit to the technique of digital watermarking [10]

in electronic documents. Electronic documents can be easily transmitted and reproduced in large

numbers. In doing so, the source of the document may be deleted, and can result in copyright

violations. To protect the identity of its author, or any other information about the document,

the electronic document is "watermarked" before being made available electronically. A digital

watermark is a digital code that is robustly embedded in the original document [11]. By robust,

it is meant that the code cannot be destroyed without destroying the contents of the document.

This code typically contains information about the document that needs to be preserved. Though

preferable, it is not a requirement that the watermark be imperceptible. The only requirement is

that it does not distort the actual contents beyond certain acceptable limits [11]. Applications of

digital watermarking also include data authentication, where fragile watermarks are used which

get destroyed when the data is tampered with [11], and data monitoring and tracking.

This approach for secure control is analogous to digital watermarking. As we show in the sub-

sequent sections, with regard to, for example, the above case where we considered a compromised

sensor, injecting private excitation that is unknown to the sensor effectively "watermarks" the pro-

cess noise, in the sense that the sensor cannot separate the private excitation from the process noise.

Hence, any attempt on the part of the sensor to distort the process noise (which is the only compo-

nent of the output unknown to the actuators) will also distort the "watermark," allowing the honest

nodes to detect malicious activity.
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Specifically, given a general MIMO system of the form (6.1), we define

v[k] := z[k]− Az[k − 1]−Bu[k − 1]−w[k],

so that if the sensors truthfully report z[t] ≡ y[t], then, v ≡ 0. As will be shown, the sequence {v}

has the interpretation of the additive noise distortion introduced by the malicious sensors to the

process noise. A similar definition can also be provided for a partially observed system, as we will

show in Section 6.7. In this case, the sequence {v} has the interpretation of the additive distortion

introduced by the malicious sensors to the innovations process. Now, based on {v}, we define the

following quantity.

Definition 7. We call

lim sup
T→∞

1

T

T∑
k=1

‖v[k]‖2

as the additive noise distortion power of the malicious sensors.

The “fundamental security guarantee," described in the sequel, provided by Dynamic Water-

marking is that the additive noise distortion power is restricted to be zero if the malicious sensors

are to remain undetected. We establish this in several linear control system contexts in this chapter.

6.4 Active Defense for Networked Cyber-Physical Systems: The SISO Case with Gaussian

noise

In this section, to illustrate the results in a simple context, we focus on single-input, single-

output linear stochastic dynamical systems with Gaussian noise. The system is described by

x[t+ 1] = ax[t] + bu[t] + w[t+ 1], (6.6)

where a, b, x[t], u[t], w[t] ∈ R, with {w[t]} being zero-mean i.i.d. Gaussian process noise of

variance σ2
w. The actuator wishes to implement a control law {gt}, i.e., it wishes to implement

u[t] = gt(x
t), where xt := (x[0], x[1], · · · , x[t]). However, the actuator does not have access to xt.

It relies on a sensor that measures x[t]. However, since the sensor could be malicious, it reports
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measurements z[t] to the actuator, where z[t] could differ from x[t]. We consider an honest actua-

tor that is meant to, and implements the control policy {g}, but adds a private excitation {e} as a

defense. Specifically, the actuator applies to the system the input

u[t] = gt(z
t) + e[t]. (6.7)

Note that even though it implements the control policy {g}, the policy is applied to the mea-

surements z[t] reported by the sensor, which could differ from the true output x[t]. The private

excitation e[·] added is independent and identically distributed (i.i.d.) and Gaussian of mean 0 and

variance σ2
e . Therefore, the system evolves in closed-loop as

x[t+ 1] = ax[t] + bgt(z
t) + be[t] + w[t+ 1]. (6.8)

We propose that the honest actuator perform certain "tests" to check if the sensor is malicious

or not. Towards developing these tests, note that the actual sequence of states {x[t]} of the system

satisfies

x[t+ 1]− ax[t]− bgt(zt) = be[t] + w[t+ 1]. (6.9)

Therefore, we have

{x[t+ 1]− ax[t]− bgt(zt)}t ∼ i.i.d. N (0, b2σ2
e + σ2

w), (6.10)

and

{x[t+ 1]− ax[t]− bgt(zt)− be[t]}t ∼ i.i.d. N (0, σ2
w). (6.11)

Based on the above observations, we propose that the actuator perform the following natural tests

for variance to check if the sensor is honestly reporting x[t]. The actuator checks if the reported
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sequence {z[t]} satisfies conditions (6.10) and (6.11), which the true output {x[t]} would satisfy if

the sensor were truthfully reporting z[t] ≡ x[t]. We write the tests in an asymptotic form below, as

a test conducted over an infinite time interval. They can be reduced to statistical tests over a finite

time interval in standard ways, which we elaborate on in Section 6.11.

1) Actuator Test 1: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− az[k]− bgk(zk)− be[k])2 = σ2
w. (6.12)

2) Actuator Test 2: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− az[k]− bgk(zk))2 = (b2σ2
e + σ2

w). (6.13)

Define

v[t+ 1] := z[t+ 1]− az[t]− bgt(zt)− be[t]− w[t+ 1],

so that for an honest sensor which reports z[t] ≡ x[t], v[t] = 0 ∀t. We term the quantity

lim
T→∞

1

T

T∑
k=1

v2[k]

the additive noise distortion power of a malicious sensor for reasons explained later. The ensuing

theorem proves that a malicious sensor with only zero additive noise distortion power can pass the

above two tests, thereby remaining undetected.

Theorem 5. If {z[t]} passes tests (6.12) and (6.13), thereby remaining undetected, then,

lim
T→∞

1

T

T∑
k=1

v2[k] = 0. (6.14)
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Proof. Since {z} satisfies (6.12), we have,

lim
T→∞

1

T

T∑
k=1

(v[k] + w[k])2 = σ2
w. (6.15)

Hence,

lim
T→∞

1

T

T∑
k=1

v2[k] + 2v[k]w[k] + w2[k] = σ2
w.

Since limT→∞
1
T

∑T
k=1w

2[k] = E{w2[k]} = σ2
w, we have

lim
T→∞

1

T

T∑
k=1

v2[k] + lim
T→∞

1

T

T∑
k=1

2v[k]w[k] = 0. (6.16)

Since {z} also satisfies (6.13), we have,

lim
T→∞

1

T

T∑
k=1

(v[k] + be[k − 1] + w[k])2 = b2σ2
e + σ2

w.

So,

lim
T→∞

1

T

T∑
k=1

(v[k] + w[k])2 + lim
T→∞

1

T

T∑
k=1

b2e2[k − 1] + lim
T→∞

1

T

T∑
k=1

2be[k − 1](v[k] + w[k])

= b2σ2
e + σ2

w.

Using (6.15), and the fact that {e} has variance σ2
e , the above reduces to

lim
T→∞

1

T

T∑
k=1

e[k − 1](v[k] + w[k]) = 0.

Invoking the fact that e[k − 1] and w[k] are independent ∀k and zero mean, it further reduces to

lim
T→∞

1

T

T∑
k=1

e[k − 1]v[k] = 0. (6.17)
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The above equation implies that the sequence {v}, added by the sensor, must be empirically un-

correlated with the actuator’s private noise sequence {e}.

Let Sk := σ(xk, zk, ek−2), ŵ[k] := E[w[k]
∣∣Sk]. Since

w[k] = x[k]− ax[k − 1]− bgk−1(zk−1)− be[k − 1],

we have

(xk−2, ek−2)→ (x[k − 1], x[k], zk)→ w[k]

forming a Markov chain. Consequently, ŵ[k] := E[w[k]
∣∣σ(ek−2, xk−2, x[k − 1], x[k], zk)] =

E[w[k]
∣∣σ(x[k−1], x[k], zk)]. Since x[k]−ax[k−1]−bgk−1(zk−1) (which is equal to be[k−1]+w[k])

is i.i.d. Gaussian for different k, we have [54]

ŵ[k] =
σ2
w

b2σ2
e + σ2

w

(be[k − 1] + w[k]) = β(be[k − 1] + w[k]), (6.18)

where β := σ2
w

b2σ2
e+σ2

w
< 1.

Let w̃[k] := w[k] − ŵ[k]. Then, (w̃[k − 1],Sk) is a Martingale difference sequence. This is

because w̃[k − 1] ∈ Sk, and

E[w̃[k]
∣∣Sk] = 0. (6.19)

We also have v[k] ∈ Sk (in fact, v[k] ∈ σ(xk, zk)). Hence, Martingale Stability Theorem (MST)

[49] applies, and we have

T∑
k=1

v[k]w̃[k] = o(
T∑
k=1

v2[k]) +O(1). (6.20)

Now,

T∑
k=1

v[k]w[k] =
T∑
k=1

v[k](ŵ[k] + w̃[k]) =
T∑
k=1

v[k]ŵ[k] + o(
T∑
k=1

v2[k]) +O(1).
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Employing the specific form of the estimate (6.18), we have from the above,

T∑
k=1

v[k]w[k] =βb
T∑
k=1

v[k]e[k − 1] + β
T∑
k=1

v[k]w[k] + o(
T∑
k=1

v2[k]) +O(1).

Hence,

T∑
k=1

v[k]w[k] =
βb

1− β

T∑
k=1

v[k]e[k − 1] + o(
T∑
k=1

v2[k]) +O(1).

From (6.17), we have
∑T

k=1 v[k]e[k − 1] = o(T ). It follows that

T∑
k=1

v[k]w[k] = o(
T∑
k=1

v2[k]) + o(T ) +O(1). (6.21)

So,

T∑
k=1

v2[k] +
T∑
k=1

2v[k]w[k] = (1 + o(1))(
T∑
k=1

v2[k]) + o(T ) +O(1)

Dividing the above equation by T , taking the limit as T → ∞, and invoking (6.16) completes the

proof.

Remark: Note that the only sources of uncertainty in the system are the initial state of the system

x[0] and the sequence of noise realizations {w[1], w[2], w[3], · · · }. The sensor reporting a sequence

of measurements is equivalent to it reporting a sequence of process noise realizations, since the

actuator expects z[t+ 1]− az[t]− bgt(zt)− be[t], which it can compute, to be equal to the process

noise w[t+ 1]. From the definition of v[t], we have

z[t+ 1]− az[t]− bgt(zt)− be[t] = w[t+ 1] + v[t+ 1].

The left hand side of the above equation can be computed by the actuator, and therefore, it can also

compute the sequence {w+v}. What the theorem states is that a malicious sensor cannot distort the
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noise realization {w[1], w[2], w[3], · · · } beyond adding a zero-power sequence to it. Suppose the

control law g has been designed to provide good noise regulation performance of a stable system,

then the performance of the system is good, subject only to the slightly increased cost of the private

excitation of variance σ2
e . As we discuss in Section 6.11, this can be reduced to a low enough value

that permits detection of a malicious sensor within a specified delay with an acceptable level of

false alarm probability.

Theorem 6. Suppose |a| < 1, i.e., the system is stable.

(i) Define the distortion d[t] := z[t]− x[t]. Then,

lim
T→∞

1

T

T−1∑
k=0

d2[k] = 0.

(ii) If the malicious sensor is to remain undetected, the mean-square performance of x[t] is the

same as the reported mean-square performance z[t] that the actuator believes it is:

lim
T→∞

1

T

T−1∑
k=0

x2[k] = lim
T→∞

1

T

T−1∑
k=0

z2[k].

(iii) Suppose the control law is ug(t) = fx(t) with |a + bf | < 1. The malicious sensor cannot

compromise the performance of the system if it is to remain undetected, i.e., the mean-square

performance of the system is

lim
T→∞

1

T

T−1∑
k=0

x2[k] =
σ2
w + b2σ2

e

1− |a+ bf |2
.

Proof. Note that

d[k + 1] = z[k + 1]− x[k + 1]

= (az[k] + bgk(z
k) + be[k] + w[k + 1] + v[k + 1])− (ax[k] + bgk(z

k) + be[k] + w[k + 1])

= a(z[k]− x[k]) + v[k + 1] = ad[k] + v[k + 1].
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The distortion experienced by the actuator can therefore be thought of as the output of a linear

dynamical system driven by an input sequence {v[t]} satisfying (6.14). Therefore,

d[k] =
k−1∑
n=0

anv[k − n],

where limT→∞
1
T

∑T
p=1 v

2[p] = 0. From the stability of a, it follows that

lim
T→∞

1

T

T−1∑
k=0

d2[k] = 0. (6.22)

Note that x[k] = z[k] − d[k]. Hence x2[k] = z2[k] + d2[k] − 2(γz[k])(γ−1d[k]). Now

|2(γz[k])(γ−1d[k])| ≤ (γ2z2[k]) + (γ−2d2[k]). Therefore,

lim
T→∞

1

T

T−1∑
k=0

x2[k] ≤ lim
T→∞

1

T

T−1∑
k=0

(1 + γ2)z2[k] + (1 + γ−2)d2[k].

Since the result is true for any γ > 0, taking the limit γ → 0 and noting that the mean-square of d

is 0 gives

lim
T→∞

1

T

T−1∑
k=0

x2[k] ≤ lim
T→∞

1

T

T−1∑
k=0

z2[k]. (6.23)

Similarly, since z[k] = x[k] + d[k], we have z2[k] = x2[k] + d2[k] + 2(γx[k])(γ−1z[k]). Repeating

the same argument as before, we have

lim
T→∞

1

T

T−1∑
k=0

z2[k] ≤ lim
T→∞

1

T

T−1∑
k=0

(1 + γ2)x2[k] + (1 + γ−2)d2[k].

Taking the limit as γ → 0, and noting that mean-square of d is 0, the above reduces to

lim
T→∞

1

T

T−1∑
k=0

z2[k] ≤ lim
T→∞

1

T

T−1∑
k=0

x2[k]. (6.24)
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The second result follows from (6.23) and (6.24). The third result is immediate noting that the

mean-square of {z} converges to σ2
w+b2σ2

e

1−|a+bf |2 .

6.5 Active Defense for Networked Cyber-Physical Systems: The SISO ARX Case

The results developed in the previous section can be extended to a more general ARX system

model. Specifically, we consider a unit delay, strictly minimum phase, single-input, single-output

system described by

y[t+ 1] = −
p∑

m=0

amy[t−m] +
h∑
r=0

bru[t− r] + w[t+ 1], (6.25)

where am, br, y[t], u[t], w[t] ∈ R, b0 6= 0, and with {w[t]} being zero-mean i.i.d. Gaussian pro-

cess noise of variance σ2
w. Let q−1 denote the backward shift operator. The above system can

equivalently be expressed as

A(q−1)y[t] = q−1B(q−1)u[t] + w[t], (6.26)

where A(q−1) := 1 + a0q
−1 + a1q

−2 + ... + apq
−(p+1), and B(q−1) := b0 + b1q

−1 + ... + bhq
−h,

with B(q−1) being strictly minimum phase, i.e., all its roots lie strictly outside the unit circle.

We consider an honest actuator that is meant to, and implements the control policy {g}, and

adds a private excitation {e} as a defense. Unlike in the system considered in Section-6.4, the

output of the ARX system at any particular time depends on the past inputs. Specifically, the output

at any time instant contains contributions of private excitation injected in the past. Hence, simply

injecting an i.i.d. sequence of Gaussian random variables will not result in an output distribution

that is i.i.d. across time.

However, since the actuator knows the past values of the private excitation, and also the transfer

function of the system, it can perform "pre-equalization" by filtering the private excitation sequence

before injecting it into the system. The filter, which we refer to as the pre-equalizer, has to be

chosen in such a way that the component of the private excitation that appears in the output of the
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plant is an i.i.d. sequence of mean 0 and variance b2
0σ

2
e . We let

e′[t] := − 1

b0

(b1e
′[t− 1] + b2e

′[t− 2] + . . .+ bhe
′[t− h]) + e[t],

where e[t] is i.i.d. and Gaussian of mean 0 and variance σ2
e . Since the system is strictly minimum

phase, this is a stable generation of an excitation sequence [54].

With a pre-equalizer in place, the effective input applied by the actuator is

u[t] = gt(z
t) + e′[t]. (6.27)

where {e′}t is the output of the pre-equalizer, and zt is the sequence of measurements reported by

the sensor up to time t. Therefore, the system evolves in closed-loop as

y[t+ 1] = −
p∑

m=0

amy[t−m] +
h∑
r=0

brgt−r(z
t−r) + b0e[t] + w[t+ 1], (6.28)

where {e[t]} is a sequence of i.i.d. Gaussian random variables with mean 0 and variance σ2
e . Hence,

from the point of view of actuator tests and associated results, the above problem is similar to that

described in Section-6.4.

We propose that the actuator perform the following tests to check if the sensor is reporting the

measurements honestly.

1) Actuator Test 1: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1] +

p∑
m=0

amz[k −m]−
h∑
r=0

brgk−r(z
k−r)− b0e[k])2 = σ2

w. (6.29)

2) Actuator Test 2: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1] +

p∑
m=0

amz[k −m]−
h∑
r=0

brgk−r(z
k−r))2 = (b2

0σ
2
e + σ2

w). (6.30)
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Consequently, Theorem 1 and Theorem 2 can be extended as follows.

Theorem 7. 1) Let v[t+ 1] := z[t+ 1] +
∑p

m=0 amz[k −m]−
∑h

r=0 brgk−r(z
k−r)− b0e[t]−

w[t+ 1], so that for an honest sensor which reports z[t] ≡ y[t], v[t] = 0 ∀t. If {z[t]} passes

tests (6.29) and (6.30), then,

lim
T→∞

1

T

T∑
k=1

v2[k] = 0. (6.31)

2) If the malicious sensor is to remain undetected, the mean-square performance of {y} is what

the actuator believes it is, which is the mean-square performance of {z}. Hence if the control

law was designed to provide a certain mean-square performance, then that is the value that

is indeed attained.

