
 

 

 

 

EXPERIMENTAL INVESTIGATION ON STEAM-WATER DIRECT CONTACT 

CONDENSATION USING LASER-INDUCED FLUORESCENCE (LIF) 

 

 

A Thesis 

by 

KIMOON LEE  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,  Yassin A. Hassan 

Committee Members, Kalyan Annamalai 

 Rodolfo Vaghetto 

 Duy Thien Nguyen 

Head of Department, John E. Hurtado 

 

August 2019 

 

Major Subject: Nuclear Engineering 

 

 

Copyright 2019 Kimoon Lee 



 

ii 

 

ABSTRACT 

 

The objective of this study is to conduct the experiments in the steam-water direct contact 

condensation and to investigate on the heat transfer characteristic such as the heat transfer 

coefficient, the pool temperature distribution and the bubble equivalent diameter using the laser-

induced fluorescence (LIF) and the image processing technique. As a working fluid, deionized 

(DI) water purified by the reverse osmosis method is utilized. The experiments are performed at 

pool temperatures of 70-95°C ± 1°C, with different steam mass fluxes of 5-65 kg/m2·s on a 

9.525 mm nozzle. The pool temperature is measured using the LIF and thermocouples, and the 

surface area of the bubble and the volume flow rate are calculated by the imaging processing 

technique. The averaged heat transfer coefficient is evaluated in a range of 24.57-179.78 

kW/m2·K. It is found that the heat transfer coefficient in unstable condensation region has high 

sensitivity on both the pool temperature and the steam mass flux. Using LIF method, the time-

averaged temperature field of the entire pool is visualized, which could be utilized to evaluate 

not only the averaged heat transfer coefficient but also the local heat transfer coefficient since it 

is possible to measure the instantaneous local temperature change that could not be measured 

using thermocouples only. The bubble equivalent diameter is found in range of 0.033-0.114 m. 

The analysis on the change in the pattern of the bubble equivalent diameter due to increase of the 

steam mass flux and the pool temperature shows that the unstable isolated bubble occurred at the 

low mass flux region gradually tends to transform to the stable jet shape since the regime of the 

steam condensation is changed from the unstable condensation to the stable condensation as the 

steam mass flux increases. 
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NOMENCLATURE 

 

A  Surface area of steam bubble, m2 

bA  Wetted surface area of bubble, m 

B  Condensation driving potential, ( ) ( )p s f s fc T T h h− −  

C  Dye concentration, kg/m3 

PLc  Liquid specific heat, J/kg·K  

PSc  Steam specific heat, J/kg·K  

d  Nozzle diameter, mm  

,b eqD  Bubble equivalent diameter of wetted surface, m 

G  Steam mass flux, kg/m2∙s  

mG  Mean value of steam mass flux, kg/m2∙s  

Hh  Convective heat transfer coefficient, W/m2·K 

sh  Steam enthalpy, kJ/kg 

fh  Water in pool enthalpy, kJ/kg 

fgh  Enthalpy difference between steam and water in pool, J/kg 

I  Fluorescence emission intensity, W/m2 

0I  Incident laser beam intensity, W/m2 

m  Steam flow rate, kg/s 

LP  Liquid pressure, kPa  
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sP  Steam pressure, kPa  

q  Heat transfer rate from steam to water, W  

q  Heat flux, W/m2 

fT  Pool temperature, °C 

sT  Steam temperature, °C 

T  Temperature difference between steam and water in pool, °C 

V  Condensed volumetric flow rate of steam, m3/s, 

s  Steam density, kg/m3 

L  Liquid density, kg/m3 

  Fluorescence quantum efficiency 

  Absorption coefficient, m3/kg 

L  Liquid thermal conductivity, W/m·K 

L  Liquid kinematic viscosity, m2/s 
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1. INTRODUCTION 

 

The steam-water direct contact condensation is one of the common phenomena occurring 

in a variety of industrial applications like a direct contact heat exchanger and a feedwater heater. 

Especially, this phenomenon has been used for various equipment of nuclear power plants such 

as an in-containment refueling water storage tank (IRWST) of the advanced pressurized water 

reactor (APWR) and a pressure suppression pool of the boiling water reactor (BWR) because of 

its high efficiency regarding heat transfer. In case of a loss of coolant accident (LOCA), BWRs 

utilizes pressure suppression pools to minimize the pressure increase inside the containment. A 

mixture (water, air, and steam) leaked from a break point of a cooling system is condensed 

directly in the suppression pool and vented as shown in Figure 1. 

 

 

Figure 1. BWR pressure suppression system designs (NUREG-2196, 2016):  

1-Primary containment, 2-Drywell, 3-Wetwell, 4-Suppression pool, 5-Vent system  

 

NUREG-2196 (2016) report represents that how fluid comes into the suppression pool 

over time after LOCA occurs. Initially,  a water in the downcomer is vented until about 0.3 
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seconds after a LOCA, and then a mixture of a non-condensable gas (NCG) and steam is pushed 

into a suppression chamber until around 20 seconds. After a flow level of the NCG is low from 

20 seconds, the fluid entering the suppression pool becomes a steam-water mixture, and, in the 

suppression pool, the steam-water direct contact condensation occurs dominantly. Therefore, 

understanding of the heat transfer mechanism in steam-water direct contact condensation is 

essential since the direct contact condensation is the actual phenomenon that happens in BWRs 

suppression pool when a LOCA occurs. 

Because of this importance, numerous studies have been performed on direct contact 

condensation. Especially, researches regarding the heat transfer coefficient have been actively 

conducted in order to understand the heat transfer characteristics at the interface between the 

steam and water. Brucker and Sparrow (1977) performed the steam bubble experiments of the 

direct contact condensation at six different pressures changing the pool temperature. The bubble 

collapse pattern was photographed using a high-speed camera, and the change of bubble volume 

at each steam pressure was analyzed. Based on these data, the condensation heat transfer 

coefficient was proposed. Fukuda (1981) experimented with the boundary conditions of varying 

nozzle diameter, steam mass flux, and pool temperature. Though the image analysis, the 

estimated heat transfer coefficient and the frequency were analyzed. Aya and Nariai (1991) 

proposed a regime map of the steam condensation in pool water at the low mass flux region of 0-

40 kg/m2·s or less using the downward injection nozzle. In addition, the heat transfer coefficient 

was derived from two experiments (the bubble injection into the water and the water injection 

into the steam flow) and compared with previous studies. Kar et al. (2007) mathematically 

calculated the heat transfer coefficient using the different five equations and compared it with the 

experimental data of the previous researches.  
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In the stable condensation region, which is at the high mass flux region, the heat transfer 

coefficient is derived through a steam jet modeling unlike the methods that derive the heat 

transfer coefficient directly by measuring the required properties as mentioned above. Chun et al. 

(1996) proposed a condensation map of high steam mass flux region (≥200 kg/m2·s). Through 

the steam condensation experiments conducted on vertical and horizontal nozzle changing the 

nozzle diameter and the pool temperature, the heat transfer coefficient was evaluated. Song et al. 

