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The application of advanced signal analysis tools (e.g., frac-
tional Fourier transforms or joint time-frequency signal rep-
resentations) to a wide variety of optics and photonics prob-
lems has led to a new and deeper understanding of sev-
eral optical phenomena of fundamental and practical im-
portance, including diffraction, holography, nonlinear opti-
cal processes, dispersion, and optical filtering. Signal analysis
methods also constitute the basis of powerful techniques for
the measurement and full characterization of ultrafast opti-
cal events or systems, which otherwise could not be charac-
terized by conventional means. Moreover, novel analysis and
synthesis methods for different photonics devices (e.g., fiber
gratings, ring resonators, etc.) have been developed based on
well-known continuous and discrete-time signal processing
tools.

The use of different photonic technologies for process-
ing spatial or temporal information in the optical domain
is also a field of growing importance, with a strong poten-
tial for interesting applications in fields such diverse as opti-
cal telecommunications, ultrafast metrology, microwave en-
gineering, image processing, and optical computing, to name
only a few. Advantages of processing the information in the
optical domain include the tremendous available bandwidth
and the parallelism intrinsic to the optical approach, which
translate into ultrahigh processing speeds, which otherwise
are not possible.

The broad area of optical signal processing is becom-
ing today one of the most active research areas in optics
and photonics. Research in this area will have an impor-
tant impact far beyond the conventional frontiers of pho-
tonic technologies. The present issue of EURASIP JASP is

devoted to this increasingly important topic. Specifically, the
aim of this special issue is to highlight innovative research in
signal processing applied to optics and photonics problems,
thus paving the way for future developments in the field. The
present issue was thought of with the intention of providing
an overview as complete as possible of the recent progress
and current problematics in optical signal processing, while
bringing the work in this area closer to the signal processing
community. This was the philosophy behind the decision to
prepare a special issue of the EURASIP JASP devoted to this
area. In expressing this philosophy, we are very grateful to
Dr. Jacob Benesty, who first suggested and encouraged us to
proceed ahead with this special issue.

The special issue comprises both original research contri-
butions and review papers by leaders in their respective are-
nas. This includes works ranging from applications of sig-
nal analysis tools to optical problems to the proposal and
demonstration of innovative concepts, technologies, devices,
and architectures for all-optical information processing. In
particular, the current issue consists of fourteen contribu-
tions, namely, seven invited papers and seven regular contri-
butions. The latter were selected by the Guest Editors follow-
ing a suitable evaluation via a standard international peer-
review process. As mentioned above, the intention was to
cover most of the relevant topics in the area. Specifically,
the invited contributions in this special issue are the follow-
ing.

(1) “Active optical lattice filters” by L. R. Hunt et al.
(2) “Advanced optical processing of microwave signals” by

B. Ortega et al.
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(3) “Fractional transforms in optical information process-
ing” by T. Alieva et al.

(4) “Applications of the Wigner distribution function in
signal processing” by D. Dragoman.

(5) “Concepts for the temporal characterization of short
optical pulses” by C. Dorrer and I. A. Walmsley.

(6) “Time-frequency (Wigner) analysis of linear and non-
linear pulse propagation in optical fibers” by J. Azaña.

(7) “A novel optical vector spectral analysis technique em-
ploying a limited-bandwidth detector” by C. K. Mad-
sen.

Hunt et al. were invited to present and review their re-
cent developments in active optical lattice filters. This work
constitutes a relevant example of how well-known concepts
of signal processing (i.e., adaptive lattice filtering) can be
successfully applied in photonics. All-optical adaptive filter-
ing devices are proposed and demonstrated. In their invited
contribution, Ortega et al. give an extensive overview about
their work on microwave signal processing based on photon-
ics technologies. The authors review some recent, relevant
approaches to implement high-performance transversal RF
filters using optical devices such as fiber Bragg gratings, ar-
rayed waveguide gratings, or interferometric structures. Ex-
perimental evidence of their proposals is also provided. Pas-
rija et al. propose the use of discrete-time signal processing
tools for designing and synthesizing nonlinear optical de-
vices. This proposal is based on the pioneer work by Madsen,
where concepts of discrete-time signal analysis were applied
for synthesizing linear allpass optical filters.

In their invited paper, Alieva et al. provide a comprehen-
sive overview on the use of fractional linear integral trans-
forms for different optical information processing applica-
tions, including phase retrieval, beam characterization, pat-
tern recognition, adaptive filter design, encryption, water-
marking, and motion detection. The contribution by Drago-
man focuses on the application of phase-space representa-
tions, and in particular Wigner analysis, to a wide variety of
signal processing problems with an emphasis on optical sig-
nals and systems. Her paper is a review of classical and rel-
evant work on the use of advanced signal analysis tools in
the context of optics and photonics. In their contributed pa-
per, Bastiaans and Alieva elaborate further on the concept of
Wigner distribution applied to optical systems.

In their invited contribution, Dorrer and Walmsley
present an extensive review of signal analysis-based methods
for the full (amplitude and phase) characterization of (ultra-)
short optical pulses. It is discussed how an optical pulse can
be analyzed and fully characterized through its representa-
tion in terms of correlation functions or time-frequency rep-
resentations, and different methods to experimentally obtain
these representations in the optical domain are discussed and
demonstrated. In his work, Azaña makes use of joint time-
frequency signal representations for investigating an optical
problem of fundamental and practical significance, namely,
the dynamics of picosecond pulse propagation through op-
tical fibers in the linear and nonlinear regimes. A deeper in-
sight into this problem is provided through this analysis.

The paper by Madsen introduces and analyzes a new
and simple technique for characterizing both chromatic and
polarization-mode dispersions in an optical channel. The
technique is based on discrete-time signal analysis concepts
and should prove to be very useful for applications in WDM
optical communication systems. In their contribution, Cin-
cotti et al. present a comprehensive overview of wavelet sig-
nal processing and multiplexing in the optical domain, us-
ing photonics integrated technologies. These developments
are of interest for broadband multiple access networks. The
work by Ut-Va Koc deals with improved adaptive equaliza-
tion algorithms for the electronic compensation of chromatic
and polarization-mode dispersions in fiber-optics commu-
nication links. In their paper, Llorente et al. propose and ex-
perimentally demonstrate an interesting application of the
so-called real-time Fourier transformation technique, where
the spectrum of an optical signal is mapped into the tempo-
ral domain via chromatic dispersion, for evaluating channel
crosstalk in DWDM optical communication networks. The
work by Garba et al. deals with the increasingly important
topic of optical CDMA (OCDMA). In particular, different
coding strategies for OCDMA are proposed and evaluated
in terms of their capacity limits and noise performance for
multiple-access networking.

Finally, the paper by Goren et al. introduces a novel signal
analysis-based technique for synthesizing laser beams with
extended depth of focus, of specific interest for scanning
printed bar codes.

In the coming years, it is expected that the area of opti-
cal signal processing will become even more important from
both fundamental and applied perspectives. We hope that
this special issue will appeal to the signal processing commu-
nity and will further stimulate work in this area. To finalize,
we would like to thank all the people who have participated
in the elaboration of this special issue, especially the authors
of the published papers, the researchers who submitted their
work for consideration, and last, but not least, the referees
who helped in the revision and selection of the submitted
works.

Christi K. Madsen
Daniela Dragoman

José Azaña
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Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice
filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The
sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal
processing is also provided.

Keywords and phrases: active, adaptive, filter, optical, lattice.

1. INTRODUCTION

Dowling and MacFarlane [1, 2, 3] viewed a lightwave lat-
tice filter design using multistage etalons and resonators as
a discrete-time linear system. As such they discussed the
behavior of the system in terms of the transmission and re-
flection transfer functions. Given a desired transfer function
denominator for an all-pole system in transmission they de-
veloped a layer-peeling algorithm to determine the appro-
priate reflection coefficients. The reflection transfer func-
tion has this same denominator polynomial. They proved
that any denominator polynomial, and hence any autoregres-
sive (AR) transfer function in transmission, can be gener-
ated by proper choice of the reflection coefficients. Trans-
mission coefficients as well as reflection coefficients can be
chosen, but these transmission coefficients do not affect the
denominator polynomial. If an autoregressive moving av-
erage (ARMA) transfer function is desired in transmission,
then it must first be approximated by an AR transfer func-
tion of higher order, and a higher-order lattice filter be de-
signed.

The problem with the above optical lattice filter is that it
is a passive device, and once it is built with a given set of re-
flection (also transmission) coefficients, its filtering charac-
teristics cannot be changed. Hence this precludes program-
ming in the field to change the filter as needed. Moreover,

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

from the point of view of signal processing, the entire set of
applications derived from adaptive signal processing is not
accessible. Adaptive signal processing is used in communi-
cations, control, radar, sonar, seismology, biomedical, target
tracking, and so forth [4]. Adaptation is needed if the statis-
tics of a signal are unknown or if a system is time varying
(nonstationary). Finite impulse response (FIR) filters have
dominated the field, but infinite impulse response (IIR) fil-
ters can often provide a system of much lower order [5].

To add adjustment to these optical lattice filters we pro-
pose to add gains to each stage. These gains can be changed
as needed and also serve to make our filters active instead
of passive. Suppose we are given a target all-pole transfer
function for transmission whose order is the same as the or-
der (number of stages) of our optical filter. Once the reflec-
tion coefficients (by layer peeling) and transmission coeffi-
cients are determined and the device is built, then we tune
the device by changing the gains. The question of interest is
what all-pole transfer functions (or denominator polynomi-
als) can we achieve by changing the gains? Certainly when the
gains are all unity we have the denominator polynomial of
the all-pole transfer function that we started. From the point
of tunable signal processing it would be desirable to generate
all “nearby” polynomials of the same degree.

It is interesting to note that after fixing these reflection
and transmission coefficients, it is not possible to use the
gains to generate an arbitrary all-pole transfer function in
transmission. We present an example to illustrate this point.
However, if we consider all gains as one when the reflection
and transmission coefficients are fixed, then there is an open
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neighborhood U of these ones in gains space and an open
neighborhood V of the corresponding denominator polyno-
mial coefficients in polynomial coefficients space, so that for
each polynomial with coefficients in V there is a unique set
of gains in U that produce that polynomial. All that needs to
be checked is that the Jacobian matrix of the map from the
gains (actually gains squared) to the polynomial coefficients
is nonsingular when the gains are all one. If this matrix is
nonsingular it is natural to solve for the gains as functions of
the coefficients using the standard Newton-Raphson method
[6, 7]. The equations expressing the relationship of the poly-
nomial coefficients and the gains are easily generated and
have a high degree of symmetry. Hence we have a procedure
that will allow us to calculate all nearby (in terms of polyno-
mial coefficients) denominator polynomials for our transfer
functions. Thus we can use gains to adapt our filter. Of course
we are only interested in stable filters when applications are
considered.

For the map from the gains to the denominator polyno-
mial coefficients we stress the case where the gains are all one.
However, for a given denominator polynomial there may be
other sets of gains that yield the same polynomial coeffi-
cients. If for such a point in gain space, the Jacobian matrix
of the gains to polynomial coefficients map is nonsingular,
then there is an open neighborhood U∗ of the gain point
and an open neighborhood V∗ of the corresponding poly-
nomial coefficient point in polynomial coefficient space on
which the map is one-to-one and onto. Of course U and U∗

cannot intersect, so we can adapt in the set U (or U∗) with-
out disturbing the other set.

The main purpose of this paper is to provide design tools
for active lattice filters that contain active gain elements. This
discussion is particularly relevant to an optical architecture
that is currently under early development. This photonic re-
alization of the active lattice filter is described in Section 2 of
this paper. In particular we advocate a semiconductor laser
amplifier structure in which coupling between gain and delay
stages is accomplished by surface gratings [8]. While there is
a rich tradition of active electronic filters, optical filters with
gain are not generally used. Gain elements allow filters with
high-quality factors, and filters with programmable transfer
functions. Further, gain elements are essential to providing
an architecture that may be scaled to reasonable sophistica-
tion.

In Section 3 of this paper we discuss the Dowling-
MacFarlane optical lattice filter and the layer-peeling proce-
dure for computing the reflection coefficients. We indicate
how gains are added to their structure. We then compute the
transfer function denominator polynomials as functions of
the gains assuming that all reflection and transmission coef-
ficients have been fixed. In Section 4 we provide an example
showing that an arbitrary transmission all-pole denomina-
tor cannot be generated using gains once the reflection and
transmission coefficients have been chosen. Here we work
with a two-stage filter and a second-order transfer function
denominator polynomial. We generate the map from two-
dimensional gains space to two-dimensional polynomial co-
efficients space. For given polynomial coefficients this map

can be represented by two curves in gains space and there
are three possible outcomes: transversal intersection where
the Jacobian matrix is nonsingular, no intersection and no
solution, and tangential intersection where the Jacobian ma-
trix is singular. It is the first case that is of interest to us. It
is important to understand that we start with a given poly-
nomial and fix the reflection coefficients so that we have this
case if the Jacobian matrix is nonsingular when all gains are
unity. Then all “nearby polynomials” can be implemented by
a proper choice of gains.

Section 5 contains a development of the map from gains
(squared) space to denominator polynomial coefficient space
in the general case. Then we state and prove our main result
using the inverse function theorem [9]. The assumption on
the nonsingularity of the Jacobian matrix is the exact con-
dition needed to employ the Newton-Raphson algorithm to
solve our equations for the gains. We return to the example in
Section 4 for the nonsingular case, vary the coefficients of the
polynomial, and show the computations of the gains. We also
provide an example that is relevant to adaptive signal pro-
cessing, assuming that a feedback loop may be implemented
that is fast enough to respond to a changing environment. We
start with an output response of an AR system. Next we iden-
tify the all-pole transfer function and determine the appro-
priate reflection coefficients (through layer peeling), which
we fix in our lattice filter. Then we allow the time response
to change, identify the corresponding denominator polyno-
mials for the new transfer functions, and compute the gains
to deliver those polynomials. Here the time response could
be replaced by a frequency response or by autocorrelations.
In Section 6 we derive and calculate the sensitivities of filter
parameters with respect to gains. Section 7 contains our con-
clusions and a discussion of future research.

2. A REALIZATION ARCHITECTURE

The optical gains that are modeled in this paper may be real-
ized in a number of ways. For example, it is possible to imag-
ine using erbium-doped fibers or waveguides separated by
fiber Bragg gratings or an equivalent coupling interface. The
passive version of this fiber based-filter architecture is very
nicely described in the classic paper by Moslehi et al. [10].
The active fiber filter with gain would have particular inter-
est for fiber sensors and instrumentation [11]. In the interests
of faster updating speeds and adaptive operation we are en-
visioning a semiconductor laser amplifier structure in which
coupling between gain and delay stages is accomplished by
surface gratings. This architecture also offers faster clock fre-
quencies, higher efficiencies and integrated manufacture ad-
vantages.

In Figure 1 is shown a schematic of the active optical lat-
tice filter that uses semiconductor laser amplifier stages to
provide gain and delays. By way of example, the figure shows
a two-stage active lattice filter with two gain/delay regions
and three interstage couplers. The figure is drawn in side
view and shows a substrate with an epitaxial-grown quan-
tum well active region. On the surface of this substrate are
two electrodes through which injection current may enter the
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Figure 1: Block diagram of an active lattice filter based on surface grating interstage couplers and semiconductor optical amplifiers.

quantum well. The filter stage gain is controlled by the injec-
tion current to the individually addressable gains in the am-
plifying regions. These regions also provide the phase delays
that lead to filter responses.

Also on the surface of the substrate are three grating cou-
plers that provide transmission and reflection of optical sig-
nals between the two stages under the two electrodes. These
gratings may be written by holographic lithography [8, 12]
or by focused ion beam micromachining.

In operation, an optical signal is injected into the hetero-
junction of the structure where it undergoes gain and delay.
At the grating couplers part of the signal is reflected and part
is transmitted. Each of these components combines with sig-
nals from the adjacent stage, and this delay and mix action
is the same as in coupled etalons, or in thin film filters. The
additional presence of gain provides advantages in filter per-
formance including a tunable response.

In practice, the semiconductor optical amplifier may suf-
fer from two impairments: saturation and phase distortion.
Since the theory presented herein applies to linear, time-
invariant (LTI) systems, either impairment will render the
results presented in this paper an approximation valid over a
finite region of operation. Since the filter will be operated in
a stable region, well below lasing threshold, the overall gains
needed for useful filters will be small, and will vary over a
limited range. Hence the linearity condition will often be jus-
tified. Similarly, it may also be argued that in this operating
region, the injected current will not substantially impact the
refractive index of the inversion region, particularly if the ef-
fective gain length is kept short and the epitaxy is properly
designed. An additional possibility for adjusting and main-
taining the correct phase is to add an additional phase con-
trol section to the filter as is done in many tunable lasers so
as to allow an additional adjustment for phase control.

3. DOWLING-MACFARLANE FILTER

In 1944 MacFarlane and Dowling studied the analysis and
design of purely passive coupled Fabry-Perot etalons and thin
film filters using digital signal processing techniques [1, 2].
This approach allowed certain design optimizations, and
brought an ease of use that proved helpful to electrical en-
gineers working in the photonic telecommunications indus-
try over the last decade. In Figure 2 is shown a z-transform-
based block diagram for an exemplary three-stage photonic
lattice filter. The interfaces are characterized by reflection and
transmission coefficients, and the signal transit time between
interfaces is described by a delay block. Considering the re-
alization architecture discussed above, we follow the nota-
tion of [2]. For a lossless interface, the field reflection and

transmission coefficients obey an energy conservation con-
dition:

r2
i + t2

i = 1. (1)

The transmission transfer function denominator polynomial
for one stage is

1 + r0r1z
−1, (2)

for two stages is

1 +
(
r0r1 + r1r2

)
z−1 + r0r2z

−2, (3)

and for three stages is

1+
(
r0r1 +r1r2 +r2r3

)
z−1 +

(
r0r2 +r0r1r2r3 +r1r3

)
z−2 +r0r3z

−3.
(4)

Simple induction can derive the polynomial for n stages.
In this paper we include gain as well as delay between the

interfaces, and this block diagram for an active lattice filter is
shown in Figure 3. Equations (2), (3), and (4) may be readily
generalized to include this gain. For example, the transmis-
sion transfer function denominator polynomial for one stage
with gains is

1 + r0r1G
2
1z
−1, (5)

for two stages with gains is

1 +
(
r0r1G

2
1 + r1r2G

2
2

)
z−1 + r0r2G

2
1G

2
2z
−2, (6)

and for three stages with gains is

1 +
(
r0r1G

2
1 + r1r2G

2
2 + r2r3G

2
3

)
z−1

+
(
r0r2G

2
1G

2
2 + r0r1r2r3G

2
1G

2
3 + r1r3G

2
2G

2
3

)
z−2

+ r0r3G
2
1G

2
2G

2
3z
−3.

(7)

Again, induction can be used to derive the polynomial for n
stages. The gain for every stage appears to a power 2, regard-
less of the number of stages used.

Given a desired polynomial of degree n we can use the
layer-peeling process [1, 2, 3] to compute r0, r1, . . . , rn (actu-
ally r0 can be chosen and the other reflection coefficients are
computed). Fixing these reflection coefficients we can simply
write the one-stage polynomial with gains as

1 + c1G
2
1z
−1, (8)
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Figure 2: Signal flow diagram for three stages of an optical lattice filter.
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Figure 3: Signal flow diagram for three stages of an active optical lattice filter.

the two-stage polynomial with gains as

1 +
(
c1G

2
1 + c2G

2
2

)
z−1 + c12G

2
1G

2
2z
−2, (9)

and the three-stage polynomial with gains as

1 +
(
c1G

2
1 + c2G

2
2 + c3G

2
3

)
z−1

+
(
c12G

2
1G

2
2 + c13G

2
1G

2
3 + c23G

2
2G

2
3

)
z−2 + c123G

2
1G

2
2G

2
3z
−3.
(10)

Here the c’s are computed from the r’s in the obvious way.
The nth-degree polynomial with gains is

1 +

( n∑
i=1

ciG
2
i

)
z−1 +

( n∑
i, j=1,i< j

ci jG
2
i G

2
j

)
z−2

+ · · · + c12···nG2
1G

2
2 · · ·G2

nz
−n.

(11)

Again the c coefficients are known numbers computed from
the r’s, and the gains Gi are allowed to vary. Since we are in-
terested in only nonnegative real gains Gi we set xi = G2

i and
replace (11) by

1 +

( n∑
i=1

cixi

)
z−1 +

( n∑
i, j=1,i< j

ci jxix j

)
z−2

+ · · · + c12···nx1x2 · · · xnz−n.
(12)

If we determine x1, x2, . . . , xn then we know G1,G2, . . . ,Gn.
We first consider a two-stage filter and return to the general
case later.

4. TWO-STAGE EXAMPLE

In the case of a two-stage active lattice filter, (12) becomes

1 +
(
c1x1 + c2x1

)
z−1 + c12x1x2z

−2, (13)

where the c’s are fixed and only the xi can vary. If a desired
denominator polynomial is

1 + a1z
−1 + a2z

−2, (14)

then the equations to determine the gains as function of the
polynomial coefficients are

c1x1 + c2x1 = a1,

c12x1x2 = a2.
(15)

Geometrically, these equations represent a straight line and a
hyperbola in the closed first quadrant in (x1, x2) space. With
c1, c2, c12 determined and a1, a2 given, a solution is a point
(x1, x2) where the line and the hyperbola intersect. These
equations can also be thought of as a map from the gains (ac-
tually gains squared) space (x1, x2) to the desired polynomial
coefficient space(a1, a2).

For example, if we set r0 = 1, r1 = 1/4, and r2 = 1/4, (3)
for the transfer function denominator becomes

1 +
(

5
16

)
z−1 +

(
1
4

)
z−2. (16)

This discussion could have begun from the point of view
of choosing coefficients a1 = 5/16, a2 = 1/4, and r0 = 1,
and using the Dowling-MacFarlane layer-peeling algorithm
to find r1 = 1/4 and r2 = 1/4. We have stable systems in
transmission and reflection since both poles are inside the
unit circle. Equations (15) now becomes

(
1
4

)
x1 +

(
1

16

)
x2 = a1,

(
1
4

)
x1x2 = a2.

(17)

With a1 = 5/16 and a2 = 1/4 we have two solutions
(1, 1) and (1/4, 4) for (x1, x2). The solution of interest to us
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Figure 4: Intersection in (x1, x2) space for a1 = 5/16 and a2 = 1/4.

is (1, 1). Considering (17) as a map from (x1, x2) space to
(a1, a2) space, the Jacobian matrix is

[ 1/4 1/16
(1/4)x2 (1/4)x1

]
. We note

that this matrix, evaluated at (x1, x2) = (1, 1), is nonsin-
gular. Thus by the inverse function theorem [9] there is an
open set U containing (1, 1) in (x1, x2) space and open set V
containing (5/16, 1/4) in (a1, a2) space. Hence for each co-
efficient pair (a1, a2) in V there is exactly one set of gains
(squared) (x1, x2) in U that solves (17). Geometrically, for
a1 = 5/16 and a2 = 1/4 the line and the hyperbola inter-
sect transversally (nontangentially) at (1, 1) in (x1,x2) space.
If we change a1 and a2 slightly we still have a transverse in-
tersection near (1, 1). This intersection is shown graphically
in Figure 4.

We now show that it is not possible to find the gains in
(17) to do arbitrary pole placement for the same values of r0,
r1, and r2. If we let a1 = 5/16 and a2 = 1 in (17), then(

1
4

)
x1 +

(
1

16

)
x2 = 5

16
,

(
1
4

)
x1x2 = 1

(18)

have only complex solutions for x1 and x2. Of course the
straight line and hyperbola in (17) do not intersect in (x1, x2)
space. Hence arbitrary denominator polynomials cannot be
realized for the transmission and reflection transfer func-
tions if the reflection coefficients are held fixed and the gains
varied, for given order (number of lattice stages).

There is one more case of interest. If a1 = 1/2 and a2 =
1/4 in (17), then (

1
4

)
x1 +

(
1

16

)
x2 = 1

2
,(

1
4

)
x1x2 = 1

(19)

have only the solution x1 = 1 and x2 = 4. Hence the straight
line and the hyperbola from (17) intersect at only one point,
a point of tangency. Slight changes in a1 from 1/2 can result
in either no points of intersection or two points of intersec-
tion. It is very important to note that the Jacobian matrix[ 1/4 1/16

(1/4)x2 (1/4)x1

]
of (17) is singular at the point (x1, x2) = (1, 4).

5. MAIN RESULTS

We return to the general case for n stages with gains in
Section 3. Equation (12) of interest is

1 +

( n∑
i=1

cixi

)
z−1 +

( n∑
i, j=1,i< j

ci jxix j

)
z−2

+ · · · + c12···nx1x2 · · · xnz−n.
(20)

Here the c’s (through the r’s) have been chosen by
using layer peeling to deliver a specified transmission
transfer function denominator without using the gains
(or equivalently, when all the xi= 1). If another desired de-
nominator polynomial to be achieved by computing only the
gains is

1 + a1z
−1 + a2z

−2 + · · · + anz
−n, (21)

then the equations to determine the gains as functions of the
polynomial coefficients are( n∑

i=1

cixi

)
= a1,

( n∑
i, j=1,i< j

ci jxix j

)
= a2,

...

c12···nx1x2 · · · xn = an.

(22)

The n by n Jacobian matrix of the gains (or gains squared) to
polynomial coefficient map is

J =



c1 c2 · · · cn
n∑
j=2

c1 jx j c12x1 +
n∑
j=3

c2 jx j · · ·
n−1∑
i=1

cinxi

...
...

. . .
...

c12···nx2x3 · · · xn c12···nx1x3 · · · xn · · · c12···nx1x2 · · · xn−1


(23)
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which is easily computed by taking partial derivatives in (22).
When all gains (squared) xi in (22) are unity, we denote the
corresponding polynomial coefficients by â1, â2, . . . , ân. By
the inverse function theorem [9], these are the coefficients
of the transfer function denominator polynomial for which
the reflection coefficients are fixed.

If we move the ai from the right-hand side to the left-
hand side in (22), we have a system of equations of the form

f1
(
x1, x2, . . . , xn

) = 0,

f2
(
x1, x2, . . . , xn

) = 0,

...

fn
(
x1, x2, . . . , xn

) = 0.

(24)

Equations (24) may be solved by the Newton-Raphson al-
gorithm to find the (x1, x2, . . . , xn) as a function of the
(a1, a2, . . . , an), so long as the Jacobian matrix of this system
is nonsingular.

As an example, we now return to the two-stage exam-
ple in Section 4 and apply the Newton-Raphson algorithm to
compute the correct gains as we vary the desired polynomial
coefficients. We use Matlab to implement Newton-Raphson
[13]. Equations (17) of interest are

(
1
4

)
x1 +

(
1

16

)
x2 = a1,

(
1
4

)
x1x2 = a2.

(25)

The starting values are a1 = 5/16 and a2 = 1/4 for which
the solutions are x1 = 1 and x2 = 1. Of course this implies
that G1 = 1 and G2 = 1. To make the changes in a1 and a2

somewhat random we choose

a1 = 5
16
± 0.05× (rand−0.5),

a2 = 1
4
± 0.05× (rand−0.5),

(26)

where rand is a Matlab command for a uniformly distributed
random variable with values between 0 and 1. Then we solve
for x1, x2, G1, and G2. Our computations yield the results in
Table 1.

The Newton-Raphson algorithm actually provides two
solutions (x1, x2) for each a1, a2, but we take only that so-
lution which is on the same side of the straight line x2 = 4x1

as the point (1, 1) (recall that we work in an open neighbor-
hood of (1, 1)). The line x2 = 4x1 represents the set of points
where the Jacobin matrix

[ 1/4 1/16
(1/4)x2 (1/4)x1

]
is singular.

These results follow from the point of view that given
the desired second-degree denominator polynomial, we pro-
gram the gains to achieve that polynomial. We next merge

Table 1: Filter coefficients and gains.

a1 a2 x1 x2 G1 G2

5/16 1/4 1 1 1 1

0.3350 0.2366 1.13 0.83 1.063 0.910

0.31780 0.2493 1.028 0.969 1.013 0.984

0.3321 0.2631 1.086 0.968 1.042 0.983

0.3103 0.2259 1.019 0.886 1.009 0.9412

0.3286 0.2472 1.08 0.909 1.039 0.953

0.3067 0.2646 0.947 1.116 0.973 1.056

0.2914 0.2619 0.861 1.215 0.9279 1.1022

0.3172 0.2338 1.045 0.894 1.022 0.945

0.2907 0.2708 0.840 1.28 0.916 1.131

0.3170 0.2697 0.997 1.081 0.998 1.039

0.3346 0.2574 1.10 0.931 1.048 0.964

0.2968 0.2245 0.872 1.25 0.933 1.118

0.3306 0.2649 1.076 0.984 1.037 0.991

0.3276 0.2448 1.084 0.902 1.041 0.949

0.3239 0.2651 1.04 1.018 1.019 1.008

0.3152 0.2623 0.998 1.051 0.998 1.025

0.2909 0.2483 0.882 1.125 0.939 1.06

0.3166 0.2673 0.998 1.07 0.998 1.034

0.3112 0.2351 1.01 0.928 1.004 0.963

our gain computation procedure with an adaptive process so
that we start with data, identify the AR transfer function, and
compute the appropriate gains.

We generate data according to the linear time-varying
difference equation

y(n) +
(

13
24

)
y(n− 1) +

(
5
8

)
y(n− 2)

+
[

8
27

+
1

27
cos(n− 3)

]
y(n− 3) = u(n)

(27)

with zero initial conditions y(−1) = y(−2) = y(−3) = 0
and input u(n) = δ(n), the discrete delta function. We as-
sume that the data is associated with the time-invariant lin-
ear system

y(n) + a1y(n− 1) + a2y(n− 2) + a3y(n− 3) = u(n) (28)

and we identify a1, a2, a3 from the data as n moves. These
a1, a2, a3 are the coefficients of the desired AR denominator
polynomial 1 + a1z−1 + a2z−2 + a3z−3. Then we compute the
x1, x2, x3 (and hence the gains G1, G2, G3) from the equations

c1x1 + c2x2 + c3x3 = a1,

c12x1x2 + c13x1x3 + c23x2x3 = a2,

c123x1x2x3 = a3.

(29)
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For the starting point we take the difference equation

y(n) +
(

13
24

)
y(n− 1) +

(
5
8

)
y(n− 2) +

(
1
3

)
y(n− 3)

= u(n)
(30)

and thus the polynomial 1 + (13/24)z−1 + (5/8)z−2 + (1/3)z−3

results. This difference equation can be found by substituting
u(n) = δ(n) into (27) with zero initial conditions, evaluating
y(0), y(1), y(2), y(3), and computing a1, a2, a3 from (28)
using 3 linear equations (for y(n) = y(1), y(2), y(3)) in 3
unknowns. Choosing r0 = 1 we compute the reflection coef-

ficients r1 = 1/4, r2 = 1/2, r3 = 1/3 by layer peeling. Thus
(29) becomes (see (7) and (10))

(
1
4

)
x1 +

(
1
8

)
x2 +

(
1
6

)
x3 = a1,(

1
2

)
x1x2 +

(
1

24

)
x1x3 +

(
1

12

)
x2x3 = a2,(

1
3

)
x1x2x3 = a3.

(31)

The Jacobian matrix is



(
1
4

) (
1
8

) (
1
6

)
(

1
2

)
x2 +

(
1

24

)
x3

(
1
2

)
x1 +

(
1

12

)
x3

(
1

24

)
x1 +

(
1

12

)
x2(

1
3

)
x2x3

(
1
3

)
x1x3

(
1
3

)
x1x2

 . (32)

As discussed above, this matrix is nonsingular when x1, x2,
x3 are all unity. We then substitute in the varying values for
a1, a2, a3 and compute the corresponding x1, x2, x3 (from
(31)) and G1, G2, G3. The first computation is for a1 = 13/24,
a2 = 5/8, and a3 = 1/3, and the solution is x1 = 1, x2 = 1,
and x3 = 1.

The second computation involves a1, a2, a3 calculated by
substituting u(n) = δ(n) into (27) with zero initial condi-
tions, evaluating y(0), y(1), y(2), y(3), y(4), and comput-
ing a1, a2, a3 from (28) using 3 linear equations (for y(n) =
y(2), y(3), y(4)) in 3 unknowns. The third and higher com-
putations proceed in the obvious way. We record our results
in Table 2

For this example we could have driven the system by
noise, computed the autocorrelations, arrived at the poly-
nomial coefficients through standard algorithms, and then
computed the gains using our technique. Moreover, we also
could have estimated the polynomial coefficients using a re-
cursive least squares method based on the Kalman filter.
However, we decided to keep things simple and work straight
with the data from the difference equation, using sets of 3
equations in 3 unknowns. With noisy data we also could have
used more linear equations in the 3 unknowns and found
pseudoinverse solutions.

6. PARAMETER SENSITIVITY ANALYSIS

The goal is to quantify the variation of denominator coef-
ficients as the gains vary. Since the gains are physically re-
alized their numerical value is prone to change. This might
result in a significantly different transfer function. Hence the

perturbation of the coefficients ai’s due to error in the real-
ization of the gains Gj ’s is worth analyzing. We quantify the
perturbation relations by a measurable parameter called sen-
sitivity. For ease of notation we analyze the sensitivity of the
coefficients ai with respect to the gains squared xj .

The traditional definition of sensitivity of a parameter a
with respect to a parameter x is given by

S = da/a

dx/x
. (33)

This can be viewed as the relative change of a with respect to
change in x. Low values of S means the coefficients are some-
what insensitive to gain changes. The next step is to see how
S fits into the nonlinear gains squared-coefficients relations.

The general gain squared-coefficients relation according
to (22) can be expressed in the form

f1
(
x1, x2, . . . , xn

) = a1,

f2
(
x1, x2, . . . , xn

) = a2,

...

fn
(
x1, x2, . . . , xn

) = an.

(34)

The above set of equations can be represented in a vector
form as

f (x) = a, (35)

where x = [x1, . . . , xn]T and a = [a1, . . . , an]T and T is the
matrix-transpose operator.
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Table 2: Filter coefficients and gains.

a1 a2 a3 x1 x2 x3 G1 G2 G3

13/24 5/8 1/3 1 1 1 1 1 1

13/24 5/8 0.3163 1.06948 0.95293 0.93108 1.0342 0.9762 0.9649

13/24 5/8 0.2809 1.19 0.883 0.8006 1.0909 0.9397 0.8948

13/24 5/8 0.2596 1.255 0.852 0.7275 1.1203 0.9230 0.8529

13/24 5/8 0.2721 1.2182 0.8702 0.7699 1.1037 0.9328 0.8774

13/24 5/8 0.3068 1.1045 0.93142 0.89466 1.0509 0.9651 0.9459

13/24 5/8 0.3319 1.00627 0.9954 0.9938 1.0031 0.9977 0.9969

13/24 5/8 0.3242 1.03851 0.9731 0.96238 1.0191 0.9865 0.981

13/24 5/8 0.2909 1.1589 0.90059 0.83612 1.0765 0.94899 0.91439

13/24 5/8 0.2626 1.24651 0.85683 0.73761 1.1130 0.9276 0.8639

13/24 5/8 0.2652 1.23887 0.86039 0.74641 1.0678 0.9544 0.9254

13/24 5/8 0.2965 1.0.1487 0.98940 0.98565 1.0074 0.9946 0.9928

13/24 5/8 0.3299 1.12353 0.92031 0.87447 1.0599 0.9607 0.93513

13/24 5/8 0.3014 1.22996 0.8646 0.75661 1.1090 0.9298 0.8698

13/24 5/8 0.2682 1.25177 0.85441 0.73155 1.1188 0.9243 0.8553

13/24 5/8 0.2608 1.17455 0.89230 0.81895 1.0838 0.9446 0.9049

13/24 5/8 0.2861 1.05207 0.96415 0.94878 1.0257 0.9819 0.9924

13/24 5/8 0.3329 1.08782 0.94150 0.91214 1.0429 0.9703 0.955

13/24 5/8 0.3114 1.20631 0.8761 0.78347 1.0983 0.9360 0.8851

13/24 5/8 0.2760 1.25612 0.85242 0.72651 1.1207 0.9233 0.8523

Writing (35) in differential form we get

Jdx = da, (36)

where dx = [dx1, . . . ,dxn]T , da = [da1, . . . ,dan]T , and

J =



∂ f1(x)
∂x1

∂ f1(x)
∂x2

· · · ∂ f1(x)
∂xn

∂ f2(x)
∂x1

∂ f2(x)
∂x2

· · · ∂ f2(x)
∂xn

· · · ·
· · · ·
· · · ·

∂ fn(x)
∂x1

∂ fn(x)
∂x2

· · · ∂ fn(x)
∂xn



, (37)

where J is the Jacobian matrix. The entries of the matrix J are
Ji, j . It is easy to see from (36) that if only xj changes, then

Ji, jdx j = dai . (38)

Plugging (38) into (33) and a little manipulation gives

Si, j =
Ji, jx j

ai
, (39)

where Si, j relates the sensitivity of ai to changes in x j . Thus
we can find a sensitivity matrix S with Si, j as its elements. S
gives the one-to-one sensitivity relations between the square
of the gains and the coefficients.

An upper bound on the sensitivity matrix, when one or
more gains vary, is estimated using the 2-norm as follows.
Equation (36) can be written as

Jdx = da. (40)

Applying norm to both sides of the equation we get

∥∥Jdx

∥∥ = ∥∥da
∥∥ =⇒ ∥∥da

∥∥ ≤ ‖J‖∥∥dx
∥∥. (41)

Here ‖·‖ denotes
√

max(eigenvalues of JTJ) for matrices and
2-norm for vectors. Thus we get∥∥da

∥∥∥∥dx
∥∥ ≤ ‖J‖ (42)

or equivalently,

∥∥da
∥∥/‖a‖∥∥dx
∥∥/‖x‖ = s ≤ ‖J‖‖x‖

‖a‖ . (43)

Here s is sensitivity with respect to gain squared. Thus (43)
gives an upper bound on sensitivity. The sensitivity bound
(s) is tabulated in Table 3 for different gains squared.
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Table 3: Sensitivity of filter parameters respective to gains.

a1 a2 a3 x1 x2 x3 s

13/24 5/8 1/3 1 1 1 1.9702
13/24 5/8 0.3163 1.06948 0.95293 0.93108 1.9359
13/24 5/8 0.2809 1.19 0.883 0.8006 1.9109
13/24 5/8 0.2596 1.255 0.852 0.7275 1.9139
13/24 5/8 0.2721 1.2182 0.8702 0.7699 1.9109
13/24 5/8 0.3068 1.1045 0.93142 0.89466 1.9243
13/24 5/8 0.3319 1.00627 0.9954 0.9938 1.9664
13/24 5/8 0.3242 1.03851 0.9731 0.96238 1.9492
13/24 5/8 0.2909 1.1589 0.90059 0.83612 1.9135
13/24 5/8 0.2626 1.24651 0.85683 0.73761 1.9129
13/24 5/8 0.2652 1.23887 0.86039 0.74641 1.9121
13/24 5/8 0.2965 1.0.1487 0.9894 0.98565 1.9162
13/24 5/8 0.3299 1.12353 0.92031 0.87447 1.9615
13/24 5/8 0.3014 1.22996 0.8646 0.75661 1.9196
13/24 5/8 0.2682 1.25177 0.85441 0.73155 1.9115
13/24 5/8 0.2608 1.17455 0.8923 0.81895 1.9135
13/24 5/8 0.2861 1.05207 0.96415 0.94878 1.9119
13/24 5/8 0.3329 1.08782 0.9415 0.91214 1.969
13/24 5/8 0.3114 1.20631 0.8761 0.78347 1.9294
13/24 5/8 0.276 1.25612 0.85242 0.72651 1.9106

The results in Table 3 show that the active lattice is rea-
sonably robust with respect to gain tolerances. That is to
say that the filter response does not appreciably change with
small injection current uncertainties. This advantageous re-
sult is somewhat expected given the traditional lattice filter’s
robustness with respect to round off error or the reflection
coefficient variations [2, 4, 13].

7. CONCLUSIONS AND FUTURE RESEARCH

We have added gains to the optical lattice filters [1, 2, 3] in or-
der to make the response functions programmable. To deter-
mine the denominator polynomials achievable by gains only
we set up a map from the gains (squared) to the polynomial
coefficients. Applying the inverse function theorem we pro-
vide a result giving sufficient conditions that all polynomials
in an open set can be generated by appropriated choices of
gains. This result naturally leads to a method for computing
the gains using the Newton-Raphson algorithm. Two inter-
esting examples are given, one of which stressed the adaptive
signal processing point of view. We also performed a sensi-
tivity analysis, measuring how the denominator coefficients
vary as the gains vary.

We have shown that the presence of gains in the lattice
filter can provide additional flexibility in the filter response.
These gains may be implemented in a semiconductor laser
amplifier, and hence these will be adjustable at GHz rates.
In accompanying experimental work, we will be building
and testing these devices, and exploring their range of op-
eration both theoretically and empirically. This range will be
bounded on one end by the noise figure and stability on the
other. In addition, theoretical and experimental work is also
underway in two-dimensional active lattice filters based on
four-directional couplers [14].
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The authors present a review on the recent approaches proposed to implement transversal RF filters. Different tunable transversal
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1. INTRODUCTION

Over the last 25 years microwave photonics has been a
discipline under constant active research because of the
unique properties that photonic devices and systems bring
to the generation, transport, processing, and detection of mi-
crowave and millimeter wave signals [1].

The possibility of using photonic devices to implement
flexible filters for microwave and radiofrequency (RF) signals
with larger bandwidth is one of the applications that first at-
tracted the interest of the researchers [2, 3, 4, 5, 6] since tra-
ditional approaches for RF signal processing are fraught with
the electronic bottleneck [2] and other sources of degradation
as electromagnetic interference (EMI) and frequency depen-
dent losses.

An interesting approach to overcome the above limita-
tions involves the use of photonics technology and espe-
cially fiber and integrated photonic devices and circuits to
perform the required signal processing tasks of RF signals
conveyed by an optical carrier directly in the optical do-
main. The discrete-time optical processing of microwave sig-
nals (DOPMS) approach is shown in Figure 1. The RF-to-
optical conversion is achieved by direct (or externally) mod-
ulating a laser. The RF signal is conveyed by an optical car-
rier and the composite signal is fed to a photonic circuit that
samples the signal in the time domain, weights the samples,
and combines them using optical delay lines and other pho-
tonic elements. At the output(s) the resulting signal(s) are
optical-to-RF converted by means of an/various optical re-
ceiver(s).
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Figure 1: Discrete-time optical processing approach.

The DOPMS approach is of interest, for example, in
radio-over-fiber systems, both for channel rejection and
channel selection applications [7]. Another application ex-
ample is for noise suppression and channel interference mit-
igation in the front-end stage after the receiving antenna of
a UMTS base station prior to a highly selective SAW filter
[8, 9]. Photonic filters for RF signals can also be of interest for
applications where lightweight is a prime concern, for exam-
ple, analog notch filters are also needed to achieve cochan-
nel interference suppression in digital satellite communica-
tions systems [71]. Moreover, in moving target identification
(MTI) radar systems [11] the filtering of clutter and noise
(the unwanted signals) is performed using a digital notch fil-
ter placed after frequency downconversion to baseband and
analog-to-digital (ADC) conversion.

Research contributions within this area extend over the
last 25 years starting with the seminal paper of Wilner and
Van den Heuvel [3] who noted that the low-loss and high-
modulation bandwidth of optical fibers made then an ideal
candidate as a broadband delay line. Several contributions
during the 70s addressed experimental work on DOPMS us-
ing multimode fibers [4, 5]. An intensive theoretical and
experimental research work on incoherent DOPMS using
single-mode fiber delay lines was carried by researchers at
the University of Stanford during the period between 1980
and 1990. Multiple configurations, applications, and poten-
tial limitations of these structures were considered and the
main results can be found summarized in [2, 6]. However,
the DOPMS demonstrated serious limitations arising from
losses and lack of reconfiguration since the technology sta-
tus regarding optical fiber and integrated components was at
the time at its infancy. The advent of the optical amplifier at
the end of the 80s and the development of optical compo-
nents (variable couplers, modulators, electro-optic switches)
and specific purpose instrumentation fuelled the activity to-
wards more flexible structures employing these components
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33]. Nevertheless, the availability of novel
components, such as the fiber Bragg grating (FBG) and the
arrayed waveguide grating (AWG) has opened a new perspec-
tive towards the implementation of fully reconfigurable and
tunable DOPMS [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

In this paper, we present the recent advances in photonic
processing of radiofrequency signals, focusing on different
alternatives for implementing transversal filters. The outline
of this paper is as follows. In Section 2 we describe the fun-
damental concepts and limitations related to the photonic RF
processors, paying special attention to incoherent signal pro-
cessing techniques. Section 3 reviews the recent advances in
the implementation of DOPMS from a structural point of
view. We discuss different alternatives for two main consoli-
dated technical approaches towards the practical implemen-
tation of transversal filters. The first one corresponds to tun-
able transversal filters consisting of wavelength tunable op-
tical taps, whereas the second one employs the tunability of
dispersive devices. In the former one, we include the efforts
made so far to overcome the limitations in incoherent filters
imposed by the positive nature of their coefficients. Finally, a
summary and conclusions are presented in Section 4.

2. FUNDAMENTAL CONCEPTS AND LIMITATIONS

2.1. Fundamental concepts

Any filter implemented using DOPMS tries to provide a sys-
tem function for the RF signal given by [63]

H
(
z−1) =

∑N
r=0 arz

−r

1−∑M
k=1 bkz−k

, (1)

where z−1 represents the basic delay between samples and
ar , bk the filter coefficients which are implemented by op-
tical components. The numerator represents the finite im-
pulse part (i.e., nonrecursive or FIR) of the system function,
whereas the denominator accounts for the infinite impulse
part (i.e., recursive or FIR) of the system function. N and
M stand for the order of the FIR and IIR parts, respectively.
If bk = 0 for all k, filter is nonrecursive and is also known
as transversal filter. Otherwise the filter is recursive and it
is common to use the term recirculating delay line. Figure 2
shows how (1) is implemented for an N-tap transversal inco-
herent filter using a single optical source. The optical carrier
is amplitude-modulated by an RF signal. Once the optical-
modulated signal is tapped, each tap is differently delayed
and weighted. After combining the samples, the receiver gets
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Figure 2: Implementation layout of an N-tap incoherent transversal filter using a single optical source.

the sum of differently delayed samples in order to give the
system response shown in the inset of Figure 2. The end-to-
end (electrical) impulse response corresponding to this situ-
ation can be directly derived from (1) yielding

h(t) =
N∑

r=0

arδ(t − rT), (2)

which convolved with the input RF signal si(t) yielding the
following output signal so(t):

so(t) =
N∑

r=0

arsi(t − rT). (3)

Similar expressions to (2) and (3) apply for IIR or recir-
culating delay line filters with N →∞.

According to (2) and (3) the standard electrical/optical
impulsive response of the optical processor is represented by
an equally time-spaced (T) pulse train where pulses imple-
ment the filter taps. If all the samples have the same ampli-
tude, the filter is called uniform; if the samples have differ-
ent amplitudes, the filter is termed as apodized or windowed
[63]. The electrical frequency response H(Ω) of such a struc-
ture can be obtained by Fourier transformation of the impul-
sive response (2):

H(Ω) =
N∑

r=0

are
− jrΩT . (4)

The above expression identifies a transfer function with
a periodic spectral characteristic (see inset of Figure 2). The
frequency period is known as the filter free spectral range
or FSR which is inversely proportional to the time spacing
T between adjacent samples in the impulse response. The
resonance full-width half-maximum is denoted as ∆ΩFWHM.

The filter selectivity is given by its quality or Q factor which
is given by

Q = FSR
∆ΩFWHM

. (5)

The value of the Q factor is related to the number of sam-
ples (taps) used to implement it. If the number of taps is high
(greater than 10), Q factor can be approximated for uniform
filters by the number of taps Q ∼= N . This relation can be
slightly corrected (Q < N) for apodized filters [63].

As shown in Figure 2, the implementation of the DOPMS
requires specific optical components to provide (a) signal
tapping, (b) optical delay lines, (c) optical weights, and (d)
optical signal combination, as detailed in Table 1.

Some further definitions are now introduced to complete
our general description of these filters.

Coherent and incoherent operation regime

The multiple optical contributions carrying the RF signal are
mixed at the detector end of the structure under two differ-
ent regimes. The former regime is verified when the light
arising from each tap of the filter has a deterministic opti-
cal phase relationship with the rest at the input of the pho-
todetector. In this case, the optical power-to-electric current
conversion operation at the photodetector generates an in-
terference term. This situation can only take place when a
single optical source is employed and its “coherence time”
τc is much longer than the time delay T between adjacent
samples or taps of the optical. Under coherent regime op-
eration, the optical phase of the taps plays a predominant
role in the overall time and frequency response of the pro-
cessor, and filters with negative and complex coefficients can
be implemented. On the other hand, since the filter opera-
tion relies on optical interferences, any slight change in the
propagation characteristics of any part of the optical proces-
sor drastically affects the filter response and its properties.
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Table 1: Components needed in a DOPMS.

Function Components

Signal tapping 2 × 2 and 1×N , N × 1 star couplers
Optical signal combination 2× 2 and 1×N , N × 1 star couplers

Optical weights
Variable 2× 2 couplers, optical amplifiers (both EDFAs and SOAs),
electro-optic and electroabsorption modulators

Optical delay lines Standard, high-dispersion single-mode fiber coils and fiber Bragg gratings

This circumstance constitutes a very serious practical lim-
itation for the implementation of these filters since a very
stable platform and considerable electronic feedback loops
must be provided for successful operation. The incoherent
regime is due to completely random optical phase relation-
ship between the filter taps (i.e., limited source coherence
time, τc � T). The interference is lost and the optical power
at the photodetector input is the sum of the optical powers
of the filter samples. In this case the filter structure is free
from environmental effects and thus is very stable and its per-
formance is quite repeatable. The main drawback of this ap-
proach is that filter coefficients can only be positive in princi-
ple and this leads to a serious limitation of the range of trans-
fer functions that can be implemented. Fortunately, there are
solutions available for the implementation of incoherent fil-
ters with negative coefficients and these will be presented in
a following section.

Filter tunability

This property makes reference to the possibility to tune the
RF bandpass position in a sufficiently fast way. Tunability can
be achieved either in a step by step or in a continuous way,
and is a key feature required for high-performance flexible
filters. In order to tune the RF response of the filter, the FSR
has to be modified and therefore also the basic time delay T
between samples or taps. The techniques to produce a true
time delay can be classified as follows.

(i) Wavelength tuning of one or multiple sources combined
with dispersive optical devices. This technique takes ad-
vantage of currently available modern tunable sources.
The dispersive devices can be standard fiber, high dis-
persive (dispersion compensating) fiber, and linearly
chirped fiber Bragg gratings (LCFBG). It can provide
continuous or step tunability at high speed, limited
by the tuning speed of the sources (depending on the
tunable source technology from 100 nanoseconds to
greater than 100 milliseconds).

(ii) Fixed wavelength multiple sources or sliced broadband
sources combined with tunable dispersive devices. This
approach is based on the utilization of novel devices
with tunable dispersion properties as special chirped
FBGs with actuators to change their dispersion prop-
erties. It can provide continuous and step tunability,
but in this case the time and accuracy to perform a
dispersion change on the Fiber device is not so well
controlled (100 milliseconds –1 second). Discrete tun-
ability can be achieved by using switched delay lines

since different paths providing different basic propa-
gation delays can be chosen by means of an optical
space switch. Only step by step tunability is allowed,
and the tuning speed is limited by the switching time
(1–10 milliseconds).

Filter reconfiguration

This property makes reference to the possibility of chang-
ing dynamically the amplitudes of the filter taps (ak, br co-
efficients) to reshape its spectral response: the weighting or
apodization of the amplitude of the filter taps is also a fun-
damental aspect to ensure enough rejection of the avoided
bands. The uniform tap apodization (equal amplitude of the
taps) provides a rejection ratio or main-to-secondary lobe
ratio (MSLR) that increases linearly with the number of taps.
This can be insufficient for certain applications. Different
apodization functions have been demonstrated for MSLR
improvement, either by adjusting the power of the optical
sources or by controlling the attenuation/gain suffered by the
taps when they travel through the optical processor.

2.2. Limitations

DOPMS must overcome a series of potential limitations
prior to their practical realization as pointed out in previous
papers. The main limitations arise from the following.

Source coherence

The source(s) spectral characteristics must be carefully cho-
sen attending to the desired working regime. While coherent
operation provides the possibility of implementing any kind
of desired transfer function, these structures are very sensi-
tive to environmental conditions [4]. Thus in the majority
of cases, incoherent operation is employed since the filters
are very compact and robust. Yet coherent effects can appear
even under incoherent operation. These undesirable coher-
ent effects may be overcome, for instance, by the use of bir-
refringent fiber delay lines [64].

Polarization

Polarization effects are mainly important under coherent op-
eration [4]. However, it has been outlined and experimen-
tally demonstrated that even under incoherent operation, the
filter can be sensitive to signal polarization [65]. The main
cause for this apparent contradiction is that some signal sam-
ples experience exactly the same delay within the filter lead-
ing to coherent interference between them even if a broad-
band source is employed [65]. Also, when using laser sources
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and external modulators, care must be taken to adjust the
source polarization to that required by the modulator. The
use of polarization preserving fiber pigtails at the modulator
input helps to overcome this limitation.

Positive coefficients

Filters working under incoherent regime are linear in optical
intensity, thus the coefficients of their impulse responses are
always positive. This has two important implications as de-
rived from the theory of positive systems [5]. The first one
and more important is that the range of transfer functions
that can be implemented is quite limited. The second one is
that regardless of its spectral period, the transfer function al-
ways has a resonance place at baseband. This is not a serious
limitation since a DC blocking filter can be inserted at the
optical receiver output. Nevertheless, incoherent filters with
negative coefficients can be implemented by means of differ-
ential detection [5, 21] and cross-gain modulation in an SOA
[66] and other recently developed techniques which are fur-
ther discussed in Section 4.

Limited spectral period or free spectral range

DOPMSs are periodic in spectrum since they sample the in-
put signal at a time rate given by T . Thus the spectral period
or FSR is given by 1/T . If the DOPMS is fed by only one opti-
cal source, then the source coherence time (which is inversely
related to the source linewidth) limits the maximum (mini-
mum) value of the attainable FSR under incoherent (coher-
ent) operation. To overcome this limitation, it has been pro-
posed to feed the DOPMSs with source arrays [65].

Noise

As far as the optical source is concerned, passive DOPMSs be-
have as frequency discriminators and thus convert the opti-
cal source phase noise into intensity noise which materializes
into RF baseband noise at the filter output [67, 68, 69, 70, 71,
72]. This conversion is dependent on the operation regime.
For incoherent operation, the noise is periodic in spectrum
showing notches at zero frequency and multiples of the filter
FSR. Under active operation (i.e., when incorporating opti-
cal amplifiers) new RF noise sources appear as a direct con-
sequence of the beating between the signal and the sponta-
neous emission [71, 72]. It has been proved however, that the
converted phase noise is still the dominant noise source [72].
The use of source arrays to feed the DOPMS is an attractive
solution to overcome noise limitations [58]. This is due to
the fact that signals recombining at the photodetector at dif-
ferent wavelengths will generate the intensity noise centered
at the frequency resulting from the beats of the optical carri-
ers. Since these have very high values, they will be filtered out
by the receiver.

Reconfigurability

As defined previously, this property refers to the possibility
to dynamically change the values of ar and bk in (1). Passive
structures are incapable of this feature. Several solutions have

been proposed to overcome this limitation including the use
of optical amplifiers [7, 8, 9], modulators [10, 34, 35], fiber
gratings, and laser arrays [56, 57, 58, 59, 60].

Tunability

As defined previously, this property refers to the possibil-
ity to dynamically change the position of filter resonances
or notches. To provide tunability, it is necessary to alter the
value of the sampling period T . Solutions that include the
use of switched fiber delay lines, fiber Bragg gratings, or other
tunable tap schemes have been proposed, as will be described
below.

3. HIGH-PERFORMANCE INCOHERENT FILTERS

3.1. Transversal filters based on the optical tap
wavelength tunability

3.1.1. Positive coefficient transversal filter

High-performance and programmable RF transversal filters
can be obtained employing both LCFBGs or fiber coils as
dispersive media in combination with an array of optical
sources [56, 57, 58, 59]. The layout of the filter for a spe-
cific case of a laser array of 5 elements is shown in Figure 3,
although in general it is composed of N sources. The advan-
tage of using a laser array to feed the delay line is twofold. On
one hand, the wavelengths of the lasers can be independently
adjusted. Thus spectrally equally spaced signals representing
RF signal samples can be fed to the fiber grating suffering dif-
ferent delays, but keeping constant the incremental delay T
between two adjacent wavelengths emitted by the array if the
delay line is implemented by means of a linearly chirped fiber
grating. This means, for instance, and referring to Figure 3b,
that the delay between the signals at λ1 and λ2, λ3, λ4, λ5, . . . ,
λN is, respectively, T , 2T , 3T , 4T , and (N − 1)T . Hence the
configuration can act as a transversal filter, where the basic
delay is given by T . Furthermore, T can be changed by proper
tuning of the central wavelengths emitted by the laser array.
Thus, this structure provides the potential for implementing
tunable positive coefficient RF filters.

The second advantage stems from the fact that the output
powers of the lasers can be adjusted independently at high
speed. This means that the time impulse response of the filter
can be apodized or in other words, temporal windowing can
be easily implemented and therefore the filter transfer func-
tion can be reconfigured at high speed. We have experimen-
tally succeeded in the demonstration of both tunability and
reconfigurability. For instance, Figure 4 shows the results of
the samples of the five-stage uniform filter where weights are
given by a truncated Gaussian window. The upper trace in
Figure 4a, shows the spectrum corresponding to the uniform
filter (i.e., unapodized) where the normalized output powers
from the lasers in the array are [1 1 1 1 1]. The interme-
diate trace corresponds to a five-stage Gaussian windowed
filter where the normalized output powers from the lasers
in the array are given by [0.46 0.81 1 0.81 0.46]. Figure 4b
demonstrates the resonance tunability, increasing the reso-
nance position from approximately 2 GHz up to 4 GHz (i.e.,
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Figure 3: Architecture of a tunable and reconfigurable RF photonic filter using a laser array and a linearly chirped fiber Bragg grating.
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Figure 4: Results of the architecture using a laser array and an LCFBG. (a) The upper trace: uniform filter (i.e., unapodized) output powers
from the lasers in the array are [1 1 1 1 1]. The intermediate trace: five-stage Gaussian windowed filter where the normalized output powers
are [0.46 0.81 1 0.81 0.46]. (b) Resonance tunability, resonance position from approximately 2 GHz up to 4 GHz, and details of the CSE are
demonstrated.

reducing in a factor of two the wavelength separation). In ad-
dition, this figure shows the carrier suppression effect (CSE)
suffered by the second resonance in this specific case of dis-
persive media and wavelength spacing.

An additional advantage of employing laser arrays is the
possibility of exploiting WDM techniques for parallel signal
processing [60]. The possibility of implementing a bank of

parallel transversal filters is feasible by extending the concept
of a single fiber-optic RF transversal filter based on multi-
ple linearly chirped fiber Bragg gratings and dispersive ele-
ments into the implementation of a bank of transversal fil-
ters, by means of utilizing wavelength division multiplexing
techniques. This technique allows for the simultaneous pro-
cessing of a single RF signal by various filters.
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A high-performance and continuously tunable positive
coefficient RF filter with larger FSR tuning range, low-cost
and simple tuning scheme was presented in [35]. This filter
consists of a broadband optical source, that is, a superelec-
troluminescent diode, SLED, and uniform fiber Bragg grat-
ings as filtering elements. This tunable approach was previ-
ously demonstrated to provide a simple tunable notch filter
where the broadband optical source was sliced by means of

only two FBGs, which can be tuned by means of a strain ap-
plication stage [34]. The output light of the source is driven
to the FBG through an optical circulator, and therefore, the
reflected signal will be driven to the rest of the system. The
uniform FBGs are 5 cm long, written in a series configura-
tion as shown in Figure 5, and they will be stretched to tune
the reflection bandwidth, initially centered at λinit. Since the
central optical frequency, ωN , of different gratings must be
equidistant [35], each grating must be stretched over a dif-
ferent fiber length, LN = L/N , so the total device length is
determined by the number of optical taps.

The device employs identical Bragg gratings whose ini-
tial responses, λinitN , have been tuned by tension before glu-
ing the gratings on the mechanical stage. One of the grat-
ings is not glued on the stage but the others are glued over
a fiber length given by N = 0, not stretched, L1 = 21 cm,
L2 = 10.5 cm, and L3 = 7 cm. The inset of Figure 5 shows
the wavelength tunability of all four optical taps correspond-
ing to reflected signals by the gratings when different elonga-
tions are applied. The lowest wavelength is kept constant (the
grating is not stretched, so λ0 = λinit0 ) and the others show a
linear behaviour, in such a way all of them are equidistant for
different elongations.

Figure 6 shows the measured RF-transfer function of two
filters corresponding to optical tap spectral spacing of 1.20
and 0.65 nm and a fiber length of 23 km as the dispersive
element, together with the theoretical calculation. The filter
FSRs were 2.19 and 4.05 GHz, respectively, although the FSR
tuning range was demonstrated to be 1–6 GHz.
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A similar configuration for a 4-tap filter where the grat-
ings are written in a parallel configuration to achieve large
sidelobe suppression by weighting the taps was also proposed
in [35]. Figure 7 shows the new configuration of the grat-
ings, which will show large flexibility in the implementation
of the filters with the only drawback of larger optical losses,
which will be compensated by the optical amplifier. The grat-
ings are written in different arms of a 4 × 4 optical coupler
and will be glued onto the mechanical stage over different
fiber lengths, as explained above. As known from filter the-
ory [58], the shape of the transfer function of a discrete-time
transversal filter can be changed or reconfigured by chang-
ing the optical power of the different taps according to an
apodization function. Therefore, a decrease in the secondary
sidelobes of the filter can be achieved. The optical signals cor-
responding to the side taps (in our case, N = 0 and N = 3)
will go through a two-input variable attenuation, which will
be varied according to the desired degree of MSLR of the RF
filter.

Figure 8 shows the measured main to sidelobe ratios of
implemented RF filters by introducing different attenuation
values to the optical signal taps, together with the theoretical
curve. As an example, the intensity of the four taps of two
filters is shown in two different insets, exhibiting different
apodization profiles. The uniform intensity pattern leads us
to the theoretical (and measured) limitation of 11.3 dB (see
Figure 6) and sidelobe reduction has been demonstrated in
these filters up to 25 dB.

Another interesting option is to employ AWG devices
with high port count in order to implement source slicing
with a high number of samples [73, 74]. With this tech-
nique we have recently reported a twelve-sample transversal
filter using a two-stage 1 × 40 AWG configuration shown in
Figure 9. This structure has the advantage of allowing also
filter reconfiguration if switches or variable attenuators are
placed in between the demultiplexing and the multiplexing
stages.

In the structure above, the combinations of the SLED and
the erbium-doped fiber amplifier (EDFA) sources provide
an almost flat optical spectrum to be sliced by the couple
of AWGs. The proper channel-by-channel interconnection
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Figure 8: Calibration curve of sidelobe suppression versus atten-
uation tuning parameter. Insets: intensity of the taps in different
filters.

between AWGs provides a certain degree of freedom to se-
lect the wavelength spacing between the slices. The employed
AWGs were designed for DWDM applications with 0.8 nm
spacing between adjacent channels and 0.4 nm of 3 dB op-
tical bandwidth. Figure 10 shows two examples of channels
interconnections to provide different RF lobe tuning and RF
lobe 3 dB bandwidth. Proper optical attenuation of the in-
terconnections provide the feasibility of taps apodization to
reduce the sidelobe level. Special attention must be paid to
the lowpass filtering effect arising from the combined use of
broadband slices (0.4 nm) and large amount of dispersion,
and on the other hand also the effect of the dispersion slope
(S) and the large wavelength range covered must be consid-
ered. This phenomenon manifests as an amplitude reduction
and an RF lobe bandwidth increasing for higher RF frequen-
cies as it can be observed from results in Figure 10, and it was
extensively discussed in [74].

