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ABSTRACT 

 

 

Magnaporthe oryzae infects grass-family plants, such as barley and rice, by 

applying a special structure called the appressorium. A strain lacking the transcription 

factor BIP1 does not form infectious hyphae from mature appressoria and loses 

pathogenicity. Four of the BIP1-regulated genes are predicted to encode G-protein-

coupled-receptor (GPCR)-like products, which may have potential functions in 

transducing environmental signals. One of the four genes, plg1 (pth11-like gene 1) is 

crucial for appressorium differentiation and melanization in response to hydrophobic 

surface cues, while deletion mutants of plg2 or plg3, and plg4 do not affect pathogenicity 

or appressorium formation on hydrophobic surfaces. The predicted structure of PLG1 is a 

novel transmembrane protein with a predicted membrane topology similar to that 

predicted for PTH11. The different effects of exogenous cAMP and DAG on 

pathogenicity of ∆plg1 spores on plants indicate that the cAMP- and DAG-dependent 

signaling pathways have different functions during appressorium development. As with 

wild-type spores on a hydrophilic surface, treatment of ∆pth11 spores with cAMP induced 

appressorium development, although higher concentrations of cAMP were needed for 

induction of ∆pth11 spores than for wild-type spores. In contrast, treatment of ∆plg1 

spores with cAMP did not induce appressorium development. DAG treatment of Δplg1 or 

Δpth11 spores inoculated on a hydrophilic surface did not induce appressorium 

development, while DAG treatment induced appressorium development by wild-type 
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spores. When both cAMP and DAG were added to Δplg1 or Δpth11 spores, they all 

showed increased appressorium formation. The reason why melanized appressoria of 

Δbip1 did not infect plants was investigated through cytorrhysis assay. Δbip1 and wild-

type appressoria collapsed in response to treatment with similar concentrations of glycerol 

indicating that Δbip1 appressoria have normal turgor pressure. The failure of plant 

infection may be caused by disruption of the pore ring in appressoria. The addition of 

exogenous cAMP was not able to restore the formation of penetration pegs, indicating that 

the cAMP signaling pathway was not related to BIP1 regulation.   
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CHAPTER I  

INTRODUCTION OF Magnaporthe AND RICE BLAST DISEASE, LITERATURE 

REVIEW  

 

Life Cycle of Magnaporthe oryzae 

Magnaporthe oryzae is a pathogenic fungus, that infects economically important 

grass family plants such as rice, barley, wheat and millet (Valent and Chumley 1991). The 

yield loss due to infection by M. oryzae is more than 10 million tons each year, which can 

feed about 60 million people (Saitoh et al. 2003). M. oryzae infects plants through a special 

structure, the appressorium (Bourett and Howard 1990). During its disease cycle, the 

Figure 1 The infection cycle of Magnaporthe oryzae and its appressorium 
development.  
(Reprinted with permission from “Magnaporthe as a model for understanding host-
pathogen interactions” by Daniel J. Ebbole, 2007, Annual Review of Phytopathology 
45, 437-56, Copyright 2007 by Annual Reviews. ) 
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asexual spore attaches to the surface of plant leaves by secreting a spore tip mucilage 

(Hamer et al. 1988). Then the spore forms a germ tube and a hook structure from the tip, 

perceiving physical and chemical cues such as hardness, hydrophobicity and cutin 

monomers (Xiao et al. 1994; Lee and Dean 1994; Gilbert, Johnson, and Dean 1996). It has 

been reported that nutrient starvation also induces appressorium development by up-

regulating the expression of a secreted hydrophobin, MPG1 (Talbot, Ebbole, and Hamer 

1993). MPG1 is suggested to be involved in the recognition of hydrophobicity during the 

early stage of appressorium development (Beckerman and Ebbole 1996; Talbot et al. 

1996). When the surface cues are appropriate, the hook structure develops into an 

appressorium with a melanized cell wall and a penetrating peg (Mendgen, Hahn, and 

Deising 1996; Talbot et al. 1996). Appressorium formation requires one round of mitosis 

after which a daughter nucleus migrates into the germ tube tip followed by a septum 

formation around the neck (Saunders, Aves, and Talbot 2010; Saunders, Dagdas, and 

Talbot 2010). The peg penetrates into leaf cells driven by turgor pressure generated from 

high intracellular glycerol concentration (de Jong et al. 1997). The fungus continues 

invasive growth in plants and forms leaf lesions where new conidia are produced, and 

spread to other plants (Figure 1) (Bourett and Howard 1990) (Ebbole 2007). 

 

Signaling and Transduction Pathways in Magnaporthe oryzae 

Several signaling pathways have been found to be important for pathogenicity of 

M. oryzae (Figure 2) (Li, Zhou, and Xu 2012). One of the most important pathways is 

mediated by cAMP, which is essential for surface recognition, appressorium development 
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and turgor generation (Wang et al. 2005; Lee and Dean 1993). Exogenous cAMP induces 

appressorium formation from conidia inoculated on hydrophilic surfaces (Lee and Dean 

1993). The added cAMP analogs may be absorbed into fungal cells and work 

intracellularly as second messengers that signal to downstream pathways. MAC1, an 

adenylate cyclase, functions upstream of cAMP, regulating its intracellular biosynthesis 

(Choi and Dean 1997). The concentration of cAMP is down regulated through its 

hydrolysis by PdeH, a high-affinity phosphodiesterase (Ramanujam and Naqvi 2010).   

 

 

Figure 2 The important signaling pathways in Magnaporthe oryzae for pathogenic 
development.  
(Reprinted with permission from “Genetic control of infection-related development in 
Magnaporthe oryzae” by Li G1, Zhou X, Xu JR., 2012, Current Opinion in Microbiology 
6, 678-84, Copyright 2012 by Elsevier. )  
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A regulatory subunit of PKA (Protein Kinase A), named SUM1, functions 

downstream of the cAMP pathway (Adachi and Hamer 1998). To date, CPKA is the only 

characterized PKA catalytic subunit, which is not relevant to appressorium formation but 

to plant penetration (Xu et al. 1997). Other PKA catalytic subunits may function 

downstream of cAMP and SUM1 to regulate appressorium formation (Mitchell and Dean 

1995). MoRAS2, a small GTP-binding protein, functions upstream of cAMP pathways. 

Overactivation of MoRAS2 up-regulates intracellular cAMP level and bypasses the 

recognition stage of appressorium differentiation (Zhou et al. 2014).  

 

The cAMP pathway responds to hydrophobic surfaces and the extracellular signal 

is transduced by a novel seven transmembrane domain protein, PTH11 (DeZwaan et al. 

1999). The failure of ∆pth11 mutants to form appressoria on hydrophobic surfaces is 

similar to the phenotype of wild-type on hydrophilic surfaces. The appressorial deficiency 

of the ∆pth11 mutant can be rescued by adding exogenous cAMP. PTH11 is predicted to 

be a transmembrane protein similar to G-protein coupled receptors (GPCR) (Kulkarni et 

al. 2005; Talbot 2003). GPCRs are integral membrane proteins with seven alpha-helix 

transmembrane domains. The heterotrimeric G protein complex consists of Gα, Gβ and γ 

subunits. GPCRs bind with signaling molecules from the environment and activate 

downstream pathways through disassociation of the Gα subunit from Gβ and γ (Kulkarni 

et al. 2005).  
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Three new Gα homologs have been identified in M. oryzae, but only MagB is 

relevant to pathogenic development (Liu and Dean 1997). A ∆magB strain does not form 

appressoria under inducing conditions, but over-expressed MagB induces appressorium 

formation without leaf surface cues. The exogenous addition of cAMP is able to recover 

appressorium formation in ∆magB stains, indicating cAMP is downstream of MagB (Liu 

and Dean 1997).  

 

The Gβ subunit MGB1, and Gγ subunit MGG1, have also been identified to be 

important for appressorium formation and host penetration. Exogenous cAMP induces 

appressorium formation in ∆mgb1 or ∆mgg1 mutants, indicating that cAMP is also 

regulated by MGB1 and MGG1 (Nishimura, Park, and Xu 2003; Li et al. 2015). However, 

the induced appressoria cannot penetrate plants, which means that other signals in addition 

to cAMP may work downstream of MGB1 or MGG1 (Nishimura, Park, and Xu 2003; Li 

et al. 2015). The G-protein regulator RGS1 directly interacts with all three Gα subunits in 

M. oryzae, and it was found to negatively regulate downstream pathways (Liu et al. 2007). 

GPCRs are common and vital in animal cells, but few classical GPCRs are found in M. 

oryzae (Kulkarni et al. 2005). Instead, a new protein family showing similar structures to 

PTH11 have a lot more members than GPCR homologs in M. oryzae (Kulkarni et al. 

2005). The large group of PTH11-like proteins are specific to Ascomycota and are not 

found in other fungal groups. The role of PTH11 and PTH11-like proteins in pathogenesis 

of M. oryzae will be discussed later in this chapter. 
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Mitogen-activated protein kinases (MAPK) have been found to be crucial for 

appressorium formation and pathogenicity in M. oryzae. PMK1, the homolog of yeast 

MAP kinases FUS3/KSS1, is essential to arrest nuclear division during appressorium 

development and invasive growth in plants (Xu and Hamer 1996). PMK1 expression is 

increased when the appressorium is developing, and the protein is transported into 

appressorial nuclei (Bruno et al. 2004). MST12, the homolog of yeast STE12, is reported 

to function downstream of PMK1 (Park et al. 2002). MST12 is dispensable for 

appressorium formation and melanization, but is essential for host penetration and 

infectious growth (Park et al. 2002). PMK1 binds to MST7, the yeast STE7 homolog, 

specifically in appressoria (Zhao and Xu 2007). A complex of MST7 and MST11, the 

homolog of yeast STE11, regulate phosphorylation of PMK1 as a complex (Zhao et al. 

2005). The homolog of yeast STE50, MST 50, is highly expressed in appressoria and 

works as an adaptor stabilizing the interaction between MST11 and MST7. The SAM 

domains in MST11 and MST50 are important for their interaction and for signal 

transduction (Park et al. 2006). MST11 and MST50 also have direct interactions with two 

upstream Ras homologs, RAS1 and RAS2, but they are not regulated by the two PAK 

(p21-activated kinase) kinases MST12 and CHM1 in M. oryzae (Li et al. 2004). MST50 

also interacts with the Gβ subunit MGB1 and Cdc42 homolog MgCdc42 (Park et al. 2006). 