Proof. Omitted, since the proof follows the same sequence of arguments as the proof of Theorem

1.

In the following section, we extend the technique to systems with arbitrary delay and colored

noise, i.e., the more general ARMAX model, see [55].

6.6 Active Defense for Networked Cyber-Physical Systems: The SISO ARMAX Case

A general ARMAX system with arbitrary but finite delay is a model that is encountered often

in process control. In this section, we develop a Dynamic Watermarking scheme to secure such

systems. We show that by commanding the actuator to inject private excitation whose spectrum is

matched to that of the colored process noise entering the system, it can be ensured that a malicious

sensor is constrained to distorting the process noise, the only quantity unknown to the actuator, by

at most a zero-power signal. This amounts to a form of Internal Model Principle [56] for Dynamic

Watermarking, and is a phenomenon that doesn’t emerge in the analysis of a simple SISO or an

ARX system treated in the previous sections.

A general ARMAX system with finite delay l is described by

y[t] = −
p∑

k=1

aky[t− k] +
h∑
k=0

bku[t− l − k] +
r∑

k=0

ckw[t− k]. (6.32)
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Without loss of generality, we assume that c0 = 1. Let q−1 be the backward shift operator, so that

q−1y[t] = y[t− 1]. Then, the above system can be expressed as

A(q−1)y[t] = q−lB(q−1)u[t] + C(q−1)w[t], (6.33)

where a0 := 1, A(q−1) := a0 +a1q
−1 + ...+apq

−p, B(q−1) := b0 + b1q
−1 + ...+ bhq

−h, C(q−1) :=

c0 + c1q
−1 + ... + crq

−r, and B(q−1) and C(q−1) are assumed to be strictly minimum phase. To

secure the system, the actuator applies the control

u[t] = ug[t] +B−1(q−1)C(q−1)e[t], (6.34)

where ug[t] is the control policy-specified input sequence and {e} is a sequence of i.i.d Gaussian

random variables of zero mean and variance σ2
e , denoting the actuator node’s private excitation.

Since B(q−1) is assumed to be minimum phase, (6.34) is a stable generation of the control input

u[t]. Consequently, the output of the system obeys

A(q−1)y[t] = q−lB(q−1)ug[t] + q−lC(q−1)e[t] + C(q−1)w[t], (6.35)

implying that

y[t] = −
p∑

k=1

aky[t− k] +
h∑
k=0

bku
g[t− l − k] +

r∑
k=0

cke[t− l − k] +
r∑

k=0

ckw[t− k]. (6.36)

While the q−domain derivation is just formal, the above difference equation can be obtained rig-

orously.

Define λ[t] := e[t− l] + w[t]. Then, the output of the system can be expressed as

y[t] = −
p∑

k=1

aky[t− k] +
h∑
k=0

bku
g[t− l − k] +

r∑
k=0

ckλ[t− k]. (6.37)

We now develop tests that the actuator should perform to detect maliciousness of the sensor. The
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fundamental idea behind the tests is to check if the prediction-error of the reported sequence {z}

has the appropriate statistics. Specifically, the actuator processes the reported measurements with

a prediction-error filter defined through the following recursion for all t ≥ 0.

zt|t−1 = −
p∑

k=1

akz[t− k] +
h∑
k=0

bku
g[t− l − k] +

r∑
k=1

ckz̃[t− k], (6.38)

z̃[t] = z[t]− zt|t−1. (6.39)

The filter is assumed to be initialized with z̃[−k] = λ[−k], k ∈ {−1,−2, ...,−r}. It is easy to

verify that the above filter produces z̃[t] ≡ λ[t] if z[t] ≡ y[t]. Based on this observation, we

propose that the actuator perform the following tests.

1. Actuator Test 1: The actuator checks if

lim
T→∞

1

T

T−1∑
k=0

(z̃[k]− e[k − l])2 = σ2
w. (6.40)

2. Actuator Test 2: The actuator checks if

lim
T→∞

1

T

T−1∑
k=0

z̃2[k] = σ2
w + σ2

e . (6.41)

The following theorem shows that the above tests suffice to ensure that a malicious sensor can-

not introduce any distortion beyond addition of a zero-power signal to the process noise. i.e., a

malicious sensor of only zero additive noise distortion power can pass the above tests to remain

undetected.

Theorem 8. Define v[t] :=
∑p

k=0 akz[t − k] −
∑h

k=0 bku
g[t − l − k] −

∑r
k=0 ckλ[t − k], so that

for an honest sensor reporting z ≡ y, v ≡ 0. If the sensor passes tests (6.40) and (6.41), then,

lim
T→∞

1

T

T−1∑
k=0

v2[k] = 0.
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Proof. From (6.38) and (6.39), one gets

r∑
k=0

ckz̃[t− k] = z[t] +

p∑
k=1

akz[t− k]−
h∑
k=0

bku
g[t− l − k] =

r∑
k=0

ckλ[t− k] + v[t]. (6.42)

Equivalently, assuming appropriate initial conditions, one has

C(q−1)z̃[t] = C(q−1)λ[t] + v[t].

This gives

z̃[t] = λ[t] + vf [t],

where vf [t] := C−1(q−1)v[t]. Now,

z̃[t] = λ[t] + vf [t] = w[t] + e[t− l] + vf [t]. (6.43)

Since {z̃} passes (6.40), we have from the above,

lim
T→∞

1

T

T−1∑
k=0

(vf [k] + w[k])2 = σ2
w. (6.44)

This gives

lim
T→∞

1

T

T−1∑
k=0

v2
f [k] + 2vf [k]w[k] = 0. (6.45)

Since {z̃} also passes (6.41), we have

lim
T→∞

1

T

T−1∑
k=0

(vf [k] + w[k] + e[k − l])2 = σ2
w + σ2

e . (6.46)
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This gives

lim
T→∞

1

T

T−1∑
k=0

v2
f [k] + 2vf [k]w[k] + 2vf [k]e[k − l] = 0.

Combining the above with (6.45), we have

lim
T→∞

1

T

T−1∑
k=0

vf [k]e[k − l] = 0. (6.47)

Comparing (6.45) and (6.47) with (6.16) and (6.17), we see that the filtered distortion measure

{vf} behaves the same way {v} does in the white noise case. Proceeding the same way as in the

proof of Theorem 1, one arrives at

lim
T→∞

1

T

T−1∑
k=0

v2
f [k] = 0. (6.48)

Since v[k] = C(q−1)vf [k], and C(q−1) is minimum phase, it follows that limT→∞
1
T

∑T−1
k=0 v

2[k] =

0.

6.7 Active Defense for Networked Cyber-Physical Systems: SISO Systems with Partial Ob-

servations

In this section, we address SISO systems with noisy, partial observations. We consider a pth

order single input single output system described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1], (6.49)

y[t+ 1] = Cx[t+ 1] + n[t+ 1]. (6.50)
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where x[t] ∈ Rp, and A, B, and C are known matrices of appropriate dimensions. The actuator,

being honest, applies the input

u[t] = gt(z
t) + e[t], (6.51)

where gt(zt) is the control policy-specified input, and e[t] ∼ N (0, σ2
e) is a sequence of i.i.d random

variables denoting the actuator node’s private excitation. Consequently, the system evolves as

x[t+ 1] = Ax[t] +Bgt(z
t) + be[t] + w[t+ 1], (6.52)

y[t+ 1] = Cx[t+ 1] + n[t+ 1]. (6.53)

Let z[t] be the measurement reported by the sensor at time t. Since the sensor can be malicious,

z[t] need not equal y[t] for every t.

The actuator performs Kalman filtering on the reported measurements {z} as follows.

x̂F (k + 1|k) = Ax̂F (k|k) +Bgk(z
k) +Be[k], (6.54)

x̂F (k + 1|k + 1) = Ax̂F (k|k) +Bgk(z
k) +Be[k] +KkνF [k + 1], (6.55)

where νF [k + 1] := z[k + 1]−Cx̂F (k + 1|k), denotes the (possibly) faulty innovations computed

by the actuator, and Kk is the Kalman gain at time k.

We also define a Kalman filter that operates on the true measurements y[t] as follows.

x̂R(k + 1|k) = Ax̂R(k|k) +Bgk(z
k) +Be[k], (6.56)

x̂R(k + 1|k + 1) = Ax̂R(k|k) +Bgk(z
k) +Be[k] +KkνR[k + 1], (6.57)
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where νR[k + 1] := y[k + 1]−Cx̂R(k + 1|k) is the "real innovations" or "true innovations" of the

system. Of course, the actuator cannot implement the latter Kalman filter since it may not receive

y[k] from the sensor.

We now define

v[k + 1] := x̂F (k + 1|k + 1)− Ax̂F (k|k)−Bgk(zk)−Be[k]−KkνR[k + 1], (6.58)

so that for an honest sensor which reports z ≡ y, we have ν ≡ νR and consequently, v ≡ 0. The

actuator performs the following two tests to detect maliciousness of the sensor.

1) Actuator Test 1: Actuator checks if

lim
T→∞

1

T

T−1∑
k=0

e[k](x̂F (k + 1|k + 1)− Ax̂F (k|k)−Bgk(zk)−Be[k]) = 0 (6.59)

2) Actuator Test 2: Actuator checks if

lim
T→∞

1

T

T−1∑
k=0

(x̂F (k + 1|k + 1)− Ax̂F (k|k)−Bgk(zk)−Be[k])

(x̂F (k + 1|k + 1)− Ax̂F (k|k)−Bgk(zk)−Be[k])T = σ2
RKK

T , (6.60)

where σ2
R denotes the variance of the true innovations process, and K is the steady-state Kalman

gain. We assume that (A,C) is observable so that the algebraic Riccati equation associated with

the Kalman gain has a unique nonnegative definite solution [54]. The following theorem shows

that the above tests suffice to ensure that a malicious sensor of only zero additive noise distortion

power can pass the tests to remain undetected.

Theorem 9. Suppose that the reported sequence of measurements passes the tests (6.59) and

(6.60). Then,

lim
T→∞

1

T

T−1∑
k=0

‖v[k + 1]‖2 = 0. (6.61)
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Proof. Since the reported sequence of measurements passes (6.59), we have

lim
T→∞

1

T

T−1∑
k=0

e[k](KkνR[k + 1] + v[k + 1]) = 0.

Since the true innovations are independent of the zero-mean private excitation, it follows that

lim
T→∞

1

T

T−1∑
k=0

e[k]v[k + 1] = 0. (6.62)

Since the reported sequence of measurements also passes (6.60), we have

lim
T→∞

1

T

T−1∑
k=0

(KkνR[k + 1] + v[k + 1])(KkνR[k + 1] + v[k + 1])T = σ2
RKK

T .

Simplifying, the above gives

lim
T→∞

1

T

T−1∑
k=0

(KkνR[k + 1]vT [k + 1]) + (KkνR[k + 1]vT [k + 1])T + (v[k + 1]vT [k + 1]) = 0.

(6.63)

We define Sk := σ(x̂
k|k
R , x̂

k|k
F , zk, ek−2, yk−1),where x̂

k|k
R := {x̂R(k|k), x̂R(k−1|k−1), ..., x̂R(−1|−

1)}, and x̂
k|k
F is defined likewise. Define ν̂R[k] := E[νR[k]

∣∣Sk]. From the Kalman filtering equa-

tions, we have

Kk−1νR[k] = x̂R(k|k)− Ax̂R(k − 1|k − 1)−Bgk−1(zk−1)−Be[k − 1]

implying that

(x̂
k−2|k−2
R , x̂

k|k
F , ek−2, yk−1)→ (x̂R(k − 1|k − 1), x̂R(k|k), zk)→ νR[k]

forms a Markov chain. Therefore, ν̂R[k] := E[νR[k]
∣∣σ(x̂

k|k
R , x̂

k|k
F , zk, ek−2, yk−1)] = E[νR[k]

∣∣σ(x̂R(k−

71



1|k − 1), x̂R(k|k), zk)]. Therefore, we have

Kk−1ν̂R[k] = Kν(Kk−1νR[k] +Be[k − 1]), (6.64)

where Kν := σ2
RKk−1K

T
k−1(σ2

RKk−1K
T
k−1 + σ2

eBB
T )−1. Define Kk−1ν̃R[k] := Kk−1νR[k] −

Kk−1ν̂R[k]. Then, (Kk−1ν̃R[k−1],Sk) is a martingale difference sequence. This is because, ν̃R[k−

1] ∈ Sk, and

E[ν̃R[k]
∣∣Sk] = 0.

Also, v[k] ∈ Sk. Hence, MST applies, and we have

T∑
k=1

Kk−1ν̃R[k]vT [k] =



o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])

o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])

... . . .
...

o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])


+O(1), (6.65)

where vi[k] denotes the ith component of v[k]. Now, since KkνR[k] = Kkν̂R[k] + Kkν̃R[k], from

(6.64), we have

Kk−1νR[k] = (I −Kν)
−1Be[k − 1] + (I −Kν)

−1Kk−1ν̃R[k]. (6.66)

Substituting this in (6.63) and equating the diagonals using (6.62) and (6.65) completes the proof.

6.8 Active Defense for Networked Cyber-Physical Systems: MIMO Systems with Gaussian

Noise

In this section, we investigate multiple-input-multiple-output (MIMO) linear stochastic dy-

namical systems. They pose additional challenges as compared to SISO systems since malicious

sensors in a MIMO system can attempt to collude so as to prevent the other nodes from detecting
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their presence. In this section, we show how the actuators can prevent the malicious nodes from

introducing "excessive" distortion, lest they expose their presence.

An m input MIMO Linear Dynamical System of order n is described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1] (6.67)

where x[t] ∈ Rn, u[t] ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and {w} is a zero-mean i.i.d. sequence of

Gaussian random vectors with covariance matrix σ2
wIn. We consider the case where x is perfectly

observed.

Let z[t] be the measurements reported by the sensors to the other nodes in the system. Note

that since the nodes in the system are allowed to exchange reported measurements among them, all

malicious sensors have to be consistent and report the same (but possibly erroneous) measurements

to all honest nodes in the system. A history-dependent control policy is assumed to be in place,

which dictates that the ith input to the system at time t be

ugi [t] = git(z
t). (6.68)

As reasoned before, to secure the system, each actuator superimposes on the input specified

by the control policy, an additional zero-mean private excitation that it draws from a distribution,

here Gaussian, that is made public. It should be noted that while the distribution is made public,

the actual values of the excitation are not revealed by the actuator to any other node. The private

excitation value drawn at each time t is chosen to be independent of its private excitation values

at all the other time instants, of the private excitation values of other actuator nodes, and of the

control policy-specified input. Therefore, actuator i applies at time t the input

ui[t] = ugi [t] + ei[t] = git(z
t) + ei[t], (6.69)

where ei[t] ∼ N (0, σ2
e) is independent of ej[k] for (j, k) 6= (i, t), x[m], z[m] for m ≤ t, and
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w[n] for all n. We assume that all actuators are honest, meaning that they apply control inputs in

accordance to (6.69).

We propose the following tests to be performed by each actuator i.

1) Actuator Test 1: Actuator i checks if the reported sequence of measurements {z} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− Az[k]−Bgk(zk))(z[k + 1]− Az[k]−Bgk(zk))T

= σ2
eBB

T + σ2
wIn (6.70)

2) Actuator Test 2: Actuator i checks if the reported sequence of measurements {z} satisfies

lim
T→∞

1

T

T−1∑
k=0

ei[k](z[k + 1]− Az[k]−Bgk(zk)) = B·,iσ
2
e (6.71)

In Actuator Test 2, we have simplified the test to directly check the quantity that is important, which

in this is case is the analog of (6.12). We note that for any set of conditions to be an admissible test,

they have to be (i) checkable by the sensors and actuators based on their observations and what is

reported to them, and (ii) satisfied if all parties are honest. The above two conditions satisfy these

two conditions.

Define

v[t+ 1] := z[t+ 1]− Az[t]−Bgt(zt)−Be[t]−w[t+ 1],

so that if z[t] ≡ x[t], v[t] ≡ 0. It is easy to see that as in the case of SISO systems, the sequence {v}

has the intepretation as the additive noise distortion of the process noise deliberately introduced by

the malicious sensors. We term the quantity

lim
T→∞

1

T

T∑
k=1

||v[k]||2

the additive noise distortion power of the malicious sensors. The following theorem, akin to
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Theorem 1, proves that malicious sensors of only zero additive noise distortion power can pass the

above tests, thereby remaining undetected.

Theorem 10. Suppose that the reported sequence of measurements passes the tests (6.70), and

(6.71). If B is of rank n, then,

lim
T→∞

1

T

T∑
k=1

||v[k]||2 = 0. (6.72)

Proof. Since {z} satisfies (6.71), we have, ∀i ∈ {1, 2, ...,m},

lim
T→∞

1

T

T∑
k=1

ei[k](Be[k] + w[k + 1] + v[k + 1]) = σ2
eB·(i).