Another recently reported slicing technique employs a
fiber Bragg grating and an acoustic wave, which generates
the optical taps when it is propagated along a uniform FBG
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[75]. The acoustic wave creates a periodic strain perturbation
that modulates periodically the period and the refractive in-
dex of the FBG. In this system, the spontaneous emission of
an EDFA around 1540 nm is used as a broadband source, the
FBG is written at the neck of a symmetric tapered fiber in or-
der to increase the efficiency of the acoustic interaction and
the longitudinal acoustic wave is generated by a piezoelectric
transducer driven by an RF signal and launched into the fiber
using a silica horn. It produces spectrally equispaced bands
of reflection on both sides of the original Bragg grating as we
can observe in Figure 11.

By using an SMF-28 fiber length of 46 km as a dis-
persive element, two transversal filters were implemented
with the acoustic frequencies of 0.755 MHz and 1.444 MHz.
The wavelength spacing of the optical taps were 0.11 nm
and 0.22 nm, respectively, and the RF filter characteristics
are shown in Figure 12. The former one showed an FSR of
6.25 GHz and a 3 dB bandwidth of 1.44 GHz, whereas the
second one had an FSR of 11.5 GHz and a 3 dB bandwidth of
2.76 GHz. The reconfigurability of the filter can be obtained
by applying different voltages to the piezoelectric transducer
since different degrees of apodization of the optical taps in-
tensities are achieved by controlling the acoustic power. A
main to sidelobe ratio up to 20 dB has been demonstrated.

However, in RF applications when an optical signal is
used to carry several RF signals providing different services,
and photonic filters are used to select one of these services,
as happens in next-generation optical access networks, there
is a need for obtaining a single and very selective tunable ra-
diofrequency band in sliced broadband optical source [76].
The presence of a periodic transversal filter response where
different RF bands are selected by the filter implies a limita-
tion in the number of services carried by the same optical car-
rier. Thus, a new approach to obtain single bandpass RF fil-
ters is extremely interesting for their implementation in opti-

cal access networks. It is based on a broadband optical source
and a fiber Mach-Zehnder interferometer (MZI), as shown
in Figure 13. When the source optical output is transmitted
by the interferometer and launched into a fiber delay line,
a tunable bandpass filter is achieved showing a single band-
pass frequency response, large tunability without changing
the bandwidth of the filter, and high attainable Q values.

The experimental arrangement is given by the Figure 13.
The spontaneous emission of an EDFA is used as broadband
optical source, with a 3 dB bandwidth of 5.4 nm and the MZI
leads to obtain different periodicities ∆ω. In this system, a
46 km fiber length is used as dispersive element, and the RF
filter response shows a bandpass characteristic centered at the
frequency Ω0, that can be tuned varying the periodicity ∆ω
of the interferometer Mach-Zehnder. As shown in Figure 14,
periodical wavelength spacing in the interferometer ouput
of 0.237 and 0.173 nm leads to bandpass filters at 5.83 and
7.88 GHz. A tuning range of several tens of GHz was achieved
with an MSLR lower than 20 dB and the Q maximum value
achieved was around 40.

The Q factor is plotted in Figure 15 for several RF fil-
ters implemented with different wavelength periodicity ∆λ
of the signal at the electro-optic modulator (EOM) input,
for two different dispersion values according to 23 km(�)
and 46 km(•) length of fiber. The dashed curve plots the Q
factor that can be achieved by a Gaussian optical source of
5.4 nm 3 dB bandwidth. As shown, Q value is improved by
increasing the optical source bandwidth although the influ-
ence of the dispersion slope drives to a degradation of the
radiofrequency response. Therefore, potential high Q values
can be achieved by choosing the appropriated broadband
source and reducing the dispersion slope that can be achieved
by using two different fibers to compensate the dispersion
slope. The dotted line shows the Q factor when the disper-
sion slope is compensated.
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Figure 10: (a) Normalized RF amplitude for the sliced spectrum:
slices from 1543.7–1561.3 nm up to a total number of twelve bands
(samples), 1.6 nm apart. The RF response presents a band spacing of
1.56 GHz. Inset: precise measurement of the 1◦ passband. (b) Nor-
malized RF response for 24 slices (1542.9–1561.3 nm), with 0.8 nm
wavelength spacing. FSR = 3.1 GHz, MSLR = 14 dB, 3 dB band-
width of 125 MHz, Q factor = 24.8.

3.1.2. Negative coefficient transversal filter

One of the main limitations of incoherent transversal filters
is that only positive taps are possible since the intensity is
a positive magnitude. Some solutions have been reported to
overcome this limitation, from the optoelectronic approach
that uses differential detection [21] to various configurations
which use active elements to generate negative taps, that is,
amplitude inversion due to gain saturation in the homoge-
neously broadened gain medium of a semiconductor optical
amplifiers (SOA) [77], carrier depletion effect in a DFB laser
diode [78], cross-intensity modulation of the longitudinal
modes of an injection-locked Fabry-Perot laser diode [79].
Recently, microwave filters based on wavelength conversion
employing cross-gain modulation of amplified spontaneous
emission spectrum (ASE) of an SOA have been demonstrated
[80]. Recently, a new low-cost approach based on passive el-
ements has been proposed to generate negative taps and it is
based on filtering a broadband source with the transmission
of uniform FBGs [81].

The implemented filter is formed by a tunable laser (TL)
and the signal transmitted by a uniform FBG, which is il-
luminated with the ASE of an EDFA. The broadband opti-
cal source has a 3 dB bandwidth of 5 nm around 1530 nm.
The uniform FBG is 1 cm long with Bragg wavelength of
1530.96 nm and maximum reflectivity of 8 dB. The output
light of the FBG and the TL are driven to a 90/10 optical cou-
pler. The combined signal can be monitorised by an opti-
cal spectrum analyser, OSA, by using the 10% arm. The 90%
arm signal is amplitude-modulated in the EOM whose RF-
signal of frequency f is generated by a lightwave component
analyser, LCA. A fiber length of 46 km will be the dispersive
element in the filter, and finally, the transfer function of the
filter is measured in the LCA (Figure 16).

Figure 17 gives the measured and theoretically predicted
free spectral range of 2-tap RF filter versus different wave-
length spacing between the central Bragg wavelength of the
FBG and the TL output signal showing tunability in the 0.7–
5.6 GHz.

In order to show the good performance of these filters
when various taps are added, 5-tap RF filter has been mea-
sured using two FBGs and three lasers whose wavelength sep-
aration is 1.16 nm (Figure 18).

Therefore, the system shows a broad tuning range and a
good performance of the transversal filter.

A different and promising technique also used to obtain
RF filter with negative coefficients and consists of using laser
arrays (like the first approach described in this section) has
been recently reported in [82]. It relies in the counter-phase
modulation on a Mach-Zehnder external modulator (MZM)
device by means of employing the linear part of the trans-
fer function with positive and negative slopes. The concept
is illustrated in the upper part of Figure 19 with a simple RF
modulating source.

The upper left part of the figure depicts the typical out-
put versus input optical power sinusoidal transfer function
of an MZM as a function of the applied bias voltage VBIAS.
Two linear modulation regions with opposite slopes can be
observed centered at V−

BIAS and V+
BIAS, respectively. As shown

in the right part of the figure, the same RF modulation signal
applied to the modulator at each of the former bias points
will produce an optical-modulated output signal with the
same average power but where the modulating signals are
180◦ shifted or in counter-phase. In other words they can
be considered of different signs. This principle can be em-
ployed to implement RF photonic filters with negative coef-
ficients if the output wavelengths from a multi-wavelength
source (either a laser array or a sliced broadband source) are
applied to an MZM biased at either V+

BIAS or V−
BIAS depending

on whether they are employed to implement positive or neg-
ative filter samples. The output from both modulators are
combined and sent to a dispersive element (i.e., an LCFBG
or a fiber coil) that implements the constant differential time
delay between the filter samples.

The feasibility of this approach has been experimentally
demonstrated with a six-sample uniform RF photonic filter
with three positive and three negative coefficients using the
laser array implementation described in [82].
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Figure 19 shows the experimental layout. An array of six
tunable lasers emitting at λ1=1546.65 nm, λ2=1548.43 nm,
λ3 = 1550.11 nm, λ4 = 1551.86 nm, λ5 = 1553.47 nm, and
λ6 = 1555.24 nm was selectively fed to two MZMs biased
at V+

BIAS = 0 V and V−
BIAS = −3.9 V, respectively. Wave-

lengths λ1, λ3, and λ5 were fed to the MZM biased at V+
BIAS

(positive samples) , whereas wavelengths λ2, λ4, and λ6 were
fed to the MZM biased at V−

BIAS (negative samples). Both
EOMs were modulated by the same RF signal, a 5 dBm si-
nusoidal signal provided by an LCA. The frequency of the
RF modulating signal was varied from 130 MHz to 5 GHz in
order to measure the transfer function characteristic of the
filter.

Figure 20 shows the measured modulus of the transfer
function for a filter with six uniform coefficients. Both the
experimental (solid line) and the theoretical (broken line) re-
sults are shown for reference and comparison. As expected,
the filter resonance at baseband (typical of positive coeffi-
cient filters) has been eliminated, thus confirming the fea-
sibility of the proposed scheme for the implementation of
negative coefficients. Although in principle, as shown in
Figure 19, two modulators are required in the transmitter, in
practice this requirement can be reduced to only one modu-
lator if this device is provided with two input ports. A main
advantage of this configuration is that there is no need to du-
plicate the optical structure of the filter to implement posi-
tive and negative coefficients since the taps already carry their
sign prior to being delayed. Another interesting feature is
that the sign is decoupled from any sample weighting pro-
cess.

As it was anticipated, in principle two MZM devices are
required for the previous approach, but only one MZM is
required to incorporate 2 inputs by replacing the input Y
branch to the integrated modulator by a 2 × 2 integrated
coupler. We have reported novel results [83] using a newly
developed 2 × 1 MZM device fabricated by AMS (Alenia
Marconi Systems) featuring the above desired characteristics.
We demonstrate a filter structure that requires only this de-
vice and we employ it to implement a 9-tap (positive and
negative) transversal RF photonic reconfigurable filter with
square-type resonances.

Figure 21 shows the layout and the intensity trans-
fer function of the newly developed device. The device is
an LiNbO3 dual drive MZM developed for this applica-
tion within the framework of the EU-funded IST-LABELS
project. As it can be observed, the input Y branch has been
replaced by a 3 dB 2 × 2 integrated coupler. Figure 21 also
shows the measured modulation curves for the two (input
1-output) (input 2-output) input/output configurations. As
expected, the curves for the two input/output configura-
tions show a clear 180◦ phase shift on the two RF-modulated
outputs with maximum dynamic range at the quadrature
point. Note as well that the 180◦ phase shift on the two RF-
modulated outputs is maintained regardless of the value of
the bias voltage although the output average output power
changes. For instance, the figure shows two cases (case (i)
and case (ii)) as particular examples. The 2 × 1 MZM pre-
viously described has been employed to demonstrate the op-
eration concept in an experiment designed to implement, for
the first time to our knowledge, a reconfigurable square-type



1474 EURASIP Journal on Applied Signal Processing

f (GHz)

0 5 10 15 20

A
m

pl
it

u
de

(d
B

)

−20

−10

0

(a)

f (GHz)

0 5 10 15 20

A
m

pl
it

u
de

(d
B

)

−20

−10

0

(b)

Figure 14: Response of the RF filters implemented by 46 km of
fiber: (a) 0.237 nm and (b) 0.173 nm.

filter with negative coefficients. The filter layout was similar
to that of Figure 19 [83] with the exception that the two stan-
dard MZMs have been replaced by the especially designed
2 × 1 MZM. In this case the dispersive element was imple-
mented by a 23 km fiber and the filter samples were pro-
duced by means of tunable lasers with wavelength separa-
tion of 0.96 nm between adjacent carriers which resulted in
a filter free spectral range of 2.63 GHz. The implemented RF
filter was a square shape type with nine coefficients (7 differ-
ent from 0 + 2 null ones) and with four negative taps. The
values for the taps were [−0.16 0 0.27, −0.77 1 −0.77 0.27
0 −0.16]. Figure 22a shows the optical spectrum at the fiber
coil output prior to the detector. Figure 22b demonstrates the
measured transfer function (dotted trace), the theoretical ex-
pected trace for the square filter design (continuous trace),
and also the theoretical trace for a filter with uniform coef-
ficients (broken trace). The agreement between the theoret-
ical and the experimental results is excellent inside the filter
bandpass. Outside the filter bandpass the agreement is worse,
but this is due mainly to the noise arising from delay nonuni-
formities due to inaccuracies in the central wavelengths of
the lasers and also due to the feasible inaccuracy in the tap
amplitude.
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Figure 15: Dependence of the Q factor of an RF filter on the wave-
length periodicity ∆λ of the signal at the EOM input, for two dif-
ferent dispersions L1(�) and L2(•). Solid line: theoretical fit of the
experimental data. Dashed-dotted line: Q factor obtained when op-
tical source (bandwidth of 5.4 nm) is Gaussian. Dotted line:Q factor
obtained when dispersion slope is compensated.

3.2. Transversal filters based on
tunable dispersive devices

Linearly chirped fiber Bragg gratings have been proposed
to obtain tunable dispersion slope gratings showing suitable
optical bandwidth for RF applications. By acting on them, it
is possible to vary the time delay of each optical wavelength
carrier. Temperature and strain gradients on the CFBG [3]
or the use of piezoelectric transducer [4] are some of the
most extended approaches. Recently, we demonstrated the
dynamic chirp of an original uniform fiber Bragg grating
based on a grating fixed to a magnetostrictive rod, which
could be disturbed with a tapered magnetic circuit [5]. These
magnetic systems show advantages such as good dynamic re-
sponse and easy implementation.

A new device is based on tuning the phase response of a
tapered fiber Bragg grating (TFBG) by using a magnetostric-
tive transducer and the magnetic field inside a simple coil.
Tunable transversal filters can be implemented by using this
device since the dispersion slope is tuned when applied cur-
rent to the coil is varied.

The tunable dispersion device consists of a chirped grat-
ing with tapered transversal section held on a magnetostric-
tive material, which is subjected to the nonuniform magnetic
field produced by the current flow through a finite solenoid.

A 5 cm long FBG with uniform period is written in a
tapered fiber fabricated by fusion and elongation [6]. This
TFBG is fixed on a magnetostrictive rod and placed in-
side of a 4 cm long magnetic coil (see Figure 23). Thus,
the magnetostrictive material suffers a local lengthening,
which is proportional to the intensity of the applied mag-
netic field. The TFBG is located at the axial region where the
magnetic field variation is quasilinear [7]. Therefore, when
an electrical current of a given intensity is injected to the
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solenoid, the magnetic field applied to the TFBG leads to dif-
ferent dispersion slopes depending on the intensity current.
When no current is applied, the TFBG has a linear disper-
sion due to the design of the taper profile [6]. It has a flat
reflectivity and a 3 dB bandwidth of 1.58 nm.

Inset of Figure 23 shows the dispersion slope when elec-
tric currents are 0 A, 3 A, and 5 A, with a 3 dB bandwidth
of 1.58 nm, 2.05 nm, and 2.51 nm, respectively. Time delay
slopes are achieved from 188–472 ps/nm, with a useful pass-
band larger than 1 nm.

The implementation of RF filters requires N optical
carriers, equidistant by ∆λ0/(N − 1), which are provided
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Figure 18: Filter response versus RF signal frequency with 1.16 nm
equispaced wavelength separation. Theoretical calculation (dotted
line) and experimental results (solid line). Inset: spectral position
of the five taps.

by a multi-wavelength tunable laser. They are amplitude-
modulated by an EOM and launched into the tunable TFBG
as shown in Figure 23 [84]. The dispersion of the TFBG,
D, gives the differential delay between adjacent optical taps
∆τ = D · ∆λ. Because of the variation of the time delay
slope of the TFBG when we apply different magnetic gradi-
ents, transversal notch filters with tunable free spectral range
(FSR) are measured.

Figure 24 shows the range of FSR values that can be ob-
tained by using our device (shaded region). Moreover, several
filters have been implemented by changing the number of
optical taps and the total optical bandwidth ∆λ0 of the filter
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for 0 A, 5 A, and −5 A. The inset shows an RF filter with
∆λ0 = 1.0 nm and two taps when I = −5 A (D = 188 ps/nm)
and I = 5 A (D = 472 ps/nm) showing an FSR of 5.4 GHz
and 2.3 GHz, respectively.

The tuning range of the previous approach can be en-
larged by using a new system composed of the cascade of
two switched tunable stages [85]. Each one includes a tapered
fiber grating subjected to the nonuniform magnetic field cre-
ated inside an electrical coil.

Figure 25 shows a scheme of this tunable dispersion sys-
tem. A laser source is amplitude-modulated and launched
into the first TFBG through a circulator. The optical signal
reflected goes through a 50/50 coupler, and then, to an op-
tical switch. When it is in the bar state (BS) the optical sig-
nal is launched into the second TFBG, and therefore, the re-
sponse of the global system is given by the cascade of both
subsystems. After reflection in the second grating, the signal
is measured at one of the input ports of the coupler by us-
ing a lightwave components analyzer. Alternatively, when the
optical switch is in the cross state (CS), the signal is driven to
the LCA through the output port of the switch.

Measurements of the amplitude and time delay response
of the whole system were performed with the optical switch
in CS and BS. First state led to dispersion slopes from 230–
351 ps/nm, whereas a range between 420 and 715 ps/nm was
obtained in the second state.
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To show the performance of this system, 3-tap RF fil-
ters were implemented for CS and BS when different elec-
trical currents are injected to the solenoid (0, 2, and 4 A).
The multi-wavelength was set to emit light at three different
optical wavelengths equispaced by 0.41 nm. Figure 26 shows
the FSR of the measured RF filters for different electrical
currents. CS led to achieve FSRs between 7 and 10.6 GHz
and BS led to a tuning range from 3.5–5.8 GHz. The inset
of Figure 26 shows the group time delay versus wavelength
when no electrical current is applied to the coils. Note the
increase of the dispersion when BS was set instead of CS.

Amongst the approaches based on the concept of disper-
sive adjusting and maintaining the wavelengths of the taps
fixed to obtain RF lobe tuning we can include the follow-
ing RF photonic filter, although in this case other important
techniques as spectral slicing employing uniform FBGs and
fiber delay lines have been combined to perform the filter

specifications [8]. More specifically, we report a tunable pho-
tonic filter for noise suppression and channel interference
mitigation in the front-end stage of a UMTS base station
prior to the highly selective SAW filter. As it has been re-
ported elsewhere [9], the inclusion of such a filter can in-
crease the capacity of UMTS systems. It is possible to switch
the designed filter along the twelve-channel UMTS.

The proposed configuration implements a classical FIR
transversal filter. We also employ the spectral slicing of a
high-power broadband optical source to obtain an “equiva-
lent” multi-wavelength source. The slicing is performed by
an array of fiber Bragg gratings which also introduces a
fixed time delay between the reflected slices of the signal. Fi-
nally, we employ a reconfigurable chain of dispersive mod-
ules (SMF-28 fiber) to vary the time delay between the slices
and thus introduce tuneability to the filter. Figure 27 shows
the filter structure. The first block is the optical source and
modulator, where an SLED is employed as the broadband op-
tical source (power of 10 mW and with the 40 nm bandwidth
at 1555 nm). The RF modulation of the optical signal is per-
formed by means of an EOM directly over the entire SLED
spectrum. The second block consists of an array of N fiber
Bragg gratings written in series with certain uniform spac-
ing between the gratings. This block accomplishes a double
task: the slicing of the SLED spectrum and the introduction
of the time delay ∆T between the signals reflected from the
gratings. Finally, the spectral slices are fed to the third block: a
reconfigurable chain of dispersive modules, where each mod-
ule employs a standard nonshifted SMF-28 fiber (the use of a
highly dispersive, e.g., dispersion compensating fiber, is also
possible). The optical switches in the third block provide a
stepwise tuning of the accumulated dispersion in the block.
By varying the dispersion of the block, the time delay be-
tween the signals reflected from different gratings is changed
and thus, tuneability of the filter RF response is achieved.

The UMTS channel filtering requires a high Q factor
(about 400), since the required 3 dB passband of the filter
should be less than 5 MHz and the operating frequency of the
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filter lies within 1920–1980 MHz. Furthermore, the UMTS
channel filtering also requires the tuneability of the RF pass-
band within the 12 channels allocated along the 60 MHz
band (between 1920 and 1980 MHz). In order to achieve
such a high Q factor, the present transversal filter operates
at a higher order “resonance” of its periodic response. In
this case, the FSR of the filter is an integer fraction of the
UMTS operating frequency. The present filter has been de-
signed to employ the resonance number 18. To keep the filter

tuned to the upper UMTS channel at 1977 MHz when the
dispersive module is “switched off,” the FSR of the filter has
been set to 109 MHz, and the corresponding spacing between
the adjacent gratings has been set to 930 mm. The other de-
sign parameters are the total number of gratings N and the
gratings reflectivity as a function of wavelength or grating
number. The goal of the filter design was to achieve a 3 dB
bandwidth within 5-6 MHz, a 1 dB bandwidth larger than
3 MHz, and the sidelobe rejection level larger than 40 dB. In
order to meet the above rejection level, a normalized Gaus-
sian apodization of the taps weights has been employed. The
total number of required gratings has been determined from
the indicated above target bandwidth being finally fixed to
N = 30. The last filter parameter to be determined was the
FBG wavelength spacing that was set to 1 nm which ensured
that the SLED optical spectrum (40 nm) was used efficiently.
The 1 nm spacing has also established the length of the SMF-
28 fiber required for proper switching of the operating fre-
quency between the UMTS channels. We determined that
5 MHz steps towards lower RF frequencies require an in-
crease of 23 picoseconds in the time delay ∆T which corre-
sponds to about 1.35 km of SMF-28 fiber with the dispersion
of 17 ps/(nm km) at 1550 nm.

The fabricated gratings have been made 1 cm long,
Hamming-apodized, and had the 3 dB bandwidth of about
44 pm. Each grating has been fabricated separately and then
the gratings have been spliced to each other with the 930 mm
center-to-center spacing. Figure 28 shows the view over the
17–19th and over the 18th resonance of the filter response.
Each of the eight traces in either figure corresponds to a dif-
ferent amount of dispersion provided by the reconfigurable
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Figure 28: (a) UMTS filter response over the 17–19th resonance
and (b) detail over the 18th resonance. Each of the eight traces in
either figure corresponds to a different amount of dispersion pro-
vided by the reconfigurable dispersive module in different steps
from 0 km (higher-frequency trace) up to 10.7 km (lower-frequency
trace).

dispersive module. The introduced optical insertion loss of
7 dB due to the 10.7 km long fiber and connectors (2 dB from
the fiber and 5 dB from the connectors) has been compen-
sated in the experiment by an adjustable EDFA prior to the
detector. One can see that the operation frequency of the
filter varies almost linearly versus the standard fiber length

with the slope of 3.577 MHz/km (i.e., 1.39 km less or extra
fiber is required for the shift of 5 MHz). The rejection levels
have been obtained for each tuning position by measuring
the range from the main lobe to the highest sidelobe level in-
side the rejected band, giving the 12, 13.4, 13.4, 12.8, 13, 11.4,
10.9, and 10.9 dB, respectively. The small MSLR is mainly due
to the spacing errors between the gratings, which we can also
conclude from the fact that it is frequency dependent (e.g.,
the measurements give MSLR > 24 dB at 500 MHz).

4. SUMMARY AND CONCLUSIONS

In this paper, we have presented the last advances in the
implementation of photonic tunable transversal filters for
RF signal processing. Following a distinction between filters
based on wavelength tunable optical taps and others based
on the tunability of the dispersive elements that provide the
time delay between samples, last approaches have been dis-
cussed.

On one hand, interesting results related to the large
degree of flexibility shown by the tunable laser array and
chirped grating-based structure have been shown together
with other cheaper alternatives based on the slicing of broad-
band optical sources either by using tunable fiber Bragg grat-
ings or by using arrayed waveguide gratings. Other alter-
natives include the implementation of flexible and low-cost
tunable transversal filters based on the generation of multi-
ple taps by using an acousto-optic modulation on the fiber
Bragg grating.

We also introduced structures that provide high-
performance filters such as the bandpass filter implemented
by using a Mach-Zehnder interferometer and a broadband
optical source and discussed the implementation of filters
with negative coefficients. These filters have been recently
demonstrated by using two different approaches, which are
also described in this paper: either by setting different bias
voltage in an electro-optic modulator or by using fiber Bragg
gratings in transmission; larger flexibility in the filter re-
sponse given by the implementation of negative coefficients
is demonstrated.

On the other hand, last proposals on tunable dispersive
devices based on the tunability of the chirped fiber Bragg
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gratings characteristics have also been addressed in a single
stage or in a cascade by means of using an optical switch to
increase the tunability range of these structures. Finally, a 30-
tap transversal filter implemented by using a broadband op-
tical source sliced by 30 uniform fiber gratings is designed for
selecting channels in a UMTS application. In this structure,
the physical spacing between the gratings provide the initial
response and the filter tunability is achieved by means of a
series of different switched fiber delay lines.
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Discrete-time signal processing (DSP) tools have been used to analyze numerous optical filter configurations in order to optimize
their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear
response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped
onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the
design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR) and autoregressive moving
average (ARMA) lattice filters to obtain a nonlinear phase shift response.
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1. INTRODUCTION

In order to satisfy the ever-increasing demand for high bit
rates, next generation optical communication networks can
be made all-optical to overcome the electronic bottleneck
and more efficiently utilize the intrinsic broad bandwidth
of optical fibers. Currently, there are two possible technolo-
gies for achieving high transmission rate: optical time di-
vision multiplexing (OTDM) and dense wavelength divi-
sion multiplexing (DWDM). However, neither the full po-
tential of OTDM nor that of DWDM technology has been
realized due to lack of suitable nonlinear, all-optical devices
that can perform signal regeneration, ultrafast switching, en-
coding/decoding, and/or wavelength conversion efficiently.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

There are a number of problems with current nonlinear op-
tical materials and devices.

There are two types of nonlinear optical materials from
which devices can be made: nonresonant and resonant. Non-
resonant materials have a weak nonlinear response, but the
passage of light occurs with very low loss and the response is
broadband, typically exceeding 10 THz. However, because of
the weak nonlinear response, these devices tend to be bulky
and impose a long latency. Resonant materials have a very
strong nonlinear response, but at the expense of reduced
bandwidths and increased loss. Artificial resonances can be
used in optical architectures to overcome the limitations of
current nonlinear devices and materials [1]. In this paper, we
design nonlinear optical devices that exhibit enhanced non-
linear phase shift response using microring resonators con-
structed from nonresonant nonlinear material.

The nonlinear optical response of many artificial reso-
nant structures has been studied previously, but most of the
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Figure 1: MZI device [2]. (a) Waveguide layout. (b) z-schematic.

studies have been limited to analyzing the nonlinear prop-
erties of specific architectures and do not provide a synthesis
approach to device design that can produce a specific nonlin-
ear response. Discrete-time signal processing (DSP) provides
an easy to use mathematical framework, the z-transform, for
the description of discrete-time filters. The z-transform has
already been used to analyze numerous optical filter configu-
rations in order to optimize their linear response [2]. We pro-
pose a similar approach to optimize the nonlinear response
by treating the nonlinear response in the weak perturbation
limit as a linear discrete-time filter. The field of discrete-time
filter design has been extensively researched and various al-
gorithms are available for designing and optimizing discrete-
time filters. In this paper, we use existing discrete-time1 filter
design algorithms to design nonlinear optical devices.

This paper shows that the DSP approach is a system-
atic and intuitive way to design nonlinear optical devices. Six
steps are involved in designing a nonlinear optical device us-
ing the DSP approach. First, a prototype linear frequency re-
sponse (in the weak perturbation limit) is selected for the de-
sired nonlinear optical device. Next, the optical architecture’s
unit cell is selected and the multistage optical architecture is
analyzed using the z-transform. Then, an optimized discrete
filter is designed to give the same frequency response as the
prototype response desired from the optical architecture in
the weak perturbation limit. Next, a mapping algorithm is
derived to synthesize the parameters of the optical architec-
ture from the discrete filter. The synthesized optical filter is
then simulated using electromagnetic models and its linear
response is verified to be the same as that of the discrete filter.
Finally, the optical device is simulated to evaluate the desired
nonlinear response and confirm the design.

This approach can be used to design optical devices to
obtain various nonlinear responses, for example, all-optical
switching [3, 4], nonlinear phase shift [5, 6, 7], second-
harmonic generation [8], four-wave mixing [9, 10] (i.e., fre-
quencies νm and νn mix to produce 2νm − νn and 2νn − νm),
solitons [11, 12, 13] (which is a carrier of digital informa-
tion), bistability [14, 15, 16] (which results in two stable,
switchable output states and can be used as a basis for logic
operations and thresholding with restoration), and amplifi-
cation (which can overcome loss). The nonlinear phase shift
is a fundamental nonlinear process that enables many all-
optical switching and logic devices, and is the process used
to demonstrate our approach. Artificial resonant structures

1Henceforth, discrete-time filters will be referred to as discrete filters.

are used in the devices to overcome the aforementioned tra-
ditional drawbacks.

The rest of this paper is organized as follows. Section 2
provides some background on optical filters in relation to
discrete-time filters. Section 3 explains the nonlinear phase
shift process. Section 4 describes the prototype linear re-
sponse desired for the nonlinear phase shift. Section 5 dis-
cusses the selection of optical architectures. Section 6 details
the design procedure for AR and ARMA discrete filters. Sec-
tions 7 and 8 outline the mapping of discrete filters on to the
optical architectures and their optical response, respectively.
Sections 9 and 10 discuss an example and evaluation of AR
lattice filters and ARMA lattice filters, respectively, followed
by conclusions.

2. OPTICAL FILTERS AND z-TRANSFORMS

Discrete filters are designed and analyzed using z-transforms.
In this section, we discuss the important aspects of opti-
cal filters in relation to discrete filters, and explain how z-
transforms can be used to describe optical filters as well.
This section borrows heavily from Madsen and Zhao’s book
on optical filters [2]. Like discrete filters, optical filters are
completely described by their frequency response. Filters are
broadly classified into two categories: finite impulse response
(FIR) and infinite impulse response (IIR). FIR filters have no
feedback paths between the output and input and their trans-
fer function has only zeros. These are also referred to as mov-
ing average (MA) filters. IIR filters have feedback paths and
their transfer functions have poles and may or may not have
zeros. When zeros are not present or all the zeros occur at the
origin, IIR filters are referred as autoregressive (AR) filters.
When both poles and nonorigin zeros are present, they are
referred to as autoregressive moving average (ARMA) filters.

Optical architectures can be of restricted type or gen-
eral type. With restricted architectures, we cannot obtain
arbitrary frequency response, while general architectures,
like discrete filters, allow arbitrary frequency response to
be approximated over a frequency range of interest. To
approximate any arbitrary function in discrete-time signal
processing, a set of sinusoidal functions whose weighted sum
yields a Fourier series approximation is used. The optical
analog is found in interferometers. Interferometers come
in two general classes: (1) Mach-Zehnder interferometer
(MZI), and (2) Fabry-Perot interferometer (FPI). MZI is
shown in Figure 1a and has finite number of delays and no
recirculating (or feedback) delay paths. Therefore, these are
MA filters. FPI consists of a cavity surrounded by two partial
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Figure 2: Ring resonator. After [2]. (a) Waveguide layout. (b) z-schematic.

reflectors that are parallel to each other. The waveguide
analog of the FPI is the ring resonator shown in Figure 2a.
The output is the sum of delayed versions of the input
signal weighted by the roundtrip cavity transmission. The
transmission response is of AR type while the reflection
response is of ARMA type. The ring resonator is an example
of an artificial resonator.

The z-transform schematics for the MZI and FPI device
are shown in Figures 1b and 2b, respectively. κ is the power
coupling ratio for each directional coupler, c = √

1− κ is
the through-port transmission term, and − js = − j

√
κ is the

cross-port transmission term. Also, z = e jΩT , and ΩT = βŁu,
where Lu is the smallest path length called the unit delay
length, T is the unit delay and is equal to Lun/c, β is a prop-
agation constant and is equal to 2πn/λ, n is the refractive in-
dex of the material, c is the speed of light in vaccum, and λ
is the wavelength of light. Propagation loss of a delay line is
accounted for by multiplying z−1 by γ = 10−αL/20, where α
is the average loss per unit length in dB, and L is the delay
path length. Because delays are discrete values of the unit de-
lay, the frequency response is periodic. One period is defined
as the free spectral range (FSR) and is given by FSR = 1/T .
The normalized frequency, f = ω/2π, is related to the op-
tical frequency by f = (ν − νc)T , or f = (Ω − Ωc)T/2π.
The center frequency νc = c/λc is defined so that the prod-
uct of refractive index and unit length is equal to an integer
number of wavelengths, that is, mλc = nLu, where m is an
integer.

To analyze the frequency response of the MZI, the unit
delay is set equal to the difference in path lengths, Lu = L1 −
L2. The overall transfer function matrix of the MZI is the
product of the matrices:

ΦMZI = Φcplr
(
κ2
)
ΦdelayΦcplr

(
κ1
)

=
[

c2 − js2

− js2 c2

][
z−1 0
0 −1

][
c1 − js1

− js1 c1

]
.

(1)

For the ring resonator, the unit delay is equal to Lu =
L1 + L2 + Lc1 + Lc2, where Lc1 and Lc2 are the coupling region
lengths for each coupler. The sum of all-optical paths is given

by

Y2(z) = −s1s2

√
γz−1

(
1 + c1c2γz

−1 + c2
1c

2
2γ

2z−2 + · · · )X1(z).
(2)

The infinite sum simplifies to the following expression for
the ring’s transfer function:

H21(z) = Y2(z)
X1(z)

=
−
√
κ1κ2γz−1

1− c1c2γz−1
. (3)

Other responses for the ring resonator can similarly be ob-
tained. Hence we see that optical resonances are represented
by poles in a filter transfer function. Therefore the filters built
using artificial resonances are IIR filters.

We have used the MZI and microring resonator as the
building blocks to design the nonlinear optical devices for
obtaining nonlinear phase shift in this paper. Detailed de-
scription of using z-transforms for analyzing single-stage and
multistage optical filters is provided in [2].

3. NONLINEAR OPTICAL PROCESSES

Nonlinear optics is the study of phenomena that occur as a
consequence of the modification of the optical properties of
a material under intense illumination. Typically, only laser
light is sufficiently intense to modify the optical properties
of a material. Nonlinear optical phenomena are nonlinear in
the sense that the induced material polarization is nonlinear
in the electric field:

P = εoE+εoχ
(1)

: E︸ ︷︷ ︸
linear PL

+ εoχ
(2)

:: E · E+εoχ
(3)

::: E · E · E+· · ·︸ ︷︷ ︸
nonlinear PNL

,

(4)

where dielectric dispersion is ignored. The optical Kerr effect
(i.e., nonlinear refraction index) results from the third-order

nonlinear susceptibility χ
(3)

, which is a fourth-rank tensor.
An optical wave is a real quantity and is usually expressed

as

E(t) = Re
{

E exp j(k · r + ωt)
}

, (5)
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or similarly as

E(t) = 1
2

E exp j(k · r + ωt) + cc, (6)

where cc represents the complex conjugate of the preceding
term. Thus, an x-polarized optical wave, propagating in z-
direction in an isotropic medium, is represented mathemati-
cally as

E(t) = 1
2
Exx̂ exp j(kz + ωt) + cc. (7)

3.1. Nonlinear phase shift

The third-order polarization (mediated by χ(3)) in a mate-
rial leads to a nonlinear intensity dependent contribution to
its refractive index, that is, the refractive index of the mate-
rial changes as the incident intensity on the material changes.
The susceptibility tensors in isotropic material can be fur-

ther simplified as χ
(1) = χ(1), being a scalar quantity, and

χ
(2) = 0, due to inversion symmetry. The third-order non-

linear susceptibility will only have one contributing term
χxxxx since the light is x-polarized and there are no means
for sourcing additional polarization components. The linear-
and nonlinear-induced polarizations are

PL = εo
(
1 + χ(1))E,

PNL = P(3)

= εoχxxxx(ω;−ω,ω,ω)E∗EE

+ εoχxxxx(ω;ω,−ω,ω)EE∗E
+ εoχxxxx(ω;ω,ω,−ω)EEE∗

= 3εoχxxxx|E|2E

= 3
4
εoχxxxx

∣∣Ex∣∣2
E,

(8)

respectively. Hence,

P = PL + PNL = εo
(

1 + χ(1) +
3
4
εoχxxxx

∣∣Ex∣∣2
)
E. (9)

The total dielectric constant is

εtot
r = εr + ∆εr . (10)

Comparing with the expression for P, we obtain εr = 1 +
χ(1) = n2

o and ∆ε = (3/4)χxxxx|Ex|2. The refractive index is
related to the dielectric constant as

n =
√
εr + ∆εr ≈ √εr +

∆εr
2
√
εr
= no +

3χxxxx
8no

∣∣Ex∣∣2
. (11)

The intensity dependent refractive index for a nonlinear ma-
terial is given by

n = no + n2|E|2. (12)

Comparing (11) and (12), the nonlinear refractive index is
directly determined by the third-order susceptibility as

n2 = 3χxxxx
8no

= 3χ(3)

8no
, (13)

which characterizes the strength of the optical nonlinearity.
The intensity I of an optical wave is proportional to |E|2 as
I = (1/2η)|E|2 where η is the impedance of the medium.
When comparing the optical response in the same medium,
I = |E|2 is taken for simplification.

This intensity dependent refractive index, in turn, results
in various processes, one of which is the nonlinear phase
shift. For a material with positive n2, increasing the intensity
results in a red shift of the frequency response of an optical
filter. This can be explained using the equation nLu = mλc ⇒
(no + n2|E|2)Lu = mλc, where m is an integer. The product
nLu is called the optical path length. Increasing intensity I re-
sults in the increase of optical path length and wavelength λc,
and hence a decrease in the center frequency νc causing a red
shift of the frequency response. When optical path length is
increased by varying Lu and keeping n constant, the red shift
will be perfect and the shape of the frequency response curve
will not change. In nonlinear materials, the refractive index
n as well as the loss in the material changes with changing
intensity and hence the red shift is not perfect.

As discussed, current nonlinear optical materials and de-
vices either have weak nonlinear response (nonresonant ma-
terials) or have high loss (resonant materials). Using artifi-
cial resonances, for example, microring resonators made of
nonresonant nonlinear material, we can obtain strong non-
linear response with low loss [1]. Light circulates within the
resonator and coherent interference of multiple beams oc-
curs, resulting in intracavity intensity build-up and group
delay enhancement which in turn enhances the nonlinear re-
sponse.

4. PROTOTYPE RESPONSE FOR NONLINEAR
PHASE SHIFT

The nonlinear phase shift is a fundamental nonlinear pro-
cess that enables many all-optical switching and logic devices
[5] that can be used in the next generation optical commu-
nication systems. An ideal nonlinear phase shifting element
has constant intensity transmission up to at least a π radian
phase shift upon increasing the incident intensity. The lesser
the intensity required to obtain a π phase shift, the better the
nonlinear performance.

The first step in the design approach is to select a linear
frequency response for the desired device. Figure 3 illustrates
the notion of producing a nonlinear phase shift response
through the nonlinear detuning of a periodic (discrete) filter.
To act as an ideal nonlinear phase shifter, in the weak pertur-
bation limit, a flat magnitude response and steep linear phase
are desired within the passband.

Light incident on the filter (at a frequency νm, e.g.) will
be transmitted with efficiency given by the magnitude re-
sponse, but will also experience a phase change due to the
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Figure 3: Prototype linear response for nonlinear phase shift.

phase response. As the light intensity increases, the overall
filter response will red shift due to intensity-induced changes
in the filter components, which are themselves constructed
from (weakly) nonlinear materials. Ideally, under weak de-
tuning, the transmitted intensity fraction will not change
(and hence the desire for a flat-topped magnitude response),
but the phase at the output will change due to a steep lin-
ear phase response within the filter passband. The slope of
the phase determines the group delay. Ripples in group delay
may result in bistability in the nonlinear response, and there-
fore, linear phase is desired in the passband to have constant
group delay. In effect, what this approach does is to amplify
the intrinsic nonlinearity of a material, where the efficiency
of the process improves with increasing the filter group de-
lay. However, strong detuning in multiresonator systems can
result in distortions of the filter response.

The red-shifted response is shown by the dotted curve
in Figure 3. It can be seen that the transmitted output does
not change (in the weak perturbation limit) and a nonlinear
phase shift is obtained because of the shifted phase response.
An increase in the input intensity Iin results in greater red
shift and hence more nonlinear phase shift. The input inten-
sity at which a π phase shift is obtained is denoted as Iπ . The
nonlinear phase shift response should be such that a phase
shift of π can be obtained at a lower input intensity, Iπ , than
that required for the bulk material. The lower the Iπ , the bet-
ter the filter. Also, the transmission ratio at the intensity at
which π phase shift is obtained should be at least 0.5, for
maximum of 3 dB insertion loss.

5. OPTICAL ARCHITECTURES FOR NONLINEAR
PHASE SHIFTER

The second step is to select the optical architecture’s unit cell
and analyze it using the z-transform. Artificial resonances
produced by ring resonators can be used to enhance the
nonlinear phase shift response of an optical device [1, 7].

In

Out

κ1

κ0

R = L/2π

Figure 4: Single-pole structure.

In Outκr
κ κ

φr

φt

Figure 5: Independent pole-zero structure.

The presence of a ring resonator in the architecture implies
the presence of a pole in the filter’s transfer function. To se-
lect the optical architecture for obtaining a nonlinear phase
shift response, we analyze two ring resonator configurations
(1) single pole (2) single pole-zero with the pole and zero
independent of each other.

(i) Single-pole design. Figure 4 shows a single-pole archi-
tecture with a zero at the origin. The transfer function
for this architecture in the z-domain is given by

Eout(z)
Ein(z)

=
√
κ0κ1

√
γe− jφz−1

1− c0c1γe− jφz−1
. (14)

The total phase change in the fundamental range−π ≤
ω ≤ π for this unit cell is equal to π. By cascading N
such unit cells, we can obtain a total phase change of
Nπ in the fundamental range.

(ii) Single pole-zero design with independent pole and
zero. Figure 5 shows a single pole-zero architecture
with the pole and zero independent of each other. The
transfer function for this architecture in the z-domain
is given by

Eout(z)
Ein(z)

=
(
c2cr−s2e− jφt

)−(c2e− jφr−s2cre− j(φr+φt)
)
z−1

1−cre− jφr z−1
.

(15)

The total phase change in the fundamental range−π ≤
ω ≤ π for this unit cell is equal to 2π if the filter
is maximum phase, and 0 if it is minimum phase.
We are interested in lowpass maximum phase systems
(|zero| > 1/|pole|) since they have the maximum net
phase change and most of the phase change lies within
the passband. The architecture shown in Figure 5 can
be designed to be a lowpass maximum phase system
since the poles and zeros are independent of each
other. By cascading N such unit cells, we can obtain
a total phase change of 2Nπ in the fundamental range.
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Figure 6: AR lattice filter [2].

A third possible configuration is a ring resonator with
a single coupler. However, this is a pole-zero architecture
with dependent pole and zero and is always highpass for
a maximum phase system. The total phase change is equal
to 2π but most of the phase change is present in the stop-
band and hence, we cannot obtain the prototype response
of Figure 3 using this unit cell. Therefore, we decided to use
the first and second configurations as the unit cells for our
designs. Joining the first configuration unit cell in a lattice
structure gives us an AR lattice filter architecture shown in
Figure 6 and joining the second configuration unit cell in a
lattice structure gives us an ARMA lattice filter architecture
shown in Figure 7. Lattice structures are chosen since they
have low passband loss and can operate at significantly higher
component variations as compared to transversal or cascade
structures.

The next step is to obtain a z-transform description of
the multistage architecture obtained by joining the unit cells.
First, a DSP schematic is drawn for the architecture and then
it is analyzed to obtain a transfer function matrix. The AR
and ARMA lattice architecture’s DSP schematics and trans-
fer functions are given below. The detailed derivations are
presented in [2].

(i) AR lattice filter. Figure 6 shows the waveguide layout
and DSP schematic of an AR lattice architecture. The
transfer matrix for this architecture is [2]

[
Tn+1(z)
Rn+1(z)

]
= ΦNΦN−1 · · ·Φ1Φ0

[
T0(z)
R0(z)

]
, (16)

where

Φn = 1

− jsn
√
γe− jφn+1z−1

[
1 −cn

cnγe− jφn+1z−1 −γe− jφn+1z−1

]
.

(17)

(ii) ARMA lattice filter. Figure 7 shows the waveguide lay-
out and DSP schematic of an ARMA lattice architec-
ture. The transfer matrix for this architecture is [2][

Xn(z)
Yn(z)

]
= ΦNΦN−1 · · ·Φ1Φ0

[
X0(z)
Y0(z)

]
, (18)

where

Φn = 1
An(z)

[
−cntAR

n(z)e− jφnr − jsntAn(z)e− jφnt

jsntAR
n(z)e− jφnr cntAn(z)e− jφnt

]
, (19)

An = 1− cnre
− jφnr z−1, AR

n = −cnr + e− jφnr z−1. (20)

6. DESIGN OF ARMA AND AR DISCRETE FILTERS

The next step is to design discrete filters to be mapped onto
AR and ARMA lattice architectures with the response as
shown in Figure 3 (where the number of stages, i.e., poles
and zeros are given). For mapping onto the AR lattice ar-
chitecture having N rings (unit cells), an Nth-order discrete
AR filter (N poles, no zeros) is designed. Similarly, for map-
ping onto the ARMA lattice architecture having N stages, an
Nth-order discrete ARMA filter (N poles and N zeros) is de-
signed. The discrete filter design procedure for designing AR
and ARMA filters is described below. The design needs to
meet the constraints of linear phase within the passband with
as high group delay as possible, and flat magnitude response
with as large bandwidth as possible.

6.1. Design of AR discrete filters

Each stage of the AR optical architecture represents a pole
in the transfer function. Therefore, the discrete filter de-
signed to be mapped on this architecture should have only
poles. To obtain the nonlinear phase shift, the AR discrete
filter should be designed to obtain the prototype response
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Figure 7: ARMA lattice filter [2].

of Figure 3. The prototype response requires a flat passband
and linear phase within the passband. If H(z) is the transfer
function of the discrete filter, the condition to obtain linear
phase is H(z−1) = z−∆H(z), where ∆ is a delay. In the case
of IIR filters, since all poles are inside the unit circle, satisfy-
ing the above condition requires that there are mirror image
poles outside the unit circle thereby making the filter unsta-
ble. Therefore, stable IIR filters can only approximate a linear
phase response.

In the next subsection, we formulate the problem of
ARMA discrete filter design as a least squares minimiza-
tion problem. Since the case of AR filters can be thought as
a special case of ARMA filters with all zeros at origin, the
least squares formulation of ARMA filter design can be eas-
ily adopted to AR filters as well. However, unfortunately, nu-
merical examples reveal that this approach results in either
unstable IIR filters or, if the poles of the filter are constrained
to the stable region, |z| < 1, the group delay of the result-
ing filter will be unsatisfactory. Therefore, other methods of
filter design have to be adopted. Selesnick and Burrus [17]
have proposed a generalized Butterworth discrete filter de-
sign procedure that allows arbitrary constraints to be im-
posed on the number of poles and nontrivial zeros, that is,
zeros other than those at the origin. Hence, it can be adopted
for designing AR filters. The designs satisfy the condition of
maximally flat magnitude response at the center of passband,
the Butterworth condition. This fulfills the required flat pass-
band response. The filter’s group delay shows some variation
over the passband. However, it remains relatively flat over a
good portion of the passband, which, to some extent, satisfies
the constant group delay condition.

The generalized Butterworth filter design uses the map-
ping x = (1/2)(1 − cos(ω)) and provides formulas for
two real and nonnegative polynomials P(x) and Q(x) where
P(x)/Q(x) resembles a lowpass response, over the range x ∈
[0, 1] (equivalent to ω ∈ [0,π]). A stable IIR filter B(z)/A(z)
that satisfies

∣∣H(e jω)∣∣2 = P
(
1/2− (1/2) cosω

)
Q
(
1/2− (1/2) cosω

) (21)

is then obtained. To this end, the spectral factoriza-
tions P(1/2 − (1/2) cosω) = B(e jω)B(e− jω) and Q(1/2 −

(1/2) cosω) = A(e jω)A(e− jω), from which the transfer func-
tions B(z) and A(z) could be extracted, are performed. Note
that the latter factorizations are possible since P(x) and Q(x),
for x ∈ [0, 1], are real and nonnegative [18].

Reference [17] details the design process and provides the
closed form expressions for obtaining B(z) and A(z). The
routine maxflat provided in the Matlab’s signal processing
toolbox is an implementation of the generalized Butterworth
filter design procedure. We use this routine of Matlab to de-
sign the AR filters whose response matches the prototype re-
sponse. The number of poles and the bandwidth are given as
parameters to the routine which delivers the desired transfer
function.

6.2. Design of ARMA discrete filters

The generalized Butterworth filter design procedure that was
considered above for the design of AR filters could also be
adopted for the design of ARMA filters. However, our exper-
iments have shown that better designs could be obtained by
adopting a least squares method. The idea is to find the coef-
ficients of an IIR transfer function

H(z) = B(z)
A(z)

= b0 + b1z−1 + · · ·+bNz−N

1 + a1z−1 + · · ·+aNz−N
(22)

such that its frequency response resembles that of a desired
response. Two approaches are commonly adopted [19]: (i)
the output error method, and (ii) the equation error method.
In the output error method, the coefficients of A(z) and B(z)
are chosen by minimizing the cost function

ξoe = 1
2π

∫ 2π

0
W(ω)

∣∣∣∣B
(
e jω
)

A
(
e jω
) −Ho

(
e jω
)∣∣∣∣2

dω, (23)

where W(ω) is a weighting function and Ho(e jω) is the
desired (prototype filter) response. In the equation error
method, on the other hand, the coefficients of A(z) and B(z)
are chosen by minimizing the cost function

ξee = 1
2π

∫ 2π

0
W(ω)

∣∣B(e jω)− A
(
e jω
)
Ho
(
e jω
)∣∣2

dω. (24)
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In this paper, we choose the equation error method as it leads
to a closed form solution for the filter coefficients. The out-
put error method leads to a nonlinear optimization proce-
dure. It is thus much harder to solve. Moreover, any solution
that could be obtained from the output error method may
also be obtained from the equation error method by an ap-
propriate selection of the weighting function W(ω).

The common approach of optimizing B(e jω) and A(e jω)
in (24) is to first replace the integral (24) by the weighted sum

Jee =
K∑
i=1

wi

∣∣B(e jωi
)− A

(
e jωi
)
ho,i
∣∣2

, (25)

whereωi is a grid of dense frequencies over the range 0 ≤ ω ≤
2π and wi is the short-hand notation for W(ωi). Defining the
column vectors

ei =
[
1 e jωi e j2ωi · · · e jNωi − ho,ie

jωi − ho,ie
j2ωi

· · · − ho,ie
jNωi

]H
,

(26)

b = [b0 b1 b2 · · · bN ]H , a = [a1 a2 · · · aN ]H , where
the superscript H denotes Hermitian, and c = [ b

a

]
, (25) can

be rearranged as

Jee = cHΨc− θHc− cHθ + η, (27)

where

Ψ =
K∑
i=1

wieieHi ,

θ =
K∑
i=1

wiho,iei,

(28)

and η =∑K
i=1 wi|ho,i|2.

The cost function (27) has a quadratic form whose solu-
tion is well known to be [19]

c = Ψ−1θ. (29)

Once c is obtained, one can easily extract the coefficients bi
and ai from it. This procedure was originally developed in
[20].

The routine invfreqz in Matlab signal processing tool box
can be used to find the coefficients A(z) and B(z) according
to the above procedure.

7. MAPPING DISCRETE FILTERS ONTO OPTICAL
ARCHITECTURES

The optical architectures were analyzed using the z-
transform and their transfer functions were derived in
Section 5. The discrete filter’s transfer functions obtained in
the previous step are now set equal to the corresponding
optical filter’s transfer function. Backward relations are de-
rived to calculate the optical architecture’s parameters for

each stage. Thus, the optical filter is synthesized from the dis-
crete filter using a mapping algorithm. The AR discrete filter
designed in the previous section is mapped onto the AR lat-
tice optical architecture using the recursion-based algorithm
developed by Madsen and Zhao [21]. The ARMA discrete
filter designed in the previous section is mapped onto the
ARMA lattice optical architecture using the recursion-based
algorithm developed by Jinguji [22]. These algorithms return
the coupling ratios and phase solutions for each stage of the
lattice architectures.

8. FROM DISCRETE RESPONSE TO THE
OPTICAL RESPONSE

The optical filter designed using the above steps is now simu-
lated for its linear response [23] using electromagnetic mod-
els. Also, the linear optical response is compared with the
discrete filter’s response. Both should have exactly the same
shape (different scales) since the optical filter was synthesized
from the discrete filter.

The discrete frequency response curve can be converted
to an optical frequency response curve once we know the op-
tical parameters such as unit length and center frequency.
We had previously defined z = e jΩT with Ω = 2πν, and
T = Lun/c where ν is the optical frequency, Lu is the unit
length, n is the refractive index, and c is the speed of light.
Also the FSR was defined to be equal to 1/T .

The discrete frequency response plotted over the funda-
mental range −π ≤ ω ≤ π or −1/2 ≤ f ≤ 1/2 which
is normalized to −1 ≤ fnorm ≤ 1 by Matlab’s freqz rou-
tine is equal to one optical FSR. The normalized frequency
fnorm = ωnorm/2π is related to the optical frequency by
fnorm = (ν − νc)T or fnorm = (Ω − Ωc)T/2π. To plot
the optical frequency response over one FSR directly using
freqz, the sampling frequency Fs can be set equal to the FSR
and the frequency response can be plotted from −Fs/2 to
Fs/2.

Since FSR = 1/T = c/nLu, we need to know the unit
length to know FSR. The unit length is chosen such that the
product of refractive index and unit length is equal to an in-
teger number of wavelengths, that is, mλc = nLu where m is
an integer and λc is the desired central wavelength. The cen-
ter frequency is then defined as νc = c/λc. It is the frequency
at which resonance occurs.

Once the linear response of the optical architecture is ver-
ified to be the same as that of the discrete filter, the optical fil-
ter is simulated to obtain the nonlinear phase shift response
[23].

9. EXAMPLE AND EVALUATION OF
AR LATTICE FILTERS

9.1. Design and synthesis example

In this section, we design an optical AR lattice filter and sim-
ulate it to obtain the nonlinear phase shift response. The fil-
ter is synthesized by designing discrete filters according to the
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description in Section 6.1 and then using the mapping algo-
rithm derived by Madsen and Zhao [21]. The circumference
of each microring in the AR lattice architecture is chosen as
the unit delay length and is equal to 50µm. The center fre-
quency corresponds to a wavelength of 500 nm.

A generalized digital Butterworth filter with five poles is
designed using the procedure discussed in Section 6.1. Filter
bandwidth is set to be 0.16π in the fundamental range −π ≤
ω ≤ π. Assuming the loss in the material to be 1cm−1, the
obtained filter transfer function is

N(z)
D(z)

= 6.5941× 10−4

1.0000− 4.1912z−1 + 7.0824z−2 − 6.0254z−3 + 2.5789z−4 − 0.4439z−5
. (30)
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Figure 8: Frequency response and group delay characteristic of 5th-
order AR filter.

Table 1: Design values for a 5th-order AR lattice filter.

n = 0 1 2 3 4 5

κn 0.7336 0.1416 0.0357 0.0198 0.0232 0.2488

φn — 0 0 0 0 0

The frequency response and the group delay characteristic
of this filter are presented in Figure 8 showing that the de-
signed filter’s response matches with the ideal prototype re-
sponse of Figure 3 for nonlinear phase shift. The magnitude
response is maximally flat as desired. Also, even though most
of the group delay is pushed towards the passband edges, the
group delay and magnitude response does not have ripples
and hence bistability is largely avoided.

This discrete filter is then mapped onto the optical AR
lattice architecture of Figure 6. Table 1 shows the coupling
ratios and phase values thus obtained for each stage of the
optical filter.

The linear response of the synthesized optical filter is the
same as that of the discrete filter for low input intensity. The
nonlinear phase shift response of the AR filter is shown in
Figure 9 as a function of the normalized input intensity n2Iin,
where n2 is the nonlinear coefficient of the underlying mate-
rial and Iin is the input intensity. As can be seen from the fig-
ure, a π radian phase change is obtained at n2Iπ = 9.0× 10−5

and the transmission ratio at this input intensity is 0.66. The
nonlinear response is also plotted for incident frequencies at
νm±δν/4 where νm is the center frequency. Because of the flat
magnitude response in the filter’s linear response, the nonlin-
ear phase response (up to a π phase shift) is weakly sensitive
to frequency within the passband of the filter, as shown, al-
lowing for a broadband nonlinearity. Also plotted for com-
parison is the phase shift produced by the underlying ma-
terial of length L = kgdc/n ∼ 0.65 mm, which gives the same
group delay as that of the AR lattice architecture. The nonlin-
ear phase shift produced by the designed AR filter is 5 times
better than that of the bulk material.

The allowable amount of parameter error is an impor-
tant information for fabrication. Random errors were added
to each of the design parameters, that is, the coupling ratios
and the phase values, and the nonlinear response was ob-
tained to determine the parameter sensitivity. The allowable
errors below which the nonlinear response is within 10% of
the original value are ±0.001π for κrn, and ±0.003π for φrn.
A detailed sensitivity analysis is presented in [24].

9.2. Improving the nonlinear phase shift response

The nonlinear phase shift response improves upon increas-
ing the group delay. This is because high group delay im-
plies steeper phase response which results in greater nonlin-
ear phase shift as the frequency response red shifts upon in-
creasing input intensity. For a maximum phase discrete filter
with no poles at the origin, the total phase change across the
FSR is expressed by Φob + Φib = 2πNz, where Φob is the out-
of-band phase, Φib is the in-band phase, and Nz is the num-
ber of zeros in the discrete filter. This simple analysis shows
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Figure 9: Nonlinear response vsersus incident intensity n2Iin.

that there are two means to increase the group delay (and
hence, the nonlinear response) within the passband:

(1) increase the in-band phase change Φib, and/or
(2) increase the filter order.

In general, the bandwidth, δν (along with the FSR)
should be a quantity chosen at the outset to match a spe-
cific application. For example, if the desired application were
to produce a phase shift on a single channel of a DWDM sys-
tem, then δν ∼ δνch and FSR ∼ Nchδνch, where δνch is the
channel spacing and Nch is the number of channels.

Since AR filters are designed using the generalized Butter-
worth filter design, we do not have control over the in-band
phase to increase the group delay. We increase the group
delay by increasing the filter order, that is, the number of
stages in the architecture, which in turn increases the total
phase as well as the in-band phase. Figure 10 plots n2Iπ as
a function of the group delay where the group delay is in-
creased by increasing the filter order while keeping the band-
width constant. The quantity n2Iπ scales as 1/k2.72

gd and is

given by n2Iπ = 19.55 × 10−4k−2.72
gd . The scaling of n2Iπ with

group delay is not an accurate representation of the initial
design of the filter because by the time a π radian nonlin-
ear phase shift is obtained, the filter characteristics change
(i.e., the new filter function is no longer just a shifted ver-
sion of the initial function as assumed in the weak pertur-
bation limit) because of increasing input intensity. Hence
n2Iπ/4 is plotted as a function of group delay and is shown
in Figure 10. The quantity n2Iπ/4 scales as 1/k0.82

gd and is given

by n2Iπ/4 = 12.46×10−5k−0.82
gd . This implies that in principle,
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Figure 10: Improving nonlinear response by increasing the number
of stages and keeping BW = 0.12 FSR.

Table 2: Improving nonlinear response by increasing the AR filter
order with BW = 0.12 FSR.

Filter order Group delay (ps) n2Iπ n2Iπ/4

3 1.36 1.03× 10−3 9.59× 10−5

4 1.77 3.20× 10−4 7.89× 10−5

5 2.19 2.01× 10−4 6.56× 10−5

6 2.64 1.70× 10−4 5.54× 10−5

the nonlinear response can be improved while maintaining
constant bandwidth by using higher-order filters. The filter
order, group delay, n2Iπ , and n2Iπ/4 are shown in Table 2 for
a bandwidth of 0.12FSR.

10. EXAMPLE AND EVALUATION OF
ARMA LATTICE FILTERS

10.1. Design and synthesis example

In this section, we design an optical ARMA lattice filter and
simulate it to obtain the nonlinear phase shift response. The
filter is synthesized by designing discrete filters according to
the description in Section 6.2 and then using the mapping
algorithm derived by Jinguji [22]. The circumference of each
microring in the ARMA lattice architecture is chosen as the
unit delay length and is equal to 50µm. The center frequency
corresponds to a wavelength of 500 nm.

A maximum phase ARMA filter with four zeros and
four poles is designed using the procedure discussed in
Section 6.2. The filter bandwidth is set to be 0.05π in the fun-
damental range −π ≤ ω ≤ π. 4π out of the total 8π phase
change is allocated to the out-of-band phase change to main-
tain flat magnitude and linear phase response. Passband rip-
ple is less than 0.1 dB and the stop-band magnitude is 18 dB.
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Figure 11: Frequency response and group delay characteristic of a
4th-order real ARMA filter.

Table 3: Design values for a 4th-order real ARMA lattice filter.

n = 0 1 2 3 4

ktn 0.1555 0.5513 0.5289 0.1733 0.9418

φtn — 2.9754 -1.4868 1.3928 2.0702

krn — 0.0594 0.0594 0.0784 0.0784

φrn — 0.0771 -0.0771 0.0267 -0.0267

Assuming the loss in the material to be 1cm−1, the obtained
filter transfer function is

N(z)
D(z)

= 0.0656−0.3176z−1 +0.5661z−2−0.4424z−3 +0.1283z−4

1.0000−3.8531z−1 +5.5736z−2−3.5872z−3 +0.8667z−4
.

(31)

The frequency response and the group delay characteristic of
this filter are shown in Figure 11 showing that the designed
filter’s response matches with the ideal prototype response of
Figure 3 for the nonlinear phase shift.

This discrete filter is then mapped onto the optical
ARMA lattice architecture of Figure 7. Table 3 shows the cou-
pling ratios and phase values thus obtained for each stage of
the optical filter.

The linear response of the synthesized optical filter is the
same as that of the discrete filter for low input intensity. The
nonlinear phase shift response of the ARMA filter is shown
in Figure 12 as a function of the normalized input intensity
n2Iin, where n2 is the nonlinear coefficient of the underly-
ing material and Iin is the input intensity. A π radian phase
change is obtained at n2Iπ = 3.3×10−6 and the transmission
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Figure 12: Nonlinear response versus incident intensity n2Iin.

ratio at this input intensity is 0.65. The nonlinear response
is also plotted for incident frequencies at νm ± δν/4 where
νm is the center frequency. As in the case of AR filter, the flat
magnitude response in the filter’s linear response allows for a
broadband nonlinearity. Also plotted for comparison is the
phase shift produced by the underlying material of length
L = kgdc/n ∼ 4 mm, which gives the same group delay as
that of the ARMA lattice architecture. The nonlinear phase
shift produced by the filter is 19 times better than the bulk
material [25]. The nonlinear phase shift enhancement over
bulk material is larger in the case of ARMA filters because of
two reasons. (1) The total phase change in the case of ARMA
filters is twice that of AR filters for equal number of stages.
This results in higher group delay in the case of ARMA fil-
ters and hence better nonlinear phase shift response. (2) The
group delay in case of AR filters is pushed towards the pass-
band edges and hence, lower group delay at center frequency
results in lower nonlinear phase-shift enhancement.