The PMK1 pathway may be regulated by MGB1 for host penetration and 

phytopathogenicity (Nishimura, Park, and Xu 2003). The PMK1 pathway is also regulated 

by RAS2, the overactivation of which up-regulates PMK1 phosphorylation and induces 

nonfunctional appressorium formation on hydrophilic surfaces (Zhou et al. 2014). Two 
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upstream receptors, MoMSB2 and MoSHO1, which are the homologs of yeast MSB2 and 

SHO1, have been found to recognize various surface signals and activate the PMK1 

pathway (Liu et al. 2011). MoMSB2 may respond to hydrophobicity and cutin monomers, 

whereas MoSHO1 may react to leaf waxes (Liu et al. 2011). Another homolog of yeast 

MAP kinase SLT2, MPS1, is not relevant to appressorium development, but is important 

for appressorium function such as penetrating host cells because of its regulatory function 

on cell wall integrity (Xu, Staiger, and Hamer 1998). MPS1 interacts with MIG1, a 

MADS-box transcription factor, which is expressed in pathogenic structures and crucial 

for invasive growth inside plants (Mehrabi, Ding, and Xu 2008). The MPS1 pathway is 

downstream of MCK1, a MAPKKK homolog of yeast BCK1, important for cell wall 

integrity and appressorial penetration (Jeon et al. 2008). 

 

Diacylglycerol (DAG) has been reported as another important second messenger 

in M. oryzae. Appressorium formation is induced on hydrophilic surfaces by adding 

exogenous DAG, and induction is not inhibited by glisoprenin A, a compound that inhibits 

induction by cAMP (Thines et al. 1997). The intracellular level of DAG is regulated by 

lipid phosphate phosphatases MoLPP3 and MoLPP5, which transform phosphatidic acid 

(PA) to DAG in M. oryzae (Sadat et al. 2014). Phospholipase C (PLC) may also regulate 

DAG levels by catalyzing phosphatidylinositol 4,5-bisphophate (PIP2) into DAG and 

inositol 1,4,5-trisphosphate (IP3) (Lee and Lee 1998). The pathways downstream of DAG 

are mediated through PKC (protein kinase C) which is also involved in regulating 

sporulation and cell wall integrity in M. oryzae (Penn et al. 2015).  
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The Ca2+ induced signaling pathway is also crucial for appressorium formation and 

pathogenicity in M. oryzae (Nguyen et al. 2008). The intracellular level of Ca2+ is up-

regulated specifically in the germ tube tip when it senses the hydrophobic surface (Rho, 

Jeon, and Lee 2009). Addition of calcium chelators, calcium channel inhibitors or 

calmodulin antagonists inhibits appressorium formation (Lee and Lee 1998), showing that 

the Ca2+ signal is important for appressorium development. The Ca2+ signal is induced by 

IP3, which is produced when phospholipase C1 (MoPLC1) transforms PIP2 into DAG 

(Rho, Jeon, and Lee 2009). The inhibition of PLC synthesis by neomycin inhibits 

appressorium formation on hydrophobic surfaces. Neither exogenous Ca2+ nor IP3 induces 

appressorium formation on hydrophilic surfaces, indicating Ca2+ is a second messenger 

necessary, but not sufficient, for appressorium development in M. oryzae. Calmodulin is 

a calcium-binding protein, which functions downstream of Ca2+ signals. Its expression is 

regulated by conidium attachment to plant surfaces during the early stage of appressorium 

development (Liu and Kolattukudy 1999). A putative calmodulin-dependent kinase, 

MoCMK1, is relevant to the efficient development of turgor pressure and pathogenic 

penetration (Liu et al. 2010). The calmodulin-dependent phosphoprotein phosphatase 

calcineurin also plays a role in appressorium formation, since its inhibition by the complex 

of CsA and cyclophilin A results in appressorial failure (Viaud, Balhadere, and Talbot 

2002). MCNA, a catalytic subunit of calcineurin in M. oryzae, is crucial for appressorium 

maturation and pathogenicity (Choi, Kim, and Lee 2009). The calcineurin-responsive 

transcription factor MoCRZ1 interacts with MCNA, and its nuclear localization is 
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regulated by Ca2+/calcineurin, which is essential for appressorial turgor pressure, cell wall 

integrity and Ca2+ homeostasis (Choi et al. 2009; Kim et al. 2010). 

 

The Study of bip1 and plg1 in Magnaporthe oryzae 

The bip1 gene, a novel basic leucine zipper (bZIP) transcription factor, identified 

by our lab is essential for the pathogenicity of M. oryzae (Tag unpublished). The mutant 

strain fails to cause brown lesions on barley and rice leaves, because its melanized 

appressoria do not form penetration pegs. The RNA expression of bip1 is higher in spores 

and appressoria, but lower in mycelia. BIP1-GFP fusion proteins are located in the nuclei 

of appressoria. There are at least 44 genes whose transcription is down-regulated in a 

∆bip1 mutant. Four  of these genes (plg1, plg2, plg3 and plg4) encode PTH11-like 

proteins, and are being studied by our lab. 

  

The protein structure encoded by plg1 is predicted by TMHMM2.0 

(http://www.cbs.dtu.dk/services/TMHMM) (Krogh et al. 2001) to have seven 

transmembrane helices, one of which is a pore lining helix. Its C-terminal amino acid 

sequence shows weak interaction with MagB in a yeast two hybrid assay. But the 

interaction could not be confirmed by co-immunoprecipitation assays in vitro (Castillo 

2015). The plg1 mutant does not induce lesions on barley or rice, because it forms only 

10% of wild-type appressoria on hydrophobic surfaces. But the mutant is able to infect 

plants when leaves are wounded. Appressorium formation by the ∆plg1 mutant is restored 

by adding the cutin monomer 1,16-hexadecanediol, cAMP or DAG on Teflon membranes 
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or barley leaves. Adding of DAG restores full virulence to the ∆plg1 strain, but adding 

cAMP does not, indicating that the DAG signal is downstream of PLG1. The conclusion 

is further supported by RNA expression result. The ∆plg1 mutant has much lower levels 

of pkc RNA expression, which is in the DAG pathway, than wild-type, while transcripts 

of genes in other signaling pathways, such as cpka or pmk1, is not changed (Castillo 2015). 

However, the appressorium development of the ∆plg1 strain is restored by treatment with 

both cAMP and DAG on hydrophilic surfaces, indicating that appressorium development 

may require multiple signaling pathways to be activated.  

 

The fact that activation of more than one pathway is crucial for fungal 

pathogenicity has been discussed previously. For example, exogenous cAMP rescues 

appressorium development of ∆pmk1 on hydrophobic surfaces, but only rescues germ tube 

differentiation on hydrophilic surfaces (Xu and Hamer 1996). Appressorium formation by 

a ∆mst7 mutant is not rescued by cAMP on hydrophilic surfaces, either (Zhao et al. 2005). 

Constitutive expression of MST7 does not rescue appressorial penetration of ∆mst11, 

∆mst7 or ∆mst50 mutants, whose products are involved in the PMK1 pathway, probably 

because of the down regulation of cAMP and MPS1 (Park et al. 2006). Exogenous cAMP 

only partially rescues the mst50 mutant without RAD1 domain, but does not rescue the 

mutant  without SAM1 domain (Park et al. 2006). MST12 was reported downstream of 

PMK1 and cAMP, indicating it is activated by both pathways (Park et al. 2002). Both the 

intracellular level of cAMP and PMK1 phosphorylation are up-regulated by RAS2 and 

MGB1, which are important for pathogenic development (Zhou et al. 2014). It is also 
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inferred that the PMK1 pathway regulates mobilization of glycogen and lipids to 

appressoria, while the cAMP pathway regulates degradation of glycogen and lipids for 

glycerol production (Thines, Weber, and Talbot 2000). An elevated Ca2+ signal is 

necessary but not sufficient to induce appressorium formation (Lee and Lee 1998).  

 

The Project Research Aim 

Four GPCR-like protein encoding genes regulated by BIP1 were identified, and 

are predicted to have roles in pathogenicity in Magnaporthe oryzae. One of them, plg1 

(pth11-like gene 1) has been demonstrated to be crucial for appressorium differentiation 

and melanization on hydrophobic surfaces (Castillo 2015). The functions of the other three 

genes need to be investigated.  

 

There are multiple signaling pathways involved in pathogenicity in M. oryzae,  and 

there is evidence of crosstalk between different pathways. When one pathway is activated 

in a mutant of another pathway, pathogenic development is only partially rescued. 

Constitutive activation of one pathway in most cases is only able to induce pathogenic 

morphogenesis but not full virulence. However, how these crucial pathways cooperate 

with each other is not clear. It can be inferred that the activation of one pathway may up-

regulate or down-regulate another one at different time point to acquire full pathogenicity. 

More investigation should be done on the relationship between different signaling 

pathways to further understand pathogenic development in M. oryzae. Deletion of the plg1 

gene affects the formation and melanization of appressoria. While its predicted structure 
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shows similarities to PTH11 as a novel transmembrane protein, it may play an important 

role in transducing signals to develop appressoria during infection. The difference in the 

extent of pathogenicity between Δplg1 spores treated with cAMP or DAG on plants shows 

different roles of these two signaling pathways during appressorium development. The 

treatment with cAMP or DAG on Δplg1 spores inoculated on hydrophobic or hydrophilic 

surfaces results in different appressorium development. It is important to further 

investigate the relationship of the hydrophobicity signal and the pathway mediated by 

PLG1, in order to understand the role of PLG1 during appressorium development in M. 

oryzae. 
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CHAPTER II  

THE FUNCTION OF BIP1 REGULATION DURING APPRESSORIUM 

DEVELOPMENT IN Magnaporthe oryzae 

 

Introduction 

Our lab and collaborator have found that bip1 encodes a novel transcription factor 

with a leucine zipper (bZIP) domain binding with DNA strands (Tag unpublished). The 

insertional interruption of bip1 (REMI) causes reduced plant infection on both barley and 

rice leaves. The complete deletion of bip1 (Δbip1) results in non-pathogenicity and the 

failure to form penetration pegs on leaf surfaces (Tag unpublished). However, why BIP1 

is required for formation of penetration pegs is not clear.   

 

When microarray analysis was used to compare the transcriptomes of the Δbip1 

mutant and the wild-type, 44 down-regulated genes were identified in the Δbip1 mutant, 

including 4 genes encoding G-protein-coupled-receptor-like proteins (Tag unpublished). 

One of the four GPCR-encoding genes, plg1 (pth11-like gene 1) is crucial for 

appressorium differentiation and melanization induced by hydrophobicity (Castillo 2015). 

