
NONLINEAR AEROELASTIC COUPLED TRIM MODELING OF CYCLOIDAL ROTOR

BASED MICRO AIR VEHICLE

A Dissertation

by

ATANU HALDER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Moble Benedict
Committee Members, John E. Hurtado

Thomas Strganac
Sivakumar Rathinam

Head of Department, Rodney Bowersox

August 2019

Major Subject: Aerospace Engineering

Copyright 2019 Atanu Halder



ABSTRACT

Present generation of hover-capable micro air vehicles (MAVs) based on conventional rotors

have shown poor performance in terms of endurance (<15 minutes), agility, and disturbance-

rejection capability. Developing next generation of MAVs would require radical improvements

in propulsion systems as well as control and guidance strategies. Cycloidal rotor is one such novel

propulsion concept, which has huge potential due to its higher efficiency and maneuverability

(instantaneous 360° thrust vectoring capability). Cycloidal rotor is a horizontal-axis rotary wing

system which utilizes cyclic blade pitching to generate lift and thrust. A crucial step towards build-

ing efficient MAVs utilizing cycloidal rotor systems involves developing an aeroelastic framework

and a coupled trim methodology, which could be utilized for design optimization and this is the

main objective of the present dissertation.

To obtain instantaneous blade aerodynamic forces and performance (cycle-averaged thrust and

power) of cycloidal rotor, an unsteady aerodynamic model is developed. Towards this, aerodynam-

ics of cycloidal rotor is investigated thoroughly and various underlying physical phenomena such

as dynamic virtual camber, effects of near and shed wake, leading edge vortices are rigorously

modeled. All these detail modeling helped the aerodynamic model to systematically validate with

not only time averaged forces, but also time-history of aerodynamic forces obtained from in-house

experiments. Once validated, the aerodynamic model is utilized to understand the physics behind

the force production of cycloidal rotor. Through systematic investigation, it was observed that the

dynamic virtual camber effect plays a very important role in this aspect. Dynamic virtual camber

due to pitch rate creates asymmetry in side-force between the right and the left halves, which in

turn causes net time averaged side force on a cycloidal propeller in hover even with zero phase

offset. Moreover, it is found extremely crucial for a cycloidal rotor to rotate in opposite direc-

tion (back-spin) with respect to the incoming flow in order to produce an upward vertical force in

forward flight. This is due to the dynamic nature of virtual camber effect.

Although the above mentioned lower order model is computationally inexpensive and capable
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of predicting rotor performance with sufficient accuracy, it cannot accurately capture the complex

flow-field of cycloidal rotor, specifically the blade vortex interaction and geometry of trailing vor-

tices. For this reason, a high-fidelity model of cycloidal rotor based on free-wake is developed to

further investigate aerodynamics of cycloidal rotor in more detail. The prediction of the developed

free wake model shows even better correlation with in-house experimental data compared to that

of a lower model. Although, wake model is much more expensive from computational point of

view which limits its application for preliminary design optimization of cycloidal rotor.

Experimental study shows that cycloidal rotor goes through large blade deflections mainly due

to centrifugal force which decreases thrust production and increases power requirement of the

rotor. To capture these deflections, a fully nonlinear geometrically exact model is developed which

shows much better prediction compared to a traditional 2nd order nonlinear model. To investigate

effect of blade deflections on cycloidal rotor performance an aeroelastic framework of cycloidal

rotor is developed by coupling lower order unsteady aerodynamic model with the structural model.

The experimental validation shows inclusion of geometrically exact model is crucial for accurate

performance prediction of flexible cycloidal rotors. Through systematic investigation utilizing

the aeroelastic model, it is observed that nonlinear moment, arising due to coupling of bending

curvatures in two orthogonal directions, is the key reason behind performance drop of flexible

rotors.

To obtain performance of conventional nose rotor in low Reynolds number regime, a modified

blade element momentum theory based model is developed which utilizes look-up table obtained

from CFD study. Both CFD look-up table and model predictions are validated with previously

published experimental data.

Control strategy of a cycloidal rotor based MAV, known as ‘Cyclocopter’ is developed for

different flight conditions. Based on that, a coupled trim analysis of cyclocopter is performed for by

simultaneously solving blade response equations and vehicle trim equations. Once systematically

validated with in-house experimental data, the coupled trim model is utilized to investigate effect

of several design parameters on the control inputs of the vehicle.
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NOMENCLATURE

c Chord length

Cd Drag coefficient

Cdle Drag coefficient with leading edge vortex

Cdwole Drag coefficient without leading edge vortex

cg center of gravity

Cl Lift coefficient

Clle Lift coefficient with leading edge vortex

Clo Additional lift coefficient due to virtual camber effect

Clquasi_steady Quasi-steady lift coefficient

Clunsteady Unsteady lift coefficient

Clwole Lift coefficient without leading edge vortex

d Drag

eg Chord-wise location of blade cg ahead of elastic axis

Fu Force on the blade along the flow direction at upstream

Fd Force on the blade along the flow direction at downstream

f u Force per unit area along the flow direction at upstream

f d Force per unit area along the flow direction at downstream

kf Reduced Frequency

Kv Non-dimensional coefficient due to extra vortex lift by lead-
ing edge suction

l Lift

L Blade length
ṁ Mass Flow Rate
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Nb Number of blades in cyclorotor

~r Position vector of local blade element

R Radius of cyclorotor

T Kinetic Energy

TDU Transformation matrix between deformed and un-deformed
frame

TDI Transformation matrix between deformed and inertial frame

TRI Transformation matrix between rotating and inertial frame

TUI Transformation matrix between undeformed and inertial
frame

u Axial elongation

U Potential energy

UP Component of resultant flow velocity along the perpendicular
direction of blade

UT Component of resultant flow velocity along the direction of
blade

v Tangential bending deflection

~V b(x) Blade velocity at a particular chord-wise location(x) on rotor
blade

Vd Downstream inflow velocity

Vd_wake Downstream wake velocity

~V i(x) Inflow velocity at a particular chord-wise location (x) on ro-
tor blade

~V p(x) Relative flow velocity at a particular chord-wise location (x)
on rotor blade due to blade pitching

~V (x) Resultant flow velocity at a particular chord-wise location (x)
on rotor blade

Vu Upstream inflow velocity

Vu_wake Upstream wake velocity

vii



V∞ Free stream velocity

W Virtual work done by the external forces

w Radial bending deflection

αeff Effective angle of attack

αi Induced angle of attack

αx Angle of attack at a particular chord-wise location (x) on ro-
tor blade

β Angle between inflow velocity and vertical axis

Γ Circulation

γd Inflow angle at downstream locations

γu Inflow angle at upstream locations

φ Axial twist

θ Prescribed blade pitch

θoff Pitch phase offset of cyclorotor

θtrim Pitch phase offset of cyclorotor need to generate zero side
force

ρ Fluid density

σ Solidity

Ψ Azimuthal location of blade in a cycle

~Ω Rotational speed of cyclorotor

~ωdur Angular velocity of deformed blade frame with respect to in-
ertial frame

~ωr Angular velocity of rotating frame with respect to inertial
frame

~ωur Angular velocity of un-deformed blade frame with respect to
inertial frame
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1. INTRODUCTION

1.1 Micro Air Vehicles

Due to rapid advancements in miniaturized electronic systems and increased demand for smaller

scale aerial platforms, a new class of flying vehicle known as Micro Air Vehicles (MAVs) has

emerged rapidly in last few decades. The concept of such mobile micro-robots was first intro-

duced in 1992 in a DARPA (Defense Advanced Research Projects Agency) / RAND (Research

And Development) corporation workshop on “Future Technology Driven Revolutions in Military

Operations” [1]. After some feasibility studies, DARPA created Small Business Innovation Re-

search (SBIR) program to develop miniature flying vehicles [2]. According to this program, an

MAV is defined to be a micro scale flying vehicle with no dimension exceeding 6 inches (15cm),

having weight no more than 100 grams including payload of 20 grams and having endurance of

one hour. The size constraints put MAVs orders of magnitude smaller compared to traditional

Unmanned Aerial Vehicles (UAVs).

Initially MAVs were envisioned mainly for military applications. The changing dynamics of

conflicts of modern era has greatly influenced and motivated the development of this new class of

smaller scale aerial vehicles. In the post cold war period, there was been significant shift towards

the characteristics of military operations which often includes small numbers of soldiers operating

in non-traditional environments such as urban areas or unknown enemy territories. MAVs would

highly reduce the latency in present reconnaissance methods in these types of situations. In con-

trast to higher level reconnaissance assets such as high amplitude UAVs and satellites, MAVs can

be operated by an individual soldier in the field as a platoon-level asset. MAVs would provide

individual soldiers real-time information regarding their surroundings, and other sensory data on

demand. This local reconnaissance would result in unprecedented situational awareness, greater

effectiveness and fewer casualties in critical missions such as hostage rescue, counter-drug op-

erations etc. These local reconnaissance applications has been the primary driver for the first
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Figure 1.1: MAV application: local reconnaissance mission [4].

generation of MAVs [3]. This is partly attributed to the direct connectivity envisioned between

these systems and the soldiers in emerging operational concepts. Direct connectivity means the

soldier has to carry it. So the MAVs must be extremely portable compared to other soldier assets

- like ammunition, food, water. All these requirements point to a highly compact, small and light

system that could be easily transported and rapidly deployed by a single person.

Although local reconnaissance applications has been the primary motivator, lots of other mil-

itary as well as civilian applications of MAVs are also explored in the successive period. Po-

tential military applications include surveillance, demining, aerial offense etc. Potential civilian

applications include traffic monitoring, rescue missions, biochemical sensing, power-line inspec-

tion, wildlife surveys etc. Recent advances in miniaturization of electronic, mechanical as well as

electromechanical systems (MEMS) have heavily influenced these wide varieties of MAV appli-

cations. Chip-sized hazardous substance detectors, tiny infra red sensors and CCD-array cameras

and various other small sensors can be integrated into the MAV system to obtain wide varieties

of information useful for different missions. Using advance control algorithms, swarms of MAVs

could be utilized to carry out complex missions that would have been otherwise impossible to solve

for a single platform. Moreover, MAV’s ability to operate in highly constrained environments like

interior of buildings, caves and forests gives these systems a level of uniqueness unmatched by

other concepts.
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1.2 Challenges of Conventional MAVs

Although MAVs have significant future potential, there are significant technical barriers to be

overcome. For last few decades lots of attempts were made to develop different types of MAV plat-

forms. Present generation of MAVs based on conventional concepts have shown poor performance

in terms of endurance (<30 minutes), agility, and disturbance-rejection capability. Most of the

conventional MAVs built so far, can be categorized into two major sections: fixed wing MAVs and

rotary wing MAVs. Among them fixed wing MAVs are comparatively most efficient in terms of

aerodynamic performance and endurance. For this reason, several fixed wing MAVs are developed

in last few decades [5, 6, 7, 8, 9]. Even though, these fixed wing MAVs are comparatively more

efficient, they are still well short of endurance and payload objectives. Moreover, their incapability

to hover and fly at smaller speeds restricts themselves from several desired MAV applications such

as surveillance, monitoring etc. On the other hand, they can not take off and land vertically, which

limits their usefulness in constrained environments and indoor applications.

On the other hand, rotary wing MAVs are hover capable and highly maneuverable which makes

them ideal for majority of MAV applications. Their vertical takeoff and landing capability leads to

minimal takeoff and landing zone which makes them extremely useful in indoor and constrained

environments. For these advantageous reasons, lots of attempts were made to develop rotary wing

MAVs based on conventional rotors [5, 6, 10, 11, 12, 13]. Although, these rotary wing MAVs

based on conventional rotors are extremely inefficient just like full-scale rotorcrafts are much less

efficient compared to full-scale fixed-wing aircrafts. Moreover, the scaling also has a very adverse

effect on rotor performance mainly due to two reasons: decrease in rotor disk area and decrease in

Reynolds number. Based on simple momentum theory computations, it can be easily shown that a

rotor with smaller disk area is much less efficient from aerodynamic point of view compared to a

rotor with larger disk area producing same amount of thrust. The aerodynamic efficiency of a rotor

in hover is generally represented by power loading (PL = T/A), which is thrust (T ) produced by

the rotor using unit power (P ). Utilizing actuator disk theory [14] and conservation of momentum,
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power loading can be expressed as following.

PL = FM

√
2ρ

DL
(1.1)

In the above equation, DL denotes disk loading which is thrust produced by unit actuator area

(DL = T/A). FM is figure of merit due to non-ideal effects and ρ is fluid density. It is observed

from Eq. 1.1, that as the disk loading of a rotor increases, it becomes less efficient in terms of

power loading. Now full-scale conventional helicopters utilize large rotors to maximize disk area

(A) which minimizes disk loading (DL = T/A) which in turn increases power loading (PL). On

the other hand, rotary wing MAVs are equipped with very small rotors compared to their thrust

requirements due to the additional size constraints. So, their disk loading (DL) is much larger

compared to full-scale counterparts. This leads to much smaller power loading (PL) for rotary

wing MAVs based on conventional rotor. Moreover, hover is a high-power flight condition which

consumes significantly more power compared to forward flight. For MAV applications, long hover

endurance is one of the key desirable aspects. On top of that, low aerodynamic performance of

scaled down concepts poses additional challenges to attain desirable endurance objectives.

Another major challenge that all types of MAVs face is that they operate at a much smaller

Reynolds number (<50,000) compared to their full-scale counterparts which generally operates at

Reynolds number in the tens of millions. The smaller size and smaller velocity of the MAVs lead

to this very low Reynolds number aerodynamic regime. Airfoil and lifting surface characteristics

change significantly in low Reynolds number due to increased viscous drag. Even most optimized

airfoils have very low lift-to-drag ratios in low Reynolds number. this can be realized from non-

dimensional Navier-Stokes equation (Eq. 1.3). The incompressible Navier-Stokes equation can be

expressed as following [15].

∂~u

∂t
+ (~u · ~∇)~u = ~g −

~∇p
ρ

+ ν∇2~u (1.2)

The above equation can be non-dimensionalized based on characteristic length and speed which
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would give following non-dimensional equation.

∂~u∗

∂t∗
+ (~u∗ · ~∇∗)~u∗ =

1

Fr2
~g∗ − ~∇∗p∗ +

1

Re
∇∗2~u∗ (1.3)

The last term on the right hand side of the equation denotes viscous dissipation. It can be

observed that if Reynolds number decreases this viscous term 1
Re
∇∗2~u∗ becomes more dominant

causing more viscous dissipation. This is one of the major reasons of aerodynamic inefficiency of

MAVs.

Several studies are carried out in the past to investigate this low Reynolds number aerodynam-

ics. One study by Schmitz [15] in 1930 showed that the performance of thick cambered airfoil

changes drastically at certain Reynolds number, which was denoted as critical Reynolds number.

Several other studies [17, 18, 19] in the next few decades also showed existence of such critical

Reynolds number in the range of 104-106, around which significant changes in airfoil performance

occurs. In 1980, McMasters and Henderson [20] showed that maximum lift coefficient of airfoil

drops suddenly around critical Reynolds number while minimum drag coefficient rises steeply

around this point. The smooth airfoils have shown better lift to drag ratio at higher Reynolds num-

ber compared to rough airfoils. Although, performance drop around the critical Reynolds number

is steeper for smooth airfoils. On the other hand, rough airfoils at low Reynolds number perform

almost similar to high Reynolds number. This roughness might be desirable at lower Reynolds

number to delay in flow separation.

From 1982 to 1999, Mueller did several systematic experimental study to investigate the per-

formance of airfoil with variation of Reynolds number [21, 22, 23, 24, 25]. These studies showed

that the sudden rise in lift coefficient after critical Reynolds number is due to formation of a Lami-

nar Separation Bubble. As the Reynolds number decreases this separation bubble becomes longer

which in turn decrease the lift-curve slope causing reduction of lift coefficient for certain angle of

attack. In 1997, Laitone [26] did several study to investigate low Reynolds number performance

of several types of airfoil such as airfoils with sharp trailing edge, sharp leading edge, elliptical
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airfoil etc. For last few decades, Selig conducted extensive wind-tunnel studies to measure lift and

drag coefficients of over 200 airfoils at low and moderate Reynolds number [27]. This extensive

study showed that drag polar remains more or less same after Reynolds number greater than 105

for majority of the airfoils. Specifically, the drag coefficient corresponding to moderate lift coeffi-

cients increases significantly for Reynolds number below 105. On the other hand, drag coefficients

corresponding to low and high lift coefficients remain almost low. In 2008, McArthur [28] demon-

strated how Laminar Separation Bubble (LSB) is created which in turn decreases performance of

airfoil at certain angle of attack at lower Reynolds number. This phenomenon starts with a lami-

nar boundary layer which goes through adverse pressure gradient. This adverse pressure gradient

causes boundary layer to separate somewhere after leading edge of airfoil. This separated flow

gets unstable and transitions into a turbulent separated shear flow. The turbulence transports mo-

mentum from free-stream which in turn causes re-attachment of turbulence boundary layer to the

surface at some later point close to trailing edge. Thus, a separation bubble is generated.

The performance of airfoils operating at different Reynolds number regime are summarized

by Muller [25] and Carmichael [29]. From 1,000 and 10,000 Reynolds number regime, flow in

boundary layer remains laminar which makes it difficult to transition to turbulent flow. Although

many large insects fly in this aerodynamic regime, their specific structures help them to delay flow

separation. From 10,000 and 30,000 Reynolds number regime also, boundary layer flow remains

laminar and does not reattach if it separates. Several mechanism to reattach the flow has not been

successful. From 30,000 to 70,000 Reynolds number regime, laminar separation transitions to

turbulent flow. Although late onset of this transition might make it difficult for the turbulent flow

to reattach. At Reynolds number above 70,000 airfoil performance improves drastically.

It is observed in the this section that MAVs based on conventional concepts are extremely inef-

ficient compared to their full-scale counterparts. Although fixed wing MAVs are somewhat better

performer, their hover/low speed incapability restricts them from many of the MAV applications.

On the other hand, rotary wing MAVs based on conventional rotor are extremely power hungry and

are well short of desirable performance numbers. None of the small helicopters can fly for more
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Figure 1.2: Hover-capable cyclocopters [30].

than 15 minutes, while the original objective of DARPA was to attain 60 minutes of endurance.

Low Reynolds number aerodynamic regime of MAVs poses significant challenge to this aspect.

Thrust production of conventional rotors relies on steady aerodynamic mechanisms, and it is chal-

lenging to keep a steady flow attached to the airfoil surface, especially at low Reynolds numbers.

Therefore, a conventional rotor blade can only operate over a narrow range of angle of attack if

the flow has to stay attached. This leads to small stall margins, and the slightest perturbation could

cause the flow to separate. On the other hand, in nature, large insects and small birds operate in a

highly unsteady aerodynamic regime with large variations in angle of attack and are more robust

to perturbations. Therefore, scaling down of the conventional concepts might not be only right

approach to solve the MAV problem. For this reason, various unconventional concepts and out-

of-box solutions are getting lots of attention lately. Cycloidal rotor is one such novel propulsion

system that exploits unsteady aerodynamics for efficient thrust production while they also offer

high maneuverability through instantaneous thrust vectoring which could be extremely beneficial

towards developing next generation MAVs.
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1.3 Cycloidal Rotor and Cyclocopter

In the present dissertation, a novel cycloidal rotor based platform called ‘Cyclocopter’ (shown

in Fig. 1) is proposed as an alternative to conventional rotorcraft based MAVs. The key difference

between a cycloidal rotor and conventional rotor is that the blades of cycloidal rotor rotate along a

horizontal axis and this axis of rotation is parallel to blade span. Moreover, a cyclic blade pitching

mechanism is necessary for a cycloidal rotor to produce net time-averaged thrust at any direction.

Figure 1.3 shows that the pitch angle of the blade is cyclically changed in such a way that rotor

blade experiences positive geometric angles of attack at both the upstream and downstream halves

of its circular trajectory, which causes a resultant thrust that can be resolved into a vertical force

to balance the weight and horizontal propulsive force to overcome the drag. Magnitude of the

resultant thrust vector is altered by changing pitch amplitude of cycloidal rotor and the direction

of thrust vector is altered by introducing phase offset in the cyclic blade pitching mechanism of

cycloidal rotor. Primary advantage of this concept is that a complete 360° instantaneous thrust

vectoring can be obtained by altering phase of cyclic blade pitching mechanism. Instantaneous

thrust vectoring enables the aircraft to become more maneuverable, gust tolerant and seamlessly

transition from hover to high-speed forward flight. Few previous studies [31, 32, 33] have shown

that an optimized cycloidal rotor can attain much higher aerodynamic efficiency in terms of power

loading compared to a conventional helicopter rotor of same disk loading. The primary reason be-

hind this may be the fact that the load distribution of a cycloidal rotor is more uniform along blade

span compared to a conventional rotor which lowers induced power. Moreover, cycloidal rotor,

being a very compact rotor system, utilizes the 3D space more efficiently compared to a conven-

tional rotor which only occupies 2D circular space. An equivalent cycloidal rotor of same solidity

and foot-print would have four times more blade area compared to that of a conventional rotor.

Particle Image Velocimetry (PIV) studies show that another reason for the improved performance

of cycloidal rotor is the favorable unsteady aerodynamic mechanisms such as leading-edge vortex

formation [31, 32] which delays onset of blade stall and enables cycloidal rotor blades to operate

at very high pitch angles.
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(a) Hover kinematics.

(b) Forward flight kinematics

Figure 1.3: Cycloidal rotor blade kinematics [34, 35].
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Figure 1.4: Kirsten-Boeing propeller [40].

The concept of cycloidal rotor originated much earlier in the 19th century. More than a dozen

studies on cycloidal rotors were conducted from 1910-1940 [36, 37]. These studies were mostly

focused on building a flying vehicle, but all of them eventually failed. One of the key reason behind

that was lack of systematic scientific study to understand this concept and its operating principles.

Professor Kurt Kirsten from University of Washington was one of the pioneers of this concept.

During 1920s, Kirsten developed first cycloidal propeller in collaboration with Mr. W. E. Boeing

[38, 39, 40]. These propellers are known as ‘Kirsten-Boeing’ propellers. Initially, a small propeller

with 5.9 inches blade span and 10.23 inches diameter was developed. The experimental testing of

this propeller at the wind tunnel of University of Washington was very satisfactory which led to

the foundation of ‘Kirsten-Boeing Engineering Company’ in Seattle, Washington for the purpose

of further improving these types of propellers.

Kirsten recognized the advantages of the thrust vectoring capability of this concept and en-

visioned to utilize these propellers for airship applications. If the cycloidal propellers are placed
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Figure 1.5: Proposed installation of Kristen-Boeing propeller on airship [38].
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such that the axis of rotation of blades are along horizontal direction, then the cycloidal propeller

could produce force in upward, downward, forward or backward directions. Moreover, if the axis

of rotation of propeller blades lie on vertical direction, then it could produce forces in any direc-

tion in horizontal plane. Thus, it would provide extreme three dimensional maneuverability to the

airships. Towards, this a large airship propeller was developed which was 4.76 ft long and 1.83

ft wide and consisted of 24 blades. A 400 HP Wright airplane engine was utilized to drive this

propeller. Utilizing gear reduction, the propeller was rotated only at 225 rpm and produced 212

pounds of thrust. Performance of this propeller in terms of efficiency, controllability and quietness

was quiet satisfactory. Due to initial successful testing, this propeller was planned to be mounted

on the airship ‘Shenandoah’. To control this airship, six main propellers were designed such that

the axis of blade rotation remains along 30°from horizontal plane [Fig. 1.5]. This would enable

the airship to move in three dimensional space. The six main propellers were designed to produce

combined thrust of 10,800 pounds. Additionally, two rear propellers were designed to be placed

in vertical plane to replace the customary rudders. Although, the airship ‘Shenandoah’ unfortu-

nately crashed just few weeks before installation of cycloidal propellers. Unavailability of airships

stopped further development of these propellers.

Once the airship applications of cycloidal propellers failed, Kirsten attempted to utilize a mod-

ified version of this cycloidal propeller for marine applications. The propellers were tested while

mounted on a experimental boat. The main challenge here was to keep the water away from driving

mechanism. The first propeller consisted of 16 blades and each of the blade had a steel cog-wheel

and ball bearings at its upper end. Although, it was unsuccessful to keep the water away from steel

wheel and ball bearings. In the modified version, a bronze wheel meshed with a bronze central

driving gear was utilized which was successful to meet the requirements although wheels were

allowed to run directly in the water. Finally the propellers were installed in a 38 feet long and 6

feet 7 inches wide boat driven by 150 HP engine. The boat was able to attain speed of 25 nautical

miles per hour in the trial trips and covered a distance of over 4000 nautical miles in both salt

water and fresh water. Further experimental tests were carried out in the naval model testing basin
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Figure 1.6: Kristen-Boeing boat propeller [38].

Figure 1.7: Voith-Schneider propeller [38].
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Figure 1.8: Strandgren’s cyclogyro model [43].

of Washington and the propeller was found to have an efficiency of around 80%. Further results of

the experiments are documented in Navy Yard publications which mentions that the boat equipped

with Kirsten-Boeing propeller has exceptional maneuverability and does not require any rudder

to adjust thrust vectoring. The boat can be shifted quickly from full speed ahead to full speed

astern and can cover a 100 feet radius circle with full speed. Due to successful demonstration of

this concept, Voith-Schneider Corp bought the patents from Kirsten. In the later period, improved

versions of this propeller were built and utilized for marine applications [41, 42]. These propellers

are known as ‘Voith-Schneider propeller’. Till today, this has been only commercial application of

this cycloidal rotor concept.

In 1933, Strandgren developed another cycloidal rotor based aircraft known as ‘cyclogyro’.

Strandgren was the first person to perform scientific study of this concept [43]. A simple quasi-

steady aerodynamic analysis was carried out to determine thrust and lift produced by cyclogyro.

The performance of the cyclogyro was computed purely from its kinematics without considering
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Figure 1.9: Wheatley’s cyclogyro test setup [45].

any unsteady or virtual camber effects. The blade velocity was obtained from prescribed kinemat-

ics and flow velocity was obtained from forward speed. From these two information, relative air

velocity and incident angle with respect to rotor blade was obtained. In the next step, instantaneous

lift and drag are calculated based on steady aerodynamics. The lift and drag are resolved in blade

normal and tangential direction and integrated to obtain time-averaged force and torque. Main

objective of this study was to show feasibility of this concept as an aerial vehicle. The thrust vec-

toring capability of this concept was shown theoretically through his study. Although, this model

was never validated.

From 1933 to 1935, Wheatley developed another simplified aerodynamic model of cycloidal

rotor in forward flight [44]. This model was based on blade element theory theory and assumed an

uniform inflow across the rotor disc. In this study constant drag model and linear lift model was

considered while blade interference effects were neglected. Wheatley also conducted experimental

study [45] to measure forces produced by cycloidal rotor. The prediction of Wheatley’s model
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showed poor correlation with experimental data obtained from wind-tunnel measurements due to

lots of unrealistic assumptions to simplify the model. Although the experiments revealed some

key features of cycloidal rotor. It was observed that the rotor produces non-zero side force at hover

(zero forward speed) even while phase offset was kept to zero. Although in-depth explanation of

this phenomenon was not given. The present thesis addresses this physics behind this phenomenon

which is discussed at later chapter (Ch. 2).

Taniguchi performed experimental as well as analytical studies on cycloidal rotor during 1944

to 1960 [46, 47, 48, 49]. Taniguchi developed another quasi-steady aerodynamics model of cy-

cloidal rotor in hover and forward flight. The induced flow was assumed to be constant along the

azimuth of the rotor which is not practical. Taniguchi performed experiments to measure forces

of cycloidal rotor. His model predictions showed good correlation with experiments only when a

correction factor based on experimental results were included in the analytical model. This is a

major limitation of the model.

After this, there has not been any research on cycloidal rotors for next two decades. The concept

of cycloidal rotor was revived again by Bosch Aerospace in 1998 [50, 51, 52]. The advantages of

instantaneous thrust vectoring of cycloidal rotor towards airship application was re-identified [50].

Towards this, first flight of an aerial object powered by cycloidal rotor was conducted in 2001

[51]. For this purpose two six-bladed cycloidal rotors were utilized (1.10a) which were attached

with a 7 ft diameter balloon, ‘The Big Orange’ (1.10b). Successful flight test demonstrated that

the balloon was controllable and maneuverable in all directions. Finally a 26 ft long, 500 cubic ft

Blimp controlled by cycloidal rotor was successfully flight tested in 2003 (1.11) .

During this time, Bosch Aerospace collaborated with McNabb from Raspet Flight Research

Laboratory at Mississippi State University and conducted experimental and analytical study of

cycloidal rotor [52]. Experimental studies are carried out of demonstrate feasibility of this concept

for UAV scale aerial vehicle. For this purpose 6-bladed cycloidal rotor with 4 ft diameter was

designed and fabricated. Each of the blades were made of two sections having total 4 square ft

area. Each section of the blades had 2 ft span and 1 ft chord. For blade cross sections, NACA 0012
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(a) Cycloidal rotor.

(b) Balloon controlled by cycloidal rotor.

Figure 1.10: Cycloidal rotor powered vehicle at Bosch Aerospace [51].
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Figure 1.11: Cycloidal rotor powered Blimp [51].

airfoil was chosen as a starting design point. Each section (half) of the rotor blades were built with

606 1 ribs welded to a main spar and covered with an aluminum 2024 skin, which was tack welded

to the ribs. The central hub was CNC machined from mild steel stock. The test-rig was built using

3 inches ‘C’ section steel channel and heavy-duty pillow block bearings. Experiments confirmed

significant aerodynamic and acoustic performance advantage of this new concept.Cycloidal rotor

demonstrated aerodynamic performance of 11 lb/hp. The operation of cycloidal rotor was noticed

to be extremely quiet compared to screw propellers.

In the meantime, McNabb in collaboration with Bosch Aerospace, developed a aerodynamic

model of cycloidal rotor in hover and small forward flight speeds [53]. This model was based on

simplified unsteady aerodynamics and Farrick’s formulation [54]. This model predictions were

compared with the results published by Wheatley in 1935 [45] and the experimental results ob-

tained from Bosch Aerospace. The main limitation of this model was also inclusion of some

correction factor which needs to be adjusted to match the experimental results. Once these cor-
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Figure 1.12: UAV scale cycloidal rotor designed and fabricated by Bosch Aerospace [52].

rection factors were adjusted, the model predictions showed reasonable correlation with all those

experimental results.

From 2001 to 2006, Iosilevskii and Levy conducted experimental as well as computational

study on cycloidal rotors operating at low Reynolds number [56, 57]. Experiments were conducted

utilizing small, MAV scale cycloidal rotor of 55.8 mm radius. The cycloidal rotor was equipped

with rectangular blades with 22 mm chord and 110 mm span and NACA 0015 cross section. For

this purpose, 2, 4 and 6 bladed rotors were tested while varying the rpm from 4000 to 6000 (corre-

sponding to chord-based Reynolds numbers of about 34,000 to 50,000). Time-averaged force and

power were measured using a 5 component sting balance with its axis collinear with the axis of

rotation of rotor. To develop further aerodynamic insight of cycloidal rotor, a 3D CFD study was

carried out which showed reasonable correlation with the experimental results. In the numerical

simulation, end plates were removed to simplify the problem and the blade span was doubled to
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(a) Experimental test rig.

(b) Computational mesh.

Figure 1.13: Experimental and computational study by Iosilevskii and Levy [56, 57].
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reduce the end effects. The EZNSS flow solver [57, 58, 59] was utilized for numerical simulation

while the reference Reynolds number was kept at 40,000 and reference Mach number was kept at

0.12, roughly corresponding to actual test conditions. For each cycloidal rotor blade, ‘D’ shaped

body-fixed meshes (Fig. 1.13b) were generated and embedded into the global mesh. The Chimera

scheme [60] was utilized to account for the changes in mesh geometry due to the cyclic motion

of rotor blades. In this study, complex interactions between blades and wakes of other blades

were noticed. This phenomenon led to increasing propulsion losses as the number of blades were

increased, as observed in both experimental and computational studies.

From 2003 to 2008, a series of thorough and systematic experimental, analytical and computa-

tional studies were carried out at the Seoul National University [61, 62, 63, 64, 65, 66, 67, 68, 69].

Kim et al. [61] measured time-averaged thrust and power of an UAV scale cycloidal rotor while

varying several design parameters such as number of blades (2, 3 and 6), pitch amplitude (5°, 10°,

15°, 20°, 25°and 30°), rotor radius (0.4 m, 0.45 m and 0.5 m), pitch offset (-70°to 110°), rpm (0 to

600). For this purpose, composite blades were utilized to reduce the blade weight while increase

the blade rigidity. Blade-skin was fabricated using 3 sheets of glass/epoxy pre-preg. The blade

spar was composed of 3 tubular cells. 6 narrow strips of 0°carbon/epoxy were utilized as trailing

stiffener. The test setup is shown in Fig. 1.14a. A 3-bladed cycloidal rotor was able to produce 4.6

kg force at an rpm of 500. Through extensive parametric study, effects of different design parame-

ters on cycloidal rotor performance were observed. To investigate these phenomena, CFD analysis

were carried out using commercial CFD software, Star-CD. The cyclic motion of the rotor blade

was incorporated using sliding moving mesh (Fig. 1.14b). A global moving mesh which denotes

the complete rotor system is taken as outer circle. 6 local moving meshes that denotes individual

blades are placed inside smaller circles. The outer global mesh rotates with rpm of the rotor and

6 local mesh incorporates the pitching motion of rotor blades. The CFD simulations showed good

correlation with the experiments.

The understanding and insight gained through these detail parametric experimental and com-

putational studies led to the development of a cycloidal rotor based UAV in 2004 by Yun et al.
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(a) Experimental setup.

(b) Velocity vector components obtained from CFD.

Figure 1.14: Experimental and computational study by Kim et al. [61].
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Figure 1.15: 46 kg cycloidal rotor based UAV built by Yun et al. [63].

[62, 63]. The vehicle, weighing 46 kg, was 1.65 meter long in longitudinal direction and 2.7 meter

in lateral direction. In this vehicle two 4-bladed cycloidal rotors were utilized. Cycloidal rotor

had a diameter of 1.4 meter, blade chord of 0.15 meter, blade span of 1 meter and NACA 0012 as

blade cross-section. Two cycloidal rotors were able to produce 45 kg force together at 550 rpm

while drawing 11 HP power. Although no flight test regarding this vehicle was informed. An-

other UAV was built by Yun et al. in 2007 [64]. Yun et al. [64] also developed a lower-order

quasi-steady aerodynamic model for design and optimization of the cycloidal rotors. The aerody-

namic model utilizes a double multiple streamtube model to capture the inflow. To capture blade

loads BEMT based model was developed which assumes linear aerodynamics. The model showed

reasonable correlation with cycle-averaged forces measured from experiments. Although instanta-

neous forces were not compared. Major limitation of the this analysis was lack of detail unsteady

modeling. Moreover some key physical phenomena (such virtual camber) behind the operation of

cycloidal rotor were also neglected.

In 2006, a 100 kg quad-cyclocopter was designed and built by Hwang et al. [66] at the Seoul

National University. Each of the cycloidal rotors were equipped with 4 blades and had a diameter of

1.7 meter, blade chord of 0.22 meter and blade span of 1 meter. A 2D-CFD based parametric study
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Figure 1.16: 100 kg quad-cyclocopter built by Hwang et al. [66].

was conducted to find optimum rotor parameters such as number of blades, airfoil, rotor radius,

rotor speed, pitch amplitude, blade span and blade chord length. For the simulation purpose,

commercial CFD software STAR-CD was utilized [70]. CFD mesh was generated by the PCL

(Patran Command Language) of MSC.PATRAN [71]. To incorporate the cyclic motion of rotor

blades, a moving mesh method was utilized. Furthermore, a 3D-CFD analysis was carried out for

the detail analysis based on the preceding results of 2D-CFD study. For the structural analysis and

optimization of rotor blade system, MSC.NASTRAN [72] was utilized. Servo-motor based control

mechanism was developed to control the attitude of the vehicle. Although, no flight test/ tether test

of the vehicle was documented.

In 2008, another quad-cyclocopter was designed and built by Hwang et al. [67]. The 4-bladed

cycloidal rotors had diameter of 0.5 meter, blade chord of 0.105 meter and blade span of 0.5

meter. One key difference in this cyclocopter from the previous one is usage of elliptical blades

to optimize blade aerodynamic performance. To optimize strength/weight ratio, composite blades

are used as well as other blade parts and fuselage were also made of composite materials. For

efficient control, a swash plate was incorporated in the rotor control mechanism. Experimentally,

the cycloidal rotor was able to produce 157 N thrust at 1100 rpm with a power requirement of
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(a) Designed quad-cyclocopter.

(b) Tether flight test of quad-cyclocopter.

Figure 1.17: 12 kg quad-cyclocopter developed by Hwang et al. [67].
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2633 W. The experimental power consumption value came to be 15% more than expected from

computational results. Although thrust was sufficient enough for the vehicle to take-off vertically,

proceed to forward flight and land safely. A tethered flight test of the developed quad cyclocopter

was conducted and vehicle was able to lift off the ground. Although due to lack of proper control

strategy, it was unstable from attitude control point of view.

In the National University of Singapore, computational and experimental study on cycloidal

rotor is conducted by Yu et.al [73, 74, 75] during 2006. For computational purpose, a 3-D Un-

steady Vortex Lattice Method (UVLM) was utilized for performance prediction of cycloidal rotor

in hover. Major limitation of this model is that it assumes flow to be inviscid and irrotational.

Therefore, the model is incapable to predict the viscous effects which is very dominant for MAV

scale cycloidal rotors. The experimental study includes development of a innovative 5-bar based

pitching mechanism. An MAV scale cyclocopter was built based on above study. The tether hover

testing of the vehicle was demonstrated.

In 2006, Sirohi et. al conducted experimental parametric studies on cycloidal rotors by varying

different design parameters [76]. These studies showed promising performance from cycloidal

rotor specially at MAV scale. In 2006, Acquity Technologies carried out both experimental and 2-

D CFD studies of a model cycloidal rotor [77]. In this study active blade control was implemented

to improve control authority of the rotor. In 2007, Siegel et. al. performed 2-D CFD analysis

to investigate unsteady aerodynamic of cycloidal rotor [78]. This study showed that both thrust

production and energy extraction is possible for a cycloidal rotor using suitable pitch kinematics.

In 2007, Hara et. al. developed an innovative vehicle configuration based on cycloidal rotor [79].