It follows that for all i ∈ {1, 2, · · · ,m},

lim
T→∞

1

T

T∑
k=1

ei[k]v[k + 1] = 0. (6.73)

Therefore,

lim
T→∞

1

T

T∑
k=1

e[k]vT [k + 1] = 0. (6.74)

Since {z} also satisfies (6.70), we have,

lim
T→∞

1

T

T−1∑
k=0

(Be[k] + w[k + 1] + v[k + 1])(Be[k] + w[k + 1] + v[k + 1])T = σ2
eBB

T + σ2
wIn

(6.75)

Using (6.74) and the fact that the process noise w[k+ 1], and the private excitation of the actuators

at time k are independent, the above simplifies to

lim
T→∞

1

T

T−1∑
k=0

(w[k + 1]vT [k + 1]) + (w[k + 1]vT [k + 1])T (v[k + 1]vT [k + 1]) = 0. (6.76)
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Define Sk := σ(xk, zk, ek−2), and ŵ[k] := E[w[k]
∣∣Sk]. Since

w[k] = x[k]− Ax[k − 1]−Bgk−1(zk−1)−Be[k − 1]),

we have

(xk−2, ek−2)→ (x[k − 1],x[k], zk)→ w[k]

forming a Markov chain. Consequently, ŵ[k] := E[w[k]
∣∣σ(xk−2, ek−2,x[k − 1],x[k], zk)] =

E[w[k]
∣∣σ(x[k − 1],x[k], zk)]. Therefore,

ŵ[k] = KW (Be[k − 1] + w[k]), (6.77)

where KW := σ2
w(σ2

eBB
T + σ2

wI)−1. Now define w̃[k] := w[k]− ŵ[k]. Then, (w̃[k − 1],Sk) is a

martingale difference sequence. This is because w̃[k − 1] ∈ Sk, and

E[w̃[k]
∣∣Sk] = 0. (6.78)

Also, v[k] ∈ Sk. Hence, MST applies, and we have

T−1∑
k=0

w̃[k + 1]vT [k + 1] =



o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])

o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])

... . . .
...

o(
∑T−1

k=0 v
2
1[k + 1]) . . . o(

∑T−1
k=0 v

2
p[k + 1])


+O(1), (6.79)

where vi[k + 1] denotes the ith element of v[k + 1].

Using the above, we have

w[k + 1] = ŵ[k + 1] + w̃[k + 1] = KW (Be[k] + w[k + 1]) + w̃[k + 1]. (6.80)

From the assumption on the rank of B, it follows that KW has all eigenvalues strictly lesser than
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unity. Therefore, simplifying the above,

w[k + 1] = (I −KW )−1KWBe[k] + (I −KW )−1w̃[k + 1]. (6.81)

Substituting this into (6.76), using (6.74) and (6.79), and equating the qth entry along the diagonal,

we have

T−1∑
k=0

v2
q [k + 1] + o(

T−1∑
k=0

v2
q [k + 1]) = o(T ). (6.82)

Since this is true for all q ∈ {1, 2, ..., p}, dividing the above by T and taking the limit as T → ∞

completes the proof.

6.9 Active Defense for Networked Cyber-Physical Systems: Partially Observed MIMO Sys-

tems with Gaussian Process and Measurement Noise

Consider a pth order m × n partially observed MIMO stochastic linear dynamical system

described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1] + n[t+ 1], (6.83)

where x[t] ∈ Rp is the system’s state at time t, u[t] ∈ Rm and y[t] ∈ Rn are respectively the

system’s input and output at time t, w[t] ∼ N (0, Q) and n[t] ∼ N (0, R) with R > 0 are respec-

tively the process and observation noises at time t, and A,B,C are known matrices of appropriate

dimensions which specify the system dynamics. We assume that the random processes {w} and

{n} are independent, and also that each of them is i.i.d. across time.

We denote by z[t] the measurements reported by the sensors at time t to the controller. A

truthful sensor is supposed to report z ≡ y, but a malicious sensor may report any values for {z}.

*Section 6.9 is reprinted with permission from “On minimal tests of sensor veracity for dynamic watermarking-
based defense of cyber-physical systems," by B. Satchidanandan and P. R. Kumar in Proceedings of the 9th Interna-
tional Conference on Communication Systems and Networks (COMSNETS), pp. 23-30, 2017, IEEE.
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We assume the existence of a general history-dependent control policy {gt} according to which

the controller computes the input that the actuators should apply at each time t. This control policy

is made public, meaning that it is known to all the nodes in the system. While the control policy

is supposed to be applied on the actual output sequence {y}, since the controller does not directly

measure the plant’s outputs, it is implemented on {z} as reported by the sensors. Additionally, as

outlined in the previous section, in order to secure the system from malicious sensors, the controller

commands the actuators to superimpose a private excitation sequence {e} on the sequence of

control policy-specified inputs. Hence, the net input applied to the system at time t is given by

u[t] = gt(z
t) +e[t], where e[t] ∼ N (0, σ2

eI), i.i.d across time, is the controller’s private excitation,

and zt := (z[0], z[1], ..., z[t]) denotes the past values of {z}. Consequently, the system evolves as

x[t+ 1] = Ax[t] +Bgt(z
t) +Be[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1] + n[t+ 1], (6.84)

where gt(zt) := [g1
t (z

t) , g2
t (z

t), ..., gmt (zt)]T .

Assume that (A,C) is observable, and (A,Q
1
2 ) is reachable. The controller performs Kalman

filtering on the reported sequence of measurements as follows. Let xF (k|k) denote the estimate

of the state x[k] given the information upto time k, i.e., (zk, ek−1), and xF (k|k − 1) denote the

estimate given the information upto time k − 1. They are given by the Kalman filtering equations:

xF (k + 1|k + 1) = AxF (k|k) +Bgk(z
k) +Be[k] +Kk+1νF [k + 1], (6.85)

where νF [k + 1] := z[k + 1] − CxF (k + 1|k). We note that if the sensors were truthful, the

estimates above would be the conditional mean estimates, and ν[t + 1] would be the innovations

process [57] at time t. However, the sensor may be malicious, and so we refer to νF [t + 1] as the

“false innovations" at time t + 1. For the purpose of analysis, we also define the “true" Kalman
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filter which operates on {y}:

xT (k + 1|k + 1) = AxT (k|k) +Bgk(z
k) +Be[k] +Kk+1νT [k + 1], (6.86)

where νT [k + 1] := y[k + 1]−CxT (k + 1|k) is the “true innovations" at time k + 1. We suppose

that the Kalman filters are initialized with the Kalman gain K0 set to its steady-state value K so

that they behave as time-invariant filters [54].

The dynamic watermarking tests we employ are based on the following two observations that

hold for the true Kalman filter:

1. e[k] is independent of KνT [k + 1], and

2. the sequence of conditional estimates {xT (k|k)} satisfies

{xT (k + 1|k + 1)− AxT (k|k)−Bgk(yk)−Be[k]} ∼ N (0, KΣKT ),

where

K = PCT (CPCT +R)−1 (6.87)

is the steady-state Kalman gain of the Kalman filter,

Σ = CPCT +R (6.88)

is the steady-state covariance matrix of the true innovations process, and P is the unique

nonnegative definite solution of the discrete algebraic Riccati equation P = APAT + Q −

APCT (CPCT + R)−1CPAT . The unique nonnegative definite solution P is guaranteed to

exist for the above Riccati equation since (A,C) is observable, (A,Q
1
2 ) is reachable, and

R > 0 [54]. The matrix P has the interpretation of the covariance matrix of the one-step

ahead state prediction error of the Kalman filter [54].
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The controller therefore performs the following two tests on the reported sequence of observations

{z}:

1. Controller Test 1: Check if the sequence of reported measurements satisfies

lim
T→∞

1

T

T−1∑
k=0

(xF (k + 1|k + 1)− AxF (k|k)−Bgk(zk)−Be[k])

(xF (k + 1|k + 1)− AxF (k|k)−Bgk(zk)−Be[k])T = KΣKT . (6.89)

2. Controller Test 2: Check if the sequence of reported observations satisfies

lim
T→∞

1

T

T−1∑
k=0

e[k](xF (k + 1|k + 1)− AxF (k|k)−Bgk(zk)−Be[k])T = 0. (6.90)

The above tests are equivalent to the tests proposed in [1]. In particular, the second test above can

be shown, via straightforward algebraic manipulations, to be equivalent to the corresponding test

for first-order SISO systems considered in [1]. We define

v[k + 1] := xF (k + 1|k + 1)− AxF (k|k)−Bgk(zk)−Be[k]−KνT [k + 1], (6.91)

and note that if there are no malicious sensors in the system, v ≡ 0.

The following theorem, which is a generalization of the results in [1], establishes the funda-

mental security guarantee provided by dynamic watermarking.

Theorem 11. Suppose that (A,C) is observable, (A,Q
1
2 ) is reachable, and R > 0. Further

suppose that the matrix CB is of rank n. Then, if the reported measurements {z} pass both (6.90)

and (6.89), it can be guaranteed that the additive noise distortion is of zero power, i.e.,

lim
T→∞

1

T

T∑
k=1

‖v[k]‖2 = 0. (6.92)

Proof. We appeal to the following lemma.

80



Lemma 1: Define M := Σ(Σ + σ2
eCBB

TCT )−1. If CB is of rank n, then, (I −M)−1 exists.

Proof.

I −M = I − Σ[Σ + σ2
eCBB

TCT ]−1. (6.93)

In the above, [Σ + σ2
eCBB

TCT ]−1 is guaranteed to exist since Σ > 0 (because R > 0). Its inverse

is

(I −M)−1 = I + Σ(σ2
eCBB

TCT )−1, (6.94)

since (σ2
eCBB

TCT )−1 exists because CB has rank n.

Since the reported measurements pass (6.90), we have using (6.91),

lim
T→∞

1

T

T−1∑
k=0

e[k](KνT [k + 1] + v[k + 1])T = 0.

Since e[k] is independent of the innovations νT [k + 1], the above simplifies to

lim
T→∞

1

T

T−1∑
k=0

e[k]vT [k + 1] = 0. (6.95)

Since the reported measurements also pass (6.89), we have using (6.91),

lim
T→∞

1

T

T−1∑
k=0

(KνT [k + 1] + v[k + 1])(KνT [k + 1] + v[k + 1])T = KΣKT .

Simplifying the above gives

lim
T→∞

1

T

T−1∑
k=0

KνT [k + 1]vT [k + 1] + (KνT [k + 1]vT [k + 1])T + v[k + 1]vT [k + 1] = 0. (6.96)

Define the σ-algebra Sk+1 := σ(yk+1, zk+1, ek−1,x
k|k
T ),where x

k|k
T := (xT (0|0),xT (1|1), ...,xT (k|k)).
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We also define ν̂T [k] := E[νT [k]
∣∣Sk], and ν̃T [k] := νT [k] − ν̂T [k]. Then, from the definition of

the innovations at time k + 1, we have

νT [k + 1] := y[k + 1]− CxT (k + 1|k) = y[k + 1]− CAxT (k|k)− CBgk(zk)− CBe[k].

(6.97)

From the above, it follows that

(yk, ek−1,x
k−1|k−1
T )→ (xT (k|k),y[k + 1], zk+1)→ νT [k + 1]

forms a Markov chain. Therefore,

ν̂T [k + 1] := E[νT [k + 1]
∣∣σ(yk+1, zk+1, ek−1,x

k|k
T )] = E[νT [k + 1]

∣∣σ(xT (k|k),y[k + 1], zk+1)].

Combining the above with (6.97), we have the MMSE estimate as [54, Chapter 7, Lemma 2.5]

ν̂T [k + 1] = M(CBe[k] + νT [k + 1]). (6.98)

Hence,

νT [k + 1] = ν̂T [k + 1] + ν̃T [k + 1] = MCBe[k] +MνT [k + 1] + ν̃T [k + 1]

Rearranging and using Lemma 1, we have

νT [k + 1] = (I −M)−1MCBe[k] + (I −M)−1ν̃T [k + 1]. (6.99)

Now, the RHS of (6.97), and hence νT [k + 1], is measurable with respect to Sk+2. Also, since

ν̂T [k+1] ∈ Sk+1 ⊂ Sk+2, it follows that ν̃T [k+1] ∈ Sk+2. Clearly, E[ν̃T [k+2]
∣∣Sk+2] = 0. Hence,

we have that (ν̃T [k+ 1],Sk+2) is a martingale difference sequence. Moreover, since v[k+ 1], after
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some algebra, can be expressed as K(z[k + 1]− y[k + 1])−KCA(xF (k|k)− xT (k|k)), we have

v[k + 1] ∈ Sk+1. Hence, Martingale Stability Theorem (MST) [49, Lemma 2(iii)] holds, and we

have

T−1∑
k=0

ν̃T [k + 1]vT [k + 1] =


o(
∑T

k=1 v
2
1[k]) . . . o(

∑T
k=1 v

2
p[k])

...
...

...

o(
∑T

k=1 v
2
1[k]) . . . o(

∑T
k=1 v

2
p[k])

+ [O(1)]p×p, (6.100)

where [O(1)]p×p denotes a p× p matrix all of whose entries are O(1). Substituting (6.99) in (6.96)

and using (6.95) and (6.100) yields

T∑
k=1

v[k]vT [k] +


o(T ) . . . o(T )

...
...

...

o(T ) . . . o(T )

+


o(
∑T

k=1 v
2
1[k]) . . . o(

∑T
k=1 v

2
p[k])

...
...

...

o(
∑T

k=1 v
2
1[k]) . . . o(

∑T
k=1 v

2
p[k])



+


o(
∑T

k=1 v
2
1[k]) . . . o(

∑T
k=1 v

2
1[k])

...
...

...

o(
∑T

k=1 v
2
p[k]) . . . o(

∑T
k=1 v

2
p[k])

 = o(T ). (6.101)

Dividing the above by T , equating the trace, and letting T →∞ completes the proof.

We now show that if one drops either of the two controller tests (6.90) or (6.89), then the

guarantee does not hold. We do so by explicitly constructing two attack strategies, each of which

passes exactly each one of the tests, and yet, limT→∞
1
T

∑T
k=1 ‖v[k]‖2 6= 0 for both the attacks.

Consider a special case of system (6.83), viz., a SISO first-order perfectly observed system

(p = m = n = C = 1, R = 0, Q = σ2
w ∈ R+). In that case, xF (k|k) reduces to z[k], νT [k] to

w[k], K to 1, and Σ to σ2
w. Consequently, tests (6.89) and (6.90) reduce respectively to
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1. Test 1: Check if the reported sequence of measurements {z} satisfies

lim
T→∞

1

T

T∑
k=1

(z[k + 1]− Az[k]−Bgk(zk)−Be[k])2 = σ2
w, (6.102)

2. Test 2: Check if the reported sequence of measurements {z} satisfies

lim
T→∞

1

T

T∑
k=1

e[k](z[k + 1]− Az[k]−Bgk(zk)−Be[k]) = 0, (6.103)

and v[t+ 1] = z[t+ 1]− Az[t]−Bgt(zt)−Be[t]− w[t+ 1].

Counterexample showing Controller Test 1 alone is not sufficient: Suppose that the reported

measurements are subjected to (6.102) alone, the first test. To show that this is not sufficient to

guarantee zero additive noise distortion power by the malicious sensor, consider the following

attack.

Suppose that the malicious sensor reports measurements {z} generated as

z[k + 1] = Az[k] +Bgk(z
k) + (

B2σ2
e − σ2

w

B2σ2
e + σ2

w

)(y[k + 1]− Ay[k]−Bgk(zk)). (6.104)

We now show that the sequence {z} so generated passes (6.102), the first test.

Define γ[k] := z[k]−Az[k− 1]−Bug[k− 1]−Be[k− 1], the quantity whose second moment

is being empirically tested in (6.102). Then, we have

γ[k] = z[k]− Az[k − 1]−Bgk−1(zk−1)−Be[k − 1]

= (
B2σ2

e − σ2
w

B2σ2
e + σ2

w

)(y[k]− Ay[k − 1]−Bgk−1(zk−1)−Be[k − 1])

= (
B2σ2

e − σ2
w

B2σ2
e + σ2

w

)(Be[k − 1] + w[k])−Be[k − 1]

= − 2σ2
w

B2σ2
e + σ2

w

Be[k − 1] + (
B2σ2

e − σ2
w

B2σ2
e + σ2

w

)w[k]. (6.105)

From the above, it is clear that limT→∞
1
T

∑T
k=1 γ

2[k] of (6.102) is simply the variance of the RHS
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of the above, given by

(
−2σ2

wB

B2σ2
e + σ2

w

)2 + (
B2σ2

e − σ2
w

B2σ2
e + σ2

w

)2.

This simplifies to σ2
w, and hence, this attack passes Test 1.

Finally, for the above attack, it is easy to see that v[k + 1] = γ[k + 1] − w[k + 1] =

− 2σ2
w

B2σ2
e+σ2

w
(Be[k] + w[k + 1]), and hence, limT→∞

1
T

∑T
k=1 v

2[k] = 4σ4
w

B2σ2
e+σ2

w
6= 0.

Counterexample showing Controller Test 2 alone is not sufficient: Now suppose that the re-

ported measurements are subjected to (6.103) alone. To show that this is not sufficient to guarantee

zero additive noise distortion power by the malicious sensor, consider the following attack. The

sensor reports measurements {z} generated as

z[k + 1] = Az[k] +Bgk(z
k) + (y[k + 1]− Ay[k]−Bgk(zk) + λ[k + 1]), (6.106)

where λ[k + 1] ∼ N (0, σ2
λ) is chosen by the sensor in an i.i.d. fashion across time, and also

independently of all random variables that it has observed till then.

To show that the sequence {z} so generated passes (6.103), the second test, note that

lim
T→∞

1

T

T−1∑
k=0

e[k](z[k + 1]− Az[k]−Bgk(zk)−Be[k])

= lim
T→∞

1

T

T−1∑
k=0

e[k](y[k + 1]− Ay[k]−Bgk(zk) + λ[k + 1]−Be[k])

= lim
T→∞

1

T

T−1∑
k=0

e[k](w[k + 1] + λ[k + 1]).

