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The deleterious changes in environmental conditions such as water stress bring

physiological and biochemical changes in plants, which results in crop loss. Thus,

combating water stress is important for crop improvement to manage the needs of

growing population. Utilization of hydroponics system in growing plants is questionable

to some researchers, as it does not represent an actual field condition. However, trying

to address a complex problem like water stress we have to utilize a simpler growing

condition like the hydroponics system wherein every input given to the plants can be

controlled. With the advent of high-throughput technologies, it is still challenging to

address all levels of the genetic machinery whether a gene, protein, metabolite, and

promoter. Thus, using a system of reduced complexity like hydroponics can certainly

direct us toward the right candidates, if not completely help us to resolve the issue.

Keywords: water-stress, drought, soybean, systems biology, ROS signaling, energy metabolism, water-stress

physiology, hydroponics

INTRODUCTION

Water deficiency has a profound impact on ecological and agricultural systems and is a limiting
factor in the initial phase of plant growth and establishment (Rochefort andWoodward, 1992; Shao
et al., 2009). This results in stomatal closure and reduced transpiration rates, a decrease in water
potential, decrease in photosynthetic activities, accumulation of compatible solutes, synthesis of
new proteins, and increase in level of reactive oxygen species (ROS) scavenging compounds like
ascorbate, glutathione, alpha-tocopherol among others (Ford, 1984; Hoekstra et al., 2001; Jogaiah
et al., 2013; Osakabe et al., 2014). Among various important root traits of the root system growth,
plant allometry, and hydraulic conductance show significant changes in response to water stress
(Comas et al., 2013). Also, process of pollination, seed quality, and yield components are greatly
affected (Alqudah et al., 2011). Thus, combating water stress is important for the improvement of
crop varieties. To implement the scientific knowledge about the signaling of drought responses
in the field, comprehensive understanding of the signaling cascades at the molecular level is
important. Moreover, also to find out the critical events that regulate different aspects involved
in the signaling pathway (Tripathi et al., 2014). It is crucial to have a detailed understanding of
the key regulatory points that can be modulated to have an effective outcome leading to increased
productivity and yield. Hence, it is necessary to elucidate the different molecular aspects along with
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their agronomical aspects so that strategies to produce a better
and appropriate drought tolerant variety can be devised.

UNIQUE FINDINGS IN HYDROPONICS
AND ITS COMPARISON WITH SOIL

In this section, we are presenting a comparative overview of
the dataset we generate from hydroponically grown plants with
published datasets generated from soil-grown plants. The idea
behind this perspective is to have a consensus toward the
utilization of hydroponics system in water stress research. We
are focusing more on metabolite section with the support of
transcriptomic and proteomics data, as it comes last in the order
and still requires detail study to help us draw a complete picture
of drought.

We use hydroponics system, the system of reduced complexity
for our systems analysis to identify the potential candidates
for water-stress tolerance by plants. Three levels of our
systems approach were utilized to uncover possible regulators
of dehydration or water stress signaling cascades at mRNA,
protein and metabolites level. All three systems levels were
analyzed from the same biological samples to facilitate direct
comparisons among the three omics datasets (Song et al., 2011).
Moreover, all three—omics analyses were therefore performed
with the samples harvested at same time points as described
in Tripathi et al. (2015). The microarray for gene expression
analysis was performed at Mogene LLC (St. Louis, MO) while
the shotgun proteomics at BioProximity LLC (Chantilly, VA)
and metabolomics was done at Metabolon (Durham, NC)
facility. The shotgun proteomics approach for protein profiling
during water stress responses in soybean provides information
leading to new hypotheses concerning various aspects of water
stress signaling (Figure 1A). Data from leave samples was
not found conclusive statistically, but we observed significant
changes in roots especially at 3 and 5 h post-dehydration. In
roots, the proteins involved in amino acid metabolism and
biosynthetic pathways were found increased in abundance after
3 h of dehydration. This observation is in agreement with
both the transcriptomic (Geo Accession Number GSE49537)
and metabolite data (Rabara et al., 2015; Tripathi et al.,
unpublished). Elevation of free amino acids during water stress
in our metabolomics data, poses the question as how this
process is being regulated. However, it is hard to know whether
amino acid accumulation was due to increased biosynthesis
or proteolysis or both. Because biosynthesis of precursors or
intermediates of stress affected pathway or accumulation of
it due to degradation in response to stress will lead to the
accumulation. In the present study, an increase in the main
precursors of branched-chain amino acids (BCAA) biosynthesis,
namely 2-isopropylmalate, 2,3-dihydroxyisovalerate, 3-methyl-
2-oxovalerate, and 4-methyl-2-oxopentanoate, were observed.
These findings were consistent with previous studies performed
in soybean and other plants (Fukutoku and Yamada, 1981;
Ranieri et al., 1989; Joshi et al., 2010; Obata and Fernie, 2012). The
increase in BCAA was previously reported due to up-regulation
of biosynthetic pathways during drought (Ranieri et al., 1989;

Urano et al., 2009), and our observations are consistent with
these data. Taken together, these results suggest that increase in
amino acids in soybean roots during water stress is due to de novo
synthesis and not due to protein degradation. Thus, observations
from proteomics analysis support the metabolomics findings.
Metabolomics, proteomics, and transcriptomics reveals that de
novo biosynthesis of amino acids occurs due to an increase in the
protein levels of the biosynthetic enzymes. So, this is ultimately
controlled at the transcriptional level as the mRNA levels for
these genes also increase (Figure 1B).