The feasibility of this concept was also demonstrated. In 2007, Tanaka et. al. developed a new

mechanism to alter blade pitch angle in a passive manner by inclusion of an eccentric rotational

point [80]. In 2009, Nozaki et. al. performed experimental investigation on application of cycloidal

rotor on an airship [81]. It was observed that inclusion of cycloidal propeller makes the airship

much more maneuverable. In 2010 Kan et. al conducted 2-D and 3-D CFD studies of MAV scale

cycloidal rotor in hover [82]. The flow field predicted by 3-D CFD was very similar to flow-field
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Figure 1.18: Hover test rig of cycloidal rotor at University of Maryland [31].

measured using PIV. In 2010, Nakai et al. performed PIV study to investigate flow field around a

cycloidal rotor [83].

In university of Maryland, pioneering research were conducted on MAV scale applications

of cycloidal rotor for last ten years. A combination of detailed and systematic experimental and

computational studies are carried out to develop a fundamental understanding of the physics of

cycloidal rotors at MAV scales by Benedict et. al. [31, 32, 33, 83, 84, 85, 86, 87, 88, 89]. The

experimental studies include extensive parametric study to obtain an optimized cycloidal rotor con-

figuration. Towards this, several design parameters such as rpm, pitch amplitude, airfoil profile,

blade flexibility, blade planform shape, pitching kinematics were varied while measuring perfor-

mance of cycloidal rotor. It is observed that chord-to radius ratio, location of pitching axis and

asymmetry in pitch kinematics, significantly influences performance of cycloidal rotor. Studies

with varying chord/radius ratio showed significant flow curvature associated with cycloidal rotor.

Moreover, higher chord/radius ratio (c/R >= 0.5) was found to be beneficial to optimize rotor

performance. Cycloidal rotor performance improved with solidity until 0.4 and increasing the

chord was observed to be a better way to increase solidity rather than increasing number of blades.

Pitching axis away from leading edge proved to improve performance, specially for blades with
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larger chord/radius ratio where flow curvature effect is significant. Although in-depth reasoning

behind these phenomena was lacking. From blade pitching kinematics point of view, an asym-

metric pitching with slightly higher pitch at the top half of blade trajectory provided better power

loading compared to symmetric pitching. Moreover, higher pitch amplitudes were observed to

improve aerodynamic performance in terms of power loading. Although, higher pitch amplitudes

led to significant bending and torsional deflections on the rotor blades which would have a detri-

mental effect on rotor performance. Camber of the blade section was found to decrease overall

performance of cycloidal rotor, thus symmetric airfoil was utilized for later investigations. In-

depth studies related to blade planform shape revealed that that trapezoidal blades with moderate

taper ratios improved the power loading of the rotor slightly, although large taper was detrimental.

PIV studies were conducted to gain better understanding of the flow-field of MAV scale cy-

cloidal rotor [31, 32]. Formation of large leading-edge vortex was observed in the PIV studies

which is responsible for delaying onset of dynamic stall. Thus cycloidal rotor can operate at a

much higher pitch amplitude upto 45°. Force measurements showed that cycloidal rotor in hover

condition produces significant side force along with the vertical thrust force, as observed in Wheat-

ley’s experiments [44, 45]. To further investigate this phenomenon, PIV measurements were car-

ried out in the wake of cycloidal rotor which showed significant wake skewness caused due to the

side-ward force. Although in-depth reasoning behind this phenomenon was not clearly understood.

The forward flight studies conducted by Benedict et. al. [86, 87, 88] includes a combination of

time-averaged force measurements, time-resolved PIV measurements and 2D CFD analyis. Flow

field obtained from CFD analysis was very similar to that observed from PIV study. Moreover, it is

observed that a cycloidal rotor would produce significant lift in forward flight even with 90°phase

offset which would enable the vehicle to operate at high forward speed. It was also noted a back-

ward spin of cycloidal rotor with respect to incoming flow is necessary to produce positive lift.

While a a forward spin with respect to incoming flow would generate same amount of lift but in

downward direction.

The insights from these studies along with autonomous flight control strategies, led to the de-
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(a) Leading-edge vortex on top of cycloidal rotor blade.

(b) Time averaged velocity measurements showing skewed wake of a cycloidal
rotor.

Figure 1.19: PIV study by Benedict et al [31].
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Figure 1.20: Open jet wind tunnel force balance setup at University of Maryland [88].

Figure 1.21: Autonomous stable hover of MAV scale cyclocopter [90].
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velopment of the first open loop sustained hover of cyclocopter in the literature [90]. Since then

different cyclocopter configurations at different scales (29 grams to 800 grams vehicle) were built

and flight tested as shown in Fig. 1.2 [90, 91, 92, 93, 94, 95, 96, 97]. Identification of flight dy-

namics of a 500 grams MAV scale twin cyclocopter was carried out by Hrishikeshavan et. al. [95]

at University of Maryland. Analysis based on a control-theoretic framework indicated sufficient

maneuverability potential of cyclocopter in open-loop condition. Moreover, high gust tolerance ca-

pability of the vehicle was identified. Higher maneuverability and gust-tolerant capability enable

this concept highly desirable for several MAV applications

It is observed that the concept of cycloidal rotor originated much earlier in the 20th century.

Although, most of the practical implementations were unsuccessful due to lack of systematic sci-

entific study. After few decades of no research, this concept was revived again by Bosh Aerospace.

In the meantime, increasing demands of small scale aerial platforms and limitations of the con-

ventional configurations led to increased interest in novel concepts like cycloidal rotor. Towards

this, lots of researches on cycloidal rotor were conducted during last two decades. Although, there

exist very limited efforts in the present literature to develop analytical models of cycloidal rotor.

Most of the existing models are based on extremely simplified aerodynamics which can not cap-

ture complex flow features associated with cycloidal rotor and thus, show poor correlation with

experimental results without any form of empirical corrections. The major reason behind this

is lack of understanding and modeling of key aerodynamic phenomena (such as virtual camber,

leading-edge vortex, effects of near and shed wake) behind the operation of cycloidal rotor. On the

other hand, all these studies, except the one by Benedict et. al. [98], focused on modeling only

the aerodynamic performance of cycloidal rotor while completely neglecting the effects of blade

deflections. Moreover, none of the previous studies conducted trim analysis of cyclocopter at any

flight conditions.

1.4 Motivation and Objective

Increased demand for unmanned aerial systems for both military and civilian applications has

sparked lots of interest in MAV research in past few decades. Although fixed wing MAVs are com-
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paratively more efficient in terms of performance and endurance, they can not be used for highly

constrained environment or surveillance purposes due to their lack of hover/low-speed capability

and maneuverability. On the other hand, present MAVs based on conventional rotors have shown

very low performance capability, which are well short of the endurance (<15 minutes) and payload

objectives as observed during literature review. Developing next generation of MAVs would re-

quire radical improvements in propulsion systems as well as control and guidance strategies. The

limitations of MAVs based on conventional concept has led to lots of interest towards out-of-box

solutions and novel configurations. Cycloidal rotor is one such novel propulsion concept, which

has huge potential due to its higher aerodynamic efficiency and maneuverability (instantaneous

360° thrust vectoring capability).

Present MAVs based on cycloidal rotor are developed through extensive experimentation and

not by utilizing traditional aircraft design techniques which is neither scientific nor practical. The

reason for this is primarily the lack of design tools for these types of small-scale unconventional

systems. A crucial step towards building efficient MAVs utilizing cycloidal rotor systems involves

developing an aeroelastic framework and a coupled trim methodology, which could be utilized for

design optimization and this is the main objective of the present dissertation.

However, physics behind the force production of cycloidal rotor is not well understood due

to extremely complex flow-field associated with cycloidal rotor which is characterized by strong

leading-edge vortex formation, nonlinear dynamic virtual camber effects, shed wake and blade-

wake interactions. Moreover, its several key aerodynamic characteristics change with different

flight conditions. For example the complex inflow characteristics and trajectory of blade wake

is highly dependent on the forward speed and direction of it. The cycloidal rotor itself needs to

alter its phase offset to produce positive propulsive force in forward speed. It is also observed

that direction of rotation of cycloidal rotor in forward flight has a significant effect on its vertical

force production capability. Although some of this phenomena are observed in previous in-house

experiments and in literature review, the reasoning and physics behind those phenomena are not

well understood. For this reason, it is extremely crucial to investigate the aerodynamics of cycloidal
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rotor thoroughly in order to fully exploit the aerodynamic advantages of this configuration. One

major step towards this is to develop an accurate physics based lower order model of cycloidal rotor

by rigorously modeling the key aerodynamic phenomena. The next important step is to utilize the

model to understand the force production principles of cycloidal rotor.

Another major improvement needed to develop efficient cycloidal rotor is development of light-

weight rotor blades which would also reduce weight of all load bearing components of rotor hub

since they have to withstand less blade inertial forces. On the other hand, considerable blade

deflections are inevitable for a light-weight rotor blade. It is also observed from in-house exper-

iments that cyclodial rotor blades go through very large bending and torsional deflections which

significantly affect rotor performance. This demands development of an aeroelastic framework

of cycloidal rotor that can be used to accurately predict large blade deflections and their effects

on rotor performance. Moreover, detail aeroelastic investigation is needed to assess the nonlinear

behaviour of blade deflections and how these deflections are affecting rotor performance.

Finally efficient control strategy of the entire vehicle needs to be developed. This includes

coupling of individual thruster models with the trim model of the vehicle to obtain coupled trim

solutions. In the present literature, there exists no study related to coupled trim modeling of MAVs

based on cycloidal rotors. This coupled trim study is crucial to investigate the control inputs needed

to sustain steady flight conditions.

1.5 Technical Challenges

Aeroelastic modeling of cycloidal rotor is the most challenging part of the present dissertation,

containing both aerodynamic and structural challenges. Large amplitude, high reduced frequency

pitching motion of cycloidal rotor blades results in highly complex unsteady aerodynamics char-

acterized by strong leading-edge vortex formation, nonlinear dynamic virtual camber effects, shed

wake and blade-wake interactions which makes it extremely challenging to come up with a lower

order model. On the other hand, low Reynolds number operating regime of both cyclodial ro-

tor and conventional rotor at MAV scale, poses additional modeling challenges. On the structural

side, the cycloidal rotor blades go through very large bending and torsional deflections due to dom-
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inant centrifugal force. Moreover, the cycloidal rotor blades being more constrained at both ends,

start showing nonlinear behaviour at much earlier stages with can not be captured accurately by a

traditional 2nd order model. The key challenges of the present study is listed below in more detail.

1.5.1 Cycloidal Rotor Aerodynamic Challenges

1. The cycloidal rotor blades go through an unique aerodynamic phenomenon known as vir-

tual camber. A symmetric airfoil in straight flow experiences same incident velocity angle

(angle of attack) at different chord-wise location. On the other hand, a cambered airfoil

in a straight flow experiences different incident velocity angle at different chord-wise loca-

tion. Similarly, when a symmetric airfoil experiences variation of incident angle of attack

along different chord locations due to various reasons, it shows cambered behaviour, which

is known as virtual camber effect (symmetric airfoil behaving as cambered airfoil). This vir-

tual camber effect is very predominant in cycloidal rotors because the flow over a cycloidal

rotor blade is characterized by a pitching airfoil in a curvilinear flow in the presence of in-

flow that varies along with azimuth. A airfoil in a curvilinear flow experiences different flow

velocity magnitude and direction along the chord due to geometry and the curvilinear nature

of the flow; this manifests as an effective camber and incidence. Moreover, the non-uniform

inflow distribution and flow velocity due to forward speed changes this curvilinear geometry

which in turn changes virtual camber effect. Additionally, the pitch angle and pitch rate of

cycloidal rotor blade influences chord-wise variation of flow incident angle and thus, virtual

camber. Pitch angle and pitch rate of a cycloidal rotor changes continuously with azimuth

so the virtual camber also changes with azimuth making it a dynamic virtual camber. This

dynamic and non-linear nature of virtual camber due to multiple effects makes it extremely

challenging to come up with a lower order model. This effect becomes more significant as

the chord by radius ratio (c/R) of cycloidal rotor increases.

2. The lift generation for a pitching airfoil is very different from that of a static airfoil due to

quasi-steady effects of pitching kinematics and unsteady effects from shed vortices. Oscil-
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latory part of the lift produced by cycloidal rotor blade contains not just the first harmonic,

rather it shows high frequency components with varying phase delays due to inclusion of

virtual camber and its nonlinear behaviour. This phenomena makes it challenging to model

the effects of shed wake.

3. Large amplitude, high reduced frequency pitching motion of cycloidal rotor blade causes

formation of strong leading-edge vortex. These vortices delay the separation of flow over

airfoils at higher angle of attack which causes higher lift-coefficient than steady state maxi-

mum values. Cycloidal rotors use cyclic blade pitching kinematic for net thrust generation.

At higher angles of attack, these pitching blades show dynamic stall behavior which is very

different from static stall and very difficult to model.

4. The inflow characteristics associated with cycloidal rotor is extremely complex and nowhere

near uniform. The induced inflow interacts with the rotor twice, in upstream and downstream

region. After interacting with the rotor blades at upstream location, the wake gets bent and

accelerated before it interacts with rotor blades in the downstream. Due to this complex

blade vortex interaction, trajectory of induced flow and trailing vortices becomes highly

unpredictable which makes it very challenging for a lower order model to accurately capture

the wake geometry. On the other hand, cycloidal rotor needs to change its phase offset

in forward flight in order to produce positive propulsive force which alters upstream and

downstream regions on cycloidal rotor blade. For this reason, the wake geometry gets highly

influenced by direction and magnitude of flow due to forward speed.

1.5.2 Cycloidal Rotor Structural Challenges

1. In case of cycloidal rotor, the centrifugal force of rotor blade acts radially causing more de-

flections of the rotor blade unlike conventional rotor, where centrifugal force acts axially and

causes axial stiffening of the blade. It is also observed from in-house experiments that cyclo-

dial rotor blades go through very large bending and torsional deflections which significantly

affect rotor performance.
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2. The nonlinear coupling between bending curvatures in two orthogonal directions (i.e. radial

and tangential) create large nonlinear moment. Blade twist due to this nonlinear moment is

one of the major reasons of drop in performance of cycloidal rotor.

3. The cycloidal rotor blades are more constrained, fixed in bending at both side, unlike conven-

tional rotor blades which are cantilever in nature. These extra bending constraints increase

bending curvature and introduce nonlinearity at a much earlier stage. Specifically the nonlin-

ear twist due to coupling of bending curvatures starts at very early stages of blade deflections.

For this reason, even smaller blade deflections are not properly captured by traditional 2nd

order nonlinear model that are widely used in conventional rotorcraft structural analysis.

1.5.3 Conventional Rotor Aerodynamic Challenges

Conventional nose rotor of MAV scale cyclocopter operate at a very low Reynolds number

compared to full-scale rotor. Aerodynamic behavior of airfoil changes significantly at very low

Reynolds due to increased viscous effects. Due to this reason, the variation of Reynolds number at

different span locations of rotor blade becomes more significant. Moreover, linear lift curve slope

characteristic of airfoil does not hold true in this low Reynolds number regime. For this reason,

traditional blade element momentum theory (BEMT), widely utilized for full scale rotor, is not

applicable to these MAV scale rotors.

1.5.4 Challenges in Couple Trim Procedure

The nonlinear behaviour of coupled trim model of cycloidal rotor poses additional modeling

challenges. Estimation of appropriate initial conditions and proper convergence scheme is essential

for this purpose. Moreover, the control methodology of the vehicle changes based on flight con-

ditions. For example, the control strategy for a twin-cyclocopter in forward flight is very different

from hover because of the tilt of thrust vector.

1.6 Contributions of The Thesis

The main contribution of the thesis is development of an aeroelastic coupled trim model of a

twin-cyclocopter at different flight conditions (i.e hover, forward flight). Twin-cyclocopter consists
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of two cycloidal rotors as main thrusters and a conventional horizontal nose-rotor for pitch-torque

balance. Coupled trim analysis requires simultaneous computation of trim controls, vehicle ori-

entation and blade structural responses so that both blade response equations and vehicle trim

equations are satisfied. To obtain the blade structural response and the rotor aerodynamic loads

for a given set of control inputs, a nonlinear aeroelastic framework of the complete vehicle is de-

veloped. This framework consists of aeroelastic model of cycloidal rotor and aerodynamic model

of conventional nose rotor. The nonlinear aeroelastic model of the cycloidal rotor is developed

by coupling unsteady aerodynamic model with a fully nonlinear geometrically exact beam based

structural framework capable of predicting large bending and torsional deflections of rotor blade.

Towards this, complex aerodynamics of the cycloidal rotor is thoroughly investigated and various

underlying phenomena, such as dynamic virtual camber, non-uniform inflow, effects of near and

shed wake and leading-edge vortices are rigorously modeled. To obtain the performance of the

conventional nose rotor, a modified BEMT based model with CFD-based airfoil lookup tables is

developed. All the models and the sub-models are systematically validated with results obtained

from in-house experiments. Once validated, the models are utilized to understand the physics be-

hind the force production of cycloidal rotor. The key contributions of the developed models are

listed below.

1.6.1 Cycloidal Rotor Aerodynamic Analysis

1. Cycloidal rotor blades go through an unique phenomenon known as virtual camber which is

investigated in great detail and rigorously modeled. It is shown that the chord-wise variation

of incidence velocity angle on cycloidal rotor blade is manifested as dynamic virtual camber,

which depends on curvilinear flow geometry, pitch angle, pitch rate, inflow distribution and

forward speed of vehicle. By including all these effects together, a generalized expression of

additional lift due to virtual camber effect is developed.

2. Cycling pitching of cycloidal rotor blade creates shed wake along blade span. The oscillatory

part of the lift of due to cyclic pitching contains higher frequency components with varying
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phase delays. To handle this properly while modeling the effects of shed wake, an automated

function has been developed that would perform Fourier series decomposition of oscillatory

part of lift (due to shed wake) and compute corresponding frequency and Theodorsen's func-

tion to generate unsteady lift.

3. To capture the complex inflow characteristics of cycloidal rotor, a lower order computation-

ally inexpensive model based on modified double multiple streamtube (D-MS) is developed

which relaxes some of the unrealistic assumptions of traditional D-MS model and uniform

inflow model. Moreover, effects of forward speed and cycloidal rotor phase offset on the

inflow geometry is introduced in the proposed model.

4. To accurately capture blade-vortex interactions and its effect on wake geometry, a high-

fidelity model based on free-wake is developed.

5. Once systematically validated with in-house experiments, the developed lower order model

is utilized to understand physics behind the force production of cycloidal rotor.

1.6.2 Cycloidal Rotor Structural Analysis

1. To capture large bending and torsional deflections of cycloidal rotor blade a fully nonlinear

geometrically exact model is developed. It is shown that the geometrically exact model gives

much more better predictions compared to a traditional 2nd order nonlinear model.

2. In-house experiments are carried out to investigate the effect of blade deflections on the

performance of cycloidal rotor. It is observed that as the flexibility of blades increases, the

thrust production of rotor decreases while power requirement increases. This leads to overall

decrease in power loading.

3. An aeroelastic model of cycloidal rotor is developed by coupling unsteady aerodynamic

model with the structural framework. It is also observed that the aeroelastic model based

on geometrically exact structural framework gives very accurate prediction compared to the

aeroelastic model based on 2nd order nonlinear structural framework.
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4. The fully nonlinear aeroelastic model is utilized to understand the reason behind perfor-

mance drop of flexible cycloidal rotor.

1.6.3 Conventional Rotor Aerodynamic Analysis

At low Reynolds number operating regime of MAV scale rotor, aerodynamic behavior of airfoil

changes significantly due to higher viscous losses. To model performance of such MAV scale con-

ventional nose rotor, a modified blade element momentum theory (BEMT) model based on CFD

lookup table is developed. The developed model relaxes few assumptions of traditional BEMT

model which is not applicable to MAV scale rotor.

1.6.4 Coupled Trim Analysis

Control strategies of a twin cyclocopter at different steady state flight conditions (i.e. hover,

forward flight) is developed. Base on that, a coupled trim analysis is carried out by simultaneously

solving vehicle trim equations and blade response equations. This study is utilized to investigate

effect of design parameters on control inputs of the vehicle.

1.7 Scope and Organization of Thesis

In the present chapter, a brief introduction to micro air vehicles or MAVs are provided. Al-

though MAVs have significant potential applications in near future, the present MAVs based on

conventional concepts are well short of desired performance in terms of endurance, agility and dis-

turbance rejection capability. Challenges of present MAVs, specifically operation at low Reynolds

number is discussed in detail. In the present thesis, cycloidal rotor based MAVs are proposed as

an alternate solution. Towards this, thorough literature review of cycloidal rotor is carried out and

advantages of this novel concept are explored. Finally specific issues crucial to the development

of next generation cycloidal rotor based MAVs are addressed. In the existing literature, lack of

accurate modeling tools of cycloidal rotor and cyclocopter is observed. The initial step towards

building efficient cyclocopter is to develop an aeroelastic framework and coupled trim model of the

vehicle which could be used for preliminary design and optimization, and this is the primary objec-

tive of the present dissertation. Technical challenges towards achieving these goals are addressed
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and specific contribution of the thesis are listed. The remainder of the dissertation is organized into

four chapters.

The 2nd chapter discusses the detailed development of an unsteady aerodynamic model of an

MAV scale cycloidal rotor, which is the first step towards modeling the entire vehicle. For this

purpose, aerodynamics of a cycloidal rotor is investigated thoroughly and rigorous modeling of

various underlying physical phenomena such as dynamic virtual camber, effects of near and shed

wake, leading edge vortices are presented. After that, modeling of the complex inflow charac-

teristics of cycloidal rotor is discussed. Initially, a lower order model based on modified double

multiple streamtube (DMS) is developed. The systematic validation of the developed model with

in-house experimental data of instantaneous forces produced by an MAV scale cycloidal rotor is

presented. Once validated, the developed model is utilized to understand physics behind the force

production of cycloidal rotor. Although the lower order model provides reasonable prediction of

rotor performance, it cannot accurately capture the complex blade vortex interaction and the wake

trajectory of cycloidal rotor. For this reason, high-fidelity free-wake based model of cycloidal ro-

tor is developed which is shown to provide slightly better prediction compared to the lower order

DMS model.

The 3rd chapter discusses the detailed development of structural model of cycloidal rotor. Ini-

tially a 2nd order nonlinear beam based model of cycloidal rotor is developed. Cycloidal rotor blade

goes through large centrifugal load while being constrained at both ends which in turn results in

large, nonlinear bending and torsional deflections. The 2nd order nonlinear model is capable of

predicting moderate deflection, but over-predicts the nonlinear deflections of cycloidal rotor blade.

For this reason, a full nonlinear geometrically exact beam model of cycloidal rotor is developed.

Next, validations of both the models with results from commercial software, Abaqus, are presented.

The 4th chapter discusses the detailed development of vehicle response model of a twin cy-

clocopter which consists of modeling of individual rotors (cycloidal rotor and conventional nose

rotor). The aeroelastic model of cycloidal rotor is developed by coupling the unsteady aerody-

namic model with the structural framework. To further investigate the aeroelastic performance of
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cycloidal rotor, experimental data utilizing moderately and highly flexible rotor blades are pre-

sented. Next, validation of aeroelastic model with these experimental data is presented. Once

validated, the model is utilized to understand the effects of blade deflections on the performance

of cycloidal rotor. On the other hand, a BEMT based aerodynamic model is developed to predict

the performance of conventional nose rotor.

The 5th chapter discusses coupled trim analysis of twin cyclocopter. The control strategy of

the vehicle in hover and steady state forward flight is presented. After that, the development

of the vehicle trim model at hover and forward flight is discussed. The trim model is coupled

with the vehicle response model (developed in Chapter 4), to perform couple trim analysis. The

validation of the developed model with in-house experiments is presented. Once validated, the

model is utilized to understand the effect of different design parameters on control inputs required

for vehicle trim and vehicle performance.
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2. AERODYNAMIC MODELING OF CYCLOIDAL ROTOR*

2.1 Overview

In this chapter, development of an unsteady aerodynamic model of an MAV scale cycloidal

rotor is discussed [99, 100, 101]. Large amplitude, high reduced frequency pitching motion of

cycloidal rotor blades results in highly complex unsteady aerodynamics characterized by strong

leading-edge vortex formation, nonlinear dynamic virtual camber effects, shed wake and blade-

wake interactions. For accurate prediction of this complex physical system, detailed CFD modeling

is necessary which is out of scope for the present application. The the main objective is to develop

a computationally inexpensive model of a cycloidal rotor that could be utilized for design and

optimization purposes. Therefore, a high fidelity lower-order model has been developed which can

predict instantaneous blade aerodynamic forces and rotor performance (cycle-averaged thrust and

power) with sufficient accuracy. Towards this, aerodynamics of a cycloidal rotor is investigated

thoroughly and various underlying physical phenomena such as dynamic virtual camber, effects

of near and shed wake, leading edge vortices are rigorously modeled. It is shown that the chord-

wise variation of incidence velocity angle on cycloidal rotor blade is manifested as dynamic virtual

camber, which depends on curvilinear flow geometry, pitch angle, pitch rate, inflow distribution

and forward speed of vehicle. By including all these effects together, a generalized expression

of additional lift due to virtual camber effect is developed. To capture the effects of near wake,

a nonlinear lifting line model is incorporated. Rapid pitching of rotor blades produces unsteady

phenomena such as strong leading edge vortices and shed wakes. Polhamus leading edge suction

*Part of the data reported in this chapter is reprinted with permission from “Unsteady Hydrodynamic Modeling
of a Cycloidal Propeller” by Halder, A., Walther, C.M. and Benedict, M., Fifth International Symposium on Marine
Propulsion, 2017 [99]; “Hydrodynamic Modeling and Experimental Validation of a Cycloidal Propeller” by Halder,
A., Walther, C. M. and Benedict, M., Ocean Engineering, Vol. 154, 15 April 2018, Pages 94-105 [100]; “Nonlinear
Aeroelastic Modeling of Cycloidal Rotor in Forward Flight” by Halder, A., and Benedict, M., Proceedings of the
AHS Technical Meeting on Aeromechanics Design for Transformative Vertical Lift, 2018 [101] and “Free-wake Based
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analogy is applied to model leading edge vortex. To capture effects of shed wake, a method based

on Theodorsen's approach has been developed. In this step, detailed Fourier analysis is carried out

to properly calculate unsteady forces due to high frequency lift components, which mainly arise

due to nonlinear virtual camber effects. A modified Double Multiple Streamtube (D-MS) model

is used for modeling the complex inflow characteristics of a cycloidal rotor. All these detailed

modeling helped the aerodynamic model to systematically validate with not only time averaged

forces, but also time-history of aerodynamic forces obtained from in-house experiments at low

Reynolds numbers.

Once validated, the model is utilized to understand several phenomena behind the force pro-

duction of cycloidal rotor. It is observed the dynamic nature of virtual camber plays a significant

role in this aspect. Dynamic virtual camber due to pitch rate creates asymmetry in side force be-

tween the right and the left halves, which in turn causes net time averaged side force on a cycloidal

propeller in hover even with zero phase offset. Moreover, it is found extremely crucial for a cy-

cloidal rotor to rotate in opposite direction (back-spin) with respect to the incoming flow in order

to produce a upward vertical force in forward flight. In forward flight, a back-spinning cycloidal

rotor experiences negative virtual camber near top of the cycle generating a small negative verti-

cal force (retreating side), while it experiences positive virtual camber near bottom of the cycle

generating a large positive vertical force (advancing side). This phenomena lead to net positive

vertical force over a complete cycle. On the other hand, if the cycloidal rotor rotates in forward

direction with respect to incoming flow (forward-spin) in forward flight, it would produce same

amount of vertical force in downward direction since the top portion of cycle becomes advancing

side producing large downward force and bottom portion becomes retreating side producing small

upward force. These phenomena are explained in detail in later sections.

Although the above mentioned lower order model is computationally inexpensive and capable

of predicting rotor performance with sufficient accuracy, it can not capture the complex flow-

field of cycloidal rotor with extreme accuracy. Specifically, it is extremely challenging to the

capture the complex inflow distribution, blade vortex interaction and geometry of trailing vortices

43



using a lower order model. For this reason, a high-fidelity model of cycloidal rotor based on free-

wake is developed to further investigate aerodynamics of cycloidal rotor in more detail [102]. The

wake model consists of multiple trailing vortices at near wake and only two trailing vortices in

the far wake which are basically tip vortices. Moreover, there exists shed wake along the span

of the blade which is generated and shed due to cyclic pitching of rotor blade. Initially a wake

geometry is prescribed based on uniform inflow solution. Then, induced velocities are obtained on

blade and wake locations using Biot-Savart law. Based on induced velocities wakes are convected

and bound circulation of blades are updated. This procedure is continued until wake shape and

bound circulation converges. The prediction of the developed free wake model shows even better

correlation with in-house experimental data compared to that of the lower order model.

2.2 Aerodynamic Model in Hover

In this section, detail development and systematic experimental validation of a lower order

aerodynamic model of cycloidal rotor in hover condition is discussed. Due to high reduced fre-

quency and large amplitude pitching motion, cycloidal rotor blades results in highly complex un-

steady aerodynamics characterized by strong dynamic-stall/leading-edge vortex formation, non-

linear dynamic virtual camber effects, shed wake and blade-wake interactions which makes it

extremely challenging to develop with a lower order model. In the present study, aerodynamics of

cycloidal rotor is investigated thoroughly and the underlying physical phenomena behind cycloidal

rotor operation are rigorously modeled.

2.2.1 Modeling Methodology: Hover Model

A flow-chart of the developed aerodynamic model is shown in the Fig. 2.1. The first step in the

proposed aerodynamic model is to compute the magnitude and incident angle of the resultant flow

velocity at each local chord-wise location of cycloidal rotor blade. For this purpose, blade speed is

obtained from prescribed kinematics and flow speed is obtained from inflow information. Chord-

wise variation of incident flow angle is manifested as virtual camber effect which is discussed in

detail in the subsequent sections. Once sectional angle of attack is obtained, sectional quasi-steady
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Figure 2.1: Flow chart of Aerodynamic Hover Model.

lift coefficients are computed from virtual shape of the airfoil using modified thin-airfoil theory.

Small angle of attack assumption of thin-airfoil theory is not applicable to cycloidal rotor blades

with large pitch amplitudes. This unrealistic assumption is relaxed while computing quasi-steady

forces. In the next step, a non-linear lifting line model is developed to determine 3D aerodynamic

forces. Rapid pitching of rotor blades create unsteady phenomena such as leading edge vortex and

shed wake. Polhamus leading edge suction analogy is implemented to model additional vortex lift

and vortex drag due to leading edge vortex. To capture effects of shed wake, a method based on

Theodorsen’s approach is implemented. During this procedure, Fourier analysis is carried out to

account for high frequency force components, mainly arriving due to nonlinear virtual camber. All

these modeling leads to unsteady force produced by cycloidal rotor blade. From the aerodynamic

forces, inflow velocity is computed using proper inflow model. For inflow, a modified double mul-

tiple stream model (D-MS) is developed which relaxes some unrealistic assumptions of traditional

D-MS model and uniform inflow model. Once inflow is obtained, the above mentioned cycle is
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Figure 2.2: Negative virtual camber effect due to curvilinear flow.

repeated again in an iterative manner until both inflow and circulation converges together.

2.2.1.1 Virtual Camber

The cycloidal rotor blades experience a unique phenomenon known as virtual camber. A sym-

metric airfoil in straight flow experiences same incident velocity angle (angle of attack) at different

chord-wise locations. On the other hand, a cambered airfoil in a straight flow experiences differ-

ent incident velocity angle at different chord-wise locations. Similarly, when a symmetric airfoil

experiences variation of incident angle of attack along different chord locations, it manifests as an

effective camber, which is known as virtual camber effect (symmetric airfoil behaving as cambered

airfoil). This virtual camber effect is very predominant in cycloidal rotors because the flow over

a cycloidal rotor blade is characterized by a pitching airfoil in a curvilinear flow in the presence

of inflow that varies along with azimuth. A airfoil in a curvilinear flow experiences different flow

velocity magnitude and direction along the chord due to geometry and the curvilinear nature of the

flow; this manifests as an effective camber and incidence. Figure 2.2 shows how curvilinear flow

geometry creates a negative virtual camber effect for a blade at 0° pitch angle. The left side of
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Figure 2.3: Chord-wise variation of flow velocity due to inflow distribution.

the figure shows that a symmetric airfoil on a curvilinear flow would experience a positive incident

angle of attack (αLE) at the leading edge of the blade, while it would experience a negative incident

angle of attack (αTE) at the trailing edge of the blade and incident angle is zero at pitching axis.

The incident angle of attack at some other chord-location (αx) would be something different based

on chord location, x. Right side of the figure shows that negative cambered airfoil immersed in a

straight flow would experience similar variation of local incident angle of attack along its chord-

wise locations. Therefore, a symmetric blade immersed in a curvilinear flow will behave like a

cambered blade in a rectilinear flow as shown in Fig. 2.2 . This phenomenon is more significant

for cycloidal rotors with a large chord-to-radius ratio (c/R) since it increases curvature of the flow.

The local incident angle on cycloidal rotor blade depends on the parameter R′ which in turn de-

pends on pitch angle of cycloidal rotor blade. Thus, virtual camber also depends on the pitch angle

of cycloidal rotor blade. In case of cycloidal rotor, blade pitch changes cyclically as the blade goes

through different azimuth location. Therefore, the virtual camber also changes cyclically making

it a dynamic virtual camber effect.
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(a) Positive virtual camber effect due to pitch up motion.

(b) Negative virtual camber effect due to pitch down motion.

Figure 2.4: Effect of pitch rate on virtual camber.

On the other hand, flow over a cycloidal rotor is not purely curvilinear. Thrust production

of cycloidal rotor induces an inflow velocity opposite to the direction of thrust. Distribution of

this inflow velocity (shown in Fig. 2.3) changes local variation of incident angle of attack along

chord-wise direction, which in turn alters virtual camber effect.

Additionally, the blade pitch rate also affects the chord-wise variation of local incident angle

of attack and therefore, alters virtual camber. An airfoil in an pitch-up moment would experience a

negative incident angle of attack at leading edge, zero incident angle of attack at pitching axis and

a positive incident angle of attack at trailing edge of the rotor blade. This is manifested as positive

virtual camber effect as observed in Fig. 2.4a. Similarly, an opposite pitch rate (nose-down pitch)

would cause a negative virtual camber effect (Fig. 2.4b). The pitch rate of cycloidal rotor blade

also varies cyclically. Thus virtual camber effect due to pitch-rate of rotor blade would also vary

in a cyclic manner. By considering all these effects together (effects of curvilinear geometry,

inflow distribution, pitch and pitch-rate), a generalized expression has been derived to represent

the variation of local incident angle of attack (αx) along the blade chord.

All the velocity components of fluid relative to rotor blade is shown in Fig. 2.5. The velocity
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Figure 2.5: Velocity components at a local chord location on cycloidal rotor blade.
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components are computed along tangential (̂i) and normal (ĵ) to blade chord. Blade velocity (~Vb)

at chord-wise location x from pitching axis is obtained from prescribed kinematics of blade and

can be expressed as following equation.

~Vb(x) = ΩR′ cos(θ −∆ψ) î− ΩR′ sin(θ −∆ψ) ĵ (2.1)

In the above equation, θ is geometric pitch angle of cycloidal rotor blade, ψ is azimuth location of

the blade in a cycle, Ω is rotational speed of rotor,R′(x) is distance of local chord location (x) from

center of cycloidal rotor. Using geometrical relations, blade velocity can be rewritten as following

expression.

~Vb(x) = ΩR cos θ î− Ω(R sin θ − x) ĵ (2.2)

In the above equation, R is the radius of cycloidal rotor. Flow velocity (~Vp) relative to rotor blade

due to blade pitching is given as following.

~Vp(x) = xθ̇ ĵ (2.3)

The inflow speed is represented as vi(x) acting on rotor blade at an angle β(x) w.r.t vertical axis.

Thus, inflow velocity (~Vi) can be expressed as following.

~Vi(x) = −(vi sin(β + θ) î+ vi cos(β + θ) ĵ) (2.4)

Considering all the velocity components described above, the net relative flow velocity (~V ) with

respect to rotor blade is calculated.

~V (x) = ~Vp(x) + ~Vi(x)− ~Vb(x) (2.5)

Substituting, Eqs. 2.2, 2.3 and 2.4 into Eq. 2.5, the net flow velocity can be expressed as following
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equation.

~V (x) = −UT î− UP ĵ (2.6)

Where,

UT = ΩR cos θ + vi sin(β + θ) (2.7)

UP = x(Ω− θ̇)− ΩR sin θ + vi cos(β + θ) (2.8)

This information all together gives net flow speed (V (x)) and incident angle of attack (αx(x)) at

each local chord-wise location of the cycloidal rotor blade.

V (x) =
√
U2
T + U2

P (2.9)

αx = − tan−1

(
x(Ω− θ̇) + vi cos(β − θ)− ΩR sin θ

ΩR cos θ + vi sin(β + θ)

)
(2.10)

In the above expression, vi is assumed to be zero for the first iteration and updated using inflow

model (modified D-MS model, discussed later) for subsequent iterations. For a cambered airfoil in

straight flow, the local angle of attack varies along chord according to following equation.

αx = θ − dy

dx
(x) (2.11)

By comparing, Eq. 2.10 and Eq. 2.11, expression for virtual camber line of cycloidal rotor blade

is computed.
dy

dx
(x) = θ + tan−1

(
x(Ω− θ̇) + vi cos(β − θ)− ΩR sin θ

ΩR cos θ + vi sin(β + θ)

)
(2.12)

2.2.1.2 Quasi-Steady Force Computation

Modified thin airfoil theory has been used to calculate quasi-steady lift from the chord-wise

variation of incident angle of attack. For this purpose, airfoil co-ordinates are transformed along

chord line. Figure 2.6 shows co-ordinate transformation from actual chord-line (x, y) to virtual

chord-line (X , Y ) and Equations 2.13 and 2.14 provide expressions for this co-ordinate transfor-
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Figure 2.6: Co-ordinate transformation from physical airfoil co-ordinate to virtual cambered airfoil
co-ordinate.

mation.

X = (y − y1) sinφ+ (x− x1) cosφ (2.13)

Y = (y − y1) cosφ− (x− x1) sinφ (2.14)

One of the key assumptions of thin-airfoil theory is small angle of attack [15] which is not

valid for cycloidal rotor blades. This is because the rotor blades go through large angles of attack

due to higher operating pitch amplitude (∼40°). For this reason, a modified thin-airfoil theory is

derived by relaxing the small angle of attack assumption and a more general expression (Eq. 2.15)

is developed.