Sincew[k+1] and λ[k+1] are independent of e[k], the above reduces to 0, thereby passing (6.103),

and hence, (6.90).

However, for the above attack, it is easy to see that v[k + 1] = λ[k + 1], and hence,

lim
T→∞

1

T

T∑
k=1

v2[k] = E[λ2[k]] = σ2
λ 6= 0.
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Remark: It is well known that the innovations process of a stochastic process is a causal and

causally invertible transformation of the stochastic process with the property that it is uncorrelated

across time [57]. Hence, the innovations at time t can be thought of as summarizing all the “new"

information provided by the sensors at time t, information that could not have been predicted from

the past. Therefore, one can think of the honest sensors’ purpose as being to report the innovations

at each time t. Now, from (6.91), we have xF (k + 1|k + 1) − AxF (k|k) − Bgk(zk) − Be[k] =

KνT [k+ 1] + v[k+ 1]. The LHS of the above can be computed by the controller. Hence, v[k+ 1]

has a physical interpretation as the distortion added by the malicious sensors to the true innovations

at time k+1 (hence the nomenclature for additive noise distortion power). What the above theorem

says is that the malicious sensors cannot distort the true innovations process beyond adding a zero-

power sequence to it if they wish to remain undetected.

We now consider linear control designs that provide some guarantee on the quadratic state

tracking error. The design need not be an optimal LQG design, but one that merely aims at pro-

viding some upper bound on the aforementioned quantity. The following theorem shows that for

stable systems, guaranteeing that any additive noise distortion is of power zero is sufficient to en-

sure that the malicious sensors do not increase the quadratic cost of the state from its design value

in the case of linear designs.

Theorem 12. Suppose that the system (6.83) is open-loop stable, i.e., A has all its eigenvalues in

the open left half-plane, and define

d[k] := xF (k|k)− xT (k|k). (6.107)

If the reported measurements pass (6.90) and (6.89), then,

1.

lim
T→∞

1

T

T−1∑
k=0

‖d[k]‖2 = 0. (6.108)
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2. Suppose that the control policy is a linear feedback policy gt(zt) = FxF (t|t), and a con-

trol objective is quadratic regulation. Then, the true quadratic regulation performance

limT→∞
1
T

∑T−1
k=0 ‖xT (k|k)‖2 of the system is no different from what the controller thinks

it is, in the sense that

lim
T→∞

1

T

T−1∑
k=0

‖xF (k|k)‖2 = lim
T→∞

1

T

T−1∑
k=0

‖xT (k|k)‖2 (6.109)

3. Under the same conditions as (2) above, the malicious sensors cannot increase the quadratic

regulation cost of the system limT→∞
1
T

∑T−1
k=0 ‖xT (k|k)‖2 from the value that would be ob-

tained if all the sensors were honest.

Proof. Subtracting (6.86) from (6.85), we have d[k + 1] = Ad[k] + K(νF [k + 1] − νT [k + 1]).

From (6.85), we have KνF [k+1] = xF (k+1|k+1)−AxF (k|k)−Bgk(zk)−Be[k]. Combining

this with (6.91) gives K(νF [k+1]−νT [k+1]) = v[k+1]. Substituting this in the above equation

gives d[k + 1] = Ad[k] + v[k + 1]. Since {v} is of zero power and A is stable, result (1) follows.

Now, from (6.107), we have xF (k|k) = xT (k|k) + d[k]. By triangular inequality, we have

‖xF (k|k)‖ ≤ ‖xT (k|k)‖+‖d[k]‖. Hence, ‖xF (k|k)‖2 ≤ ‖xT (k|k)‖2+‖d[k]‖2+2‖γxT (k|k)‖‖γ−1d[k]‖

for all γ > 0. Since 2‖γxT (k|k)‖‖γ−1d[k]‖ ≤ ‖γxT (k|k)‖2 + ‖γ−1d[k]‖2, substituting this in the

above yields ‖xF (k|k)‖2 ≤ (1 + γ2)‖xT (k|k)‖2 + (1 + γ−2)‖d[k]‖2. Hence,

lim
T→∞

1

T

T−1∑
k=0

‖xF (k|k)‖2 ≤ lim
T→∞

1

T

T−1∑
k=0

(1 + γ2)‖xT (k|k)‖2 + lim
T→∞

1

T

T−1∑
k=0

(1 + γ−2)‖d[k]‖2

The second term reduces to zero from the previous result. Since the above is true for all γ > 0,

taking γ → 0 gives

lim
T→∞

1

T

T−1∑
k=0

‖xF (k|k)‖2 ≤ lim
T→∞

1

T

T−1∑
k=0

‖xT (k|k)‖2. (6.110)

Similarly, from (6.107), we have xT (k|k) = xF (k|k) − d[k]. Hence, ‖xT (k|k)‖ = ‖xF (k|k) −
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d[k]‖ ≤ ‖xF (k|k)‖+ ‖d[k]‖. Continuing as above, we arrive at

lim
T→∞

1

T

T−1∑
k=0

‖xT (k|k)‖2 ≤ lim
T→∞

1

T

T−1∑
k=0

‖xF (k|k)‖2. (6.111)

Combining the above with (6.110) gives the second result.

It follows from the above result that even though the controller does not have access to the true

measurements {y}, it can empirically compute the true quadratic regulation cost E[‖xT (k|k)‖2] of

the system. It follows that the malicious sensors cannot increase the true quadratic regulation cost

of the system from its design value without exposing their presence.

6.10 Extension to Non-Gaussian Systems

The results developed in the previous sections assumed that the process noise follows a Gaus-

sian distribution. This assumption can be relaxed to a certain extent. In this section, we illustrate

how this may be relaxed for a single-input-single-output system.

Consider a SISO system described by

x[t+ 1] = ax[t] + bu[t] + w[t], (6.112)

where w[t] ∼ PW is an i.i.d. process with mean 0 and variance σ2
w. In such a case, the actuator can

choose the distribution of its private excitation such that the output of the private excitation has the

same distribution as the process noise. Hence, the actuator applies to the system the input

u[t] = gt(z
t) + e[t], (6.113)

where be[t] ∼ PW is an i.i.d. sequence. As before, even though the actuator implements the control

policy {g}, the policy is applied to the measurements z[t] reported by the sensor, which could differ
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from the true output x[t]. Therefore, the system evolves in closed-loop as

x[t+ 1] = ax[t] + bgt(z
t) + be[t] + w[t]. (6.114)

The actuator then performs the following tests to check if the sensor is malicious or not.

1) Actuator Test 1: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− az[k]− bgk(zk)− be[k])2 = σ2
w. (6.115)

2) Actuator Test 2: Check if the reported sequence of measurements {z[t]} satisfies

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− az[k]− bgk(zk))2 = 2σ2
w. (6.116)

As before, let

v[t+ 1] := z[t+ 1]− az[t]− bgt(zt)− be[t]− w[t+ 1],

so that for an honest sensor which reports z[t] ≡ x[t], v[t] = 0 ∀t. The additive noise distortion

power of a malicious sensor too is defined as before, i.e., as

lim
T→∞

1

T

T∑
k=1

v2[k].

The following result, a generalization of Theorem 1, shows that the above tests suffice to ensure

that a malicious sensor of only zero effective power can remain undetected.

Theorem 13. If {z[t]} satisfies tests (6.115) and (6.116), then,

lim
T→∞

1

T

T∑
k=1

v2[k] = 0. (6.117)

Proof. Following the same sequence of arguments as in the proof of Theorem 1, we arrive at the
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following equalities:

lim
T→∞

1

T

T∑
k=1

v2[k] + lim
T→∞

1

T

T∑
k=1

2v[k]w[k] = 0, (6.118)

lim
T→∞

1

T

T∑
k=1

e[k − 1]v[k] = 0. (6.119)

Let Sk := σ(xk, zk, ek−2), and ŵ[k] := E[w[k]
∣∣Sk]. The general complication is that due to

non-Gaussianity, the conditional mean estimate may be non-linear in e[k − 1] and w[k], unlike in

the Gaussian case. However, since the sequence of observations are i.i.d., and the distribution of

the actuator’s private excitation is chosen to be the same as the distribution of the process noise,

we have

ŵ[k] =
1

2
(be[k − 1] + w[k]) = β(be[k − 1] + w[k]), (6.120)

where β := 1
2
. This can be written as

ŵ[k] = αe[k − 1] + βw[k],

where α := bβ. Let w̃[k] := w[k]− ŵ[k].

Now, the following result also holds following the same sequence of arguments employed in

the proof of Theorem 1:
T∑
k=1

v[k]w̃[k] = o(
T∑
k=1

v2[k]) +O(1). (6.121)

Hence, following similar arguments as in the proof of Theorem 1, we obtain

T∑
k=1

v2[k] +
T∑
k=1

2v[k]w[k] = (1 + o(1))(
T∑
k=1

v2[k]) +O(1).

90



Dividing the above equation by T , taking the limit as T →∞, and invoking (6.118) completes the

proof.

Remark: In the watermarking strategy used in the above system, in order to safeguard against ma-

licious actions of the sensors, the level of noise added is exactly equal to the process noise already

present in the system. Hence there is an amplification of the process noise’s standard deviation

by
√

2 that appears the price of guarding against malicious attack by the sensor. In contrast, in

the Gaussian case, we have seen that this extra cost can be made as small as desired by choosing

σ2
e as small as desired, though of course at the cost of delaying detection with an acceptable false

alarm probability, as we discuss in the next section. In Chapter 7, we will characterize the set of

all watermark strategies that can guarantee (6.117).

6.11 Statistical Tests for Active Defense

The results developed in the previous sections are couched in an asymptotic fashion. They

characterize what can be detected and how that may be done. These asymptotic characterizations

can be used to develop statistical tests that reveal malicious activity in a finite period of time with

acceptable false alarm rates.

The task at hand is to develop statistical tests equivalent to asymptotic tests such as (6.12),

(6.13), (6.70), (6.71), which include tests for covariance matrices of certain random vectors. This

problem has been addressed in [58] in the context of fault detection in control systems, in which the

innovation sequence is tested for the properties of whiteness, mean, and covariance. Since these

are also the properties that have to be satisfied by the test sequences that we construct in (6.12),

(6.13), and (6.71), the same test described in [58] can be used.

Yet another test that is particularly well-suited for the problem at hand is the sequential proba-

bility ratio test, introduced in [59]. In the standard setting of sequential hypothesis testing, for each

time t, the set of all possible observations Sm (or the space of sufficient statistics) is partitioned into

three sets R0, R1, R. At each time t, a decision is made whether to select the null hypothesis (and

stop), select the the alternative hypothesis (and stop), or continue observing. The null (alternative)
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hypothesis is accepted and hypothesis testing is stopped if at some time t, the observations avail-

able till time t, denoted by {zts}, fall in the set R0 (R1). Hypothesis testing is continued at time t

if {zts} falls in R. One such sequential test is the sequential probability ratio test presented in [59],

where the likelihood ratio of observations up to time t, denoted by Λt, is compared against two

thresholds τ1 and τ2. The null (alternative) hypothesis is accepted at time t if Λt < τ1 (Λt > τ2). If

τ1 ≤ Λt ≤ τ2, another observation is drawn, and the process repeats.

There are a few aspects where the problem at hand departs from the above. These are enumer-

ated below. In what follows, the null hypothesis is that the control system is not under attack.

1) In the problem of secure control, it is not possible to attribute a distribution (or even a pa-

rameterized, finite-dimensional family of distributions) from which the observations would

occur under the alternative hypothesis (that the control system is under attack). Conse-

quently, a likelihood ratio cannot be defined, and the sequential probability ratio test cannot

be used. Hence, the problem at hand is not to test one hypothesis against another, but is only

that of rejecting the null hypothesis or otherwise.

2) In the classical setup as described in [59], in a finite time and with probability 1, the test stops,

and one hypothesis or the other is accepted. However, the adversary could be a "sleeper

agent". It could behave as an honest party for a long period of time, and then operate in a

malicious manner. Hence in our situation, at no time can one "accept" the null hypothesis

forever for all subsequent time. Therefore, in the systems of interest here, there are only

two possible decisions at any time t, reject the null hypothesis or continue observations. An

alternative, more positive way of stating this, is that the watermarking is ever vigilant to

detecting attacks, and never precludes the possibility of a future attack.

3) In the classical setting, optimal performance is obtained by considering all observations that

are available up to the time of making a decision. However, in our problem, an adversary

that behaves maliciously in a bursty fashion, is not likely to be detected since long term aver-

aging would nullify these effects. In order to account for this, a moving window approach or
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exponential forgetting [54] could be employed over which a test statistic can be calculated.

In the moving window approach, the statistical test is conducted over a window of l obser-

vations, nl ≤ t < (n+ 1)l. In each window it assesses whether to reject the null hypotheses.

In this manner, malicious activity can be detected within l samples, with acceptable false

alarm rate. The choice of the excitation variance σ2
e can be based on the acceptable detection

delay l, and the false alarm rate. In the exponential forgetting approach, the test discounts

past values by a geometric sequence. Its advantage is that it allows a recursive implemen-

tation that does not require the storing of a window of observations which may be a matter

of concern in electronic control units or processors of limited memory. Another advantage

is that just like the window length, the forgetting factor λ can be varied, with its value of λ

corresponding roughly to a window length of 9/(1− λ).

Based on the above, the basis of a statistical hypothesis test for the problem can be chosen as

follows. Under the null hypothesis, the sample covariance matrix follows the Wishart distribution

[60] (the multidimensional counterpart of the Chi-squared distribution). Hence, for a given false

alarm rate α, the threshold τ(α) can be determined for the likelihood function of the observations,

where the likelihood function considered for the test at time t is the probability density evaluated

at the l most recent observations. If this likelihood function exceeds the threshold at any time t,

an alarm is raised. If not, the test is repeated for the next time instant. The following simulation

example is illustrative.

Example: We consider the scenario of an ARX system addressed in Section-6.5. Specifically,

we consider a second order plant of the type common in process control. A single-input, single-

output stable plant obeying (6.25), with parameters a0 = 0.7, a1 = 0.2, b0 = 1, b1 = 0.5 and

σ2
w = 1 is considered. Note that the chosen system is minimum phase, so that the pre-equalizer

required to filter the sequence of private excitation is stable.

The sensor is assumed to be initially well-behaved, but suddenly become malicious after a

certain period (denoting the time of initiation of attack), while the actuator is assumed to remain
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uncompromised. The actuator applies control inputs

u[k] = − 1

b0

(a0z[t] + a1z[t− 1] + b1u[k − 1]) + e[k],

where z[k] is the measurement reported by the sensor at time k, and e[k] ∼ i.i.d. N (0, 1) is the

actuator node’s private excitation. Therefore, the system evolves as

y[k + 1] = 0.7(y[k]− z[k]) + 0.3(y[k − 1]− z[k − 1]) + e[k] + w[k + 1].

The adversary attacks the system at some random time and begins to report false measurements.

In order to do so, the adversary estimates optimally the process noise at each instant from the

measurements that it observes. Since the process noise and the private excitation have the same

variance, the optimal estimate is simply 1
2
(y[k + 1]− 0.7(y[k]− z[k])− 0.3(y[k − 1]− z[k − 1]).

Once the adversary forms its estimate, it adds a noise correlated with the estimate as follows. The

adversary forms v[t] = n[t]−ŵ[t], where n[t] ∼ N (0, 1), the same distribution as w[t], and reports

z[t] = x[t]+v[t]. Note that in the absence of dynamic watermarking, employing this strategy would

enable the adversary to form perfect estimates of the process noise, and consequently, as reasoned

in Section-6.3, would render every detection algorithm useless.

Fig. 6.3 plots the evolution of the negative log likelihood function over time when dynamic

watermarking is employed. In our simulation, the adversary initiates attack at time epoch 4500. As

indicated in Fig. 6.3, the (windowed) negative log likelihood function corresponding to (6.29) stays

within limits until the attack. Around time epoch 4500, the likelihood function steadily increases,

indicating the onset of an attack. Based on tolerable false alarm rates, an appropriate detection

threshold can be set.

6.12 Concluding Remarks

In this chapter, we have considered the problem of securing a cyberphysical system from ma-

licious sensors and have developed a general procedure termed “dynamic watermarking" that im-
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Figure 6.3: Sequential Hypothesis Testing for Attack Detection. Reprinted with permission from
[1].

poses private excitation signals on the actuation signals whose presence can be traced around the

loop to detect malicious behaviors of sensors. We have illustrated the technique in the context of a

variety of control system contexts including a simple first-order SISO system, ARX and ARMAX

systems, a staple model in industrial process control, and the partially-observed MIMO system with

process and measurement noise, one of the most general system models used in modern control

theory. We have established the fundamental security guarantee provided by dynamic watermark-

ing in all of the aforementioned system contexts. These guarantees are contingent on the controller

conducting two particular tests of sensor veracity, and it was shown via explicit construction of two

attack strategies that both of these tests are required in that neither can be dropped if the security

guarantees are to hold.

Addendum

Notation: This chapter uses the following notation.

• Scalars are denoted using lowercase: a

• Vectors are denoted using lowercase boldface: x

• The ith component of vector x: xi
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• Matrices are denoted using uppercase: A

• The ith column of matrix A: A·i

• The ith row of matrix A: Ai·

• The submatrix of A formed by the intersection of rows i through j and columns p through q:

Ai:j,p:q

• The matrix with ith column of A removed: A·(−i)

• The matrix with ith row of A removed: A(−i)·

• The vector with ith component of x removed: x−i
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7. ON THE DESIGN OF SECURITY-GUARANTEEING DYNAMIC WATERMARKS*

7.1 Introduction

In this chapter, we go beyond the class of Gaussian systems and address the problem of de-

signing watermarks for systems with arbitrarily distributed additive noise. Specifically, given a

perfectly observed, Multiple-Input-Multiple-Output (MIMO), linear stochastic system with inde-

pendent, identically distributed (i.i.d.) arbitrary process noise distribution, we derive the necessary

and sufficient conditions that the watermark should satisfy in order for the fundamental security

guarantee to hold.

