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ABSTRACT 

 

 

Olivine in the presence of seawater will undergo a reaction known as serpentinization to form the 

mineral serpentine in addition to hydrogen, methane, and short chain hydrocarbons, which can be 

metabolized by microorganisms. Environments where serpentinization reactions occur are 

therefore hypothesized to support microbial life. The goal of the International Ocean Discovery 

Program (IODP) Expedition 360 (X360) was to recover a representative transect of the lower 

oceanic crust formed at Atlantis Bank, an oceanic core complex on the southwest Indian Ridge. 

Recovered cores were primarily gabbro and olivine gabbro, which may potentially host 

serpentinization reactions and associated microbial life. The goal of this thesis project was to 

quantify in situ microbial cells, analyze the microbial community structure of the in situ rock 

samples, and assess if nutrient supply influences the microbial community and methane production 

using a nutrient addition incubation approach. It was found that the microbial cell abundance is 

positively correlated to vein presence in rocks for certain depths. Microbial community diversity, 

assessed via 16S rRNA amplicon analysis, was extremely variable with depth. Additionally, 

different nutrient treatments added to incubations from twelve depths did not have an observable 

effect on the microbial diversity or methane production. Knowledge gained here will be useful in 

connecting microbial ecology in deep subseafloor basement to other marine and subsurface 

habitats. Altogether, the interdisciplinary approach used here provides a peek into life in the 

subseafloor upper ocean crust. 
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1. INTRODUCTION 

Serpentinization is the aqueous alteration process of ultramafic rocks such as olivine and pyroxene 

in the presence of water. Olivine is a magnesium iron silicate mineral with the formula 

(Mg,Fe)2SiO4 as its repeating unit, and pyroxenes have the general formula (Ca, Mg, Fe)Si2O6 

(Smith, 1999). Olivine in the presence of seawater will undergo a reaction (Equation 1) to form 

serpentine, hydrogen, methane, and short chain hydrocarbons, which can be metabolized by 

microorganisms (Kelley et al., 2005; Martin et al., 2008; Schrenk et al., 2013). 

(Mg,Fe)2SiO4 + H2O + C → Mg
3
SiO5(OH)4 +  Mg(OH)2  +  Fe3O4  +   H2  +  CH4 +    C2-C5      (1) 

         Olivine Water   Carbon             Serpentine          Mg-hydroxide   Iron(ii,iii) oxide   Hydrogen   Methane   Hydrocarbons 

Rocks such as olivine and pyroxene are characteristic of the lower oceanic crust and upper mantle. 

Serpentinization occurs in numerous settings on Earth, including subduction zones, mid-ocean 

ridges, and ophiolites. Generally, serpentinization occurs where tectonic processes expose the 

upper mantle that has been uplifted, and it may also occur in parts of the Earth’s subsurface, though 

constrained by the depths of fluid circulation (Schrenk et al., 2013).  

 

The Lost City Hydrothermal Field (LCHF), an off-axis vent field roughly 15 km away from the 

spreading axis of the Mid-Atlantic Ridge, is one of the most intensively studied sites of active 

serpentinization, with alkaline (pH 9.0-9.8) venting fluids between 40-91°C that are rich in 

hydrogen and methane (Kelley et al., 2005, 2001). The hydrogen produced through 

serpentinization at LCHF stimulates the metabolic activity of microbes found on the chimney 

biofilms as well as venting fluids (Brazelton et al., 2011, 2006). Phylogenetic analyses of 

metagenomic data from LCHF chimneys and terrestrial serpentinite-hosted alkaline seeps at 

Tablelands Ophiolite, Newfoundland, revealed a high proportion of Betaproteobacteria sequences 
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that were likely to be H2-oxidizers (Brazelton et al., 2012). Chimney fluids at LCHF were also 

found to have microbial communities of low diversity that were dominated by a methane-

metabolizing archaeal phylotype termed Lost City Methanosarcinales (Schrenk et al., 2004).  

 

In addition to sites like LCHF, serpentinization also occurs at slow and ultraslow spreading mid-

ocean ridges. On ultraslow spreading ridges, the mantle is exposed asymmetrically along the 

spreading axes and peridotite, the dominant component of the upper mantle, can be found exposed 

at the seafloor (Cannat et al., 2006; Dick et al., 2003; Michael et al., 2003). The Southwest Indian 

Ridge (SWIR) is a major plate boundary that separates the Antarctic and African continent and 

extends from the southern Atlantic Ocean to the Indian Ocean. The SWIR is one of the two slowest 

spreading ridges in the world with a full spreading rate of ~14mm/year (at 28˚S, 64˚E), varying 

only slightly along the 7700 km ridge axis; the Gakkel ridge in the Arctic Ocean is the only other 

ultraslow spreading ridge (Dick et al., 2016, 2003). Atlantis Bank lies 73 km south of the ultraslow 

spreading SWIR (Figure 2), exposing the largest known gabbro complex in the oceans (660km2), 

~ 700m below sea level, providing convenient drilling access to an otherwise largely inaccessible 

environment. To learn about the structure of lower oceanic crust and to study the deep subseafloor 

biosphere in this underexplored biome, IODP Expedition 360 drilled Hole U1473A at Atlantis 

Bank from 30 November 2015 through 30 January 2016. Hole U1473A is located at 32°42.36’S, 

57°16.68’E (Figure 2) and was drilled to a depth of 789.8 mbsf. 469.4m of core was recovered, 

with an average of 59% recovery over the entire interval (>96% over the lower 200m of the hole), 

making it the deepest igneous rock penetration from the seafloor during a single scientific ocean 

drilling expedition to date (Dick et al., 2016). Hole U1473A cores are composed of a variety of 

gabbroic lithologies, from primitive olivine gabbros to evolved oxide-rich gabbros (Dick et al., 
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2016). This composition provides the necessary elements for serpentinization. The electron donors 

such as H2 and CH4 that are released from serpentinization can be harvested by microorganisms 

for metabolic energy (Schrenk et al., 2013). Therefore, sites where serpentinization is active or 

likely to occur in the Atlantis Bank subsurface may support microbial populations utilizing the 

carbon source provided by water-rock reactions.  

 

The microbiology of ultraslow spreading ridges not been extensively studied at either Gakkel ridge 

or the SWIR, though microbial communities have been discovered at the hydrothermal systems 

along the ridges, as well as in the sediments (Chen and Shao, 2008; Ding et al., 2017; Kröncke et 

al., 1994; Li et al., 2013; Takai et al., 2004). The two sites where the deepest holes have been 

drilled into the lower crust of a slow and an ultraslow spreading ridge are at Atlantis Bank, at the 

SWIR; and at the Atlantis Massif core complex, along the Mid-Atlantic Ridge at 30N (Hole 

U1309D). Hole 1309D was drilled during IODP Expeditions 304 and 305 also in an effort to 

recover a complete section of the lower ocean crust and uppermost mantle (Blackman et al., 2011, 

2006).  

 

Recently, IODP Expedition 357 employed shallow drilling (≤16mbsf) at 7 sites to explore 

subseafloor life linked to serpentinization at Atlantis Massif (Früh-Green et al., 2018); preliminary 

results show that cell counts for the sites ranged from 10 to 103 cells/cm3, with some of the 

basement samples below the minimum quantification limit of 9.8 cells/cm3. Previous work 

investigating the microbial diversity of the subseafloor gabbro below Atlantis Massif revealed 

Proteobacterial lineages closely related to known hydrocarbon degraders. Evidence from 

functional gene analyses also supported the potential for hydrocarbon degradation, despite the 
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microbial community being generally low in diversity (Mason et al., 2010). However, that site is 

younger and warmer and represents the warmer end-member of serpentinizing systems. 

Quantification of microbes in subseafloor basement conducted at North Pond found the detection 

limit to be ~103cells/cm3, and the microbial abundances for basalt in the basement ranged from 

below detection to 6.1*104 cells/cm3, with the range for samples where cell abundance was above 

detection being were between 1.0*103 and 6.1*104 cells/cm3 (Zhang et al., 2016).  The samples 

collected during Expedition 360 provide an unprecedented opportunity to study the microbial 

communities at much greater depths and on an older, inactive massif, which is likely representative 

of a larger volume of oceanic basement than the still active Atlantis Massif. The samples also allow 

for comparison to the pioneering work of Mason and colleagues using modern molecular biology 

techniques that were not available at the time of their work (Mason et al., 2010). Determining the 

microbial abundance as a function of depth will also allow us to understand if the presence of fluid 

flow in the rocks affect the microbial population along the 790 m core. Among the gabbroic 

basement samples obtained from the core, certain depths show signs of fluid flow and low-

temperature hydrothermal alteration, as indicated by the presence of felsic veins, carbonate veins 

or clay minerals. Carbonate veins are veins in the rocks where seawater has percolated through, 

and felsic veins are veins in the rocks that were originally formed by flow of magma. The cell 

counts from depths with evidence of fluid flow are postulated to be greater than counts from depths 

without the presence of veins.  

 

The volume of habitable subsurface igneous basement is potentially as large as the marine water 

column, with populations predicted to rival or exceed those of marine subsurface sedimentary 

biomass (Heberling et al., 2010; Kallmeyer et al., 2012), although the few data points available for 
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basement cell counts indicate lower population density than sediments and the water column 

(Jungbluth et al., 2013; Zhang et al., 2016).  While the presence of microbial life in the subsurface 

biosphere was first detected in the 1990’s (Parkes et al., 1994), modern molecular biology methods 

were introduced only more recently to study these environments (Biddle et al., 2008; Cowen et al., 

2003; Inagaki et al., 2015, 2006; Mason et al., 2010; Orsi et al., 2013). With the notable exception 

of the Juan de Fuca Ridge (JdFR) (Cowen et al., 2003; Jungbluth et al., 2013; Lever et al., 2013; 

Smith et al., 2011) and Louisville seamounts in the Pacific ocean (Sylvan et al., 2015) and Atlantis 

Massif (Früh-Green et al., 2018; Mason et al., 2010) and North Pond in the Atlantic Ocean 

(Jørgensen and Zhao, 2016; Meyer et al., 2016; Zhang et al., 2016), recent IODP expeditions have 

primarily focused on studying microbial communities in sediments. Quantification of microbes in 

subseafloor basement have been conducted at sites described earlier such as North Pond and 

Atlantis Massif and this collectively yields only a preliminary peek at the heterogeneity in the 

global population. The core samples from the Expedition 360 thus present an opportunity to 

expand the study of the microbial basement biosphere by including samples from the Indian Ocean. 

Quantifying abundance in the subseafloor crust and identifying the microbial community present, 

particularly at a site such as U1437A, that is representative of basement rock samples from a 

serpentinizing environment at an ultraslow spreading ridge in the Indian Ocean, can improve our 

understanding of the microbial life present in the lower oceanic crust.  
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2. OBJECTIVES AND ASSOCIATED HYPOTHESES 

2.1 - Quantification of cell abundance from core samples 

Hypothesis 1: Microbial abundance along the core is positively correlated to the presence of 

indicators of fluid flow and hydrothermal alterations such as carbonate veins or felsic veins.  

2.2 – Assessment of microbial community and diversity from in situ core samples via analysis of 

the 16S rRNA gene 

Hypothesis 2: In situ microbial community structure and diversity is positively correlated to the 

number of veins. 