CL = K sinα + CL0 (2.15)

In the above equation, K is a constant that represents lift-curve slope at small angle of attack,

CL0 is additional lift due to the effects of virtual camber. CL0 is a complex function of incidence

angle given by Eq. 2.16. In this equation, dY/dX is computed from Eqs. 2.12, 2.13 and 2.14.

dY/dX represents slope of virtual camber line in transformed co-ordinateX−Y . Using numerical
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integration procedure, CL0 is computed.

CL0 = 2 cosα

∫ π

0

dY

dX
(cos η − 1)dη (2.16)

Where, η is a non-dimensional parameter used for integration purposes. η is chosen such that

x =
c

2
(1− cos η) (2.17)

2.2.1.3 Nonlinear Lifting Line Model

A nonlinear lifting line theory [15] is implemented numerically to incorporate the effects of tip

vortices in near wake region (finite-span effect). In this case, a linear geometry of trailing vortex

lines is assumed. For this purpose, the wing is divided into number of span-wise elements. Nodal

point is set to center of each element. Induced angle of attack at each nodal point is obtained using

following expression (Eq. 2.18).

αi(y0) =
1

4πV∞

∫ b/2

−b/2

dΓ/dy

y0 − y
dy (2.18)

Above integral is computed numerically using Gauss-quadrature integration rule. 11 Gauss quadra-

ture points are used for this purpose. In the next step, effective angle of attack at each nodal point

is computed using following expression.

αeff (y0) = α(y0)− αi(y0) (2.19)

Effective angle of attack is used to calculate quasi-steady lift using Eq. 2.15. Circulation is com-

puted at the center of each element from calculated lift, L using following expression.

Γ(y0) =
L(y0)

ρV∞
(2.20)
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For the first iteration, suitable values of circulation based on elliptical lift distribution are assumed

and circulation is updated from lift calculated at each iteration until convergence is obtained. Cir-

culation update law is given below

Γnew = Γold +D(Γnew − Γold) (2.21)

Where, D is an update parameter and suitably chosen for proper convergence (0.05 in present

simulations).

2.2.1.4 Shed Wake

Cyclic pitching of rotor blade causes instantaneous changes in bound circulation which in-turn

causes generation of shed-wake along blade span. To capture effect of shed wake, an unsteady

model based on Theodorsen's approach has been developed [14]. Theodorsen's function has been

originally developed to calculate circulatory lift produced by sinusoidal variation of angle of attack

and pitch angle. Due to inclusion of virtual camber and its nonlinear behavior, the oscillatory part

of the lift on a cycloidal rotor blade contains not just the first harmonic, rather it shows high

frequency components with varying phase delays. To handle this, an automated function has been

developed that would perform Fourier series decomposition of oscillatory part of lift (due to shed

wake) and compute corresponding frequency and Theodorsen's function to generate unsteady lift.

Fourier decomposition of quasi-steady lift coefficient can be expressed as following.

CLquasi_steady =
a0

2
+

n∑
i=1

an cos iΩt+ bn cos iΩt (2.22)

First harmonic of quasi-steady lift coefficient CLquasi_steady is Ω and corresponding reduced fre-

quency is kf = Ωc
2V

. Theodorsen’s function corresponding to higher harmonics are computed to

calculate unsteady lift coefficient (Eq. 2.23).

Clunsteady =
a0

2
+

n∑
i=1

(an cos iΩt+ bn cos iΩt) ∗ C(ikf ) (2.23)

54



Figure 2.7: Formation of large leading-edge vortex from PIV measurements at pitch amplitude =
45° and azimuth = 90°.

In the above equation, C(ikf ) = F (ikf ) + jG(ikf ) is Theodorsen’s function corresponding to

reduced frequency k = ikf , where i varies from 1 to n.

2.2.1.5 Leading-Edge Vortex

High amplitude pitching of rotor blade creates strong leading-edge vortex on cycloidal rotor,

as shown by some of the on-going in-house experimental studies [103]. Figure 2.7 shows PIV

measured flow field showing large leading-edge vortex formation. Leading-edge vortex delays

flow separation on rotor blade which significantly improves lift performance of rotor at high pitch

angles enabling rotor to operate even at 45° pitch amplitudes. Polhamus leading-edge-suction

analogy [104, 105] is applied to model leading-edge vortex. Additional lift (vortex lift) due to

leading-edge vortex and additional drag due to leading-edge separation are modeled using this

suction analogy.

CLLE = CLWLE
(cos2 α + η sin2 α) +Kv cosα sin2 α (2.24)

CDLE = CLWLE
sinα cosα(1− ηLE) +Kv sin3 α (2.25)

In the above equations, CLLE and CDLE are lift and drag coefficient with leading edge suction

and CLWLE
and CDWLE

are lift and drag coefficient without leading edge suction. Kv is non-
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dimensional coefficient related to additional vortex lift generated by leading edge vortex. ηLE

represents percentage of leading edge suction. ηLE = 1 means no leading edge suction and ηLE =

0 means complete leading edge suction.

2.2.1.6 Force Computation

Once lift and drag coefficients, CL and CD, are computed, lift and drag force in blade co-

ordinate system is obtained using lift, L = 1
2
ρ V 2 S CL and drag, D = 1

2
ρ V 2 S CD. Forces

in blade co-ordinate are transformed into inertial co-ordinate using proper transformation matri-

ces. To calculate time-averaged rotor thrust, blade force is multiplied with solidity, σ = Nb c
2πR

and

averaged over one revolution.

2.2.1.7 Hover Inflow Model

Previously in the analysis of cycloidal rotors and vertical axis wind turbines, Single Streamtube

inflow or Double Multiple Streamtube (D-MS) models have been mostly used [98]. For Single

Streamtube model, the inflow is considered uniform along the azimuth and inflow at top and bottom

halves of the blade is assumed to be same. Therefore, no blade interaction or wake effect is

considered after the flow passes through the upper-half. This assumption is not physical. On the

other hand, for D-MS model, there is azimuthal variation in inflow magnitude, however, inflow

direction is assumed to be radial to blade path in the upper half in the hover state, which is also not

physically realistic.

In the present aerodynamic model (schematic shown in Fig. 2.8), the proposed inflow model

(modified D-MS model) relaxes these assumptions. In this model, it is assumed that various

streamlines interacts with the rotor blade twice, upstream and downstream, with different inflow

velocity magnitude and direction. Two adjacent streamlines form a streamtube. Unlike D-MS

model, this modified model calculates the inflow direction based on resultant force direction on

the blade at that particular azimuthal location (Eq. 2.26). The underlying reasoning behind this

approach is that at a local azimuthal location, whatever aerodynamic force the rotor blade expe-

riences, it exerts same force to the nearby fluid in the opposite direction. When the rotor blade
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Figure 2.8: Schematic of inflow model.

starts rotating, it would accelerate nearby fluid opposite to the direction of resultant force blade is

experiencing (Fig. 2.9).

γu = π − φ− tan−1

(
D

L

)
(2.26)

In Eq. 2.26, γu is inflow angle at upstream locations, φ is the angle between local tangent and

resultant flow velocity with respect to rotor blade (Fig. 2.9). Once the inflow direction is calculated

based on above approach, actuator surface theory and mass and momentum conservation laws

were applied to determine magnitude of inflow velocity at upstream (Vu) and downstream (Vd).

The wake velocity of completely expanded flow after interacting with upstream blade is denoted

as Vuwake and wake velocity after interacting with downstream blade is denoted as Vdwake . Using

actuator surface theory, inflow velocities can be expressed as Eq. 2.27 and Eq. 2.28.

Vu(s) =
1

2
(V∞ + Vuwake(s)) (2.27)
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Figure 2.9: Computation of Inflow Direction.

Vd(s) =
1

2
(Vw(s) + Vuwake(s)) (2.28)

In the above equation, s denotes position in the rotor disc arc and thus it is basically a function

of azimuth. In the present context, subscript ‘u’ stands for upstream and subscript ‘d’ stands for

downstream. Force exerted by fluid on the rotor blade on upstream (Fu) and downstream (Fd) can

be expressed as Eq. 2.29 and Eq. 2.30, respectively.

Fu(s) = ṁ (V∞ − Vuwake(s)) (2.29)

Fd(s) = ṁ (Vuwake(s)− Vw(s)) (2.30)

Where, ṁ is the mass flow rate. Using continuity theory, above equations can be rewritten as Eq.

2.31 and Eq. 2.32.

Fu(s) = ρVuA sin γu (V∞ − Vuwake(s)) (2.31)

Fd(s) = ρVdA sin γd (Vuwake(s)− Vw(s)) (2.32)
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By comparing Eq. 2.27 and Eq. 2.31, upstream inflow velocity (Vu) and upstream wake velocity

(Vuwake) can be obtained (Eq. 2.33 and Eq. 2.34).

Vu(s) =
V∞
2

+

√
V 2
∞
4
− fu(s)

2ρ sin γu(s)
(2.33)

Vuwake(s) = V∞ −
fu(s)

ρVu(s) sin γu(s)
(2.34)

In the above equations, f is force per unit area along the direction of flow (fu = Fu/A and

fd = Fd/A). In the similar procedure, downstream inflow velocity (Vd) and downstream wake

velocity (Vuwake) can be obtained (Eq. 2.35 and Eq. 2.36) by comparing Eq. 2.28 and Eq. 2.32.

Vd(s) =
Vuwake(s)

2
+

√
Vuwake(s)

2

4
− fd(s)

2ρ sin γd(s)
(2.35)

Vdwake(s) = Vuwake(s)−
fd(s)

ρVd(s) sin γd(s)
(2.36)

Once, the inflow is updated using above equations (Eq. 2.33-2.36), aerodynamic forces are cal-

culated based on new inflow and circulation. These steps are repeated until both circulation and

inflow are converged.

2.2.2 Experimental Validation: Hover Aerodynamic Model

Due to the dearth of experimental data in the present literature on time-history of aerodynamic

forces on cycloidal rotor blade, in-house experiments were carried out and the present aerodynamic

model is validated with the results obtained from these experiments.

2.2.2.1 Experimental Setup

For model validation, a test setup (Fig. 2.10) is developed where a single bladed cycloidal

rotor is tested inside a water tank at a Reynolds number of around 18,000. Forces and moments are

measured using a miniature 6-component force balance at the blade root. A 12-channel slip ring

is used to transfer the signals from the force balance in the rotating frame to the data acquisition
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Figure 2.10: Single-bladed cycloidal rotor test rig in water tank.

equipment in the stationary frame. The blade pitching is controlled using an analog servo, which

allows us to prescribe specific pitching kinematics for a test. The experiments are first conducted

in air which provide the inertial forces; then the same experiments are repeated in water. The pure

aerodynamic forces are obtained by subtracting the inertial forces from the force measurements

made in water.

2.2.2.2 Hover Validation Results

Dynamic pitching experiments are conducted with a single bladed cycloidal rotor at 40 rpm.

rotor blade has chord of 2 inches and span of 12 inches and pitched at quarter chord location.

Radius of cycloidal rotor is 3.43 inches. Figures 2.11 and 2.12, respectively, show the comparison

between measured forces and predictions from the present aerodynamic model. The figures show

the variation of radial and tangential force coefficients as a function of blade azimuthal location

over a range of pitch amplitudes (20° to 45°). The results show overall reasonable correlation

between the present aerodynamic model prediction and test data. It is also interesting to see both
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(a) Pitch Amplitude 20°.
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(b) Pitch Amplitude 25°.
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(c) Pitch Amplitude 30°.
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(d) Pitch Amplitude 35°.
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(e) Pitch Amplitude 40°.
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(f) Pitch Amplitude 45°.

Figure 2.11: Radial force coefficient as a function of azimuth (Experiment vs. Analysis).
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(a) Pitch Amplitude 20°.

0 90 180 270 360
−0.8

−0.6

−0.4

−0.2

0

0.2

Azimuth (deg)

T
a
n
g
e
n
ti
a
l 
F

o
rc

e
 C

o
e
ff
ic

ie
n
t

 

 

Experiment

Analysis

(b) Pitch Amplitude 25°.
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(c) Pitch Amplitude 30°.
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(d) Pitch Amplitude 35°.

0 90 180 270 360
−1.5

−1

−0.5

0

0.5

Azimuth (deg)

T
a
n
g
e
n
ti
a
l 
F

o
rc

e
 C

o
e
ff
ic

ie
n
t

 

 

(e) Pitch Amplitude 40°.
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(f) Pitch Amplitude 45°.

Figure 2.12: Tangential force coefficient as a function of azimuth (Experiment vs. Analysis).
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from the experiment and analysis that the blades are producing higher radial and tangential forces

at the lower half (ψ = 180°− 360°) than the upper half (ψ = 0°− 180°). The reason for this will

be explained in the discussion section.

2.2.3 Discussion: Physics of Force Production in Hover

Once the aerodynamic model is validated with in-house experimental data, it is used to inves-

tigate physics behind thrust production of a cycloidal rotor. In the following subsections details of

various phenomena are discussed in depth.

2.2.3.1 Cause and Effect of Dynamic Virtual Camber

As shown by Eq. 2.16, virtual camber manifests as additional lift on the blade. Figure 2.13a

shows variation of additional lift coefficient (CL0) due to virtual camber along azimuthal location

for a cycloidal rotor blade rotating at 40 rpm with 35° pitch amplitude. Figures 2.13b and 2.13c

show corresponding prescribed pitch and pitch rate (measured values), respectively, as blade goes

through various azimuthal locations. It shows effects of curvilinear flow, pitch, pitch-rate and

inflow on virtual camber and therefore, on additional lift. From Fig. 2.13a it can be observed

that virtual camber effect due to only curvilinear geometry (magenta line) is static in nature and it

always causes negative virtual camber leading to negative CL0 . While pitch, pitch rate and inflow

creates time-dependency of virtual camber effect making it a dynamic virtual camber. Figure 2.13a

reveals that pitch and especially pitch rate creates a very dominant and characteristic virtual camber

effect unlike inflow distribution which is more random in nature.

Figure 2.13a shows that blade pitch decreases negative virtual camber and opposes the effects

of curvilinear geometry. The effect of blade pitch is more prominent near 90° and 270° azimuth

since pitch angle reaches at its peak at those locations (Fig. 2.13b). It is also observed that pitch

rate creates positive virtual camber effect near 0° azimuth, which almost nullifies the effects of

curvilinear geometry; while at 180°, it creates negative virtual camber which together with curvi-

linear effect produces even larger negative lift. For this reason, as seen from Fig. 2.11, the net

radial force coefficient is near zero at 0° azimuth, while it is much below zero at 180° azimuth,
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(a) Variation of additional lift coefficient due to virtual camber.

(b) Measured blade pitch along azimuth.

(c) Measured pitch rate along azimuth.

Figure 2.13: Effect of Virtual Camber due to various phenomena.
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(a) Pitch rate effect at 0° azimuth.

(b) Pitch rate effect at 180° azimuth.

Figure 2.14: Effect of Pitch rate on dynamic virtual camber at two extreme azimuthal locations (0°
and 180°).

although pitch angle is near 0° at both azimuth locations (Fig. 2.13b). Pitch rate effect on virtual

camber is dominant at 0° and 180° azimuth because pitch rate reaches its peak near these two

locations (Fig. 2.13c). Figure 2.14 shows graphically how pitch rate is creating opposite virtual

camber effects at different azimuth locations.

This phenomenon is clearly observed in Fig. 2.15. Figure 2.15 shows the actual chord-line of

cycloidal rotor blade and virtual chord-line due to virtual camber effect along different azimuth

locations. It can be observed again at 0° azimuth, virtual camber is minimum producing almost

negligible negative lift while at 180° azimuth it has huge negative virtual camber producing large

negative lift. Moreover, viewing from inertial reference frame, it can be observed from Fig. 2.15

that there is significant negative virtual camber when the blade operates in the upper half, which

causes flow to separate very early. While, in the entire lower half, it creates a positive virtual cam-

ber, which delays flow separation and blade can attain much higher lift at these locations. More-
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Figure 2.15: Virtual chord-line due to virtual camber effect along azimuth.

over, the virtual incidence decreases the effective angle of attack in the upper half and increases

the angle of attack in the lower half. These are the reasons why the magnitude of maximum radial

and tangential force coefficients in the downstream half (ψ = 180°− 360°) is significantly higher

than that at upstream (ψ = 0°− 180°)) (Fig. 2.11 and 2.12).

2.2.3.2 Reason for Net Time-Averaged Side Forces

Another non-intuitive physical phenomenon observed during the operation of cycloidal rotor

is asymmetric or non-negative net side force even with a symmetric prescribed pitch without any

phase offset (Ty force shown in Fig. 1.3. From the kinematics shown in Fig. 1.3, intuitively, one

may expect all the side forces due to drag and lift to cancel each other producing only a net vertical
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Figure 2.16: Comparison time-averaged forces at different pitch amplitude.

force; however, in reality, experiments have shown the presence of a dominating side force (Figs.

2.16 and 2.17). Figure 2.16 shows experimental comparison of time-averaged forces over a range

of pitch amplitude. The results show existence of a non-zero time-averaged side force (Ty), even

though significantly smaller in magnitude than the vertical force (Tz).

To investigate this phenomenon, instantaneous vertical and side forces are plotted and com-

pared in Fig. 2.17. Figures 2.16 and 2.17, show overall reasonable correlation between results

obtained from experiments and analysis. Instantaneous vertical and side forces are obtained using

following expressions.

FZ = FR sinψ − FT cosψ (2.37)

FY = −FR cosψ − FT sinψ (2.38)

In the above equations, FR is the radial force, FT is tangential force, FZ is vertical force and

FY is side force at azimuth location, ψ. This phenomenon can be explained by dynamic virtual

camber effect due to pitch rate and flow curvature. It can be observed from Eq. 2.38 that side

force comes from two sources, radial and tangential forces. Radial force is mostly dominated by

lift while tangential force is mostly dominated by drag. The relation between lift - drag and radial
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(a) Variation of instantaneous vertical forces along
azimuth.
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(b) Variation of instantaneous side forces along az-
imuth.

Figure 2.17: Comparison instantaneous vertical and side forces along azimuth (Pitch Amplitude:
45°).

- tangential force are given by Eq. 2.39 and 2.40, where α is angle of attack.

FR = L cosα +D sinα (2.39)

FT = L sinα−D cosα (2.40)

Therefore, it should be possible to trace back the source of side force to lift and drag on the

blade. The validated aerodynamic model is used to investigate underlying reason behind non-zero

time-averaged side force. In Fig. 2.18, side force due to lift and drag are plotted separately to

distinguish their effects.

Figure 2.18a shows the contribution of instantaneous blade lift to side force. Note that, in this

case, the X-axis is plotted differently to separate the left and right halves. It can be observed from

Fig. 2.18a that if no virtual camber is considered (dotted blue line), then side force due to lift

is perfectly symmetric between left and right halves. Side force from left half of cycloidal rotor

cycle (ψ = 90° − 270°) cancels side force of right half (ψ = 270° − 450° or 90°), as seen from

Fig. 1.3. The dashed red line in figure 2.18a shows that once the virtual camber due to curvilinear

flow geometry and pitch angle is incorporated, the side force is still symmetric between the left
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(a) Variation of side force due to lift along azimuth.

(b) Variation of side force due to drag along azimuth.

Figure 2.18: Effect of virtual camber on asymmetry of side force (Pitch Amplitude: 45°).
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and right halves producing almost zero net side force. This is because virtual camber due to flow

curvature introduces asymmetry between top half (upstream) and bottom half (downstream) of the

cycle; the symmetry between right and left halves remains intact. But once the virtual camber due

to pitch rate is introduced (solid black line in Fig. 2.18a), it causes significant asymmetry in side

force between left and right halves causing non-zero net side force. This is because the rotor blade

goes through pitch up motion during right half of cycle (ψ = 270° − 450° or 90°) while it goes

through pitch down motion during left side of cycle (ψ = 90°−270°). As explained in the previous

section, the pitch up motion causes positive virtual camber effect while pitch down motion creates

negative camber effect. Due to this two opposite virtual camber effects in left and right halves, the

side force gets unbalanced. This phenomenon becomes evident from Fig. 2.15 where it is observed

that cycloidal rotor motion creates mild negative virtual camber on right side while it creates large

negative camber on left side.

From Fig. 1.3, one may expect the drag at the top half (upstream) to be canceled by the drag

at the bottom half (downstream). Figure 2.18b (contribution of instantaneous blade lift to side

force) shows similar results when no virtual camber is included (the dotted blue line is antisym-

metric between upper and lower halves). However, once the virtual camber due to flow curvature

is included, the dashed red line shows asymmetry in side force due to drag. It shows decrease in

magnitude of side force in the upstream half while increase in magnitude of side force in the down-

stream half. This is because flow curvature creates almost equal negative camber everywhere. In

the upstream half, geometric pitch is positive and thus, negative virtual camber decreases effective

angle of attack which in turn causes decrease in magnitude of drag and corresponding side force.

While in downstream half, the geometric pitch is negative and negative virtual camber creates

larger negative effective angle of attack (observed from rotating blade frame) which causes larger

magnitude of drag and corresponding side force. This phenomenon causes imbalance in side force

due to drag.
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2.3 Aerodynamic Model in Forward Flight

In this section, the development of a lower order aerodynamic model of cycloidal rotor in

forward flight condition, is discussed. The aerodynamics associated with cycloidal rotor is char-

acterized by nonlinear dynamic virtual camber, non-uniform complex inflow characteristics and

several unsteady phenomena such as dynamic stall, leading-edge vortices, near and shed wakes.

Forward flight velocity changes chord-wise variation of incident flow velocity angle on rotor blade

by changing curvilinear flow geometry and it manifests as dynamic nonlinear virtual camber effect

very different from what was previously observed in hover and is discussed in detail in later sec-

tions. The major effect of forward speed on cycloidal rotor performance is due to changes in inflow

speed. During forward flight, a phase shift is introduced in the cyclic blade pitch of cycloidal rotor

to tilt the thrust vector forward, resulting in a vertical force and horizontal propulsive force (Fig.

2b). The phasing in cycloidal rotor blade kinematics along with forward velocity direction and

magnitude affects the complex non-uniform inflow characteristics associated with cycloidal rotor.

To capture that, an inflow model based on double-multiple-streamtube (D-MS) is developed. The

developed model is systematically validated with in-house experimental data. Once validated, it is

utilized to understand several phenomena behind the force production of cycloidal rotor in forward

flight.

2.3.1 Modeling Methodology: Forward Flight Model

A flow chart of the proposed aerodynamic model is shown in the Fig. 2.19. The first step

in this procedure is to calculate flow velocity. Flow velocity is computed from forward speed

and inflow velocity. Blade velocity is obtained from prescribed kinematics. These two information

together gives resultant air velocity with respect to blade at each chord-wise and span-wise section.

In the next step, chord-wise variation of incident angle of flow velocity, which is manifested as

virtual camber, is modeled to obtain virtual shape of the airfoil. In the next-step quasi-steady lift

is obtained from airfoil virtual shape while utilizing a modified thin-airfoil theory. A non-linear

lifting line model is implemented to capture 3D effects of finite blade. Leading-edge vortex is
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Figure 2.19: Flow chart of Aerodynamic Model in Forward Flight.

modeled using Polhamus leading-edge suction analogy. An unsteady model based on Theodorsen’s

approach is developed to capture the effects of shed wake. All these models lead to unsteady forces

produced by cycloidal rotor blade. In the next step, inflow velocity is updated from aerodynamic

forces using a tilting double multiple streamtube model. The above cycle is repeated until both

inflow and circulation converges.

2.3.1.1 Virtual Camber

Flow over a cycloidal rotor is not purely curvilinear in a forward flight motion since the in-

coming flow due to forward speed changes curvilinear geometry of flow associated with cycloidal

rotor. This in turn effects virtual incidence and virtual camber which is very different from what

was previously observed in hover. Figure 2.20 shows all the velocity components on cycloidal

rotor blade at a local chord position. In case of a forward flight motion, flow velocity (~V∞) due to

forward flight can be expressed as following.
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Figure 2.20: Velocity components at a local chord location on cycloidal rotor blade.
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~V∞ = V∞Ŷ (2.41)

In the above equation, V∞ is forward flight speed of vehicle and Ŷ is unit direction in inertial

frame as defined in Fig. 2b. For a more general case, where the vehicle is in steady forward flight

and steady climbing motion at angle α∞ (Fig. 2.20), the flow velocity ~V∞ can be expressed as

following.

~V∞ = V∞ cosα∞Ŷ − V∞ sinα∞Ẑ (2.42)

To express ~V∞ in airfoil co-ordinates a series of co-ordination transformation is required. At first,

by transforming co-ordinate from inertial to rotating frame (Fig. 2b), ~V∞ can be rewritten as Eq.

2.43.

~V∞ = V∞ sin(ψ − α∞)ŶR − V∞ cos(ψ − α∞)ẐR (2.43)

Now, performing co-ordinate transformation from rotating frame to airfoil frame, that is rotating

and pitching with airfoil, ~V∞ is expressed as following.

~V∞ = V∞ sin(ψ − α∞ − θ)̂i− V∞ cos(ψ − α∞ − θ)ĵ (2.44)

Considering all the velocity components (Fig. 2.20), the net relative flow velocity (~V ) with

respect to rotor blade can be expressed as following equation.

~V (x) = ~Vp(x) + ~Vi(x) + ~V∞ − ~Vb(x) (2.45)

In the above equation, ~Vp(x) is flow velocity relative to rotor blade due to blade pitching motion,

~Vi(x) is inflow velocity and ~Vb(x) is blade velocity. Expressions of ~Vb(x), ~Vp(x) and ~Vi(x) are

obtained from Eq. 2.2, 2.3 and 2.4, respectively. Substituting all the velocity components, the net

flow velocity relative to rotor blade is expressed as following.
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~V (x) = −UT î− UP ĵ (2.46)

Where,

UT = ΩR cos θ + vi sin(β + θ)− V∞ sin(ψ − α∞ − θ) (2.47)

UP = x(Ω− θ̇)− ΩR sin θ + vi cos(β + θ) + V∞ cos(ψ − α∞ − θ) (2.48)

This information all together gives net flow speed (V (x)) and incident angle of attack (αx(x)) at

each local chord-wise location of the cycloidal rotor blade.

V (x) =
√
U2
T + U2

P (2.49)

αx = − tan−1

(
UP
UT

)
(2.50)

In the above expression, vi is assumed to be zero for the first iteration and updated using inflow

model (modified D-MS model, discussed later) for subsequent iterations. For a cambered airfoil in

straight flow, the local angle of attack varies along chord according to following equation.

αx(x) = θ − dy

dx
(x) (2.51)

By comparing, Eq. 2.50 and Eq. 2.51, expression for virtual camber line of cycloidal rotor blade

is computed.
dy

dx
(x) = θ + tan−1

(
UP
UT

)
(2.52)

2.3.1.2 Force Computation

From the virtual shape of the airfoil, quasi-steady lift coefficient is obtained using modified

thin-airfoil theory. In this step, small angle of attack assumption of thin-airfoil theory is neglected

since cycloidal rotor blade experiences large incident angle of attack due to higher operating pitch

amplitude (∼40°). To capture the 3D effects of finite wing, a non-linear lifting line model is
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incorporated. Leading-edge vortex created by high amplitude pitching motion of cycloidal rotor

blade is modeled using Polhamus leading-edge suction analogy. To capture the effects of shed-

wake, a model based on Theodorsen’s approach is developed. Since quasi-steady lift contains

higher harmonic terms, an automated function is developed that would perform Fourier analysis

of quasi-steady lift and compute corresponding reduced frequency and Theodorsen’s function.

Taking all high frequency components into account, unsteady forces are computed. This force

computation steps are similar to what was discussed for the hover model.

Once lift and drag coefficients, CL and CD, are computed, lift and drag force in blade co-

ordinate system is obtained using lift, L = 1
2
ρ V 2 S CL and drag, D = 1

2
ρ V 2 S CD. Forces in

blade co-ordinate are transformed into inertial co-ordinate using proper transformation matrices to

obtain instantaneous blade force dTi expressed in inertial frame.

2.3.1.3 Inflow Model

Previously in the analysis of cycloidal rotors and vertical axis wind turbines, Single Streamtube

inflow or Double Multiple Streamtube (D-MS) models have been mostly used [Ref. 32]. For Single

Streamtube model, the inflow is considered uniform along the azimuth and inflow at upstream and

downstream halves of the blade is assumed to be same. Therefore, no azimuthal variation in inflow,

nor blade interaction or wake effect is considered after the flow passes through the upstream half.

This assumption is not physical. On the other hand, for D-MS model, there is azimuthal variation

in inflow magnitude, however, inflow direction is assumed to be radial to blade path in the upstream

half in the hovering state, which is also not physically realistic. In the present aerodynamic model

(schematic shown in Fig. 2.21), the proposed inflow model (modified D-MS model) relaxes these

assumptions. In this model, it is assumed that various streamlines interacts with the rotor blade

twice, upstream and downstream, with different inflow velocity magnitude and direction. Wake

velocity is captured by using mass and momentum conservation laws. Also the assumption of

radial inflow direction of traditional D-MS model is relaxed by calculating inflow direction based

on resultant force, which will be discussed later in detail (Fig. 2.22).

In case of forward flight, the thrust vector of cycloidal rotor is tilted forward by introducing
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Figure 2.21: Schematic of inflow model.

a phase-shift in the cyclic blade pitching mechanism (Fig. 2b). For this reason, upstream and

downstream locations in the cycloidal rotor disk area gets changed. In the proposed inflow model,

it is assumed that actuator disk tilts same angle as the phasing and upstream location occurs from

ψ = 0°− θoff to ψ = 180°− θoff (azimuth locations corresponding to 0° pitch angle) as shown in

Fig. 2.21.

Now the first step is to calculate time-averaged forces (dTa) from instantaneous forces (dTi)

obtained through unsteady aerodynamics modeling. If the time-period of cycloidal rotor blade is

TP , and a single blade stays dt time in an infinitesimal area dA (Fig. 2.21) in actuator disk, then

time averaged force produced by the that infinitesimal area on actuator disk can be given by Eq.

2.53.

dTa = dTi
Nbdt

TP
(2.53)
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In the above equation, Nb is total number blades in the rotor. Since, dt = dψ/Ω and TP = 2π/Ω,

Eq. 2.53 can be rewritten as

dTa = dTi
Nbdψ

2π
(2.54)

From rotor geometry, dψ can be expressed as dA/R (Fig. 2.21). Substituting this expression into

Eq. 2.54, following equation is obtained.

dTa = dTi
NbdA

2πR
(2.55)

By performing some mathematical manipulation, above equation can be rewritten as following.

dTa
A

=
dTi
c
σ (2.56)

Where, σ = Nb c/(2πR) is solidity of the rotor. Equation 2.56 denotes that time averaged force

per unit actuator disk area in a particular azimuth location is equal to instantaneous blade force per

unit chord multiplied by solidity. Average force per unit disk area is represented as f = dTa/dA,

which is used to calculate inflow velocity.

One major improvement of proposed inflow model over traditional D-MS model is relaxation

of the assumption of radial inflow direction. Here, inflow direction is calculated based on resultant

force direction on the blade at that particular azimuthal location, where the induced flow due to

thrust production is exactly opposite to the direction of net force generated by blade (Fig. 2.22).

The underlying reasoning behind this approach is that at a local azimuthal location, whatever

aerodynamic force the rotor blade experiences, it exerts same force to the nearby fluid in the exact

opposite direction and thereby accelerating the fluid in the same direction. Figure 2.22 shows

detail schematic of a streamline. Far from the rotor, streamline has the velocity of forward speed

of rotor, ~V∞. Across the upstream blade path, the rotor induces flow velocity (~Viu) exactly opposite

to the net force generated by rotor and net inflow velocity becomes ~Vu = ~Viu + ~V∞. The angle
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Figure 2.22: Schematic of inflow model in upper half.

between total force, f and forward velocity ~V∞ is defined as γu. Using conservation of momentum,

following expression (Eq. 2.57) can be obtained.

fu =
dṁu

dAu
wiu (2.57)

In the above equation, subscript u denotes upstream and wiu is induced wake velocity. Total wake

velocity at upstream, ~Wu can be computed as ~Wu = ~Wiu + ~V∞. Mass flow rate, dṁu can be

expressed as

dṁu = ρdAuUu (2.58)

In the above equation, Uu is upstream flow velocity along actuator disk given by Eq. 2.59.

Uu =
√

(V∞ cos γu + viu)2 + (V∞ sin γu)2 (2.59)

Using conservation of energy and comparing with Eq. 2.57 induced wake velocity can be computed
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(Eq. 2.60).

wiu = 2viu (2.60)

Substituting Eq. 2.58, 2.59 and 2.60 into Eq. 2.57, following expression (Eq. 2.61) is obtained.

fu = 2ρviu

√
v2
iu

+ V 2
∞ + 2viuV∞ cos γu (2.61)

Solving the above nonlinear equation induced flow at upstream, viu can be obtained. A nonlinear

solver based on bisection method is implemented for this purpose. Once the upstream induced

inflow and induced wake velocity is obtained from above equations (Eq. 2.57-2.61), downstream

inflow and wake velocity is obtained using similar approach by applying mass and momentum

conservation laws. Applying conservation of momentum at downstream section of cycloidal rotor,

following expression can be calculated (Eq. 2.62).

fd =
dṁd

dAd
wid (2.62)

In the above equation, wd is induced wake velocity at downstream. Subscript d in Eq. 2.62 denotes

downstream. Mass flow rate, dṁd can be expressed as following.

dṁd = ρdAdUd (2.63)

Here, Ud is downstream flow velocity along actuator disk denoted by Eq. 2.64.

Ud =
√

(wu cos γd + vid)
2 + (wu sin γd)2 (2.64)

In above equation, wu is magnitude of total upstream wake velocity; γd is angle between force,

fd and upstream wake velocity, wu; vid is induced velocity at downstream. Using conservation of

energy and comparing with Eq. 2.62 induced wake velocity at downstream can be computed (Eq.
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2.65).

wid = 2vid (2.65)

Substituting Eq. 2.62, 2.66 and 2.64 into Eq. 2.61, following expression (Eq. 2.66) is obtained.

fd = 2ρvid

√
v2
id

+ w2
u + 2vidwu cos γd (2.66)

Solving the above nonlinear equation, induced velocity at downstream, vid is obtained. Once. the

inflow is updated, aerodynamic forces are calculated based on new inflow and circulation. These

steps are repeated until both circulation and inflow are converged.

2.3.2 Experimental Validation: Forward Flight Aerodynamic Model

In this context, the proposed aerodynamic model is validated with data obtained from in-house

wind tunnel experiments and CFD results published before [Ref. 14]. Figure 2.23 shows compar-

ison of propulsive force, vertical force and total force produced by a 4-bladed cycloidal rotor in

forward flight with a forward speed of 3 m/s over a range of rotational speeds. The cycloidal rotor

blades have span of 6.25 inches, chord of 0.665 inches and radius of 3 inches. Rotor blades are

pitched at mid-chord with 45° pitch amplitude and a 90° phase offset. The analytical results show

good correlation with experimental and CFD results.

Figure 2.24 shows experimental validation of time-averaged forces produced by cycloidal rotor

in forward flight for 50° phase offset in cyclic blade pitching [88]. In this case, cycloidal rotor

rotates at 1000 rpm operating at 9 m/s forward speed (advance ratio = 1.13). The cycloidal rotor

has 3 inches radius, 6.25 inches blade span, 1.95 inches blade chord. Figure 2.24 shows good

correlation with experimental data.

Since experimental data for time history of forces produced by cycloidal rotor blade in forward

flight is not available in literature, analytical model is validated with time-history of forces obtained

from CFD studies [Ref. 14]. Figure 2.25 shows comparison of time-history of propulsive force

and vertical force produced by a 4-bladed cycloidal rotor at an advance ratio of 0.39. The cycloidal

rotor has radius of 3 inches with blades of 2 inches chord and 6.25 inches span. The rotational
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(a) Vertical force validation for different RPM.
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(b) Propulsive force validation for different RPM.
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(c) Net force validation for different RPM.

Figure 2.23: Time-averaged force validation of analytical model with data from experiments and
CFD.
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Figure 2.24: Vertical and Propulsive force validation for 50° phase offset at different pitch ampli-
tude (Analysis vs. Experiment).
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(b) Propulsive Force validation at different az-
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Figure 2.25: Validation of time-history of forces (Analysis vs. CFD).

speed of the cycloidal rotor is 1600 rpm at a pitch amplitude of 35° with 90° phase offset operating

at 5 m/s flow speed. Figure 2.25 shows reasonable correlation with CFD data. Physics behind the

instantaneous propulsive force and vertical force production is discussed in detail in a later section.

2.3.3 Discussion: Physics of Force Production in Forward Flight

Once the aerodynamic model is validated with data obtained from in-house experiments and

CFD results, it was utilized to understand the vertical and propulsive force production on a cy-

cloidal rotor in forward flight.

2.3.3.1 Effects of Dynamic Virtual Camber

The results in previous section (Figs. 2.23-2.24) show that cycloidal rotor is capable to produc-

ing positive vertical force and propulsive force under a forward flight condition by adjusting the

phase offset in cyclic blade pitch kinematics. The analytical model shows that virtual camber and

its nonlinear dynamic behavior plays an important role in force production. Figure 2.26 shows vir-

tual cambered airfoil shape (solid black line) and actual airfoil (red line) of a cycloidal rotor blade

going through same conditions as of Fig. 2.25 i.e. blade chord of 2 inches, radius of 3 inches, blade
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span of 6 inches, rpm of 1600 under 5m/s forward speed (advance ratio = 0.39) and phase offset of

90°. The blue arrows in Fig. 2.26 represents magnitude and direction of relative flow velocity with

respect to blade at corresponding azimuth locations. Observing from inertial point of view, that ro-

tor blade shows negative virtual camber near top of the cycle (90° azimuth), while a positive virtual

camber near the bottom of the cycle (270° azimuth). For this reason, the blade produces downward

force near 90° azimuth while it produces upward force near 270° azimuth. Similar results can be

quantitatively observed from Fig. 2.25a. Moreover, while the blade is at the top half of the cycle

(retreating side), it experiences smaller magnitude of relative velocity since flow speed due to blade

speed (ΩR) is opposed by forward flow speed (V∞), and therefore, the downward force produced

by the blade is smaller in magnitude. At the bottom half (advancing side), rotor blade experiences

higher relative flow speed since flow due to blade speed (ΩR) and forward flow speed (V∞) acts

towards same direction. For that reason, rotor blade produces upward force of higher magnitude

near bottom portion of cycle. In Fig. 2.25a, it can be seen that the magnitude of negative peak of

vertical force near 90° azimuth is much smaller compared to magnitude of positive peak of vertical

force near 270° azimuth. These phenomena leads to net positive vertical force over a cycle.