(1998) also conducted the experiments of the direct contact condensation with five different 

horizontal nozzles with various pool temperature at the high steam mass flux region (≥250 

kg/m2·s). Three steam jet shapes (conical, ellipsoidal, and divergent shapes) were proposed in his 

study, and a steam jet length and axial & radial temperature distributions were analyzed for each 

jet shapes. Kim et al. (2004) proposed the empirical correlation of the heat transfer coefficient 

using three models, interfacial transport due to turbulence intensity, interfacial transport due to 

surface renewal, and interfacial transport due to shear stress. They concluded that the 

temperature of the subcooled water does not significantly affect the heat transfer coefficient at 

the high steam mass flux region (≥300 kg/m2·s). Wu et al. (2007) conducted the experiments of 

the direct contact condensation using with the convergent and divergent nozzle at the high steam 

mass flux region (≥298 kg/m2·s). The maximum expansion ratio of the steam plume and the 

penetration length of the steam plume were derived, and then the correlation of the condensation 

heat transfer coefficient was proposed using the expansion ratio. Song et al. (2012) conducted 

experiments about the overall steam jet behavior in order to design the steam sparger contained 

in an IRWST pool in the APR 1400 reactor. The experimental data were also analyzed using 

computational fluid dynamics (CFD). The summary of the previous equations for the heat 

transfer coefficient is given in Table 1.  
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Table 1. Summary of proposed equations for the heat transfer coefficient from literatures 

Authors Instruments 
G  

(kg/m2 s) 

d
(mm) 

fT  

(°C) 
Equation 

Hh  

(MW/ 

m2∙K) 

Brucker 

and 

Sparrow 

(1977) 

High-speed 

camera 

1.03-6.21 

MPa 
3 

15-

100 
( )

v fg

sat

dV
h

dt
h

A T T





 
 
 

=
−

 
0.01 

Fukuda 

(1981) 

High-speed 

camera 

Thermocouple 

63-233 16.1 10-90 

0.9

43.78 sL PL

L L fg

dG c T
h

d h



 

  
=  

 
 

0.01-

0.7 

Simpson 

and Chan 

(1982) 

High-speed 

camera 

Thermocouple 

147-333 
6.35-

22.2 
25-65 

0
=



fg

c

mh A
h

TA
 

0.15-

0.69 

Jeje et al. 

(1989) 

High-speed 

camera 

Thermocouple 

80-200 5 15-20 ( )
( )( )


=

−

v

sat b

H
h t

A t T T
 0.2-2.4 

Aya and 

Nariai 

(1991) 

 0-40 18.29 10-85 ( )=  −s th q T T  0.1-2.0 

Chun et al. 

(1996) 

High-speed 

camera 

Thermocouple 

250-600 
1.35-

10.85 
13-82 

0.3714

0.04051.3583
 

=   
 

p m

m

G
h c G B

G
 1.0-3.5 

Song et al. 

(1998) 

High-speed 

camera 

Thermocouple 

250-1240 5-20 20-95 

0.13315

0.035871.4453
 

=   
 

p m

m

G
h c G B

G
 

1.24-

2.05 

Kar et al. 

(2007) 

High-speed 

camera 

Thermocouple 

72 0.6-1 15-65 
,

=
−

c lv v l

v c

v H
h

T T
 0.9-6.5 

Wu et al. 

(2007) 

High-speed 

camera 

Thermocouple 

298-723 

2.2 

and 

3.0 

19.8-

69.8 

0.75

0.1

0.25 0.3

1
0.1503

4 2 
=  

−

 
 
 

l p

con e

l v

a

m

s

k c
h G

v

p
G B

p

 
0.63-

3.44 

Gulawani 

et al. 

(2009) 

Hot film 

anemometry 

Thermocouple 

472-501 1-2 35-45 
( )

2

=
−

w

film R B

l R
h

A T T
 

0.1- 

4.0 

Song et al. 

(2012) 

High-speed 

camera 

Thermocouple 

150-1250 5-20 20-90 

0.1333

0.36 01.445
 

=   
 

p m

m

G
h c G B

G
 

1.24-

2.05 
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Compared with previous researches, there are two significances in this study. The first is 

to derive the heat transfer coefficient through experiments of the steam-water direct contact 

condensation in the unstable condensation region, which is at the steam mass flux of 5-65 kg/m2-

s. Although Aya and Nariai (1991) suggested the heat transfer coefficient correlation at low mass 

flux (0-40 kg/m2-s), which is the chugging and condensation oscillation region, the calculated the 

heat transfer coefficient values are only represented without explaining about detailed 

experimental data and measurement techniques.  

Except Aya and Nariai (1991), most of the previous works have been focused on the 

stable condensation region, which is the intermediate to high steam mass flux region, due to its 

high possibility of mechanical damage as Song et al. (2012) stated in their paper. However, the 

steam-water direct contact condensation in BWRs suppression chamber starts approximately 20 

seconds following the LOCA. Initially the stable condensation occurs due to the high steam mass 

flux, but will change into the unstable condensation, which is a condensation oscillation (CO). 

This is because the temperature of the suppression pool increases due to entering the initial high 

steam flux, and the steam mass flux gradually decreases with time.  

Therefore, since the unstable condensation is the actual phenomenon occurring in BWRs 

suppression pool, current study of the heat transfer characteristics in the low mass flux region 

would contribute to a better understanding of steam-water condensation process in nuclear 

reactor. Figure 2 shows the condensation regime of present experiments conducted at low steam 

mass flux of 5-65 kg/m2-s with the pool temperatures of 70-95°C. 
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Chugging (C), Transitional Chugging (TC), Condensation Oscillation (CO), Bubbling Condensation 

Oscillation (BCO), Stable Condensation (SC), and Interfacial Oscillation Condensation (IOC). 

Figure 2. Condensation regime map of the present experiments 

 

Second, several previous researches have been used thermocouples to measure the pool 

temperature. The measurement method using thermocouples inherently have drawbacks such as 

point wise, intrusive, and low sampling rate measurement. So, a change of an average bulk 

temperature might be presented, but it is difficult to measure an instantaneous local temperature 

change. In order to overcome the disadvantages, the general pattern of the steam flow in the 

suppression pool was developed, and then a local pool temperature was derived based on the 

average bulk temperature measured by thermocouples under the assumption that the steam flows 

C

TC CO SC

IOCBCO

Non Condensation
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as the developed pattern in most situations in NUREG-0783 (1981) report. The local 

temperature, however, is derived based on the assumption, not the local temperature measured by 

actual experiments. Gulawani et al. (2009) measured the local pool temperature using Constant 

temperature anemometry (CTA) and Hot film anemometry (HFA), and compared the measured 

local temperature with the predicted temperature from CFD. But the HFA and CFA can only 

measure the local temperature of the pool, not the temperature field of the pool unlike the LIF 

method. Thus, in this study, both thermocouples and LIF method have been utilized to measure 

not only the average temperature in the pool but also the temperature field of the pool to show 

accurately the instantaneous temperature change occurring at the interface between the water and 

the steam where the heat transfer occurs. 

In summary, the goal of this study is to conduct the experiments of the steam-water direct 

contact condensation and to investigate on the heat transfer characteristics like the heat transfer 

coefficient at the low mass flow region (5-65 kg/m2-s) where an unstable condensation occurs. 

Also, the temperature distribution in the pool is measured by LIF and thermocouples, and the 

bubble equivalent diameter in the unstable condensation is analyzed by an image processing 

technique. 
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2. METHODOLOGY 

 

The fundamental concept of the heat transfer coefficient correlation is based on Newton’s 

law of cooling as: 

  ( )H s f

q
q h T T

A
 = =  −  (1) 

where q  is the heat flux in W/m2, q  is the heat transfer rate between the steam and the 

pool in W, A  is the surface area of the steam bubble in m2, Hh  is the convective heat transfer 

coefficient in W/m2·K, sT  is the temperature of the steam in Kevin, and 
fT  is the temperature of 

the pool in Kevin. 

q  can be also described as: 

 ( )p s fq m c T T=  −  (2) 

where m  is the flow rate of the steam in kg/s and 
pc  is the specific heat of the steam in 

J/kg·K. 