The results of this chapter characterize the feasible set of watermarks that provide the funda-

mental security guarantee for any given noise distribution. Obtaining this set is a prerequisite for

designing optimal watermarking schemes that optimize desirable objectives such as minimizing

the watermark power, minimizing the maximum value that the watermark can assume, etc.

The rest of this chapter is organized as follows. Section 7.2 formulates the problem. Section

7.3 contains the main result of the chapter, viz., the necessary and sufficient conditions that the

statistics of the watermark should satisfy in order for the fundamental security guarantee to hold.

Section 7.4 contains some concluding remarks.

Notation and terminology: Given a vector x, we denote by xi the ith entry of x, and by xTT the

matrix xxT . The letter Ψ always denotes a conditional expectation. Given two random variables

X and Y , we denote by ΨX(Y ) the conditional expectation E[X|Y ]. When clear from the context,

we drop the argument Y and denote the above conditional expectation by simply ΨX . The set of

random variables with finite second moments forms a Hilbert space with E[XY ] being defined

as the inner product between random variables X and Y . The projection operations on random

variables that are described in this chapter are all with respect to this inner product.

*Reprinted with permission from “On the Design of Security-Guaranteeing Dynamic Watermarks," by B. Satchi-
danandan and P. R. Kumar, IEEE Control Systems Letters, 2019, IEEE.
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7.2 Motivation and Problem Formulation

Consider a pth order, perfectly observed, multiple-input-multiple-output linear stochastic sys-

tem described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1], (7.1)

where x[t] ∈ Rp is the state as well as the output of the system at time t, u[t] ∈ Rm is the input

applied to the system at time t, w[t+ 1] ∈ Rp is the process noise affecting the state at time t+ 1,

and A and B are known matrices of appropriate dimensions. The process noise sequence {w} is

i.i.d. across time, and we denote by PW the probability distribution of w[t] at each time t. We

denote by µW the mean of the process noise, and by ΣW the matrix E(w[t]wT [t]). Apart from the

assumption that these two moments exist, no other assumption is made on the distribution PW .

The input at each time t is determined by a controller according to an arbitrary, possibly history-

dependent control policy {gt}, where gt : Rp×(t+1) → Rm is the function that maps the measure-

ment sequence reported by the sensors up to time t to the input applied by the actuators at time

t.

The problem setup that we consider in this chapter is one where an arbitrary subset of the sen-

sors in system (7.1) could be malicious. The malicious sensors may not report the measurements

that they observe in a truthful manner. Rather, they may distort the measurements that they ob-

serve in an arbitrary fashion, possibly according to some coordinated attack strategy, and report

the distorted measurements to the controller.

In order to defend against malicious sensors that may be present in the system, the controller at

each time t superimposes on the control policy-specified input a random signal e[t], known as the

watermark, chosen independently of all other random variables in the system up until that time,

and in an i.i.d. fashion across time. We denote by PE the probability distribution of e[t] at each

time t. We constrain the watermark to have finite second moment so that its mean and covariance

matrix exist. We denote by µE its mean and by ΣE the matrix E(e[t]eT [t]). The net input applied
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to the system at time t is u[t] = gt(z
t) + e[t], and the system (7.1) evolves in closed loop as

x[t+ 1] = Ax[t] +Bgt(z
t) +Be[t] + w[t+ 1], (7.2)

where zt := {z[0], . . . , z[t]}.

Define ΣEW := E(e[t]wT [t + 1]). In order to detect whether or not there are any malicious

sensors in the system, the controller conducts the following tests, and declares the presence of

malicious sensors if any of them fail.

Test 1: The controller checks if

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− Az[k]−Bgk(zk))TT
?
= BΣEB

T + ΣW +BΣEW + ΣT
EWB

T . (7.3)

Test 2: The controller checks if

lim
T→∞

1

T

T−1∑
k=0

e[k] (z[k + 1]− Az[k]−Bgk(zk)−Be[k])T
?
= ΣEW . (7.4)

Test 3: The controller checks if

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− Az[k]−Bgk(zk)−Be[k])
?
= µW . (7.5)

While the tests are presented in an asymptotic form, as illustrated in [61], they can be converted

into finite-time statistical tests with desired false alarm and misdetection rates via standard meth-

ods using thresholds on the finite time running averages. In comparison to [1], we have introduced

an additional test, viz., Test 3, for the case of non-Gaussian noise for reasons that will become ap-

parent later. Note that if all sensors are honest, so that z[t] ≡ x[t], then the reported measurements

will pass all of the above tests almost surely.
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Define

v[t+ 1] := z[t+ 1]− Az[t]−Bgt(zt)−Be[t]−w[t+ 1]. (7.6)

This can be regarded as the additive distortion introduced by the sensors to the process noise at

time t+ 1. Note that if all sensors are honest, then the additive distortion v[t] ≡ 0. The fundamen-

tal security guarantee of DW [1, 62, 63] establishes that under certain conditions on the system

parameters, if the reported sequence of measurements {z} pass the aforementioned tests, then the

additive distortion can only be of zero power, no matter what attack strategy the malicious sensors

that may be present in the system employ. That is,

lim
T→∞

1

T

T∑
k=1

||v[k]||2 = 0. (7.7)

This result has been established in [1, 62] in the context of Gaussian systems where the process

noise, the measurement noise, as well as the watermark are i.i.d. Gaussian random processes, and

it is the basis of other results which guarantee that the control performance of the system cannot

be degraded by the malicious sensors.

In this chapter, we extend the above result to systems of the form (7.1) which are affected by

noise having an arbitrary distribution PW . Given a noise distribution PW , unless the distribution

PE of the watermark is appropriately designed, the fundamental security guarantee of DW does

not hold, as illustrated by the following example.

Example: Consider the scalar system

x[t+ 1] = 0.9x[t] + u[t] + w[t+ 1], (7.8)

where {w} is a Bernoulli random process which takes the value 0 with probability 1
4

and the value

1 with probability 3
4
, and is i.i.d. across time.

Consider an output variance-minimizing stationary linear feedback policy gt(zt) = −0.9z[t],
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and a watermark that is drawn from a Bernoulli distribution i.i.d. across time, with P(e[t] = 0) = 1
2

and P(e[t] = 1) = 1
2

for all t. The closed loop system evolves as

x[t+ 1] = 0.9(x[t]− z[t]) + e[t] + w[t+ 1]. (7.9)

The actuator subjects the reported sequence of measurements {z} to Tests (7.3), (7.4) and (7.5),

and declares the presence of malicious sensors if any of them fail. In what follows, we construct

a specific attack that passes all three tests, but nevertheless successfully introduces an additive

distortion of non-zero power.

Note first that from (7.9), it follows that s[t+1] := x[t+1]−0.9x[t]+0.9z[t] = e[t]+w[t+1],

so that s[t+ 1] ∈ {0, 1, 2} for every t. Now, consider the attack

z[t+ 1] =


0.9 if s[t+ 1] = 0,

0.7 if s[t+ 1] = 1,

2.1 if s[t+ 1] = 2.

(7.10)

Then, the left-hand side (LHS) of (7.3) becomes limT→∞
1
T

∑T−1
k=0 z

2[k + 1]. Since z[k + 1] is

distributed i.i.d. across time and takes the value 0.9 with probability 1
8
, the value 0.7 with proba-

bility 1
2
, and the value 2.1 with probability 3

8
, we have that the LHS of (7.3) almost surely equals

E(z2[t + 1]) = 2, which equals the right-hand side (RHS) of (7.3). It is equally straightforward

to verify that the other two Tests (7.4) and (7.5) are also passed by the sequence {z}. Since this

attack passes all three tests, it will go undetected by the attack detector. However, the additive

distortion that this attack introduces has power 3
20
6= 0. Hence, the watermark distribution that has

been chosen fails to provide the fundamental security guarantee (7.7).

On the other hand, if the watermark distribution PE is chosen to be Bernoulli which takes the

value 0 with probability 1
4
, the value 1 with probability 3

4
, and i.i.d. across time, then, as established

in Theorem 7 of [1], the fundamental security guarantee (7.7) holds, and no attack that introduces

any non-zero power additive distortion can manage to pass all three tests.
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As the above example illustrates, given a linear stochastic system, the probability distribution

of the watermark has to be carefully designed taking into account the noise probability distribution

if the fundamental security guarantee of Dynamic Watermarking is to hold. This brings us to the

central question addressed in this chapter: Given a closed loop system of the form (7.2), and the

probability distribution PW of the process noise, what are the necessary and sufficient conditions

that the probability distribution PE of the watermark should satisfy so that the fundamental security

guarantee (7.7) holds whenever the reported measurements {z} pass Tests (7.3), (7.4) and (7.5)?

The next section answers this question.

7.3 Design of Security-Guaranteeing Dynamic Watermarks

In this section, we derive the necessary and sufficient conditions that the probability distribution

of the watermark should satisfy in (7.2) in order to provide the fundamental security guarantee. We

do this in two steps. First, in order to expose clearly the main ideas involved in studying Dynamic

Watermarking in a setting where the noise distribution is arbitrary, we simplify the problem and

formulate a core problem so that the only complications that arise in its analysis are those that

are introduced by the arbitrariness of the process noise distribution. Consequently, we first restrict

attention to system (7.2) where the matrixA = 0, the control policy is identically equal to zero, and

the adversary is restricted to employing stationary Markov attack policies. Here, by a stationary

Markov attack policy, we are employing the terminology of Markov Decision Processes to refer

to an attack policy which chooses the measurements to be reported at any time t as a function of

only the state of the system at that time. Then we show how these conditions also extend to the

more general case where the matrix A is arbitrary, the control policy is arbitrary, and the adversary

employs an arbitrary, possibly history-dependent and randomized attack policy which is unknown

to the honest nodes in the system. We begin with the first of these cases.
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7.3.1 The core problem with zero dynamics matrix, zero control policy, and stationary

Markov attack policies

We consider in this subsection a special case of system (7.2) with A = 0 and gt = 0. In this

case, the system (7.2) reduces to

x[t+ 1] = Be[t] + w[t+ 1], (7.11)

and the additive distortion v[t+ 1] defined in (7.6), reduces to

v[t+ 1] = z[t+ 1]−Be[t]−w[t+ 1]. (7.12)

Define functions ΨW and ΨE by

ΨW (x[t+ 1]) := E[w[t+ 1]
∣∣x[t+ 1]], (7.13)

and

ΨE(x[t+ 1]) := E[e[t]
∣∣x[t+ 1]]. (7.14)

Note that the joint probability distribution of ΨW (x[t + 1]) and ΨE(x[t + 1]) does not depend

on the time t + 1, and hence we will henceforth omit the argument x[t + 1] in the following, and

simply use ΨW and ΨE to denote the above random vectors, noting that the results hold for all

x[t+ 1].

Recall from Section 4.1 that the notation ΨW
i denotes the ith component of the vector ΨW . The

following theorem provides the necessary and sufficient conditions on the watermark to ensure that

the additive distortion can only be of zero power.

Theorem 14. Consider the system (7.11). Suppose that the adversarial sensors employ a station-

ary attack policy, and that the reported sequence of measurements {z} passes the tests (7.3), (7.4)
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and (7.5). If

ΨW
i ∈ Span{ΨE

1 , . . . ,Ψ
E
m, 1} (7.15)

for all i ∈ {1, . . . , p}, then,

lim
T→∞

1

T

T∑
k=1

||v[k]||2 = 0. (7.16)

Moreover, if (7.15) does not hold, then, there exists a stationary attack passing tests (7.3), (7.4)

and (7.5), but for which (7.16) does not hold.

Proof. Using (7.12) and (7.11), we have that

v[t+ 1] = z[t+ 1]− x[t+ 1]. (7.17)

Since the attack policy employed by the adversary is assumed to be a stationary Markov policy, the

measurements reported by the sensors at time t+1 are a function of only their observations at time

t+ 1, and therefore, z[t+ 1] ∈ σ(x[t+ 1]), the σ−algebra generated by x[t+ 1]. Consequently,

v[t+ 1] ∈ σ(x[t+ 1]). (7.18)

The attack policy being a stationary Markov policy, {z} is a sequence of i.i.d. random vectors, and

therefore, the LHS of (7.4) almost surely equals E[e[0](z[1] − Be[0])T ]. From (7.17), (7.11), and

(7.4),

E(e[0]vT [1]) = 0. (7.19)

Also, the LHS of (7.3) almost surely equals E(z[1]zT [1]). Using (7.17), (7.3), (7.11) and (7.19),
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and carrying out some algebra, yields

E(v[1]vT [1]) + E(w[1]vT [1]) + E(v[1]wT [1]) = 0. (7.20)

Similarly, using (7.17) and (7.5) gives

E(v[1]) = 0. (7.21)

Now, note that

E(e[0]vT [1]) = E E{e[0]vT [1]
∣∣x[1]} = E(ΨE(x[1])vT [1]), (7.22)

where the last equality follows from (7.18). Using this with (7.19) gives

E(ΨE(x[1])vT [1]) = 0. (7.23)

Combining (7.21), (7.23) and (7.15) gives

E(ΨW (x[1])vT [1]) = 0. (7.24)

Now,

E(ΨW (x[1])vT [1]) = E
{
E
[
w[1]

∣∣x[1]
]
vT [1]

}
= E(w[1]vT [1]), (7.25)

where the second equality follows from (7.18) and the law of iterated expectations. Combining

this with (7.24) gives E(w[1]vT [1]) = 0, and substituting this in (7.20) establishes (7.16).

Now we turn to the next assertion. Suppose that (7.15) does not hold. Define

S := Span{ΨE
1 , . . . ,Ψ

E
m, 1},
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and for each i ∈ {1, . . . , p}, Φi := ΨW
i − PS(ΨW

i ), where PS denotes the operator that projects a

random variable onto the subspace S. It follows that for all i ∈ {1, . . . , p},

E(ΦiΨ
E
j ) = 0 (7.26)

for all j ∈ {1, . . . ,m}, and

EΦi = 0. (7.27)

Now, define Φ := [Φ1 . . . Φp]
T and consider the attack z[t + 1] = x[t + 1] − 2Φ(x[t + 1]).

The attacker can compute z[t + 1] since it depends only on x[t + 1], which it can measure. Then,

v[t + 1] = −2Φ(x[t + 1]). It follows from (7.27) that E(v[t + 1]) = 0, and from (7.26) that

E(ΨE(x[t + 1])vT [t + 1]) = 0. Hence, from (7.22), it follows that E(e[t]vT [t + 1]) = 0. Hence,

the attack passes Tests (7.4) and (7.5). Also, for all i, j ∈ {1, . . . , p},

E(vivj) + E(viΨ
W
j ) + E(ΨW

i vj) = 4E(ΦiΦj)− 2E(ΦiΨ
W
j )− 2E(ΨW

i Φj)

= 4E(ΦiΦj)− 2E[Φi(Φj + PS(ΨW
j ))]

− 2E[(Φi + PS(ΨW
i ))Φj] = 0,

where the last equality follows using (7.26) and (7.27) since PS(ΨW
i ) and PS(ΨW

j ), belonging to

the subspace spanned by {ΨE
1 , . . . ,Ψ

E
m, 1}, are some linear combinations of these random vari-

ables. Combining the above equality with (7.25) implies that the attack satisfies (7.20), which in

turn implies that the attack also passes test (7.3). Hence, the attack passes all three tests. How-

ever, since (7.15) does not hold, Φ 6= 0, and therefore E(||v[t + 1]||2) 6= 0, implying that the

fundamental security guarantee (7.16) does not hold.

The intuition behind condition (7.15) is as follows. The condition essentially implies that

the adversary cannot “separate" the process noise and the watermark along any subspace of the

system’s state space. Now, note that in order for the adversary to pass Test 1, it has to introduce a
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distortion that is correlated with the observations Be[t] + w[t + 1] in (7.11). However, since the

adversary cannot separate the noise and the watermark perfectly, the distortion that it introduces

will have to be correlated with both process noise as well as the watermark. Test 2, however,

ensures that any distortion introduced is not correlated with the watermark. Consequently, the

adversary is constrained to introducing a distortion that can only be of zero power.

Having characterized security-guaranteeing watermarks in a simplified system context, we now

address the general case where the matrix A in (7.1) is arbitrary, the control policy is arbitrary, and

the adversary is allowed to implement any arbitrary, history-dependent attack policy. We show

that in this general system context, a condition analogous to (7.15) serves as the necessary and

sufficient condition on the watermark distribution in order for the fundamental security guarantee

to hold.

7.3.2 The case of general MIMO systems with arbitrary control policy and arbitrary history-

dependent attack policies

Consider the closed loop system (7.2), an arbitrary subset of whose sensors may be malicious,

and suppose that the attack detector conducts the tests (7.3), (7.4) and (7.5). Define

ΨW (Be[t] + w[t+ 1]) := E(w[t+ 1]
∣∣Be[t] + w[t+ 1]), (7.28)

and

ΨE(Be[t] + w[t+ 1]) := E(e[t]
∣∣Be[t] + w[t+ 1]). (7.29)

In the above definitions, we have reused notation from the previous subsection owing to the fact

that both (7.13) and (7.28) signify analogous quantities, viz., the Minimum Mean-Squared Error

(MMSE) estimate of the process noise computable by the malicious sensors in the two system

models, and similarly, both (7.14) and (7.29) denote the MMSE estimate of the watermark.