Observing from rotational frame of view, it can be seen from Fig. 2.26 that the forward flow

speed decreases effective angle of attack near upstream half (right half) of the cycle (0° azimuth).

Although, the rotor blade experiences slight negative camber, it produces small amount of negative

lift (force towards left side or negative propulsive force). On the other hand, rotor blade experi-

ences large positive virtual camber as well as positive angle of attack near left side of cycle (270°

azimuth), so it creates large lift force towards right side and hence a larger positive propulsive

force. Similar trend is also observed from instantaneous propulsive force data of Fig. 2.25b, where

the entire positive propulsive force is produced in the downstream half of the cycle (0° - 270°).

These phenomena lead to net positive propulsive force over a cycle.

2.3.3.2 Effects of Advance Ratio

Advance ratio (µ) of cycloidal rotor is the ratio of free-stream velocity (V∞) and blade speed

(ΩR). In this section effects of advance ratio on inflow characteristics, virtual camber and instan-
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Figure 2.26: Virtual chord-line due to virtual camber effect along azimuth.
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taneous blade forces are thoroughly investigated by utilizing the aerodynamic model.

Effects of advance ratio on inflow characteristic are observed in Fig. 2.27 which shows net

inflow distribution along azimuth for two different advance ratios of 0.39 and 0.78. For this study,

similar configuration of cycloidal rotor discussed in Fig. 2.25 and Fig. 2.26 is used except the

advanced ratio is doubled from 0.39 to 0.78 (Fig. 16b) by decreasing rotor rpm from 1600 to 800

at a constant forward speed of 5 m/s. It can be observed from Fig. 2.27a that inflow speed increases

from upstream to downstream. This is because induced inflow at upstream is being accelerated and

the wake hits the downstream half at higher speed. Fig. 2.27b shows that inflow characteristics

become almost uniform. This is because as the advance ratio increases, induced inflow decreases

compared to forward speed and effects of induced inflow and induced wake becomes insignificant

and the flow speed due to forward motion dominates.

Effects of advance ratio on instantaneous propulsive force, vertical force and virtual camber

are investigated in Fig. 2.28. For this study, similar configuration of cycloidal rotor discussed in

Fig. 2.25 and Fig. 2.26 is used. Changes in advance ratio is obtained by varying forward speed of

cycloidal rotor from 3 m/s to 9 m/s. Figure 2.28a shows that as advance ratio of rotor is increased

the additional lift due to virtual camber increases, so higher advance ratio creates more positive

cambered effect. Figure 2.28b shows significant decrease in effective angle of attack between 0° to

90° azimuth and 270° to 360° azimuth while there is slight increase between 90° to 270° azimuth.

These changes occur due to changes in flow geometry as advance ratio is increased.

As the advance ratio increases, significant variations in vertical force occurs near 0° and 90°

azimuth (Fig. 2.28c) and significance variations in propulsive force occurs near 0° and 180° az-

imuth (Fig. 2.28d). The magnitude of negative peak of vertical force near 90° azimuth decreases

(Fig. 2.28c) due to two main reasons:

1. Decrease in the magnitude of flow speed |ΩR-V∞| around 90° azimuth (retreating side) as

advance ratio goes towards 1.

2. Decrease in magnitude of negative peak of additional lift due to virtual camber (CL0) around

90° azimuth.
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Figure 2.27: Net inflow distribution along azimuth.
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Figure 2.28: Effects of advance ratio on time-history of different parameters.
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Figure 2.29: Local force generation at 0° azimuth.

Fig. 2.29 shows local lift production near 0° azimuth and it explains why vertical force in-

creases and propulsive force decreases at 0° azimuth as the advance ratio is increased. In Fig.

2.29, red line corresponds to higher advance ratio (High µ) and blue line corresponds to lower

advance ratio (Low µ). It can be observed that as the advanced ratio increases, effective angle of

attack experienced by rotor blade decreases (observing from rotational frame), and rotor blade pro-

duces more negative lift. This increase in magnitude of negative lift causes decrease in propulsive

force. Moreover, increase in magnitude of negative lift and its tilting towards upward direction

(Fig. 2.29) causes increase in vertical force.

Figure 2.30 shows reason behind decreased propulsive force near 180° azimuth as advanced

ratio is increased. Increased forward flow speed increases effective angle of attack and a virtually

negatively cambered airfoil produce negative lift in smaller magnitude which causes decrease in

propulsive thrust.

2.3.3.3 Effects of Direction of Rotation

In all the previous cases, cycloidal rotor is rotating in back ward direction with respect to

forward speed (blades moving away from the flow or retreating side at top half of the trajectory).
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Figure 2.30: Local force generation at 180° azimuth.

Figure 2.31: Cycloidal rotor kinematics (forward spin vs. back spin, with 90° phase offset in
forward flight).
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Figure 2.32: Cycloidal rotor force comparison: forward spin vs. backward spin

Figure 2.31 shows the definition of both forward and backward spin with respect to forward flight

direction. Figure 2.32 shows comparison of instantaneous vertical and propulsive force produced

by a cycloidal rotor in forward spin vs. backward spin. For this comparison, cycloidal rotor with

same configuration as in Fig. 2.25 is considered. Fig. 2.32a shows cycloidal rotor produces exact

mirror image of the vertical force in forward spin (blue dashed line) as in back spin (red solid

line) which results in a net downward vertical force. For this case, time-averaged vertical force

produced by cycloidal rotor is 0.74 N for backward spin and -0.74 N for forward spin. Figure

2.32b shows cycloidal rotor produces exactly same propulsive force in forward spin (blue dashed

line) as in backward spin (red solid line). In this case, time-averaged propulsive force by cycloidal

rotor for both backward spin and forward spin is 0.95 N. It shows that it is crucial for cycloidal

rotor to have a backward spin with respect to forward flight direction in order to generate a net

positive vertically upward force to balance the weight of the aircraft.

2.4 Free Wake Model

In the previous sections, lower order aerodynamics model of cycloidal rotor is developed. Al-

though the above mentioned lower order model is computationally inexpensive and capable of

predicting rotor performance with sufficient accuracy, it cannot capture the complex flow-field of
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cycloidal rotor which is characterized by strong leading-edge vortex formation, nonlinear dynamic

virtual camber effects, shed wake and blade-wake interactions. Specifically due to complex blade

vortex interaction, trajectory of induced flow and trailing vortices becomes highly unpredictable

which makes it impossible for a lower order model to capture the wake geometry. For this rea-

son, a high-fidelity model of cycloidal rotor based on free-wake is developed to further investigate

aerodynamics of cycloidal rotor in more detail. In this procedure, various trailing vortices from

the rotor blade are modeled and these vortices are convected using local inflow velocity induced

by all the vortices. Using Biot-Savart law, the instantaneous induced inflow velocity at each blade

location is calculated unlike lower order model, where time-averaged inflow velocity is considered.

The developed free-wake model is systematically validated with in-house experimental data and

compared with the predictions of the lower order model.

Figure 2.33: Schematic of free-wake model.

2.4.1 Modeling Methodology

A schematic of the proposed model is shown in Fig. 2.33. In the first step an uniform inflow

solution is obtained. In the next step, wake geometry is prescribed assuming wakes are convected
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with uniform inflow velocity. Bound circulation is computed from blade sectional loads obtained

from uniform inflow solutions. Strength of individual trailing vortex filaments are computed from

bound circulation. In the final step, wake convection is carried out while converging wake geom-

etry and circulations together. Here induced velocity on blade and wake positions are calculated

using Biot-Savart Law. Wakes are convected with this induced velocity and at the same time,

circulations are updated. This procedure is continued in a iterative manner until convergence is

obtained.

2.4.1.1 Uniform Inflow Solution

Here, similar methodology described in lower order model is implemented except for uniform

inflow instead of double multiple streamtube (D-MS), for simplicity. This procedure is mainly due

to define prescribed wake model since no other prescribed wake model of cycloidal rotor exists in

literature. During this step, initially inflow is assumed to be zero. Based on prescribed kinematics,

blade velocity is obtained. Blade velocity and inflow velocity together gives relative air velocity

with respect to blade which in-turn provides sectional incident angle of attack on cycloidal rotor

blade. Now, the chord-wise variation of incident angle is manifested as virtual camber as discussed

before. Virtual shape of airfoil is obtained from virtual camber model. Quasi-steady lift is obtained

from virtual airfoil shape. In the next step, lower order models of near wake, shed wake and

leading-vortex are implemented to compute unsteady forces. Uniform inflow velocity across the

cycloidal rotor is obtained from unsteady forces using following equations.

~Vui = −
(
vui sin(βui)Ŷ + vui cos(βui)Ẑ

)
(2.67)

In the above equation, vui is the uniform velocity which acts exactly opposite to the direction of

force (F ) produced by cycloidal rotor and computed using following formula.

vui =

√
F

2ρA
(2.68)

95



Figure 2.34: Wake structure.

In Eq. 2.67, βui denotes the angle between resultant force and vertical direction and is computed

using following formula.

βui = tan−1

(
Fy
Fz

)
(2.69)

In the above equation, Fz and Fy are cycle-averaged net aerodynamic forces produced by cycloidal

rotor in vertical (along Ẑ) and horizontal direction (along Ŷ ), respectively. Based on the new

inflow, blade loads are updated and the above cycle is repeated until both the inflow and circulation

converges.

2.4.1.2 Prescribed Wake Model

There exists no prescribed wake model of cycloidal rotor in present literature. Due to that

reason, uniform inflow solutions are utilized to develop prescribed wake model. The wake model

consists of near wake and far wake region (Fig. 2.34). There exists multiple trailing vortices at near

wake and only two trailing vortices at far wake which are basically tip vortices. Moreover, there

exists shed wake along the span of the blade which is generated and shed due to cyclic pitching of

rotor blade. In the initial step, all the wakes are assumed to be convected by the uniform inflow
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velocity. The displaced distance (~s) of a wake is computed using following expression.

~s = t~Vui =
ψw
Ω
~Vui (2.70)

In the above equation, ψw is wake-age and Ω is angular velocity of cycloidal rotor. The wake gets

displaced to exactly the direction of inflow. Next step is to compute circulations. Using Kutta-

Joukowski theorem, bound circulation (Γb) of the blade is given as following.

Γb =
L

ρV dy
(2.71)

In the above equation, L is lift produced by a section of cycloidal rotor blade, V is local flow

velocity with respect to blade and dy denotes span-wise length of blade section. Here, L and V

are obtained from uniform inflow solution. The strength of trailing vortices (Γt) are obtained fro

difference in bound circulations in two adjacent blade sections.

Γt(i, ψ̄) = Γb(i, ψ̄)− Γb(i− 1, ψ̄) (2.72)

Where, i=1 to N+1. Here, N is number of blade elemental sections. Γb(0, :) and Γb(N + 1, :)

denotes zero circulation since they correspond to area outside of blade section on both sides of

span. In Eq. 2.73, ψ̄ denotes the azimuth where trailing vortex started. Now the bound circulation

changes continuously due to cyclic pitching of cycloidal rotor blade. Changes in bound circulation

creates shed wake across blade span. Strength of this shed wake (Γs) is obtained from temporal

changes of bound circulation.

Γs(i, ψ̄) = Γb(i, ψ̄)− Γb(i, ψ̄ + dψ̄) (2.73)
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2.4.1.3 Wake Convection

Once the prescribed wake model is developed, the wakes are convected in a time-marching

manner. At first induced velocity due to all vortex filaments is calculated at blade positions and at

each vortex locations using Biot-Savart Law (Eq. 2.75).

~Vi =
Γv
4π

d~l × ~r
|~r|3

(2.74)

In the above equation, ~Vi is induced velocity at a particular point due to a vortex segment of length

d~l and strength Γv. ~r denotes position of the point (where induced velocity is calculated) relative

to midpoint of the vortex segment. Important thing to notice here is that a single vortex filament

would have multiple segments with different vortex strength. This is because bound circulation is

changing continuously and strength of the trailing vortices would also change continuously. Each

vortex segment consists of two node on which induced velocities are computed. The vortex nodes

are convected using following formula.

d~s = ~Vi
dψ

Ω
(2.75)

On the other hand, induced velocity is computed on blade elements at each time step and blade

forces are updated. During this step, bound circulation is also updated based on updated blade

force. This time-marching scheme is continued until wake shape and circulations converge all

together.

2.4.2 Experimental Validation

The developed free-wake model is validated with in-house experimental data and compared

with the predictions of the lower order model. For the experimental purpose, a cycloidal rotor with

with 5.5 inch chord, 11 inch radius and 22 inch span is used. Experiments are carried out over a

range of pitch amplitudes and blade numbers. Figure 2.35 shows experimental validation of net

thrust predicted by free-wake model and lower-order D-MS model (double multiple streamtube).
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Figure 2.36 shows similar experimental validation of time averaged power predicted by free-wake

and D-MS model. Figures 2.35 and 2.36 shows that performance predictions of both the free-wake

and D-MS model correlate well with experiments. Although, the free-wake model gives slight

better prediction compared with D-MS model for most of the cases.

2.5 Conclusion

The main objective of this section was to develop an aerodynamic model of cycloidal rotor

for different flight conditions (i.e. hover, forward flight) so that it could be utilized for prelimi-

nary design and optimization of next generation cycloidal rotors. Towards this, aerodynamics of

a cycloidal rotor is investigated thoroughly and various underlying physical phenomena such as

dynamic virtual camber, non-uniform inflow, effects of near and shed wake, leading edge vortices

are rigorously modeled. All these detail modeling helped the aerodynamic model to systematically

validate with not only time averaged forces, but also time-history of aerodynamic forces obtained

from in-house experiments. The validated model is utilized for understanding physics behind the

force production of cycloidal rotor. Key conclusions from this section is listed below.

2.5.1 Concluding Remarks: Hover Study

1. Chord-wise variation of incident velocity angle on cycloidal propeller blade is manifested

as virtual camber/incidence effect. Virtual camber and incidence depend on curvilinear flow

geometry, pitch angle, pitch-rate and inflow distribution. Considering all these effects, a

generalized methodology is developed to model virtual camber.

2. Curvilinear geometry causes a static negative virtual camber at all azimuth locations while

pitch, pitch rate and inflow distribution cause cyclic variation of virtual camber with blade

azimuthal location making it a dynamic virtual camber. A positive blade pitch-rate (nose-up

pitch) creates positive virtual camber, while a negative pitch-rate (nose-down pitch) creates

negative virtual camber.

3. Virtual camber caused by pitch rate creates asymmetry in side force due to blade lift between

the right and the left halves. However, the virtual camber resulting from flow curvature
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(c) Pitch Amplitude = 25°, Number of blades =4.
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(d) Pitch Amplitude = 30°, Number of blades =2.
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Figure 2.35: Validation of time-averaged net force (experiment vs. free-wake vs. D-MS model).
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Figure 2.36: Validation of time-averaged power (experiment vs. free-wake vs. D-MS model).
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creates asymmetry in side force between upper and lower halves due to blade drag. These

two types of asymmetries create net time averaged side force on a cycloidal propeller even

with zero phase offset.

4. Due to curvilinear flow, the cycloidal propeller blade experiences reverse or negative virtual

camber in the upper half (upstream half) of its circular trajectory along with decrease in

effective angle of attack due to negative virtual incidence. However, the blade experiences

positive virtual camber (observed from inertial frame) and increase in effective angle of

attack (due to positive virtual incidence) in the entire lower half (downstream half). For

this reason, blades produce larger hydrodynamic forces in the lower or downstream half

as observed from both experiments and analysis. Moreover, unsteady phenomena such as

dynamic stall keep the flow attached to the cycloidal propeller blade up to very high pitch

angles, which results in very high sectional force coefficients.

2.5.2 Concluding Remarks: Forward Flight Study

1. It is shown that forward flight velocity changes curvilinear geometry of flow associated with

cycloidal rotor and this alters chord-wise variation of incident flow velocity angle on rotor

blade. This chord wise variation of incident flow angle is manifested as dynamic nonlinear

virtual camber effect, which is very different from what was observed previously for hover.

2. It is shown that dynamic nature of virtual camber plays an important role in the net verti-

cal force production of cycloidal rotor in forward flight. cycloidal rotor blade experiences

negative virtual camber near top of the cycle generating a negative vertical force and it expe-

riences a positive virtual camber near bottom of the cycle generating a positive vertical force.

Since rotor blade experiences large flow speed at bottom (advancing side) compared to top

(retreating side), the positive vertical force produced at the bottom dominates the negative

vertical force produced at the top. These phenomena lead to net positive vertical force over

a complete cycle.
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3. Cycloidal rotor's capability to produce net propulsive thrust heavily depends on dynamic

virtual camber as well as local angle of attack and direction of local blade forces. cycloidal

rotor blade produces small negative propulsive force in the upstream half of the cycle (near 0°

azimuth) due to small negative virtual camber, but it produces large positive propulsive force

at the downstream half of cycle (near 180° azimuth) due to combination of large positive

virtual camber and positive angle of attack. These phenomena lead to net positive propulsive

force over a complete cycle.

4. It is observed that incoming flow impacts downstream of cycloidal rotor at a higher speed

compared to upstream due to acceleration of induced wake after upstream. As the advance

ratio of the rotor increases, effect of induced flow and induced wake becomes insignificant

and flow becomes more uniform and upstream and downstream flow velocity becomes sim-

ilar.

5. As the advance ratio of cycloidal rotor is increased, net vertical force increases while net

propulsive decreases. Also, the additional lift due to virtual camber increases as advance

ratio of cycloidal rotor is increased.

6. The study shows that it is very important for the cycloidal rotor to have a backwards rotation

with respect to forward speed (blade moving away from the flow in the upper half) in order to

generate positive vertically upward force. A forward spin of cycloidal rotor would generate

same amount of vertical force in opposite direction. However, the direction of propulsive

force is insensitive to the direction of rotation.

Although the above mentioned lower order model is computationally inexpensive and capable

of predicting rotor performance with sufficient accuracy, it can not capture the complex flow-

field of cycloidal rotor with extreme accuracy. Specifically, it is extremely challenging to the

capture the complex inflow distribution, blade vortex interaction and geometry of trailing vortices

using a lower order model. For this reason, a high-fidelity model of cycloidal rotor based on

free-wake is developed to further investigate aerodynamics of cycloidal rotor in more detail. The
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wake model consists of near wake and free wake region which includes trailing vortices and shed

wakes. The prediction of the developed free wake model shows even better correlation with in-

house experimental data compared to that of a lower model. Although, wake model is much more

expensive from computational point of view which limits its application for preliminary design

optimization of cycloidal rotor.
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3. STRUCTURAL MODELING OF CYCLOIDAL ROTOR*

3.1 Overview

Key part of any rotor design is to build light-weight blades which would also reduce weight of

all load bearing components of rotor hub since they have to withstand less blade inertial forces.

On the other hand, considerable blade deflections are inevitable for a light-weight rotor blade.

Moreover, in case of cycloidal rotor, the centrifugal force of rotor blade acts radially causing more

deflections of rotor blade unlike conventional rotor, where centrifugal force acts axially and causes

axial stiffening of the blade. Additionally, the cycloidal rotor blade being constrained in bending at

both ends, develops larger bending curvature which in turn causes large nonlinear deflections. It is

also observed from in-house experiments that cyclodial rotor blades go through very large bending

and torsional deflections which significantly affect rotor performance. In order to accurately obtain

rotor performance, it is crucial to predict blade deflections. Towards this, two independent blade

structural models are developed. For traditional rotorcraft structural analysis, 2nd order nonlinear

Hodges-Dowell [106] models are widely used among scientific community. Initially similar 2nd

order nonlinear model of cycloidal rotor is developed which is capable of predicting blade deflec-

tions of moderately flexible cycloidal rotor blades. Although, it is observed that such a 2nd order

model is unable to capture large deflections of highly flexible cyclodial rotor blades. For this pur-

pose, a fully nonlinear geometrically exact structural model is developed. Detail development of

both the models are discussed in the following subsections [30, 107].

To derive governing equations of motion of cycloidal rotor blade , different co-ordinate frames

and their transformation matrices are required. Such as position vector is generally defined in

mixed co-ordinate and require coordinate transformation. Now, the transformation matrix between

*Part of the data reported in this chapter is reprinted with permission from “Role of Blade Flexibility on Cycloidal
Rotor Hover Performance” by Halder, A., and Benedict, M., Journal of Aircraft, Vol. 55, No. 5, pp. 1773-1791, 2018
[30] and “Understanding the Effect of Blade flexibility on Cycloidal Rotor Performance in Hover” by Halder, A., and
Benedict, M., Proceedings of the American Helicopter Society Specialists’ Meeting on Aeromechanics, 2016 [107].
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deformed blade frame and un-deformed blade frame is very complex. Moreover, computation

of kinetic energy requires higher order temporal derivatives of these coordinate transformation

matrices and computation of potential energy requires higher order spatial derivatives of these

coordinate transformation matrices which become even more complex. To simplify related math-

ematics and decrease computational expense, a 2nd order nonlinear assumption of transformation

matrix between deformed and un-deformed blade frame is taken for traditional Hodges-Dowell

model where nonlinear terms upto 2nd order only are retained while all other higher order nonlin-

ear terms are neglected. These assumptions are not entirely valid for large nonlinear deflections of

cycloidal rotor blades. Specifically highly flexible cycloidal rotor blades go through large nonlinear

torsional deflections arising due to radial and tangential bending curvature. Unlike conventional

rotor blades, which are cantilever in nature, cycloidal rotor blades are fixed in bending at both end

which caused even larger bending curvatures and related nonlinear twist. For all these reasons,

it is essential to develop a fully nonlinear structural model to accurately capture blade deflections

of cycloidal rotor blades. To solve this problem, a geometrically exact beam model is developed

where an exact transformation matrix between deformed and un-deformed blade frame is utilized

for deriving governing equations of motion and all the higher order non-linear terms are retained

in sub-sequence steps.

The governing equations of motion of rotor blades are obtained using generalized Hamilton’s

principle (Eq. 4.1).

δΠ =

∫ t2

t1

(δT − δU + δW )dt = 0 (3.1)

In the above equation, T is kinetic energy,U is potential energy (for cycloidal rotor blades it is

basically strain energy) and W is non-potential energy, generally due to aerodynamic forces. For

only structural model, aerodynamic forces are neglected. First step in deriving governing differ-

ential equation is defining local position vectors of blade element in proper co-ordinate frames.

From there, inertial velocity and inertial acceleration vectors are computed using transport theo-

rem. Once the kinematics is derived up to acceleration level, kinetic energy of the system and its

variation is computed. On the other, to compute variation of strain energy, strain energy is initially
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expressed in terms of stresses and strains. Then, stress-strain relationship used to replace all the

stress terms in strain energy. After that, strain-deflection relationships are used to replace all the

strain terms in strain energy and finally strain energy is expressed in terms of deflections. And fi-

nally substituting kinetic and strain energy in Hamilton’s principle (Eq. 4.1), governing equations

of motion are formulated. Detail formulations of both 2nd order model and geometrically exact

model are given below.

3.2 Reference Frames and Coordinate System

Four reference frames and related coordinate systems are used for the purpose of deriving

governing equations of motion of cyclodial rotor blades. These reference frames are, 1) Inertial

Frame (X, Y, Z), 2) Rotating frame (XR, YR, ZR) which is rotating with cycloidal rotor blade, 3)

Pitching or Un-deformed blade frame (XU , YU , ZU ) which is rotating and pitching with cycloidal

rotor blade, and 4) Deformed blade frame (XD, YD, ZD). Figure 3.1 shows different coordinate

frames. îA, îB and îC are unit vectors in the inertial coordinate system (X, Y, Z); îa, îb and îc

are unit vectors in the rotating coordinate system (XR, YR, ZR); îx, îy and îz are unit vectors in

the un-deformed blade coordinate system, and î1, î2 and î3 are unit vectors in the deformed blade

coordinate system. η and ζ are distance along coordinates parallel and normal to blade chord in

deformed blade coordinate (XD, YD, ZD). These frame of reference were used for formulation

of both 2nd order model and geometrically exact model. Transformation matrix between rotating

frame and inertial frame, TRI , is given by following expression

[TRI ] =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 , (3.2)

Where , 
îa

îb

îc

 = [TRI ]


îA

îB

îC

 (3.3)
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Figure 3.1: Coordinate Frames.

In Eq. 3.2, ψ is azimuth angle. Transformation matrix between un-deformed blade frame and

rotating frame, TUR, is given by following expression

[TUR] =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (3.4)

Where, 
îx

îy

îz

 = [TUR]


îa

îb

îc

 (3.5)
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In Eq. 3.4, θ is pitch angle of the cycloidal rotor blade.Transformation matrix between deformed

and un-deformed blade frame, TDU , is defined as 3.6


î1

î2

î3

 = [TDU ]


îx

îy

îz

 (3.6)

TDU matrix depends on blade deflections. Expression of TDU matrix is different in 2nd order

non-linear model and geometrically exact model. In fact, primary improvement of geometrically

exact model over 2nd order model is exact computation of this TDU matrix which is a complicated

function of deflections and would be discussed in detail later. For 2nd order model, all the higher

order non-linear terms of TDU matrix is neglected which is not entirely valid for large deflections

of cycloidal rotor blade.

3.3 2nd Order Nonlinear Model

2nd order nonlinear model is similar to Hodges-Dowell model which is widely used for con-

ventional rotorcraft analysis. In this context, the cycloidal rotor blade is considered as an isotropic

beam that can go through four types of deflections: 1) axial elongation (u), 2) radial bending (bend-

ing deflection in flap direction - w), 3) tangential bending (bending deflection in lag direction - v),

and 4) axial twist (φ). In Fig. 3.2, definition of these four type of deflections are given.

3.3.1 Computation of Kinetic Energy

First step towards deriving kinetic energy is to define inertial position vector of a blade element.

Generally position vector is defined in mixed coordinate for sake of simplicity and converted to

rotating frame using suitable transformation matrices between different frames. Then, inertial ve-

locity vector is calculated from inertial position vector using transport theorem. Once kinematics is

computed upto velocity level, variation of kinetic energy is calculated using calculus of variations.

Position vector of an arbitrary point on the rotor blade can be expressed in mixed coordinate as
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Figure 3.2: Definition of deflections on a cycloidal rotor blade

given in Eq. 3.7.

~r = Rîc + (x+ u)̂ia + vîb + wîc + ηî2 + ζî3 (3.7)

In the above equation, x is span-wise distance of a blade element in un-deformed blade. Here, the

effect of warping is neglected while calculating kinetic energy. Using mathematical manipulation,

Eq. 3.7 can be expressed as

~r = [(x+ u) v (w +R)]


îa

îb

îc

+ [0 η ζ]


î1

î2

î3

 (3.8)

~r = [(x+ u) v (w +R)]


îa

îb

îc

+ [0 η ζ] [TDU ]


îx

îy

îz

 (3.9)
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~r = [(x+ u) v (w +R)]


îa

îb

îc

+ [0 η ζ] [TDU ] [TUR]


îa

îb

îc

 (3.10)

~r = { [(x+ u) v (w +R)] + [0 η ζ] [TDR] }


îa

îb

îc

 (3.11)

In the above equation, TDR is transformation matrix between deformed blade frame and rotating

frame given by following expression

[TDR] = [TDU ] [TUR] (3.12)


î1

î2

î3

 = [TDR]


îa

îb

îc

 (3.13)

Let’s assume [̂ia îb îc] goes through 3-2-1 Euler rotation by angles ξ1, −β1, θ1 and align with

[̂i1 î2 î3]. Then TDR matrix can be expressed as

[TDR] =


cξ1cβ1 sξ1cβ1 sβ1

−cξ1sβ1sθ1 − sξ1cθ1 −sξ1sβ1sθ1 + cξ1cθ1 cβ1sθ1

−cξ1sβ1cθ1 + sξ1sθ1 −sξ1sβ1cθ1 − cξ1sθ1 cβ1cθ1

 (3.14)

In the above equation, c() = cos () and s() = sin (). The objective is to get TDU matrix in terms of

deflections. For that reason, ξ1, β1 and θ1 are expressed in terms of deflections. Finally TDU matrix
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can be written as [108]

[TDR] =


√

1− v+2 − w+2 v+ w+

−v+cθ1−w
+sθ1

√
1−v+2−w+2

√
1−w+2

−v+w+sθ1+cθ1

√
1−v+2−w+2

√
1−w+2

sθ1
√

1− w+2

−v+sθ1−w
+cθ1

√
1−v+2−w+2

√
1−w+2

−v+w+cθ1−sθ1
√

1−v+2−w+2

√
1−w+2

cθ1
√

1− w+2

 (3.15)

In the above equation, ()+ = δ
δr

(). Here r is curvilinear distance coordinate along the span of

deformed blade elastic axis. In second order non-linear approximation, ()+ = ()′ and
√

1 + d =

1 + d/2 when, deflection d is very small. By taking 2nd order approximation, Eq. 3.15 can be

written as following expression

[TDR] =


1− 0.5v′2 − 0.5w′2 v′ w′

−v′cθ1 − w′sθ1 −v′w′sθ1 + (1− 0.5v′2)cθ1 (1− 0.5w′2)sθ1

v′sθ1 − w′cθ1 −v′w′cθ1 − (1− 0.5v′2)sθ1 (1− 0.5w′2)cθ1

 (3.16)

Where,

θ1 = θ + φ−
∫ x

0

w′v′′dx (3.17)

In above equation, θ is pitch angle of the rotor blade. Substituting value of TDR from Eq. 3.16

into Eq. 3.11 and taking 2nd order non-linear approximation again, inertial position vector of an

arbitrary point on cycloidal rotor blade can be re-written as

~r = x1îa + y1îb + (z1 +R)̂ic (3.18)

Where, x1, y1, and z1 can be expressed as given below.

x1 = x+ u− v′(y1 − v)− w′(z1 − w) (3.19)

y1 = v + η cos (θ + φ)− ζ sin (θ + φ) (3.20)
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z1 = w + η sin (θ + φ) + ζ cos (θ + φ) (3.21)

Inertial velocity vector can be calculated by taking inertial time derivative of inertial position vec-

tor. Using transport theorem, inertial velocity can be expressed as

~V =
∂~r

∂t
+ ~Ω× ~r (3.22)

In above equation, ~Ω = −Ωîa is angular velocity of cycloidal rotor. From Eq. 3.22, inertial

velocity can be written as

~V = ẋ1îa + (ẏ1 + Ω (z1 +R))̂ib + (ż1 − Ω y1)̂ic (3.23)

Variation of velocity vector is computed as

δ~V = δẋ1îa + (δẏ1 + Ω δz1)̂ib + (δż1 − Ω δy1)̂ic (3.24)

~V · δ~V = ẋ1 δẋ1 + (ẏ1 + Ω (z1 +R))(δẏ1 + Ω δz1) + (ż1 − Ω y1)(δż1 − Ω δy1) (3.25)

The expression of variation of kinetic energy is given by

δT =

∫ L

0

∫∫
A

ρ~V · δ~V dA dx (3.26)

According to variational method, above expression of variation of kinetic energy would have to be

integrated in time between two arbitrary time-points t1 and t2. By anticipating integration by parts,

Eq. 3.25 can be written as:

~V · δ~V = −ẍ1 δx1 − (ÿ1 + Ωż1) δy1 + [Ωẏ1 + Ω2(z1 +R)] δz1

+ (−z̈1 + Ωẏ1) δz1 − (Ωż1 − Ω2y1) δy1

= −ẍ1 δx1 − (ÿ1 + 2Ωż1 − Ω2y1) δy1 + [−z̈1 + 2Ωẏ1 + Ω2(z1 +R)] δz1 (3.27)
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In the above procedure during integration by parts, initial and final values (i.e ẋ1 δx1

∣∣t2
t1

) are

taken as zero. Substituting Eq. 3.27 into Eq. 3.26, variation of kinetic energy can be expressed as

following equation.

δT =

∫ L

0

∫∫
A

ρ
(
− ẍ1 δx1 − (ÿ1 + 2Ωż1 − Ω2y1) δy1

+ [−z̈1 + 2Ωẏ1 + Ω2(z1 +R)] δz1

)
dA dx (3.28)

Now to compute above expression, higher order temporal derivatives of x1, y1 and z1 is re-

quired. ẋ1 is obtained by taking time derivative of both sides of Eq. 3.19.

ẋ1 = u̇− v̇′[η cos (θ + φ)− ζ sin (θ + φ)]− ẇ′[η sin (θ + φ) + ζ cos (θ + φ)]

+
(
v′[η sin (θ + φ) + ζ cos (θ + φ)]− w′[η cos (θ + φ)− ζ sin (θ + φ)]

)
(θ̇ + φ̇)

= u̇− [η cos (θ + φ)− ζ sin (θ + φ)][v̇′ + w′(θ̇ + φ̇)]

− [η sin (θ + φ) + ζ cos (θ + φ)][ẇ′ − v′(θ̇ + φ̇)] (3.29)

Now, ẍ1 is computed from above equation.

ẍ1 = ü− [η cos (θ + φ)− ζ sin (θ + φ)][v̈′ + w′(θ̈ + φ̈) + ẇ′(θ̇ + φ̇)]

− [η sin (θ + φ) + ζ cos (θ + φ)][ẅ′ − v′(θ̈ + φ̈)− v̇′(θ̇ + φ̇)]

+ [η sin (θ + φ) + ζ cos (θ + φ)][v̇′(θ̇ + φ̇) + w′(θ̇ + φ̇)2]

− [η cos (θ + φ)− ζ sin (θ + φ)][ẇ′(θ̇ + φ̇)− v′(θ̇ + φ̇)2] (3.30)

After mathematical manipulation above equation can be re-written as following.

ẍ1 = ü− [η cos (θ + φ)− ζ sin (θ + φ)]a1

− [η sin (θ + φ) + ζ cos (θ + φ)]a2 (3.31)
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Where,

a1 = v̈′ + w′(θ̈ + φ̈) + 2ẇ′(θ̇ + φ̇)− v′(θ̇ + φ̇)2 (3.32)

a2 = ẅ′ − v′(θ̈ + φ̈)− 2v̇′(θ̇ + φ̇)− w′(θ̇ + φ̇)2 (3.33)

Now, ẏ1 is obtained by taking time derivative of both sides of Eq. 3.20.

ẏ1 = v̇ − [η sin (θ + φ) + ζ cos (θ + φ)](θ̇ + φ̇) (3.34)

From above equation, ÿ1 is obtained as following.

ÿ1 = v̈ − [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇)2

− [η sin (θ + φ) + ζ cos (θ + φ)](θ̈ + φ̈) (3.35)

Now, ż1 is obtained by taking time derivative of both sides of Eq. 3.21.

ż1 = ẇ + [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇) (3.36)

From above equation, z̈1 is obtained as following.

z̈1 = ẅ − [η sin (θ + φ) + ζ cos (θ + φ)](θ̇ + φ̇)2

+ [η cos (θ + φ)− ζ sin (θ + φ)](θ̈ + φ̈) (3.37)

Moreover, to compute variation of kinetic energy, variation of x1, y1 and z1 is required. δx1 is

obtained from Eq. 3.19.

δx1 = δu− δv′[η cos (θ + φ)− ζ sin (θ + φ)]− δw′[η sin (θ + φ) + ζ cos (θ + φ)]

+
(
v′[η sin (θ + φ) + ζ cos (θ + φ)]− w′[η cos (θ + φ)− ζ sin (θ + φ)]

)
δφ (3.38)
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From Eq. 3.20, δy1 is computed.

δy1 = δv − [η sin (θ + φ) + ζ cos (θ + φ)]δφ (3.39)

From Eq. 3.21, δz1 is computed.

δz1 = δw + [η cos (θ + φ)− ζ sin (θ + φ)]δφ (3.40)

Substituting expressions of x1, y1 and z1 from above equations (Eq. 3.38-3.40) into Eq. 3.28,

variation of kinetic energy can be expressed as following equation.

δT =

∫ L

0

∫∫
A

(
δu(−ρẍ1) + δv′ρẍ1[η cos (θ + φ)− ζ sin (θ + φ)]

+ δw′ρẍ1[η sin (θ + φ) + ζ cos (θ + φ)]

− δφρẍ1v
′[η sin (θ + φ) + ζ cos (θ + φ)]

+ δφρẍ1w
′[η cos (θ + φ)− ζ sin (θ + φ)]

− ρ[z̈1 − 2Ωẏ1 − Ω2(z1 +R)]
(
δw + [η cos (θ + φ)− ζ sin (θ + φ)]δφ

)
− ρ(ÿ1 + 2Ωż1 − Ω2y1)

(
δv − [η sin (θ + φ) + ζ cos (θ + φ)]δφ

))
dA dx

(3.41)

Using mathematical manipulation, above equation is re-written as following.

δT =

∫ L

0

∫∫
A

(
δu(−ρẍ1) + δvρ(−ÿ1 − 2Ωż1 + Ω2y1)

+ δwρ[−z̈1 + 2Ωẏ1 + Ω2(z1 +R)]

+ δv′ρẍ1[η cos (θ + φ)− ζ sin (θ + φ)]

+ δw′ρẍ1[η sin (θ + φ) + ζ cos (θ + φ)] + δφa3

)
dA dx (3.42)
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Where,

a3 = ρ[η sin (θ + φ) + ζ cos (θ + φ)](−ẍ1v
′ + ÿ1 + 2Ωż1 − Ω2y1)

+ ρ[η cos (θ + φ)− ζ sin (θ + φ)][ẍ1w
′ − z̈1 + 2Ωẏ1 + Ω2(z1 +R)] (3.43)

Now, variation of kinetic energy can be expressed as following equation.

δT =

∫ L

0

(Tu δu+ Tv δv + Tw δw + Tv′ δv
′ + Tw′ δw′ + Tφ δφ) dx (3.44)

Where,

Tu = −
∫∫

A

ρẍ1 dA (3.45)

Tv =

∫∫
A

ρ(−ÿ1 − 2Ωż1 + Ω2y1) dA (3.46)

Tw =

∫∫
A

ρ[−z̈1 + 2Ωẏ1 + Ω2(z1 +R)] dA (3.47)

Tv′ =

∫∫
A

ρẍ1[η cos (θ + φ)− ζ sin (θ + φ)] dA (3.48)

Tw′ =

∫∫
A

ρẍ1[η sin (θ + φ) + ζ cos (θ + φ)] dA (3.49)

Tφ =

∫∫
A

a3 dA (3.50)

To compute above integrals following sectional properties are introduced.