Therefore, the heat transfer coefficient can be calculated as following:  

 
( )

( )s f

H

s f

V h h
h

A T T

  −
=

 −
 (3) 

where V  is the condensed volumetric flow rate of the steam in m3/s,   is the density of 

the steam in kg/m3, sh  is the enthalpy of the steam at the given temperature and pressure in 

kJ/kg, and 
fh  is the enthalpy of the water at the pool temperature in kJ/kg. 

Eq. (3) is the equation of Brucker and Sparrow (1977) is adopted for this study to 

calculate the heat transfer coefficient since most variables in this correlation can be obtained 
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through LIF, thermocouples, and image processing technique that are the main methods of this 

study. 

V  is the condensed volumetric flow rate calculated by Eq. (4). 

 exp calV V V= −  (4) 

where expV  is the expected volume flow rate, which is the measured volumetric flow rate 

of the steam at the inlet region and 
calV is the calculated volume flow rate of the steam after 

condensation. 

For a deeper understanding of the steam condensation, bubble’s equivalent diameter of 

the wetted surface where the mass transfer occur can be calculated as follows: 

 ,

4


= b

b eq

A
D  (5) 

where Ab is the wetted surface area of the bubble at a given time. 

In this study, 
fT   is measured using both LIF and thermocouples, 

calV  and A  are 

measured using high-speed camera imaging techniques. The other properties, , , ,s s fT h h  and 

expV  are measured and evaluated by the DAQ data. 

 

2.1 Image Processing 

The condensation visualization method consists of two steps, obtaining high definition 

pictures of the steam bubble at high frame rates and bubble tracking using image processing.  

Figure 3. shows the LED backlight setup to obtain high quality images. 
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Figure 3. LED backlight setup 

 

The backlight located behind the pool is acting as a source of shadowgraph as well as a 

constant light intensity enhancement to reduce undesired noise of the raw image captured from 

the sensor of a high-speed camera. More details about each instrument will be explained in the 

experimental setup section. 

The images captured from the high-speed camera are pre-processed to obtain the physical 

characteristics of the bubble as shown in Figure 4 (a). Using a commercial program, Image J, 

binary images can be obtained in order to gain the information of the interface between the 

bubble and the subcooled water as shown in Figure 4 (b). A bubble tracking program is 

developed to extract surface area, volume, cross-sectional area, and the equivalent diameter of 

steam bubbles from the consecutive high-speed images using the image processing program. The 

program automatically detects the irrelevant objects other than the traced bubbles such as the 
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thermocouples and the jet nozzle and eliminates from the image plane to prevent further 

interference of extracting the useful bubble information as shown in Figure 4 (c). 

 

 

(a) Raw image (b) Binary image (c) Processed image 

Figure 4. Example photographs of image processing (
fT : 70 °C, G : 6.95 kg/m2-s) 

 

The volume and surface area of the bubbles are calculated by assuming the azimuthal 

symmetry, and numerical integration using cylindrical geometry. The height of the cylinder is 1 

pixel, while the diameter is the number of pixels found in that lateral-wise axis. The integration 

of all the volumes and surface areas of the cylinders can calculate the total volume and surface 

area of the bubble.   
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2.2 Laser-Induced Fluorescence (LIF) 

LIF is used to measure the pool temperature, which changes in a short period of time at 

the moment of condensation. LIF is one of the methods to visualize the temperature field by 

using the fluorescence phenomena of a dye occurred by the laser. The fluorescence emission 

intensity can be defined as: 

     0I I C=  (6) 

where 0I  is the incident laser beam intensity in W/m2, C  is the concentration of the dye 

in kg/m3,   is the fluorescence quantum efficiency, and   is the absorption coefficient in m3/kg.  

In this study, Rhodamine B (Rh B) has been used for the fluorescent dye since its 

temperature sensitivity is large (2.3%/K) compared to other organic dyes. Rh B concentration 

was 20 mL of 1g/L Rh B aqueous solution with 1 mL of Isopropyl alcohol in 191 ± 1.72 L of 

water. 

Figure 5 shows an example of the calibration between the pool temperature and the light 

intensity proposed by Yang et al. (2019). Figure 5 (a) represents the fluorescence spectra of the 

Rh B measured by a spectrometer, and Figure 5 (b) shows the exponential curve fitting used to 

calculate the correlation between the pool temperature and the intensity of the light. 
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     (a) Fluorescence spectra of Rhodamine B 

measured by spectrometer 

      (b) Exponential curve fitting 

Figure 5. Example of calibration between pool temperature and light intensity  

 

The fluorescence spectra of Rh B has a characteristic, which is that the intensity of 

emitted light for 584 nm wavelength has a proportionality to temperature as shown in Figure 5 

(a). The intensity difference by the temperature is clearly distinguished around 580 mm peak. In 

additions, the intensity decreases as the temperature increases and especially at the low 

temperature dramatically decreases compared to the high temperature region. So, an exponential 

curve fitting is suitable to calibrate the correlation between the pool temperature and the intensity 

of the fluorescence of Rh B as shown in Figure 5 (b). 

Based on the relationship between the pool temperature and the light intensity, total 6,000 

photographs (1,000 images per one calibration temperature) are recorded without the steam for 6 

calibration temperatures with the temperature range of 70 to 95 °C (at intervals of 5 °C) using a 

high-speed camera with the full resolution of 1,280x860 and frame rate of 1,000 fps in order to 

calibrate LIF data of current study. After time averaging the 1,000 photos per each calibration 



 

14 

 

temperature, total 6 time-averaged images are generated and accumulated into one integrated 

image. The integrated image is divided by 4x4 pixel and has a total of 68,800 windows. In a 

single window, 12 pieces of temperature information are accumulated. According to camera 

sensor-specific calibration proposed by Yang et al. (2019), the averaged intensity of calibration 

curve of 68,800 decreases steadily as the temperature increase like Figure 5’s result.  

The camera sensor detects a certain number of photons regardless of the intensity of the 

photons. Since the 580 nm bandpass filter is used, the camera sensor can capture images with 

580±20 nm wavelength regardless of photon intensity. As shown in Figure 5, when the intensity 

is high (pool temperature is low), the difference between the peak value and the surrounding 

value is distinguished clearly, which means that high resolution could be obtained when 

normalized. So, it can be reported that the distribution of the intensity is smaller when the pool 

temperature is low while the distribution of the intensity increases as the temperature increases.  

Figure 6 presents the three main instruments required to conduct LIF experiments; a 532 

nm continuous laser, a LED backlight as a diffusive optical source, and a high-speed camera 

with 580 bandpass filter.  
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Figure 6. Schematic of LIF setup 

 

Using this LIF setup, the experiments of the steam-water direct contact condensation are 

performed for various steam flow rate. Figure 7 shows the example images (raw and calibrated 

images) at a temperature of 75 °C and the mass flow rate of 0.5 g/s.  

 

Backlight for
Shadowgraphy 

532nm Laser

C
yl

in
d

ri
ca

l l
e

n
s

High-speed camera

Laser sheet

Test section

Steam or Steam/air 
bubble

Shadow generated 
from the bubble

LED Backlight 



 

16 

 

 

Figure 7. Example images using LIF (Left: raw image, right: calibrated image) 

 

Based on the calibration data as shown in Figure 7, the temperature distribution of the 

pool will be analyzed in the results and discussion section. 