2.3 - Determine if nutrient supply controls microbial diversity and methane production using a 

nutrient addition incubation approach 

Hypothesis 3: Added nutrients will stimulate diversity in microbial communities. 

Hypothesis 4: Additions of lactate, acetate and formate will enhance methane production. 
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3. METHODS 

3.1 - Sample collection 

Onboard IODP Expedition 360, rock sample selection and preparation were done by Jason Sylvan 

and Virginia Edgcomb. Whole-round sections were selected from whole-round core samples for 

dedicated microbiology investigation and then transferred into a sterile Whirlpak bag and 

transported to the microbiology laboratory for processing. Once in the microbiology laboratory, 

the whole-round sample was rinsed four times in sterile water (changing the Whirlpak bag once 

after the second rinse) to reduce contamination from drilling fluid. The sample was then transferred 

to an ethanol-sterilized metal rock box placed within a positive pressure clean area. The outside of 

each core was sprayed with 75%–95% ethanol, wiped with Kimwipes, and then sprayed one final 

time with ethanol and left to air dry (~5 min). During the drying time, photographs of each side of 

the whole-round sample were taken while it was sitting in the rock box. At all stages of the process, 

samples were handled as little as possible and with gloved hands only. After cleaning the exterior 

of whole-round core samples, the rock was split with a sterile chisel and core interiors were 

subsampled for off-shore investigations mentioned in this project such as cell counts, enrichment 

cultures and DNA extraction. It is assumed that the ethanol would not seep into the interior portion 

of the rock cores that were used for microbiology. Previous work with IODP core samples have 

employed flame sterilization to sterilize the exterior of the core; it was found that despite utilizing 

harsh treatments, the flaming was effective at killing cells on the exterior but was not detrimental 

to cells in the interior (Lever et al., 2006). As the interior of rock cores are generally free from 

contamination, efforts were taken to sample only the interior of the cores. Sections that showed 

some sign of alteration or fluid flow conduits were specifically chosen because these are the most 

likely locations for microbial life. Microbiology samples on average were 10–20 cm long.  
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3.2- Cell Separation and Counts  

In order to accurately quantify the cells along the core, an intricate cell extraction that maintains 

the intactness of cells while successfully separating them from the rock surfaces and therefore 

allowing for collection on a filter and subsequent quantification via fluorescence microscopy was 

used. This is a modified version of a cell extraction and enumeration method developed for 

quantifying microbial abundance in subseafloor sediments (Morono et al., 2013) that was adapted 

for samples from ocean crust. Samples were powderized in a diamonite mortar and pestle that was 

decontaminated with 70% EtOH, and then fixed in sterile filtered 2% formaldehyde at a 

volume:volume ratio of 1:5. For each cell separation run, 1 mL of the fixed sample slurry was first 

placed into a 15 mL centrifuge tube. Then, 1.4 mL of 2.5% NaCl, 300 µL of detergent mix (100 

mM EDTA, 100 mM sodium pyrophosphate, 1% [v/v] tween-80), and 300 µL of pure methanol 

were added. The samples were then shaken at 500 rpm for 60 min, followed by 40 cycles of 

sonication at 160 W for 30 seconds, followed by 30 seconds of rest. Following shaking and 

sonication, the samples were applied onto a density gradient in a new 15 mL tube containing layers 

composed, from top (least dense) to bottom (most dense), of 30% Nycodenz (1.15 g/cm3), 50% 

Nycodenz (1.25 g/cm3), 80% Nycodenz (1.42 g/cm3), and 67% sodium polytungstate (2.08 g/cm3), 

which were prepared by overlaying lighter density solutions onto heavy ones. Cells and rock 

particles were separated by centrifugation at 7064× g for 1 hour at 25°C using a swing-arm 

centrifuge rotor. The powderized rock particles sedimented at the bottom of the tube and the light 

density supernatant layer that contains microbial cells was carefully collected with a syringe and 

20G needle. The heavy fraction, including precipitated sediment particles, was washed by re-

suspending with 5 mL of 2.5% NaCl and then centrifuged at 5000× g for 15 min at 25°C. 

Recovered supernatant was placed on the same cell fraction obtained above. Sedimented rocks 
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then underwent a second round of separation following the same protocol as the first round. 

Following centrifugation, the light density supernatant layer was collected by using syringe with 

a 20G needle and added to the previous supernatants. All of the supernatant was then filtered 

through a 0.22-µm polycarbonate membrane filter, with a 0.45 µM cellulose backing membrane. 

Cells on the polycarbonate membrane filter were stained with SYBR Green I staining solution 

(100 µL of 1/40 SYBR Green I in TE buffer).  

 

The number of SYBR Green I-stained cells were enumerated using a Zeiss AxioImager.M2 by 

counting approximately 400 fields of view if fewer than 40 cells total were detected, or at least 40-

50 cells in fewer fields when possible. The limit of quantification was defined as 3X the standard 

deviation of the mean of the negative control counts, and duplicate counts were done for 13 of the 

samples for replication. One negative control was processed and analyzed for every eleven 

experimental samples. 

 

3.3 – Nutrient Addition Incubation Experiments 

The nutrient addition experiments allow for the assessment of whether added inorganic nutrients 

and/or organic carbon can stimulate growth of the in situ microbial communities, and if one of 

those treatments is more effective at stimulating growth, which would indicate that nutrient 

limitation may occur in the deep subseafloor biosphere. Microcosm experiments in 38 mL serum 

vials were used for this purpose, with anaerobic artificial seawater (ASW) as the basal media for 

all enrichments (Table 1) (MacLeod et al., 2017).  Four conditions were tested: (1) no added 

nutrients (NT), (2) +750 µM ammonium chloride (NH4Cl) (+N), (3) +750 µM NH4Cl +50 µM 

potassium phosphate, dibasic (K2HPO4) (+NP) and (4) +200 µM each of lactate, acetate, and 
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formate (+C). To initiate enrichments, ~1 to 5 cc of crushed rock chips, depending on sample 

availability, were transferred to 30 mL serum vials and submerged in anaerobic ASW to a level 

equivalent to 27 mL total volume (rocks plus media). After the appropriate additions were made 

to the vials, they were sealed with butyl stoppers and gassed with a mixture of 90% N2, 5% H2, 

5% CO2. Using consistent headspace volume allows for quantitative analysis of methane. A total 

of 51 vials were incubated; these nutrient addition incubations were kept at 10˚C and were initially 

sampled for headspace CH4 roughly six months after beginning the incubation and then again at 

roughly a year post cruise.  

 

3.4 – Methane Measurements 

CH4 in the headspace of the vials was measured using a Gas Chromatograph with a Flame 

Ionization Detector (GC-FID) post 25 weeks and 60 weeks of incubation. The gas in the headspace 

of the vials was extracted and measured using GC-FID, similar to previous protocols (Johnson et 

al., 1990; Valentine et al., 2010). Calibrations were performed for the measurements using 

methane tanks at 0 ppm, 1.0 ppm, and 6.41 ppm, and the sample loop was flushed for one minute 

prior to each calibration measurement. The syringe used to inject the gas samples into the GC-FID 

loop was flushed three times with the 90 % N2, 5 % H2, 5 % CO2 gas mixture prior to each sample 

extraction and injection. 

 

3.5 – DNA extraction and 16S rRNA Analysis 

Roughly 0.5 cm3 of rocks from each of the nutrient addition incubation samples were used in the 

DNA extraction with the MP Biomedical FastDNA® Spin Kit for Soil, where the final elution 

volume was 50 µL, with varying concentrations of ng DNA/µL. New England Biolabs Inc. Q5® 
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High-Fidelity DNA Polymerase was used to PCR amplify the V4-V5 region of the 16S rRNA gene 

with the 515F and 926R primer pair (Parada et al., 2016). Upon completion of extraction and 

amplification, samples were pooled in equimolar concentrations and analyzed with Illumina 

MiSeq sequencing (Caporaso et al., 2012; Claesson et al., 2010; Walters et al., 2016) at Georgia 

Genomics Facility. The sequence reads were analyzed with the DADA2 (Divisive Amplicon 

Denoising Algorithm 2) pipeline in the R programming language to produce amplicon sequence 

variants (ASVs). DADA2 utilizes a model-based approach to correct errors in amplicons without 

constructing operational taxonomic units (OTU) (Rosen et al., 2012). Using the DADA2 

workflow, the sequences are inferred exactly, and it can resolve differences of as little as 1 

nucleotide. The package itself still implements the full amplicon workflow that includes filtering, 

dereplication, chimera identification, and merging paired-end reads. ASVs are higher-resolution 

analogue of the OTU (Callahan et al., 2016).  The primary difference between making ASV’s and 

the traditional clustering approach for OTUs is that the unique identical 16S rRNA sequences are 

first identified prior to downstream analyses for ASVs, whereas when generating OTUs, the 

sequences are clustered at a certain similarity threshold such as 97%, before downstream analyses 

(Callahan et al., 2017, 2016). 

 

For unaltered core samples, DNA was extracted and PCR of the V4-V5 region of 16S rRNA 

conducted as above for 43 samples from Hole U1473A in the lab of collaborator Dr. Virginia 

Edgcomb at Woods Hole Oceanographic Institution. Amplicons were sequenced at Georgia 

Genomics Facility, and ASVs were generated as described above to determine in situ microbial 

diversity downcore in Hole U1473A. For core samples that overlap with depths where incubations 

were performed, the core samples act as the time = 0 samples.  
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Statistical analyses performed with the 16S rRNA sequences from the incubation samples included 

plotting a non-metric multidimensional scaling (NMDS) based on pairwise Bray-Curtis 

dissimilarity. This was made using the vegan and phyloseq package in R (McMurdie and Holmes, 

2013; Oksanen et al., 2019). One-way analysis of variance (ANOVA) was also used for analyzing 

the effect of the different treatments on the diversity of the samples, as well as on methane 

production. The null hypothesis is that there is no difference between the treatment groups. The 

null hypothesis is rejected if the p value is <0.05, and if F is greater than Fcrit. Richness and diversity 

of the in situ and incubation samples were calculated using the software mothur, version 1.42.1 

(Schloss et al., 2009), the number of ASVs present represents richness, and inverse Simpson values 

were calculated upon subsampling using mothur to represent diversity. 
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4. RESULTS 

4.1 - Cell Abundances along the Core  

Cell counts are plotted with respect to depth to illustrate potential correlation between cell 

abundance and vein frequencies/presence (Figure 3). The limit of quantification is three times the 

average of the negative control cell counts, which is 9.90*101 cells/cm3 (black line in Figure 3), 

shown by the vertical line in the cell count plot. The cell counts had a range from zero to 104 

cells/cm3, with an average of 6.1*102 cells/cm3 for all the samples. Roughly 35% of the cell counts 

were below the limit of quantification. Correlation coefficients were calculated for all depths, and 

for depth ranges of every 100m, to obtain a statistical analysis of the relationship between cell 

abundance, carbonate vein frequency, and felsic vein frequency (Table 2). In addition to 

comparing the cell abundances to vein frequencies at depth ranges of every 100 m, cell abundances 

were also compared to vein frequencies at varying depth ranges in order to determine other depth 

ranges that show a positive correlation (Table 3). Correlation coefficients for 12 varying depth 

ranges were calculated, and these depth ranges were selected based on highest cell abundances and 

vein frequencies (Table 3). The depth ranges were chosen to cover at least three cell count data 

points. From 0 to ~100 mbsf, cell abundances were below the limit of quantification in seven out 

of eight samples (Fig. 3). No carbonate veins are present in this interval, and there are low felsic 

vein frequencies. There are high felsic and carbonate vein frequencies from 180-200 mbsf though 

the cell counts do not correlate positively to these high vein frequencies. The highest cell 

abundance recorded was 1.73*104 cells/cm3 at depth 248 mbsf, and both felsic and carbonate vein 

frequencies were relatively low at this depth. From 280-470 mbsf, and 580-620 mbsf, high vein 

frequencies were present for both felsic and carbonate veins. Strong positive correlation between 

cell abundance and vein frequencies were from from 280-470 mbsf. However, cell abundances did 
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not show a significant increase from depths 580-620 mbsf, despite the highest vein frequencies 

observed from these depth ranges. In addition, from 300-400 mbsf, most cell abundances were 

below the limit of quantification. While there are few veins present from 640-720 mbsf, the cell 

counts still range from 102-103 cells/cm3. From 720m to 730m, there is a high felsic vein frequency 

and the cell counts for that depth corresponds positively to the vein frequency. From Table 2 and 

3, most of the relationships have a negligible correlations. Several strong positive correlations were 

found from four depth ranges: 219 to 248 mbsf, 300 to 333 mbsf, 400 to 500 mbsf, and 500 to 600 

mbsf.  