∫∫
A

ρ dA = m∫∫
A

ρη dA = meg∫∫
A

ρζ2 dA = mk2
m1∫∫

A

ρη2 dA = mk2
m2∫∫

A

ρ(η2 + ζ2) dA = mk2
m1

+mk2
m2

= mk2
m



(3.51)
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In the above equation, m is blade mass per unit length and eg is position of blade center of gravity

ahead from from blade elastic axis. k2
m1

and k2
m2

are mass moments of inertia per unit blade

along flap and lag directions respectively.These moments of inertia are about elastic axis. The

rotor blade cross-section is assumed to be symmetric about the î2 axis. For that reason, following

integrals become zeros. ∫∫
A

ρζ dA = 0∫∫
A

ρζη dA = 0

 (3.52)

Using the above mentioned sectional properties, the coefficients (Tu, Tv, Tw, Tv′ , Tw′ and Tφ) of

variation of deflections are computed using following approach.

Substituting expression of ẍ1 from Eq. 3.31 into Eq. 3.45, Tu can be expressed as

Tu = −
∫∫

A

ρ
(
ü− [η cos (θ + φ)− ζ sin (θ + φ)]a1

− [η sin (θ + φ) + ζ cos (θ + φ)]a2

)
dA

= −mü+ a1Ia1 + a2Ia2 (3.53)

Where,

Ia1 =

∫∫
A

ρ[η cos (θ + φ)− ζ sin (θ + φ)] dA

= meg cos (θ + φ) (3.54)

Ia2 =

∫∫
A

ρ[η sin (θ + φ) + ζ cos (θ + φ)] dA

= meg sin (θ + φ) (3.55)
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Substituting values of Ia1, Ia2, a1 and a2 into Eq. 3.53, Tu can expressed as following equation.

Tu = −mü+ [v̈′ + w′(θ̈ + φ̈) + 2ẇ′(θ̇ + φ̇)− v′(θ̇ + φ̇)2]meg cos (θ + φ)

+ [ẅ′ − v′(θ̈ + φ̈)− 2v̇′(θ̇ + φ̇)− w′(θ̇ + φ̇)2]meg sin (θ + φ) (3.56)

Substituting expression of ÿ1 (from Eq. 3.35), ż1 (from Eq. 3.36) and y1 (from Eq. 3.20) into Eq.

3.46, Tv can be computed.

Tv =

∫∫
A

(
ρ
(
− v̈ + [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇)2

+ [η sin (θ + φ) + ζ cos (θ + φ)](θ̈ + φ̈)
)

− 2Ωρ
(
ẇ + [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇)

)
+ Ω2ρ

(
v + [η cos (θ + φ)− ζ sin (θ + φ)]

))
dA (3.57)

Using mathematical manipulation, Tv can be re-writtens as

Tv = −mv̈ +meg cos (θ + φ)(θ̇ + φ̇)2 +meg sin (θ + φ)(θ̈ + φ̈)

− 2Ωm[ẇ + eg cos (θ + φ)(θ̇ + φ̇)] +mΩ2[v + eg cos (θ + φ)] (3.58)

Substituting expression of z̈1 (from Eq. 3.37), ẏ1 (from Eq. 3.34) and z1 (from Eq. 3.21) into Eq.

3.47, Tw can be computed.

Tw =

∫∫
A

(
ρ
(
− z̈ + [η sin (θ + φ) + ζ cos (θ + φ)](θ̇ + φ̇)2

− [η cos (θ + φ)− ζ sin (θ + φ)](θ̈ + φ̈)
)

+ 2Ωρ
(
v̇ − [η sin (θ + φ) + ζ cos (θ + φ)]](θ̇ + φ̇)

)
+ Ω2ρ

(
w +R + [η sin (θ + φ) + ζ cos (θ + φ)]

))
dA (3.59)
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Using mathematical manipulation, Tw can be re-writtens as

Tw = −mẅ +meg sin (θ + φ)(θ̇ + φ̇)2 −meg cos (θ + φ)(θ̈ + φ̈)

+ 2Ωm[v̇ − eg sin (θ + φ)(θ̇ + φ̇)] +mΩ2[w +R + eg sin (θ + φ)] (3.60)

Substituting expression of ẍ1 from Eq. 3.31 into Eq. 3.48, Tv′ can be expressed as

Tv′ =

∫∫
A

ρ
(
ü[η cos (θ + φ)− ζ sin (θ + φ)]− [η cos (θ + φ)− ζ sin (θ + φ)]2a1

− [η cos (θ + φ)− ζ sin (θ + φ)][η sin (θ + φ) + ζ cos (θ + φ)]a2

)
dA

= müeg cos (θ + φ) + a1Ia3 + a2Ia4 (3.61)

Where,

Ia3 =

∫∫
A

ρ[η cos (θ + φ)− ζ sin (θ + φ)]2 dA

=

∫∫
A

ρ[η2 cos2 (θ + φ) + ζ2 sin2 (θ + φ)− 2ηζ sin θ + φ cos θ + φ] dA

= mk2
m2

cos2 (θ + φ) +mk2
m1

sin2 (θ + φ) (3.62)

Ia4 =

∫∫
A

ρ[η cos (θ + φ)− ζ sin (θ + φ)][η sin (θ + φ) + ζ cos (θ + φ)] dA

=

∫∫
A

ρ[η2 sin (θ + φ) cos (θ + φ) + ηζ cos2 (θ + φ)− ηζ sin2 (θ + φ)

− ζ2 sin (θ + φ) cos (θ + φ)] dA

= m(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ) (3.63)
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Substituting values of Ia3, Ia4, a1 and a2 into Eq. 3.61, Tv′ can expressed as following equation.

Tv′ = müeg sin (θ + φ) + [v̈′ + w′(θ̈ + φ̈) + 2ẇ′(θ̇ + φ̇)− v′(θ̇ + φ̇)2]

[mk2
m1

sin2 (θ + φ) +mk2
m2

cos2 (θ + φ)]

+ [ẅ′ − v′(θ̈ + φ̈)− 2v̇′(θ̇ + φ̇)− w′(θ̇ + φ̇)2]

[m(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ)] (3.64)

Substituting expression of ẍ1 from Eq. 3.31 into Eq. 3.49, Tw′ can be expressed as

Tw′ =

∫∫
A

ρ
(
ü[η sin (θ + φ) + ζ cos (θ + φ)]− [η sin (θ + φ) + ζ cos (θ + φ)]2a2

− [η cos (θ + φ)− ζ sin (θ + φ)][η sin (θ + φ) + ζ cos (θ + φ)]a1

)
dA

= müeg sin (θ + φ)− a1m(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ)− a2Ia5 (3.65)

Where,

Ia5 =

∫∫
A

ρ[η sin (θ + φ) + ζ cos (θ + φ)]2 dA

=

∫∫
A

ρ[η2 sin2 (θ + φ) + ζ2 cos2 (θ + φ) + 2ηζ sin θ + φ cos θ + φ] dA

= mk2
m2

sin2 (θ + φ) +mk2
m1

cos2 (θ + φ) (3.66)

Substituting values of Ia3, Ia4, a1 and a2 into Eq. 3.65, Tw′ can be re-written as following equation.

Tw′ = müeg sin (θ + φ)− [v̈′ + w′(θ̈ + φ̈) + 2ẇ′(θ̇ + φ̇)− v′(θ̇ + φ̇)2]

[m(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ)]

− [ẅ′ − v′(θ̈ + φ̈)− 2v̇′(θ̇ + φ̇)− w′(θ̇ + φ̇)2]

[mk2
m1

cos2 (θ + φ) +mk2
m2

sin2 (θ + φ)] (3.67)
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Utlizing Eq. 3.50 and 3.43, Tφ can be computed as following procedure.

Tφ =

∫∫
A

(
ρ[η sin (θ + φ) + ζ cos (θ + φ)](−ẍ1v

′ + ÿ1 + 2Ωż1 − Ω2y1)

+ ρ[η cos (θ + φ)− ζ sin (θ + φ)][ẍ1w
′ − z̈1 + 2Ωẏ1 + Ω2(z1 +R)]

)
dA (3.68)

Using mathematical manipulation, above equation can be re-written as

Tφ = −v′Tw′ + w′Tv′ +

∫∫
A

(
ρ[η sin (θ + φ) + ζ cos (θ + φ)]a4

+ ρ[η cos (θ + φ)− ζ sin (θ + φ)]a5

)
dA (3.69)

Where,

a4 = ÿ1 + 2Ωż1 − Ω2y1 (3.70)

a5 = −z̈1 + 2Ωẏ1 + Ω2(z1 +R) (3.71)

Let’s define two more integrals.

Ia6 =

∫∫
A

ρa4[η sin (θ + φ) + ζ cos (θ + φ)] dA (3.72)

Ia7 =

∫∫
A

ρa5[η cos (θ + φ)− ζ sin (θ + φ)] dA (3.73)

So, Tφ can be expressed as

Tφ = −v′Tw′ + w′Tv′ + Ia6 + Ia7 (3.74)

Substituting expression of ÿ1 (from Eq. 3.35), ż1 (from Eq. 3.36) and y1 (from Eq. 3.20) into Eq.
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3.70, a4 can be computed.

a4 = v̈ − [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇)2

− [η sin (θ + φ) + ζ cos (θ + φ)](θ̈ + φ̈)

+ 2Ω
(
ẇ + [η cos (θ + φ)− ζ sin (θ + φ)](θ̇ + φ̇)

)
− Ω2

(
v + [η cos (θ + φ)− ζ sin (θ + φ)]

)
(3.75)

Using mathematical manipulation, a4 can be re-written as

a4 = a4a − a4b[η cos (θ + φ)− ζ sin (θ + φ)]

− [η sin (θ + φ) + ζ cos (θ + φ)](θ̈ + φ̈) (3.76)

Where,

a4a = v̈ + 2Ωẇ − Ω2v (3.77)

a4b = (θ̇ + φ̇)2 − 2Ω(θ̇ + φ̇) + Ω2 (3.78)

Substituting expression of z̈1 (from Eq. 3.37), ẏ1 (from Eq. 3.34) and z1 (from Eq. 3.21) into Eq.

3.71, a5 can be computed.

a5 = −ẅ + [η sin (θ + φ) + ζ cos (θ + φ)](θ̇ + φ̇)2

− [η cos (θ + φ)− ζ sin (θ + φ)](θ̈ + φ̈)

+ 2Ω
(
v̇ − [η sin (θ + φ) + ζ cos (θ + φ)](θ̇ + φ̇)

)
+ Ω2

(
w +R + [η sin (θ + φ) + ζ cos (θ + φ)]

)
(3.79)

123



Using mathematical manipulation, a5 can be re-written as

a5 = a5a + a4b[η sin (θ + φ) + ζ cos (θ + φ)]

− [η cos (θ + φ)− ζ sin (θ + φ)](θ̈ + φ̈) (3.80)

Where,

a5a = −ẅ + 2Ωv̇ + Ω2(w +R) (3.81)

Substituting values of a4 (from Eq. 3.76) and a5 (from Eq. 3.80) into Eq. 3.72, Ia6 can be

computed.

Ia6 =

∫∫
A

ρ
(
a4a[η sin (θ + φ) + ζ cos (θ + φ)]− (θ̈ + φ̈)[η sin (θ + φ) + ζ cos (θ + φ)]2

− a4b[η sin (θ + φ) + ζ cos (θ + φ)][η cos (θ + φ)− ζ sin (θ + φ)]
)
dA

= a4aIa2 − a4bIa4 − (θ̈ + φ̈)Ia5

= a4ameg sin (θ + φ)− a4bm(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ)

− (θ̈ + φ̈)[k2
m1

cos2 (θ + φ) + k2
m2

sin2 (θ + φ)] (3.82)

Substituting values of a4 (from Eq. 3.76) and a5 (from Eq. 3.80) into Eq. 3.73, Ia6 can be

computed.

Ia7 =

∫∫
A

ρ
(
a5a[η cos (θ + φ)− ζ sin (θ + φ)]− (θ̈ + φ̈)[η cos (θ + φ)− ζ sin (θ + φ)]2

+ a4b[η sin (θ + φ) + ζ cos (θ + φ)][η cos (θ + φ)− ζ sin (θ + φ)]
)
dA

= a5aIa1 + a4bIa4 − (θ̈ + φ̈)Ia3

= a5ameg cos (θ + φ) + a4bm(k2
m2
− k2

m1
) sin (θ + φ) cos (θ + φ)

− (θ̈ + φ̈)[k2
m1

sin2 (θ + φ) + k2
m2

cos2 (θ + φ)] (3.83)

Substituting values of Ia6 (from Eq. 3.82) and Ia7 (from Eq. 3.83) into Eq. 3.74, Tφ can be
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computed.

Tφ = −v′Tw′ + w′Tv′ + a4ameg sin (θ + φ) + a5ameg cos (θ + φ)− (θ̈ + φ̈)mk2
m (3.84)

Again, substituting values of a4a (from Eq. 3.77) and a5a (from Eq. 3.81) into above equation, Tφ

is computed.

Tφ = −v′Tw′ + w′Tv′ + (v̈ + 2Ωẇ − Ω2v)meg sin (θ + φ)

+ [−ẅ + 2Ωv̇ + Ω2(w +R)]meg cos (θ + φ)− (θ̈ + φ̈)mk2
m (3.85)

3.3.2 Computation of Strain Energy

For purpose of deriving strain energy, cyclodial rotor blade is assumed to be long slender

isotropic beam. Strain energy can be expressed in terms of stresses and strains. Using stress-strain

relationship, stresses are written in terms of strains. Then, using strain-displacement relationships,

strains can be written in terms of displacements. Finally substituting all these relationships, varia-

tion of strain energy can be expressed in terms of deflections.

Variation of strain energy is computed using following formula (Eq. 3.86).

δU =

∫ L

0

∫∫
A

σijδεij dA dx (3.86)

Using uni-axial stress assumption, following stress components become zero.

σ22 = σ33 = σ23 = 0 (3.87)

Moreover, due to symmetry of stress and strain tensor, following expressions can be written.

σij = σji (3.88)
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εij = εji (3.89)

Substituting Eqs. 3.87 - 3.89 into Eq. 3.86, variation of strain energy can be expressed as following

equation.

δU =

∫ L

0

∫∫
A

(σ11δε11 + 2σ12δε12 + 2σ13δε13) dA dx (3.90)

Now engineering strains are used to compute strain energy. Here, engineering strains can be written

in terms of classical strains.

εxx = ε11 (3.91)

εxη = 2ε12 (3.92)

εxζ = 2ε13 (3.93)

Based on engineering strains and stresses, variation of strain energy can be expressed as following

equation.

δU =

∫ L

0

∫∫
A

(σxxδεxx + σxηδεxη + σxζδεxζ) dA dx (3.94)

The stresses can be expressed in terms of engineering strains as

σxx = Eεxx (3.95)

σxη = Gεxη (3.96)

σxζ = Gεxζ (3.97)

Substituting expression of stresses from Eq. 3.95 - Eq. 3.97, variation of strain energy (Eq. 3.94)

can be re-written as

δU =

∫ L

0

∫∫
A

(Eεxxδεxx +Gεxηδεxη +Gεxζδεxζ) dA dx (3.98)
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Now, strain-displacement relationships are used to get strain energy in terms of displacements.

εxx = u′ +
v′2

2
+
w′2

2
− λTφ′′ + (η2 + ζ2)(θ′φ′ +

φ′2

2
)

− v′′[η cos(θ + φ)− ζ sin(θ + φ)]

− w′′[η sin(θ + φ) + ζ cos(θ + φ)] (3.99)

εxη = −(ζ +
∂λT
δη

)φ′ (3.100)

εxζ = −(η − ∂λT
δζ

)φ′ (3.101)

In the above equations, λT is cross-sectional warping function. Variation of strains can be ex-

pressed as following equations.

δεxx = δu′ + v′δv′ + w′δw′ − λT δφ′′ + (η2 + ζ2)(θ + φ)′δφ′

− δv′′[η cos(θ + φ)− ζ sin(θ + φ)]

− δw′′[η sin(θ + φ) + ζ cos(θ + φ)]

− v′′[−η sin(θ + φ)δφ− ζ cos(θ + φ)δφ]

− w′′[η cos(θ + φ)δφ− ζ sin(θ + φ)δφ] (3.102)

δεxη = −(ζ +
∂λT
δη

)δφ′ (3.103)

δεxζ = −(η − ∂λT
δζ

)δφ′ (3.104)

Substituting expression of variation of strains (Eq. 3.102-3.104) into Eq. 3.98, variation of strain
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energy can be expressed as following equation.

δU =

∫ L

0

∫∫
A

(
δu′(Eεxx) + δv′(v′Eεxx) + δw′(w′Eεxx)− δφ′′(λTEεxx)

− δv′′[η cos(θ + φ)− ζ sin(θ + φ)]Eεxx − δw′′[η sin(θ + φ) + ζ cos(θ + φ)]Eεxx

+ δφ Eεxx
(
v′′[η sin(θ + φ) + ζ cos(θ + φ)]− w′′[η cos(θ + φ)− ζ sin(θ + φ)]

)
+ δφ′[(η2 + ζ2)(θ + φ)′Eεxx − (ζ +

∂λT
δη

)Gεxη − (η − ∂λT
δζ

)Gεxζ ]
)
dA dx

(3.105)

The above expression can be re-written as following equation.

δU =

∫ L

0

(
Uu′ δu

′ + Uv′ δv
′ + Uv′′ δv

′′ + Uw′ δw′ + Uw′′ δw′′ + Uφ δφ+ Uφ′ δφ
′ + Uφ′′ δφ

′′) dx

(3.106)

The coefficients of variation of displacements can be computed as following.

Uu′ =

∫∫
A

Eεxx dA = EIb1 (3.107)

Where,

Ib1 =

∫∫
A

εxx dA (3.108)

Uv′ =

∫∫
A

v′Eεxx dA = v′EIb1 = v′Uu′ (3.109)

Uw′ =

∫∫
A

w′Eεxx dA = w′EIb1 = w′Uu′ (3.110)

Uv′′ = −
∫∫

A

[η cos(θ + φ)− ζ sin(θ + φ)]Eεxx dA

= −E cos(θ + φ)

∫∫
A

ηεxx dA+ E sin(θ + φ)

∫∫
A

ζεxx dA

= −E cos(θ + φ) Ib2 + E sin(θ + φ) Ib3 (3.111)
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Where,

Ib2 =

∫∫
A

ηεxx dA (3.112)

Where,

Ib3 =

∫∫
A

ζεxx dA (3.113)

Uw′′ = −
∫∫

A

[η sin(θ + φ) + ζ cos(θ + φ)]Eεxx dA

= −E sin(θ + φ)

∫∫
A

ηεxx dA− E cos(θ + φ)

∫∫
A

ζεxx dA

= −E sin(θ + φ) Ib2 − E cos(θ + φ) Ib3 (3.114)

Uφ =

∫∫
A

(
v′′[η sin(θ + φ) + ζ cos(θ + φ)]

− w′′[η cos(θ + φ)− ζ sin(θ + φ)]
)
Eεxx dA

=

∫∫
A

(
η[v′′ sin(θ + φ)− w′′ cos(θ + φ)]

+ ζ[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
)
Eεxx dA

= E[v′′ sin(θ + φ)− w′′ cos(θ + φ)]

∫∫
A

ηεxx dA

+ E[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

∫∫
A

ζεxx dA

= E[v′′ sin(θ + φ)− w′′ cos(θ + φ)] Ib2

+ E[v′′ cos(θ + φ) + w′′ sin(θ + φ)] Ib3 (3.115)

Uφ′ =

∫∫
A

[(η2 + ζ2)(θ + φ)′Eεxx − (ζ +
∂λT
δη

)Gεxη − (η − ∂λT
δζ

)Gεxζ ] dA

= (θ + φ)′E

∫∫
A

(η2 + ζ2)εxx dA−G
∫∫

A

[(ζ +
∂λT
δη

)εxη + (η − ∂λT
δζ

)εxζ ] dA

= (θ + φ)′E Ib4 −G Ib5 (3.116)
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Where,

Ib4 =

∫∫
A

(η2 + ζ2)εxx dA (3.117)

Ib5 =

∫∫
A

[(ζ +
∂λT
δη

)εxη + (η − ∂λT
δζ

)εxζ ] dA (3.118)

Uφ′′ = −
∫∫

A

λTEεxx dA = −EIb6 (3.119)

Where,

Ib6 =

∫∫
A

λT εxx dA (3.120)

To compute the integrals Ib1, Ib2, Ib3, Ib4, Ib5 and Ib6 following sectional properties are introduced.

∫∫
A

dA = A∫∫
A

η dA = AeA∫∫
A

ζ2 dA = Iy∫∫
A

η2 dA = Iz∫∫
A

(η2 + ζ2) dA = Ak2
A∫∫

A

(
(ζ +

∂λT
δη

)2 + (η − ∂λT
δζ

)2
)
dA = J∫∫

A

(η2 + ζ2)2 dA = B1∫∫
A

η(η2 + ζ2) dA = B2∫∫
A

λ2
T dA = C1∫∫

A

ζλT dA = C2



(3.121)

In the above equation, A is blade cross-sectional area, eA is tensile axis offset ffrom the blade

elastic axis, Iy is area moment of inertia along flap direction, Iz is area moment of inertia along

lag direction, kA is radius of gyration of blade cross section and J is torsion constant. B1 and B2

are sectional constants that appear due to blade pitch. C1 and C2 are constants related to warping

130



of beam section. Moreover, EC1 is known as warping rigidity. The rotor blade cross-section

is assumed to be symmetric about the î2 axis. Moreover the warping function λT also has anti-

symmetric characteristic. For these two reasons, following integrals become zeros.

∫∫
A

λT dA = 0∫∫
A

ζ dA = 0∫∫
A

λT (η2 + ζ2) dA = 0∫∫
A

ζ(η2 + ζ2) dA = 0∫∫
A

λTη dA = 0∫∫
A

ζη dA = 0



(3.122)

Based on above assumptions and substituting expressions of strains (Eq. 3.99-3.101), following

integrals are computed.

Ib1 =

∫∫
A

εxx dA

= A(u′ +
v′2

2
) +

w′2

2
) + AK2

A(θ′φ′ +
φ′2

2
)

− AeA[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.123)

Ib2 =

∫∫
A

ηεxx dA

=

∫∫
A

(
η(u′ +

v′2

2
) +

w′2

2
)− ηλTφ′′ + η(η2 + ζ2)(θ′φ′ +

φ′2

2
)

− η2[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

+ ζη[v′′ sin(θ + φ)− w′′ cos(θ + φ)]
)
dA

= AeA(u′ +
v′2

2
) +B2(θ′φ′ +

φ′2

2
)− Iz[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.124)
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Ib3 =

∫∫
A

ζεxx dA

=

∫∫
A

(
ζ(u′ +

v′2

2
) +

w′2

2
)− ζλTφ′′ + ζ(η2 + ζ2)(θ′φ′ +

φ′2

2
)

− ζη[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

+ ζ2[v′′ sin(θ + φ)− w′′ cos(θ + φ)]
)
dA

= −C2φ
′′ + Iy[v

′′ sin(θ + φ)− w′′ cos(θ + φ)] (3.125)

Ib4 =

∫∫
A

(η2 + ζ2)εxx dA

=

∫∫
A

(
(η2 + ζ2)(u′ +

v′2

2
) +

w′2

2
)− (η2 + ζ2)λTφ

′′ + (η2 + ζ2)2(θ′φ′ +
φ′2

2
)

− η(η2 + ζ2)[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

+ ζ(η2 + ζ2)[v′′ sin(θ + φ)− w′′ cos(θ + φ)]
)
dA

= Ak2
A(u′ +

v′2

2
) +B1(θ′φ′ +

φ′2

2
)−B2[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.126)

Ib5 =

∫∫
A

[(ζ +
∂λT
∂η

)εxη + (η − ∂λT
∂ζ

)εxζ ] dA

=

∫∫
A

−[(ζ +
∂λT
∂η

)2φ′ + (η − ∂λT
∂ζ

)2φ′] dA

= −Jφ′ (3.127)

Ib6 =

∫∫
A

λT εxx dA

=

∫∫
A

(
λT (u′ +

v′2

2
) +

w′2

2
)− λ2

Tφ
′′ + λT (η2 + ζ2)(θ′φ′ +

φ′2

2
)

− λTη[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

+ λT ζ[v′′ sin(θ + φ)− w′′ cos(θ + φ)]
)
dA

= −C1φ
′′ + C2[v′′ sin(θ + φ)− w′′ cos(θ + φ)] (3.128)
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Now, substituting above expressions of Ib1, Ib1, Ib1, Ib1 and Ib1, the coefficients of variation of

displacements can be computed as follow.

Uu′ = EIb1

= EA(u′ +
v′2

2
) +

w′2

2
) + EAK2

A(θ′φ′ +
φ′2

2
)

− EAeA[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.129)

Uv′ = v′EIb1

= EAv′(u′ +
v′2

2
) +

w′2

2
) + EAK2

Av
′(θ′φ′ +

φ′2

2
)

− EAeAv′[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.130)

Uw′ = w′EIb1

= EAw′(u′ +
v′2

2
) +

w′2

2
) + EAK2

Aw
′(θ′φ′ +

φ′2

2
)

− EAeAw′[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.131)

Uv′′ = −E cos(θ + φ)Ib2 + E sin(θ + φ)Ib3

= −E cos(θ + φ)
(
AeA(u′ +

v′2

2
) +B2(θ′φ′ +

φ′2

2
)

− Iz[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
)

+ E sin(θ + φ)
(
− C2φ

′′ + Iy[v
′′ sin(θ + φ)− w′′ cos(θ + φ)]

)
= v′′(EIz cos2(θ + φ) + EIy sin2(θ + φ))

+ w′′(EIz − EIy) sin(θ + φ) cos(θ + φ)

− cos(θ + φ)[EAeA(u′ +
v′2

2
) + EB2(θ′φ′ +

φ′2

2
)]− EC2 sin(θ + φ)φ′′ (3.132)
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Uw′′ = −E sin(θ + φ)Ib2 − E cos(θ + φ)Ib3

= −E sin(θ + φ)
(
AeA(u′ +

v′2

2
) +B2(θ′φ′ +

φ′2

2
)

− Iz[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
)

− E cos(θ + φ)
(
− C2φ

′′ + Iy[v
′′ sin(θ + φ)− w′′ cos(θ + φ)]

)
= w′′(EIz sin2(θ + φ) + EIy cos2(θ + φ))

+ v′′(EIz − EIy) sin(θ + φ) cos(θ + φ)

− sin(θ + φ)[EAeA(u′ +
v′2

2
) + EB2(θ′φ′ +

φ′2

2
) + EC2 cos(θ + φ)φ′′ (3.133)

Uφ = [v′′ sin(θ + φ)− w′′ cos(θ + φ)]Ib2 + [v′′ cos(θ + φ) + w′′ sin(θ + φ)]Ib3

= [v′′ sin(θ + φ)− w′′ cos(θ + φ)]
(
AeA(u′ +

v′2

2
) +B2(θ′φ′ +

φ′2

2
)

− Iz[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
)

+ E[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
(
− C2φ

′′

+ Iy[v
′′ sin(θ + φ)− w′′ cos(θ + φ)]

)
= EIz[w

′′2 sin(θ + φ) cos(θ + φ)− v′′w′′ sin2(θ + φ) + v′′w′′ cos2(θ + φ)

− v′′2 sin(θ + φ) cos(θ + φ)]

+ EIy[ v
′′2 sin(θ + φ) cos(θ + φ) + v′′w′′ sin2(θ + φ)− v′′w′′ cos2(θ + φ)

− w′′2 sin(θ + φ) cos(θ + φ)]

+ EB2θ
′φ′[v′′ sin(θ + φ)− w′′ cos(θ + φ)]

− EC2φ
′′[v′′ cos(θ + φ) + w′′ sin(θ + φ)]

= (w′′2 − v′′2)(EIz − EIy) sin(θ + φ) cos(θ + φ)

− v′′w′′(EIz − EIy) cos 2(θ + φ)

+ EB2θ
′φ′[v′′ sin(θ + φ)− w′′ cos(θ + φ)]

− EC2φ
′′[v′′ cos(θ + φ) + w′′ sin(θ + φ)] (3.134)
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Uφ′ = (θ + φ)′EIb4 −GIb5

= GJφ′ + (θ + φ)′E
(
Ak2

A(u′ +
v′2

2
) +B1(θ′φ′ +

φ′2

2
)

−B2[v′′ cos(θ + φ) + w′′ sin(θ + φ)]
)

(3.135)

Uφ′′ = −EIb6

= EC1φ
′′ − EC2(v′′ sin(θ + φ)− w′′ cos(θ + φ)) (3.136)

In the above expressions, EIy is bending stiffness along flap direction, EIz is bending stiffness

along lag direction, GJ is torsional stiffness and EA is axial stiffness of the rotor blade.

3.4 Geometrically-exact Beam Model

2nd order approximation of Hodges-Dowell (2nd order nonlinear) type model is valid for only

stiff blades going through moderate deflections. Cyclodial rotor blades go through large centrifugal

force which acts radially creating large bending and torsional deflections unlike conventional rotor,

where centrifugal force acts axially providing axial stiffness. Moreover, nonlinear behaviours

are significant in cycloidal rotor blades due to more constrained geometry (fixed-fixed boundary

condition for bending at both end) which will be discussed later. For this purpose, a fully nonlinear

geometrically exact structural model of cycloidal rotor is developed. In this case also, cycloidal

rotor blade is modeled as an isotropic beam that can go through four types of deflections: 1) axial

elongation (u), 2) normal bending (bending normal to rotor blade - w̄), 3) side bending (v̄), and 4)

axial twist (φ). In Fig. 3.3, definition of these four type of deflections are given.

3.4.1 Computation of Kinetic Energy

First step towards deriving kinetic energy is to define inertial position vector of a blade element.

Here, position vector is defined in mixed coordinate. Then, inertial velocity vector is calculated

from inertial position vector and inertial acceleration vector is calculated from inertial velocity

vector using transport theorem. Kinematics upto acceleration level is computed in mixed coordi-
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Figure 3.3: Definition of deflections on a cycloidal rotor blade

nate frames. Once kinematics is computed upto acceleration level, variation of kinetic energy is

calculated using calculus of variations.

Position vector of an arbitrary point on the rotor blade can be expressed as Eq. 3.137.

~r = Rîc + (x+ u)̂ix + v̄îy + w̄îz + ηî2 + ζî3 (3.137)

~r = [0 0 R]


îa

îb

îc

+ [(x+ u) v̄ w̄]


îx

îy

îz

+ [0 η ζ]


î1

î2

î3

 (3.138)
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Inertial velocity (Eq. 3.139) vector is computed from inertial position vector (Eq. 3.138).

~̇r = [0 0 R]


˙̂ia

˙̂ib

˙̂ic

+ [(x+ u) v̄ w̄]


˙̂ix

˙̂iy

˙̂iz

+ [u̇ ˙̄v ˙̄w]


îx

îy

îz

+ [0 η ζ]


˙̂i1

˙̂i2

˙̂i3

 (3.139)

Inertial acceleration vector (Eq. 3.140) can be computed from inertial velocity vector (Eq. 3.139).

~̈r = [0 0 R]


¨̂ia

¨̂ib

¨̂ic

+ [(x+ u) v̄ w̄]


¨̂ix

¨̂iy

¨̂iz

+ 2[u̇ ˙̄v ˙̄w]


˙̂ix

˙̂iy

˙̂iz

+ [ü ¨̄v ¨̄w]


îx

îy

îz

+ [0 η ζ]


¨̂i1

¨̂i2

¨̂i3


(3.140)

The temporal derivatives of [̂ia, îb, îc]
T are computed using transport theorem (Eq. 3.141)


˙̂ia

˙̂ib

˙̂ic

 = ~ωr ×


îa

îb

îc

 (3.141)

In the above equations, ~ωr = −Ωîa is angular velocity of rotating frame with respect to inertial

frame. Moreover, above equation (Eq. 3.141) can be re-written in the vector form as following

equations (Eq. 3.142-3.144).

[˙̂ia]abc = [P ( [~ωr]abc) ][̂ia]abc (3.142)

[˙̂ib]abc = [P ( [~ωr]abc) ][̂ib]abc (3.143)

[˙̂ic]abc = [P ( [~ωr]abc) ][̂ic]abc (3.144)

In the above equations (Eq. 3.142-3.144), for any arbitrary vector ~X , [ ~X]abc denotes components

of ~X in the rotating coordinate system (XR, YR, ZR) along [̂ia, îb and îc] coordinate axes. Accord-
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ingly,

[̂ia]abc =


1

0

0

 , [̂ib]abc =


0

1

0

 , [̂ic]abc =


0

0

1

 (3.145)

In equations (Eq. 3.142-3.144), function P is defined such that if any arbitrary vector ~X having

components X1, X2, and X3 along any coordinate frame (let’s say in coordinate frame [̂ia, îb and

îc]), then

[P ( [ ~X]abc) ] ≡ [P (X1, X2, X3)] ≡


0 X3 −X2

−X3 0 X1

X2 −X1 0

 = −[P ( [ ~X]abc) ]T (3.146)

Moreover, it can be noticed that if there exist two vectors ~X = X1îa + X2îb + X3îc and ~Y =

Y1îa + Y2îb + Y3îc, then

~X × ~Y = −[ ~X]Tabc[P ( [~Y ]abc) ]


îa

îb

îc



= [~Y ]Tabc[P ( [ ~X]abc) ]


îa

îb

îc

 (3.147)

So,

[ ~X]Tabc[P ( [~Y ]abc) ] = −[~Y ]Tabc[P ( [ ~X]abc) ] (3.148)
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Together, Eq. 3.142-3.144 can be re-written as following Eq. 3.149


˙̂ia

˙̂ib

˙̂ic

 = [P ( [~ωr]abc) ]


îa

îb

îc

 (3.149)

Similarly, [̈̂ia,
¨̂ib,

¨̂ic]
T can be computed by taking time derivative of both side of Eq. 3.141.


¨̂ia

¨̂ib

¨̂ic

 = ~̇ωr ×


îa

îb

îc

+ ~ωr ×


˙̂ia

˙̂ib

˙̂ic

 (3.150)

Using transport theorem, Eq. 3.150 can be re-written as


¨̂ia

¨̂ib

¨̂ic

 = ~̇ωr ×


îa

îb

îc

+ ~ωr × ~ωr ×


îa

îb

îc

 (3.151)


¨̂ia

¨̂ib

¨̂ic

 = [P ( [~̇ωr]abc) ]


îa

îb

îc

+ [P ( [~ωr]abc) ][P ( [~ωr]abc) ]


îa

îb

îc

 (3.152)

On the other hand, temporal derivatives of [̂ia, îb, îc]
T can be computed using transformation

matrix TRI between inertial frame and rotational frame.By taking temporal derivative of both sides

of Eq. 3.3, following expression (Eq. 3.153) is obtained.


˙̂ia

˙̂ib

˙̂ic

 = [ṪRI ]


îA

îB

îC

 (3.153)
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Substituting Eq. 3.3 into Eq. 3.153, following expression is derived.


˙̂ia

˙̂ib

˙̂ic

 = [ṪRI ] [TRI ]
T


îa

îb

îc

 (3.154)

By taking time-derivative of Eq. 3.153, following expression (Eq. 3.155) is obtained.


¨̂ia

¨̂ib

¨̂ic

 = [T̈RI ]


îA

îB

îC

 (3.155)

Substituting Eq. 3.3 into above equation (Eq. 3.155), following expression is derived.


¨̂ia

¨̂ib

¨̂ic

 = [T̈RI ] [TRI ]
T


îa

îb

îc

 (3.156)

Using similar approach, temporal derivatives of [̂ix, îy, îz]
T can be computed.


˙̂ix

˙̂iy

˙̂iz

 = ~ωu ×


îx

îy

îz

 = [P ( [~ωu]xyz) ]


îx

îy

îz

 = [ṪUI ] [TUI ]
T


îx

îy

îz

 (3.157)
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
¨̂ix

¨̂iy

¨̂iz

 = ~̇ωu ×


îx

îy

îz

+ ~ωu × ~ωu ×


îx

îy

îz



= [P ( [~̇ωu]xyz) ]


îx

îy

îz

+ [P ( [~ωr]xyz) ][P ( [~ωr]xyz) ]


îx

îy

îz



= [T̈UI ] [TUI ]
T


îx

îy

îz

 (3.158)

In Eqs. 3.157 and 3.158, ~ωu = (θ̇ − Ω)̂ix is angular velocity of un-deformed pitching blade frame

with respect to inertial frame. TUI is transformation matrix between un-deformed pitching frame

and inertial frame, defined by following equation (Eq. 3.159).


îx

îy

îz

 = [TUI ]


îA

îB

îC

 (3.159)

TUI can be expressed in terms of azimuth angle (ψ = Ω t) and pitch angle (θ) as Eq. 3.160.

[TUI ] = [TUR][TRI ] =


1 0 0

0 cos (ψ − θ) − sin (ψ − θ)

0 sin (ψ − θ) cos (ψ − θ)

 (3.160)

Using similar approach, temporal derivatives of [̂i1, î2, î3]T can be computed.


˙̂i1

˙̂i2

˙̂i3

 = ~ωd ×


î1

î2

î3

 = [P ( [~ωd]123) ]


î1

î2

î3

 = [ṪDI ] [TDI ]
T


î1

î2

î3

 (3.161)
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
¨̂i1

¨̂i2

¨̂i3

 = ~̇ωd ×


î1

î2

î3

+ ~ωd × ~ωd ×


î1

î2

î3



= [P ( [~̇ωd]123) ]


î1

î2

î3

+ [P ( [~ωd]123) ][P ( [~ωd]123) ]


î1

î2

î3



= [T̈DI ] [TDI ]
T


î1

î2

î3

 (3.162)

In Eqs. 3.161 and 3.162, ~ωd is angular velocity of un-deformed pitching blade frame with respect

to inertial frame. TDI is transformation matrix between deformed blade frame and inertial frame,

defined by following equation (Eq. 3.159).


î1

î2

î3

 = [TDI ]


îA

îB

îC

 (3.163)

[TUI ] = [TDU ][TUR][TRI ] (3.164)

TDU is transformation between deformed and un-deformed matrix and is a non-linear function

of deflections. The main improvement of the geometrically exact model is exact computation of

TDU matrix which is given below (Eq. 3.165-3.173). TDU depends upon deflections u, v, w, φ and

their spatial derivatives. To formulate TDU , Euler angle approach is taken where each Euler angle

rotation is defined in terms of deflections. Detail computation of TDU and its spatial derivative is

carried out by Pai [108]. Using similar approach, temporal derivatives of TDU is being calculated.