The ammonia detoxification observed in the metabolomics
study suggests that nitrogen accumulates during water stress
from various plausible sources (Figure 1C). An increase in the
level of asparagine and glutamine signifies the accumulation of
nitrogen in root tissues (Oliver et al., 2011). Interestingly, studies
in Arabidopsis and Brassica during drought and osmotic stress
have shown that an increase in proline is directly related to
the effect of increasing asparagine levels (Chiang and Dandekar,
1995). The accumulation of asparagine and glutamine facilitates
the transport of nitrogen and carbon for the resumption of
growth and metabolism upon rehydration in soybean (Martinelli
et al., 2007; Oliver et al., 2011). This transport of nutrients and
amino acids could also be facilitating the process of seed filling
as soybean accumulates large amounts of seed storage proteins.
Also, it was observed that the expression of nitrate transporter1.5
(Glyma09g37220.1) in the roots drastically increased at mRNA
level between 2- (10-fold) and 3 h (41-fold) of dehydration. It
seems plausible plant’s mechanism for cost management during
stress conditions over energy metabolism, whereby plants break
down complex sugars and transport pyruvate and ADP to
the mitochondrial matrix. It is well-understood that a decline
in starch level is observed due to a decrease in the rate of
photosynthesis. Thus, as a result, the ATP/ADP ratio decreases
due to less demand for ATP, which leads to initiation of alternate
pathways (Ribas-Carbo et al., 2005).This study also follows the
same assumption. Taken together, we hypothesize that there
is a flow of nitrogen into amino acid metabolism and de
novo biosynthesis of amino acids during water stress, and this
constitutes a potential water stress tolerance strategy in soybean.
This finding is consistent with previous studies that compared
drought tolerant and drought sensitive varieties of grasses (Oliver
et al., 2011).

Water stress responses result in accumulation or depletion of
certain metabolites, alteration of enzyme activities and synthesis
of stress-specific proteins. There is a preferential synthesis of
metabolites and proteins that affect osmoregulation to maintain
growth and energy consumption and hence reflect a cost of
acquiring tolerance. An increased amount of carbon flow to
metabolites such as malate, aspartate, and alanine is concomitant
with a reduced flow of other end products (e.g., carbohydrates)
(Zagdanska, 1995). It suggests that NADPH is removed from the
chloroplast and enables the formation of sucrose on alternative
pathway when sugar synthesis in the calvin cycle is restricted.
Leaves co-operatively help in the process by their ability to
control excess excitation energy under water stress. Hence, the
chloroplast mediated signaling network becomes important in
managing ATP utilization during the extreme water stress, and
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FIGURE 1 | (A) Shotgun Proteomics analyses of soybean roots during water deficit. Functional classifications of differentially regulated proteins in soybean samples

during water deficit identified by MuDPIT w.r.t 0min as control. Proteins were functionally classified using Mapman, which is based on the Gene Ontology Consortium and

Kyoto Encyclopedia of Genes and Genomes database. Post-translational modification (PTM). The differential regulation was determined with FDR ≤5%. (B)

Systems–wide overview of amino acid elevation during water stress. Metabolomics data at 5h dehydration from root sample is represented in red fonts and from leaves in

red boxes. (C) Ammonia metabolism during water stress. Aspargine and Allantoin are the main metabolites for nitrogen storage and transport. Allantoic acid was highly

abundant in roots only. The data points in (B,C) were analyzed for their statistical significance using Welch’s two sample t-test with 0min as control and p = 0.05. The

green box represents leaf profile while the brown box is root profile in both figure sections. (D) Coumestrol content in roots of soybean plants subjected to varying level of

water stress. The error bars represent standard error of the mean (SEM) (n = 3) and significance was analyzed with t-test, p ≤ 0.05 w.r.t to 0min as control.

probable action of associated proteins helps in the process of
regulation to better withstand the stress condition.