 

4.2 - In situ Samples Microbial Community Analysis 

Collaborator Virginia Edgcomb successfully extracted genomic DNA from 43 in situ rock 

samples. The V4-V5 region of the 16S rRNA gene was amplified from all samples and sequencing 

reads were obtained via Illumina MiSeq sequencing. ASVs were constructed from the Illumina-

MiSeq sequences based on the DADA2 pipeline in R (Callahan et al., 2017, 2016). Two quality 

control steps were applied to the ASVs: i) Removal of ASVs present the samples and in the blank 

PCR and blank kit control samples, and ii) Removal of ASVs commonly found in PCR 

contamination. The blank kit control was an empty kit sample that was subjected to same process 

of DNA extraction. This is done to identify any possible contaminants present in the kit itself. The 

number of ASVs and reads present before and after both quality control steps are shown in Table 

4. A total of 2,829,453 reads were constructed for all samples, including two PCR blank control 

samples. Upon removing the reads that overlapped between core samples and the control samples, 

there were 707,132 reads; containing 4,541 ASVs. After removing genera that were commonly 
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found in PCR contamination (Salter et al., 2014; Sheik et al., 2018), 200,701 reads remained 

representing 2,649 ASVs.  

 

A total of 83.3% of the sequences were Bacteria, and 16.7% of the sequences were Archaea. The 

Bacteria sequences were dominated by Proteobacteria, which constituted 50.4% of the sequences, 

followed by Marinimicrobia (14.8%), Firmicutes (9.0%) and others, defined as lineages which 

represent Actinobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Verrumicrobia, 

Fusobacteria, Nitrospinae, Cyanobacteria, Chloroflexi, AncK6, Gemmatimonadetes, 

Acidobacteria, Lentisphaerae, Margulisbacteria, Dependentiae, PAUC34f, and Nitrospirae 

(25.8%). The archaeal sequences comprised of three phylum: Thaumarchaeota (77.1%), 

Euryarchaeota (19.7%), and Nanoarchaeota (3.2%) (Table 5).  

 

The community composition for all in situ rock samples at the class taxonomic level are shown in 

Figure 4. The classes that are below 10% of the sequences are defined as Others. Table 6 presents 

the phylum and classes for the taxa categorized as Others in Figure 4. The depths with asterisks 

are the depths that are shared in common with the incubation experiment samples (n= 9). Out of 

the 43 samples, 3 samples did not have sequences that were present after the screening process; 

these have been excluded from the bar plot in Figure 4.  Two depths (209, and 306.7 mbsf) were 

comprised of ASVs that could only be classified to the phylum level. Six depths (10.7, 44.5, 91.3, 

209, 306.7, 714.9 mbsf) did not have any Archaeal sequences present. While the most abundant 

class changes with depth, Nitrososphaeria, Alphaproteobacteria, and Gammaproteobacteria are the 

three classes with high abundances throughout all depths. To gain a better understanding of the 

microbes present at each depth, the most abundant genera for each depth, other than the ones 
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classified only to a higher taxonomic level, are listed in Table 7; the most abundant genera vary 

with depth as well.  

 

Richness and diversity of the samples was calculated with respect to depth using the software 

mothur, version 1.42.1 (Schloss et al., 2009) (Table 8). 1,326 reads were selected as the threshold 

for subsampling, this was the lower quartile for the number of reads present in all depths. Inverse 

Simpson values for depths 10.7, 13.9, 91.3, 111.9, 332.8, 375.1, 533.5, and 626.3 mbsf were not 

calculated as the number of reads in these samples were below this threshold. The depth with the 

highest richness and diversity was 182.4 mbsf. The depth with the lowest richness was 10.7 mbsf, 

and the depth with the lowest calculated diversity was 44.5 mbsf. Other notable depths with 

relatively high richness and diversity are 404.9, 452.9, 600.5, and 711.3 mbsf. The depths with the 

highest diversity also have the highest richness.   

 

Correlation coefficients were calculated for all depths, and for depth ranges of every 100m, to 

obtain a statistical analysis of the relationship between diversity, carbonate vein frequency, felsic 

vein frequency, and total vein frequency (carbonate and felsic vein frequency combined) (Table 

9). The correlation coefficient for all depths and total vein frequencies is 0.56, which shows a 

moderate positive correlation. From depths 0-100 mbsf, there is no correlation between diversity 

and vein frequencies. For the depths that range from 100-200, 300-400, 400-500, 500-600, 600-

700, and 700-800 mbsf, there is a very strong positive correlation between diversity and vein 

frequencies. From 300-400 mbsf, there is a perfect positive correlation between diversity and vein 

frequencies, however, it is important to note that only two diversity values are available for that 

depth range. Three out of the eight depth ranges show a very strong positive correlation between 
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diversity and carbonate vein frequency, and five out of the eight depth ranges show a very strong 

positive correlation between diversity and felsic vein frequency. 

 

4.3 - Nutrient Addition Incubation Experiments Community Analysis 

Genomic DNA was successfully extracted from all rock samples in the nutrient addition incubation 

experiments. The V4-V5 region of the 16S rRNA genes was successfully amplified from all 

samples. The number of ASVs and reads present before and after both quality control steps are 

shown in Table 10. A total of 202 ASVs and 5,293,213 reads were constructed for all samples 

including negative control samples (control samples included three PCR blank controls, a blank 

DNA extraction kit control, and a blank filter control). The blank filter control was made by using 

a blank 0.2 µm polycarbonate filter that was subjected to the same DNA extraction process as the 

samples. Upon removing the ASVs that overlapped between the experimental samples and the 

control samples, there were 594,880 reads. Archaeal 16S rRNA genes were not detected in the 

nutrient addition experiments. From these 594,880 reads, 173 ASV’s were found. After removing 

ASVs that were commonly found in PCR contamination (Salter et al 2014, Sheik et al 2018), 94 

ASVs remained, representing a total of 215,398 sequences.  

 

The samples were dominated by Proteobacteria, which constituted 64.9% of the sequences, 

followed by Firmicutes (13.8%) Acidobacteria (5.3%), Bacteroidetes (5.3%) and others (10.6%) 

that include Acidobacteria, Armatimonadetes, Cyanobacteria, Deinococcus-Thermus, 

Marinimicrobia and Planctomycetes (Table 11). The community composition for all incubation 

samples for each depth and treatment at the class taxonomic level are shown in Figure 5. The 

classes that are below 10% of the sequences are defined as Others. Gammaproteobacteria made up 
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54.1% of the Proteobacteria sequences, while Alphaproteobacteria, Hydrogenophilalia, and 

Deltaproteobacteria made up 32.8%, 11.5%, and 1.6% of the Proteobacterial sequences 

respectively.  

 

The community composition for each depth and treatment at the genus taxonomic level is shown 

in Figure 6. The classes that are below 10% of the sequences are defined as Others. Some ASV’s 

were classifiable only up to a higher taxonomic level than genus, and these were labeled in the 

figure. The sequences that were only classified to a higher taxonomic level than genus formed the 

majority of the sequences with a total of 58,620 reads. Apart from these, the five most abundant 

genera found were Hydrogenophilus, RB-41 (environmental sequences representing an uncultured 

genus within the family Pyrinomonadaceae), Bacillus, Thermicanus, and Curvibacter. There were 

seven ASVs classified as Hydrogenophilus, representing 47,500 reads. Two ASV’s were classified 

as RB-41, representing a total of 31,064 reads. Bacillus was represented by four ASVs and 15,164 

reads, and five Thermicanus ASVs were detected, representing a total of 6,686 reads. Curvibacter 

represented one ASV and a total of 6,311 reads.  

 

Out of the 48 samples, 14 samples did not have sequences that were present after the removal of 

ASVs that overlapped between the experimental samples and the control samples, as well as 

common genera found in PCR contamination, these have been removed in the figure, and the 

removed samples are listed in Table 16.  

 

To determine the richness and diversity of the samples with respect to depth and treatments, the 

number of ASVs present at each depth is tabulated to represent richness, and inverse Simpson 
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values were calculated upon subsampling using mothur to represent diversity (Table 12). 1,062 

reads were selected as the threshold for subsampling, this was the lower quartile for the number of 

reads present in all samples. Inverse Simpson values for depths in mbsf (with treatments) 247.7-

N, 332.8-NP, 420.9-NT, 460.4-NT, 626.3-NP, 639.3-N, 714.9-NP, and 747.7-C were not 

calculated as the number of reads in these samples were below this threshold. All the samples are 

low in diversity. The depth and treatment with the highest richness and diversity in relative to the 

other depths and treatments were 274.6-NP, and 70.9-N respectively.  

 

Richness and inverse Simpson values were also calculated for all incubation samples with respect 

to depth (all treatments combined) (Table 13). 7,644 reads were selected as the threshold for 

subsampling, this was the lower quartile for the number of reads present in all depths. Inverse 

Simpson values for depths 332.8, 421.5, and 639.3 mbsf were not calculated as the number of 

reads in these samples were below this threshold. The depths with the highest richness are 274.6 

mbsf, 70.9 mbsf, and 714.9 mbsf. The depths with the highest diversity relative to other depths are 

70.9 mbsf, 228.8, and 274.6. Unlike with the in situ samples, increase in richness does not also 

follow an increase in diversity. There were a few notable similarities in diversity of the samples 

relative to other depths for the in situ and incubation samples. Depth 228.8 mbsf was the only 

depth to exhibit high diversity relative to the other depths for both in situ and incubation samples. 

Depth 247.7 mbsf showed low diversity in both in situ and incubation samples.  

 

To investigate the effect of treatments, the richness and diversity were calculated for all incubation 

samples with respect to treatments (all depths combined), and this is presented in Table 14.  