0 ms 10.333 ms 20.667 ms 31 ms 41.333 ms 51.667 ms 62 ms
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3. EXPERIMENT 

 

3.1 Experimental Setup 

The experimental facility has been designed to investigate the heat transfer coefficient in 

steam-water direct contact condensation using LIF as shown in Figure 8 and 9. 

 

 

Figure 8. Schematic diagram of experimental facility 
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Figure 9. Drawing of the experimental facility 

 

This facility consists of three major components, which are a steam supply section, a test 

section, and data measurement system. The steam supply system produces and controls the steam 

flow and temperature. The steam produced from the steam generator is injected into the sub-

cooled water tank, and then the bubbles of the steam will be condensed during phase change. The 

test section with the laser and high-speed camera is used to capture the image of the condensing 

bubbles. To measure the temperature, both K-type thermocouples and LIF method are used. The 

pressure of the steam is measured by pressure transducers. All measured data is collected in 

DAQ and then transferred into a computer to analyze the data. 
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3.1.1 Steam Supply Section 

The overall design of the steam supply section is presented in Figure 10, and an isometric 

view of the steam supply system is shown in Figure 11.  

 

 

Figure 10. Schematic diagram of experimental facility 
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Figure 11. Isometric view of steam supply system 

 

 The steam is produced in the Sussman Electric Boiler Model ES-18 as shown in Figure 

12, which provides a maximum steam rate of 6.829 g/s and has a design pressure 0-689.4 kPa. 

The control valve located on the steam outlet adjusts the steam mass flow rate. The steam supply 

line is insulated by fiberglass covering to maintain the saturated steam. 
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Figure 12. Steam generator 

 

In order to remove water droplets, the steam travels through a steam separator model 

81SATO designed for a maximum temperature of 111.2 °C, and a maximum pressure of 1,034.2 

kPa as shown in Figure 13. The temperature and flow rate of the steam are measured by a K-type 

thermocouple and a flowmeter, Micro Motion Coriolis flowmeter model CMF025 as shown in 

Figure 14, which has flow accuracy with gases of ± 0.75% of rate. Band type heaters are 

wrapped around the steam pipeline located below the water tank to maintain high-quality 

saturated steam. To measure the temperature of the steam, the K-type thermocouple is installed 

right before entering the test section, where is below the water tank. 
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Figure 13. Steam separator 

 

 

Figure 14. Coriolis flow meter 

 

3.1.2 Test Section 

The whole test section is in a water tank with dimensions of 609.6 mm x 609.6 mm x 

774.7 mm (24 in. x 24 in. x 30.5 in.) in width x depth x height as shown in Figure 15. The 

detailed dimensions of the test section are provided in Figure 16. The nozzle at the center of the 

water tank is 9.525 mm inner diameter and located at 42 cm ± 1 cm below the free surface of the 

water pool.  
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Figure 15. Photographic of the test section 

 

 

 
 

Figure 16. Test section 2D drawings: Front view (Left), Top view (Right) 
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Ten K-type thermocouples are located near the nozzle to measure the temperature of the 

water as shown in Figure 17. They are arranged in groups of 5 at opposite directions of the 

nozzle and held by a traverse system that is capable of adjusting their location in the z-direction. 

To achieve a desired water tank temperature, the water is circulated and heated up before 

injecting steam.  

 

 

Figure 17. Thermocouples labeling 

 

Figure 18 shows the components of the test section such as a high-speed camera, a 

continuous laser, and a LED backlight. The description and specific models are described in 

Table 2.  
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Figure 18. Configuration of the test section 

 

Table 2. Description of test section components 

Label Description Model 

1 High-speed camera Phantom V711 

2 Thermocouples K-Type 

3 1-D Traverse VXM step motor 

4 LED Backlight PBD-6060 

5 10 W Laser LSR 532W 

6 Jet Nozzle 9.525 mm inner diameter 

 

Figure 19 shows the laser system used in current experiments for continuous lasing. 
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Figure 19. 10 W laser system 

 

The 10W laser model LSR 532W is equipped on the experimental facility for LIF. The 

laser is designed for a wavelength of 532.515 nm and power stability of 5%. It can provide an 

enough intensity beam is able to be adjusted from having an operation to a desired frequency.  

In order to capture the bubble images, a LED backlight is installed behind the water. The 

LED backlight model PBD-6060 is utilized to make a shadow graphic effect as shown in Figure 

20. This white LED has 600 x 600 (L x W). Also, it has visible light quantity of 4,100 lumens, 

and power consumption of 48 W.  

 

 

Figure 20. LED backlight (PBD-6060) 



 

27 

 

A high-speed camera installed in front of the pool is the Phantom v711 as shown in 

Figure 21. It has 1280 x 800-pixel resolution with 7,530 frames per second and a maximum 

frame rate of 680,000 fps at 128 x 80 pixel. Also, the 580 nm bandpass filter is installed at the 

front of the lens in order to filter wavelengths outside the 580 ± 20 nm. The traverse can be 

moved in two different locations to adjust the camera location for the desired picture frame.  

 

 

Figure 21. High-speed camera (Phantom V711) 

 

3.1.3 Data Measurement System 

At the experimental facility, high-quality system is equipped to measure accurate 

properties. The temperature of fluids is measured by using K-type thermocouples, which have an 

accuracy of 1 °C and a range of 0-1250 °C. In order to measure the pressure of the fluid, the 

pressure transducers, which have a range of 0-50.0 psi and ± 0.02 % FSO (Full-Scale Output)/g 

accuracy, are used. Each measuring instrument is connected to a Data Acquisition (DAQ), model 

NI SCXI-1000 made by National Instruments as shown in Figure 22. All data transferred via 

DAQ Assistant are integrated by using the LabVIEW program. The sampling rate and time for 

each experiment are 1.0 kHz and 30 s.  
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Figure 22. DAQ (NI SCXI-1000) 

 

3.2 Experimental Procedure 

The experimental procedure not only includes the preparation for the main components 

such as the water tank, the steam generator, and the data acquisition system but also the actual 

experimental flow.  

At first, the water tank is filled with purified DI water and heated until to desired pool 

temperature using water heaters. During using the water heaters, the circulation pump must be 

turned on to prevent the water heater from overheating. Total 20 mL of Rhodamine-B is resolved 

into the water tank (212 liters of DI water) and mixed for LIF. While heating, LIF images are 

taken for calibration without steam from room temperature 20°C to target temperature 70 - 95°C 

with intervals of 5-10°C. 

The steam generator is connected to DI water system to fill the DI water for making the 

steam. The steam generator is turned on and connected to the steam separator that rust removal 
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was completed before the experiments. Prior to actual experiments, the steam must be injected 

sufficiently to extract all air in the tube. The camera is adjusted at the top of the nozzle to capture 

the maximum volume of the bubble and set to take 1,000 sheets per second. 

DAQ preparation ensures that data acquisition systems are functioning correctly before 

the test is started. First, open and run LabVIEW Vi required for the test to observe and check the 

values of the instruments. If they don’t match the following values in Table 3, the instruments 

should be corrected. After the preparations are completed, the test is ready to be initiated. Also, 

all the experimental conditions are summarized in Table 4. 