As in the case of AR filters, random errors were added
to each of the design parameters, and the nonlinear response
was obtained to determine the parameter sensitivity. The al-
lowable errors below which the nonlinear response is within
10% of the original value are ±0.001π for κrn, ±0.001π for
φrn,±0.01π for κtn, and±0.01π for φtn. A detailed sensitivity
analysis is presented in [24].

10.2. Improving the nonlinear phase shift response

Similar to AR filters, the nonlinear phase shift response im-
proves upon increasing the group delay and two means to
increase the group delay (aside from decreasing passband
width) are to either increase the in-band phase change Φib,
and/or increase the filter order.
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phase for a 6th-order ARMA filter with BW = 0.15 FSR.

Table 4: Improving nonlinear response by increasing the in-band
phase for a 6th-order ARMA filter with BW = 0.15 FSR.

In-band phase Φib Group delay (ps) n2Iπ n2Iπ/4

2π 1.67 4.89× 10−4 1.23× 10−4

4π 3.34 1.39× 10−4 3.55× 10−5

6π 4.99 5.49× 10−5 1.30× 10−5

8π 6.59 2.90× 10−5 6.51× 10−6

For a chosen bandwidth and fixed filter order, the first ap-
proach results in a trade-off between retaining the full phase
within the band and in-band ripple (there is also a trade-off
between Φib and rejection ratio, but, unlike for true bandpass
filters, here we are not concerned with having high rejection).
Therefore, a certain amount of the total phase change needs
to be allocated to Φob in order to reduce ripple. Figure 13
plots n2Iin as a function of the group delay where group de-
lay is increased by increasing the in-band phase in a 6th-
order ARMA lattice filter while keeping a constant band-
width of 0.15FSR. The quantity n2Iπ scales as 1/k1.90

gd and is

given by n2Iπ = 1.30× 10−3k−1.90
gd . The quantity n2Iπ/4 scales

as 1/k1.92
gd and is given by n2Iπ/4 = 3.30 × 10−4k−1.92

gd . The
in-band phase, group delay, n2Iπ , and n2Iπ/4 are shown in
Table 4.

The second approach increases the group delay by in-
creasing the filter order, that is, the number of stages in the
architecture, which in turn increase the total phase as well
as the in-band phase. Figure 14 plots n2Iin as a function of
the group delay where the group delay is increased by in-
creasing the filter order while keeping the bandwidth and
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Figure 14: Improving nonlinear response by increasing the number
of stages and keeping BW = 0.19 FSR, Φib/Φob = 0.5.

Table 5: Improving nonlinear response by increasing the ARMA
filter order with BW = 0.19 FSR, in-band to out-band phase ratio =
0.5.

Filter order Group delay (ps) n2Iπ n2Iπ/4

2 1.27 3.71× 10−4 8.27× 10−5

4 2.62 1.48× 10−4 3.73× 10−5

6 3.95 8.80× 10−5 2.23× 10−5

8 5.27 6.01× 10−5 1.50× 10−5

the Φib/Φob ratio constant. The quantity n2Iπ scales as 1/k1.28
gd

and is given by n2Iπ = 5.10× 10−4k−1.28
gd . The quantity n2Iπ/4

scales as 1/k1.15
gd and is given by n2Iπ/4 = 1.10 × 10−4k−1.15

gd .
This implies that in principle, the nonlinear response can be
improved while maintaining constant bandwidth by using
higher-order filters. The filter order, group delay, n2Iπ , and
n2Iπ/4 are shown in Table 5 for a bandwidth of 0.19 FSR and
the in-band to out-band phase ratio of 0.5.

11. CONCLUSIONS

In this paper, we have proposed that a discrete-time signal
processing approach can be used to design nonlinear op-
tical devices by treating the desired nonlinear response in
the weak perturbation limit as a linear discrete filter. This
provides a systematic and intuitive method for the design
of nonlinear optical devices. We have demonstrated this ap-
proach by designing AR and ARMA filters to obtain a non-
linear phase shift response. This approach can be used for de-
signing optical devices for various other nonlinear processes
as well.
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We review the progress achieved in optical information processing during the last decade by applying fractional linear integral
transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization, space-variant pattern
recognition, adaptive filter design, encryption, watermarking, and so forth is discussed in detail. A general algorithm for the
fractionalization of linear cyclic integral transforms is introduced and it is shown that they can be fractionalized in an infinite
number of ways. Basic properties of fractional cyclic transforms are considered. The implementation of some fractional transforms
in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms, is discussed. New horizons of the application of
fractional transforms for optical information processing are underlined.
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1. INTRODUCTION

During the last decades, optics is playing an increasingly im-
portant role in computing technology: data storage (CD-
ROM) and data communication (optical fibres). In the area
of information processing, optics also has certain advantages
with respect to electronic computing, thanks to its massive
parallelism, operating with continuous data, and so forth
[1, 2, 3]. Moreover, the modern trend from binary logic to
fuzzy logic, which is now used in several areas of science and
technology such as control and security systems, robotic vi-
sion, industrial inspection, and so forth, opens up new per-
spectives for optical information processing. Indeed, typical
optical phenomena such as diffraction and interference in-
herit fuzziness and therefore permit an optical implementa-
tion of fuzzy logic [4].

The first and highly successful configuration for opti-
cal data processing—the optical correlator—was introduced
by Van der Lugt more than 30 years ago [5]. It is based on

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

the ability of a thin lens to produce the two-dimensional
Fourier transform (FT) of an image in its back focal plane.
This invention led to further creation of a great variety of
optical and optoelectronic processors such as joint correla-
tors, adaptive filters, optical differentiators, and so forth [6].
More sophisticated tools such as wavelet transforms [7] and
bilinear distributions [8, 9, 10, 11, 12, 13, 14], which are ac-
tively used in digital data processing, have been implemented
in optics.

Nowadays, fractional transforms play an important role
in information processing [15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31], and the obvious ques-
tion is: why do we need fractional transformations if we suc-
cessfully apply the ordinary ones? First, because they nat-
urally arise under the consideration of different problems,
for example, in optics and quantum mechanics, and sec-
ondly, because fractionalization gives us a new degree of
freedom (the fractional order) which can be used for more
complete characterization of an object (a signal, in gen-
eral) or as an additional encoding parameter. The canon-
ical fractional FT, for instance, is used for phase retrieval
[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42], signal character-
ization [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56],
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space-variant filtering [29, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77], encryption
[78, 79, 80, 81, 82, 83, 84, 85], watermarking [86, 87], cre-
ation of neural networks [88, 89, 90, 91, 92, 93], and so forth,
while the fractional Hilbert transform was found to be very
promising for selective edge detection [94, 95, 96]. Several
fractional transforms can be performed by simple optical
configurations.

In this paper, we review the progress achieved in opti-
cal information processing during the last decade by appli-
cation of fractional transforms. We will start from the defi-
nition of a fractional transformation in Section 2. Then we
consider, in Section 3, the fractionalization in paraxial op-
tics described by the canonical integral transformation. Two
fractional canonical transforms, the Fresnel transform and
the fractional FT, are commonly used in optical information
processing. The fractional FT, which is a generalization of the
ordinary FT with an additional parameter α that can be in-
terpreted as a rotational angle in phase space, is considered
in more detail.

Since the convolution operation is fundamental in in-
formation processing, there were several proposals to gen-
eralize it to the fractional case. In Section 4, we define the
generalized fractional convolution, and in Sections 5–8, we
consider its application for information processing: phase re-
trieval, signal characterization, filtering, noise reduction, en-
cryption, and watermarking.

The second part of the paper will be devoted to the frac-
tionalization procedure of other important transforms. We
will restrict ourselves to the consideration of cyclic trans-
forms, which produce the identity transform when they act
an integer number of times N . In Sections 9–11, we will show
that there are different ways for the construction of a frac-
tional transform for a given cyclic transform. In Section 12,
we briefly mention the common properties of fractional
cyclic transforms.

The fractional Hankel, Hartley, sine and cosine, and
Hilbert transforms, which can all be implemented in optics,
will be considered in Section 13. Finally, we discuss the main
lines of future development of fractional optics in Section 14
and make some conclusions.

2. FRACTIONAL TRANSFORM:
A GENERAL DEFINITION

The word “fraction” is nowadays very popular in different
fields of science. We recall fractional derivatives in math-
ematics, fractal dimension in geometry, fractal noise, frac-
tional transformations in signal processing, and so forth.
In general, “fractional” means that some parameter has no
longer an integer value.

To define the fractional version of a given linear integral
transform, we consider the operator R of such a transform,
acting on a function f (x),

R
[
f (x)

]
(u) =

∫∞
−∞

K(x,u) f (x)dx, (1)

with K(x,u) the operator kernel. As an example we men-
tion the Fourier transformation, for which the kernel reads
K(x,u) = exp(−i2πux). The fractional transform operator
is denoted by Rp, where p is the parameter of fractionaliza-
tion:

Rp
[
f (x)

]
(u) =

∫∞
−∞

K(p, x,u) f (x)dx. (2)

We will formulate some desirable properties of this fractional
transform first.

The fractional transform has to be continuous for any
real value of the parameter p, and additive with respect to
this parameter: Rp1 +p2 = Rp2 Rp1 . Moreover it has to re-
produce the ordinary transform and powers of it for integer
values of p. In particular, for p = 1 we should get the ordi-
nary transform R1 = R, and for p = 0 the identity trans-
form R0 = I . From the additivity property it follows that∫∞
−∞ K(p1, x,u)K(p2,u, y)du = K(p1 + p2, x, y). Note that the

parameter p, as we will see further, may be given by a matrix,
and the additivity property is then formulated easily as the
product of the corresponding matrices.

As we have mentioned in the introduction, some frac-
tional transforms arise under consideration of different
problems: description of paraxial diffraction in free space
and in a quadratic refractive index medium, resolution of the
nonstationary Schrödinger equation in quantum mechanics,
phase retrieval, and so forth. Other fractional transforms can
be constructed for their own sake, even if their direct ap-
plication may not be obvious yet. In particular, in Section 9
we consider a general algorithm for the fractionalization of
a given linear cyclic integral transform. The application of a
particular fractional transform for optical information pro-
cessing then depends on its properties and on the possibility
of its experimental realization in optics.

3. FRACTIONALIZATION IN PARAXIAL OPTICS:
THE CANONICAL INTEGRAL TRANSFORM

Analog optical signal processing systems are often described
in the framework of paraxial scalar diffraction theory. A typ-
ical subset of such a system is displayed in Figure 1 and con-
tains a thin lens with focal distance f , preceded and followed
by two sections of free space with distances z1 and z2, re-
spectively. Note that the conventional Van der Lugt correla-
tor [5, 6], mentioned in the introduction, is constructed by a
cascade of two such subsets, with each subset forming an FT
system (z1 = z2 = f ) and with a filter mask inserted between
them. A monochromatic optical field in a transversal plane
(x, y) is then described either by a complex field amplitude
f (x, y) for the coherent case, or by the two-point correla-
tion function Γ(x1, x2; y1, y2) = 〈 f (x1, y1) f ∗(x2, y2)〉 for the
partially coherent case, where the asterisk denotes complex
conjugation and 〈·〉 indicates ensemble averaging; note that
these cases correspond to a deterministic or a stochastic sig-
nal description in signal theory, respectively.

Under the paraxial approximation of scalar diffraction
theory, the complex amplitude f (xin, yin) of a monochro-
matic coherent optical field at the input plane of the
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Figure 1: A typical optical information processing system.

setup depicted in Figure 1 and the complex amplitude
FM(xout, yout) at the output plane of it are related by the
input-output relationship [97]

FM
(
xout, yout

) =RM
[
f
(
xin, yin

)](
xout, yout

)
=

∫∞
−∞

∫∞
−∞

KMx

(
xin, xout

)
KMy

(
yin, yout

)
× f

(
xin, yin

)
dxin dyin,

(3)

where the kernel KMx (xin, xout) takes the form

KMx

(
xin, xout

)

=




1√
ibx

exp
(
iπ
axx

2
in + dxx2

out − 2xoutxin

bx

)
, bx �= 0,

1√∣∣ax∣∣ exp
(
iπ
cxx2

out

ax

)
δ
(
xin − xout

ax

)
, bx = 0,

(4)

with

Mx =
(
ax bx
cx dx

)

=




1− z2

fx
λ
(
z1 + z2 − z1z2

fx

)

− 1
λ fx

1− z1

fx




(5)

and λ the optical wavelength, and where similar expressions,
with x replaced by y, hold for the kernel KMy (yin, yout) and
the matrix My . Note that the optical wavelength λ enters the
expressions for b and c as a mere scaling factor; very often,
we like to work with reduced, dimensionless coordinates, in
which case b and c take a form that would also be achieved
by assigning an appropriate value to λ. We remark that the
application of cylindrical lenses, fx �= fy , permits to perform
anamorphic transformations.

The coefficients ax, bx, cx, and dx that arise in the ker-
nel (4), are entries of the general, symplectic ray transforma-
tion matrix [98] that relates the position (x, y) and direction
(ξ,η) of an optical ray in the input and the output plane of a
so-called first-order optical system, and we have

(
xout

ξout

)
=

(
ax bx
cx dx

)(
xin

ξin

)
=Mx

(
xin

ξin

)
(6)

and a similar relation for the other dimension, with x and ξ
replaced by y and η, respectively. For separable systems, to
which we restrict ourselves throughout, symplecticity reads
simply axdx − bxcx = 1 and aydy − bycy = 1. The trans-
form described by (3) is known by such names as canon-
ical integral transform and generalized Fresnel transform
[97, 98, 99, 100].

Special cases of canonical integral transform systems in-
clude

(i) an imaging system (1/z1 + 1/z2 = 1/ f , and hence ad =
1 and b = 0);

(ii) a simple lens (z1 = z2 = 0, and hence a = d = 1 and
b = 0);

(iii) a section of free space ( f → ∞, and hence a = d = 1
and c = 0), which is also known as a parabolic sys-
tem [97] and which in the paraxial approximation per-
forms a Fresnel transformation;

(iv) an FT system (z1 = z2 = f , and hence a = d = 0
and bc = −1), and more generally, a fractional FT sys-
tem [15, 16, 17, 18] (z1 = z2 = 2 f sin2(α/2) [22], and
hence a = d = cosα and bc = − sin2 α), which is also
known as an elliptic system [97]; the common case for
which b = −c = sinα follows when we normalize x/ξ
with respect to λ f sinα, and can also be achieved by
formally choosing λ f sinα = 1;

(v) a hyperbolic system [97], with a = d = coshα and
bc = sinh2 α.

To treat the propagation of partially coherent light
through first-order optical systems, it is advantageous to
describe such light not by its two-point correlation func-
tion Γ(x1, x2; y1, y2) as mentioned before, but by the related
Wigner distribution (WD) [101, Chapter 12]. Of course, the
coherent case considered in (3) is just a special case of this
more general, partially coherent case. The Wigner distribu-
tion of partially coherent light is defined in terms of the two-
point correlation function by

W(x, ξ; y,η)

=
∫∞
−∞

∫∞
−∞

Γ
(
x +

x′

2
, x − x′

2
; y +

y′

2
, y − y′

2

)

× exp
[− i2π

(
ξx′ + ηy′

)]
dx′ dy′.

(7)

A distribution function according to definition (7) was first
introduced in optics by Walther [8, 9], who called it the
generalized radiance. The WD W(x, ξ; y,η) represents par-
tially coherent light in a combined space/spatial-frequency
domain, the so-called phase space, where ξ, η are the spatial-
frequency variables associated to the positions x, y, respec-
tively.

The WD is closely related to another bilinear distribu-
tion, the ambiguity function (AF) [101, Chapter 12], which
was also applied to the description of optical fields [10] and
which is related to the WD by a combined FT/inverse FT.
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Note that the introduction of the WD and the AF in optics
[8, 9, 10, 11, 12, 13, 14] has allowed to describe—through the
same function—both coherent and partially coherent optical
fields, and to unify approaches for optical and digital infor-
mation processing.

It is well known that the input-output relationship be-
tween the WDs Win(x, ξ; y,η) and Wout(x, ξ; y,η) at the in-
put and the output plane of a separable first-order optical
system, respectively, reads [12, 13, 14]

Wout(x, ξ; y,η)

=Win
(
dxx − bxξ,−cxx + axξ;dy y − byη,−cy y + ayη

)
,

(8)

which elegant expression can be considered as the counter-
part of the canonical integral transform (3) in phase space,
valid for partially coherent and completely coherent light. A
similar relation holds for the AF [10].

Every separable, first-order optical system is described by
a set of 2 × 2 matrices M, one for each transversal coordi-
nate, whose entries are real-valued and whose determinants
are equal 1, and we have the important symmetry property
K∗M(xin, xout) = KM−1 (xout, xin). The cascade of two such sys-
tems is characterized by the matrix product M3 = M2M1,
which expresses the additivity of first-order optical systems.
We might say that each separate subsystem performs a sep-
arate fraction of the total canonical integral transform that
corresponds to the system as a whole. We may demand that in
distributing the total canonical transform over the separate
subsystems, certain rules of the dividing procedure should
hold, for example, that all fractional subsets should be iden-
tical and be defined by the same matrix [102]. It is often pos-
sible to separate the original setup into equal subsets char-
acterized by a one-parameter matrix; this is in particular the
case for one-parameter systems like the parabolic, the ellip-
tic, and the hyperbolic system.

It is easy to see from (4) that two canonical systems whose
parameters are related as b1/a1 = b2/a2 produce the same
transformation of the complex amplitude of the input field,
and differ only in a scaling (determined by b2/b1) and an ad-
ditional quadratic phase shift [51, 103]:

RM1
[
f
(
xin

)](
xout

)
= b2

b1
exp

[
ix2

2b2
1

(
d1b1−d2b2

)]
RM2

[
f
(
xin

)](b2

b1
xout

)
.

(9)

In this sense, the elliptic (fractional FT), parabolic (Fresnel
transform), and hyperbolic systems with the same b/a, deter-
mined by the angle α or the propagation distance z, behave
similarly.

The fractional FT and the Fresnel transform are usually
applied in optical information processing due to their simple
analog realizations. Since both of them belong to the class of
canonical integral transforms, we summarize the main the-
orems for the canonical transform in Table 1. For simplic-
ity, we consider only the one-dimensional case, and we will

Table 1: Canonical integral transform: main theorems.

(1) Linearity:

RM

[∑
j

µ j f j(x)

]
(u) =

∑
j

µ jR
M
[
f j(x)

]
(u)

(2) Parseval’s equality:∫∞
−∞

f (x)g∗(x)dx =
∫∞
−∞

FM(u)G∗M(u)du

(3) Shifting:

RM
[
f
(
x − x◦

)]
(u)

= exp
[
iπ
(
2ux◦ − ax2

◦
)
c
]
RM

[
f (x)

](
u− ax◦

)
(4) Scaling:

RM
[
f (µx)

]
(u) =

(
1
µ

)
RMµ

[
f (x)

]
(u)

with Mµ =
(
a b
c d

)(
1/µ 0
0 µ

)
(5) Differentiation:

RM

[
dn f (x)
dxn

]
(u)

= (2πi)n
[
− cu +

a

2πi
d

du

]n

RM
[
f (x)

]
(u)

do the same in the rest of the paper if the generalization to
the two-dimensional case is straightforward. The eigenfunc-
tions of the linear canonical transform were considered in
[99, 104].

4. FRACTIONAL FOURIER TRANSFORM AND
GENERALIZED FRACTIONAL CONVOLUTION

Since the FT plays an important role in data process-
ing, its generalization—the fractional FT—was probably the
most intensively studied among all fractional transforms. Al-
though the FT can be divided into fractions in different ways,
the canonical fractional FT certainly has advantages for ap-
plication in optical information processing. First, because
this fractional FT can easily be realized experimentally by us-
ing simple optical setups [22], and secondly, because it pro-
duces a mere rotation of the two fundamental phase-space
distributions: the WD and the AF.

The canonical fractional FT was introduced more than 60
years ago in the mathematical literature [19]; after that, it was
reinvented for applications in quantum mechanics [20, 21],
optics [15, 16, 18], and signal processing [23]. After the main
properties of the fractional FT were established, the perspec-
tives for its implementations in filter design, signal analy-
sis, phase retrieval, watermarking, and so forth became clear.
Moreover, the use of refractive optics for analog realizations
of the fractional FT opened a way for fractional Fourier opti-
cal information processing. In this section, we will point out
the basic properties of the fractional FT and its applications
in optics.
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In the one-dimensional case, we define the fractional FT
of a signal f (x) as

Fα(u) =Rα
[
f (x)

]
(u) =

∫∞
−∞

K(α, x,u) f (x)dx, (10)

where the kernel K(α, x,u) is given by

K(α, x,u) = exp(iα/2)√
i sinα

exp

[
iπ

(
x2 + u2

)
cosα− 2ux

sinα

]
.

(11)

Here we use reduced, dimensionless variables x and u. Note
the slight change in notation in comparison to Section 2; it
will soon be clear that in the case of the fractional FT, we
prefer to use the fractional angle α = p(π/2). The fractional
FT is a particular case of the canonical integral transform (4),
except for the constant factor exp(iα/2).

The fractional FT can be considered as a generalization
of the ordinary FT for the parameter α, which may be inter-
preted as a rotation angle in phase space [22]. This can easily
be seen by considering the WD (or the AF) and by noting
that a fractional FT system is a special case of a first-order
optical system with a = d = cosα and b = −c = sinα. If
fout(u) = Rα[ fin(x)](u) is the fractional FT of fin(x), then
the WD Win(x, ξ) of fin(x) and the WD Wout(u, υ) of fout(u)
are related as Win(x, ξ) = Wout(u, υ), see (8), where x and ξ
are related to u and υ by the rotation operation

(
u
υ

)
=

(
cosα sinα
− sinα cosα

)(
x
ξ

)
. (12)

A detailed analysis of the fractional FT can be found in
[24, 25, 29, 30, 31]. From its properties we mention that for
α = ±π/2, we have the normal FT and its inverse (and also
Fα+π(u) = Fα(−u)), while for α → 0, we have the identity
transformation F0(x) = f (x). Note also the symmetry prop-
erties K(α, x,u) = K(α,u, x) and K∗(α, x,u) = K(−α,u, x),
and the reversion property Rα[ f (−x)](u) =Rα[ f (x)](−u).
The analysis and synthesis of eigenfunctions of the fractional
FT for a given angle were discussed in [105, 106, 107, 108,
109].

Besides the optical realization of a fractional FT system
mentioned before in Section 3, other optical schemes have
been proposed [22, 110, 111, 112, 113]. In particular, the
complex amplitudes at two spherical surfaces of given cur-
vature and spacing are related by a fractional FT, where the
angle is proportional to the Gouy phase shift between the two
surfaces [111, 112, 113]. This relationship can be helpful for
the analysis of quasi-confocal resonators and data transmis-
sion between a spherical emitter and receiver.

In the sequel, optical systems performing a fractional FT
will be called fractional FT systems. As we have mentioned
before, the use of cylindrical refractive index media allows to
perform a separable, two-dimensional fractional FT for dif-
ferent angles in the two dimensions [114, 115].

One of the most important properties of the FT is related
to the convolution operation on two signals f (x) and g(x),

h f ,g(x) =
∫∞
−∞

f
(
x′
)
g
(
x − x′

)
dx′, (13)

which in the spectral domain takes the form

Rπ/2[h f ,g(x)
] = {

Rπ/2[ f (x)
]}{

Rπ/2[g(x)
]}
. (14)

After the introduction of the fractional FT, several kinds of
fractional convolution and correlation operations were pro-
posed [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70].
These operations can be expressed in the form of a general-
ized fractional convolution (GFC) Hf ,g(x,α,β, γ), defined by
[66]

Rα
[
Hf ,g(x,α,β, γ)

] = {
Rβ

[
f (x)

]}{
Rγ

[
g(x)

]}
(15)

(cf. (14)), or equivalently by

Rα−π/2[Hf ,g(x,α,β, γ)
]
(u)

=
∫∞
−∞

Fβ−π/2
(
u′
)
Gγ−π/2

(
u− u′

)
du′

(16)

(cf. (13)).
It is easy to see that the GFC includes as particular cases

almost all definitions of the fractional convolution and cor-
relation operations proposed before [57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70]. Also the expressions for the
cross-WD and cross-AF can easily be given in terms of the
GFC; for the cross-WD and cross-AF expressed in polar co-
ordinates [34],

Wf ,g(r,φ)

= 2
∫∞
−∞

Fφ+π/2(u)G∗φ+π/2(−u) exp
[
i2πu(2r)

]
du,

(17)

Af ,g(r,φ)

=
∫∞
−∞

Fφ+π/2(u)G∗φ+π/2(u) exp(i2πur)du,
(18)

we thus have

Wf ,g(r,φ) = 2Hf ,g∗

(
2r,

π

2
,φ +

π

2
,−φ +

π

2

)
, (19)

Af ,g(r,φ) = Hf ,g∗

(
r,
π

2
,φ +

π

2
,−φ− π

2

)
, (20)

respectively. The GFC system is represented schematically in
Figure 2, indicating a general procedure to obtain the GFC.

In view of the canonical integral transform, a further gen-
eralization of the convolution operation Hf ,g(x,M1,M2,M3)
can be proposed as [69]

RM1
[
Hf ,g

(
x,M1,M2,M3

)]={
RM2

[
f (x)

]}{
RM3

[
g(x)

]}
,

(21)
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Rβ

Rγ

× R−α H f ,g

Figure 2: Schematic representation of the generalized fractional
convolution system.

where the kernels of the three canonical integral transforms
are parameterized by a matrix M (see (6)). This definition
corresponds to the nonconventional convolution that is used
in real optical systems under the paraxial approximation
of the scalar diffraction theory, where the image and filter
planes are shifted from their conventional positions [68, 71].
As particular cases, the GFC and the Fresnel convolution can
thus be realized. The introduction of the canonical convolu-
tion operation permits to find features similar to the ones of
the fractional Fourier correlators and the Fresnel correlator,
proposed several years ago in [71], and to treat easily the frac-
tional correlator based on the modified fractional FT [68].

Note that the GFC of a one-dimensional signal is a func-
tion of four variables: x, α, β, and γ. The angle variables are
often considered as parameters, and the function becomes
one-dimensional. As we will see below in Sections 5 and 6,
optical signal processing allows to treat the GFC as a two-
dimensional function, where one of the parameters is con-
sidered as the second coordinate. The choice of the parame-
ters and the number of variables of the GFC depends on the
particular application. In Sections 5–8, we will consider the
applications of the GFC for phase retrieval, signal character-
ization, pattern recognition, and filtering tasks, respectively.

5. FRACTIONAL POWER SPECTRA
FOR PHASE RETRIEVAL

Phase retrieval from intensity information is an important
problem in many areas of science, including optics, quantum
mechanics, X-ray radiation, and so forth. In particular, non-
interferometric techniques have attracted considerable atten-
tion recently. In this section, we consider the application of
fractional FT systems for the phase retrieval problem.

The squared moduli of the fractional FT, also called frac-
tional power spectra, correspond to the projection of the WD
upon the direction at an angle α in phase space. Note also
that the fractional power spectrum is the particular case of
the GFC ∣∣Fα(u)

∣∣2 = Hf , f ∗(u, 0,α,−α). (22)

Fractional power spectra play an important role in frac-
tional optics: they are related to the intensity distributions
at the output plane of a fractional FT system and therefore
can be easily measured in optics. The set of fractional power
spectra for α ∈ [0,π] is called the Radon-Wigner transform
[116], because it defines the Radon transform of the WD. The
WD can be obtained from the Radon-Wigner transform by

applying the inverse Radon transform [101, Chapter 8]. This
is a basis for phase-space tomography [32], a method for ex-
perimental determination of the complex field amplitude in
the coherent case or the two-point correlation function for
partially coherent fields, from the measurements of only in-
tensity distributions. Application of cylindrical lenses allows
the reconstruction of two-dimensional optical fields.

In the case of coherent optical signals, other methods
for phase retrieval based on the measurements of fractional
power spectra have been proposed. One of them is related
to the estimation of the instantaneous spatial frequency Ξ(x)
from two close fractional power spectra. It was shown that
the instantaneous frequency is related to the convolution of
the angular derivative of the fractional power spectrum and
the signum function [33],

ΞFβ(x) =
∫∞
−∞ ξWf (x cosβ − ξ sinβ, x sinβ + ξ cosβ)dξ∫∞
−∞Wf (x cosβ − ξ sinβ, x sinβ + ξ cosβ)dξ

= 1

2
∣∣Fβ(x)

∣∣2

∫∞
−∞

∂
∣∣Fα(x′)∣∣2

∂α

∣∣∣∣
α=β

sgn
(
x − x′

)
dx′,

(23)

where sgn(x) = ±1 for x ≷ 0. Moreover, since the instanta-
neous frequency is the phase derivative of the fractional FT
of a signal,

2πΞFβ(x) = dϕβ(x)

dx
, (24)

where ϕβ(x) = argFβ(x), the complex field amplitude up
to a constant phase factor can be reconstructed from only
two close fractional power spectra [33, 34, 35]. This method
has been demonstrated on different examples of multicom-
ponent and noisy signals and exhibits high quality of phase
reconstruction [35]. Note that a similar method of phase re-
trieval can be applied for any one-parameter canonical trans-
form [36]. Thus, in the case of the Fresnel transform, we can
mention a noniterative approach for phase retrieval in free
space, based on the so-called transport-of-intensity equation
in optics, proposed by Teague [37] and then further devel-
oped by others.

In the case that two fractional power spectra are known
for angles which are not close to each other, iterative methods
of phase retrieval can be applied [38, 39, 40]. These methods
are a generalization of the iterative Gerchberg-Saxton algo-
rithm, designed for the recovery of a complex signal from its
intensity distribution and power spectrum.

Another method for phase retrieval is based on a sig-
nal decomposition as a series of orthogonal Hermite-Gauss
modes [41]. It has been shown that if a coherent optical sig-
nal contains only a finite number of Hermite-Gauss modes
N , then it can be reconstructed from the knowledge of its 2N
fractional power spectra—associated with the intensity dis-
tribution in a fractional FT system—at only two transversal
points. Note that this method can be generalized to the case
of other fractional optical systems to be discussed below, such
as, for example, the fractional Hankel one.
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A further method for phase retrieval is based on filter-
ing of the optical field in fractional Fourier domains [42].
Indeed, the phase derivative dϕ/dx, and therefore the phase
ϕ(x) up to a constant term, can be reconstructed from the
knowledge of the intensity | f (x)|2 and the intensity distri-
butions at the output of two fractional FT filters with mask
u:

dϕ(x)
dx

= π

∣∣R−α[Fα(u)u
]
(x)

∣∣2 − ∣∣Rα
[
F−α(u)u

]
(x)

∣∣2

x
∣∣ f (x)

∣∣2
sin 2α

.

(25)

The efficiency of this approach has been demonstrated by nu-
merical simulations. A simple optical configuration for the
experimental realization of the method was discussed in [42].

6. FRACTIONAL POWER SPECTRA FOR OPTICAL
BEAM CHARACTERIZATION

Since the AF, the WD, and other bilinear distributions of two-
dimensional optical signals are functions of four variables,
their direct application for the analysis and characterization
is limited. Mostly the moments of these distributions are
used for beam characterization. The normalized moments
µpqrs of the WD are defined by

µpqrsE =
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

W(x, ξ; y,η)

× xpξq yrηs dx dξ dy dη (p, q, r, s ≥ 0),
(26)

where the normalization is with respect to the total energy E
of the signal (and hence µ0000 = 1). Note that in a first-order
optical system, with a symplectic ray transformation matrix,
the total energy E is invariant. The low-order moments rep-
resent the global features of the optical signal such as total
energy, width, principal axes, and so forth. Thus the second-
order moments of the WD (p + q + r + s = 2) are used as
a basis of an International Organization for Standardization
standard of beam quality. The combination of the second-
order moments (µ1001 − µ0110)E, for instance, describes the
orbital angular momentum of the optical beam, which is ac-
tively used for the description of vortex beams [117]. The
moments of higher order are related to finer details of the
optical signal.

Note that for q = s = 0 and for p = r = 0, we have
the position and frequency moments, which can easily be ob-
tained from measurements of the intensities in the signal and
the Fourier domain, respectively:

µp0r0E =
∫∞
−∞

∫∞
−∞

xp yr
∣∣F0(x, y)

∣∣2
dx dy, (27)

µ0q0sE =
∫∞
−∞

∫∞
−∞

ξqηs
∣∣Fπ/2(ξ,η)

∣∣2
dξ dη. (28)

Since in optics only intensity distributions can be measured
directly, it was proposed in [43] to apply fractional FT sys-
tems in order to calculate other moments from the intensity

moments. It was shown that the moments at the output plane
of a separable fractional FT system, with fractional angles α
and β in the x- and the y-direction, respectively, are related
to the input ones as

µout
pqrs =

p∑
k=0

q∑
l=0

r∑
m=0

s∑
n=0

(
p

k

)(
q

l

)(
r

m

)(
s

n

)

× (−1)l+n(cosα)p−k+q−l(sinα)k+l(cosβ)r−m+s−n

× (sinβ)m+nµin
p−k+l,q−l+k,r−m+n,s−n+m,

(29)

and for the intensity moments in particular, we have

µout
p0r0 =

p∑
k=0

r∑
m=0

(
p

k

)(
r

m

)
(cosα)p−k(sinα)k

× (cosβ)r−m(sinβ)mµin
p−k,k,r−m,m.

(30)

From (30) a set of fractional FT systems can be found for
which the input moments can be derived from knowledge of
the intensity moments in the output, that is, from fractional
power spectra for selected angles α and β. It was demon-
strated [43] that in order to find all nth order moments—and
we have (n + 1)(n + 2)(n + 3)/6 of such moments—we need
N fractional power spectra, where N = (n + 2)2/4 for even n
and N = (n + 1)(n + 3)/4 for odd n. Moreover, N − (n + 1)
spectra have to be anamorphic, that is, spectra with nonequal
fractional order for the two transversal coordinates (α �= β).
In particular, we need 2 fractional spectra to find the 4 first-
order moments, 4 fractional spectra (one of which has to be
anamorphic) to find the 10 second-order moments, 6 frac-
tional spectra (with 2 anamorphic ones) to find the 20 third-
order moments, and so forth.

Regarding the evolution of the second-order moments in
a fractional FT system, we can find the fractional domain
where the signal has the best concentration or where it is the
most widely spread, by calculating the zeros of the angular
derivatives of the central moments µp0r0(α,β). This analysis
[33, 34] is helpful, for example, in search for an appropri-
ate fractional domain to perform filtering operations [45].
Smoothing interferograms in the optimal fractional domain
leads to a weighted WD with significantly reduced interfer-
ence terms of multicomponent signals, while the auto terms
remain almost the same as in the WD. In general, based on
this approach, optimal signal-adaptive distributions can be
constructed with low cost [46].

The way to determine the moments from measurements
of intensity distributions as described by (30) has been gen-
eralized to the case of arbitrary separable first-order optical
systems [44]. Using an equation similar to (29), one can eas-
ily determine the evolution of these moments during propa-
gation of the beam in any first-order optical system; in partic-
ular, this was applied to the analysis of optical vortices [47].

In signal processing, the fractional FT spectra were pri-
marily developed for detection and classification of multi-
component linear FM in noise [48, 49].
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It was shown [50, 51, 52, 53, 54, 55, 56] that the frac-
tional FT spectra as well as the Fresnel spectra are also useful
for the analysis of fractal signals. Thus the hierarchical struc-
ture of the fractal fields and its main characteristics such as
fractal dimension, Hurst exponent, scaling parameters, frac-
tal level, and so forth, can be obtained from the analysis of
the fractional spectra for the angular region from 0 to π/2
[50, 51, 52, 53]. Since in this region the fractional FT spec-
tra and the Fresnel transform spectra differ only by a scal-
ing parameter, the Fresnel diffraction is applied for this task
[51, 52, 55]. Recently the experimental fractal tree of triadic
Cantor bars has been constructed from the observation of the
evolution of diffraction patterns in free space [54]. The gen-
eral properties of the Fresnel diffraction by structures con-
structed through the multiplicative iterative procedure have
been studied in [56].

7. GENERALIZED FRACTIONAL CONVOLUTION
FOR PATTERN RECOGNITION

A great part of the proposed applications of the GFC is re-
lated to pattern recognition tasks [57, 60, 66, 67, 68, 69, 70,
71, 72, 73, 74]. It was shown [66, 67] that for this purpose,
the following relation between the angular parameters has to
hold:

cotα = cotβ + cot γ. (31)

Then the amplitude of the GFC is expressed in the form [66]

∣∣Hf ,g∗(x,α,β, γ)
∣∣

= C
∣∣∣∣
∫∞
−∞

f
[

sinβ

sin γ

(
x

sin γ

sinα
− y

)]
g∗

(
y
)

× exp
[
iπ y2 cotα

(
1 + cot γ cotβ

)
1 + cot2 β

− iπ yx
sin 2β

sinα sin γ

]
dy

∣∣∣∣,

(32)

where C is a constant for fixed α, β, and γ. The quadratic
phase factor under the integral vanishes—which brings
the integral in the form of a windowed FT—if cotα(1 +
cot γ cotβ) = 0. In the case cotα = 0 (and hence α = π/2
and γ = −β) which is usually considered, Hf ,g∗(r,π/2,β,−β)
corresponds to radial slices Af ,g(r,β − π/2) of the cross-AF
of the signals f (x) and g(x) (cf. (20)).

If the position and the size of the object is known, then
the correlation operationHf ,g∗(x,α,β,−β) for pattern recog-
nition can be performed in any fractional domain β, since
the auto-AF has a maximum at the coordinate origin r = 0.
Nevertheless, in spite of the fact that the magnitude of the
correlation maximum is the same in any fractional domain,
the forms of the correlation peaks are different. It was shown
[70] on the example of a rectangular function that the nar-
rowest correlation peak is observed in the fractional domain
with fractional angle β = 0. Note also that the object is usu-
ally corrupted by noise, or is blurred. The characteristics of

ξ

β − π/2

us

Figure 3: Schematic representation of the cross-AF of two signals,
before (solid line) and after (dashed line) shifting of one of the sig-
nals.

the noise (except for white noise) in different fractional do-
mains depend on the fractional angle [75]. The fractional
correlation offers the flexibility to choose the domain where
the effect of noise on the correlation operation is minimized.
Moreover, for the recognition of complex or highly degraded
objects, several fractional correlation operations for different
angles can be performed in order to make the right decision.

On the other hand, if the position of the object is un-
known, the choice of the fractional domain is related to the
tolerance to a shift variance of the correlation operation. A
shift of the signal leads to a shift and a modulation of the
cross-AF:

Af (y−s),g(y)(x, ξ) = Af (y),g(y)(x − s, ξ) exp(−iπsξ). (33)

Then the form of the AF radial slices of a shifted signal is
changing except for the angle corresponding to the ordinary
correlation (see Figure 3).

Therefore fractional correlations are shift variant for β �=
π/2 + nπ. Thus if in the conventional correlator a shift of
the object results in a shift with opposite sign of the cor-
relation peak at the output plane, the shape of the peak is
also changed in the fractional correlator. This effect increases
with decreasing parameter β from π/2 down to 0. For large β,
the fractional correlator is almost shift invariant, whereas for
small β, it becomes strongly shift variant. Note that there are
applications, such as cryptography or image coding, where
the location of the object can be as important as its form. In
these cases fractional correlators with fractional parameter β,
0 < β < π/2, must be used.

The shift tolerance condition is usually written in the
form [29, 59, 60] πsσ cotβ � 1, where s is the signal shift
and σ the signal width. More precisely, the shift variance de-
pends on the fractional order, the signal size, and also the
form of the AF.

The tasks of pattern detection and recognition in optics
are mostly related to two-dimensional signals (images). It is
also possible to choose different fractional orders for the two
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orthogonal coordinates and thus to better control the shift
variance. In order to recognize a letter on a certain line of
the text, for example, one can choose the parameter βx =
π/2 and βy < π/2 while the filter corresponds to the inverse
fractional FT with parameters βx, βy of a letter situated on a
given line. The exciting results demonstrating the efficiency
of shift-variant pattern recognition in the fractional domain
can be found in [72, 73, 74].

The fractional correlation operation can be performed in
optics by a fractional Van der Lugt correlator [72, 73, 74] or
by a nonconventional joint-transform correlator [118].

In order to maximize the Horner efficiency of the correla-
tion operation, phase-only filters are often used. It was shown
in [76] that in general, the phase of the fractional FT for
α �= nπ contains more information about the signal/image
than the amplitude. Therefore the phase-only filters can also
be applied in the fractional Fourier domain. The develop-
ment of liquid crystal spatial light modulators allows their
relatively simple implementation in optics.

Another particular case of GFC which can be applied for
recognition tasks is related to the fractional FT of the or-
dinary correlation operation [23] Hf ,g∗(x,α,π/2,−π/2). We
believe that this type of operation can be useful for angles α
at the region near π/2 in order to improve the performance
of the conventional correlation operation. Thus it was shown
[77] that for α slightly different from π/2, the performance of
the joint-transform correlator improves and higher correla-
tion peaks are observed. Efficient use of the light source and
a larger joint-transform spectrum were achieved. Moreover,
for these angles α, the correlator still remains shift invariant.
Nevertheless using angles α far from π/2 leads to confusing
results for interpreting the correlation peaks. Indeed, if the
conventional correlation operation does not produce a clear
local maximum and is almost constant, then a sharp peak in
fractional correlation Hf ,g∗(x,α ≈ 0,π/2,−π/2) can appear.

8. GENERALIZED FRACTIONAL CONVOLUTION
FOR FILTERING AND DATA PROTECTION

We consider now the filtering operation in the fractional do-
main. The parameters of the GFC in this case depend on the
particular application of filtering. If the filter is used for im-
provement of image quality or for manipulation of the image
f in order to extract its features (e.g., for edge detection or
image deblurring), then we have to choose β = α in order to
represent the result of filtering in the position domain. Since
we are free to assign an arbitrary fractional domain for the
filter function g, we can as well put γ = α. Thus the complete
operation leads to the Hf ,g(x,α,α,α). The useful properties
of this type of GFC,

Rβ
[
Hf ,g(x,α,α,α)

]
(u) = HFβ ,Gβ(u,α− β,α− β,α− β),

Hf ,g(x,α,α,α) = Hf ,g(x,α + π,α + π,α + π),
(34)

were proved in [62]. Moreover, this type of convolution op-
eration is associative for a fixed parameter α.

The GFC Hf ,g(x,α,α,α) has been found very powerful
for noise reduction, if the noise is separable from the signal
or very well concentrated in some fractional domain [57].
It was shown that in particular for chirp-like noise, the per-
formance of filtering in a fractional domain is more relevant
[24, 29]. Since the fractional FT of a chirp becomes pro-
portional to a Dirac-delta function in an appropriate frac-
tional domain, it can be detected as a local maximum on the
Radon-Wigner transform map and then easily removed by a
notch filter, which minimizes the signal information loss.

Several applications of fractional FT filtering systems for
industrial devices have been proposed recently.

Chirp detection, localization, and estimation via the frac-
tional FT formalism are applied now in different areas of
science. Appropriate filtering in fractional domains, which
allows to extract linear chirps out of a multicomponent and
noisy signal, is used to analyze the propagation of acoustic
waves in a dispersive medium [119]. In particular, the non-
linear effects due to the Helmholtz resonators are considered.

A new spatial filtering technique for partially coherent
light in the fractional Fourier domain [120] was proposed
to improve image contrast and depth of focus in projection
photolithography. Unlike the currently applied pupil method
of filtering in the Fourier domain, the fractional filter can be
placed at any location along the projection optical path other
than the pupil plane. On the examples of designed phase fil-
ters for contact hole and line-space patterns, it was demon-
strated that the fractional FT filtering technique can signif-
icantly improve image fidelity, reduce the optical proximity
effect, and increase the depth of focus.

Optical technologies play an increasing role in securing
information [121]. Also the GFC found its way into security
protection: encryption and watermarking techniques origi-
nally proposed for the Fourier domain were generalized to
the fractional domain.

Optical image encryption by random-phase filtering in
the fractional Fourier domain was proposed in [78, 79]. It
can be described by the GFC Hf ,g(x,α,β,β), where the phase
mask Gβ and the parameters α and β are the encryption
codes. This procedure was further generalized by application
of the cascaded fractional FT with random-phase filtering
[80]. In order to encode the image, the fractional transform
is performed and random-phase is introduced by means of
a spatial light modulator. After repeating this procedure sev-
eral times, the encrypted image is obtained. In order to de-
code it, not only the information about the used random-
phase masks has to be known, but also the parameters and
the types of the fractional transforms. It was demonstrated
that it is impossible to reconstruct the image using the cor-
rect masks but with the wrong fractional orders. Without
increasing the complexity of the hardware, the fractional-
Fourier optical image encryption system has additional keys
provided by the fractional order of the fractional convolution
operation. Due to the double domain properties of the frac-
tional FT, the algorithm demonstrates the robustness to the
blind deconvolution.

Recently, some modifications of the optical encryption
procedures in the fractional Fourier domain were proposed.
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Thus in [81] the combination of a jigsaw transform and a lo-
calized fractional FT was applied. The image to be encrypted
is divided into independent nonoverlapping segments, and
each segment is encrypted using different fractional param-
eters and two statistically independent random-phase codes.
The random-phase codes, the set of fractional orders, and the
jigsaw transform index are the keys to the encrypted data.
The encryption by juxtaposition of sections of the image
in fractional Fourier domains without random-phase screen
keys was proposed in [82].

Another encryption technique discussed in [83] is based
on a method of phase retrieval using the fractional FT. The
encrypted image consists of two intensity distributions, ob-
tained in the output of two fractional FT systems of different
fractional orders, where the input of each system is formed by
the 2D complex signal multiplied by a random-phase mask.
The two statistically independent random-phase masks and
the fractional orders form the encryption key. Decryption is
based on the correlation property of the fractional FT, which
allows to recover the signal recursively.

The implementation of a fully phase encryption system,
using a fractional FT to encrypt and decrypt a 2D phase im-
age obtained from an amplitude image, was reported in [85].
A comparative analysis of the encryption techniques based
on the implementation of the fractional FT has been done in
[84].

Watermarking is another widely applied data protec-
tion operation. A watermarking technique in the fractional
domain was proposed in [86, 87]. In this case, the GFC
Hf ,g(x,α,α,α) is commonly used. In order to include the wa-
termark, the α-fractional FT of the image is performed. The
signature has to be a function that is spread in the image do-
main and well localized in the fractional domain α. Usually
a chirp signal, which becomes a δ-function in a certain frac-
tional domain and should be spread in the image domain, is
used. Introducing the watermark and performing the inverse
fractional FT, finally we obtain the protected image. Usually
several watermarks in different fractional FT domains are in-
troduced. Only the owner of the image who knows the all
fractional domains will be able to remove them. This water-
marking technique is robust to translation, rotation, crop-
ping, and filtering [86, 87].

9. GENERAL ALGORITHM FOR THE
FRACTIONALIZATION OF CYCLIC TRANSFORMS

We have considered the properties and application of the
fractional FT. Now the following key questions arise.

(i) Is this fractional FT unique? Or is it possible to gener-
ate other fractional FTs?

(ii) How can we generate the fractional version of other
transformations, for example, Hilbert, sine, cosine?

(iii) Do fractional transforms have some common prop-
erties?

In order to answer these questions, we will consider the
procedure of fractionalization of a given transform [27, 28].
Similar approaches for fractionalization of the integral trans-
form, and the FT in particular, were reported in [122] and

[123], respectively. We will restrict ourselves to the consider-
ation of cyclic transforms. There is a long list of linear trans-
forms, actively used in optics and signal/image processing,
which belong to this class of cyclic transforms. Thus, if R is
an operator of a linear integral transform, see (1), this trans-
form is a cyclic one, if it produces the identity transform
when it acts an integer number of times N :

RN
[
f (x)

]
(u) = f (u). (35)

For example, the Fourier and Hilbert transforms are cyclic
with a period N = 4, and the Hankel and Hartley transforms
have a period N = 2. Cyclic canonical transforms of period
N with kernel K(x,u) = KM(x,u) (cf. (4)),

K(x,u) = 1√
ib

exp
(
iπ
ax2 + du2 − 2ux

b

)
, (36)

where a + d = 2 cos(2πm/N) and m and N are integers, were
mentioned in [124].

All cyclic transforms have some common properties. In
particular, the eigenvalues of cyclic transforms can be rep-
resented as A = exp(i2πL/N), where L is an integer. In-
deed, let Φ(x) be an eigenfunction of R with eigenvalue
A = |A| exp(iϕ); from (35) one gets that AN = 1, and hence
|A| = 1 and ϕ = 2πL/N .

In Section 2, we have formulated the requirements for the
fractional R-transform Rp, where p is the parameter of the
fractionalization: continuity of Rp for any real value p; addi-
tivity of Rp with respect to the parameter p; reproducibility
of the ordinary transform for integer values of p: R1 = R
and R0 = I . In the case of cyclic transforms, we obviously
demand that RN = I .

Let us analyze the structure of the kernel K(p, x,u) of a
fractional R-transform with period N . Due to its periodicity
with respect to the parameter p, one can represent K(p, x,u)
in the form

K(p, x,u) =
∞∑

n=−∞
kn(x,u) exp

(
i2πpn
N

)
, (37)

where the coefficients kn(x,u) have to satisfy the system of N
equations [27]

K(l, x,u) =
∞∑

n=−∞
kn(x,u) exp

(
i2πln
N

)
(38)

with l = 0, . . . ,N − 1. From the additivity property for the
fractional transform, it follows that the coefficients have to
be orthonormal to each other [27, 28]:

∫∞
−∞

kn(x,u)km(u, y)du = δn,mkn(x, y), (39)

where δn,m denotes the Kronecker delta.
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Note that all coefficients kn+mN (x,u) for fixed n and an
arbitrary integer m have the same exponent factor in the sys-
tem of (38). Therefore, we can rewrite (38) as

K(l, x,u) =
N−1∑
n=0

exp
(
i2πln
N

) ∞∑
m=−∞

kn+mN (x,u). (40)

If we introduce the new variables Cn(x,u), which are the par-
tial sums of the coefficients in the Fourier expansions (37)
and (38),

Cn(x,u) =
∞∑

m=−∞
kn+mN (x,u), (41)

equation (40) reduces to a system of N linear equations with
N variables. This system has a unique solution [27]

Cn(x,u) = 1
N

N−1∑
l=0

exp
(
− i2πln

N

)
K(l, x,u). (42)

It is easy to see that the variables Cn satisfy a condition similar
to (39):

∫∞
−∞

Cn(x,u)Cm(u, y)du = δn,mCn(x, y). (43)

Note that some partial sums for certain transforms may be
equal to zero. As we will see further on, this is the case for the
Hilbert transform, for instance.

So, if we find the coefficients kn(x,u) that satisfy the con-
dition (39) and whose partial sums are given by (42), we
can construct the fractional transform. In general, there are a
number of sets {kn(x,u)} that generate fractional transforms
of a given R-transform.

10. N-PERIODIC FRACTIONAL TRANSFORM
KERNELS WITH N HARMONICS

We first construct the fractional transform kernel with N
harmonics, where N is the period of the cyclic transform.
Then every sum Cn(x,u) (n ∈ [0,N − 1]) contains only one
element kn+ϕn(x,u) = Cn(x,u) from the decomposition (37),
where ϕn = mN and m is an arbitrary integer. Therefore,
in the general case, the kernel of the fractional R-transform
with N harmonics can be written as

K(p, x,u) =
N−1∑
n=0

kn+ϕn(x,u) exp

[
i2πp

(
n + ϕn

)
N

]

= 1
N

N−1∑
l=0

K(l, x,u)
N−1∑
n=0

exp
(
− i2πln

N

)

× exp

[
i2πp

(
n + ϕn

)
N

]
.

(44)

This equation provides a formula for recovering the con-
tinuous periodic function K(p, x,u) from its N samples
K(l, x,u), under the assumption that the spectrum of
K(p, x,u) contains only N harmonics at the frequencies
{ϕ0, 1 + ϕ1, . . . ,n + ϕn, . . . ,N − 1 + ϕN−1}.

If we put ϕn = 0 (n = 0, 1, . . . ,N − 1), we obtain the
fractional transform with the kernel

K(p, x,u) = 1
N

N−1∑
l=0

exp
[
iπ(N − 1)(p − l)

N

]

× sin
[
π(p − l)

]
sin

[
π(p − l)/N

]K(l, x,u)

(45)

proposed by Shih in [125]. In particular, this formula is used
as the definition of a kind of fractional FT (for the continu-
ous as well as the discrete case) [125, 126].

With N an odd integer and choosing N nonzero coeffi-
cients in the decomposition (37) with indices j = −(N − 1)/
2, . . . , 0, . . . , (N − 1)/2 (corresponding to the indices n + mN
for m = 0 and n = 0, 1, . . . , (N − 1)/2, and m = −1 and
n = (N − 1)/2 + 1, . . . ,N − 1), we obtain the kernel

K(p, x,u) = 1
N

N−1∑
l=0

sin
[
π(p − l)

]
sin

[
π(p − l

)
/N]

K(l, x,u). (46)

This equation corresponds to the recovering procedure of a
band-limited periodic function from its values on equidis-
tant sampling points [127]. In particular, if K(l, x,u) is real
for integer l = 0, 1, . . . ,N−1, then the kernel of the fractional
transform determined by (46) is real, too. It also means that
the Fourier spectrum of K(p, x,u) with respect to the param-
eter p is symmetric: |kj| = |k− j|.

As an example, we consider the general expression (44)
for the kernel of the fractional R-transform with period 4
(which is the case for the Fourier and Hilbert transforms):

K(p, x,u) = 1
4

3∑
l=0

K(l, x,u)S(l) (47)

with S(l) =∑3
n=0 exp(−inlπ/2) exp[i(n + ϕn)pπ/2].

Note that for the Hilbert transform, the number of har-
monics reduces to two, because C0(x,u) = C2(x,u) = 0,
which follows from K(0, x,u) = −K(2, x,u) and K(1, x,u) =
−K(3, x,u). From (44) we then conclude that the fractional
Hilbert transform kernel can be written as

K(p, x,u) = exp
[
i(m1 + m3 + 1)pπ

]

×
{
K(0, x,u) cos

[(
m3 −m1 +

1
2

)
pπ

]

− K(1, x,u) sin
[(

m3 −m1 +
1
2

)
pπ

]}
,

(48)
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where m1 and m3 are integers. In particular, for the case m1 =
m3 = 0 (kn = 0 if n �= 1, 3), one gets

K(p, x,u) = exp(ipπ)

×
[
K(0, x,u) cos

(
pπ

2

)
−K(1, x,u) sin

(
pπ

2

)]
,

(49)

while for the case m1 = 0 and m3 = −1 (kn = 0 if n �= −1, 1),
the common form for the fractional Hilbert transform [94]
with a real kernel is obtained:

K(p, x,u) = K(0, x,u) cos
(
pπ

2

)
+ K(1, x,u) sin

(
pπ

2

)
.

(50)

Therefore, even for the same number of harmonics, there are
several ways for the fractionalization of cyclic transforms.

11. FRACTIONAL TRANSFORM KERNELS
CONSTRUCTION USING EIGENFUNCTIONS
OF CYCLIC TRANSFORMS

In the case that the set of orthonormal eigenfunctions of the
cyclic transform exists, one can construct fractional kernels
with a number of harmonics M > N , where N is the period
of the cyclic transform [27, 28].

Suppose that there is a complete set of orthonormal
eigenfunctions {Φn} of the operator R with eigenvalues
{An = exp(i2πLn/N)}, n = 0, 1, . . . (see Section 9). Then
we can represent a kernel of the R-transform of the integer
power q as

K(q, x,u) =
∞∑
n=0

Φn(x)A
q
nΦ∗

n (u)

=
∞∑
n=0

Φn(x) exp
(
i2πqLn

N

)
Φ∗

n (u).

(51)

One of the possible series of kernels for the fractional R-
transform can then be written in the form

K(p, x,u) =
∞∑
n=0

Φn(x) exp
[
i2π

(
Ln
N

+ ln

)
p
]
Φ∗

n (u), (52)

where ln is an integer and indicates the location of the har-
monics. This kernel satisfies the additivity condition due to
the orthonormality of the eigenfunctions Φn(x).

Note that not all cyclic operators have a complete set of
orthonormal eigenfunctions, as it is the case, for example,
for the Hilbert operator, whose eigenfunctions Φ(x) are self-
orthogonal. Nevertheless, the majority of cyclic transforms
of interest in optics, such as Fourier, Hartley, Hankel, and so
forth, have this set. For the Fourier and Hartley transforms,
Φn(x) are the Hermite-Gauss modes [15, 16]

Φn(x) = 21/4(2nn!
)−1/2

Hn
(
x
√

2π
)

exp
(− πx2), (53)

where Hn(x) are the Hermite polynomials; for the Han-
kel transform of different orders, Φn(x) are the normalized
Laguerre-Gauss functions [128, 129].

The canonical fractional FT kernel, discussed in the pre-
vious sections, can be obtained from (52) as a particular case:
Ln = −n and ln = 0,

KF(p, x,u)

=
∞∑
n=0

Φn(x) exp
(
− inpπ

2

)
Φ∗

n (u)

= exp(inpπ/4)√
i sin(pπ/2)

exp
[
iπ

(
x2 + u2

)
cos(pπ/2)− 2ux

sin(pπ/2)

]

(54)

(cf. (11)). The fractional Hankel transform, defined by (52)
for Ln = −n and ln = 0 and Φn(x) being the normalized
Laguerre-Gauss functions, describes the propagation of ro-
tationally symmetric optical beams through a medium with
a quadratic refractive index [128, 129]. The kernels of these
transforms contain an infinite number of harmonics.

We rewrite (52) in the form

K(p, x,u) =
∞∑

n=−∞
zn(x,u) exp

(
i2πnp
N

)
. (55)

Here zn(x,u) is a sum of the elements Φ j(x)Φ∗
j (u) over j,

where Φ j(x) is the eigenfunction of the R-transform with
eigenvalue exp(i2πn/N). Thus for the case of the canonical
fractional FT,

KF(p, x,u) =
∞∑
n=0

Φn(x) exp
(
− inpπ

2

)
Φ∗

n (u)

=
0∑

n=−∞
zn(x,u) exp

(
inpπ

2

)
,

(56)

the coefficients zn(x,u) vanish for positive n and zn(x,u) =
Φn(x)Φ∗

n (u) for n ≤ 0. As we will see below, the fractional
Hartley transform [27] can be represented in the form

K(p, x,u) =
∞∑
n=0

exp(−iπnp)z−n(x,u),

z−n(x,u) = Φ2n(x)Φ2n(u) + Φ2n+1(x)Φ2n+1(u).

(57)

It is easy to see from (55) that we can generate another
kernel series with M harmonics,

K(p, x,u) =
M−1∑
n=0

exp
(
i2πnp
M

) ∞∑
m=−∞

zn+mM(x,u), (58)

which satisfy the requirements for the fractional transforms.
Here the sums of the elements zj(x,u),

kn(M, x,u) =
∞∑

m=−∞
zn+mM(x,u), (59)
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are used as the coefficients kn(x,u) in (37). Note that the
relationship (39) holds for the coefficients kn(M, x,u) and
km(M, x,u) because they are constructed from the disjoint
series of orthonormal elements.

One can prove that the kernel (58) for p = 1 reduces to
(51). In particular, if {Φn} is the Hermite-Gauss mode set
and z−n(x,u) = Φn(x)Φ∗

n (u) for n = 0, 1, . . . and z−n(x,u) =
0 for negative n, then (58) corresponds to the series of the
M-harmonic fractional FTs proposed in [130],

K(p, x,u) =
M−1∑
n=0

exp
[
− i2πnp(1−M)

M

]

×
∞∑

m=0

Φn+mM(x)Φ∗
n+mM(u)

= 1
M

M−1∑
n=0

exp
[
iπ(M − 1)(pl − n)

M

]

× sin
[
π(pl − n)

]
sin

[
π(pl − n)/M

]KF

(
n

l
, x,u

)
,

(60)

where KF(n/l, x,u) is the kernel of the canonical fractional
FT. Application of such types of fractional FTs for image en-
cryption was reported in [80]. If M = N (l = 1), we obtain
that the kernel of the Shih fractional transform defined by
(45) can also be represented as

K(p, x,u) =
N−1∑
n=0

exp
[
− i2πnp(1−N)

N

]

×
∞∑

m=0

Φn+mN (x)Φ∗
n+mN (u).

(61)

Finally we can conclude that if a complete orthonormal
set of eigenfunctions for a given cyclic transform exists, then
an infinite number of fractional transform kernels with an
arbitrary number of harmonics can be constructed using the
procedure (52). Some examples of fractional FTs whose ker-
nels contain different numbers of harmonics were considered
in [27].

12. SOME PROPERTIES OF FRACTIONAL
CYCLIC TRANSFORMS

Although there is a variety of schemes for the construction of
fractional transforms, all of them have some common prop-
erties.

If the coefficients kn(x,u) in the decomposition (37) are
real, then the following relationship holds:

{
Rp

[
f ∗(x)

]
(u)

}∗ =R−p[ f (x)
]
(u). (62)

This is the case for the canonical fractional FT, the re-
lated fractional sine, cosine, and Hartley transforms, and the
canonical fractional Hankel transform.

Eigenfunctions of fractional transforms

By analogy with the analysis of the fractional FT eigenfunc-
tions, made in [106, 107], the eigenfunction Ψ1/M(x) for
the fractional transform Rp for p = 1/M with eigenvalue
A = exp(i2πL/M) can be constructed from the arbitrary gen-
erator function g(u) by the following procedure:

Ψ1/M(x) = 1
M

M−1∑
n=0

exp
(
− i2πnL

M

)
Rn/M

[
g(u)

]
(x). (63)

In the limiting case M → ∞, one gets the eigenfunction for
any value p with eigenvalue exp(i2πpL):

ΨL
p(x) = 1

N

∫ N

0
exp(−i2πpL)Rp

[
g(u)

]
(x)dp. (64)

In particular, for fractional transforms generated by (52) (as
it was shown by the example for the fractional FT [107]), the
functions ΨL

p(x) correspond to the elements of the orthog-
onal set {aLΦL}, where the constant factors depend on the
generator function.

Complex and real fractional transform kernels

We have seen in the previous section that if there exists a
complete orthonormal set of eigenfunctions {Φn} for the R-
transform, then any coefficient in the harmonic decompo-
sition of the fractional kernel kn(x,u) (37) can be expressed
as a linear composition of the elements Φ j(x)Φ∗

j (u). For the
kernel of the fractional transform to be real, the Fourier spec-
trum of the fractional kernel with respect to the parameter p
has to be symmetric; this means that |k−n(x,u)| = |kn(x,u)|.
Since the coefficients kn(x,u) with different indices n contain
disjoint series of the orthogonal elements, their amplitudes
cannot be equal. In the case that there exists a complete or-
thonormal set of eigenfunctions {Φn} for the R-transform,
the fractional kernel of the Rp-transform cannot be real,
even if the R-transform kernel is real.

As we have seen above, the fractional Hilbert kernel can
be real because there is no complete orthonormal set of
eigenfunctions for the Hilbert transform.