Samples with NP addition showed the highest richness, followed by N addition, C addition and no 
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treatment. The highest diversity was observed in samples with C addition, followed by NP 

addition, no treatments, and N addition. Richness did not correspond to increase in diversity. As 

the inverse Simpson values are similar for the treatments, a one-way or single-factor analysis of 

variance (ANOVA) was calculated to determine if the values are statistically similar for each 

treatment group. This was done using the inverse Simpson values calculated in Table 11. The null 

hypothesis is that there is no difference between the treatment groups. It was found that p > 0.05 

and F < Fcrit. The null hypothesis is not rejected and the effect of each treatment on the microbial 

community diversity is not statistically different.  

 

In addition to the treatments being statistically similar in their effect on microbial diversity, there 

were inconsistencies in the presence of certain genera in the incubation samples. Genera that were 

highly abundant at a particular depth, would typically be found in only one of the added treatments, 

but not in the incubation sample without any treatments. For example, at depth 714.9 mbsf, for the 

N-addition, Hydrogenophilus was the most abundant genus, but this genus was only found in the 

N-addition, and not in the incubations without treatment, or other nutrient additions. Subsequent 

analyses for the samples were presented as a whole for each depth, and sequences from each 

treatment were combined.  

 

Figure 7 and 8 respectively depict the microbial community on the class and genus taxonomic 

level for all 11 depths (all treatments combined). Gammaproteobacteria is the most commonly 

abundant class for four of the depths: 70.9, 421.5, 460.4, and 626.3 mbsf, followed by 

Hydrogenophilalia at 274.6, and 747.8 mbsf. At depths 228.8, 247.7, 639.3, and 714.9, the most 

abundant classes are Alphaproteobacteria, Bacilli, Oxyphotobacteria, and Blastocatellia 
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respectively. The most abundant genera for each depth vary distinctly (Figure 8). At depths 70.9 

and 626.3 mbsf, most of the genera are only classified to a higher taxonomic level. 

Hydrogenophilus is the only genus that is at top abundance for more than one depth (274.6 and 

747.8 mbsf. At depths 228.8, 247.7, 332.8, 421.5, 460.4, 639.3 and 714.9 mbsf, the most abundant 

genera are Acidovorax, Bacillus, Formosa, Pelomonas, Tepidimonas, Chroococcidiopsis, and RB-

41. The closest relatives to the ASV sequences for each genus are briefly described in Table 17. 

 

Figure 9 depicts the NMDS plot to visualize the dissimilarity in microbial community structure 

among the nutrient incubation samples. The only apparent major clustering of microbial 

communities is in the center of the plot. All samples from depths 70.9, 626.3, and 714.9 mbsf are 

present within this grouping, in addition of a high portion of samples with C addition. Microbial 

communities in C addition treatments showed separation into two groups, where communities 

from 70.9, 228.8, 460.4 and 714.9 mbsf, that are clustered closer together in the center, are more 

similar than the communities from depths 274.6, 639.3, and 747.7 mbsf. For N addition, the 

microbial communities are all different from each other, and the only pairing that is visible are 

with depths 420.9 and 639.3 mbsf. NP addition communities were mostly clustered together as 

can be seen in the center, except for four depths that range from 228.8 to 332.8 mbsf. Microbial 

communities that received no added treatments can be seen mostly on the top half of the plot, 

though most of the communities are well spread out and are different (depths: 228.8, 247.7, 274.6, 

420.9, 460.4, 747.7 mbsf).  
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4.4 - Methane Measurements from Nutrient Addition Incubation Experiments 

No methane measurements were performed onboard the ship at the start of the incubation. It was 

assumed that the methane concentration at the start of the incubation would be zero. For the blank 

controls, three negative controls of ASW with no rocks added were measured and the average for 

methane production after 60 weeks was 2.76*10-3 nmol/day. The rate at 25 weeks was derived 

from the value measured at 25 weeks minus the initial value (zero) divided by time elapsed in 

days. The rate at 60 weeks derived from the difference between methane measured at 60 weeks 

and methane measured at 25 weeks divided by time elapsed since the 25 weeks measurement. In 

nearly all the experiment bottles, methane was detected when samples were collected at six months 

and again after one year of incubation with methane production ranging from zero to as high as 

0.1 nmol/day (Figure 10). The average methane production for all samples and treatments after 25 

weeks and 60 weeks was 1.7*10-2 nmol/day and 2.05*10-2 nmol/day, respectively. Carbonate and 

felsic vein frequencies are compared to methane activity (Figure 10).  Correlation coefficients were 

determined for both the 25 and 60 weeks methane production rates compared to carbonate and 

felsic vein frequencies (Table 18). There is a negligible correlation of 25 weeks methane 

production with both types of veins, but there is a weak positive correlation between 60 weeks 

methane production with both types of veins.  

Based on Figure 10, methane production in the C addition treatments was higher than in the NT 

samples after 25 weeks for samples from seven depths: 70.9, 91.3, 247.7, 274.6, 421.5, 626.3, 

714.9 mbsf. At depths 91.3, 421.5, and 626.3 mbsf, the methane production was not higher in the 

C-addition than it was in the NP-addition. At depth 714.9, methane production in the N-addition 

was higher than that in the C-addition.  
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For methane production after 60 weeks was higher in the C-addition than in the sample without 

nutrients added for 91.3 and 274.6 mbsf; though NP-addition incubation sample had higher 

methane production than C-addition. There is no significant trend of increased methane production 

with increased organic carbon source addition. One-way analysis of variance (ANOVA) was 

calculated to determine if methane production is statistically similar for each treatment group 

(Table 19). For methane production at both 25 and 60 weeks, it was found that the effect of each 

treatment on methane production is not statistically different.  
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5. DISCUSSION 

5.1 – Addressing Hypothesis 1: Microbial abundance along the core is positively correlated to the 

presence of indicators of fluid flow and hydrothermal alterations such as carbonate veins or felsic 

veins.  

The convective circulation of seawater in the subseafloor aquifer creates a mechanism in which 

heat and mass can be transferred between the crust and the ocean and by which microbes can be 

dispersed (Orcutt et al., 2013; Whitman et al., 1998). Fluid flow through the rocks can therefore 

introduce microbes into subsurface environments, and it was thus hypothesized that the presence 

of fluid flow or hydrothermal alteration indicators such as veins would correlate positively to cell 

concentrations. The path left behind by these fluid alterations can create space and pathways in the 

rocks for microbes to move, obtain nutrients, and colonize. A study done with subsurface samples 

from North Pond, from the west flank of the Mid-Atlantic Ridge, used quantitative PCR (qPCR) 

to determine an average cell concentration of 1.4-2.2 * 104 cells/g of rock samples (Jørgensen and 

Zhao, 2016). However, the authors did note that cell estimates based on primer-based approaches 

are prone to bias and the numbers should be evaluated with this in mind (Jørgensen and Zhao, 

2016). The rock samples obtained for the North Pond study were also mainly from igneous crust. 

Another study of microbial abundance along a 254 m core of basaltic rock at Hole U1383C from 

North Pond found cell abundances on the same order of magnitude as well, ranging from 1.0*103 

to 6.1*104 cells/cm3 (Zhang et al., 2016). Cell abundances found from the interior portion of 

basement samples drilled to 57m at Atlantis Massif ranged from <10 to 6.5*102 cells/cm3 (Früh-

Green et al., 2018). Compared to the average cell abundance from the Expedition 360 in situ rock 

samples (6.10*102 cells/cm3), the averages from North Pond are much higher, while the average 

counts for this project is very close to the upper range of cell abundance from Atlantis Massif 
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basement samples. This could be due to the difference in lithologies as well, where North Pond is 

hosted by basaltic rocks while lithologies of Atlantis Massif are more similar to that present at 

Atlantis Bank, with olivine-rich rocks. Highest felsic and carbonate vein frequencies were 

observed at 180-200 mbsf, 280-470 mbsf, 580-620mbsf, and 720 mbsf. However, cell abundances 

that were on the higher end (103-104 cells/cm3) were only observed at 248 mbsf and 724 mbsf. It 

is important to note that while high vein frequencies were not indicative of higher cell counts, low 

vein frequencies were not indicative of lower cell counts either. The distribution of cell abundance 

had strong positive correlations to vein frequencies at depth ranges 219 to 248 mbsf, 300 to 333 

mbsf, 400 to 500 mbsf, and 500 to 600 mbsf (Table 1, 2). The high felsic vein frequencies observed 

from 180-200 mbsf, 240-300 mbsf, 375-392 mbsf, and 580-620 mbsf did not correlate to higher 

cell abundances. The high carbonate vein frequencies observed from depths 248-274 mbsf, and 

333-392 mbsf did not correlate to higher cell abundances. An explanation as to why cell 

concentrations are not higher in samples with high vein frequencies could be attributed to the scale 

at which the vein frequencies were observed. The vein frequencies were observed on a 

significantly larger scale, at every 10 m of core sample. The amount of rock sample use for cell 

counts is roughly 1 cm3, which is significantly smaller in contrast to the 10 m core that were used 

to quantify vein frequencies. The presence of vein in the 10 m section, will not necessarily be 

present in the particular 1 cm3 of rock sample that was used. In subsurface sedimentary 

environments, cell abundances typically decrease with respect to depth (Inagaki et al., 2015; 

Parkes et al., 1994), however, this is not the case for subsurface rock samples such as those featured 

in this experiment. Subsurface rock samples are heterogenous in nature and this heterogeneity 

translates into the cell abundances that have been enumerated along the core. Evidently, the cell 

counts do not decrease or increase with depth but rather remain consistently low in abundance and 
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adhere within the 102-103 cells/cm3 range. Though care was taken to utilize the samples that had 

visible veins present for cell counts, the heterogenous nature of the rocks and discontinuous veins 

can account for the mismatch observed between vein frequencies and cell counts. In the same 

aforementioned study which enumerated cells at North Pond, the cell abundances showed a strong 

positive correlation to porosity, suggesting that microbial abundance in subsurface basalts can be 

controlled by geophysical or geochemical changes. However, the heterogenous nature of the 

samples present a challenge to study the effect of other parameters present in situ on the cell 

abundances (Zhang et al., 2016).  

 

5.2 - Addressing Hypothesis 2: In situ microbial community structure and diversity is positively 

correlated to the number of veins. 