 

Table 3. Target values 

Instrument Value 

Thermocouple 70 - 95 °C 

Coriolis Flowmeter ~ 0 g/s 

Pressure Transducer ~ 14.7 psia 

 

Table 4. Experimental conditions 

Parameter Value Unit 

Steam temperature ( sT ) > 101 °C 

Pressure in pool ( P ) ~ 110 kPa 

Steam flow rate ( m ) 0.36-4.55 g/s 

Steam mass flux (G ) 5.05-64.85 kg/m2-s 

Pool temperature ( fT ) 71/78/83/86/90/92  °C 

 

Total 48 experiments are performed at pool temperatures of 70 to 95°C + 1°C, with 

different steam mass fluxes between 5 and 65 kg/m2-s. The test matrix is shown in Table 5 

including averaged flow properties measured by experimental apparatuses.  
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Table 5. Test matrix (averaged properties after measurement) 

Test # fT  (°C) sT  (°C) m  (g/s) 
G  

(kg/m2-s) 
fh  

(kJ/kg) 

sh  

(kJ/kg) 

s  

 (kg/m3) 

S1-1 71.00 100.97 0.50 6.95 297.21 2677.09 0.62 

S1-2 70.96 101.04 1.26 17.72 297.06 2677.20 0.62 

S1-3 70.94 101.24 1.73 24.22 296.97 2677.52 0.62 

S1-4 70.91 101.49 2.16 30.26 296.83 2677.92 0.63 

S1-5 70.74 101.88 2.85 40.05 296.11 2678.53 0.64 

S1-6 70.93 102.06 3.22 45.13 296.91 2678.80 0.64 

S1-7 71.06 102.39 3.79 53.23 297.45 2679.33 0.65 

S1-8 70.66 102.74 4.32 60.56 295.77 2679.87 0.65 

S2-1 78.75 102.10 0.54 7.58 329.71 2678.87 0.64 

S2-2 78.87 102.79 0.95 13.36 330.20 2679.96 0.66 

S2-3 78.35 102.12 1.59 22.38 328.02 2678.91 0.64 

S2-4 77.74 101.53 2.00 28.13 325.45 2677.98 0.63 

S2-5 77.68 101.59 2.85 40.00 325.23 2678.07 0.63 

S2-6 77.74 101.29 3.33 46.77 325.45 2677.61 0.62 

S2-7 77.38 101.63 3.89 54.52 323.95 2678.14 0.63 

S2-8 77.15 102.21 4.34 60.84 323.00 2679.05 0.64 

S3-1 82.86 100.93 0.44 6.20 346.94 2677.03 0.62 

S3-2 83.42 101.61 0.92 12.86 349.33 2678.11 0.63 

S3-3 83.33 101.64 1.51 21.21 348.91 2678.16 0.63 

S3-4 83.44 102.09 2.12 29.82 349.40 2678.85 0.64 

S3-5 83.38 101.95 2.83 39.69 349.14 2678.64 0.64 

S3-6 83.26 101.90 3.31 46.41 348.64 2678.56 0.64 

S3-7 83.59 102.26 3.74 52.44 350.02 2679.13 0.64 

S3-8 83.02 102.51 4.48 62.91 347.61 2679.52 0.65 
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Table 5 Continued. Test matrix (averaged properties after measurement) 

Test # fT  (°C) sT  (°C) m  (g/s) 
G  

(kg/m2-s) 
fh  

(kJ/kg) 

sh  

(kJ/kg) 

s  

 (kg/m3) 

S4-1 86.37 101.09 0.84 11.83 361.69 2677.29 0.62 

S4-2 86.46 100.84 1.09 15.31 362.06 2676.90 0.62 

S4-3 86.57 101.17 1.56 21.91 362.56 2677.42 0.62 

S4-4 86.56 101.36 2.16 30.30 362.52 2677.71 0.63 

S4-5 86.50 101.53 2.73 38.38 362.27 2677.98 0.63 

S4-6 86.44 101.65 3.13 43.94 362.02 2678.17 0.63 

S4-7 86.43 102.07 3.79 53.14 361.95 2678.83 0.64 

S4-8 86.50 102.40 4.35 61.09 362.24 2679.34 0.65 

S5-1 89.83 100.89 0.81 11.34 376.24 2676.97 0.62 

S5-2 90.03 100.89 1.20 16.81 377.08 2676.98 0.62 

S5-3 90.17 101.22 1.66 23.26 377.68 2677.50 0.62 

S5-4 90.14 101.45 2.15 30.24 377.55 2677.86 0.63 

S5-5 90.10 101.61 2.70 37.94 377.41 2678.10 0.63 

S5-6 90.13 101.95 3.25 45.63 377.53 2678.63 0.64 

S5-7 90.12 102.26 3.89 54.53 377.46 2679.12 0.64 

S5-8 90.01 102.37 4.16 58.43 376.99 2679.30 0.65 

S6-1 91.37 100.75 0.36 5.01 382.73 2676.75 0.61 

S6-2 91.54 100.96 1.17 16.35 383.46 2677.08 0.62 

S6-3 91.68 101.23 1.69 23.75 384.03 2677.52 0.62 

S6-4 92.09 101.34 2.12 29.75 385.76 2677.68 0.63 

S6-5 92.11 101.60 2.54 35.67 385.87 2678.09 0.63 

S6-6 92.13 101.88 3.27 45.92 385.91 2678.53 0.64 

S6-7 92.18 102.26 3.74 52.43 386.13 2679.12 0.64 

S6-8 92.18 102.99 4.55 63.84 386.13 2680.26 0.66 
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The following steps are the actual test procedure to conduct a steam-water condensation 

experiment using LIF. 

1. The water is heated up to the target temperature.  

2. The heaters are disconnected from the power supply.  

3. The circulation pump is turned off.  

4. The LED backlight is turned on. 

5. The steam generator valve is controlled to make the target flow rate using the 

HART screen of the Coriolis flowmeter. 

6. The laser is turned on. 

7. LabVIEW program is run and rechecked to verify all values transferred from the 

DAQ. 

8. The images are recorded using the high-speed camera 

9. The data acquisition is started using LabVIEW program. 

10. Once the recording is finished, the data acquisition from LabVIEW is completed 

as well. 

11. The laser is turned off. 

12. The LED backlight is turned off. 

13. The recorded image files are saved. 
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4. RESULTS AND DISCUSSION 

 

Total 48 steam direct contact condensation experiments in subcooled water pool have 

been conducted. Through the analysis of the experimental data, the three results are discussed. 

First, the heat transfer coefficient, which is the core parameter of this study, is evaluated 

depending on time and steam mass flux variables and discussed how it correlates with previous 

studies. Second, experimental results of the pool temperature measured by thermocouples and 

LIF are compared, and the temperature distribution of the pool is visualized. Lastly, depending 

on time and steam mass flux variables, the changes in the bubble equivalent diameter are 

analyzed. 

 

4.1 Heat Transfer Coefficient 

As mentioned in the methodology section, the heat transfer coefficient can be calculated 

using the correlation proposed by Bruker and Sparrow (1997) in Eq (7). 

 
( )

( )s f

H

s f

V h h
h

A T T

  −
=

 −
 (7) 

The heat transfer coefficient has been evaluated through an image processing technique, 

based on DAQ measurement data. Figure 23 shows the evaluated heat transfer coefficient from 

the tests.  
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Figure 23. Heat transfer coefficient vs. Steam mass flux 

 

The average heat transfer coefficient is found in range of 24.57-179.78 kW/m2⸱K. Also, 

the averaged heat transfer coefficient for all tests is 87.66 kW/m2⸱K. The averaged heat transfer 

coefficient increases as the steam mass flux increases, while the averaged heat transfer 

coefficient decreases as the pool temperature increases since the temperature difference between 

the steam and the water decreases.  