13. FRACTIONAL CYCLIC TRANSFORMS
IMPLEMENTED IN OPTICS

Besides the canonical fractional FT discussed in Sections 4
and 11, other fractional cyclic transforms can be performed
by optical setups. Thus the fractional FTs described in Sec-
tions 10 and 11 and represented as a sum of the weighted
canonical fractional FTs for the corresponding parameters
{αn} (see for instance (45) and (60)) can be obtained as an
interference of optical beams at the output of the related
canonical fractional FT optical systems. In general, most
fractional cyclic transforms proposed for optical implemen-
tation are closely connected to the canonical fractional FT.

The two-dimensional fractional FT of a rotationally sym-
metric function leads to the fractional Hankel transform,
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analogous to the fact that its two-dimensional FT produces
the Hankel transform [128, 129]. The fractional Hankel
transform of a function f (r) is defined as

Rα
[
f (r)

]
(u) = Hα(u) =

∫∞
0
K(α, r,u) f (r)r dr, (65)

where the kernel K(α, r,u) is given by

K(α, r,u) = exp(iα)
i sinα

exp
[
iπ
(
r2 + u2) cotα

]

× J0

(
2πru
sinα

) (66)

with J0 the first-type, zero-order Bessel function. One can
represent the fractional Hankel kernel in the form (52),
where Ln = −n, ln = 0, and Φn(x) are the Laguerre-Gauss
functions, which are the eigenfunctions of the fractional
Hankel transform.

The fractional Hankel transform inherits the main prop-
erties of the fractional FT [103, 128] and can be performed by
the fractional FT setups described in Sections 3 and 4, if the
input optical field is rotationally symmetric. The fractional
Hankel transform can substitute the fractional FT in many
optical signal processing tasks where rotationally symmetric
beams are used.

Since the FT is closely related to sine, cosine, and Hartley
transforms, which are cyclic ones with period N = 2, several
attempts to introduce the fractional sine, cosine, and Hartley
transforms were made in [25, 26], where the authors sup-
posed that the kernels of these transforms are the real part of
the kernel of the optical fractional FT, the imaginary part of
this kernel, or the sum of these two parts, respectively. Never-
theless, they have mentioned that the transforms defined in
such a manner are not angle additive, and therefore, in our
view, cannot be interpreted as fractional transforms. The ker-
nels KS, KC , and KH of the fractional sine, cosine, and Hartley
transforms (ST, CT, HT) [27, 28, 131], respectively, which are
closely related to the canonical fractional FT with kernel KF

and which are indeed angle additive, are defined as

ie−iαKS(α, x,u) = 2kα(x,u) sin
(

2πux
sinα

)
,

KC(α, x,u) = 2kα(x,u) cos
(

2πux
sinα

)
,

KH(α, x,u) = kα(x,u) cas
(

2πux
sinα

)
,

KF(α, x,u) = kα(x,u) exp
(
− i2πux

sinα

)
,

(67)

where

kα(x,u) = exp(iα/2)√
i sinα

exp
[
iπ
(
x2 + u2) cotα

]
, (68)

where, on the analogy of exp(iϕ) = cosϕ+ i sinϕ, we have in-
troduced casϕ = cosϕ + sinϕ, and where, for easy reference,
we have repeated the expression of the canonical fractional
FT kernel KF .

�
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�
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�
��

f (x) Rα
F exp(iα/2) Rπ

F

cos(α/2) sin(α/2)

exp(−iπ/2)

Rα
H [ f (x)]

Figure 4: Schematic representation of a fractional Hartley trans-
former. The setup consists of two fractional FTs Rα

F and Rπ
F , two

beam splitters, two mirrors, two absorbing plates cos(α/2) and
sin(α/2), and two phase plates exp(iα/2) and exp(−iπ/2).

Input f G(ν) f Output

z z z z

ν

Figure 5: Schematic representation of a (fractional) Hilbert trans-
former: z = f , G(ν) = exp[iα sgn(ν)].

Since the fractional ST, CT, and HT can easily be ex-
pressed in terms of the fractional FT, and since optical re-
alizations of the fractional FT [25] are well known, optical
realizations of the fractional ST, CT, and HT can easily be
constructed. One of the possible schemes for the fractional
HT, based on [27]

Rα
H = exp

(
iα

2

)
Rα

F

[
cos

(
α

2

)
− i sin

(
α

2

)
Rπ

F

]
, (69)

is given in Figure 4.
As the ST, CT, and HT are widely used in signal pro-

cessing, the application of their fractional versions in sig-
nal/image processing is very promising.

Since, as we have seen in Section 10, the kernel of the
fractional Hilbert transform has only two harmonics, the
number of possible fractionalization procedures is signif-
icantly reduced. The real kernel of the fractional Hilbert
transform introduced in [94, 95] and described by (50) is
commonly used. Optical setups performing this transform
were proposed in [94, 95]. As the fractional Hilbert trans-
form is a weighted mixture of the optical field f (u) itself and
its Hilbert transform H(u),

Rα
[
f (x)

]
(u) = f (u) cosα + H(u) sinα, (70)

an optical scheme performing the ordinary Hilbert trans-
form (see Figure 5, with G(ν) = i sgn(ν)) can easily be
adapted to perform a fractional Hilbert transform, by having
the filter function G(ν) now taking the more general form
exp[iα sgn(ν)] = cosα + i sgn(ν) sinα.

The Hilbert transform can be considered as a convolu-
tion of a function with a step function, which is a model
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for a perfect edge. Therefore the Hilbert transform produces
edge enhancement. It was shown that the fractional Hilbert
transform stresses the right-hand and the left-hand slopes
unequally [94, 95, 96] and that variation of the fractional or-
der changes the nature of the edge enhancement. Thus, for
α ≈ π/4,π/2, 3π/4, the right-hand edges, both edges, and the
left-hand edges of the input object are emphasized, respec-
tively. In general, we can conclude that the fractional Hilbert
transform produces an output image that is selectively edge
enhanced. This property of the fractional Hilbert transform
makes it a perspective tool for image processing and pattern
recognition.

14. NEW HORIZONS OF FRACTIONAL OPTICS

Fractional optics is a rapidly developing research area. Novel
applications of the fractional transforms for motion detec-
tion and analysis, holographic data storage, optical neural
networking, and optical security (see Section 8) have been
proposed recently. In this section, we give a short overview
of the main directions of development of fractional optics.

Fractional Fourier transformers

Significant work has been done to improve fractional trans-
formers.

The effect of the spherical aberration of a lens on the per-
formance of the fractional Fourier transformation in the op-
tical systems proposed by Lohmann in [22] was analyzed in
[132]. It was shown that the effect of spherical aberration on
the output intensity distribution of the fractional FT system
depends on the sign and the absolute value of the aberration
coefficient. Moreover, Lohmann’s two types of optical setups
for implementing the fractional FT are no longer equivalent
if the lenses suffer from spherical aberration.

In the optical systems proposed in [22], the fractional or-
der is fixed by the ratio between the focal length of the lens
and the distance of free space preceding and following the
lens. This fact introduces a difficulty in the design of frac-
tional Fourier transformers with a variable order. Fractional
FT systems with a fixed optical setup, but with different frac-
tional orders, can be obtained by the implementation of pro-
grammable lenses, written onto a liquid-crystal spatial light
modulator [133].

A one-dimensional, variable fractional Fourier trans-
former, based on the application of a reconfigurable electro-
optical waveguide, was proposed in [134]. In general, this de-
vice produces a variable canonical transformation, with a ray
transformation matrix for which a = d and for which the
matrix entry b is controlled by the amplitude of an electric
field.

A quantum circuit for the calculation of a fractional
FT whose kernel contains four harmonics was proposed in
[135].

Propagation through a fractional FT system

The evolution during propagation through fractional FT sys-
tems of different types of beams frequently used in modern

optics, such as flattened Gaussian [136, 137], elliptical Gaus-
sian [138], and partially coherent and partially polarized
Gaussian-Shell beams [139], has been studied. In particular,
it was shown that the intensity distribution and polarization
properties in the fractional FT plane are closely related to the
fractional order of the fractional FT system and the initial
coherence of the partially coherent beam [139, 140, 141].

Several devices for manipulation of optical beams based
on the fractional FT have been proposed recently.

The fractional FT is applied in the π/2 converter, which is
used to obtain focused Laguerre-Gauss beams from Hermite-
Gauss radiation modes [142].

The design of a diffractive optical element for beam
smoothing in the fractional Fourier domain was described
in [143].

An iterative method for the reconstruction of a wave field
or a beam profile from measurements obtained using low-
resolution amplitude and phase sensors in several fractional
Fourier domains was proposed in [144].

Motion analysis

Several applications of the fractional FT for motion analysis
have been proposed.

A method for the independent estimation of both sur-
face tilting and translational motion using the speckle pho-
tographic technique by capturing consecutive images in two
different fractional Fourier domains, has been proposed in
[145].

In [146] the fractional FT is applied to airborne, synthetic
aperture radar, slow-moving target detection. Since the echo
from a ground moving target can be approximated as a chirp
signal, the fractional FT is used to concentrate its energy. An
iterative detection of strong moving targets and weak ones,
based on filtering in the fractional Fourier domain, has been
proposed.

The application of fractional FT correlators to control
movements in a specific range has been considered in [147].
Based on the controllable shift variance of fractional corre-
lations, only the movements limited to a specific range are
determined. Fractional FT correlators operating with a log-
polar representation of two dimensional images (fractional
Mellin-based correlator) allow to control the similarity of
objects under rotation and scale transformations. Optically
implemented fractional FT and Mellin correlators, providing
correlation images directly at image acquisition time, have
been proposed to be used in detecting or controlling a spe-
cific range of movements in navigation tasks.

Beamforming is another application of the fractional
FT indirectly related to motion analysis. Beamforming is
widely used in sensor arrays, signal processing for signal en-
hancement, direction of arrival and velocity estimation, and
so forth. The conventional minimum mean-squared error
beamforming in the frequency domain or the spatial domain
has been generalized to the fractional Fourier domain case
[148]. It is especially useful for radar problems where chirp
signals are encountered. Note that acceleration of the sinu-
soidal signal source yields that, due to the Doppler effect,
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a chirp signal arrives at the sensor. Such a chirp signal is often
transmitted in active radar systems.

Fractional FT implemented as neural networks

Several neural network schemes have been proposed recently,
in which the canonical fractional FT was implemented.

An optical neural network based on the fractional corre-
lation realized by a Van der Lugt correlator that employs frac-
tional FTs was proposed in [88]. The error back-propagation
algorithm was used to provide the learning rule by which
the filter values are changed iteratively to minimize the error
function.

The replacement of the mean square error with the log-
likelihood and the introduction of parallelism to this net-
work significantly improve its learning convergence and re-
call rate [89].

It was demonstrated in [90] that, due to the shift variance
of the fractional convolution, the fractional Van der Lugt cor-
relator is more suitable than the conventional one for clas-
sification tasks. For a phase modulation filter, the optimal
learning rate to improve the learning convergence and the
classification performance can quickly be found by Newton’s
method.

Besides these static networks with fixed weights and the
learning based on the adjustment of the filter coefficients,
another type of neural networks using the fractional FT has
been proposed [91]. In this scheme, the fractional FT is used
for preprocessing of input signals to neural networks. Ad-
justing the fractional order of the fractional FT of the input
signal leads to an overall improvement of the neural network
performance, as has been demonstrated on the example of
recognition and position estimation of different objects from
their sonar returns. In [92], a comparative analysis has been
made of different approaches of target differentiation and
localization, including the target differentiation algorithm,
Dempster-Shafer evidential reasoning, different kinds of vot-
ing schemes, statistical pattern recognition techniques (the k-
nearest neighbor classifier, the kernel estimator, the param-
eterized density estimator, linear discriminant analysis, and
the fuzzy c-means clustering algorithm), as well as artificial
neural networks, trained with different input signal repre-
sentations obtained using preprocessing techniques such as
discrete ordinary and fractional Fourier, Hartley and wavelet
transforms, and Kohonen’s self-organizing feature map. It
has been shown that the use of neural networks trained by
the back-propagation algorithm with fractional FT prepro-
cessing results in near-perfect differentiation, around 85%
correct range estimation, and around 95% correct azimuth
estimation.

The potential application of a spatially varying, fractional
correlation in implementing parallel fuzzy association has
been explored in [93].

Fresnel and fractional FT holograms

Holographic recording/reconstruction techniques are very
well established for image, Fourier, and Fresnel holo-
grams. In particular, since the fractional FT and the Fresnel

transform belong to the class of canonical integral trans-
forms, see (3), one can analyze the feasibility of fractional
Fourier holograms in relation to Fresnel holograms prop-
erties. The fundamentals of Fresnel holograms have been
known for about four decades. In 1965, Armstrong [149]
published a general contribution on the basic formulation
for describing the recording and reconstruction of two- and
three-dimensional Fresnel holograms using paraxial approx-
imation. The total complex amplitude at recording step was
formulated as a Fresnel integral. Assuming linearity condi-
tions on the hologram development, the final field for the
reconstructed image was formulated. This general analyti-
cal expression contains the basic contributions to the final
field, namely, illumination conditions of the object, holo-
gram diffraction properties, and illumination conditions of
the hologram. To this respect, one of the major keys for Fres-
nel holograms with high reconstruction fidelity is resolution,
which is determined by the hologram aperture. If the effect of
a finite aperture on the complex amplitude field is not taken
into account, the hologram diffraction modulation turns out
to be represented by a Dirac-delta function. Assuming that
under a fractional FT regime, we are dealing with a partic-
ular scaling defined by the order of the transformation, one
can assert that resolution plays a similar role as in a standard
Fresnel hologram. Taking into account the finite aperture im-
plies that an intrinsic dependence of the hologram quality
(fidelity) on the aberrated reconstructed wavefront has also
to be considered.

Recently, several contributions on these subjects have
been published. An algorithm for digital holography based
on the so-called Fresnelets, which arise when the Fresnel
transform is applied to a wavelet basis, has been developed in
[150]. An experimental digital holography setup was shown,
as well as results for Fresnelet holograms. An interesting re-
sult of this paper is related to the uncertainty relation for the
Fresnel transform as a condition for signal localization. The
condition suggests that Gaussian and Gabor-like functions,
modulated with a Fresnel kernel, optimize the processing and
reconstruction of Fresnel holograms. This is related to the il-
lumination conditions of the object and the behavior of the
hologram aperture as an apodizing optical pupil.

Other experiments for implementing Fresnel holograms
on LCDs have been reported [151]. The hologram is ob-
tained by back-propagating the object function applying an
inverse Fresnel transform. Results indicate the presence of
noise in the reconstruction due to the limited number of am-
plitude levels of the signal (8 bits).

Other authors [152] claim the implementation of mul-
tiple fractional FT holograms. Nevertheless, the lack of in-
formation related to critical parameters as real illumination
conditions, object size, hologram size, type of holographic
material, and minimum distance between objects for avoid-
ing aliasing makes it difficult to arrive to a precise conclusion
on the actual proposed technique.

From the above-mentioned results, we can assert that
Fresnel and fractional FT holograms show great practical in-
terest for signal localization, data coding and decoding, and
optical security systems.
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Novel fractional transforms

Another direction for further research is the investigation of
novel types of fractional transforms: their properties, appli-
cations, and possible implementations in optics.

The fractional cosine, sine, and Hartley transforms and
their digital implementations were discussed in [27, 28, 131,
153]. It was shown that the fractional cosine and sine trans-
forms are useful for processing one-sided signals, that is, the
independent variable is an element of [0,∞). From our point
of view, the different types of fractional FT, ST, CT, and HT,
constructed by the general fractionalization algorithm (see
Sections 10 and 12), may be suitable for signal/image en-
cryption and watermarking. Thus an image watermarking
scheme based on different types of fractional discrete Fourier,
Hartley, cosine, and sine transforms was proposed in [154].
To remove the watermarks in this case, the type of the used
fractional transform and the orders of the fractional domains
where signatures were introduced have to be known.

Several other fractional transforms have been introduced
recently.

The fractional FT of log-polar representation of a two-
dimensional image generates the fractional Mellin transform
[122, 147].

Another fractional transform, the complex fractional FT,
closely related to the canonical fractional FT has been intro-
duced in [155]. With ξ = ξ1 + iξ2 and η = η1 + iη2, the kernel
of the complex fractional FT takes the form (cf. (11))

exp(iα)
i sinα

exp

[
iπ

(|ξ|2 + |η|2) cosα + ξη∗ − ξ∗η
2 sinα

]
. (71)

Based on the approach of eigenfunction kernel decom-
position similar to [27, 28], some new fractional integral
transforms, including the fractional Mellin transform, a frac-
tional transform associated with the Jacobi polynomials,
a Riemann-Liouville fractional derivative operator, and a
fractional Riemann-Liouville integral, have been proposed
in [122]. In the analogy with canonical fractional Fourier
and Hankel transforms, the fractional Laplace and Barut-
Girardello transforms have been introduced in [156].

The applications of these transforms in science and engi-
neering are still subject of research.

15. CONCLUSIONS

We have reviewed the fractional transformations imple-
mented in paraxial optics and their applications for optical
information processing: phase retrieval, signal/image char-
acterization, optical beam manipulation, pattern recogni-
tion and classification, adaptive filter design, encryption, wa-
termarking, motion detection, holography, and so forth. A
general algorithm of fractionalization, which allows to con-
struct various fractional transforms related to a given cyclic
transform, has been discussed. The usefulness of a specific
fractional transform is related to its optical feasibility, as
well as to its possible application in signal/image processing.
The analysis of the harmonic contents for various types of

fractional transforms offers a procedure for their experimen-
tal realization. It seems that the fractional sine, cosine, Hart-
ley, and Hankel transforms, discussed in Sections 13 and 14,
due to their similarity to the canonical fractional FT, may act
as a substitute for it in many tasks. The usage of the fractional
Hilbert transform for selective edge enhancement produces
very promising results. The exploration of other recently pro-
posed fractional transforms is expected in near future.

Beside the theoretical and numerical simulation works
demonstrating an important impact of the optical imple-
mentation of the fractional FT, the experimental realization
of the corresponding devices and techniques takes up a sig-
nificant place of research.

We believe that fractional optics significantly increases
the importance of analog optical information processing.
The design of new devices based on fractional optics will lead
to unified approaches of signal/image processing used in op-
tics and electrical engineering, which will significantly enrich
the fields of optoelectronics, optical security technology, and
optical computing.
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We present a review of the applications of the Wigner distribution function in various areas of signal processing: amplitude
and phase retrieval, signal recognition, characterization of arbitrary signals, optical systems and devices, and coupling coefficient
estimation in phase space. Although reference is made to specific signals and systems, the mathematical formulation is general and
can be applied to either spatial, temporal, or spatio-temporal phase spaces, to coherent, partially coherent, or discrete signals. The
universal and intuitive character of the Wigner distribution approach to signal characterization and processing and its simplicity
in solving many issues are evidenced throughout the paper.
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1. INTRODUCTION

Phase space methods become increasingly exploited in sig-
nal processing applications due to their intuitive character,
universal validity, and last but not least simplicity in an in-
creasing number of practical situations. These methods refer
to any description of a signal or an optical system through
a function that depends jointly on the canonical conjugate
phase space variables, which are the transverse position vec-
tor r and the angular (spatial frequency) vector k for light
beams, the time variable t, and frequency ω for optical pulses
or, more generally, all four coordinates r, k, t, and ω. There
are many phase space distribution functions that can be em-
ployed in signal processing applications; the spectrogram,
the ambiguity function, or the Wigner distribution function
(WDF) are just a few examples. These phase space distribu-
tion functions are actually closely related to one another, the
use of one or another depend to a great extent on the spe-
cific application and/or on the type of experiments that are
carried on.

This paper focuses on the applications of the WDF in sig-
nal processing; this phase space distribution function is often
referred to as Wigner-Ville distribution, but the WDF term is
used in a larger range of applications and therefore the term
WDF will be used throughout this paper. The intention is
not to present an exhaustive list of WDF properties (includ-
ing its relation to other phase space distributions) or prob-
lems that can be tackled with this distribution function; there
are already a large number of review papers and even books

dedicated to these subjects [1, 2, 3, 4, 5, 6, 7, 8, 9]. Rather, it
will be shown how to make use of the specific properties of
the WDF and why it is desirable to use this phase space distri-
bution in addressing some relevant issues in signal process-
ing. Based on the available mathematical and experimental
results, the paper offers a glimpse on the beauty, simplicity,
and potentialities of the WDF approach to this research field;
therefore, many details will be left aside and only the most
significant results will be discussed in greater detail. The re-
sponsibility of doing justice to the so many briefly mentioned
issues is entrusted to the references.

2. THE WIGNER DISTRIBUTION FUNCTION AND
SOME OF ITS PROPERTIES

The WDF has been originally introduced in quantum me-
chanics [10], but found itself rapidly in hosts of applications
in the analysis and processing of both light beams and pulses
[1, 2, 3, 11, 12]. The WDF of coherent signals that propagate
along the z direction and that are characterized by a scalar
field distribution ϕ(u, z) is defined at a z = const. plane as

Wϕ(u, v; z)

= (2π)−n/2
∫
ϕ
(

u +
u′

2
, z
)
ϕ∗
(

u− u′

2
, z
)

exp
(
iu′vT

)
du′

= (2π)−n/2
∫
ϕ̄
(

v +
v′

2
, z
)
ϕ̄∗
(

v − v′

2
, z
)

exp
(− iuv′T

)
dv′,

(1)
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where ∗ and T denote the operations of complex conjuga-
tion and transposition, respectively, and

ϕ̄(v, z) = (2π)−n/2
∫
ϕ(u, z) exp

(
iuvT

)
du (2)

is the Fourier transform of ϕ(u, z). (For vectorial field dis-
tributions, a WDF matrix can be introduced, as shown in
[13, 14].) In the expressions above, u represents the trans-
verse coordinate vector r = (x, y) in the spatial phase
space appropriate for describing stationary and monochro-
matic light beams, symbolizes in the temporal phase space
the time coordinate t in a reference frame that travels with
the pulse, or designates the ensemble (r, t) for a general
spatio-temporal phase space. The coordinate v is its canoni-
cally conjugate variable equal, respectively, to the projection
k = (kx, ky) of the wavevector on the transverse coordinates
(known also as spatial frequency), to the frequency ω mea-
sured from the central frequency ω0 of a light pulse, or to
(k,ω) in general; n denotes the dimensionality of u and v
(the phase space is 2n-dimensional). The parameter z in the
WDF definition can be removed for simplicity if no ambigu-
ity arises. It should be mentioned that in literature slightly
different forms of the WDF are sometimes encountered, de-
fined either with an opposite sign in the Fourier integral or
even with scaled spatial frequency or frequency coordinates;
due account of these differences must be taken when com-
paring the formulas in this paper with results derived with a
different WDF definition.

In the paraxial approximation k = (kφx, kφy), where
k = 2π/λ is the wavenumber of the monochromatic field
with wavelength λ, and φx,φy are the angles between the
wavevector direction and the z-axis; thus, for monochro-
matic fields, k has the significance of a scaled angular co-
ordinate. The WDF characterization of fields in the tempo-
ral phase space is sometimes referred to as the chronocyclic
representation of light pulses [15]; it can adequately describe
the propagation of signals when their spatial extent is of no
concern. The use of spatio-temporal phase spaces is justified
when optical systems, such as prisms or diffraction gratings
couple the space and time coordinates through a frequency-
dependent refraction phenomenon, due to which different
frequency components follow different paths; this situation is
common for ultrashort light pulses characterized by a broad
spectrum.

Extremely important for a large number of applications
is that the WDF can be defined also for partially coherent
light distributions such as [16]

Wϕ(u, v) = (2π)−n/2
∫
Γ
(

u +
u′

2
, u− u′

2

)
exp

(
iu′vT)du′,

(3)

where the correlation function Γ(u1, u2) = 〈ϕ(u1)ϕ∗(u2)〉
is the ensemble average of ϕ(u1)ϕ∗(u2); similarly to (1), the
Fourier transform of the correlation function can also be
used to define the WDF for partially coherent fields.

Digital signal processing applications can benefit from a
discrete form of the WDF, which is defined in the temporal
phase space, for example, as [17]

Wϕ(nτ,ω) = 2τ
∞∑

l=−∞
ϕ(nτ + lτ)ϕ∗(nτ − lτ) exp(i2lτω),

(4)

where ϕ(t) is a complex-valued function that is sampled with
a sampling interval τ, n, and l are discrete and ω is contin-
uous. Note that the discrete-time WDF (4) is periodic in
the frequency coordinate, with a period equal to one-half
the sampling frequency ∆ω = 2π/τ, that is, Wϕ(nτ,ω) =
Wϕ(nτ,ω + ∆ω/2). The practical considerations regarding
the sampling rate that is needed to avoid aliasing are de-
tailed in [17], which also investigates an efficient algorithm
to implement in real time the temporal WDF. In an analo-
gous manner a discrete-frequency WDF can be defined [18]
through a formula similar to (4) but referring to the Fourier
transform of the signal; a change in sign in the exponential
term is also required. A WDF discrete in both n and θ vari-
ables, with properties similar to that of the continuous WDF
in (1), has been introduced by Brenner [19]. The discrete-
time/frequency WDF is defined as

Wϕ(n,m)

=
(

τ

2N

) ∞∑
l=−∞

ϕ(lτ)ϕ∗(nτ − lτ) exp
[
im(2l − n)

2N

]
,

(5)

where it is assumed that the signal can be approximated by
a limited number N of samples, the values of the WDF be-
ing evaluated for t = nτ/2 and ω = m/Nτ (the product
between the sample rates in time and frequency is equal to
N−1). The discrete-time/frequency WDF is periodic in both
variables with a period 2N , its properties and its relation to
the continuous WDF being detailed in [18].

Irrespective of its definition, the WDF satisfies some
properties that are tremendously important in practical ap-
plications. For the case of coherent light distributions these
properties are as follows.

(i) The WDF is real, but can take negative values. Only
Gaussian fields have WDFs that are everywhere positive. For
a forward propagating field the negative WDF values were
associated with small regions of backward flux, the local
flux of the monochromatic field being defined as J(r) =
k−1

∫
W(r, k)k dk [20]. According to another interpretation

[21], the negative values of the WDF originate from the
phase space interference between neighboring minimum-
value phase space areas that correspond to the Gaussian
beams into which an arbitrary field distribution can be de-
composed.

(ii) The WDF is limited to the u and v intervals that limit
the field distribution and its Fourier transform, respectively.

(iii) A shift of the field distribution in u or a shift of its
Fourier transform in v leads to the same shift for the WDF.



1522 EURASIP Journal on Applied Signal Processing

(iv) The partial integral of the WDF over v is propor-
tional to the field intensity:

∫
Wϕ(u, v)dv = (2π)n/2

∣∣ϕ(u)
∣∣2
. (6)

(v) The WDF integral over u is proportional to the in-
tensity of the Fourier transform of the field distribution (the
spectrum of the field):

∫
Wϕ(u, v)du = (2π)n/2

∣∣ϕ̄(v)
∣∣2
. (7)

(vi) The field distribution and its Fourier transforms can
be reconstructed from the WDF up to constant phase factors,
according to

ϕ(u)ϕ∗(0) = (2π)−n/2
∫
Wϕ

(
u
2

, v
)

exp
(− iuvT

)
dv, (8)

ϕ̄(v)ϕ̄∗(0) = (2π)−n/2
∫
Wϕ

(
u,

v
2

)
exp

(
iuvT)du (9)

with 0 the null vector, since the modulus of ϕ∗(0) and ϕ̄∗(0)
can be found from (8) and (9), respectively, for u = 0 and
v = 0.

(vii) The WDF satisfies the so-called overlap or Moyal
relation∫

Wϕ1(u, v)Wϕ2(u, v)dudv

=
∣∣∣∣
∫
ϕ1(u)ϕ∗2 (u)du

∣∣∣∣2

=
∣∣∣∣
∫
ϕ̄1(v)ϕ̄∗2 (v)dv

∣∣∣∣2

.

(10)

For partially coherent sources with correlation functions
Γ1(u, u′), Γ2(u, u′), the Moyal relation becomes

∫
Wϕ1(u, v)Wϕ2(u, v)dudv =

∫
Γ1(u, u′)Γ2(u′, u)dudu′,

(11)

which reduces to (10) when Γi(u, u′) = ϕi(u)ϕ∗i (u′), i = 1, 2.
(viii) The WDF is bilinear in the field distribution, which

means that the WDF of a superposition of signals ϕ(u) =∑
m amϕm(u) contains not only the WDF of the individual

signals (the auto-terms), Wϕm(u, v) but also complex cross-
terms Wϕmϕn(u, v) that describe phase space interference ef-
fects:

Wϕ(u, v) =
∑
m

|am|2Wϕm(u, v) +
∑

m,n�=m
ama

∗
nWϕmϕn(u, v),

(12)

where

Wϕmϕn(u, v)

= (2π)−n/2
∫
ϕm

(
u +

u′

2

)
ϕ∗n

(
u− u′

2

)
exp

(
iu′vT)du′.

(13)

The interference terms in the WDF have an oscillatory behav-
ior if the field distributions are coherent, and show no os-
cillations when the superposing beams are incoherent [22].
The oscillations indicate the eventuality of interference be-
tween the superposing states in the u and/or v domains, in-
terferences in the u and v spaces, respectively, taking place
only when the superposing field distributions have common
projections along these axes. Note that the cross-terms in the
WDF appear even when the individual WDFs do not over-
lap. The presence of the interference terms in the WDF of a
multicomponent signal hampers in many situations the in-
terpretation of the WDF and the reconstruction or synthe-
sis of the field distribution. The geometry of the interference
terms of the WDF and related signal representations in the
temporal phase space is analyzed in [23]. Other properties
of the WDF for coherent distributions can be found in [24],
while the corresponding properties of the WDF for partially
coherent distributions and for the discrete WDF are detailed
in [16, 19], respectively.

An attractive property of the WDF is that its transforma-
tion law through first-order optical systems characterized in
the geometrical optical approximation by a real symplectic
matrix

S =
(
A B
C D

)
(14)

relating the ray vectors (uv)T at the output z = const. plane
of an optical system to those at the input z = 0, is very simple
[24, 25, 26]:

Wϕ(u, v; z) =Wϕ(uD − vB,−uC + vA; 0). (15)

A matrix is symplectic if it satisfies the relation STJS = J with

J =
(

0 −I
I 0

)
, (16)

where 0 and I are the n-dimensional null and identity ma-
trices, respectively; for n = 1 the symplecticity condition re-
duces to det S = 1.

The WDF embodies the link between geometrical optics
and wave optics: it remains constant along geometrical ray
paths, but incorporates wave optical effects when consider-
ing diffraction and interference phenomena since the WDF
is defined in terms of the field distribution. Note that (15)
is valid not only for the better known case of optical sys-
tems for monochromatic beams but also for optical systems
for light pulses; in particular the propagation of the WDF
of pulses through temporal lenses [27] and dispersive media
(the analogs of free spaces for monochromatic beams [28]) is
also accounted for by (15). The influence of ray-pulse matri-
ces [29] on the WDF is also described by (15). A similar law
can be derived for each temporal frequency component of
a polychromatic-pulsed paraxial beam propagating through
nondispersive and achromatic optical systems [30] (see also
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[31] for the definition of the WDF for polychromatic parax-
ial fields), or for light propagation in misaligned optical sys-
tems [32]. Dragoman [33] has demonstrated that the ABCD
transformation law for the WDF (15) holds also for particu-
lar optical systems characterized by complex S matrices when
illuminated with partially coherent Gaussian-Schell beam; in
this case, however, the A,B,C,D elements of the S matrix in
(15) depend also on the incident field. The WDF transfor-
mation law in homogeneous, inhomogeneous, and weakly
dispersive media has been derived by Bastiaans [34, 35], the
corresponding transformation in nonstationary and inho-
mogeneous optical media can be found in [36], while the
evolution of the WDF through optical systems characterized
by complex matrices is given in [37]. It is also possible to
derive the propagation law of the temporal WDF of pulsed
plane-wave signals in continuous random media [38]. All
these propagation laws, although very useful in some appli-
cations, are overcome in popularity by the ABCD transfor-
mation law of the WDF expressed in (15).

From (6), (7), and (15), it follows that the integral of the
WDF over both u and v coordinates is proportional to the
total energy content of the field distribution and that the en-
ergy is conserved at propagation through a first-order optical
system characterized by a real and symplectic matrix. This
conclusion no longer holds for propagation through optical
systems characterized by a symplectic matrix with complex
elements [39]; symplecticity of optical systems is not equiv-
alent to energy conservation, with the notable exception of
real matrices.

In the derivation of the elements of the symplectic ma-
trix, S the reflection at various interfaces is neglected. An ex-
plicit accommodation of these reflections for layered struc-
tures is known to introduce a matrix that relates not the
phase space coordinates but the field distribution and its
derivative along the stratification direction [40]. A matrix-
like relation exists even in this case between the vector WDF
at the input and output plane, the elements of the WDF vec-
tor being the WDF of field, of its derivative, and the cross-
terms [41]; the WDF moments at the output plane are re-
lated to those at the input plane through a more complicated
relation than (15).

The simplicity of the WDF transformation law through
first-order systems reflects itself in the simplicity of the trans-
formation laws of the WDF moments. For a two-dimensional
stationary and monochromatic light distribution ϕ(x, y), for
example, the moment of order l + m + n + p is defined as

xl ymknxk
p
y =

∫
xl ymknxk

p
yWϕ(x, y, kx, ky)dx dy dkx dky∫

Wϕ(x, y, kx, ky)dx dy dkx dky
,

(17)

and transforms through first-order systems according to [42]

Mj(z) = (S⊗ S⊗ · · · )︸ ︷︷ ︸
[ j/2]times

Mj(0) (S⊗ S⊗ · · · )T︸ ︷︷ ︸
( j−[ j/2])times

. (18)

In the expression above

Mj(z) =
(

rT

kT

)
⊗ (rk)⊗

(
rT

kT

)
⊗ · · ·︸ ︷︷ ︸

j times

(19)

is the matrix that contains all moments of order j calculated
at a z = const. plane, with ⊗ denoting the direct product of
matrices and with the bar on top indicating that each matrix
element is averaged in the sense of (17); Mj(0) has the same
significance but with the moments calculated at the input
z = 0 plane of the optical system. Numerous moment in-
variants of several orders can be derived starting from (18)
(see [6] and the references therein). In particular, (detM2)1/2,
which is invariant at propagation through first-order optical
systems, can be identified with the phase space area occu-
pied by the system. Its invariance can be viewed as a selection
rule for various optical systems, such as the astigmatic mode
converter consisting of a pair of properly oriented cylindrical
lenses that transforms a Hermite-Gauss mode with rectan-
gular symmetry into a Laguerre-Gauss mode with cylindrical
symmetry [43].

Note that, due to (6), the moments of the spatial coor-
dinates in (17) (those with n = p = 0), calculated with the
WDF as the weighting function, are identical to the moments
of spatial coordinates calculated with the field intensity as the
weighting function, while the moments of the angular coor-
dinates (with l = m = 0) in (17) are identical to the moments
calculated with the field spectrum as weighting function, in
agreement with (7). The moments defined in (17), with the
WDF as weighting function, allow however a simplified cal-
culation procedure for mixed, that is, spatial and angular, co-
ordinates.

The propagation law (18) for WDF-based moments can
be extended in certain cases even to optical systems that are
not of the first-order type. For example, a modified defini-
tion of second-order moments for hard-edge diffracted fields
leads for j = 2 to a propagation law similar to (18) even if
hard-edge apertures are not first-order systems [44]. Analo-
gously, it was demonstrated that pure phase transmittances
can be represented as 4× 4 matrices and a law similar to (18)
has been derived for the second-order moments of the WDF
[45].

3. APPLICATIONS TO SIGNAL RETRIEVAL

The complex field distribution can be determined, accord-
ing to (8), from its WDF; the recovery of both amplitude
and phase distributions of a signal is one of the most im-
portant tasks in signal processing since many detectors are
only sensitive to the incident intensity. The WDF of one-
dimensional field distributions can be easily displayed on
a two-dimensional screen using common optical elements.
Optical set-ups that generate the spatial WDF of real signals,
complex transparencies (holograms), or arbitrary complex
one-dimensional fields are described in [46]; the product
between the two displaced replicas of the field distribution
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that enter the definition of the WDF in (1) is implemented
using rotated transparencies or holograms through which
the light passes twice (but with a transverse coordinate in-
version between passages) or using a rotated object illumi-
nated by a tilted light beam, the subsequent Fourier trans-
form being generated with the help of lenses and free space
propagation regions. More complex set-ups involving joint
transform correlator architectures [47] or incorporating a
degenerate phase conjugation device for the implementation
of the product between the field and its complex conjugate
(and shifted) replica [48] can also be imagined. The latter
set-up can be employed as well to generate samples of the
WDF of two-dimensional complex signals. A white-light im-
plementation of the WDF of one-dimensional field distribu-
tions containing an achromatic processor that consists of lin-
ear blazed zone plates and an achromatic cylindrical objec-
tive was proposed in [49], while acousto-optic processors for
real-time implementation of temporal WDFs are described
in [50]. Note that, since the WDF is real, a measurement of
the intensity at the output plane of a WDF-generating set-
up yields the desired WDF values up to their sign, which
can however be easily deduced from the (eventually) passages
through zero of the intensity distribution if the WDF sign is
known in one point; this is a trivial task for symmetric field
distributions and a not-impossible task in general.

Except the rotationally symmetric beam for which the
four-dimensional WDF can be recovered from the two-
dimensional WDF of the field distribution along a line that
passes through the center [51], only samples of the four-
dimensional WDF of an arbitrary two-dimensional light
source can be produced. Several methods have been pro-
posed to generate these samples, and they differ through
the manner of implementing the product between the field
distribution and its shifted and complex conjugate replica:
a dual-channel display technique [52], two-tilted [52] or
properly shifted and rotated transparencies [52, 53], or a
single transparency illuminated twice [53] can be used to
generate desired samples of the WDF of real-valued fields,
while a simultaneous optical production of several sections,
Wn(rn/2, k/2), of the WDF can be implemented using a fiber
grating to shift multiple copies of the input object with rn
[54].

Apart from the possibility of direct generation, the WDF
function can be recovered from measurements of other dis-
tribution functions such as the spectrogram or the Radon or
Hartley transforms (see the references in [6]). Alternatively, a
powerful technique has been devised for the computation of
the WDF, and hence for the retrieval of both amplitude and
phase of the original field distribution, from measurements
of light intensities at different planes or after passing through
optical systems that rotate the original WDF in phase space.
This method is known as tomography [55], and has been ex-
tensively used for the reconstruction of the WDF of one- [56]
or two-dimensional optical beams [57], coherent and low-
coherent light sources [58, 59], and optical pulses [60, 61].
As expected, the two methods of complex field recovery, that
is, the direct generation of the WDF and the tomography,
provide comparable results [62].

For two-dimensional monochromatic point-symmetric
fields, that is, for fields for which ϕ(−r) = ±ϕ(r), the WDF is
the inverse Fourier transform of its scaled fractional Fourier
transform spectrum, and hence can be determined from in-
tensity measurements of the fractional Fourier transform of
the incident field in a suitable number of points [63].

Closely related to the problem of signal retrieval is that
of signal synthesis. A signal synthesis algorithm that involves
the discrete-time WDF defined in (4) has been developed in
[64]; it consists in finding the digital sequence ϕ(nτ) whose
discrete-time WDF best approximates (in a least-squares
sense) a desired function. A more detailed account on time-
varying signal processing using WDF synthesis techniques
can be found in [65].

4. APPLICATIONS TO IMAGE RECOGNITION

In applications involving pattern recognition and image
analysis, the moments of the field distribution as well as the
invariants that can be constructed with these moments are
essential [66]. For example, the first-order moments of the
spatial coordinates calculated with the monochromatic field
intensity as the weighting function locate the centroid of the
intensity distribution, while the second-order moments of
the spatial coordinates characterize the orientation and the
size of the image. Although the information contained in the
original image can be recovered only if the infinite set of all
moments is known, in most applications only a finite set of
higher-order moments and moment invariants (in particu-
lar Zernike moment invariants [66]) are sufficient for im-
age recognition and/or image classification purposes. Teague
[67] showed that it is possible to calculate (with limited ac-
curacy) image moments by optical means, that is, by using a
Fourier transforming lens to perform the spatial integration.
Why do we need then a WDF-based definition for moments?
A powerful justification of the usefulness of WDF-based mo-
ments has been provided by Freeman and Saleh [68]. They
showed that for many image recognition purposes it is bet-
ter to use a set composed of moment invariants from both
spatial and angular (spatial frequency) domains instead of
the same number of moment invariants from the spatial or
spatial frequency domain alone. This result, welcomed by ex-
perimentalists who know that noise hamper the accurate de-
termination of moments to a degree that increases with the
moment’s order, validates the use of the mixed WDF-based
moments in order to achieve the image recognition task with
lower-order moments and moment invariants compared to
the case when spatial or spatial frequency moments alone
are used. Not to mention that the simple propagation laws
of WDF-based moments through real and symplectic first-
order systems offer the easiest way to find moment invari-
ants.

A last but not least reason for the employment of mo-
ments defined with the WDF as a weighting function is that
they can, for arbitrary orders, be determined from the mea-
surement of intensity moments of an appropriate number
of fractional power spectra of the incident field distribu-
tion, obtained by measuring the intensity at the output plane



Wigner Distribution Function in Signal Processing 1525

of generally anamorphic fractional Fourier transform sys-
tems [69]. Other set-ups for measuring the ten second-order
WDF-based moments of two-dimensional beams, which in-
volve the measurements of second-order spatial moments at
the output of astigmatic optical systems, have been put for-
ward by Nemes and Siegman [70], and by Eppich et al. [71],
whereas the phase space beam analyzer [72] measures simul-
taneously the beam radius and far-field divergence of one-
dimensional field distributions.

5. APPLICATIONS TO THE CHARACTERIZATION
OF SIGNALS

The spatial and angular extent of optical field distributions
is determined by its second-order moments. For stationary
monochromatic and centered two-dimensional field distri-
butions (for which x̄ = ȳ = kx = ky = 0) the squared width
of the beam along x, y and the associated squared far-field
divergence angles are determined, respectively, by x2, y2 and

k2
x , k2

y , ((x − x̄)2, (y − ȳ)2 and (kx − kx)2, (ky − ky)2 for non-
centered light beams) while an overall characterization of the
quality of the beam is provided by [73]

Q = x2k2
x −

(
xkx

)2
+ y2k2

y −
(
yky

)2 − 2
(
xky ykx − xykxky

)
.

(20)

The second-order moments and the beam quality parameter
are tools that allow a quantitative comparison of the spatial
and spatial frequency extent of beams that can otherwise dif-
fer substantially with respect to their shape or wavefront pro-
file. Moreover, the propagation law (18) of the WDF-based
moments through first-order systems is a useful tool for de-
signing optical systems that can optimize the extent or the
shape of the field distribution required in some applications.

First-order optical systems leave invariant the beam qual-
ity parameter Q and modify the WDF-based moments ac-
cording to (18). The beam quality factor Q takes a minimum
value for a Gaussian field distribution. The square root of
the ratio between the Q value of an arbitrary beam and that
of a Gaussian field is known as the beam-propagation factor
and is denoted by M2; M2 describes the far-field spreading of
an arbitrary beam relative to a Gaussian field with the same
waist. A high-quality beam, that is, a beam with a small Q
value is simultaneously localized in spatial and angular coor-
dinates. The minimum value of Q is 1/4 for one-dimensional
monochromatic beams, and 1/2 for two-dimensional field
distributions. The occurrence of a minimum value for Q cor-
responds to the existence of a classical counterpart of the un-
certainty relations in quantum mechanics; uncertainty rela-
tions can also be defined for nonparaxial wave fields [74]. For
multimode beams in an optical resonator, M2 determines the
number of transverse modes in one dimension [75].

An effective radius of curvature matrix R−1 for an ar-
bitrary quasimonochromatic but centered optical beam can
be introduced in terms of second-order WDF-based mo-
ments as R−1 = (1/k)uT ⊗ v/uT ⊗ u;R−1 has in the spatio-
temporal phase space the meaning of a spatial curvature and

a temporal chirp [30]. The matrix division in the definition
of R−1 should be understood as multiplication of the ma-
trix in the numerator with the inverse of the matrix in the
denominator. A similar definition of an effective radius of
curvature matrix can be introduced for each frequency com-
ponent of a polychromatic pulse that propagates through
nondispersive and achromatic optical systems [30]. A com-
plex radius of curvature matrix q−1 can also be introduced
for arbitrary beams as q−1 = R−1 − iλM2/(4πuT ⊗ u), the
arbitrary beam satisfying the same propagation rule through
first-order optical systems as a Gaussian beam with the same
size if the wavelength λ is replaced with λM2 [76, 77, 78].
In particular the second-order spatial moment (the beam
width) obeys a parabolic law of propagation in free space,
the minimum beam width occurring at the waist plane irre-
spective of the shape and wavefront profile of the beam. This
remarkable result, which allows the characterization of arbi-
trary beams with concepts derived for Gaussian field distri-
butions, is only possible when second-order moments, and
in particular WDF-based second-order moments, are em-
ployed for beam characterization.

The twist parameter of partially coherent Gaussian field
distributions [79], as well as the angular rotation of arbitrary
fields under free space propagation can also be expressed in
terms of second-order moments [80]. More precisely, for a
two-dimensional monochromatic light beam, the angle be-
tween the principal axes, defined as those for which xy = 0,
and the absolute axes, that is, those for which kxky = 0, is
given by cot 2θ = (x2 − y2)/(2xy), the angular rotation of-
fering a classification criterion of light beams. It is also worth
mentioning that the Stokes matrices associated with partially
polarized fields can be also expressed in terms of the second-
order moments of the WDF matrix of the vectorial electric
field [14].

The symmetry of one-dimensional fields is described by
the third-order moment x3, the moments x2kx and x3kx mea-
sure, respectively, the spatial range of the beam’s symmetry
and sharpness, x2k2

x/(x2 k2
x) expresses the degree of similarity

of an arbitrary beam with a quasihomogeneous field distri-
bution [81], while the kurtosis parameter K = x4/(x2)2 pro-
vides a quantitative measure for the classification of beams
with respect to their sharpness [82, 83]. K is useful to esti-
mate the capabilities of laser beams in material processing
applications.

Special relations between moments of the WDF occur for
light beams with certain symmetries. For example, for one-
dimensional self-Fourier field distributions ϕ(x), which are
characterized by ϕ̄(kx) = a1ϕ(a2kx) with constant a1, a2 pa-
rameters such that |a2

1/a2| = 1, the WDF satisfies the sym-
metry condition Wϕ(x, kx) =Wϕ(a2kx,−x/a2), while its mo-
ments are related through xmknx = (−1)mam−n2 xnkmx [84]. The
symmetry of moments is thus an indication of the symmetry
of the field. Field distributions with such a special symme-
try can preserve it only at propagation through certain opti-
cal systems, characterized by a symplectic matrix that can be
determined from (15). Bright solitons are examples of self-
Fourier functions.
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Not only the moments defined by (17), which are called
global moments, have physical significance, but also lo-
cal moments can be associated with parameters of the sig-
nal. For example, K(r) = ∫

kW(r, k)dk/
∫
W(r, k)dk can

be interpreted as the scaled (with k) average propagation
angle at position r, R(k) = ∫

rW(r, k)dr/
∫
W(r, k)dr can

be identified with the average beam position at the trans-
verse wavevector k,T(ω) = ∫

tW(t,ω)dt/
∫
W(t,ω)dt can

be seen as the group delay of the optical pulse, and Ω(t) =∫
ωW(t,ω)dω/

∫
W(t,ω)dω can be defined as the instanta-

neous frequency of a pulse [1].
Although the WDF is mainly used for characterizing op-

tical beams and pulses that propagate through linear me-
dia, some studies have also focused on nonlinear propaga-
tion. A thorough analysis of the propagation of the WDF
and of its moments through active media, for example, can
be performed under the thin sheet condition, which restricts
the diffraction along the amplifier and limits the magnitude
and variation of the refractive index and gain coefficient of
the active medium. Under these assumptions the field am-
plitude in the paraxial approximation can be expressed as
a sum of two terms, one of them being approximately pro-
portional to the z coordinate along the propagation direc-
tion. The WDF of this sum contains both auto-terms and
a cross-term, each of them satisfying the free space propa-
gation law in (15) with (in one dimension) A = D = 1,
C = 0, and B = z [85]. As a result, the WDF does not
propagate along straight lines in active media and the ra-
diant intensity, that is, the average of the WDF along the
spatial coordinate, as well as the beam quality parameter
do not remain invariant at propagation. Moreover, an in-
cident aligned field distribution, with x̄ = kx = 0 at the
input plane does not preserve this property at the output
plane, in contrast to the behavior in homogeneous and pas-
sive media. Numerical simulations have shown that at prop-
agation of Gaussian beams through active media under the
thin sheet approximation, in both homogeneously and in-
homogeneously broadened cases, the beam size increases
compared to the propagation through passive media and
the kurtosis parameter lowers (the beam becomes flatter)
[86]. The form of the WDF also changes at propagation
through nonlinear media. For example, at self-phase mod-
ulation the WDF of an incident Gaussian pulse develops an
asymmetric pronounced dip and can even take negative val-
ues [87].

Studies performed using the WDF as a mathematical
tool have shown that the degree of coherence of the beam
has a determinant role in propagation. For example, par-
tial incoherence weakens the nonlinearity, a higher inten-
sity being required to achieve the same effect as that ob-
tained with a coherent beam. In particular, partial incoher-
ence tends to suppress the coherent instabilities, acting as a
Landau-like damping effect on modulational instabilities, or
tends to prevent the self-focusing collapse instability of bidi-
mensional field distributions [88]. These effects have been
demonstrated employing the WDF of the envelope function
of partially coherent fields together with the Klimontovich
statistical average.

The evolution of the beam quality factor in a nonlinear
Kerr medium with a quadratic refractive index profile has
been derived in [89]; an invariant beam quality parameter
can be introduced for nonlinear Kerr-like media for a prop-
erly defined effective radius of curvature. Moreover, Nasalski
[90] has demonstrated that the first-order formalism can be
preserved at propagation of a light pulse or beam through a
nonlinear Kerr-like medium if the phase space coordinates
are properly scaled: the low-power (linear) coordinates u, v
should be replaced with U = u/w(ζ), V = vw(ζ), where
w is the half-width pulse waist and ζ is the (temporal and
spatial) chirp parameter, which vanishes at the actual waist
plane. ζ replaces the z coordinate as propagation parameter
and differs from it because of the self-shortening effect and
because of the waist shift with respect to the linear propa-
gation situation. Apart from these scaling operations of the
phase space coordinates, an on-axis phase correction must be
introduced in the expressions of both the field amplitude and
its Fourier transform, and an additional scaling with wn/2(ζ)
and w−n/2(ζ) of the field amplitude and its Fourier trans-
form, respectively, must be taken into account, where n is the
dimension of the nonlinear Schrödinger equation satisfied by
the quasimonochromatic pulse.

The analytic expression of the WDF for bright solitons
and for the two-soliton solution of the nonlinear Schrödinger
equation, which is identical to the equation satisfied by
optical solitons propagating in a dispersive and nonlinear
medium, can be found in [91]. Bright solitons are character-
ized by a diamond-shaped WDF, while the WDF of the two-
soliton solution evolves in time oscillating between profiles
similar to the dark soliton and profiles with a large momen-
tum distribution, which correspond to the most squeezed
state in spatial coordinates. Most interesting, however, is the
appearance of a distinct interference cross-term in the WDF
of the two-soliton solution when the amplitudes of the two
solitons are comparable. The WDF of black and gray solitons
in the temporal phase space as well as the WDF moments of
all envelope solitons (bright, black, gray) also have analytical
expressions [92]. These expressions have provided test meth-
ods to decide if an optical pulse is or not a soliton; such phase
space tests were applied to a bright soliton pulse source used
for 270 terabit km/s transmission system [92] and for bright
and dark magnetostatic solitons [93].

The transport equation of the WDF for field distribu-
tions that satisfy the nonlinear Schrödinger equation, the
Korteweg-de Vries equation, as well as the Burgers equa-
tion was derived by Kamp [94], who separated the opera-
tor G(r, ∂/∂r,ϕ(r, t)) acting upon the field distribution into a
linear and a nonlinear part: G(r, ∂/∂r,ϕ(r, t)) = F(r, ∂/∂r) +
L[ϕ(r, t)]. Note that the WDF evolution law under a linear
operation that acts on the field distribution according to

∂ϕ

∂t
= −F

(
r,

∂

∂r

)
ϕ (21)

is given by

∂Wϕ

∂t
= −2Re

[
F
(

r +
i

2
∂

∂k
,

1
2
∂

∂r
+ ik

)]
Wϕ. (22)
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(See also [34, 35, 36, 37].) The equation of motion of the
WDF for an underlying governing equation that is a linear
ordinary or partial differential equation has been derived in
[95].

Starting from (22) the transformation laws for the WDF,
the radiant intensity, the radiant emittance, the first- and
second-order moments of the WDF, and the kurtosis param-
eter of a field that propagates through an inhomogeneous
Kerr-type medium have been derived [96]. Quite surpris-
ingly, it was found that the WDF transforms according to a
law similar to (15), where the elements of the real symplec-
tic matrix depend on the field distribution. This fact leads,
however, to a variation of the beam quality factor with the
propagation distance, in contrast to the case when the ele-
ments of the real symplectic matrix do not depend on the
field distribution.

The soliton solutions of the nonlinear Schrödinger equa-
tion refer to envelope solitary waves in χ(3) materials, but sta-
tionary wave solutions of soliton type exist also in χ(2) mate-
rials. These are related to a variety of phenomena that include
degenerate and nondegenerate parametric amplification and
the coupling of intense electromagnetic fields to polaritons.
The solitons in χ(2) media are solutions of coupled field equa-
tions in which the nonlinearity is second order in the field,
and exist in both anomalously and normally dispersive re-
gions. In absorptive media, the widths of χ(2) solitons are
maintained over long distances while their amplitudes decay
exponentially. The WDF of the bright and dark χ(2) solitons
and their second-order moments are given in [97]; the ob-
tained expressions are different from the corresponding ones
in χ(3) solitons, providing a signature of the soliton type, and
can be used to test different pulses.

6. APPLICATIONS TO THE CHARACTERIZATION
OF OPTICAL SYSTEMS AND DEVICES

A measurement of the WDF after it passes through an opti-
cal system is a valuable means to characterize the system if
the incident field distribution is known. Due to the ABCD
transformation law and due to the fact that the WDF can
be defined for either coherent or partially coherent field
distributions, the WDF incorporates information about the
coherence of illumination and the optical system through
which it passes. Therefore it can be used to evaluate the
performance and tolerances of optical processors [98] and,
in particular, to estimate the parameters of various opti-
cal systems. For example, according to (15), the WDF of
a collimated, monochromatic, and one-dimensional field,
W(x, kx) = δ(kx), becomes W(x, kx) = δ(kx + kxx/ f ) af-
ter passing through a thin lens characterized by a trans-
mission function exp(ikx2/2 f ), so that the tilt angle of the
WDF after the lens is a measure of its focal length. (The free
space produces a shear transformation of the WDF along
x.) Analogously, the passage of the same field distribution
through a pure phase object with a transmission function
exp[iφ(x)] that cannot be in general characterized through
a real symplectic matrix yields an output WDF of the form
W(x, kx) = δ(kx +dφ/dx), from which the profile of the pure

phase object can be recovered. An example of the phase pro-
file recovery from the WDF measurement can be found in
[99].

One example of special interest is the case of spherically
aberrated lenses. The type of aberration, as well as the value
of the aberration coefficient can be determined from the
form of the WDF of the output field distribution [100]. The
presence of aberrations manifests itself in the change of shape
of the output WDF, in addition to the coordinate transfor-
mation predicted by the ABCD law in (15). As demonstrated
in [101], the output WDF of an aberrated optical system is
obtained by applying an exponential differential operator to
the WDF of the same optical system in the absence of aber-
rations, the first term of the operator predicting the coordi-
nate transformation of the unaberrated WDF while the sec-
ond term predicts the shape distortion.

In many applications the overall effect of aberrations
can be quantified by the changes in Q. For a Gaussian in-
cident field, for example, the effect of spherical aberrations
can be calculated analytically [102]; in the two-dimensional
case, spherical aberrations always deteriorate the beam qual-
ity if the incident field distribution is real. On the contrary, a
Gaussian aperture always improves the beam quality param-
eter for one-dimensional partially coherent Gaussian-Schell
beams since it reduces the beamwidth (the far-field diver-
gence can be enlarged or decreased depending on the posi-
tion of the aperture with respect to the waist plane) [103].

The WDF can also be used to express the intensity distri-
bution along different paths in the image space of an optical
system [104], and can hence be used for an efficient analysis
of the performance of the imaging system in the presence of
spherical aberrations. Moreover, the WDF is also useful for
the design of pupil filters that would generate specific axial
responses in the presence of spherical aberrations [105]. The
WDF of the desired pupil filters is obtained through tomog-
raphy from the desired axial irradiance distributions, and the
pupil filter is subsequently determined from its WDF.

Due to the simplicity of the ABCD transformation law
of the WDF through first-order optical system, it is easier to
study optical systems using the WDF approach than to com-
pute the field evolution through such systems. And this ap-
proach can also be used for polychromatic light beams, as
long as each frequency component is treated separately. This
is the reason why it is desirable to employ the WDF approach
to follow the propagation of polychromatic coherent fields
through a system designed to achromatize Fresnel diffraction
patterns, for example, [106]. The residual chromatic aberra-
tions can be obtained as well using this approach to achro-
matic white-light self-imaging.

The propagation of partially coherent fields through
apertures is another subject that can be linked to the WDF.
More precisely, the angular spectrum of the cross-spectral
density of the partially coherent field at an observation plane
is a WDF that depends on the path vectors between the aper-
ture and the observation plane [107]. The complex degree of
spatial coherence acts as a weighting factor for the contribu-
tion of aperture radiator pairs to the WDF at each position
in the observation plane.



1528 EURASIP Journal on Applied Signal Processing

When pulses are launched into single-mode fibers, t̄ and
ω̄ represent the mean arrival time and the mean frequency
of the pulse, respectively, the squared temporal and spectral
pulse widths being determined by (t − t̄)2 and (ω− ω̄)2, re-
spectively, [108]. Moreover, the transmission capacity of a
fiber at a z = const. plane can be defined as the inverse of the

pulse width at that plane, that is, as N(z) = ((t − t̄)2|z
)−1/2

.
At propagation through dispersive fibers with a second-
order dispersion coefficient, the beam quality parameter Q =
(t − t̄)2 (ω− ω̄)2 − ((t − t̄)(ω− ω̄))2 remains constant and
the moments of the time and frequency coordinates trans-
form according to (18), whereas for fibers with third-order
dispersion terms, Q is a second-order polynomial in the
fiber’s length z; the evolution of the transmission capacities
of the fibers in the two cases can be calculated analytically
[108].

The study of active devices, in particular lasers, can also
benefit from the computation of moments of the field distri-
bution and of the beam quality parameter. For example, the
beam quality parameter and the second-order moments for
the fields emitted by heterojunction monomode diode lasers
with very thin active layers can be calculated analytically and
can be related to physical constants that characterize the laser
device [109]. These parameters of the emitted field can then
be used to design first-order optical systems that can trans-
form the field emitted by monomode diode lasers into a cir-
cular field distribution at a desired plane. (This transforma-
tion can only be achieved at some planes since the emitted
field has different degrees of global coherence on each trans-
verse axis.) An efficient coupling of such laser beams into
circularly symmetric optical fibers, for example, require thus
the introduction of precisely designed first-order optical sys-
tems between the laser and the fiber’s end.

The WDF was also applied by Gase [110] to the design
of multimode laser resonators consisting of two mirrors and
a laser rod between them, the laser rod acting as a conver-
gence lens due to the temperature gradient. TheABCD trans-
formation law of the WDF and of its moments was used to
match the radius of the laser beam, considered as an isotropic
Gaussian-Schell beam, to the free-rod diameter, this condi-
tion describing the stability of the resonator; note that the
radius of the laser beam depends on the beam quality param-
eter. The focusing performances of multimode laser beams as
well as the disturbance effect of an aperture diaphragm were
also treated with the WDF formalism.

Holograms can also be related to the WDF. A hologram
is an interference pattern recorded by the superposition of
the signal ϕs(r) and the reference beam ϕr(r), the signal
wavefront being recovered by reading the hologram, that is,
by illuminating it with a replica of the reference signal. It
can be demonstrated that the interference pattern of a holo-
gram is identical to the partial integral over k of the inter-
ference term (or cross-term) Wϕsϕr (r, k) of the field distri-
bution ϕs(r) + ϕr(r) obtained by superposing the signal and
reference beams [111]. This cross-term in the WDF has a
strongly oscillating behavior and therefore has been called
“the smile function” of the superposition state. Note that

once a hologram is recorded it is possible to read the infor-
mation carried by it by measuring the WDF of the hologram
without the need to employ a replica of the reference beam
in order to recover the signal wavefront. This fact has been
used successfully to extract the location of three-dimensional
objects from inline holograms without reconstructing the
three-dimensional field [112]. The procedure works if the
concentration of particles in inline holograms is not too
high, since otherwise the cross-terms in the WDF may inter-
fere with the auto-terms and the interpretation of the WDF
becomes extremely difficult.

Another effect that can be analyzed with the WDF is the
moiré pattern, which is an undesired feature of pixelated dis-
plays that originates from undersampling and which is en-
countered in image processing, topography, Talbot interfer-
ometry, and submicrometer alignment methods. The multi-
plicative moiré patterns with well-defined local frequencies,
resulting from the superposition of nonperiodic masks, for
example, can be analyzed disregarding the cross-terms in the
WDF of the superposed masks [113], but the cross-terms
must be accounted for in interferometric applications. The
WDF interpretation of moiré patterns provides an intuitive
insight into the information stored in the phase modulation
of nonperiodic moiré fringes.

Optical set-ups that shape ultrashort pulses, for exam-
ple, can only be characterized by a WDF defined on a spatio-
temporal phase space. A typical set-up of this kind consists
of a grating that spatially separates the different frequency
components of an ultrashort pulse, followed by a collimat-
ing lens, a mask that modifies in a desired manner each
spectral component, and another lens that focuses the colli-
mated beam onto a subsequent grating, which superimposes
spatially the diverse spectral components. Each of these de-
vices, with the exception of the mask, can be described by a
real symplectic S matrix such that the evolution of the WDF
through the set-up can be described in a much simpler way
than the evolution of the spatially- and frequency-dependent
field distribution. As mentioned before, a spatio-temporal
phase space is needed since the grating couples the spatial
and temporal features of the pulse. The effect of the mask
with a transmission function t(u) on the incident field dis-
tribution ϕin(u), described as ϕout(u) = t(u)ϕin(u), corre-
sponds to a change of the WDF given by (see also [12])

Wϕout (u, v) = (2π)−n/2
∫
Wϕin (u, v′)Wt(u, v − v′)dv′. (23)

The convolution in the v coordinate describes the action of
any filtering device in u, a symmetrical effect, that is, a con-
volution of the WDF in u, occurring for any filtering action
in the v domain. The WDF treatment of the pulse shaper is
detailed in [114].