The appressorium formation of the Δplg1 mutant can be restored by cAMP or DAG on 

hydrophobic surfaces, but the plant pathogenicity can only be restored by DAG, indicating 

that DAG works downstream of PLG1 (Castillo 2015). Since BIP1 regulates PLG1 

expression, it is not clear yet that if BIP1 regulation is related to the cAMP or DAG 
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signaling pathways. This chapter further investigates the function of BIP1 and its 

functional relationship with PLG1 and its signaling pathway based on previous research. 

 

Material and Methods 

Fungal Strains and Media Culture 

The wild-type strain used was Magnaporthe oryzae strain 70-15, which was 

obtained from the Fungal Genetics Stock Center (Kansas City, Missouri). It was grown on 

TNKYE plates with 1% glucose, 0.2% NaNO3, 2% KH2PO4, 1% MgSO4, 1% CaCl2, 0.1% 

FeSO4, 0.1% micronutrients, 0.2% yeast extract and 2% agar, and incubated under 

fluorescent light at 25°C (Castillo 2015). The strain was stored on desiccated and sterile 

filter discs at –20°C. 

 

Bioinformatics  

All nucleotide sequences were obtained from the Magnaporthe oryzae database at 

the Broad Institute (http:/www.broadinstitute.org/annotation/genome/magnaporthe_ 

grisea/MultiHome.html). The accession numbers for the sequences are listed in Table 1. 

Gene Identifier 

bip1 MGG_08118 

plg1 MGG_03584 

plg2 MGG_06535 

plg3 MGG_02160 

plg4 MGG_11116 

pth11 MGG_05871 

Table 1 Gene identifiers from the Broad Institute website. 
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Split Marker Assay for the bip1 Gene Deletion 

The bip1 gene was deleted in M. oryzae using the split marker recombination 

protocol (Catlett et al. 2003). A sequence upstream of bip1 was amplified by PCR and 

fused to one-half of the hygromycin B resistance gene (hyg). A downstream flanking 

sequence of bip1 was amplified and fused to the other half of hyg. There was overlapping 

sequence between the two halves of hyg sequence (Figure 3A). The two fragments were 

then used for protoplast transformation. 

 

Generation and Transformation of Fungal Protoplasts 

A two-week-old wild-type 70-15 fungal culture was cut into cubes and 

homogenized. The fungus was then cultured in a 250 mL flask with liquid TNKYE 

medium with shaking overnight at 25°C. Mycelia were collected by filtering through a 

sterile Miracloth and resuspended in 50 mL 1M sorbitol solution containing 1-2 mg/mL 

NOVOZYM (lysing enzyme) and incubated at 30-32°C for 2h or less with shaking at 60 

rpm. The condition of protoplasts was checked under a light microscope every 15 minutes. 

When clear protoplast cells were observed, the digestion was stopped. All protoplasts were 

collected by filtering through Miracloth and rinsed with 50 mL 1M sorbitol. Protoplasts 

were then pelleted by centrifugation at 4500 rpm at 10°C for 6 minutes. The supernatant 

was removed, and the rinse process was repeated one more time. Protoplasts were finally 

resuspended in 1X STC at a concentration of ~5 x 107 to 1 x108/mL for transformation. 
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Two point five micrograms of the two PCR fragments generated for the split 

marker recombination protocol were transformed together into 300 μL of WT 70-15 

protoplasts in a 15 mL Falcon tube and incubated at room temperature for 10 minutes. A 

solution of PEG 3550 buffer (dissolved in 25mM CaCl2, 25mM Tris-HCl, pH 7.5) was 

added and incubated for another 20 min. Then complete medium (0.5% sucrose, 0.6% 

Figure 3 Generation of bip1 KO in Magnaporthe oryzae. 
A. Fragment design for deleting the bip1 gene using split marker assay. 
B. Screening bip1 mutant strains on hygromycin selective plates. 
C. Screening bip1 mutant strains using PCR. 
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yeast extract, 0.6% casein hydrolysate) was added. And the mixture was incubated 

overnight in a shaker at 25°C overnight. 

Transformed protoplasts were plated in complete medium containing 100 ug/mL 

hygromycin B and 2% agar. After solidification, a layer of minimal medium (1% sucrose, 

0.1% Ca(NO3)2, 0.02% KH2PO4, 0.025% MgSO4, 0.015% NaCl) containing 250 ug/mL 

hygromycin B and 1.5% agar was poured on the top to select hyg+ mutants (Figure 3B). 

During the first week of incubation, mutant candidates growing out of the top layer were 

picked individually onto TNKYE plates containing 250 ug/mL hygromycin B.  

Genomic DNA was extracted from each mutant candidate for PCR screening using 

two primer pairs (Figure 3C). The forward primer for both PCR reactions was 

complementary to sequences upstream of bip1. The reverse primer was complementary to 

sequences either inside bip1 or inside hyg. PCR results were examined by gel 

electrophoresis. The presence of a 3kb amplified band and the absence of a 2kb band 

indicates the bip1 gene was deleted and replaced by the hyg gene. Single spore isolation 

for pure colonies was then performed for the putative deletion strains. Three isolates were 

picked from each mutant and screened by PCR again before Southern blot analysis. 

 

Southern Blot Analysis 

Isolates of mutant strains were examined by Southern blot analysis to see if they 

contained a single copy insertion of hyg. Genomic DNA from 70-15 wild-type and mutant 

strains was isolated from fungal hyphae using phenol-chloroform extraction as described 

by Sweigard et al. (1990). Twenty micrograms of genomic DNA from each strain were 
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digested by HindIII. All digested DNA samples were run on gel electrophoresis and 

blotted onto Hybond-N+ membranes. The membranes were then hybridized to 32P-

radioactively labeled the probes for bip1 or hyg. The membrane was exposed to a phosphor 

imaging screen in dark boxes overnight at room temperature. The films were then scanned 

using a Typhoon 9410 Variable Mode Imager.  

 

Examination of Pathogenic Phenotypes 

Three barley seeds were planted in each pot containing Redi-gro soil and grown 

for 3-4 weeks (15°C, 60% humidity). Barley leaves were cut into 2.5 inch pieces and 

placed in kinetin plates. ∆bip1 and wild-type spores were collected after 15 days of 

incubation and concentrated to 1x104/mL in 0.4% gelatin solution. Twenty microliters of 

spore suspensions were placed on barley leaf surfaces. All the plates were sealed with 

parafilm and incubated at 25°C. Lesions were evaluated by taking pictures after 7 days.  

The infected leaves were processed to remove pigments to allow for microscopic 

examination of plant penetration. The infected leaves were transferred into a 2 mL 

microfuge tube and fixed with 1 mL lactophenol (1:1:1:1 volume ratio of lactic acid, 

glycerol, phenol and water) for 16h. After the liquid was removed, lactophenol and 95% 

ethanol were mixed at 1:1 v:v ratio and added. Tubes were incubated at 95°C for 1h to 

decolorize the leaves. The decolorization was repeated twice. Liquid was removed, and 

cotton blue (0.01% aniline blue in a 1:1:1 volume ratio of ethanol, lactic acid and phenol) 

was added to stain fungal hyphae. Tubes were incubated at 25°C for at least 24h (Oh and 

Lee 2000) before examining with light microscopy. 
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 ∆bip1 and WT 70-15 spores were collected in 0.4% gelatin solution after 15 days 

incubation and concentrated to 1x105/mL. A pot of 3-4 weeks three barley seedings was 

placed in a bio-hazard plastic bag. Five milliliters of spore suspensions were sprayed by 

atomizer head onto all seedlings in each bag. Bags were sealed by rubber bands and 

incubated at 25°C for 7 days.  

∆bip1 and WT 70-15 spores were collected in water solution after 15 days 

incubation and concentrated to 1x104/mL. Twenty microliter of each suspension was 

placed on Teflon membranes and incubated in humidity chambers at 25°C for 12h and 

24h. Appressoria were counted under a microscope. 

 

Cytorrhysis Assay 

Conidia were collected from 15-day old TNKYE cultures of M. oryzae WT 70-15 

and the ∆bip1 strains and concentrated to 1x104/mL. Twenty microliters of conidia 

droplets were placed on Teflon membranes in humidity chambers and incubated at 25°C 

for 24 h. Then the liquid droplets were removed with a micropipettor, and replaced by 20 

μL of 1 M glycerol, 3 M glycerol or 5 M glycerol to resuspend spores and appressoria (de 

Jong et al. 1997). At least 200 total appressoria including collapsed and uncollapsed ones 

were examined. The percentages of collapsed appressoria were determined. 

 

Appressorium Development and Plant Infection with cAMP Treatment 

∆bip1 and WT 70-15 spores were collected in water after 15 days incubation and 

concentrated to 1x104/mL in water or 0.4% gelatin solution. Twenty microliters of spore 
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suspensions treated with or without 10 mM cAMP were inoculated on 3-4 week old barley 

leaves in kinetin plates. All plates were sealed with parafilm and incubated at 25°C. 

Lesions were evaluated by taking pictures after 7 days. The infected leaves were processed 

to remove pigments as described previously to allow for microscopic examination of plant 

penetration.  

Different aliquots of ∆bip1 and WT 70-15 spore suspensions had cAMP added at 

0, 10, 20 or 50mM. Twenty microliters of spore suspensions were placed on Gelbond 

membranes (Lonza Pharma & Biotech) and incubated in humidity chambers at 25°C. After 

24h, the membranes were photographed and the numbers of melanized, abnormal, 

unmelanized appressoria and total spores were counted and classified. Twenty microliters 

of spore suspensions were placed on barley leaf surfaces.  

 

Quantitative RT-PCR 

Spores of WT 70-15 were incubated on Teflon membranes and collected at 0hpi, 

4hpi, 6hpi, 12hpi, 15hpi, 24hpi and 36hpi. Total RNA was extracted from all time points 

as described (Castillo 2015). The cDNAs of ef1α, bip1, pth11, plg1, plg2 and plg3 were 

synthesized individually from 1ug extracted mRNA. The reagents of cDNA synthesis 

were from TaqMan reverse transcription kit (Life Technologies). Quantitative RT-PCR 

was done using SYBR Green real-time PCR Master Mix (Life Technologies). The Applied 

Biosystems 7600 Real-Time PCR System was used to analyze the process of RT-PCR. 

The results for ef1α were used as the control for normalization of other genes. Then results 

from other time points were normalized relative to the 0hpi sample. 
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Results 

Generation of bip1 Mutant Strains 

Five individual ∆bip1 mutants were constructed as described in Material and 

Methods shown in Figure 3. Mutants were finally confirmed by Southern blot analysis. 