The following theorem establishes in the context of a fully observed MIMO system the neces-
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sary and sufficient conditions that the watermark distribution should satisfy in order for the funda-

mental security guarantee to hold, and is a central result of this chapter.

Theorem 15. Consider the system (7.2) and suppose that the measurements {z} reported by the

sensors pass Tests (7.3), (7.4) and (7.5). If

ΨW
i ∈ Span{ΨE

1 , . . . ,Ψ
E
m, 1} (7.30)

for all i ∈ {1, . . . , p}, then,

lim
T→∞

1

T

T∑
k=1

||v[k]||2 = 0. (7.31)

Moreover, if (7.30) does not hold, then there exists an attack passing Tests (7.3), (7.4) and (7.5),

but for which (7.31) does not hold.

Proof. Since the reported measurements pass Test (7.4), it follows from (7.6) that

lim
T→∞

1

T

T−1∑
k=0

e[k]vT [k + 1] = 0. (7.32)

Define ẽ[k] := e[k]−ΨE[k]. Then, the above equality becomes

lim
T→∞

1

T

T−1∑
k=0

(ΨE[k] + ẽ[k])vT [k + 1] = 0.

Now, the reported measurement z[k+ 1] at time k+ 1 can be a function of the past and the current

observations of the sensors. In addition, a malicious sensor at each time k + 1 could also adapt

its reported measurement to a random variable θ[k + 1] that it generates, which is independent

of all random variables that have been realized until that time. Define Gk := σ(xk, θk, ek−2). It

follows that z[k + 1] ∈ σ(xk+1, θk+1) ⊆ Gk+1, which in turn implies that v[k + 1] ∈ Gk+1. It is

also straightforward to verify that (ẽ[k − 1],Gk+1) is a Martingale difference sequence. Using the
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Martingale Stability Theorem [49], we have that for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , p},

T−1∑
k=0

ẽi[k]vj[k + 1] = o(
T−1∑
k=0

v2
j [k + 1]) +O(1).

Substituting this in the previous equality gives

T−1∑
k=0

ΨE[k]vT [k + 1] =


o(
∑T

k=1 v
2
1[k]) · · · o(

∑T
k=1 v

2
p[k])

... . . . ...

o(
∑T

k=1 v
2
1[k]) · · · o(

∑T
k=1 v

2
p[k])

+ o(T ). (7.33)

Since the reported measurements also pass Test (7.3), we have that

lim
T→∞

1

T

T−1∑
k=0

Be[k]vT [k + 1] + w[k + 1]vT [k + 1] + v[k + 1]eT [k]BT + v[k + 1]wT [k + 1]

+ v[k + 1]vT [k + 1] = 0.

Substituting (7.32) in the above equality yields

lim
T→∞

1

T

T−1∑
k=0

w[k + 1]vT [k + 1] + v[k + 1]wT [k + 1] + v[k + 1]vT [k + 1] = 0. (7.34)

Similarly, it follows from (7.5) that

T−1∑
k=0

v[k + 1] = o(T ). (7.35)

Define w̃[t+ 1] := w[t+ 1]−ΨW [t+ 1]. Then, (w̃[k],Gk+1) is a martingale difference sequence,

and using the Martingale Stability Theorem, we have that for all i, j ∈ {1, . . . , p},

T−1∑
k=0

w̃i[k + 1]vj[k + 1] = o(
T−1∑
k=0

v2
j [k + 1]) +O(1). (7.36)
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We also have using (7.30), (7.33), and (7.35) that for all i, j ∈ {1, . . . , p},

T−1∑
k=0

ΨW
i [k + 1]vj[k + 1] = o(

T−1∑
k=0

v2
j [k + 1]) + o(T ). (7.37)

Adding (7.36) and (7.37) gives

T−1∑
k=0

w[k + 1]vT [k + 1] =


o(
∑T

k=1 v
2
1[k]) · · · o(

∑T
k=1 v

2
p[k])

... . . . ...

o(
∑T

k=1 v
2
1[k]) · · · o(

∑T
k=1 v

2
p[k])

+ o(T ). (7.38)

Substituting (7.38) in (7.34) establishes (7.31).

We now turn to the next assertion. Suppose that (7.30) does not hold. As in the proof of

Theorem 1, define S := Span{ΨE
1 , . . . ,Ψ

E
m, 1}, and define for each i ∈ {1, . . . , p}, Φi := ΨW

i −

PS(ΨW
i ), where PS is the operator that projects a random variable on the subspace S. Let Φ :=

[Φ1 . . .Φp]
T and consider the attack z[t + 1] = Az[t] + (x[t + 1] − Ax[t]) − 2Φ[t + 1], so that

v[t+1] = −2Φ[t+1]. Following similar arguments as in the proof of Theorem 1, it can be verified

that this attack passes all three tests (7.3), (7.4) and (7.5), but introduces non-zero powered additive

distortion to the process noise.

7.4 Concluding Remarks

The approach of Dynamic Watermarking provides provable security guarantees for cyberphys-

ical systems from arbitrary sensor attacks. Prior works have developed the theory of Dynamic

Watermarking and have established the fundamental security guarantee that it provides in the con-

text of systems affected by process and measurement noises that are Gaussian random processes.

In this chapter, we have gone beyond the class of Gaussian systems and have considered finite-

dimensional linear systems affected by arbitrarily distributed process noise. We have shown how

the fundamental security guarantee of Dynamic Watermarking fails in these system contexts when

the watermark distribution is not appropriately chosen. Consequently, we have derived for the class

of perfectly observed, finite-dimensional linear systems with arbitrarily process noise distribution,
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the necessary and sufficient conditions that the distribution of the watermark should satisfy in order

for it to provide the fundamental security guarantee. Extensions of this result to the case of par-

tially observed systems and systems affected by colored noise process could potentially constitute

the foundations of a theory for security-guaranteeing watermark design.
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8. ON THE WATERMARK-SECURABLE SUBSPACE OF A LINEAR SYSTEM

8.1 Introduction

In prior chapters, the approach of Dynamic Watermarking was established as providing prov-

able security guarantees against arbitrary sensor attacks in a variety of control system settings.

Specifically, it was shown that in a stochastic system in which Dynamic Watermarking is em-

ployed, under appropriate conditions, any adversarial sensor that may be present in the system

cannot distort the innovations process of the output by more than a zero-power signal if it wishes

to remain undetected. In Chapters 3, 4 and 5, the notions of securable and unsecurable subspaces

of a linear system were introduced and shown to have important operational meanings in the con-

text of secure control. Specifically, it was shown that in the absence of Dynamic Watermarking,

the state space can be decomposed into two orthogonal subspaces, called the securable and the

unsecurable subspaces, such that the malicious sensors and actuators cannot degrade the state esti-

mation performance of the honest sensors and actuators along the securable subspace of the system

if they wish to remain undetected. In this chapter, we consider a system wherein Dynamic Wa-

termarking is employed and an arbitrary subset of both sensors and actuators could be malicious.

Analogous to prior results [48, 50], the state space of a system employing Dynamic Watermarking

too can be decomposed into two orthogonal subspaces, called the watermark-securable and the

watermark-unsecurable subspaces, such that the malicious sensors and actuators cannot degrade

the state estimation performance of the honest sensors and actuators along the watermark-securable

subspace if they are to remain undetected. The watermark-securable subspace is larger than the se-

curable subspace that can be guaranteed in the absence of Dynamic Watermarking. In this chapter,

we characterize a certain subset of the watermark-securable subspace.

The rest of the chapter is organized as follows. Section 8.2 describes the problem setup. Section

8.3 contains certain definitions and results that will be used to establish the main result of the

chapter. Section 8.4 presents the main result. Section 8.5 concludes the chapter.
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Notation: Given a matrix B, we denote by R(B) the range space of B, and by N (B) the null

space of B. We denote by I an identity matrix whose dimensions will be clear from the context.

Given a vector x and a subspace S, we denote by xS the projection of the vector x on the subspace

S. Given two subspaces S1 and S2, we denote by S1 ⊕ S2 their span, and by S1S2 the projection

of S1 on S2. The letter P always denotes a projection matrix; by PX , we denote a matrix which

projects a vector right-multiplying it onto the subspace X .

8.2 Problem Formulation

Consider a pth order perfectly-observed linear stochastic system described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1], (8.1)

where x[t] ∈ Rp is the state of the system at time t, u[t] ∈ Rm is the input applied to the system at

time t,w[t+1] ∼ N (0, σ2
W I) is the process noise affecting the system at time t+1, and y[t] ∈ Rn

is the system output at time t. In this chapter, we restrict attention to perfectly-observed systems,

i.e., C = I. The process noise is independent and identically distributed (iid) across time.

As mentioned in Section 8.1, we consider a setting wherein an arbitrary subset of sensors and

actuators in system (8.1) could be malicious. As always, we allow for the malicious nodes in the

system to know the identities of all other malicious nodes, and consequently for the possibility that

they exchange information among themselves via an underlying communication network, to carry

out coordinated attack strategies. The honest nodes do not know the identities of the honest or the

malicious nodes, or even if there are any malicious nodes in the system.

At each time t, each sensor is supposed to report the measurement that it observes to all other

sensors and actuators in the system. To allow for greater power for the malicious nodes, we suppose

that the honest sensors first announce their measurements to all other nodes in the system, after

which the malicious sensors report their measurements. This sequence of reporting allows the

malicious sensors to adapt the measurements that they report at each time to the measurements of
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all honest sensors until that time. In addition, they could also adapt their reported measurements

to the inputs of the malicious actuators, including their inputs at future times, if they wish to do so.

We now turn to the protocols followed by the actuators. As before, only the honest actuators

follow this protocol, while the malicious actuators can behave arbitrarily. For each i ∈ {1, . . . ,m},

we denote by {gi0, gi1, . . .} an arbitrary and possibly history-dependent control policy that actuator i

is supposed to employ in determining its inputs. The control policy-specified input ugi [t] of actuator

i at time t is

ugi [t] = git(z
t). (8.2)

The honest actuators watermark their control inputs. The net input ui[t] applied by an honest

actuator i at time t is therefore

ui[t] = git(z
t) + ei[t].

The malicious actuators can choose the inputs that they apply in an arbitrary manner. For a

malicious actuator j, denote by uj[t] the input that it applies at time t, and let ej[t] := uj[t]−gjt (zt).

Since actuator j is not honest, the statistics of the sequence {ej} may not be equal to the statistics

of the watermark.

Let e[t] := [e1[t] · · · em[t]]T . Denote by eH [t] the sub-vector of e[t] corresponding to the

entries of the honest actuators, and by eM [t] the sub-vector of e[t] corresponding to the entries of

the malicious actuators. Similarly, denote by BH the sub-matrix of B consisting of those columns

of B corresponding to the honest actuators, and by BM the sub-matrix of B consisting of those

columns of B corresponding to the malicious actuators. Then, system (8.1) evolves in closed loop

as

x[t+ 1] = Ax[t] +Bgt(z
t) +BHeH [t] +BMeM [t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1], (8.3)
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where gt(z
t) := [g1

t (z
t) · · · gmt (zt)]T , and eH [t] ∼ N (0, σ2

eI) and is i.i.d. across time. We also

denote by CH the submatrix of C (which in this chapter is the identity matrix) formed by its rows

that correspond to the honest sensors.

In order to check whether or not there are any malicious nodes in the system, the following

tests are carried out.

Test 1: Each honest node checks if

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− Az[k]−Bgk(z
k))TT = BBTσ2

e + σ2
wI. (8.4)

Test 2: Each honest actuator i checks if

lim
T→∞

1

T

T−1∑
k=0

ei[k](z[k + 1]− Az[k]) = B·iσ
2
e . (8.5)

Our goal is to characterize the extent to which the malicious sensors and actuators can distort

the state estimate of the honest actuators while remaining undetected by Tests (8.4) and (8.5). We

show that along a certain subspace of the state space Rp of system (8.3), no matter what attack

strategy the malicious nodes employ, they cannot degrade the “state estimation performance" of

the honest actuators if they are to remain undetected by Tests (8.4) and (8.5). This subspace is

characterized in the following sections.

8.3 Towards the Watermark-Securable and the Watermark-Unsecurable Subspaces of a

Linear System

In this section, we present a few preparatory results for establishing the main result of the

chapter. Recall the definitions of the unsecurable subspace V , the securable subspace S, the k−step

unsecurable subspaces Uk, and the k−step securable subspaces Sk from Chapter 4.

Lemma 8. The securable subspace S is the span of the k−step securable subspaces, i.e.,

S = S0 ⊕ . . .⊕ Sr−1.
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Proof. See Lemma 2 of [50].

Lemma 9. Let k ∈ {0, . . . , r − 1}. Then,

Uk = [⊕r−1
i=kSk]⊕ V . (8.6)

Proof. Since U = Ur ⊂ Ur−1 ⊂ . . . ⊂ U1 ⊂ U0 := Rp, it follows that there exist sets B0, . . . ,Br

of orthonormal basis vectors for the subspaces U0, . . . ,Ur respectively such that Br ⊂ . . . ⊂ B0.

Then,

[⊕r−1
i=kSi]⊕ V = [⊕r−1

i=kSpan{Bi \ Bi+1}]⊕ V = [Span{Bk \ Br}]⊕ V = Span{Bk} = Uk. (8.7)

Lemma 10. Let k ∈ {1, . . . , r − 1} and s ∈ Sk. There exists d such that

(As +BMd) ∈ [⊕r−1
i=k−1Si]⊕ V . (8.8)

Proof. The result holds trivially for k = 1 since [⊕r−1
i=0Si] ⊕ V = Rp, the entire state space.

Consider, therefore, the case when k > 1. It follows from the definition of Sk that Sk ⊂ Uk, and

therefore, s ∈ Uk. It follows from the definition of Uk that there exists d such that As + BMd ∈

Vk−1. Combining this with (8.6) yields the desired result.

Lemma 11. Let k ∈ {1, . . . , r − 1} and s ∈ Sk \ {0}. For every d,

(As +BMd)⊕k−1
i=0 Si

6= 0. (8.9)

Proof. Suppose for contradiction that (8.9) does not hold. Then, there exists d such that (As +

BMd)⊕k−1
i=0 Si

= 0, implying that (As + BMd) ∈ [⊕r−1
i=kSi] ⊕ V . Combining this with (8.6), we

have that As + BMd ∈ Uk. Therefore, we have that s ∈ Sk and that that there exists d such
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that As + BMd ∈ Uk implying that s ∈ Vk+1. Since Sk ∩ Vk+1 = {0}, it follows that s = 0, a

contradiction.

Lemma 12. Let k ∈ {1, . . . , r − 1} and s ∈ Sk \ {0}. For every d,

(As +BMd)[⊕k−1
i=0 Si]∩([R(BM )]

⊕k−1
i=0
Si

)⊥ 6= 0. (8.10)

Proof. Note first that for any two subspaces C1, C2 such that C1 ⊆ C2, we have that C2 = C1⊕ [C⊥1 ∩

C2]. Substituting C2 = ⊕k−1
i=0 Si and C1 = [R(BM)]⊕k−1

i=0 Si
, we have

⊕k−1
i=0 Si = [R(BM)]⊕k−1

i=0 Si
⊕
[(

[R(BM)]⊕k−1
i=0 Si

)⊥ ∩ [⊕k−1
i=0 Si]

]
.

Now, suppose for contradiction that (8.10) does not hold. Then, there exists d such that

(As +BMd)⊕k−1
i=0 Si

= (As +BMd)([R(BM )]
⊕k−1
i=0
Si

)⊥∩[⊕k−1
i=0 Si]

⊕ (As +BMd)[R(BM )]
⊕k−1
i=0
Si

= (As +BMd)[R(BM )]
⊕k−1
i=0
Si
,

where the last equality follows from the assumption that (8.10) does not hold. Since (As +

BMd)[R(BM )]
⊕k−1
i=0
Si
∈ [R(BM)]⊕k−1

i=0 Si
, there exists d̄ such that

(BM d̄)⊕k−1
i=0 Si

= −(As +BMd)[R(BM )]
⊕k−1
i=0
Si
.

Therefore,

(As +BM(d + d̄))⊕k−1
i=0 Si

= (As +BMd)⊕k−1
i=0 Si

+ (BM d̄)⊕k−1
i=0 Si

= 0,

where the last equality follows from the preceding two equalities. This, however, contradicts

Lemma 11.
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Lemma 13. Let k ∈ {1, . . . , r − 1}. There exists ε > 0 such that for all s ∈ Sk,

∣∣∣∣(As)[⊕k−1
j=0Sj ]∩([R(BM )]

⊕k−1
j=0
Sj

)⊥

∣∣∣∣2 ≥ ε ||s||2. (8.11)

Proof. Define J(x) := ||P[⊕k−1
j=0Sj ]∩([R(BM )]

⊕k−1
j=0
Sj

)⊥Ax||. Let ε̄ := inf{s̄∈Sk, ||s̄||=1} J(s̄). Let s∗ at-

tain the minimum of the continuous function J over the specified compact set. By (8.10), there ex-

ists a d such that (As∗+BMd)[⊕k−1
i=0 Si]∩([R(BM )]

⊕k−1
i=0
Si

)⊥ 6= 0. Since [R(BM)][⊕k−1
j=0Sj ]∩[R(BM )]⊥

⊕k−1
j=0
Sj

=

0, we have [As∗][⊕k−1
i=0 Si]∩([R(BM )]

⊕k−1
i=0
Si

)⊥ 6= 0. Hence, ε̄ > 0, and for any unit vector s̄ ∈ Sk,

J(s̄) ≥ ε̄. The desired result follows immediately.