Another optical system that has been studied with the
spatio-temporal WDF is a Lukosz multiplexer with moving
gratings, which sends a one-dimensional signal through a
finite-width aperture by segmenting it into parts separated
by small differences in wavelengths, and then reconstructs
the signal [115]. More precisely, the multiplexer consists of



Wigner Distribution Function in Signal Processing 1529

a moving grating, a Fourier transforming system, the finite-
width aperture, another Fourier transforming system, and
a counterpropagating grating. Since a Fourier-transforming
system formed from a lens and free spaces is described by an
ABCD matrix and the action of the finite-width aperture can
be seen as that of a filtering device, a WDF approach to the
analysis of the multiplexer would be justified if the moving
grating could be described easily in phase space. (Note that,
unlike in the beam shaper the grating is illuminated with an
extended object.) Fortunately, such a simple description ex-
ists: the WDF Win(x, kx; λ) of a one-dimensional input sig-
nal of wavelength λ, ϕ(x, λ) is multiplied by the grating and
transformed into

Wout
(
x, kx; λ

) =∑
n

Wn(x)Win

(
x, kx − nπ

Λ
; λ
)

, (24)

where Λ is the grating period and Wn(x) is the intensity of
each copy, which is directly related to the shape of the grating.
A moving grating viewed with optical sensors that integrate
over time should be represented in phase space by the same
expression as in (24), but the coefficients Wn(x) become now
time dependent and hence should be averaged over time.
Other optical set-ups analyzed with spatio-temporal WDFs
include a white-light spatial Fourier transformer, a rotated
zone plate [116], and a grating compressor for optical pulses
consisting of two parallel diffraction gratings separated by a
free space region [117].

One of the most recently emerged applications of tempo-
ral phase space distribution functions is the synthesis [118]
or reconstruction [119] of periodic grating profiles, in partic-
ular of fiber Bragg gratings. Such devices can function, for ex-
ample, as wavelength-selective components, dispersion com-
pensators, or mode converters. The problem is to reconstruct
or synthesize the refractive index profile from the measured
or desired values of the complex field reflection coefficient
r̄(ω) or the reflection impulse response r(t); these two func-
tions are related by a Fourier transform. Once one of these
is known, it is easy to compute the WDF but the next step,
that is, the finding of the refractive index profile, is generally
difficult due to the presence of cross-terms in the WDF of a
multicomponent signal. These cross-terms, which reflect the
correlations between pairs of auto-terms, have larger ampli-
tudes than the auto-terms and are situated in the middle (in
both temporal and frequency coordinates) between the cor-
responding auto-terms. It is even possible that cross-terms
that connect pairs of auto-terms overlap with other auto-
terms, the resulting WDF becoming indeed very difficult to
interpret. So, for fiber grating reconstruction or synthesis,
the WDF is not the best choice: the spectrogram, for exam-
ple, or the Choi-Williams distribution [4] are better suited
since they are not plagued by the presence of cross-terms. On
the other hand, the resolution limitation of the spectrogram
technique imposed by the choice of an appropriate window
function is always worse than that achieved with the WDF
approach; a suitable compromise is then to use the cross-
term-free spectrogram as a mask over the WDF and so to

reduce the unwanted cross-terms of the latter. Our point here
is that the WDF is not always the best suited phase space dis-
tribution, although it satisfies a number of attractive proper-
ties that are not shared by other distribution functions (see,
e.g., [1]).

Not only the refractive index profile of fiber gratings can
be recovered using the WDF, but also this approach works
well for the recovery of spatial nonperiodic profiles of the
refractive index of single- or multimoded guided structures.
The refractive index profile reconstruction can be achieved
by solving a linear system of equations that involve mo-
ments of the gradients along r and k of the measured or
desired WDF. The procedure works for either longitudinally
constant [120] or longitudinally variant but continuous re-
fractive index profiles [121], and for different propagating
modes in the optical structure. If the WDF gradients ∇rW
and∇kW are approximated with [W(r+dr, k)−W(r, k)]/dr
and [W(r, k + dk) −W(r, k)]/dk, respectively, the recovery
precision depends on the steps in r and k of the measured or
simulated WDF.

It is important to note that the usefulness of the WDF for
the characterization of optical systems is not limited to the
case when these are of the first-order type, with an eventual
inclusion of aberration effects. The effect of complex inte-
grated structures on light propagation is usually estimated
with the beam-propagation method, which implies the di-
vision of the guiding structure into a number of steps such
that in each step the refractive index profile can be decom-
posed in longitudinally- and transverse-varying parts. The
computation of the output field is carried out by applying
in each step different operators to the field distribution and
to its Fourier transform, which implies that at each step a
computation of the direct and the inverse Fourier transform
of the field is required [122]. The succession of these opera-
tions can be replaced with a much simpler WDF formulation
of the beam-propagation method, which has the advantage
that it depends on both spatial and spatial frequency coordi-
nates and thus the operators at each step can be applied di-
rectly on the WDF, the successive time-consuming direct and
indirect Fourier transforms being no longer needed [123].
The operators that must be applied on the WDF are sim-
ple differential operators; it is even possible to obtain in the
first-order approximation an analytic formula for the WDF
transformation through some integrated structures, such as a
linear taper with a transverse parabolic refractive index pro-
file.

7. APPLICATIONS TO THE CALCULATION
OF THE COUPLING COEFFICIENT

The overlap or Moyal relation of the WDF (property (vii) of
the WDF) can be used to express the coupling efficiency of
light distributions to a region of space with different refrac-
tive or dispersive properties. The optimization of the cou-
pling efficiency between different optical systems is an issue
of enormous practical importance in any signal processing
and signal transmission application.
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A definition of the coupling coefficient between a light
source and a waveguide, for example, in terms of spatial
phase space distribution functions is more appropriate for
the analysis of the coupling problem than a definition in
terms of spatial or spatial frequency distributions since the
numerical aperture (an angular parameter) is as important
as the dimensions of the waveguide core (a spatial parame-
ter) in the characterization of waveguide field propagation.
The expression of the coupling efficiency between a coherent
source, with field distribution ϕs(r) and WDF Ws(r, k), and
a waveguide mode ϕw(r) with a WDF Ww(r, k) is given by
[124]

η = (2π)n
∫
Ws(r, k)Ww(r, k)drdk∫

Ws(r, k)drdk
∫
Ww(r, k)drdk

, (25)

where the integrals extend over the illumination plane. The
behavior of the coupling coefficient in (25), which is a
real parameter, with spatial and angular misalignments be-
tween the source and the waveguide mode can be intuitively
grasped from the graphical representations of Ws(r, k) and
Ww(r, k) (see [124, 125] for more details). Note that in phase
space, the spatial and angular misalignments correspond to
displacements of the respective WDF along the r and k axes,
respectively. The connection between the value of the cou-
pling coefficient and the graphic representations of the WDF
of a quantum-well modulator and the first four modes of a
planar optical waveguide, for example, has been discussed in
[126]. According to (25), coupling is achieved if the WDFs
(or the fields) of the source and waveguide overlap.

For partially coherent light distributions, the expression
of the coupling coefficient in (25) becomes [127]

η =
∣∣ ∫ Wsw(r, k)drdk

∣∣2∫
Ws(r, k)drdk

∫
Ww(r, k)drdk

, (26)

where

Wsw(r, k)

= (2π)−n/2
∫ 〈

ϕs

(
r +

r′

2

)
ϕ∗w

(
r− r′

2

)�
exp

(
ir′kT)dr′

= (2π)−n/2
∫
Γsw

(
r +

r′

2
, r− r′

2

)
exp

(
ir′kT)dr′

(27)

while the coupling coefficient between a coherent multi-
mode light source described by the field distribution ϕs(r) =∑

n anϕ
n
s (r) and a superposition ϕw(r) = ∑

m bmϕm
w (r) of

waveguides modes ϕm
w (r) can be expressed as [127]

η =
∑

ala
∗
k bnb

∗
mη

lknm. (28)

Here

ηlknm = (2π)n
∫
Wlk

s (r, k)Wnm
w (r, k)drdk∫

Ws(r, k)drdk
∫
Ww(r, k)drdk

(29)

with

Wlk
i (r, k)

= (2π)−n/2
∫
ϕl
i

(
r +

r′

2

)
ϕk∗
i

(
r− r′

2

)
exp

(
ir′kT)dr′,

(30)

i = s,w, Ws(r, k) and Ww(r, k) having the same significance
as in (25).

8. CONCLUSIONS

The paper introduces the WDF and its most important prop-
erties as a mathematical tool in several areas of signal pro-
cessing that include signal retrieval, signal recognition, char-
acterization of signals and optical systems, and coupling co-
efficient estimation in phase space. The mathematical for-
malism can be applied to either spatial, temporal, or spatio-
temporal phase spaces, to coherent, partially coherent or dig-
ital signals, offering a unified view for the analysis of field
propagation through various optical systems. In many cases
the WDF approach to the study of field propagation and cou-
pling is very much simplified due to its desirable properties
and due to the extremely simple propagation law (see (15))
through first-order optical systems. This propagation law can
be employed to characterize optical systems described by
symplectic matrices, active devices such as lasers, or to es-
timate the value of aberration effects. The moments of the
WDF, subject also to a very simple evolution law expressed
by (18), are related to spatial, temporal, angular, and/or fre-
quency characteristics of the field distribution and can be ei-
ther directly measurable or can be calculated from the exper-
imentally obtained WDF. These moments and/or their in-
variant combinations (such as the beam quality factor) are
quantitative parameters that allow the comparison of beams
with totally different shapes or wavefronts. The WDF is thus
a universal tool, in the sense that it can be applied to (almost)
any field distribution and an intuitive and simple representa-
tion of field evolution (due to its ABCD law of transforma-
tion) and coupling (because it characterizes simultaneously
the fields’ overlap in both spatial and spatial frequency do-
mains). The continuous growth of the number of applica-
tions of the WDF is hence predictable, desirable, and enjoy-
able.
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such systems that are needed for the determination of these moments is derived.
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1. INTRODUCTION

After the introduction of the Wigner distribution (WD) [1]
for the description of coherent and partially coherent opti-
cal fields [2], it became an important tool for optical sig-
nal/image analysis and beam characterization [3, 4, 5]. The
WD completely describes the complex amplitude of a coher-
ent optical field (up to a constant phase factor) or the mu-
tual coherence function of a partially coherent field. As the
WD of a two-dimensional optical field is a function of four
variables, it is difficult to analyze. Therefore, the optical field
is often represented not by the WD itself, but by its global
moments. Beam characterization based on the second-order
moments of the WD thus became the basis of an Interna-
tional Organization for Standardization standard [6].

Some of the WD moments can directly be determined
from measurements of the intensity distributions in the im-
age plane or the Fourier plane, but most of the moments can-
not be determined in such an easy way. In order to calcu-
late such moments, additional information is required. Since
first-order optical systems [7]—also called ABCD systems—
produce affine transformations of the WD in phase space, the
intensity distributions measured at the output of such sys-
tems can provide such additional information. The applica-
tion of ABCD systems for the measurements of the second-

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

order WD moments has been reported in several publica-
tions [8, 9, 10, 11, 12, 13].

It is the aim of this paper to show how all global WD mo-
ments can be measured as intensity moments only. We show
that not only the second-order moments, but also all other
moments of the four-dimensional WD can be obtained from
measurements of only intensity distributions in an appropri-
ate number of (generally anamorphic) separable first-order
optical systems.

2. WIGNER DISTRIBUTION

Let partially coherent light be described by a temporally sta-
tionary stochastic process f (x, y; t); as far as the time de-
pendence is concerned, the ensemble average of the product
f (x1, y1; t1) f ∗(x2, y2; t2), where the asterisk denotes complex
conjugation, is then only a function of the time difference
t1 − t2:

E
{
f
(
x1, y1; t1

)
f ∗
(
x2, y2; t2

)} = γ
(
x1, x2; y1, y2; t1 − t2

)
. (1)

The function γ(x1, x2; y1, y2; τ) is known as the mutual co-
herence function [14, 15, 16, 17] of the stochastic process
f (x, y; t). The mutual power spectrum [16, 17] or cross-
spectral density function [18] Γ(x1, x2; y1, y2;ω) is defined
as the temporal Fourier transform of the mutual coherence
function:

Γ
(
x1, x2; y1, y2;ω

)
=
∫∞
−∞

γ
(
x1, x2; y1, y2; τ

)
exp( jωτ)dτ.

(2)
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For x1 = x2 = x, y1 = y2 = y, the cross-spectral
density function reduces to the (auto) power spectrum
Γ(x, x; y, y;ω), which represents the intensity distribution of
the light for the temporal frequency ω. Since in the present
discussion the explicit temporal-frequency dependence is of
no importance, we will, for the sake of convenience, omit the
temporal-frequency variable ω from the formulas in the re-
mainder of the paper.

The Wigner distribution of partially coherent light is de-
fined in terms of the cross-spectral density function by

W(x,u; y, v)

=
∫∞
−∞

∫∞
−∞

Γ
(
x +

1
2
x′, x − 1

2
x′; y +

1
2
y′, y − 1

2
y′
)

× exp
[− j2π(ux′ + vy′)

]
dx′ dy′.

(3)

A distribution function according to definition (3) was first
introduced in optics by Walther [19, 20], who called it the

generalized radiance. The WD W(x,u; y, v) represents par-
tially coherent light in a combined space/spatial-frequency
domain, the so-called phase space, where u is the spatial-
frequency variable associated to the space variable x, and v
the spatial-frequency variable associated to the space vari-
able y.

In this paper we consider the normalized moments of the
WD, where the normalization is with respect to the total en-
ergy E of the signal:

E =
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

W(x,u; y, v)dx dudy dv

=
∫∞
−∞

∫∞
−∞

Γ(x, x; y, y)dx dy.

(4)

These normalized moments µpqrs of the WD are thus defined
by

µpqrsE =
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

W(x,u; y, v) xpuq yrvsdx dudy dv (p, q, r, s ≥ 0)

= 1
(4π j)q+s

∫∞
−∞

∫∞
−∞

xp yr
(

∂

∂x1
− ∂

∂x2

)q( ∂

∂y1
− ∂

∂y2

)s
Γ
(
x1, x2; y1, y2

)∣∣∣∣
x1=x2=x,y1=y2=y

dx dy.

(5)

Note that for q = s = 0 we have intensity moments, which
can easily be measured:

µp0r0E

=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

W(x,u; y, v)

× xp yrdx dudy dv (p, r ≥ 0)

=
∫∞
−∞

∫∞
−∞

xp yrΓ(x, x; y, y)dx dy.

(6)

The WD moments µpqrs provide valuable tools for the
characterization of optical beams, see, for instance [21].
First-order moments yield the position of the beam (µ1000

and µ0010) and its direction (µ0100 and µ0001). Second-order
moments give information about the spatial width of the
beam (the shape µ2000 and µ0020 of the spatial ellipse and its
orientation µ1010) and the angular width in which the beam is
radiating (the shape µ0200 and µ0002 of the spatial-frequency
ellipse and its orientation µ0101); moreover, they provide in-
formation about its curvature (µ1100 and µ0011) and its twist
(µ1001 and µ0110). Many important beam characterizers, like
the overall beam quality [12]

(
µ2000µ0200 − µ2

1100

)
+
(
µ0020µ0002 − µ2

0011

)
+ 2
(
µ1010µ0101 − µ1001µ0110

)
,

(7)

are based on second-order moments. Higher-order moments
are used, for instance, to characterize the beam’s symmetry
and its sharpness [21].

3. SEPARABLE FIRST-ORDER OPTICAL SYSTEMS

It is well known that the input-output relationship be-
tween the WD Win(x,u; y, v) at the input plane and the WD
Wout(x,u; y, v) at the output plane of a separable first-order
optical system reads [3, 4, 5]

Wout(x,u; y, v)

=Win
(
dxx − bxu,−cxx + axu;dy y − byv,−cy y + ayv

)
.

(8)

The coefficients ax, bx, cx, dx and ay , by , cy , dy are the matrix
entries of the symplectic ray transformation matrix [7] that
relates the position x, y and direction u, v of an optical ray
in the input and the output plane of the first-order optical
system:



xout

yout

uout

vout


 =



ax 0 bx 0
0 ay 0 by
cx 0 dx 0
0 cy 0 dy





xin

yin

uin

vin


 . (9)



Wigner Distribution Moments in First-Order Optical Systems 1537

For separable systems, symplecticity simply reads axdx −
bxcx = 1 and aydy − bycy = 1. Note that in a first-order opti-
cal system, with such a symplectic ray transformation matrix,
the total energy E, see (4), is invariant.

As examples of first-order optical systems we mention the
following in particular:

(i) a section of free space in the paraxial approximation,
or “parabolic” system [22] (with a = d = 1, c = 0, and
b proportional to the propagation distance z),

(ii) a fractional Fourier transform system [23], or “elliptic”
system [22] (with a = d = cosα and b = −c = sinα),

(iii) a “hyperbolic” system [22] (with a = d = coshα and
b = c = sinhα).

These three systems are characterized by one parameter.
Other one-parameter first-order optical systems are

(i) a thin lens (with a = d = 1, b = 0, and c inverse pro-
portional to the focal distance),

(ii) an ideal magnifier (with a = m, d = 1/m, b = c = 0).

The latter systems however—like all systems for which the in-
put and output planes are conjugate planes—cannot be used
to determine the moments, as we will see later, because they
have the property b ≡ 0.

The normalized moments µout
pqrs of the output WD

Wout(x,u; y, v) are related to the normalized moments
µin
pqrs = µpqrs of the input WD Win(x,u; y, v) as

µout
pqrsE

=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

Wout(x,u; y, v)

× xpuq yrvs dx dudy dv

=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

Win
(
dxx − bxu,−cxx + axu;

dy y − byv,−cy y + ayv
)

× xpuq yrvs dx dudy dv

=
∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞

Win(x,u; y, v)
(
axx + bxu

)p
× (cxx + dxu

)q(
ay y + byv

)r
× (cy y + dyv

)s
dx dudy dv

= E
p∑

k=0

q∑
l=0

r∑
m=0

s∑
n=0

(
p
k

)(
q
l

)(
r
m

)(
s
n

)
a
p−k
x bkxc

l
x

× d
q−l
x ar−my bmy c

n
yd

s−n
y

× µp−k+l,q−l+k,r−m+n,s−n+m,

(10)

and for the intensity moments in particular (i.e., q = s = 0)
we have

µout
p0r0 =

p∑
k=0

r∑
m=0

(
p
k

)(
r
m

)
a
p−k
x bkxa

r−m
y bmy µp−k,k,r−m,m. (11)

The remainder of this paper is based on (11), in which
the output intensity moments µout

p0r0 are expressed in terms of
the input moments µpqrs and the system parameters ax, ay ,
bx, and by . Note that only the parameters a and b enter this
equation; the parameters c and d can be chosen freely, as long
as the symplecticity condition axdx− bxcx = aydy − bycy = 1
is satisfied.

4. RELATIONS BETWEEN INPUT AND OUTPUT
MOMENTS

4.1. First-order moments

For the first-order moments, the following two equations are
relevant:

µout
1000 = axµ1000 + bxµ0100, (12)

µout
0010 = ayµ0010 + byµ0001, (13)

which correspond to (11) with pqrs = 1000 and pqrs =
0010, respectively, and the four input moments µ1000, µ0100,
µ0010, and µ0001 can be determined by measuring the intensity
moments µout

1000 and µout
0010 in the output planes of two systems

with different values of a and b, see (12) and (13), respec-
tively.

In the case of a fractional Fourier transform system we
can choose, for instance, [24, 25], the fractional angles αx =
αy = 0 (leading to ax = ay = 1 and bx = by = 0) and
αx = αy = π/2 (leading to ax = ay = 0 and bx = by = 1), but
any other choice could be made as well, as long as it leads to
four independent equations. In the case of free space propa-
gation, we simply choose two different values of the propa-
gation distance z, corresponding to two different values of bx
and by (with ax = ay = 1, of course).

Note that the two first-order optical systems can always
be chosen such that they are isotropic, ax = ay = ai, bx =
by = bi, and so forth (i = 1, 2), with identical behavior in the
x and the y direction.

4.2. Second-order moments

For the 3 + 4 + 3 = 10 second-order moments, the following
equations are relevant:

µout
2000 = a2

xµ2000 + 2axbxµ1100 + b2
xµ0200, (14)

µout
1010 = axayµ1010 + axbyµ1001 + bxayµ0110 + bxbyµ0101, (15)

µout
0020 = a2

yµ0020 + 2aybyµ0011 + b2
yµ0002, (16)

which equations correspond to (11) with pqrs = 2000,
pqrs = 1010, and pqrs = 0020, respectively.

The three input moments µ2000, µ1100, and µ0200 can be
determined by measuring the intensity moment µout

2000 in the
output planes of three systems with different values of ax and
bx, see (14). Likewise, with the transversal coordinate x re-
placed by y, the three input moments µ0020, µ0011, and µ0002

can be determined by measuring the intensity moment µout
0020
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in the output planes of three systems with different values of
ay and by , see (15). Note that we can choose ax = ay = ai
and bx = by = bi (i = 1, 2, 3) for these three systems, in
which case we are obviously using isotropic systems.

The other four input moments µ1010, µ1001, µ0110, and
µ0101 follow from measuring the intensity moment µout

1010 in
the output planes of four different systems, see (15). How-
ever, if we would use only isotropic systems, like we could do
for (14) and (16), (15) would reduce to

µout
1010 = a2µ1010 + ab

(
µ1001 + µ0110

)
+ b2µ0101 (17)

and we can only determine the combination µ1001 + µ0110.
Hence, while three systems may be isotropic again—and, for
instance, be identical to the ones that we used when we were
dealing with (14) and (16)—at least one system should be
anamorphic.

We conclude that all ten second-order moments can be
determined from the knowledge of the output intensities of
four first-order optical systems, where one of them has to be
anamorphic. In the case of fractional Fourier transform sys-
tems we could choose, for instance [24, 25], the fractional an-
gles αx = αy = 0 (leading to ax = ay = 1 and bx = by = 0),
αx = αy = π/4 (leading to ax = ay = bx = by =

√
2/2),

αx = αy = π/2 (leading to ax = ay = 0 and bx = by = 1),
and the anamorphic combination αx = π/2π and αy = 0
(leading to ax = by = 0 and ay = bx = 1). If we decide
to determine the moments using free space propagation, we
should be aware of the fact that an anamorphic free space
system cannot be realized by mere free space, but can only
be simulated by using a proper arrangement of cylindrical
lenses.

Of course, optical schemes to determine all ten second-
order moments have been described before, see, for instance
[8, 9, 11, 12, 13], but the way to determine these moments as
presented in this paper is based on a general scheme that can
also be used for the determination of arbitrary higher-order
moments.

4.3. Higher-order moments

For higher-order moments we can proceed analogously. For
the 4 + 6 + 6 + 4 = 20 third-order moments, the following
equations are relevant:

µout
3000 = a3

xµ3000 + 3a2
xbxµ2100 + 3axb2

xµ1200 + b3
xµ0300, (18)

µout
2010 = a2

xayµ2010 + a2
xbyµ2001 + 2axbxayµ1110

+ 2axbxbyµ1101 + b2
xayµ0210 + b2

xbyµ0201,
(19)

µout
1020 = axa

2
yµ1020 + 2axaybyµ1011 + axb

2
yµ1002

+ bxa
2
yµ0120 + 2bxaybyµ0111 + bxb

2
yµ0102,

(20)

µout
0030 = a3

yµ0030 + 3a2
ybyµ0021 + 3ayb2

yµ0012 + b3
yµ0003. (21)

Note again that these equations correspond to (11) with
pqrs = 3000, pqrs = 2010, pqrs = 1020, and pqrs = 0030,
respectively. The 20 third-order moments can be determined
from the knowledge of the output intensities of six first-order
optical systems, where two of them have to be anamorphic.

We consider in more detail how the third-order moments
could be determined.

(i) The four input moments µ3000, µ2100, µ1200, and µ0300

can be determined by measuring the intensity moment
µout

3000,i (i = 1, 2, 3, 4) in the output planes of four sys-
tems with different values of ax and bx, see (18). Like-
wise, with the transversal coordinate x replaced by y,
the four input moments µ0030, µ0021, µ0012, and µ0003

can be determined by measuring the intensity moment
µout

0030,i (i = 1, 2, 3, 4) in the output planes of four sys-
tems with different values of ay and by , see (21). Note
that we can choose ax = ay = ai and bx = by = bi
(i = 1, 2, 3, 4) for these four different systems, in which
case we are obviously using isotropic systems. This
then leads to the set of four equations

a3
i µ3000 + 3a2

i biµ2100 + 3aib2
i µ1200 + b3

i µ0300

= µout
3000,i (i = 1, 2, 3, 4)

(22)

based on (18) and a similar set of four equations

a3
i µ0030 + 3a2

i biµ0021 + 3aib2
i µ0012 + b3

i µ0003

= µout
0030,i (i = 1, 2, 3, 4),

(23)

based on (21). Possible system choices are, for instance,
four sections of free space, with ai = 1 and bi pro-
portional to the four different propagation distances
zi (i = 1, 2, 3, 4); or four isotropic fractional Fourier
transform systems with ai = cosαi and bi = sinαi, and
αi (i = 1, 2, 3, 4) four different fractional angles.

(ii) Using the same four isotropic systems as above, the two
input moments µ2010 and µ0201, together with the two
moment combinations µ2001 +2µ1110 and 2µ1101 +µ0210,
follow from measuring the intensity moment µout

2010,i
(i = 1, 2, 3, 4) in the output planes of these four sys-
tems, see (19), while the two input moments µ1020 and
µ0102, together with the two moment combinations
2µ1011 +µ0120 and µ1002 +2µ0111, follow from measuring
the intensity moment µout

1020,i (i = 1, 2, 3, 4), see (20).
This leads to the set of four equations

a3
i µ2010 + a2

i bi
(
µ2001 + 2µ1110

)
+ aib

2
i

(
2µ1101 + µ0210

)
+ b3

i µ0201 = µout
2010,i (i = 1, 2, 3, 4)

(24)

based on (19) and a similar set of four equations

a3
i µ1020 + a2

i bi
(
2µ1011 + µ0120

)
+ aib

2
i

(
µ1002 + 2µ0111

)
+ b3

i µ0102 = µout
1020,i (i = 1, 2, 3, 4)

(25)

based on (20).
(iii) Twelve of the 20 input moments (together with four

moment combinations) can thus be determined by us-
ing four isotropic systems. To determine the remaining
eight moments, we need four more equations based
on (19) and (20), for which we have to use two more
systems (labeled i = 5 and i = 6), which should now
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Table 1: The number of nth-order moments N , and the required
number of first-order optical systems to determine these N mo-
ments, given as a function of n.

n Number of nth-order moments N Nt Na

0 1 1 1 0
1 2 + 2 4 2 0
2 3 + 4 + 3 10 4 1
3 4 + 6 + 6 + 4 20 6 2
4 5 + 8 + 9 + 8 + 5 35 9 4
5 6 + 10 + 12 + 12 + 10 + 6 56 12 6
6 7 + 12 + 15 + 16 + 15 + 12 + 7 84 16 9
...

...
...

...
...

be anamorphic. Among the many possibilities, an easy
choice would be a system with ax = by = 0, bx �= 0,
ay �= 0, leading to

b2
xayµ0210 = µout

2010,5,

bxa
2
yµ0120 = µout

1020,5,
(26)

and a system with bx = ay = 0, ax �= 0, by �= 0, leading
to

a2
xbyµ2001 = µout

2010,6,

axb
2
yµ1002 = µout

1020,6.
(27)

The former system may be an anamorphic fractional
Fourier transform system with fractional angles αx =
π/2 and αy = 0 (and hence ax = by = 0 and bx = ay =
1), while the latter may be an anamorphic fractional
Fourier transform system with αx = 0 and αy = π/2
(and hence bx = ay = 0 and by = ax = 1).

Altogether we have thus constructed 20 equations for the
20 third-order moments, using a total of six first-order sys-
tems: four isotropic systems where we measure the 16 out-
put intensity moments µ3000,i, µ0030,i, µ2010,i, and µ1020,i (i =
1, 2, 3, 4), and two anamorphic systems where we measure
the four output intensity moments µout

2010,i and µout
1020,i (i =

5, 6).
For the 5 + 8 + 9 + 8 + 5 = 35 fourth-order moments,

the relevant equations follow from (11) with pqrs = 4000,
pqrs = 3010, pqrs = 2020, pqrs = 1030, and pqrs = 0040,
respectively. The 35 fourth-order moments can be deter-
mined from the knowledge of the output intensities of nine
first-order optical systems spectra, where four of them have
to be anamorphic. Constructing a measuring scheme along
the lines described above for the second-order case and the
third-order case, is rather straightforward.

To find the number of nth-order moments N , and the
total number of first-order optical systems Nt (with Na the
number of anamorphic ones) that we need to determine
these N moments, use can be made of the triangle presented
in Table 1, which can easily be extended to higher order.

Note that N (the number of nth-order moments) is equal
to the sum of the values in the nth row of the triangle, N =
(n+1)(n+2)(n+3)/6; that Nt (the total number of first-order

optical systems) is equal to the highest value that appears in
the nth row of the triangle, Nt = (n+ 2)2/4 for n = even, and
Nt = (n+3)(n+1)/4 for n = odd; that the number of isotropic
systems is n + 1; and that Na (the number of anamorphic
systems) follows from Na = Nt − (n + 1).

5. CONCLUSIONS

We have shown how all global WD moments of arbitrary
order can be measured as intensity moments in the output
planes of an appropriate number of first-order optical sys-
tems (separable, but generally anamorphic ones), and we
have derived the minimum number of such systems that are
needed for the determination of these moments. The results
followed directly from the general relationship (11) that ex-
presses the intensity moments in the output plane of a sep-
arable first-order optical system in terms of the moments in
the input plane and the system parameters ax, bx, cx, dx and
ay , by , cy , dy .
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Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of
these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characteri-
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interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.
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1. INTRODUCTION

Ultrashort optical pulses are used in areas of science and
engineering as diverse as spectroscopy, medical research,
plasma physics, quantum optics, and optical telecommuni-
cations. In optical telecommunications, information is en-
coded in the amplitude and/or phase of an optical wave [1].
While information encoding in digital telecommunications
is based on a finite number of values of a physical quantity
(e.g., the presence or absence of energy in a given bit slot), the
ability to measure in detail the waveform of the optical wave
itself is crucial for optimizing the properties of the systems
that generate the signal, and understanding the linear and
nonlinear properties of the systems through which the pulses
propagate. This information is critical in developing strate-
gies to overcome the current limitations of current opti-
cal networks. For example, dispersion management compen-
sates for the chromatic dispersion induced by linear propaga-
tion and can also be used to mitigate nonlinear effects. Sim-
ilarly, the phase distortion imposed on a pulse by the mod-
ulators used in carving the pulse out of a cw- or quasi-cw
source can impact the propagation of the pulse. Finally, mea-
surements of the electric field can be used to characterize the
linear or nonlinear properties of a device. There are various
approaches for temporal waveform measurements. We only
consider here techniques that provide self-referencing char-
acterization of an unknown pulse or a train of unknown but

identical pulses, that is, that do not use a well-characterized
pulse as a reference. While test-plus-reference techniques,
such as spectral interferometry [2, 3, 4], can be easier to im-
plement in some cases, they require a well-characterized ref-
erence pulse mutually coherent with the pulse under test. Al-
though this can be difficult to achieve over long distances,
they have been used to characterize pulses in the telecommu-
nication environment [5]. We will not deal either with sam-
pling techniques. These techniques can provide samples of
the temporal intensity of a source by fast photodetection and
electronics or by nonlinear interaction with a short sampling
pulse (nonlinear optical sampling) [6]. The technique of lin-
ear optical sampling [7] is also sensitive to the electric field of
the source (i.e., it can measure samples of the intensity and
phase of the source under test), and can therefore be used
to measure constellation diagrams [8]. These techniques are
particularly useful when dealing with a data-encoded opti-
cal source because of the randomness of the data stream, but
they constitute a class of their own that is beyond the scope of
this paper. The concepts presented here apply generally to the
characterization of the temporal electric field of short optical
pulses, although the details of experimental implementations
are strongly dependent upon the domain of application.

Since ultrafast optical pulses are faster than the fastest
electronic detection devices, they present a considerable chal-
lenge for measurement. An important additional limitation
is that photodetectors respond to the intensity of the pulse,
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so their output contains no information about the phase of
the incident radiation. To overcome these limitations, a com-
bination of ancillary filters can be used. The data are sim-
ply the photocurrent recorded by a time-integrating detector
as a function of the parameters of the filters. These might
be, for example, the passband frequency for a spectrometer
(a time-stationary linear filter), the modulation index for a
phase modulator (a time-nonstationary linear filter), or the
relative delay between the pulse under test and the mod-
ulation induced by an electroabsorption modulator (also a
time-nonstationary linear filter).

There are a number of quite general strategies for char-
acterizing the electric field of an optical pulse using such fil-
ters. These belong to one of three categories: spectrographic,
tomographic, or interferometric. The categories are distin-
guished by the procedure required for reconstructing the am-
plitude and the phase of the field from the recorded data
[9, 10]. Since the analytic signal of the field is a complex
function of one real variable, time, with finite support, the
data must contain a finite set of complex numbers sampling
the field at a finite set of time points, or equivalently a finite
set of frequency points. It can sometimes be fruitful, how-
ever, to reconstruct pulses by sampling a time-frequency rep-
resentation of the pulse (or its equivalent correlation func-
tion). In this case a two-dimensional set of data is obtained,
from which an inversion algorithm reconstructs an estimate
of the field. This is typically the case for spectrography, which
makes use of a time-frequency distribution, and requires so-
phisticated iterative data inversion algorithms to reconstruct
the field. Tomography also requires a large data set, in the
form of a large number of modulated pulse spectra, but the
inversion is direct (noniterative). Interferometry, in contrast,
measures only a one-dimensional data set and uses direct
data inversion to reconstruct the field.

In this paper, we provide examples of each of these
methods that are relevant to optical telecommunications. In
Section 2, we first discuss the representation of the electric
field of a pulse or train of pulses, and how the various mea-
surement techniques sample the field. Then, in Section 3, we
illustrate both the data acquisition and inversion for each
method.

2. REPRESENTING LIGHT PULSES

The fundamental quantity describing an isolated, individual
pulse of light is the real electric field. This is a function of
time and space, or equivalently frequency and wavevector.
The spatial dependence of the field is often assumed uniform.
This assumption is valid for optical fiber-based telecommu-
nications if the field occupies the lowest-order mode of the
fiber. Therefore in this paper, we concentrate on determining
the time dependence of the electric field.

In practice, it is often difficult to characterize a single
pulse, and one deals with a train of pulses instead of a single
pulse. One must be careful in specifying a field for such an
ensemble. If all of the pulses in the train are identical, the en-
semble is deemed coherent, and the underlying electric field

of an individual remains the quantity of interest. If, on the
other hand, the electric field is stochastic, fluctuating from
pulse to pulse, the ensemble is said to be partially coherent.
When this is the case, the amplitude and phase of the electric
field of an individual pulse brings little information on the
train of pulses, and pulse characterization involves measure-
ments of the statistical properties of the ensemble, for exam-
ple via the two-time or two-frequency correlation function.
We note that a data-modulated train of pulses is not coher-
ent if the data modulation is random (which is the case for a
deployed communication system).

2.1. Describing an optical pulse by its analytic signal

The real electric field, ε(t), underlying an optical pulse is
twice the real part of its analytic signal E(t) : ε(t) = 2 ×
Re[E(t)]. The analytic signal is the single-sided inverse
Fourier transform of the Fourier transform of the field,

E(t) = 1√
2π

∫∞
0
dω ε̃(ω) exp[−iωt], (1)

where

ε̃(ω) = 1√
2π

∫∞
−∞

dt ε(t) exp[iωt]. (2)

The electric field is considered to have compact support in
the time domain, and is further assumed to have no spectral
component atω = 0 so ε̃(0) = 0 (since a pulse propagating in
a charge-free region of space has no dc spectral component,
the electric field must have zero area). The analytic signal is
complex and therefore can be expressed uniquely in terms of
an amplitude and phase:

E(t) = ∣∣E(t)
∣∣ exp

[
iφt(t)

]
exp

[
iφ0
]

exp
[− iω0t

]
, (3)

where |E(t)| is the time-dependent envelope, ω0 is the carrier
frequency (usually chosen near the center of the pulse spec-
trum), φt(t) is the time-dependent phase, and φ0 a constant.
The square of the envelope, |E(t)|2, is the time-dependent
intensity of the pulse which could be measured by a detec-
tor of sufficient bandwidth. The time-dependent phase ac-
counts for the occurrence of different frequencies at different
times, and the instantaneous frequency is usually defined as
−∂φt/∂t. As an example, Figure 1 shows the temporal inten-
sity and phase of a pair of chirped Gaussian pulses. The time-
dependent phase structure is indicative of a variation of the
instantaneous frequency across the pulse.

The frequency representation of the analytic signal is the
Fourier transform of E(t),

Ẽ(ω) = ∣∣Ẽ(ω)
∣∣ · exp

[
iφω(ω)

]
= 1√

2π

∫∞
−∞

dt E(t) exp[iωt]

=
ε̃(ω), ω > 0,

0, ω ≤ 0.

(4)
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Figure 1: Intensity and phase (resp., continuous and dashed line) of a pair of chirped Gaussian pulses in (a) the temporal domain and (b)
the spectral domain.

Here |Ẽ(ω)| is the spectral amplitude and φω(ω) is the spec-
tral phase. The square of the spectral amplitude, |Ẽ(ω)|2, is
the spectral intensity. Strictly speaking this quantity is the
spectral flux—the quantity measured in the familiar way by
means of a spectrometer followed by a photodetector. The
spectral phase describes the relative phases between each of
the frequencies, and the group delay for frequency ω is usu-
ally defined as ∂φω/∂ω.

The sampling requirement for the reconstruction of the
electric field is given by the Whittaker-Shannon theorem
[11], which asserts that if the field has compact support in the
time domain over a range ∆t, then a sampling of Ẽ(ω) at the
Nyquist frequency rate of 2π/∆t is sufficient for reconstruct-
ing the analytic signal E(t) and consequently the electric field
ε(t) exactly.

Figure 1 shows the spectral intensity and spectral phase
of the chirped pair of Gaussian pulses. The spectral fringes
have a period of the inverse of the temporal separation of the
pair of pulses. While the spectrum can reveal some properties
of the waveform, both the spectral intensity and phase must
be measured to fully characterize the electric field.

2.2. The two-time correlation function and its
phase-space representations

If a measurement relies on averaging the detected signal over
a train of pulses, then it is necessary to define the properties
of the pulses in a different way. Although it is formally quite
difficult to formulate rigorously even the simplest of con-
cepts, such as the spectrum [12], for a nonstationary field,
a simple-minded approach can be fruitful. If each pulse in
the train is an independent realization of a stochastic ensem-
ble, then the time average is equivalent to an ensemble av-
erage by definition. This enables the coherence of the train
to be defined operationally in a reasonable way. It is impor-
tant, though, to realize that the electric field amplitude and
phase of an individual pulse does not bring significant infor-
mation about the train of pulses and pulse characterization
efforts must ultimately be directed toward measurement of
the ensemble statistics.

The simplest quantity that quantifies the statistical prop-
erties of the ensemble is the nonstationary two-time field
correlation function

C
(
t1, t2

) = 〈E(t1)E∗(t2)〉, (5)

where the angle brackets indicate an average over the ensem-
ble of pulses, each of the electric fields being defined with
respect to a local time frame. With this definition of the en-
semble, we do not need to adopt procedures along the lines
of those developed by Wiener and Khintchine [13] to define
the correlation function.

C(t1, t2) provides a quantitative description of fluctua-
tions from pulse to pulse in the electric field at times t1 rela-
tive to those at times t2. This is a complete description of the
pulse ensemble so long as the fluctuations obey normal (or
Gaussian) statistics. If not, then it is the simplest of a hierar-
chy of multitime correlation functions defining the ensem-
ble. Furthermore, for a train of identical pulses, C(t1, t2) fac-
torizes into E(t1)E∗(t2) and the electric field amplitude and
phase are readily obtained.

It is frequently useful to work with a variation of the
correlation function that uses a two-dimensional space of
time and frequency—the chronocyclic phase-space. The in-
tuitive concept of chirp (i.e., time-dependent frequency in
the pulse) can be most easily seen within this space. The rela-
tionships between the two-time correlation function and the
chronocyclic (time/frequency) and frequency-domain repre-
sentations of the ensemble may be derived by rewriting (5)
in terms of a center-time coordinate, t, and a difference-time
coordinate, ∆t:

C(t,∆t) = C
(
t1, t2

)
, (6)

where t = (t1 + t2)/2 and ∆t = t1 − t2. The two-frequency
field correlation function is obtained by taking the two-
dimensional Fourier transform of the two-time correlation
function

˜̃C(∆ω,ω) = 1
2π

∫∫
dt d∆t C(t,∆t) exp

[
i(t∆ω + ∆tω)

]
. (7)
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Figure 2: Wigner function of a pulse with (a) linear chirp and (b) quadratic chirp.
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Figure 3: Wigner function of the pair of chirped Gaussian pulses when the two pulses are (a) mutually coherent and (b) mutually incoherent.

The center-frequency and difference-frequency coordinates
in (7) are given by ω = (ω1 +ω2)/2 and ∆ω = ω1−ω2, respec-
tively. The pulse ensemble may also be represented within
the chronocyclic phase spaces defined by the complimentary
variables t, ω and ∆ω, ∆t. The chronocyclic Wigner function,
W(t,ω), and ambiguity or Wigner characteristic function,
A(∆ω,∆t), provide two particularly useful descriptions of the
pulse train statistics in these spaces. The relationship between
the various representations of the correlation function has
been discussed in the context of spatially localized fields in
[14], and in the context of signal analysis in [15]. Chrono-
cyclic phase-space distributions have found increasing appli-
cation in ultrafast optics. The Wigner function has been de-
scribed in [16, 17, 18], and the Page distribution in [19]. An-
other distribution of interest is the ambiguity function that is
used in radar technology [20]. These functions are also used
in many areas of physics and engineering, and their relations
and properties are discussed in [21]. The Wigner function is
obtained by taking the one-dimensional Fourier transform
of C(t,∆t) over the time-difference coordinate

W(t,ω) = 1√
2π

∫
d∆t C(t,∆t) exp[iω∆t], (8)

whereas the ambiguity function is obtained from C(t,∆t) by
performing the Fourier transform over the average-time co-
ordinate

A(∆ω,∆t) = 1√
2π

∫
dt C(t,∆t) exp[i∆ωt]. (9)

These representations are uniquely related to one another by
Fourier transformations. The Wigner function has many in-
teresting properties, for example, the ability to represent a

chirp, as can be seen in Figure 2a. It is a real, but not nec-
essarily positive function, which complicates its interpreta-
tion as a density function in the time-frequency space. For
example, the Wigner function of a Gaussian pulse with a
quadratic chirp (i.e., a third-order spectral phase), as dis-
played in Figure 2b, is negative over a significant portion of
the chronocyclic space. An example of the Wigner function
of the pair of chirped Gaussian pulses in Figure 1 is shown in
Figure 3a. The side lobes are the phase-space representations
of the individual pulses, and the cross-terms between the two
fields lead to a central feature with fringes that indicate that
the pulses have a definite phase relation to one another—they
are coherent. The Wigner function for an incoherent pair of
pulses is also show in Figure 3b. In this case the ensemble
has a random phase between the pair, which causes a wash-
ing out of the interference pattern when the signal is averaged
over the ensemble. The coherence can be quantified using the
Wigner function, as explained in the next section.

Information regarding the shapes of ultrafast optical
pulses is generally inferred from the output of a square-law
detector after some filtering. Therefore it is of practical inter-
est to establish the relationship between measurable detector
output and the various descriptions of the pulse ensemble.
The average pulse time-dependent intensity is obtained from
the two-time correlation function by setting ∆t = 0. Alter-
natively, it is a projection of the Wigner function onto the
frequency axis, or the Fourier transform of the ∆t = 0 line of
the ambiguity function

I(t) = C(t, 0)

=
∫
dωW(t,ω)

=
∫
d∆ωA(∆ω, 0) exp[−i∆ωt].

(10)
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Furthermore, the average pulse spectral intensity is obtained
from the two-frequency correlation function by setting ∆ω =
0, or by projecting the Wigner function onto the frequency
axis, or by taking the Fourier transform of the ∆ω = 0 line of
the ambiguity function:

I(ω) = ˜̃C(0,ω)

=
∫
dtW(t,ω)

=
∫
d∆t A(0,∆t) exp[−i∆tω].

(11)

It is important to recognize that the various time-frequency
distributions and their relations are central to the character-
ization of pulses in the optical domain, since they are sim-
ply related to the measured data. In optics, direct measure-
ment of the waveform is not possible. This is in contrast to
the more usual application of these distributions in signal
processing, where they are commonly used as mathematical
tools for signal representation, for example, to track the pres-
ence of various instantaneous frequencies in a known (mea-
sured) sound waveform.

2.3. The integral degree of coherence:
when is a pulse field useful?

Since a field amplitude and phase may be defined in a unique
way only for identical pulses, it is important to quantify the
degree to which the pulses in the ensemble are alike. A useful
quantity for this purpose is the integral degree of coherence,
µ. µ is readily derived from the time-domain analogue of
Born and Wolf ’s [13] degree of coherence γ(t+∆t/2, t−∆t/2),
defined as

γ(t +
∆t

2
, t − ∆t

2
) = C(t,∆t)[

C(t + ∆t/2, 0)C(t − ∆t/2, 0)
]1/2 . (12)

Using the Schwarz inequality, it is straightforward to show
that 0 ≤ |γ(t + ∆t/2, t − ∆t/2)| ≤ 1. Consider the n-

dimensional vectors �a and �b, with components {ai} and {bi}
where i ∈ (1,n). Then

0 ≤
∣∣∣∣∣

n∑
i=1

a∗i bi

∣∣∣∣∣
2

≤
( n∑
i=1

a∗i ai

)( n∑
i=1

b∗i bi

)
. (13)

Allowing ai = Ei(t−∆t/2)/
√
n and bi = Ei(t+∆t/2)/

√
n, that

is, the ith realization of the field amplitude at times t − ∆t/2
and t + ∆t/2, respectively, it is clear that

0 ≤
∣∣∣∣∣ 1
n

n∑
i=1

E∗i
(
t − ∆t

2

)
Ei

(
t +

∆t

2

)∣∣∣∣∣
2

≤
(

1
n

n∑
i=1

E∗i

(
t +

∆t

2

)
Ei

(
t +

∆t

2

))

×
(

1
n

n∑
i=1

E∗i

(
t − ∆t

2

)
Ei

(
t − ∆t

2

))
.

(14)

In the limit that n → ∞, the summations in (14) lead to an
average over the ensemble and the inequality simplifies to

0 ≤ ∣∣C(t,∆t)
∣∣2 ≤ C

(
t +

∆t

2
, 0
)
C
(
t − ∆t

2
, 0
)
. (15)

The upper and lower bounds on the degree of coherence fol-
low from (15). However, it is difficult to determine γ(t +
∆t/2, t − ∆t/2) experimentally since it becomes singular for
times at which C(t,∆t) is zero. A practically more useful def-
inition is offered by integrating equation (15) over the entire
t, ∆t space, and dividing by the quantity on the right-hand
side, leading to the integral degree of coherence, µ,

0 ≤ µ =
∫∫
dt d∆t

∣∣C(t,∆t)
∣∣2[ ∫

dt C(t, 0)
]2 ≤ 1. (16)

Equivalent relations follow for the frequency domain and
chronocyclic representations, for example, in the case of the
ambiguity function

µ =
∫∫
d∆t d∆ω

∣∣A(∆ω,∆t)
∣∣2[

A(0, 0)
]2 . (17)

An integral degree of coherence less than one corre-
sponds to a partially coherent train in which the pulse shape
and/or phase fluctuate, in which case C(t,∆t) is the funda-
mental quantity of interest. When µ = 1 the ensemble is said
to be fully coherent (the pulses in the ensemble are identi-
cal within a constant phase factor) and C(t,∆t) factorizes.
In the latter case the electric field becomes the fundamental
quantity of interest and is readily retrieved from the two-time
correlation function using

∣∣E(t)
∣∣ = √C(t, 0), (18)

and with t2 held fixed,

Arg
[
E(t)

] = tan−1

[
ImC

((
t + t2

)
/2, t − t2

)
ReC

((
t + t2

)
/2, t − t2

) ] + φ0, (19)

where φ0 is an undetermined constant. For example, the inte-
gral degree of coherence corresponding to the Wigner func-
tion in Figure 3a is equal to one, while that of the Wigner
function in Figure 3b is equal to 0.5. It is important to note
that (18) and (19) are valid only if the integral degree of co-
herence has been explicitly demonstrated to be equal to unity,
which of course requires that the two-time correlation func-
tion or equivalent representation in frequency or phase space
be measured. Thus in cases where an ensemble or train of
pulses, rather than an individual pulse, is used for applica-
tion or experimentation, pulse-shape characterization efforts
must ultimately be directed toward measurement of the en-
semble statistics.
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For a coherent train of pulses, (18) and (19) reveal that
the electric field is retrieved from a single line of the correla-
tion function. Hence, if the ensemble is assumed a priori to
be coherent, the amount of collected data can be greatly re-
duced. This is a luxury afforded only to measurement tech-
niques that directly measure one of the correlation func-
tions.

2.4. Measurement strategies

The electric field of optical pulses can be characterized us-
ing various strategies, derived from, and with implications
for, other measurement problems, such as wavefront diag-
nosis and quantum state reconstruction. These strategies can
be organized into phase-space techniques, that is, techniques
that attempt to measure either the Wigner or ambiguity
function by exploring the entire two-dimensional chrono-
cyclic phase space, and direct techniques, that obtain the elec-
tric field of a coherent field from a single slice of a second-
order correlation function.

The minimal requirement for the complete exploration
of the chronocyclic space required in phase-space techniques
is the presence of two filters. The analysis details of phase-
space techniques are found in [9]. There are two subclasses of
phase-space techniques; those that make simultaneous mea-
surements of the complementary variables in an attempt to
reconstruct one of the phase-space distributions, and those
that record marginals of the Wigner function after rotation in
the phase space, from which the Wigner function can be ob-
tained. The former method is known as spectrographic while
the latter is referred to as tomographic. Spectrography is dis-
cussed in Sections 3.1 and 3.2, and tomography is discussed
in Sections 3.5 and 3.6.

In contrast, direct techniques do not require this com-
plete exploration of the phase space occupied by the correla-
tion function. This is a significant advantage of direct tech-
niques compared to phase-space techniques. Moreover, if the
pulse train is assumed a priori to consist of identical pulses, as
is most always assumed in reconstructing pulses from spec-
trographic or tomographic data, only one slice of the corre-
lation function is required to obtain the amplitude and phase
of the electric field [10]. Such slices are precisely what is mea-
sured in interferometry. This is usually achieved by mixing
the field under test with a modified version of itself, or more
generally by mixing two modified versions of the field un-
der test. Thus, while phase-space techniques must explore
the entire chronocyclic space even when the electric field is
the fundamental quantity of interest, direct techniques need
only return a single slice of the correlation function in or-
der to construct the simpler quantity. Roughly speaking, if
one wishes to reconstruct the field at N time points, then at
least 2N independent data points are required. While direct
techniques are capable of reconstructing the field by record-
ing only the necessary 2N points, phase-space techniques re-
quire the measurement ofN2 points. Of course, an overcom-
plete data set is available from direct measurement of the en-
tire correlation function as well. Direct interferometric tech-
niques are discussed in Sections 3.3 and 3.4.

3. SELF-REFERENCING TEMPORAL CHARACTERIZA-
TION OF SHORT OPTICAL PULSES

From a practical point of view, one first measures an experi-
mental trace (e.g., the current from a photodiode as a func-
tion of various parameters of the experimental setup, e.g.,
the central frequency of a passband spectral filter), then ap-
plies a set of mathematical operations to the measured data
in order to reconstruct the electric field. The design of the
experimental setup and the type of experimental trace deter-
mine the recovery algorithm, and more generally the possi-
bility of such recovery. In this section we take a closer look
at the concepts of spectrography, tomography, and interfer-
ometry, and examples of experimental implementations and
results are given.

3.1. Spectrography

Spectrographic techniques make use of two sequential fil-
ters, one time-stationary (spectral filter) and one time-
nonstationary (time gate) followed by a square-law detec-
tor (Figure 4). The recorded signal is either a measure of the
spectrum of a series of time slices (spectrogram) or a mea-
sure of the time of arrival of a series of spectral slices (sono-
gram) depending upon the ordering of the filters. There is no
difference in principle between the two possible filter order-
ings and thus this type of apparatus should be thought of as
one that makes simultaneous measurements of the conjugate
variables rather than sequential measurements. Since precise
measurements of the conjugate variables cannot be made si-
multaneously, a spectrographic apparatus can measure only
a smoothed out version of the Wigner function—the Wigner
function convolved with an apparatus blurring or window
function. In principle, if the window function is known, the
Wigner function itself can be obtained via deconvolution but
this is usually impractical because of the severe signal-to-
noise requirements. Thus the spectrographic class of phase-
space pulse characterization techniques supply only qualita-
tive insight into pulse train statistics. However, if the pulses in
the ensemble are assumed a priori to be identical, the resul-
tant two-dimensional phase-retrieval problem can be solved
iteratively. The success of this approach has been extensively
demonstrated in the technique of frequency-resolved optical
gating (FROG) [22].

A typical implementation of spectrography uses a tempo-
ral gate for the signal under test (e.g., the action of the pulse
under test with one or several other pulses in a nonlinear op-
tical medium [22], or a “shutter” function provided by a tem-
poral modulator [23]) and a device capable of measuring the
optical spectrum (e.g., an optical spectrum analyzer based
on a diffraction grating and imaging optics, or a scanning
Fabry-Perot etalon, together with a time-integrating photo-
diode). The spectrogram of the electric field of the test pulse
is obtained by measuring the optical spectrum of the pulse
after temporal gating for various relative delays between the
pulse and the gate. The experimental trace is therefore

S(ω, τ) =
∣∣∣∣∫ E(t)R(t − τ) exp(iωt)dt

∣∣∣∣2

, (20)
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Figure 4: Conceptual implementation of (a) a spectrogram and (b) sonogram.

where ω is the optical frequency and τ the relative delay be-
tween the gate and the test pulse. It is important that the res-
olution of the spectral filter is very high in order to ensure
that the measured trace is effectively the spectrogram of the
test pulse.

A sonogram can be measured by reversing the order of
the temporal and spectral gate [24, 25]. Typically, the pulse
is first spectrally filtered using a spectrometer with variable
central frequency Ω. The temporal intensity of the filtered
pulse is then measured, and the sonogram is constructed as
the set of the measured temporal intensities for various cen-
tral frequencies Ω:

S(Ω,T) =
∣∣∣∣∫ Ẽ(ω)R̃(ω−Ω) exp(−iωT)dω

∣∣∣∣2

. (21)

In this case the temporal resolution should be very high to
ensure that the measured trace is a true sonogram. In prac-
tice, one usually implements the sonogram by means of a
nonlinear cross-correlation of the spectrally gated signal with
the test pulse, which has a shorter duration than the filtered
pulse. Therefore, the experimental trace is given by a convo-
lution of the sonogram of (21) with the unknown temporal
intensity of the pulse under test, a fact that can be included
in the inversion algorithm [25].

It can be shown that the spectrogram is the correlation of
the Wigner function of the pulse with the Wigner function of
the gate with a change of sign on the frequency variable [15]:

S(ω, τ) =
∫∫

WE(t′,ω′)WR(t′ − τ,ω− ω′)dt′dω′. (22)

The data can therefore be viewed in the chronocyclic space as
a measurement of the overlap of the Wigner function of the
pulse with the Wigner function of the gate (whose position
in the space is related to the variables ω and τ, which must
vary over the entire region of phase space occupied by the
pulse), and the latter therefore appears as the apparatus win-
dow function in spectrographic measurements. As a Wigner
function has a lower bound of support in the time-frequency
space (i.e., it always occupies a region of phase space greater
than π), the spectrogram is always a “blurred” version of the
Wigner function of the pulse. In principle the test pulse can
be completely characterized very simply by direct Fourier de-
convolution if the gate (and therefore its Wigner function)
is known [17, 21, 26, 27]. In practice such deconvolution is
highly sensitive to noise, since it involves the division of the
Fourier transform of the measured spectrogram with the am-
biguity function of the gate.

The spectrogram or sonogram can be used to obtain the
instantaneous frequency and group delay of the signal. For
example, the average frequency of the pulse for a given rela-
tive delay τ between the pulse and the gate provides a mea-
sure of the chirp, and can be obtained from the spectrogram
via [21]

〈ω〉τ =
∫
S(ω, τ)ωdω∫
S(ω, τ)dω

= −
∫ ∣∣E(t)

∣∣2∣∣R(t − τ)
∣∣2{

ϕ′E(t) + ϕ′R(t − τ)
}
dt∫

S(ω, τ)dω
.

(23)

If the gate function is real (i.e., it does not have a phase) and
is much shorter than any variation of the electric field of the
pulse under test, then it can be replaced in the integral with
a Dirac delta function, and the average frequency calculated
from the spectrogram approaches−ϕ′E(τ), that is, the instan-
taneous frequency of the electric field at the delay τ. Such
gate can be implemented by cross-correlating the pulse un-
der test with a much shorter optical pulse without temporal
phase distortion, though this is often impractical. The diffi-
culty with this approach is that the uncertainty in the local
average frequency becomes very large, since the spectral con-
tent of the spectrogram is dominated by the broad spectrum
of the gate. Such approach was initially developed for short
optical pulses [28, 29], and similar approaches are still being
used in optical telecommunications [30, 31].

A better way to reconstruct the pulse field from a spectro-
gram is to use phase retrieval. In fact, this is the only option
if the gate is unknown. The spectrogram of (20) is the mod-
ulus square of the short-time Fourier transform of the pulse.
The trick in phase retrieval is to estimate the phase of the
transform. Once this is known, a Fourier transform directly
leads to the recovery of both the pulse under test and the gat-
ing function. Phase retrieval is often ambiguous in one di-
mension, but is usually unique in two dimensions [32]. The
excess data available in the spectrogram enables iterative re-
construction ofN complex numbers specifying the field from
theN2 data points, and this can also lead to the simultaneous
reconstruction of the gate [23, 33]. Furthermore, in the case
of the nonlinear spectrogram, there is often a known func-
tional relation between the pulse and the gate, since the gate
is implemented as a nonlinear interaction with replicas of the
pulse under test. Also, other information might be available,
such as the spectrum of the pulse or the transfer function of
the gate. These constraints enable the recovery of the field
by means of several algorithms. A very robust inversion al-
gorithm is based on the principal component general projec-
tions algorithm [34], which uses projections derived from the
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Figure 5: Example of the implementation of (a) spectrography and (b) spectrogram measured on a 40 GHz alternate-chirp return-to-zero
signal with an electroabsorption modulator driven at 10 GHz .
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Figure 6: (a) Intensity and phase of the optical signal (resp., continuous and dashed line). (b) Transmission and phase of the gate (resp.,
continuous and dashed line) extracted from the previous spectrogram.

experimentally measured spectrogram and from the func-
tional form of the spectrogram as the modulus square of the
integral

∫
E(t)R(t − τ) exp(iωt)dt.

3.2. Experimental spectrography for
telecommunication applications

Spectrograms and sonograms are popular tools for ultra-
short optical pulse characterization. FROG generates a non-
linear spectrogram for the pulse by means of a nonlinear op-
tical interaction of the pulse under test with one or several of
its replicas [22]. This has the experimental advantage of using
pump-probe geometries that are commonly used in ultrafast
spectroscopy. Adaptations of FROG to pulse characterization
in the telecommunication environment can be found, for ex-
ample, in [35, 36, 37, 38].

For picosecond pulses, such as those used in telecommu-
nications, a gate of smaller bandwidth than needed for fem-
tosecond pulses, such as those typically found in ultrafast op-
tics applications, suffices. It is possible to implement the gate
using a temporal modulator, which has the important ad-
vantage of making the entire process linear. It is therefore ex-
tremely sensitive to small input pulse energies, yet insensitive
to polarization and wavelength [23, 39].

The experimental implementation of spectrography with
a temporal modulator is straightforward. The pulse under

test is gated by a temporal modulator driven by a control
signal synchronized to the pulse under test, as shown in
Figure 5a. For example, an electroabsorption modulator can
be driven by a sinusoidal voltage with well-defined phase
relative to the test pulse. The relative delay τ between the
signal under test and the gate is modified by changing the
phase of the driving RF sine wave using a voltage-controlled
phase shifter. The spectra after the modulator are recorded
as a function of the optical frequency ω with a scanning
monochromator, or with a Fabry-Perot etalon followed by
a photodiode. An example of a measured spectrogram is dis-
played in Figure 5b. The characteristics of the pulse train and
gate are extracted from the spectrogram, and examples of the
retrieved signal and gate when characterizing an alternate-
chirp signal [40] are plotted in Figure 6.

3.3. Interferometry

Interferometry is a well-known approach to the characteri-
zation of optical fields in the spatial domain. It is a simple
method for converting phase information into amplitude
information that can then be read using square-law detec-
tors. For temporal waveform measurement, interferometry,
in contrast to spectrography, measures a single line of the
two-time or two-frequency correlation function of the pulse
under test. This is sufficient to characterize completely a
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Figure 7: Conceptual approach for spectral shearing interferome-
try.

single pulse or a coherent pulse train, yielding N samples of
the field from αN data points (α > 1). It therefore makes op-
timal use of the experimental data.

It is possible to construct the spectral equivalent of spa-
tial shearing interferometry, in which the spatial phase pro-
file of a beam is determined by interfering it with a laterally
shifted (or sheared) replica. The resulting intensity interfer-
ogram can be measured with a square-law detector and the
phase simply extracted. The spectral analogue, in which two
spectrally sheared pulses are interfered, also allows direct re-
construction of the electric field in the spectral domain us-
ing the measured spectral phase and a pulse spectrum. Be-
cause a single slice of the correlation function is sufficient to
characterize the electric field of a pulse that has a continu-
ous spectral support, interferometry is viable for most appli-
cations. We will focus here on techniques that use the two-
time frequency correlation function (or its sampled version)
Ẽ(ω)Ẽ∗(ω −Ω), whose phase ϕ(ω) − ϕ(ω −Ω) can be con-
catenated or integrated to get the spectral phase of the initial
pulse [41, 42]. For a continuous spectral density, the spectral
shear Ω is set by the sampling theorem, and it is typically a
few percent of the total bandwidth of the pulse under test.
Too large a shear would lead to undersampling of the pulse
spectrum, while too small a shear could lead to increased sen-
sitivity to noise, and thus reduced accuracy of the reconstruc-
tion. For a periodic source with high duty cycle, it suffices to
measure the intensity and phase of the spectral modes, and
the shear can usually be set to the value of the separation be-
tween the modes, that is, the repetition rate. The spectral in-
tensity can be obtained either from a separate measurement
using the spectrometer, or can be extracted from the correla-
tion function directly.

A variety of interferometric techniques are known. The
relative phase between adjacent spectral modes can, for ex-
ample, be extracted in the time domain after spectral filter-
ing [43, 44, 45, 46, 47], or in the spectral domain after proper
temporal modulation [48]. The latter class of techniques also
includes spectral shearing interferometry, where the quantity
Ẽ(ω)Ẽ∗(ω − Ω) is obtained by measuring the interference
of the pulse under test with its sheared replica with an opti-
cal spectrum analyzer (Figure 7). The frequency shear Ω can
be implemented using a linear temporal phase modulation
exp(iΩt). The spectral intensity of the two interfering pulses
is |Ẽ(ω)|2 +|Ẽ(ω−Ω)|2 +Ẽ(ω)Ẽ∗(ω−Ω)+Ẽ∗(ω)Ẽ(ω−Ω). If
a delay is introduced between the nonshifted and the shifted
replica, this leads to spectral fringes with small spacing, by
virtue of the phase ϕ(ω) − ϕ(ω − Ω) + ωτ. In this case, the
interferometric component can be directly extracted using
Fourier processing of a single interferogram [49, 50].

Phase modulator
Optical

spectrum
analyzer

Figure 8: Experimental implementation of spectral shearing inter-
ferometry.