The expected size of the genomic fragment detected by probe Innerbip1 was 4kb, and the 

fragment detected by probe hyg was 3.7kb (Figure 4). According to the Southern blot 

results (Figure 4), all tested isolates from five ∆bip1 mutants had a deletion of bip1 and 

insertion of hyg. Two independent mutants, 3-3-1 and 3-40-1, were selected for further 

study. 

 

Pathogenic Phenotypes of bip1 Mutant Strains 

The pathogenicity of Δbip1 mutant strains on barley was tested by placing droplets 

of suspended spores on detached leaves or spraying barley seedlings with the spore  

Figure 4 Southern blot result of bip1 mutant strains. 
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Figure 5 The phenotypes of bip1 mutant strains. 
A. Droplet inoculation of barley leaves with Magnaporthe oryzae spores. 
B. Spray inoculation of barley seedlings with Magnaporthe oryzae spores. 
C. Appressorium formation on Teflon membranes . 
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 Figure 6 Appressorial penetration of bip1 mutant strains on barley leaves. 

Figure 7 Cytorrhysis of bip1 mutant strains on Teflon membranes. 
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suspension. The Δbip1 strains did not infect barley leaves or seedlings, while WT 70-15 

formed brown lesions (Figure 5A and B). To determine if the Δbip1 mutants could form 

appressoria, WT 70-15 and Δbip1 spores were inoculated on Teflon membranes. The 

Δbip1 mutants formed similar amounts of appressoria as WT 70-15 (Figure 5C), indicating 

that the failure of Δbip1 infection may be due to the inability to penetrate the plant.  

The ability of plant penetration was then examined under microscope, showing 

that Δbip1 mutants form melanized appressoria, but did not penetrate into the barley leaves  

(Figure 6). A possible cause of failed plant penetration is low turgor pressure inside the  

appressoria. However, the results of the cytorrhysis assay show that Δbip1 mutants had 

similar percentages of collapsed appressoria compared to WT 70-15 in 1M, 3M and 5M 

glycerol solution (Figure 7). This result indicated that Δbip1 mutants had the normal turgor 

pressure required for plant penetration. The nonpathogenic phenotype of Δbip1 mutants 

on barley may be due to other reasons, such as failure to form pore rings at the bottom of 

appressoria or the inability to overcome the immune system of plants.  

 

Appressorium Development on Hydrophilic Surfaces with cAMP Treatment 

To determine whether Δbip1 mutation affects cAMP-dependent signaling pathway 

in appressorium development, WT 70-15 and Δbip1 spores were treated with different 

amounts of cAMP and inoculated on Gelbond membranes. Appressorium development 

was evaluated and the results are shown in Figure 8. WT 70-15 and Δbip1 spores have 

similar levels of appressorium formation with the same cAMP treatment. This implies that 

BIP1 is involved in other signaling pathways important to appressorium development. 



 

25 

 

Pathogenicity on Barley with cAMP Treatment 

To investigate whether cAMP treatment restores pathogenicity of the Δbip1 

mutant, a suspension of Δbip1 spores was sprayed on barley leaves in either the presence 

or absence of 10mM cAMP. As a control, WT 70-15 spores with and without 10mM 

cAMP were also inoculated on barley leaves. The pathogenicity of Δbip1 on barley leaves 

was not restored by the addition of cAMP (Figure 9A). Microscopic examination of plant 

penetration showed that exogenous cAMP failed to restore penetration of Δbip1 mutants  

on barley leaves (Figure 9B).  

Figure 8 Development of appressoria on hydrophilic surfaces with cAMP treatments. 
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Figure 9 Infection on barley 
leaves with cAMP treatment. 
A. Droplet inoculation of  WT 

70-15 and Δbip1 mutant 
strain on barley leaves with 
and without cAMP 
treatment. 

B. Microscopic views showing 
appressorial penetration in 
the lesions shown in A. 
(Black arrows: melanized 
appressoria. Red arrows: 
invasive hyphae in plant 
cells. Yellow arrows: 
possible penetration pegs.) 
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Transcription of plg Genes in Magnaporthe oryzae 

We looked at transcript levels of plg1, plg2, plg3, bip1 and pth11 during 

appressorium development on an artificial hydrophobic surface (Teflon membrane) of the 

WT 70-15 strain of M. oryzae by using RT-PCR (Figure 10A). Transcript levels of bip1, 

pth11 and plg3 increased (0hpi to 4hpi) during the early stage of appressorium 

development, then decreased (4hpi to15hpi) and increased again (15hpi to 36hpi) during 

later stages of appressorium development. The transcript level of plg1 first increased (0hpi 

to 4hpi) and then decreased (4hpi to 6hpi) during the early stage of appressorium 

development, and started to increase again (6hpi to 36hpi) during later stages of 

appressorium development. The transcript level of plg2 first decreased (0hpi-4hpi) and 

then increased (4hpi to 6hpi) during the early stage of appressorium development, and 

decreased (6hpi to 15hpi) and then increased again (15hpi to 36hpi) during later stages of 

appressorium development.  

Transcript levels of all genes except plg2 followed a similar pattern of changes 

where transcript levels at first increased, then decreased, and then increased again. The 

transcripts of plg2 increased later than the other genes during the early stage of 

appressorium development, and decreased later than the other genes during later stages of 

appressorium development. The transcripts of plg1 decreased earlier than all the other 

genes during the early stage of appressorium development, and increased earlier than all 

the other genes during later stages of appressorium development. These results indicate 

that all the genes tested may be important to appressorium development, and that PLG1  
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Figure 10 RNA expression levels in Magnaporthe oryzae during infection. 

A. RNA expression during appressorium development on Teflon membranes 
analyzed by RT-PCR. The data were normalized first to ef1α and then to the 0h sample. 

B. RNA expression during infection of rice plants analyzed by RNA-seq. The 
data were normalized first to tubA and then to the mycelial sample. 
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may regulate signaling pathways upstream of the other genes, while PLG2 may be 

regulated by signaling pathways downstream of the other genes. 

To compare these results with transcriptome analysis during infection of plants, 

the sequences of the open reading frame for all four plg genes, as well as for bip1 and 

pth11 were used as queries in a BLAST-based search of the M. oryzae RNA-seq database 

at NCBI (SRX5076910-5076916, https://www.ncbi.nlm.nih.gov/sra). The query was 

performed by Dr. Daniel Ebbole using a script he had written. The data were normalized 

first to tubA and then to the mycelial sample. Relative RNA expression of each gene at 

different stages of development are shown in Figure 10B.  

All genes examined had higher transcript levels during pathogenic stages (16-

18hpi to 72hpi) than during vegetative growth (mycelia). Transcript levels of plg1, plg2 

and plg3 were highest during appressorium development (16-18hpi), while transcript 

levels of bip1 and plg4 were highest during invasive growth (34-36hpi). The transcript 

level of pth11 increased significantly during both appressorium development (16-18hpi) 

and invasive growth (34-36hpi). These results indicate that all the genes may be important 

for fungal pathogenicity: plg1, plg2 and plg3 may be more important for appressorium 

development than for other pathogenic stages; bip1 and plg4 may be more important for 

invasive growth in plants than for other pathogenic stages; pth11 may be important for 

both appressorium development and invasive growth.  

The RT-PCR results for all genes tested (Figure 10A) during appressorium 

development (0hpi to 15hpi) were consistent with their RNA-seq results in the NCBI SRA 

database (Figure 10B). All of their transcript levels increased during appressorium 
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development compared to vegetative stages, indicating that all of the genes are important 

to appressorium development. However, the RT-PCR results for plg1, plg2 and plg3 after 

most appressoria had developed (15hpi to 36hpi) were different from their RNA-seq 

results (16-18hpi to 34-36hpi), while the two results for bip1 and pth11 were consistent. 

This may be because the RNA used for RT-PCR were extracted from spores inoculated 

on artificial hydrophobic membranes where spores developed melanized appressoria, but 

no penetration pegs or invasive hyphae. The RNAs for RNA-seq were from spores 

inoculated on rice where spores developed melanized appressoria as well as penetration 

pegs, and continued to grow invasively inside rice. The transcript levels of plg1, plg2 and 

plg3 decreased after 24hpi on rice plants, while transcript levels of these genes increased 

after 24hpi on artificial hydrophobic surfaces, indicating that the three plg genes are more 

related to appressorium development than to plant penetration or invasive growth.  

 

Conclusion and Discussion 

Δbip1 mutants were generated using the split marker assay and confirmed by 

Southern blot analysis. As expected, the mutant strains were nonpathogenic on barley 

leaves or seedlings. They still developed melanized appressoria but no penetration pegs. 

The turgor pressure of Δbip1 appressoria was the same as the wild-type, so this was not 

the cause of abnormal plant penetration. The addition of exogenous cAMP did not make 

any difference between the appressorium formation of Δbip1 and wild-type on hydrophilic 

surfaces, and it did not restore the plant pathogenicity of Δbip1. This indicated that BIP1 

may not be involved in any cAMP-dependent signaling pathway in appressorium 
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development. The examination of transcript levels by RT-PCR and RNA-Seq in the 

database of M. oryzae showed that bip1 is more related to invasive growth, plg genes are 

more related to appressorium development, and pth11 is related to both appressorium 

development and invasive growth.  
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CHAPTER III  

GENERATING MUTANT STRAINS OF THE OTHER GPCR-LIKE-ENCODING 

GENES REGULATED BY BIP1 (PLG2, PLG3, AND PLG4) 

 

Introduction 

G-protein-coupled receptors (GPCR) usually work as membrane proteins that 

transduce signals from outside to inside the cell and induce developmental or metabolic 

signaling pathways (Dohlman and Thorner 2001). It has been reported that Ascomycota 

fungi have a large number of G-protein-coupled-receptor-like (GPCR-like) proteins in 

addition to the classical GPCR proteins (Kulkarni et al. 2005) (Table 2). GPCR-like 

proteins may play important roles in the development of Ascomycota fungi (Kulkarni et 

al. 2005). One of the best known GPCR-like proteins in M. oryzae is PTH11, which is 

found to play an important role in fungal pathogenicity. PTH11 is crucial for developing 

appressoria on plant leaf surfaces and related to the cAMP signaling pathway (DeZwaan 

et al. 1999). Four genes regulated by BIP1 are predicted to encode PTH11-like proteins. 

These genes are plg1, plg2, plg3 and plg4. The importance of plg1 to pathogenicity of M. 

oryzae has been investigated by constructing and characterizing a Δplg1 deletion mutant 

 
Table 2 Classes of GPCR-like proteins in Magnaporthe oryzae.  