5.2.1 – Correlation between Microbial Diversity and Vein Frequencies  

While the most abundant class at each depth was variable, Nitrososphaeria, Alphaproteobacteria, 

and Gammaproteobacteria were abundant throughout all depths (Figure 4). The richness and 

diversity of the in situ samples varied greatly at different depths. Richness values were found to 

range from 4 to 219 ASVs per sample, and the diversity of the samples corresponded to the 

respective richness as well (Table 8). The most abundant genera at each depth were different at 

different depths (Table 7). In addition, the microbial diversity showed a very strong positive 

correlation to vein frequencies (Table 9). Higher vein frequencies suggest a larger surface area 

present within the rocks where microbes can travel to obtain nutrients, grow, and colonize. The 

very strong positive correlations suggest that higher vein frequencies are likely to facilitate 

microbial growth due to larger spatial availability.  
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5.2.2 - Interesting Genera Present in the In Situ Microbial Community 

Samples from the in situ microbial communities present several interesting genera such as the 

Gammaproteobacterial SUP05 cluster was originally found in hydrothermal vent environments  

(Sunamura et al. 2004) and is also commonly found in the water column  at the nitrite maxima of 

oxygen minimum zones (OMZ) (Shah et al., 2017).The SUP05 group plays a major role in the 

nitrogen cycling at vents and OMZs, where it couples sulfide oxidation to nitrate reduction  

(Hawley et al., 2014) helping to drive this fixed nitrogen loss (Callbeck et al., 2018). One notable 

genus that is abundant at 14 depths is Nitrospina, and this genus has the capability to oxidize nitrite; 

Nitrospina can also be found at OMZs in addition to surface waters (Luecker et al., 2013). Another 

interesting genus present is Candidatus Nitrosopelagicus, an archaeal genus that oxidizes ammonia 

and is typically found in the open ocean (Santoro et al., 2015). While each of these genera are 

abundant at different depths, at depths 404.9 mbsf, both Nitrospina and SUP05 are present, and at 

depth 247.7 mbsf, both Nitrospina and Candidatus Nitrosopelagicus are present. These genera are 

usually found in the marine water column, and it is possible that they were introduced into the 

lower oceanic crust by the circulation of seawater through the crust.  

 

5.3 Addressing Hypothesis 3: Added nutrients will stimulate diversity in microbial communities. 

5.3.1 - Nutrient Addition Treatment and Its Effects on Microbial Community Structure 

The one-way ANOVA showed that the different treatments did not have a statistically significant 

effect on the microbial diversity of the incubation samples (Table 14). The response of the 

microbial community toward different treatments on the genus level was difficult to assess. For 

the majority of the incubations, genera that were highly abundant at a particular depth would 

typically be found in only one of the added treatments, but not in the incubation without any 
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treatments. This inconsistency in the presence of certain genera is most likely due to the 

heterogeneity of the rocks, meaning that the presence of microbial communities are likely dictated 

by the spatial availability in the rocks or mineralogy or other chemical and/or physical variation 

not detectable at the resolution of currently available methods. It could also be due to low microbial 

abundances in the samples or dead cells. In Figure 9, when dissimilarities were plotted on the ASV 

level in an NMDS plot, there was some clustering of bacterial communities with respect to the 

different treatments. One small clustering can be seen for the N-addition depths 420.9 and 639.3 

mbsf, where both samples have an abundance of the genus Pelomonas. Several NP addition 

samples grouped together towards the center of the plot. The NP samples from depths 274.6 and 

747.8 mbsf all had Hydrogenophilus as the most abundant genera, and for those from depths 626.3 

and 639.3 mbsf, Altererythrobacter was one of the most abundant genus present in the samples. 

However, some larger similarity must be important for this grouping since there are also samples 

from all three other treatments in the grouping, and the genera mentioned above were not present 

in all the samples. 

 

5.3.2 - Notable Genus from Incubation Samples 

Hydrogenophilus was the most abundant genus found in the incubation samples, though it was 

only found in samples at depths 274.6, 460.4, 714.9, and 747.7 mbsf. The seven unique ASV’s 

under Hydrogenophilus were identical at the nucleotide level to other Hydrogenophilus species 

commonly detected in geothermal environments (Arai et al., 2018; Hayashi et al., 1999; 

Vésteinsdóttir et al., 2011).  Hydrogenophilus belongs to the Hydrogenophilalia class and 

Proteobacteria phylum (Boden et al., 2017). H. thermoluteolus and H. hirschii, the most studied 

isolates in this group, are moderately thermophilic and aerobic (Arai et al., 2018). 
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Hydrogenophilus are also facultative chemolithoautorophs that can grow autotrophically on 

hydrogen or sulfur compounds as the electron donor and carbon dioxide as the carbon source or 

heterotrophically in organic media. When growing autotrophically, Hydrogenophilus fixes carbon 

dioxide via the Calvin-Benson-Bassham (CBB) cycle (Arai et al., 2018).  

 

5.3.3 - Similarities and Differences for Incubation and In situ Samples 

The genera that the 40 samples have in common with the incubation samples include: 

Aquabacterium, Bradyrhizobium, Brevundimonas, Clostridium, Curvibacter, Delftia, Formosa, 

Halomonas, Marinobacter, Methylobacterium, Pseudomonas, Pseudoxanthomonas, Rhizobium, 

and Stenotrophomonas. Out of the 40 in situ samples, samples from nine depths were also used in 

the incubation experiments. From the nine samples in common with the incubation samples: the 

only shared genera are: Rhizobium, Halomonas, Methylobacterium, Pseudomonas, 

Stenotrophomonas.  

 

The primary difference between the in situ and incubation samples is that archaeal genes were not 

amplifiable in the incubation samples. Methane was measured in the headspace of the incubation 

samples and it is postulated to be biotically produced because the methane produced in many of 

the vials were higher than that produced in the blank control, and also with just ASW and rocks, 

indicating the methane was likely formed via methanogenesis if it is assumed that the nutrients 

stimulated biological activity.. The abiotic formation of methane is a less likely source of the 

methane produced as this would have yielded similar amounts of methane for all samples. The 

lack of archaeal sequences from the DNA extraction do not necessarily point to an absence of 

Archaea. There have been reports of subsurface samples where multiple evidence pointed to the 
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presence of methanogenic Archaea, where none or only one archaeal 16S rRNA gene sequence 

was amplified; and archaeal 16S rRNA genes were not quantifiable by digital polymerase chain 

reaction (dPCR) either (Inagaki et al., 2015). In addition, major archaeal lineages are possibly not 

amplified due to sequence mismatches using domain-specific primers (Hoshino and Inagaki, 2019; 

Lipp et al., 2008; Teske and Sørensen, 2008), as were used here (and are commonly done). That 

said, the primers used here were specifically designed to more efficiently amplify common 

Archaea in seawater (Parada et al., 2016), so it is possible that the low recovery in the nutrient 

addition experiments is real. 

 

Additionally, the community structure in the in situ and incubation samples differ vastly as can be 

seen by the difference in the dominant genera for the incubation and in situ samples at different 

depths. The nine in situ samples that were the original for the samples used in the nutrient addition 

incubation experiments can be used as time = 0, though between the in situ and incubation samples, 

only five shared genera were observed and within this genera, the ASVs were not similar. The 

differences in community could be attributed to changes within the community that occurred over 

the year long incubation. Moreover, another reason that could account for this dissimilarity is due 

to using different extraction methods; for the incubation samples, roughly 0.5 cm3 of rocks were 

crushed using a sterile mortar and pestle prior to extracting DNA. The PCR polymerase enzyme 

used also differ for the differ between the in situ and incubation samples, as they were performed 

by different laboratories.  The genera present in the in situ samples were most likely introduced 

from the marine water column, as mentioned above with genera such as Nitrospina and SUP05. In 

addition, the presence many of thermophilic bacteria in the incubation samples such as 

Hydrogenophilus, Tepidimonas, and Anoxybacillus could be indicative of these microbes being 
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introduced from much deeper depths, closer to the mantle where temperatures are significantly 

higher (Table 17). 

 

5.4 - Addressing Hypothesis 4: Carbon additions, namely lactate, acetate and formate will 

enhance methane production. 

Sampling of headspace after 25 and 60 weeks revealed the presence of methane in many 

incubations and the amounts were generally higher in incubations with added nutrients than in 

blank controls. The one-way ANOVA indicated that the different nutrient additions did not 

enhance methane production after 25 and 60 weeks. It was hypothesized that the addition of 

organic carbon sources, specifically lactate, acetate, and formate, would enhance methane 

production because these are common substrates that are used in acetoclastic methanogenesis. 

There are three major pathways of microbial methanogenesis: hydrogenotrophic, methylotrophic, 

and acetoclastic. Methylotrophic methanogenesis requires methylated compounds to produce 

methane (Lang et al., 2015), and an example of this is using methoxylated aromatic compounds 

produced within coal beds for methanogenesis (Mayumi et al., 2016). Hydrogenotrophic 

methanogenesis require H2 and CO2 to produce methane and is said to be the most widespread 

form of microbial methanogenesis as most methanogenic archaea can reduce CO2 with H2 to 

methane (Thauer et al., 2008). Though acetoclastic methanogenesis is responsible for biogenically 

produce methane in numerous environmental settings, only two genera from the order 

Methanosarcinales can utilize acetate to form methane (Ferry, 1992; Fournier and Gogarten, 2008; 

Stams et al., 2019). This could explain why the carbon addition samples did not show increased 

methane production. If there are methanogens present in the incubations, albeit undetected with 

16S rRNA gene analysis, it is possible that the majority are not from the order Methanosarcinales, 
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and instead employ hydrogenotrophic methanogenesis. In which case, methane production could 

be positively linked to higher olivine content in the rocks, as H2 is a product of serpentinization, 

from olivine reacting with water.  

 

Another variable that the methane production was correlated to was vein frequency. More veins 

could allow for more interfaces between the rocks and seawater traveling through the veins. At 

these interfaces, microbes can benefit from the nutrient exchange, such as H2 produced from 

serpentinization, which in turn can be positively correlated to higher methane production. There 

are high carbonate vein frequencies from depths 280 to 420 mbsf, and methane production after 

60 weeks measured from depths 247.8, 274.6, 332.8, and 421.5 mbsf appear to be highest in 

productivity of methane. However, correlation coefficients for the relationship between methane 

production and vein frequency showed no correlation for methane produced up to 25 weeks, but a 

weak positive correlation for methane produced from 25-60 weeks. This indicates that vein 

frequencies might not be the factor that enhances methane production. If the methanogens present 

in the incubation are indeed utilizing hydrogenotrophic methanogenesis to produce methane, 

future work should include correlating the percent or weight of olivine mineral present at depths, 

or other lithological measurements such as vein thickness. While abiotic production of methane is 

said to be extremely limited in temperatures below 200°C due to kinetic inhibitions, there could 

be other explanations for the presence of methane that is not biogenically produced. such as the 

presence of volatiles released from fluid inclusions within the rocks, as well as thermal breakdown 

products of potential contaminant organic compounds in the rocks (McCollom, 2016).   
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5.5 - Additional Discussion: Role of Depth in Shaping the Microbial Community Structure 

The general lithologies of the rock samples do not vary with depth and there is no postulated 

relationship between the lithology of the rocks and the microbial community structure. However, 

data from the incubation experiments showed that the most abundant genera for each depth differ 

distinctly. The closest known relatives for a majority of the sequences come from environments 

such as seawater from the Indian Ocean, soil, sediments and geothermal hot springs (Table 16). It 

is interesting to note that on the finer scale, e.g. between the rock samples from the same depth but 

in different nutrient additions, there is strong evidence of heterogeneity in the rocks that manifests 

as a specific genus found in one treatment, but not the others from the same depth. Despite this, 

the heterogeneity of the rocks appears to be less apparent on the larger scale, as can be seen from 

the different genera that are most abundant from the different depths.  
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6. CONCLUSION 

Enumeration of cell abundances along the depth of the 790 m core allowed us to obtain an average 

of the microbial abundance present at this site. Assessment of the relationship between cell 

concentration and the presence and frequencies of veins helps to determine if evidence of fluid 

flow in the rocks affects the microbial population in terms of abundance. Vein presence was 

initially thought to have a positive correlation with cell concentration, as they are indicative of past 

fluid flow or fluid alterations, leaving behind pathways for microbial cells to move and obtain 

nutrients. Cell abundances throughout the length of the core remained low (102-103 cells/cm3). 