Having defined the securable and the unsecurable subspaces and established certain key prop-

erties of theirs, we now characterize a certain subspace of the watermark-securable subspace of

system (8.3). Its operational meaning is established in Theorem 1 in the sequel.

Consider the set of all subspaces C such that

[R(BM)⊕R⊥(BH)]V ⊆ C ⊆ V , (8.12)

and for every c ∈ C,

[Ac]C⊥∩ V = 0. (8.13)

It is straightforward to verify that this set is closed under intersections. Define the subspace G1

as the smallest subspace satisfying (8.12) and (8.13), or more precisely, the intersection of all

subspaces satisfying (8.12) and (8.13). Recall from Section 4.1 the notation PX , which denotes

the projection matrix which projects a vector right-multiplying it onto the subspace X , and define

the subspace G2 as the span of the unstable subspace and the center subspace of the linear map

PG⊥1 ∩ VA.

Definition 8. Define the subspaceW of system (8.3) as

W := (G1 ⊕ G2)⊥ ∩ V . (8.14)
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As we show in Theorem 1, no matter what attack strategy the malicious nodes employ, they cannot

degrade the state estimation performance of the honest nodes along the subspaceW , if they wish

to remain undetected by Tests (8.4) and (8.5).

Lemma 14.

W ⊥ {R(BM)⊕R⊥(BH)}. (8.15)

Proof. We have from the definition of the watermark-securable subspace thatW ⊥ G1. We have

from the definition of G1 that (8.12) holds with C = G1, so that G1 ⊇ [R(BM) ⊕ R⊥(BH)]V .

Combining these two relations, we have that W ⊥ [R(BM) ⊕ R⊥(BH)]V . Let I1 be a matrix

whose columns form an orthonormal basis for the subspaceR(BM)⊕R⊥(BH) and I2 be a matrix

whose columns form an orthonormal basis for the subspaceW . Then, the previous relation implies

that IT2 PVI1 = 0, which can be rewritten as (P T
V I2)T I1 = 0. Since any orthogonal projection

matrix is symmetric, we have that PV = P T
V . Using (8.14), we have that W ⊆ V , and hence,

(P T
V I2) = I2. Consequently, IT2 I1 = 0, implying thatW ⊥ R(BM)⊕R⊥(BH).

Let

H := G1 ⊕ G2.

Lemma 15.

W ⊥ AH, (8.16)

where AH := {Ax : x ∈ H}.

Proof. It follows from the definition of G1 that (8.13) holds with C = G1, implying that

[AG1]G⊥1 ∩ V = 0. (8.17)

Using (8.14) and the identity that for any two subspaces X1 and X2, [X1 ⊕ X2]⊥ = X⊥1 ∩ X⊥2 , we
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haveW ⊆ G⊥1 ∩ V . Combining this with (8.17) gives

W ⊥ AG1. (8.18)

Note next that the subspace G2 is PG⊥1 ∩ VA-invariant, implying that

[AG2]G⊥1 ∩ V ⊆ G2. (8.19)

Now, G⊥1 ∩ V = G2 ⊕W . To see this, note that since G2 is the span of the center and the unstable

subspaces of PG⊥1 ∩VA, it follows that G2 ⊆ G⊥1 ∩ V . Let B1 be a matrix whose columns span the

subspace G1, the matrix B2 be a matrix whose columns span the subspace G2, and BW be a matrix

whose columns span the subspace W . Then, it follows from (8.14) that columns of the matrix

[B1 B2 BW ] span the unsecurable subspace V . The subspace G⊥1 ∩ V is therefore spanned by the

columns of the matrix [B2 BW ], from which it follows immediately that G⊥1 ∩ V = G2 ⊕ W .

Combining this with (8.19) yields [AG2]W = 0, i.e.,

W ⊥ AG2. (8.20)

Combining (8.18) and (8.20) implies (8.16).

8.4 The case of Perfectly-Observed MIMO Systems

Consider system (8.3) and recall that C = I . Each honest sensor performs the tests (8.4) and

(8.5). If the reported sequence of measurements {z} pass these tests, then there is no reason for

the honest nodes to suspect that there are any malicious nodes in the system, and therefore, their

estimate of the state at time k is simply z[k]. The state estimation error m[t] incurred by the honest

nodes at time t is therefore

m[t] := z[t]− x[t]. (8.21)
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The following theorem establishes that the projection of the state estimation error {m} along the

subspace S ⊕ W can only be of zero power, no matter what attack strategy the malicious nodes

employ.

Theorem 16. Consider the system (8.3) and suppose that the reported measurements {z} pass

tests (8.4) and (8.5) so that the malicious nodes remain undetected. Then,

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣mS⊕W [k]
∣∣∣∣2 = 0. (8.22)

Proof. We first show that the sequence {mS} is of zero power. Since for each honest sensor i,

i ∈ {1, . . . , p}, zi[k] ≡ xi[k], we have that mi[k] ≡ 0 for all such i. It follows that for a perfectly

observed system,

mS0 [k] ≡ 0. (8.23)

Suppose now for induction that {mSi} is of zero power for all i ∈ {0, . . . , l}. I.e.,

lim
T→∞

1

T

T−1∑
k=0

||mSi [k]||2 = 0 (8.24)

for all i ∈ {0, . . . , l}. We show that {mSl+1
} is also of zero power. We have from (8.4) that

lim
T→∞

1

T

T−1∑
k=0

(m[k + 1]− Am[k] +BHeH [k] +BMeM [k] + w[k + 1])TT[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

= PlBB
TP T

l σ
2
e + σ2

wPlP
T
l ,

(8.25)

where Pl is a projection matrix which projects a vector right-multiplying it to the subspace [⊕lj=0Sj]∩

([R(BM)]⊕l
j=0Sj)

⊥.

Now, write the vector m[t] as the sum of its components on the unsecurable subspace V and

the subspaces S0, . . . ,Sr−1, so that m[t] = mV [t] +
∑r−1

j=0 mSj [t]. It follows from Lemma 10 that
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for each i ∈ {l + 2, . . . , r − 1}, there exists di[k] such that

(−AmSi [k] +BMdi[k])⊕l
j=0Sj = 0. (8.26)

It also follows from the definition of the unsecurable subspace V that there exists dV [k] such that

−AmV [k] +BMdV [k] ∈ V , and therefore,

(−AmV [k] +BMdV [k])⊕l
j=0Sj = 0. (8.27)

Define dU [k] := eM [k]− dV [k]−
∑r−1

i=l+2 di[k]. Substituting this in (8.25) gives

lim
T→∞

1

T

T−1∑
k=0

(
r−1∑
i=0

mSi [k + 1] + mV [k + 1]−
l∑

i=0

AmSi [k]

−AmSl+1
[k] +BMdU [k]

+
r−1∑
i=l+2

(−AmSi [k] +BMdi[k])− AmV [k] +BMdV [k]

+BHeH [k] + w[k + 1])TT[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

= PlBB
TP T

l σ
2
e + σ2

wPlP
T
l . (8.28)

Using (8.26) and (8.27), the above simplifies to

lim
T→∞

1

T

T−1∑
k=0

(
l∑

i=0

mSi [k + 1]−
l∑

i=0

AmSi [k]

−AmSl+1
[k] +BMdU [k]

+BHeH [k] + w[k + 1])TT[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

= PlBB
TP T

l σ
2
e + σ2

wPlP
T
l . (8.29)

The induction hypothesis implies that the sequence {
∑l

i=0 mSi [k+ 1]−
∑l

i=0AmSi [k]} is of zero
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power. Therefore, the above equality, after some algebra, further simplifies to

lim
T→∞

1

T

T−1∑
k=0

(−AmSl+1
[k] +BMdU [k])TT[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥

+(−AmSl+1
[k] +BMdU [k])[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥

×(BHeH [k] + w[k + 1])T[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

+(BHeH [k] + w[k + 1])[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

×(−AmSl+1
[k] +BMdU [k])T[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥

= PlB
MBMT

P T
l σ

2
e . (8.30)

Since [R(BM)][⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥ = {0}, we have that PlBM = 0, and consequently, the

Right Hand Side (RHS) of the above equality reduces to zero. Similarly, the vector BMdU [k]

projected on the subspace ([R(BM)]⊕l
j=0Sj)

⊥ equals zero, and consequently, the Left Hand Side

(LHS) also simplifies, and we have

lim
T→∞

1

T

T−1∑
k=0

(−AmSl+1
[k])TT[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥

+ (−AmSl+1
[k])[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥(BHeH [k] + w[k + 1])T[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥

+ (BHeH [k] + w[k + 1])[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥(−AmSl+1
[k])T[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥

= 0.

(8.31)

For brevity of notation, let

(−AmSl+1
[k])[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥ =: α[k],

123



and

(BHeH [k] + w[k + 1])[⊕l
j=0Sj ]∩([R(BM )]⊕l

j=0
Sj

)⊥ := β[k + 1],

so that (8.31) becomes

lim
T→∞

1

T

T−1∑
k=0

αTT [k] + α[k]βT [k + 1] + β[k + 1]αT [k] = 0. (8.32)

Define the σ−algebra Fk := σ(zk,xk, eM
k
). Then, −AmSl+1

[k] ∈ Fk, and therefore α[k] ∈

Fk. Also, (BHeH [k] + w[k + 1],Fk+1) is a Martingale Difference Sequence, and so is (β[k +

1],Fk+1). The Martingale Stability Theorem (MST) [49] applies, and equating the ith entry along

the diagonal of (8.32) yields

T−1∑
k=0

α2
i [k] + o(

T−1∑
k=0

α2
i [k]) +O(1) = o(T ). (8.33)

Dividing the above equality by T and taking the limit as T →∞ implies that limT→∞
1
T

∑T−1
k=0 α

2
i [k] =

0 for all i ∈ {1, . . . , p}, which in turn implies that

lim
T→∞

1

T

T−1∑
k=0

||(−AmSl+1
[k])[⊕l

j=0Sj ]∩([R(BM )]⊕l
j=0
Sj

)⊥||2 = 0. (8.34)

Combining the above equality with (8.11) gives

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣mSl+1
[k]
∣∣∣∣2 = 0, (8.35)

thereby completing the induction.

We next show that the sequence {mW} is of zero power. Define

v[t+ 1] := z[t+ 1]− Az[t]−Bgt(zt)−BHeH [t]−BMeM [t]−w[t+ 1], (8.36)
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It follows from (8.5) that

lim
T→∞

1

T

T−1∑
k=0

eH [k](BHeH [k] +BMeM [k] + w[k + 1] + v[k + 1])T = σ2
eB

HT ,

whence

lim
T→∞

1

T

T−1∑
k=0

eH [k](BHeH [k] +BMeM [k] + w[k + 1] + v[k + 1])TW = σ2
eB

HTP T
W ,

where PW denotes the matrix which projects a vector right-multiplying it onto the subspace W .

Using (8.15), the left-hand side (LHS) of the above equality simplifies, and we have

lim
T→∞

1

T

T−1∑
k=0

eH [k](PWB
HeH [k] + wW [k + 1] + vW [k + 1])T = σ2

eB
HTP T

W ,

which in turn yields

lim
T→∞

1

T

T−1∑
k=0

eH [k]vTW [k + 1] = 0. (8.37)

It follows from (8.4) that

lim
T→∞

1

T

T−1∑
k=0

(BHeH [k] +BMeM [k]w[k + 1] + v[k + 1])TTW = PWBB
TP T
Wσ

2
e + σ2

wPWP
T
W ,

which using (8.15) simplifies to

lim
T→∞

1

T

T−1∑
k=0

(PWB
HeH [k] + wW [k + 1] + vW [k + 1])TT = PWB

HBHTP T
Wσ

2
e + σ2

wPWP
T
W .

Using (8.37), the above equality further simplifies to

lim
T→∞

1

T

T−1∑
k=0

wW [k + 1]vTW [k + 1] + vW [k + 1]wT
W [k + 1] + vW [k + 1]vTW [k + 1] = 0. (8.38)
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The malicious sensors can adapt the measurements that they report at any time t to all past

observations as well as all past reported measurements. In addition, we also allow the mali-

cious sensors to employ an additional randomization in reporting their measurements. Let θ[t]

be a random variable independent of all measurements observed up to time t and all measure-

ments reported up to time t − 1. We allow the measurement z[t] that is reported at time t to

also depend on θ[t]. Define Fk := σ(xk,θk, eM
k−1

, eH
k−2

), ŵ[k + 1] := E[w[k + 1]|Fk+1],

ŵR(BH)[k + 1] := E[wR(BH)[k + 1]|Fk+1]. The quantities ŵR⊥(BH)[k + 1] and ŵW [k + 1] are

defined likewise. Now,

wW [k + 1] = PWw[k + 1] = PWwR(BH)[k + 1] + PWwR⊥(BH)[k + 1] = PWwR(BH)[k + 1],

(8.39)

where the last equality follows from (8.15). Let BH = QHRH be the QR-decomposition of the

matrix BH . I.e., the columns of the matrix QH form an orthonormal basis for the subspaceR(BH)

and the matrix RH is upper-triangular. We then have that for every k + 1, there exists a vector

wc[k + 1] such that

wR(BH)[k + 1] = QHwc[k + 1]. (8.40)

We have from (8.3) that x[k + 1] − Ax[k] − Bgk(z
k) − BMeM [k] = BHeH [k] + w[k + 1] =

QHRHeH [k]+QHwc[k+1]+wR⊥(BH)[k+1], implying that QHT (x[k+1]−Ax[k]−Bgk(zk)−

BMeM [k]) = RHeH [k] + wc[k + 1]. It follows that E[wc[k + 1]|Fk+1] = σ2
w(σ2

eR
HRHT +

σ2
wI)−1(QHT (x[k + 1]− Ax[k]−Bgk(zk)−BMeM [k])), whence

ŵc[k + 1] := E[wc[k + 1]|Fk+1] = KW (RHeH [k] + wc[k + 1]), (8.41)

whereKW := σ2
w(σ2

eR
HRHT +σ2

wI)−1 has all eigenvalues strictly lesser than unity. Define w̃c[k+

1] := wc[k + 1]− ŵ[k + 1], so that wc[k + 1] = ŵc[k + 1] + w̃c[k + 1]. Substituting (8.41) in the
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above equality, we have wc[k + 1] = KWR
HeH [k] +KWwc[k + 1] + w̃c[k + 1], whence

wc[k + 1] = (I −KW )−1KWR
HeH [k] + (I −KW )−1w̃c[k + 1].

Substituting this in (8.40) gives

wR(BH)[k + 1] = QH(I −KW )−1KWR
HeH [k] +QH(I −KW )−1w̃c[k + 1],

and substituting this in (8.39) gives

wW [k + 1] = PWQ
H(I −KW )−1KWR

HeH [k] + PWQ
H(I −KW )−1w̃c[k + 1]. (8.42)

Now, (w̃c[k],Fk+1) is a martingale difference sequence, and v[k+1] ∈ Fk+1.Using the Martingale

Stability Theorem [49], we have

T−1∑
k=0

w̃c[k + 1]vTW [k + 1] =


o(
∑T−1

k=0 v
2
W1[k + 1]) . . . o(

∑T−1
k=0 v

2
Wp[k + 1])

... . . . ...

o(
∑T−1

k=0 v
2
W1[k + 1]) . . . o(

∑T−1
k=0 v

2
Wp[k + 1])

 (8.43)

Substituting (8.42) in (8.38), then using (8.37) and (8.43), and then equating the trace yields

lim
T→∞

1

T

T−1∑
k=0

∣∣∣∣vW [k + 1]
∣∣∣∣2 = 0. (8.44)

We have from (8.36) and (8.3) that

v[t+ 1] = m[t+ 1]− Am[t] = mS [t+ 1] + mH[t+ 1] + mW [t+ 1]

− AmS [t]− AmH[t]− AmW [t].

Projecting v[t + 1] onto the subspace W and using (8.17) gives vW [t + 1] = mW [t + 1] −
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PWAmS [t]− PWAmW [t], which upon rearranging yields

mW [t+ 1] = PWAmW [t] + PWAmS [t] + vW [t+ 1].

Using (8.44), the fact that {mS} is of zero power, and the stability of the matrix PWA, we have

that {mW} is of zero power.

8.5 Conclusion

In prior chapters, the approach of Dynamic Watermarking was established as providing security

guarantees against arbitrary sensor attacks. In this chapter, we have considered a system which

includes malicious sensors and actuators mixed with honest sensors and actuators, and wherein the

honest actuators employ Dynamic Watermarking. Given any such system, we have characterized

a certain subspace of the watermark-securable subspace, and have established that the malicious

sensors and actuators cannot degrade the state estimation performance of the honest sensors and

actuators along this subspace.
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9. THEORY AND IMPLEMENTATION OF DYNAMIC WATERMARKING FOR

CYBERSECURITY OF ADVANCED TRANSPORTATION SYSTEMS*

9.1 Introduction

Recently there has been great interest in automated and semi-automated transportation systems

involving various driver assists. These advanced systems rely on sensors to provide state informa-

tion and situational awareness to the control logic governing the vehicle. However, this has also

increased the vulnerability of these advanced transportation systems to cyber attacks. In fact, there

have been demonstrated cyber attacks on automobiles in the recent past [64, 65], where two hack-

ers have remotely subverted an automobile, taking control of its steering and braking units. This

ultimately led to the automobile manufacturer recalling over a million cars to patch the identified

vulnerabilities. Several other similar news reports [66, 67, 68] point the need for cybersecurity of

automated transportation systems. In this chapter we demonstrate how the technique of dynamic

watermarking can be employed to secure an automated transportation system against arbitrary at-

tacks on its sensors. This chapter is based on joint work with Dr. Woo-Hyun Ko of Texas A&M

University.