Classes of GPCR-like Proteins in Magnaporthe oryzae Numbers 

GPCR homologs of known classes (STE2-like, STE3-like, cAMP receptor-like) 8 

Other GPCR-like homologs (GPR1-like, STM1-like, mPR-like, MG00532-like) 7 

PTH11-related proteins (restricted to the subphylum Pezizomycotina of 
Ascomycota) 

61 
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(Castillo 2015). The effects of deleting plg2, plg3, or plg4 on M. oryzae pathogenicity 

need to be investigated. This chapter describes the construction of mutant strains of the 

three other plg genes (plg2, plg3, and plg4). 

 

Material and Methods 

Fungal Strains and Media Culture 

Fungal strains were cultured and stored as described in Chapter II, pg. 13. All 

mutant strains with the resistant gene hyg were cultured on TNKYE agar plates 

supplemented with 250 μg/mL hygromycin B (PhytoTechnology Laboratories). All 

mutant strains were stored using the same method as the wild-type strains. 

 

Bioinformatics  

All DNA and amino acid sequences were obtained from the Magnaporthe oryzae 

database at the Broad Institute (http:/www.broadinstitute.org/annotation/genome/ 

magnaporthe_grisea/MultiHome.html) (Table 1, Chapter II). The prediction of membrane 

spanning domains in proteins encoded by plg genes was done by using TMHMM 2.0 

(http://www.cbs.dtu.dk/services/TMHMM) (Krogh et al., 2001).  

 

Generation of plg Mutant Strains  

All plg mutants were generated by deleting the target gene individually using split 

marker assay as described in Chapter II, pg. 14 (Figure 11). Generation of fungal 

protoplasts and their transformation was done as described in Chapter II, pg. 14-16. WT  
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Figure 11 Generation of plg mutant strains using split marker assay. 
 

70-15 was used to generate the Δplg2 and Δplg4 mutant strains. KU80 was used to 

generate the Δplg3 mutant strains. Southern blot analysis was done as described in Chapter 

II, pg. 16-17. 

 

Results 

The Predicted Transmembrane Structures of PLG Proteins 

TMHMM 2.0 (Krogh et al., 2001) was used to predict transmembrane domains of 

the four GPCR-like proteins PLG1, PLG2, PLG3 and PLG4. As shown in Figure 11, they 

are all predicted to have transmembrane structures. PLG1, PLG2 and PLG4 are predicted 

to have seven transmembrane domains, similar to PTH11 (DeZwaan et al. 1999; Kulkarni 

et al. 2005). While PLG3 is predicted to have four transmembrane domains. The predicted 

membrane topology of PLG proteins is consistent with their predicted function as signal 

transduction proteins. 
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Figure 12 Predicted protein structures of plg genes by TMHMM 2.0. 
 

Generation of plg Mutant Strains 

The plg2, plg3 and plg4 genes were deleted and replaced with the hygromycin B 

resistant gene (hyg) as described in Material and Methods (Figure 11). The DNA 

fragments of plg2, plg3 and plg4 generated by split marker assay were transformed into 

WT 70-15 protoplasts individually. However, transformants of Δplg3 could not be 

isolated. The DNA fragments of plg3 were then transformed into KU80 protoplasts. KU80 

is a mutant displaying wild-type phenotypes, but has higher homologous recombination 

efficiency due to inactivation of the non-homologous-end-joining system (Villalba et al. 

2008). 
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Confirmation of plg Gene Deletion by Southern Blot 

Two single spore isolates from each individual Δplg2 mutants were performed 

Southern blot analysis. Genomic DNA from WT 70-15 and Δplg2 mutants was extracted 

and digested by HindIII. The genomic fragment detected by probe Innerplg2 or probe hyg 

was 9kb (Figure 13). All tested isolates from Δplg2 mutants had a deletion of plg2 and 

insertion of hyg. Two independent mutants, 1-1 and 2-1, were selected for further study. 

Two single spore isolates from each individual plg3 mutants were performed 

Southern blot analysis. Genomic DNA from WT 70-15, KU80 and Δplg3 mutants was 

extracted and digested by HindIII. The genomic fragment detected by probe Innerplg3 

was 4.2kb, and the fragment detected by probe hyg was 3.2kb (Figure 14). The 6-4 and 6-

5 isolates had a deletion of plg3 and insertion of hyg. However,  the 5-1 and 5-2 isolates  

 

Figure 13 The Southern blot result of plg2 mutant strains. 
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Figure 14 The Southern blot result of plg3 mutant strains. 
 

 
Figure 15 The Southern blot result of plg4 mutant strains. 
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may have more than one copy of hyg beside a deletion of plg3. Two independent mutants, 

5-1 and 6-4, were selected for further study. 

Three single spore isolates from each individual plg4 mutants were performed 

Southern blot analysis. Genomic DNA from WT 70-15 and Δplg4 was extracted and 

digested by SalI. The genomic fragment detected by probe Innerplg4 was 6.2kb, and the 

fragment detected by probe hyg was 2.2kb (Figure 15). All tested isolates from Δplg4 

isolates had a deletion of plg4 and insertion of hyg. Two independent mutants, 2-3-1 and 

4-9-1, were selected for further study.  

 

Conclusion and Discussion 

In this chapter, plg genes were predicted to encode proteins with transmembrane 

structures. plg mutants were generated using split marker assay and confirmed by 

Southern blot. Each mutant has target gene replaced by the resistant gene hyg. One single 

spore isolate from each of two independent mutant strains was chosen for further study. 

The phenotypes of all plg mutants will be examined in the next chapter.  
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CHAPTER IV  

THE FUNCTION OF THE FOUR GPCR-LIKE-ENCODING GENES REGULATED 

BY BIP1 (PLG1, PLG2, PLG3, AND PLG4) 

 

Introduction 

The four GPCR-like-encoding genes regulated by BIP are predicted to have 

transmembrane domains, consistent with their proposed roles of transducing signals from 

outside to inside in M. oryzae. A ∆plg1 mutant of M. oryzae is defective in pathogenesis  

(Castillo 2015). It does not form any lesion on barley or rice and produces only 10% 

appressoria on hydrophobic surfaces as the wild-type strain. Appressorium formation by 

∆plg1 is restored by adding the cutin monomer 1,16-hexadecanediol, cAMP or DAG on 

Teflon membranes and barley leaves. However, cAMP does not restore virulence, 

indicating that DAG is downstream of PLG1 (Castillo 2015).  

 

To investigate the roles of three other GPCR-like-encoding genes (plg2, plg3, and 

plg4), deletion mutant strains were generated (Chapter III). The effect of ∆plg2, ∆plg3, 

and ∆plg4 mutations on fungal pathogenicity and appressorium development were 

investigated. 
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Material and Methods 

Droplet Inoculation Assay 

Spores of all mutant and wild-type strains were collected after 15 days incubation 

and resuspended in 0.4% gelatin at the concentration of 1x104/mL. Three to four week old 

barley leaves were cut into 2.5 inches and placed in kinetin plates. Twenty microliter 

droplets of spore suspensions were placed on barley leaf surfaces. The experimental plates 

were sealed with parafilm and incubated at 25°C. Lesions were evaluated by taking 

pictures after 7 days. The infected leaves were then processed as described previously to 

remove pigments to allow examination of plant penetration by light microscopy. 

 

Spray Inoculation Assay 

Three barley seeds were planted in each pot containing Redi-gro soil and grown 

for 3-4 weeks (15°C, 60% humidity). Spores of all mutant and wild-type strains were 

collected after 15 days incubation, resuspended in 0.4% gelatin, and concentrated at 

1x105/mL. Each pot was placed in a bio-hazard plastic bag and sprayed by 5 mL spore 

suspension through atomizer heads. Bags were sealed by rubber bands and incubated at 

15°C. Lesions were evaluated after 7 days.  

 

Teflon Assay 

Spores of all mutant and wild-type strains were collected in water after 15 days 

incubation and the concentration of each spore suspension was adjusted to 1x104/mL. 

Twenty microliter droplets were placed on Teflon membranes and incubated in humidity 
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chambers at 25°C for 12h and 24h. The number of appressoria formed was counted under 

microscope. 

 

Results 

The Pathogenicity of plg Mutant Strains 

Δplg2, Δplg3 and Δplg4 mutant strains were generated to investigate their roles in 

fungal pathogenicity in M. oryzae. The previously generated Δplg1 strain (Castillo 2015) 

was also examined for comparison. Only Δplg1 and Δplg4-1 mutant strains failed to infect 

barley leaves, and Δplg4-2 formed smaller lesions than WT 70-15 (Figure 16). Both 

independent mutant strains of Δplg2 (Δplg2-1, Δplg2-2) and Δplg3 (Δplg3-1, Δplg3-2) 

developed infective lesions on barley similar to those made by WT 70-15 or KU80 after 

7 days of incubation (Figure 16). 

Similar results were seen when barley seedlings were spray inoculated with 

suspensions of wild-type and mutant spores. The Δplg1 and Δplg4-1 mutant strains failed 

to infect barley seedlings, and Δplg4-2 formed fewer lesions than WT 70-15 (Figure 17). 

Both independent mutant strains of Δplg2 (Δplg2-1, Δplg2-2) and Δplg3 (Δplg3-1, Δplg3-

2) developed infective lesions on barley similar to those made by WT 70-15 or KU80 after 

7 days of incubation (Figure 17). 

 

Appressorium Development of plg Mutant Strains 

The plg mutant spores were inoculated on a hydrophobic surface (Teflon 

membranes) to test for appressorium development. It was previously shown that spores of  
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Figure 16 Droplet inoculation of barley leaves with Magnaporthe oryzae spores. 

 

Figure 17 Spray inoculation of barley seedlings Magnaporthe oryzae spores. 
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Figure 18 Appressorium development on Teflon membranes. 
A. Micrographs of appressorium development on Teflon membranes. 
B. Quantitation of appressorium formation on Teflon membranes. 
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the Δplg1 mutant strain formed many fewer appressoria after 24h compared to spores of 

the WT 70-15 (Castillo 2015). Spores of the Δplg2, Δplg3, and Δplg4 mutant strains all 

formed melanized appressoria (Figure 18A). 