3.4. Experimental interferometry for
telecommunication applications

There are numerous implementations of interferometry for
the self-referencing characterization of optical pulses. For
spectral shearing interferometry, a spectral shear of arbitrary
value can be induced by mixing the test pulse with, for ex-
ample, a highly chirped pulse in a nonlinear medium. This
is known as spectral phase interferometry for direct electric
field reconstruction [49]. A spectral shear can also be in-
duced, as explained above, by linear temporal phase mod-
ulation of the pulse under test. Such modulation can be ob-
tained using an electro-optic phase modulator driven by an
appropriate voltage [50, 51]. The generation of a strictly lin-
ear voltage at a high frequency is in practice difficult, and it
is easier to use a sinusoidal voltage synchronized so that the
pulse is at the zero-crossing of the modulation, therefore ex-
periencing linear temporal phase modulation. One possible
implementation is described in Figure 8.

The pulse under test is split into two replicas. These two
replicas, separated by a delay τ are sent to a phase modulator
driven by a sinusoidal voltage with period 2τ. The synchro-
nization is performed so that the two pulses stand at differ-
ent zero-crossings of the modulation. Therefore, the pulses
are sheared in opposite directions along the frequency axis.
If Ω is the shear imposed on one of the pulses, the extracted
spectral phase difference is ϕ(ω + Ω) − ϕ(ω −Ω) + ωτ. The
carrier term ωτ can be removed either by turning the mod-
ulation off [50] or by measuring a second phase difference
when the relative pulse under test and the sine wave driv-
ing the modulator has been modified by τ [51]. In this case
the extracted spectral phase is ϕ(ω − Ω) − ϕ(ω + Ω) + ωτ;
so that the difference between the two extracted phases is
2ϕ(ω + Ω)− 2ϕ(ω−Ω). Figure 9 displays an experimentally
measured interferogram. The rapidly varying fringes due to
the delay between the two interfering pulses are evident. An
example of the intensity and phase measured using spectral
shearing interferometry is also shown.

3.5. Tomography

As with spectrographic methods, the so-called tomo-
graphic techniques require in-series time-stationary and
time-nonstationary filters so that the entire phase space can
be explored. However, unlike spectrographic techniques, the
first filter in a tomographic apparatus is a phase-only filter
(either a quadratic temporal phase modulator or a quadratic
spectral phase modulator). The inclusion of a quadratic
phase-only filter results in a distinctly different interpretation
of the measurement, leading to a fundamentally different
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Figure 9: (a) Experimental interferogram and close-up on the fringes. (b) Reconstructed spectral intensity and phase (resp., continuous and
dashed line).

inversion algorithm. To see this, notice that a phase-only fil-
ter does not provide any information on the frequency or the
arrival time of a pulse ensemble and hence, does not consti-
tute a measurement of either the spectral or temporal extent
of the pulse. So, a tomographic apparatus does not make a
simultaneous measurement of the conjugate variables time
and frequency. Rather, the quadratic phase modulation acts
to rotate the phase space. The square-law detector in com-
bination with the amplitude-only filter records the resulting
intensity distribution, that is, the projection of the rotated
Wigner function. A sufficiently large number of phase-space
rotations between −π/2 and π/2 allows, in principle, recon-
struction of the Wigner function via the inverse Radon trans-
form [52]. Numerical versions of this inversion algorithm
were developed for applications of tomography in areas such
as medical imaging, where one aims at reconstructing an ob-
ject from a set of its projections (typically, 2D projections of
a 3D object, or 1D projections of a 2D object) [53]. A typi-
cal implementation of chronocyclic tomography would use a
combination of quadratic temporal and spectral phase mod-
ulations to rotate the phase space, and optical spectrum mea-
surements to project the Wigner function. The Wigner func-
tion of the signal under test can be reconstructed from the

measured projections, regardless of the degree of coherence
of the pulse ensemble. This capability is unique to tomogra-
phy among the techniques presented in this paper. This capa-
bility has not been realized experimentally, however, because
of the relative difficulty of implementing variable temporal
and spectral phase modulations.

The time-to-frequency converter [54, 55] operates by ro-
tating the Wigner function by π/2, so that a measurement
of the frequency marginal after rotation leads to the tem-
poral marginal, that is, one obtains the temporal intensity
of the signal under test via an optical spectrum measure-
ment. However, no phase information is obtained, and this
approach requires a large rotation of the Wigner function,
which is difficult to obtain.

The assumption that the pulse train is coherent, as is
done in other methods, reduces the requirement on the num-
ber of projections needed to reconstruct the pulse field. This
leads to the concept of simplified chronocyclic tomography.
This technique does not require a large rotation of the phase-
space density, and reconstructs the amplitude and phase of
the signal from only two projections of the Wigner function.
It is based on a particular relation between the frequency
marginal of the rotated Wigner function and the electric field
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Figure 11: (a) Two spectra measured for small positive and negative quadratic temporal phase modulation (continuous and dashed line).
(b) Reconstructed spectral intensity and phase (continuous and dashed line).

[56, 57]. The fractional power spectrum of the pulse is ob-
tained from the rotated Wigner function:

Iα(ω) =
∫
W
[
t cos(α)+ω sin(α),ω cos(α)−t sin(α)

]
dt. (24)

The derivative of this function with respect to the angle of
rotation α at α = 0 leads to

∂Iα
∂α

=
∫ ⌊

ω
∂W

∂t
− t ∂W

∂ω

⌋
dt = − ∂

∂ω

∫
tW dt, (25)

and therefore to

∂Iα
∂α

= − ∂

∂ω

⌊
I
∂ϕ

∂ω

⌋
. (26)

A rotation of the phase-space of the pulse requires a com-
bination of a quadratic temporal and spectral phase modula-
tions. However, the relation in (26) also holds for a shear of
the phase-space, in which ω is transformed into ω + ψt, and
the temporal coordinate is unchanged. This can be accom-
plished by means of a parabolic temporal phase modulation
(1/2)ψt2 alone. In this case, one finds

∂I0
∂ψ

= ∂

∂ψ

∫
W(ω + ψt, t)dt = ∂

∂ω

⌊
I
∂ϕ

∂ω

⌋
. (27)

This is the form most amenable to experiment, since the
bandwidth required to generate a small shear using a phase
modulator is modest.

3.6. Experimental chronocyclic tomography

Various implementations of the time-to-frequency converter
have been performed using either a phase modulator or non-
linear optics. A phase modulator driven by a sinusoidal volt-
age can provide quadratic temporal phase modulation to a
pulse synchronized with one of its extrema. A nonlinear in-
teraction can also provide such modulation.

Simplified chronocyclic tomography has been imple-
mented using a temporal phase modulator [57]. The pulse
under test was synchronized with a maximum of the phase
modulation, and the optical spectrum after modulation mea-
sured, as displayed in Figure 10. The pulse under test was
then synchronized with a minimum of the phase modula-
tion, and the corresponding optical spectrum measured. The
derivative ∂I0/∂ψ and the spectrum I(ω) are obtained, re-
spectively, by taking the difference and the sum of the two
measured spectra. Equation (26) is then used to reconstruct
the phase ϕ(ω). Figure 11 displays an experimental pair of
measured spectra and the reconstructed intensity and phase
for a short optical pulse. The technique can also be improved
using synchronous detection of the derivative ∂I0/∂ψ, which
enables an increased signal-to-noise ratio [58].

4. CONCLUSION

Correlation functions and time-frequency distributions are
important concepts for both representation and characteri-
zation of ultrashort optical pulses. Aside from their utility in
analyzing the properties of the electric field of the pulse and
for reconstructing the field from experimental data, they are
necessary for representing the coherence properties of a train
of optical pulses. The concepts of spectrography, tomogra-
phy, and interferometry serve as useful major classifications
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for pulse-shape characterization, and each may be imple-
mented using appropriate linear optical elements. For pulses
typical in telecommunications applications, the use of linear
temporal modulators as time-nonstationary filters in these
classes of measurement has been detailed and experimental
implementations for characterization in the telecommunica-
tion environment have been presented. As research in both
signal analysis and ultrafast optics is in continual develop-
ment, it can be expected that further exciting discoveries will
be made in the near future.
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Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through
optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD)
and self-phase modulation (SPM) are first analyzed separately. The phenomena resulting from the interplay between GVD and
SPM in fibers (e.g., soliton formation or optical wave breaking) are also investigated in detail. Wigner analysis is demonstrated to
be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers),
providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
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1. INTRODUCTION

The study of optical pulse propagation in optical fibers is
interesting from both fundamental and applied perspec-
tives. Understanding the physics behind the processes that
determine the evolution of optical pulses in single-mode
fibers is essential for the design and performance analysis
of optical fiber communication systems. As an example, it
is well known that in intensity-modulated direct-detection
(IM/DD) systems, the combined effects of source chirping,
group velocity dispersion (GVD) and, for long-haul or high-
power systems, self-phase modulation (SPM) cause distor-
tion of the propagating signals [1]. This distortion essentially
limits the maximum achievable bit rates and transmission
distances. The influence of fiber GVD and fiber nonlinear-
ities (e.g., SPM) on the performance of communication sys-
tems is becoming more critical in view of the expected evo-
lution of fiber optics communications systems [2], in partic-
ular, (i) the channel data rates are expected to continue in-
creasing, with 40 and 80 Gbps rate systems now under devel-
opment; and (ii) the communication strategies (e.g., dense-
wavelength-division-multiplexing, DWDM, strategies) tend
to increase the number of channels and information (i.e., the
signal power) launched into a single fiber.

For the study of the dynamics of pulse propagation in
fibers, the involved signals (optical pulses) can be repre-
sented in either the temporal or the frequency domains.
However, since these signals are intrinsically nonstationary
(i.e., the spectrum content changes as a function of time),
these conventional one-dimensional representations provide

only partial information about the analyzed signals and, con-
sequently, about the system under study. In this paper, we
analyze linear and nonlinear pulse propagation in optical
fibers using joint time-frequency (TF) representations [3].
Our analysis is based on the representation of the events
of interest (optical pulses propagating through the fiber) in
the joint TF plane, that is, the signals are represented as
two-dimensional functions of the two variables time and
frequency, simultaneously. For the TF representation, we
will use the well-known Wigner distribution function. The
Wigner distribution exhibits a lot of mathematical properties
that make this approach especially attractive for the prob-
lem under consideration. For instance, as compared with
other well-known methods for the TF representation of op-
tical pulses (e.g., spectrograms [3]), the Wigner distribution
provides an improved joint TF resolution. Note that this is a
critical aspect for extracting detailed information about the
events under analysis from the resultant images. The discus-
sion of other attractive properties of the Wigner distribution
is out of the scope of this work but the interested reader can
find a good review article on the fundaments and applica-
tions of Wigner analysis by Dragoman in this same special
issue or can refer to other classical papers in the subject [4].

TF representations in general, and Wigner analysis in
particular, have been used in the past for the analysis of
(ultra-) short light pulses and, in particular, these meth-
ods have been applied to investigating (i) simple linear
optical systems (e.g., Fabry-Perot filters, fiber Bragg grat-
ings) [5, 6], (ii) soliton waveforms [5, 7], and (iii) optical
pulse-compression operations [8]. TF techniques have been
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also evaluated as alternative methods for measuring optical
fiber dispersion (linear regime) [9]. More recently, TF repre-
sentations (spectrograms) have been applied to the analysis
of specific phenomena (e.g., continuum generation) in non-
linear optical fiber devices [10, 11] but these recent works
deal with optical pulses in the femtosecond range, a regime
which is of less interest in the context of fiber optics commu-
nications (optical pulses in the picosecond range).

In this paper, the Wigner distribution is applied to the
study of the dynamics of linear and nonlinear picosecond
pulse propagation in optical fibers. By means of a few ex-
amples, we demonstrate that the Wigner analysis offers a
simple and easy-to-interpret representation of the linear and
nonlinear dynamics in fibers within the picosecond regime,
providing in fact a profound insight into the physics behind
the phenomena that determine the optical pulse evolution
through the fibers. The information provided by the Wigner
technique complements that given by other analysis meth-
ods and offers a clearer and deeper understanding of the
phenomena under study. It should be also mentioned that
the discussion in this present work is restricted to the case
of completely coherent light distributions. The Wigner for-
malism has been previously applied to the analysis of prop-
agation of partially coherent light through nonlinear media,
leading in fact to the description of phenomena not discussed
here [12].

The remainder of this paper is structured as follows. In
Section 2, the theoretical fundaments of our analysis are es-
tablished. In particular, the nonlinear Schrödinger equation
(NLSE) for modeling picosecond pulse propagation in op-
tical fibers is briefly reviewed and the Wigner distribution
function used throughout the work is defined as well. In
Section 3, we conduct Wigner analysis of picosecond op-
tical pulse propagation through optical fibers operating in
the linear regime. The impact of first- and second-order
dispersions are analyzed in detail. Section 4 is devoted to
the Wigner analysis of picosecond optical pulse propagation
through nonlinear optical fibers. The interplay of GVD and
SPM is analyzed in both the normal and anomalous disper-
sion regimes. Finally, in Section 5, we conclude and summa-
rize.

2. THEORETICAL FUNDAMENTS

The propagation of optical pulses in the picosecond range
through a lossless single-mode optical fiber can be described
by the well-known NLSE [1]:

i
∂A(z, τ)

∂z
− β2

2
∂2A(z, τ)

∂τ2
+ γ
∣∣A(z, τ)

∣∣2
A(z, τ) = 0, (1)

where A(z, τ) is the complex envelope of the optical pulse
(pulse centered at the frequency ω0), z is the fiber length, and
τ represents the time variable in the so-called retarded frame
(i.e., temporal frame with respect to the pulse group delay),
β2 = [∂2β(ω)/∂ω2]ω=ω0 is the first-order GVD (β(ω) is the
propagation constant of the single-mode fiber), and γ is the
nonlinear coefficient of the fiber. In most cases, (1) and its

modifications cannot be solved analytically and one has to
use numerical approaches. Here we will use the most com-
monly applied numerical scheme for solving the NLSE, the
so-called split-step Fourier transform (SSFT) method [13].

In order to characterize the fiber distances over which
dispersive and nonlinear effects are important, two param-
eters are usually used, namely, the dispersion length LD and
the nonlinear length LNL, [1]

LD = T2
0∣∣β2
∣∣ ,

LNL = 1
γP0

,
(2)

where T0 and P0 are the time width and peak power of the
pulse launched at the input of the fiber A(0, τ). Depending
on the relative magnitudes of LD, LNL, and the fiber length z,
the propagation behavior is mainly determined by dispersive
effects, by nonlinear effects or by interplay between both dis-
persive and nonlinear effects (when both contributions are
significant).

Once the NLSE in (1) is solved for the specific prob-
lem under study, our subsequent study will be based on
the detailed analysis of the obtained pulse complex envelope
A(z, τ). For a given fiber length (z ≡ constant), this signal
can be represented either in the temporal domain (as directly
obtained from (1)) or in the spectral domain,

Ã(z,ω) = �[A(z, τ)
] =

(
1√
2π

)∫ +∞

−∞
A(z, τ) exp(− jωτ)dτ,

(3)

where � is the Fourier transform operator. A more profound
insight into the nature of the pulse under analysis can be ob-
tained if this pulse is represented in the joint time-frequency
phase space. For this purpose, we will use the time-resolved
Wigner distribution function, Wz(τ,ω), which will be calcu-
lated as follows [3]:

Wz(τ,ω) =
∫ +∞

−∞
A
(
z, τ +

τ′

2

)
A∗
(
z, τ − τ′

2

)
exp[−iωτ′]dτ′.

(4)

The Wigner distribution allows us to represent the signal
propagating through the fiber A(z, τ) in the two domains,
time and frequency, simultaneously, that is, the signal is
mapped into a 2D image which essentially represents the
signal’s joint time-frequency energy distribution. This 2D
image displays the link between the temporal and spectral
pulse features in a very simple and direct way, thus providing
broader information on the signal and system under analysis.

3. WIGNER ANALYSIS OF LINEAR PULSE
PROPAGATION IN OPTICAL FIBERS

When the fiber length z is such that z � LNL and z � LD,
then neither dispersive nor nonlinear effects play a signifi-
cant role during pulse propagation and as a result, the pulse
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maintains its shape during propagation A(z, τ) = A(0, τ).
This case is obviously out of the interest of this work. When
the fiber length is such that z � LNL but z ≈ LD, then the
pulse evolution is governed by GVD and the nonlinear effects
play a relatively minor role. More specifically, the dispersion-
dominant regime is applicable when the following condition
is satisfied:

LD
LNL

= γP0T
2
0∣∣β2
∣∣ � 1. (5)

In this case, the last term in the left-hand side of the NLSE in
(1) (i.e., the nonlinear term) can be neglected and the optical
fiber can be modeled as a linear time-invariant system (i.e.,
as a filter). Specifically, the fiber operates as a phase-only fil-
ter which only affects the phase of the spectral content of the
signal propagating through it. This phase-only filtering pro-
cess is in fact determined by the GVD characteristic of the
optical fiber and, in particular,

Ã(z,ω) ∝ Ã(0,ω) exp
(
− i

β2

2
zω2

)
, (6)

where the symbol∝ indicates that the two terms are propor-
tional.

The propagation regime where nonlinearities can be ne-
glected is typical of optical communication systems when the
launched signals exhibit a relatively low power. As a rough es-
timate, in order to ensure operation within the linear regime,
the peak power of the input pulses must be P0 � 1 W
for 1-picosecond pulses in conventional single-mode fiber
operating at the typical telecommunication wavelength of
λ ≈ 1.55 µm (ω0 ≈ 2π × 193.4 THz).

3.1. First-order dispersion of a transform-limited
optical pulse

In the first example (results shown in Figure 1), the prop-
agation of an optical pulse through a first-order dispersive
fiber in the linear regime is analyzed. In particular, we as-
sume a fiber with a first-order dispersion coefficient β2 =
−20 ps2Km−1 (typical value in a conventional single-mode
fiber working at λ ≈ 1.55 µm). This regime is usually re-
ferred to as anomalous dispersion regime (β2 < 0). Figure 1
shows the Wigner representation of the optical pulse en-
velope A(z, τ) evaluated at different fiber propagation dis-
tances, z = 0 (input pulse), z = 0.5 LD, z = 2 LD, and
z = 6 LD (LD ≈ 450 m). For each representation, the plot at
the left shows the spectral energy density of the optical pulse
|Ã(z,ω)|2, the plot at the bottom shows the average optical
intensity of the pulse |A(z, τ)|2, and the larger plot in the up-
per right of the representations shows the Wigner distribu-
tion of the pulse Wz(τ,ω). Note that this distribution is plot-
ted as a 2D image where the relative brightness levels of the
image represent the distribution intensity and, in particular,
darker regions in the image correspond to higher intensities.

This 2D image provides information about the temporal lo-
cation of the signal spectral components or in other words, it
shows which of the spectral components of the signal occur
at each instant of time.

The input pulse is assumed to be a transform-limited
super-Gaussian pulse, A(0, τ) = √

P0 exp[(−1/2)(τ/T0)2m],
where m = 3, T0 = 3 picoseconds and the peak power P0

is low enough to ensure operation within the linear regime
(i.e., to ensure that the fiber nonlinearities are negligible). In
this paper, super-Gaussian pulses will be used as input sig-
nals because they are more suited than for instance Gaus-
sian pulses to illustrate the effects of steep leading and trail-
ing edges while providing similar information on the physics
behind the different linear and nonlinear phenomena to be
investigated. The Wigner distribution of this input pulse is
typical of a transform-limited signal where all the spectral
components exhibit the same mean temporal delay. Since the
fiber operates as a phase-only filter, the energy spectrum of
the pulse is not affected by the propagation along the optical
fiber. In other words, the optical pulse propagating through
the fiber retains identical spectral components to those of the
incident pulse. However, due to the GVD introduced by the
fiber, these spectral components are temporally realigned ac-
cording to the group delay curve of the fiber. This temporal
realignment of the pulse spectral components is responsible
for the distortion and broadening of the temporal shape of
the pulse as it propagates along the fiber and can be easily un-
derstood and visualized through the Wigner representations
shown in Figure 1. The dispersion-induced pulse temporal
broadening is a detrimental phenomenon for optical com-
munication purposes. As a result of this temporal broaden-
ing, the adjacent pulses in a sequence launched at the input
of the fiber (this pulse sequence can carry coded information
to be transmitted through the fiber) can interfere with each
other and this interference process can obviously limit the
proper recovering of the information coded in the original
sequence [2].

We remind the reader that the group delay in a first-
order dispersive fiber is a linear function of frequency and de-
pends linearly on the fiber distance z as well. This is in good
agreement with the temporal realignment process that can
be inferred from the Wigner distributions shown in Figure 1.
More specifically, the pulse spectral components separate
temporally from each other as they propagate through the
fiber. In fact, as the Wigner representation of the pulse at
z = 6 LD shows, for a sufficiently long fiber distance, the
temporal realignment process of the pulse spectral compo-
nents is sufficiently strong so that only a single dominant fre-
quency term exists at each given instant of time. This can be
very clearly visualized in the corresponding Wigner represen-
tation: the signal distributes its energy along a straight line in
the TF plane. In this case, there is a direct correspondence
between time and frequency domains or in other words,
the temporal and spectral pulse shapes are proportional,
|A(z, τ)| ∝ |Ã(z,ω)|ω=τ/β2z. This frequency-to-time con-
version operation induced by simple propagation of an op-
tical pulse through a first-order dispersive medium (e.g.,
an optical fiber) is usually referred to as real-time Fourier
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Figure 1: Wigner analysis of linear pulse propagation in an optical fiber (first-order dispersion).

transformation (RTFT) [14]. The exact condition to ensure
RTFT of the input optical pulse is the following [15]:

z
 T2

8π
∣∣β2
∣∣ . (7)

RTFT has been demonstrated for different interesting
applications, including real-time optical spectrum analysis,
fiber dispersion measurements [14], and temporal and spec-
tral optical pulse shaping [15, 16]. An interesting applica-
tion of the phenomenon for monitoring channel crosstalk in
DWDM optical communication networks is also described
in detail in the paper by Llorente et al. in this present special
issue.

3.2. First-order dispersion of a chirped optical pulse

In the second example (results shown in Figure 2), the prop-
agation of a nontransform-limited optical pulse through
the same optical fiber as in the previous example is ana-
lyzed. In this case, we assume a chirped super-Gaussian input
pulse A(0, τ) = √P0 exp[(−[1 + iC]/2)(τ/T0)2m], where m =
3,T0 = 3 picoseconds, and the peak power P0 is again as-
sumed to be low enough to ensure operation within the lin-
ear regime. The new parameter C is referred to as the chirp
of the pulse and is used to model a phase variation across the
temporal profile of the pulse. In our example, we fix C = −3.
Pulses generated from semiconductor or mode-locked laser
are typically chirped and that is why it is important also to
evaluate the effect of pulse chirp on the dispersion process.
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Figure 2: Wigner analysis of linear propagation of a chirped optical pulse through an optical fiber (first-order dispersion).

Figure 1 analyzes the optical pulse envelope A(z, τ) eval-
uated at different fiber propagation distances, z = 0 (in-
put pulse), z = 0.05 LD, z = 0.2 LD, and z = 2 LD. As
shown in the plot corresponding to the input pulse (z = 0),
the temporal shape (amplitude) of this pulse is identical
to that of the corresponding unchirped (transform-limited)
pulse (example shown in Figure 1) but the energy spectrum
differs significantly from that of the unchirped case. Sim-
ilarly, the Wigner distribution clearly corresponds with a
nontransform-limited pulse as the different pulse spectral
components exhibit now a different mean time delay. In
particular, the frequencies in the low-frequency and high-
frequency sidelobes lie in the leading and trailing edges of

the temporal pulse, respectively, whereas the frequencies in
the main spectral lobe are associated with the central, high-
energy part of the temporal pulse. The effect of propaga-
tion of the chirped pulse through the initial section of the
first-order dispersive fiber is essentially different to that ob-
served for the case of a transform-limited pulse. The effect
of the fiber medium on the optical pulse can be again mod-
eled as a phase-only filtering process as that described by
(6). However, in the initial section of the fiber, the GVD in-
troduced by the fiber will compensate partially the intrinsic
positive chirp of the original pulse so that the pulse will un-
dergo temporal compression (instead of temporal broaden-
ing as it is typical of transform-limited pulses). For a specific
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fiber length, the pulse will undergo its maximum temporal
compression (approximately for z = 0.05 LD, in the exam-
ple shown here) when total chirp compensation is practi-
cally achieved. The Wigner distribution of the pulse confirms
that in the case of maximum compression this pulse is ap-
proximately a transform-limited signal (where all the spec-
tral components have the same mean time delay). Ideal chirp
compensation with a first-order dispersive medium can be
only achieved if the original pulse exhibits an ideal linear
chirp (in our case, the input pulse exhibits a quadratic chirp).
The described compression process of chirped optical pulses
using propagation through a suitable dispersive medium has
been extensively applied for pulse-compression operations
aimed to the generation of (ultra-) short optical pulses [17].
In fact, optical pulse-compression operations have been an-
alyzed in the past using Wigner representations [8]. As the
plots corresponding to z = 0.2 LD and z = 2 LD show, fur-
ther propagation in the optical fiber after the optimal com-
pression length has a similar effect to that described for the
case of transform-limited pulses. Briefly, the spectral com-
ponents of the pulse are temporally separated thus causing
the consequent distortion and broadening of the temporal
pulse shape. For sufficiently long fiber distance, a frequency-
to-time conversion process (RTFT) can be also achieved (e.g.,
z = 2 LD).

3.3. Second-order dispersion of a transform-limited
optical pulse

The contribution of second-order dispersion on optical
pulses can be introduced in the previous NLSE equation by
including the corresponding term as follows:

i
∂A(z, τ)

∂z
− β2

2
∂2A(z, τ)

∂τ2
+ i

β3

6
∂3A(z, τ)

∂τ3

+ γ
∣∣A(z, τ)

∣∣2
A(z, τ) = 0,

(8)

where β3 = [∂3β(ω)/∂ω3]ω=ω0 is the second-order GVD.
The contribution of the second-order dispersion induced by
the fiber medium on optical pulses in the picosecond range
can be normally neglected as compared with the contribu-
tion of the first-order dispersion factor. For optical pulses
in the picosecond range, this second-order dispersion con-
tribution becomes important only when the fibers are op-
erated in the vicinity of the so-called zero-dispersion wave-
length, where the first-order dispersion coefficient is null.
Operating around the fiber zero-dispersion wavelength can
be of interest for applications where fiber dispersion must
be minimized, for example, to exploit some nonlinearities
in the fiber [9]. Conventional single-mode fiber (such most
of the fiber currently deployed for optical communication
purposes) exhibits zero dispersion around 1.3 µm (the dis-
persion problem described above is still present at 1.55 µm
in this kind of fibers) but especial fiber designs allow shift-
ing the zero-dispersion wavelength to the desired value (e.g.,
1.55 µm).
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Figure 3: Wigner analysis of linear pulse propagation in an optical
fiber (second-order dispersion).

If the first-order dispersion coefficient is null, then the
effect of second-order dispersion must be taken into account.
In order to evaluate the impact of second-order dispersion on
an optical pulse, we will assume that the fiber nonlinearities
are negligible as well. In this case, the second and fourth term
in the left-hand side of (8) can be neglected and as a result,
the optical fiber operates as a linear time-invariant system
(i.e., as a filter). In particular,

Ã(z,ω) ∝ Ã(0,ω) exp
(
− j

β3

2
zω3

)
. (9)

In Figure 3, the propagation of a super-Gaussian optical
pulse similar to that shown in Figure 1 (z = 0) through a
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second-order dispersive fiber with β3 = −0.1 ps3Km−1 (typ-
ical value in a conventional single-mode fiber working at
λ ≈ 1.3 µm) is analyzed. In particular, the pulse envelope is
analyzed at the fiber distances z = 0.04 L′D and z = 0.15 L′D
where L′D = T3

0 /|β3| ≈ 270 Km. As expected, the original
pulse spectrum is not affected during propagation through
the fiber. The Wigner distributions show that these spectral
components undergo however a temporal realignment ac-
cording to the GVD characteristic of the device which in turn
causes the observed distortion in the temporal pulse shape.
This temporal realignment of the pulse spectral components
is very different from that observed in the case of first-order
dispersion (compare with Figure 1) as the GVD characteris-
tics in both fibers are different. In the case of second-order
dispersion, the original pulse evolves towards a nonsym-
metric temporal shape which consists of two components,
a main high-energy pulse followed by a secondary compo-
nent (quasiperiodic sequence of short low-intensity pulses).
The oscillatory temporal structure following the main tem-
poral component is a typical result of second-order disper-
sion. The Wigner distribution provides very useful informa-
tion about the origin of each one of the components in the
obtained temporal signal. In particular, the main temporal
pulse in the resulting signal is essentially caused by the fre-
quencies in the main spectral lobe which undergo a similar
delay along the fiber (in fact, the Wigner distributions allow
us to infer that this main temporal component is closely a
transform-limited signal). The subsequent temporal oscilla-
tions have their origin in a spectral beating between two sep-
arated frequency bands, each one associated with each of the
spectral sidelobes of the signal, which appear overlapped in
time (i.e., the two beating spectral bands undergo a similar
temporal delay during the fiber propagation). Note that the
spectral main lobe is affected by a delay shorter than that of
the spectral sidelobes (as determined by the fiber GVD). The
period of the temporal oscillations is fixed by the frequency
separation of the beating bands and as it can be observed,
the fact that beating bands are more separated for longer de-
lays translates into the observed oscillation period decreasing
with time.

4. WIGNER ANALYSIS OF NONLINEAR PULSE
PROPAGATION IN OPTICAL FIBERS

4.1. Self-phase modulation of an optical pulse

When the fiber length is such that z� LD but z ≈ LNL, then
the pulse evolution is governed by the nonlinear effects and
the GVD plays a minor role. More specifically, the nonlinear-
dominant regime is applicable when the following condition
is satisfied:

LD
LNL

= γP0T
2
0∣∣β2
∣∣ 
 1. (10)

In this case, the second term in the left-hand side of the NLSE
in (1) (i.e., the dispersion term) can be neglected and the
pulse evolution in the fiber is governed by self-phase mod-
ulation (SPM), a phenomenon that leads to spectral broad-

ening of the optical pulse. This propagation regime will only
occur for relatively high peak power when the dispersion ef-
fects can be neglected either because the fiber is operated
around the zero-dispersion wavelength or because the input
pulses are sufficiently wide (in a conventional single-mode
fiber working at λ ≈ 1.55 µm, typical values for entering the
SPM regime are T0 > 100 picoseconds and P0 ≈ 1 W).

SPM has its origin in the dependence of the nonlinear
refractive-index with the optical pulse intensity (Kerr effect),
which induces an intensity-dependent phase shift along the
temporal pulse profile according to the following expression:

A(z, τ) = A(0, τ) exp
(
iφNL(z, τ)

)
,

φNL(z, τ) = γ
∣∣A(0, τ)

∣∣2
z.

(11)

Equation (11) shows that during SPM the pulse shape re-
mains unaffected as the SPM only induces a temporally-
varying phase shift. This phase shift implies that an addi-
tional frequency chirp is induced in the optical pulse so that
new frequency components are generated along the pulse
profile. In particular, the SPM-induced instantaneous fre-
quency along the pulse duration is

δω(z, τ) = −∂φNL(z, τ)
∂τ

= −γz ∂
∣∣A(0, τ)

∣∣2

∂τ
. (12)

Note that according to (11), the maximum SPM-induced
phase-shift across the pulse is φMAX = γP0z. Figure 4 analyzes
SPM of a long super-Gaussian pulse (m = 3 and T0 = 90 pi-
coseconds) for different values of φMAX (i.e., evaluated at dif-
ferent fiber lengths or for different pulse peak powers). The
input pulse is also shown (φMAX = 0). The expected spectral
pulse distortion and broadening is observed in the plots. The
Wigner distribution is an ideal tool to visualize the process of
generation of new spectral components as it associates these
new spectral components with the temporal features of the
optical pulse. The Wigner distribution confirms the gener-
ation of new spectral content according to (12). In general,
this spectral content generation process is more significant
as φMAX increases. Specifically, the steeping edge of the pulse
is responsible for the generation of new frequency compo-
nents in the low-frequency sidelobe (negative side) whereas
the trailing edge is responsible for the generation of new fre-
quency components in the high-frequency sidelobe (positive
side). The central part of the pulse, where the intensity keeps
approximately constant, is only responsible for the genera-
tion of new spectral content in the narrow, central frequency
band (spectral main lobe). The Wigner distribution reveals
that this spectral main lobe is not a transform-limited sig-
nal but rather it exhibits a pronounced chirp which becomes
more significant as φMAX increases. It is important to note
that such important feature of the generated optical pulses
cannot be inferred from the basic SPM theory presented
above or through the representation of the instantaneous fre-
quency of the signals (i.e., by calculating the derivative of the
pulse phase profile).
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Figure 4: Wigner analysis of pulse self-phase modulation in an optical fiber.

4.2. Dynamics of temporal soliton formation
in the anomalous dispersion regime

When the fiber length z is longer or comparable to both LD
and LNL, then dispersion and nonlinearities act together as
the pulse propagates along the fiber. The interplay of the
GVD and SPM effects can lead to a qualitatively different
behavior compared with that expected from GVD or SPM
alone. In particular, in the anomalous dispersion regime
(β2 < 0) the fiber can support temporal solitons (bright
solitons). Basically, if an optical pulse of temporal shape
A(0, τ) = √P0 sech(τ/T0) is launched at the input of the fiber
and the pulse peak power is such that it satisfies exactly the

following condition LD = LNL, then the pulse will propa-
gate undistorted without change in shape for arbitrarily long
distances (assuming a lossless fiber). It is this feature of the
fundamental solitons that makes them attractive for optical
communication applications. As a generalization, if an opti-
cal pulse of arbitrary shape and a sufficiently high peak power
(peak power higher than that required to satisfy the funda-
mental soliton condition) is launched at the input of an opti-
cal fiber in the anomalous dispersion regime, then a tempo-
ral soliton (sech temporal shape) will form after propagation
through a sufficiently long section of fiber. The analysis of
the dynamics of formation of a temporal soliton is a topic
of paramount importance in understanding the nonlinear
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Figure 5: Wigner analysis of fundamental soliton formation in an optical fiber (anomalous dispersion regime).

dynamics in optical fibers and has attracted considerable at-
tention [1, 18, 19]. Wigner analysis has been proposed as a
simple and powerful method for characterizing optical soli-
ton waveforms (e.g., to evaluate the quality of an optical soli-
ton) [7].

Here, we analyze soliton formation dynamics when the
pulse launched at the input of a fiber is not an exact soliton
solution in that fiber (deviation in temporal shape). In the
example of Figure 5, we assume a fiber with parameters
β2 = −20 ps2Km−1 and γ = 2 W−1Km−1 (typical values for
a conventional single-mode fiber working at λ ≈ 1.55 µm).
The input pulse is assumed to be a super-Gaussian pulse
with m = 3, T0 = 3 picoseconds and the peak power P0

is fixed to satisfy exactly the basic first-order soliton condi-
tion, that is, P0 = 1.11 W. The Wigner representation of the
optical pulse envelope A(z, τ) is evaluated at different fiber
propagation distances, z = 0 (input pulse), z = 4 LD, z =
20 LD, and z = 50 LD. The representations in Figure 5 show
that for sufficiently long distance (z > 20 LD) the original
super-Gaussian pulse evolves into a signal consisting of (a)
a transform-limited first-order temporal soliton and (b) two
long dispersive tails. These two well-known features (soliton
solution and radiation solution of the NLSE, respectively)
can be visualized very clearly in the corresponding two-
dimensional Wigner representations. For distances shorter
than that required for soliton formation (e.g., z = 4 LD),
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the characteristics patterns of the two mentioned signal com-
ponents (soliton + dispersive tails) can be already distin-
guished in the Wigner representation but this representa-
tion shows that the main component is still a nontransform-
limited (chirped) soliton-like pulse. This component is the
one which finally evolves into a transform-limited soliton
by virtue of the interplay between GVD and SPM. Note
that when the transform-limited soliton is formed, the pulse
spectrum exhibits significant oscillations. These oscillations
are typical of soliton formation when the pulse launched at
the input of the fiber does not satisfy the exact fundamental
soliton conditions (i.e., when the input pulse is slightly dif-
ferent in shape, power, or chirp to the ideal soliton) [18, 19]
and can be detrimental for practical applications. The fact
that the input pulse must satisfy exactly the soliton condi-
tions in order to avoid the presence of these and other detri-
mental effects have in part precluded the use of soliton-based
techniques for communication applications. The spectral os-
cillations observed in our plots have been observed exper-
imentally and a physical explanation based on complicated
analytical studies has been also given [19]. The Wigner repre-
sentation provides a simple and direct physical understand-
ing of such spectral oscillations and their more significant
features. In particular, these oscillations can be interpreted
as Fabry-Perot-like resonance effects associated with interfer-
ence between the frequencies lying in the transform-limited
soliton pulse and those in the dispersive tails (i.e., same fre-
quencies with different delays). The period of these oscilla-
tions is then fixed by the temporal delay between the inter-
fering frequency bands. Note that the delay between interfer-
ing bands (horizontal distance in the Wigner plane) increases
for a higher frequency deviation and this translates into the
observed oscillation period decreasing as the frequency de-
viation increases. A similar explanation can be found for
the observed variations in the period of the spectral oscil-
lations as a function of the fiber length. Since the disper-
sive tails are affected by the fiber GVD whereas the soliton
pulse is unaffected, the temporal distance between interfer-
ing bands increases as the fiber distance increases and this
results into the observed oscillation period decreasing with
fiber length.

4.3. Optical wave breaking phenomena in the normal
dispersion regime

Soliton phenomena can also occur when the optical fiber
exhibits normal dispersion (β2 > 0) at the working wave-
length. In this case, a different class of temporal solitons is
possible, that is, the so-called dark soliton, which consists
of an energy notch in a continuous, constant light back-
ground [1]. Although the dark soliton is of similar physi-
cal and practical interest than the bright soliton, in this sec-
tion, we have preferred to focus on other similarly interesting
phenomena that are typical of nonlinear light propagation
in the normal dispersion regime (e.g., optical wave breaking
[20, 21]) and have no counterpart in the anomalous disper-
sion regime.

In Figure 6, we analyze the combined action of disper-
sion and nonlinearities on a Gaussian pulse (m = 1, T0 = 3

picoseconds) along a fiber with normal dispersion (β2 =
+0.1 ps2Km−1). The peak power of the pulse is fixed to en-
sure that the nonlinear effects (self-phase modulation, SPM)
are much more significant than the dispersive effects and,
in particular, LD = 900 LNL ≈ 90 Km, so that P0 ≈ 5 W.
Figure 2 shows the Wigner representation of the optical pulse
envelope A(z, τ) evaluated at different propagation distances,
z = 0 (input pulse), z = 0.02 LD, and z = 0.06 LD (note
that the figure at the bottom right is a detailed analysis
or “zoom” of the temporal response at z = 0.06 LD). At
short distances (e.g., z = 0.02 LD), the pulse is mainly af-
fected by SPM and as expected, the temporal variation of
the spectral content (i.e., instantaneous frequency) is de-
termined by the temporal function ∂|A(z, τ)|2/∂τ, see (12).
The oscillations in the pulse spectrum can be interpreted
again as a Fabry-Perot-like resonance effects (i.e., these os-
cillations have their origin in interference between the same
spectral components located at different instants of time).
For a distance z = 0.06 LD, the pulse energy is temporally
and spectrally redistributed as a result of the interplay be-
tween dispersion and SPM [20]. The Wigner distribution
provides again a simple understanding of the observed tem-
poral and spectral pulse features. In particular, the Fabry-
Perot resonance effects described above appear again and are
responsible for the observed oscillations in the main spec-
tral band. The temporal pulse evolves nearly into a square
shape slightly broader than the input Gaussian pulse. This
square pulse exhibits a linear frequency chirp practically
along its total duration. This fact has been used extensively
for pulse compression applications [17]. It is also impor-
tant to note that the pulse spectrum exhibits significant side-
lobes. From the Wigner representation, it can be easily in-
ferred that these sidelobes are responsible for the observed
oscillations in the leading and trailing edges of the temporal
pulse. A more detailed analysis of the temporal oscillations
in the trailing (leading) edge of the pulse shows that these
oscillations have their origin in a spectral beating between
two separated spectral bands located in the high-frequency
(low-frequency) sidelobe of the pulse spectrum. The whole
process by virtue of which the temporal pulse develops the
described temporal oscillations in its edges associated with
sidelobes in the spectral domain is usually referred to as
optical wave breaking [20, 21]. Our results show that the
Wigner analysis constitutes a unique approach for visualiz-
ing and understanding the physics behind this well-known
phenomenon.

5. CONCLUSIONS

In summary, the Wigner analysis has been demonstrated to
be a powerful tool for investigating picosecond pulse propa-
gation dynamics in optical fibers in both the linear and non-
linear propagation regimes. This analysis provides a simple,
clear, and profound insight into the nature of the physical
phenomena that determine the pulse evolution in an optical
fiber, in some cases revealing details about these physical phe-
nomena which otherwise cannot be inferred.
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Figure 6: Wigner analysis of nonlinear pulse propagation through an optical fiber in the normal dispersion regime.

The examples in this paper demonstrate the efficiency of
the TF (Wigner) techniques for the analysis of linear and
nonlinear optical systems and should encourage the appli-
cation of these techniques to a variety of related problems,
such as the systematic study of femtosecond pulse propaga-
tion in optical fibers (i.e., influence of high-order dispersion
and nonlinear effects) or spatiotemporal dynamics.

In general, the results presented here clearly illustrate
how advanced signal processing tools (e.g., TF analysis) can
be applied to investigating physical systems of fundamen-
tal or practical interest and how the unique information
provided by these advanced analysis tools can broaden our
understanding of the systems under study.
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A new technique for obtaining frequency-dependent magnitude and phase information across an optical channel is presented
using tunable allpass optical filters and a detector with a small bandwidth relative to the full channel width. This technique has
application to optical monitoring of intersymbol interference distortions, including chromatic and polarization-mode dispersion
effects, and thus can provide vector information for input to the control of adaptive optical filters. A method for generating a test
signal spanning the spectrum of a modulated data signal without introducing intersymbol interference is discussed. This technique
can also be used to characterize an optical pulse source and does not scale in complexity or cost as the bandwidth of the source
increases.

Keywords and phrases: intersymbol interference, chromatic and polarization-mode dispersion, optical channel monitoring, op-
tical channel estimation.

1. INTRODUCTION

A novel optical vector spectral analysis (OVSA) technique is
proposed that measures the phase and amplitude of a signal
using a detector having a limited bandwidth with respect to
the full signal bandwidth. When a known signal with spec-
tral components spanning the channel width is launched into
a wavelength-division-multiplexed (WDM) optical commu-
nication system, it allows the frequency response of the sys-
tem across the channel bandwidth to be determined. Given
the importance of chromatic dispersion and polarization-
mode dispersion (PMD) in high-bitrate optical communi-
cation systems, the OVSA can be implemented to character-
ize both the frequency-dependent relative phase and the sig-
nal’s polarization-dependence. The goal of characterizing the
channel, or system response across a limited spectral width,
is to provide accurate information on signal distortion. This
information may then be used as a signal quality monitor or
to update an adaptive filter that compensates for distortions
[1, 2] and subsequently allows a higher bitrate times distance
product to be achieved for the system. The proposed tech-
nique also allows a periodically modulated optical source to
be fully characterized.

A previous OVSA technique suggested the use of nar-
rowband optical filters to extract sidebands equally spaced
around a return-to-zero (RZ) modulated carrier [3], from
which relative delay and dispersion information could be
obtained without introducing any special test signals at the

transmitter. One narrowband filter (NBF) was required per
tone, so a minimum of three filters were required, one at the
carrier and one for each sidetone. The detector bandwidth
was necessarily on the order of the signal spectral width. It is
desired to keep the detector bandwidth as small as possible
for low cost and to minimize the complexity of the optical
circuit as well. It is also desirable to arbitrarily increase the
number of discrete frequencies at which measurements are
made to increase the allowable PMD compensation range or
baseband data rate or both. The new technique is proposed
with these considerations in mind. This approach does not
necessarily change the input polarization at the transmitter,
unlike [4].

In this paper, we begin with a description of the optical
source properties that are critical to our new OVSA method
and some applicable source generation techniques. The an-
alyzer is then described theoretically, followed by a presen-
tation of system simulations to verify the expected perfor-
mance. While the new OVSA can be used to characterize
a periodic input pulse stream with an arbitrary waveform
shape using a much simpler implementation that assumes a
fixed input state of polarization, the explanation is given for
an implementation that allows a channel with polarization-
dependent loss and polarization-mode dispersion to be char-
acterized. In the latter case, vector analysis implies character-
ization with respect to the phase response as in a traditional
vector network analyzer as well as with respect to the vector
nature of the incoming polarization.
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Figure 1: Modified transmitter consisting of a laser/modulator
driven with data and test frequency comb embedded in a WDM
system with a tap on the receiver side for channel estimation. The
output spectrum at the transmitter is shown in the inset.

2. OPTICAL SOURCE GENERATION

While phase and magnitude information can be obtained
from the modulated signal without modification to the
transmitter [3], methods to enhance the signal-to-noise ra-
tio (SNR) and decrease the complexity and cost of the mea-
surement are needed. Test, or training, signals are used in
wireless transmission on dedicated frequency and/or time
slots to characterize the channel response. In optical com-
munications, burst-mode transmission is unlikely to be in-
troduced for inserting time slot monitors and frequency al-
location within the spectrum of a high-bitrate signal, where
we wish to measure the system response, since it could pro-
duce more distortion than we’re trying to measure. Conse-
quently, we focus on adding information to the optical signal
that will minimally impact its transmission in terms of inter-
symbol interference (ISI). Sensitivity to nonlinearities is also
important, but it is beyond the scope of this paper. It is pro-
posed to add a test signal to the data signal in the form of
a comb with known relative magnitude and phase relation-
ships at the transmitter as shown in Figure 1, where δ f may
be on the order of 2.5 to 5 GHz for practical purposes. This
provides information with a higher SNR than trying to ex-
tract the desired information from the equivalent of a pseu-
dorandom bit sequence (PRBS). With the test comb and pro-
posed analyzer circuit, the fast photodetectors need only have
enough bandwidth to accommodate δ f and not the whole
signal bandwidth!

The tones are assumed to be equally spaced in this pa-
per. Equally spaced tones are easy to generate using a step-
recovery diode. For completeness, it is noted that chirped
tones, whereby each pair of adjacent tones has a slightly dif-
ferent spacing, would produce a beat signal between adjacent
pairs at a slightly different frequency so the magnitude and
phase between each pair could be resolved by mixing with a
swept local oscillator. Mixing two combs with slightly differ-
ent δ f , for example at 2.4 and 2.5 GHz, will produce a se-
ries of chirped tones that could be useful as well. Note that
the data encoder could be modified to produce tones with a
desired frequency spacing in the output spectrum; however,
data encoding is typically undertaken over a relatively large
block of bits which would produce much lower δ f than de-
sired for our purposes. Optical phase modulation, discussed
in the last section, appears promising for generating a test
signal that introduces minimal ISI on the data signal.
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Figure 2: Optical vector spectrum analyzer based on a planar light-
wave circuit with ring resonators for (a) a single-input polarization
and (b) for measuring PMD.

3. A NOVEL OPTICAL VECTOR
SPECTRUM ANALYZER

The goal of our OVSA is to determine the amplitude of the
tones and relative phase between each pair of tones when
they are all present at the detector. While a tunable narrow-
band filter solves the amplitude discrimination problem, de-
termining the relative phase is more challenging. An obvious
solution is to have a bandpass filter with width δ f or two
narrowband optical filters, ring resonators for example, sep-
arated by δ f , which scan across the signal spectrum. The rel-
ative phase between each pair of tones is then determined via
quadrature detection; however, one challenge is having the
filters precisely separated as they are tuned, since any unde-
sired offset will contribute phase error arising from the ring
dispersion. As the filter is tuned, the tone will be substan-
tially attenuated intermediate to the desired sampling points,
which could make the tone difficult to track with a phase-
locked loop. Our proposed technique relies on the narrow-
band phase response of allpass filters instead.

The proposed analyzer circuit for a single-input polariza-
tion, which uses a single detector with minimal bandwidth
and can easily be realized with planar waveguide ring res-
onators, is shown in Figure 2a. In this architecture, it is as-
sumed that the input polarization is aligned to a principal
state of the device, referred to as the x- or y-polarization for
a planar waveguide, either by using polarization maintaining
components or a polarization controller. For an input signal
where information may be carried by either polarization or
any combination thereof, simultaneous measurement of or-
thogonal polarizations is required as shown in Figure 2b. The
transfer function of a polarization-dependent system is de-
scribed by its Jones matrix. In the simplified case of a lossless
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system, the transfer matrix is unitary and described by

M(ω) =
[
U(ω) −V∗(ω)
V(ω) U∗(ω)

]
, (1)

where U(ω) and V(ω) are the complex transfer functions for
each orthogonal polarization. For a system which is polariza-
tion independent or where only a single polarization is im-
portant, the transfer function is denoted by H(ω).

In Figure 2b, each polarization is split into a separate
path by a polarization beam splitter (PBS) and polariza-
tion controller (PC). The PC allows the power in the x- and
y-outputs to be controlled so that all of the power is not
in one output or the other. One polarization on the out-
put of the PBS/PC is rotated by 90 degrees so that the out-
puts going into the 3 dB couplers have the same polariza-
tion, that is, either x- or y-polarization. An integrated polar-
ization beam splitter with a polyimide half-waveplate have
been demonstrated [5]. After the 3 dB coupler, one portion
of each polarization is analyzed by a tunable narrowband fil-
ter (NBF) to obtain the magnitude across the channel, while
the other portion is transmitted through a tunable allpass fil-
ter (APF) before being detected. Note that both previously
orthogonally-polarized signals experience the same NBF re-
sponse but in counterpropagating directions, so the polariza-
tion dependence of the NBF is not a limiting factor. An addi-
tional measurement that is critical for PMD-impaired chan-
nels is the relative phase between polarizations [6], which is
indicated by the Detφ in Figure 2b. The relative phase is mea-
sured by tapping off a portion of the x- and y-outputs sig-
nal and interfering them in a directional coupler. Varying the
phase of one of the signals before the coupler, by introduc-
ing a phase shifter, allows the relative phase to be determined
without ambiguity. Alternatively, a full 90-degree hybrid cou-
pler arrangement as used in coherent detection, where it is
used to mix the signal and local oscillator in phase and in
quadrature, may be used. The measurement of relative phase
and magnitude provides the Jones vector up to a common
phase term at each tone.

The filters’ resonant frequencies are tuned, for example,
by thermo-optic phase shifters. The APFs are identical in
principle, but any variations can be compensated via calibra-
tion. Each APF is designed to provide a very sharp transi-
tion in its phase response from 0 to 2π near resonance [7]
as shown in Figure 3. On-resonance, the phase is π. Off-
resonance, the phase quickly approaches 0 or 2π. As the res-
onant frequency is shifted via a phase shifter in the feed-
back path, the phase response is translated across the channel
spectrum and the RF detector records different linear combi-
nations of beats between adjacent tones.

In linear systems terms, the transmission channel for a
single polarization has a complex frequency response H( f )
which we wish to measure at discrete points defined by the
tones. For simplicity, let the tone amplitudes and phases be
equal at the transmitter. The response of the system at the
nth tone is designated by H(nδ f ) = hne jϕn , which consists
of an amplitude hn and phase φn. The allpass filter adds an
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Figure 3: A single-stage APF phase response for various values of
the pole magnitude.

additional phase term, call it θn. The detected photocurrent
p(t) is proportional to the square magnitude of the field:

p(t) ∝
∣∣∣∣∣

N∑
−N

hne
j(ϕn+θn)e jn2πδ f t

∣∣∣∣∣
2

. (2)

When the detected photocurrent is mixed with a reference RF
signal at the tone difference frequency and lowpass filtered to
retain just the δ f mixing terms, the in-phase and quadrature
photocurrent components are given by

i = 〈p(t) cos(2πδ f t)
〉 = N−1∑

n=−N
hnhn+1 cos

(
∆ϕn+1 + ∆θn+1

)
,

q = 〈p(t) sin(2πδ f t)
〉 = N−1∑

n=−N
hnhn+1 sin

(
∆ϕn+1 + ∆θn+1

)
,

(3)

where ∆ϕn+1 = ϕn+1 − ϕn and similarly for ∆θn. The brack-
ets indicate lowpass filtering by averaging over time. In the
ideal case of a lossless APF whose pole magnitude approaches
unity, ∆θn approaches 0 or π (modulo 2π) and the ampli-
tude response is unity. The phase response becomes more
gradual around the resonant frequency as the pole magni-
tude decreases as shown in Figure 3 for a single-stage APF at
several values of the pole magnitude r and for zero frequency
offset. Independent of the pole magnitude, the phase at res-
onance is shifted by π relative to the antiresonant frequency
(ω = +/ − π). The idealized case is assumed in the follow-
ing discussion for illustrative purposes. In practice, the tone
spacing relative to the APF’s free spectral range (FSR) deter-
mines the pole magnitude required for the phase to change
fast enough to make the phase difference approximation by
0 or π valid. After the initial explanation, we show how to
remove this restriction entirely and also accommodate filters
with loss.
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Figure 4: Allpass filter phase (left) and magnitude (right) response at several different frequency offsets with the markers indicating the tone
locations.

As the APF response is tuned across the tones, the de-
tected i and q change. For the case of a discrete input spec-
trum, we can represent the phase difference resulting from
discrete frequency shifts of an idealized APF response, where
zero shift corresponds to the center tone’s frequency, using a
Kronecker delta function. Let the APF’s resonant frequency
offset be mδ f for a particular im and qm measurement; then
the phase difference introduced by an idealized APF (lossless
and pole magnitude approaches unity) between the nth and
n+ 1st tones is given by ∆θm,n ≈ π[δ(n−m)− δ(n− 1−m)]
modulo 2π. Consider a case with three tones. For the first
measurement, the APF resonant frequency is set out of band,
let m = −2, so ∆θ0,0 = ∆θ0,1 = 0 and the quadrature compo-
nents are

i1 = h−1h0 cos
(
∆ϕ0

)
+ h0h1 cos

(
∆ϕ1

)
,

q1 = h−1h0 sin
(
∆ϕ0

)
+ h0h1 sin

(
∆ϕ1

)
.

(4)

For the second measurement, the resonant frequency is set at
f0 − δ f , or m = −1 in this example, so that ∆θ1,0 = π and
∆θ1,1 = 0. Then, the quadrature components are

i2 = −h−1h0 cos
(
∆ϕ0

)
+ h0h1 cos

(
∆ϕ1

)
,

q2 = −h−1h0 sin
(
∆ϕ0

)
+ h0h1 sin

(
∆ϕ1

)
.

(5)

Thus,

h0h1 cos
(
∆ϕ1

) = i1 + i2
2

, h−1h0 cos
(
∆ϕ0

) = i1 − i2
2

,

(6)

and similarly for the q components so that

∆ϕ1 = tan−1
[
q1 + q2

i1 + i2

]
, ∆ϕ0 = tan−1

[
q1 − q2

i1 − i2

]
. (7)

By detecting i and q at 2N frequency offsets of the APF for
an input signal with 2N + 1 tones, two matrix equations re-
sult: i = Ax and q = Ay, where x = {hnhn−1 cos(∆ϕn)}, y =
{hnhn−1 sin(∆ϕn)}, and A = {cos(∆θmn)} for −N + 1 ≤ n,
m ≤ N . Note that the elements of A for this ideal case are
either 1 or −1. Magnitude and phase information are given

by hnhn−1 =
√
x2
n + y2

n and ∆ϕn = a tan(yn/xn), respectively.

In the ideal three-tone case, A = [ 1 1
−1 1 ]. Once the magnitude

response is determined independently at one frequency, then
the x (or y) vector is used to calculate the remaining magni-
tude values.

The APFs provide a functionality that would otherwise
have to be obtained by separating the tones into separate
paths (i.e., demultiplexing closely spaced tones) and using
a phase shifter in each path to obtain the desired series of
linear combinations. Note that only the resonant frequency
is tuned for both the NBF and APFs, so the coupling ra-
tios are fixed. This allows simple waveguide layouts for the
rings, which can achieve very low roundtrip losses. An un-
derlying assumption is that the APF can be translated over
2N points in a time short compared to changes in the system
response. An advantage of working with δ f ’s in the range of
wireless carrier frequencies, such as 2.5 GHz, is that low-cost
RF signal processing chips are available. The AD8302 gain
and phase measurement circuit by analog devices that op-
erates up to 2.7 GHz is one example. By synchronizing the
sweep of the NBF and APFs, the location of the tones in the
magnitude response can be used to trigger the sampling of
i and q. For quadrature detection, a reference signal at the
tone frequency is required. This may be obtained by locking
a voltage-controlled oscillator (VCO) to the detected RF tone
at δ f using a phase-locked loop (PLL) as shown in Figure 2
in a manner similar to clock recovery on a data signal. Since
we are tuning the APF, the tones will never completely drop
out during the sweep.

With practical APFs, the pole has a value less than unity,
causing the phase to vary more gradually across the reso-
nant frequency region, and the feedback path has some loss,
which produces a frequency-dependent amplitude response
as shown in Figure 4. The elements of A are no longer 1 or
−1. The nonidealities of the APF are now included in matrix
equations given by

i = Ax − By,

q = Bx + Ay,
(8)

where the elements of A and B are given by anan−1 cos(∆θmn)
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Figure 5: (Top) Simulated system. (Left) Dispersion measurement using 7 tones spaced at 5 GHz and (right) measurement of the Jones
matrix frequency responses for a system with PMD.

and anan−1 sin(∆θmn), respectively, and the magnitude re-
sponse of the APF at the tone frequencies is represented by
the an terms. Note that A and B depend only on the APF
response and not the system, so they can be determined by
a one-time calibration procedure. Formula (8) can be rear-
ranged to solve for x and y as follows:

x = C−1(B−1i + A−1q
)
,

y = C−1(− A−1i + B−1q
)
,

(9)

where C = (A−1B + B−1A). The requirement for the tun-
able APF is that it sample the tones in a manner so that A
and B are nonsingular and therefore invertible. This condi-
tion is certainly met with nonideal, but practical, parame-
ters for the APF as shown in Figure 4 of 0.1 dB/roundtrip loss
and the pole at 0.95. When the input tones occur mainly on
one side or the other of the allpass filter’s resonant frequency,
the APF’s response is dominantly quadratic in phase and it
acts like chromatic dispersion from an optical fiber. It is well
known that chromatic dispersion, which is characterized by
a quadratic phase response, causes fading of RF tones [8].

4. SYSTEM SIMULATIONS

System simulations using commercial software1 were first
run using a comb produced by an electro-absorption modu-
lator driven by 3 frequencies at 5, 10, and 15 GHz (Figure 5).
A notch filter was used to attenuate the carrier by 20 dB so
that all tones had approximately the same magnitude. The
output power after the notch filter was −24 dBm. The rela-
tive phase between each pair of adjacent tones was calculated
and is plotted in Figure 5 for various cumulative system dis-
persions. The linear fit for the measured dispersion is within
1% of the actual. Then, the frequency response of a system
with simulated PMD, consisting of a cascade of 1000 bire-
fringent plates with random orientations, was tested. The re-
sults are shown for both the delay and magnitude in Figure 5.
The group delay difference between orthogonal polarizations
varies across the channel and has a value of 45 picoseconds
at the center frequency. The dominant noise source was out-
of-band tones generated from nonlinearities in the modula-
tor. A trapezoidal filter was used to attenuate these unwanted

1VPItransmissionMaker by Vitual Photonics, Inc.
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Figure 6: (c), (d) An RZ 33% duty cycle signal phase modulated to produce tones at half the bitrate, and (e) measured dispersion. (a) The
system simulation schematic and (b) the transmitted eye diagram are shown.

tones by at least 20 dB. A 7th-order bandpass Bessel filter
centered at the tone frequency was placed after the detector

and before the quadrature demodulation circuit. The input
power to the optical amplifier was reduced to increase the
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amplified spontaneous emission noise, but it did not impact
the measurements, which illustrates an advantage of using
narrowband quadrature detection.

In practice, we wish to have the test and data signals co-
exist. For amplitude modulation and direct detection, phase
modulation represents an orthogonal space for introducing
the test signal, as shown in Figure 6. An RZ pulse generator
was followed by a phase modulator with the repeating pat-
tern [1010]π/2 and then by an NRZ amplitude modulator
for the signal (PRBS in this case) to produce the spectrum in
Figure 6c. The resulting test signal is orthogonal to the data
using direct detection so it does not introduce ISI. By vary-
ing the pattern, which is effectively at half the bitrate in this
example, and modulation depth, the tone locations can be
translated in frequency. A phase modulation of [1100]π pro-
duced the spectrum in Figure 6d. Simulated dispersion mea-
surements with 3% or less error from the actual dispersion
are shown in Figure 6e for a single polarization, 10 Gbp/s RZ
(33% duty cycle) signal with a 24 dB OSNR. Similar results
to Figure 5 were also obtained for a system with PMD.

If there is no dispersion in the system, the RF spectrum
has tones only at the clock rate. To obtain a reference signal
for quadrature detection at half the bitrate, either the clock
can be recovered and halved, for example by a divide-by-
2 circuit, or APFs can be introduced as in the analyzer cir-
cuit itself to break the deconstructive interference condition
between adjacent tones under direct detection and produce
a detectable RF tone. Another practical consideration is the
phase calibration. The relative phases between adjacent tones
at the transmitter must be known. A back-to-back measure-
ment was used as the calibration for these simulations.

For polarization multiplexed signals, a slightly different
comb frequency difference δ f can be used for each polar-
ization and retrieved by mixing with the appropriate local
oscillator after detection. Alternatively, the tones can be stag-
gered as indicated in Figures 6c and 6d. Let the Jones vec-
tor at the input for each polarization be denoted by SX =
[SX(ω) 0]T and SY = [0 SY (ω)]T , where S(ω) is the in-
put spectrum. The output, measured by a circuit such as
shown in Figure 2, is then given by H = M(SX + SY ), where
H = [HX(ω) HY (ω)]T , and

HX(ω) = U(ω)SX(ω)−V∗(ω)SY (ω),

HY (ω) = V(ω)SX(ω) + U∗(ω)SY (ω).
(10)

Thus, it is possible to measure the system Jones matrix with
this technique without varying the input polarization to the
system. For PMD compensation, this provides the informa-
tion needed to estimate the ideal compensating function,
M−1(ω).

In summary, a new technique was presented for obtain-
ing phase and magnitude information from a signal using
tunable, optical allpass filters. While a particular application
was cited, the underlying approach of applying allpass filter-
ing to obtain spectrally dependent phase information with-
out optical heterodyning or without bandlimiting the signal
in the optical domain is general. Low-coherence techniques

allow one to determine the phase of a device embedded in an
interferometer; however, the proposed technique allows one
to obtain phase information on the source and, subsequently,
of the device or system. Optical modulation is proposed to
introduce a test signal that is continuous in time and does
not introduce ISI. Channel estimation at discrete frequency
points across a noisy signal spectrum was demonstrated via
simulation; thus, the available information for controlling
PMD compensators and polarization demultiplexers is sub-
stantially enhanced. The technique is also applicable to char-
acterizing a periodic pulse stream with an arbitrary wave-
form shape. The first experimental results for characteriza-
tion of a periodic pulse stream were reported in [9].
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We present compact integrable architectures to perform the discrete wavelet transform (DWT) and the wavelet packet (WP) de-
composition of an optical digital signal, and we show that the combined use of planar lightwave circuits (PLC) technology and
multiresolution analysis (MRA) can add flexibility to current multiple access optical networks. We furnish the design guidelines
to synthesize wavelet filters as two-port lattice-form planar devices, and we give some examples of optical signal denoising and
compression/decompression techniques in the wavelet domain. Finally, we present a fully optical wavelet packet division multi-
plexing (WPDM) scheme where data signals are waveform-coded onto wavelet atom functions for transmission, and numerically
evaluate its performances.
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1. INTRODUCTION

Global communication networks infrastructure has been ex-
panded thanks to recent advances in optical technology, such
as transparent photonic switches and ultra-long-haul trans-
mission systems, and the increase of multimedia data traf-
fic is strengthening the demand for ultra-high-capacity pho-
tonic networks. The key feature of ultrafast optical networks
is that the electrical conversion is avoided until data signals
reach the most external edge node. Optical signal processing
is not only faster than the electrical one, but it can also sup-
port a larger throughput, and current optical networks are
evolving toward solutions where photonic routers are replac-
ing electronic routers in the intermediate nodes [1].