TDU(1, 1) =
1 + u′ − v̄k3 + w̄k2

1 + e
(3.165)
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TDU(1, 2) =
v̄′ + uk3 − w̄k1

1 + e
(3.166)

TDU(1, 3) =
w̄′ − uk2 + v̄k1

1 + e
(3.167)

TDU(2, 1) = − cosφTDU(1, 2)− sinφTDU(1, 3) (3.168)

TDU(2, 2) = cosφ

(
TDU(1, 1) +

TDU(1, 3)2

1 + TDU(1, 1)

)
− sinφ

TDU(1, 2)TDU(1, 3)

1 + TDU(1, 1)
(3.169)

TDU(2, 3) = sinφ

(
TDU(1, 1) +

TDU(1, 2)2

1 + TDU(1, 1)

)
− cosφ

TDU(1, 2)TDU(1, 3)

1 + TDU(1, 1)
(3.170)

TDU(3, 1) = sinφTDU(1, 2)− cosφTDU(1, 3) (3.171)

TDU(3, 2) = − sinφ

(
TDU(1, 1) +

TDU(1, 3)2

1 + TDU(1, 1)

)
− cosφ

TDU(1, 2)TDU(1, 3)

1 + TDU(1, 1)
(3.172)

TDU(3, 3) = cosφ

(
TDU(1, 1) +

TDU(1, 2)2

1 + TDU(1, 1)

)
+ sinφ

TDU(1, 2)TDU(1, 3)

1 + TDU(1, 1)
(3.173)

In the above equations, e represents axial strain given by following equation.

e =
√

(1 + u′ − vk3 + wk2)2 + (v′ + uk3 − wk1)2 + (w′ − uk2 + vk1)2 − 1 (3.174)

Now, substituting expression of [̈̂ia,
¨̂ib,

¨̂ic]
T (from Eq. 3.152), [˙̂ix,

˙̂iy,
˙̂iz]

T (from Eq. 3.157), [̈̂ix,
¨̂iy,

¨̂iz]
T

(from Eq. 3.158) and [̈̂i1,
¨̂i2,

¨̂i3]T (from Eq. 3.162) into Eq. 3.140, inertial acceleration of rotor
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blade can be computed.

~̈r = [0 0 R]
(

[P ( [~̇ωr]abc) ] + [P ( [~ωr]abc) ][P ( [~ωr]abc) ]
)

îa

îb

îc



+ [(x+ u) v̄ w̄]
(

[P ( [~̇ωu]xyz) ] + [P ( [~ωu]xyz) ][P ( [~ωu]xyz) ]
)

îx

îy

îz



+ 2[u̇ ˙̄v ˙̄w][P ( [~ωu]xyz) ]


îx

îy

îz

+ [ü ¨̄v ¨̄w]


îx

îy

îz



+ [0 η ζ]
(

[P ( [~̇ωd]123) ] + [P ( [~ωd]123) ][P ( [~ωd]123) ]
)

î1

î2

î3

 (3.175)

Using mathematical manipulation, inertial acceleration vector can be re-wrtieen as following equa-

tion.

~̈r = [Q1]


îa

îb

îc

+ [Q2]


îx

îy

îz

+ [Q3]


î1

î2

î3

 (3.176)

Where,

[Q1] = [0 0 R]
(

[P ( [~̇ωr]abc) ] + [P ( [~ωr]abc) ][P ( [~ωr]abc) ]
)

(3.177)

[Q2] = [ü ¨̄v ¨̄w] + 2[u̇ ˙̄v ˙̄w][P ( [~ωu]xyz) ]

+ [(x+ u) v̄ w̄]
(

[P ( [~̇ωu]xyz) ] + [P ( [~ωu]xyz) ][P ( [~ωu]xyz) ]
)

(3.178)

[Q3] = [0 η ζ]
(

[P ( [~̇ωd]123) ] + [P ( [~ωd]123) ][P ( [~ωd]123) ]
)

(3.179)
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Now, variation of inertial position vector δ~r is computed from Eq. 3.138.

δ~r = [δu δv̄ δw̄]


îx

îy

îz

+ [0 η ζ]


δî1

δî2

δî3

 = δ~r1 + δ~r2 (3.180)

Where,

δ~r1 = [δu δv̄ δw̄]


îx

îy

îz

 = [̂ix îy îz]


δu

δv̄

δw̄

 (3.181)

δ~r2 = [0 η ζ]


δî1

δî2

δî3

 (3.182)

Variation of the unit vectors î1, î2 and î3 are caused by virtual rotations of the deformed blade

coordinate system (XD, YD, ZD). If δθ1, δθ2 and δθ3 are virtual rotation angles with respect to the

axes XD, YD and ZD, respectively, then following equation can be written.


δî1

δî2

δî3

 =


0 δθ3 −δθ2

−δθ3 0 δθ1

δθ2 −δθ1 0



î1

î2

î3

 = [P (δθ1, δθ2, δθ3)]


î1

î2

î3

 (3.183)

Substituting above expression into Eq. 3.182, δ~r2 can be computed as following.

δ~r2 = [0 η ζ][P (δθ1, δθ2, δθ3)]


î1

î2

î3

 (3.184)
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Using properties of function P from Eq. 3.148, δ~r2 can be re-written as following.

δ~r2 = −[0 η ζ][P (̂i1, î2, î3)]


δθ1

δθ2

δθ3



= [̂i1 î2 î3][P (0, η, ζ)]


δθ1

δθ2

δθ3

 (3.185)

The expression of variation of kinetic energy is given by following expression.

δT =

∫ L

0

∫∫
A

ρ~̇r · δ~̇r dA ds (3.186)

In the above equation, ρ is density and A is cross-sectional area of the rotor blade. According to

variational method, above expression of variation of kinetic energy would have to be integrated in

time between two arbitrary time-points t1 and t2. By anticipating integration by parts, Eq. 3.137

can be re-written as:

δT = −
∫ L

0

∫∫
A

ρ~̈r · δ~r dA ds (3.187)

In the above procedure during integration by parts, initial and final values (i.e [~̇r · δr]t2t1 ) are taken

as zero. Substituting value of δ~r from Eq. 3.180, above equation can be re-written as following.

δT = −
∫ L

0

∫∫
A

ρ(~̈r · δ~r1 + ~̈r · δ~r2) dA ds (3.188)

To compute ~̈r · δ~r1, ~̈r is expressed in un-deformed blade pitching coordinate frame (XU , YU , ZU )

since δ~r1 is also expressed in same coordinate frame. Utilizing Eq. 3.5 and 3.6, inertial acceleration
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vector can be computed from Eq. 3.176 using following procedure.

~̈r = [Q1][TUR]T


îx

îy

îz

+ [Q2]


îx

îy

îz

+ [Q3][TDU ]


îx

îy

îz



=
(

[Q1][TUR]T + [Q2] + [Q3][TDU ]
)

îx

îy

îz

 (3.189)

In the above formula, orthogonality of transformation matrix, TUR, ([TUR]−1 = [TUR]T ) is utilized.

Utilizing Eq. 3.189 and 3.181, ~̈r · δ~r1 is computed.

~̈r · δ~r1 =
(

[Q1][TUR]T + [Q2] + [Q3][TDU ]
)

îx

îy

îz

 · [̂ix îy îz]


δu

δv̄

δw̄



=
(

[Q1][TUR]T + [Q2] + [Q3][TDU ]
)

δu

δv̄

δw̄

 (3.190)

To compute ~̈r · δ~r2, ~̈r is expressed in deformed blade coordinate frame (XD, YD, ZD) since δ~r2

is also expressed in same coordinate frame. For this purpose, unit vectors in rotating frame,

[̂ia, îb, îc]
T , are converted into unit vectors in deformed blade frame, [̂i1, î2, î3]T , using suitable

transformation matrices (Eq. 3.5 and 3.6) as discussed below.


î1

î2

î3

 = [TDU ]


îx

îy

îz

 = [TDU ][TUR]


îa

îb

îc

 = [TDR]


îa

îb

îc

 (3.191)
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Where,

[TDR] = [TDU ][TUR] (3.192)

Utilizing Eq. 3.6 and 3.191, inertial acceleration vector, ~̈r, can be computed in deformed blade

coordinate frame (XD, YD, ZD) from Eq. 3.176 using following procedure.

~̈r = [Q1][TDR]T


î1

î2

î3

+ [Q2][TDU ]T


î1

î2

î3

+ [Q3]


î1

î2

î3



=
(

[Q1][TDR]T + [Q2][TDU ]T + [Q3]
)

î1

î2

î3

 (3.193)

In the above formula, orthogonality of transformation matrices, TDR and TDU , ([TDR]−1 = [TDR]T , [TDU ]−1 =

[TDU ]T ) is utilized. Utilizing Eq. 3.193 and 3.181, ~̈r · δ~r2 is computed.

~̈r · δ~r2 =
(

[Q1][TDR]T + [Q2][TDU ]T + [Q3]
)

î1

î2

î3

 · [̂i1 î2 î3][P (0, η, ζ)]


δθ1

δθ2

δθ3



=
(

[Q1][TDR]T + [Q2][TDU ]T + [Q3]
)

[P (0, η, ζ)]


δθ1

δθ2

δθ3

 (3.194)

Substituting expression of ~̈r · δ~r1 (from Eq. 3.190) and ~̈r · δ~r2 (from Eq. 3.194) into Eq. 3.188,
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variation of kinetic energy is computed.

δT = −
∫ L

0

∫∫
A

ρ

((
[Q1][TUR]T + [Q2] + [Q3][TDU ]

)

δu

δv̄

δw̄



+
(

[Q1][TDR]T + [Q2][TDU ]T + [Q3]
)

[P (0, η, ζ)]


δθ1

δθ2

δθ3


)

dA ds (3.195)

Using mathematical manipulation, above expression can be re-written as following equation.

δT = −
∫ L

0

((
[Ic1] + [Ic2]

)

δu

δv̄

δw̄

+
(
[Ic3] + [Ic4]

)

δθ1

δθ2

δθ3


)

ds (3.196)

Where,

[Ic1] =

∫∫
A

ρ
(

[Q1][TUR]T + [Q2]
)
dA (3.197)

[Ic2] =

∫∫
A

ρ[Q3][TDU ] dA (3.198)

[Ic3] =

∫∫
A

ρ
(

[Q1][TDR]T + [Q2][TDU ]T
)

[P (0, η, ζ)] dA (3.199)

[Ic4] =

∫∫
A

ρ[Q3][P (0, η, ζ)] dA (3.200)

To compute above integrals, sectional properties from Eq. 3.51 and 3.52 are utilized. Based on

these sectional properties, following integrals are introduced.

[J1] =

∫∫
A

ρ[P (0, η, ζ)] dA = m[P (0, eg, 0)] (3.201)
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[J2] =

∫∫
A

ρ[P (0, η, ζ)]T [P (0, η, ζ)] dA

=

∫∫
A

ρ

(
(η2 + ζ2) 0 0

0 ζ2 0

0 0 η2


)

dA

= m


k2
m 0 0

0 k2
m1

0

0 0 k2
m2

 (3.202)

Now, [Ic1] is computed from Eq. 3.197.

[Ic1] = m
(

[Q1][TUR]T + [Q2]
)

(3.203)

To compute [Ic2], expression [Q3] from Eq. 3.179 is modified using properties of function P (Eq.

3.148).

[Q3] = −[~̇ωd]T123[P (0, η, ζ)]− [~ωd]T123[P (0, η, ζ)][P ( [~ωd]123) ] (3.204)

Utilizing eq. 3.198 and 3.204,[Ic2] is computed.

[Ic2] = −
∫∫

A

ρ
(

[~̇ωd]T123[P (0, η, ζ)] + [~ωd]T123[P (0, η, ζ)][P ( [~ωd]123) ]
)

[TDU ] dA

= −
(

[~̇ωd]T123[J1] + [~ωd]T123[J1][P ( [~ωd]123) ]
)

[TDU ] (3.205)

From Eq. 3.199, [Ic3] is computed.

[Ic3] =
(

[Q1][TDR]T + [Q2][TDU ]T
)∫∫

A

ρ[P (0, η, ζ)] dA

=
(

[Q1][TDR]T + [Q2][TDU ]T
)

[J1] (3.206)
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Utilizing eq. 3.200 and 3.204,[Ic4] is computed.

[Ic4] =

∫∫
A

ρ
(
− [~̇ωd]T123[P (0, η, ζ)]− [~ωd]T123[P (0, η, ζ)][P ( [~ωd]123) ]

)
[P (0, η, ζ)] dA (3.207)

By simple matrix expansion, it can be shown that

[P ( [~ωd]123[P (0, η, ζ)] = [P (0, η, ζ)][P ( [~ωd]123 (3.208)

Utilizing above equation (Eq. 3.208) and property of function P (Eq. 3.146), Ic4 is computed from

Eq. 3.207.

[Ic4] =

∫∫
A

ρ
(

[~̇ωd]T123[P (0, η, ζ)]T [P (0, η, ζ)]

+ [~ωd]T123[P (0, η, ζ)]T [P (0, η, ζ)][P ( [~ωd]123) ]
)
dA

= [~̇ωd]T123[J2] + [~ωd]T123[J2][P ( [~ωd]123) ] (3.209)

3.4.2 Computation of Strain Energy

For purpose of deriving strain energy, cyclodial rotor blade is assumed to be long slender

isotropic beam. Strain energy can be expressed in terms of stresses and strains. For this purpose

nonlinear Jaumann strain is used instead of linear Cauchy strains used in 2nd order nonlinear model.

This is because Jaumann strains are fully non-linear, objective and the geometric strain measures

and their directions are defined with respect to deformed coordinate system (XD, YD, ZD). In-

clusion of nonlinear Jaumann stress-strain over linear stress strain is another major improvement

of geometrically exact model over 2nd order nonlinear model. The objective here is to express

strain energy in terms of deflections. Using stress-strain relationship, stresses in the strain energy

expression are written in terms of strains. Then, using strain-deflection relationships, strains can

be written in terms of deflections.
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Elastic strain energy can be expressed as following equation.

δU =

∫ L

0

∫∫
A

Jij δBij dA ds (3.210)

In the above equation, J is Jaumann stress tensor and B is Jaumann strain tensor. Using uni-axial

stress assumptions, following stress components are considered zero.

J22 = J33 = J23 = 0 (3.211)

Moreover,

Jij = Jji (3.212)

Bij = Bji (3.213)

Substituting Eqs. 3.211 - 3.213 into Eq. 3.210, variation of strain energy can be expressed as

following equation.

δU =

∫ L

0

∫∫
A

(J11 δB11 + 2J12 δB12 + 2J13 δB13) dA ds (3.214)

Relationship between Jaumann stress and Jaumann strain for an isotropic beam is given by follow-

ing expression. 
J11

J12

J13

 =


E 0 0

0 G 0

0 0 G



B11

2B12

2B13

 (3.215)

Substituting expression of Jauman stress (Eq. 3.215) into expression of strain energy (Eq. 3.214),

following equation is obtained.

δU =

∫∫ L

0

∫∫
A

(EB11 δB11 + 4GB12 δB12 + 4GB13 δB13) dA dS (3.216)

The next objective is to express strain in terms of blade deflections. For that reason, Jaumann
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strains are expressed in terms of deflections as following.

B11 =
∂~U

∂s
.̂i1 (3.217)

2B12 =
∂~U

∂s
.̂i2 +

∂~U

∂η
.̂i1 (3.218)

2B13 =
∂~U

∂s
.̂i3 +

∂~U

∂ζ
.̂i1 (3.219)

In the above equations ~U is the local displacement field. ~U can be expressed as following.

~U = u1î1 + u2î2 + u3î3 (3.220)

Where, u1, u2 and u3 are local strainable displacements with respect to deformed blade coordinate

axes XD, YD and ZD respectively. u1, u2 and u3 can be expressed as following [108].

u1 = u0
1 + ζθ̄2 − ηθ̄3 (3.221)

u2 = u0
2 − ζθ̄1 (3.222)

u3 = u0
3 + ηθ̄1 (3.223)

In the above equations, θ̄i = θi − θi0 for i = 1, 2, 3. θ1, θ1 and θ1 are rotation angles of the blade

cross section with respect to deformed blade coordinate axes XD, YD and ZD respectively. θ10,

θ20 and θ30 are initial rotation angles of the blade cross section with respect to deformed blade

coordinate axes XD, YD and ZD respectively. Since, XD, YD and ZD are the co-ordinate system

attached to deformed blade frame, following terms are zero by definition.

u0
1 = u0

2 = u0
3 = 0 (3.224)

θ1 = θ2 = θ3 = 0 (3.225)
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θ10 = θ20 = θ30 = 0 (3.226)

Although, the variations of all the above variables (u0
i , θi and θi0) are not zero. This is due to the

face that XD, YD and ZD axes are not straight lines because of blade deformation. Axial derivative

of u0
i can be expressed as following.

∂u0
1

∂s
= e (3.227)

∂u0
2

∂s
= 0 (3.228)

∂u0
3

∂s
= 0 (3.229)

In Eq. 3.229, e is axial elongation. Axial derivative of rotation angles (θi) can be expressed as

following.
∂θi
∂s

= ρi (3.230)

In the above equation, ρ1, ρ2 and ρ3 are deformed curvatures of rotor blade with respect to deformed

blade coordinate axes XD, YD and ZD respectively. Axial derivative of initial rotation angles (θi)

can be expressed as following.
∂θi0
∂s

= ki (3.231)

In the above equation, k10, k20 and k30 are deformed curvatures of rotor blade with respect to

deformed blade coordinate axes XD, YD and ZD respectively. Using above formulas, strains can

be expressed in terms of deflections. From Eq. 3.220, axial derivative of local displacement field

can be obtained in the following manner.

∂~U

∂s
=
∂u1

∂s
î1 +

∂u2

∂s
î2 +

∂u3

∂s
î3 (3.232)
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Substituting values of u1, u2 and u3, above equation can be re-written as following.

∂~U

∂s
=

(
∂u0

1

∂s
+ ζ

∂θ̄2

∂s
− η∂θ̄3

∂s

)
î1 +

(
∂u0

2

∂s
− ζ ∂θ̄1

∂s

)
î2 +

(
∂u0

3

∂s
+ η

∂θ̄1

∂s

)
î3

= (e+ ζρ̄2 − ηρ̄3)̂i1 − ζρ̄1î2 + ηρ̄1î3 (3.233)

In the above equations,

ρ̄i = ρi − ki (3.234)

Now, y and z derivative of local displacement field is computed using following procedure.

∂~U

∂η
=
∂u1

∂η
î1 +

∂u2

∂η
î2 +

∂u3

∂η
î3

= −θ̄3î1 + θ̄1î3

= 0 (3.235)

∂~U

∂ζ
=
∂u1

∂ζ
î1 +

∂u2

∂ζ
î2 +

∂u3

∂ζ
î3

= θ̄2î1 − θ̄1î2

= 0 (3.236)

Utilizing derivatives of local displacement field in the above expressions, Jaumann strains are

computed.

B11 =
∂~U

∂s
.̂i1 = e+ ζρ̄2 − ηρ̄3 (3.237)

2B12 =
∂~U

∂s
.̂i2 +

∂~U

∂η
.̂i1 = −ζρ̄1 (3.238)

2B13 =
∂~U

∂s
.̂i3 +

∂~U

∂ζ
.̂i1 = ηρ̄1 (3.239)
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Now variation of Jaumann strains are computed from above equations.

δB11 = δe+ ζδρ̄2 − ηδρ̄3 (3.240)

2δB12 = −ζδρ̄1 (3.241)

2δB13 = ηδρ̄1 (3.242)

Now, k1, k2 and k3 are inital curvatures. So, its variations are zero (δki = 0). Which leads to

δρ̄i = δρi for i = 1, 2 and 3. Substituting expressions of δB11, δB12 and δB13 from above

equations into Eq. 3.216, variation of strain energy can be computed.

δU =

∫ L

0

∫∫
A

[(EB11 (δe+ ζδρ̄2 − ηδρ̄3) + 2GB12(−ζδρ̄1) + 2GB13(ηδρ̄1)] dA dS

=

∫ L

0

∫∫
A

[(EB11)δe+ 2G(ηB13 − ζB12)δρ1 + ζEB11δρ2 − ηEB11δρ2]] dA dS

=

∫ L

0

(F1δe+M1δρ1 +M2δρ2 +M3δρ3) dS (3.243)

Where,

F1 =

∫∫
A

EB11 dA (3.244)

M1 =

∫∫
A

2G(ηB13 − ζB12) dA (3.245)

M2 =

∫∫
A

ζEB11 dA (3.246)

M3 =

∫∫
A

−ηEB11 dA (3.247)
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To compute above integrals, following sectional properties are introduced

∫∫
A

dA = A∫∫
A

η dA = AeA∫∫
A

ζ2 dA = Iy∫∫
A

η2 dA = Iz∫∫
A

(η2 + ζ2) dA = Ak2
A



(3.248)

In the above equation,A is blade cross-sectional area, eA is tensile axis offset from the blade elastic

axis and kA is radius of gyration of blade cross section. Iy and Iz are area moment of inertia along

flap and lag directions respectively. The rotor blade cross-section is assumed to be symmetric

about the î2 axis. For this reason, following integrals become zeros.

∫∫
A

ζ dA = 0∫∫
A

ζη dA = 0

 (3.249)

Using above sectional properties, following integrals are computed.

F1 =

∫∫
A

EB11 dA

=

∫∫
A

E(e+ ζρ̄2 − ηρ̄3) dA

= Ee

∫∫
A

dA+ Eρ̄2

∫∫
A

ζ dA− Eρ̄3

∫∫
A

η dA

= EAe− EAeAρ̄3 (3.250)
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M1 =

∫∫
A

2G(ηB13 − ζB12) dA

=

∫∫
A

G[η.ηρ̄1 − ζ(−ζρ̄1)] dA

= Gρ̄1

∫∫
A

(η2 + ζ2) dA

= GAk2
Aρ̄1 (3.251)

M2 =

∫∫
A

ζEB11 dA

=

∫∫
A

ζE(e+ ζρ̄2 − ηρ̄3) dA

= Ee

∫∫
A

ζ dA+ Eρ̄2

∫∫
A

ζ2 dA− Eρ̄3

∫∫
A

ηζ dA

= EIyρ̄2 (3.252)

M3 = −
∫∫

A

ηEB11 dA

=

∫∫
A

ηE(−e− ζρ̄2 + ηρ̄3) dA

= −Ee
∫∫

A

η dA− Eρ̄2

∫∫
A

ηζ dA+ Eρ̄3

∫∫
A

η2 dA

= −EAeAe+ EIzρ̄3 (3.253)

It can be shown (ref: PI’s book) that if H is a function of s, then

∫ L

0

Hδρ1 ds =

∫ L

0

(−H ′δθ1 −Hρ3δθ2 +Hρ2δθ3)ds+Hδθ1

∣∣L
0

(3.254)

∫ L

0

Hδρ2 ds =

∫ L

0

(−H ′δθ2 −Hρ1δθ3 +Hρ3δθ1)ds+Hδθ2

∣∣L
0

(3.255)

∫ L

0

Hδρ3 ds =

∫ L

0

(−H ′δθ3 −Hρ2δθ1 +Hρ1δθ2)ds+Hδθ3

∣∣L
0

(3.256)

In the above equations, δθ1, δθ2 and δθ3 are virtual rotation angles with respect to the axes XD,
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YD and ZD, respectively. Utilizing above set of equations, variation of strain energy can computed

from Eq. 3.243.

δU =

∫ L

0

(F1δe+Bθ1δθ1 +Bθ2δθ2 +Bθ3δθ3) dS + [M1δθ1 +M2δθ2 +M3δθ3]L0 (3.257)

Where,

Bθ1 = (−M ′
1 +M2ρ3 −M3ρ2) (3.258)

Bθ2 = (−M ′
2 +M3ρ1 −M1ρ3) (3.259)

Bθ3 = (−M ′
3 +M1ρ2 −M2ρ1) (3.260)

The next job is to express e in terms of deflections. it can be shown (ref:PI’s book) that


δe

(1 + e)δθ3

−(1 + e)δθ2

 = [TDU ]


δu′

δv′

δw′

− [TDU ][P (k1, k2, k3)]


δu

δv

δw

 (3.261)

In the above equation, k1, k2 and k3 are initial curvatures with respect to XD, YD and ZD axes,

respectively. Utilizing Eq. 3.261, variation of strain energy can be re-written from Eq. 3.262

δU =

∫ L

0

(
[F1 0 0][TDU ]


δu′

δv′

δw′

− [F1 0 0][TDU ][P (k1, k2, k3)]


δu

δv

δw



+ [Bθ1 Bθ2 Bθ3 ]


δθ1

δθ2

δθ3


)

dS + [M1δθ1 +M2δθ2 +M3δθ3]L0 (3.262)
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3.4.2.1 Solution Methodology

For purely structural problem, virtual work done by external forces (δW ) are zero. Substituting

expressions of variation of kinetic energy (Eq. 3.44 for 2nd order model or Eq. 3.196 for geomet-

rically exact model ) and variation of elastic strain energy (Eq. 3.106 for 2nd order model or Eq.

3.211 for geometrically exact model) and variation of virtual work done by external forces (Eq.

??) into Hamilton’s principle (Eq. 4.1), governing differential equations are obtained (Eq. 3.263).

f(y, ẏ, ÿ) = 0 (3.263)

In Eq. 3.263, y = [u, u′, u′′, v, v′, v′′, w, w′, w′′, φ, φ′]T are bending and torsional deflections and

their spatial derivatives. To solve the above PDE, proper discretization scheme is being applied to

convert differential equation into algebraic equations. To convert spatial derivative into algebraic

forms, PDE in Eq. 3.263 is discretized in space using Finite Element Method (FEM) and the

following equation is obtained (Eq. 3.264).

Mẍ+ Cẋ+Kx = 0 (3.264)

For this purpose, mixed higher order interpolation functions are used to avoid shear locking. Her-

mite interpolation function is used to discretize u, v and w while Lagrange interpolation function

is used to discretize φ. To obtain steady state blade response, above equation (Eq. 3.264) is dis-

cretized in time using Newmark-β method which gives an algebraic equation (Eq. 3.265).

Az = Q (3.265)

The nonlinear systems of equations (Eq. 3.265) is solved numerically to obtain steady state blade

response z. A solution scheme based on Newton-Raphson method is developed in this purpose

to solve nonlinear systems of equations given in Eq. 3.265. Present structural model and the

computational framework has the flexibility to incorporate any necessary boundary conditions at
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Figure 3.4: Comparison of tip normal deflection for a cantilever beam under uniformly distributed
load at Neutral Axis.

both ends. For analysis presented in this paper, the beam is assumed to be fixed in bending at both

end, while torsion boundary condition is assumed to be fixed only at root end and free at other end.

This is because of the pitch link at root end which is assumed to be rigid.

3.5 Validation of Structural Model

Both the developed models, second-order nonlinear beam model and geometrically exact beam

model, have been validated by comparing them with the deflections predicted by Abaqus (a com-

mercial structural analysis software) over a range of cases.

Figure 3.4 shows static validation of a cantilever beam for very high deflections. A distributed

load has been applied at neutral axis of a rectangular Aluminum beam of 20 inch length having

cross section 0.5 inch x 0.125 inch. In Fig. 3.4, Y- axis shows vertical (normal) deflection of beam

tip normalized by the beam span which is plotted against distributed load per unit span in X- axis.

It is clearly observed from the figure that 2nd order nonlinear model starts over-predicting deflec-

tion after 15 − 20%, although geometrically exact beam model can accurately predict very high

deflection. This is due to the reason that nonlinearities in bending are of third order which is not

captured by 2nd order nonlinear model. Figure 3.5 shows static deflections of a similar cantilever
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beam (0.125 inch x 0.5 inch cross section and 20 inch lenght) due to application of distributed load

along the elastic axis. In this case the beam is at an angle of 150 from vertical so that load would

create both radial and tangential bending. Figures 3.5a, 3.5b and 3.5c show comparison of tip

radial bending, tip tangential bending and tip twist, respectively, with increasing distributed verti-

cal load (along X-axis) on the beam. Although no external moment is applied, bending curvature

produces nonlinear moment (Eq. 27) and thus beam undergoes torsional deflection. Prediction of

this nonlinear twist is only as good as the estimation of bending deflections and bending curva-

ture. Second-order nonlinear model can capture this nonlinear twist till bending deflections are not

large. Figure 3.5 shows that radial bending is over-predicted by 2nd order model after 15% (Fig.

3.5a)and tangential bending is over-predicted after 10-12% (Fig. 3.5b) and around the same level

of bending deflection this model starts over-predicting the tip twist (Fig. 3.5c). However, geomet-

rically exact model can accurately predict very high radial and tangential bending deflections (Fig.

3.5a). For that reason, geometrically exact model is capable of accurately predicting nonlinear

twist arising from bending curvatures (Fig. 3.5c). Figures 3.6 and 3.7 show similar comparison

as in the case of Fig. 3.4, with only different boundary conditions. Figure 3.6 shows mid-beam

vertical deflection (Y-axis) of a simply supported beam [same rectangular beam discussed before

under uniformly distributed load (X-axis)]. In this case, mid-beam deflection is over-predicted by

2nd order nonlinear model after the deflection is 6%-7% of beam span. The effect of higher order

nonlinearities become significant at much lower deflections compared to cantilever cases. This

is because of additional constraints at both ends of a cantilever beam which creates larger bend-

ing curvatures leading to nonlinear behavior starting much earlier. Figure 3.7 shows mid-beam

vertical deflection (Y-axis) of a beam fixed/clamped at both ends under the action of uniformly

distributed load (X-axis) at neutral axis. In this case, over-prediction of deflection by 2nd order

nonlinear model starts even earlier, at 0.2% mid-beam vertical deflection. This is because of more

constraints imposed at both ends, which creates more bending curvature. In both Figs. 3.6 and

3.7, geometrically exact beam model accurately predicts the deflections. To calculate even smaller

deflections of beam under these types of boundary conditions, a fully nonlinear model is neces-

162



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
ad

ia
l 

b
en

d
in

g
 (

 n
o
rm

al
iz

ed
 )

Load ( N/m )

 

 

Abaqus

2nd order Nonlinear Model

Geometrically Exact Model

(a) a) Comparison of Tip Radial bending
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(b) b) Comparison of Tip Tangential bending
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(c) c) Comparison of Tip twist

Figure 3.5: Comparison of tip deflection for a cantilever beam with uniform load applied at elastic
axis at 150 angle and with no external moment.
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Figure 3.6: Comparison of Mid-beam normal deflection for a simply supported beam.

sary. Since conventional rotor blades are cantilever in nature, the nonlinearities in those blades

starts dominating at high deflections over 10-15% of blade span. For that reason, a 2nd order

model (Hodges-Dowell model) is good enough for structural analysis for these types of blades of

conventional rotor. On the other hand, cycloidal rotor blades are fixed-fixed in bending at both

ends which creates much more bending curvature due to constraints. These bending curvatures

create more nonlinearity in both bending and twist even at small deflections. For that reason, it is

extremely necessary to develop and utilize a fully nonlinear model to analyze blades of cycloidal

rotor.

3.6 Conclusion

In this chapter, development of structural model of cycloidal rotor is discussed in detail. To-

wards this, two independent blade structural models are developed. For traditional rotorcraft struc-

tural analysis, 2nd order nonlinear Hodges-Dowell [106] models are widely used among scientific

community. Initially similar 2nd order nonlinear model of cycloidal rotor is developed which is

capable of predicting moderate bending and torsional deflections of cycloidal rotor blades. In case

of cycloidal rotor, the blades go through large centrifugal force which causes large nonlinear de-

flections. 2nd order non-linear model can not capture this large bending and torsional deflections
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Figure 3.7: Comparison of Mid-beam normal deflection for a beam with fixed/clamped boundary
condition at both ends.

of rotor blade properly. For this reason, a fully nonlinear geometrically exact beam based struc-

tural model is developed. Both the models are systematically validated with results obtained from

Abaqus, a commonly used software in scientific community. Key conclusions from the structural

analysis are listed below.

1. The 2nd order nonlinear model over-predicts bending deflections. This is because nonlinear-

ities in bending are of third order which is not accurately captured by this 2nd order nonlinear

model. The geometrically exact model can capture large bending deflections accurately.

2. On of the major source of twist of cycloidal rotor blade is nonlinear torsional moment gener-

ated due to bending curvatures. Over-prediction of bending deflections and bending curva-

tures by 2nd order nonlinear model leads to over-prediction of blade twist. On the other hand,

geometrically exact model gives accurate twist prediction since it can also capture bending

curvatures accurately.

3. More constraints on rotor blade creates larger bending curvatures which in turn leads to

more nonlinearities. It is observed that 2nd order nonlinear model is capable of accurately
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predicting deflections until tip bending deflections become 15-20% of blade span, for a can-

tilever blade. While for a simply supported blade, it can give reasonable prediction only

until bending deflection becomes 0.2% of blade span. In case of a cycloidal rotor, blades are

fixed in bending at both end which creates large bending curvatures and thus, nonlinearities

start much earlier. For this reason, it is essential to use a fully nonlinear geometrically exact

model to analyze this types of structure.
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4. VEHICLE RESPONSE MODEL*

4.1 Overview

In this chapter detail development of vehicle response model of a twin cyclocopter is discussed.

Twin-cyclocopter consists of two cycloidal rotors as main thrusters and a conventional horizontal

nose-rotor for pitch-torque balance. The main objective of the vehicle response model is to predict

rotor blade deflections and aerodynamic loads of the complete vehicle for given sets of control

inputs. Vehicle response model consists of an aeroelastic model of cycloidal rotor and an aero-

dynamic model of conventional nose rotor. Development of aerodynamic and structural models

of cycloidal rotors were discussed in previous chapters ( Ch. 2 and Ch. 3). In the next step, an

aeroelastic model of cycloidal rotor would be developed by coupling the unsteady aerodynamic

model with fully nonlinear geometrically exact structural framework. Conventional rotor blades,

on the other hand, being extremely smaller in size, are very stiff and goes through minimal deflec-

tions. For that reason, only an aerodynamic model of conventional rotor is developed and utilized

for present analysis. In this case, it is extremely important to use the conventional rotor as nose

rotor placed in front of vehicle rather than using it as a tail rotor. The detail reasoning behind these

configuration is due to balancing of pitching moments in forward flight and would be discussed in

detail later.

4.2 Aeroelastic Performance of Cycloidal Rotor

Light-weight blades are extremely important for cycloidal rotors since it would also reduce

inertial load on all load bearing components of rotor hub leading to significant decrease of rotor

weight. On the other hand, considerable blade deflections are inevitable for a light-weight rotor

*Part of the data reported in this chapter is reprinted with permission from “Role of Blade Flexibility on Cycloidal
Rotor Hover Performance” by Halder, A., and Benedict, M., Journal of Aircraft, Vol. 55, No. 5, pp. 1773-1791, 2018
[30] and “Understanding the Effect of Blade flexibility on Cycloidal Rotor Performance in Hover” by Halder, A., and
Benedict, M., Proceedings of the American Helicopter Society Specialists’ Meeting on Aeromechanics, 2016 [107].
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Figure 4.1: Cycloidal rotor on 3-component force balance.

blade. It is observed in previous chapter that centrifugal force of cycloidal rotor blade acts in radial

direction, causing more bending and torsional deflections of rotor blade unlike conventional rotor,

where centrifugal force acts axially and causes axial stiffening of the blade. It is also observed

from in-house experiments (Fig. 4.1) that cyclodial rotor blades go through very large bending and

torsional deflections. Previously developed structural model is capable of predicting large deflec-

tions of cycloidal rotor blade. Next step is to investigate the effect of this blade deflections on rotor

aerodynamic performance. Towards this, systematic experiments are conducted with moderately

flexible and highly flexible cycloidal rotors over a wide range of rotational speeds at different pitch

amplitudes. Experiments show significant performance drop as the blade flexibility of cycloidal

rotor is increased. To model this phenomena and further investigate it, an aeroelastic framework

of cycloidal rotor is developed by coupling unsteady aerodynamic model with fully nonlinear ge-

ometrically exact structural model.

4.2.1 Experimental Results

Most of the previous research on cycloidal rotors were conducted using stiff rotor blades to

investigate only the aerodynamic characteristics [cite]. In the present study, systematic experi-

ments have been carried out with moderately and highly flexible rotors to understand the role of

blade flexibility and deformations on the hover performance of cycloidal rotors. Experiments were
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conducted with four bladed cycloidal rotor to investigate performance in terms of thrust, power

requirement and power loading (thrust/power). Aluminum (E = 72 GPa, G = 26.9 GPa) and Del-

rin (a kind of plastic, E = 3.4 GPa, G = 1.34 GPa) blades with different stiffness have been used.

Stiffness was varied by changing the thickness of the blades. All the blades are 1 inch in chord,

6.25 inch in span. Aluminum blades have thickness of 3.2%, 2% and 1.6% of chord. Delrin blades

have thickness of 6.2%, 4.7% and 3.1% of chord.

Blade thickness-
to-chord ratio

EIy (Bending stiffness
in radial direction), N-m2

EIz (Bending stiffness in
tangential direction), N-m2

GJ (Torsional
stiffness), N-m2

3.2% 8.18e-2 80 1.2e-1
2% 2e-2 50 3e-2

1.6% 1e-2 40 1.5e-2

Table 4.1: Bending and torsional stiffness of Aluminum blades

Blade thickness-
to-chord ratio

EIy (Bending stiffness
in radial direction), N-m2

EIz (Bending stiffness in
tangential direction), N-m2

GJ (Torsional
stiffness), N-m2

6.2% 2.88e-2 7.37 4.5e-2
4.7% 1.2e-2 5.53 1.9e-2
3.1% 3.6e-3 3.69 5.7e-3

Table 4.2: Bending and torsional stiffness of Delrin blades

A three-component balance has been designed and built to measure the vertical force, side

force and torque of the rotor. Figure 4.2 shows the test set-up. Torque, vertical and side forces

are measured using load cells. A Hall-effect sensor was used to generate 1/rev signal to measure

rotational speed. Power is obtained from the measured torque and rotational speed.