The Δplg1 mutant strain forms only 10% appressoria on Teflon membranes 

compared to WT 70-15 (Castillo 2015). The two independent mutants of Δplg2 (Δplg2-1 

and Δplg2-2) developed appressoria on Teflon membranes at similar levels as WT 70-15 

after 12h and 24h (Figure 18B). The Δplg3 mutant strain developed less appressoria than 

KU80 after 24h, but not as few as Δplg1 (Figure 18B). The two independent mutants of 

Δplg4 (Δplg4-1 and Δpl4-2) developed appressoria at similar levels as WT 70-15 after 

12h (Figure 18B). However, Δplg4-2 had slightly reduced appressorium formation at 24h 

compared to WT 70-15 and Δplg4-1 (Figure 18B). 

 

Conclusion and Discussion 

The pathogenic phenotypes and appressorium development of plg mutant strains 

were examined. The Δplg1 mutant strain was nonpathogenic on barley and formed only 

10% of spores formed appressoria on hydrophobic surfaces (Castillo 2015). The two 

independent Δplg2 mutant strains (Δplg2-1 and Δplg2-2) formed infective lesions on 

barley and appressoria at similar levels as WT 70-15. The two independent Δplg3 mutant 

strains (Δplg3-1 and Δplg3-2) formed infective lesions on barley at a similar level as 

KU80, but formed less appressoria on Teflon membranes than KU80 at 24h. The Δplg4-

1 mutant strain failed to infect barley, while Δplg4-2 infected barley less seriously than 

WT 70-15. Δplg4-1 formed appressoria on Teflon membranes at similar levels as WT 70-
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15, while Δplg4-2 formed fewer appressoria than WT 70-15 and Δplg4-1 at 24h. The 

different phenotypes of the two  independent Δplg4 mutant strains were probably caused 

by the process of homologous recombination during plg4 gene deletion. The sequences 

upstream or downstream of plg4 may have been replaced differently by the DNA 

fragments used in the split marker assay.
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CHAPTER V  

THE REQUIREMENT FOR BOTH PTH11 AND PLG1 DURING APPRESSORIUM 

FORMATION IN Magnaporthe oryzae 

 

Introduction 

Previous studies have shown that both of the two novel transmembrane proteins, 

PLG1 and PTH11, respond to surface hydrophobicity and are required for infection of 

barley leaves by M. oryzae (Castillo 2015; DeZwaan et al. 1999). The ability to form 

appressoria on hydrophobic surfaces is greatly reduced in ∆plg1 and pth11 mutants of M. 

oryzae. The deficiency of appressorium development on hydrophobic surfaces in these 

mutants is relieved by adding either exogenous cAMP or diacylglycerol (DAG). However, 

the ∆plg1 mutant appressoria that form in the presence of DAG can infect barley leaves, 

while those that form in the presence of cAMP cannot (Castillo 2015). In contrast to ∆plg1, 

the pth11 mutant appressoria that form in the presence of cAMP can infect barley leaves, 

while those that form in the presence of DAG cannot (DeZwaan et al. 1999). The full 

restoration of pathogenicity by DAG alone for the ∆plg1 mutant and by cAMP alone for 

the pth11 mutant indicates that the DAG-dependent signaling pathway is downstream of 

PLG1, and the cAMP-dependent signaling pathway is downstream of PTH11 (Castillo 

2015; DeZwaan et al. 1999). 

 

In wild-type M. oryzae, either exogenous cAMP or DAG induces appressorium 

formation on hydrophilic surfaces (Castillo 2015; DeZwaan et al. 1999). But the addition 
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of either cAMP (10mM) or DAG (20 ug/mL) to the ∆plg1 mutant is not sufficient to 

induce appressoria formation under the same conditions (Castillo 2015). Only when both 

cAMP (10mM) and DAG (20 ug/mL) are added together, do appressoria develop (Castillo 

2015). This implies that activation of only the DAG-dependent or the cAMP-dependent 

signaling pathway is not enough to induce appressorium formation in ∆plg1. However, 

the effect of exogenous cAMP or DAG on appressorium formation in pth11 mutants on 

hydrophilic surfaces has not been investigated. 

 

The results described above for ∆plg1 and pth11 mutants lead to the hypothesis 

that both DAG-dependent and cAMP-dependent signaling pathways are required for 

appressorium formation in M. oryzae. A model summarizing the hypothesis was proposed 

by Castillo (2015) and is shown in Figure 19. Both PLG1 and PTH11 respond to a 

hydrophobic signal. PLG1 is needed to induce 

a DAG-dependent pathway. PTH11 is needed 

for induction of a cAMP-dependent pathway. 

Both the DAG-dependent and cAMP-

dependent pathways are needed for 

appressorium development in M. oryzae. The 

experiments described in this chapter were 

performed to test this model. A pth11 deletion 

mutant was constructed in the WT 70-15 strain 

background, which is the parent strain for 

Figure 19 The model of two pathways 
involving PLG1 and PTH11 activated 
by hydrophobicity in appressorium 
formation. 
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∆plg1 mutants (Castillo 2015). Higher concentrations of cAMP and DAG than the ones 

tested by Castillo (2015) were applied to both ∆plg1 and pth11 mutants to further 

investigate their effect on appressorium formation on hydrophilic surfaces.  

 

Material and Methods 

Generation of pth11 Mutant Strains 

∆pth11 mutant strains were generated by deleting the pth11 gene in WT 70-15 

using the split marker assay (see Figure 20A) as described in Chapter II, pg. 14. Generation 

of fungal protoplasts and their transformation was done as described in Chapter II, pg. 14-

16. Southern blot analysis was done to confirm the pth11 gene deletion as described in 

Chapter II, pg. 16-17. 

 

Examination of Pathogenic Phenotypes 

Infection of WT 70-15 and ∆pth11 mutant strains on barley was tested by droplet 

and spray inoculation as described in Chapter II, pg.17-18. Appressorium development by 

WT 70-15 and ∆pth11 mutant strains was examined on Teflon membranes as described in 

Chapter II, pg. 18. cAMP at a final concentration of 10 mM was added to the spore 

suspension of ∆pth11 mutants and their appressorium development was also examined in 

the same way. 
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Appressorium Development with Treatment by cAMP or/and DAG 

∆pth11, ∆plg1 and WT 70-15 spores were collected in water after 15 days 

incubation and concentrated to 1x104/mL in water or 0.4% gelatin solution. Different 

aliquots had cAMP added at 0, 10, 20 or 50mM, DAG added at 20, 50 or 100 ug/mL, or 

both 10mM cAMP and 20 ug/mL DAG added. Twenty microliters of spore suspensions 

were placed on Gelbond membranes (Lonza Pharma & Biotech) and incubated in humidity  

 

 

Figure 20 Generation of pth11 mutant strains. 
A. Fragment design for deleting the pth11 gene using split marker assay. 
B. Southern blot result of pth11 mutant strains. 
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melanized, abnormal, unmelanized appressoria and total spores were counted and 

classified.  

 

Results 

Generation of pth11 Mutant Strains  

The previous studies were done on pth11 mutant strains generated by insertion 

mutation in the background of wild-type 4091-5-8 (DeZwaan et al. 1999). The pth11 gene 

was deleted and replaced with the hygromycin B resistant gene (hyg) in WT 70-15 as 

described in Material and Methods (Figure 20A). Six independent ∆pth11 mutants were 

selected and single spore isolation was performed before Southern blot analysis. Genomic 

DNA from WT 70-15 and Δpth11 strains was extracted and digested by HindIII. The 

expected size of the genomic fragment detected by probe Innerpth11 was 6.8kb, and the 

fragment detected by probe hyg was 4.5kb (Figure 20B). According to the Southern blot 

results (Figure 20B), the isolates from three independent Δpth11 mutants (2-3-2, 2-41-1, 

2-41-2, 2-42-1, and 2-42-2) had a deletion of pth11 and insertion of hyg. Two independent 

mutant strains, 2-3-2 and 2-41-1, were selected for further study. 

 

Pathogenic Phenotypes of pth11 Mutant Strains 

The pathogenicity of two Δpth11 mutant strains on barley leaves was tested by both 

droplet and spray inoculation. The results were the same as previously reported (DeZwaan 

et al. 1999) that Δpth11 mutants do not infect barley leaves or seedlings (Figure 21A and 

B). Appressorium formation by Δpth11 mutant spores on hydrophobic surfaces was highly 
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Figure 21 Pathogenic phenotypes of pth11 mutant strains. 
A. Droplet inoculation of barley leaves with Magnaporthe oryzae spores. 
B. Spray inoculation of barley seedlings with Magnaporthe oryzae spores. 
C. Appressorium development on Teflon membranes. 
D. Appressorium development on Teflon membranes with cAMP treatment.  
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reduced compared to WT 70-15 (Figure 21C), and could be restored to the same level as 

wild-type by adding 10mM cAMP exogenously (Figure 21D), which was consistent with 

the results previously reported (DeZwaan et al. 1999).  

 

 Appressorium Development on Hydrophilic Surfaces with cAMP or/and DAG 

Treatments 

To test the model shown in Figure 19, Gelbond membranes were inoculated with 

spores of Δplg1, Δpth11 and WT 70-15 strains that had been treated with cAMP at 

concentrations of 0, 10, 20 or 50 mM. The percentage of spores that formed appressoria 

after 24h inoculation was determined and the results are shown in Figure 22A.  

WT 70-15 spores developed 65% appressoria (45% melanized) on Gelbond 

membranes with 10 mM cAMP treatment, while Δplg1 spores developed 0.3% appressoria 

(0% melanized)  and Δpth11 spores developed 12% appressoria (7% melanized) under the 

same conditions. WT 70-15 developed 74% appressoria (55% melanized) on Gelbond 

membranes with 20 mM cAMP treatment, while Δplg1 developed 7% appressoria (1% 

melanized) and Δpth11 developed 54% appressoria (43% melanized). WT 70-15 

developed 86% appressoria (77% melanized) on Gelbond membranes with 50 mM cAMP 

treatment, while Δplg1 spores developed 8% appressoria (1% melanized) and Δpth11 

developed 89% appressoria (79% melanized).  

Appressorium development by Δplg1 spores on hydrophilic surfaces with cAMP 

treatment (10 mM) was significantly reduced compared to WT 70-15 spores. Even when 

the cAMP concentration was increased to 50 mM, appressorium development by Δplg1  
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Figure 22 Appressorium development on hydrophilic surfaces with cAMP or/and 
DAG treatments. 

A. Appressorium development on Gelbond membranes (new) with cAMP 
treatments. 

B. Appressorium development on Gelbond membranes (new and old) with DAG 
treatments. 
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spores was not restored to wild-type levels. Appressorium development by Δpth11 spores 

on hydrophilic surfaces with cAMP treatment (10 mM) was also highly reduced compared 

to WT 70-15 spores, but not as reduced as Δplg1 spores. When cAMP treatment was 

increased to 50 mM, appressorium development by Δpth11 spores was restored to wild-

type levels.   