Since the steam mass flux and the pool temperature are the boundary conditions of the 

current study, sensitivity analysis on these parameters is required to investigate the heat-transfer 

characteristics through comparison with previous research. Figure 24 presents the experimental 

results of the heat transfer coefficient of the current study including the research result suggested 

by Fukuda (1981). 
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Figure 24. Heat transfer coefficient vs. Steam mass flux with Fukuda (1981) 

 

The result of the heat transfer coefficient proposed by the Fukuda (1981) is plotted based 

on Eq. (8). 
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where 
L  is the thermal conductivity of the liquid in W/m·K, d  is the nozzle diameter in 

mm, 
sG  is the steam mass flux in kg/m2·s, 

L  is the liquid density in kg/m3, 
L  is the kinematic 

viscosity of the liquid in m2/s, 
PLc  is the specific heat of the liquid in J/kg·K, T  is the 

temperature difference between the steam and the pool in K, and fgh  is the enthalpy difference 

between the steam and the pool in J/kg.  
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The results of Fukuda (1981) show that the value of the heat transfer coefficient tends to 

increase as the steam mass flux increases and to decrease as the temperature of the sub-cooled 

water increase, which is similar to the current study. 

Both plots, however, do not match exactly. The reason can be estimated as follows. First, 

the correlation of Fukuda (1981) is based on the experimental data at the steam mass flux of 63-

233 kg/m2·s. Therefore, it might be different because it is projected and plotted in the current 

study’s steam mass flux area, which is 0-65 kg/m2·s. Another reason is that the nozzle 

orientation of the current study is vertically upward, while Fukuda (1981) is vertically 

downward, which may result in differences between both studies. 

Figure 25 presents the experimental results of the current study and the correlations 

proposed by Song et al. (1998) and Chun et al. (1996) related to the heat transfer coefficient. 

 

 

Figure 25. Heat transfer coefficient vs. Steam mass flux with Song et el. (1998) and Chun et 

el. (1996) 
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 The heat transfer coefficient proposed by Song et al. (1998) is derived as following: 
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Chun et al. (1996)’s values are also calculated as following: 
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where 
PLc  is the specific heat of the liquid in J/kg·K, 

mG  is the mean value of the steam 

mass flux in kg/m2·s (
mG  was modified to 30 kg/m2·s in order to project into the steam mass flux 

region of the current study), B  is the condensation driving potential same as 

( ) ( )p s f s fc T T h h− − ,  G  is the  steam mass flux in kg/m2·s. 

 Similar to the present study, the empirical correlations of Song et al. (1998) and Chun et 

al. (1996) tend to increase the heat transfer coefficient as the steam mass flux increases. As the 

pool temperature increases, however, the amount of decrease in the heat transfer coefficient is 

insignificant relatively. This is because the driving potential B containing the temperature 

variables is so small (0.03587 and 0.0405) that it does not affect the heat transfer coefficient 

calculation significantly. Song et al. (1998) stated in their paper that the major variable in the 

direct contact condensation for energy transport is the steam mass flux. Kim et al. (2004) also 

mentioned in their paper like that the heat transfer coefficient of the direct contact condensation 

is not a significant function of the temperature of the sub-cooled water. It means that the 

correlations of Song et al. (1998) and Chun et al. (1996) derived by the experimental data at the 

high steam mass flux region (≥250 kg/m2·s) indicate that the steam mass flux is a dominant 

variable at a high mass flux region, and the temperature change does not act as a significant 
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factor for the heat transfer. Therefore, it can be considered that those correlations are more 

suitable at the high steam mass flux region where the stable condensation occurs. 

 Figure 26 shows the variations of the heat transfer coefficient derived from the current 

study to the pool temperature at various steam mass flux.  

 

 

Figure 26. Heat transfer coefficient vs. Pool temperature 

 

 As described above, the effect of the pool temperature, which tends to reduce the heat 

transfer coefficient in various steam mass flux, also appears as shown in Figure 26. However, a 

decreasing tendency of the heat transfer coefficient appears to be rather irregular when the pool 

temperature becomes around 90 °C. This is because the temperature region near 90 °C is the 

boundary between the bubbling condensation oscillation (BCO) and non-condensation. In other 
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words, since the temperature difference between the steam and the pool is relatively small, the 

condensation is not likely to occur or is likely to occur irregularly.  

Figure 27 shows the experimental results of the current study including the Fukuda 

(1981)’s data related to the heat transfer coefficient. 

 

 

Figure 27. Heat transfer coefficient vs. Pool temperature with Fukuda (1981) 

 

The two studies are not perfectly matched, but it can be reported that the tendency of the 

heat transfer coefficient is similar as the steam mass flux and the pool temperature change 

considering that the regions of the steam mass flux of those experiments were different. 

Figure 28 shows the experimental results of the current study including the correlations 

proposed by Song et al. (1998) and Chun et al. (1996) related to the heat transfer coefficient. 
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Figure 28. Heat transfer coefficient vs. Pool temperature with Song et el. (1998) and Chun 

et el. (1996) 

 

As explained, in Song et al. (1998) and Chun et al. (1996) studies, the heat transfer 

coefficient apparently increases as the steam mass flux increases like the current study, but the 

decrease in the heat transfer coefficient is very small as the pool temperature increases. In 

addition, generally the heat transfer coefficient values of Song et al. (1998) are larger than Chun 

et al. (1996)’s result. This is because the value of the steam mass flux proposed Song et al. 

(1998) is larger than Chun et al. (1996) as shown in Eq. (9) and (10). 

 

4.2 Temperature Distribution 

As mentioned in the introduction section, most of the previous studies related to steam-

water direct contact condensation have measured the pool temperature with thermocouples. In 
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the current study, however, the pool temperature is measured by two methods which are 

thermocouples and LIF technique. 

As shown in Figure 17, there are ten K-type thermocouples around the nozzle. Figure 29 

presents the pool temperature data measured by those thermocouples at the steam mass flux of 

1.0 g/s.  

 

 

Figure 29. Pool temperature measured by thermocouples ( m : 1.0 g/s) 

 

The averaged pool temperature measured for six seconds is about 78.87 °C. The averaged 

pool temperatures measured by the thermocouples at the various steam mass flux are used as the 

reference temperatures for obtaining the properties related to the heat transfer such as the heat 

flux and the heat transfer coefficient. However, it is difficult to show the local heat transfer and 
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corresponding temperature changes at the moment of the condensation between the steam and 

the water using the time-averaged temperatures only. Therefore, in this study, the temperature 

field of the pool is measured and visualized using LIF technique. Figure 30 represents the raw 

images of the single period of the steam at the steam mass flux of 1.0 g/s and shows the contour 

images. 

 

 

Figure 30. Raw (up) and contour (down) images of single period of steam ( m : 1.0 g/s) 

 

 The instantaneous changes of the pool temperature are visualized from the bubble 

generation of the bubble collapse through LIF technique. In other words, the local temperature is 

analyzed and visualized at the point where the condensation occurs.  

 In the same conditions as Figure 30, each of 1,000 raw images taken for a second using a 

high-speed camera is calibrated, and the calibrated images of 1,000 are averaged by time. Figure 

31 presents the time averaged data to visualize the temperature field of the pool after calibration 

0 ms 26 ms 52 ms 78 ms 104 ms 130 ms 156 ms
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and shows six x-lines and four y-line for data sampling of the pool. The axis of X and y represent 

the pixel numbers. Pixel to length conversion factor was 0.98 mm/pixel (100 pixels = 98 mm). 