Figure 4.3 shows comparison of aerodynamic performance in terms of resultant thrust, power

requirement and power loading, respectively, for cycloidal rotor using aluminum blades with vary-
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Figure 4.2: cycloidal rotor on 3-component force balance.

ing stiffness at 350 pitch amplitude. The results clearly show that, total thrust decreases as stiffness

of the blade is decreased, while, interestingly, power requirement increases. Since more flexible

blades draw more power and generate less thrust, the power loading (thrust/power) decreases as

bending and torsional stiffness of the blade is decreased. Figure 4.4 shows comparison of thrust,

power requirement and power loading respectively for Delrin blades with varying stiffness at 350

pitch amplitude. Figure 4.5 shows same comparison for Delrin blades at 300 pitch amplitude.

At both pitch amplitude, as the stiffness of the blade is decreased, net thrust decreases and power

requirement increases resulting in a drop in power loading, similar to what was seen in Aluminum

blades. The effect of flexibility is more significant in this case because Delrin blades are compara-

tively more flexible.

4.2.2 Aeroelastic Modeling

Experiments using flexible cycloidal rotor show significant performance drop as the blade flex-

ibility of cycloidal rotor is increased. To further investigate this phenomenon, an aeroelastic model

of cycloidal rotor is developed by coupling unsteady aerodynamic model of cycloidal rotor with

beam based structural framework. For this purpose, two different structural models are utilized: 1.

2nd order nonlinear model, and 2. fully nonlinear geometrically exact beam model.

The aeroelastic governing equation of motion of cycloidal rotor can be obtained using general-

ized Hamilton’s principle (Eq. 4.1).
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Figure 4.3: Aluminum blades with varying stiffness for 350 pitch amplitude.
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Figure 4.4: Delrin blades with varying stiffness for 350 pitch amplitude.
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Figure 4.5: Delrin blades with varying stiffness for 300 pitch amplitude.
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Figure 4.6: Flow-chart of Aeroelastic Model.

δΠ =

∫ t2

t1

(δT − δU + δW )dt = 0 (4.1)

In the above equation, δT is virtual variation of kinetic energy, δU is virtual variation of strain

energy and δW is virtual work done by the external forces. External aerodynamic forces are ob-

tained from the aerodynamic model where the unknowns are inflow and circulation. Potential

energy is obtained from the structural model where the unknowns are deflections. Kinetic energy

is derived from the motion of the blade elements. Along with the prescribed rigid-body motion,

the inertial position, velocity and acceleration of blade elements depend on deflections and their

spatial and temporal derivatives. Thus, computation of kinetic energy itself depends on blade kine-

matics and the deflections obtained from the structural model. In the coupled aeroelastic model,

all the unknowns (inflow, circulation and deflections) are iterated simultaneously to solve blade

response equation (Eq. 4.1). A flow chart of the aeroelastic model is shown in Fig. 4.6. In

the first iteration deflections are obtained from structural model by considering only the inertial
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forces. These deflections are fed into aerodynamic model, and it calculates aerodynamic forces

and moments based on initial inflow and circulation assumption. In the next iteration inflow and

circulation are updated from aerodynamic forces. Further, the aerodynamic forces are used by

structural model in the next iteration to update deflections. This cycle is repeated until inflow,

circulation and deflections converge all together.

4.2.3 Validation of Aeroelastic Model

Complete aeroelastic model validations for moderately and highly flexible rotors are carried

out in comparison with the results obtained from in-house experiments discussed before. Two

aeroelastic models: 1) 2nd order nonlinear structural beam model combined with unsteady aero-

dynamic model, and 2) Fully nonlinear geometrically exact beam model combined with unsteady

aerodynamic model, are validated in this regard. These validations have been carried out using the

experimental results discussed before from a four bladed cycloidal rotor with both Aluminum and

Delrin blades with varying stiffness over a range of rotational speeds from 800 rpm to 1400 rpm

and for different pitch amplitudes.

Figure 4.7 shows resultant force validation of moderately flexible 3.2% thickness-to-chord

ratio Aluminum blades at pitch amplitudes ranging from 300 to 400. In all the cases, it is observed

that both 2nd order nonlinear model and geometrically exact model can give good prediction of

thrust performance. 3.2% thickness-to-chord ratio Aluminum blades go through moderate bending

and torsional deflections which is captured well by both the models.

Figure 4.8 shows same comparisons for 2% thickness-to-chord ratio aluminum blade which is

even more flexible. Interestingly, in these cases, 2nd order model gives good prediction of thrust at

lower rpm. However, at higher rpms, when the deflections are larger due to larger inertial forces,

this model under-predicts the thrust. As seen before (Figs. 3.4 - 3.7), 2nd order model over-

predicts bending and torsional deflections under higher loads. This over-prediction of torsional

deflection causes under-prediction of net thrust (the reason for this phenomenon will be discussed

in the next section). The geometrically exact model predicts thrust accurately for all the cases.

This is due to the reason that even large deflections are accurately predicted by this model. Figure
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(a) Blade pitch amplitude = 300.
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(b) Blade pitch amplitude = 350.
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(c) Blade pitch amplitude = 400.

Figure 4.7: Resultant force validation of 3.2% thickness/chord Aluminum blade at different pitch
amplitudes.
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(a) Blade pitch amplitude = 300.
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(b) Blade pitch amplitude = 350.
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(c) Blade pitch amplitude = 400.

Figure 4.8: Resultant force validation of 2% thickness/chord Aluminum blade at different pitch
amplitudes.
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4.9 shows thrust comparison for 6.2% thickness-to-chord ratio Delrin blades at different pitch

amplitudes. In all the cases, 2nd order model again under-predicts thrust at higher rpm because

Delrin blade is more flexible. However, thrust prediction of geometrically exact model is quite

satisfactory for all these cases.

Figures 4.10 to 4.12 show net thrust comparison between the prediction of geometrically exact

model and experimental results for extremely flexible rotor blades. Figure 4.10 shows net thrust

comparison of a 1.6% thickness-to-chord ratio Aluminum blades at 400 pitch amplitude. Figure

4.11 shows comparison of 4.7% thickness-to-chord ratio Delrin blades at 300 pitch amplitude and

Figure 4.12 shows comparison of 3.1% thickness-to-chord ratio Delrin blades at 350 pitch am-

plitude. In all these highly flexible rotor cases, geometrically exact model can predict thrust with

sufficient accuracy. These studies clearly validate the present aeroelastic analysis in terms of thrust

prediction. 2nd order nonlinear model is not able to accurately predict the performance of these

highly flexible rotors. Figures 4.13 to 4.15 show power validation of extremely flexible blades

at different pitch amplitude. Figure 4.13 and 4.14 show power validation of 6.2% Delrin blades

at 350 and 400 pitch amplitude respectively. Figure 4.15 shows power validation of 3.1% Delrin

blades at 400 pitch amplitude.

4.2.4 Discussion

4.2.4.1 Effect of Deflections

It is observed from the in-house experimental data and aeroelastic model that resultant thrust

decreases for more flexible blades. This indicates that the deflections of rotor blades negatively

influence thrust performance of cycloidal rotor. The aeroelastic model is used to understand the

underlying physics behind this phenomenon.

Figures 4.16a and 4.16b show tip twist of a 3.1% thickness-to-chord ratio Delrin blade rotating

at 1400 rpm and 2000 rpm, respectively, at 350 pitch amplitude. The plot shows variation of tip

twist as blade goes around different azimuth location in a complete cycle. It can be clearly seen

from the figure that the blade goes through a large nose-down twist in the upper half (azimuth
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(a) a) Blade pitch amplitude = 300.
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(b) b) Blade pitch amplitude = 350.
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(c) c) Blade pitch amplitude = 400.

Figure 4.9: Resultant force validation of 6.2% thickness/chord Delrin blade at different pitch am-
plitudes.
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Figure 4.10: Resultant Force Validation : Aluminum blade with 1.6% thickness/chord for 400 pitch
amplitude.
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Figure 4.11: Resultant Force Validation : Delrin blade with 4.7% thickness/chord for 300 pitch
amplitude.
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Figure 4.12: Resultant Force Validation : Delrin blade with 3.1% thickness/chord for 350 pitch
amplitude.
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Figure 4.13: Power Validation: Delrin blade with 6.2% thickness/chord for 350 pitch amplitude.
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Figure 4.14: Power Validation: Delrin blade with 6.2% thickness/chord for 400 pitch amplitude.
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Figure 4.15: Power Validation: Delrin blade with 3.1% thickness/chord for 400 pitch amplitude.
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Figure 4.16: Tip twist of a 3.1% Delrin blade for 350 pitch amplitude at different rotational speeds.
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Figure 4.17: Pitch angle at the tip of a 3.1% Delrin blade for 350 pitch amplitude at different
rotational speeds.

from 00 to 1800), which is not compensated in the lower half (azimuth from 1800 to 3600 ). Figures

4.17a and 4.17b show pitch angle at blade tip for 1400 rpm and 2000 rpm, respectively, at 350 pitch

amplitude. It can be seen that there is a large drop in magnitude of actual pitch from the prescribed

pitch at upper half due to large nose down tip twist. And this drop in pitch magnitude is not really

compensated at the lower half. This phenomenon causes an overall decrease in the magnitude

of geometric pitch angle which in turn reduces the magnitude of angle of attack and thus causes

thrust reduction. So the drop in thrust performance of cycloidal rotor can be attributed to torsional

deflection rather than the bending deflections. Although, a large portion of nonlinear torsional

moment comes from bending curvature. Actual cyclocopter blades are fixed in bending at both

ends. This highly constrained boundary condition creates large bending curvature, which leads to

large nonlinear moment and high twist. For this reason it is very important for the structural part

of aeroelastic model to accurately capture both torsional as well as bending deflections.

This explains the reason behind under-prediction of thrust by 2nd order nonlinear model for

flexible rotors at higher rpms. It is noticed in previous chapter (Figs. 3.4 to 3.7) that 2nd order

nonlinear model over-predicts bending and torsional deflections after a certain point when higher

order nonlinearities become significant. The effect of nonlinearities start much earlier for simply-
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Figure 4.18: Comparison of tip twist of a cycloidal rotor blade under uniformly distributed load.

supported and fixed-fixed beam due to the additional constraints imposed on beam, as seen in

Figs. 3.6 and 3.7. Bending deflections are over-predicted after 5 − 7% mid beam bending in

case of simply supported beam, and after 0.1− 0.3% mid-beam bending in case of beams fixed in

bending at both ends. Although this bending deflections directly do not affect thrust performance

of cycloidal rotor in a significant way, the bending curvature produces large amount of nonlinear

moment. This nonlinear moment causes larger twist and thus drop in thrust. Since 2nd order

model over-predicts bending deflections, it also over-predicts twist caused by bending curvature.

This over-prediction of twist causes under-prediction of thrust as discussed in the previous section.

Figure 4.18 clearly explains this phenomenon. The figure shows comparison of 2nd order nonlinear

model and geometrically exact beam model in terms of tip-twist (Y-axis) of a cycloidal rotor blade

under uniformly distributed load (X-axis). The uniformly distributed load is applied at elastic axis

at an angle of 350 so that both linear and nonlinear parts of the moment are produced. In this case,

6.2% thickness-to-chord ratio Delrin blade with 1 inch chord and 6.25 inch span is considered. As

shown in Fig. 4.18, the 2nd order model significantly over-predicts this nonlinear twist because of

the over-prediction of bending curvatures.
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Figure 4.19: Comparison of resultant force of rotor blades with varying torsional rigidity.

4.2.4.2 Effect of Blade Stiffness

Next the aeroelastic model is used to understand the effect of torsional rigidity on the thrust

performance of cycloidal rotor. Figure 4.19 shows comparison of resultant thrust (Y-axis) of rotors

with varying torsional rigidity over a range of rotational speeds (X-axis). The blue line represents

the thrust produced by a 4-bladed rotor at 350 pitch amplitude. In this case, 3.1% thickness-to-

chord ratio Delrin blade is considered. The red line represents thrust produced by similar rotor in

which case only torsional stiffness is increased by a factor of two while all other conditions are kept

same. It can be shown from the figure that the rotor with more torsional stiffness produces more

thrust. This is due to the reason that more torsional stiff blade goes through less torsional deflection

under same loading compared to 3.1% Delrin blade. Increased stiffness reduces the effect of

both linear and nonlinear moment and produces less twist. On the other hand, for 3.1% Delrin

bladed rotor, torsional rigidity is less causing more twist which in turn causes drop in thrust as

discussed in the previous section. It can be concluded from above study that for better aerodynamic

performance blades with more torsional stiffness is preferred.
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4.3 Aerodynamic Modeling of Conventional Nose Rotor

Unlike cycloidal rotor blades, blades of conventional rotor goes through very little blade de-

flections which has negligible effects on rotor performance. For this reason, only an aerodynamic

model of nose rotor is developed for different flight conditions (i.e. hover, forward flight).

4.3.1 Hover model

For performance prediction of conventional nose rotor a modified blade element momentum

theory (BEMT) based aerodynamic model is developed. In general BEMT analysis, lift coefficient

(CL) is assumed to be proportional to angle of attack (α), (CL = CLαα). This simplified formula

is not applicable to small nose rotor blades operating at a high angle of attack and low Reynolds

number (104 < Re < 105). Due to this reason, lift coefficient is obtained from look-up table

generated by 2D CFD studies over a range of angles of attack and Reynolds numbers. CFD solver

2D OVERTURNS, developed at University of Maryland, is used in this purpose. Depending on the

angle of attack and Reynolds number at every blade section, a linear interpolation across angles of

attack and Reynolds numbers is setup to obtain the correct lift and drag coefficients from the lookup

tables. On the other hand, the variation of lift with angle of attack becomes highly nonlinear at low

Reynolds numbers. Due to this complexity, it becomes impossible to get a close form solution of

inflow ratio (λ) since lift coefficient becomes an unknown function of inflow ratio. To solve this

problem, following approach is considered.

From modified momentum theory [14], thrust (dTMMT ) generated by an annular section (Fig.

4.20) of rotor disk in hover can be represented as following equation.

dTMMT = 4Fλ2rdr (4.2)

From blade element theory (BET), thrust (dTBET ) generated by similar annular section can be

written using following blade parameters.

dTBET =
1

2
σCLr

2dr (4.3)
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Figure 4.20: Annular rotor disc: Modified momentum theory.

In the above equation, lift coefficient (CL) is a function of angle of attack and Reynolds number

and obtained from CFD look-up table as discussed before. Now from blade element theory, angle

of attack (α) can be expressed in terms of inflow ratio (λ).

α = θ − λ

r
(4.4)

According to above equation, the lift co-efficient becomes as a function of inflow ratio (CL =

CL(λ)). Equating Eq. 4.2 and Eq. 4.3, a nonlinear expression (Eq. 4.5) of inflow ratio is obtained.

fλ(λ) = 4Fλ2 − 0.5σCL(λ)r = 0 (4.5)

A numerical solver is developed to solve above nonlinear equation and obtain inflow ratio. For

this purpose, initial value of tip loss function, F is assumed to be 1 and iterated until both tip

loss function and inflow ratio converge. Once the inflow ratio is obtained, the angle of attack is

computed based on Eq. 4.4. In the next step lift coefficient is obtained from angle of attack using

CFD look up table. This gives elemental lift over blade section and by integrating that over whole

blade, the total force and torque of the rotor blade is obtained.
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4.3.2 Forward Fight model

In forward flight, inflow distribution of nose rotor varies with different azimuth location unlike

hover. For this reason, a dynamic inflow model is developed to capture variation of inflow across

different azimuth as well as radial locations. Dynamic inflow based on Pitt-Peter’s model is utilized

for present simulation. The total inflow ratio (λ) can be represented as summation of induced

inflow ratio (λi) and component of forward speed (λc).

λ = λi + λc (4.6)

Induced inflow ratio is dynamic in nature and can be expressed as following equation.

λi = λ0(1 + kxr cosψ + kyr sinψ) (4.7)

In the above equation, λ0 denotes mean or average induced velocity at the center of the nose rotor,

r denotes radial location, ψ denotes azimuth location and kx and ky are weighting factors. From

momentum theory, the expression of λ0 is computed.

λ0 =
CT

2
√
µ2 + λ2

i

(4.8)

In the above equation, µ is advance ratio and CT is thrust coefficient of nose rotor. In Eq. 4.8, kx

and ky represents deviation of dynamic inflow from the uniform inflow. For Pitt-Peter’s model, ky

is assumed to be zero and expression of kx is given by following equation.

kx =
15π

2
tan

χ

2
(4.9)

Here, χ is the wake skew angle in forward flight. Once the inflow ratio is computed using

above equations (Eq. 4.6 - 4.9), angle of attack of nose rotor is computed over all the azimuth and

radial locations. Based on angle of attack, sectional lift is obtained using interpolation function
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Figure 4.21: Comparison of lift and drag coefficient at Reynolds number = 60k

and CFD look-up table discussed before. In the next step, total forces and moments of the rotor is

computed by integrating sectional forces.

4.3.3 Model Validation

One of the key parts of the aerodynamic model of the nose rotor is look-up table of lift and drag

coefficients generated by 2D CFD over range of different angle of attacks and Reynolds numbers.

CFD results are validated with previously published experiments [109]. Fig. 4.21a and 4.21b show

comparison of lift and drag coefficient, respectively, at 60,000 Reynolds number. Fig. 4.22a and

4.22b show comparison of lift and drag coefficient, respectively, at 40,000 Reynolds number. All

the the figures show that CFD results correlate well with experiments.

Once the CFD results are validated, the performance of small scale conventional rotors are

validated in the next step. Previously published in-house experiments [109] are utilized for this

validation purpose. Fig. 4.23 shows comparison of thrust coefficient vs power coefficient of small

scale conventional rotor. Fig. 4.23a shows performance comparison for a rotor utilizing NACA

0012 airfoil and Fig. 4.23b shows similar comparison for a rotor utilizing NACA 6504 airfoil.

Both the graphs show very well correlation of predicted performance with experimental results.
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Figure 4.22: Comparison of lift and drag coefficient at Reynolds number = 40k
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Figure 4.23: Performance validation of micro scale conventional rotor
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4.4 Conclusion

The primary objective of this chapter is to develop vehicle response model of a cycloidal rotor

based vehicle (twin cyclocopter). Vehicle response model consists of modeling of cycloidal rotor,

which acts as a primary thruster, and modeling of conventional nose rotor, whose main job is to

balance pitching moment of the vehicle.

Structural modeling of cycloidal rotor shows that rotor blades go through large nonlinear bend-

ing and torsional deflections. Both experimental and analytical approaches are taken to investigate

effect of these deflections on cycloidal rotor performance. A test set-up has been designed and built

to measure the thrust, torque and rotational speed of the cycloidal rotor. Systematic experiments

were conducted with a 4 bladed rotor with varying flexibility over a wide range of rotational speed

at different pitch amplitudes. For experimental purpose, moderately flexible Aluminum blades and

highly flexible Delrin (a type of plastic) blades are utilized. The flexibility of the rotor blade is var-

ied by changing thickness of the blades. To further investigate effect of blade deflections on rotor

performance, an aeroelastic model of cycloidal rotor is developed. Aeroelastic governing equation

of motion of cycloidal rotor is obtained using generalized Hamilton’s principle. In this procedure,

unsteady aerodynamic model of cycloidal rotor is coupled with a fully nonlinear geometrically

exact beam based structural framework. Once the model is systematically validated with in-house

experiments, it is utilized for understanding effects of rotor deflections on rotor performance.

On the other hand, conventional nose rotor blades go through minimal deflections having neg-

ligible effects on performance, unlike cyclodial rotor blades. For this reason, only an aerodynamic

model of nose rotor is developed for different flight conditions. Towards this, a blade element

momentum theory (BEMT) based approach is taken. Several assumptions of traditional BEMT

theory becomes invalid for low Reynolds number operating regime of small scale nose rotor. For

this purpose, necessary modifications are made by relaxing unrealistic assumptions. Moreover, a

2-D CFD based look-up table is generated and utilized for this purpose. CFD data is validated

with previously published experiments. Performance of small scale conventional rotor predicted

by developed aerodynamic model is validated with in-house experiments.
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Key conclusions from present study of modeling of cycloidal rotor and nose rotor, are given

below:

1. The experimental results show deterioration in cycloidal rotor performance as the stiffness of

the blades are decreased. It is observed that more flexible blades draw more power while pro-

ducing less thrust, which significantly decreases power loading compared to stiffer blades.

2. Aeroelastic model based on 2nd order nonlinear structural model is capable of predicting

thrust of moderately flexible rotors. However, in the cases of highly flexible blades, this

model underestimate thrust at higher rotational speeds. Highly flexible blades go through

larger bending and torsional deflections at higher rpm due to increased centrifugal force

which varies as the square of rotational speed. Second order structural model over-predicts

bending deflections and axial twist, which causes under-prediction of thrust.

3. Geometrically exact model is able to accurately predict large deflections. Aeroelastic model

based on this model is capable of accurately predicting the thrust of cycloidal rotors for a

wide range of blade flexibilities. Inclusion of geometrically exact model has proven to be

very essential in accurate prediction of thrust performance.

4. Aeroelastic analysis showed that torsional deflection decreases total magnitude of pitch angle

from prescribed pitch causing overall decrease in thrust in the upper half. Although bending

deflections directly does not affect thrust in considerable amount, bending curvature creates

significant amount of nonlinear moment that ultimately increases twist and decreases thrust.

For this reason, it is very important to accurately estimate both bending and torsional deflec-

tions. Since blade twist is the primary reason for the thrust drop, increased torsional rigidity

of cycloidal rotor blade is required to counteract both linear and nonlinear part of torsional

moments, thus minimize blade twist and thrust drop.
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5. COUPLED TRIM MODELING OF CYCLOCOPTER*

5.1 Overview

In this chapter, detailed development of nonlinear aeroelastic coupled trim model of a twin-

cyclocopter for different flight conditions (i.e. hover, forward flight) is presented [34, 35]. Twin-

cyclocopter consists of two cycloidal rotors as main thrusters and a conventional horizontal nose-

rotor for pitch-torque balance. It is shown that three control inputs are needed to trim the cy-

clocopter in hover by balancing one force (in vertical direction) and two moments (in yaw and

pitch directions). In this hover scenario, forces in lateral and longitudinal directions and moment

in rolling direction remain always balanced. These three sets of control inputs are mean rpm of

cycloidal rotors, differential phase offset of cycloidal rotors and rpm of nose rotor. Mean rpm

of cycloidal rotors is used to balance vertical forces, differential phase offset of cycloidal rotors

is used to balance yawing moment and nose rotor rpm is used to balance pitching moment. Al-

ternatively, mean pitch amplitude of cycloidal rotors can be used to balance vertical forces while

keeping mean rpm of cycloidal rotors as a constant. In forward flight, it is shown that five control

inputs are needed to trim cyclocopter by balancing three moments (in yaw, pitch, and roll direc-

tions) and two forces (in vertical and longitudinal directions). Forces on cyclocopter along lateral

direction remains balanced at all stages. These five sets of control inputs are mean and differential

rpm of cyclodial rotors, mean and differential phase offset of cycloidal rotors and rpm of nose ro-

tor. Alternatively, mean and differential pitch amplitude of cycloidal rotors can be used as control

inputs while keeping rpm of cyclodial rotors constant. Coupled trim analysis requires simultaneous

computation of trim controls, vehicle orientation and blade structural responses so that both blade

*Part of the data reported in this chapter is reprinted with permission from “‘Nonlinear Aeroelastic Coupled
Trim Analysis of a Cyclocopter in Hover” by Halder, A., and Benedict, M., Proceedings of 73rd Annual Forum of
the American Helicopter Society, 2017 [34] and “Nonlinear Aeroelastic Modeling of Cycloidal Rotor in Forward
Flight” by Halder, A., and Benedict, M., Proceedings of the AHS Technical Meeting on Aeromechanics Design for
Transformative Vertical Lift, 2018 [35].
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response equations and vehicle trim equations are satisfied. To obtain the blade structural response

and the rotor aerodynamic loads for a given set of control inputs, a nonlinear aeroelastic framework

of the complete vehicle is developed. This framework consists of aeroelastic model of cycloidal ro-

tor and aerodynamic model of conventional nose rotor, detail development and validation of which

are discussed in the previous sections. Once the complete aeroelastic framework of cyclocopter is

developed, coupled trim analysis is performed by simultaneously solving blade response equations

and vehicle trim equations until trim controls, blade response, inflow, and circulation converge all

together. Variation of control inputs required for hover and forward fight trim is investigated with

change of different design parameters (i.e. gross-weight and longitudinal center of gravity location

of the vehicle).

5.2 Methodology

Coupled trim analysis requires simultaneous computation of trim controls, vehicle orientation

and blade responses so that both blade response equations and vehicle trim equations are satisfied.

Trim equation represents force and moment equilibrium residuals and the proper control inputs

are obtained through an iterative procedure until the trim residual goes to zero. Due to complex

nonlinear behavior of trim equations, initial control estimations need to be reasonably accurate.

Initial control estimates are obtained by solving uncoupled trim equation for rigid rotors. Based on

the initial control estimations, vehicle response equations are solved to obtain forces and moments

produced by cycloidal rotors and nose rotors. Residuals are updated using the forces and moments

obtained from vehicle response equations. And control inputs are updated using proper trim Ja-

cobian and residuals. The above iteration is continued until residuals go to zero. A flow chart of

aeroelastic model is shown in Fig. 5.1.

5.3 Hover Analysis

In this section detail development of hover trim model of cyclocopter is discussed. The devel-

oped model is utilized systematically to investigate variation of control inputs required for hover

trim with change in design parameters such as gross-weight and longitudinal center of gravity
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Figure 5.1: Flow-chart of coupled trim model.

Figure 5.2: Forces and moments on a cycloidal rotor in hover
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Figure 5.3: Definition of trim offset and pitch offset

location of the vehicle.

5.3.1 Trim Model in Hover

Trim equations are basically equilibrium equations that are obtained by balancing all the forces

(vertical, longitudinal and lateral) and moments (roll, pitch and yaw) on vehicle. Figure 5.2 shows

body co-ordinate frame of cyclocopter and associated forces and moments acting on cyclocopter

which will be discussed in detail. In this context, Y-axis is along longitudinal direction, X-axis

is along lateral direction and Z-axis is along vertical direction. Solution of trim equations gives

the controls needed for sustaining steady flight for a particular flight condition. It is assumed that

engine can supply all the power necessary for vehicle trim. A twin cyclocopter in hover needs

only three control inputs: rotational speed of cycloidal rotor (Ω), rotational speed of nose rotor

(ΩTR) and pitch phase offsets of cycloidal rotor (θoff ). Both the cycloidal rotors operate at same

rotational speed but opposite pitch phase offsets, so that they produce same vertical forces (Tz),

but opposite side forces (Ty) with same magnitude in longitudinal direction. The idea of phase
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offset (θoff ) is shown clearly in Fig. 5.3. If cycloidal rotor attains maximum pitch amplitude at

90° and 270° azimuthal locations, it produces both vertical and forward thrust or in other words,

so the net thrust vector will be tilted forward. As shown in Fig. 5.2, an appropriate phasing

(θtrim) needs to be applied to the pitch kinematics so that the thrust produced by cycloidal rotor

acts vertically upwards. From this reference phasing of θtrim, an additional phasing is applied for

control, which is called, pitch phase offset (θoff ) and this is one of the control inputs. The pitch

phase offset is applied in the opposite direction for the two cycloidal rotors so that they produce

opposite horizontal forces of same magnitude resulting in a yawing torque for the cyclocopter to

balance the yawing moment generated by nose rotor which is discussed later in detail.

If the center of gravity (cg) is placed in the line perfectly in between of cycloidal rotors (along

Y-axis) or assuming inertial-symmetry about Y-Z plane then, the equal vertical forces produced by

two cycloidal rotors balance the rolling motion automatically. For this reason, both the cycloidal

rotors rotate at same rpm to produce equal vertical force. These two vertical forces of cycloidal

rotors along with vertical force of nose rotor balances the vehicle weight. Operation of nose rotor

creates a reaction moment in yawing direction. To balance this yaw moment, cycloidal rotors

produce equal horizontal forces in opposite direction. Moreover, the opposite horizontal forces

eliminate each other such that forces in longitudinal direction is always balanced. Also, no forces

are being generated in lateral direction. For above mentioned reasons, two force equations in lateral

and longitudinal directions and one moment equation (roll) are automatically satisfied. Rest of the

three trim equations can be listed as given in Eq. 5.1.

F (x) = 0 (5.1)

Where F = [F1, F2, F3]T are vehicle equilibrium residuals and x = [Ω, ΩTR, θoff ]
T are control

inputs. Expression of F1, F2 and F3 are given below (Eq. 5.2-5.4).

F1 = 2Tz + +TNR −Wv (5.2)
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F2 = 2lcTz + 2Mx − lNRTNR (5.3)

F3 = Mc −MNR (5.4)

Equation 5.2 is force balance in vertical direction which shows the weight of the vehicle (Wv) is

balanced by vertical thrust generated by two cycloidal rotors (Tz), and one conventional nose rotor

(TNR). Equation 5.3 is pitching moment balance equation whereMx is pitching moment generated

by tangential forces on cycloidal rotor blade and lc is distance of cycloidal rotor ahead from cg and

lNR is distance of nose rotor behind from cg. It shows the pitch down moment generated by

cycloidal rotor is balanced by pitch up moment generated by nose rotor thrust. Equation 5.4 is

yawing moment balance. Longitudinal side force (Ty) from each cycloidal rotor acting in opposite

direction creates a yawing moment (Mc). MNR is the yawing moment created by nose rotor.

F1, F2 and F3 are vertical force residual, pitching moment residual and yawing moment residual,

respectively. In coupled trim procedure, control inputs are updated in an iterative manner until

all the residuals go to zero. For this purpose, trim Jacobian matrix is computed using following

formula.

J =
∂F

∂x
=


∂F1

∂Ω
∂F1

∂ΩNR

∂F1

∂θoff

∂F2

∂Ω
∂F2

∂ΩNR

∂F2

∂θoff

∂F3

∂Ω
∂F3

∂ΩNR

∂F3

∂θoff

 (5.5)

All the terms in the trim Jacobian matrix is calculated numerically using trim finite difference

method. Using the trim Jacobin and residuals, control inputs are updated according to following

formula.

xnew = xold + ∆x (5.6)

Where,

∆x = −J(xold)
−1F (xold) (5.7)

During each iteration, updated control inputs are fed into vehicle response equations and residuals

are calculated from forces and moments obtained from vehicle response equations. To obtain the
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external forces and moments acting on the vehicle in the body frame, an aeroelastic model of

cycloidal rotor and a modified BEMT based aerodynamic model of conventional rotor are utilized.

This procedure is continued in a loop until control inputs are converged.

5.3.2 Results: Coupled Trim in Hover

The coupled trim model of cyclocopter developed in the present study is used to investigate

how control inputs required for hover are affected by changing various design parameters. In

the present simulation, three control inputs, rotational speed of cycloidal rotor (Ω) and nose rotor

(ΩNR), and phase offsets of cycloidal rotor (θoff ) are used to trim a twin cyclocopter (Fig. 5.2)

in hover. The cyclocopter consists of two 4-bladed cycloidal rotors with blade chord of 2 inches,

radius of 3 inches and span of 6.25 inches and a conventional 2-bladed nose rotor with 0.8 inch

blade chord and 6 inch diameter. The pitch amplitude of cycloidal rotors are kept fixed at 35°. The

nose rotor is un-tapered and untwisted and has a collective pitch of 22°. The cyclocopter is 14.5

inches in lateral direction and 16 inches in longitudinal direction. The distance between nose rotor

and cycloidal rotors is 10 inches. These specifications are very close to the 500 gram cyclocopter

shown in Fig.5.2.

5.3.2.1 Effects of CG Location

In this section, effects of longitudinal position of center of gravity (cg) on rotor performance

are investigated. Figure 5.4 shows variation of control inputs and required power of cyclodial

rotors and conventional rotors as longitudinal position of cg is changed from cyclodial rotors to

nose rotors. For the present simulation, vehicle weight is kept constant at 500 grams. xc is the

distance between cg and cycloidal rotors normalized by the distance between cycloidal rotors and

nose rotors. xc = 1 denotes cg at nose rotor while xc = 0 indicates cg to be aligned with cycloidal

rotors. As the cg comes closer to nose rotor (i.e. xc increases), rpm of the cycloidal rotors decreases

and that of nose rotor increases as observed in Fig. 5.4a and Fig. 5.4b, respectively. This is because

closer the cg is towards nose rotor, the smaller becomes the pitching moment arm of nose rotor

thrust from cg. Therefore, more thrust needs to be generated by nose rotor to balance pitch up
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(a) Variation of rotational speed of cycloidal rotor (b) Variation of rotational speed of nose rotor

(c) Variation of pitch offset (d) Variation of required power

Figure 5.4: Variation of control inputs and required power vs weight of cyclocopter
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torque of cycloidal rotors and thus rpm of nose rotor increases . Since the net vertical thrust of

the rotors need to be constant to balance the constant weight, the increment of nose rotor thrust

also forces decrease in cycloidal rotor thrust causing decrease in required cycloidal rotor rpm as

observed in Fig. 5.4a. On this other hand, as the cg is moving closer to the nose rotor, due to lower

rpm and thrust requirement, the cycloidal rotors themselves are producing less reaction torque in

pitching direction, which is a counteracting effect. Increased nose rotor speed means more yawing

torque of nose rotor and to balance that more side forces are required from cycloidal rotors. The

decrease in vertical force requirement and the increase in horizontal force requirement of cycloidal

rotors causes the thrust vector of the cycloidal rotors to tilt more in the horizontal direction as the

cg moves towards nose rotor. This is obtained by increasing pitch offset of cycloidal rotors as

observed in Fig. 5.4c. Figure 5.4d shows increase in nose rotor power requirement and decrease in

cycloidal rotor power requirement as cg is moved towards nose rotor as expected since nose rotor

thrust requirement increases while cycloidal rotor thrust requirement decreases. Interesting thing

to notice here is that total power requirement increases in this process because the nose rotor power

increases dramatically, when pushed to higher thrust values. This is because small conventional

nose rotor are much less efficient compared to cycloidal rotor and requires comparatively more

power to generate similar thrust. Also, a large part of thrust generated by cycloidal rotor is vectored

sidewards to balance yawing moment of nose and power due to this is basically wasted to balance

moments. Another notable observation here is that when xc is zero or cg is along cycloidal rotor

axis, almost entire weight of the vehicle is supported by the cycloidal rotors and the nose rotor is

only producing a small thrust to balance the pitch torque produced by the cycloidal rotors. From

Fig. 5.4d, this is the scenario for the least power for the cyclocopter.

5.3.2.2 Effects of Weight of the Vehicle

In this section, effects of vehicle weight on rotor performance are investigated. Figure 5.5

shows variation of control inputs and required power as weight of the vehicle is increased. In

this case cg is 0.4 inches (normalized distance xc = 0.04) behind cycloidal rotor and 9.6 inches

ahead of nose rotor. It is observed from Fig. 5.5a and 5.5b that as the weight of the vehicle
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(a) Variation of rotational speed of cycloidal rotor (b) Variation of rotational speed of nose rotor

(c) Variation of pitch offset (d) Variation of required power

Figure 5.5: Variation of control inputs and required power vs weight of cyclocopter
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increases, required rpms of both cycloidal rotors and nose rotor increase. This is because all

the rotors need to produce more thrust as the weight of the vehicle is increased and net thrust

generated by all the rotors increase quadratically with rpm of corresponding rotors . Moreover,

moments due to aerodynamic forces generated by rotors also increase quadratically with rpm.

To balance the nose rotor moments in yawing direction, cycloidal rotors need to produce more

thrust in forward direction. So, both the forward and vertical thrust requirement of cycloidal rotors

increase simultaneously with increase of vehicle weight in a similar rate. Therefore, the thrust

vectoring of cyclodial rotors remain almost unchanged. Since thrust vectoring of cycloidal rotors is

controlled by pitch offset (θoff ), pitch offset also remains almost constant as weight of cyclocopter

is increased, as observed in Fig. 5.5c. Figure 5.5d shows that required power for cycloidal rotors

and nose rotors increases with increasing weight as expected since all the rotors produce more

thrust, they would require more power to operate.

5.4 Forward Flight Analysis

In this section detail development of trim model of cyclocopter in forward flight is discussed.

The forward flight trim model is validated with in-house experimental data obtained for a trimmed

cycloidal rotor in wind tunnel. Once validated, the trim model is utilized systematically to in-

vestigate effects of various design parameters such as vehicle gross weight, pitch amplitude and

longitudinal cg location on control inputs required for forward flight trim.

5.4.1 Trim Model in Forward Flight

As discussed in previous chapters, the cycloidal rotors have to rotate with a backspin with

respect to forward speed (upper half of rotor is the retreating side) in order to generate positive

vertical force due to virtual camber effect (Fig. 5.6).Therefore, rotation of cycloidal rotors creates

a nose-down reaction moment (Fig. 5.7 ). The conventional rotor of the cyclocopter has to be

at the front of the vehicle ahead of cg to produce nose-up moment during forward flight motion

to balance the nose-down moment of cycloidal rotor and thus, it acts as a nose rotor (Fig. 5.6).

If the conventional rotor was at the rear, it will have to produce a downward force to counteract
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Figure 5.6: Forces and moments on a cycloidal rotor in hover

Figure 5.7: Forces and moments on a cycloidal rotor in hover
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the cycloidal rotor pitch torque, which is detrimental to the total upward thrust needed to balance

weight. For this reason, the most efficient way to fly a cyclocopter is to utilize the conventional

rotor as nose rotor instead of tail rotor.

Figure 5.7 shows body co-ordinate frame of cyclocopter and associated forces and moments

acting on the vehicle in forward flight. As shown in the figure, Y-axis is along longitudinal direc-

tion, X-axis is along lateral direction and Z-axis is along vertical direction. A twin cyclocopter in

forward flight needs only five control inputs to balance three moments ( along roll, pitch and yaw

directions) and two forces (along longitudinal and vertical directions) acting on cyclocopter while

lateral forces remain zero at all stages. These five control inputs are mean and differential rota-

tional speed of cycloidal rotors (Ωmean, Ωdiff ) and mean and differential phase offset of cycloidal

rotors (θoffmean , θoffdiff ) and rotational speed of nose rotor (ΩNR). Weight of the cyclocopter is

balanced by vertical thrust produced by cycloidal rotors (Tz) and nose rotor (TNR). Magnitude

of thrust generated by cycloidal rotors and nose rotor is controlled by their respective rotational

speed. If the center of gravity (cg) is placed in the line perfectly in between of cycloidal rotors

(along Y-axis) or assuming inertial-symmetry about Y-Z plane then, equal vertical forces produced

by two cycloidal rotors balance the rolling motion automatically in hover. In forward flight, nose

rotor operates with a lift offset since it is a fixed pitch propeller without any cyclic pitch control.