Spores of WT 70-15 strains were inoculated on Gelbond membranes and treated 

with exogenous DAG (Figure 22B). However, WT 70-15 spores did not develop any 

appressoria, which was inconsistent with the previously reported results (Castillo 2015). 

The method of DAG dilution was optimized, and multiple biological trials were done. The 

results of DAG treatment by Castillo (2015) were still not able to be repeated. The 

company (Lonza Pharma & Biotech) producing the Gelbond films used in these 

experiments was contacted and confirmed that the composition of Gelbond films had been 

changed in June 2014. Even though this change did not affect the use of Gelbond films as 

a backing for agarose gels, the change of formula appeared to affect appressorium 

development by M. oryzae. Gelbond films produced before the formula change were found 

and used for testing appressorium development by WT 70-15 spores with DAG treatment. 

Spores of WT 70-15 developed 67% appressoria (60% melanized) with 100 ug/mL DAG 

treatment (Figure 22B), indicating that the formula change of Gelbond membranes was 

the cause of inconsistency with the results of Castillo (2015). The experiments looking at 

appressorium development with cAMP treatment were repeated using old-formula 

Gelbond membranes, and the results (data not shown) were consistent with the results seen 

using the new-formula Gelbond membranes (Figure 22A).  
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Spores of Δplg1, Δpth11 and WT 70-15 strains were inoculated on old-formula 

Gelbond membranes and treated with exogenous DAG at concentrations of 0, 20, 50, or 

100 ug/mL DAG. The number of appressoria that formed after 24h inoculation was 

determined and the results are shown in Figure 23. 

WT 70-15 spores developed 27% appressoria (23% melanized) on old-formula 

Gelbond membranes with 20 ug/mL DAG treatment, while Δplg1 spores developed 1% 

appressoria (0% melanized) and Δpth11 spores developed 1% appressoria (0.3% 

melanized) under the same conditions. WT 70-15 spores developed 67% appressoria (59% 

melanized) on old-formula Gelbond membranes with 50 ug/mL DAG treatment, while 

Δplg1 spores developed 1% appressoria (0.1% melanized) and Δpth11 spores developed 

Figure 23 Appressorium development on Gelbond membranes (old formula) with 
DAG treatment. 
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0.3% appressoria (0% melanized). WT 70-15 spores developed 67% appressoria (60% 

melanized) on old-formula Gelbond membranes with 100 ug/mL DAG treatment, while 

Δplg1 spores developed 5% appressoria (0% melanized) and Δpth11 spores developed 7% 

appressoria (7% melanized).  

The treatments with 20 ug/mL DAG were unable to induce appressorium 

development by either Δplg1 or Δpth11 mutant strain spores compared to WT 70-15. 

When DAG treatment was increased to 100 ug/mL, appressorium development by Δplg1 

and Δpth11 spores was still not restored to wild-type levels.  

Spores of Δplg1, Δpth11 and WT 70-15 were also inoculated on old-formula 

Gelbond membranes and treated with both 10 mM cAMP and 20 ug/mL DAG. WT 70-15 

spores developed 78% appressoria (73% melanized), while Δplg1 spores developed 28% 

appressoria (3% melanized) and Δpth11 spores developed 70% appressoria (49% 

melanized). The addition of both cAMP and DAG induced much higher appressorium 

development in the Δplg1 and Δpth11 mutants than adding cAMP or DAG alone.     

 

Appressorium Development Pathways Involving PLG1 and PTH11 

Both a summary of the results above and a revised model are shown in Figure 24. 

According to this new model, both the “PLG1→DAG” and “PTH11→cAMP” signaling 

pathways are required for appressorium development in M. oryzae. The activation of either 

signaling pathway is not enough for appressorium development. In the absence of a 

hydrophobicity signal, the “PTH11→cAMP” signaling pathway may be able activate the 

“PLG1→DAG” signaling pathway through PLG1. 



 

57 

 

  

Figure 24 The modified model showing predicted interaction of the PLG1 and 
PTH11 pathways in appressorium formation.  
(The experimental results that led to the new model are summarized in the figure.) 
 

∆plg1 mutant spores form functional appressoria with induction by hydrophobicity 

and exogenous DAG, but form nonpathogenic appressoria with induction by 

hydrophobicity and exogenous cAMP. Hydrophobicity and exogenous cAMP only 

activate the “PTH11→cAMP” signaling pathway in ∆plg1, which is enough to induce 

appressoria formation but not enough to induce pathogenicity. Similarly, ∆pth11 mutant 

spores form functional appressoria with induction by hydrophobicity and exogenous 

cAMP, but form nonpathogenic appressoria with induction by hydrophobicity and 

exogenous DAG. Hydrophobicity and exogenous DAG only activate the “PLG1→DAG” 
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signaling pathway in ∆pth11 spores, which is enough to induce appressoria formation but 

not enough to induce pathogenicity.  

∆plg1 mutant spores do not form appressoria with induction by exogenous cAMP 

or DAG alone (no hydrophobic signal), because only one of the “PTH11→cAMP” and 

“PLG1→DAG” signaling pathways is activated, which is not enough to induce 

appressoria development. ∆pth11 mutant spores do not form appressoria with induction 

by exogenous DAG alone (no hydrophobic signal), because only the “PLG1→DAG” 

signaling pathway is activated, which is not enough to induce appressoria development. 

∆pth11 mutant spores develop a few appressoria with induction by exogenous cAMP 

alone (no hydrophobic signal), but the deficiency can be restored by increasing cAMP 

induction. The restoration may be because not only the “PTH11→cAMP” signaling 

pathway is activated by exogenous cAMP, but the “PLG1→DAG” signaling pathway is 

also activated by exogenous cAMP. If this is the case, it implies that the “PTH11→cAMP” 

signaling pathway may regulate the “PLG1→DAG” signaling pathway through PLG1. 

The activation of the “PLG1→DAG” signaling pathway induced by 10 mM cAMP may 

be too weak to reach the wild-type level of activation, resulting in reduced appressoria 

formation compared to the wild-type. When the cAMP induction signal is increased (50 

mM), the activation of the “PLG1→DAG” signaling pathway can reach the wild-type 

level of activation, resulting in the same level of appressorium development by ∆plg1 and 

wild-type spores.  

∆plg1 and ∆pth11 mutant spores develop more appressoria with induction by both 

exogenous cAMP and DAG (no hydrophobic signal) than with induction by either 
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exogenous cAMP or DAG alone. This may be because both the “PLG1→DAG” and the 

“PTH11→cAMP” signaling pathways can be activated by adding exogenous cAMP and 

DAG together. However, in the case of the ∆plg1 mutants, the increase in appressorium 

development is mostly unmelanized appressoria, probably because the “PTH11→cAMP” 

signaling pathway cannot increase the activation of the “PLG1→DAG” signaling pathway 

in the absence of PLG1.  

 

Conclusion and Discussion 

The signaling pathways of appressorium development involving PLG1 and PTH11 

were investigated in M. oryzae. The ∆pth11 mutant strains were generated in the same 

genomic background as the ∆plg1 mutant. Pathogenic phenotypes of ∆pth11 mutants were 

examined and found to be the same as previously reported for pth11 mutants in a different 

strain background (DeZwaan et al. 1999). Appressorium development by Δplg1, Δpth11 

and WT 70-15 spores was tested on hydrophilic surfaces with various cAMP or/and DAG 

treatments. The results helped modify the model proposed by Castillo (2015) that both the 

“PLG1→DAG” and “PTH11→cAMP” signaling pathways are required independently for 

appressorium development in M. oryzae. The modified model hypothesizes that the 

“PTH11→cAMP” signaling pathway activate the “PLG1→DAG” signaling pathway 

through PLG1. This activation is required to induce appressorium development at a similar 

level as the wild-type. 
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CHAPTER VI  

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary 

The previous chapters described my investigation of signaling pathways involved 

in pathogenesis of the fungus Magnaporthe oryzae. I investigated the functions of bip1, 

which encodes a novel transcription factor (Tag unpublished), and of four of the genes it 

regulates: plg1, plg2, plg3 and  plg4. I also investigated the roles of the PLG1-dependent 

and PTH11-dependent signaling pathways and identified possible interactions between 

the two pathways. This chapter summarizes the conclusions and proposes future 

experiments that could be done.  

 

To investigate the function of bip1 in pathogenesis, derivatives of wild-type strain 

70-15 with ∆bip1::hyg mutations were constructed and shown to be unable to infect barley 

leaves, consistent with the results of previous studies performed in a different background 

(Tag unpublished). Although unable to infect plants, ∆bip1 spores can form appressoria. 

The turgor pressure in ∆bip1 appressoria was shown to be the same as in wild-type 

appressoria, indicating that the inability to penetrate plants is not due to abnormal turgor 

pressure. Both wild-type and ∆bip1 spores formed appressoria on a hydrophilic surface in 

the presence but not the absence of exogenous cAMP, indicating that BIP1 is not involved 

in cAMP-dependent signaling pathways of appressorium development. 
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Transcript levels during the course of plant infection of bip1, plg1, plg2, plg3, and 

pth11, another GPCR-like protein important for pathogenesis, were investigated by RT-

PCR experiments and also by examining the results of an RNA-seq study of M. oryzae 

during infection (SRX5076910-5076916, https://www.ncbi.nlm.nih.gov/sra). The RNA 

expression patterns seen in both studies indicate that: BIP1 is important during invasive 

growth; PLG1, PLG2 and PLG3 may be needed only during appressorium development; 

and PTH11 is important during both appressorium development and invasive growth.  

 

The proteins encoded by the plg genes are predicted to be GPCR-like signaling 

proteins with 4 to 7 membrane-spanning domains (Tag unpublished; Castillo 2015; 

Kulkarni et al. 2005). Previous work has shown that plg1 is essential for appressoria 

development and plant invasion (Castillo 2015). To determine the roles of plg2, plg3, and 

plg4 in pathogenesis, strains with deletion::substitution mutations were constructed and 

characterized. On barley leaves, the ∆plg2 and ∆plg3 strains developed infective lesions 

similar to wild-type. One of two independent ∆plg4 strains formed smaller lesions than 

wild-type, while the other ∆plg4 strain, like ∆plg1, was not able to form any lesions. The 

phenotypes of the two independent ∆plg4 mutants have not been complemented with a 

copy of the wild-type plg4 gene. The ability of the plg mutants to form appressoria on a 

hydrophobic surface was also examined. It is previously reported that appressorium 

formation of ∆plg1 mutants is highly reduced (Castillo 2015). By comparison, the 

appressorium formation of ∆plg2 and ∆plg4-1 was the same as wild-type. The 

appressorium formation of ∆plg3 and ∆plg4-2 was reduced, but not as significantly as 
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∆plg1. Taken together, these results indicate that, unlike plg1, plg2, plg3, and plg4 are not 

essential for plant infection.   