 

 

Figure 31. Time-averaged temperature field and sampling lines ( m : 1.0 g/s) 

 

 The pool temperature field shows a symmetric trend around the nozzle centerline 

approximately. Also, the maximum temperature is located where the most frequent condensation 

occurs.  
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 In Figure 32 and Figure 33, further details on the time-averaged temperature for the 

specific location can be found. Figure 32 shows the temperature profiles on the extracted lines 

x1-x6. The line x1 is located at the top, and the line x6 is located at the bottom. 

 

Figure 32. Temperature profiles extracted on x-axis lines 

 

 The maximum temperature increases near the nozzle, and the average temperatures tend 

to decrease as the distance from the nozzle increases. This is because most condensations occur 

intensively in the vicinity of the nozzle, which means the heat of the steam is transferred to the 

water. Note that the x-axis represents the left half side of the region of interest. The center of the 

nozzle is located at x=221 pixel. Also, considering the thermocouples location as shown in 

Figure 17, the averaged temperature values measure by LIF method could be validated. This is 
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because the average temperatures of lines x1-x6 below 50 of x axis measured by LIF method are 

located between 76 °C and 80 °C, which is similar to thermocouples’ average temperature 

(78.87 °C). Figure 33 presents the temperature profiles on the extracted lines y1-y4. 

 

 

Figure 33. Temperature profiles extracted on y-axis lines 

 

The maximum temperature appears near the nozzle, which is the line y4 located at the 

center of the nozzle, and the time-averaged temperature far from the nozzle has the lowest value. 

Given that the average temperature of the water is 78.87 °C in this case, especially the 

temperatures extracted on the lines of y3 and y4 around the nozzle are all above the average 

temperature measured by thermocouples. The temperatures of y1 and y2 may mean the 
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temperature near the steam before condensation occurs, and at y3 and y4, the temperatures mean 

the heated water temperature due to steam-water direct contact condensation. Therefore, it can be 

suggested that in case of calculating the local heat transfer coefficient, it is better to use the local 

water temperature value derived from LIF rather than the average temperature through the 

thermocouple. 

In addition, experimental data sets about the temperature distribution in the pool can be 

utilized for validation and verification of computational fluid dynamics (CFD). Kang and Song 

(2007), for example, studied a CFD analysis for thermal mixing of a steam discharged from a 

sparger in a subcooled water. Especially, a CFD analysis on temperature change of the entire 

water tank is described. Thus, it can be suggested that the experimental temperature data of 

current study could be used to verify and validate this CFD analysis on temperature field in the 

pool.  

 

4.3 Bubble Equivalent Diameter 

As mentioned in the methodology section, for the deeper understanding of the steam 

condensation, the bubble’s equivalent diameter of the wetted surface is calculated using Eq. (11) 

when the steam condensation occurs. 

 ,

4


= b

b eq

A
D  (11) 

Figure 34 presents the photographs of a single period of a bubble using a high-speed 

camera at the steam flow rate of 1.0 g/s when the pool temperature increases. 
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 (a) fT : 70°C, m : 1.0 g/s 

 
 

(b) fT : 80°C, m : 1.0 g/s 

 
 

(c) fT : 90°C, m : 1.0 g/s 

 

Figure 34. High-speed camera photos of a single period of bubble with increase of the pool 

temperature 

 

The bubble size increases with increase of the pool temperature at the same flow rate (1.0 

g/s) as shown in Figure 34. Also, it can be found that the internal of condensation becomes 

0 ms 13 ms 26 ms 39 ms 52 ms 64 ms 76 ms

0 ms 18 ms 36 ms 54 ms 72 ms 90 ms 108 ms

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms
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slower as the temperature increases as shown at the time of a single period. It means that the 

increase in the pool temperature affects the condensation time as well as the bubble size. 

Figure 35 shows the analysis of the bubble equivalent diameter as pool temperature 

increases by the various steam flow rates. 

 

 

Figure 35. Bubble equivalent diameter vs. Pool temperature 

 

The bubble equivalent diameter is evaluated in range of 0.033-0.114 m. The bubble 

equivalent diameter tends to increase as the temperature and the steam flow rate increase. This is 

because the heat transfer rate decreases as the temperature difference of the steam and the pool 

decreases. 
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The photos of a single period of a bubble using a high-speed camera at the pool 

temperature of 85°C when the steam flow rate increases are shown in Figure 36. 

 

(a) fT : 85 °C, m : 1.0 g/s 

 
 

(b) fT : 85 °C, m : 2.0 g/s 

 
 

(c) fT : 85 °C, m : 3.0 g/s 

 

Figure 36. High speed camera photos of a single period of bubbles with increase of the 

steam mass flow rate 

 

0 ms 21 ms 42 ms 63 ms 84 ms 105 ms 126 ms

0 ms 19 ms 38 ms 57 ms 76 ms 95 ms 114 ms

0 ms 14 ms 28 ms 42 ms 56 ms 70 ms 84 ms
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The size of the bubble increases with increasing flow rate at the same temperature. 

However, it can be found that a single period of steam condensation is further shortened. This is 

because the heat transfer rate increases as the steam flow rate increases at the same temperature. 

Therefore, steam condensation occurs quickly since the heat transfer increases. 

The analysis of the bubble equivalent diameter as pool temperature increases by the 

various steam flow rates is presented in Figure 37. 

 

 

Figure 37. Bubble equivalent diameter vs. Steam mass flux 
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The tendency of increase of the bubble equivalent diameter is distinguished clearly as the 

pool temperature increases. The bubble equivalent diameter, however, initially increases, and 

then tends to converge to a certain diameter as the steam mass flux increases. Considering that 

the maximum steam mass flux is 65 kg/m2·s, the convergence of the diameter is related to the 

transition of the condensation regime from the unstable condensation to the stable condensation. 

It means that the form of the steam changes from an isolated bubble to a stable jet as the regime 

is changed from condensation oscillations to steady condensation region. 

In the high steam mass flux region where a stable condensation occurs, the hydraulic 

characteristics of the bubble have been investigated through a jet modeling to derive a l/d 

(length/diameter) correlation, since the shape of the bubble ejected from the nozzle is like a jet 

rather than an isolated bubble.  

Thus, an isolated bubble modeling is also required in the unstable condensation region 

where the current study is performed, like the jet modeling in the stable condensation. Although 

the bubble modeling is not developed in the present study, experimental data on the bubble 

equivalent diameter could be used for modeling studies in future. 
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5. CONCLUSION 

 

The experiments of the steam-water direct contact condensation in subcooled water have 

been conducted to study the characteristics of the heat transfer. Especially the heat transfer 

coefficient, the temperature distribution and the bubble equivalent diameter have been 

investigated at pool temperatures of 70-95°C and with steam mass fluxes of 5-65 kg/m2·s. The 

essential properties required to calculate them have been measured using LIF method and the 

image processing technique. The averaged heat transfer coefficient derived by the image 

processing is found in a range of 24.57-179.78 kW/m2-K. Compared to previous studies, current 

study has similar tendency with the correlation of the heat transfer coefficient proposed by 

Fukuda (1981), which has high sensitivity on both the pool temperature and the steam mass flux 

in the unstable condensation region, while it seems to be different with the correlations of the 

heat transfer coefficient suggested by Song et al. (1998) and Chun et al. (1996). This is because 

they conducted the experiments in stable condensation region and concluded that the steam mass 

flux is the major controlling variable for heat transfer at the high mass flux region. The pool 

temperature distribution visualized by LIF shows that local heat transfer resolved by time in 

entire pool, which could be utilized to calculate the local heat transfer coefficient. The bubble 

equivalent diameter is evaluated in range of 0.033-0.114 m. The bubble equivalent diameter 

initially increases as the steam mass flux, and then tends to converge from the point where the 

condensation regime is changed from unstable region to stable region. Based on the experimental 

data and the analysis, the results are summarized as follows: 

1. The heat transfer coefficient of steam-water direct contact condensation in the unstable 

region has a high sensitivity on both the pool temperature and the steam mass flux. 
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2. The laser-induced fluorescence (LIF) could be utilized for analyzing the local heat 

transfer characteristics, since the time-averaged temperature field of the entire pool is 

visualized, and the information of local temperature is obtained. 