From depths 219-248, 300-333, and 400-600 mbsf, cell abundance showed a strong correlation to 

vein frequency. Other than these depth ranges, cell abundances did not follow a positive correlation 

to vein frequencies. This could be attributed to the heterogenous nature of the rocks, or how vein 

frequency was measured on a larger scale than the sample size used for cell counts. In order to 

assess if different nutrients play a role in shaping the microbial community structure, a nutrient 

addition incubation experiment was set up using rock samples from 12 selected depths along the 

core. It was hypothesized that nutrient addition would promote higher diversity in microbial 

communities. Single-factor ANOVA proved that each nutrient treatment did not have a statistically 

different effect on the microbial diversity. Upon analyzing the microbial community based on 

depth, there was a clear difference in the dominant genera present for each depth. NMDS plots 

depicted a few genera that clustered together based on nutrient additions, such as Hydrogenophilus 

and Altererythrobacter in the NP additions, and Pelomonas in the C-additions. Additionally, no 

archaeal sequences were amplified from the incubation samples despite methane being measured 

in the headspace of the incubation vials. It was also hypothesized that methane production in the 

incubation samples would increase with the carbon addition would correlate positively to vein 
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presence. However, there was no statistically significant difference in the effect of the different 

treatments or vein frequencies on methane production. Future work to better understand what 

regulates the microbial abundance and microbial community in subsurface rock environments 

include correlations with other lithological or geochemical properties of the rocks such as oxide 

composition, in addition to metagenomic analyses of several promising samples such as those from 

depths with higher abundance and highest diversity in sequences. The analysis performed here 

provided insight to understanding the microbial life at an ultraslow spreading ridge in the Indian 

Ocean, and allow for a better understanding of lower oceanic crust microbiology as well.  
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APPENDIX A: FIGURES 

 

Figure 1. Study site for IODP Expedition 360 exploration of the intrusive oceanic crust. 
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Figure 2. Site map for Atlantis Bank and exact location of Hole U1473A. Reprinted from Proceedings of 

the International Ocean Discovery Program Volume 360 Expedition Reports (Dick et al., 2016). 
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Figure 3. Plot of cell abundance against core depth, in addition to carbonate vein and felsic vein 

frequency, and the lithology present on the core at each depth. The black line refers to limit of 

quantification. 
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Figure 4. Microbial community composition for the 40 in situ rock samples at the Class taxonomic level. 

The Phylum level is also annotated in the legend for each Class. *Asterisks mark samples from depths 

that are also present in the incubation experiments. 
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Figure 5. Microbial community composition for nutrient addition incubation experiments presented at the 

class taxonomic level. NT: No treatment, C: Carbon (lactate, acetate and formate) addition, N: 

Ammonium addition, NP: Ammonium and phosphate addition. 
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Figure 6. Microbial community composition for nutrient addition incubation experiments presented on the 

genus taxonomic level. NT: No treatment, C: Carbon (lactate, acetate and formate) addition, N: 

Ammonium addition, NP: Ammonium and phosphate addition. 
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Figure 7. Microbial community composition at the class taxonomic level for all the combined samples 

from the nutrient addition incubation experiments, grouped into their respective depths. 
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Figure 8. Microbial community composition on the genus taxonomic level for all the combined samples 

from the nutrient addition incubation experiments, grouped into their respective depths. 
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Figure 9. NMDS plot of dissimilarity in microbial community for each nutrient addition incubation 

sample. Each color corresponds to a different depth and each shape corresponds to a different treatment. 

Labels for depth are also added for ease of visualization. The stress value for the NMDS plot is 0.000120. 
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Figure 10. Rate of methane production in long term enrichment experiments (left). The carbonate and 

felsic vein frequency present in the 10 m core transect is shown for reference (right). 
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APPENDIX B: TABLES 

Table 1. Recipe for artificial seawater (ASW). 

Component Amount/Concentration 

18.2 MΩ·cm Milli-Q water 1000 mL/L 

NaCl 27.5 g/L 

MgCl2·6H2O 8.8 g/L 

KCl 0.5 g/L 

Na2SO4 3.3 g/L 

Na2CO3 25 mM 

CaCl2·2H2O 1.4 g/L 

(NH4)2SO4 0.63 g/L 

K2HPO4·3H2O 0.04 g/L 

KBr 0.05 g/L 

H3BO3 0.02 g/L 

ATCC-TMS 10 mL/L 

Resazurin 1 mg/L 

Sodium thioglycolate 2 g/L 

Sigma Kao & Michayluk Vitamins Solution 10 mL/L 

Thioctin (α-lipoic) acid 500 mg 

1x ATCC Trace Mineral Supplement 10 mL/L 
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Table 2. Correlation coefficients for cell abundance and vein frequency in rock samples for depth ranges 

of every 100 meters below seafloor. 

Depth Range (mbsf) 
Pearson Correlation Coefficient, Pe 

Carbonate Vein Frequency Felsic Vein Frequency 

0-100 NA 0.431 

100-200 -0.237 -0.349 

200-300 -0.055 -0.318 

300-400 0.501 -0.049 

400-500 -0.398 0.922 

500-600 0.830 -0.645 

600-700 -0.185 -0.221 

700-800 NA -0.200 

All Depths -0.024 -0.111 

Legend Description  

Pe = 1 Perfect positive correlation 

0.75 ≤ Pe < 1 Very strong positive correlation 

0.50 ≤ Pe < 0.75 Moderate positive correlation 

0.25 ≤ Pe < 0.5 Weak positive correlation 

0 < Pe < 0.25 Negligible correlation 

Pe = 0 No correlation 

-0.25 < Pe < 0 Negligible correlation 

-0.50 < Pe ≤ -0.25 Weak negative correlation 

-0.75 ≤ Pe ≤ -0.5 Moderate negative correlation 

-0.75 ≤ Pe < -1 Very strong negative correlation 

Pe = -1 Perfect negative correlation 
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Table 3. Correlation coefficients for cell abundance and vein frequency in rock samples for varying depth 

ranges, selected based on depths where either cell abundances or vein frequencies were highest. 

Reasoning for Depth Range 

Selection 

Depth 

Range 

(mbsf) 

Pearson Correlation Coefficient, Pe 
Cell Counts 

Data Points Carbonate Vein 

Frequency 

Felsic Vein 

Frequency 

High cell counts 218-247 0.997 -0.391 4 

High felsic vein frequency 241-299 -0.273 -0.534 5 

High carbonate vein frequency 247-274 -0.504 -0.450 3 

High cell counts 299-332 0.842 0.683 4 

High carbonate vein frequency 299-392 0.420 -0.019 7 

High carbonate vein frequency 332-392 0.427 -0.454 4 

High felsic vein frequency 375-392 -0.997 -0.289 3 

High carbonate vein frequency 411-463 -0.398 0.922 4 

High cell counts 432-463 0.195 0.887 3 

High felsic vein frequency 581-621 -0.842 0.234 3 

High cell counts 639-724 -0.184 -0.173 9 

High felsic vein frequency 661-781 0.000 -0.191 9 
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Table 4. Number of ASVs and reads constructed with the initial in situ 16S rRNA data for each sample, 

followed by the numbers remaining after removal of ASVs present in the blank PCR control, and 

numbers remaining after quality control (removal of ASVs that are commonly found in PCR 

contamination).   

Depth (mbsf) 
Initial 

Removal of 

Blank Controls 

Removal of Common 

PCR Contaminants 

# of ASV # of Reads # of ASV # of Reads # of ASV # of Reads 

10.7 51 88999 23 293 4 27 

13.9 53 76589 22 10247 8 86 

26.9 132 5375 42 1786 28 1384 

44.5 113 160870 50 4552 20 3547 

64.5 323 35562 145 10468 107 8938 

91.3 55 52956 51 52734 6 348 

111.9 71 82337 33 500 11 173 

119.7 368 27306 188 8244 142 5888 

160.5 250 7894 106 3344 51 2110 

168.4 85 96545 33 447 12 122 

182.4 565 57470 357 35175 232 15353 

201.6 463 46041 243 15398 127 11671 

209 58 95609 17 11867 0 0 

228.8 316 34706 160 7740 124 6717 

241.1 406 40231 205 13172 136 8824 

247.7 313 213520 153 6910 56 1866 

274.6 370 458416 216 10127 40 1384 

285.4 136 3543 51 1900 43 1829 

299.6 331 25271 186 7502 108 4577 

306.7 68 105421 32 460 0 0 

324.9 232 8676 89 2275 74 2008 

332.8 128 36602 65 27990 17 308 

375.1 77 34553 61 34171 13 183 

382.7 237 12248 88 2908 76 2500 

404.9 537 57511 346 19051 193 11940 

420.9  5 207 4 99 0 0 

432.8 219 11615 109 4356 79 3363 

452.9 390 31878 189 8780 152 7692 

460.4  383 42737 217 21934 111 8396 

522.7 227 68465 101 66272 29 1326 

533.5 108 165277 74 163861 23 862 

558.5 225 9711 111 4783 87 3043 

564.8 387 74856 193 15950 123 12192 

600.5 458 90396 254 23560 180 19754 
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Table 4 continued 
 

Depth (mbsf) 
Initial 

Removal of 

Blank Controls 

Removal of Common 

PCR Contaminants 

# of ASV # of Reads # of ASV # of Reads # of ASV # of Reads 

619.6 470 105551 262 34943 175 28517 

626.3 133 70405 54 6550 21 606 

643.9 170 4729 76 2755 34 1335 

682.3 265 10182 104 3620 67 2199 

711.3 384 21237 200 8009 167 6705 

714.9 257 44620 96 5719 53 3428 

747.7 487 76190 277 42793 98 6152 

756.3 179 4340 60 1765 45 1522 

781.5 227 7338 79 2122 63 1924 

Blank Kit 

Control 

456 56776 0 0 0 0 

PCR Control 348 68692 0 0 0 0 

Total 5,202* 2,829,453 

 

4,541* 

(87.3% of 

initial) 

707,132 

 

2,649* 

(50.9% of 

initial) 

200,701 

 

*Total ASVs are the number of every unique ASV present for all samples, it is not the cumulative number 

of ASVs from each depth and treatment. 
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Table 5. Community composition of all in situ samples on the phylum level for Bacteria and Archaea. 

Phylum 
Number 

of ASVs 

Percent 

Composition (%) 

Proteobacteria 1,112 50.4 

Marinimicrobia 327 14.8 

Firmicutes 199 9 

Bacteroidetes 109 4.9 

Actinobacteria 100 4.5 

Chloroflexi 96 4.3 

Nitrospinae 66 3 

Acidobacteria 56 2.5 

Verrucomicrobia 40 1.8 

Planctomycetes 33 1.5 

NA 

(Kingdom:Bacteria) 20 0.9 

Gemmatimonadetes 18 0.8 

AncK6 9 0.4 

Dependentiae 6 0.3 

Cyanobacteria 6 0.3 

Lentisphaerae 5 0.2 

Fusobacteria 2 0.1 

Margulisbacteria 1 0 

PAUC34f 1 0 

Nitrospirae 1 0 

Total (Bacteria) 2,207 100 

Thaumarchaeota 341 77.1 

Euryarchaeota 87 19.7 

Nanoarchaeaeota 14 3.2 

Total (Archaea) 442 100 
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Table 6. List of classes that were categorized as Others in Figure 4, and the associated phylum for each 

class.  