In the previous chapter, the technique of dynamic watermarking of signals has been proposed

to secure such cyberphysical systems. It has been shown that in theory, employing dynamic water-

marking and using two specific tests can detect erroneous sensor measurements for a large class of

linear systems. In this chapter, we investigate whether this method can actually be used in a real

transportation system to detect attacks on the positioning sensor systems and thereby prevent colli-

sions. For this purpose we extend the theory to allow for several nonlinearities not accounted for in

an idealized linear system on which the theoretical results have previously been established. After

*Reprinted with permission from “Theory and implementation of dynamic watermarking for cybersecurity of
advanced transportation systems," by W-H. Ko, B. Satchidanandan and P. R. Kumar in Proceedings of the 2016 IEEE
Conference on Communications and Network Security (CNS), pp. 416-420, 2016, IEEE.
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Figure 9.1: Experimental Facility for Dynamic Watermarking. Reprinted with permission from
[2].

doing so, we have implemented the dynamic watermarking method on a laboratory autonomous

transportation system. We demonstrate in this chapter that this method successfully detects and re-

sponds to attacks on the position sensors which can potentially cause collisions, thereby preventing

collisions.

9.2 Attacking an autonomous transportation system by malicious attacks on sensors

Advanced transportation systems, whether fully autonomous or those that provide driver assist,

employ sensors to determine the position of a vehicle. Such sensors can be maliciously attacked.

We first begin by showing how such an attack can be used to create collisions. The experimental

setup, shown in Fig. 9.1, is a prototype of an intelligent transportation system housed in the

Cyberphysical Systems Laboratory of Texas A&M University. At the core of the system is a set

of vehicles that are required to follow a particular trajectory within a rectangular area. This can

be thought of as the high-level control objective. The system consists of a supervisory layer or a

high-level controller which decides the trajectory that each vehicle should follow.

Attached to the setup is a set of ten cameras which capture an image of the rectangular area

along with the vehicles once every 100ms. These images are transmitted to the vision sensors in the

system which accurately compute, from these raw images, the coordinates (xi, yi) and orientation
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θi of vehicle i at each sampling instant t. The vision sensors then transmit this information to

the vision server, which disseminates this information to other modules in the system such as the

low-level controller, supervisor, collision avoidance module, etc.

The low-level controller determines the control input to be applied to each vehicle using Model

Predictive Control. It computes the control input using the position and orientation information

of each vehicle that it obtains from the vision server, and also their reference trajectories that it

obtains from the supervisor. The controller then sends this information to the collision avoidance

module.

The collision avoidance module uses this control input, the position estimates provided by

the vision server, and the dynamic model of the vehicles to predict their position during the next

sampling epoch. If it detects a collision based on this computation, it instructs the actuator to halt

the vehicles. If not, it relays the control input computed by the controller as such to the actuator,

which then applies that particular input.

The plant model for vehicle i is given by its kinematic equations:

xi[t+ 1] = xi[t] + h cos(θi[t])vi[t] + h cos(θi[t])wix[t], (9.1)

yi[t+ 1] = yi[t] + h sin(θi[t])vi[t] + h sin(θi[t])wiy[t], (9.2)

θi[t+ 1] = θi[t] + hωi[t] + hwiθ[t], (9.3)

where h is the sampling time period (100ms in this case), vi[t] is the speed of the vehicle at sam-

pling epoch t and is one of the control inputs of the vehicles, and ωi[t] is the angular speed of the

vehicle at sampling epoch t and is the second control input of the vehicles. Also, wix[t], wiy[t],

and wiθ[t] are random variables whose variances we denote by σ2
x, σ2

y , and σ2
θ respectively, and

they model the ambient noise entering the system as a consequence of small, random drifts in the

actual values of the applied control inputs from their set points. We model them as zero-mean,

i.i.d. normal random variables. For the purposes of our demonstration, it suffices to use just two

vehicles, so that i ∈ {1, 2}. We make both of them follow an elliptical trajectory, one behind the
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other. The attached video clip opens by showing the vehicle trajectories in the absence of both

attacks and dynamic watermarking.

Our system includes a collision avoidance module [69] that halts the vehicles when an immi-

nent collision is detected. To illustrate its behavior, when a manually controlled vehicle is made to

intercept the two vehicles’ trajectories, the collision avoidance module detects imminent collisions

and commands the actuators to halt the vehicles, thereby avoiding collisions. In a prior work [69],

it was shown that this system indeed guarantees collision freedom.

Next, we construct a specific attack which spoofs the collision avoidance module by sending

malicious position information to it. Specifically, we introduce maliciousness in the vision sensor

which computes the x−coordinate of the vehicles’ position from the image that it receives from

the cameras. The attack strategy then is as follows. Let tA denote the time at which the attack

begins. Then, z2x[tA] = x2[tA] + τ, where τ is the bias that the sensor adds to the x−coordinate of

the vehicle. For t > tA, the malicious sensor reports measurements {z2x} generated as

z2x[t+ 1] = z2x[t] + h cos(θ2[t])ug2(zt1, z
t
2) + cos(θ2[t])n[t], (9.4)

where n[t] ∼ N (0, σ2
x). Therefore, once the attack begins, wrong position information is sent

to the vision server, and consequently to all other modules in the system. In particular, wrong

position information is sent to the collision avoidance module, which results in it not detecting im-

minent collisions. The attached clip demonstrates this attack which culminates in the two vehicles

colliding with each other.

9.3 Protecting transportation system from malicious attacks on sensors through a nonlinear

extension of dynamic watermarking

We now consider how the transportation system can be protected malicious attacks on sensors.

We first extend the theory of dynamic watermarking to nonlinear systems to address the equations

of vehicular motion. Consider a controller, as in Section-9.2, which computes the control policy-
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specified input and superimposes the watermark on it. The system evolves as

xi[t+ 1] = xi[t] + h cos(θi[t])u
g
i (z

t
1, z

t
2) + h cos(θi[t])eiv[t] + h cos(θi[t])wix[t], (9.5)

yi[t+ 1] = yi[t] + h sin(θi[t])u
g
i (z

t
1, z

t
2) + h sin(θi[t])eiv[t] + h sin(θi[t])wiy[t], (9.6)

θi[t+ 1] = θi[t] + hωi[t] + heiθ[t] + hwiθ[t], (9.7)

where eiv[t] ∼ N (0, σ2
e) and i.i.d. across time is the watermark superimposed on the translation

velocity control input vi[t], eiθ[t] ∼ N (0, σ2
θ) and i.i.d. across time is the watermark superimposed

on the angular velocity control input ωi[t], zi[t] = [zix[t], zix[t], zix[t]] = [zix[t], yi[t], θi[t]]
T , and

zix[t] is vehicle-i’s x−coordinate reported by the vision sensor at time t, which is different from its

true value xi[t], ziy[k] and ziθ[k] are the values reported for yi[k] and θi[k] respectively, which are

equal to their true values at all times. The controller does not know a priori which of the sensors

are malicious, if any.

The nominal trajectory of the vehicles in the presence and absence of dynamic watermarking

are compared in Fig. 9.2. The mismatch between the nominal and actual trajectory is negligible,

and in principle, can be made arbitrarily small.

The controller performs the following tests to check for maliciousness. The tests are specified

only for {zix} below, but analogous tests are also carried out by the controller for {ziy} and {ziθ}.

While we state the following as standalone tests, they are subsumed by (6.70) and (6.71).

1. Test 1: The controller checks if

lim
t→∞

1

t

t−1∑
k=0

(zix[k + 1]− zix[k]− h cos(ziθ[k])ugi (z
t
1, z

t
2)− h cos(ziθ[k])eiv[k])2 = σ̃2

x.

(9.8)

2. Test 2: The controller checks if

lim
t→∞

1

t

t−1∑
k=0

(zix[k + 1]− zix[k]− h cos(ziθ[k])ugi (z
t
1, z

t
2))2 = σ2

c , (9.9)
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Figure 9.2: Trajectories of the vehicles with and without Dynamic Watermarking. Reprinted with
permission from [2].

where

σ̃2
x := lim

t→∞

1

t

t−1∑
k=0

(h cos(θi[k])wix[k])2, (9.10)

and

σ2
c := lim

t→∞

1

t

t−1∑
k=0

(h cos(θi[k])eiv[k] + h cos(θi[k])wix[k])2 (9.11)

are the values that would be obtained for the LHS of (9.8) and (9.9) respectively had {zix} been

equal to {xi}. The above quantities are the sum of independent, but non-identically distributed

random variables. We assume that for the trajectory followed by the vehicles, the above limits

exist. Fig. 9.3 and Fig. 9.4) plot 1
t

∑t−1
k=0(h cos(θi[k])wix[k])2 and 1

t

∑t−1
k=0(h cos(θi[k])eiv[k] +

h cos(θi[k])wix[k])2 as a function of time, and support our assumption that the limits (9.10) and

(9.11) exist. These quantities were computed experimentally as follows in our demonstration.
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Since in the absence of attacks, we have

σ̃2
x = lim

t→∞

1

t

t−1∑
k=0

xi[k + 1]− xi[k]− h cos(θi[k])ugi (z
k
1, z

k
2)− h cos(θi[k])eiv[k],

and

σ2
c = lim

t→∞

1

t

t−1∑
k=0

xi[k + 1]− xi[k]− h cos(θi[k])ugi (z
k
1, z

k
2),

evaluating the RHS of the above equations from the experiment in the absence of attacks yield the

desired noise variances.

The following theorem ensures that the the above two tests are sufficient to restrict the mali-

cious sensor to adding an additive distortion that can only have zero power asymptotically.

Theorem 17. Define

vx[t+ 1] := z2x[t+ 1]− z2x[t]− h cos(θ2[t])ug2(zt1, z
t
2)− h cos(θ2[t])e2v[t]− h cos(θ2[t])w2x[t],

(9.12)

so that for an honest sensor, vx ≡ 0. If the reported sequence of measurements satisfy (9.8) and

(9.9), then,

lim
t→∞

1

t

t−1∑
k=0

v2
x[k + 1] = 0 (9.13)

Proof. Since the sequence of reported measurements {z2x} satisfy (9.8), we have using (9.12)

lim
t→∞

1

t

t∑
k=0

(h cos(θ2[k])w2x[k] + vx[k + 1])2 = σ̃2
x. (9.14)
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Expanding the above and using (9.10), we get

lim
t→∞

1

t

t∑
k=0

v2
x[k + 1] + 2h cos(θ2[k])w2x[k]vx[k + 1] = 0. (9.15)

Similarly, since the reported measurements satisfy (9.9) we have,

lim
t→∞

1

t

t∑
k=0

(h cos(θ2[k])w2x[k] + h cos(θ2[k])e2v[k] + vx[k + 1])2 = σ2
c . (9.16)

Expanding the above and using (9.10), (9.11), and (9.15), we arrive at

lim
t→∞

1

t

t∑
k=0

cos(θ2[k])e2v[k]vx[k + 1] = 0. (9.17)

Now, define Fk := σ(xk, yk−1, θk−1, ek−2
2v , zk), ŵ[k] := E[w[k]

∣∣Fk+1], and w̃[k] := w[k] − ŵ[k].

Then, for k such that cos(θ2[k]) 6= 0, we have ŵ[k] = σ2
w

σ2
e+σ2

w
(e[k] + w[k]). Now,

t−1∑
k=0

cos(θ2[k])w2x[k]vx[k + 1] =
t−1∑
k=0,

cos(θ2[k]) 6=0

cos(θ2[k])w2x[k]vx[k + 1].

Expressing w2x[k] as ŵ[k] + w̃[k], substituting for ŵ[k] using the aforementioned expression, and

rearranging the terms gives

t−1∑
k=0,

cos(θ2[k]) 6=0

cos(θ2[k])w2x[k]vx[k + 1] =
β

1− β

t−1∑
k=0,

cos(θ2[k]) 6=0

cos(θ2[k])e2v[k]vx[k + 1]

+
1

1− β

t−1∑
k=0,

cos(θ2[k])6=0

cos(θ2[k])w̃2x[k]vx[k + 1], (9.18)

where β := σ2
w

σ2
e+σ2

w
< 1. Now, (cos(θ2[k])w̃2x[k],Fk+2) is a Martingale Difference Sequence. Also,

vx[k+1] ∈ Fk+1, since vx[k+1] = zx[k+1]−zx[k]−x[k+1]−x[k]. So, the Martingale Stability
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Theorem (MST) [49] applies, and we have

t−1∑
k=0,

cos(θ2[k]) 6=0

cos(θ2[k])w̃2x[k]vx[k + 1] = o(
t−1∑
k=0,

cos(θ2[k]) 6=0

v2
x[k + 1]) +O(1).

Substituting the above in (9.18), and the result in (9.15), we get

t−1∑
k=0,

cos(θ2[k])6=0

v2
x[k + 1] +

2hβ

1− β

t−1∑
k=0,

cos(θ2[k])6=0

cos(θ2[k])e2v[k]vx[k + 1] + o(
t−1∑
k=0,

cos(θ2[k])6=0

v2
x[k + 1]) +O(1)

+
t−1∑
k=0,

cos(θ2[k])=0

v2
x[k + 1] = o(t). (9.19)

Dividing the above by t, taking the limit as t→∞, and invoking (9.17) completes the proof.

Now we demonstrate the performance of dynamic watermarking for the transportation system.

The specific strategy that the sensor uses to fabricate the measurements is the same as (9.4), except

that now, n[t] ∼ N (0, σ2
x + σ2

e).. The two tests (9.8) and (9.9) of dynamic watermarking are

employed by the controller. The asymptotic tests (9.8) and (9.9) were converted to statistical tests

for implementation by checking if for each time, the LHS of (9.8) and (9.9) are within thresholds

ε1 and ε2 respectively of their asymptotic values.

Fig. 9.3 plots the LHS of (9.8), and Fig. 9.4 plots that of (9.9) as a function of time. As can

be seen, the false measurements pass test 2 but fail test 1, indicating an attack. The restoration of

collision freedom for the automatic transportation system is shown in the attached video clip.

9.4 Concluding Remarks

In this chapter, we have addressed the problem of cybersecurity of advanced transportation

systems, whether autonomous or those that provide driver assist. This is an exemplar of the broader

class of cyber-physical systems for which there is great current concern on the issue of security. We

have shown how collisions can be caused in such systems by attacking the sensor, even though the

control logic contains a collision avoidance module. To provide security against such attacks, we
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Figure 9.3: Test statistic of error test 1 as a function of time. Reprinted with permission from [2].
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Figure 9.4: Test statistic of error test 2 as a function of time. Reprinted with permission from [2].
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have considered the usage of dynamic watermarking where actuators inject small private excitation

signals into the system and check the reported sensor measurements for statistical consistency with

the injected noise. We have extended the theory of dynamic watermarking that has been developed

for linear systems to nonlinear systems describing the equations of vehicular motion. We have

implemented dynamic watermarking on a prototypical laboratory transportation systems and have

shown how it restores collision freedom.
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10. CONCLUSIONS

In this thesis, we have considered the problem of security of networked cyber-physical systems.

Securing such systems is not the same as securing a communication network due to the fundamen-

tal role played by sensors and actuators in interfacing with and controlling the physical plant. In

this thesis, we have studied certain fundamental problems arising in this context.

Analogous to the classical notions of controllable and unobservable subspaces of a linear sys-

tem, we have introduced in Chapter 3 the notions of securable and unsecurable subspaces of a linear

dynamical system, which have important operational meanings in the context of secure control. In

Chapter 3, we have presented their operational meaning in the context of deterministic linear dy-

namical systems, and in Chapters 4 and 5, we have extended them to the context of stochastic

linear dynamical systems. Specifically, we have shown that the malicious sensors and actuators

cannot distort the state estimation performance of the honest nodes along the securable subspace

of the system, no matter what attack strategy they employ; any performance degradation that they

can cause is restricted to the unsecurable subspace of the system if they are to remain undetected.

We have developed in Chapter 6 the general procedure of dynamic watermarking that imposes

private excitation signals on the actuation signals whose presence can then be traced around the

loop to detect malicious behaviors of sensors. We have also rigorously established the security

guarantees provided by dynamic watermarking in a variety of control system contexts, including

a class of nonlinear systems. Chapter 7 addresses the problem of designing security-guaranteeing

dynamic watermarks. Specifically, given a finite-dimensional perfectly-observed linear dynamical

system affected by process noise of arbitrary probability distribution, we have derived in Chapter

7 the necessary and sufficient conditions that the probability distribution of the watermark should

satisfy in order for the fundamental security guarantee of dynamic watermarking to hold. Chapter 8

addresses a scenario in which there are malicious sensors and actuators mixed with honest sensors

and actuators, and wherein the honest actuators watermark their control inputs to detect malicious

sensors. The state space of any such system can be decomposed into two orthogonal subspaces,
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called the watermark-securable and the watermark-unsecurable subspaces, such that the malicious

sensors and actuators cannot degrade the state estimation performance of the honest sensors and

actuators along the watermark-securable subspace. The watermark-securable subspace is larger

than the securable subspace that can be guaranteed in the absence of Dynamic Watermarking. A

certain subset of the watermark-securable subspace was characterized in Chapter 8. Finally, in

Chapter 9, we have demonstrated the efficacy of dynamic watermarking in securing a prototypical

intelligent transportation system.
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