Sugars and sugar alcohols have also been observed to
accumulate under drought stress to function as osmolytes. In
both roots and leaves, the most predominant accumulation of
sugars was raffinose and galactinol, in complete agreement with
several previous reports (Foito et al., 2009; Moore et al., 2009).
The increased level of osmolytes such as proline, mannitol,
trehalose, ononitol, and pinitol was also reported earlier (Ford,
1984; Keller and Ludlow, 1993; Silvente et al., 2012). Thus, we can
assign these compounds to their associated function during water
stress. For instance, proline and sugars help in the unfolding
of proteins and stabilizes membranes (Hoekstra et al., 2001;
Ozturk and Demir, 2002; van Heerden and Kruger, 2002; Jogaiah
et al., 2013). Trehalose helps in replacing the water by providing
a hydrogen-bonding surface and maintaining the folded active
states of the protein (Crowe et al., 1997; Almeida et al., 2007;
Jogaiah et al., 2013). Our study also supports the suggestion of

proline as an indicator of the plant water status not a measure
of tolerance (Lazcano-Ferrat and Lovatt, 1999) because proline
biosynthesis could be affected by stage of the plant development,
relative water content (RWC) of leaves and cultivar of soybean
(Silvente et al., 2012).

An increase in isoflavonoids was one of the major findings of
this study. The two orders of magnitude increase in the level of
coumestrol (∼117-fold) a phytoalexin that has high estrogenic
activity and is known for the antioxidant activity was one of
the major novel findings of this study. Coumestrol, has also
been shown to be a UV stress indicator and also plays a role
in plant-microbe interactions (Morandi et al., 1984; Beggs et al.,
1985; Isobe et al., 2001; Lee et al., 2012). To our knowledge, this
compound has not been previously reported as an important
increasing metabolite in water stress responses. Accumulation
of coumestrol in water-stressed soybean was quantified during
early (1 h) and late (5 h) time point (Figure 1D). The level
of coumestrol is increased by 2.5-and 3.7-fold during early
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and late time point, respectively. Glycosylated flavonols and
hydroquinone were reported to handle dehydration induced
partitioning, as these compounds increase fluidity and depress
phase transition temperatures of membranes (Hoekstra et al.,
2001; Langridge et al., 2006). A role of flavonoids during abiotic
stress is well-established (Samanta et al., 2011). The observation
of induction of osmolytes (sugars and sugar alcohols) and
accumulation of free amino acids along with the support of
the transcriptomics and proteomics data suggests that there
is drought-induced ROS formation. Coumestrol biosynthesis
is derived from diadzein in soybean (Yu et al., 2003). Up-
regulation of proteins for enzymes like chalcone synthase and
isoflavone reductase which play a significant role in isoflavonoid
biosynthesis has been reported in a proteomics study of soybean
root tip (Yamaguchi et al., 2010). However, in the present study
no significant increase in diadzein was observed. It is expected
if increased flux through the pathway results in the end product
coumestrol and not the intermediate, diadzein. We, therefore,
propose that the observed major increase in coumestrol level is a
response to contribute to ROS scavenging that could be signaled
from the chloroplast. The limitation of using hydroponics
systems becomes visible in studying the impact of the plant-
microbe interaction, especially in nitrogen related pathways,
which greatly affects the water-stress responses. Coumestrol was
reported earlier that it accumulates at a significant level in
mycorrhizal soybean roots (Morandi et al., 1984). It was also
reported to enhance the mycorrhizal colonization (Xie et al.,
1995). Thus, in our opinion such studies are better answered
when the experimental system is soil.

Also, we observed changes in physiological responses using
hydroponics system. Dehydrated plants were still able to recover
and re-grow when re-placed into the hydroponics solution,
showing that plants were still viable even when subjected to
extreme dehydration (5 h). Various physiological parameters
were monitored to gain insight of the response to water stress.
In roots, an 11% decrease in total water content (%TWC) from
3 to 5 h of dehydration was observed while a 10% decrease in
leaves %TWC from 2 to 5 h was observed (data not shown).
This observation is in accordance with the similar trends seen in
experiments performed in soil (Harb et al., 2010). The osmotic
potential showed a similar trend. In contrast, the stomatal
conductance dropped to about one-third of the control level by
30min and after 2 h, the stomata were essentially closed.

Our dataset has shown that hydroponics system validates itself
to be comparable to field conditions as proposed by soil.We agree
with the difference in nature of the complexity of field conditions
and growth chambers. However, the use of hydroponics in
growing plants to understand the molecular mechanism of plant

response to water stress is a valid option. Because imposing
water stress is less complex and eliminates combinatorial effects
brought by heat and other environmental factors, commonly
experience in field-grown plants. Based on our findings, we able
to hypothesize about the putative role of coumestrol as another
stress biomarker in the leguminous crop like soybeans.

CONCLUSION

In light of comparative findings of hydroponics system and soil
directs that observations be alike. Also, it greatly minimized the
effect of abiotic stresses other than water stress as conditions
like temperature, relative humidity, and the light regime were
constant. Soybean plants were subjected to a rapid and uniform
water deficit stress by removing the plants from the hydroponics
solution using the pots. With the use of hydroponics, we have
also shown that there is a flow of nitrogen into amino acid
metabolism and de novo biosynthesis of amino acids during
water stress, and this constitutes a potential drought tolerance
strategy in soybean. Also, identification of the novel metabolite
coumestrol could be another biological marker for understanding
and making drought/water stress tolerant crop plants. Validation
of these hypotheses needs further experimentation.
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