In the present paper, we show that the use of wavelet
functions in optical communications can provide an overall
capacity improvement thanks to the two-dimensional pro-
cessing capability of multiresolution analysis (MRA), and we
present different architectures in standard planar lightwave
circuits (PLC) technology that perform the wavelet analysis
and multiplexing of data signals directly in the optical do-
main.

The wavelet transform involves joint time-frequency rep-
resentation of nonstationary signals using compactly sup-
ported basis functions, and MRA has been extensively used
to solve a large variety of problems in different research ar-
eas. The enormous flexibility in the choice of the wavelet al-
lows the use of optimal wavelets for specifical applications,
such as image compression, signal denoising, human vision,
radar, earthquake prediction, and computer vision problems,
such as range detection or motion estimation [2, 3, 4]. In
optics communications, wavelets have been used for time-
frequency multiplexing [5, 6] and ultrafast image transmis-
sion [7]. In general, wavelet signal analysis is associated with
an effective computational algorithm, even faster and simpler
than the fast Fourier transform (FFT) algorithm [8].

The aim of the present paper is to present a complete
overview of the capabilities of wavelet signal processing and
multiplexing in optical communications. In Section 2, we
give a brief description of the MRA, illustrating the ba-
sic properties of the subband filtering process of both dis-
crete wavelet transform (DWT) and the wavelet packet (WP)
decomposition. In Section 3, we present the guidelines to
synthesize optical wavelet filters using PLC technology, and
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describe some optical implementations for the DWT and WP
decomposition. Some numerical examples for optical signal
denoising and compression are given in Section 4; in partic-
ular, we show that the SNR of an optical signal can be en-
hanced by performing the DWT of the optical signal and
thresholding the detail coefficients. In addition, we evidence
the correspondence of the wavelet analysis and the optical
packets compression/decompression method using delay line
lattice structures [9]. Finally, in Section 5 we present an in-
novative full optical wavelet packets division multiplexing
(WPDM) scheme and numerically test its performance.

The huge bandwidth provided by optical fibers and the
capability of signal processing directly in the optical layer
make an attractive combination for future multiple access
networks. The feasibility of optical code division multiple ac-
cess (O-CDMA) systems has been demonstrated where the
spectral [10] or the temporal [11] encoding results in spread-
ing the optical pulse in the frequency or the time domain.
However, a more efficient use of the time-frequency plane
has the potential of proving flexible access to a larger num-
ber of multiple end users. WPDM is an emerging technique,
used in wireless communications, that transmits message sig-
nals overlapped in time and frequency domains, and recovers
them with very low multiple access interference (MAI) noise,
thanks to the orthogonal properties of the wavelet packet
functions [12, 13, 14, 15]. Data signals from different users
are waveform-coded onto wavelet atom functions and trans-
mitted in a multiple access network. Wavelet atom functions
are self-orthogonal against integer translations and mutual-
orthogonal due to different subbands occupancy; these prop-
erties ensure a better use of time-frequency plane, with re-
spect to standard time division multiplexing (TDM), wave-
length division multiplexing (WDM), and CDMA systems
[12]. In its standard form, WPDM requires N waveform
shapers to code each user bit sequence with a different wave-
form, and its optical implementation is impracticable [5].
We present a compact, full optical WPDM scheme, where
the transmitter is a single encoder that multiplies N optical
data signals from N simultaneous users. The encoder gives
the equivalent sequence at the root of the WP decomposi-
tion tree, and it is followed by a single modulator that com-
pletes the waveform coding, shaping the optical pulses of the
composite signal with the scaling function profile. The re-
ceiver is a reversal version of the transmitter, and the same
optical devices are used for both encoding and decoding the
binary sequences. In addition, we show that both the WP
encoder/decoder and the waveform modulator can be fabri-
cated using PLC technology and integrated on a single de-
vice: the WP encoder/decoder can be realized as a tree of
lattice-form optical delay line filters [16], whereas the modu-
lator as a weight/phase-programmable tapped delay line filter
[17].

2. MULTIRESOLUTION ANALYSIS

The analysis of nonstationary signals involves a compromise
between how well transitions or discontinuities are located,

and how finely long-term behavior can be identified. For in-
stance, standard Fourier transform decomposes a continu-
ous time-signal s(t) into individual frequency components,
using complex sinusoidal basis functions exp(iωt), that are
infinite in extent. As these basis functions are periodic, any
short duration signal spreads over the whole basis. In con-
trast, the MRA decomposes a signal at different scales or res-
olutions, using a basis whose elements are localized in both
time and frequency domains, and the representation of short
duration and nonstationary signals focuses on a few compo-
nents, that immediately enlighten the predominant frequen-
cies and the time occurrence of abrupt changes.

Specifically, the continuous wavelet transform (CWT)
performs correlations between the signal s(t) and scaled ver-
sions of the mother wavelet ψ(t):

CWTs(a, τ) = 1
|a|

∫
s(t)ψ∗

(
t − τ
a

)
dt, (1)

where a is a real nonzero scale parameter, and τ the transla-
tion factor. If ψ(t) satisfies the admissibility condition

cψ =
∫ ∣∣ψ̃( f )

∣∣2

| f | df <∞, (2)

where ψ̃( f ) is the Fourier transform of the mother wavelet
ψ(t), the signal s(t) can be reconstructed by means of the in-
verse wavelet transform

s(t) = 1
cψ

∫∫
CWTs(a, τ)

1√|a|ψ
(
t − τ
a

)
dadτ

a2
. (3)

Usuallyψ(t) is localized both in time and frequency domains,
and the CWT displays the time evolution of the frequency
components of a signal. In fact, by applying the Fourier Par-
seval formula [18], (1) can be rewritten as

CWTs(a, τ) =
√
|a|

∫
s̃( f )ψ̃∗(−a f )e− j2π f τdf , (4)

where s̃( f ) is the Fourier transform of the signal. There-
fore, the CWT can be seen as the output from a bank of fil-
ters which are constructed by dilatations/compressions of the
mother wavelet. Filters obtained by dilatations of ψ(t) pro-
cess the low-frequency information of the signal s(t), whereas
the filters related to the compressed version of ψ(t) analyze
the high-frequency content.

More useful in digital signal processing and multiplex-
ing are the orthogonal wavelet series expansions, derived
from the CWT when scale and translation factors are con-
strained to discrete values. Let φ(t) be a (smooth) scaling
function such that the discrete set of functions {2−�/2φ(2−�t−
k∆τ) (�, k ∈ Z)} forms an orthonormal basis for a subspace
V� ∈ L2(R); here ∆τ is a time interval that will coincide
with the inverse of the free spectral range (FSR). Let ψ(t) be
an admissible mother wavelet such that (a) the discrete set
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of functions {2−�/2ψ(2−�t − k∆τ) (�, k ∈ Z)} forms an or-
thonormal basis for a subspace W� ∈ L2(R); (b) the sub-
spaces V� and W� are mutually orthogonal, that is, W�⊥V� ;
(c) the subspace V�−1 can be expressed as direct sum of V�

and W� , namely

V�−1 = V� ⊕W� . (5)

Then, a signal s(t) ∈ V0 is represented by a smoothed ap-
proximation at resolution 2M , obtained by combining trans-
lated versions of the basic scaling function φ(t), andM details
at the dyadic scales a = 2� (� = 1, 2, . . . ,M − 1) obtained by
combining shifted and dilated versions of the mother wavelet
ψ(t):

s(t) =
∑
k

2−M/2cM[k]φ
(
2−Mt − k∆τ)

+
M∑
�=1

∑
k

2−�/2d�[k]ψ
(
2−�t − k∆τ). (6)

The wavelet and the scaling function satisfy the dilation equa-
tions

φ(t) = √2
∑
k

h[k]φ(2t − k∆τ),

ψ(t) = √2
∑
k

g[k]φ(2t − k∆τ),
(7)

where g[k] and h[k] are the coefficients of two quadrature
mirror filters (QMFs)

H(ω) = 1√
2

∑
k

h[k]e− jωk∆τ ,

G(ω) = 1√
2

∑
k

g[k]e− jωk∆τ ,
(8)

and ∆τ is the inverse of their FSR [19, 20].
The DWT is computed by using Mallat’s pyramidal algo-

rithm [8]. Let c0[n] be the expansion coefficients of the signal
s(t) ∈ V0, with respect to the orthonormal basis φ(t−∆nτ):

c0[n] = 〈s(t),φ(t − n∆τ)
〉 = ∫ s(t)φ∗(t − n∆τ)dt, (9)

where angular brackets indicate inner product. Then the co-
efficients c0[n] can be decomposed into the scaling coeffi-
cients c1[n] and detail coefficients d1[n], via recursive dis-
crete convolutions with the lowpass h[n] and highpass g[n]
filters, respectively, followed by subsampling of factor 2:

c1[n] =
∑
k

c0[k]h[2n− k],

d1[n] =
∑
k

c0[k]g[2n− k].
(10)
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Figure 1: Pyramidal decomposition scheme for the DWT: an opti-
cal signal is driven into the device input and the optical wavelet de-
tail and scaling coefficients are obtained at the device outputs. The
output signals have to be subsampled according to their decompo-
sition level.

The DWT decomposition halves the time resolution and
doubles the frequency resolution, because the frequency
band of the output signals spans only half of the frequency
band of the original signal; therefore, half of the samples can
be discarded by subsampling, without any information loss.
On the other hand, the reconstruction process yields the in-
put sequence by the inverse filtering and upsampling:

c0[n] =
∑
k

c1[k]h[2k − n] + d1[k]g[2k − n]. (11)

The decomposition procedure can be further repeated, and,
at each decomposition level �, the filtering and subsampling
halves both the number of the samples and the frequency
band:

c�[n] =
∑
k

c�−1[k]h[2n− k],

d�[n] =
∑
k

c�−1[k]g[2n− k].
(12)

Here, c�[k] and d�[k] are the scaling and the details coeffi-
cients, respectively, at resolution 2� . This approach reduces
the computational load, with respect to the standard FFT,
since at each decomposition level a reduced number of sam-
ples are processed, and, at the same time, improves both the
time and frequency resolution. In fact, high frequencies are
resolved better in the time domain and low frequencies better
in the frequency domain. The pyramidal scheme for DWT is
depicted in Figure 1 and we observe that only the scaling co-
efficients c�[n] are recursively filtered, whereas the detail co-
efficients d�[n] are never reanalyzed. In addition, the decima-
tion of the wavelet coefficients is performed by subsampling
according to the decomposition level, so that the number of
bits in the input signal coincides with the total number of bits
in all the DWT coefficients.
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Figure 2: Pyramidal scheme for the WP decomposition: an optical signal is driven into the device input and the optical wavelet packet
coefficients are obtained at the device input. The decomposition level is � = 3, and all the output signals have to be subsampled at 2� = 8.

The WP decomposition offers a richer signal analysis,
with respect to DWT, as both the scaling c�[n] and the detail
coefficients d�[n] are recursively decomposed, following the
same filtering and subsampling scheme [3]. The decomposi-
tion tree corresponding to a full WP analysis is illustrated in
Figure 2: in this case, all the outputs have the same number
of samples and span over the same frequency bandwidth, be-
cause they correspond to the same decomposition level. The
WP decomposition is performed by computing the convolu-
tion of the input signal c0[n] with the wavelet atom functions
that are a set of functions defined in the following recursive
manner:

w�+1,2m(t) =
∑
k

h[k]w�,m
(
t − 2�k∆τ

)
,

w�+1,2m+1(t) =
∑
k

g[k]w�,m
(
t − 2�k∆τ

)
.

(13)

Here � is the decomposition level, m (0 ≤ m ≤ 2� − 1) the
wavelet atom position in the tree [4]; in addition, the func-
tion w0,0(t) coincides with the scaling function φ(t). By ex-
ploiting the recursive structure of (13), a wavelet atom func-
tion can be expressed as

w�,m(t) =
∑
k

f�,m[k]φ(t − k∆τ), (14)

with f�,m[n] being the equivalent filter from the root to
the (�,m)th terminal, that can be recursively evaluated us-
ing (13). The WP atoms are self- and mutual-orthogonal
functions at integer multiples of dyadic intervals [21]:

〈
w�,m

(
t − 2�nτ

)
wλ,µ

(
t − 2λkτ

)〉=δ[� − λ]δ[m− µ]δ[n− k],

�, λ ∈ Z, 0 ≤ m ≤ 2� − 1, 0 ≤ µ ≤ 2λ − 1, n, k ∈ Z.
(15)

This property, that is, the waveform orthogonality is used
in the WPDM to transmit multiple message signals over-
lapped in time and frequency domains.

3. SYNTHESIS OF OPTICAL WAVELET FILTERS

To implement the DWT or the WP decomposition of an op-
tical signal, we consider the tree structures of Figures 1 and 2,
where each pair H(ω) and G(ω) of QMFs is synthesized as a
two-port lattice-form planar filter. If an optical digital signal,
with bit rate B is driven into the device input, at the device
outputs we obtain the DWT or the WP decomposition, up
to the �th level. In the standard MRA, the outputs have to be
subsampled at a factor 2� , so that the total number of the bits
in the input signal coincides with the total number of bits in
all the wavelet coefficient signals.

In [22], we presented the design guidelines to synthesize
optical wavelet filters, following the algorithm proposed by
Jinguji and Oguma [23] and using the power half-band (HB)
property of wavelet filters:

∣∣H(ω)
∣∣2

+
∣∣G(ω)

∣∣2 = 1,

G(ω) = e− jω∆τH∗
(
ω +

π

∆τ

)
.

(16)

Jinguji and Oguma showed that an optical HB filter of length
M can be fabricated using a Mach-Zehnder interferometer
(MZI) with a path delay difference ∆τ, and M/2 − 1 MZIs
with a path delay difference of 2∆τ [23]. The first MZI has
an input 3 dB coupler and no phase shifter inserted in its
arms; the remaining circuit parameters can be calculated by
applying a recursive algorithm. The synthesis procedure of
QMFs is quite immediate, as the circuit parameters are di-
rectly related to the filter coefficients [22]. For instance, the
Daubechies wavelet filters of lengthM = 2, also known as the
Haar wavelet, are

(
HdB1

GdB1

)
= 1√

2

(
1 1
1 −1

)
. (17)

In this case, the optical architecture for the DWT is depicted
in Figure 3: each wavelet filter is synthesized as a single MZI
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Figure 3: Optical architecture for the DWT with Daubechies
wavelet of length M = 2. Each optical wavelet filter is an MZI with
input/output 3 dB couplers, and FSR that decreases from the root
to the leaves in a logarithmic way.

with input/output 3 dB couplers; furthermore, the FSRs in
the decomposition tree decrease from the root to the leaves
in a logarithmic way, since at each decomposition level �, the
subsampling halves the signal frequency band.

The QMFs of Daubechies wavelet of length M = 4 are(
HdB2

GdB2

)
= 1

4
√

2

(
1−√3 3−√3 3 +

√
3 1 +

√
3

1+
√

3 −(3+
√

3
)

3−√3 −(1−√3
)) ,

(18)

and the WP decomposition corresponds to the circuital
scheme of Figure 4.

4. OPTICAL WAVELET SIGNAL PROCESSING

Wavelets are a powerful tool to denoise signal corrupted by
white Gaussian noise [24, 25, 26]. The denoising scheme is
based on the principle of selective wavelet reconstruction:
in fact an inhomogeneous signal compacts into just a few
wavelet coefficients, whereas white noise is distributed over a
large number of coefficients, and, therefore, it can be reduced
by thresholding the detail wavelet coefficients. The denoised
signal is then obtained by inverse wavelet transforming the
thresholded coefficients.

The time and frequency localization properties of the
wavelet transform can also take the chromatic dispersion into
account, since dispersion affects only the detail coefficients
that represent highpass-filtered versions of the original sig-
nal. In this case it is necessary to perform a selective recon-
struction of the wavelet coefficients that will be the subject of
a next paper.

To give a numerical example of the proposed denois-
ing method, we consider a 128-bit-long pseudorandom bit
sequence (PSRS) at B = 10 Gbps modulated by an external
Mach-Zehnder modulator with 30 dB extinction ratio; the
signal SNR ratio is 24 dB. The device of Figure 3 performs
the DWT of the optical signal at λ = 1550 nm, composed of
Gaussian pulses of δt = 20 ps width; the FSR is chosen equal
to 16/δt. At the device outputs we obtain the scaling coeffi-
cients c3[n] at the third level of decomposition (� = 3), and
all the detail coefficients d�[n](� = 1, 2, 3), that are plotted
in Figure 5. It is evident that all the detail coefficients are the
highpass-filtered version of the signal, and they can be sup-
pressed to eliminate the noise; therefore, the denoised signal
is reconstructed using only the scaling coefficients c3[n]. The
eye diagram of the original and the denoised signals are re-
ported in Figure 6 and we observe a significative improve-

ment in the eye opening. We also remark that the efficiency
of the denoising method depends on the wavelet choice, and
the threshold selection rules. In the previous example, we
consider a very simple case, where all the detail coefficients
have been completely eliminated, but better performances
can be achieved with optimal thresholding methods.

To quantify the SNR improvement, in Figure 7 we plot
both the SNR and the BER of the denoised signal, as func-
tions of the SNR of the input signal, and we observe that the
SNR is increased by more than 10 dB.

The device of Figure 3 can be also used to com-
press/decompress optical data in ultrafast packet-switched
networks. In fact the delay lattice scheme proposed by To-
liver et al. in [9] is an incomplete DWT scheme that evalu-
ates only the scaling coefficients c�[n]. In this case, the unit
delay ∆τ equates the difference between the pulse periods in
the uncompressed and compressed signals. It is evident that
a standard DWT or a full WP decomposition allows a larger
variety of compression/decompression methods.

5. OPTICAL WAVELET PACKET DIVISION
MULTIPLEXING

The success and widespread use of code division multiple
access (CDMA) in the wireless domain has renewed inter-
est in exploring its use in the optical domain, which, how-
ever, presents a different set of challenges [27]. In an optical
CDMA (O-CDMA) network, the information sequences are
codified in time, using temporal codes, or in frequency do-
main with standard diffraction-based spread-spectrum tech-
niques. Recently, hybrid techniques have been proposed to
manage burst changes of data traffic or increasing requests of
new data services [28]. O-CDMA can support high-capacity
services, broadband signals processing, and multiplexing of
a large number of users; in addition, many approaches have
been proposed to avoid the optical-electrical-optical con-
version, that severely limits the transmission system perfor-
mances.

We present an all-optical WPDM system that makes a
very efficient use of time-frequency plane. The digital se-
quences from each user are encoded by a set of orthogo-
nal waveforms [12]: the orthogonal properties of the wavelet
atoms and their overlapping nature in time and frequency
yield an overall system capacity improvement [5].

The TDM sequence σ�,m[n] from the mth user at bit rate
B = 1/T is waveform-coded by the wavelet atom function
w�,m(t):

s�,m(t) =
∑
n

σ�,m[n]w�,m
(
t − 2�n∆τ

)
, (19)

and summed together with the waveform-coded signals from
the other 2� − 1 users:

sc(t) =
2�−1∑
m=0

∑
n

σ�,m[n]w�,m
(
t − 2�n∆τ

)
. (20)
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Figure 4: Optical architecture for the WP decomposition with Daubechies wavelet filter of length M = 4. Each optical wavelet filter is a
chain of two MZIs, with FSR that decreases from the root to the leaves in a logarithmic way.

The processing gain of the WPDM system is equivalent to
the O-CDMA parameter and is expressed as the ratio of the
time duration of the waveform and the input signal width δt
[29]:

F = 2�∆τ
δt

. (21)

For a correct waveform shaping, it is necessary that the
input bit duration δt equates the inverse of the FSR, that is,
δt = ∆τ: in this way, each optical pulse is transformed into
the corresponding wavelet atom function at the device out-
put. Therefore, the processing gain F = 2� equates the num-
ber of simultaneous users.

A standard WPDM transmission system consists of a
bank of waveform modulators, one for each user, and its op-
tical implementation is really complex [5]. A more compact
WPDM architecture, with a single WP encoder and only one
waveform modulator, can be designed by “reversing” the ex-
pression of (20) for the composite signal sc(t). In fact, if we
substitute (14) into (20), we obtain

sc(t) =
2�−1∑
m=0

∑
n

σ�,m[n]
∑
k

f�,m[k]φ
[
t − (2�n + k

)
∆τ
]

=
∑
i

σ[i]φ(t − i∆τ),

(22)

where

σ[i] =
2�−1∑
m=0

∑
n

f�,m
[
i− 2�n

]
σ�,m[n] (23)

is the equivalent sequence from all the users obtained at the
root of the WP tree [12]. From an inspection of this equation,

it is evident that the composite signal sc(t) can be gener-
ated by first encoding all the input sequence σ�,m[n] from
each user with a WP encoder, thus obtaining σ[i], and then
waveform shaping all the composite bits by the scaling func-
tion φ(t) [6]. This WPDM architecture is schematically il-
lustrated in Figure 8: the WPDM transmission system is im-
plemented by the WP encoder of Figure 2, followed by a
single modulator that shapes the multiplexed optical pulses
σ[i] with the scaling function profile φ(t). The receiver is
a time reversal version of the transmitter, and the WP de-
coder follows the pulse shaper; therefore, the same device
can be used for both encoding and decoding the binary se-
quences.

The time gating opens a time window to extract the au-
tocorrelation peak and it is somewhat equivalent to narrow-
bandpass filtering in the wireless CDMA. The use of a time
gating before detection significantly relaxes the requirements
for the detector bandwidth to the bit rate of 2�∆t. The syn-
chronization from the time gating can be derived from the
recovered clock.

The optical architecture for a WP encoder/decoder is
identical to an optical WP decomposition scheme, so that the
scheme of Figure 4 can be thought of as optical E/D for the
Daubechies wavelets of length M = 4.

In a WPDM system, each bit from each user is waveform-
coded by wavelet atom functions, and all the data streams
from the users are transmitted simultaneously. On the other
hand, in a code-based O-CDMA system, a different code
is assigned to each user; therefore, if we remove the pulse
shapers in the transmission scheme of Figure 8, we obtain
a standard O-CDMA system, where the input data signals
are coded by optical orthogonal codes (OOCs) sequences
[30]. In fact, the device of Figure 4 is a full optical E/D
that codes/decodes binary sequences from 2� users simul-
taneously [31, 32]; of course, for an O-CDMA system, it is
δt < ∆τ.
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Figure 5: Input optical signal at B = 10 Gbps, λ = 1550 nm, and
SNR = 24 dB; the Gaussian optical pulses have 20 ps width. Scaling
coefficients c3 that coincide with the denoised signal and thresh-
olded detail coefficients at levels 1, 2, 3 are obtained. The DWT is
performed with the device of Figure 3, with no subsampling.

To complete the waveform coding in a WPDM system, an
optical pulse shaper is necessary. We consider two different
devices; the first one is a diffractive pulse shaper, identical
to an O-CDMA spread-spectrum encoder, composed of two
diffraction gratings and an amplitude/phase filter [33]. The
incoming pulses are spatially decomposed in their spectral
components by the first grating, and an amplitude/phase
mask gives the scaling function spectral profile to the radi-
ation; the second grating reassembles the waveform-coded
pulses. Otherwise, an optical pulse shaper can be fabri-
cated as a weight/phase-programmable optical-tapped de-
lay line filter [17]. In this case, both the WP E/D and the
waveform shaper can be integrated on a single silica sub-
strate.

To evaluate the detection capabilities of a full optical
WPDM system, we generate N independent data signals at
B = 10 Gbps modulated by 27 − 1 word length PRBSs, using
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Figure 6: Eye pattern diagrams of the input signal and the denoised
signal of Figure 5.

external Mach-Zehnder modulators with 30 dB extinction
ratio. Each user bit sequence is forwarded to the N inputs of
the encoder of Figure 4 and the encoder output is waveform-
modulated by the pulse shaper corresponding to the scal-
ing wavelet of the Daubechies filters of length M = 4, as
illustrated in Figure 8. Figure 9 shows the signal-to-MAI ra-
tio as a function of the number of the simultaneous users
N , that is evaluated as the ratio between the signal cor-
responding to a “1” from the ith user and the signal de-
tected at the same output when the ith user is transmit-
ting a “0” and all the other N − 1 users are transmitting
a “1.”

We finally observe that the system performances can be
enhanced by a suitable choice of the wavelet decomposition
[12].
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6. CONCLUSION

We present a complete overview of the wavelet signal pro-
cessing and multiplexing in the optical domain, using passive
PLC devices.

We describe the PLC architectures to perform the DWT
and the WP decomposition of an optical digital signal, and
furnish the design guidelines to synthesize a wavelet filter
as a two-port lattice-form planar device. We demonstrate
that within the MRA it is possible to both denoise and
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Figure 9: Signal-to-multiple-access-interference ratio (dB) versus
the number N of simultaneous users.

compress/decompress data streams directly in the optical do-
main; in addition we evidence the large flexibility of the pro-
posed approaches, thanks to the possibility to choose the op-
timal wavelet.

Furthermore, we present an innovative full optical
WPDM scheme that transmits multiple signals by waveform
coding, yielding an overall capacity improvement and a more
efficient use of the common shared resources, with respect to
standard TDM and WDM [12]. We show that the encoded
sequences are recovered with very low MAI noise, since mul-
tiple signals transmitted, overlapped in both time and fre-
quency domains.
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The WP encoder/decoder and the pulse shaper are low-
loss compact devices that can be fabricated using standard
PLC technology and integrated together on a single common
mechanically rigid substrate, avoiding undesirable variations
of optical path lengths over time, temperature, and exposure
to mechanical vibrations. The possibility of growing or prun-
ing the wavelet decomposition tree allows to adapt the multi-
ple access system to different traffic requirements, adding or
dropping data streams.

The optical signal processing fully exploits the fibre band-
width, and it is suitable for broadband multiple access net-
works. The proposed devices can be employed in ultrafast
and highly-robust multiple access networks and their low
cost, compactness, and fabrication simplicity, make them at-
tractive for an ever-increasing number of different applica-
tions.
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The widely-used LMS algorithm for coefficient updates in adaptive (feedforward/decision-feedback) equalizers is found to be
suboptimal for ASE-dominant systems but various coefficient-dithering approaches suffer from slow adaptation rate without
guarantee of convergence. In view of the non-Gaussian nature of optical noise after the square-law optoelectronic conversion, we
propose to apply the higher-order least-mean 2Nth-order (LMN) algorithms resulting in OSNR penalty which is 1.5–2 dB less than
that of LMS. Furthermore, combined with adjustable slicer threshold control, the proposed equalizer structures are demonstrated
through extensive Monte Carlo simulations to achieve better performance.

Keywords and phrases: electronic PMD compensation, adaptive equalization, signal processing, optical communication, least-
mean fourth-order algorithm, least-mean-square algorithm.

1. INTRODUCTION

Optical communication forms the backbone of modern tele-
com and Internet networks around the globe. Due to its
enormous inherent channel capacity [1], it is anticipated
that this trend will continue or even accelerate. In this on-
going evolution, adaptive electronic equalization for combat-
ing impairments in fiber-optic communication may play an
important role in pushing from the core of networks all the
way to the edge by providing cost-effective solution. Two ma-
jor impairments commonly encountered in modern fiber-
optic systems are chromatic dispersion (group velocity dis-
persion or GVD) and polarization-mode dispersion (PMD).
Chromatic dispersion can be compensated effectively by an
optical dispersion compensation module (DCM) due to its
static nature. However, at substantially high data rates (10
or even 40 Gbps), especially in long-haul networks, residual
chromatic dispersion amount remains problematic and thus
electronic equalization against residual chromatic dispersion
is still important [2]. In cost-sensitive metro networks, elec-
tronic solution is considered a viable option to replace the
expensive optical solution. On the other hand, PMD is dy-
namic in nature and substantial unpredictable PMD is accu-
mulated over a long distance of old fibers, enough to cause
network outage [3]. Currently it is extremely expensive to be
compensated optically by bulky optical PMD compensators
(OPMDCs) and thus electronic solution is vigorously sought
in recent years.

Adaptive electronic equalizers for impairment compen-
sation in fiber-optic networks have been studied for decades.
In early work [4], the dominant noise was quantum, shot,
or electronic thermal noise, which can be modeled effec-
tively as additive Gaussian noise. After the advent of effi-
cient and low-noise fiber amplifiers in 1987 [5], optical am-
plifiers (EDFA or Raman) were used extensively to increase
the transmission distance without O-E-O conversion. Since
then, a number of studies were undertaken to explore a
variety of equalizer structures for adaptive optical-channel
impairment compensation ranging from feedforward-type
equalizers to maximum-likelihood estimators [6, 7, 8, 9,
10, 11]. Among many studies in electronic PMD compen-
sation in recent years, [12, 13, 14, 15, 16, 17, 18, 19], the
first decision-feedback loop and tapped-delay-line equalizer
at 10 Gbps were implemented in [20] and [21] respectively.
The maximum-likelihood estimation for PMD compensa-
tion was also investigated in [22, 23].

In a fiber-optic link, a number of optical amplifiers, ei-
ther erbium-doped fiber amplifiers (EDFAs) or Raman am-
plifiers (RAs), are employed to strengthen the optical sig-
nal, but at the same time add in the incoherent amplified
spontaneous emission (ASE) noise (commonly called optical
noise) [5]. In the quantum regime, the ASE noise follows the
Bose-Einstein distribution [24] and the optically amplified
coherent light exhibits a noncentral-negative-binomial dis-
tribution [25]. However, in the classical limit when the signal
and noise involve many photons, this optical noise can be
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Figure 1: (a) and (b) Eye diagrams when OSNR = 16 dB and (c), (d), (e), (f), (g), and (h) histograms of noise distribution of bits 1 and 0
at the decision point for NRZ when OSNR is equal to (c), (d) 10 dB; (e), (f) 16 dB; and (g), (h) 22 dB. (Left column: DGB=0 picoseconds;
Right column: DGB = 75 picoseconds; both are at 10 Gbps NRZ.)

modeled as complex additive white Gaussian noise (AWGN)
in the optical field of each orthogonal polarization mode of
the optically amplified signal based on the central limit the-
orem [26, 27]. An optical filter Ho( f ) is usually placed be-
fore a photodetector to limit the optical noise reaching the
receiver and also to filter out other unselected channels in a
wavelength-division multiplexing (WDM) system.

At the receiver side, after square-law detection using a
photodiode, the noise becomes non-Gaussian. As a result,
the noisy input signal u(t) contains a signal-dependent non-
symmetric Gaussian term having a variance determined by
the signal levels of bits (0 and 1), and a nonzero-mean non-
central χ2 term. It should be noted that the mean of u(t)
is nonzero and varies at different optical signal-to-noise ra-
tio levels (OSNR), as depicted in Figures 1a and 1b without

PMD (i.e. differential group delay or DGD = 0 picosecond)
and with substantial amount of PMD (DGD = 75 picosec-
onds), respectively, where the eye diagram and noise distri-
butions of bits 0 and 1 at the decision point for NRZ at dif-
ferent OSNR levels are plotted to demonstrate the varying
nonzero mean values. This noise property is very different
from electronic thermal noise or even optical noise after the
combination of an interferometer and a balanced receiver
[28].

Because of this non-Gaussian noise property, the well-
studied least-mean-square (LMS) algorithm becomes subop-
timal for optical noise in the sense that OSNR penalty is ob-
served even without the presence of PMD-induced intersym-
bol interference (ISI), though it is optimal for additive Gaus-
sian noise [29]. Various coefficient-dithering approaches
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were devised to replace LMS but generally suffer from slow
adaptation rate and no guarantee of convergence. Typically,
tap coefficients are adjusted in a trial-and-error manner with
feedback from various types of error monitors such as min-
imization of eye-monitoring pseudoerror count [30], max-
imization of eye-opening [31], Q-factor optimization [32],
bit-pattern-dependent threshold control [9], or FEC-error-
count minimization [33].

The higher-order statistic techniques, the least-mean
2N th-order (LMN) family, were first proposed in [34] as an
extension to the LMS and were found better suited than the
LMS for non-Gaussian noise [34, 35]. In this paper, we pro-
pose to apply these higher-order statistic algorithms to coef-
ficient update for combating the non-Gaussian optical noise
after photodetection. Through Monte Carlo simulation, we
demonstrate that 1.5–2 dB better OSNR penalty can be at-
tained for the LMN than the LMS [36]. Furthermore, due
to the nonsymmetric nature of optical noise, we also pro-
pose to combine these higher-order algorithms with auto-
matic slicer threshold control (ATC-8LICER) and show that
the threshold-optimized LMN still achieves better results
than the conventional LMS with optimized thresholds. In
Section 2, we briefly introduce the higher-order algorithms
(LMN) in comparison to the LMS algorithm for feedforward
(FFE) and decision-feedback (DFE) equalizers. In Section 3,
the results through extensive Monte Carlo simulation are
presented to evaluate the performance of the LMN algo-
rithms combined with automatic threshold control com-
pared against the LMS. Finally, the conclusion is drawn in
Section 4.

2. ARCHITECTURES AND ALGORITHMS OF
ELECTRONIC PMD COMPENSATORS

In a digital receiver architecture, an analog-to-digital con-
verter (ADC) is required to digitize the incoming bandlim-
ited analog signal for further processing in the digital adap-
tive equalizer. Though more complex functionality can be
achieved in low-power CMOS digital circuitry coupled with
pipelined/parallel data flows after digitization, the ADC is
considered one of the bottlenecks for digital implementation
of advanced equalizers. The current state-of-the-art ADC can
provide about 6-bit accuracy at 10 Gbps but it becomes chal-
lenging at 40 Gbps. Furthermore, the ADC power consump-
tion at such a high speed may offset the low-power benefit of
digital CMOS circuits. On the other hand, the analog equal-
izer, particularly the simple analog tapped-delay-line equal-
izer, is an attractive alternative in the absence of ADC for
providing a practical electronic dispersion compensation so-
lution. No matter what implementation (digital or analog)
is adopted, the operations of an equalizer can be described
in the discrete-time or z-domain. In this paper, we express
equalizer algorithms in the discrete-time domain without ex-
plicitly referring to a digital or analog implementation.

A number of electronic equalizer structures, such as feed-
forward equalizer (FFE), decision-feedback equalizer (DFE),
and maximum-likelihood sequence estimator (MLSE), have

been considered over the years. Though MLSE achieves the
best performance, substantial complexity and compromises
are often associated with practical implementation. Specifi-
cially, MLSE has exponential complexity O(eN ) but FFE/DFE
requires only linear complexity O(N). However, the best rea-
son for using relatively simple architectures (FFE/DFE) in
most wireless/wireline electronic systems instead of MLSE is
that they usually offer entirely adequate performance [37].
In this paper, we examine two basic equalizer architectures:
feedforward equalizers (FFEs) and decision-feedback equal-
izers (DFEs) with FFE, as shown in Figures 2a and 2b, respec-
tively.

2.1. Least-mean 2Nth-order algorithms

It has been shown that the LMS algorithm is H∞-optimal
under the assumption of temporal whiteness and Gaussian
disturbances [38], providing theoretical justification for the
excellent robustness of LMS. However, after square-law detec-
tion by a photodiode, optical noise becomes nonzero-mean
signal-dependent χ2. As a result, the conventional LMS al-
gorithm becomes suboptimal for optical noise in the sense
that equalization introduces OSNR penalty even without any
ISI [29], though it is optimal for additive Gaussian noise
(e.g. thermal noise). The higher-order statistic techniques,
the least-mean 2Nth-order (LMN) family, were proposed in
[34] as a higher-order extension of LMS and found to be bet-
ter suited for non-Gaussian noise than LMS [35]. Due to the
non-Gaussian nature of optical noise, we propose to employ
the higher-order counterparts of LMS which are found to
yield better results than LMS.

After equalization, a slicer makes a hard decision to deter-

mine the estimated symbol d̂(k) (or bit in the OOK case)
from the compensated slicer input s(k) in reference to a
slicer threshold. For the case of only two signal levels, the
slicer is simply a high-speed comparator as used in a con-
ventional CDR. The LMS minimizes the cost function of
the square of the slicer error e(k): JLMS(k) = E{e2(k)},
where e(k) = a(k) − s(k) is the difference between the tar-
get signal a(k) and the equalized signal s(k) before deci-

sion. In the normal mode, a(k) = d̂(k) but, in the train-
ing mode, a(k) = d(k), the transmitter input bit. Usually a
training sequence is required at the startup stage of equal-
ization and then the equalizer is switched to the normal
mode. However, it is possible to start the equalizer with-
out any training sequence through blind startup which is
out of the scope of this paper. In fiber-optic communica-
tion, fixed bytes such as SONET A1/A2 bytes are sent in ev-
ery frame and can be utilized as the training sequence. As
an extension of the LMS, the LMN is a class of adaptive al-
gorithms to minimize the cost function of the 2Nth order
of e(k) J(k) = E{e2N (k)}. For N = 1, the LMN algorithm
becomes LMS. For N = 2, it is called the least-mean fourth-
order (LMF) algorithm. When N = 3, it is the least-mean
sixth-order (LM6) algorithm. Since the LMS belongs to the
LMN family, the extensive knowledge of the LMS in both
theory and implementation can also be applied to the LMN
family.
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Figure 2: Different equalizer architectures are considered. The fil-
ter response of FFE is C(z) while the response of DFE is B(z). The
decision level is fixed to the midpoint of the bit values {0, 1}. (a)
Feedforward equalizer (FFE). (b)Decision feedback equalizer (DFE)
coupled with an FFE.

Because the first and second moments (equivalently
mean and variance) are sufficient to describe Gaussian dis-
tributions, it is not necessary to account for higher moments
in the cost function and the second-order cost function in the
LMS is enough for Gaussian noise. For non-Gaussian noise,
higher moments are required. Intuitively, the higher-order
cost function wages a large penalty for a large slicer error to
account for higher moments and causes the noise distribu-
tion to be more compact for non-Gaussian noise, as will be
seen in Section 3.

2.2. Feedforward equalizers

Consider the case of FFE depicted in Figure 2a where the
(2L+1)-tap FFE coefficients are {c−L(k), . . . , cL(k)} at t = kTs

in the discrete-time domain. Here Ts = 1/ fs is the sample pe-
riod. If the oversampling ratio R = T/Ts > 1, then the FFE
is called a fractionally-spaced equalizer. In vector form, these

weights can be denoted as �cT(k) = [c−L(k), . . . , cL(k)]. The
receiver input data sequence is �uT(k) = [u(k + L), . . . ,u(k −
L)]. Therefore, the slicer input is s(k) = x(k) = �cT(k)�u(k).
The weight updating unit of C(z) (WUD[C]) adapts �c(k)
based on an adaptive algorithm, among which the LMS is
the most widely used. As in Figure 2a, the weight updating
unit C(z) adopts the LMN of Nth order. It can be shown that

�c(k + 1) =�c(k)− β

2
∇C

{[
e(k)

]2N
}

=�c(k) + βN
[
e(k)

]2N−1�u(k),
(1)

where β is the preset step size.

2.3. Decision-feedback equalizers with FFE

For the case of a decision-feedback equalizer (DFE) coupled
with an FFE, as in Figure 2b, where s(k) = x(k) − y(k) =
�cT(k)�u(k) − �bT(k)�a(k) with the DFE coefficients defined as
�bT(k) = [b1(k), . . . , bM(k)]. Here�aT(k) = [a(k−1), . . . , a(k−
M)]. The weight updating units for FFE and DFE are de-
noted as WUD(C) and WUD(B), respectively and can em-
ploy a variety of adaptive algorithms including the LMN. In

Figure 2b, s(k) = x(k)− y(k) =�cT(k)�u(k)−�bT(k)�a(k). De-

fine �wT(k) = [�c(k),−�b(k)] and�rT(k) = [�u(k),−�a(k)], where
�cT(k) = [c−L(k), . . . , cL(k)], �uT(k) = [u(k+L), . . . ,u(k−L)],
�bT(k) = [b1(k), . . . , bM(k)],�aT(k) = [a(k−1), . . . , a(k−M)].
We can rewrite e(k) = a(k) − �wT(k)�r(k). Therefore, the co-
efficients of the FFE and DFE can be updated as follows to
minimize the cost function, J(k) = E{[e(k)]2N}:

�w(k + 1) = �w(k)− β

2
∇w

{[
e(k)

]2N
}

= �w(k) + βN
[
e(k)

]2N−1�r(k).
(2)

For the first-order PMD channel impulse response h(t) =
γδ(t) + (1− γ)δ(t − τDGD), it is easy to show that there exist
dips in the frequency response at locations inversely propor-
tional to τDGD, especially for γ = 0.5 [19]. It has been known
that an FFE amplifies the noise in the spectral dips whereas a
DFE does not [37]. Thus, the performance of FFE for PMD
compensation in the high-DGD region is anticipated to be
less than that of DFE.

2.4. Slicer with automatic threshold control

In the uncompensated OOK case, the two noiseless signal
levels for bits 0 and 1 are normalized to 0 and 1 with the
midpoint defined at 0.5 (or equivalently to {−1, 1} with the
midpoint at 0). In view of the nonsymmetric distributions
for bits 0 and 1 (having different variances) reflected in the
signal-dependent term after square-law detection, the opti-
mal threshold point is usually not the midpoint. Therefore,
an automatic threshold control algorithm (ATC) is designed
to track the incoming signal profile and automatically ad-
just the threshold in the CDR for the minimum bit error rate
[39]. In this paper, the ideal ATC algorithm is employed by
searching the entire simulation sequence for the best thresh-
old value to obtain the least number of errored bits. In a prac-
tical system, the ATC algorithm usually accumulates signal
distribution information within a window of finite duration
for optimal threshold calculation to allow tracking of slowly
varying nonstationary channels [40].

In the conventional equalizer structures illustrated in Fig-
ures 2a and 2b, the decision point (slicer threshold θ) is fixed
at the midpoint of two noiseless signal levels. Similar to the
uncompensated case, the slicer input distributions for bits
0 and 1 are also nonsymmetric and thus result in the opti-
mal threshold point being away from the midpoint. There-
fore, we propose alternative architectures for FFE/DFE with
adjustable threshold control in the slicer (ATC-SLICER) as
shown in Figures 3a and 3b. The ATC-SLICER’s function is to
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Figure 3: Equalizers with automatic threshold adjustment (ATC-
SLICER). The decision threshold is controlled adaptively by an au-
tomatic threshold control (ATC) algorithm instead of being fixed
at the midpoint of two noiseless signal levels. (a) FFE with ATC-
SLICER. (b) DFE with FFE and ATC-SLICER.

track the slicer input histogram and adjust the slicer thresh-
old accordingly. In the steady state of equalization, the ATC-
SLICER can start to build up a slicer input profile to deter-
mine the best threshold for the slicer, and then dynamically
track and adjust the optimal slicer threshold.

There are many ways readily available in the literature
to implement the automatic threshold control technique
(ATC). In our case of adaptive equalization, the input to the
ATC-SLICER control block is the slicer input s(k). In one of
many possible implementations, a histogram is established in
two arrays of memory, bin1(i) and bin0(i), for i = 0, . . . ,B+1
corresponding to the intervals {(−∞, vL), [vL, vL + d), [vL +
d, vL+2d), . . . , [vL+(i−1)d, vL+id), . . . , [vH−d, vH], (vH ,∞)},
where d = (vH −vL)/B and B is the number of bins that form
the range from vL to vH . The value of B dictates the accuracy
of the final threshold determination but a large B value re-
quires more memory space. In general, B could be 128, 256,
or even 1024. If s(k) is in the interval of [vL+(i−1)d, vL+ id),
then the count in the memory bin1(i) is incremented by one
for the slicer output being 1 and bin0(i) is incremented for
the slicer output being 0. The bit error can be estimated
as follows: error[0] = bin1[0] − bin0[0], and error[i] =
error[i − 1] + bin1[i] − bin0[i] for i = 1, . . . ,B + 1. The op-
timal threshold is determined by finding the minimum of
error[i]. To avoid the detrimental memory effect for a chang-
ing optical channel, a reset signal is sent periodically to clear
the memory arrays and a histogram is rebuilt fresh in accor-
dance with the above rule. Since PMD drifts very slowly, it
is possible to refresh this profile once one or few minutes

without encountering significant change in channel response
while the number of bits collected in that time frame is large
enough for meaningful profiling. For an analog implemen-
tation of the equalizer, the compensated signal can be sam-
pled at a low speed to build the profile of s(k) over time. The
optimal threshold can be determined externally through the
method described above.

3. RESULTS AND DISCUSSION

An extensive Monte Carlo simulation is conducted in NRZ
and RZ formats at 10 Gbps to compare the performance
of the LMN algorithms with/without automatic threshold
control against the common LMS algorithm. The full-width
half-maximum (FWHM) of the RZ pulse is 50%. The simu-
lation length is chosen dynamically at each OSNR level with
a given amount of DGD to provide sufficient samples for re-
liable BER estimation. It usually requires a longer simula-
tion for an expected low BER value in a given OSNR-DGD
condition, but a shorter one for an expected high BER. The
ATC algorithm finds the optimum threshold value on the
uncompensated electronic signal over the entire simulation
sequence. Its performance curves provide the benchmark,
against which the performance charts of all the equalizer
structures are compared. In order to isolate the effect of com-
pensation on other impairments such as poor extinction ra-
tio (ER), we deliberately set ER = 30 dB and use a wideband
optical bandpass filter for the simulation. The electronic low-
pass filter is set to be a third-order Bessel filter of bandwidth
7 GHz for 10 Gbps, whereas the optical filter is modeled as a
tenth-order Gaussian filter with a bandwidth of 150 GHz to
weakly filter any receiving signal without causing any distor-
tion. The peak optical power of the transmitter laser is con-
trolled at 19.95 mW to avoid any nonlinear distortion dur-
ing transmission, though no fiber nonlinearity is modeled
in the interest of fast simulation. Only the first-order PMD
and GVD are considered in the simulation. The first-order
PMD is commonly characterized by the amount of DGD
in picoseconds and the first-order GVD is characterized by
the amount of dispersion in picoseconds per a nanometer of
wavelength (ps/nm) without explicitly specifying the actual
fiber type and length.

For the sake of brevity, we pick a fractionally spaced FFE
of 9 taps at an oversampling ratio 2 coupled with a DFE of
2 feedback taps as the typical equalizer architecture (desig-
nated as FFE9 + DFE2) to illustrate the advantage of the
higher-order LMN algorithms over the LMS, even though
we have simulated a large variety of equalizer structures.
The OSNR penalty curves of this equalizer are plotted in
Figure 4 with and without ATC-SLICER (for optimized and
fixed thresholds). The dash lines represents the use of the
LMS, and the solid lines for the LMF. These OSNR penalty
curves are aggregated from the OSNR-BER plots, of which
two examples are shown in Figures 5a and 5b for the uncom-
pensated and the FFE9 + DFE2 with ATC-SLICER and LMF
respectively in 10 Gbps NRZ. In Figure 4a with GVD only,
the LMF is 1.5 dB better than the LMS for fixed thresholds,
whereas with ATC-SLICER, it is 0.5 dB better than the LMS.
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Figure 4: OSNR penalty when BER is set at 6 × 10−5 (FEC-correctable error-rate level) for 10 Gbps NRZ under single and combined
impairment conditions. The equalizer has a 9-tap fractionally spaced FFE and a 2-tap DFE with/without ATC-SLICER. (a) GVD only.
(b) PMD only. (c) PMD combined with GVD (800 ps/nm).

It should be noted that a 3 dB gain means the possibility of
doubling the transmission distance. In Figure 4b with PMD
only, the LMF and LM6 are 1.5–2 dB better than the LMS
for fixed thresholds, whereas the LM6 is almost 1 dB better
than the LMS with ATC-SLICER. In addition, the LM6 with
fixed thresholds has comparable performance to the LMS
with optimized thresholds. In both cases, the LMF and LM6
with ATC-SLICER show less penalty than the uncompen-
sated under no or mild dispersion condition while the LMS
has higher penalty than the uncompensated. This implies
that the LMS is potentially not penalty-free in a distortion-
free environment, no matter how we optimize the thresh-
old points. For the combined effect of PMD and GVD (800
or 1200 ps/nm) depicted in Figure 4c, the LMF/LM6 are al-
most 0.5 dB better than the LMS with ATC. The trend in-
dicates that the advantage of the LMN algorithms is more
obvious in an environment of less distortion. Another im-
plication is that the implementation of an ATC-SLICER can

be simplified or avoided by employing the LMF or LM6 with
minor increase in complexity of one or two multiplications
as indicated in (1) and (2).

The advantage of the LMN algorithms over LMS is fur-
ther illustrated in Figure 6, of which (a) and (b) demonstrate
that the LMN can achieve much lower BER than the LMS.
Note that the symbols such as “FFE9:0-3” in Figures 6a and
6b mean the FFE equalizer type with 9 feedforward taps,
no feedback taps, and the LM6 (N = 3). Figure 6c depicts
the slicer input histograms for a 9-tap fractionally spaced
FFE and shows how the LMN (LMF or LM8) can compact
the distribution more effectively than the LMS. At DGD = 0
picoseconds, LMS actually spreads the noise, causing lower
BER and higher OSNR penalty, but the LMF maintains the
noise variance.

Similar plots can be obtained for the 10 Gbps RZ case in
Figure 7 where the performance of an FFE9 + DFE2 is shown
to further demonstrate the advantage of the higher-order
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Figure 5: OSNR-BER plots with 1st-order PMD for NRZ format at 10 Gbps in Monte Carlo simulation. The equalizer has a 9-tap fractionally
spaced FFE and a 2-tap DFE with ATC-SLICER optimized via the LMF. (a) Uncompensated with ATC. (b) FFE with DFE, ATC-SLICER, and
LMF.
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Figure 6: BER and slicer input histograms at DGD = 0 picosecond of the first-order PMD for NRZ at 10 Gbps. The numbers in the equalizer
type represent the following: number of FFE taps (NFFE), oversampling rate (R > 1: fractionally-spaced), number of DFE taps (NDFE),
LMN order (N = 1: LMS; N = 2: LMF; N = 3: LM6). (a) BER without ATC-SLICER. (b) BER with ATC-SLICER. (c) Slicer histogram for
T/2-spaced 9-tap FFE.
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Figure 7: OSNR penalty when BER is set at 6× 10−5 (FEC-correctable error-rate level) for 10 Gbps RZ under single and combined impair-
ment conditions. (a) GVD only. (b) PMD only.

LMN algorithms over the conventional LMS for two different
cases: only GVD and only PMD. With GVD only in Figure 7a,
the LMN is 1.5 dB better without ATC-SLICER and 0.5 dB
better with ATC-SLICER than the LMS. A similar trend can
be found in Figure 7b affected by PMD alone.

4. CONCLUSION

LMS is well studied over the past several decades and consid-
ered optimal for a linear system with additive Gaussian noise.
In a fiber-optic communication system, the dominant noise
is optical noise (ASE). Due to the non-Gaussian nature of op-
tical noise after nonlinear quadratic detection, the LMS is no
longer optimal in ASE-dominant systems. The usual adap-
tive equalization techniques, so successful in electronic sys-
tems, cannot be directly applied to ASE-dominant fiber-optic
systems in view of nonlinear square-law detection. In this pa-
per, we demonstrate that its higher-order cousins in the LMN
family are 1.5–2 dB better without ATC-SLICER and 0.5–
1 dB better with ATC-SLICER than the LMS. In certain cases,
the LMN with fixed thresholds even has comparable perfor-
mance to the LMS with optimized thresholds. It suggests that
the ATC-SLICER control unit may be eliminated in use of
the LMN for the sake of less complexity. On the other hand,
with a demanding performance criterion, the LMN with
ATC-SLICER can be used to provide no back-to-back penalty
(i.e. in absence of ISI-induced impairments). In comparison,
the LMS is potentially penalized in a distortion-free envi-
ronment, no matter how we optimize the threshold points,
which is usually not acceptable in most receiver design goals.
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A novel DWDM channel monitoring technique based on the conversion from wavelength domain to time domain by performing a
real-time optical Fourier transform over the whole DWDM system bandwidth is proposed and experimentally demonstrated. The
use of chromatic dispersion-based optical Fourier transformers has been validated in the case of a spectrum comprising light from
different uncorrelated sources. Linear and nonlinear crosstalks between the DWDM channels appear as amplitude noise at specific
time positions. The correspondence of this amplitude noise with the crosstalk spectral distribution is evaluated theoretically and
experimentally.
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1. INTRODUCTION

The increasing demand for higher transport capacity in
DWDM core networks can be fulfilled with different com-
plementary approaches: by increasing the number of chan-
nels, increasing the transported bit rate per channel or de-
creasing the channel spacing. The later two approaches lead
to an augment of the spectral efficiency of the DWDM net-
work. As the spectral efficiency increases, the crosstalk be-
tween the DWDM channels arises as important transmis-
sion and also node functionality impairment. Next genera-
tion DWDM networks operating at ultrahigh bit rates, that
is, 160 Gbps per channel, require precise channel transmis-
sion quality assessment systems inside the network infras-
tructure. For this reason fibre link condition and optical node
functionalities have to be carefully monitored in order to en-
able ultracapacity (greater than 10 Tbps) all-optical DWDM
networks [1].

From the network node point of view, second-generation
all-optical nodes are especially susceptible to crosstalk [2, 3]
which is accumulated at each node along the optical path
[4]. Crosstalk in the optical node can be classified as ei-
ther heterodyne (crosstalk between signals at different wave-
lengths) or homodyne (crosstalk between signals at the same
nominal wavelength, also known as in-band crosstalk). Ho-
modyne crosstalk can be further subdivided into homo-
dyne coherent crosstalk, if it is produced between phase-
correlated signals, and homodyne incoherent crosstalk, if
produced between signals which are not phase-correlated
[3]. The most important noise contribution in the optical
node is the homodyne noncoherent crosstalk [3, 4]. This
noise is originated inside the network node due to nonper-
fect blocking of channels at the same nominal wavelength
during channel extraction, multiplex, demultiplex, or chan-
nel wavelength conversion operations. This crosstalk is in-
coherent, since it is originated by a different channel and
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cannot be eliminated once generated. This incoherent homo-
dyne crosstalk exhibits the same spectral power distribution
present in any DWDM channel in the system and has to be
properly monitored in order to guarantee node operation.
Regarding the possible presence of additional homodyne in-
trachannel coherent crosstalk (originated by channel power
leaking and propagation by different paths inside the opti-
cal node), it does not possess a real problem since the dif-
ference between the light paths inside the network node is
usually longer than the coherence length of the laser source
[4].

In the DWDM network the optical nodes are connected
by optical transmission links. In order to reach maximum
transport capacity, it is necessary to combine tight chan-
nel spacing and compact-spectrum modulations [5]. The
link capacity limiting factor is the optical bandwidth of
the transmission amplifiers. Commercially available erbium
doped fibre amplifiers (EDFA) allow a usable bandwidth of
30–40 nm. To achieve bandwidths larger than 80 nm, novel
amplifier architectures based on hybrid Raman amplifica-
tion/erbium, tellurite doping, or hybrid Raman amplifica-
tion/tellurite have been proposed [6] but these technolo-
gies are not readily available. Ultra-high-capacity DWDM
networks require to fit the maximum number of chan-
nels in the amplifier bandwidth, which in turn require
the use of spectrally efficient modulations like single side-
band (SSB), vestigial sideband (VSB), nonreturn to zero
(NRZ) or optical duobinary, or compact-spectrum modu-
lation like carrier-suppressed return to zero (CS-RZ), alter-
nate polarization RZ (AP-RZ) or alternate chirp RZ (AC-
RZ), and/or polarization interleaving between the different
WDM channels [5, 7]. Under these circumstances (close
packaging of the WDM channels and compact spectrum
of the DWDM channels) crosstalk monitoring is a key ele-
ment for the optical link reliability as transmitter, or optical
path degradation will impact the link availability very quickly
[1].

Crosstalk in the optical link arises from different sources:
linear crosstalk between adjacent DWDM channels due to in-
sufficient channel spacing, nonlinear crosstalk arising from
the wavelength interaction due to the fibre nonlinearities,
and also intrachannel time crosstalk produced by the pulse
broadening when pulses propagate along the dispersion map
of the transmission link. Linear crosstalk is important as
the degradation of network equipment, channel central fre-
quency shift due to temperature drift in DFB-LD lasers, or
degradation in optoelectronic transmitters will strongly im-
pact the performance if tight channel spacing is used [7].
Nonlinear crosstalk is produced in the DWDM link from
nonlinear effects mainly four-wave mixing (FWM) between
different channels [8]. This effect although mitigated by the
dispersion map is enhanced when the channel separation is
very tight and nonuniform channel spacing can not be used
[8, 9].

In the case of intrachannel crosstalk, this noise is due
to cross-phase modulation (XPM) and four-wave mixing in
the time domain. Time-domain FWM is reflected in ampli-
tude fluctuation as reported in [10]. In dispersion-managed

transmission links with small average dispersion this noise
increases with distance and its mitigation requires the use
of loss compensation by means of Raman amplification. In
the case of intrachannel XPM this is reflected in a mean fre-
quency shift of the pulses which is translated to timing jit-
ter through fibre dispersion [11]. If negligible average dis-
persion is achieved along the transmission link, this effect is
suppressed [11, 12]. This is the particular case of ultracapac-
ity DWDM networks. Transmission at 160 Gbps channel bit
rate requires that the optical link between nodes be carefully
planned in advance as pointed out in the small number of
trials performed over actual SSMF [13]. The dispersion map
used requires extremely low residual dispersion (1.2 ps/nm
max. deviation for 160 km SSMF transmission) and also dis-
persion slope compensation [14]. It is also worth noting that
the complete chromatic dispersion compensation along the
system makes the accumulated chirp in the pulses negligible
[12].

Common channel monitoring techniques rely on the use
of arrayed-wavelength gratings (AWG) [15], Fabry-Perot fil-
ters [16], acousto-optic tunable filters [17], or tunable active
filters [18] in order to separate the different WDM channels
and to evaluate the channel noise power in absence of trans-
mitted power, that is, stopping the channel operation. Other
nondisruptive techniques propose the use of pilot sideband
tones besides the digital data spectrum in order to evalu-
ate the degradation of the transmitted information for each
wavelength [19]. This method lacks transparency through
the optical network nodes, like optical add-drop multiplex-
ers (OADM) and optical cross-connects (OXC), as the pi-
lot tones are eliminated after regeneration inside the net-
work element. Another technique proposes the use of low-
speed modulated signals overimposed on the main bit stream
[20]. This technique requires the use of specific modula-
tion and demodulation systems which can increase system
complexity.

Our target is to monitor the crosstalk level in the DWDM
network node either if it is originated inside the node or in
the transmission link. The herein proposed system is based
on optically time gating the DWDM signal during a spe-
cific time duration (one-bit time-slot) and to perform a
continuous optical Fourier transform (OFT) comprising the
whole set of transmitted wavelengths. This approach does
not require to stop the channel operation. Once the spec-
tral information has been brought to time domain, the ba-
sic parameters such as amplitude (channel power) or central
wavelength can be evaluated. The key advantage of the pro-
posed technique is that, additionally, it is feasible to evalu-
ate the crosstalk spectral distribution (the interfering optical
power distribution with frequency) that any DWDM chan-
nel is suffering. This is accomplished by the real-time OFT
operation. Once the spectral data is in the time domain, it
is photodetected and sampled to be postprocessed. In pres-
ence of crosstalk, the samples captured exhibit a uniformly
distributed noise at specific time positions. By measuring
the noise power and the noise time position we can eval-
uate the crosstalk level and the crosstalk spectral location,
respectively.
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The crosstalk spectral distribution gives us more infor-
mation than the total crosstalk figure in dB usually given in
crosstalk measurements. The knowledge of the spectral dis-
tribution opens up the opportunity to identify the crosstalk
source, that is, if it comes (in the case of linear crosstalk)
from the channel at the right or at the left. It is clear that
if the crosstalk source is an adjacent channel, its spectral
distribution will be at one side of the channel spectrum. If
it is originated by nonlinear crosstalk due to FWM (evenly
spaced channels), then the noise spectral maximum will be
at the central frequency of the crosstalked channel. In this
case, once the crosstalk type is identified, we can correlate the
presence of crosstalk in a specific channel with the presence
of power in a given set of channels. This correlation allows us
to identify the crosstalk origin channels.

As discussed before, the OFT is the key operation of the
proposed system and it is performed over the whole optical
system bandwidth. The OFT operation is implemented here
by means of a dispersive element. The use of chromatic dis-
persion effect in standard single-mode fibre (SSMF) to con-
vert the spectral information to time domain has been previ-
ously reported in [21, 22]. Linearly chirped fibre Bragg grat-
ings (LCFBG) have been also proposed as dispersive elements
capable of performing this operation [23]. The Fourier trans-
formers using SSMFs give the advantage of nearly no band-
width limitation, which makes this approach especially in-
teresting for large-channel-count DWDM systems. The use
of dispersive devices in real-time spectrum analysis systems
was proposed for DWDM systems in [21] and experimentally
demonstrated for a phase coherent spectrum [24] (coherency
means here that all the lights present at the spectrum have the
same phase reference, i.e., the whole spectrum comes from
only one optical source). Actual DWDM systems, however,
exhibit lack of phase coherency between the different WDM
channels as they come from different optical sources. This
lack of spectral coherency leads to the presence of an ampli-
tude noise after the OFT that depends on the crosstalk level.
The amplitude noise power level gives us information about
the crosstalk level that the channel under evaluation is suffer-
ing from the rest of the WDM channels. This correspondence
will be evaluated in the next section.

Another interesting feature of the proposed OFT ap-
proach is the time expansion effect introduced by the dis-
persive element. In the proposed system, the output from the
OFT cell is a time-stretched version of the Fourier transform
of the input signal envelope. This expansion in time is a con-
venient feature as it is possible to use commercially available
electrical analog-to-digital conversion (ADC) circuitry in or-
der to capture (convert the electrical photodetected signal to
digital data) the spectrum and to postprocess the results.

2. PRINCIPLE OF OPERATION

We consider a generic crosstalk situation in a DWDM net-
work employing Gaussian RZ modulation. The network uses
K channels (wavelengths) with channel spacing ∆ (rad/s). In
conventional DWDM networks the channel separation ∆ is

wide enough so that the spectral overlap between the chan-
nels is negligible. This is not the case of high-spectral effi-
ciency networks where the adjacent channel power can leak
due to not perfect channel filtering at multiplexing stage,
during channel extraction operation or because of transmit-
ter degradation.