Class Phylum 

Anaerolineae Chloroflexi 

Babeliae Dependentiae 

BD2-11 Terrestrial Group Gemmatimonadetes 

BD7-11 Planctomycetes 

Brocadiae Planctomycetes 

Fusobacteriia Fusobacteria 

JG30-KF-CM66 Chloroflexi 

Lentisphaeria Lentisphaerae 

Melainabacteria Cyanobacteria 

Negativicutes Firmicutes 

Nitrospira Nitrospirae 

OM190 Planctomycetes 

Phycisphaerae Planctomycetes 

Pla3 Lineage Planctomycetes 

Subgroup 15 Acidobacteria 

Subgroup 21 Acidobacteria 

Subgroup 26 Acidobacteria 

Subgroup 5 Acidobacteria 

Subgroup 6 Acidobacteria 

Thermoleophilia Actinobacteria 

Halobacteria Euryarchaeota 

Marine Benthic Group A Thaumarchaeota 
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Table 7. Most abundant genera at each depth from the in situ rock samples. 

Depth in mbsf 

(sample name) 
Most Abundant Genera 

10.73 (2R) All genera were only classified to a higher taxonomic level 

13.91 (3R) All genera were only classified to a higher taxonomic level 

26.91 (4R) Pseudoalteromonas, Halomonas 

44.49 (6R) NS4 Marine Group (Family: Flavobacteriaceae), Pseudoxanthomonas, 

Granulicatella, Brevibacillus, Methylobacterium 

64.52 (8R) Catenococcus, Pseudohongiella, Gemella, Erwinia 

91.29 (11R) All genera were only classified to a higher taxonomic level 

111.98 (13R) Alteromonas, Nitrospina, Tenacibaculum 

119.72 (14R) Nitrospina, Alteromonas, Alcanivorax, Clade lb (Class: Alphaproteobacteria) 

160.53 (18R) Clade Ib (Class: Alphaproteobacteria), OM27 Clade (Family: Bdellovibrionaceae), 

Coraliomargarita, Candidatus Scalindua 

168.37 (19R) Capnocytophaga, Nitrospina, Vibrio 

182.44 (21R) Sediminibacterium, XY R5 (Family: Alteromonadaceae), Halomonas, 

Prochlorococcus 

201.59 (23R) Nitrospina, Halomonas, Candidatus Nitrosopumilus, Alicycliphilus 

209.04 (24R) All genera were only classified to a higher taxonomic level 

228.68 (26R) Tenacibaculum, Rhodopirellula, Halomonas, Alteromonas 

241.09 (27R) Catenococcus, NS2b Marine Group (Family: Flavobacteriaceae), Sulfitobacter, 

SUP05 Cluster (Family: Thioglobaceae) 

247.71 (28R) Clade Ib (Class: Alphaproteobacteria), Nitrospina, Candidatus Nitrosopelagicus, 

Catenococcus 

274.55 (31R) Kytococcus, Actinomyces, SUP05 Cluster (Family: Thioglobaceae), Prevotella 

285.43 (32R) Clade Ib (Class: Alphaproteobacteria), SUP05 Cluster (Family: Thioglobaceae), 

NS2b Marine Group (Family: Flavobacteriaceae), Rhizobium 

299.61 (33R) Alteromonas, Sva0996 Marine Group (Family: Microtrichaceae), Nitrospina, 

Pseudoalteromonas 

306.65 (34R) All genera were only classified to a higher taxonomic level 

324.97 (36R) Nitrospina, Marinobacter, Halomonas, Pseudoalteromonas 

332.78 (37R) AT s3 44 (Family: Sneathiellaceae), Pseudoalteromonas, Sva0996 Marine Group 

(Family: Microtrichaceae), Rhizobium 

375.08 (41R) LS NOB (Family: Nitrospinaceae), Prochlorococcus, AT s3 44 (Family: 

Sneathiellaceae) 

382.69 (42R) Pseudoalteromonas, SUP05 Cluster (Family: Thioglobaceae), Methylophaga, 

Halomonas 
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Table 7 continued 

 

Depth in mbsf 

(sample name) 
Most Abundant Genera 

404.92 (44R) SUP05 Cluster (Family: Thioglobaceae), Nitrospina, NS4 Marine Group (Family: 

Flavobacteriaceae), Halomonas 

420.98 (47R) All genera were only classified to a higher taxonomic level 

432.84 (48R) Hydrogenispora, Pajaroellobacter, Leucobacter, Haemophilus 

452.89 (50R) Alteromonas, Candidatus Nitrosopumilus, Veillonella, GCA (Family: 

Lachnospiraceae) 

460.4 (51R) Candidatus Nitrosopelagicus, Marinoscillum, AT s3 44 (Family: Sneathiellaceae), 

Lautropia 

522.73 (58R) Erythrobacter, Parvimonas, Vibrio 

533.45 (59R) Candidatus Endoecteinascidia, Sva0996 Marine Group (Family: Microtrichaceae) 

558.50 (62R) Acidiphilium, Mesorhizobium, Candidatus Nitrosopelagicus, Coxiella 

564.77 (62R5) Clade Ib (Class: Alphaproteobacteria), Alteromonas, Anaerobacillus, Citreicella 

600.51 (66R) Nitrospina, Clostridium, Sva0996 Marine Group (Family: Microtrichaceae), Sarcina 

619.64 (68R) AT s3 44 (Family: Sneathiellaceae), Candidatus Nitrosopelagicus, Sva0996 Marine 

Group (Family: Microtrichaceae), Clade Ib (Class: Alphaproteobacteria) 

626.26 (69R) Capnocytophaga, Clade Ib (Class: Alphaproteobacteria) 

643.87 (71R) SUP05 Cluster (Family: Thioglobaceae), AT s3 44 (Family: Sneathiellaceae), 

Enhydrobacter, Sagittula 

682.32 (78R) Nitrospina, Serratia, Bacillus, Leucobacter 

711.34 (80R) Anaerobacillus, Nitrospina, SUP05 Cluster (Family: Thioglobaceae), Rhizobium 

714.86 (81R) Rhizobium, Anaerobacillus, Halomonas, Pseudomonas 

747.73 (84R) Alteromonas, Mesorhizobium, Anaerobacillus, Nakamurella 

756.28 (86R) Nitrospina, Porphyromonas, Clade Ib (Class: Alphaproteobacteria), Marinoscillum 

781.45 (89R) Clade lb (Class: Alphaproteobacteria), Rhodoferax, Nitrospina, LS NOB (Family: 

Nitrospinaceae) 
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Table 8. Richness and diversity of the in situ rock samples from each depth. Quartiles were calculated 

based on the diversity values of samples from all depths. NA represents inverse Simpson values that 

could not be calculated as they were below the subsampling threshold. 

Depth (mbsf) Richness 
Diversity 

(Inverse Simpson) 
Quartiles 

Diversity 

(Inverse Simpson) 

10.7 4 NA Min 10.55 

13.9 8 NA Upper Quartile 94 

26.9 28 17.23 Median 69 

44.5 19 10.55 Lower Quartile 39 

64.5 103 69.34 Max 166.44 

91.3 6 NA   

111.9 11 NA   

119.7 136 106.55   

160.5 51 43.81   

168.4 12 NA   

182.4 219 166.44   

201.6 113 76.89   

228.8 122 100.13   

241.1 128 87.24   

247.7 55 41.25   

274.6 40 29.95   

285.4 43 37.21   

299.6 107 92.75   

324.9 72 47.08   

332.8 17 NA   

375.1 13 NA   

382.7 72 59.20   

404.9 168 138.02   

432.8 78 69.24   

452.9 146 112.83   

460.4 109 78.28   

522.7 29 24.66   

533.5 23 NA   

558.5 87 64.24   

564.8 113 89.11   

600.5 159 113.54   

619.6 137 96.12   

626.3 21 NA   

643.9 34 22.27   

682.3 67 56.92   

711.3 160 126.65   
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Table 8 Continued 

 

Depth (mbsf) Richness 
Diversity 

(Inverse Simpson) 
  

714.9 53 30.75   

747.7 94 70.57   

756.3 45 31.98   

781.5 63 41.42   
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Table 9. Correlation coefficients for diversity (inverse Simpson values) and vein frequency in rock 

samples for depth ranges of every 100 meters below seafloor. 

 Pearson Correlation Coefficient, Pe  

Depth Range 

(mbsf) 

Carbonate Vein 

Frequency 

Felsic Vein 

Frequency 

Total Vein 

Frequency 

Number of Inverse 

Simpson Data Points 

0-100 NA NA NA 3 

100-200 0.82 0.99 0.93 3 

200-300 0.22 0.16 0.27 7 

300-400 1.00 1.00 1.00 2 

400-500 0.79 -0.55 0.44 4 

500-600 -0.89 0.79 -0.31 3 

600-700 NA 0.92 0.92 5 

700-800 NA 0.88 0.88 5 

All Depths 0.20 0.50 0.56 31 
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Table 10. Number of ASVs and reads constructed with the initial incubation samples’ 16S rRNA data for 

each depth and treatment, followed by the numbers remaining after removal of ASVs present in the blank 

PCR control, and numbers remaining after quality control (removal of ASVs that are commonly found in 

PCR contamination).   