3. The bubble equivalent diameter of unstable isolated bubble initially increases as the 

steam mass flux increases, and then tends to converge due to the regime change from 

the unstable to the stable condensation. Thus, for deeper understanding about the 

hydraulic characteristics of the steam bubble in the unstable condensation region, an 

isolated bubble modeling is required like a jet modeling in the stable condensation 

region. 

Finally, it is expected that the experimental data of the current study such as the 

temperature distribution and bubble equivalent diameter would be utilized for the validation and 

verification of computational fluid dynamics (CFD) analysis on a temperature field of a pool and 

for the bubble modeling in the unstable condensation region. 
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APPENDIX 

“REPRESENTATIVE PHOTOS OF SINGLE PERIOD OF STEAM BUBBLE” 

 

 Representative photographs of single periods of the steam bubble using high-speed 

camera at each pool temperature from 70 to 95 °C and at each steam flow rate from 0.5 to 4.0 g/s 

are presented as follows. 

 

A. 70 °C 

(a) 0.5 g/s 

 
 

 

(b) 1.0 g/s 

 
 

 

(c) 1.5 g/s 

0 ms 11 ms 22 ms 33 ms 44 ms 55 ms 66 ms

0 ms 13 ms 26 ms 39 ms 52 ms 64 ms 76 ms
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(d) 2.0 g/s 

 
 

 

(e) 2.5 g/s 

 
 

 

(f) 3.0 g/s 

 
 

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

0 ms 9 ms 18 ms 27 ms 36 ms 45 ms 54 ms

0 ms 7 ms 14 ms 21 ms 28 ms 35 ms 42 ms

0 ms 5 ms 10 ms 15 ms 20 ms 25 ms 30 ms
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(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

 
 

 

B. 75 °C 

(a) 0.5 g/s 

 
 

 

(b) 1.0 g/s 

0 ms 3 ms 6 ms 9 ms 12 ms 15 ms 18 ms

0 ms 5 ms 10 ms 15 ms 20 ms 25 ms 30 ms

0 ms 14 ms 28 ms 42 ms 56 ms 70 ms 84 ms
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(c) 1.5 g/s 

 
 

 

(d) 2.0 g/s 

 
 

 

(e) 2.5 g/s 

 
 

0 ms 15 ms 30 ms 45 ms 60 ms 75 ms 90 ms

0 ms 12 ms 24 ms 36 ms 48 ms 60 ms 72 ms

0 ms 12 ms 24 ms 36 ms 48 ms 60 ms 72 ms

0 ms 11 ms 22 ms 33 ms 44 ms 55 ms 66 ms
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(f) 3.0 g/s 

 
 

 

(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

 
 

 

C. 80 °C 

(a) 0.5 g/s 

0 ms 8 ms 16 ms 24 ms 32 ms 40 ms 48 ms

0 ms 6 ms 12 ms 18 ms 24 ms 30 ms 36 ms

0 ms 5 ms 10 ms 15 ms 20 ms 25 ms 30 ms
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(b) 1.0 g/s 

 
 

 

(c) 1.5 g/s 

 
 

 

(d) 2.0 g/s 

 
 

0 ms 16 ms 32 ms 48 ms 64 ms 80 ms 96 ms

0 ms 18 ms 36 ms 54 ms 72 ms 90 ms 108 ms

0 ms 15 ms 30 ms 45 ms 60 ms 75 ms 90 ms

0 ms 15 ms 30 ms 45 ms 60 ms 75 ms 90 ms
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(e) 2.5 g/s 

 
 

 

(f) 3.0 g/s 

 
 

 

(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

0 ms 14 ms 28 ms 42 ms 56 ms 70 ms 84 ms

0 ms 11 ms 22 ms 33 ms 44 ms 55 ms 66 ms

0 ms 12 ms 24 ms 36 ms 48 ms 60 ms 72 ms
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D. 85 °C 

(a) 0.5 g/s 

 
 

 

(b) 1.0 g/s 

 
 

 

(c) 1.5 g/s 

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

0 ms 19 ms 38 ms 57 ms 76 ms 95 ms 114 ms

0 ms 21 ms 42 ms 63 ms 84 ms 105 ms 126 ms



 

66 

 

 
 

 

(d) 2.0 g/s 

 
 

 

(e) 2.5 g/s 

 
 

 

(f) 3.0 g/s 

 
 

0 ms 21 ms 42 ms 63 ms 84 ms 105 ms 126 ms

0 ms 19 ms 38 ms 57 ms 76 ms 95 ms 114 ms

0 ms 14 ms 28 ms 42 ms 56 ms 70 ms 84 ms

0 ms 14 ms 28 ms 42 ms 56 ms 70 ms 84 ms
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(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

 
 

 

E. 90 °C 

(a) 0.5 g/s 

 
 

 

(b) 1.0 g/s 

0 ms 12 ms 24 ms 36 ms 48 ms 60 ms 72 ms

0 ms 12 ms 24 ms 36 ms 48 ms 60 ms 72 ms

0 ms 24 ms 48 ms 72 ms 96 ms 120 ms 144 ms
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(c) 1.5 g/s 

 
 

 

(d) 2.0 g/s 

 
 

 

(e) 2.5 g/s 

 
 

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms
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(f) 3.0 g/s 

 
 

 

(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

 
 

 

F. 95 °C 

(a) 0.5 g/s 

0 ms 18 ms 36 ms 54 ms 72 ms 90 ms 108 ms

0 ms 16 ms 32 ms 48 ms 64 ms 80 ms 96 ms

0 ms 16 ms 32 ms 48 ms 64 ms 80 ms 96 ms
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(b) 1.0 g/s 

 
 

 

(c) 1.5 g/s 

 
 

 

(d) 2.0 g/s 

 
 

0 ms 26 ms 52 ms 78 ms 104 ms 130 ms 156 ms

0 ms 23 ms 46 ms 69 ms 92 ms 115 ms 138 ms

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms
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(e) 2.5 g/s 

 
 

 

(f) 3.0 g/s 

 
 

 

(g) 3.5 g/s 

 
 

 

(h) 4.0 g/s 

0 ms 21 ms 42 ms 63 ms 84 ms 105 ms 126 ms

0 ms 22 ms 44 ms 66 ms 88 ms 110 ms 132 ms

0 ms 15 ms 30 ms 45 ms 60 ms 75 ms 90 ms
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0 ms 15 ms 30 ms 45 ms 60 ms 75 ms 90 ms