In the general case, for the sake of simplicity we will con-
sider that the DWDM channels are evenly spaced around
a central angular frequency ω0 so the central angular fre-
quency for the kth channel is ω0 + ωk = ω0 + ∆ · k, where
k = −(K − 1)/2 · · · (K − 1)/2. This DWDM spectral space
can be described by equation (1), where sA(t) is the bit-
synchronised received optical complex field envelope around
the central angular frequency of the DWDM transmission
system (ω0). The channels are considered synchronised in
time as this is the worst-case crosstalk scenario. In equation
(1) Ak stands for the optical field amplitude and bk,n is the
transmitted data (mark or space) by the channel k in the nth-
bit time-slot. The parameter Tk stands for the Gaussian pulse
half-width at 1/e fall from peak. R = 1/Tb is the system bit
rate. Figure 1 shows the DWDM system in a bidimensional
space (angular frequency, time) described by

sA(t) =
∑
k

∑
n

Akbn,k exp
(
jωkt

)
exp

[
−1

2

(
t − nTb

Tk

)2]
. (1)

Our analysis targets crosstalk evaluation in a generic network
node. Such node, optical add-drop multiplexer (OADM) or
optical cross-connect (OXC), is depicted in Figure 2 (top
diagram). This generic node can perform DWDM inser-
tion/extraction or wavelength conversion whether it is an
OADM (optical add-drop multiplexer) or an OXC (optical
cross-connect). The channel monitoring block is shown be-
fore the node operation, controlling a channel equalizer and
monitoring the crosstalk introduced in the link. This block
can be placed inside the node or directly in the transmission
link sending information through a supervisory channel.

The proposed DWDM crosstalk monitoring system ar-
chitecture is shown in Figure 2 (bottom schematic). The sys-
tem consists of a gating switch which selects only one bit pe-
riod (Tb time duration) of every N bits. This gating switch
can be implemented in the optical domain by using saturable
absorbers [25, 26], interferometric devices like the nonlin-
ear optical loop mirror (NOLM) [27] and the ultrafast non-
linear interferometer (UNI) [28], or a Mach-Zender archi-
tecture employing semiconductor optical amplifiers (SOA)
[28]. These devices can work at 160 Gbps core network line
rates. The purpose of the gating switch is to select only one
bit-slot of every N bits (one bit-slot contains only one bit
from all the wavelengths of the DWDM system as the opti-
cal gate does not impose any bandwidth limitation) and to
feed it into the OFT cell which performs an optical Fourier
transform. The exact value of N depends on the chromatic
dispersion of the OFT cell as will be discussed later. This gat-
ing can be performed in a continuous basis or every time
that a channel monitoring is desired. Equation (2) describes
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Figure 1: Bidimensional (angular frequency, time) DWDM space in modulus, |sA(t,ω)|. Gaussian RZ signaling is used. A spectrum cut (in
modulus) |sA(ω)|t=t0 is shown on top for a given time t0. This spectrum comprises K wavelengths with Gaussian shape. The time signal
(in modulus) is also shown (bottom) for a given channel k. The optical Fourier transform operation is performed over the Tb bit time-slot
shown.

the complex field envelope after theoretical gating of an ar-
bitrary nth bit and its Fourier transform. The time reference
has been placed in the centre of the pulse to simplify calcu-
lations. After the optical gating, one bit of the DWDM chan-
nels is fed to the Fourier transformer to bring the spectral
information into the time domain. Once in time domain this
spectrum is sampled at Rs rate:

sB,n(t) =
∑
k

Akbn,k exp
(
jωkt

)
exp

[
−1

2

(
t

Tk

)2]
,

SB,n(ω) =
∑
k

Akbn,kTk

√
2π exp

[
−1

2

(
ω − ωk

)2
T2
k

]
.

(2)

In Figure 3 the gating and optical Fourier transform process
is shown in detail. As mentioned before, at the output of
the OFT cell, the spectral information is obtained as a time
signal. Therefore, we have performed the spectrum-to-time
conversion of one time-slot comprising the whole set of
K wavelengths of the DWDM system. The time signal at
the output of the OFT cell [23] is described by (3). The
output pulses width depends on the first-order dispersion
coefficient Φ̈. The pulses amplitudes involve the factor L
standing for the OFT device optical losses. This signal is
then photodetected and converted from electrical continu-
ous signal to digital data in order to evaluate the spectrum.

This conversion can be performed by a commercial ADC:

sC,n(t) = L · exp
(
− jt2

2Φ̈

){
FT
[
sB(t)

]}
ω=t/Φ̈

= L · exp
(
− jt2

2Φ̈

)
SB

(
t

Φ̈

)

= L · exp
(
− jt2

2Φ̈

)

×
∑
k

Akbn,kTk

√
2π exp

{
−1

2

[(
t − k · ∆ · Φ̈)2

T2
k

Φ̈2

]}
.

(3)

From (3), if the dispersive element presents a first-order
dispersion coefficient of Φ̈ = −∂2Φ/∂ω2, the resulting time
signal after OFT comprises Gaussian shape pulses (as cor-
responds to the Fourier transform of a Gaussian pulse) of
width Φ̈/Tk separated in time by the factor ∆ · Φ̈. Each
channel spectrum outputs from the OFT cell with k · ∆ ·
Φ̈ separation. The time necessary to output all the wave-
lengths of the DWDM system is K · ∆ · Φ̈. The gating ra-
tio N must be high enough to produce a complete opera-
tion, so N has to be larger than K · ∆ · Φ̈/Tb, where Tb

is the system bit period. By photodetecting and sampling
sC,n(t), we can evaluate the spectrum from the K system
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Figure 2: Top diagram shows generic network node structure. Proposed channel monitoring system architecture based in OFT operation
using SSMF is shown in the schematic (bottom).
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Figure 3: Channel monitoring principle of operation: Tb time-slot id-gated and fed to the optical Fourier transformer. After Fourier trans-
form we obtain the spectrum components in time domain.

channels. The minimum sampling rate should allow one
sample per channel, that is, Rs min = 1/(∆ · Φ̈). After
OFT, photodetection, and sampling, given the spectrum in-
formation, we can evaluate the channel amplitude (power)
level, the channel separation (time difference between power
peaks), and the crosstalk the channel is suffering, as will be
discussed later. By example, the use of a commercial ADC
with a sampling rate of 800 Msps (readily available from
different vendors) leads to 1.25 nanosecond temporal res-
olution. The accumulated dispersion from 150 km SSMF
(−19 296 ps/THz) OFT gives a spectral resolution (frequency

separation between samples) as low as 64 GHz. To achieve a
fine sampling of the spectrum envelope, the proposed sys-
tem includes an optical delay line (ODL) shown in Figure 2
which delays the input to the ADC in a computer-controlled
way. Sweeping the optical delay, the different points of the
DWDM spectrum will be sampled and we can reconstruct
its shape completely. The sampled waveform corresponds to
a spectral-domain to time-domain conversion taking place,
and the power overlapping in the spectrum will appear as
an amplitude noise in the Gaussian pulses after Fourier
transform.
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In order to characterize the noise in the time domain,
we will evaluate now the output from the OFT when two
generic wavelengths with ∆ channel separation overlap to
some extent in spectrum: we consider two adjacent DWDM
channels, k and k + 1, bearing Gaussian RZ pulses in the
DWDM system of amplitude Ak and Ak+1 and pulse width
Tk and Tk+1, respectively. This is a general case from equa-
tion (2) where the interaction of any two channels is evalu-
ated. This generic situation can be particularized for different
kinds of crosstalk described in the previous section. For lin-
ear crosstalk, the noise origin is the spectrum overlap from
the adjacent channel, the spectral separation between lights
of channel k and k + 1 is the channel spacing ∆� 0, and the
amplitudes Ak and Ak+1 will be in the same order of mag-
nitude, Ak ≈ Ak+1. In the case of nonlinear crosstalk, the
noise origin is another channel which, due to nonlinear ef-
fect like FWM, appears spectrally overimposed (the channels
are equally spaced) exactly at the centre of the channel under
study k. In this case the spectral separation between channel
k and the interference k + 1 is negligible ∆ ≈ 0, but due to
limited FWM efficiency, the interference amplitude will be
much lower Ak+1 � Ak.

Following the general analysis, the channels k and k + 1
come from different optical sources through different opti-
cal paths. As these channels are mutually noncoherent, the
optical phase difference is considered by the term φ which
is a uniformly distributed random variable. Then, the com-
plex optical envelope s(t) and spectrum envelope S(ω) for
channels k and k + 1 can be written as

sk(t) = Ak exp
(
jωkt

)
exp

[
−1

2

(
t

Tk

)2]

FT−−→ AkTk

√
2π exp

(
−1

2

((
ω − ωk

)
Tk
)2
)

∆= Sk(ω),

sk+1(t) = Ak+1 exp
[
j
(
ωk + ∆

)
t + jφ

]
exp

[
−1

2

(
t

Tk+1

)2]

FT−−→ Ak+1Tk+1

√
2π

× exp
(
−1

2

((
ω − ωk − ∆

)
Tk+1

)2
)

exp( jφ)

∆= Sk+1(ω) exp( jφ),
(4)

where Ak+1, ωk+1, and Tk+1 stand for the optical field am-
plitude, the central angular frequency, and the pulse width
at 1/e, respectively, for wavelength k + 1. From (3), after the
Fourier transform element we have the combination of both
spectra:

s′c(t) = L · e− jt2/2Φ̈ · {Sk(ω) + Sk+1(ω) exp( jφ)
}
ω=t/Φ̈. (5)

The term L · e− jt2/2Φ̈ is a complex constant whose phase will
be lost after photodetection. The photodetected signal at the

OFT output is proportional to the optical intensity Iout(t) as
described by (6). This intensity corresponds to the combina-
tion of the wavelengths k and k + 1 power spectra with noise

Iout ∼
∣∣Sk(ω) + Sk+1(ω) exp( jφ)

∣∣2
ω=t/Φ̈

= S2
k

(
t

Φ̈

)
+ S2

k+1

(
t

Φ̈

)
+ n(t).

(6)

The noise n(t) involves the random variable φ which is the
phase difference between both wavelengths at any time posi-
tion. Except for if both lights are provided by the same opti-
cal source and are guided through the same optical path, we
can only say that φ adopts a random value between −π and
π with uniform distribution. This noise is a random process
and is described by equation (7). Every time a channel esti-
mation is done, we obtain one realization of the process. For
simplicity, the realization number is not shown in

n(t) = 2Sk

(
t

Φ̈

)
Sk+1

(
t

Φ̈

)
cos(φ). (7)

From (7) the OFT output at any specific time position ti,
that is, n(ti), is a random variable. This random variable will
fluctuate according to the random nature of the phase dif-
ference φ. The noise variance (fluctuation) for time position
is given by (8) and shows that the noise power in time do-
main follows (except by a proportionality factor) the optical
spectrum overlap Sk(ti/Φ̈)Sk+1(ti/Φ̈):

σ2
n,ti = 4πS2

k

(
ti
Φ̈

)
S2
k+1

(
ti
Φ̈

)
. (8)

Equation (8) reflects that the noise power at the specific time
position ti depends only on the crosstalk at the specific spec-
trum angular frequency ω0+ti/Φ̈. Sweeping the time position
ti, we sweep over the complete spectral range. In this way, ac-
cumulating the samples for any time position ti, we can eval-
uate its mean and variance for the corresponding frequency.
The variance represents the crosstalk noise as this is produced
by the crosstalk (if no crosstalk is present, no variance can be
observed) as is discussed in the next section. In this way we
can calculate the crosstalk spectral distribution. This result is
difficult to achieve with current spectrum analysis techniques
and is enabled by the feasible real-time Fourier Transform
operation proposed in [21].

The crosstalk spectral distribution gives us total
crosstalking power (noise integrated over the channel under
study bandwidth) and, from the envelope of the noise
spectral distribution, we can identify the crosstalk nature:
if it is located at one side of the channel bandwidth, then
the origin is linear crosstalk from the adjacent channel as is
demonstrated in the experimental work in the next section.
If the noise distribution is centered in the channel bandwidth
under study and follows the Gaussian power profile, then the
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source is nonlinear FWM (provided the channels are equally
spaced). In this case, performing a statistical correlation of
this noise with the presence of power (marks) transmitted
in any other DWDM channel, we can identify the crosstalk
source.

This result can be extended to more than two interfering
channels: we evaluate now the influence of multiple channels
interfering a given channel k. Noncoherent crosstalk, which
means that the interfering channels are uncorrelated, will be
reflected again as the power spectrum overlap. In the case of
M interferers over the kth channel, the noise from any chan-
nel of the system will also be additive in power. Equation
(9) is an generalization of equation (8) for the interaction
of channel m over channel k:

σ2
k,m,ti = 4πS2

k

(
ti
Φ̈

)
S2
m

(
ti
Φ̈

)
. (9)

The total noise power, if M channels affect, will be given by
(10), as the different n2

k,m(t) for each m interfering channel
are uncorrelated noise processes for each m channel as the
channels are not mutually coherent:

σ2
k,M,ti =

∑
M

σ2
k,m,ti = S2

k

(
ti
Φ̈

)∑
M

S2
m

(
ti
Φ̈

)
. (10)

Equation (10) reflects that the total crosstalk noise spectral
profile is the sum of the spectrum envelope overlaps of all
channels m �= k. In the case of channels with large frequency
separation, its influence will be quickly dismissed, as the
Gaussian spectral shape decays quickly. In the case of non-
linear crosstalk, as mentioned at the beginning of the section,
the channel separation is almost zero, but due to the low non-
linear process efficiency the interference amplitude Am will
be much lower than the channel under study Ak. The par-
ticular FWM efficiency value depends on the particular dis-
persion and amplification map [9] of the system, and will be
reflected in the Am amplitude implicit in the term S2

m(ti/Φ̈)
in (10).

3. EXPERIMENTAL RESULTS AND DISCUSSION

As a proof of concept, a set-up has been arranged to eval-
uate the proposed monitoring technique operation on two
DWDM channels transporting Gaussian RZ pulses with
strong linear crosstalk following the calculations in the previ-
ous section. This linear crosstalk is induced arranging the dif-
ferent channels with enough frequency overlap. If we would
consider in-band crosstalk, we would simply overlap the
wavelengths completely. The set-up is shown in Figure 4 and
consists of two tunable mode-locked laser sources with a
wavelength range of +/−12 nm around 1552 nm. The gener-
ated pulses are mutually noncoherent and exhibit TFWHM =
1.6 picoseconds. This pulse width corresponds to 25% RZ
signaling at 160 Gbps bit rate per channel. The repetition

rate is set to R = 1.04150 GHz using an external RF refer-
ence signal. A RF phase shifter was employed for fine tun-
ing in order to vary the relative pulse positions. An optical
delay line for coarse tuning may be also used, as shown in
Figure 4. After combining both pulsed lights, the signal is
passed through a dispersive device (OFT cell). In the exper-
iment a coil of 2.1 km of SSMF was used, providing a total
dispersion of Φ̈ = −42.855 ps2/rad, which is large enough to
perform a successful Fourier transform, as it meets the con-
dition |T2

b /Φ̈| � 1 reported in [23]. The large optical band-
width of the fibre-based OFT cell presents the advantage of
being wide enough to allocate the whole system bandwidth.
This would be difficult to accomplish if a linearly chirped fi-
bre Bragg grating was used for FT operation in a large WDM
system, as the system bandwidth might exceed the grating
bandwidth. Furthermore, the signal is photo-detected and
monitored in the sampling scope.

Figure 5a shows the spectrum of two DWDM channels
from the experimental set-up described above with channel
spacing of 3.72 nm, whereas Figure 5b shows the output of
the OFT cell after photodetection (electrical output). We can
observe the good agreement between the optical spectrum
at the input and the time electrical waveforms shape at the
output, hence demonstrating the proper FT operation.

In order to evaluate the fibre-based Fourier transformer
behavior in the presence of linear crosstalk, a strong wave-
length overlap is introduced by getting closer (spectral spac-
ing of 2.3976 nm) the DWDM wavelengths. Figure 5c shows
the spectrum in this situation, whereas Figure 5d shows the
output from the OFT cell. The presence of the predicted am-
plitude noise dependent on the linear crosstalk at the input
is clearly shown as was expected from (7). If no crosstalk is
present (e.g., Ak = 0) all the amplitude noise vanishes as can
be seen in the insets (e) and (f) in Figure 5.

This amplitude noise (marked with the rectangle in
Figure 5) is present only at the time positions where there
was spectrum overlap in the frequency domain. In order
to assess this correspondence, we have evaluated the accu-
mulated noise after several successive OFT (channel evalua-
tion) operations. Figure 6 shows the optical power spectrum
overlap 4πS2

k(ω)S2
k+1(ω) over the electrical amplitude noise at

OFT output σ2
n,t. The correspondence of the spectrum over-

lap with the amplitude noise rms (noise power distribution
over time) value shows good agreement, thus validating (8).

4. CONCLUSIONS

A novel channel monitoring technique for high-speed
DWDM networks based on performing the Fourier trans-
form with a simple dispersive element has been proposed and
validated. Gaussian 1.6-picosecond pulses, typical in 25% RZ
160 Gbps transmission, have been used for demonstration
purposes. Proper OFT cell operation has been demonstrated
using 2.1 km of SSMF. Amplitude noise correspondence, af-
ter OFT operation and photodetection, with the optical spec-
tral overlap (linear crosstalk) profile has been evaluated and
experimentally validated.
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Figure 4: Experimental set-up. Combination of two nonmutually phase coherent 1.6-picosecond Gaussian RZ DWDM channels. OFT cell
used comprises 2.1 km of SSMF.
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Figure 5: (a) Optical spectra at the input of the OFT cell. (b) Electrical signal after OFT and photodetection for 3.72 nm channel spacing.
(c) Optical spectra with 2.3976 nm channel separation (11.62 dB crosstalk). (d) Corresponding electrical traces at the output of the OFT cell.
Insets (e) and (f) show the two channels when no crosstalk is present.
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We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the
information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First,
we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used
in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN)
is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of
optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical
numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results
for channel coded binary and M-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-
Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We
observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is
the length of the spreading sequences) with good bit error rate system performance.

Keywords and phrases: optical CDMA communication, multiple-access channels, M-ary modulation, channel capacity, turbo
codes.

1. INTRODUCTION

Optical CDMA can provide multiple attractive features for
data access networks with bursty traffic, that is, flexibil-
ity of asynchronous and decentralized network operation,
potential of high data throughputs, inherent data security,
and potential of total bandwidth utilization by all network
users (when utilizing two-dimensional spreading sequences).
Ultrahigh transmission rates envisioned for all-optical net-
works as well as the limited availability of optical domain

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

digital logic and signal processing have made OCDMA a
challenging research area. Multiple advances and novel tech-
niques have been developed in the past two decades to enable
OCDMA technology for access networks [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Significant research
efforts have been made in the design and performance anal-
ysis of optical CDMA spreading sequences. The main objec-
tive has been to construct new families of optical spreading
codes with low cross-correlation values in order to maximize
the signal-to-interference ratio and obtain good bit error
rate (BER) performances. However, despite the introduction
to many families of new OCDMA spreading sequences, se-
vere multiuser interference has usually limited the maximum
number of active OCDMA users to between 10 and 20 (at
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target BER of 10−9) and this fact has placed a limit on achiev-
ing high aggregate data throughputs in OCDMA networks.

Recently, channel (error-correcting) codes have been
considered as a means to reduce the effects of the mul-
tiuser interference and improve performance in OCDMA
networks [19, 20, 21, 22]. It is thus of interest to know the
theoretical (Shannon) capacity of an OCDMA network so
that the overall system performance can be properly opti-
mized. Channel capacity of optical communication systems
has been explored for single-user transmission, for example,
in [23, 24], taking into account physical limitations of the
optical transmission link. Nonetheless, different techniques
and approaches have been needed and utilized so far to ana-
lyze OCDMA capacity limitations in the presence of multiple
users. Authors in references [25, 26] explored fundamental
limitations under specific OCDMA architectures, for exam-
ple, on-off keying, specific optical receivers, and code correla-
tion constraints in [25]. Hence, the motivation of this paper
is first to determine capacity limits on binary OCDMA trans-
mission assuming that the best possible spreading sequences,
single-user receiver, and channel codes are utilized. Conse-
quently, we study the effects of using more than two modu-
lation levels on increasing the capacity of OCDMA transmis-
sion with single-user detection at the receiver. Finally, we use
powerful channel codes, such as turbo codes concatenated
with Reed-Solomon codes, to achieve up to several hundred
users in OCDMA systems with a target BER of 10−9.

This paper is organized as follows. Section 2 presents
channel models for binary and M-ary OCDMA transmis-
sion when single-user detection is applied at the receiver and
considers the noiseless, interference-limited transmission.
Section 3 calculates the channel capacity limits on OCDMA
network throughput under these assumptions and analyzes
the benefit of using M-ary OCDMA modulation to improve
upon the capacity of the binary systems. Furthermore, for
high modulation levels, we propose a specific input distri-
bution that satisfactorily increases the throughput of the
M-ary OCDMA compared to the equiprobable signaling.
In Section 4, we evaluate the impact of Gaussian (photode-
tector) noise on the throughput limits derived previously.
Section 5 proposes and explores coded OCDMA architec-
tures utilizing turbo codes and these are shown to signifi-
cantly improve the overall system performance in OCDMA
networks. Finally, concluding remarks and directions of fur-
ther work are given in Section 6.

2. CHANNEL MODELS

2.1. General assumptions

We consider the general case of M-ary OCDMA transmis-
sion (M ≥ 2) with bit-asynchronous, chip-synchronous
transmission when K users are sending information simul-
taneously through the network using a laser source that
can be intensity modulated to one of M modulation levels
(0, 1, . . . ,M − 1). Each user’s data are spread and encoded
prior to being sent over the shared channel and the users
behave in an independent (i.e., no collaboration is allowed)

0
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2q(1− q)

q2

(1− q)2

2q(1− q)
(1− q)2
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Figure 1: Chip-level discrete memoryless channel model of a 3-user
asynchronous OCDMA system with single-user detection. Please
note that the channel input symbols (chips) are used with proba-
bilities p0 = q and p1 = 1− q.

and symmetric manner (i.e., they all have the same proba-
bility of using a given modulated symbol in their spreading
sequence). We will also assume that the receiver performs
single-user detection (SUD), where we can assume with-
out any loss of generality that the first user is the decoded
user. Our capacity analysis is carried out on the chip level
in a general sense, assuming that the best possible single-
user detector, spreading and error-control coding are used.
In Section 5, we will deal with specific architectures and ex-
plore their performances through simulations results.

We will start our analysis with the interference-limited
(noiseless) transmission case, that is, the effects of receiver
and channel noise are assumed negligible when compared to
the interference of other users who are also transmitting their
data over the shared multi-access channel. Under these as-
sumptions, the OCDMA transmission can be modeled using
an appropriate discrete memoryless channel.

2.2. Examples of channel models for
OCDMA transmission with SUD

Consider the case of 3 users transmitting binary OCDMA
chip symbols 1 and 0 over the optical channel with probabil-
ities p0 = q and p1 = 1− q, respectively. We can model such
transmission using a discrete memoryless channel (DMC)
shown in Figure 1. At the output of the channel, the input
signal of user 1 is corrupted by interference due to other si-
multaneous users of the OCDMA network. For this 3-user
binary network, if user 1 transmits chip symbol 0, the re-
ceiver will receive 0 if and only if the other 2 users also trans-
mit zero. Hence the transition probability is q2. Similarly, the
receiver takes the value 1 if one interfering user transmits the
chip symbol 1 and the other transmits 0, which occurs with
probability 2q(1− q).

As a second example, we consider the case of 2 OCDMA
users with ternary modulation, with corresponding DMC
representation shown in Figure 2. At the chip level, each user
can send symbols 0, 1, or 2 with probabilities p0, p1, and
p2 = (1− p0 − p1), and the channel transition matrix is
hence given by

PY |X1 =

p0 p1 p2 0 0

0 p0 p1 p2 0
0 0 p0 p1 p2


 . (1)
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Figure 2: Chip-level DMC model for a 2-user ternary (M = 3)
OCDMA transmission with single-user detection. Channel input
symbols are used with probabilities p0, p1, and p2 = (1− p0 − p1).

The channel output Y is the real sum of the symbol intensi-
ties sent by all simultaneous users and can hence take values
0, 1, 2, 3, or 4 with probabilities p2

0, 2p0p1, p2
1 + 2p0p1, 2p1p2,

and p2
2 respectively. If we evaluate the information-theoretic

capacity of this specific channel, we find out that such a sys-
tem is limited to throughput of 0.74 bits per OCDMA chip
for the decoded user and thus the cumulative throughput for
the 2 independent users is limited to 1.48 bits per OCDMA
chip.

It is also interesting to note from these examples that the
channel matrix depends on the input probability distribu-
tion. Consequently, the DMC representing the OCDMA sys-
tem is not a constant (fixed) channel like the majority of
channels considered in information theory [27]. As we will
see in Section 4, this variability of the channel will lead to a
difficult optimization problem of enumerating the numerical
value of the capacity.

2.3. M-ary OCDMA transmission model

More generally, at the chip level, the DMC representation of
a K-user M-ary modulated OCDMA transmission has as in-
put the random variable X1 corresponding to the informa-
tion sent by the desired user and taking value on the alphabet
X = {0, 1, . . . ,M − 1}; and as an output the real sum

Y =
K∑
i=1

Xi, (2)

where Xi for i = 1, 2, . . . ,K is a sequence of independent
identically distributed random variables corresponding to
chip symbols transmitted by users 1, 2, . . . ,K after OCDMA
spreading and error-control coding. Therefore, the output al-
phabet is given by y = {0, 1, 2, . . . ,K × (M − 1)}.

The entries of the channel matrix PY |X1 are the condi-
tional probabilities of the output symbol, given the input
symbol and can be described for all y ∈ y and x1 ∈ X as
follows:

PY |X1

(
Y = y|X1 = x1

) = ∑
(x2,x3,...,xK )∈XK−1

s.t.
x2+x3+···+xK−1=(y−x1)

px2 px3 · · · pxK .

(3)

Consequently, it can be again noticed that the channel de-
pends on the input probability mass function for a generalK-
user, M-ary OCDMA transmission with SUD. Furthermore,
the output probability distribution is given by the following
expression for all y ∈ y:

PY (Y = y) =
∑

(x1,x2,x3,...,xK )∈χK
s.t.

x1+x2+x3+···+xK=y

px1 px2 · · · pxK . (4)

The values of the entries of the channel transition ma-
trix PY |X1 (Y = y|X1 = x1) as well as the output probabilities
PY (Y = y) can be found using generating functions. For K
users sending data over an optical M-ary modulated channel,
the conditional probabilities assuming that the input symbol
is x1 ∈ X are generated by the following polynomial in the
symbolic variable z:

R(z) = zx1
(
p0z

0 + p1z
1 + · · · + pM−1z

M−1)K−1
. (5)

To obtain the resulting probabilities, we expand this polyno-
mial in the form

R(z) = αx1z
x1 +αx1+1z

x1+1 +· · ·+αx1+(K−1)(M−1)z
x1+(K−1)(M−1)

(6)

and the conditional probabilities on the channel are given
by PY |X1 (Y = y|X1 = x1) = αy+x1 for all y ∈ y =
{0, 1, . . . ,K × (M − 1)} and x1 ∈ X. Similarly, the generating
polynomial in the symbolic variable z for the output distri-
bution is given by

Q(z) = (p0z
0 + p1z

1 + · · · + pM−1z
M−1)K . (7)

To obtain the output probabilities, we expand the previous
polynomial in the form

Q(z) = α0z
0 + α1z

1 + · · · + αK(M−1)z
K(M−1) (8)

and the output probabilities are given by PY (Y = y) = αy

for y ∈ y = {0, 1, . . . ,K × (M − 1)}.
If we consider, for instance, the case of binary modula-

tion (M = 2) with input alphabet X = {0, 1} and the output
alphabet y = {0, 1, 2, . . . ,K}, the channel conditional proba-
bilities are given by

PY |X1

(
Y = y|X1 = x1

) =
(
K − 1
y − x1

)
(1− q)y−x1qK−1−y+x1 ,

(9)

where p0 = q, p1 = 1 − q and, for notational convenience,
we define

(
K−1
−1

) = (
K−1
K

) = 0. Due to the symmetry of the
problem, the channel matrix of conditional probabilities can
be written as

PY |X1 =
(
β0 β1 · · · βK−1 0
0 β0 β0 · · · βK−1

)
, (10)
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Figure 3: Fundamental limits on asynchronous binary OCDMA
transmission.

where βi =
(
K−1
i

)
(1− q)iqK−1−i. The channel output proba-

bility is consequently given by

PY (Y = y) =
(
K
y

)
(1− q)yqK−y. (11)

3. CAPACITY EVALUATION

3.1. Information capacity of the binary
OCDMA transmission with SUD

The information-theoretical (Shannon) capacity of the bi-
nary optical CDMA transmission with single-user detection
at the receiver can be calculated using the channel model de-
scribed in (9). Due to the symmetrical and independent op-
eration of the K users on the OCDMA channel, the cumula-
tive throughput by all the K simultaneous users on the chan-
nel is limited in (information) bits per transmitted OCDMA
chip by

C2,K = K sup
q∈[0,1]

I2,K
(
X1,Y

)
, (12)

where I2,K (X1,Y) is given by (13) below and represents over-
all mutual information of a K-user binary OCDMA trans-
mission with single-user detection.

The aggregate mutual information of such a bit-
asynchronous binary OCDMA channel is plotted as a func-
tion of the input probability q = P(X1 = 0) in Figure 3 for
various numbers of users. When only 1 user is active in the
system, without the presence of noise, the channel reduces
to a perfect noiseless binary channel and the capacity is 1
bit per chip. As the number of users increases, the interfer-
ence reduces the theoretical capacity limit until it reaches a
steady-state value. For example, for a 50-user transmission,
the aggregate capacity is 0.8374 bits per chip achieved when
the input probability is q = 0.03. Note that the uniform dis-
tribution does not achieve the capacity and for the same sys-
tem, it yields to a throughput limit of around 0.7288 bits per
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Figure 4: Aggregate mutual information as a function of input
probability for 10 users, ternary OCDMA transmission.

OCDMA chip.
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i=0

(
K
i

)
(1− q)iqK−i log2

((
K
i

)
(1− q)iqK−i

)

+
K−1∑
i=0

(
K − 1

i

)
(1− q)iqK−1−i

× log2

((
K − 1

i

)
(1− q)iqK−1−i

)
.

(13)

3.2. Information capacity with nonbinary modulation
Due to the symmetrical and independent operation of the K
users on the channel, the cumulative throughput for all the
K users is limited by

CM,K = K sup
PX1

IM,K
(
X1;Y

)
. (14)

Moreover, due to the symmetry of the channel matrix
PY |X1 in (3) (rows are cyclical shift of each other), it fol-
lows that H(Y = y|X1 = x1) = H(Y = y|X1 = 0) for all
x1 = 1, 2, . . . ,M − 1. Consequently, the mutual information
IM,K (X ;Y) for a K-user M-ary OCDMA transmission with
single-user detection can be expressed as in (15).

Generally, the variability of the discrete memoryless
channel modeling the M-ary OCDMA transmission on the
input probability mass function causes a non-concavity of
the mutual information IM,K (X1;Y). For example, Figure 4
shows the overall mutual information as a function of the
input probability distribution and its non-concave nature in
the case of ternary (M = 3) modulation and transmission
by K = 10 active users. This distinguishes the M-ary multi-
access channel with single-user detection from the stan-
dard class of fixed channels where the mutual information
is concave in the channel input distribution [27], and hence
finding this capacity requires global optimization tools.
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Figure 5: Aggregate capacity of OCDMA transmission as a function
of the number of users K shown for M = 2, 3, and 4 modulation
levels.

Indeed, the commonly used numerical algorithms for eval-
uating the channel capacity (e.g., the Arimoto-Blahut algo-
rithm [28]) do not apply in this case, since they generally as-
sume and utilize concavity of the mutual information in the
channel input distribution.

IM,K
(
X1;Y

)

=
(K−1)(M−1)∑

y=0




∑
(x2,x3,...,xK )∈χK−1

s.t.
x2+x3+···+xK=y

px2 px3 · · · pxK




× log2
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(x2,x3,...,xK )∈χK−1
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px2 px3 · · · pxK




−
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s.t.
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px1 px2 · · · pxK




× log2
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(x1,x2,x3,...,xK )∈XK

s.t.
x1+x2+x3+···+xK=y

px1 px2 · · · pxK


 .

(15)

Due to the difficulty of having an exact analytical ex-
pression for the capacity of the OCDMA transmission with
single-user detection, we numerically compute the capacity
of the channel and these results are shown in Figure 5 for se-
lected numbers of modulation levels. It can then be seen that
the throughput of this system is maximum for a 2-user sys-
tem and reaches a limiting value for increasing number of
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Figure 6: Mutual information using the proposed input probability
distribution.

users. Consequently, when the number of users is sufficiently
large (K ≥ 10), the aggregate throughput of the OCDMA
transmission is stable, quite independent of the total number
of users. This is a highly desirable feature in a network with
bursty traffic, since congestion does not occur as the number
of users increases.

It is interesting to compare the capacity with the through-
put achieved for uniformly distributed inputs. In this case,
the aggregate mutual information for large enough number
of users is much lower than the capacity of the channel shown
in Figure 5 and is approximately

KIM,K
(
X1;Y

) ≈ K log2

(√
K

K − 1

)
−→ 0.72 bits/chip. (16)

3.3. Near-capacity-achieving input distributions

Although the numerical evaluation gives a way of determin-
ing the capacity of an M-ary OCDMA network, this process
can still be difficult and computational intensive, especially
for many modulation levels. This is explained by the high di-
mensionality of the problem added to the difficulty of global
optimization needed to maximize the mutual information.
Hence, to allow less complex, approximate evaluation, we
heuristically propose the following class of input probabil-
ity distributions that satisfactorily increases the throughput
of the system:

p0 = pM−1 = K − 1
2K

,

p1 = p2 = · · · = pM−2 = 1
K(M − 2)

.
(17)

The system throughput can then be viewed as the binary
channel information due to the two most used symbols,



1608 EURASIP Journal on Applied Signal Processing

80
60

40
20

0

Modulation level 0
10

20
30

40
50

Number of active users (K)

0

0.5

1

1.5

2

2.5

3

3.5

M
u

tu
al

in
fo

rm
at

io
n

(b
it

s/
ch

an
n

el
u

se
)

Figure 7: Mutual information as a function of the modulation lev-
els and the number of users.

0 and M − 1, plus additional information correspond-
ing to the contribution of the M − 2 unlikely symbols
1, 2, . . . ,M − 2.

The mutual information, obtained using this proposed
input probability distribution, is plotted as a function of the
number of active users in Figure 6 and as a joint function
of the number of users and the M-ary modulation levels in
Figure 7. For M = 2, 3, and 4 modulation levels, this mu-
tual information is approximately equal to the actual capac-
ity of the system (shown originally in Figure 5). As an exam-
ple, the mutual information using this distribution for a 25-
user ternary communication system is about 1.159, identical
within the first 4 digits to the capacity of the system found by
global optimization.

It is interesting to note that the throughput increases ap-
proximately logarithmically with the increasing number of
modulation levels M as KIM,K (X ,Y) ≈ 0.36 log2(M − 1) +
0.83 bits per chip for M > 2 and K > 10. It may be possible
to increase the throughput of the OCDMA by increasing the
M-ary modulation level as desired. However, as the number
of the modulation levels M increases, the information gained
becomes less important. Therefore, an OCDMA system may
be implemented with a suitable choice of M, creating a com-
promise between complexity and throughput.

4. IMPACT OF NOISE ON THE THROUGHPUT
OF OCDMA TRANSMISSION WITH SUD

So far, we have omitted the presence of channel noise.
Although this gives an upper bound on the capacity
of OCDMA transmission under perfect conditions, noise
should be included in the analysis to assess the robustness
of such results. We will assume that the channel is corrupted
by an additive white Gaussian noise (AWGN) which mod-
els the electronic (photodetector) noise which may degrade
the sent information [11]. The input of the channel is still
the random variable X1 taking values on the alphabet X =
{0, 1, . . . , M − 1} with the probabilities derived in the previ-
ous section. However, the channel output is now the contin-
uous random variable Z = Y + N , where Y is the output of
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Figure 8: Throughput limit on binary asynchronous OCDMA
transmission when AWGN is present for noise variance: (a) σ2 =
0.09 and (b) σ2 = 0.25.

the noiseless channel from (2) and N is a Gaussian random
variable with zero mean and variance of σ2.

4.1. Impact of noise on the binary
OCDMA transmission

The aggregate Shannon capacity of the binary OCDMA
channel with SUD has the form of (12), but the mutual in-
formation term is modified to IAWGN

2,K (X1;Z) due to the addi-
tive white Gaussian noise (AWGN) corrupting the received
data and is described by (18) below. This new mutual in-
formation is plotted as a function of the input distribution
and the number of active users in Figure 8 for two different
values of noise variance. In Figure 9, the overall throughput
limit for a 20-user binary OCDMA transmission is shown
as a function of the input probability for selected noise vari-
ances. Note that for high enough signal-to-noise ratios, the
result approaches the interference-limited scenario, however
for extremely low SNR (for noise variance of 0.25, the SNR is
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Figure 9: Limit on aggregate throughput of a 20-user binary
OCDMA system at different noise variances with different input
distribution.

approaching zero dB), the throughput starts decreasing:

iAWGN
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(
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)

= −
∫∞
−∞
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)
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)dz. (18)

4.2. Impact of noise on the M-ary
OCDMA transmission

To explore the noise resistance/sensitivity of the results com-
puted so far, we compute the throughput limits on the
OCDMA transmission in the presence of AWGN. We will
use the noiseless capacity-achieving distribution in case of
M = 2, 3, 4 modulation levels and the proposed near-
capacity-achieving input distributions from Section 3.3 for
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Figure 10: Mutual information as a function of the number of
modulation levels M for a 20-user system.
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Figure 11: Mutual information as a function of the number of users
and the noise variance for a 16-ary OCDMA transmission.

M > 4 modulation levels. The aggregate throughput of the
OCDMA transmission under these assumptions is limited by
KIAWGN

M,K (X1;Z), where the mutual information IAWGN
M,K (X1;Z)

is given by (18).
Figure 10 shows the aggregate throughput limits on a 20-

user OCDMA network for selected noise variances, plotted as
a function of the modulation levels number. For small noise
variances, the noisy throughput limits almost overlap with
the noiseless system throughput limits.

The throughput limits are reduced for increasing noise
power, but even in this case, the throughput increase with
nonbinary modulation is satisfactory. In Figure 11, we show
the aggregate throughput limit against the noise variance and
the number of users for 16-ary OCDMA modulation. It can
be seen that even for high noise variance, the transmission
is still reasonably robust to noise, since the throughput limit
does not experience a sharp drop due to the noise.
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Figure 12: Schematic block diagram of the proposed OCDMA transmission scheme for binary and nonbinary modulation.

5. CODED OCDMA TRANSMISSION WITH
TURBO AND REED-SOLOMON CODES

Multi-user interference usually severely limits performance
of OCDMA systems without error-control coding. Systems
based on optical spreading sequences only can usually sup-
port between 10 to 20 simultaneously transmitting users with
bit error rates below 10−9 (standard performance benchmark
for OCDMA transmission). Alternatively, one can compare
OCDMA systems using normalized spectral efficiency, that
is, aggregate network throughput measured in information
bits per OCDMA chip. Traditional (uncoded) OCDMA sys-
tems achieve aggregate system throughputs of about 0.03 bits
per OCDMA chip, much below the predicted capacity limits.
Consequently, we propose several coded OCDMA transmis-
sion schemes to increase the OCDMA throughput.

5.1. Coded binary OCDMA systems

In the proposed transmission scheme in Figure 12 data of
each user are first encoded by a high-rate Reed-Solomon
code and interleaved (permuted), then encoded by a turbo
code and finally modulated by a user-specific binary optical
spreading sequence, such as two-dimensional wavelength-
time balanced codes for differential detection (BCDD) [17].
The role of the optical spreading sequence is to match the
data to the channel and to provide low cross-correlation be-
tween data sent by different users. The role of the turbo code
is to achieve an intermediate bit error rate of 10−3 to 10−5,
while the Reed-Solomon code provides final error rate at the
receiver below the desired error rate of 10−9. At the receiver
end, optical matched filtering and consequent sampling are
performed using the optical spreading sequence of the de-
sired user. Turbo decoding followed by Reed-Solomon de-
coding are used to recover data from the effects of multi-user
interference and channel noise.

We first present BER performance of the proposed binary
OCDMA system when each user employs a (255, 239) Reed-
Solomon code over GF(256) [29], a rate 1/2 (or 1/3) turbo
code and a BCDD(32, 16, 0.156) wavelength-time optical

spreading sequence (please see [17] for notation). The turbo
code is based on the original rate 1/3 turbo coding scheme
[30] which uses a 16-state recursive systematic code with
generator polynomial (37, 21). The rate of 1/2 is obtained
through puncturing; a packet of length of 10 000 bits is used
with an s-rand interleaver of spread 40. Consequent applica-
tion of the Reed-Solomon decoder decreases the overall BER
below 10−9, as shown in Figure 13b. In terms of channel ef-
ficiency, this corresponds to an aggregate system throughput
of 0.37 information bits per OCDMA chip.

Figure 14 shows the BER performance when the rate
1/3 turbo code is utilized. Simulation results show that
up to 700 users can be supported with a BER below 10−9

after 8 turbo decoding iterations and RS decoding are
performed. This corresponds to an aggregate throughput of
0.42 bits per OCDMA chip. In terms of transmission rate
over the optical channel, if each user transmits using 32
wavelengths at OC-12 chip rate and 16-time chips per bit,
the proposed scheme would achieve an effective aggregate
throughput of 8.4 Gbps= (700×(1/3)×(239/255)×(1/16)
×620 Mbps).

Finally, Figure 15 shows the BER performance for the sys-
tem when noise is present with σ2 = 0.09. With rate 1/3
turbo code, spreading length of 512, more than 650 users can
be supported, which corresponds to a throughput of 0.40 bits
per OCDMA chip.

5.2. Coded M-ary OCDMA transmission
We considered the coded M-ary OCDMA transmission
scheme shown in Figure 12. Each user’s data are first encoded
by a (255, 239) Reed-Solomon code over GF(256) followed
by a rate 1/3 turbo code, then modulated using a user-specific
M-ary optical spreading sequence corresponding to bits 0
and 1. The M-ary OCDMA spreading sequences are one-
dimensional codes composed of symbols m = 0, 1, . . . ,M −
1 pseudorandomly generated with probabilities chosen ac-
cording to the capacity-achieving input probability distribu-
tion of (17). For example, for ternary OCDMA transmission
with 16 aggregate users, the spreading codes are generated
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Figure 13: BER performance of the proposed coded OCDMA sys-
tem as a function of the number of active users: (a) after rate 1/2
turbo decoding; (b) after turbo and RS decoding.

using symbols 0,1, and 2 with probability distribution corre-
sponding to p1 ≈ 1/16 and p0 ≈ p2 ≈ 15/32. The OCDMA
modulator serves as an interface between the user’s data and
the optical channel and the purpose of using such spread-
ing sequences is to aim at achieving the capacity from the
theoretical model of the previous sections. The optical chan-
nel is modeled by a K-user adder channel affected by AWGN
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Figure 14: BER performance of the proposed coded OCDMA sys-
tem as a function of the number of active users: (a) after rate 1/3
turbo decoding; (b) after turbo and RS decoding.

channel noise. Given the channel observations on the chip
level, the M-ary OCDMA demodulator uses an appropri-
ate channel model described in Section 2 to estimate the
a posteriori probabilities of chip-symbol from set {0, 1, 2,
M-1} being transmitted by the desired user. Consequently,
these estimates are combined using theM-ary optical spread-
ing sequence of this user via multiplying the appropriate
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Figure 15: BER performance of the proposed coded OCDMA sys-
tem in the presence of noise (σ2 = 0.09) as a function of the number
of active users: (a) after rate 1/2 turbo and RS decoding; (b) after
rate 1/3 turbo and RS decoding.

probabilities, thus estimating the probability of transmitted
coded bits. The performance of the system is measured in
terms of the bit error rate of a desired user.

We simulated the bit error rates of selected turbo- and
RS-coded M-ary OCDMA systems for the transmission
model described in Figure 12 and for optical signal-to-noise
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Figure 16: BER for a 67-user coded OCDMA transmission with a
ternary spreading sequence of length 48: (a) after turbo decoding;
(b) after turbo as well as RS decoding.

ratio (SNR) normalized to Eb/N0. To increase the perfor-
mance of the systems, we have constrained all the users’
spreading sequences to have the same energy and to be sep-
arated from one another by at least a minimum Euclidean
distance corresponding to 0.85 times their constant energy.
In Figures 16 and 17, the BER is simulated using ternary and
quaternary spreading sequences of length 48, respectively.
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Figure 17: BER for a 57-user OCDMA transmission with a quater-
nary spreading sequence of length 48: (a) after turbo decoding; (b)
after turbo as well as RS decoding.

It can be noticed that the transmission is overloaded in both
cases with 67 and 57 active users and that the system still per-
forms well at low SNRs. It is also interesting to note that these
transmissions are particularly interference limited, since, at
a certain point, an increasing SNR does not improve the
performance. This occurs as the multi-user interference be-
comes much higher than the noise variance and causes the
performance degradation.
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Figure 18: BER against the number of users for ternary OCDMA
network with spreading sequences of length 128 and 10 dB SNR: (a)
after turbo decoding; (b) after turbo as well as RS decoding.

In Figures 18 and 19, the simulated BER is plotted against
the number of active OCDMA users for ternary and quater-
nary spreading sequences of length 128 and SNR = 10 dB.
In the case of quaternary modulation, for example, up to
150 total users (after 6 turbo iterations) can be supported
with almost error-free transmission. It can be noted that the
system is then overloaded since we have used spreading se-
quences with length 128 but still performs well for 150 users.
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Figure 19: BER against the number of users for quaternary
OCDMA network with spreading sequences of length 128 and 10 dB
SNR: (a) after turbo decoding; (b) after turbo as well as RS decod-
ing.

In addition, if the spreading sequences are constrained to
have better cross-energy (higher minimum distance con-
straint), more users can be accommodated in the system with
probability of error tending to zero.

It is important to note that in this part that the spread-
ing sequences have been randomly generated and are hence
not necessarily optimal. Therefore, the aggregate number of
users can then be increased by using more elaborate spread-
ing sequences. In our future work we will focus on the design
of M-ary spreading sequences with better correlation prop-
erties for data recovery.

6. CONCLUSION

In this work, we have evaluated the channel capacity limits
on optical CDMA transmission, when single-user detection
is used at the receiver. We have shown that the theoretical
network throughput of binary optical CDMA is limited by
about 0.84 bits per OCDMA chip and that it can be improved
by up to 4 times usingM-level OCDMA spreading sequences.
Hence, the M-ary modulation for OCDMA systems can be
seen as one practical way to increase the capacity limitations
of the binary optical CDMA.

In addition to the capacity calculations, we have
also proposed and explored specific architectures for bit-
asynchronous OCDMA transmission. Using a concatena-
tion of Berrou’s turbo codes and Reed-Solomon codes, we
have proposed a coded binary OCDMA system that can
support several hundred active users on a multi-access net-
work. Furthermore, we have also explored a turbo coded M-
ary OCDMA transmission with single-user detection. Using
proposed pseudorandomly generated spreading sequences
based on near-capacity-achieving distributions, the M-ary
OCDMA transmission schemes achieve good BER perfor-
mance and support overloading at sufficiently low SNRs. The
attractiveness of the proposed scheme lies in its reasonable
complexity (e.g., due to the use of single-user detection), the
utmost flexibility of the OCDMA network access scheme and
ability to overload the system.

Our future work will focus on improving the proposed
coding scheme to close the gap to the Shannon limit. We
will also further explore a coding scheme for higher M-
ary modulation levels and evaluate the optical CDMA sys-
tem performance limits under different modes of channel
noise.
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Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work
has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In
this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast) over
the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this
criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the
appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve
scanning of the laser beam.

Keywords and phrases: lasers, beam shaping, optical transfer functions, propagation, extended depth of focus, orthogonal beam
expansion.

1. INTRODUCTION

Laser beams are commonly used to read digital information
that has been encoded as a sequence of alternating light and
dark regions on a reflective media. One such application is
the reading of printed bar codes [1]. In this application, the
distance from the bar code reader to the bar code label is
usually variable and unknown, and in many cases it is desir-
able to read it over the largest possible distance, a feature that
greatly improves the ergonomics of the reader and reduces
operator training.

For such a system, the laser beam should have a large
depth of focus, loosely defined as the region where the beam
is “narrow enough” to resolve the fine structure of the bar
code. A proper definition of the depth of focus is crucial to
optimize such a system, and it must take into account that the
spatially encoded information can typically withstand mod-
erate distortions and still be properly decoded. In addition,
when scanning bar codes whose aspect ratio (i.e., the ratio
between the height and width of a bar code element) is high,

it is the line-spread function (LSF) of the beam, rather than
its point-spread function (PSF), that determines the overall
system performance. In such cases, a highly elliptical beam
is desirable in order to take advantage of the vertical redun-
dancy in the code, and to reduce printing or laser speckle
noise. (In the case of two-dimensional bar codes [1], a nearly
circular beam is required in order to avoid interrow interfer-
ence.)

Most previous work on synthesizing extended depth-of-
focus laser beams have been based on either approximating
the nondiffracting Bessel beam solution to the wave equation
[2, 3, 4], or applying more general 3D synthesis techniques
[5, 6]. Compared to the more general 3D synthesis tech-
niques, the technique developed in this paper uses a simpler
optimization criterion, and does not require samples of the
desired beam profile at various planes. In addition, the use
of a modal beam expansion guarantees the resulting beam
satisfies the paraxial wave equation.

The outline of this paper is as follows. First an appro-
priate definition of depth of focus based on the modulation
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Figure 1: Schematic layout of the optical system.

transfer function (MTF) is presented. Using this definition, a
Gaussian beam is optimized to achieve a maximum depth of
focus, followed by the optimization of more general beams
through the use of orthogonal beam expansions. Both circu-
lar and noncircular beams are considered by using the appro-
priate basis functions.

2. MTF-BASED OPTIMIZATION CRITERION

Consider a two-dimensional laser beam intensity profile at
a fixed distance z0 given by I(x, y, z0) with Fourier trans-
form U(u, v, z0), where v is spatial frequency and x, y, and
z are distances in the x-, y-, and z-directions, respectively, of
the beam profile. The overall setup of the system is shown
schematically in Figure 1. The line-spread function (LSF) of
the beam is defined as [7]

s
(
x, z0

) =
∫∞
−∞

I
(
x, y, z0

)
dy. (1)

The modulation transfer function (MTF) of the beam is de-
fined as the Fourier transform of the LSF and can be ex-
pressed as

F
(
u, z0

) = U
(
u, 0, z0

) =
∫∞
−∞

s
(
x, z0

)
e− juxdx. (2)

The MTF describes the spatial filtering effect of scanning the
laser beam over a one-dimensional spatial pattern extended
infinitely in the y-direction.

An important class of (approximately) such spatial pat-
terns is the ubiquitous printed bar code. These signals en-
code digital information through the use of alternating white
and dark regions (bars and spaces) of varying widths. Laser
scanning systems designed to read such patterns typically re-
quire a minimum contrast level for all spatial frequencies up
to the highest fundamental spatial frequency of the narrow-
est bar/space pair. Higher signal-to-noise ratios allow lower
contrast levels to be used.

For such applications, it is convenient to define the depth
of focus of a scanning laser beam to be the region on the z-
axis that maintains a minimum contrast level, C, for all fre-
quencies up to and including the highest fundamental fre-
quency. In what follows, all MTF curves will be normalized
so that F(u = 0, z) = 1 for all z.

Let u0 denote the fundamental spatial frequency of the
narrowest elements of a bar code (i.e., narrow bar/space
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Figure 2: Example of MTF curves.

pair). Such a spatial pattern will be considered within focus
at a distance z0 if

F
(
u, z0

) ≥ C, 0 ≤ u ≤ u0. (3)

This criterion guarantees that there will be an adequate level
of signal modulation present at the highest fundamental
bar/space frequency u0 and that no contrast reversals or loss
of modulation occurs at lower frequencies. An illustration of
MTF curves that both meet and fail the criterion is shown in
Figure 2.

This definition of depth of field will be used to design
laser beams that maximize the depth of focus given a highest
spatial frequency u0 and the minimum contrast level C.

3. GAUSSIAN BEAM OPTIMIZATION

The optimization of a simple Gaussian beam [8] will serve
both as a simple demonstration of the method, as well as
the first step required for the optimization of more general
beams. Note that the LSF of a two-dimensional Gaussian
beam is also Gaussian, thus a one-dimensional beam opti-
mization is sufficient.

The LSF of a Gaussian beam at a fixed distance z0 is given
by

s
(
x, z0

) =
√

2√
πω
(
z0
) e−2x2/ω2(z0), (4)

where ω(z0) is the beam radius at z0 given by

ω
(
z0
) = ω0

√√√√√1 +

(
λz0

πω0
2

)2

. (5)

For this case, it is assumed that the only free parameter to
optimize is the minimum beam radius ω0 occurring at z = 0.
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The optimum beam radius ω0 that maximizes the depth of
focus for a given contrast C and maximum spatial frequency
u0 is calculated to be

ω0 = 1
u0π

√
− lnC. (6)

The resulting depth of focus is

dopt = −2 lnC
u0

2πλ
(7)

with the distances |z| ≤ dopt/2 meeting the criterion for fo-
cus as defined by (3). Note that the depth of focus is in-
versely proportional to the square of the maximum spatial
frequency u0. This inverse relationship also applies to higher-
order modes.

In the following section, the optimization criterion will
be applied to the more general set of Hermite-Gaussian
beams.

4. OPTIMIZATION OF THE HERMITE-GAUSSIAN
EXPANSION

The Gaussian beam is the lowest-order member of the fam-
ily of Hermite-Gaussian (H-G) beams (also known as H-G
modes [8]). The H-G beams form a complete orthogonal set
of functions satisfying the paraxial wave equation in rectan-
gular coordinates, and are thereby capable of representing an
arbitrary propagating beam. These beams also have the desir-
able property that they remain H-G as they propagate, thus
providing a simple model for the propagation and optimiza-
tion of complex beams. A description of the H-G beams is
given in Appendix A.

Because the described optimization criterion is solely a
function of the LSF, and the fact that the two-dimensional H-
G functions are separable in rectangular coordinates, we only
need to consider a one-dimensional expansion. We will re-
strict the generated beam to certain desirable symmetries ap-
propriate to real-world applications. The first is that the LSF
of the beams are symmetrical about x = 0. This condition is
guaranteed by using only even-order H-G modes in the beam
expansion. The second symmetry is that the beam propagates
symmetrically about z = 0. This restricts the expansion co-
efficients to be real, and guarantees maximum depth of field
for a chosen u0.

The optimizing approach is based on representing the de-
sired beam as a sum of H-G beams with unknown coeffi-
cients. In general, an infinite sum is required to represent an
arbitrary beam. We will show that in practical applications,
the series needs to include only a relative small number of N
terms. This leaves N unknown parameters to be optimized.
A finite H-G expansion of a one-dimensional beam (within
a constant factor) using N even-order modes is given by

gN (x, z) = u0
(
x, z; b0

)
+
N−1∑
n=1

Anu2n
(
x, z; b0

)
, (8)
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Figure 3: Depth of focus versus number of H-G coefficients.

where the N unknown parameters to be optimized are
[b0,A1,A2, . . . ,AN−1]. The parameter b0 is the confocal pa-
rameter and is shared by all the modes (see Appendix A). It
should be noted that for Gaussian beams that correspond to
the lowest order of the H-G family of beams, this parameter
is known as the “Rayleigh distance.” The LSF of the beam at
a distance z0 is then given by the beam intensity expressed as

s
(
x, z0

) = gN
(
x, z0

) · gN∗(x, z0
)
. (9)

As more terms of the series are included in the optimization,
the depth of focus of the beam increases.

Optimization of the beam parameters was performed
with computer search techniques using a sequential se-
ries of optimizations for increasing values of N (see Mat-
lab Optimization Toolbox at http://www.mathworks.com/
products/optimization). In particular, the multidimensional
simplex search algorithm of Nelder and Mead was used due
to the difficulty of obtaining accurate derivative information
for the calculated depth of field.

The optimization forN = 1 (Gaussian beam) was analyt-
ically derived in Section 3. For N > 1, the critical initial guess
required to seed the numerical multidimensional optimiza-
tion of allN parameters was supplied by the previous (N−1)-
term optimization. In addition, it was found useful to refine
the initial guess by first performing a suboptimization using
only the newly added coefficient together with the confocal
parameter. This procedure greatly enhanced the convergence
to the appropriate solution. It is important to note that all
frequencies from 0 to u0 must be checked at every z to deter-
mine if the beam is within focus as defined in (3).

The depth of focus achievable as a function of the num-
ber of terms in the series is shown in Figure 3 for a maximum
spatial frequency of 3.9 lp/mm (e.g., bar code with a 5-
mil narrow element) and a minimum contrast of 10%. The
numerical values of the optimized parameters are given in
Table 1.
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Table 1: H-G coefficients.

Number of terms N b0 A1 A2 A3 A4 A5 A6 A7

1 0.07 — — — — — — —

2 0.24 −1.19 — — — — — —

3 0.33 −1.08 0.55 — — — — —

4 0.53 −0.9 0.78 −0.49 — — — —

5 0.85 −0.87 0.78 −0.57 0.70 — — —

6 1.08 −1.03 0.91 −0.83 0.77 −0.7 — —

7 1.36 −1.0 1.0 −0.88 0.74 −0.73 0.91 —

8 1.60 −0.96 1.0 −0.96 0.78 −0.67 0.80 −0.75
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Figure 4: LSF curves (H-G).

Examining Figure 3 shows that simply adding a second
term to the series (Gaussian beam and the next lowest even-
order mode) doubles the depth of focus. As more terms are
added, the rate of improvement decreases. In particular, there
is little benefit after six terms. Figures 4 and 5 show the
resulting LSF and MTF, respectively, of a beam that uses six
terms. To physically realize the beam, diffractive optical ele-
ments can be employed [9], with higher-order beams requir-
ing more spatial resolution.

5. OPTIMIZATION OF THE LAGUERRE-GAUSSIAN
EXPANSION

In the previous section, we used the essentially one-
dimensional H-G expansion to optimize optical beams used
to read conventional bar codes. In the case of a two-
dimensional bar code, a different optimization criterion is
needed, since elongated optical beams cause severe inter-
row interference. In this case, it is advantageous to use op-
tical beams with circular symmetry. In this section, we will
analyze one example based on the Laguerre-Gaussian series
[10].
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Figure 5: MTF curves (H-G).

In spherical coordinates, the family of beams that form
a complete set of solutions to the paraxial wave equation
are the Laguerre-Gaussian (L-G) beams. A description of the
L-G beams are given in Appendix B. In this case, the LSF can
be expressed as

s
(
x, z0

) =
∫∞
−∞

I
(√
x2 + y2, z0

)
dy. (10)

In a fashion similar to the optimization of the H-G beams,
the coefficients of a six-term L-G expansion were optimized
to guarantee a contrast level of 10% at 3.94 lp/mm. The re-
sulting LSF and MTF curves are shown in Figures 6 and 7,
respectively. The optimized parameters are given in Table 2.

It should be noted that while both the circularly sym-
metric optimization (L-G) and the 1D (H-G) optimization
maintain a minimum contrast level, the circular beam’s LSF
undergoes significantly less variation over the depth of focus
compared to the 1D beam, as evidenced in the curves pre-
sented in Figure 4 compared to those of Figure 6. This is due
to the existence of a nondiffracting beam solution in spheri-
cal coordinates while no such beam exists in rectangular co-
ordinates [2].
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Table 2: L-G coefficients.

Number of terms N b0 A1 A2 A3 A4 A5

1 0.07 — — — — —

2 0.21 0.70 — — — —

3 0.64 1.58 1.29 — — —

4 0.82 1.35 1.66 1.46 — —

5 0.98 1.25 1.60 1.87 1.17 —

6 1.11 1.17 2.07 3.35 2.03 1.17
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Figure 6: LSF curves (L-G).

6. SUMMARY AND CONCLUSIONS

Extended depth-of-focus laser beams have many practical
applications. One such application is the scanning and de-
coding of printed bar codes over extended ranges. Previous
work has concentrated on synthesizing such beams by ap-
proximating the nondiffracting Bessel beam solution to the
wave equation [3, 4]. In this paper, a novel optimization
technique was presented based on orthogonal beam expan-
sions. One of the main advantages of this method is that it
can generate noncircularly symmetrical beams which offer
great advantage when scanning noisy one-dimensional pat-
terns such as bar codes. Using this expansion, we have shown
that with a relatively small number of terms, the laser beam
operational depth of focus can be readily extended by more
than threefold.

It is important to note that the overall performance of a
bar reader depends not only on the optical properties of its
optical beam, but also on the processing of the signal derived
from the reflected beam.

When applying the beams described in this paper to bar
code scanning applications, the price to be paid for the ex-
tended depth of focus is lower contrast (less optical power re-
ceived) and waveform complexity resulting from the sidelobe
structure of the beam. Higher-power lasers along with lower-
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Figure 7: MTF curves (L-G).

noise electronics can address the contrast issue and more ad-
vanced signal processing techniques are required to remove
the resulting distortion artifacts and to correctly reconstruct
the original spatial pattern [11, 12].

APPENDICES

A. HERMITE-GAUSSIAN MODES

A Hermite-Gaussian function of order n is expressed as

ψn(ξ) = Hn(ξ)e−ξ
2/2, (A.1)

where Hn(ξ) are Hermite polynomials. Some examples of
low-order Hermite polynomials are

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2. (A.2)

The nth-order Hermite-Gaussian mode is defined as

un
(
x, z = 0, b0

) = Cnψn

(√
2x
ω0

)
(A.3)
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with

ω0 =
√

2b0

k
, (A.4)

where b0 is the confocal parameter and k is the wave number.
For Gaussian beams, the lowest order of the H-G beams, the
confocal parameter b0 is also known as the Rayleigh distance
so that ω(b0) = √2ω0.

Cn is the energy normalization constant given by

Cn =
( √

2
ω02nn!

√
π

)1/2

. (A.5)

For z �= 0, the propagation of the Hermite-Gaussian modes
are given by

un
(
x, z; b0

) = e j(kz−π/4) Cn(
1 + z2/b0

2)1/4ψn

(√
2x

ω(z)

)

× e− jkx2/2R(z)e j(2n+1/2)φ(z),

(A.6)

where

ω(z) =
√√√√2b0

k

(
1 +

z2

b0
2

)
,

R(z) = z2 + b0
2

z
,

φ(z) = tan−1

(
z

b0

)
.

(A.7)

Consider an arbitrary one-dimensional beam with input am-
plitude function h(x) at z = 0. The function h(x) can be ex-
panded as

h(x) =
∞∑
n=0

Anun
(
x, z = 0; b0

)
, (A.8)

whereAn are the expansion coefficients and b0 is the confocal
parameter shared by all the H-G modes. The propagation of
the beam for z �= 0 can then be expressed as a summation of
the individual propagating beams given by

g(x, z) =
∞∑
n=0

Anun
(
x, z; b0

)
. (A.9)

The intensity profile at a distance z0 is given by

I
(
x, z0

) = g
(
x, z0

)
g∗
(
x, z0

)
. (A.10)

B. LAGUERRE-GAUSSIAN MODES

The nth-order Laguerre-Gaussian mode at z = 0 is defined
as

uk
(
r, z = 0; b0

) = 1√
π
Lk

(
2r2

ω0
2

)
e−r

2/ω0
2
, (B.1)

where ω0 is define in (A.4) and lk(ξ) are Laguerre polynomi-
als. Some examples of low-order Laguerre polynomials are

l0(ξ) = 1, l1(ξ) = −ξ + 1, l2(ξ) = ξ2 − 4ξ + 2.
(B.2)

For z �= 0, the propagation of the Laguerre-Gaussian modes
is given by

uk
(
x, z; b0

) = e j(kz) 1√
π

1(
1 + z2/b0

2)1/2 Lk

(
2r2

ω2(z)

)

× e−r2/ω0
2
e− jkx

2/2R(z)e j(2k+1)φ(z),

(B.3)

where ω(z), R(z), and φ(z) are defined in (A.7).
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