Depth 

(mbsf) 
Treatment 

Initial 
Removal of 

Blank Controls 

Removal of Common 

PCR Contaminants 

# of 

ASV 

# of 

Reads 

# of ASV # of 

Reads 

# of ASV # of 

Reads 

70.9 NT 5 18455 5 20132 0 0 

 C 10 187449 1 139 4 11399 

 N 7 49630 2 2866 10 16890 

 NP 4 17362 0 0 7 21976 

91.3 NT 6 47358 10 20173 0 0 

 C 15 130225 2 3226 0 0 

 N 8 15368 4 2611 0 0 

 NP 9 91289 3 10623 0 0 

228.8 NT 14 107651 3 7146 1 2776 

 C 9 66564 8 14891 3 1466 

 N 13 131856 8 13836 4 2611 

 NP 12 85444 6 10528 2 3383 

247.7  NT 14 116852 3 8424 1 3786 

 C 7 108888 9 19786 0 0 

 N 13 70959 7 7473 2 158 

 NP 24 169771 17 22601 4 9069 

274.6  NT 9 169427 3 9781 7 13870 

 C 9 120080 4 6666 2 1642 

 N 8 102161 3 4196 3 3995 

 NP 10 46249 5 3760 12 12144 

332.8  NT 10 58121 2 5760 0 0 

 C 6 62209 3 215 0 0 

 N 8 129151 3 6131 0 0 

 NP 10 99686 4 6152 1 246 

420.9  NT 18 212754 15 30984 2 126 

 C 22 193256 12 29147 0 0 

 N 10 98579 5 4952 1 3243 

 NP 15 127907 7 7077 1 1309 

460.4  NT 11 109690 0 0 2 324 

 C 4 19916 5 9340 4 6649 

 N 7 45220 3 8745 2 1532 

 NP 12 74394 6 5900 3 1181 

626.3  NT 4 29279 3 3035 0 0 

 C 8 29058 0 0 0 0 

 N 9 57404 4 4605 1 6684 
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Table 10 continued 

 

Depth 

(mbsf) 
Treatment 

Initial 
Removal of 

Blank Controls 

Removal of Common 

PCR Contaminants 

# of 

ASV 

# of 

Reads 
# of ASV 

# of 

Reads 
# of ASV 

# of 

Reads 

626.3 NP 14 105605 8 11245 3 960 

639.3  NT 12 94059 11 49742 0 0 

 C 18 175840 7 10302 1 1483 

 N 21 120420 15 18714 1 210 

 NP 6 60326 1 2 2 1062 

714.9 NT 16 243867 7 11547 3 5564 

 C 12 149084 11 32865 7 41549 

 N 9 123654 4 14877 11 13146 

 NP 12 89021 6 19876 1 2 

747.7 NT 10 184963 8 39740 3 7764 

 C 13 230018 5 12429 2 588 

 N 24 112929 14 20159 0 0 

 NP 19 293000 13 42481 3 16611 

Blank Blank Filter 19 45584 0 0 0 0 

 Blank Kit 11 11480 0 0 0 0 

 PCR Blank 1 5 26966 0 0 0 0 

 PCR Blank 2 5 26734 0 0 0 0 

 PCR Blank 2 1 1 0 0 0 0 

Total 202* 5293213 173* 594880 94* 215398 

*Total ASVs are the number of every unique ASV present for all samples, it is not the cumulative number 

of ASVs from each depth and treatment.   
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Table 11. Community composition of all incubation samples on the phylum taxonomic level. 

Phylum 
Number 

of ASVs 

Percent 

Composition (%) 

Proteobacteria 61 64.9 

Firmicutes 13 13.8 

Bacteroidetes 5 5.3 

Acidobacteria 5 5.3 

Deinococcus-Thermus 3 3.2 

Cyanobacteria 2 2.1 

Planctomycetes 2 2.1 

Actinobacteria 2 2.1 

Armatimonadetes 1 1.1 

Total 94 100 
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Table 12. Richness and diversity of the incubation samples for each depth and nutrient treatments. NA 

represents inverse Simpson values that could not be calculated as they were below the subsampling 

threshold. 

Depth Treatment Richness 
Diversity 

(Inverse Simpson) 
Quartiles 

Diversity 

(Inverse Simpson) 

70.9 

C 4 2.41 Min 1 

N 10 8.07 Upper Quartile 1.25 

NP 7 2.65 Median 1.72 

228.8 

C 3 2.68 Lower Quartile 2.37 

N 4 2.53 Max 8.07 

NP 2 1.30   

NT 1 1.00   

247.7 

N 2 NA   

NP 4 1.81   

NT 1 1.00   

274.6 

C 2 1.52   

N 3 1.56   

NP 12 2.77   

NT 7 2.11   

332.8 NP 1 NA   

420.9 

N 1 1   

NP 1 1   

NT 2 NA   

460.4 

C 4 1.32   

N 2 1.38   

NP 3 1.24   

NT 2 NA   

 

626.3 

N 1 1   

NP 3 NA   

639.3 

C 1 1   

N 1 NA   

NP 2 1.99   

714.9 

C 5 1.72   

N 11 3.34   

NP 1 NA   

NT 3 2.25   

 

747.7 

C 2 NA   

NP 3 1.73   

NT 3 1.92   
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Table 13. Richness and diversity of the incubation samples for each depth (all treatments combined). NA 

represents inverse Simpson values that could not be calculated as they were below the subsampling 

threshold. 

Depth (mbsf) Richness 
Diversity (Inverse 

Simpson) 
Quartiles 

Diversity 

(Inverse Simpson) 

70.9 21 9.16 Min 1.30 

228.8 10 5.20 Upper Quartile 2.79 

247.7 7 2.84 Median 3.33 

274.6 22 3.52 Lower Quartile 3.94 

332.8 1 NA Max 9.16 

421.5 4 NA   

460.4 11 2.63   

626.3 4 1.30   

639.3 4 NA   

714.9 21 3.32   

747.8 8 3.34   
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Table 14. Richness and diversity of the incubation samples for all treatments (all depths combined). 

Treatments Richness  
Diversity  

(Inverse Simpson) 

C 19 7.77 

N 30 5.23 

NP 41 7.03 

NT 17 5.90 
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Table 15. One-way or single-factor analysis of variance ANOVA for effect of different treatments on the 

microbial diversity of the incubation samples.  

Groups Count Sum Average Variance 

Standard 

Deviation  

C 6 10.65 1.78 0.42 0.65  

N 7 18.88 2.70 6.36 2.52  

NP 8 14.50 1.81 0.41 0.64  

NP 5 8.29 1.66 0.37 0.61  

ANOVA       
Source of 

Variation SS df MS F P-value Fcrit 

Between Groups 4.57 3 1.52 0.75 0.53 3.05 

Within Groups 44.62 22 2.03    

Total 49.19 25         
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Table 16. Depths and treatments that were removed from Figure 6 due to having no sequences present 

after quality control. 

Depth Treatments 

70.9 NT 

91.3 NT, C, N, NP 

247.7 C 

332.8 NT, C, N 

420.9 C 

626.3 NT, C 

639.3 NT 

747.8 N 
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Table 17. Most abundant genera from each depth for incubation samples. The genera do not include 

unclassified genera. Descriptions of the closest known isolated relatives to the ASV sequences from these 

specific genera are also listed. 

Depth Genera Description of Closest Isolated Relatives to the ASV 

Sequences for Each Genera 

70.9 (9R) • Thermicanus 

• Curvibacter 

• Anoxybacillus 

Thermicanus aegyptius from oxic soil, is a fermentative 

microaerophile (Gößner et al., 1999).  

Curvibacter lanceolatus, previously Pseudomonas lanceolata 

was isolated from well water (Ding and Yokota, 2004). 

Anoxybacillus tepidamans, previously called Geobacillus 

tepidimonas, was isolated from geothermally heated soil from 

Yellowstone National Park, USA, and is moderately 

thermophilic (Coorevits et al., 2012; Schäffer et al., 2004) 

91.3 (11R) All are only classified to a higher taxonomic level 

228.8 (26R) • Acidovorax 

• Falcirhodobacter 

• Plot4-2H12 

Acidovorax soli, was isolated from soil, no notable 

physiological processes (Choi et al., 2010). 

Falcirhodobacter halotolerans was isolated from soil, no 

notable physiological processes (Subhash et al., 2013). 

Plot4-2H12 closest relative is Rhizorhabdus dicambivorans, 

isolated from compost, no notable physiological processes 

(Yao et al., 2016). 

247.7 (28R) • Bacillus 

• Massilia 

• Pelomonas 

Bacillus velezensis, is a surfactant producing bacteria isolated 

from rivers (Ruiz-García et al., 2005).  

Massilia eurypsychrophila a facultative psychrophilic 

bacteria, and M. psychrophila, both isolated from ice cores 

(Guo et al., 2016; Shen et al., 2015). 

274.6 (31R) • Hydrogenophilus 

• Massilia 

• Craurococcus  

 

Hydrogenophilus thermoluteolus and H. hirschii, which are 

moderately thermophilic aerobic betaproteobacteria.  

Craurococcus roseus, an aerobic bacteriochlorophyll a-

containing bacteria isolated from soil (Saitoh et al., 1998). 

332.8 (37R) • Formosa Formosa arctica is a chemoheterorophic bacteria isolated from 

seawater sample from the Arctic Ocean (Kwon et al., 2014). 

420.9 (47R) • Pelomonas 

• Acinetobacter 

• Halomonas 

Pelomonas saccharophila, a nitrogen fixing and hydrogen 

oxidizing bacteria isolated from mud (Xie and Yokota, 2005).  

Acinetobacter proteolyticus, isolated from soil (Nemec et al., 

2016). 

Halomonas sediminis, a halophilic bacterium isolated from 

salt-lake sediment in China (Huang et al., 2008). 

460.4 (51R) • Tepidimonas 

• Brevundimonas 

Tepidimonas fonticaldi, a slightly thermophilic bacteria 

isolated from a hot spring (Chen et al., 2013).  

Brevundimonas albigilva isolated from soil (Pham et al., 

2016). 

626.3 (68R) • Bradyrhizobium 

• Delftia 

Bradyrhizobium japonica, isolated from soil, no notable 

physiological processes (Wang et al., 1999).  

Delftia tsuruhatensis, a peptidoglycan-degrading bacterium 

isolated from freshwater (Jørgensen et al., 2009). 
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Table 17 continued 

 
Depth Genera Description of Closest Isolated Relatives to the ASV 

Sequences for Each Genera 

639.3 (70R) • Chroococcidiopsis 

• Altererythrobacter 

Chroococcidiopsis thermalis, cyanobacteria isolated from soil, 

no notable physiological processes (Shih et al., 2013).  

Altererythrobacter marinus, isolated from deep seawater of 

the Indian Ocean, no notable physiological processes (Lai et 

al., 2009). 

714.9(81R) 
 

• RB41 

• Hydrogenophilus 

• Bacillus 

• Phenylobacterium 

Brevitalia deliciosa, which was isolated from soil are 

chemoorganoheterotrophic mesophiles with a broad pH range 

for growth. 

Phenylobacterium falsum, isolated from non-saline alkaline 

groundwater, no notable physiological processes (Tiago et al., 

2005). 

747.7(84R) 
 

• Hydrogenophilus 

• Bordetella 

• Bacillus 

• Acinetobacter 

Bordetella muralis, isolated from plaster wall of a stone 

chamber, no notable physiological processes (Tazato et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

Table 18. Correlation Coefficient for Average Methane Production at 25 and 60 Weeks for Carbonate and 

Felsic Vein Frequency 

Time 
Pearson Correlation Coefficient, Pe 

Carbonate Vein Frequency Felsic Vein Frequency 

25 Weeks 0.076 -0.008 

60 Weeks 0.436 0.495 
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Table 19. One-way or single-factor analysis of variance ANOVA for effect of different treatments on the 

methane produced for 25 and 60 weeks. 

 

25 Weeks       

Groups Count Sum Average Variance   

NT 12 0.16 0.0096 7.35E-05   

C 12 0.29 0.024 0.00051   

NT 12 0.13 0.011 0.00015   

NP 12 0.27 0.023 0.00044   

ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.002117 3 0.00071 2.41 0.079 2.82 

Within Groups 0.012873 44 0.000293    

Total 0.01499 47         

60 Weeks       

Groups Count Sum Average Variance   

NT 12 0.33 0.028 0.00083   

C 12 0.26 0.0213 0.0010   

NT 12 0.23 0.019 0.00093   

NP 12 0.15 0.013 0.00091   

ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.0013 3 0.00044 0.47 0.70 2.82 

Within Groups 0.041 44 0.00093    

Total 0.042 47         

 

 