 

The GPCR-like proteins encoded by plg1 and pth11 are both required for 

formation of appressoria induced by hydrophobicity (Castillo 2015; DeZwaan et al. 1999). 

PLG1 is upstream of a DAG-dependent signaling pathway needed for appressorium 

development (Castillo 2015), while PTH11 is upstream of a cAMP-dependent signaling 

pathway needed for appressorium development (DeZwaan et al. 1999). The model shown 

in Figure 19 was proposed by Castillo (2015) based on her studies of ∆plg1 and the 

published studies of the pht11-insertion mutants (DeZwaan et al. 1999).  

 

Before I could further study the roles of PLG1 and PTH11 in M. oryzae 

pathogenesis, it was necessary to construct a pth11 deletion-substitution mutation in the 

same genetic background as the ∆plg1 mutation. The ∆pth11 mutation in the 70-15 strain 

background caused the same pathogenic phenotypes as reported previously for the pth11 

insertion mutation in 4091-5-8 (DeZwaan et al. 1999). Spores of the ∆pth11 strain did not 

infect barley plants and, on an artificial hydrophobic surface, formed <15% as many 

appressoria as the wild-type strain. In the presence of exogenous cAMP, appressorium 

development by the ∆pth11 mutant was restored to wild-type level. 

 

Once isogenic wild-type and ∆plg1 and ∆pth11 strains were constructed, it was 

possible to further characterize the function of the signaling pathways involving PLG1 
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or/and PTH11. How appressorium development of the mutant strains on a hydrophilic 

surface was affected by the addition of various concentrations of cAMP or/and DAG was 

determined. ∆plg1 spores did not develop appressoria with induction by cAMP or DAG 

alone (no hydrophobic signal), but appressorium formation was increased with induction 

by both cAMP and DAG.  ∆pth11 spores formed fewer appressoria with induction by 

cAMP or DAG alone (no hydrophobic signal) than with induction by both together. 

However, increasing the concentration of cAMP added to the ∆pth11 mutant restored 

appressorium development to wild-type levels.  

 

The results of these experiments led to the modified model shown in Figure 24. 

Both the “PLG1→DAG” and “PTH11→cAMP” signaling pathways are required to 

induce appressorium development in M. oryzae. The “PTH11→cAMP” signaling pathway 

may regulate the “PLG1→DAG” signaling pathway through PLG1 during appressorium 

development. The regulation may be necessary to induce appressorium formation at a 

similar level as wild-type.  

 

In summary, plg1 has important function(s) during appressorium formation and 

fungal pathogenicity on plants. Its expression is regulated by bip1 and PLG1 functions 

upstream of DAG-dependent signaling pathways needed for appressorium development. 

Appressorium formation by M. oryzae requires not just the activation of the 

“PLG1→DAG” signaling pathway, but also the activation of “PTH11→cAMP” signaling 

pathway, which may activate the “PLG1→DAG” pathway through PLG1. 
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Future Work 

The conclusion that the “PTH11→cAMP” pathway may activate the 

“PLG1→DAG” pathway should be tested further. First, to confirm that the phenotypes of 

the ∆plg1 and ∆pth11 mutant strains are due to the absence of the respective wild-type 

genes, complemented strains should be tested for restoration of the ability to form 

functional appressoria on hydrophilic surfaces with either cAMP or DAG treatment. The 

appressorium formation is expected to be restored to the wild-type level with the same 

treatment applied to wild-type. A complemented strain of the ∆plg1 mutant has been made 

(Castillo 2015), but a complemented version of the ∆pth11 mutant needs to be constructed.  

 

If the complemented strains give the expected results, a mutant strain lacking both 

the plg1 and pth11 genes should be constructed and tested for appressorium formation 

under the same conditions. The model predicts that spores of the double mutant will not 

form appressoria when treated with either cAMP or DAG alone, but treatment with cAMP 

and DAG together will restore appressorium formation.   
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APPENDIX A 

PRIMERS USED IN THIS STUDY 

 

All primers are written in the direction of 5’ to 3’  

bip1 Knock-out 

Bip_UpFor: CCG AAT TTC ATC ATA CCT GCC ACA GT 

Bip_UpRev_SMA: ACT GGC CGT CGT TTT ACA ACG TCG TGA CGG TTG GAG 

ATG GTT ATG ATG 

Bip_UpRev: GGT TGG AGA TGG TTA TGA TGA GTG AAG  

Bip1_DownFor_SMA: GGT CAT AGC TGT TTC CTG TGT GAA ATT GGC GGC 

TAA GGG TCA TTT GGC 

Bip1_DownFor: GCG GCT AAG GGT CAT TTG GC 

Bip1_DownRev: GTC CGA GTT TCA CTT TCA CTT GCC G 

Scr_Bip1UpFor: CCG TTC TCG CAT TTC AGT GAC GAT G 

Scr_HygInnerRev: GGC GAA GAA TCT CGT GCT TTC AGC 

Scr_Bip1InnerRev: GGG AAG ATA GCT CCC CAA GTC ATG A 

 

plg2 Knock-out 

Plg2_UpFor: GGG TGG CCT GAC AGC TTG AAT C 

Plg2_UpRev (NotI): ATA GCG GCC GCC GAC GTC GGA ATC G 

Plg2_DownFor (XbaI): GCT TCT AGA GCC ATC TTA TGT TGT TAT 

Plg2_DownRev: GGT CGC GAT AGA GTG AAG CTG C 



 

75 

 

Plg2_For: ATG GCT TCT CTA TAC TCG TTC CTC G 

Plg2_Rev: TTA CAC AAC CAT CGC ACG 

Plg2+Up_For: TTT CTG CAC ATC ATC ACC AC 

Plg2+Up_Rev: CCA GCA ATA GCC CTC TAT CA 

Plg2+Down_For: AAA AAT CAG ACG ACG GAG TA 

Plg2+Down_Rev: AGT CTA CCA TGC TCA TCA CC  

Plg2_JunctionFor: CGT CGA AAA GAA AAT GGC TTC  

Plg2_JunctionRev: TTT TTT TTT GTT ACA CAA CCA TCG C 

Hyg_For (NotI): TAG GCG GCC GCT GAT ATT GAA GGA G 

Hyg_Rev (XbaI): TGG TCT AGA CTA TTC CTT TGC CCT CG 

 

plg3 Knock-out 

Plg3_For: ATG TTC GTC ATC CAG CTG ACG TAC G 

Plg3_Rev: TCA TCG CTG CTG TGC CTG CT 

Plg3_InnerFor: CGC ATC CCC ATC TGG ATC AT 

Plg3_InnerRev: ATC GGC TTT AGG GTT GGG AG 

Plg3_UpFor: CGC CGC CCA CCA GGT GGT AGC CCG G 

Plg3_UpRev (SPA): ACT GGC CGT CGT TTT ACA ACG TCG TGA CTC CAA TCG 

CCC AGG CCC TCG 

Plg3_DownFor (SPA): GGT CAT AGC TGT TTC CTG TGT GAA ATT GCG GCG 

CGC GGT CCG ACG TGT 

Plg3_DownRev: GGG GTC CTC GGG AGA AAG GGT GCC AGG C 
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Plg3_Down2_For: GGT CAT AGC TGT TTC CTG TGT GAA ATT GCT TAG TCT 

AAA ATC TTT GTT 

Plg3_Down2_Rev: GCT GCG CGG CGC TCT CGA AAC G 

Scr_UpPlg3For: CCC TTT CCG TTA GCT TTT GGT TGC C 

Scr_UpPlg3For2: GGA CAA CCC AAT GCA GAG TAA GC 

Scr_Down2Plg3Rev: CGG CTT CGA CGT CTG GTT CG 

pPlg3Up+YG: TAC TTC GAG CGG AGG CAT CC 

pHY+Plg3Down: GGT ATG ACC GGG TCG TCC AC 

HY_For: GTT GGT CAA GAC CAA TGC GGA GCA 

HY_Rev: CGA CAG CGT CTC CGA CCT GAT G 

YG_For: GTT GGT CAA GAC CAA TGC GGA GCA 

YG_Rev: CGA CAG CGT CTC CGA CCT GAT G 

 

plg4 Knock-out 

Plg4_For: ATG TAC TAC GAT GGC TTG AGC TAT CGA G 

Plg4_Rev: TCA CAC CCA ATC CGG ACG CAT TT 

plg4_UpFor: GCT GTA CCG CTC ATT CGG GAC CAT CG 

plg4_UpRev: ACT GGC CGT CGT TTT ACA ACG TCG TGA CAT TTG TGG AAA 

CAA GGA AAC 

plg4_DownFor: GGT CAT AGC TGT TTC CTG TGT GAA ATT GAG CTG AAT 

CTC TTG ATG TAT 

plg4_DownRev: CCT CTT GCT GGC ACG AGA CGT TGT CC 
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Scr_UpPlg4For: GTC ATG TCG CCC GAG CTA CTG  

Scr_HygInnerRev: GGC GAA GAA TCT CGT GCT TTC AGC 

Scr_Plg4InnerRev: GAA CGG ACG AGG ATT GTG GGA C 

 

pth11 Knock-out 

Pth11_For: CCA CGA TGC CTT TCT CGC TG 

Pth11_UpRev: TTT CGA GAT GCC GTT CAA ATG TGA TAT TAG 

Pth11_UpRev_SMA: ACT GGC CGT CGT TTT ACA ACG TCG TGA CTT TCG 

AGA TGC TCA AAT 

Pth11_DownFor_SMA: GGT CAT AGC TGT TTC CTG TGT GAA ATT GAA GCC 

GGA CCA TGG TTG TAT 

Pth11_DownRev: GTC CGC CCG AGC CTC TAC CT 

Scr_UpPth11For: CTC AGT CCA GCC ACG TCA ACT C 

Scr_HygInnerRev: GGC GAA GAA TCT CGT GCT TTC AGC 

Scr_Pth11InnerRev: GAC TGA AGC CGC TCC GCA TAT C  

pPth11_For: CAT CTG CGT CTC CAA TCC GA  

pPth11_Rev: GAT TGG CAA ATC TGG CAC GG 

 

 