For this reason, nose rotor in forward flight creates rolling and pitching motion. To balance the

rolling moment produced by nose rotor, cycloidal rotors rotate at different rpm and produce differ-

ent amount of vertical thrust. Different rotational speeds of cycloidal rotors could be represented

as mean and differential values (Ωmean, Ωdiff ) such that rotational speed of one cycloidal rotor is

Ωmean + 0.5Ωdiff , while that of other cycloidal rotor would be Ωmean − 0.5Ωdiff . Operation of

cycloidal rotor creates a reaction moment along pitching direction and vertical thrust produced by

cycloidal rotor also creates a pitching moment due to longitudinal offset of cycloidal rotors from

cg. These cycloidal rotor pitching moments along with pitching moment of nose rotor due to lift

offset is balanced by moments from nose rotor thrust. The drag of the aircraft body in forward

flight is balanced by horizontal forces (Ty) produced by cycloidal rotors which is obtained by for-
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ward thrust vectoring by introducing phase offset in the cyclic blade pitching kinematics. Now,

operation of nose rotor produces a yawing moment which is balanced by unequal forward thrust

produced by cycloidal rotors. For this reason, cycloidal rotors would have different magnitude

and direction of net thrust so that horizontal force component of cycloidal rotors cancels vehicle

drag and also yawing moment of nose rotor. For this reason, both the cycloidal rotors would have

different rpm and phase offset. Different phase offset of cycloidal rotors could be represented as

mean and differential values (θoffmean , θoffdiff ) such that phase offset of one cycloidal rotor is

θoffmean + 0.5θoffdiff , while that of other cycloidal rotor would be θoffmean − 0.5θoffdiff . Five trim

equations (2 force equations and 3 moment equations) can be listed as given in Eq. 5.8.

F (x) = 0 (5.8)

Where x = [Ωmean,Ωdiff , θoffmean , θoffdiff ,ΩNR]T are control inputs andF = [F1, F2, F3, F4, F5]T

are vehicle equilibrium residuals. Expression of F1, F2, F3, F4, F5 are given below (Eq. 5.9 - 5.13).

F1 = Tz1 + Tz2 + TNR −WV (5.9)

F2 = Ty1 + Ty2 −D (5.10)

F3 = lc(Tz1 + Tz2) +My1 +My2 +MyNR − lNRTNR (5.11)

F4 = Mzc +MzNR (5.12)

F5 = Mxc +MxNR (5.13)

Equation 5.9 is force balance in vertical direction which shows the weight (Wv) of the vehicle is

balanced by vertical thrust generated by two cycloidal rotors (Tz1 , Tz2), and one conventional nose

rotor (TNR). Equation 5.10 represents force balance in longitudinal direction that shows drag of

the aircraft is balanced by forward force components of cycloidal rotors (Ty1 , Ty2). Equation 5.11

is pitching moment balance equation where My is pitching moment generated by tangential forces
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on cycloidal rotor blade, lc is distance of cycloidal rotor behind from cg, lNR is distance of nose

rotor ahead from cg and MyNR is nose rotor pitching moment due to longitudinal lift offset. It

shows the pitch down moment generated by cycloidal rotors and pitching moment of nose rotor

due to lift offset is balanced by pitch up moment generated by nose rotor thrust. Equation 5.12

is yawing moment balance. Difference in forward force (Ty) from each cycloidal rotor creates a

yawing moment Mzc . MzNR is the reaction yawing moment created by nose rotor. Equation 5.13

represents rolling moment balance. Mxc is rolling moment generated by cycloidal rotors due to

difference in vertical component of force (Tz) andMxNR is rolling moment generated by nose rotor

due to lateral lift offset. F1 and F2 are vertical and longitudinal force residuals respectively and

F3,F4 and F5 are pitching, yawing and rolling moment residuals, respectively.

In coupled trim procedure, control inputs are updated in an iterative manner until all the resid-

uals go to zero. For this purpose, trim Jacobian matrix is computed using following formula.

J(i, j) =
∂Fi
∂xj

(5.14)

Where, i and j varies from 1 to 5.All the terms in the trim Jacobian matrix is calculated numerically

using trim finite difference method.Using the trim Jacobin and residuals, control inputs are updated

according to following formula.

xnew = xold + ∆x (5.15)

Where,

∆x = −J(xold)
−1F (xold) (5.16)

During each iteration, updated control inputs are fed into vehicle response equations and residuals

are calculated from forces and moments obtained from vehicle response equations. To obtain

the external forces and moments acting on the vehicle in the body frame, an aeroelastic model of

cycloidal rotor and an aerodynamic model of conventional rotor based on BET and dynamic inflow

are utilized.
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(a) RPM = 1800 (b) RPM = 1600

Figure 5.8: Variation of control inputs with forward speed for different rotational speeds

5.4.2 Model Validation

Since there is no flight test data available in the literature for trim control inputs required for

a cyclocopter aircraft in forward flight, the developed model is validated with results from an

isolated trimmed cycloidal rotor in wind tunnel. This data was obtained from in-house experiments

published in Ref. 15. In this case, an isolated cycloidal rotor is trimmed by two control inputs

(pitch amplitude and phase offset) in such a way that propulsive force (or net force in the horizontal

direction) remains zero for a constant vertical force. Figure 5.8 shows variation of control inputs

with forward speed for two different rotational speeds, 1800 rpm in Fig. 5.8a and 1600 rpm

in Fig. 5.8b. In both the cases, vertical force is kept constant to be 1.96 N while propulsive

force is balanced. Both the figures show reasonable correlation of model predicted results with

experimental data. Figure 5.9 shows more validations comparing control inputs for different values

of vertical force while keeping the net propulsive force zero. In these cases, rpm of cycloidal rotor

is kept constant at 1800.Similar to the previous case, all the graphs in Fig. 5.9 show reasonable

correlations between present model predictions and experimental data.
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(a) Vertical force = 2.21N (b) Vertical force = 2.45N

(c) Vertical force = 2.7N

Figure 5.9: Variation of control inputs with forward speed for different vertical forces
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5.4.3 Results: Coupled Trim in Forward Flight

The coupled trim model of cyclocopter developed in the present study is used to investigate

how control inputs required for forward flight at different forward speeds are affected by changing

various vehicle parameters. A twin cyclocopter (Fig. 5.2 and 5.3) in forward flight needs only

five control inputs. For present simulation, 4-bladed cycloidal rotors with blade chord of 2 inches,

radius of 3 inches and span of 6.25 inches and a conventional 2-bladed nose rotor with 0.8 inch

blade chord and 6 inch diameter are used. The nose rotor is un-tapered and untwisted and has a

pitch of 22°. The cyclocopter measures 14.5 inches in lateral direction and 16 inches in longi-

tudinal direction. The distance between nose rotor and cycloidal rotor axis is 10 inches. These

specifications are very close to the 500-gram cyclocopter shown in Fig. 5.2 and previously tested

in forward flight.

5.4.3.1 Effects of pitch amplitude

Figure 5.10 shows variation of control inputs as forward speed is increased for different set

of cycloidal rotor pitch amplitudes. As forward speed of cyclocopter is increased, cycloidal rotor

vertical force increases while propulsive force decreases due to virtual camber effects as discussed

in previous chapters. For this reason, direction of cycloidal rotor thrust vector needs to be tilted

forward to balance forces by increasing propulsive force and decreasing vertical force. This is done

by introducing a mean phase offset in cyclic blade pitching kinematics as shown in Fig. 5.10a.

Also, this mean phase offset increases with forward speed. Figure 5.10b shows that differential

phase offset remains almost unchanged for different forward speeds. Figures 5.10a and 5.10b also

show that pitch amplitude has very minimal effect on mean and differential phase offset. At higher

forward speeds, increased pitch amplitude decreases mean phase offset slightly. This is because

increased pitch amplitude increases propulsive force, so less phase offset is required to balance

propulsive force. Figure 5.10c shows mean rpm of cycloidal rotor initially decreases with forward

speed because of reduction in induced inflow and then increases due to increased parasitic drag at

higher speeds. Moreover, as the pitch amplitude of cycloidal rotor is increased, it would require less
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(a) Variation of mean phase offset (b) Variation of differential phase offset

(c) Variation of mean rpm (d) Variation of differential rpm

(e) Variation of nose rotor rpm

Figure 5.10: Variation of control inputs with forward speed for different pitch amplitudes
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rpm to produce same amount of forces as shown in Fig. 5.10c. As the forward speed increases,

nose rotor would generate more rolling moment due to lift offset which would in-turn require

more balancing rolling moment from cycloidal rotor. For this reason, differential rpm of cycloidal

rotor increases with forward speed as shown in Fig. 5.10d. Moreover, as the pitch amplitude of

cycloidal rotors are increased, the cycloidal rotors would need lesser differential rpm to produce

same amount of differential vertical thrust (to balance rolling moment) which is also observed

in Fig. 5.10d.Figure 5.10e shows nose rotor rpm initially decreases with forward speed due to

initial reduction of induced flow. After a certain forward speed, the nose rotor rpm remains almost

constant unlike that of cycloidal rotor. This is because parasitic drag becomes dominant after

certain velocity and cycloidal rotors need to overcome that by producing more thrust in horizontal

direction to counter this drag. Whereas, nose rotor does not contribute towards propulsive force,

it only acts to balance pitching moments. Therefore, nose rotor rpm remains almost unaffected.

Moreover, fig. 5.10e shows that nose rotor rpm increases with increase in cycloidal rotor pitch

amplitude at almost all forward speed. This is because increased pitch amplitude causes increased

torque of cycloidal rotors (because of lower cycloidal rotor rpm at similar power) and to balance

this increased pitching moment, nose rotor needs to produce more thrust.

Figure 5.11 shows variation of power as forward speed of cyclocopter is increased for differ-

ent pitch amplitudes. Figure 5.11a shows that power of cycloidal rotors decreases initially with

increased forward speed due to decrease in induced power, but increases after a point when par-

asitic power increases and becomes significant. Moreover, fig. 5.11a shows a very interesting

phenomenon that the power requirement of cycloidal rotor increases along with pitch amplitude of

cycloidal rotor at small forward speed only, while exactly opposite thing happens after a certain

forward speed. Increase in cycloidal rotor pitch amplitude decreases rotor rpm, thus decreases

profile power but increases lift induced power. At lower speed, induced power dominates over

profile power. Therefore, total power increases with pitch amplitude along with increased induced

power. At higher speed, profile power and parasitic becomes more significant, thus total power

decreases with pitch amplitude along with decreased profile power. Figure 5.11b shows decrease
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(a) Variation of power of cycloidal rotor (b) Variation of power of nose rotor

(c) Variation of total power

Figure 5.11: Variation of required power with forward speed for different pitch amplitudes
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in nose rotor power with increase in speed due to decrease in induced power. Unlike cycloidal

rotor power, nose rotor power does not increase after 4m/s. This is because the vehicle drag goes

up with forward speed and the main rotor (in this case, cycloidal rotor) has to overcome that by

producing more propulsive force causing increase in cycloidal rotor power, while the nose rotor of

cyclocopter does not have to produce any propulsive thrust (zero forward shaft tilt angle) and thus,

its power requirement does not increase. Moreover , figure 5.11b also shows that nose rotor power

increases with increase in pitch amplitude of cycloidal rotor. This is because, as pitch amplitude of

cycloidal rotor increases, it produces more torque and to balance that nose rotor need to produce

more thrust. So, the nose rotor rpm increases (Fig. 5.10d) causing increase in nose rotor power.

Figure 5.11c shows variation of total power along with forward speed which decreases initially

and then increases after a point. The total power shows similar characteristics of cycloidal rotor

power since cycloidal rotor is main thruster and generates majority of the thrust. Even though the

nose rotor power is a significant fraction of the total power, unlike a conventional helicopter, it is

not wasted because nose rotor is producing upward thrust to support the vehicle weight.

5.4.3.2 Effects of vehicle weight

Figure 5.12 shows variation of control inputs while weight of the vehicle is increased. Along

with the increment of vehicle weight, thrust by drag ratio of the vehicle increases for a certain

speed. So, the ratio of vertical force and horizontal force requirement of cycloidal rotor increases

and the cycloidal rotors would need less phase offset to balance fuselage drag as shown in Fig.

5.12a. Figure 5.12b and 5.12d shows minimal effect of vehicle weight on differential phase offset

and differential rpm respectively. Increased weight demands more force from rotors, so mean rpm

of cycloidal rotor and rpm of nose rotor increases as shown in Fig. 5.12c and 5.12e. Figure 5.13

shows power requirement of both cycloidal rotor and nose rotor increases with increasing weight

leading to increment in total power consumption, as expected.
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(a) Variation of mean phase offset (b) Variation of differential phase offset

(c) Variation of mean rpm (d) Variation of differential rpm

(e) Variation of nose rotor rpm

Figure 5.12: Variation of control inputs with forward speed for different vehicle weights
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(a) Variation of power of cycloidal rotor (b) Variation of power of nose rotor

(c) Variation of total power

Figure 5.13: Variation of required power with forward speed for different vehicle weights
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5.4.3.3 Effects of CG location

Figure 5.14 shows variation of control inputs as cg location of the vehicle is shifted towards

nose rotor from cycloidal rotors. As cg is shifted towards nose rotor, nose rotor thrust would

increase and cycloidal rotors vertical thrust would decrease to balance pitching moment. Increase

in nose rotor thrust requirement increases nose rotor rpm and decrease in cycloidal rotor thrust

requirement decreases cycloidal rotor rpm as shown in Figs. 5.14a and 5.14b, respectively. As

nose rotor thrust increases, the rolling moment due to nose rotor lift offset also increases. For

this reason, cycloidal rotors need larger differential rpm to balance this rolling moment as shown

in Fig. 5.14c. With higher xc, the vertical force requirement of cycloidal rotor decreases while

horizontal thrust requirement remains almost same to counteract the drag. Therefore, cycloidal

rotors need to tilt the thrust vector more towards horizontal direction and thus, mean phase offset

of cycloidal rotor increases with increasing xc as shown in Fig. 5.14d. Figure 5.14e shows that

differential phase offset of cycloidal rotor increases with increase in xc, specially at smaller speeds.

This is because as cg is shifted forward, nose rotor thrust increases, which in-turn increases nose

rotor yawing moment. To balance the yawing moment, cycloidal rotors need larger differential

propulsive force which causes increase in differential phase offset.

Figure 5.15 shows that as the cg is shifted forward, nose rotor power increases due to increased

thrust requirement while cycloidal rotor power decreases due to decreased thrust requirement.

This phenomenon lead to total power increase. This is because if nose rotor produces larger force,

cycloidal rotor would have to produce larger differential propulsive force to counter nose rotor

torque, and this force is wasted to balance yawing moment without balancing weight or drag of the

vehicle. Moreover, the conventional nose rotor is inefficient and requires more power to generate

similar amount of thrust compared to cycloidal rotor.

5.5 Conclusion

In this chapter, detail development of nonlinear aeroelastic coupled trim models of a twin-

cyclocopter in different flight conditions is discussed. Twin-cyclocopter consists of two cycloidal
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(a) Variation of mean rpm (b) Variation of nose rotor rpm

(c) Variation of differential rpm (d) Variation of mean phase offset

(e) Variation of differential phase offset

Figure 5.14: Variation of control inputs with forward speed for different longitudinal locations of
cg
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(a) Variation of power of cycloidal rotor (b) Variation of power of nose rotor

(c) Variation of total power

Figure 5.15: Variation of required power with forward speed for different longitudinal position of
cg
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rotors and a conventional horizontal nose rotor. Towards this, a vehicle response model and a

vehicle trim model in hover and forward flight are developed and solved simultaneously to ob-

tain coupled trim solutions. To obtain blade structural response and rotor aerodynamic forces, an

aeroelastic model of cycloidal rotor and an aerodynamic model of conventional nose rotor are uti-

lized. The developed model is validated with in-house experimental data obtained for a trimmed

cycloidal rotor in wind tunnel. Once validated, the coupled trim model is utilized systematically

to investigate effects of various design parameters such as vehicle gross weight, pitch amplitude

and longitudinal cg location on control inputs required for vehicle trim. Key conclusions are listed

below:

5.5.1 Conclusions from hover study

1. Vehicle trim model consist of only 3 equations since other moment (roll) and force equations

(lateral and longitudinal) are automatically satisfied. These three equations include vertical

force balance and yaw and pitching moment balance equations.

2. It is shown that to sustain hovering flight, a twin-cyclocopter needs only three control inputs:

rotational speed of cycloidal rotor and tail rotor and pitch offset associated with cycloidal

rotor. Both the cycloidal rotors need to rotate with same rpm but with opposite pitch off-

set.Alternatively, pitch amplitude of cycloidal rotors can be used as control input instead of

rotational speed.

3. The movement of cg location towards tail rotor demands increased thrust and thus increased

rotational speed of tail rotor to balance pitching moment. Moreover, increased speed of tail

rotor causes increased yawing moment, which in turn requires more side force from cycloidal

rotor to balance out. For this reason, pitch offset of cycloidal rotor increase as cg is shifted

towards tail rotor. Moving the cg towards the tail rotor increases the power requirement for

the cyclocopter.

4. The coupled trim solution results show that as the weight of the vehicle is increased, required

rotational speed of both cycloidal rotors and tail rotor increases. However, the pitch offset of
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cycloidal rotors required for balancing tail-rotor torque remains unchanged because both the

thrust of cycloidal rotors and moment of tail rotor vary quadratically with rotational speed.

5.5.2 Conclusions from forward flight study

1. It is shown that to sustain steady level forward flight, a twin-cyclocopter needs five control

inputs (mean and differential rpm of cycloidal rotors and mean and differential phase offset

of cycloidal rotors and rpm of nose rotor) to balance five trim equations: two forces (ver-

tical and longitudinal) and three moments (yaw, roll and pitch) equations. Forces in lateral

direction remain always zero.

2. The coupled trim solution results show that mean phase offset of cycloidal rotors increases

with increasing forward speed. Mean rpm and power of cycloidal rotors decreases initially

due to reduced induce power and then increases once profile and propulsive power becomes

dominating. Rotational speed and power of nose rotor decreases asymptotically with forward

speed since it does not have to produce any propulsive force. Nose rotor rolling moment

due to lift offset increases with forward speed, which causes increase in differential rpm of

cycloidal rotors.

3. Increase in cycloidal rotor pitch amplitude decreases rpm, thus decreases profile power but

increases lift induced power. At lower speed, induced power dominates over profile power

so total cycloidal rotor power increases with pitch amplitude. At higher speed, profile power

and parasitic power become more significant, thus total cycloidal rotor power decreases with

increase in pitch amplitude.

4. As the weight of the vehicle is increased, required rotational speed and power of both cy-

cloidal rotors and nose rotor increases. However, increased thrust by drag ratio of cycloidal

rotors decrease mean phase offset of cycloidal rotors.

5. The movement of cg location towards nose rotor demands increased thrust and thus in-

creased rpm and power of nose rotor while decreased thrust, rpm and power of cycloidal
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rotors. Moreover, increased thrust of nose rotor causes increased yawing and rolling mo-

ment, which in turn requires more differential propulsive and vertical forces from cycloidal

rotors to balance out. For this reason, differential phase offset and differential rpm of cy-

cloidal rotors increase. Wastage of cycloidal rotor thrust to balance these moments increases

total power requirement of the cyclocopter.
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

In last few decade, micro air vehicles or MAVs has become extremely popular among re-

searchers and scientists due to its wide range of potential applications towards both military and

civilian sectors. Although, present generation of hover-capable MAVs based on conventional

rotorcraft have shown very poor performance in terms of endurance (<15 minutes), agility, and

disturbance-rejection capability. Developing next generation of MAVs with performance compa-

rable to small birds would require radical improvements in propulsion systems as well as control

and guidance strategies. Cycloidal rotor is one such novel configuration which has huge potential

due to its higher efficiency and maneuverability (360Âř instantaneous thrust vectoring). In the

present dissertation, cycloidal rotor based MAV (cyclocopter) is proposed as an alternative to con-

ventional rotorcraft based MAVs. First step towards building efficient MAVs based on cycloidal

rotor is to develop an aeroelastic framework and coupled trim model of the vehicle, which could

be utilized for design optimization and this is the main objective of the present dissertation.

The main contribution of the thesis is development of an aeroelastic coupled trim model of a

twin-cyclocopter at different flight conditions (i.e hover, forward flight). Twin-cyclocopter consists

of two cycloidal rotors as main thrusters and a conventional horizontal nose-rotor for pitch-torque

balance. Coupled trim analysis requires simultaneous computation of trim controls, vehicle ori-

entation and blade structural responses so that both blade response equations and vehicle trim

equations are satisfied. Control strategy of the vehicle in hover and forward flight is developed.

Trim model of the vehicle is developed based on the above mentioned control strategy. On the

other hand, to obtain the vehicle response (blade structural response and the rotor aerodynamic

loads) for a given set of control inputs, a nonlinear aeroelastic framework of the complete vehicle

is developed. This framework consists of aeroelastic model of cycloidal rotor and aerodynamic

model of conventional nose rotor. The nonlinear aeroelastic model of the cycloidal rotor is devel-
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oped by coupling unsteady aerodynamic model with a fully nonlinear geometrically exact beam

based structural framework capable of predicting large bending and torsional deflections of rotor

blade. Towards this, complex aerodynamics of the cycloidal rotor is thoroughly investigated and

various underlying phenomena, such as dynamic virtual camber, non-uniform inflow, effects of

near and shed wake and leading-edge vortices are rigorously modeled. To obtain the performance

of the conventional nose rotor, a modified BEMT based model with CFD-based airfoil lookup

tables is developed. All the models and the sub-models are systematically validated with results

obtained from in-house experiments. Once validated, the models are utilized to understand the

physics behind the force production of cycloidal rotor.

6.2 Conclusions

6.2.1 Aerodynamic Modeling of Cycloidal Rotor

An unsteady aerodynamic model of cycloidal rotor is developed to predict its performance.

Towards this, aerodynamics of a cycloidal rotor is investigated thoroughly and various underlying

physical phenomena such as dynamic virtual camber, non-uniform inflow, effects of near and shed

wake, leading edge vortices are rigorously modeled. All these detail modeling helped the aerody-

namic model to systematically validate with not only time averaged forces, but also time-history

of aerodynamic forces obtained from in-house experiments. The validated model is utilized for

understanding physics behind the force production of cycloidal rotor. Key conclusions from this

study is listed below.

6.2.1.1 Concluding Remarks: Hover Study

1. Chord-wise variation of incident velocity angle on cycloidal propeller blade is manifested

as virtual camber/incidence effect. Virtual camber and incidence depend on curvilinear flow

geometry, pitch angle, pitch-rate and inflow distribution. Considering all these effects, a

generalized methodology is developed to model virtual camber.

2. Curvilinear geometry causes a static negative virtual camber at all azimuth locations while

pitch, pitch rate and inflow distribution cause cyclic variation of virtual camber with blade
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azimuthal location making it a dynamic virtual camber. A positive blade pitch-rate (nose-up

pitch) creates positive virtual camber, while a negative pitch-rate (nose-down pitch) creates

negative virtual camber.

3. Virtual camber caused by pitch rate creates asymmetry in side force due to blade lift between

the right and the left halves. However, the virtual camber resulting from flow curvature

creates asymmetry in side force between upper and lower halves due to blade drag. These

two types of asymmetries create net time averaged side force on a cycloidal propeller even

with zero phase offset.

4. Due to curvilinear flow, the cycloidal propeller blade experiences reverse or negative virtual

camber in the upper half (upstream half) of its circular trajectory along with decrease in

effective angle of attack due to negative virtual incidence. However, the blade experiences

positive virtual camber (observed from inertial frame) and increase in effective angle of

attack (due to positive virtual incidence) in the entire lower half (downstream half). For

this reason, blades produce larger hydrodynamic forces in the lower or downstream half

as observed from both experiments and analysis. Moreover, unsteady phenomena such as

dynamic stall keep the flow attached to the cycloidal propeller blade up to very high pitch

angles, which results in very high sectional force coefficients.

6.2.1.2 Concluding Remarks: Forward Flight Study

1. It is shown that forward flight velocity changes curvilinear geometry of flow associated with

cycloidal rotor and this alters chord-wise variation of incident flow velocity angle on rotor

blade. This chord wise variation of incident flow angle is manifested as dynamic nonlinear

virtual camber effect, which is very different from what was observed previously for hover.

2. It is shown that dynamic nature of virtual camber plays an important role in the net verti-

cal force production of cycloidal rotor in forward flight. cycloidal rotor blade experiences

negative virtual camber near top of the cycle generating a negative vertical force and it expe-

riences a positive virtual camber near bottom of the cycle generating a positive vertical force.
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Since rotor blade experiences large flow speed at bottom (advancing side) compared to top

(retreating side), the positive vertical force produced at the bottom dominates the negative

vertical force produced at the top. These phenomena lead to net positive vertical force over

a complete cycle.

3. Cycloidal rotor's capability to produce net propulsive thrust heavily depends on dynamic

virtual camber as well as local angle of attack and direction of local blade forces. cycloidal

rotor blade produces small negative propulsive force in the upstream half of the cycle (near 0°

azimuth) due to small negative virtual camber, but it produces large positive propulsive force

at the downstream half of cycle (near 180° azimuth) due to combination of large positive

virtual camber and positive angle of attack. These phenomena lead to net positive propulsive

force over a complete cycle.

4. It is observed that incoming flow impacts downstream of cycloidal rotor at a higher speed

compared to upstream due to acceleration of induced wake after upstream. As the advance

ratio of the rotor increases, effect of induced flow and induced wake becomes insignificant

and flow becomes more uniform and upstream and downstream flow velocity becomes sim-

ilar.

5. As the advance ratio of cycloidal rotor is increased, net vertical force increases while net

propulsive decreases. Also, the additional lift due to virtual camber increases as advance

ratio of cycloidal rotor is increased.

6. The study shows that it is very important for the cycloidal rotor to have a backwards rotation

with respect to forward speed (blade moving away from the flow in the upper half) in order to

generate positive vertically upward force. A forward spin of cycloidal rotor would generate

same amount of vertical force in opposite direction. However, the direction of propulsive

force is insensitive to the direction of rotation.

Although the above mentioned lower order model is computationally inexpensive and capable
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of predicting rotor performance with sufficient accuracy, it can not capture the complex flow-

field of cycloidal rotor with extreme accuracy. Specifically, it is extremely challenging to the

capture the complex inflow distribution, blade vortex interaction and geometry of trailing vortices

using a lower order model. For this reason, a high-fidelity model of cycloidal rotor based on

free-wake is developed to further investigate aerodynamics of cycloidal rotor in more detail. The

wake model consists of near wake and free wake region which includes trailing vortices and shed

wakes. The prediction of the developed free wake model shows even better correlation with in-

house experimental data compared to that of a lower model. Although, wake model is much more

expensive from computational point of view which limits its application for preliminary design

optimization of cycloidal rotor.

6.2.2 Structural Modeling of Cycloidal Rotor

To predict the deflections of cycloidal rotor blade, two independent blade structural models are

developed. For traditional rotorcraft structural analysis, 2nd order nonlinear Hodges-Dowell [106]

models are widely used among scientific community. Initially similar 2nd order nonlinear model of

cycloidal rotor is developed which is capable of predicting moderate bending and torsional deflec-

tions of cycloidal rotor blades. In case of cycloidal rotor, the blades go through large centrifugal

force which causes large nonlinear deflections. 2nd order non-linear model can not capture this

large bending and torsional deflections of rotor blade properly. For this reason, a fully nonlinear

geometrically exact beam based structural model is developed. Both the models are systematically

validated with results obtained from Abaqus, a commonly used software in scientific community.

Key conclusions from the structural analysis are listed below.

1. The 2nd order nonlinear model over-predicts bending deflections. This is because nonlinear-

ities in bending are of third order which is not accurately captured by this 2nd order nonlinear

model. The geometrically exact model can capture large bending deflections accurately.

2. On of the major source of twist of cycloidal rotor blade is nonlinear torsional moment gener-

ated due to bending curvatures. Over-prediction of bending deflections and bending curva-
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tures by 2nd order nonlinear model leads to over-prediction of blade twist. On the other hand,

geometrically exact model gives accurate twist prediction since it can also capture bending

curvatures accurately.

3. More constraints on rotor blade creates larger bending curvatures which in turn leads to

more nonlinearities. It is observed that 2nd order nonlinear model is capable of accurately

predicting deflections until tip bending deflections become 15-20% of blade span, for a can-

tilever blade. While for a simply supported blade, it can give reasonable prediction only

until bending deflection becomes 0.2% of blade span. In case of a cycloidal rotor, blades are

fixed in bending at both end which creates large bending curvatures and thus, nonlinearities

start much earlier. For this reason, it is essential to use a fully nonlinear geometrically exact

model to analyze this types of structure.

6.2.3 Vehicle Response Model

Vehicle response model of twin cyclocopter consists of modeling of cycloidal rotor, which

acts as a primary thruster, and modeling of conventional nose rotor, whose main job is to balance

pitching moment of the vehicle.

Structural modeling of cycloidal rotor shows that rotor blades go through large nonlinear bend-

ing and torsional deflections. Both experimental and analytical approaches are taken to investigate

effect of these deflections on cycloidal rotor performance. Systematic experiments were conducted

with a 4 bladed rotor with varying flexibility over a wide range of rotational speed at different pitch

amplitudes. For experimental purpose, moderately flexible Aluminum blades and highly flexible

Delrin (a type of plastic) blades are utilized. To further investigate effect of blade deflections on ro-

tor performance, an aeroelastic model of cycloidal rotor is developed. In this procedure, unsteady

aerodynamic model of cycloidal rotor is coupled with a fully nonlinear geometrically exact beam

based structural framework. Once the model is systematically validated with in-house experiments,

it is utilized for understanding effects of rotor deflections on rotor performance.

On the other hand, conventional nose rotor blades go through minimal deflections having neg-
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ligible effects on performance, unlike cyclodial rotor blades. For this reason, only an aerodynamic

model of nose rotor based on BEMT is developed for different flight conditions. Performance of

small scale conventional rotor predicted by the developed aerodynamic model is validated with

in-house experiments.

Key conclusions from present study of modeling of cycloidal rotor and nose rotor, are given

below:

1. The experimental results show deterioration in cycloidal rotor performance as the stiffness of

the blades are decreased. It is observed that more flexible blades draw more power while pro-

ducing less thrust, which significantly decreases power loading compared to stiffer blades.

2. Aeroelastic model based on 2nd order nonlinear structural model is capable of predicting

thrust of moderately flexible rotors. However, in the cases of highly flexible blades, this

model underestimate thrust at higher rotational speeds. Highly flexible blades go through

larger bending and torsional deflections at higher rpm due to increased centrifugal force

which varies as the square of rotational speed. Second order structural model over-predicts

bending deflections and axial twist, which causes under-prediction of thrust.

3. Geometrically exact model is able to accurately predict large deflections. Aeroelastic model

based on this model is capable of accurately predicting the thrust of cycloidal rotors for a

wide range of blade flexibilities. Inclusion of geometrically exact model has proven to be

very essential in accurate prediction of thrust performance.

4. Aeroelastic analysis showed that torsional deflection decreases total magnitude of pitch angle

from prescribed pitch causing overall decrease in thrust in the upper half. Although bending

deflections directly does not affect thrust in considerable amount, bending curvature creates

significant amount of nonlinear moment that ultimately increases twist and decreases thrust.

For this reason, it is very important to accurately estimate both bending and torsional deflec-

tions. Since blade twist is the primary reason for the thrust drop, increased torsional rigidity
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of cycloidal rotor blade is required to counteract both linear and nonlinear part of torsional

moments, thus minimize blade twist and thrust drop.

6.2.4 Coupled Trim Modeling of Cyclocopter

Coupled trim analysis of a twin cyclocopter is carried out by simultaneously solving blade

response equations and vehicle trim equations. Twin-cyclocopter consists of two cycloidal rotors

and a conventional horizontal nose rotor. Towards this, a vehicle response model and a vehicle

trim model in hover and forward flight are developed. To obtain blade structural response and

rotor aerodynamic forces, an aeroelastic model of cycloidal rotor and an aerodynamic model of

conventional nose rotor are utilized. The developed model is validated with in-house experimental

data obtained for a trimmed cycloidal rotor in wind tunnel. Once validated, the developed model

is utilized systematically to investigate effects of various design parameters such as vehicle gross

weight, pitch amplitude and longitudinal cg location on control inputs required for vehicle trim.

Key conclusions are listed below:

6.2.4.1 Concluding Remarks: Hover Study

1. Vehicle trim model consist of only 3 equations since other moment (roll) and force equations

(lateral and longitudinal) are automatically satisfied. These three equations include vertical

force balance and yaw and pitching moment balance equations.

2. It is shown that to sustain hovering flight, a twin-cyclocopter needs only three control inputs:

rotational speed of cycloidal rotor and tail rotor and pitch offset associated with cycloidal

rotor. Both the cycloidal rotors need to rotate with same rpm but with opposite pitch off-

set.Alternatively, pitch amplitude of cycloidal rotors can be used as control input instead of

rotational speed.

3. The movement of cg location towards tail rotor demands increased thrust and thus increased

rotational speed of tail rotor to balance pitching moment. Moreover, increased speed of tail

rotor causes increased yawing moment, which in turn requires more side force from cycloidal
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rotor to balance out. For this reason, pitch offset of cycloidal rotor increase as cg is shifted

towards tail rotor. Moving the cg towards the tail rotor increases the power requirement for

the cyclocopter.

4. The coupled trim solution results show that as the weight of the vehicle is increased, required

rotational speed of both cycloidal rotors and tail rotor increases. However, the pitch offset of

cycloidal rotors required for balancing tail-rotor torque remains unchanged because both the

thrust of cycloidal rotors and moment of tail rotor vary quadratically with rotational speed.

6.2.4.2 Concluding Remarks: Forward Flight Study

1. It is shown that to sustain steady level forward flight, a twin-cyclocopter needs five control

inputs (mean and differential rpm of cycloidal rotors and mean and differential phase offset

of cycloidal rotors and rpm of nose rotor) to balance five trim equations: two forces (ver-

tical and longitudinal) and three moments (yaw, roll and pitch) equations. Forces in lateral

direction remain always zero.

2. The coupled trim solution results show that mean phase offset of cycloidal rotors increases

with increasing forward speed. Mean rpm and power of cycloidal rotors decreases initially

due to reduced induce power and then increases once profile and propulsive power becomes

dominating. Rotational speed and power of nose rotor decreases asymptotically with forward

speed since it does not have to produce any propulsive force. Nose rotor rolling moment

due to lift offset increases with forward speed, which causes increase in differential rpm of

cycloidal rotors.

3. Increase in cycloidal rotor pitch amplitude decreases rpm, thus decreases profile power but

increases lift induced power. At lower speed, induced power dominates over profile power

so total cycloidal rotor power increases with pitch amplitude. At higher speed, profile power

and parasitic power become more significant, thus total cycloidal rotor power decreases with

increase in pitch amplitude.
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4. As the weight of the vehicle is increased, required rotational speed and power of both cy-

cloidal rotors and nose rotor increases. However, increased thrust by drag ratio of cycloidal

rotors decrease mean phase offset of cycloidal rotors.

5. The movement of cg location towards nose rotor demands increased thrust and thus in-

creased rpm and power of nose rotor while decreased thrust, rpm and power of cycloidal

rotors. Moreover, increased thrust of nose rotor causes increased yawing and rolling mo-

ment, which in turn requires more differential propulsive and vertical forces from cycloidal

rotors to balance out. For this reason, differential phase offset and differential rpm of cy-

cloidal rotors increase. Wastage of cycloidal rotor thrust to balance these moments increases

total power requirement of the cyclocopter.

6.3 Future Recommendations

Significant research is needed to improve this novel concept and utilize cyclocopter for practical

applications. Some of the future recommendations in this aspect are listed below.

1. In the present dissertation, development of lower order coupled trim model of a twin cy-

clocopter is discussed which is ideal for preliminary design and optimization. On the other

hand, a very accurate high-fidelity model needs to be developed for final design phases of

cycloidal rotor based MAVs.

(a) From aerodynamic point of view, 3-D CFD model of cycloidal rotor needs to be utilized

for more accurate prediction of rotor performance. Moreover, high fidelity CFD model

might reveal some key physics behind the operation of cycloidal rotor which are not

explored using lower order model.

(b) For the present structural analysis, isotropic beam based model of cycloidal rotor blade

is developed. This structural analysis can to be extended for composite models of the

rotor blades. On the other hand, a plate based model or 3-D model might be slightly

more accurate for the analysis of low aspect ratio blades.
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(c) Finally, high fidelity CFD-CSD model of cycloidal rotor needs to be developed by

coupling the CFD with structural framework.

2. Scalability of this concept needs to be investigated from both aerodynamic and structural

point of view. High-fidelity CFD-CSD model might be crucial in this respect.

(a) At MAV scale, cycloidal rotor is found be aerodynamically more efficient compared to

a conventional rotor. Similar performance comparison needs to be carried out for rotors

with larger scales. Some key aerodynamic phenomena (such as formation of leading-

edge dynamic-stall vortex, nonlinear dynamic virtual camber) behind the operation of

cycloidal rotor at MAV scale might be very different at larger scales.

(b) With increasing dimension, rotor blades tend to be more flexible. Thus, thorough struc-

tural analysis needs to be carried out to investigate upward scalability of cycloidal rotor.

3. Developed coupled trim model can be utilized to develop a flight dynamic model of twin

cyclocopter. System identification of the system needs to be carried out for this purpose.

Flight dynamic model might be crucial to develop advanced control strategies of the vehicle.

4. Present dissertation focuses on developing modeling tools of cycloidal rotor and cyclocopter.

These tools can be utilized to develop a thorough design framework of the vehicle which

would be extremely helpful for developing next generation cyclocopters.

5. Modeling tools developed at present study can be further utilized to optimize the perfor-

mance of cycloidal rotor and cyclocopter. For example, the performance model of cycloidal

rotor can be used to investigate the optimum pitch kinematics of cycloidal rotor at different

advance ratios.

6. Thorough investigation is required to find the optimum configuration of cyclocopter (i.e.

twin cyclocopter vs quad-cyclocopter etc).

Cycloidal rotors are speculated to be very quiet compared to conventional rotor due to ex-

tremely low operating rpm. Although no scientific study is carried out to investigate the

232



potential acoustic advantages of cycloidal rotor. Towards this, an aeroacoustic model of

cycloidal rotor needs to be developed by coupling aeroelastic model of cycloidal rotor (de-

veloped in the present thesis) with an acoustic solver.
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